
P2/V6/Q7 Programming Winsock 305941 aw 11.15.94 Parts LP #2

II
Introduction to
Networking
Introduction to
Networking

1 Networking and Network Programming

2 TCP/IP Overview

3 WinSock Overview

4 Visual C++

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 3

11

Networking
and Network
Programming

Networking
and Network
Programming

Part I ■ Introduction to Networking4

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

The purpose of this book is to show you how to make network-aware applications that
run on the Microsoft Windows and Windows NT operating systems using the Win-
dows Sockets (WinSock) Application Programming Interface (API). To that end, sev-
eral practical examples are examined that utilize the basic functionality of WinSock.

Network operating systems, such as Windows for Workgroups and Windows NT,
provide basic file and printer sharing services. This most basic level of functionality is
provided “out of the box.” Network-aware applications are programs that use the capa-
bilities of a collection of connected computers. Network-aware programs range from
custom applications that transfer data among computers on a network to mainstream
applications that enable electronic mail and remote database access. The WinSock API
is a library of functions that a programmer can use to build these network-aware
applications. WinSock has its roots in Berkeley sockets as introduced in the Berkeley
Software Distribution of UNIX. WinSock uses the TCP/IP (Transmission Control Pro-
tocol/Internet Protocol) suite, which provides the formal rules of behavior that govern
network communications between all computers running this particular computer net-
working protocol.

Before I begin the examination of network programming, look at the basics of com-
puter networking in general. A network can be loosely defined as a collection of two or
more computers that have some sort of communication path between them. A network
can be loosely classified as either a local area network (LAN) or wide-area network
(WAN). The use of the terms LAN and WAN is somewhat misleading because which
term you use is relative to the particular network installation you’re describing. Gener-
ally speaking, a LAN covers a much more geographically restricted area than does a WAN.
Whereas a LAN may connect computers within an office building, a WAN may con-
nect computers spread across the country. With the advances in networking hardware
and software, many widely dispersed LANs can now be connected to form a much larger
homogeneous WAN. Devices known as bridges and routers allow for this connection of
disparate LANs. Computer networks aren’t new, but they weren’t accepted in the per-
sonal computer realm until perhaps the late 1980s, when computer firms began offer-
ing cost-effective and reliable networking for the desktop PC. At that time, the primary
goal of the PC network was to provide a central repository for files and to allow printers
to be shared among many users. It hasn’t been until relatively recently that businesses
have realized the true potential of a PC network.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 5

Goals of Networking
The goals of PC networking have been expanding over the last few years—from simple
file and printer sharing to access of fax machines, modems, and enterprise-wide elec-
tronic mail systems. All the while, the essential goals of networking have always been to
share resources and to provide a medium for communications.

Resource Sharing
For the sake of this discussion, a network resource is either a device or a capability on
the network that’s available for use by network users. The computer that the network
resources are attached to is called the server. The other computers that access those re-
sources over the network are called clients. The typical PC network user today takes
shared file and printer access for granted. But there are now other resources that also
can be made available to the user. Among them are fax machines, modems, compute
servers, and database servers.

Files
The traditional use of PC networks has been and probably always will be to act as a
repository for files. By storing files in a common location accessible to coworkers, for
example, much productivity can be gained. Several products exist from Microsoft and
other vendors that provide this capability. Windows for Workgroups is one such prod-
uct. It’s classified as a peer-to-peer network, which means that there’s no dedicated,
central-file server. Instead, any computer on the network can share files with any other;
any computer on the network can act as either a client, server, or both. Windows NT
and Windows NT Advanced Server expand on this idea by providing a much more robust
file-sharing capability and better file system security.

Figure 1.1 shows two computers labeled Computer A and Computer B. Each has ac-
cess to files on the File and Print Server and stored on the computer server. To illustrate
the difference between the central-file server model and the peer-to-peer model, exam-
ine the following scenario, where Computer A has a file on its hard disk that it would
like to make available to Computer B. In the central-file server model, Computer A must
connect to the File and Print Server, place the file on the server’s hard disk, and then
inform Computer B that the file is available. Computer B then connects to the File and
Print Server and accesses the file deposited there by Computer A. Using a peer-to-peer
network, Computer A could simply give Computer B permission to access the file on
Computer A’s hard disk.

Part I ■ Introduction to Networking6

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

At a minimum, a computer network with a file server, whether it be centralized or peer-
to-peer, prevents the use of the infamous “sneaker net” whereby files are transferred
between computer users by first putting the desired files onto a floppy disk and then
walking that floppy over to the designated recipient.

Printers
Another popular use of PC networks is to make printers available to all network users.
This obviously provides a great cost savings by reducing the number of expensive print-
ers and the cost of the maintenance and management of those devices. Windows for
Workgroups and Windows NT provide printer-sharing capabilities. As Figure 1.1 shows,
the two computers labeled Computer A and Computer B, as well as the File and Print
Server computer, have access to the laser printer attached to the File and Print Server.
When the user seated at Computer A prints a document, it’s sent to the File and Print
Server where it’s printed. If a user at Computer B tries to print a document while Com-
puter A’s document is still printing, Computer B’s document is stored in a temporary
location on the File and Print Server. This process is called printer spooling. As soon as
the first submitted print job belonging to Computer A’s user is complete, the next job,
belonging to Computer B’s user, is begun.

A Windows NT-based network fully supports the remote management of networked
printers. An administrator of a Windows NT network can monitor the status (to see if
the paper is out, for example) of a remotely located printer and also manipulate the queue

Computer A

File and Print Server

Laser Printer

Computer B

FIGURE 1.1.
File and printer
resource sharing.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 7

of jobs waiting to be printed. He could, for instance, pause a print job sent by a user at
1:00 to make a print job submitted at 1:05 print first. The administrator can control
other printer options such as which hours of the day the printer is available, who on the
network can access the printer, and which users’ print jobs have higher priority than
others.

Fax Machines
The fax “machines” that are now being attached to computer networks are really just
specialized modems that can communicate with other fax “modems” and more tradi-
tional stand-alone fax machines. There are several benefits to networked fax modems.
Most documents that are eventually faxed are created with a computer’s word processing
program, printed on a traditional laser or dot-matrix printer, and then fed into a
traditional fax machine. The networked fax modem saves these last two time-consuming
steps by allowing the word processing program to “print” directly to the fax device. Most
fax modems appear as just another printer to the word processing program. When the
user selects the fax modem as the “printer” to print to, the user is asked to fill out a fax
cover sheet which includes the recipient’s name and the telephone number of the
recipient’s fax machine. A fax modem also allows a fax to be easily distributed to multiple
recipients at different telephone numbers.

Microsoft at Work fax software is a component of the Microsoft at Work architecture
(to be discussed shortly). This software allows networked computers running Windows
to share a fax modem attached to one of the networked computers.

Modems
Standard modems, as opposed to fax modems, are also being used now as shared de-
vices on PC networks. In the past, users who had a regular need for modem communi-
cations had to have their own personal modems. More often than not, that modem was
very underutilized. By arranging several modems in a modem pool reachable by a net-
work, many more users can have access to modem communications without the expense
of personal modems. When users need to access a modem, they request one from the
modem pool and then proceed as if that modem were theirs alone. When they’re fin-
ished with the modem resources, those resources are freed and made available to the
next user who requests them. Figure 1.2 shows four computers and a two-modem pool.
The Modem Pool Server is the computer that manages the modem pool. Computers A,
B, and C have access to these modems. When Computer A requests the use of a mo-
dem, the Server removes that modem from its availability list. When Computer B re-
quests a modem, the Server assigns the second modem to Computer B. If Computer C
then requests a modem, the request is placed in a queue. As soon as Computer A or B
relinquishes its “borrowed” resource, Computer C gets use of that freed modem.

Part I ■ Introduction to Networking8

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

Modem access can also operate in the opposite direction. It’s possible to have remote
users dial into the computer network. Once they’re logged to the network, the remote
users have the same access to network resources as users whose computers are physically
attached to the network. Microsoft’s Remote Access Service (RAS) includes this capability
for Windows for Workgroups and Windows NT.

Compute Servers
Another shared resource that can be found attached to some PC networks is the com-
pute server. This device is usually a very powerful computer that’s geared toward per-
forming specialized tasks. For example, compute servers can be tuned for exceptional
floating-point calculation performance. A compute server isn’t necessarily practical for
use as a general-purpose computer, so users access this resource from a workstation or
desktop PC. The results of the compute server’s work can be displayed on the local
desktop PC using a remote graphical user interface. This graphical interface is based on
the X Windows system developed at the Massachusetts Institute of Technology.

Another way to take advantage of a compute server is to use Remote Procedure Calls
(RPC) in your desktop application. Using RPCs, the application on the desktop com-
puter makes calls to functions that happen to execute on the remote compute server.
When the function has completed, the results are returned to the desktop computer as
if the function call took place locally. Figure 1.3 shows one possible scenario with a
powerful mainframe compute server serving the needs of both an X Windows worksta-
tion and a PC using RPCs.

Computer A

Modem Pool Server

Modem 1 Modem 2

Computer B Computer C

FIGURE 1.2.
Modem pool.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 9

Database Servers
The networked database server is similar to the compute server but is more common in
today’s business environment. With this network resource, desktop PCs can query and
modify a database that’s made available to the entire enterprise. Figure 1.4A shows one
possible configuration. The user seated at the client computer sends a query to the
database server. The database server receives the query parameters and processes the
request. When the database server has completed the necessary processing, a response is
returned to the client computer. This configuration is known as client/server architec-
ture. The client/server programming model is explained later in this chapter.

Several vendors, including Microsoft, Oracle, and Sybase, provide database servers that
are geared toward the high-end client/server market. Many companies, such as Borland,
Gupta, Microsoft, PowerSoft, and Oracle, provide tools necessary to build the client
portion of the client/server solution.

A client/server database is especially useful when several people need access to the same
information. This architecture is desirable because it allows people in different locations,
possibly even on opposite sides of the globe, to share and modify common informa-
tion. The client/server database architecture not only makes it easy to locate users at
disparate locations but also allows freedom in the location of the databases. With this

Computer A
X Windows

Computer B
Remote Procedure Calls

Mainframe Compute Server

D
raw

ing C
om

m
ands

Fu
nc

tio
n

C
al

l P
ar

am
et

er
s

Fu
nc

tio
n

C
al

l R
et

ur
n

V
al

ue
s

M
ouse and K

eyboard E
vents

FIGURE 1.3.
Compute server.

Part I ■ Introduction to Networking10

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

scenario, as shown in Figure 1.4B, the database can be maintained where it makes the
most sense. In an order entry system, for example, it might make sense to have the bill-
ing department maintain the customer records in one database while the inventory
records are maintained by the parts department in a different database stored on an-
other database server. During order entry time, the order entry clerk can access both
databases and get the most up-to-date information.

Query

Client Computer Database Server

Client Computer Database Server

Step 1: The client sends a query to the database server

Step 2: The database server processes the query

Response

Client Computer Database Server

Step 3: The database server returns a response to the client

Processing

FIGURE 1.4A.
Database server.

Communications Medium
The complementary, and somewhat overlapping, goal for a computer network is to act
as a communications medium. In a basic sense, if this communications medium didn’t
exist, neither would the ability to share any network resources, as described earlier. In
this context, however, the communications medium allows network users to commu-
nicate better with each other. To facilitate this human-to-human communication, many
networked software tools have been built. Among them are electronic mail systems,
workgroup scheduling programs, and electronic forms processing systems.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 11

Electronic Mail
Electronic mail, known as e-mail, has had wide acceptance in the arena of larger com-
puter systems such as those that run a UNIX operating system derivative. PC networks
now have e-mail capability, too. Not only can e-mail be shared between PC network
users, but it can be routed to users on other networks that are based on high-end work-
stations or multiuser computers. This capability means that all computer users in a
business setting can use electronic communications among themselves and can still use
the best computer and operating system combination to meet their primary job respon-
sibilities.

Modern e-mail systems have been extended further so that embedded or attached ob-
jects can be sent. These objects can be as simple as additional textual information or as
diverse as a computer-playable video presentation or a financial spreadsheet. When re-
cipients read their e-mail, the attachments are immediately available.

Windows for Workgroups and Windows NT are bundled with e-mail support.

Custom
er Num

ber or Nam
e

Custom
er Billing Address

Par
t N

um
be

r o
r N

am
e

Par
t D

es
cr

ip
tio

n
an

d
Ava

ila
bi

lity

Customer Records

Order Entry
Computer

Inventory Records

Billing Department Parts DepartmentFIGURE 1.4B.
Departmental database
servers.

Part I ■ Introduction to Networking12

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

Electronic Forms
With electronic forms an organization can easily exchange structured information.
E-forms are the modern-day equivalent of the printed paper form. A simple example of
a form is the popular “While You Were Out” message your secretary might fill out. By
combining e-forms with an e-mail system, your messages will appear as nicely format-
ted, standardized e-mail messages instead of pieces of paper scattered about your desk.
Another use of an e-form might be by a salesman who enters a customer’s order on his
laptop computer while on site. The e-form is then either immediately transferred to a
host computer using a modem or transferred at the end of the business day in a batch-
type mode where all the day’s orders are sent.

Workgroup Scheduling
Workgroup scheduling helps coworkers manage their time and communicate with each
other more effectively. A network scheduling program provides network computer us-
ers with the ability to view and modify each other’s day planners. This ability makes it
easier to schedule group meetings, make personal appointments, and assign tasks to an
available individual. Microsoft’s Windows for Workgroups and Windows NT include
a scheduling program that has this capability.

Chat
A chat utility can replace a phone call for simple one-to-one or one-to-many communi-
cations. Under a UNIX-based operating system, the chat utility is called talk. In the
Windows and Windows NT environment, the chat utility is called Chat and is executed
by running the WINCHAT.EXE program. With both programs you can connect to at
least one other network user and then type messages back and forth.

World Wide Web and Mosaic
On a more global scale, the World Wide Web (WWW) is gaining in popularity. The
WWW was started at CERN, the European Laboratory for Particle Physics. Its original
purpose was to facilitate the communication between fellow particle physicists. WWW
is a distributed system with which users can access documents of varying types, from
simple text files to graphical images stored in the GIF or JPEG format. The data may

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 13

contain links to other related data. By traversing these links, information on a particu-
lar topic can be found. This world-wide connection is made possible by the Internet, a
collection of an estimated 2,000,000 interconnected computer systems spread the world
over.

To traverse the Web, as it is known, the user needs a sophisticated Web client or browser.
The browser’s duties involve traversing the links, retrieving data of miscellaneous types,
and providing viewers for that data. One of the best Web browsers available is Mosaic,
developed at the National Center for Supercomputing Applications. Figure 1.5 shows
Mosaic for Windows connected to a computer that Microsoft has made available for
support of its products. Pointing the mouse cursor at the folder and clicking the mouse
button causes Mosaic to redraw the screen with the newly selected folder’s information.
When users see data files they would like, another mouse click causes files to be retrieved
to the users’ machines where they’re displayed, if there are appropriate viewers avail-
able, or saved to disk for later examination.

Webs are even finding a place for internal use in the corporation. The data stored at a
Web site is inherently cross-platform. This means a company can produce a document
once, possibly including multimedia-type extensions, and have that document available
for viewing by users of Windows, Macintosh, or UNIX computers. All that is needed is
a Web browser for each platform.

FIGURE 1.5.
Mosaic.

Part I ■ Introduction to Networking14

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

Coming Soon
The future promises more networking options. One exciting area of development in-
volves wireless communications. Usually associated with the notion of a Personal Digi-
tal Assistant, wireless communications will allow access to an enterprise’s network from
anywhere on the planet. Imagine being able to access your e-mail messages from the
beach.

Another area of interest, particularly to Microsoft, is to make network resources more
easily shared and utilized. To meet this goal, Microsoft initiated the Microsoft at Work
program in 1993. One component of Microsoft at Work discussed earlier was Microsoft
at Work fax software, with which network users can send faxes and computer files di-
rectly from their desktop computers. Soon we will see other Microsoft at Work-enabled
devices, such as telephones and photocopiers. These devices will have a touch screen
surface with a simplified Windows interface and will also be available as network re-
sources. With an “At Work” enabled photocopier, for example, a network user will be
able to send a print job directly from his favorite word processor program and have the
desired number of copies printed, collated, and stapled.

As networks get more sophisticated and the amount of network traffic they can handle
increases, video conferencing becomes more viable. Video conferencing usually involves
the use of a multimedia-enabled computer that includes a video camera and microphone.
With such a configuration, two or more users can see and hear each other, as well as
type messages back and forth as the outdated Chat type utility allows. By combining
video conferencing with a networked “white-board” utility, on which networked users
can see and manipulate visual computer data, coworkers are able to collaborate on work
even though they may be located in different offices, different states, or even different
countries. It might be a while before that kind of network bandwidth exists though.

Network Topologies
The previous sections described the capabilities of a computer network. But how are all
of these file, print, fax, and compute resources connected so as to allow the typical desk-
top computer to access them? Network topology refers to the way networked comput-
ers and network resources are connected. The three most widely used topologies are bus,
ring, and star. Note that the following network topology diagrams are logical views of
the topologies they represent and don’t necessarily match the physical (electrical) inter-
connections on the networks.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 15

Bus Network
The bus network topology, shown in Figure 1.6, connects each computer to a single
cable. At each end of the cable is a terminating resistor or a terminator. An electrical
signal is passed back and forth along the cable past the computers and between the two
terminators. The bus carries a message from one end of the network to the other. As the
bus passes each computer, the computer checks the destination address on the message.
If the address in the message matches the computer’s address, the computer receives the
message. If the address doesn’t match, the bus carries the message to the next computer,
and so on.

Bus topology is passive, meaning that computers only listen for data being sent on the
network and aren’t responsible for moving data from one computer to the next. If one
computer fails, it doesn’t affect the entire LAN. On the other hand, if a cable breaks,
the entire cable segment (the length between the two terminators) loses its connectiv-
ity, so that the entire segment isn’t functional until the cable can be repaired.

Each computer attached to a bus network can transmit data whenever it “wants.” This
capability means that two computers may try to transmit simultaneously. This
occurrence is called a collision. A collision is detected by the network hardware of the
sending computers. When a collision is detected, the packets of data that generated the
collision are retransmitted.

The limitation of bus networks is the speed of data transmission relative to the number
of computers on the network. As more computers are added to the network, more col-
lisions are bound to happen. As more collisions occur, more retransmissions take place
and the overall network performance degrades.

Ethernet is one example of a common bus network found on many local area networks.
Ethernet is also the most popular LAN architecture in use today.

Note

Ethernet was developed by the Xerox Corporation in 1972 as the follow-up to
some research done at the University of Hawaii. Ethernet first became commer-
cially available in 1975 as a 2.94 Mbps network able to connect up to 100
computers spread over a 1-kilometer cable. Xerox Ethernet soon became
popular, and work was done with the Intel Corporation and Digital Equipment
Corporation to extend Ethernet’s capability to 10 Mbps. Today, 100 Mbps
Ethernet is gaining in popularity.

Part I ■ Introduction to Networking16

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

Ethernet networks can be wired with different types of cable, each with its own benefits
and drawbacks. Three popular specifications for Ethernet topologies are 10BASE2, which
uses thin coaxial cable (Thinnet) that can carry a signal up to approximately 607 feet;
10BASE5, which uses Thicknet cabling that can carry a signal for about 1,640 feet; and
10BASET, which uses unshielded twisted-pair cable that can carry a message for about
328 feet between a computer and the hub to which the computer is connected.

FIGURE 1.6.
Bus network.

Ring Network
Figure 1.7 shows a ring network. In a ring network, a packet of data (often called a to-
ken) is continually moving around the ring from one computer to the next. To send
data, a computer on the network must wait for the circulating token to pass by. When
the token arrives, it’s examined to see whether it’s empty. If it’s empty, the computer
that wishes to transmit adds its data to the token packet and addresses the packet to a
destination. As the token passes by the destination computer, the computer looks at the
address and because the message is addressed to itself, extracts the data, and replaces the
token packet’s data with a delivery acknowledgment message. The token then contin-
ues to circle the ring and eventually returns to the sending computer. The sending
computer examines the token packet to see if it contains the data it sent or an acknowl-
edgment message. If it doesn’t find an acknowledgment message, the sender knows that
the data wasn’t received, possibly because the destination computer wasn’t operating.
The sender then clears the token packet and passes it along the ring to allow subsequent
computers their chance to use the network’s communication resources. The token passing
scheme is in contrast to the bus topology whereby any computer can send at any mo-
ment and the protocol must detect collisions. Collisions of this nature can’t occur on a
ring network.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 17

Note

The first design of a network passing a token ring is attributed to E. E. Newhall
in 1969. IBM first publicly supported a token-ring topology in March 1982,
and announced its first token-ring network product in 1984.

Data on the IBM token-ring network is transmitted at either 4 or 16 Mbps, depending
on the actual implementation. For computers to communicate with each other, all net-
work cards must be configured similarly to communicate at either 4 or 16 Mbps on the
network. Networked computers are connected by shielded and/or unshielded twisted-
pair cable to a wiring concentrator called a Media Access Unit or MAU (rhymes with
cow). Each MAU can support as many as 72 computers that use unshielded wire or up
to 260 computers using shielded wire. Each ring can have as many as 33 MAUs allow-
ing for a theoretical maximum of 8,580 computers on the network.

FIGURE 1.7.
Ring network.

Star Network
To transmit data between any two computers in a star network, shown in Figure 1.8,
requires that data be sent via the centrally located computer, called a hub. The hub
provides a common connection so that all the computers can communicate with one
another. To extend the star network, hubs can be connected to one another. The major
problem with star networks is that if the centrally located hub isn’t operating, the entire
network becomes unusable. A benefit of a star network is that no computer, other than
the centrally located hub, can interrupt network traffic.

Part I ■ Introduction to Networking18

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

Internetworking
The previous section detailed different network topologies. This section will show that
these disparate networks can be interconnected and may even be separated by thousands
of miles. This scenario is called internetworking. Figure 1.9 shows a well connected
network composed of a bus network, a ring network, a satellite connection to a remote
server, and a dial-up modem connection. Notice the device called the Gateway. This
device is used to connect the bus network to the ring network. Its job isn’t only to bridge
the two networks hardware-wise but also to route data between the two when the des-
tination of a data packet isn’t local to either the bus or ring network. Routing and gate-
ways are described more fully in Chapter 2, “TCP/IP Overview.” In this network, the
laptop computer has the same access to resources connected to the bus network’s
Workstation computer as does the bus network’s Macintosh computer. Of course the
access times may not be the same for the laptop computer and the Macintosh.

Does Network Topology Matter?
Fortunately, the average application programmer has little need to know the topology
details of the network his software will run on. Most of these details are hidden from

FIGURE 1.8.
Star network.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 19

the application program by a networking application programming interface (such as
WinSock). The application programmer will need to be concerned with these nitty-
gritty details if the application being developed has any special requirements, such as
fault tolerance or guaranteed response times. The programmer may also be concerned
about the underlying network hardware. Ethernet was listed earlier as an example of a
bus network. Some networks may not be as simple as Figure 1.6 appears. As several local
area networks are interconnected, and as wide area network links, such as those pro-
vided by satellites, are added, network topology becomes an issue with the network
application programmer. You can’t assume that data will reach its destination in less
than 100 milliseconds, for example. The best advice is to make your network programs
as configurable and robust as possible, especially with regard to time-out values.

Desktop PC

Desktop PC Workstation

Satellite

Macintosh

Bus Network

Desktop PC Desktop PC

Ring Network

Macintosh

Gateway

Modem

Laptop Computer

Modem

Satellite Dish

Telephone Line

Server

Satellite Dish

FIGURE 1.9.
Internetworking.

Look at Figure 1.9 as an example of a network configuration that requires flexible net-
work applications. If the server is acting as a database server, it must serve the client
computers on the bus network, the ring network, and the telephone line. The network
access times are different for the Macintosh on the bus network than they are for the
laptop computer dialed with a 9,600-baud modem, for example.

Part I ■ Introduction to Networking20

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

The application programmer should make the server aware of the disparity in perfor-
mance when it communicates with the many other computers it serves. Those other
computers must likewise be knowledgeable about their connectivity to the server. The
client software running on the laptop computer may have a five-second time-out for
database access while the bus network’s Macintosh may need a 10-second time-out to
make up for the delays introduced by the satellite link. Attention to details such as this
early in a network application’s development cycle may save a lot of aggravation later.

Network Programming Models
The previous section discussed ways that computers and other resources can be attached
to a network. But what do we do now that we have networked computers that can com-
municate with one another and share common resources? We need software that can
take advantage of the network. This section begins a discussion of network program-
ming. Network programming can be thought of in two primary contexts: client/server
and distributed.

Client/Server Computing
In the client/server computing model, an application is split into two parts: a front-end
client that presents information to the user and collects information from the user, and
a back-end server that stores, retrieves, and manipulates data and generally handles the
bulk of the computing tasks for the client. In this model the server is usually a more
powerful computer than the client, oftentimes a minicomputer or mainframe, and serves
as a central data store for many client computers, making the system easy to administer.
Client/server architecture increases workgroup productivity by combining the best fea-
tures of stand-alone PCs with the best features of minicomputers and mainframes.
Client/server architecture makes the best use of high-end server hardware and reduces
the load on client PCs. Load reduction, in turn, provides superior performance and mini-
mizes network traffic. Figure 1.4A shows one example of a client/server interaction with
a client accessing a database server.

A server is any program that runs on a networked computer and can provide a service.
A server receives a request over the network, performs the necessary processing to ser-
vice that request, and returns the result to the requester. The client is the program that
sends a request to a server and waits for a response.

For a client and server to communicate and coordinate their work, an interprocess com-
munication (IPC) facility is needed. The subject of this book, WinSock, can be used to
satisfy this requirement. Chapter 15, “Practical Client/Server Database Application,”
introduces an example that will demonstrate client and server database implementations.

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

 Chapter 1 ■ Networking and Network Programming 21

One server program can service several client requests at the same time. For this reason,
implementing servers tends to be more difficult than implementing clients. To provide
the capability of supporting several client requests simultaneously, servers are usually
built in two parts: a single master that accepts requests and one or more slaves that ac-
tually process and respond to the individual requests.

Client/server architecture contrasts with the classical centralized architecture popular-
ized by typical mainframe installations. In a centralized environment, the “clients” are
little more than dumb terminals that act as simple data entry/display devices. There’s a
minimum of work done at the terminal. The user typically fills in the fields of a form
before sending the field data to the central computer. All processing and screen format-
ting is done on the central computer, and the dumb terminal simply displays the
preformatted data. In a client/server environment, the client has much greater intelli-
gence and more freedom with the final visual presentation of the data to the user. In-
stead of the data being preformatted to match the way it will be viewed, it’s sent back in
its “raw” format, and the application running on the client computer “decides” how to
display that data. Thus the “front end” that the user sees can be customized while the
“back end” remains unchanged.

Distributed Computing
The distributed architecture can be thought of in two different ways: precollection and
parallel processing.

Precollection is the act by which background processes on networked computers con-
currently collect and propagate information before that information is requested. An
example would be a program that requests the status of every other computer on the
local network. In the client/server environment, the client program would have to send
a request to each computer on the network and wait for a response. This procedure is
potentially very time-consuming. In a distributed implementation, each computer on
the local network would have a process that runs continually in the background and
that reports status information to every other computer on a regular interval. When the
program is run to request the status information of every other computer on the local
network, the response comes back immediately because the information was precollected
in each local computer. Of course this solution wouldn’t work well if the information
being requested was time sensitive, because the delay in the updates would make the
response outdated. Shortening the time between the updates sent by the networked
computers wouldn’t work well either because of the possibility of saturating the network’s
data-handling capabilities.

When most people think of parallel processing, they think of a computer that has more
than one processing unit. Parallel computing in a distributed system environment means

Part I ■ Introduction to Networking22

P2/Vol.6/s&n6 Programming WinSock #30594-1 rob 11.14.94 CH01 LP #4

taking advantage of more than one computer on the network to perform a specific task.
Suppose that you, as a software developer, want to do a large project build late at night
when few other programmers are at work. Wouldn’t it be nice to take advantage of all
that idle processing power lying in each programmer’s workstation or desktop PC? With
a build utility that was designed for a distributed environment, your build could ex-
ecute in a parallel fashion with certain modules being compiled on certain computers
and other modules being compiled on other computers. The project build could be
completed in a greatly reduced time. This assumes that the source code going into the
build is located somewhere on the network and is as easily accessible by all other com-
puters as it is to your own. If the source code is located on your local computer, the
overhead in shipping it across the network to the other computers might overshadow
the benefit of multiple modules being built simultaneously.

Summary
This chapter has discussed the basics of computer networking and network program-
ming. The primary purpose of most computer networks is to allow for the sharing of
resources such as files, printers, modems, and fax machines, and to facilitate the com-
munication of the people using the networked computers. Network topology refers to
the way networked computers and network resources are connected to each other, with
the most popular topologies being bus, ring, and star. To take advantage of the network’s
connectivity, network-aware application software is used. The client/server and distrib-
uted models are two popular methodologies followed when writing networked software.
To write this networked software, a network application programming interface (API)
is used by the programmer. One such network API, and the focus of this book, is
WinSock. The following two chapters will discuss TCP/IP, the underpinnings of
WinSock, and WinSock itself.

 Chapter 2 ■ TCP/IP Overview 23

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

22

TCP/IP
Overview
TCP/IP
Overview

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking24

Computer network protocols are formal rules of behavior that govern network com-
munications. The Transmission Control Protocol (TCP) and Internet Protocol (IP) are
just two of the data communication protocols encompassed by the Internet Protocol
Suite. This protocol suite is usually referred to as TCP/IP partly because TCP and IP
are two of the most important protocols of the collection. TCP/IP includes a set of stan-
dards that specify how networked computers communicate and how data is routed
through the interconnected computers.

TCP/IP provides the application programmer with two primary services: connectionless
packet delivery and reliable stream transport. These will be discussed in detail later in
this chapter. TCP/IP has several distinguishing features that have led to its popularity,
including

Network Topology Independence. TCP/IP is used on bus, ring, and star
networks. It’s used in local-area networks as well as wide-area networks.

Physical Network Hardware Independence. TCP/IP can utilize Ethernet,
token ring, or any number of physical hardware variations.

Open Protocol Standard. The TCP/IP protocol suite standard is freely
available for independent implementation on any computer hardware platform
or operating system. TCP/IP’s wide acceptance and the fact that TCP/IP is
available on platforms ranging from supercomputers to desktop personal
computers makes it an ideal set of protocols to unite different hardware and
software.

Universal Addressing Scheme. Each computer on a TCP/IP network has an
address that uniquely identifies it so that any TCP/IP enabled device can
communicate with any other on the network. Each packet of data sent across a
TCP/IP network has a header that contains the address of the destination
computer as well as the address of the source computer.

Powerful Client-Server Framework. TCP/IP is the framework for powerful
and robust client-server applications that operate in local-area networks and
wide-area networks.

Application Protocol Standards. TCP/IP doesn’t just provide the program-
mer with a method for moving data around a network among custom applica-
tions. It also provides the underpinnings of many application-level protocols
that implement such common functionality as e-mail and file-transfer capabili-
ties.

The current incarnation of the Windows Sockets library is built on TCP/IP, although
there’s nothing inherent in WinSock precluding it from utilizing an alternate protocol

 Chapter 2 ■ TCP/IP Overview 25

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

stack. In fact, work is in progress on the next version of WinSock, which will support
the use of Novell’s IPX/SPX, Apple’s Appletalk, and other popular network protocols.

NOTE

The term protocol stack has been mentioned a few times now. It refers to the way
some network communication protocols, including TCP/IP, are composed of
several logical layers of software where each layer communicates with the layer
directly above and below itself. At the top of this stack is the application layer
that you, as the applications programmer, provide. The bottom of the stack is
generally thought to be the layer that communicates with the network hardware
(that is, the Ethernet or Token Ring). The upcoming section titled “ISO OSI
Protocol Stack” provides a more complete definition of a protocol stack.

TCP/IP History
The history of the TCP/IP protocol suite can be traced back to one of the first wide-
area networks consisting of computers from different manufacturers running different
operating systems.

ARPANET
This experimental network was called ARPANET, and its development was sponsored
by the Defense Advanced Research Projects Agency (DARPA) in 1969 with the goal of
creating a network to provide robust data communications among computers from
different vendors. Before ARPANET, most computer networks were homogeneous,
consisting of computers from the same hardware manufacturer running the same oper-
ating system.

The ARPANET’s popularity became apparent, and in 1975, it was converted from an
experimental network into a fully operational network that was used for daily commu-
nications among researchers at the connected sites. But research into network protocols
continued and the Internet Protocol Suite resulted. The TCP/IP protocols were adopted
as Military Standards in 1983, and all computers connected to the ARPANET were
required to adopt the new protocol. The ARPANET was then split into two networks:
the MILNET, used for unclassified military communications, and the new, much smaller
ARPANET, used for further research. MILNET and ARPANET together became known
as the Internet.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking26

Berkeley Software Distribution
DARPA was also interested in expanding the Internet by attaching university comput-
ing sites. At that time, most university computer science departments were running a
version of the UNIX operating system developed at the University of California at Ber-
keley. This implementation of UNIX is known as the Berkeley Software Distribution
or BSD UNIX. DARPA funded Bolt Beranek and Newman, Inc. to implement TCP/
IP for UNIX and funded Berkeley to incorporate the protocols into its software distri-
bution. This funding, combined with the fact that many university computer science
departments were adding more computing resources that needed to be interconnected,
all but guaranteed a wide audience for TCP/IP.

The programmers for BSD UNIX didn’t simply take TCP/IP as it came from Bolt
Beranek and Newman. They added an abstracted layer for the use of application devel-
opers called sockets. Sockets, which WinSock is based on, make it easy for the applica-
tion programmer to write networked code. The BSD programmers also added several
utilities to their UNIX that were built upon pre-existing commands used in the stand-
alone computing environment. For example, the new remote copy command rcp was
introduced. This command extended the standard copy command called cp to the net-
work. Network-aware utilities such as these, and the power that can be wielded from
them, helped BSD UNIX and its TCP/IP gain wide acceptance.

With the popularity of BSD UNIX at universities, the size of the connected Internet
grew. The even wider acceptance of TCP/IP soon after BSD’s inclusion of the proto-
cols led to an astronomical Internet growth rate that has yet to peak. In 1983, the Internet
connected a handful of computing sites. Today, the Internet connects two million com-
puters and forty million people spread all over the world.

NOTE

The use of the term internet is sometimes confusing because it’s used haphaz-
ardly to mean so many different things. TCP/IP is another name for the
Internet Protocol Suite. TCP/IP and Internet Protocol are used interchangeably.
Originally, if someone said their computing site had an internet, it meant there
were two or more networked computers that used the Internet Protocol between
them. The term internet (notice the lower case i) is now used to refer to any
collection of physically separate networks that share the same communication
protocols (not necessarily TCP/IP) to appear as a single logical network. The
term Internet (notice the upper case I) is used to refer to the worldwide collec-
tion of interconnected computer networks that run the TCP/IP protocols.

 Chapter 2 ■ TCP/IP Overview 27

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Request for Comments
No single company or group “owns” TCP/IP. The protocols are freely distributable,
and anyone is allowed to incorporate them into his or her operating system or com-
puter network. You may be wondering how TCP/IP is expanded and how the applica-
tion protocols mentioned earlier are developed. The answer lies in Internet Request for
Comments (RFC).

RFCs provide for an informal method of establishing new TCP/IP protocol standards.
RFCs usually begin as Internet drafts. After the Internet community has had a chance
to critique the draft it becomes an RFC. RFCs are numbered sequentially, so later RFCs
have higher numbers than those created earlier. Some RFCs supersede earlier ones, but
the new RFC will always make note of that.

The number an RFC receives is distributed by an organization at SRI International called
the Network Information Center or the NIC (pronounced nick). The NIC is funded
by the Defense Communication Agency (DCA), which manages the military’s com-
puter network infrastructure. The NIC isn’t only responsible for an RFC’s number, it’s
also responsible for the storage and distribution of TCP/IP protocols, allotment of
Internet addresses, and the registration of the names of Internet-connected computers.

One example of an RFC is RFC 742, which defines the finger protocol. The finger
protocol is usually accessed by the user using a finger program. Finger allows a user to
find out certain information about a specific user on a specific networked computer or
all users on a specific networked computer. The finger protocol describes the commu-
nications that must take place between the finger client program that a user runs and a
finger server that continuously runs on the computer that’s being “fingered.” You’ll build
a finger client program for Windows in a later chapter.

ISO OSI Reference Model
A group called the International Standards Organization (ISO) introduced the Open
Systems Interconnection (OSI) Reference Mode, a layered network architecture, with
the goal of international standardization of computer network protocols. The OSI model
is said to be an open systems architecture because it connects computer systems that are
open for communications with other systems. The connected computer systems don’t
have to be from the same manufacturer and don’t have to run the same operating sys-
tem. TCP/IP and the OSI model share a similarity in this regard.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking28

The Seven-Layer OSI Model
The OSI model is composed of seven layers as shown in Figure 2.1. Taken together,
these layers define the functions of data communication protocols. Each layer of the
OSI model represents a function performed when data is transferred between cooperat-
ing applications across a connecting network. A layer doesn’t have to define a single
protocol; it defines a function that’s performed by any number of protocols. For ex-
ample, the finger protocol and a file transfer protocol both fit into the Application Layer.
According to Andrew Tanenbaum’s Computer Networks book, the layers were defined
with the following ideals in mind:

A layer should be created where a different level of abstraction is needed.

Each layer should perform a well-defined function.

The function of each layer should be chosen with an eye toward defining
internationally standardized protocols.

The layer boundaries should be chosen to minimize the information flow across
the interfaces.

The number of layers should be large enough that distinct functions don’t have
to be thrown together in the same layer out of necessity, and small enough that
the architecture doesn’t become unwieldy.

FIGURE 2.1.
The ISO OSI reference
model. Sending

Application
Receiving
Application

Application Layer

Presentation Layer Presentation Layer

Session Layer

Transport Layer

Network Layer

Datalink Layer

Physical Layer Physical Layer

Application Layer

Session Layer

Transport Layer

Network Layer

Datalink Layer

 Chapter 2 ■ TCP/IP Overview 29

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Application Layer
The application layer provides end-user services such as file transfer and e-mail. This is
the layer closest to what the user of the computer sees and manipulates. The finger pro-
tocol described earlier fits into this layer because it’s the protocol that defines the client
application’s interaction with the server application providing the finger service. The
finger client communicates with its peer finger server. A peer is a protocol implementa-
tion that resides in the equivalent layer on a remote system.

Presentation Layer
The presentation layer controls how data is represented. This is the layer in which data
compression might take place, for example. Using data compression as an example, when
data passes from the application layer to the presentation layer, the presentation layer
compresses the data before passing it on to the session layer. When data arrives, it’s passed
from the session layer to the presentation layer where it’s uncompressed and passed on
to the application layer. Hence, the presentation layer really performs a data manipula-
tion function, not a communication function.

Session Layer
The session layer manages the process-to-process communication sessions between hosts.
It’s responsible for establishing and terminating connections between cooperating ap-
plications.

Transport Layer
The transport layer performs end-to-end error detection and correction. This layer guar-
antees that the receiving application receives the data exactly as it was sent.

Network Layer
The network layer manages network connections. It takes care of data packet routing
between source and destination computers as well as network congestion.

Datalink Layer
The datalink layer provides reliable data delivery across the physical network. It doesn’t
assume that the underlying physical network is necessarily reliable.

Physical Layer
The physical layer is concerned with transmitting and receiving raw bits over a physical
communication channel. Ethernet is one example of such a channel. This layer has
knowledge of voltage levels and of the pin connections to the physical hardware media.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking30

These seven layers and the way they’re represented as building blocks stacked one on
top of the other has led to the term protocol stack or simply stack.

TCP/IP and the OSI Model
TCP/IP doesn’t directly follow the OSI model. Although each network model has the
goal of facilitating communication among different makes and models of computers,
even when those computers are running dissimilar operating systems, each network model
has resulted in different implementations. Whereas the OSI model is driven by a large
standards organization, which takes a long time to formulate and adopt a standard, TCP/
IP was driven by the immediate need of the United States government. TCP/IP devel-
opment isn’t burdened with the same stringent requirements as OSI. Most of TCP/IP’s
advances have been made by individuals and small groups through the issuance of RFCs.
The process of creating and adopting an RFC is more expeditious than the equivalent
procedure in the ISO. This has led some to say TCP/IP isn’t a very “pure” architecture.
Pure or not, TCP/IP is the set of protocols used to connect more computers in the world
today than any other.

Although OSI and TCP/IP differ, it’s still useful to use the seven-layer model as a frame
of reference when discussing data communications. Figure 2.2 shows the layered archi-
tecture of TCP/IP.

FIGURE 2.2.
TCP/IP layered
architecture.

Physical Layer

Application Layer

Transport Layer

Internet Layer

Application Layer
The application layer consists of applications that make use of the network. A file-transfer
utility and the finger program discussed earlier are examples of programs that fit into
the application layer. The application and presentation layers of the OSI model fit into
this layer of the TCP/IP architecture. For example, if data transferred between two peer

 Chapter 2 ■ TCP/IP Overview 31

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

programs is going to be compressed, the application “is responsible” for the compres-
sion and decompression. In effect, the transport layer is absorbed into the application
instead of being a separate entity as it is in the OSI model. For the sake of discussion,
however, you can still think of the transport function as a logical layer.

Transport Layer
The transport layer provides end-to-end data delivery. The OSI model’s session and
transport layers fit into this layer of the TCP/IP architecture. The notion of OSI’s ses-
sion connection is comparable to TCP/IP’s socket mechanism. A TCP/IP socket is an
end-point of communications composed of a computer’s address and a specific port on
that computer. OSI’s transport layer has an equivalent in TCP/IP’s TCP. TCP pro-
vides for reliable data delivery and guarantees that packets of data will arrive in the or-
der they were sent, with no duplicates and with no data corruption.

Internet Layer
The internet layer defines the datagram and handles the routing of datagrams. The
datagram is the packet of data manipulated by the IP protocol. A datagram contains the
source address, destination address, and data, as well as other control fields. This layer’s
function is equivalent to that of the OSI’s network and datalink layers. The IP (as in
the right-hand side of TCP/IP) is analogous to the network layer. It’s responsible for
encapsulating the underlying network from the upper layers. It also handles the addressing
and delivery of datagrams. The datalink layer isn’t usually represented in the TCP/IP
architecture, but IP could be used to support this function.

Physical Layer
TCP/IP makes no effort to define the underlying network physical connectivity. In-
stead, it makes use of existing standards provided by such organizations as the Institute
of Electrical and Electronic Engineers (IEEE), which defines RS232, Ethernet, and other
electronic interfaces used in data communications.

The movement of a packet of data through the layers in a TCP/IP network is shown in
Figure 2.3. When a packet of data is sent, it travels to the transport layer where the trans-
port header is added. Next the internet layer adds its header. Finally, the physical layer
attaches its header. When a packet of data is received, the process is reversed, resulting
in the application’s reception of the intended data.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking32

FIGURE 2.3.
Data movement
through the TCP/IP
layers.

Sending
Application

Receiving
Application

Data

Data

Data

Data

Transport
Header

Transport
Header

Internet
Header

Transport
Header

Internet
Header

Physical
Header

Data

Data

Data

Data

Transport
Header

Transport
Header

Internet
Header

Transport
Header

Internet
Header

Physical
Header

TCP/IP Addressing Scheme
One of TCP/IP’s distinguishing features described previously is its universal addressing
scheme whereby each computer on a TCP/IP network has an address that uniquely
identifies it. This universal addressing scheme extends even to the world-wide Internet,
connecting more than two million computers that are connected to thousands of sepa-
rate networks.

It’s IP’s responsibility to deliver datagrams among the TCP/IP networked computers.
To make such deliveries possible, each computer has a unique IP address composed of
a 32-bit number. The IP address contains sufficient information to uniquely identify a
network and a specific computer on the network.

Network Classes
Because a computer’s IP address must uniquely identify not only the computer but also
the network the computer is attached to, the IP address is split between a network iden-
tifier (net id) part and a host identifier (host id) part. The split between these two iden-
tifiers isn’t the same for all IP addresses. The class of the address determines how many
bits of the IP address are reserved for network identification and how many are reserved
for host identification. There are five classes of IP address with only the first three rel-
evant to the majority of users. Classes A, B, and C are for general-purpose use; classes D
and E are reserved for special purposes and future use. Figure 2.4 shows the format of
an IP address.

FIGURE 2.4.
IP address format.

Class ID

31 0

Network ID Host ID

 Chapter 2 ■ TCP/IP Overview 33

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

As far as the application programmer is concerned, no discernible difference exists among
a class A, B, or C address. A computer with a class A address can communicate with a
computer with a class C address just as well as a class A computer can communicate
with another computer with a class A address. Table 2.1 shows the maximum number
of networks and hosts that can exist for the different classes.

Table 2.1. IP address class allocation.
Network Class Networks Hosts per Network

A 126 16,777,214

B 16,382 65,534

C 2,097,150 254

Not all network identifiers or host identifiers are available for use. Some addresses are
reserved for special use. If Table 2.1 is compared to the following class descriptions,
you’ll see that not all bit combinations are included in the counts of Table 2.1.

Class A
Class A IP addresses are identified by a high-order bit of zero. The next highest order
seven bits identify the network. The remaining 24 bits identify the host.

FIGURE 2.5.
Class A IP Address
Format. 0

31 30 24 23 0

Network ID Host ID

Class B
Class B IP addresses are identified by a high-order bit of one and the next highest order
bit set to zero. The next highest order fourteen bits identify the network. The remain-
ing 16 bits identify the host.

FIGURE 2.6.
Class B IP address
format. 1 0

31 30 29 24 23 0

Network ID Host ID

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking34

Class C
Class C IP addresses are identified by a high-order bit sequence of one one zero. The
next highest order twenty-one bits identify the network. The remaining eight bits iden-
tify the host.

FIGURE 2.7.
Class C IP address
format. 1 1 0

31 30 29 28 78 0

Network ID Host ID

Dotted Decimal Notation
If the format of an IP address sounds confusing, don’t worry. An IP address is usually
represented by the dotted decimal notation. An IP address’ dot notation is comprised
of 4 decimal values in the range of 0 to 255 separated by a period or dot (.). Each value
represents 8 bits of the IP address. The 4 values together are the 32 bits of the IP ad-
dress.

I’ll use the IP address of my computer as an example. Its address in dotted decimal for-
mat is 166.78.4.139. Figure 2.8 shows the binary interpretation of this IP address. Bit
31 is a 1, so that indicates this computer is either a class B or C network. Bit 30 is a 0
indicating that the computer does belong to a class B network. The earlier discussion of
network classes said that class B addresses allowed 14 bits for the network id part and
16 bits for the host id part. The dividing line separating the network part from the host
part is between bits 15 and 16. You can read this to mean the computer resides on net-
work 166.78 and is host 4.139.

FIGURE 2.8.
IP address decoding.

Dotted Decimal Notation

Binary Representation

10100110 01001110 00000100 10001011

166.78.4.139

NOTE

If remembering the dotted decimal notation of a computer still sounds too
confusing, read on: The implementors of TCP/IP realized that humans would
need an easy method of accessing this information, so they devised a method
whereby a simple-to-remember textual name symbolizes an IP address. The
name-to-IP-address translation is supported by several methods with the

 Chapter 2 ■ TCP/IP Overview 35

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

simplest being a plain ASCII file where each line of the file has the IP address in
dotted decimal notation to the left and the textual name to the right. This file is
customarily named hosts and is referred to as the host file.

The host file implementation is fine for a small network with relatively few
computers, but the management of such a file becomes unwieldy or impossible
as the network grows to thousands of hosts, as in the Internet or any large
corporate network. In this environment, a name server is utilized. A name server
is a computer that provides a name to IP address resolution. When a request to
translate a certain name to its IP address arrives at the name server, it does a
database lookup to see if it has this information. If not, the request is passed on
to an authoritative server. Authoritative servers are maintained with official data
provided by the group responsible for the assignment of IP addresses.

Subnetting
Subnetting is a method of locally modifying the use of the network and hosts bits. By
moving the dividing line that separates the host id part from the network id part, more
networks can be created at the same time the maximum number of hosts on each net-
work is reduced. A subnet mask is used to define the new dividing line. It’s represented
in dotted decimal notation in much the same way as an IP address is. The bits that are
set to one represent the network portion; the remaining bits that are set to zero repre-
sent the host portion.

Earlier, I determined that the IP address of my computer resided on network 166.78
and had a host id of 4.139. Officially speaking this is correct. But as it turns out, the
network administrators at my site have decided to use a network mask of 255.255.255.0
to logically partition the address space into more networks. Looking at the logical view,
my network id is 166.78.4 and my host id is 139. Another way of saying this is my
computer is host 139 on subnet 166.78.4.0. Notice that the low order byte is 0. Per-
forming a logical AND operation between my complete IP address and the subnet mask
results in the subnet 166.78.4.0. The component that remains—139—is the host part.

TIP

The subnet mask doesn’t have to be partitioned on even 8-bit boundaries. As an
example, suppose that my subnet mask is 255.255.255.128. Performing the
logical AND operation between this subnet mask and 166.78.4.139 results in
166.78.4.1 with a remaining portion of 11. Hence my computer would be host
11 on subnet 166.78.4.1.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking36

The NIC and Internet IP Addresses
You should see now that IP address space is a limited resource. You have also learned
that any computer attached to the global Internet must have a unique IP address. The
Network Information Center is the group responsible for the assignment of IP addresses
and domain names. To get an official IP address and have your host name officially
recognized, you must register with the NIC. Depending on your needs, the NIC will
most likely allocate to you either a class B or C network identifier. Class A network space
is very rare—remember that there are only 126 possible class A networks—and is al-
most exhausted.

When you register, you’ll also need to choose a domain name. Domain names are orga-
nized into a hierarchical structure with the root-level domain at the top. The top-level
domains in the United States are

COM for commercial organizations
EDU for educational organizations
GOV for governmental organizations
MIL for military organizations
NET for network support organizations
ORG for organizations that don’t fit into any other category

Other top-level domains are generally reserved for country codes. For example, the United
Kingdom belongs to the top-level UK domain, and Australia belongs to the top-level
AU domain.

My personal computer, with IP address 166.78.4.139, has a fully qualified name of
GOOBER.PING.COM. It’s a member of the PING.COM domain which is in turn a
member of the top-level COM domain. Figure 2.9 shows a hierarchical representation
of the domains mentioned thus far.

FIGURE 2.9.
Domain hierarchy.

Root

NET ORG COM

PING

UKEDU GOV AUMIL

GOOBER

 Chapter 2 ■ TCP/IP Overview 37

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Routing
Routing is the method by which packets of data are sent from one computer to another
in the most efficient way possible. The routing process is composed of several compo-
nents as follows:

Determining what paths are available between the source and destination
computers

Selecting the “best” path between the source and destination computers where
“best” may mean different things depending on the goals

Using those paths to reach other computers

Adjusting the datagram formats to fit into the underlying physical network
technology

In a TCP/IP network, routing is performed by the IP layer. The network id of the des-
tination computer’s IP address as well as the subnet mask are used by the IP layer to
make routing decisions.

Default Gateway
In an interconnected computer network, or internet, some method is required to de-
liver data to computers that reside on another connected network. By specifying a de-
fault gateway, the IP layer of the sending computer “knows” to what destination it should
forward data that has a destination which isn’t on the local network. See Figure 2.10 for
a simple network arrangement. When 166.78.4.139 sends data to 166.78.4.10, the IP
layer takes the subnet mask, in this case 255.255.255.0, and performs a logical AND
operation on both the source and destination IP addresses. The result in this case is
166.78.4.0 for both addresses, which tells the IP layer that both computers are on the
same subnet. The data is sent directly to 166.78.4.10. When 166.78.4.139 sends data
to 166.78.1.5, the IP layer again uses the subnet mask, and the results are 166.78.4.0
for the source and 166.78.1.0 for the destination. These numbers don’t match, which
signals the IP layer that the computers reside on different subnets. The sending com-
puter can’t send directly to 166.78.1.5. The data must be sent to the default gateway,
which is a computer that has two IP addresses and resides on two distinct subnets. The
data is first sent to 166.78.4.2 and then forwarded on to 166.78.1.5.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking38

FIGURE 2.10.
Network routing.

166.78.4.139 166.78.4.10

166.78.1.5

Gateway

166.78.4.2

166.78.1.1

Subnet 166.78.1.0

Subnet 166.78.4.0

Multiple Default Gateways
It’s also possible to have multiple default gateways. With this configuration, a subnet
doesn’t rely on one gateway to the connected networks. Instead the data can use several
paths to leave the source subnet. The IP layer uses the subnet mask, the IP addresses of
the gateways, and the IP address of the destination computer to decide the most effi-
cient route from sender to receiver.

Internet Layer
The internet layer is shown in Figure 2.2. It defines the datagram and handles the rout-
ing of those datagrams. IP is the most important protocol of the TCP/IP protocol suite,
because it’s used by all other TCP/IP protocols and all data must flow through it. IP is
also considered the building block of the Internet.

Although the application programmer doesn’t usually see this layer, a brief overview is
beneficial.

 Chapter 2 ■ TCP/IP Overview 39

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

IP
IP is a connectionless protocol, which means that no end-to-end association is estab-
lished before data is transmitted. This is in contrast to a connection-oriented protocol
that exchanges control information between hosts to establish a connection before data
is transmitted. IP doesn’t guarantee reliable data delivery either. Packets of data could
arrive at their destination out of order, duplicated, or not at all. IP relies on other layers,
such as the TCP transport protocol, to provide the reliability feature.

The basic building block of IP is the datagram. Each datagram, or packet of data, has a
source and destination address. Routing of data is done at the datagram level. As a
datagram is routed from one network to another, it may be necessary to break the packet
into smaller pieces. This process is called fragmentation and it’s also the responsibility
of the IP layer. Fragmentation is required on some internets because the many hard-
ware components that make up the network have different maximum packet sizes. IP
must also reassemble the packets on the receiving side so that the destination host re-
ceives the packet as it was sent.

Address Resolution Protocol
Unfortunately, network hardware (that is, the Ethernet card you plug into your com-
puter) doesn’t understand IP addresses. The Address Resolution Protocol (ARP) is used
to map the logical IP addresses and host names—that humans like to use—into the
physical addresses that the underlying network hardware mandates. This protocol
operates by broadcasting a message onto the local network, saying in effect, “Is the com-
puter with IP address xxx.xxx.xxx.xxx out there?” If the computer with the designated
IP address is listening, it returns a message with its physical hardware address to the
source. Any other computer that receives the broadcast request message ignores it. This
protocol only works on the local network because the format of the physical network
address is dependent on the hardware used in the network. For example, if an Ethernet
was in use, the response to the ARP request would be a 48-bit number that uniquely
identifies every Ethernet device in existence.

Internet Control Message Protocol
The Internet Control Message Protocol (ICMP) is another low-level protocol rarely used
by the application programmer. It uses IP datagrams to send messages that perform flow
control, error reporting, routing manipulation, and other informational functions for
TCP/IP.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking40

The application programmer most certainly will make use of the ping utility, one of the
most common programs that uses ICMP. Ping uses ICMP’s echo function to test the
response of a networked host. By getting a response from ping, you’re assured that net-
work routing is in place between the two computers and that the remote computer is
indeed running.

NOTE

You’ll develop a version of ping in a later chapter. That version of ping will use
an application-level protocol from the transport layer instead of the internet
layer’s ICMP.

Transport Layer
IP is responsible for getting datagrams from computer to computer. The transport layer
is responsible for delivering that data to the appropriate program or process on the des-
tination computer. The two most important protocols of the transport layer are User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP). UDP provides
connectionless datagram delivery; TCP provides a reliable stream-oriented delivery ser-
vice with end-to-end error detection and correction.

To facilitate the delivery of data to the appropriate program on the host computer, the
notion of a port is used. A port is a 16-bit number that denotes an end-point of com-
munication within a program. An IP address and port combination taken together
uniquely identify a network connection into a process. The socket paradigm developed
by the University of California at Berkeley makes more intuitive the use of IP addresses
and ports.

NOTE

The application programmer is responsible for ensuring that two or more
processes don’t utilize the same port.

Application programmers use UDP and TCP in the majority of their networked pro-
grams.

 Chapter 2 ■ TCP/IP Overview 41

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

User Datagram Protocol
The User Datagram Protocol (UDP) allows data to be transferred over the network with
a minimum of overhead. UDP overhead is low because it provides only unreliable data
delivery. There’s no method in the protocol to verify that the data reached the destina-
tion exactly as it was sent. The data may be lost, duplicated, or arrive out of order.

These limitations don’t make UDP useless, though. The low overhead in UDP trans-
mission—because there’s no need to establish a connection—and the lack of reliability
makes UDP very efficient. UDP can be used when the application programmer puts
error-case handling into the application. For example, suppose that you had a simple
client-server relationship where the client sends a small piece of data to the server and
expects within two seconds a response in the form of a small piece of data. If the client
doesn’t receive a response within two seconds, it can assume the data didn’t make it to
the server successfully and so it may retransmit the request. If the client does receive a
response from the server, that can be used as an acknowledgment that the data did reach
its destination.

Figure 2.11 shows the format of a UDP message. The message contains a 16-bit source
and destination port.

FIGURE 2.11.
UDP message format.

Source Port Destination Port

Length

Data...

Checksum

Transmission Control Protocol
The Transmission Control Protocol (TCP) verifies that data is delivered in order and
without corruption. Associated with this feature is extra overhead in the generation and
maintenance of a connection.

TCP provides for the transmission of a reliable, connection-oriented stream of bytes.
TCP’s reliability comes from its inclusion of a checksum into each packet of data trans-
mitted. On reception, a checksum is generated and compared to the checksum included
in the header of the data packet. If the checksums don’t match, the receiver communi-
cates that fact to the sender, and the data is automatically resent. Application program-
mers don’t have to be concerned with this function because the lower layers mask it.
TCP is considered connection-oriented because the two end-points of communications
exchange a handshaking dialogue before data transmission can begin. This handshake
guarantees to the sender that the receiver is alive and ready to accept data.

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH02 LP #3

Part I ■ Introduction to Networking42

FIGURE 2.12.
TCP message format.

Source Port Destination Port

Sequence Number

Data...

Acknowledgement Number

Checksum

Options

Urgent Pointer

Padding

Offset Reserved Flags Window

Figure 2.12 shows the format of a TCP message. The message contains a 16-bit source
and destination port as does the UDP message. But this message also includes sequenc-
ing fields as well as a data checksum field. These additional entries in the message are
there to support TCP’s reliable data transport.

Well-Known Ports
UDP and TCP use the IP address and the port number to uniquely identify a particular
process on a TCP/IP networked computer. But your application program shouldn’t use
just any port. Some ports are called reserved ports because they have been given a spe-
cial meaning. Some RFCs describe application-level services that most TCP/IP net-
worked computers run. These network-accessible services “listen” at a well-known port
so that client programs need only know the IP address of the remote host. For example,
consider the finger program. It takes as its parameter a host name or host IP address.
The finger program connects to the host at the well-known port that has been reserved
for the finger service. If you were to write a program that waited for connections on a
well-known port, you might get client programs trying to attach to your service that
were expecting another program on the back-end.

Summary
This chapter discussed the principal components of a TCP/IP network. TCP/IP proto-
cols are independent of the underlying network hardware on which they reside. Each
computer on a TCP/IP must have a unique IP address that universally discloses the
computers identification. TCP/IP is particularly well suited for use in an internetworking
environment where several disparate networks need to be connected. Gateways allow
the IP data to travel between two or more interconnected networks. The application
programmer will make the most use out of TCP/IP’s transport level interfaces of UDP
and TCP. The socket paradigm is used to assist the application programmer with net-
work coding. The next chapter discusses WinSock’s use of sockets and the extensions
necessary to support the Microsoft Windows architecture.

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

 Chapter 3 ■ WinSock Overview 43

33

WinSock
Overview
WinSock
Overview

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

Part I ■ Introduction to Networking44

The Windows Sockets Application Programming Interface (WinSock API) is a library
of functions that implements the socket interface as popularized by the Berkeley Soft-
ware Distribution of UNIX. WinSock augments the Berkeley socket implementation
by adding Windows-specific extensions to support the message-driven nature of the
Windows operating system.

WinSock version 1.1 is bound to the TCP/IP protocol suite. Although future versions
of WinSock are expected to support Novell’s IPX/SPX, Apple’s Appletalk, and other
popular network protocols, this book concentrates on the socket interface to the TCP/
IP protocol stack.

The WinSock specification allows TCP/IP stack vendors to provide a consistent inter-
face to their stacks so that application developers can write an application to the WinSock
specification and have that application run on any vendor’s WinSock-compatible TCP/
IP protocol stack. This is contrast to the days before the WinSock standard when soft-
ware developers had to link their applications with libraries specific to each TCP/IP
vendor’s implementation. This limited the number of stacks that most applications ran
on because of the difficulty in maintaining an application that used several different
implementations of Berkeley sockets. WinSock has removed that barrier. App-
lication programmers write to the WinSock API and link their applications with the
WINSOCK.LIB import library (or WSOCK32.LIB in the case of Win32). The appli-
cation can then be installed on a computer that has a WinSock TCP/IP stack, from any
number of vendors, and dynamically link to the WINSOCK.DLL (or WSOCK32.DLL)
provided by the vendor. Figure 3.1 is a block diagram of WSOCK32.DLL interaction
in a 32-bit program on Windows NT. Although the actual WINSOCK.DLL is specific
to each TCP/IP stack vendor, the interface into that dynamic link library remains con-
sistent, hence any program linked with the WinSock import library should work.

CAUTION

I say should work because not all TCP/IP vendors’ stacks operate in exactly the
same way. Some simply have bugs and others interpret the WinSock or TCP/IP
protocol standards differently. In some cases, the WinSock specification itself is
ambiguous.

As discussed in Chapter 2, a socket is simply an end-point of communication. A TCP/
IP socket is comprised of an IP address and a port. Some ports are reserved for well-
known services and others are for use by your applications. Sockets can be set up to
provide either a reliable, connection-oriented stream service or an unreliable,
connectionless datagram service.

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

 Chapter 3 ■ WinSock Overview 45

FIGURE 3.1.
WinSock layering. Win32 WinSock

Application

WINSOCK32.DLL

Application Layer

Operating System Layer

Executive Services
I/O System

Includes Disk and
Network

Hardware Abstraction Layer
Device Drivers Micro-Kernel

The reliable stream socket is based on the TCP. It requires that a connection be estab-
lished before two processes can send or receive data between themselves. The data sent
between the connected processes is simply a stream of bytes. There are no record delim-
iters in the data stream. For example, if the sending process sends 100 bytes, the receiv-
ing process may receive that data as a single chunk of 100 bytes or two chunks of 50
bytes each. If your application depends on records being sent, you must provide
application-level headers in the data stream; TCP won’t preserve the packet size for you
on the receiving side.

The connection-oriented stream service is well suited to the client-server architecture.
In a typical client-server interaction, the server creates a socket, gives the socket a name,
and waits for clients to connect to the socket. The client creates a socket and connects
to the named socket on the server. When the server detects the connection to the named
socket, it creates a new socket and uses that new socket for communication with the
client. The server’s named socket continues waiting for connections from other clients.
See Figure 3.2 for an illustration of this simple client-server interaction.

The unreliable, connectionless datagram socket is based on the User Datagram Proto-
col. It doesn’t require that a connection be established before two processes can send
data to and receive data from each other. The data sent between any two processes is
contained in a single packet. The sender sends the packet and the receiver receives the

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

Part I ■ Introduction to Networking46

entire packet. Consequently, this type of socket can be easily used to send records; no
application-level headers are required. The limitations in this socket service are that data
may not be received at the destination, that data may be duplicated, and that data may
arrive out of order.

FIGURE 3.2.
Client-server stream
socket interaction.

Server

socket()
Create the Socket

bind()
Give the Socket a Name

Client

socket()
Create the Socket

connect()
Connect to the Server

listen()
Listen for Connections from Clients

accept()
Accepting the connection causes a
new socket to be created while the
original socket continues to wait for

new connections

send() / recv()
Send and Receive Data

send() / recv()
Send and Receive Data

Wait for Connections
from Clients

closesocket()
Close the Connection

closesocket()
Close the Connection

Berkeley Sockets Versus WinSock
Those familiar with Berkeley sockets may want to examine the following list, which
describes some differences between the Berkeley socket implementation and WinSock.

WinSock Version 1.1 supports the TCP/IP domain for interprocess communi-
cation on the same computer as well as network communication. In addition to
the TCP/IP domain, sockets in most UNIX implementations support the
UNIX domain for interprocess communication on the same computer and the
Xerox XNS domain.

The return values of certain Berkeley functions are different. For example, the
socket() function returns –1 on failure in the UNIX environment; the
WinSock implementation returns INVALID_SOCKET.

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

 Chapter 3 ■ WinSock Overview 47

Certain Berkeley functions have different names in WinSock. For example, in
UNIX the close() system call is used to close the socket connection. In
WinSock, the function is called closesocket(). See the next item for the
reason.

WinSock socket handles may not be UNIX-style file descriptors. In a UNIX
environment, a socket handle can be operated on in much the same way as any
other file handle (that is, an actual disk file). In most WinSock implementa-
tions, with the possible exception of the Win32 environment of Windows NT,
socket handles can’t be operated on in the same fashion as generic file descrip-
tors.

Several new functions were added to WinSock to support the message-driven
architecture of Windows. These are discussed in the following section.

WinSock Extensions to Berkeley Sockets
WinSock has several extensions to Berkeley sockets. Most of these extensions are due to
the message-driven architecture of Microsoft Windows. Some extensions are also
required to support the nonpreemptive nature of the 16-bit Windows operating envi-
ronment. Windows NT and the 32-bit follow-up operating system to Windows 3.11
remove the nonpreemptive limitations, but the additional WinSock functions are still
useful for reasons discussed later.

Windows Message-Driven Architecture
Although this book is not geared toward the beginning Windows programmer, this
section gives a brief overview of the Windows architecture. If you’re familiar with Win-
dows message-driven architecture, feel free to jump ahead to the section titled WinSock
Asynchronous Functions.

At the heart of every Windows program is a message loop and one or more window
procedures. The message loop retrieves messages from the program’s message queue and
dispatches them to the appropriate window procedure for execution. Windows is con-
sidered to be a message-driven or event-driven system because no part of the program
runs unless a message or event triggers it. Messages are generated by user actions such as
typing on the keyboard or moving the mouse and by internal operating system activity.

The two major components of a Windows program are its message loop and its win-
dows. As described previously, the message loop retrieves messages and calls the win-
dow procedure appropriate for the window. The message that is retrieved from the
message queue contains a handle to the window to which the message should be routed.

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

Part I ■ Introduction to Networking48

The window procedure to call is dependent on the window class of the destination win-
dow. Some window classes are declared by the application programmer, and other pre-
defined window classes are supplied by the Windows operating system. These predefined
window classes are called controls. A few of the predefined controls are listed here:

EDIT Used to view and edit text

LISTBOX Used to display a list from which the user can select one or
more items

STATIC Used to display static text that is often used as labels for
other controls

To better explain the message-driven nature of Windows, you can examine the follow-
ing contrived sample application with a sizable main window, an edit control, and a
static text label to the left of the edit control. The program’s display is shown in Figure
3.3.

FIGURE 3.3.
Sample Application
with Three Windows.

The sizable main window has a user-defined window class. The most important prop-
erties, or styles, of the main window are

WS_CAPTION Gives the window its title bar

WS_MINIMIZEBOX Adds the minimize button to the top right of the title bar
allowing the window to be minimized into an icon

WS_MAXIMIZEBOX Adds the maximize button to the top right of the title bar
allowing the window to be maximized to fill the entire
screen

WS_SYSMENU Adds the system menu to the top left of the title bar

WS_THICKFRAME Gives the window its sizing capabilities

The static text label is another window of the application. To the programmer new to
Windows, it may seem strange that a static text label is a window. A lot of what the user
thinks of as simple screen elements, such as buttons, list boxes, and edit boxes, are really

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

 Chapter 3 ■ WinSock Overview 49

just specialized windows. This static-text label is known as a child window because it is
anchored to the main window; the main window is the parent to the static-text label.
This window has the predefined window class of STATIC and its functionality is lim-
ited. The static control can respond to messages that tell it to change its text or return
its textual contents to the caller. Notice I said “respond to messages.” The static control
acts just like any other window in that it lies dormant until it receives a message. When
a message comes in destined for the static control, the window procedure for the static
control is called with parameters that specify the action that should be taken. One such
message might be WM_SETTEXT, which tells the control to change the text it’s displaying
on the screen.

The last window of the application is the edit box. It has the predefined window class of
EDIT. The edit control designates a rectangular child window in which the user can
type text from the keyboard. The user selects the control and gives it the keyboard focus
by clicking in it or moving to it by pressing the Tab key. The user can type text when
the control displays a flashing caret. The mouse can be used to move the cursor, select
characters to be replaced, or position the cursor for inserting characters. The Backspace
key can be used to delete characters. You can tell from this description of the EDIT
control, taken from the Windows Software Development Kit documentation, that this
type of window knows about a lot more messages than the static control.

Now that you’ve read about the three windows that make up this sample application,
look at the program flow once it is up and running. The heart of the program is its message
loop. A message loop commonly used looks like this:

while (GetMessage(&msg, NULL, 0, 0))
{
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

This code fragment retrieves messages from the application’s message queue and dis-
patches the messages to the destination window by calling its window procedure. If the
user positions the mouse cursor over the edit box and presses the left mouse button,
the edit control receives the input focus. The edit control knows it has focus when the
WM_SETFOCUS message is dispatched to it. When this happens, the edit control displays
the blinking caret to show where the next key pressed will be displayed. Figure 3.4 shows
the message flow for the following WM_CHAR event. When the user types a key on the
keyboard, a WM_CHAR message is generated. One of the qualifiers to this message is the
actual key pressed. The edit control receives this notification and paints the newly typed
character in the box. If the user then positions the mouse cursor outside the edit box
but still inside the main application window, the edit box will receive a WM_KILLFOCUS
message telling it to remove the blinking caret, and the main window then receives a
WM_SETFOCUS message.

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

Part I ■ Introduction to Networking50

FIGURE 3.4.
Message flow.

The 16-bit Windows environment is cooperatively multitasked. This means that the
applications running must cooperate with one another so that multiple tasks or pro-
grams can run simultaneously. They do this by continuously running the message loop
described previously. If an application calls the GetMessage() function and there are no
messages waiting for that application, Windows switches tasks and allows another pro-
gram to run. That newly running program runs through its message loop until it has no
more messages to process, and the procedure continues through all the programs run-
ning on the computer. In this environment, it’s very easy for a single program to pre-
vent all others from running. For example, if the edit box in the previously described
example took 10 seconds to process the WM_CHAR message, no other tasks on the com-
puter would run for at least 10 seconds. Not only would other tasks not run but if the
user rapidly typed several keys in succession, it would take 10 seconds for each keystroke
to be reflected on the screen. It is imperative in the nonpreemptive multitasking Win-
dows environment to process a message swiftly and return to the message loop. If a
program doesn’t follow this rule, the performance of the entire computer system will
suffer.

Static Text Label:

Class: EDIT
Handle: 1002

Hardware Event
User presses the A key after the edit

control has received focus

Hardware event is
translated into a

Windows message
Message Queue

Class: STATIC
Handle: 1001

Class: CustomClass
Handle: 1000

Message Loop
Pull the WM_CHAR message from the message queue and check its

destination window handle. Find out the window class for that
destination window handle and call the window procedure for that

window class.

Edit Control Window Procedure Provided by the Windows Operating System
Decode the message. If the message is WM_CHAR look at the message qualifier
to determine the actual character being received. Print that character in the edit

control window.

Static Control Window Procedure
Provided by the Windows Operating

System
Remains idle until a message comes in

for window handle 1001.

CustomClass Window Procedure
Remains idle until a message comes in

for window handle 1000.

1

Message
Window Handle: 1002
Message: WM_CHAR
Message Qualifier: 'A'

Dispatch the Message

2

3

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

 Chapter 3 ■ WinSock Overview 51

Windows NT is a preemptive multitasking operating system. This means that the op-
erating system itself determines when a new task should run. It doesn’t depend on an
application checking for messages in order for a task switch to occur. If, as described
previously, an application took 10 seconds to process a WM_CHAR message, other applica-
tions could still run before that 10 seconds elapsed. That particular application would
experience poor performance, but it wouldn’t degrade the performance of any other
program running on the computer at that time. It’s generally considered bad practice
for a program to have poor response time to a user’s commands. Users won’t be happy
if they have to wait 10 seconds for a character to appear on the screen. If an operation
that was executed in response to a message takes a long time to run, the user interface of
the program should remain responsive to the user. That is why it’s advisable for an ap-
plication to check its message queue often, even in the preemptive environment of
Windows NT.

WinSock Asynchronous Functions
WinSock was originally designed for the nonpreemptive Windows architecture. For this
reason, several extensions were added to traditional Berkeley sockets.

Blocking Versus Nonblocking
Many of the Berkeley socket functions take an indeterminate amount of time to ex-
ecute. When a function exhibits this behavior, it is said to block; calling the function
blocks the further execution of the calling program. In the Berkeley UNIX environ-
ment, for which sockets were originally developed, this didn’t pose a serious problem
because the UNIX operating system would simply preempt the blocking program and
begin running another program. Windows (unlike Windows NT) can’t preempt a task,
so all other programs are put on hold until the blocking call returns. The designers of
WinSock knew this posed a serious problem, so they added special code in the blocking
functions to force the message loop of other applications to be checked. But this was
still not the most efficient technique.

Berkeley sockets already have the notion of blocking versus nonblocking for some op-
erations. For example, the send() function used to send data to a remote host may not
return immediately, so the programmer is given the option of creating the socket with
blocking or nonblocking sends. If the socket is created in blocking mode, it won’t re-
turn until the data has been delivered. If it’s created in nonblocking mode, the call to
the send() function returns immediately and the program must call another function
called select() to determine the status of the send. Windows and Windows NT can
use the select() method of nonblocking calls, but the best thing to do in a Windows
program is to use the special Windows asynchronous functions.

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

Part I ■ Introduction to Networking52

The special Windows asynchronous functions begin with the prefix WSAAsync. These
functions were added to WinSock to make Berkeley sockets better fit the message-driven
paradigm of Windows. The most common events to use the asynchronous functions
for are the sending and receiving of data. Sending data might not happen instantly, and
receiving data most certainly will cause a program to wait unless it is receiving a con-
stant stream of bytes. By creating a socket for nonblocking sends and receives and using
the WSAAsyncSelect() function call, an application will receive event notification mes-
sages to inform it when it can send data or when data has arrived and needs to be read.
In the mean time, when there is no data communications occurring, the rest of the pro-
gram remains fully responsive to the user’s actions. The WSAAsyncSelect() function and
its use with sending and receiving data on a nonblocking socket is discussed beginning
in Chapter 7, “Socket Functions.”

WinSock even extends Berkeley’s nonblocking support to functions that could still cause
a Berkeley UNIX program to block. The concept of a name server was introduced in
Chapter 2, “TCP/IP Overview.” The name server’s job is to take as input the plain text
representation of a computer’s name and return that computer’s IP address. The name
server is usually a networked computer distinct from the one running WinSock pro-
grams that you develop. The services of a name server require that a message be sent
over the network from the computer using the WinSock program to the computer run-
ning the name server. This network communication could take an indeterminate amount
of time. WinSock has compensated for that fact by extending the functions that utilize
the services of a name server. These functions are among those grouped into a category
of functions called the database functions or the getXbyY functions. GetXbyY is used to
refer to these database functions because the function names take the form of get X by
Y, or put another way: “Given Y, what is the corresponding X?” In the name server ex-
ample, the function used is called gethostbyname(); given the computer’s name, what
is its host information? In Berkeley UNIX, the getXbyY functions may block. WinSock
adds asynchronous versions of the getXbyY functions called WSAAsyncGetXbyY. The
gethostbyname() function is complimented by the nonblocking WinSock function called
WSAAsyncGetHostByName(), for example. A call to a WSAAsyncGetXbyY function returns
immediately with an identifying handle. When the actual work performed by the func-
tion has completed, a message is sent to the application notifying completion of the
function with the specified handle. The database functions, in both their blocking and
asynchronous forms, are discussed in a Chapter 6, “Conversion and Database Func-
tions.”

p2v6sn4 Prog. WinSock #30594-1 rob 11.14.94 CH03 LP #3

 Chapter 3 ■ WinSock Overview 53

The WinSock asynchronous functions were added primarily for the benefit of the
nonpreemptive Windows environment. You may be questioning their worth in the truly
preemptive multitasking Windows NT environment. The WSAAsync functions have an
important use even in Windows NT. They allow your applications to remain respon-
sive to the user. Users won’t enjoy working with your program if it forces them to wait
for completion of a long event. Most users expect a way to cancel operations that take
a long time. For example, suppose that you have a program that takes as input a
computer’s plain-text name. The user enters the name and then presses a button labeled
Look Up, which causes the gethostbyname() function to be called. Using gethostbyname()
will cause the program to hang for an indeterminate amount of time until the request is
carried out. Under Windows NT other programs would still run, but under Windows
the performance of all programs would be degraded. This program could be modified
to use WSAAsyncGetHostByName() instead of gethostbyname(). As soon as users press the
Look Up button, the WSAAsyncGetHostByName() function is called and returns an iden-
tifying handle. If users wish to cancel the search, they can press the Cancel button, which
terminates the request with that identifying handle. Users would maintain full control
instead of being at the mercy of the program.

Summary
This chapter discussed WinSock as compared to the original Berkeley sockets interface
popularized by BSD UNIX. WinSock includes most of the Berkeley functionality with
many extensions to support the event-driven nature of Windows. The use of some of
these extensions is mandatory for proper program execution; the use of others is op-
tional but desirable because they provide a user interface responsive to the user’s requests.
Later chapters will fully explore the benefits of using the WinSock extended functions.
The next chapter discusses the Microsoft Visual C++ development environment.

 Chapter 4 ■ Visual C++ 55

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

44

Visual C++Visual C++

Part I ■ Introduction to Networking56

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

Microsoft’s Visual C++ product has greatly simplified the development of Windows
programs. The application developer is no longer required to start every project with
the same hundred lines of mandatory code just to display the most basic of windows.
The Microsoft Foundation Class library (MFC) encapsulates most of that drudgery,
allowing the programmer to start working on the real problem instead of the plumbing.
The samples presented in this book make use of MFC and Visual C++.

Visual C++ Components
The Visual C++ package includes several tools that are tightly integrated with each other
and to the Microsoft Foundation Class library. The combination of these tools makes it
easy to create a framework from which the application begins.

Visual Workbench
Visual Workbench is the program you will spend the most time in. It includes a color-
coded text editor which highlights keywords in your C and C++ source code. The Vi-
sual Workbench also encompasses a build manager which manages makefiles that can
be used from within Visual Workbench or from the command line. This build man-
ager is used to add new source files to a project, change compiler and linker options,
and automatically generate source code dependencies. The Visual Workbench also
includes a source level debugger. Debugging, and coding in general, is made much
simpler by the help facility built into Visual Workbench. By placing the caret on a Win-
dows, C, or C++ keyword and pressing the F1 key, help on that topic is displayed.
Figure 4.1 shows Visual Workbench operating on the TEST project with two source
code windows open for editing.

AppWizard
AppWizard is one component of the Visual Workbench. It automates the task of creat-
ing a minimalistic Windows program by prompting you with several options and then
creating the skeleton source code necessary for that application. The skeleton program
created by AppWizard supports window management, a basic menu structure, and basic
menu commands. Some of the options offered determine whether the application will
have:

Multiple Document Interface or Single Document Interface. A MDI applica-
tion can have one or more child windows within the main application window.
The Visual Workbench is an example of a MDI application because it allows
you to have several source code windows open at any one time.

 Chapter 4 ■ Visual C++ 57

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

Figure 4.2 shows the option dialog of AppWizard. The output of AppWizard is several
C++ source and header files, the project makefile, and the resource file. Below is a list of
files for an AppWizard-generated project called TEST. The TEST project uses the Single
Document Interface.

TEST.MAK Project file compatible with Visual Workbench and
command-line tool NMAKE.

TEST.H. Main include file for application; includes other project-
specific include files and declares the CTestApp application
class.

TEST.CPP Main application source file. Contains the application class
CTestApp.

TEST.RC Listing of all resources the program uses. It includes icons,
bitmaps, and cursors stored in the RES subdirectory. File
can be edited directly with App Studio.

RES\TEST.ICO Icon file used as application’s icon. Icon is included by the
main resource file TEST.RC.

Initial Toolbar. The toolbar is a row of bitmap buttons that appears beneath
the application’s menu.

Printing and Print Preview.

Context Sensitive Help.

FIGURE 4.1.
Visual Workbench.

Part I ■ Introduction to Networking58

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

RES\TEST.RC2 Contains resources not edited by App Studio. Initially
contains a VERSIONINFO resource that you can custom-
ize for your application.

TEST.DEF Contains information about the application that must be
provided so that it runs with Microsoft Windows. Defines
parameters such as name and description of application and
size of initial local heap.

TEST.CLW Contains information used by ClassWizard to edit existing
classes or add new classes.

MAINFRM.H Contain frame class CMainFrame, which is derived from
and MAINFRM.CPP CFrameWnd and controls all SDI frame and features.

TESTDOC.H Contain the CTestDoc document class.
and TESTDOC.CPP

TESTVIEW.H Contain the CTestView view class.
and TESTVIEW.CPP

STDAFX.H Used to build a precompiled header file to make and
and STDAFX.CPP compiles substantially faster.

RESOURCE.H Defines resource IDs. App Studio reads and updates this file.

FIGURE 4.2.
AppWizard options.

App Studio
App Studio is used to create and edit Windows resources. With it, you can manipulate
the resources for menus, dialog boxes, bitmaps, icons, cursors, strings in a string table,
and keyboard accelerators. App Studio automatically generates unique resource IDs for
the resources you create. These IDs are stored in the RESOURCE.H file by default.
Figure 4.3 shows App Studio editing the resource file from the TEST project listed
previously.

 Chapter 4 ■ Visual C++ 59

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

ClassWizard
ClassWizard is perhaps the most empowering component of the Visual C++ develop-
ment environment. With it, you can derive classes from several standard MFC base class
objects and to add member functions and variables to those classes. ClassWizard is used
to map Windows messages, as well as user-defined messages, to specific member func-
tions. With just a few mouse clicks, you can associate a specific message to a particular
function name. ClassWizard creates the function prototype for that function in the header
file for the class and also creates a stub function for you to add code to in the C++ file.

A common use of ClassWizard is to associate a class derived from CDialog with a dia-
log resource created with App Studio. First you design a dialog resource with App Stu-
dio and then launch ClassWizard. If ClassWizard is launched directly from App Studio
and the dialog resource being edited doesn’t yet have a class associated with it,
ClassWizard will automatically prompt you for a class name for the new dialog box class.
Once the basic class is created, you can link member functions to the buttons and con-
trols of the dialog box. You can also associate variables to the controls of the dialog box.
For example, if the dialog box contains an edit control used to enter a numeric value,
you can link an integer variable to that control. The integer variable becomes a member
variable to the dialog’s class object. When your application needs the value entered into
that edit control, it simply references the integer member variable.

FIGURE 4.3.
App Studio.

Part I ■ Introduction to Networking60

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

Class Browser
The Class Browser is integrated into Visual Workbench. You can use it to view class
hierarchical relationships. You can select a class and view all classes derived from it or
view the class from which it was derived. Figure 4.5 shows the base class graph of the
CTestApp object from the TEST application. The browser shows us that CTestApp is
derived from CWinApp. Clicking CTestApp reveals specific information for that object in
the other part of the class browser viewer. The upper-right portion shows the member
functions particular to CTestApp. Double-clicking one of these names puts you into the
Visual Workbench editor at the appropriate spot in the source file for CTestApp. The
lower-right portion shows the source files where the CTestApp object is implemented.

FIGURE 4.4.
ClassWizard.

FIGURE 4.5.
Class Browser.

 Chapter 4 ■ Visual C++ 61

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

Message Mapping in an MFC Program
You will remember from the discussion in Chapter 3 that Windows is an event-driven
operating system that relies on messages being delivered to the appropriate destination
window in order for program execution to take place. Visual C++ makes the coding of
message-based code almost trivial. With ClassWizard, you can define an object derived
from a list of standard MFC objects. These base class objects are windows that expect to
receive messages. ClassWizard allows for an easy mapping between messages and func-
tions that perform the desired operations in response to those messages. After creating
your derived class from the applicable base class, ClassWizard will create the member
functions that you need to run in response to a message stimulus. A member function
is created in the class declaration and a stub code for the member function is inserted
into the implementation file for the class. The base classes from which your classes can
be derived already have many member functions ready to be overridden by your special
purpose code. One of these member functions reacts in response to the WM_CHAR
message, which tells the window that the user has pressed a key on the keyboard. Figure
4.4 shows ClassWizard with the WM_CHAR message mapped to OnChar. The code
created by ClassWizard in the class declaration for the TEST application follows:

class CTestView : public CView
{

...

//{{AFX_MSG(CTestView)
 afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
}

Notice that the code ClassWizard adds is placed between the commented lines //{{AFX
MSG(CTestView) and //}}AFX MSG. The appropriate code in the implementation file
follows:

...

BEGIN_MESSAGE_MAP(CTestView, CView)
 //{{AFX_MSG_MAP(CTestView)
 ON_WM_CHAR()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

...

void CTestView::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 // TODO: Add your message handler code here and/or call default

Part I ■ Introduction to Networking62

p2/v6—sn5 Programming WinSock #30594-1 Everly 11.15.94 CH04 LP #4

 CView::OnChar(nChar, nRepCnt, nFlags);
}

...

When a WM_CHAR message comes in that is destined for the CTestView window, the
message map is examined to see how the message should be routed. Because
ON_WM_CHAR is in the message map, MFC knows that the application has a mes-
sage handler in place. The WM_CHAR message is one for which there is a default han-
dler already in place in CTestView’s base class of CView. MFC knows that WM_CHAR
maps to the OnChar member function. You will see in a later chapter how to add user-
defined message handlers that are unique to your application. Because MFC doesn’t
know of these message handlers, you have to specify in the message map the name of
the member function that handles that message.

Support Files for Building WinSock Applications
To compile an application that uses the WinSock API, you need the WinSock header
file WINSOCK.H, which contains all the function prototypes and structure definitions.
Linking the application requires either WINSOCK.LIB or WSOCK32.LIB depend-
ing on whether you’re targeting the 16-bit or 32-bit Windows platform. WINSOCK.H
and WSOCK32.LIB are included with Visual C++ 1.1 for Windows NT. WINSOCK.H
and WINSOCK.LIB are available from your TCP/IP stack provider.

To ensure source code compatibility between the 16-bit and 32-bit programs, the stan-
dard 16-bit Windows include file VER.H must be named WINVER.H, as it is named
in the 32-bit environment. If you’re using a 16-bit compiler, I suggest going into the
compiler’s include directory and copying VER.H to WINVER.H.

A detailed discussion of how to build WinSock applications is included in Chapter 8,
“Sample Applications.”

Summary
The Visual C++ integrated development environment has greatly simplified develop-
ment of Windows programs. The well-integrated tools make it easy to create applica-
tions that use the MFC library. The WinSock class library developed later in this book
will make extensive use of MFC’s functionality. The development of these classes will
show the power and flexibility of Visual C++.

P2/V6/Q7 Programming Winsock 30594-1 aw 1!.15.94 Parts LP #3

IIII
Basics of
WinSock
Programming

Basics of
WinSock
Programming

5 Startup and Shutdown Functions

6 Conversion and Database Functions

7 Socket Functions

8 Sample Applications

 Chapter 5 ■ Startup and Shutdown Functions 65

p2/v6—s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH05 LP #3

55

Startup and
Shutdown
Functions

Startup and
Shutdown
Functions

Part II ■ Basics of WinSock Programming66

p2/v6—s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH05 LP #3

The WinSock functions your application needs are located in the dynamic link library
named WINSOCK.DLL or WSOCK32.DLL depending on whether the 16-bit or
32-bit version of Windows is being targeted. Your application is linked with either
WINSOCK.LIB or WSOCK32.LIB as appropriate. The include file where the WinSock
functions and structures are defined is named WINSOCK.H for both the 16-bit and
32-bit environments. Before your application uses any WinSock functions, the appli-
cation must call an initialization routine called WSAStartup(). Before your application
terminates, it should call the WSACleanup() function.

WSAStartup
The WSAStartup() function initializes the underlying Windows Sockets Dynamic Link
Library (WinSock DLL). You will remember that the WinSock API is independent of
the specific TCP/IP stack vendor. This is what gives WinSock-compliant applications
the capability of running on any number of TCP/IP stacks. The WSAStartup() func-
tion gives the TCP/IP stack vendor a chance to do any application-specific initializa-
tion that may be necessary. WSAStartup() is also used to confirm that the version of the
WinSock DLL is compatible with the requirements of the application.

The prototype of the WSAStartup() function follows:

int PASCAL FAR WSAStartup(WORD wVersionRequired, LPWSADATA lpWSAData);

The wVersionRequired parameter is the highest version of the WinSock API the calling
application can use. The high-order byte specifies the minor version number and the
low-order byte specifies the major version number. The lpWSAData parameter is a pointer
to a WSADATA data structure that receives details of the WinSock implementation.

Version Checking
One objective of the WSAStartup() function is to confirm that the WinSock implemen-
tation meets the requirements of the application. As of the summer of 1994, Versions
1.0 and 1.1 of WinSock have been released. Most WinSock compliant TCP/IP stacks
in use today, including the stacks supplied by Microsoft, implement Version 1.1 of the
WinSock specification.

The wVersionRequired parameter in the call to WSAStartup() has a high-order byte that
specifies the minor version number and a low-order byte that specifies the major ver-
sion number. The following code shows how a wVersionRequired parameter is con-
structed that has a requirement of WinSock Version 1.0:

wVersionRequired = MAKEWORD(0, 1);

 Chapter 5 ■ Startup and Shutdown Functions 67

p2/v6—s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH05 LP #3

The second parameter to the WSAStartup() function is a pointer to a WSADATA data struc-
ture. After the call to the initialization function, this structure contains information
detailing the WinSock implementation. The WSADATA structure has the following
format:

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA;

To verify that the WinSock compliant stack meets the version requirements of your
application, the application should check the value in wVersion after the WSAStartup()
function returns. For example, if your application requires WinSock Version 2.0, com-
pare the high-order byte of wVersion to 0 and the low-order byte to 2. If either of these
comparisons fail, the application should display a message to the program’s user explain-
ing the failure. The following code fragment shows a typical implementation:

WORD wVersionRequested = MAKEWORD(1, 1); // WinSock 1.1 requested
WSADATA wsaData; // WinSock details
int nErrorStatus; // error status

nErrorStatus = WSAStartup(wVersionRequested, &wsaData);
if (nErrorStatus != 0)
{
 // display an error message explaining that WinSock
 // initialization has failed and return

 return;
}

// check the WinSock version information

if ((LOBYTE(wsaData.wVersion) != LOBYTE(wVersionRequested)) ||
 (HIBYTE(wsaData.wVersion) != HIBYTE(wVersionRequested)))
{
 // display an error message explaining that the WinSock
 // implementation doesn’t meet the version requirements
 // of the application

 WSACleanup(); // terminate WinSock use
 return;
}

This code segment, or something resembling it, is placed early in a program’s execution
path. Typically it is found in WinMain() of a program built with the Windows SDK or
CWinApp::InitInstance() for an MFC program.

Part II ■ Basics of WinSock Programming68

p2/v6—s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH05 LP #3

In the preceding code, notice that the WSADATA structure has wVersion and wHighVersion
as member variables. wHighVersion has the same format as wVersion and
wVersionRequested. A WinSock DLL may contain support for multiple WinSock ver-
sions. For example, it’s common for a WinSock DLL to support Versions 1.0 and 1.1.
If the application requests Version 1.0 from a WinSock DLL that supports 1.0 and 1.1,
wVersion will contain 1.0 and wHighVersion will contain 1.1. This says that the WinSock
DLL will supply Version 1.0 functionality to the application but it has the capability of
supporting Version 1.1 functionality. The following table lists application and WinSock
interaction for differing application version requirements and WinSock capabilities:

App WinSock wVersion wHigh End
Ver Ver Requested wVersion Version Result

1.1 1.1 1.1 1.1 1.1 App uses 1.1
1.0, 1.1 1.0 1.1 1.0 1.0 App uses 1.0
1.0 1.0, 1.1 1.0 1.0 1.1 App uses 1.0
1.1 1.0, 1.1 1.1 1.1 1.1 App uses 1.1
1.1 1.0 1.1 1.0 1.0 App fails
1.0 1.1 1.0 -- -- WSAStartup() fails
1.0, 1.1 1.0, 1.1 1.1 1.1 1.1 App uses 1.1
1.1, 2.0 1.1 2.0 1.1 1.1 App uses 1.1
2.0 1.1 2.0 1.1 1.1 App fails

The general rules that WSAStartup() follows are as follows:

If wVersionRequested matches one of the versions supported by the WinSock
DLL, set wVersion to wVersionRequested and set wHighVersion to the highest
WinSock version that is supported (this value may or may not be the same as
wVersion).

If wVersionRequested specifies a later version than the WinSock DLL supports,
set wVersion and wHighVersion to the highest version that this WinSock
supports. It is then up to the application to decide whether this WinSock’s
capabilities are adequate.

If wVersionRequested specifies an earlier version than the WinSock DLL
supports, WSAStartup() returns a failure code(). The internal WinSock error
code is set to WSAVERNOTSUPPORTED. To access the internal WinSock
error code, use the WSAGetLastError() function outlined later in this chapter.

 Chapter 5 ■ Startup and Shutdown Functions 69

p2/v6—s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH05 LP #3

Retrieving Vendor Information and TCP/IP Stack
Capabilities
The other capability of WSAStartup() is to provide to the calling application informa-
tion about the underlying TCP/IP stack. We’ve examined the wVersion and wHighVersion
variables of the WSADATA structure already. The remaining variables provide details of
the WinSock implementation in use as follows:

■ szDescription is a pointer to a null-terminated ASCII string that describes the
WinSock implementation. This string may be up to 256 characters long and
usually contains a reference to the WinSock vendor, whether it be Microsoft,
Wollongong, Net Manage, FTP, or another vendor.

■ szSystemStatus is a pointer to a null-terminated ASCII string that contains
relevant status or configuration information.

■ iMaxSockets is the maximum number of sockets that a single process can
potentially open. Your application can use this number as a rough estimation of
whether the WinSock DLL is usable by the application. It is not a guarantee
that your application can allocate this number of sockets.

■ iMaxUdpDg is the size, in bytes, of the largest UDP datagram that can be sent or
received by the WinSock implementation. If this number is set to 0 (zero) there
is no implied size limitation.

■ lpVendorInfo is a pointer to a vendor-specific data structure. Because this data
is vendor-specific, your program loses its stack independence if it makes use of
this data.

WSACleanup
The WSACleanup() function is used to terminate an application’s use of WinSock. For
every call to WSAStartup() there has to be a matching call to WSACleanup(). WSACleanup()
is usually called after your application’s message loop has terminated. In an MFC appli-
cation, the ExitInstance() member function of the CWinApp class provides a convenient
location to call WSACleanup(). The prototype follows:

int PASCAL FAR WSACleanup(void);

Part II ■ Basics of WinSock Programming70

p2/v6—s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH05 LP #3

WSAGetLastError
The WSAGetLastError() function doesn’t deal exclusively with startup or shutdown
procedures, but it needs to be addressed early. Its function prototype looks like

int PASCAL FAR WSAGetLastError(void);

WSAGetLastError() returns the last WinSock error that occurred. In the MS-DOS or
UNIX programming worlds, you’re probably used to examining the errno variable, which
is an application-specific global variable available in all programs. Because WinSock isn’t
really part of the operating system but is instead a later add-on, errno couldn’t be used.
As soon as a WinSock API call fails, you should call WSAGetLastError() to retrieve spe-
cific details of the error.

As an example, if WSAStartup() is called with a wVersionRequested, which is earlier than
any WinSock API supported by the WinSock DLL, WSAStartup() returns an error in-
dicator. Calling WSAGetLastError() immediately after the failed call to WSAStartup()
reveals the WSAVERNTSUPPORTED error. The other possible error values gener-
ated by WSAStartup() are WSASYSNOTREADY, if the network subsystem is failing, and
WSAEINVAL, if an invalid argument is passed.

Possible error values for WSACleanup() include WSANOTINITIALIZED if WSAStartup() wasn’t
called successfully, WSAENETDOWN if the network subsystem is failing, and WSAEINPROGRESS
if a blocking WinSock operation is currently in progress.

Summary
This chapter discussed just the beginning of writing a WinSock application. Chapter 8,
“Sample Applications,” presents a program that uses the WSADATA structure in the call to
WSAStartup() to present some useful information to the application user. The next few
chapters will continue to present the mandatory WinSock functions useful to most
applications.

 Chapter 6 ■ Conversion and Database Functions 71

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

66

Conversion and
Database
Functions

Conversion and
Database
Functions

Part II ■ Basics of WinSock Programming72

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

WinSock provides a set of procedures commonly referred to as the database functions.
The duty of these database functions is to convert the host and service names that are
used by humans into a format useable by the computer. The computers on an
internetwork also require that certain data transmitted between them be in a common
format. WinSock provides several conversion routines to fulfill this requirement.

Note

This chapter contains several small code samples. These aren’t complete pro-
grams that run on their own but are presented instead to help clarify the textual
description of the functions used in the sample. Study these examples so that
you can use them in your own programs but don’t worry about actual program
implementation issues now. Later chapters will draw from these code snippets to
produce complete programs.

Conversion Routines and Network Byte Ordering
There are several conditions under which a WinSock function should be called with a
parameter stored in a particular format. An internetwork using WinSock is supposed to
allow disparate computer systems to communicate. These different internetworked hosts
are likely to have different hardware architectures based on the CPU used in the com-
puter. They may store internal numerical data differently from one another. The way
in which a CPU internally stores a number is called its byte ordering. To facilitate the
different byte ordering used in different CPUs, WinSock provides a set of conversion
functions. These conversion functions have the job of turning a host byte-ordered number
into a number using the network byte-ordering scheme. Network byte ordering is the
standard by which all TCP/IP connected computers must transmit certain data. In ef-
fect, the network byte-ordering sequence is the lowest common denominator of all
internetworked computers.

There are four primary byte-order conversion routines. They handle the conversions to
and from unsigned short integers and unsigned long integers.

Unsigned Short Integer Conversion
The htons() and ntohs() functions convert an unsigned short from host-to-network
order and from network-to-host order, respectively. The prototypes look like

u_short PASCAL FAR htons(u_short hostshort);
u_short PASCAL FAR ntohs(u_short netshort);

 Chapter 6 ■ Conversion and Database Functions 73

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

htons() takes as input an unsigned short in its native host format and returns that number
in network order. ntohs() takes as input an unsigned short in network order and re-
turns that number in the native host format.

On an Intel 80×86 CPU, integers are stored with the least significant bit in the lower
part of an integer’s address space. Take the decimal number 43794 as an example. In
hexadecimal notation this number is written as AB12. Suppose, also, that this value is
stored at memory location n. On an Intel 80×86, the byte value at location n is 12 and
the byte value at memory location n + 1 is AB. You can see that the least significant byte
of the two-byte quantity is stored in the lower address space. This is the opposite of
network byte ordering. The output of htons(43794) has AB in the lower address space
and 12 stored in the higher address space of the two-byte quantity. On a different hard-
ware platform, such as the Motorola 68000, the ntohs() function doesn’t do any byte
manipulation because the 68000’s native byte ordering is the same as network byte or-
dering.

Unsigned Long Integer Conversion
The htonl() and ntohl() functions work like htons() and ntohs() except that they
operate on four-byte unsigned longs rather than unsigned shorts. The prototypes look
like the following:

u_long PASCAL FAR htons(u_long hostlong);
u_long PASCAL FAR ntohs(u_long netlong);

On an Intel 80×86 CPU, the decimal number 2870136116 is stored in memory, from
lowest address space to highest, as hexadecimal 34 CD 12 AB. The output of
htonl(2870136116) has AB in the lower address space, 12 stored in the next higher ad-
dress space, and so on.

Caution

About byte ordering: Your program may run as expected under test conditions if
the hosts involved in the test have the same native byte-ordering scheme.
Problems may develop later if you ever try to connect your program to a host
with a different byte-ordering scheme. As an example, say that you tested both a
client application and a server application on an Intel 80×86 CPU. Everything
may run fine even if you forget to use the conversion routines. Now, say that
you move the server process over to a Motorola 68000-based Macintosh plat-
form. The server “listens” on a well-known port. I’ll use port number 427 as an
example. In hexadecimal, that port is 01AB. The Macintosh server application is
listening for connections to 01AB. If the 80×86-based client then tries to

Part II ■ Basics of WinSock Programming74

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

connect to port 427 without first calling the htons() conversion routine, it is
really trying to connect to port AB01 hexadecimal, which is 43777 in decimal.
Hence, the client never connects to the server process running on the
Macintosh, or at least not the intended server process.

The functions that require their parameters to be in network byte order are so noted in
the text accompanying each function’s description.

Converting IP Addresses
WinSock provides another set of conversion functions that provide a translation be-
tween the ASCII representation of a dotted-decimal IP address and the internal 32-bit,
byte-ordered number required by other WinSock functions.

Converting an IP Address String to Binary
inet_addr() converts a dotted-decimal IP address string into a number suitable for use
as an Internet address. Its function prototype is as follows:

unsigned long PASCAL FAR inet_addr(const char FAR * cp);

cp is a pointer to a string representing an IP address in dotted-decimal notation. The
inet_addr() function returns a binary representation of the Internet address given. This
value is already in network byte order, so there is no need to call htonl(). If the cp string
doesn’t contain a valid IP address, inet_addr() returns INADDR_NONE. One possible cause
for such an error is that the IP address has a component greater than 255. Remember
that each of the four components of a dotted-decimal IP address represent one of four
bytes of an unsigned long, therefore it’s illegal to have any component with a value greater
than 255 because the value of a byte must be between zero and 255 inclusive.

The following code fragment shows a typical call to inet_addr(). Of course, your real
programs won’t have hard-coded IP addresses; you’ll most likely allow users to specify
IP addresses when they configure your application.

u_long ulIPAddress = inet_addr(“166.78.16.148”);

The value of ulIPAddress after this code fragment has executed will be hexadecimal
A64E1094. inet_addr() simply takes each component of the IP address and stores it in
binary as one byte of the four-byte IP address. You don’t need to specify all four parts of
the IP address, though. inet_addr() can take an IP address in any of the following dotted-
decimal notations: a.b.c.d, a.b.c, a.b, or a. The a.b.c.d value is a typical IP address as
shown in the preceding code sample. If a quantity is omitted, the last defined quantity

 Chapter 6 ■ Conversion and Database Functions 75

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

is simply extended to fill the remaining bytes to make a total of four bytes. For example,
if the string passed to inet_addr() is “166.78.16”, following the a.b.c format, the re-
turned unsigned long is hexadecimal A64E0010.

Converting a Binary IP Address to a String
inet_ntoa() performs the opposite job of inet_addr(). Its function prototype is as fol-
lows:

char FAR * PASCAL FAR inet_ntoa(struct in_addr in);

in is a structure that contains an Internet host address. You’ll see that some WinSock
functions manipulate IP addresses as unsigned longs and others as in_addr structures.
To remedy this difference, some byte copying is in order. This is shown in the follow-
ing sample code. On success, the inet_ntoa() function returns a pointer to a string with
a dotted-decimal representation of the IP address. On error, NULL is returned. A NULL
value means that the IP address passed as the in parameter is invalid.

Following is a piece of somewhat contrived code:

// first get an unsigned long with a valid IP address
u_long ulIPAddress = inet_addr(“166.78.16.148”);

// copy the four bytes of the IP address into an in_addr structure
IN_ADDR in;
memcpy(&in, &ulIPAddress, 4);

// convert the IP address back into a string
char lpszIPAddress[16];
lstrcpy(lpszIPAddress, inet_ntoa(in));

I said the previous sample was contrived because of the way the binary IP address was
retrieved. The binary IP address ulIPAddress is retrieved by using inet_addr() to con-
vert an IP address string. In an actual program, the IP address on which you want to use
inet_ntoa() will most likely come as the result of another WinSock call, not entered
by the user or hard-coded; this part of the code is for demonstration purposes only. Once
you have this unsigned long, it needs to be stored in an in_addr structure to be used by
inet_ntoa(), so memcpy() is used. Next, the conversion function is called. The string
pointer returned by inet_ntoa() is only temporary. It may be invalid after the next call
to a WinSock function, so it is best to copy it into a variable in the application. A buffer
of 16 bytes is allocated because this is the longest that a valid four-byte IP address will
ever be (that is, “255.255.255.255” plus the terminating NULL character).

What’s My Name?
Some applications need to know the name of the computer on which they are running.
The gethostname() function provides this functionality. It was added to the WinSock

Part II ■ Basics of WinSock Programming76

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

1.1 specification. The function’s prototype looks like the following:

int PASCAL FAR gethostname(char FAR * name, int namelen);

name is a far pointer to a character array that will accept the null-terminated host name,
and namelen is the size of that character array. The gethostname() function returns 0
(zero) on success and SOCKET_ERROR on failure. On a return value of SOCKET_ERROR, you
can call WSAGetLastError() to determine the specifics of the problem. Possible error
values include WSAEFAULT if the buffer was too small to accept the host name,
WSANOTINITIALIZED if WSAStartup() wasn’t called successfully, WSAENETDOWN if the net-
work subsystem is failing, or WSAEINPROGRESS if a blocking WinSock operation is cur-
rently in progress.

The following code fragment shows a typical call to gethostname():

#define HOST_NAME_LEN (50)
char lpszHostName[HOST_NAME_LEN]; // will accept the host name
char lpszMessage[100]; // informational message

if (gethostname(lpszHostName, HOST_NAME_LEN) == 0)
 wsprintf(lpszMessage, “This computer’s name is %s”, lpszHostName);
else
 wsprintf(lpszMessage, “gethostname() generated error %d”,
 WSAGetLastError());

MessageBox(NULL, lpszMessage, “Info”, MB_OK);

Note

The name populated by gethostbyname() may be a simple name or a fully
qualified domain name. For example, my computer may be recognized as
goober or goober.ping.com. It’s up to those who implement WinSock to
determine which format is returned. The only thing guaranteed about the name
variable is that it can be parsed by the gethostbyname() function, which will be
discussed later.

Host Name Resolution
Humans use a textual representation for the hosts to which their programs connect. The
computer requires a host’s address to be a 32-bit integer stored in a standardized way as
described in the previous section on network byte ordering. Your program cannot con-
nect to another computer until that computer’s IP address is in the 32-bit format. To
remedy this difference, your program can use either the gethostbyname() or inet_addr()
functions. gethostbyname() is used if you know either the simple name or the fully
qualified domain name. inet_addr() is used if you know the IP address.

 Chapter 6 ■ Conversion and Database Functions 77

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Tip

Most programs that have a configuration to select the host with which the
program communicates enable the user to enter either a host name or an IP
address. Your program should call inet_addr() first with the user’s input. If this
function returns successfully, your conversion job is finished; otherwise, you
should call gethostbyname(), assuming that the user entered a host name.

Finding a Host’s IP Address
The main duty of gethostbyname() is to take a host name and return its IP address.
This function, and its asynchronous counterpart named WSAAsyncGetHostByName(), may
perform a simple table lookup on a host file local to the computer on which the pro-
gram is running, or it may send the request across the network to a name server. Figures
6.1 and 6.2 show the different means of host name resolution. The application pro-
grammer doesn’t really know which method is used to resolve the host name and it us-
ually isn’t important, with one caveat, which is described in the section on
WSAAsyncGetHostByName(). The function’s prototype looks like the following:

struct hostent FAR * PASCAL FAR gethostbyname(const char FAR * name);

name is a far pointer to a null-terminated character array that contains the name of the
computer about which you want host information. The hostent structure returned has
the following format:

struct hostent {
 char FAR * h_name; // official name of host
 char FAR * FAR * h_aliases; // alias list
 short h_addrtype; // host address type
 short h_length; // length of address
 char FAR * FAR * h_addr_list; // list of addresses
#define h_addr h_addr_list[0] // address, for backward compatibility
};

On success, the gethostbyname() function returns a pointer to a hostent structure, and
on failure, the function returns NULL. On a return value of NULL, you can call
WSAGetLastError() to determine the specifics of the problem. Possible error values in-
clude the following: WSANOTINITIALIZED if WSAStartup() wasn’t called successfully;
WSAENETDOWN if the network subsystem is failing; WSAHOST_NOT_FOUND if the host name
couldn’t be resolved; WSATRY_AGAIN if the cause of the failure could be temporary, such
as a name server being down; WSANO_RECOVERY if there was an unrecoverable error;
WSANO_DATA if the host name is valid but no appropriate data could be found;
WSAEINPROGRESS if a blocking WinSock operation is currently in progress; or WSAEINTR
if the blocking call was canceled by WSACancelBlockingCall().

Part II ■ Basics of WinSock Programming78

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Tip

About blocking versus asynchronous WinSock function calls: Certain WinSock
functions are classified as blocking when their return times are indeterminate. If
a program blocks on a function call in the nonpreemptive Windows 3.1 envi-
ronment, the performance of the entire computer system may be affected. While
the blocking function is in its blocking state, the message loop for the applica-
tion doesn’t receive any CPU time. Because this is unacceptable, the WinSock
developers came up with a scheme whereby, under the nonpreemptive versions
of Windows, a special message loop runs while a blocking function call is
waiting to complete its operation. This ensures that the other programs on the
computer get some CPU time.

Of course, the Windows NT environment, with its true preemptive
multitasking capabilities, doesn’t require this work-around, but it can be
accessed for backward compatibility. Actually, even Windows NT can take
advantage of this feature if you look at the thread level. Under Windows NT, a
program may consist of one or more threads of execution. When a blocking call
is executed, only the thread that made the blocking call is affected; the other
threads of the program continue to get CPU time as do the other applications
running on the computer. If this special message loop was running for the
thread that called the blocking function, that thread could receive additional
messages. WinSock has a default message loop but you can substitute your own
using the WSASetBlockingHook() function. The only WinSock function that can
be called safely from within this blocking hook function is
WSACancelBlockingCall(). If this cancel function is executed by the special
blocking hook function, the blocking WinSock function call will return
WSAEINTR.

This book doesn’t examine the use of this special blocking hook function
because a much simpler and easily portable solution exists. This other solution
involves the use of WinSock asynchronous functions. These functions begin
with the WSAAsync prefix. They were designed specifically for the message-
based Windows environment and provide a much “cleaner” solution to the
preceding problem.

 Chapter 6 ■ Conversion and Database Functions 79

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Using a couple of the functions described thus far, you can display the IP address of any
host on your internetwork as well as find out your own machine’s name and IP address.
The following sample code fragment does just that:

#define HOST_NAME_LEN (50)
char lpszHostName[HOST_NAME_LEN]; // will accept the host name
char lpszMessage[100]; // informational message
char lpszIP[16]; // IP address string
PHOSTENT phostent; // pointer to host entry structure
IN_ADDR in; // Internet address structure

// find the name of the machine this program is running on
if (gethostname(lpszHostName, HOST_NAME_LEN) != 0)
 wsprintf(lpszMessage, “gethostname() generated error %d”,
 WSAGetLastError());
else
{
 // get the host entry structure for this machine
 if ((phostent = gethostbyname(lpszHostName)) == NULL)
 wsprintf(lpszMessage, “gethostbyname() generated error %d”,
 WSAGetLastError());
 else
 {
 // copy the four byte IP address into a Internet address structure
 memcpy(&in, phostent->h_addr, 4);

 // format the results, converting the IP address into a string
 wsprintf(lpszMessage, “Host %s has IP address “, phostent->h_name);
 wsprintf(lpszIP, “%s”, inet_ntoa(in));

Application

WinSock
Library

Flat File
Database

1) Application calls a WinSock
database function

3) WinSock database function
returns

2) WinSock does the lookup on
a local flat file database

FIGURE 6.1.
WinSock using a local
file lookup.

Part II ■ Basics of WinSock Programming80

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 lstrcat(lpszMessage, lpszIP);
 }
}

MessageBox(NULL, lpszMessage, “Info”, MB_OK);

FIGURE 6.2.
WinSock using a
networked database
server.

Application

WinSock
Library

1) Application calls a WinSock
database function

5) WinSock database function
returns

4) Network database server
sends the response

3) Network database server
does a database lookup

Network Database Server

2) WinSock sends the request
across the network to a server

Suppose that the computer on which this program runs is called “saturn.” The call to
gethostname() will set “saturn” as the host name, and that string will be copied into
lpszHostName. Suppose also that this computer uses a host file for name resolution, as
opposed to using a networked name server. One line of that host file might look like
this:

166.78.16.200 saturn

gethostbyname() looks for “saturn” in the host file, finds the line on which it resides,
and extracts the associated IP address. It then places all this information into a hostent
host entry structure. The end result is the formatted message describing that “saturn”
has an IP address of “166.78.16.200”.

 Chapter 6 ■ Conversion and Database Functions 81

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Note

Notice that in this sample, the IP address still had to be copied into an in_addr
structure, but this time the source wasn’t an unsigned long as it was in the
inet_ntoa() sample. This time, the source of the IP address was the hostent
host entry structure. The h_addr member variable of the hostent structure is a
pointer to the first byte of the four-byte IP address, already stored in network
byte order.

Asynchronously Finding a Host’s IP Address
In the introduction to gethostbyname(), I said that there was one caveat with its use. In
the getXbyY functions, one of which is gethostbyname(), the data retrieved might come
from the local host or might come by way of a request over the network to a server of
some kind. As soon as network communications is introduced into the picture, you have
to be concerned with response times and the responsiveness of the application to the
user while those network requests are taking place.

The WSAAsyncGetHostByName() function is the asynchronous version of gethostbyname().
It was added to WinSock to complement the Berkeley socket function for the message-
passing architecture of Microsoft Windows. This function is described as asynchro-
nous because calling the function doesn’t suspend execution of the calling application,
but instead allows the application to continue until the request generated by
WSAAsyncGetHostByName() has completed. When gethostbyname() or any other getXbyY
function is called, there is no guarantee when that function might return with a response.
If the function generates a network operation, the response time is indeterminate. While
that request is outstanding, your program is halted; the user can’t move or close the
window or even cancel the operation. Not only that, but in the nonpreemptive Win-
dows 3.1 environment, other applications will suffer; the entire system will seem to come
to a temporary, or not so temporary, halt. Using WSAAsyncGetHostByName() makes your
application responsive to the user’s input and doesn’t adversely affect other applications
running on the computer. Once the request has completed, a Windows message is posted
to a window in the application. While the request is still outstanding (for example, if
the networked domain name server is doing a database lookup and preparing to send
the search results back over the network) the message loop in the calling application, as
well as the message loops of the other applications running on the computer, continue
to operate, making all the programs responsive to user manipulation.

Part II ■ Basics of WinSock Programming82

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Note

Practically speaking, if you know that the environment under which your
program runs uses a local host’s file to resolve host names, you don’t need to
bother with the extra overhead required to use the asynchronous versions of the
getXbyY functions; the blocking functions will do fine because you know they
will return immediately and won’t cause any responsiveness problems for any
running applications.

The function prototype for WSAAsyncGetHostByName() is as follows:

HANDLE PASCAL FAR WSAAsyncGetHostByName(HWND hWnd, u_int wMsg,
 const char FAR * name, char FAR * buf, int buflen);

hWnd is the handle to the window to which a message will be sent when
WSAAsyncGetHostByName() has completed its asynchronous operation. wMsg is the mes-
sage that will be posted to hWnd when the asynchronous operation is complete. wMsg is
generally a user-defined message (that is, WM_USER + 1). name is a pointer to a string that
contains the host name for which information is being requested (that is, “goober” or
“goober.ping.com”). buf is a pointer to an area of memory that, on successful comple-
tion of the host name lookup, will contain the hostent structure for the desired host.
Note that this buffer must be larger than the hostent structure itself, because WinSock
uses the additional area to store related information. WinSock provides a defined value
named MAXGETHOSTSTRUCT, which you can use as the size of the buffer. This size will ensure
that there is enough space allocated. buflen is the size of the buf buffer. It should be
MAXGETHOSTSTRUCT for safety’s sake.

If the asynchronous operation is initiated successfully, the return value of
WSAAsyncGetHostByName() is a handle to the asynchronous task. On failure of initializa-
tion, the function returns 0 (zero), and WSAGetLastError() should be called to find out
the reason for the error. Possible error values include the following: WSANOTINITIALIZED
if WSAStartup() wasn’t called successfully; WSAENETDOWN if the network subsystem is fail-
ing; WSAEWOULDBLOCK if the function cannot be scheduled at this time due to a resource
conflict within the specific WinSock implementation; or WSAEINPROGRESS if a blocking
WinSock operation is currently in progress. Notice that the function’s return value
doesn’t tell you whether the requested information was retrieved successfully; it only
tells you whether the function was started properly.

The previous sample code, which displays the name and IP address of the machine on
which the program runs, can be reworked to use the following asynchronous calls:

// global variables
#define WM_USER_GETHOSTBYNAME (WM_USER + 1)
#define HOST_NAME_LEN (50)

 Chapter 6 ■ Conversion and Database Functions 83

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

char lpszHostName[HOST_NAME_LEN]; // will accept the host name
char lpszMessage[100]; // informational message
char lpszIP[16]; // IP address string
PHOSTENT phostent; // pointer to host entry structure
char lpszHostEntryBuf[MAXGETHOSTSTRUCT]; // host entry structure
IN_ADDR in; // Internet address structure
HANDLE hGetHostByName; // handle of asynchronous request

// this function is [part of] the window procedure
long FAR PASCAL WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 // check menu items
 case WM_COMMAND:
 // handle the menu item to get this host’s name and IP address
 if (wParam == ID_GETHOSTBYNAME)
 {
 // find the name of the machine this program is running on
 if (gethostname(lpszHostName, HOST_NAME_LEN) != 0)
 {
 wsprintf(lpszMessage, “gethostname() generated error %d”,
 WSAGetLastError());
 MessageBox(NULL, lpszMessage, “Info”, MB_OK);
 }
 else
 {
 // get the host entry structure for this machine
 if ((hGetHostByName = WSAAsyncGetHostByName(hWnd,
 WM_USER_GETHOSTBYNAME, lpszHostName,
 lpszHostEntryBuf, MAXGETHOSTSTRUCT)) == 0)
 {
 wsprintf(lpszMessage, “WSAAsyncGetHostByName() generated error %d”,
 WSAGetLastError());
 MessageBox(NULL, lpszMessage, “Info”, MB_OK);
 }
 }
 }
 break;

 case WM_USER_GETHOSTBYNAME:
 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 MessageBox(NULL, “WSAAsyncGetHostByName() had an error”, “Info”, MB_OK);
 else
 {
 // assign a hostent host entry pointer to the buffer
 phostent = (PHOSTENT)lpszHostEntryBuf;

 // copy the four byte IP address into a Internet address structure
 memcpy(&in, phostent->h_addr, 4);

 // format the results, converting the IP address into a string
 wsprintf(lpszMessage, “Host %s has IP address “, phostent->h_name);
 wsprintf(lpszIP, “%s”, inet_ntoa(in));
 lstrcat(lpszMessage, lpszIP);
 MessageBox(NULL, lpszMessage, “Info”, MB_OK);
 }

Part II ■ Basics of WinSock Programming84

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 break;

 default:
 break;
 }
}

Note that the first thing done in the WM_USER_GETHOSTBYNAME message handler is a
call to WSAASYNCERROR(). This is a macro that determines the success of the
WSAAsyncGetHostByName() request. A value of 0 (zero) means everything is fine. Other
possible values are any error messages in WINSOCK.H. If WSAASYNCERROR() returns
error WSAENOBUFS, the buffer passed to WSAAsyncGetHostByName() to hold the hostent
structure wasn’t big enough. To be safe, use a buffer at least MAXGETHOSTSTRUCT bytes in
size. Also, for your information, in the WM_USER_GETHOSTBYNAME message handler, wParam
is the asynchronous task handle for the currently returning operation. This means that
you could use the same WM_USER message for multiple, simultaneously outstanding asyn-
chronous requests. You would then examine wParam to determine which specific opera-
tion was returning at that instance in time.

Doing It with Visual C++
This book is about the use of WinSock with Microsoft Visual C++ and the Microsoft
Foundation Classes. The previous example was given in the “old-fashioned” SDK style
as a way of introducing the first asynchronous function. The remaining samples in this
book will be based primarily on Visual C++ and MFC. Using MFC, the preceding sample
code could be implemented as follows.

First comes the class declaration. This example has a class named CMyWindow derived from
the base class CFrameWnd. CFrameWnd is a class provided by MFC. This sample doesn’t
show the entire class declaration, only the pieces needed to replicate the previous SDK
sample:

class CMyWindow : public CFrameWnd
{

...

 // member variables
#define HOST_NAME_LEN (50)
 char m_lpszHostName[HOST_NAME_LEN]; // will accept the host name
 char m_lpszMessage[100]; // informational message
 char m_lpszIP[16]; // IP address string
 PHOSTENT m_phostent; // pointer to host entry structure
 char m_lpszHostEntryBuf[MAXGETHOSTSTRUCT]; // host entry structure
 IN_ADDR m_in; // Internet address structure
 HANDLE m_hGetHostByName; // handle of asynchronous request

 // member functions in the message map
 //{{AFX_MSG(CMyWindow)
 afx_msg void OnDoAsyncGetHostByName();

 Chapter 6 ■ Conversion and Database Functions 85

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 afx_msg LONG OnAsyncGetHostByName(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

One thing you’ll notice is that all the variables that are global in the SDK sample are
now encapsulated into the class in which they are used. This is just one of the benefits
of the C++ object-oriented language. Note also that these variables, the class member
variables, are preceded by the m_ prefix. Tagging member variables in this manner helps
you recognize them more easily in the implementation of the class. The next section of
the class declaration contains the prototypes for the functions that are in the window’s
message map. The message map is used by MFC to automate the routing of messages
to their designated windows. It takes the place of the switch-case construct in a tradi-
tional SDK window procedure.

The implementation of the CMyWindow class begins with the message map for the win-
dow as follows:

#define WM_USER_ASYNCGETHOSTBYNAME (WM_USER + 1)

BEGIN_MESSAGE_MAP(CMyWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CMyWindow)
 ON_COMMAND(ID_TEST_ASYNCGETHOSTBYNAME, OnDoAsyncGetHostByName)
 ON_MESSAGE(WM_USER_ASYNCGETHOSTBYNAME, OnAsyncGetHostByName)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

The first entry in the message map is for a menu item that will launch the search. The
ON_COMMAND macro automates the parsing of the WM_COMMAND message that is used in
an SDK program. It matches up the appropriate menu ID, in this case
ID_TEST_ASYNCGETHOSTBYNAME, and associates it with the OnDoAsyncGetHostByName()
member function. When the user selects the menu item that has
ID_TEST_ASYNCGETHOSTBYNAME as its identifier in the menu resource, the
OnDoAsyncGetHostByName() function is called. That function is implemented as follows:

void CMyWindow::OnDoAsyncGetHostByName()
{
 // find the name of the machine this program is running on
 if (gethostname(m_lpszHostName, HOST_NAME_LEN) != 0)
 {
 wsprintf(m_lpszMessage, “gethostname() generated error %d”,
 WSAGetLastError());
 MessageBox(m_lpszMessage, “Info”);
 }
 else
 {
 // get the host entry structure for this machine
 if ((m_hGetHostByName = WSAAsyncGetHostByName(m_hWnd,
 WM_USER_ASYNCGETHOSTBYNAME, m_lpszHostName,
 m_lpszHostEntryBuf, MAXGETHOSTSTRUCT)) == 0)
 {
 wsprintf(m_lpszMessage, “WSAAsyncGetHostByName() generated error %d”,

Part II ■ Basics of WinSock Programming86

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 WSAGetLastError());
 MessageBox(m_lpszMessage, “Info”);
 }
 }
}

The second entry in the message map is for a user-defined message that indicates the
asynchronous function has completed. The ON_MESSAGE macro automates the parsing
of WM_USER messages that are used in an SDK program. It matches up a specific user-
defined message, in this case WM_USER_ASYNCGETHOSTBYNAME, and associates it with the
OnAsyncGetHostByName() member function. When the WM_USER_ASYNCGETHOSTBYNAME
message is generated by WinSock on the completion of the asynchronous call, the
OnAsyncGetHostByName() function is executed. That function is implemented as follows:

LONG CMyWindow::OnAsyncGetHostByName(WPARAM wParam, LPARAM lParam)
{
 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 MessageBox(“WSAAsyncGetHostByName() had an error”, “Info”);
 else
 {
 // assign a hostent host entry pointer to the buffer
 m_phostent = (PHOSTENT)m_lpszHostEntryBuf;

 // copy the four byte IP address into a Internet address structure
 memcpy(&m_in, m_phostent->h_addr, 4);

 // format the results, converting the IP address into a string
 wsprintf(m_lpszMessage, “Host %s has IP address “, m_phostent->h_name);
 wsprintf(m_lpszIP, “%s”, inet_ntoa(m_in));
 lstrcat(m_lpszMessage, m_lpszIP);
 MessageBox(m_lpszMessage, “Info”);
 }

 return 0L;
}

Note that both OnDoAsyncGetHostByName() and OnAsyncGetHostByName() have an al-
most identical implementation to the SDK version of this sample.

Note

About message maps and the Visual C++ ClassWizard: ClassWizard associates
message identifiers, such as menu items, with class member functions. It
automatically inserts a skeletal function in the implementation file for the class.
This is handy because ClassWizard “knows” the correct format for the function
prototype. The programs in this book were developed using Visual C++ 1.5 and
Visual C++ 1.1 32-Bit Edition. The versions of ClassWizard in these versions of
Visual C++ do not support the automatic generation of message map entries for
user-defined messages. This means that for any WM_USER messages you create,

 Chapter 6 ■ Conversion and Database Functions 87

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

you must manually insert the ON_MESSAGE macro into the message map, create a
function prototype in the class definition, and create the member function from
scratch.

Canceling an Outstanding Asynchronous Request
The handle returned by the asynchronous database functions, such as
WSAAsyncGetHostByName(), can be used to terminate the database lookup. The
WSACancelAsyncRequest() function performs this task. Its prototype is the following:

int PASCAL FAR WSACancelAsyncRequest(HANDLE hAsyncTaskHandle);

hAsyncTaskHandle is the handle to the asynchronous task you wish to abort. On suc-
cess, this function returns 0 (zero). On failure, it returns SOCKET_ERROR, and
WSAGetLastError() can be called. Possible errors include the following:
WSANOTINITIALISED if WSAStartup() wasn’t called successfully; WSAENETDOWN if the net-
work subsystem is failing; WSAEINPROGRESS if a blocking WinSock operation is currently
in progress; WSAEINVAL if the specified asynchronous task handle is invalid; or WSAEALREADY
if the asynchronous routine being canceled has already completed. WSAEALREADY might
result if the original operation has already completed and the resulting message has been
processed or if the original operation has already completed but the resulting message is
still waiting in the application’s message queue.

By using WSACancelAsyncRequest() in your applications, you give users much greater
control over the program. If users perform an operation that generates an asynchronous
database call and the operation is taking an excruciatingly long time to complete, as it
might when networked name servers are involved, it’s nice to let users regain control of
the program instead of being at its mercy.

IP Address Resolution
IP address resolution is the opposite of host name resolution. In host name resolution,
using gethostbyname() or WSAAsyncGetHostByName(), the objective is to get the IP ad-
dress when you know the host name. The goal of IP address resolution is to get the host
name, and other host information, when all you know is its IP address. The
gethostbyaddr() and WSAAsyncGetHostByName() functions are used to fulfill this goal.
If you haven’t yet, please read and get a full understanding of the gethostbyname() and
WSAAsyncGetHostByName() functions; the remaining functions are used in a similar manner
as those two functions, so the explanations for the following functions have been abbre-
viated.

Part II ■ Basics of WinSock Programming88

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Finding a Host Name When You Know Its IP Address
The main duty of gethostbyaddr() is to take the IP address of a host and return its
name. This function, and its asynchronous counterpart named WSAAsyncGetHostByAddr(),
might perform a simple table lookup on a host file local to the computer on which the
program is running, or it might send the request across the network to a name server.
The function’s prototype looks like the following:

struct hostent FAR * PASCAL FAR gethostbyaddr(const char FAR * addr,
 int len, int type);

addr is a pointer to the IP address, in network byte order, of the computer about which
you want host information. len is the length of the address to which addr points. In
WinSock 1.1, the length is always four because this version of the specification sup-
ports only Internet style addressing. type must always be PF_INET for the same reason.
The gethostbyaddr() function returns a pointer to a hostent host entry structure on
success and NULL on failure. Upon a return value of NULL, you can call WSAGetLastError()
to determine the specifics of the problem. Possible error values include the following:
WSANOTINITIALIZED if WSAStartup() wasn’t called successfully; WSAENETDOWN if the net-
work subsystem is failing; WSAHOST_NOT_FOUND if the host name couldn’t be resolved;
WSATRY_AGAIN if the cause of the failure could be temporary, such as a name server being
down; WSANO_RECOVERY if there was an unrecoverable error; WSANO_DATA if the IP address
is valid but no appropriate data could be found; WSAEINPROGRESS if a blocking WinSock
operation is currently in progress; or WSAEINTR if the blocking call was canceled by
WSACancelBlockingCall().

The following sample code fragment will find the host name that has the specified IP
address:

u_long ulIPAddress = inet_addr(“166.78.16.201”); // binary IP address
char lpszMessage[100]; // informational message
char lpszIP[16]; // IP address string
PHOSTENT phostent; // pointer to host entry structure
IN_ADDR in; // Internet address structure

// get the host entry structure for the specified IP address
if ((phostent = gethostbyaddr((char *)&ulIPAddress, 4, PF_INET)) == NULL)
 wsprintf(lpszMessage, “gethostbyaddr() generated error %d”,
 WSAGetLastError());
else
{
 // copy the four byte IP address into an Internet address structure
 memcpy(&in, phostent->h_addr, 4);

 // format the results, converting the IP address into a string
 wsprintf(lpszMessage, “Host %s has IP address “, phostent->h_name);
 wsprintf(lpszIP, “%s”, inet_ntoa(in));
 lstrcat(lpszMessage, lpszIP);
}
MessageBox(NULL, lpszMessage, “Info”, MB_OK);

 Chapter 6 ■ Conversion and Database Functions 89

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Suppose that the computer with IP address 166.78.16.201 is called “jupiter.” Suppose
also that this computer uses a host file for name resolution as opposed to a networked
name server. One line of that host’s file might look like this:

166.78.16.201 jupiter

gethostbyaddr() looks for the designated IP address in the host file, finds the line on
which it resides, and extracts the associated host name. It then places all this informa-
tion into a hostent host entry structure. The end result is the formatted message de-
scribing that “jupiter” has an IP address of “166.78.16.201”.

Note

In the call to gethostbyaddr(), the IP address ulIPAddress had to be cast to a
character pointer. ulIPAddress is an unsigned long (four bytes in size) that
contains the binary IP address in network byte order. gethostbyaddr() expects a
pointer to the first byte of that four quantity, so you take the address of the
variable and cast it to a character pointer.

Asynchronously Finding a Host Name When You Know Its
IP Address
The WSAAsyncGetHostByAddr() function is the asynchronous version of gethostbyaddr().
Its function prototype is as follows:

HANDLE PASCAL FAR WSAAsyncGetHostByAddr(HWND hWnd, u_int wMsg,
 const char FAR * addr, int len, int type, char FAR * buf, int buflen);

hWnd is the handle to the window to which a message will be sent when
WSAAsyncGetHostByAddr() has completed its asynchronous operation. wMsg is the user-
defined message that will be posted to hWnd when the asynchronous operation is com-
plete. addr is a pointer to the IP address, in network byte order, of the computer about
which you want host information. len is the length of the address to which addr points
and is always 4 (four) for Internet addresses. type must always be PF_INET because
WinSock 1.1 supports only Internet-style addressing. buf is a pointer to an area of
memory that, upon successful completion of the address lookup, will contain the hostent
structure for the desired host. This buffer must be large enough to store the hostent
structure as well as other referenced data, therefore it should be at least MAXGETHOSTSTRUCT
bytes long. buflen is the size of the buf buffer. It should be MAXGETHOSTSTRUCT for safety’s
sake.

If the asynchronous operation is initiated successfully, the return value of
WSAAsyncGetHostByAddr() is a handle to the asynchronous task. On failure of initializa-

Part II ■ Basics of WinSock Programming90

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

tion, the function returns 0 (zero) and WSAGetLastError() should be called to find out
the reason for the error. Possible error values include the following: WSANOTINITIALIZED
if WSAStartup() wasn’t called successfully; WSAENETDOWN if the network subsystem is fail-
ing; WSAEWOULDBLOCK if the function cannot be scheduled at this time due to a resource
conflict within the specific WinSock implementation; or WSAEINPROGRESS if a blocking
WinSock operation is currently in progress. Note that the function’s return value doesn’t
tell you whether the requested information was retrieved successfully; all it tells you is
whether the function was started properly.

This function is used much like WSAAsyncGetHostByName(). Using an MFC implemen-
tation method to replicate the example given in the gethostbyaddr() example would
have class declaration such as the following:

class CMyWindow : public CFrameWnd
{

...

 // member variables
 u_long m_ulIPAddress; // binary IP address
 char m_lpszMessage[100]; // informational message
 char m_lpszIP[16]; // IP address string
 PHOSTENT m_phostent; // pointer to host entry structure
 IN_ADDR m_in; // Internet address structure
 HANDLE m_hGetHostByAddr; // handle of asynchronous request
 char m_lpszHostEntryBuf[MAXGETHOSTSTRUCT]; // host entry structure

 // member functions in the message map
 //{{AFX_MSG(CMyWindow)
 afx_msg void OnDoAsyncGetHostByAddr();
 afx_msg LONG OnAsyncGetHostByAddr(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Note that the variables are now member variables of the class. The implementation of
the CMyWindow class begins with the message map for the window:

#define WM_USER_ASYNCGETHOSTBYADDR (WM_USER + 2)

BEGIN_MESSAGE_MAP(CMyWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CMyWindow)
 ON_COMMAND(ID_TEST_ASYNCGETHOSTBYADDR, OnDoAsyncGetHostByAddr)
 ON_MESSAGE(WM_USER_ASYNCGETHOSTBYADDR, OnAsyncGetHostByAddr)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

The first entry in the message map is for a menu item that will launch the search. That
function is implemented as follows:

void CMyWindow::OnDoAsyncGetHostByAddr()
{
 // get a binary IP address
 m_ulIPAddress = inet_addr(“166.78.16.201”);

 Chapter 6 ■ Conversion and Database Functions 91

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 // get the host entry structure
 if ((m_hGetHostByAddr = WSAAsyncGetHostByAddr(m_hWnd,
 WM_USER_ASYNCGETHOSTBYADDR, (char *)&m_ulIPAddress, 4,
 PF_INET, m_lpszHostEntryBuf, MAXGETHOSTSTRUCT)) == 0)
 {
 wsprintf(m_lpszMessage, “WSAAsyncGetHostByAddr() generated error %d”,
 WSAGetLastError());
 MessageBox(m_lpszMessage, “Info”);
 }
}

In this example, the IP address is hard-coded; in production programs, values such as
this should be user configurable. The second entry in the message map is for the user-
defined message that indicates that the asynchronous function has completed. When
the WM_USER_ASYNCGETHOSTBYADDR message is generated by WinSock upon the comple-
tion of the asynchronous call, the OnAsyncGetHostByAddr() function is executed. That
function is implemented as follows:

LONG CMyWindow::OnAsyncGetHostByAddr(WPARAM wParam, LPARAM lParam)
{
 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 MessageBox(“WSAAsyncGetHostByAddr() had an error”, “Info”);
 else
 {
 // assign a hostent host entry pointer to the buffer
 m_phostent = (PHOSTENT)m_lpszHostEntryBuf;

 // copy the four byte IP address into a Internet address structure
 memcpy(&m_in, m_phostent->h_addr, 4);

 // format the results, converting the IP address into a string
 wsprintf(m_lpszMessage, “Host %s has IP address “, m_phostent->h_name);
 wsprintf(m_lpszIP, “%s”, inet_ntoa(m_in));
 lstrcat(m_lpszMessage, m_lpszIP);
 MessageBox(m_lpszMessage, “Info”);
 }

 return 0L;
}

Note that the OnAsyncGetHostByAddr() member function is like OnAsyncGetHostByName(),
with the only difference being the text in the error message. These functions are the
same because each is manipulating a hostent host entry structure.

Caution

Don’t forget to use the WSAGETASYNCERROR() macro to check for an error in your
message handlers for the asynchronous calls.

Part II ■ Basics of WinSock Programming92

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Service Name Resolution
So far, you have seen how to retrieve a binary IP address, whether it be derived from a
host name or the host’s IP address. But the IP address of a host is only half of the equa-
tion when it comes to making a network connection between client and server applica-
tions; the port number provides the other half of the equation. When a computer is
running a server application, it’s said to be providing a service. Each service is uniquely
identified by a well-known port number. The server program “listens” for connections
on the well-known port and the client program opens a connection to that port. The
port numbers must be unique to distinguish the many server programs that a host may
provide. The port numbers must be well-known so that application programmers can
request them by name. Figure 6.3 shows a host that is providing two services: port number
37 is acting as a time server over UDP, and port number 79 is acting as a finger server
over TCP. Note that the ports out of which the clients connect are represented as ques-
tion marks. Clients don’t need to specify a port when they create their outbound sock-
ets; the socket can be assigned a unique port at runtime by the TCP/IP stack.

FIGURE 6.3.
A host providing two
services and two
connecting clients.

mars
166.78.16.202

saturn
166.78.16.200

TC
P

 S
oc

ke
t U

D
P

 S
ocket

jupiter
166.78.16.201

79
finger

? ?

37
time

The getservbyname() and WSAAsyncGetServByName() functions are responsible for re-
trieving the port number when you know its service name. Using a service name in your
program, as opposed to a port number, allows the user of your program to decide which
port should be designated for the service your program is providing. Users appreciate
this level of control. As the types of services users’ computers provide, or the ways in
which they’re used, change over time, users have the flexibility of easily configuring their
machines as they see fit.

 Chapter 6 ■ Conversion and Database Functions 93

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

The Services File
The service name to port translation is commonly supported by a flat file database called
the services file. A partial listing of a common services file looks like the following:

This file contains port numbers for well-known services
as defined by RFC 1060 (Assigned Numbers).
#
Format:
<service name> <port number>/<protocol> [aliases...] [#<comment>]

time 37/tcp timserver
time 37/udp timserver
finger 79/tcp

The lines preceded by a pound sign (#) are comments. Notice the reference to RFC
1060. This Internet Request for Comment outlines some standard well-known ports.
This ensures that nobody creates a service that utilizes an already established port num-
ber. When you create your own custom servers, you need to allocate a port number
between 1024 and 5000 exclusive. The ports from 1024 and below are reserved for
universally well-known ports. Often, these ports are allocated to new services when some-
one invents the new service and distributes the specification through an RFC.

Following the header comment is the listed services. The left-most column contains the
name of the service. The next column has the port number and transport-level protocol
separated by a forward slash (/). The remaining columns contain aliases for the service.
In the preceding example, the time service is recognized as “time” or “timeserver.” The
finger service has no aliases. The transport-level protocol field specifies either User
Datagram Protocol or Transmission Control Protocol. This is the type of socket
(datagram or stream) that must be used to communicate with the designated service.
Note that the time service responds to port 37 on both a UDP and TCP connection.
The port number/protocol pair provides for a unique correlation to a service within each
transport protocol; this is to say that a service might respond to UDP port 100, and a
completely different service might respond to TCP port 100. It’s also possible for a
specific service to respond to one UDP port and an entirely different TCP port.

Tip

For custom applications that you produce, it’s usually sufficient to simply refer
to a service number by its port number. This frees you from having to make an
entry in the services table for your custom services. For the sake of flexibility,
make your server and client applications configurable with respect to the port
numbers they use. Allow the server to listen for connections on a configurable
port and make sure that the port to which the client connects is also

Part II ■ Basics of WinSock Programming94

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

configurable. This will ensure an easy fix to the problem of having several
different servers hard-coded to use the same port number. If your server pro-
gram must run on a computer with another server that was written to use a
hard-coded port number, you can change the server and client configuration to
use an unused port. With this information hard-coded, the change requires a
recompile of the applications.

Finding a Service’s Port Number
The getservbyname() function gets service information corresponding to a specific ser-
vice name and protocol. Its function prototype looks like the following:

struct servent FAR * PASCAL FAR getservbyname(const char FAR * name,
 const char FAR * proto);

name is a pointer to a string that contains the service for which you are searching. The
service name is either the official service name or an alias. proto is a pointer to a string
that contains the transport protocol to use; it’s either “udp”, “tcp”, or NULL. A NULL proto
will match on the first service in the services table that has the specified name, regard-
less of the protocol. The servent structure returned has the following format:

struct servent {
 char FAR * s_name; // official service name
 char FAR * FAR * s_aliases; // alias list
 short s_port; // port #
 char FAR * s_proto; // protocol to use
};

A note on transport protocols: Protocol names are case sensitive. “TCP” is different from
“tcp.” Ensure that you are using the exact format as listed in your services file.

The getservbyname() function returns a pointer to a servent structure on success and
NULL on failure. On a return value of NULL, you can call WSAGetLastError() to deter-
mine the specifics of the problem. Possible error values include the following:
WSANOTINITIALISED if WSAStartup() wasn’t called successfully; WSAENETDOWN if the net-
work subsystem is failing; WSANO_RECOVERY if there was an unrecoverable error; WSANO_DATA
if the service name is valid but no appropriate data could be found; WSAEINPROGRESS if
a blocking WinSock operation is currently in progress; or WSAEINTR if the blocking call
was canceled by WSACancelBlockingCall().

This code fragment searches for the time service on a UDP transport connection:

PSERVENT pservent; // pointer to service entry structure
char lpszMessage[100]; // informational message
char lpszPort[6]; // port number string

 Chapter 6 ■ Conversion and Database Functions 95

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

// get the service entry structure for the time service using UDP
if ((pservent = getservbyname(“time”, “udp”)) == NULL)
 wsprintf(lpszMessage, “getservbyname() generated error %d”,
 WSAGetLastError());
else
{
 // format the results
 wsprintf(lpszMessage, “Service %s using protocol %s has port “,
 pservent->s_name, pservent->s_proto);
 wsprintf(lpszPort, “%d”, ntohs(pservent->s_port));
 lstrcat(lpszMessage, lpszPort);
}

MessageBox(NULL, lpszMessage, “Info”, MB_OK);

The end result is the formatted message describing that the “time” service using the “udp”
protocol has port 37. Notice that the port number, pservent->s_port, must be con-
verted from network to host byte ordering.

If the sample was rewritten to not specify the transport protocol, the results would be
different:

PSERVENT pservent; // pointer to service entry structure
char lpszMessage[100]; // informational message
char lpszPort[6]; // port number string

// get the service entry structure for the time service
if ((pservent = getservbyname(“time”, NULL)) == NULL)
 wsprintf(lpszMessage, “getservbyname() generated error %d”,
 WSAGetLastError());
else
{
 // format the results
 wsprintf(lpszMessage, “Service %s using protocol %s has port “,
 pservent->s_name, pservent->s_proto);
 wsprintf(lpszPort, “%d”, ntohs(pservent->s_port));
 lstrcat(lpszMessage, lpszPort);
}

MessageBox(NULL, lpszMessage, “Info”, MB_OK);

The end result of this sample is the formatted message describing that the “time” ser-
vice using the “tcp” protocol has port 37. The TCP result is given because that entry
appears first in the services file.

Asynchronously Finding a Service’s Port Number
WSAAsyncGetServByName() is the asynchronous counterpart to getservbyname(). Its
function prototype is as follows:

HANDLE PASCAL FAR WSAAsyncGetServByName(HWND hWnd, u_int wMsg,
 const char FAR * name, const char FAR * proto,
 char FAR * buf, int buflen);

Part II ■ Basics of WinSock Programming96

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

hWnd is the handle to the window to which a message will be sent when
WSAAsyncGetServByName() has completed its asynchronous operation. wMsg is the user-
defined message that will be posted to hWnd when the asynchronous operation is com-
plete. name is a pointer to a service name about which you want service information.
proto is a pointer to a protocol name; it is “tcp”, “udp”, or NULL. If proto is NULL, the
first matching service is returned. buf is a pointer to an area of memory that, on success-
ful completion of the service lookup, will contain the servent structure for the desired
service. This buffer must be large enough to store the servent structure as well as other
referenced data; therefore, it should be at least MAXGETHOSTSTRUCT bytes long. buflen is
the size of the buf buffer. It should be MAXGETHOSTSTRUCT for safety’s sake.

If the asynchronous operation is initiated successfully, the return value of
WSAAsyncGetServByName() is a handle to the asynchronous task. On failure of initializa-
tion, the function returns 0 (zero) and WSAGetLastError() should be called to find out
the reason for the error. Possible error values include the following: WSANOTINITIALIZED
if WSAStartup() wasn’t called successfully; WSAENETDOWN if the network subsystem is fail-
ing; WSAEWOULDBLOCK if the function cannot be scheduled at this time due to a resource
conflict within the specific WinSock implementation; or WSAEINPROGRESS if a blocking
WinSock operation is currently in progress. The function’s return value doesn’t tell you
whether the requested information was retrieved successfully; all it tells you is whether
the function was started properly.

This function is used much like the asynchronous functions discussed earlier in this
chapter. Using an MFC implementation method to replicate the example given in the
getservbyname() example would have a class declaration like the following:

class CMyWindow : public CFrameWnd
{

...

 // member variables
 PSERVENT m_pservent; // pointer to service entry structure
 char m_lpszMessage[100]; // informational message
 char m_lpszPort[6]; // port number string
 HANDLE m_hGetServByName; // handle of asynchronous request
 char m_lpszServEntryBuf[MAXGETHOSTSTRUCT]; // service entry structure

 // member functions in the message map
 //{{AFX_MSG(CMyWindow)
 afx_msg void OnDoAsyncGetServByName();
 afx_msg LONG OnAsyncGetServByName(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Notice that the variables are now member variables of the class. The implementation of
the CMyWindow class begins with the message map for the window:

#define WM_USER_ASYNCGETSERVBYNAME (WM_USER + 3)

 Chapter 6 ■ Conversion and Database Functions 97

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

BEGIN_MESSAGE_MAP(CMyWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CMyWindow)
 ON_COMMAND(ID_TEST_ASYNCGETSERVBYNAME, OnDoAsyncGetServByName)
 ON_MESSAGE(WM_USER_ASYNCGETSERVBYNAME, OnAsyncGetServByName)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

The first entry in the message map is for a menu item that will launch the search. That
function is implemented as follows:

void CMyWindow::OnDoAsyncGetServByName()
{
 // get the service entry structure for the time service using UDP
 if ((m_hGetServByName = WSAAsyncGetServByName(m_hWnd,
 WM_USER_ASYNCGETSERVBYNAME, “time”, “udp”,
 m_lpszServEntryBuf, MAXGETHOSTSTRUCT)) == 0)
 {
 wsprintf(m_lpszMessage, “WSAAsyncGetServByName() generated error %d”,
 WSAGetLastError());
 MessageBox(m_lpszMessage, “Info”);
 }
}

The second entry in the message map is for the user-defined message that indicates that
the asynchronous function has completed. When the WM_USER_ASYNCGETSERVBYNAME
message is generated by WinSock on the completion of the asynchronous call, the
OnAsyncGetServByName() function is executed. That function is implemented as follows:

LONG CMyWindow::OnAsyncGetServByName(WPARAM wParam, LPARAM lParam)
{
 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 MessageBox(“WSAAsyncGetServByName() had an error”, “Info”);
 else
 {
 // assign a servent service entry pointer to the buffer
 m_pservent = (PSERVENT)m_lpszServEntryBuf;

 // format the results
 wsprintf(m_lpszMessage, “Service %s using protocol %s has port “,
 m_pservent->s_name, m_pservent->s_proto);
 wsprintf(m_lpszPort, “%d”, ntohs(m_pservent->s_port));
 lstrcat(m_lpszMessage, m_lpszPort);
 MessageBox(m_lpszMessage, “Info”);
 }

 return 0L;
}

Port Resolution
Port resolution is the opposite of service name resolution. Its goal is, given a port num-
ber and transport protocol, to find the corresponding named service. The
getservbyport() and WSAAsyncGetServByPort() functions fulfill this goal.

Part II ■ Basics of WinSock Programming98

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Finding a Service Name When You Know Its Port Number
The getservbyport() function gets service information corresponding to a specific port
and protocol. Its function prototype looks like the following:

struct servent FAR * PASCAL FAR getservbyport(int port,
 const char FAR * proto);

port is the service port, in network byte order. proto is a pointer to a protocol name; it
is “tcp”, “udp”, or NULL. If proto is NULL, the first matching service is returned. The
getservbyport() function returns a pointer to a servent structure on success and NULL
on failure. On a return value of NULL, you can call WSAGetLastError() to determine the
specifics of the problem. Possible error values include the following: WSANOTINITIALIZED
if WSAStartup() wasn’t called successfully; WSAENETDOWN if the network subsystem is fail-
ing; WSANO_RECOVERY if there was an unrecoverable error; WSANO_DATA if the port number
is valid but no appropriate data could be found; WSAEINPROGRESS if a blocking WinSock
operation is currently in progress; or WSAEINTR if the blocking call was canceled by
WSACancelBlockingCall().

This code fragment searches for the service corresponding to port 37 on a UDP trans-
port connection:

PSERVENT pservent; // pointer to service entry structure
char lpszMessage[100]; // informational message
char lpszPort[6]; // port number string

// get the service entry structure for the port 37 service using UDP
if ((pservent = getservbyport(htons(37), “udp”)) == NULL)
 wsprintf(lpszMessage, “getservbyport() generated error %d”,
 WSAGetLastError());
else
{
 // format the results
 wsprintf(lpszMessage, “Service %s using protocol %s has port “,
 pservent->s_name, pservent->s_proto);
 wsprintf(lpszPort, “%d”, ntohs(pservent->s_port));
 lstrcat(lpszMessage, lpszPort);
}

MessageBox(NULL, lpszMessage, “Info”, MB_OK);

Note that the port number is converted to network byte order before it is passed to
getservbyport(). The end result is the formatted message describing that port 37 us-
ing the “udp” transport protocol corresponds to the “time” service. Note the similarity
between this sample and the one presented for getservbyname().

 Chapter 6 ■ Conversion and Database Functions 99

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

Asynchronously Finding a Service Name When You Know
Its Port Number
WSAAsyncGetServByPort() is the asynchronous counterpart to getservbyport(). Its
function prototype is as follows:

HANDLE PASCAL FAR WSAAsyncGetServByPort(HWND hWnd, u_int wMsg,
 int port, const char FAR * proto, char FAR * buf, int buflen);

hWnd is the handle to the window to which a message will be sent when
WSAAsyncGetServByName() has completed its asynchronous operation. wMsg is the user-
defined message that will be posted to hWnd when the asynchronous operation is com-
plete. port is the service port, in network byte order, of the service about which you
want information. proto is a pointer to a protocol name; it is “tcp”, “udp”, or NULL. If
proto is NULL, the first matching service is returned. buf is a pointer to an area of memory
that, on successful completion of the service lookup, will contain the servent structure
for the desired service. This buffer must be large enough to store the servent structure
as well as other referenced data; therefore, it should be at least MAXGETHOSTSTRUCT bytes
long. buflen is the size of the buf buffer. It should be MAXGETHOSTSTRUCT for safety’s sake.

If the asynchronous operation is initiated successfully, the return value of
WSAAsyncGetServByName() is a handle to the asynchronous task. On failure of initializa-
tion, the function returns 0 (zero) and WSAGetLastError() should be called to find out
the reason for the error. Possible error values include the following: WSANOTINITIALIZED
if WSAStartup() wasn’t called successfully; WSAENETDOWN if the network subsystem is fail-
ing; WSAEWOULDBLOCK if the function cannot be scheduled at this time due to a resource
conflict within the specific WinSock implementation; or WSAEINPROGRESS if a blocking
WinSock operation is currently in progress. The function’s return value doesn’t tell you
whether the requested information was retrieved successfully; all it tells you is whether
the function was started properly.

This function is used much like the other asynchronous functions discussed thus far.
Using an MFC implementation method to replicate the example given in the
getservbyport() example would have a class declaration like the following:

class CMyWindow : public CFrameWnd
{

...

 // member variables
 PSERVENT m_pservent; // pointer to service entry structure
 char m_lpszMessage[100]; // informational message
 char m_lpszPort[6]; // port number string
 HANDLE m_hGetServByPort; // handle of asynchronous request
 char m_lpszServEntryBuf[MAXGETHOSTSTRUCT]; // service entry structure

Part II ■ Basics of WinSock Programming100

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 // member functions in the message map
 //{{AFX_MSG(CMyWindow)
 afx_msg void OnDoAsyncGetServByPort();
 afx_msg LONG OnAsyncGetServByPort(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Notice that the variables are now member variables of the class. The implementation of
the CMyWindow class begins with the message map for the window:

#define WM_USER_ASYNCGETSERVBYPORT (WM_USER + 4)

BEGIN_MESSAGE_MAP(CMyWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CMyWindow)
 ON_COMMAND(ID_TEST_ASYNCGETSERVBYPORT, OnDoAsyncGetServByPort)
 ON_MESSAGE(WM_USER_ASYNCGETSERVBYPORT, OnAsyncGetServByPort)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

The first entry in the message map is for a menu item that will launch the search. That
function is implemented as follows:

void CMyWindow::OnDoAsyncGetServByPort()
{
 // get the service entry structure for the port 37 service using UDP
 if ((m_hGetServByPort = WSAAsyncGetServByPort(m_hWnd,
 WM_USER_ASYNCGETSERVBYNAME, htons(37), “udp”,
 m_lpszServEntryBuf, MAXGETHOSTSTRUCT)) == 0)
 {
 wsprintf(m_lpszMessage, “WSAAsyncGetServByPort() generated error %d”,
 WSAGetLastError());
 MessageBox(m_lpszMessage, “Info”);
 }
}

The second entry in the message map is for the user-defined message that indicates
the asynchronous function has completed. When the WM_USER_ASYNCGETSERVBYPORT
message is generated by WinSock on completion of the asynchronous call, the
OnAsyncGetServByPort() function is executed. That function is implemented as follows:

LONG CMyWindow::OnAsyncGetServByPort(WPARAM wParam, LPARAM lParam)
{
 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 MessageBox(“WSAAsyncGetServByPort() had an error”, “Info”);
 else
 {
 // assign a servent service entry pointer to the buffer
 m_pservent = (PSERVENT)m_lpszServEntryBuf;

 // format the results
 wsprintf(m_lpszMessage, “Service %s using protocol %s has port “,
 m_pservent->s_name, m_pservent->s_proto);
 wsprintf(m_lpszPort, “%d”, ntohs(m_pservent->s_port));
 lstrcat(m_lpszMessage, m_lpszPort);
 MessageBox(m_lpszMessage, “Info”);

 Chapter 6 ■ Conversion and Database Functions 101

P2/Vol.6/s&n4 Programming WinSock #30594-1 jrt 11.10.94 CH06 LP #3

 }

 return 0L;
}

Summary
This chapter examined the many conversion and database functions provided by
WinSock. There are more such functions but the most commonly used ones were pre-
sented here. Chapter 8, “Sample Applications,” contains a complete application that
uses several of these functions.

The next chapter discusses the functions necessary for creating a socket, connecting
through sockets, and sending data back and forth through a socket. With that knowl-
edge, you’ll be ready to write fully functional WinSock applications.

 Chapter 7 ■ Socket Functions 103

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

77

Socket FunctionsSocket Functions

Part II ■ Basics of WinSock Programming104

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

The preceding two chapters show how to initialize the WinSock library and how to
resolve host names and services. This chapter discusses the remaining WinSock func-
tions necessary to make a truly useful networked application. Among these functions
are the following: socket() to create an end-point of communication, bind() to give
the end-point a name, listen() to listen for incoming connections, accept() to accept
a connection, send() and sendto() to send data, and recv() and recvfrom() to receive
data.

Figure 7.1 shows the flow of WinSock function calls for a client and server using TCP.
Figure 7.2 shows a similar flow of WinSock function calls, but this time for a client and
server using UDP.

FIGURE 7.1.
Client/server WinSock
function flow using
TCP.

Server

socket()
Create the Socket

bind()
Give the Socket a Name

Client

socket()
Create the Socket

connect()
Connect to the Server

listen()
Listen for Connections from Clients

accept()
Accepting the connection causes a
new socket to be created while the
original socket continues to wait for

new connections

send() / recv()
Send and Receive Data

send() / recv()
Send and Receive Data

Wait for Connections
from Clients

closesocket()
Close the Connection

closesocket()
Close the Connection

 Chapter 7 ■ Socket Functions 105

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

FIGURE 7.2.
Client/server WinSock
function flow using
UDP.

Server

socket()
Create the Socket

bind()
Give the Socket a Name

Client

socket()
Create the Socket

sendto() / recvfrom()
Send and Receive Data

closesocket()
Close the Connection

closesocket()
Close the Connection

sendto() / recvfrom()
Send and Receive Data

Creating an End-Point of Communication
The socket() function creates an end-point of communication called a socket. Its func-
tion prototype is as follows:

SOCKET PASCAL FAR socket(int af, int type, int protocol);

af specifies the address family this socket uses. WinSock 1.1 supports only the AF_INET,
or Internet address family format. type is the type specification for the socket. For most
applications, this value is either SOCK_STREAM, for a connection-oriented byte stream, or
SOCK_DGRAM, for connectionless datagram service. protocol is the particular protocol to
use and is usually set to 0 (zero), which lets socket() use a default value. The protocol
can be defaulted because the address family (af) and socket type (type) combination
already uniquely describe a socket’s protocol. If the family is AF_INET and the socket
type is SOCK_DGRAM, the protocol must be UDP. Likewise, if the family is AF_INET and
the socket type is SOCK_STREAM, the protocol must be TCP.

On success, socket() returns a socket descriptor. On failure, INVALID_SOCKET is returned
and WSAGetLastError() should be called to find out the reason for the error. Possible
error values include the following: WSANOTINITIALIZED if WSAStartup() wasn’t called
successfully; WSAENETDOWN if the network subsystem is failing; WSAEAFNOSUPPORT if the
address family specified by af isn’t supported; WSAEINPROGRESS if a blocking WinSock
operation is currently in progress; WSAEMFILE if there are no more free socket descrip-
tors; WSAENOBUFS if no buffer space can be created; WSAEPROTONOSUPPORT if the protocol
specified by protocol isn’t supported; WSAEPROTOTYPE if the protocol is the wrong type
for this socket; or WSAESOCKTNOSUPPORT if the socket type specified by type isn’t sup-
ported in the address family specified by af.

Part II ■ Basics of WinSock Programming106

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

CAUTION

Several of the preceding error messages returned by WSAGetLastError() make
reference to unsupported address families, socket types, or protocols. These
parameters have several interdependencies that, if not arranged properly, can
result in error. For example, a socket with the AF_INET address family,
SOCK_STREAM type, and UDP protocol is impossible because the UDP protocol
can’t support a byte stream. This book uses two basic sockets. Both have the
AF_INET address family specifier. One socket has type SOCK_STREAM, and the
other has type SOCK_DGRAM. The protocol is left as 0 (zero) to let the socket()
function use the default. It figures out this default by examining the address
family and socket type. AF_INET and SOCK_STREAM default to TCP. AF_INET and
SOCK_DGRAM default to UDP.

Example Call to socket()
The following code sample shows a call to the socket() function to create a stream socket:

SOCKET s; // socket descriptor
char lpszMessage[100]; // informational message

s = socket(AF_INET, SOCK_STREAM, 0);

if (s == INVALID_SOCKET)
 wsprintf(lpszMessage, “socket() generated error %d”,
 WSAGetLastError());
else
 lstrcpy(lpszMessage, “socket() succeeded”);

MessageBox(NULL, lpszMessage, “Info”, MB_OK);

Notice that the protocol field was set to 0 (zero) to allow socket() to use a default value
generated from the address family and socket type combination.

Stream Versus Datagram
A socket, generally speaking, is of the stream or datagram variety and has either
SOCK_STREAM or SOCK_DGRAM, respectively, as its type specifier in the call to socket(). You
have to make a choice about which type is more appropriate for your application.

The stream socket supports a connection-oriented, reliable byte stream. Data is guaran-
teed to arrive in the order it was sent and without any duplication. The stream socket
sees the data flow as a continuous, bidirectional stream of bytes with no record bound-
aries.

 Chapter 7 ■ Socket Functions 107

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

The datagram socket supports unconnected, unreliable packet transmission. Data may
not arrive in the order it was sent, it may be duplicated, or it may not arrive at all. The
datagram socket sees the data flow as a sequence of packets with record boundaries pre-
served.

Data Flow Behavior
A simple example illustrates the difference between stream and datagram data flow.
Suppose that the following two strings were sent to a receiving socket using two sepa-
rate calls to send() or sendto(): “This book is about” and “programming with WinSock”.

For a stream socket, created with type SOCK_STREAM, the application doesn’t see these
two strings as two separate records; record boundaries are lost. If the receiving socket
does a recv() on this socket with a buffer size of ten bytes, the first recv() returns “This
book “, the second returns “is about p”, the third returns “rogramming”, the fourth
returns “ with WinS”, and the fifth returns “ock”.

For a datagram socket, created with type SOCK_DGRAM, the application sees these two strings
as two separate records; record boundaries are preserved. If the receiving socket does a
recvfrom() on this socket with a buffer size of 10 bytes, the first recvfrom() returns
“This book “ and the second returns “programmin”. The remaining portion of each of
these strings is lost.

From this example, you can see that streams and datagrams are appropriate for differ-
ent tasks. For something inherently byte-stream oriented, such as a terminal emulator,
streams are more appropriate. For something inherently record oriented, such as data-
base record retrieval, datagrams may be more appropriate. But there is a trade-off in
either scenario. The use of datagrams means that you may have to include some sort of
ack/nack communication (acknowledgment/negative acknowledgment) in your appli-
cation because the protocol does not do this for you. On the other hand, the use of streams
means that you may have to keep track of record boundaries in your application.

Stream-Oriented Client/Server Communication
Stream-oriented, client/server communication, using socket type SOCK_STREAM, is more
complicated than datagram-oriented communication; both the server and client appli-
cations must perform several extra steps that are unnecessary using datagrams. By ex-
plaining the more involved stream scenario first, I hope to ease the understanding of
the datagram scenario presented later.

Part II ■ Basics of WinSock Programming108

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

How a Server Accepts a Connection from a Client
In a server, the stream socket is bound to a well-known name. Then the server applica-
tion listens for connections on that socket. When a client connects to the server, the
server accepts the new connection. At this point, data transfer begins.

Giving the Socket a Name
Creating a socket does little more than allocate a socket descriptor for your application
from the list of available descriptors. To make it useful, you need to give the socket a
name. The bind() function does this. Its prototype is as follows:

int PASCAL FAR bind(SOCKET s, const struct sockaddr FAR *addr, int namelen);

s is the socket descriptor returned by socket(). addr is a pointer to the address, or name,
to assign to the socket. namelen is the length of the structure addr points to.

On success, bind() returns 0 (zero). On failure, SOCKET_ERROR is returned and
WSAGetLastError() should be called to find out the reason for the error. Possible error
values include WSANOTINITIALIZED if WSAStartup() wasn’t called successfully; WSAENETDOWN
if the network subsystem is failing; WSAEADDRINUSE if the address specified by addr is
already in use; WSAEFAULT if namelen is too small; WSAEINPROGRESS if a blocking WinSock
call is currently in progress; WSAEAFNOSUPORT if the address family specified in the struc-
ture addr points to isn’t supported by this protocol; WSAEINVAL if the socket is already
bound to an address; WSAENOBUFS if no buffer space can be created; or WSAENOTSOCK if
the socket descriptor s is invalid.

The sockaddr structure is defined as follows:

struct sockaddr
{
 u_short sa_family; // address family
 char sa_data[14]; // up to 14 bytes of direct address
};

The format of sa_data depends on the address family. In WinSock 1.1, only the Internet
addressing format is supported. For this reason, the sockaddr_in structure is provided.
Use it rather than sockaddr when calling bind(). The format of the sockaddr_in struc-
ture follows:

struct sockaddr_in
{
 short sin_family; // address family
 u_short sin_port; // service port
 struct in_addr sin_addr; // Internet address
 char sin_zero[8]; // filler
};

 Chapter 7 ■ Socket Functions 109

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

sin_family must be AF_INET for WinSock 1.1; this value matches the af argument in the
call to socket(). sin_port is the port number, in network byte order, on which your server
application provides its service. sin_addr is an in_addr structure that contains the IP
address, in network byte order, on which your server will listen for connections. The
in_addr structure is used to provide three different ways of examining the IP address: as
four bytes, as two shorts, or as one long. The format of in_addr is as follows:

struct in_addr
{
 union
 {
 struct { u_char s_b1, s_b2, s_b3, s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;

#define s_addr S_un.S_addr // can be used for most tcp & ip code
#define s_host S_un.S_un_b.s_b2 // host on imp
#define s_net S_un.S_un_b.s_b1 // network
#define s_imp S_un.S_un_w.s_w2 // imp
#define s_impno S_un.S_un_b.s_b4 // imp #
#define s_lh S_un.S_un_b.s_b3 // logical host
};

Notice the definition of s_addr. This will be the most common way of accessing the IP
address, as an unsigned long in network byte order, because the database and conver-
sion routines manipulate the IP address similarly. The remaining field of the sockaddr_in
structure, sin_zero, is provided as a filler to buffer the remaining eight bytes that are
allotted for an address (2 byte port + 4 byte IP address + 8 byte filler = 14 bytes total).

Following is an example of using bind():

SOCKET s; // socket descriptor
char lpszMessage[100]; // informational message
SOCKADDR_IN addr; // Internet address

// create a stream socket
s = socket(AF_INET, SOCK_STREAM, 0);
if (s != INVALID_SOCKET)
{
 // fill out the socket’s address information
 addr.sin_family = AF_INET;
 addr.sin_port = htons(1050);
 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the socket to its address
 if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) == SOCKET_ERROR)
 {
 wsprintf(lpszMessage, “ bind() generated error %d”,
 WSAGetLastError());
 MessageBox(NULL, lpszMessage, “Info”, MB_OK);
 }
 else
 ...
}

Part II ■ Basics of WinSock Programming110

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

Notice the assignment of addr.sin_port to htons(1050). This tells you that this server
application listens for connections on port 1050. You also could use the getservbyname()
or WSAAsyncGetServByName() functions, as in the following example, to assign a port
number:

LPSERVENT pservent; // pointer to service entry structure
pservent = getservbyname(“daytime”, “tcp”);
if (pservent != NULL)
 addr.sin_port = pservent–>s_port; // already in network byte order

The next line in the sample is the assignment of addr.sin_addr.s_addr, the actual IP
address. In this sample, the IP address is set to htonl(INADDR_ANY). This tells you that
this server listens for connections on any network to which the host is connected.

FIGURE 7.3.
Server computer on
two networks.

Client

Network 1

Client

Network 2

Server

ClientClient

In most server applications, the name bound to a socket has its IP address set to
INADDR_ANY. This tells WinSock that you are willing to accept requests from any net-
work to which the host is connected. The only time this is an issue is if the host running
your server application has more than one IP address assigned to it. For example, this
might be the case if the host has two Ethernet cards as shown in Figure 7.3. One Ethernet
card is assigned one IP address (say 166.78.16.200) and the other Ethernet card has a

 Chapter 7 ■ Socket Functions 111

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

different IP address (say 166.78.16.201). In this case, you may want to place a limit
whereby clients can connect through only one IP address or the other, but not both. In
this case you do something like the following:

addr.sin_addr.s_addr = inet_addr(“166.78.16.200”);

One last thing to note about this code sample is the call to bind() itself. The addr
parameter’s address must be cast to a long pointer to a sockaddr structure (LPSOCKADDR)
because addr is a sockaddr_in structure (SOCKADDR_IN).

Listen for Connections
Now that you can name a socket, you can put it to real use by listening for connections
to that socket from client applications. The listen() function does this. Its prototype
is as follows:

int PASCAL FAR listen(SOCKET s, int backlog);

s is the socket descriptor on which to listen for connections. backlog is a count of pend-
ing connections that may be queued up before the server application processes them.
backlog must be between one and five, inclusively.

On success, listen() returns 0 (zero). On failure, SOCKET_ERROR is returned and
WSAGetLastError() should be called to find out the reason for the error. Possible error
values include: WSANOTINITIALIZED if WSAStartup() wasn’t called successfully; WSAENETDOWN
if the network subsystem is failing; WSAEADDRINUSE if the address specified by addr is
already in use; WSAEINPROGRESS if a blocking WinSock call is currently in progress;
WSAEINVAL if the socket hasn’t been bound to an address using bind() or the socket is
already connected; WSAEISCONN if the socket is already connected; WSAEMFILE if there are
no more free file descriptors; WSAENOBUFS if no buffer space can be created; WSAENOTSOCK
if the socket descriptor s is invalid; or WSAEOPNOTSUPP if the socket s doesn’t support the
listen() operation (this could happen if socket s is of type SOCK_DGRAM).

NOTE

Backlog acts as a safety net by preventing the WinSock layer from allocating lots
of resources. Suppose that your server application is very slow and can process
client connections only once every five seconds. Suppose also that the socket has
a backlog of three. If four clients try to connect to the server socket within five
seconds, the fourth client attempt will generate a WSAECONNREFUSED error at the
client side.

Part II ■ Basics of WinSock Programming112

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

Following is a code snippet showing the use of the listen() function:

SOCKET s; // socket descriptor
char lpszMessage[100]; // informational message
SOCKADDR_IN addr; // Internet address

// create a stream socket
s = socket(AF_INET, SOCK_STREAM, 0);
if (s != INVALID_SOCKET)
{
 // fill out the socket’s address information
 addr.sin_family = AF_INET;
 addr.sin_port = htons(1050);
 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the socket to its address
 if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) != SOCKET_ERROR)
 {
 // listen for connections (queueing up to three)
 if (listen(s, 3) == SOCKET_ERROR)
 {
 wsprintf(lpszMessage, “listen() generated error %d”,
 WSAGetLastError());
 MessageBox(lpszMessage, “Info”);
 }
 else
 ...
 }
}

Accept a Connection
Now you have a named socket listening for connections. The next thing for a server to
do is accept a connection from a client. The accept() function does this. Its prototype
is as follows:

SOCKET PASCAL FAR accept(SOCKET s, struct sockaddr FAR *addr,
 int FAR *addrlen);

s is the socket descriptor on which to accept a connection request. addr is a pointer to
a sockaddr structure that will accept the address of the connecting client. You may pass
NULL for this parameter or a pointer to a sockaddr_in structure, as in the bind() ex-
ample. addrlen is a pointer that will accept the actual length of the address structure in
addr. If addr is NULL, addrlen can also be NULL; otherwise, the value pointed to by
addrlen should initially contain the length of the structure pointed to by addr. This is
more clearly explained in the following examples.

On success, accept() returns a socket descriptor. This returned socket descriptor is the
one used for communication with the client; the original socket s passed in the call to
accept() remains available to accept additional connections. On failure, INVALID_SOCKET
is returned, and WSAGetLastError() should be called to find out the reason for the er-
ror. Possible error values include: WSANOTINITIALIZED if WSAStartup() wasn’t called

 Chapter 7 ■ Socket Functions 113

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

successfully; WSAENETDOWN if the network subsystem is failing; WSAEFAULT if addrlen is
too small; WSAEINTR if the blocking call was canceled; WSAEINPROGRESS if a blocking
WinSock call is currently in progress; WSAEINVAL if listen() wasn’t called before
accept(); WSAEFILE if the queue is empty and there are no descriptors available; WSAENOBUFS
if no buffer space can be created; WSAENOTSOCK if the socket descriptor s is invalid;
WSAEOPNOTSUPP if the socket s does not support the accept() operation (this could hap-
pen if socket s is of type SOCK_DGRAM); or WSAEWOULDBLOCK if the socket is marked as
nonblocking and no connections are present to be accepted.

Following is a code snippet that shows the accept() call in use:

SOCKET s; // socket descriptor
SOCKET clientS; // client socket descriptor
char lpszMessage[100]; // informational message
SOCKADDR_IN addr; // Internet address
SOCKADDR_IN clientAddr; // Internet address
IN_ADDR clientIn; // IP address
int nClientAddrLen;

// create a stream socket
s = socket(AF_INET, SOCK_STREAM, 0);
if (s != INVALID_SOCKET)
{
 // fill out the socket’s address information
 addr.sin_family = AF_INET;
 addr.sin_port = htons(1050);
 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the socket to its address
 if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) != SOCKET_ERROR)
 {
 // listen for connections (queueing up to three)
 if (listen(s, 3) != SOCKET_ERROR)
 {
 // set the size of the client address structure
 nClientAddrLen = sizeof(clientAddr);

 // accept a connection
 clientS = accept(s, (LPSOCKADDR)&clientAddr, &nClientAddrLen);
 if (clientS == INVALID_SOCKET)
 {
 wsprintf(lpszMessage, “ accept() generated error %d”,
 WSAGetLastError());
 MessageBox(lpszMessage, “Info”);
 }
 else
 {
 // copy the four byte IP address into an IP address structure
 memcpy(&clientIn, &clientAddr.sin_addr.s_addr, 4);

 // print an informational message
 wsprintf(lpszMessage,
 “accept() ok: client IP address is %s, port is %d”,
 inet_ntoa(clientIn), ntohs(clientAddr.sin_port));

Part II ■ Basics of WinSock Programming114

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 MessageBox(lpszMessage, “Info”);

 ...
 }
}
 }
}

In this example, the accept() function is called with a pointer to a sockaddr_in struc-
ture and a pointer to an integer containing the length of the sockaddr_in structure. When
the accept() function successfully returns, the sockaddr_in structure contains the ad-
dress information of the connecting client. As noted previously, you can pass NULL for
these two parameters and no client information will be conveyed to the accepting server
application. The alternative method of discovering details about the connecting client
is to use the getpeername() function. Its prototype is as follows:

int PASCAL FAR getpeername(SOCKET s,
 struct sockaddr FAR *name, int FAR * namelen);

Its parameters are the same as those of accept() except that the socket s is the socket
descriptor that’s returned by accept(), not the socket descriptor that’s used to listen for
connections. The other difference is that the function prototype uses name and namelen
rather than addr and addrlen, respectively. The inconsistent use of the terms name and
address is a problem with some WinSock functions.

On success, getpeername() returns 0 (zero). On error, SOCKET_ERROR is returned and
WSAGetLastError() should be called to find out the reason for the error. Possible error
values include: WSANOTINITIALIZED if WSAStartup() wasn’t called successfully; WSAENETDOWN
if the network subsystem is failing; WSAEFAULT if namelen is too small; WSAEINPROGRESS if
a blocking WinSock call is currently in progress; WSAENOTSOCK if the socket descriptor s
is invalid; or WSAENOTCONN if the socket isn’t connected to a client.

To use this function you do something like this:

...

 // accept a connection
 clientS = accept(s, NULL, NULL);
 if (clientS == INVALID_SOCKET)
 {
 wsprintf(lpszMessage, “accept() generated error %d”,
 WSAGetLastError());
 MessageBox(lpszMessage, “Info”);
 }
 else
 {
 if (getpeername(clientS,
 (LPSOCKADDR)&clientAddr, &nClientAddrLen)) == SOCKET_ERROR)
 {
 wsprintf(lpszMessage, “getpeername() generated error %d”,
 WSAGetLastError());
 MessageBox(lpszMessage, “Info”);

 Chapter 7 ■ Socket Functions 115

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 }
 else
 {
 // copy the four byte IP address into an IP address structure
 memcpy(&clientIn, &clientAddr.sin_addr.s_addr, 4);

 // print an informational message
 wsprintf(lpszMessage,
 “client IP address is %s, port is %d”,
 inet_ntoa(clientIn), ntohs(clientAddr.sin_port));
 MessageBox(lpszMessage, “Info”);

 ...
 }
 }

...

What If No Clients Are Trying to Connect?
In the previous example no mention was made of what the outcome of the code seg-
ment is if there is no client trying to connect to the server when the server executes the
accept() function. In this scenario, the server application blocks, waiting for a client
connection. This is similar to what happens with the getXbyY functions discussed in an
earlier chapter. And just as there is a work-around for the getXbyY problem, using the
WSAAsyncGetXByY functions, there is an answer to the accept() problem as well. The
solution lies in using nonblocking sockets. By default, a socket created with socket() is
in blocking mode. There are two methods for putting the socket into nonblocking mode.

Doing It the Berkeley Way
The Berkeley method of using nonblocking sockets involves two functions: ioctl() and
select(). ioctl() is the UNIX function to perform input/output control on a file de-
scriptor or socket. Because a WinSock socket descriptor may not be a true operating
system file descriptor, ioctl() can’t be used, so ioctlsocket() is provided instead.
select() is used to determine the status of one or more sockets.

The use of ioctlsocket() to convert a socket to nonblocking mode looks like this:

// put socket s into nonblocking mode
u_long ulCmdArg = 1; // 1 for nonblocking, 0 for blocking
ioctlsocket(s, FIONBIO, &ulCmdArg);

Once a socket is in its nonblocking mode, calling a normally blocking function simply
returns WSAEWOULDBLOCK if the function can’t immediately complete, as in the following
example.

// put socket s into nonblocking mode
u_long ulCmdArg = 1; // 1 for nonblocking, 0 for blocking
ioctlsocket(s, FIONBIO, &ulCmdArg);

Part II ■ Basics of WinSock Programming116

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

SOCKET clientS;
clientS = accept(s, NULL, NULL);
if (clientS == INVALID_SOCKET)
{
 int nError = WSAGetLastError();

 // if there is no client waiting to connect to this server,
 // nError will be WSAEWOULDBLOCK

}

Your server application could simply call accept() periodically until the call succeeded,
or you could use the select() call to query the status of the socket. The select() func-
tion checks the readability, writeability, and exception status of one or more sockets.
Even the most die-hard UNIX or Berkeley sockets supporter probably agrees that the
use of select() is fairly unintuitive. As one example, if select() tells you that a socket
is readable, that could mean the socket is ready to connect to a client, or it could mean
there is some data sent by a client ready to be read. To use select() in a Windows pro-
gram would require that it be called periodically, as the result of a timer or every time
through the application’s message loop. No matter what, its use doesn’t fit well within
the message-driven architecture of Windows. Thankfully, WinSock provides a more
“Windows native” method of performing nonblocking socket operations.

Doing It the Windows Way
WinSock provides a function called WSAAsyncSelect() to solve the problem of block-
ing socket function calls. It is a much more natural solution to the problem than using
ioctlsocket() and select(). It works by sending a Windows message to notify a win-
dow of a socket event. Its prototype is as follows:

int PASCAL FAR WSAAsyncSelect(SOCKET s, HWND hWnd,
 u_int wMsg, long lEvent);

s is the socket descriptor for which event notification is required. hWnd is the Window
handle that should receive a message when an event occurs on the socket. wMsg is the
message to be received by hWnd when a socket event occurs on socket s. It is usually a
user-defined message (WM_USER + n). lEvent is a bitmask that specifies the events in which
the application is interested.

WSAAsyncSelect() returns 0 (zero) on success and SOCKET_ERROR on failure. On failure,
WSAGetLastError() should be called. Possible error values include the following:
WSANOTINITIALIZED if WSAStartup() wasn’t called successfully; WSAENETDOWN if the net-
work subsystem is failing; WSAEINPROGRESS if a blocking WinSock call is currently in
progress; or WSAEINVAL if one of the parameters is invalid.

 Chapter 7 ■ Socket Functions 117

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

TIP

Calling WSAAsyncSelect() automatically puts the socket into a nonblocking
state. There is no need to use ioctlsocket() to do this first.

WSAAsyncSelect() is capable of monitoring several socket events. Table 7.1 lists these
events, which are represented by lEvent in the function prototype.

Table 7.1. WSAAsyncSelect() Events.
Event Meaning

FD_READ Socket ready for reading

FD_WRITE Socket ready for writing

FD_OOB Out-of-band data ready for reading on socket

FD_ACCEPT Socket ready for accepting a new incoming connection

FD_CONNECT Connection on socket completed

FD_CLOSE Connection on socket has been closed

The lEvent parameter is constructed by doing a logical OR on the events in which you’re
interested. For example, the following code will post a WM_USER + 1 message to the win-
dow handle specified by hWnd when there is an incoming connection to socket s or when
socket s has data to be read:

long lEvent = FD_ACCEPT | FD_READ;
WSAAsyncSelect(s, hWnd, WM_USER + 1, lEvent);

TIP

Issuing WSAAsyncSelect() for a socket cancels any previous WSAAsyncSelect()
for the same socket. You can’t do separate calls like this:

WSAAsyncSelect(s, hWnd, WM_USER + 1, FD_ACCEPT);

WSAAsyncSelect(s, hWnd, WM_USER + 1, FD_READ);

The preceding code will ignore FD_ACCEPT events; only FD_READ events
will be posted as message WM_USER + 1.

You also can’t use separate calls to WSAAsyncSelect() to assign different messages
to the different events for a specific socket. For example, the following code is
incorrect:

Part II ■ Basics of WinSock Programming118

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

WSAAsyncSelect(s, hWnd, WM_USER + 1, FD_ACCEPT);

WSAAsyncSelect(s, hWnd, WM_USER + 2, FD_READ);

The FD_ACCEPT event will never generate WM_USER + 1. Only FD_READ will
generate a message (WM_USER + 2).

To cancel all event notifications, call WSAAsyncSelect() with wMsg and lEvent set
to 0 (zero), as in the following:

WSAAsyncSelect(s, hWnd, 0, 0L);

You can see that there are six events you can express interest in. This section is about
how a server accepts a connection from a client, so that’s the area of WSAAsyncSelect()
on which I’ll concentrate. Please note that other sections of this chapter use
WSAAsyncSelect() to monitor the sending and receiving of data, as well as other events.
The basic use of WSAAsyncSelect() is the same for all events, so I’ll give a full descrip-
tion of an appropriate message handler here.

The FD_ACCEPT event is generated whenever a listening socket has a client wishing to
make a connection. An example of calling WSAAsyncSelect() from within a Visual C++
MFC program follows.

BOOL CServerWindow::StartListening()
{
 // m_s is the socket descriptor which is a member
 // variable of the CServerWindow class

 // m_s has already been created and bound to a name

 // listen for connections
 if (listen(m_s, 3) == SOCKET_ERROR)
 return FALSE;

 // get asycnchronous event notification of accept
 // to this object’s window (m_hWnd)
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER + 1, FD_ACCEPT) == SOCKET_ERROR)
 return FALSE;

 return TRUE;
}

You also need a member function in CServerWindow to handle the WM_USER + 1 message
that’s generated when a client connection is requested of socket m_s:

BEGIN_MESSAGE_MAP(CServerWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CServerWindow)
 ...
 ON_MESSAGE(WM_USER + 1, OnAsyncSelect)
...

 Chapter 7 ■ Socket Functions 119

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

LONG CServerWindow::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 // wParam is the socket descriptor
 // lParam is a status or error indicator

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 return 0L;

 // what event are we being notified of?
 if (WSAGETSELECTEVENT(lParam) == FD_ACCEPT)
 {
 // m_clientS is defined as SOCKET in the CServerWindow class declaration
 m_clientS = accept(m_s, NULL, NULL);
 if (m_clientS == INVALID_SOCKET)
 {
 int nError = WSAGetLastError();
 if (nError == WSAEWOULDBLOCK)
 // There really isn’t a client ready to connect.
 // This error should never occur for the FD_ACCEPT event
 // so it should be treated just like this event
 // notification function hadn’t been called.
 ;
 else
 // some other error
 ;
 }
 }
}

Notice the call to WSAGETSELECTERROR. This is a macro provided in WINSOCK.H, which
is called to determine whether there is an error in the asynchronous event. It returns 0
(zero) on success and an error value on failure. For the FD_ACCEPT event notification
message, the error could be WSAENETDOWN, which means the network subsystem is down.

Also note that the WSAGETSELECTEVENT macro is called to determine the event
that triggered this message handler even though the only way the
CServerWindow::OnAsyncSelect() function is called is if the FD_ACCEPT event occurs.
This macro will be used in later sample programs where the class’s member function
handles several WinSock events for a particular socket.

If for some reason the CServerWindow::OnAsyncSelect() function is called with the
FD_ACCEPT event but there is no client trying to connect to this server application,
accept() returns INVALID_SOCKET. Calling WSAGetLastError() will return WSAEWOULDBLOCK,
which tells you that this function is set up for nonblocking mode and if it weren’t, it
would block.

Part II ■ Basics of WinSock Programming120

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

How Clients Connect to Servers
You have now seen how a server creates a socket, gives it a name, listens for connec-
tions, and accepts connections from clients. This section explains what a client does to
connect to a server application.

Giving the Socket a Default Name
After the call to socket(), the bind() function may be used to give the socket a name.
This step might be necessary because calling socket() simply reserves a socket descrip-
tor. By naming the socket with bind(), you give the socket a port, out of which it com-
municates with a server.

The use of bind() to give a client socket a default name is shown here:

SOCKET s; // socket descriptor
char lpszMessage[100]; // informational message
SOCKADDR_IN addr; // Internet address

// create a stream socket
s = socket(AF_INET, SOCK_STREAM, 0);
if (s != INVALID_SOCKET)
{
 // fill out the socket’s address information
 addr.sin_family = AF_INET;
 addr.sin_port = 0; // let WinSock assign a port
 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the socket to its address
 if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) == SOCKET_ERROR)
 {
 wsprintf(lpszMessage, “ bind() generated error %d”,
 WSAGetLastError());
 MessageBox(NULL, lpszMessage, “Info”, MB_OK);
 }
 else
 ...
}

Note that addr.sin_port is assigned 0 (zero). This allows WinSock to assign any un-
used port it sees fit. This is in contrast to a server socket, which needs to listen for con-
nections on a specific port. It really doesn’t matter which port a client uses. But if you
do want to know which port a socket was assigned, you can use the getsockname() func-
tion. Its function prototype is as follows:

int PASCAL FAR getsockname(SOCKET s,
 struct sockaddr FAR *name, int FAR * namelen);

 Chapter 7 ■ Socket Functions 121

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

It is used much like getpeername(). An example call to getsockname() is listed here:

SOCKET s; // socket descriptor
char lpszMessage[100]; // informational message
SOCKADDR_IN addr; // Internet address used by bind()
SOCKADDR_IN addrAssigned; // Internet address assigned by bind()
int nAddrAssignedLen = sizeof(addrAssigned);

// create a stream socket
s = socket(AF_INET, SOCK_STREAM, 0);
if (s != INVALID_SOCKET)
{
 // fill out the socket’s address information
 addr.sin_family = AF_INET;
 addr.sin_port = 0; // let WinSock assign a port
 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the socket to its address
 if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) != SOCKET_ERROR)
 {
 // find out what port was assigned by WinSock
 if (getsockname(s, (LPSOCKADDR)&addrAssigned, &nAddrAssignedLen) == 0)
 // now addrAssigned.sin_port contains the port number
 // that WinSock assigned to this client port
 ...

 }
}

In this example, as in the server example, the socket’s IP address is set to INADDR_ANY.
This means that the socket can use any network interface the computer has. This use is
fine for most instances. It may be necessary to specify a particular address if the com-
puter on which the client application runs is connected to more than one network
through more than one network interface. Figure 7.4 shows one possible scenario. The
client computer in Figure 7.4 has two IP addresses; suppose that they are 166.12.34.101
and 166.12.34.102. If you want the client limited to going through only one network
interface, you can do the following instead of using INADDR_ANY:

addr.sin_addr.s_addr = inet_addr(“166.12.34.101”);

Connecting to a Server
A client connects to a server using the connect() function. Its prototype is as follows:

int PASCAL FAR connect(SOCKET s,
 const struct sockaddr FAR *name, int namelen);

Part II ■ Basics of WinSock Programming122

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

FIGURE 7.4.
Client computer on
two networks.

Network 1

Server 1

Server 2

Network 2

Client

s is the socket to use for the connection. name is the address of the server to connect to.
It is always a sockaddr_in Internet address structure for WinSock 1.1. namelen is the
length of the name parameter.

On success, connect() returns 0 (zero). On failure, it returns SOCKET_ERROR and
WSAGetLastError() should be called to find out the cause of the error. Possible error
values include the following: WSANOTINITIALIZED if WinSock hasn’t been successfully
initialized with a call to WSAStartup(); WSAENETDOWN if the network subsystem is failing;
WSAEADDRINUSE if the address is already in use; WSAEINTR if the blocking call was can-
celed with WSACancelBlockingCall(); WSAEINPROGRESS if a blocking WinSock call is in
progress; WSAEADDRNOTAVAIL if the address specified by addr isn’t available; WSAENOSUPPORT
if the addresses in the specified family can’t be used with this socket; WSAECONNREFUSED
if the server forcefully refused the connection attempt; WSAEDESTADDREQ if name isn’t
specified; WSAEFAULT if namelen is invalid; WSAEINVAL if socket s isn’t bound to an ad-
dress; WSAEISCONN if socket s is already connected; WSAEMFILE if there are no free file
descriptors; WSAENETUNREACH if the network can’t be reached from this host at this time;
WSAENOBUFS if no buffer space is available; WSAENOTSOCK if socket s isn’t a valid socket
descriptor; WSAETIMEDOUT if the attempt to connect timed out; or WSAEWOULDBLOCK if socket
s is marked as nonblocking and this connection can’t be completed immediately.

 Chapter 7 ■ Socket Functions 123

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

An example of using connect() is shown here:

SOCKET s; // socket descriptor
char lpszMessage[100]; // informational message
SOCKADDR_IN addr; // Internet address used by bind()
SOCKADDR_IN addrServer;

...
// s is a socket that has been bound to a default address
...

// fill out the address information of the server application
// (the server has IP address 166.34.56.100 and listens on port 1050)
addrServer.sin_family = AF_INET;
addrServer.sin_port = htons(1050);
addrServer.sin_addr.s_addr = inet_addr(“166.34.56.100”);

if (connect(s, (LPSOCKADDR)&addrServer, sizeof(addrServer)) == SOCKET_ERROR)
 // error

What if the Server Isn’t Listening?
The connect() call suffers from the same problem as accept(). What happens if the
server to which the client application is trying to connect isn’t listening for connections?
Using a blocking socket, the connect() function won’t return until the server accepts
the connection. If the server never accepts the connection request, the client applica-
tion remains hung until the WSAETIMEDOUT error is generated; the client’s message loop
never executes. To battle this problem, the WSAAsyncSelect() function is used. The event
of importance in this scenario is FD_CONNECT. The following example code shows how
WSAAsyncSelect() might be called in a Visual C++ MFC program:

BOOL CClientWindow::DoConnect()
{
 // m_s is the socket descriptor which is a member
 // variable of the CClientWindow class

 // m_s has already been created and bound to a default name

 // fill out the address information of the server application
 // (the server has IP address 166.34.56.100 and listens on port 1050)
 m_addrServer.sin_family = AF_INET;
 m_addrServer.sin_port = htons(1050);
 m_addrServer.sin_addr.s_addr = inet_addr(“166.34.56.100”);

 // get asycnchronous event notification of
 // connect to this object’s window (m_hWnd)
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER + 1, FD_CONNECT) ==
 SOCKET_ERROR)
 {
 // error ...
 }

Part II ■ Basics of WinSock Programming124

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 // make the connection
 if (connect(m_s, (LPSOCKADDR)&m_addrServer, sizeof(m_addrServer)) ==
 SOCKET_ERROR)
 {
 int nError = WSAGetLastError();
 if (nError == WSAEWOULDBLOCK)
 {
 // this is ok...just wait for async notice
 }
 else
 {
 // some other error
 }
 }
}

You also need a member function in CClientWindow to handle the WM_USER + 1 message
that’s generated when a client connection is completed:

BEGIN_MESSAGE_MAP(CClientWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CClientWindow)
 ...
 ON_MESSAGE(WM_USER + 1, OnAsyncSelect)
...
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

LONG CClientWindow::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 // wParam is the socket descriptor
 // lParam is a status or error indicator

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 return 0L;

 // what event are we being notified of?
 if (WSAGETSELECTEVENT(lParam) == FD_CONNECT)
 {
 // you now know that the m_s socket is connected to the server
 }
}

This message handler follows the same format as the CServerWindow::OnAsyncSelect()
function. First, check for an error using the WSAGETSELECTERROR macro. Next, use
WSAGETSELECTEVENT to determine which event caused this message handle to be called.
The FD_CONNECT event tells us the client socket is connected to the server.

Sending and Receiving Data on a Stream Socket
You have now seen how a server accepts a connection and how a client makes a connec-
tion. Once the client and server sockets are connected, data can be sent and received.

 Chapter 7 ■ Socket Functions 125

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

The send() and recv() functions are used to send and receive stream data, respectively.
These two functions can also operate on datagrams, but this discussion is limited to their
use with respect to stream sockets.

Sending Data
Sending data over a stream socket involves the use of WinSock’s send() function. Its
prototype is as follows:

int PASCAL FAR send(SOCKET s, const char FAR * buf, int len, int flags);

s is the connected socket to send data over. buf is a pointer to a buffer containing the
data to be transmitted. len is the number of bytes in buf. flags specifies the way in
which the send() call is made. flags can be any of the following logically ORed to-
gether: 0 (zero) for no special send options, MSG_DONTROUTE if the data shouldn’t be sub-
ject to routing, and MSG_OOB to send out-of-band data.

On success, send() returns the number of bytes sent. This could range from 1 (one) to
len. On failure, SOCKET_ERROR is returned and WSAGetLastError() specifies the follow-
ing: WSANOTINITIALIZED if WinSock wasn’t initialized with WSAStartup(); WSAENETDOWN
if the network subsystem is failing; WSAEACCESS if the address is a broadcast address but
the appropriate flag wasn’t set; WSAEINTR if the blocking call was canceled with
WSACancelBlockingCall(); WSAEINPROGRESS if a blocking call is in progress; WSAEFAULT
if buf isn’t in a valid part of the user address space; WSAENETRESET if the connection needs
to be reset; WSAENOBUFS if there is a internal WinSock buffer deadlock; WSAENOTCONN if
the socket s isn’t connected; WSAENOTSOCK if the socket s isn’t a valid socket descriptor;
WSAEOPNOTSUPP if MSG_OOB was specified by flags but the socket s isn’t a stream socket;
WSAESHUTDOWN if the socket s has been shutdown; WSAEWOULDBLOCK if the socket s is marked
as nonblocking and the send() would block; WSAEMSGSIZE if socket s is a datagram socket
and the buffer is too large; WSAEINVAL if the socket s hasn’t been bound; WSAECONNABORTED
if the virtual circuit was aborted due to timeout or other failure; or WSAECONNRESET if the
virtual circuit was reset by the remote side.

NOTE

Out-of-band (OOB) data can be thought of as a logically independent transmis-
sion channel associated with each pair of connected stream sockets. Out-of-band
data is delivered to the user independently of normal stream data.

Part II ■ Basics of WinSock Programming126

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

Unfortunately, there are two conflicting interpretations of out-of-band imple-
mentation. Internet RFC 793 introduced the concept of out-of-band data and
RFC 1122 provided the host requirements. The problem arises because the
Berkeley implementation of out-of-band data handling does not follow RFC
1122. Most TCP/IP stack providers document their implementation so that you
know which they use: BSD or RFC 1122. Because of this difference of opinion,
it is best not to use out-of-band data in your applications. Of course, if your
application must interoperate with an existing client or server, perhaps running
on a UNIX computer, you have no choice.

The following demonstrates a typical call to send():

SOCKET s; // socket to communicate over
char pszBuf[100]; // buffer to send
int nBufLen; // number of bytes in buffer to send
int nBytesSent; // bytes sent
int nError; // error status

// create, bind, and connect socket s ...

lstrcpy(pszBuf, “Hello, World!”);
nBufLen = lstrlen(pszBuf);

nBytesSent = send(s, pszBuf, nBufLen, 0);
if (nBytesSent == SOCKET_ERROR)
{
 nError = WSAGetLastError();
}
else
{
 // nBytesSent is the number of bytes successfully sent
}

The send() function has the same problem with blocking as the accept(), connect(),
and getXbyY functions. If none of the data can be sent for some reason—because the
receiving socket has too much incoming data spooled up, for example—send() blocks
waiting for the receiver to read the spooled up data. While send() is blocking, the user
loses control over your application. To prevent this problem, the WSAAsyncSelect()
function is used to put the socket into nonblocking send mode. The event of interest in
this scenario is FD_WRITE. An FD_WRITE message is posted when a socket is first connected
with connect() or accepted with accept(), and then after a send() fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore, an application can as-
sume that sends are possible starting from the first FD_WRITE message and lasting until a
send returns WSAEWOULDBLOCK. After such a failure, the application will be notified that
sends are again possible with a new FD_WRITE message.

 Chapter 7 ■ Socket Functions 127

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

A Visual C++ MFC example makes this more understandable. Following is a function
to make a connection with a server. Note that this example is looking at this problem
from the client’s perspective, but a server uses the same techniques. The following code
is similar to the connect() example except that it calls WSAAsyncSelect() with both
FD_CONNECT and FD_WRITE.

BOOL CClientWindow::DoConnect()
{
 // m_s is the socket descriptor which is a member
 // variable of the CClientWindow class

 // m_s has already been created and bound to a default name

 // m_addrServer is the address of the server and has
 // already been assigned

 // get asycnchronous event notification of connect
 // and writeability to this object’s window (m_hWnd)
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER + 1, FD_CONNECT | FD_WRITE) ==
 SOCKET_ERROR)
 {
 // error ...
 }

 // make the connection
 if (connect(m_s, (LPSOCKADDR)&m_addrServer, sizeof(m_addrServer)) ==
 SOCKET_ERROR)
 {
 int nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 // a real error ...
 }
 }
}

You also need a member function in CClientWindow to handle the WM_USER + 1 message
that’s generated when a client connection is completed and when the socket is writeable.

BEGIN_MESSAGE_MAP(CClientWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CClientWindow)
 ...
 ON_MESSAGE(WM_USER + 1, OnAsyncSelect)
...
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

LONG CMainFrame::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 int nError; // error status
 int nBytesSent; // bytes sent
 static char *pszBuf, *pszBufTmp; // buffer to send
 static int nBufLen; // length of buffer

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)

Part II ■ Basics of WinSock Programming128

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 {
 // ...
 return 0L;
 }

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_CONNECT:
 // client made a connection

 // allocate some buffer space and fill
 // it with useful data to send
 nBufLen = 5000;
 pszBuf = (char *)malloc(nBufLen);
 if (pszBuf == NULL)
 nBufLen = 0;
 else
 {
 // this temporary pointer will be used
 // to move through the buffer
 pszBufTmp = pszBuf;

 // fill the buffer with some useful data to send ...
 }

 break; // case FD_CONNECT

 case FD_WRITE:
 // client can send data now

 // is there any data to send?
 if (nBufLen > 0)
 {
 // send as many bytes as possible
 do
 {
 // send data in 100 byte chunks
 if (nBufLen < 100)
 nBytesSent = send(m_s, pszBufTmp, nBufLen, 0);
 else
 nBytesSent = send(m_s, pszBufTmp, 100, 0);

 if (nBytesSent == SOCKET_ERROR)
 {
 nError = WSAGetLastError();
 if (nError == WSAEWOULDBLOCK)
 // ok, we’ll get another FD_WRITE eventually
 else
 // a real error ...
 }
 else
 {
 // advance the pointer and decrement the byte count
 pszBufTmp += nBytesSent;
 nBufLen –= nBytesSent;

 if (nBufLen == 0)

 Chapter 7 ■ Socket Functions 129

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 free(pszBuf);
 }
 }
 while ((nBytesSent != SOCKET_ERROR) && (nBufLen > 0));
 }

 break; // case FD_WRITE

 } // switch

 return 0L;
}

Notice that the asynchronous select message handler, CClientWindow::OnAsyncSelect(),
handles multiple WinSock events, so a switch statement is used. As soon as the client’s
connect succeeds, the FD_CONNECT message is sent, telling you that the socket is connected.
Immediately after that, the FD_WRITE message is sent, telling you that the socket is
writeable. In this example, there is only one call to WSAAsyncSelect() done in
CClientWindow::DoConnect(). This single call registers interest in both the FD_CONNECT
and the FD_WRITE events. You also could use two separate calls. The first call, in the
DoConnect() member function, could simply register interest in FD_CONNECT. Then, in
the OnAsyncSelect() member function’s handling of FD_CONNECT, you could call
WSAAsyncSelect() expressing interest in just the FD_WRITE event. Either technique gives
the same result.

In this example, a buffer is allocated and filled with data to send in response to the
FD_CONNECT event. The FD_WRITE handler sends the data in 100-byte pieces until the entire
buffer is transmitted. I used 100-byte buffers in this example so that you could see the
do–while loop in action. This loop is executed as long as there are bytes to send and
there are no errors. If you get a WSAEWOULDBLOCK error, it doesn’t pose a problem because
the FD_WRITE handler will be called again as soon as the network subsystem can do it.
Thanks to the use of the static variables, when the FD_WRITE handler gets called again,
the rest of the buffer is sent from where it left off.

Receiving Data
Sending is just half the battle. This section describes receiving data using the recv()
function. Its prototype is as follows:

int PASCAL FAR recv(SOCKET s, char FAR * buf, int len, int flags);

s is the connected socket from which to receive data. buf is a pointer to a buffer that
will receive the data. len is the size of buf. flags specifies the way in which the recv()
call is made. flags can be any of the following logically ORed together: 0 (zero) for no
special receive options, MSG_PEEK to copy the data to buf but not remove it from the
internal WinSock queues, and MSG_OOB to process out-of-band data. On success, recv()
returns the number of bytes of received. This could range from 0 (zero) to len.

Part II ■ Basics of WinSock Programming130

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

A return value of 0 (zero) means the connection has been closed. On failure, SOCKET_ERROR
is returned and WSAGetLastError() specifies: WSANOTINITIALIZED if WinSock wasn’t
initialized with WSAStartup(); WSAENETDOWN if the network subsystem is failing; WSAEINTR
if the blocking call was canceled with WSACancelBlockingCall(); WSAEINPROGRESS if a
blocking call is in progress; WSAENOTCONN if the socket s isn’t connected; WSAENOTSOCK if
the socket s isn’t a valid socket descriptor; WSAEOPNOTSUPP if MSG_OOB was specified by
flags but the socket s isn’t a stream socket; WSAESHUTDOWN if the socket s has been shut-
down; WSAEWOULDBLOCK if the socket s is marked as nonblocking and the recv() would
block; WSAEMSGSIZE if socket s is a datagram socket and the datagram was too large for
buf; WSAEINVAL if the socket s hasn’t been bound; WSAECONNABORTED if the virtual circuit
was aborted due to timeout or other failure; WSAECONNRESET if the virtual circuit was reset
by the remote side.

The following demonstrates a typical call to recv():

SOCKET s; // socket to communicate over
#define BUFSIZE (100) // receive buffer size
char pszBuf[BUFSIZE]; // buffer to receive data
int nBytesRecv; // number of bytes received
int nError; // error status

// create, bind, and connect socket s ...

nBytesRecv = recv(s, pszBuf, BUFSIZE, 0);
if (nBytesRecv == SOCKET_ERROR)
{
 nError = WSAGetLastError();
}
else
{
 // nBytesRecv is the number of bytes successfully received
}

The recv() function has the same problem with blocking as the accept(), connect(),
getXbyY, and send() functions. If there is no data waiting to be received, recv() blocks
waiting for the sender to send some data. While recv() is blocking, the user loses con-
trol over your application. To prevent this problem, the WSAAsyncSelect() function is
used to put the socket into nonblocking receive mode. The event of interest in this sce-
nario is FD_READ. An FD_READ message is posted when a socket has data available to be
read.

FD_READ works differently from FD_WRITE. For FD_WRITE, you get a single FD_WRITE when
the socket is first connected. You must then send data until the send() results in a
WSAEWOULDBLOCK error. You won’t get another FD_WRITE message until the condition that
generated the WSAEWOULDBLOCK is cleared up. With FD_READ, you get the first FD_READ
when data first arrives. If you then do a recv() and there is still more data waiting to be
received, you will receive another FD_READ event notification. For example, suppose that
the TCP/IP layer receives 100 bytes of data on a socket and WinSock posts a FD_READ

 Chapter 7 ■ Socket Functions 131

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

message to the appropriate window. If the application calls recv() with a buffer size of
only 50, the first 50 bytes are returned in the buffer, and WinSock posts another FD_READ
message to let the application know there is data still waiting to be read.

A Visual C++ MFC example makes this more understandable. Following is a function
to make a connection with a server. Note that this example is looking at this problem
from the client’s perspective but a server uses the same techniques. The following code
is similar to the connect() example.

BOOL CClientWindow::DoConnect()
{
 // m_s is the socket descriptor which is a member
 // variable of the CClientWindow class

 // m_s has already been created and bound to a default name

 // m_addrServer is the address of the server and has
 // already been assigned

 // get asycnchronous event notification of connect
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER + 1, FD_CONNECT) ==
 SOCKET_ERROR)
 {
 // error ...
 }

 // make the connection
 if (connect(m_s, (LPSOCKADDR)&m_addrServer, sizeof(m_addrServer)) ==
 SOCKET_ERROR)
 {
 int nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 // a real error ...
 }
 }
}

You also need a member function in CClientWindow to handle the WM_USER + 1 message
that’s generated when a client connection is completed and when the socket is readable:

BEGIN_MESSAGE_MAP(CClientWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CClientWindow)
 ...
 ON_MESSAGE(WM_USER + 1, OnAsyncSelect)
...
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

LONG CMainFrame::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
#define BUFSIZE (100)
 char pszBuf[BUFSIZE]; // receive buffer
 int nError; // error status
 int nBytesRecv; // bytes received

Part II ■ Basics of WinSock Programming132

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 {
 // ...
 return 0L;
 }

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_CONNECT:
 // client made a connection

 // get notices of readability
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER + 1, FD_READ) ==
 SOCKET_ERROR)
 {
 // error ...
 }

 break; // case FD_CONNECT

 case FD_READ:
 // client can receive data now

 nBytesRecv = recv(m_s, pszBuf, BUFSIZE, 0);
 if (nBytesRecv == SOCKET_ERROR)
 {
 nError = WSAGetLastError();
 if (nError == WSAEWOULDBLOCK)
 // this should never happen but handle it anyway
 // so it is differentiated from a real error
 else
 // a real error ...
 }
 else
 {
 // got some data ...
 }

 break; // case FD_READ

 } // switch

 return 0L;
}

Notice that the asynchronous select message handler, CClientWindow::OnAsyncSelect(),
handles multiple WinSock events, so a switch statement is used. As soon as the client’s
connect succeeds, the FD_CONNECT message is sent, telling us that the socket is connected.
This example uses two separate calls to WSAAsyncSelect(). The first call, in the
DoConnect() member function, simply registers interest in FD_CONNECT. Then, in the
OnAsyncSelect() member function’s handling of FD_CONNECT, WSAAsyncSelect() is called
again, this time expressing interest in just the FD_READ event.

 Chapter 7 ■ Socket Functions 133

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

Out-of-band data is received similarly to regular in-line data, unless the socket is
configured to receive out-of-band data in-line. When a socket is configured this way,
out-of-band data’s urgency loses its effectiveness. Assuming that a socket isn’t receiving
out-of-band data in-line, the only differences to the preceding code would be as fol-
lows. The line that registers interest in the FD_READ event is expanded to read:

if (WSAAsyncSelect(m_s, m_hWnd, WM_USER + 1, FD_READ | FD_OOB) ==
 SOCKET_ERROR)
{
 // error ...
}

You also need a FD_OOB handler in the CMainFrame::OnAsyncSelect() function. It is
identical to the FD_READ event handler except the call to recv() is as follows:

nBytesRecv = recv(m_s, pszBuf, BUFSIZE, MSG_OOB);

Datagram-Oriented
Client/Server Communication
Datagram-oriented client/server communication, using socket type SOCK_DGRAM, is sim-
pler than the stream-oriented communication described in the preceding section. A server
doesn’t need to listen for and accept connections from clients, and a client doesn’t need
to connect to a server. Instead, each piece of data is individually addressed.

How a Server Prepares for Communication
In the stream environment, a server must create a socket, bind the socket to a well-known
name, listen for connections on the socket, and accept connections on the socket. In
the datagram environment, a server must only create a socket and bind the socket to a
well-known name.

Creating the socket is exactly like the stream counterpart except that SOCK_DGRAM is speci-
fied rather than SOCK_STREAM:

SOCKET s;
s = socket(AF_INET, SOCK_DGRAM, 0);

The last step in preparing a server for communication is binding the socket to a well-
known name. This procedure is identical to that of the stream socket:

SOCKADDR_IN addr;
int nError;

addr.sin_family = AF_INET;
addr.sin_port = htons(2050);
addr.sin_addr.s_addr = htonl(INADDR_ANY);

Part II ■ Basics of WinSock Programming134

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) == SOCKET_ERROR)
{
 nError = WSAGetLastError();
 // ...
}

In this code snippet, the server is preparing to receive data on port 2050, from any net-
work interface the host has available.

How a Client Prepares for Communication
In the stream environment, a client must create a socket, fill out an Internet address
structure of the server, and connect to the server. In the datagram environment, a client
must only create a socket. After that, an Internet address structure is used for each com-
munication.

Sending Datagram Data
To send a datagram, use the sendto() function. Its prototype is as follows:

int PASCAL FAR sendto(SOCKET s, const char FAR * buf, int len, int flags,
 const struct sockaddr FAR *to, int tolen);

s is the socket to send on. buf is a pointer to the data to send. len is the length of the buf
buffer. flags specifies the way in which sendto() is called. flags can be any of the fol-
lowing logically ORed together: 0 (zero) for no special send options, MSG_DONTROUTE if
the data shouldn’t be subject to routing, and MSG_OOB to send out-of-band data. to is a
pointer to the Internet address of the intended receiver. For WinSock 1.1, to must be
a sockaddr_in structure. tolen is the length of the to parameter.

On success, sendto() returns the number of bytes sent. On failure, SOCKET_ERROR is
returned and WSAGetLastError() should be called. Possible error values are the follow-
ing: WSANOTINITIALIZED if WinSock wasn’t initialized with WSAStartup(); WSAENETDOWN
if the network subsystem is failing; WSAEACCESS if the address is a broadcast address but
the appropriate flag was not set; WSAEINTR if the blocking call was canceled with
WSACancelBlockingCall(); WSAEINPROGRESS if a blocking call is in progress; WSAEFAULT
if buf or to are not in a valid part of the user address space or if to is too small to hold
a sockaddr structure; WSAENETRESET if the connection needs to be reset; WSAENOBUFS if
there is a internal WinSock buffer deadlock; WSAENOTCONN if the socket s isn’t connected
(for SOCK_STREAM only); WSAENOTSOCK if the socket s isn’t a valid socket descriptor;
WSAEOPNOTSUPP if MSG_OOB was specified by flags but the socket s isn’t a stream socket;
WSAESHUTDOWN if the socket s has been shutdown; WSAEWOULDBLOCK if the socket s is marked
as nonblocking and the sendto() would block; WSAEMSGSIZE if socket s is a datagram
socket and the buf buffer is larger than the maximum supported by the particular
WinSock implementation; WSAECONNABORTED if the virtual circuit was aborted due to
timeout or other failure; WSAECONNRESET if the virtual circuit was reset by the remote

 Chapter 7 ■ Socket Functions 135

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

side; WSAEADDRNOTAVAIL if the address specified by to isn’t available from the local ma-
chine; WSAENOSUPPORT if the addresses in the specified family can’t be used with this socket;
WSAEDESTADDRREQ if a destination address is required; or WSAENETUNREACH if the network
can’t be reached from this host at this time.

CAUTION

The WSAEMSGSIZE error will result if you try to send too large a datagram. This
maximum is WinSock vendor dependent. To find out the maximum size for
your particular WinSock implementation, examine the iMaxUdpDg variable in the
WSAData structure that was passed to WSAStartup().

Here is an example of using the sendto() function:

SOCKET s;
SOCKADDR_IN addr;
#define BUFSIZE (100)
char pszBuf[BUFSIZE];
int nBufLen;
int nBytesSent;
int nError;

s = socket(AF_INET, SOCK_DGRAM, 0);
if (s == INVALID_SOCKET)
{
 nError = WSAGetLastError();
 // ...
}
else
{
 // fill out the address of the recipient
 addr.sin_family = AF_INET;
 addr.sin_port = htons(2050);
 addr.sin_addr.s_addr = inet_addr(“166.78.16.150”);

 // assign some data to send
 lstrcpy(pszBuf, “Hello, World!”);
 nBufLen = lstrlen(pszBuf);

 // send the datagram
 nBytesSent = sendto(s, pszBuf, nBufLen, 0, (LPSOCKADDR)&addr, sizeof(addr));
 if (nBytesSent == SOCKET_ERROR)
 {
 nError = WSAGetLastError();
 // ...
 }
 else
 {
 // data was sent
 }

 closesocket(s);
}

Part II ■ Basics of WinSock Programming136

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

In this example, data is sent to port 2050 on the host with IP address 166.78.16.150.
Notice that no connection was established before transmission.

One of the capabilities of datagram sockets (SOCK_DGRAM) is that they can be sent to
multiple recipients with one call to sendto(). This is accomplished by specifying the
INADDR_BROADCAST address, as in the following:

addr.sin_addr.s_addr = htonl(INADDR_BROADCAST);

By default, a socket doesn’t support broadcast transmission. If you try to send to the
INADDR_BROADCAST address, you get the WSAEACCESS error. To remedy this, use the
setsockopt() function, as in the following:

BOOL bBroadcast = TRUE; // TRUE = enable, FALSE = disable
setsockopt(s, SOL_SOCKET, SO_BROADCAST,
(LPSTR)&bBroadcast, sizeof(bBroadcast));

sendto() may block, so you can use WSAAsyncSelect(), just as it was used for stream
communication, by expressing interest in the FD_WRITE event.

Receiving Datagram Data
To receive a datagram, use the recvfrom() function. Its prototype is as follows:

int PASCAL FAR recvfrom(SOCKET s, char FAR * buf, int len, int flags,
 struct sockaddr FAR *from, int FAR * fromlen);

s is the socket descriptor to use for communication. buf is a buffer to accept the incom-
ing data. len is the size of buf. flags specifies the way recvfrom() is made. flags can be
any of the following logically ORed together: 0 (zero) for no special receive options,
MSG_PEEK to peek at the incoming data by copying it into buf but not removing it from
the input queue, and MSG_OOB to receive out-of-band data (for streams only). from is an
optional pointer to a sockaddr_in structure, which will contain the address of the send-
ing socket upon return of recvfrom(). fromlen is an optional pointer to the length of
from. fromlen should be initialized to the size of sockaddr_in before it is used.

On success, recvfrom() returns the number of bytes received. On failure, SOCKET_ERROR
is returned and WSAGetLastError() should be called. Possible error values are as follows:
WSANOTINITIALIZED if WinSock wasn’t initialized with WSAStartup(); WSAENETDOWN if the
network subsystem is failing; WSAEINTR if the blocking call was canceled with
WSACancelBlockingCall(); WSAEINPROGRESS if a blocking call is in progress; WSAEFAULT
if fromlen is too small to hold a sockaddr structure; WSAEINVAL if socket s isn’t bound;
WSAENOTCONN if the socket s isn’t connected (for SOCK_STREAM only); WSAENOTSOCK if the
socket s isn’t a valid socket descriptor; WSAEOPNOTSUPP if MSG_OOB was specified by flags
but the socket s isn’t a stream socket; WSAESHUTDOWN if the socket s has been shutdown;
WSAEWOULDBLOCK if the socket s is marked as nonblocking and the sendto() would block;

 Chapter 7 ■ Socket Functions 137

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

WSAEMSGSIZE if socket s is a datagram socket and the data was too large to fit into buf
(the data is truncated); WSAECONNABORTED if the virtual circuit was aborted due to timeout
or other failure; or WSAECONNRESET if the virtual circuit was reset by the remote side.

Here is an example of using the recvfrom() function in a datagram server application:

char pszMessage[100]; // informational message
SOCKET s; // socket to receive data on
SOCKADDR_IN addr; // address of the socket
#define BUFSIZE (100) // receive buffer size
char pszBuf[BUFSIZE]; // receive buffer
int nBytesRecv; // number of bytes received
int nError; // error code
SOCKADDR_IN addrFrom; // address of sender
int nAddrFromLen = sizeof(addrFrom); // lengh of sender structure
IN_ADDR inFrom; // IP address of sender

s = socket(AF_INET, SOCK_DGRAM, 0);
if (s == INVALID_SOCKET)
{
 nError = WSAGetLastError();
 // ...
}
else
{
 // fill out the name this server will read data from
 addr.sin_family = AF_INET;
 addr.sin_port = htons(2050);
 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the name to the socket
 if (bind(s, (LPSOCKADDR)&addr, sizeof(addr)) == SOCKET_ERROR)
 {
 nError = WSAGetLastError();
 // ...
 }
 else
 {
 nBytesRecv = recvfrom(s, pszBuf, 100, 0,
 (LPSOCKADDR)&addrFrom, &nAddrFromLen);
 if (nBytesRecv == SOCKET_ERROR)
 {
 nError = WSAGetLastError();
 // ...
 }
 else
 {
 // got some data ...

 // copy the four byte IP address into an IP address structure
 memcpy(&inFrom, &addrFrom.sin_addr.s_addr, 4);

 // print an informational message
 wsprintf(pszMessage,
 “server received %d bytes from %s, port is %d”,
 nBytesRecv, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));

Part II ■ Basics of WinSock Programming138

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

 MessageBox(pszMessage, “Datagram Server Info”);
 }
 }

 closesocket(s);
}

Note that in this example the optional from parameter was provided. This gives the
receiver the ability to send data back to the sender. This is demonstrated in the next
chapter’s datagram example program.

As with the sendto() function, the recvfrom() function may block. Use WSAAsyncSelect()
with the FD_READ event to solve this problem. Implementation is similar to that of the
stream example.

Closing a Socket
The previous sections explain how network applications create sockets and communi-
cate through them. The last thing to do is close the socket. The closesocket() function’s
prototype is as follows:

int PASCAL FAR closesocket(SOCKET s);

s is the socket to close. On success, it returns 0 (zero). On failure, SOCKET_ERROR is re-
turned and WSAGetLastError() reveals the following: WSANOTINITIALIZED if WinSock
wasn’t initialized with WSAStartup(); WSAENETDOWN if the network subsystem is failing;
WSAEINTR if the blocking call was canceled with WSACancelBlockingCall(); WSAEINPROGRESS
if a blocking call is in progress; WSAENOTSOCK if the socket s isn’t a valid socket descrip-
tor; or WSAEWOULDBLOCK if the socket s is marked as nonblocking and the closesocket()
would block.

There are several variables that determine the closing characteristics of a socket. These
characteristics are determined by the socket’s linger options as set with setsockopt()
(see Table 7.2).

Table 7.2. Linger Behavior on closesocket().
Option Interval Type of Close Wait for Close?

SO_LINGER Zero Hard No

SO_LINGER Nonzero Graceful Yes

SO_DONTLINGER Don’t care Graceful No

 Chapter 7 ■ Socket Functions 139

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

If SO_LINGER is set with a zero timeout interval, closesocket() isn’t blocked, even if
queued data has not yet been sent or acknowledged. This is called a hard close because
the socket is closed immediately and any unsent data is lost. Any recv() call on the re-
mote side of the circuit can fail with WSAECONNRESET.

If SO_LINGER is set with a nonzero timeout interval, the closesocket() call blocks until
the remaining data has been sent or until the timeout expires. This is called a graceful
disconnect. Note that if the socket is set to nonblocking and SO_LINGER is set to a non-
zero timeout, the call to closesocket() will fail with an error of WSAEWOULDBLOCK.

If SO_DONTLINGER is set on a stream socket, the closesocket() call will return immedi-
ately. However, any data queued for transmission will be sent, if possible, before the
underlying socket is closed. This is also called a graceful disconnect. Note that in this
case, the WinSock implementation may not release the socket and other resources for
an arbitrary period, which may affect applications that expect to use all available
sockets.

To set the linger options of a socket, use setsockopt(). The following three code seg-
ments demonstrate the three entries in Table 7.2.

// Option Interval Type of Close Wait for Close?
// SO_LINGER Zero Hard No
LINGER ling;
ling.l_onoff = 1; // linger on
ling.l_linger = 0; // timeout in seconds
setsockopt(s, SOL_SOCKET, SO_LINGER, (LPSTR)&ling, sizeof(ling));

// Option Interval Type of Close Wait for Close?
// SO_LINGER Non–zero Graceful Yes
LINGER ling;
ling.l_onoff = 1; // linger on
ling.l_linger = 5; // timeout in seconds
setsockopt(s, SOL_SOCKET, SO_LINGER, (LPSTR)&ling, sizeof(ling));

// Option Interval Type of Close Wait for Close?
// SO_DONTLINGER Don’t care Graceful No
LINGER ling;
ling.l_onoff = 0; // linger off
ling.l_linger = 0; // timeout in seconds
setsockopt(s, SOL_SOCKET, SO_LINGER, (LPSTR)&ling, sizeof(ling));

If your application wants to know when the socket has been closed, use WSAAsyncSelect()
and specify the FD_CLOSE event. If WSAGETSELECTERROR returns 0 (zero) for the FD_CLOSE
event, the socket was closed gracefully. An error value of WSAECONNRESET tells you the
socket was abortively disconnected.

Part II ■ Basics of WinSock Programming140

p2v6snrp2 Prog. WinSock #30594-1 Everly/aw 11.15.94 CH07 LP #4

Summary
This chapter discussed the socket related functions necessary to make a client/server
application, using both datagrams and streams. Stream communication is complicated
by the need to make the connection between the client and server, but this trade-off
provides for a robust communication path. Although datagram communication is easy
to initiate, it is limited by its inherent unreliability.

The next chapter develops four sample applications that use the functions discussed in
this chapter. These sample chapters provide the cohesion between this chapter’s dispar-
ate presentation of several WinSock functions.

 Chapter 8 ■ Sample Applications 141

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

88

Sample
Applications
Sample
Applications

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming142

This chapter presents four sample programs that make use of the WinSock functions
described in the preceding three chapters. The first sample initializes WinSock and of-
fers you a dialog box to view specifics about the WinSock implementation on which
the program is running. The second sample application gives you access to WinSock
database functions, in both their blocking and nonblocking modes of operation. The
third and fourth samples are composed of two programs each: a client that sends either
datagrams or stream data and a server that receives them and sends them back to the
client.

Maintaining 16-Bit and 32-Bit Projects
With the help of the Microsoft Foundation Class library, it’s very easy to maintain the
same source code for both a 16-bit executable and a 32-bit executable. Unfortunately,
maintaining the Visual C++ projects for these different executable versions isn’t as easy.
The project files (makefiles) for 16-bit Visual C++ 1.5 and 32-bit Visual C++ 1.1 aren’t
compatible; you must maintain two separate projects.

The easiest way to do this is to use the Visual C++ product that you like best (16-bit or
32-bit) to create a project and then create a makefile for the other environment. As an
example, suppose that a project named PROJ is initially developed with the 16-bit com-
piler. The Visual C++ 16-bit project file is called PROJ.MAK. After program develop-
ment is far enough along, rename the PROJ.MAK file to PROJ.M16 and remove all
temporary files in the project’s directory (for example, *.OBJ and *.RES). Next, launch
32-bit Visual C++ and select New… from the Project menu. Add all of the source needed
to build the project, as well as any libraries it needs to link with. Call this new project
PROJ as well. Use this project file to build the 32-bit version. When you wish to switch
back to the 16-bit environment, rename PROJ.MAK to PROJ.M32 and then copy
PROJ.M16 to PROJ.MAK.

If you’re wondering why not just use different project names such as PROJ16.MAK
and PROJ32.MAK, the answer lies in Visual C++ and its associated tools, such as App
Studio and ClassWizard. These tools use the project file’s name when determining what
other files are named. This makes it difficult to use App Studio and ClassWizard effec-
tively. This limitation also makes it difficult to use separate directories for the projects,
as in \PROJ\16BIT\PROJ.MAK and \PROJ\32BIT\PROJ.MAK.

To simplify the procedure of switching between 16-bit and 32-bit project files, a couple
of batch files are used. The batch file shown in Listing 8.1 is used to select which project
file to use. Note that this batch file should be used only when you’re prepared to build
the project under the new compiler, because all of the object files and other temporary
files are removed by running the script.

 Chapter 8 ■ Sample Applications 143

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Listing 8.1. USE.BAT batch file.

@ECHO OFF
REM Replace PROJ with the actual project name

IF “%1”==”16" GOTO USE
IF “%1”==”32" GOTO USE

ECHO Directions for use: USE 16 or USE 32
GOTO END

:USE
IF NOT EXIST PROJ.M%1 GOTO NOFILE
DEL *.APS
DEL *.BSC
DEL *.CLW
DEL *.EXE
DEL *.OBJ
DEL *.PCH
DEL *.PDB
DEL *.RES
DEL *.SBR
DEL *.VCW
DEL *.WSP
COPY PROJ.M%1 PROJ.MAK
GOTO END

:NOFILE
ECHO %1–bit project file does not exist
GOTO END

:END

The batch file shown in Listing 8.2 is a script used to save the project file to the appro-
priate 16-bit or 32-bit makefile. Be careful when using this batch file because you could
accidentally write over the 16-bit makefile with the 32-bit version, and vice versa. For
example, don’t run 32-bit Visual C++, exit Visual C++, and then run SAVE 16. This
will cause you to lose the 16-bit project file.

Listing 8.2. SAVE.BAT batch file.

@ECHO OFF
REM Replace PROJ with the actual project name

IF “%1”==”16" GOTO USE
IF “%1”==”32" GOTO USE

ECHO Directions for use: SAVE 16 or SAVE 32
GOTO END

:USE

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming144

ECHO Are you sure you are saving the correct version?
ECHO Press CTRL-C to abort this procedure
PAUSE
COPY PROJ.MAK PROJ.M%1

:END

Using these two batch files to support 16-bit and 32-bit project makefiles gives you the
flexibility of using either development environment with the same source code.

CAUTION

16-bit Visual C++ users: The WINVER.H header file shipped with Visual C++
1.1 32-bit edition is named VER.H in Visual C++ 1.5. This header file is for the
support of version information and is included in the RC2 file created by
AppWizard. One possible solution would be to use an ifdef in the RC2 file, as
in

#ifdef _WIN32

#include “winver.h”

#else

#include “ver.h”

#endif

Apparently, though, the Visual C++ resource compiler doesn’t interpret pre-
processor directives as you might expect when they appear in an RC2 file. The
solution I use is to copy VER.H to WINVER.H in the 16-bit Visual C++’s
include directory (that is, C:\MSVC\INCLUDE).

The sample programs in this book rely on WINVER.H’s existence. If you don’t
copy VER.H to WINVER.H, you’ll receive a compile error about not finding
WINVER.H.

Reference the Microsoft Knowledgebase article Q103719 dated January 20,
1994, for more details on migrating 16-bit makefiles to 32-bit.

Listing 8.2. continued

 Chapter 8 ■ Sample Applications 145

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

WinSock TCP/IP Stack Information
This program, WSINFO, allows you to view the details of the WinSock TCP/IP stack
that the computer is running. It uses the following WinSock functions: WSAStartup(),
WSACleanup(), and WSAGetLastError(). This program is generated using Visual C++’s
AppWizard feature, which creates a skeleton application from which to build upon. This
book isn’t geared toward the beginning Visual C++ programmer, so only the first sample
program is worked through step by step.

The first step in producing this program is to use AppWizard to generate a skeletal ap-
plication. This application uses the Single Document Interface rather than the Mul-
tiple Document Interface. There’s no need for any special features such as a toolbar,
printing and print preview, context-sensitive help, or Object Linking and Embedding.
This application is very simple in comparison to most. Use WSINFO as the project
name.

After AppWizard has finished its magic, edit WSINFO.H. This file contains the class
declaration for the application class CWsinfoApp. Add the following publicly accessible
member variables to the class:

WSADATA m_wsaData; // WinSock information
BOOL m_bWinSockOK; // TRUE if WinSock startup succeeded
int m_nWinSockError; // WinSock error code

m_wsaData contains the WinSock information returned by WSAStartup(). m_bWinSockOK
is TRUE if WinSock startup succeeded; it’s FALSE otherwise. m_nWinSockError con-
tains the error code if WinSock startup failed. The WSINFO.H file is also a good place
to include the WINSOCK.H header file because WSINFO.H is included in the other
source files of the project. Add the ExitInstance() function to the class. This function
is called when the application exits, allowing us a good opportunity to shutdown
WinSock.

At this point, the CWsinfoApp class looks like the following:

class CWsinfoApp : public CWinApp
{
public:
 WSADATA m_wsaData; // WinSock information
 BOOL m_bWinSockOK; // TRUE if WinSock startup succeeded
 int m_nWinSockError; // WinSock error code

public:
 CWsinfoApp();

// Overrides
 virtual BOOL InitInstance();
 virtual int ExitInstance();

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming146

// Implementation

 //{{AFX_MSG(CWsinfoApp)
 afx_msg void OnAppAbout();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Edit the WSINFO.CPP file to modify the InitInstance() and ExitInstance()
CWsinfoApp class member functions. In InitInstance(), WSAStartup() is called. When
modifications to InitInstance() are completed, it looks like the following:

BOOL CWsinfoApp::InitInstance()
{
 // WinSock startup
 // If WSAStartup() is successful, we still
 // need to check the version numbers.

 WORD wVersionRequired = MAKEWORD(1, 1); // WinSock 1.1 required
 m_bWinSockOK = FALSE; // not OK
 m_nWinSockError = 0; // no WinSock error
 if (WSAStartup(wVersionRequired, &m_wsaData) == 0)
 {
 if (wVersionRequired == m_wsaData.wVersion)
 m_bWinSockOK = TRUE;
 else
 WSACleanup();
 }
 else
 m_nWinSockError = WSAGetLastError();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

 SetDialogBkColor(); // set dialog background color to gray
 LoadStdProfileSettings(); // Load standard INI file options (including MRU)

 // Register the application’s document templates. Document templates
 // serve as the connection between documents, frame windows and views.

 AddDocTemplate(new CSingleDocTemplate(IDR_MAINFRAME,
 RUNTIME_CLASS(CWsinfoDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CWsinfoView)));

 // create a new (empty) document
 OnFileNew();

 if (m_lpCmdLine[0] != ‘\0’)
 {
 // TODO: add command line processing here
 }

 return TRUE;
}

 Chapter 8 ■ Sample Applications 147

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

In ExitInstance(), WSACleanup() is called. When modifications to ExitInstance() are
completed, it looks like the following:

int CWsinfoApp::ExitInstance()
{
 // WinSock cleanup
 // If WinSock was started successfully, it must be shutdown.

 if (m_bWinSockOK)
 WSACleanup();

 // call the base class’ member function

 return CWinApp::ExitInstance();
}

Note that the base class’s ExitInstance() function is called to allow for the default pro-
cessing of this event.

Now use App Studio to create a dialog box resource. This dialog box is used to display
the information contained in the WSADATA structure that’s defined in the application’s
class. Give the dialog box a caption of “WinSock Information” and an ID of
IDD_DIALOG_WINSOCK_INFO. By default, App Studio includes an OK and
Cancel button in a dialog; remove the Cancel button because this dialog box is for in-
formational purposes only and its return value is simply ignored. To display the data
stored in the WSADATA structure, we need several fields. This example uses EDIT con-
trols to display this information. Each EDIT control is preceded by a STATIC text
control, which acts as a label. Create five EDIT controls aligned vertically with the fol-
lowing names: IDC_EDIT_VERSION, IDC_EDIT_DESCRIPTION, IDC_EDIT_STATUS,
IDC_EDIT_MAXIMUM_SOCKETS, and IDC_EDIT_MAXIMUM_DATAGRAM_SIZE.

From within App Studio and with the “WinSock Information” dialog box selected, run
ClassWizard to create a class associated with this dialog resource. Name the class
CWinSockInfoDlg with a base class of CDialog. Change the name of the source files that
ClassWizard creates for this class to INFODLG.CPP and INFODLG.H.

After the class is created, use ClassWizard to create a function to handle the dialog box
initialization phase. With the CWinSockInfoDlg class name selected, select
CWinSockInfoDlg under ClassWizard’s Object ID list. When you do this, a whole bunch
of stuff will fill the Messages section of the ClassWizard window. These are the Win-
dows messages that may be sent to the CWinSockInfoDlg class. Scroll down to the
WM_INITDIALOG message and then click on the Add Function button. ClassWizard auto-
matically generates a stub function calledOnInitDialog().

Exit App Studio and edit the INFODLG.CPP file. Add code to populate the fields of
the dialog box with the information stored in the WSADATA structure. The WSADATA struc-
ture is a public member variable of the CWsinfoApp class, so you can access it from the

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming148

CWinSockInfoDlg class by getting a pointer to the application object. The AfxGetApp()
function is used for this purpose. The OnInitDialog() function should look like this
when you’re done:

BOOL CWinSockInfoDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // initialize the fields of the dialog box

 CWsinfoApp *pApp = (CWsinfoApp *)AfxGetApp(); // pointer to app
 LPWSADATA pWsaData = &(pApp->m_wsaData); // pointer to app’s WinSock info
 char pszMsg[100]; // buffer to use for formatting

 wsprintf(pszMsg, “%d.%d”,
 (int)(HIBYTE(pWsaData->wVersion)), (int)(LOBYTE(pWsaData->wVersion)));
 SetDlgItemText(IDC_EDIT_VERSION, pszMsg);
 SetDlgItemText(IDC_EDIT_DESCRIPTION, pWsaData->szDescription);
 SetDlgItemText(IDC_EDIT_STATUS, pWsaData->szSystemStatus);
 wsprintf(pszMsg, “%u”, pWsaData->iMaxSockets);
 SetDlgItemText(IDC_EDIT_MAXIMUM_SOCKETS, pszMsg);
 wsprintf(pszMsg, “%u”, pWsaData->iMaxUdpDg);
 SetDlgItemText(IDC_EDIT_MAXIMUM_DATAGRAM_SIZE, pszMsg);

 return TRUE; // return TRUE unless you set the focus to a control
}

Now you have enough code to start WinSock and to populate an informational dialog
box. The only thing missing is a way to launch the dialog box. Start App Studio and
edit the menu resource. Add a menu item under the Help selection with a caption of
“WinSock Information” and an ID of ID_WINSOCK_INFO. Run the ClassWizard to gen-
erate a function for the ID_WINSOCK_INFO message. Select CWsinfoApp for the class name,
and then scroll through the object IDs until you reach ID_WINSOCK_INFO. In the mes-
sage section, select COMMAND and then click the Add Function button. Use
OnWinsockInfo as the function name to handle this menu item being selected. The code
for the OnWinsockInfo member function looks like the following:

void CWsinfoApp::OnWinsockInfo()
{
 // If WinSock startup was successful, display an informational
 // dialog box; otherwise, display an error message

 if (m_bWinSockOK)
 {
 CWinSockInfoDlg dlg;
 dlg.DoModal();
 }
 else
 {
 char pszError[100];
 if (m_nWinSockError)
 wsprintf(pszError, “WinSock startup failed with error %d”,
 m_nWinSockError);
 else

 Chapter 8 ■ Sample Applications 149

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 lstrcpy(pszError, “WinSock does not meet version requirements”);

 AfxMessageBox(pszError);
 }
}

The only thing remaining before compiling and running the program is to change the
linker options so that WINSOCK.LIB or WSOCK32.LIB is linked in for the 16-bit or
32-bit version, respectively.

Figure 8.1 shows the WinSock Information menu item about to be selected. Figure 8.2
shows the result running on Windows NT using the WinSock TCP/IP stack supplied
by Microsoft.

FIGURE 8.1.
About to select
WinSock Information
from Help menu.

FIGURE 8.2.
WinSock Information
for the Windows NT
TCP/IP Stack.

You may want to use the CWinSockInfoDlg class in applications you develop. It can be
very useful as a debugging aid.

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming150

WinSock Database Test Application
This program, DBTST, allows you to execute WinSock database lookups for hosts and
services. It uses the following WinSock functions: WSAStartup(), WSACleanup(),
WSAGetLastError(), WSACancelAsyncRequest(), WSAAsyncGetHostByName(),
WSAAsyncGetHostByAddr() , gethostbyname() , gethostbyaddr() ,
WSAAsyncGetServByName(), WSAAsyncGetServByPort(), getservbybname() ,
getservbyport(), and ntohs(). This program is created from scratch without the benefit
of AppWizard. Visual C++ project files are utilized.

Extra steps must be taken when creating programs from scratch, as opposed to letting
AppWizard do the grunt work. The benefit of creating a program from scratch is that
you don’t have to deal with possibly unneeded features such as documents and views.
This approach is closer to doing things the old SDK way, but it still benefits from the
Microsoft Foundation Classes.

The first source files to look at are STDAFX.H and STDAFX.CPP. These files support
the precompiled header feature. By including STDAFX.H in each implementation file
(that is, *.CPP), there’s no need to include the mandatory Windows and MFC header
files in each. STDAFX.H and STDAFX.CPP are shown in Listings 8.3 and 8.4, respec-
tively. You must configure the compiler’s precompiled header compiler option to use
this feature.

Listing 8.3. STDAFX.H for DBTST.

#include <afxwin.h>
#include <winsock.h>

Listing 8.4. STDAFX.CPP for DBTST.

#include “stdafx.h”

The next files of interest implement the application object CTheApp. CTheApp is derived
from the MFC class CWinApp. The class declaration is in DBTST.H, shown in Listing
8.5. The class is implemented in DBTST.CPP and is shown in Listing 8.6. Note that
the WinSock startup isn’t as robust as in the WSINFO example; there are no error
messages displayed on error, for example. Instead, the application simply exits immedi-
ately if WinSock can’t be initialized.

 Chapter 8 ■ Sample Applications 151

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Listing 8.5. DBTST.H for DBTST.

#ifndef __DBTST_H__
#define __DBTST_H__

#include “resource.h”

///
// CTheApp class declaration
//
class CTheApp : public CWinApp
{
private:
 WSADATA m_WsaData; // WinSock data structure

public:
 BOOL InitInstance();
 int ExitInstance();
};

#endif // __DBTST_H

Listing 8.6. DBTST.CPP for DBTST.

///
// CTheApp implementation file
//

#include “stdafx.h”
#include “dbtst.h”
#include “mainwnd.h”

///
// Creating a CTheApp object starts the application running
//
CTheApp NEAR TheApp;

///
// CTheApp::InitInstance
//
// When the CTheApp object is created, this member function is
// automatically called. WinSock is initiated here. The main window
// of the application is created and shown here.
//
BOOL CTheApp::InitInstance()
{
 if (WSAStartup(MAKEWORD(1, 1), &m_WsaData) != 0)
 return FALSE;

 m_pMainWnd = new CMainWindow();
 m_pMainWnd->ShowWindow(m_nCmdShow);
 m_pMainWnd->UpdateWindow();

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming152

 return TRUE;
}

///
// CTheApp::ExitInstance
//
// When the application is closed, shutdown WinSock.
//
int CTheApp::ExitInstance()
{
 WSACleanup();

 return CWinApp::ExitInstance();
}

This application can look up either host or service information. To support this, two
dialog boxes are used. The host dialog box is implemented in the CHostDlg class. This
class is created using App Studio and ClassWizard. The class declaration file (HOST.H)
is shown in Listing 8.7. Listing 8.8 shows the class implementation file (HOST.CPP).
CHostDlg has as a public member variable a CString object named m_stringHost. This
variable contains the string the user enters into the dialog box’s single EDIT control.
The dialog box has three buttons: Asynchronous, Blocking, and Cancel. If the user presses
the Asynchronous button, IDC_BUTTON_ASYNC is returned to the caller, signal-
ing that the user wants the database lookup to be carried out asynchronously. Likewise,
IDC_BUTTON_BLOCKING is returned when the Blocking button is pressed. Press-
ing Cancel aborts the lookup.

Listing 8.7. HOST.H for DBTST.

///
// CHostDlg dialog
//
class CHostDlg : public CDialog
{
// Construction
public:
 CHostDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CHostDlg)
 enum { IDD = IDD_HOST };
 CString m_stringHost;
 //}}AFX_DATA

// Implementation
protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

Listing 8.6. continued

 Chapter 8 ■ Sample Applications 153

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 // Generated message map functions
 //{{AFX_MSG(CHostDlg)
 afx_msg void OnClickedButtonAsync();
 afx_msg void OnClickedButtonBlocking();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Listing 8.8. HOST.CPP for DBTST.

// host.cpp : implementation file
//

#include “stdafx.h”
#include “dbtst.h”
#include “host.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CHostDlg dialog

CHostDlg::CHostDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CHostDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CHostDlg)
 m_stringHost = “”;
 //}}AFX_DATA_INIT
}

void CHostDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CHostDlg)
 DDX_Text(pDX, IDC_EDIT_HOST, m_stringHost);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CHostDlg, CDialog)
 //{{AFX_MSG_MAP(CHostDlg)
 ON_BN_CLICKED(IDC_BUTTON_ASYNC, OnClickedButtonAsync)
 ON_BN_CLICKED(IDC_BUTTON_BLOCKING, OnClickedButtonBlocking)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CHostDlg message handlers

void CHostDlg::OnClickedButtonAsync()
{
 UpdateData(TRUE);

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming154

 EndDialog(IDC_BUTTON_ASYNC);
}

void CHostDlg::OnClickedButtonBlocking()
{
 UpdateData(TRUE);
 EndDialog(IDC_BUTTON_BLOCKING);
}

The dialog box to prompt for which service to look up is implemented as the CServiceDlg
class. The source code for this dialog box is in the SERVICE.H and SERVICE.CPP
files shown in Listings 8.9 and 8.10, respectively. The code follows a similar format as
the CHostDlg class except that there are two data entry fields in the services dialog: ser-
vice and protocol.

Listing 8.9. SERVICE.H for DBTST.

///
// CServiceDlg dialog
//
class CServiceDlg : public CDialog
{
// Construction
public:
 CServiceDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CServiceDlg)
 enum { IDD = IDD_SERVICE };
 CString m_stringService;
 CString m_stringProtocol;
 //}}AFX_DATA

// Implementation
protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 // Generated message map functions
 //{{AFX_MSG(CServiceDlg)
 afx_msg void OnClickedButtonAsync();
 afx_msg void OnClickedButtonBlocking();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Listing 8.8. continued

 Chapter 8 ■ Sample Applications 155

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Listing 8.10. SERVICE.CPP for DBTST.

// service.cpp : implementation file
//

#include “stdafx.h”
#include “dbtst.h”
#include “service.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CServiceDlg dialog

CServiceDlg::CServiceDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CServiceDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CServiceDlg)
 m_stringService = “”;
 m_stringProtocol = “”;
 //}}AFX_DATA_INIT
}

void CServiceDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CServiceDlg)
 DDX_Text(pDX, IDC_EDIT_SERVICE, m_stringService);
 DDX_Text(pDX, IDC_EDIT_PROTOCOL, m_stringProtocol);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CServiceDlg, CDialog)
 //{{AFX_MSG_MAP(CServiceDlg)
 ON_BN_CLICKED(IDC_BUTTON_ASYNC, OnClickedButtonAsync)
 ON_BN_CLICKED(IDC_BUTTON_BLOCKING, OnClickedButtonBlocking)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CServiceDlg message handlers

void CServiceDlg::OnClickedButtonAsync()
{
 UpdateData(TRUE);
 EndDialog(IDC_BUTTON_ASYNC);
}

void CServiceDlg::OnClickedButtonBlocking()
{
 UpdateData(TRUE);
 EndDialog(IDC_BUTTON_BLOCKING);
}

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming156

The class that does most of the work in this sample program is CMainWindow, derived
from the MFC class CFrameWnd. It’s this class that actually creates the window, provides
the menu, and calls the WinSock database functions. Its header file is shown in Listing
8.11. Several private member variables are used to support database lookup.

Listing 8.11. MAINWND.H for DBTST.

#ifndef __MAINWND_H__
#define __MAINWND_H__

#define USER_INPUT_BUF_LEN (100)

///
// CMainWindow class declaration
//
class CMainWindow : public CFrameWnd
{
private:
 // variables to support host lookup
 HANDLE m_hAsyncHost; // async request handle
 char m_achHostEnt[MAXGETHOSTSTRUCT]; // hostent buffer for async call
 char m_lpszHost[USER_INPUT_BUF_LEN]; // host name or IP address
 PHOSTENT m_pHostEnt; // pointer to host entry structure
 IN_ADDR m_in; // Internet address structure
 u_long m_ulIPAddress; // Internet address

 // variables to support service lookup
 HANDLE m_hAsyncService; // async request handle
 char m_achServEnt[MAXGETHOSTSTRUCT]; // servent buffer for async call
 char m_lpszService[USER_INPUT_BUF_LEN]; // service name or port number
 char m_lpszProtocol[USER_INPUT_BUF_LEN]; // transport protocol
 PSERVENT m_pServEnt; // pointer to service entry structure
 short m_nPort; // port number

public:
 CMainWindow();

 //{{AFX_MSG(CMainWindow)
 afx_msg void OnHost();
 afx_msg LONG OnAsyncHost(WPARAM wParam, LPARAM lParam);
 afx_msg void OnCancelHost();
 afx_msg void OnService();
 afx_msg LONG OnAsyncService(WPARAM wParam, LPARAM lParam);
 afx_msg void OnCancelService();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
// User defined messages used in CMainWindow’s message map
//
#define WM_USER_ASYNC_HOST_LOOKUP (WM_USER + 1)
#define WM_USER_ASYNC_SERVICE_LOOKUP (WM_USER + 2)

#endif // __MAINWND_H__

 Chapter 8 ■ Sample Applications 157

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

The CMainWindow class is implemented in the MAINWND.CPP file shown in Listing
8.12. The CMainWindow object is created by CTheApp. The constructor for this class cre-
ates a window, loads a keyboard accelerator, and initializes the asynchronous database
call handles.

When the user selects Host Lookup from the Test menu, the OnHost() member func-
tion is called due to MFC’s message-mapping facility. A dialog box is presented (CHostDlg)
to prompt for a host name or dotted-decimal IP address. inet_addr() is called to see
whether what the user entered is a host name or an IP address. Next, OnHost() checks
to see whether the user wants to do a blocking or nonblocking lookup. If a blocking
lookup is selected, gethostbyname() or gethostbyaddr() is called, depending on the re-
sults of the inet_addr() call discussed earlier. Note that while this lookup is taking place,
the application’s menu is inaccessible. If a nonblocking lookup is selected,
WSAGetHostByName() or WSAGetHostByAddr() is called, telling WinSock to notify the
CMainWindow object’s window handle with a WM_USER_ASYNC_HOST_LOOKUP message. While
the nonblocking lookup is taking place, the program remains fully responsive to the
user’s input. If the user wishes to cancel the lookup before it returns, Cancel Host Lookup
is chosen from the Test menu, or the keyboard accelerator Ctrl-H is used. If the lookup
is allowed to complete, the OnAsyncHost() member function is called automatically as
the result of the WM_USER_ASYNC_HOST_LOOKUP message being posted by WinSock.

The service lookup is done in a similar manner as the host lookup.

Listing 8.12. MAINWND.CPP for DBTST.

#include “stdafx.h”
#include “dbtst.h”
#include “mainwnd.h”
#include “host.h”
#include “service.h”

///
// CMainWindow message map
//
BEGIN_MESSAGE_MAP(CMainWindow, CFrameWnd)
 //{{AFX_MSG_MAP(CMainWindow)
 ON_COMMAND(IDM_HOST, OnHost)
 ON_MESSAGE(WM_USER_ASYNC_HOST_LOOKUP, OnAsyncHost)
 ON_COMMAND(IDM_CANCEL_HOST, OnCancelHost)
 ON_COMMAND(IDM_SERVICE, OnService)
 ON_MESSAGE(WM_USER_ASYNC_SERVICE_LOOKUP, OnAsyncService)
 ON_COMMAND(IDM_CANCEL_SERVICE, OnCancelService)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainWindow::CMainWindow constructor

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming158

//
// Create the window with the appropriate style, size, menu, etc.
//
CMainWindow::CMainWindow()
{
 LoadAccelTable(“MainAccelTable”);

 Create(NULL, “WinSock Database Test Application”,
 WS_OVERLAPPEDWINDOW, rectDefault, NULL, “MainMenu”);

 // initialize the asynchronous request handles so we
 // know if there is any outstanding request
 m_hAsyncHost = m_hAsyncService = 0;
}

///
// CMainWindow::OnHost
//
// Called when the Test | Host Lookup menu item is selected.
//
void CMainWindow::OnHost()
{
 char lpszMessage[100]; // informational message

 // prompt the user for host information
 CHostDlg dlg;
 int nStatus = dlg.DoModal();
 if (nStatus != IDCANCEL)
 {
 // copy the host information the user entered into a member variable
 if (dlg.m_stringHost.GetLength() < USER_INPUT_BUF_LEN)
 lstrcpy(m_lpszHost, dlg.m_stringHost);
 else
 {
 MessageBox(“Host name or IP address was too long”, “Host Lookup”);
 return;
 }

 // see if the user entered a dotted-decimal IP address
 m_ulIPAddress = inet_addr(m_lpszHost);

 if (nStatus == IDC_BUTTON_ASYNC)
 {
 // do an asynchronous host lookup

 if (m_hAsyncHost != 0)
 MessageBox(“Asynchronous host lookup already in progress”, “Host Lookup”);
 else
 {
 if (m_ulIPAddress == INADDR_NONE)
 m_hAsyncHost = WSAAsyncGetHostByName(m_hWnd, WM_USER_ASYNC_HOST_LOOKUP,
 m_lpszHost, m_achHostEnt, MAXGETHOSTSTRUCT);
 else
 m_hAsyncHost = WSAAsyncGetHostByAddr(m_hWnd, WM_USER_ASYNC_HOST_LOOKUP,
 (char *)&m_ulIPAddress, 4, PF_INET, m_achHostEnt, MAXGETHOSTSTRUCT);

Listing 8.12. continued

 Chapter 8 ■ Sample Applications 159

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 if (m_hAsyncHost == 0)
 {
 wsprintf(lpszMessage, “Host lookup failed (WinSock error %d)”,
 WSAGetLastError());

 MessageBox(lpszMessage, “Host Lookup”);
 }
 }
 }
 else
 {
 // do a blocking host lookup

 if (m_ulIPAddress == INADDR_NONE)
 m_pHostEnt = gethostbyname(m_lpszHost);
 else
 m_pHostEnt = gethostbyaddr((char *)&m_ulIPAddress, 4, PF_INET);

 if (m_pHostEnt == NULL)
 wsprintf(lpszMessage, “Host lookup failed (WinSock error %d)”,
 WSAGetLastError());
 else
 {
 // copy the four byte IP address into an Internet address structure
 memcpy(&m_in, m_pHostEnt->h_addr, 4);

 // format the results, converting the IP address into a string
 wsprintf(lpszMessage, “Host %s has IP address %s”,
 m_pHostEnt->h_name, inet_ntoa(m_in));
 }

 MessageBox(lpszMessage, “Host Lookup”);
 }
 }
}

///
// CMainWindow::OnAsyncHost
//
// Called when the asynchronous lookup is done.
//
LONG CMainWindow::OnAsyncHost(WPARAM wParam, LPARAM lParam)
{
 char lpszMessage[100]; // informational message

 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 wsprintf(lpszMessage,
 “Host lookup failed (WinSock error %d)”,
 WSAGETASYNCERROR(lParam));
 else
 {
 // assign a hostent host entry pointer to the buffer
 m_pHostEnt = (PHOSTENT)m_achHostEnt;

 // copy the four byte IP address into an Internet address structure
 memcpy(&m_in, m_pHostEnt->h_addr, 4);

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming160

 // format the results, converting the IP address into a string
 wsprintf(lpszMessage, “Host %s has IP address %s”,
 m_pHostEnt->h_name, inet_ntoa(m_in));
 }

 m_hAsyncHost = 0;
 MessageBox(lpszMessage, “Host Lookup”);

 return 0L;
}

///
// CMainWindow::OnCancelHost
//
// Called when the Test | Cancel Host Lookup menu item is selected.
//
void CMainWindow::OnCancelHost()
{
 char lpszMessage[100]; // informational message

 // see if there is an outstanding asynchronous request
 if (m_hAsyncHost == 0)
 lstrcpy(lpszMessage, “No asynchronous host lookup in progress”);
 else
 {
 // cancel the asynchronouos request

 if (WSACancelAsyncRequest(m_hAsyncHost) != 0)
 wsprintf(lpszMessage, “Cancel asynchronous host lookup failed (WinSock error
%d)”,
 WSAGetLastError());
 else
 lstrcpy(lpszMessage, “Asynchronous host lookup canceled”);

 m_hAsyncHost = 0;
 }

 MessageBox(lpszMessage, “Host Lookup”);
}

///
// CMainWindow::OnService
//
// Called when the Test | Service Lookup menu item is selected.
//
void CMainWindow::OnService()
{
 char lpszMessage[100]; // informational message

 // prompt the user for service information
 CServiceDlg dlg;
 int nStatus = dlg.DoModal();
 if (nStatus == IDCANCEL)
 return;

Listing 8.12. continued

 Chapter 8 ■ Sample Applications 161

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 // copy the service name or port number if its format is legal
 int nServiceLen = dlg.m_stringService.GetLength();
 if ((nServiceLen > USER_INPUT_BUF_LEN) || (nServiceLen == 0))
 {
 MessageBox(“Service name or port number is either too long or unspecified”,
“Service Lookup”);
 return;
 }
 lstrcpy(m_lpszService, dlg.m_stringService);

 // see if the user entered a port number
 m_nPort = atoi(m_lpszService);
 m_nPort = htons(m_nPort);

 // copy the transport protocol
 static char *lpszProtocol;
 int nProtocolLen = dlg.m_stringProtocol.GetLength();
 if (nProtocolLen > USER_INPUT_BUF_LEN)
 {
 MessageBox(“Protocol name is too long”, “Service Lookup”);
 return;
 }
 if (nProtocolLen > 0)
 {
 lstrcpy(m_lpszProtocol, dlg.m_stringProtocol);
 lpszProtocol = m_lpszProtocol;
 }
 else
 lpszProtocol = NULL; // protocol wasn’t specifiy so NULL gets passed

 if (nStatus == IDC_BUTTON_ASYNC)
 {
 // do an asynchronous service lookup

 if (m_hAsyncService != 0)
 MessageBox(“Asynchronous service lookup already in progress”, “Service Lookup”);
 else
 {
 if (m_nPort == 0)
 m_hAsyncService = WSAAsyncGetServByName(m_hWnd, WM_USER_ASYNC_SERVICE_LOOKUP,
 m_lpszService, lpszProtocol, m_achServEnt, MAXGETHOSTSTRUCT);
 else
 m_hAsyncService = WSAAsyncGetServByPort(m_hWnd, WM_USER_ASYNC_SERVICE_LOOKUP,
 m_nPort, lpszProtocol, m_achHostEnt, MAXGETHOSTSTRUCT);

 if (m_hAsyncService == 0)
 {
 wsprintf(lpszMessage, “Service lookup failed (WinSock error %d)”,
 WSAGetLastError());

 MessageBox(lpszMessage, “Service Lookup”);
 }
 }
 }
 else
 {
 // do a blocking service lookup

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming162

 if (m_nPort == 0)
 m_pServEnt = getservbyname(m_lpszService, lpszProtocol);
 else
 m_pServEnt = getservbyport(m_nPort, lpszProtocol);

 if (m_pServEnt == NULL)
 wsprintf(lpszMessage, “Service lookup failed (WinSock error %d)”,
 WSAGetLastError());
 else
 // format the results, converting the port to host byte order
 wsprintf(lpszMessage, “%s service using protocol %s has port %d”,
 m_pServEnt->s_name, m_pServEnt->s_proto, ntohs(m_pServEnt->s_port));

 MessageBox(lpszMessage, “Service Lookup”);
 }
}

///
// CMainWindow::OnAsyncService
//
// Called when the asynchronous lookup is done.
//
LONG CMainWindow::OnAsyncService(WPARAM wParam, LPARAM lParam)
{
 char lpszMessage[100]; // informational message

 // check for an error
 if (WSAGETASYNCERROR(lParam) != 0)
 wsprintf(lpszMessage,
 “Service lookup failed (WinSock error %d)”,
 WSAGETASYNCERROR(lParam));
 else
 {
 // assign a servent host entry pointer to the buffer
 m_pServEnt = (PSERVENT)m_achServEnt;

 // format the results, converting the port to host byte order
 wsprintf(lpszMessage, “%s service using protocol %s has port %d”,
 m_pServEnt->s_name, m_pServEnt->s_proto, ntohs(m_pServEnt->s_port));
 }

 m_hAsyncService = 0;
 MessageBox(lpszMessage, “Service Lookup”);

 return 0L;
}

///
// CMainWindow::OnCancelService
//
// Called when the Test | Cancel Service Lookup menu item is selected.
//
void CMainWindow::OnCancelService()
{
 char lpszMessage[100]; // informational message

Listing 8.12. continued

 Chapter 8 ■ Sample Applications 163

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 // see if there is an outstanding asynchronous request
 if (m_hAsyncService == 0)
 lstrcpy(lpszMessage, “No asynchronous service lookup in progress”);
 else
 {
 // cancel the asynchronouos request

 if (WSACancelAsyncRequest(m_hAsyncService) != 0)
 wsprintf(lpszMessage, “Cancel asynchronous service lookup failed (WinSock error
%d)”,
 WSAGetLastError());
 else
 lstrcpy(lpszMessage, “Asynchronous service lookup canceled”);

 m_hAsyncService = 0;
 }

 MessageBox(lpszMessage, “Service Lookup”);
}

An example execution of DBTST is shown in Figures 8.3 through 8.7. Figure 8.3 shows
the menu of the DBTST application. Figure 8.4 shows entering host information, and
Figure 8.5 shows the outcome of the host lookup. Figure 8.6 shows entering service
information, and Figure 8.7 shows the results of the service lookup. You may want to
keep this application close by, as it comes in very handy when you need to quickly know
a host’s IP address.

FIGURE 8.3.
DBTST menu items.

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming164

FIGURE 8.4.
Entering host lookup
information.

FIGURE 8.5.
Results of host lookup.

FIGURE 8.6.
Entering service lookup
information.

 Chapter 8 ■ Sample Applications 165

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Datagram Echo Client and Server
These programs, DESERV and DECLIENT, demonstrate the use of nonblocking
datagram sockets. They use the following WinSock functions: WSAStartup(),
WSACleanup(), WSAGetLastError(), socket(), closesocket(), bind(), WSAAsyncSelect(),
sendto(), recvfrom(), getsockname(), ntohs(), and inet_ntoa(). The DESERV server
application receives data and sends it back to the client. The DECLIENT client appli-
cation sends data to the server and receives the echoed reply.

Datagram Echo Server DESERV
These programs are generated using Visual C++’s AppWizard feature. The
WINSOCK.H header file is included in the STDAFX.H precompiled header file, as
shown in Listing 8.13. STDAFX.H is included by the source modules of the project, so
WinSock functions and structures are always available.

Listing 8.13. STDAFX.H for DESERV.

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <winsock.h> // Windows Sockets

FIGURE 8.7.
Results of service
lookup.

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming166

Like the WSINFO example, DESERV uses the application object to start and stop
WinSock in CDeservApp::InitInstance() and CDeservApp::ExitInstance(), respec-
tively.

DESERV uses the Single Document Interface of window management. AppWizard
creates a default view class derived from the MFC class CView, but this class isn’t used
by the application. Instead, a CFormView derived object is used. Using a CFormView means
first using App Studio to create a dialog box resource. A dialog box is created that has a
static text label and a list box that’s used for status messages. Generally speaking, a dia-
log box resource is created and ClassWizard is used to create a class derived from CDialog.
Because you want this dialog box resource to be the program’s main interface,
ClassWizard is used to create a class derived from CFormView. But first, the dialog box
resource must have its flags set appropriately. Specifically, the style is child, the border
is none, the visible flag is unchecked, and the Caption is left blank. Figure 8.8 shows
the style portion of the dialog properties for the dialog box resource used as DESERV’s
main window.

FIGURE 8.8.
Style properties for
DESERV’s main
window dialog
resource.

A change is made to the application object CDeservApp so that it uses this view rather
than the default view generated by AppWizard. The default implementation of
CDeservApp::InitInstance() has a call to AddDocTemplate() that looks like the
following:

AddDocTemplate(new CSingleDocTemplate(IDR_MAINFRAME,
 RUNTIME_CLASS(CDeservDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CDeservView)));

It needs to look as follows:

AddDocTemplate(new CSingleDocTemplate(IDR_MAINFRAME,
 RUNTIME_CLASS(CDeservDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CMainView)));

The CFormView derived object is named CMainView and its header file is shown in List-
ing 8.14. Notice the member variables m_s and m_addr, and the function OnAsyncSelect().
OnAsyncSelect() is added to the class by hand because ClassWizard doesn’t support
user-defined messages.

 Chapter 8 ■ Sample Applications 167

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Listing 8.14. MAINVIEW.H for DESERV.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

public:
 SOCKET m_s; // socket to receive from
 SOCKADDR_IN m_addr; // address of socket

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnAsyncSelect(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_ASYNC_SELECT (WM_USER + 1)

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming168

The implementation of the CMainView object is shown in Listing 8.15. This object per-
forms most of the work for the DESERV application. CMainView::OnInitialUpdate()
is called soon after the object is created. This function is responsible for creating a socket,
binding it to a name (with the port assigned by WinSock), and waiting for data to
arrive. When data is ready to be received or data can be sent, the
CMainView::OnAsyncSelect() member function is called due to the message mapping
of the user-defined message WM_USER_ASYNC_SELECT.

Listing 8.15. MAINVIEW.CPP for DESERV.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “deserv.h”
#include “mainview.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 m_s = INVALID_SOCKET; // initialize socket to invalid handle

 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
}

CMainView::~CMainView()
{
 // if the socket was opened successfully, close it

 if (m_s != INVALID_SOCKET)
 {
 closesocket(m_s);
 m_s = INVALID_SOCKET;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP

 Chapter 8 ■ Sample Applications 169

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

}

void CMainView::OnInitialUpdate()
{
 char pszMessage[100]; // informational message

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // create the socket and prepare it
 // for receiving data

 plb->InsertString(0, “Initializing...”);

 m_s = socket(AF_INET, SOCK_DGRAM, 0);
 if (m_s == INVALID_SOCKET)
 plb->InsertString(0, “Datagram echo server could not create socket”);
 else
 {
 // bind the socket, allowing WinSock to assign the service port

 m_addr.sin_family = AF_INET; // Internet address family
 m_addr.sin_port = 0; // let WinSock assign a port
 m_addr.sin_addr.s_addr = htonl(INADDR_ANY); // any network interface

 if (bind(m_s, (LPSOCKADDR)&m_addr, sizeof(m_addr)) == SOCKET_ERROR)
 plb->InsertString(0, “Datagram echo server could not bind socket”);
 else
 {
 // find out the port number WinSock assigned

 SOCKADDR_IN addr;
 int nAddrLen = sizeof(addr);

 if (getsockname(m_s, (LPSOCKADDR)&addr, &nAddrLen) == SOCKET_ERROR)
 plb->InsertString(0, “Datagram echo server could not get socket’s port”);
 else
 {
 wsprintf(pszMessage, “Datagram echo server using port %d”,
 ntohs(addr.sin_port));
 plb->InsertString(0, pszMessage);

 // do the asynchronous select to wait for data

 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER_ASYNC_SELECT,
 FD_READ | FD_WRITE) == SOCKET_ERROR)
 plb->InsertString(0, “Datagram echo server could not do async select”);
 }
 }
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_ASYNC_SELECT, OnAsyncSelect)
 //}}AFX_MSG_MAP

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming170

END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnAsyncSelect()
//
// Receives data from a client and echoes the data back to the sending client.
// While there is data yet to be sent back to the sending client, the server
// will not receive any more data. (a single data buffer is used for
// incoming and outgoing data)
//
LONG CMainView::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 char pszMessage[100]; // informational message
 static char pBuf[101]; // send/recv buffer
 int nBytesRecv; // number of bytes received
 int nBytesSent; // number of bytes sent
 static int nBytesToSend = 0; // number of bytes to send
 int nError; // WinSock error
 static SOCKADDR_IN addrFrom; // address of client
 static int nAddrFromLen = sizeof(addrFrom); // length of client address struct
 static IN_ADDR inFrom; // IP address of client

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 {
 wsprintf(pszMessage, “Datagrem echo server async select got error %d”,
 WSAGETSELECTERROR(lParam));
 plb->InsertString(0, pszMessage);
 return 0L;
 }

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_WRITE:
 // echo the data back to the client

 plb->InsertString(0, “FD_WRITE”);

 // are there bytes to send?
 if (nBytesToSend != 0)
 {
 // send the data
 nBytesSent = sendto(m_s, pBuf, nBytesToSend, 0,
 (LPSOCKADDR)&addrFrom, nAddrFromLen);

 // check for send error
 if (nBytesSent == SOCKET_ERROR)
 {
 // if the error is just that the send would block,

Listing 8.15. continued

 Chapter 8 ■ Sample Applications 171

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 // don’t do anything...we’ll get another FD_WRITE soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d sending data to %s, %d”,
 nError, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);

 nBytesToSend = 0;

 // just in case the FD_READ was called but it didn’t read
 // because the buffer still contained data to send
 PostMessage(WM_USER_ASYNC_SELECT, m_s, WSAMAKESELECTREPLY(FD_READ, 0));
 }
 }
 else
 {
 wsprintf(pszMessage, “Data sent (%s) to %s, %d”,
 pBuf, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);
 nBytesToSend = 0;
 }
 }
 break;

 case FD_READ:
 // receive data back from a client

 plb->InsertString(0, “FD_READ”);

 // if there are still bytes waiting to be sent back (echoed)
 // to the client, don’t do anything here (the FD_WRITE handler will
 // generate FD_READ when it is through with sending)
 if (nBytesToSend == 0)
 {
 // receive data
 nBytesRecv = recvfrom(m_s, pBuf, 100, 0, (LPSOCKADDR)&addrFrom, &nAddrFromLen);

 // check for receive error
 if (nBytesRecv == SOCKET_ERROR)
 {
 // if the error is just that the receive would block,
 // don’t do anything...we’ll get another FD_READ soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d receiving data”, nError);
 plb->InsertString(0, pszMessage);
 }
 }
 else
 {
 // save sending client’s IP address
 memcpy(&inFrom, &addrFrom.sin_addr.s_addr, 4);

 nBytesToSend = nBytesRecv;

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming172

 pBuf[nBytesToSend] = ‘\0’;
 wsprintf(pszMessage, “Data received (%s) from %s, %d”,
 pBuf, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);

 // just in case the FD_WRITE was called but it didn’t have
 // any data to send at that time (it has data to send now)
 PostMessage(WM_USER_ASYNC_SELECT, m_s, WSAMAKESELECTREPLY(FD_WRITE, 0));
 }
 }
 break;

 default:
 break;
 }

 return 0L;
}

Datagram Echo Client DECLIENT
The datagram echo client, DECLIENT, follows the same basic outline as DESERV. It
also uses a CFormView object as its main interface. The primary difference lies in the
implementation of the CMainView object.

The header file for the CMainView object is shown in Listing 8.16. Its implementation is
shown in Listing 8.17. This object performs most of the work for the DECLIENT
application. CMainView::OnInitialUpdate() is called soon after the object is created.
This function is responsible for creating a socket, waiting to send and receive data, and
setting a timer to be used for sending data. When data is ready to be received or data
can be sent, the CMainView::OnAsyncSelect() member function is called due to the
message mapping of the user-defined message WM_USER_ASYNC_SELECT. The
CMainView::OnTimer() function is called every five seconds to format a string to send to
the echo server.

Listing 8.16. MAINVIEW.H for DECLIENT.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

Listing 8.15. continued

 Chapter 8 ■ Sample Applications 173

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

public:
 SOCKET m_s; // socket
 SOCKADDR_IN m_addr; // address to send to
 IN_ADDR m_in; // IP address of address to send to
 int m_nBytesToSend; // number of bytes to send
 char m_pBuf[101]; // buffer to send

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnAsyncSelect(WPARAM wParam, LPARAM lParam);
 afx_msg void OnTimer(UINT nIDEvent);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_ASYNC_SELECT (WM_USER + 1)

Listing 8.17. MAINVIEW.CPP for DECLIENT.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “declient.h”
#include “mainview.h”
#include “servdlg.h”

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming174

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 m_s = INVALID_SOCKET; // initialize socket to invalid handle

 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
}

CMainView::~CMainView()
{
 // if the socket was opened successfully, close it

 if (m_s != INVALID_SOCKET)
 {
 closesocket(m_s);
 m_s = INVALID_SOCKET;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_ASYNC_SELECT, OnAsyncSelect)
 ON_WM_TIMER()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

void CMainView::OnInitialUpdate()
{
 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // prompt for server information (IP and port)

Listing 8.17. continued

 Chapter 8 ■ Sample Applications 175

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 CServerDlg dlg;
 if (dlg.DoModal() == IDCANCEL)
 return;

 plb->InsertString(0, “Initializing...”);

 // create the socket
 m_s = socket(AF_INET, SOCK_DGRAM, 0);
 if (m_s == INVALID_SOCKET)
 plb->InsertString(0, “Datagram echo client could not create socket”);
 else
 {
 // fill out the server’s address
 m_addr.sin_family = AF_INET;
 m_addr.sin_port = htons(atoi(dlg.m_stringPort));
 m_addr.sin_addr.s_addr = inet_addr(dlg.m_stringIP);

 // save sending client’s IP address
 memcpy(&m_in, &m_addr.sin_addr.s_addr, 4);

 // do the asynchronous select to wait for data
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER_ASYNC_SELECT,
 FD_READ | FD_WRITE) == SOCKET_ERROR)
 plb->InsertString(0, “Datagram echo client could not do async select”);
 else
 SetTimer(1, 5000, NULL);
 }
}

///
// CMainView::OnAsyncSelect()
//
LONG CMainView::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 char pszMessage[100]; // informational message
 static char pBuf[101]; // send/recv buffer
 int nBytesRecv; // number of bytes received
 int nBytesSent; // number of bytes sent
 int nError; // WinSock error

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 {
 wsprintf(pszMessage, “Datagrem echo client async select got error %d”,
 WSAGETSELECTERROR(lParam));
 plb->InsertString(0, pszMessage);
 return 0L;
 }

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_WRITE:
 plb->InsertString(0, “FD_WRITE”);

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming176

 // is there any data to send?
 if (m_nBytesToSend != 0)
 {
 // send the data
 nBytesSent = sendto(m_s, m_pBuf, m_nBytesToSend, 0,
 (LPSOCKADDR)&m_addr, sizeof(m_addr));

 // check for send error
 if (nBytesSent == SOCKET_ERROR)
 {
 // if the error is just that the send would block,
 // don’t do anything...we’ll get another FD_WRITE soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK);
 {
 wsprintf(pszMessage, “Error %d sending data to %s, %d”,
 nError, inet_ntoa(m_in), ntohs(m_addr.sin_port));
 plb->InsertString(0, pszMessage);

 m_nBytesToSend = 0;
 }
 }
 else
 {
 wsprintf(pszMessage, “Data sent (%s) to %s, %d”,
 m_pBuf, inet_ntoa(m_in), ntohs(m_addr.sin_port));
 plb->InsertString(0, pszMessage);

 m_nBytesToSend = 0;
 }
 }
 break;

 case FD_READ:
 plb->InsertString(0, “FD_READ”);

 // receive data
 nBytesRecv = recvfrom(m_s, pBuf, 100, 0, NULL, NULL);

 // check for receive error
 if (nBytesRecv == SOCKET_ERROR)
 {
 // if the error is just that the receive would block,
 // don’t do anything...we’ll get another FD_READ soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d receiving data”, nError);
 plb->InsertString(0, pszMessage);
 }
 }
 else
 {
 pBuf[nBytesRecv] = ‘\0’;
 wsprintf(pszMessage, “Data received (%s) from %s, %d”,

Listing 8.17. continued

 Chapter 8 ■ Sample Applications 177

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 pBuf, inet_ntoa(m_in), ntohs(m_addr.sin_port));
 plb->InsertString(0, pszMessage);
 }
 break;

 default:
 break;
 }

 return 0L;
}

///
// CMainView::OnTimer()
//
// Timer to generate a string to send. Won’t send
// unless the previous string is completely sent.
//
void CMainView::OnTimer(UINT nIDEvent)
{
 static int nSendCount = 1; //

 if (m_nBytesToSend == 0)
 {
 wsprintf(m_pBuf, “Hello %d”, nSendCount);
 ++nSendCount;
 m_nBytesToSend = lstrlen(m_pBuf);
 PostMessage(WM_USER_ASYNC_SELECT, m_s, WSAMAKESELECTREPLY(FD_WRITE, 0));
 }

 CFormView::OnTimer(nIDEvent);
}

Running the Datagram Echo Server and Client
A sample sequence of events of running the datagram echo server and client is as fol-
lows:

Run DESERV. It displays on which port it’s waiting for data to arrive.

Run DECLIENT on the same or a different computer. It prompts for the IP
address and port DESERV is using.

In five seconds the timer will trigger in DECLIENT, causing
CMainView::OnTimer() to get called. No bytes are waiting to be sent yet, so the
outgoing buffer is filled and a WinSock FD_WRITE message is faked to trigger the
sending of the data. This has to be done because the real FD_WRITE may have
been missed or it may have occurred when there was nothing to send yet.

CMainView::OnAsyncSelect() is called in DECLIENT with an FD_WRITE
event. There are bytes to be sent, so an attempt to transmit them to the

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming178

datagram echo server is made. If the attempt succeeds and bytes are written, the
number of bytes to send is reset to 0 (zero). If there was an error sending but
the error was simply that the send would block, the count of bytes to send is
retained because you’ll get a real FD_WRITE eventually.

Assuming that DECLIENT sends a buffer, CMainView::OnAsyncSelect() is
called in DESERV with an FD_READ notice. If the data is read successfully, a
byte count is recorded, the originator of the data is noted, and a fake FD_WRITE
message is generated to force the sending of the just-received data back to the
originator (DECLIENT).

CMainView::OnAsyncSelect() is called in DESERV with an FD_WRITE event.
There are bytes to be sent, so an attempt to transmit them to the datagram
echo client is made. If the attempt succeeds and bytes are written, the number
of bytes to send is reset to 0 (zero). If there was an error sending but the error
was simply that the send would block, the count of bytes to send is retained
because you’ll get a real FD_WRITE eventually.

Assuming that DESERV sends a buffer, CMainView::OnAsyncSelect() is called
in DECLIENT with an FD_READ notice and the client reads the echoed data.

Another timer goes off in DECLIENT and the process repeats.

Figure 8.9 shows DESERV and DECLIENT running on the same computer, which
has the IP address 166.78.16.150. The server and client were assigned ports 1059 and
1060, respectively. Notice that after each application initialized, it received an FD_WRITE
notification. WinSock is simply telling the application that the socket is in a writeable
state. The applications ignore the message unless they have bytes to send.

FIGURE 8.9.
DESERV and
DECLIENT running
on the same computer.

 Chapter 8 ■ Sample Applications 179

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Stream Echo Client and Server
These programs, SESERV and SECLIENT, demonstrate the use of nonblocking stream
sockets. They use the following WinSock functions: WSAStartup(), WSACleanup(),
WSAGetLastError(), socket(), closesocket(), bind(), connect(), accept(),
WSAAsyncSelect(), send(), recv(), getsockname(), ntohs(), and inet_ntoa(). The
SESERV server application accepts a connection from a client, receives data, and sends
the data back to the client. The SECLIENT client application connects to the server,
sends data to the server, and receives the echoed reply.

Stream Echo Server SESERV
These programs are generated using Visual C++’s AppWizard feature. Implementation
is similar to DESERV, with the primary difference being in the CMainView object.
CMainView’s header is shown in Listing 8.18. Listing 8.19 shows the implementation of
the CMainView object. When CMainView::OnInitialUpdate() is called, soon after the
CMainView object is created, it creates a socket, binds it to a name, and waits for a con-
nection request. When a connection is requested, data is ready to be received, or data
can be sent, the CMainView::OnAsyncSelect() member function is called due to the
message mapping of the user-defined message WM_USER_ASYNC_SELECT. This
stream socket server application communicates with only one client at a time due to the
single m_sClient variable in the CMainView class. Once m_sClient is connected, all other
requests to connect are ignored until the connection is closed by the originating client.

Listing 8.18. MAINVIEW.H for SESERV.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

public:
 SOCKET m_s; // socket to listen for connections on
 SOCKADDR_IN m_addr; // address of socket to listen on
 SOCKET m_sClient; // socket to client

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming180

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnAsyncSelect(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_ASYNC_SELECT (WM_USER + 1)

Listing 8.19. MAINVIEW.CPP for SESERV.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “seserv.h”
#include “mainview.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()

Listing 8.18. continued

 Chapter 8 ■ Sample Applications 181

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 : CFormView(CMainView::IDD)
{
 m_s = m_sClient = INVALID_SOCKET; // initialize socket to invalid handle

 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
}

CMainView::~CMainView()
{
 // if the socket was opened successfully, close it

 if (m_s != INVALID_SOCKET)
 {
 closesocket(m_s);
 m_s = INVALID_SOCKET;
 }
 if (m_sClient != INVALID_SOCKET)
 {
 closesocket(m_sClient);
 m_sClient = INVALID_SOCKET;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 char pszMessage[100]; // informational message

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // create the socket and prepare it
 // for receiving data

 plb->InsertString(0, “Initializing...”);

 m_s = socket(AF_INET, SOCK_STREAM, 0);
 if (m_s == INVALID_SOCKET)
 plb->InsertString(0, “Stream echo server could not create socket”);
 else
 {
 // bind the socket, allowing WinSock to assign the service port

 m_addr.sin_family = AF_INET; // Internet address family
 m_addr.sin_port = 0; // let WinSock assign a port
 m_addr.sin_addr.s_addr = htonl(INADDR_ANY); // any network interface

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming182

 if (bind(m_s, (LPSOCKADDR)&m_addr, sizeof(m_addr)) == SOCKET_ERROR)
 plb->InsertString(0, “Stream echo server could not bind socket”);
 else
 {
 // find out the port number WinSock assigned

 SOCKADDR_IN addr;
 int nAddrLen = sizeof(addr);

 if (getsockname(m_s, (LPSOCKADDR)&addr, &nAddrLen) == SOCKET_ERROR)
 plb->InsertString(0, “Stream echo server could not get socket’s port”);
 else
 {
 wsprintf(pszMessage, “Stream echo server using port %d”,
 ntohs(addr.sin_port));
 plb->InsertString(0, pszMessage);

 // do the asynchronous select to wait for a connection

 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER_ASYNC_SELECT, FD_ACCEPT) ==
 SOCKET_ERROR)
 plb->InsertString(0, “Stream echo server could not do async select”);
 else
 {
 // listen for connections

 if (listen(m_s, 3) == SOCKET_ERROR)
 plb->InsertString(0, “Stream echo server could not listen”);
 }
 }
 }
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_ASYNC_SELECT, OnAsyncSelect)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnAsyncSelect()
//
// Receives data from a client and echoes the data back to the sending client.
// While there is data yet to be sent back to the sending client, the server
// will not receive any more data. (A single data buffer is used for
// incoming and outgoing data)
//
LONG CMainView::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 char pszMessage[100]; // informational message
 static char pBuf[101]; // send/recv buffer

Listing 8.19. continued

 Chapter 8 ■ Sample Applications 183

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 int nBytesRecv; // number of bytes received
 int nBytesSent; // number of bytes sent
 static int nTotalBytesToSend;// total number of bytes to send
 static int nBytesToSend = 0; // number of bytes to send
 int nError; // WinSock error
 static SOCKADDR_IN addrFrom; // address of client
 static int nAddrFromLen = sizeof(addrFrom); // length of client address struct
 static IN_ADDR inFrom; // IP address of client

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 {
 wsprintf(pszMessage, “Stream echo server async select got error %d”,
 WSAGETSELECTERROR(lParam));
 plb->InsertString(0, pszMessage);
 return 0L;
 }

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_ACCEPT:
 // if we don’t have a connection yet, accept the new connection

 if (m_sClient == INVALID_SOCKET)
 {
 m_sClient = accept(m_s, (LPSOCKADDR)&addrFrom, &nAddrFromLen);
 if (m_sClient == INVALID_SOCKET)
 {
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d accepting connection”,
 nError);
 plb->InsertString(0, pszMessage);
 }
 }
 else
 {
 // copy the four byte IP address into an IP address structure
 memcpy(&inFrom, &addrFrom.sin_addr.s_addr, 4);

 wsprintf(pszMessage, “Connection accepted from %s, %d”,
 inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);
 }

 WSAAsyncSelect(m_sClient, m_hWnd, WM_USER_ASYNC_SELECT,
 FD_READ | FD_WRITE | FD_CLOSE);
 }
 else
 plb->InsertString(0, “Busy: refused connection”);
 break;

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming184

 case FD_CLOSE:
 // close the client socket

 closesocket(m_sClient);
 m_sClient = INVALID_SOCKET;
 plb->InsertString(0, “Client closed connection”);
 break;

 case FD_WRITE:
 // echo the data back to the client

 plb->InsertString(0, “FD_WRITE”);

 // are there bytes to send?
 if (nBytesToSend != 0)
 {
 // send the data
 nBytesSent = send(m_sClient, &pBuf[nTotalBytesToSend - nBytesToSend],
 nBytesToSend, 0);

 // check for send error
 if (nBytesSent == SOCKET_ERROR)
 {
 // if the error is just that the send would block,
 // don’t do anything...we’ll get another FD_WRITE soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d sending data to %s, %d”,
 nError, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);

 nBytesToSend = nTotalBytesToSend = 0;
 }
 }
 else
 {
 wsprintf(pszMessage, “Data sent (%s) to %s, %d”,
 pBuf, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);

 nBytesToSend = nBytesToSend – nBytesSent;
 if (nBytesToSend == 0)
 nTotalBytesToSend = 0;;
 else
 // there are more bytes to send so we’ll trigger
 // the FD_WRITE event again
 PostMessage(WM_USER_ASYNC_SELECT, m_s,
 WSAMAKESELECTREPLY(FD_WRITE, 0));
 }

 // just in case the FD_READ was called but it didn’t read
 // because the buffer still contained data to send
 if (nBytesToSend == 0)
 PostMessage(WM_USER_ASYNC_SELECT, m_sClient,

Listing 8.19. continued

 Chapter 8 ■ Sample Applications 185

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 WSAMAKESELECTREPLY(FD_READ, 0));
 }
 break;

 case FD_READ:
 // receive data back from a client

 plb->InsertString(0, “FD_READ”);

 // if there are still bytes waiting to be sent back (echoed)
 // to the client, don’t do anything here (the FD_WRITE handler will
 // generate FD_READ when it is through with sending)
 if (nBytesToSend == 0)
 {
 // receive data
 nBytesRecv = recv(m_sClient, pBuf, 100, 0);

 // check for receive error
 if (nBytesRecv == SOCKET_ERROR)
 {
 // if the error is just that the receive would block,
 // don’t do anything...we’ll get another FD_READ soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d receiving data”, nError);
 plb->InsertString(0, pszMessage);
 }
 }
 else
 {
 nBytesToSend = nTotalBytesToSend = nBytesRecv;

 pBuf[nBytesToSend] = ‘\0’;
 wsprintf(pszMessage, “Data received (%s) from %s, %d”,
 pBuf, inet_ntoa(inFrom), ntohs(addrFrom.sin_port));
 plb->InsertString(0, pszMessage);

 // just in case the FD_WRITE was called but it didn’t have
 // any data to send at that time (it has data to send now)
 PostMessage(WM_USER_ASYNC_SELECT, m_sClient,
 WSAMAKESELECTREPLY(FD_WRITE, 0));
 }
 }
 break;

 default:
 break;
 }

 return 0L;
}

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming186

Stream Echo Client SECLIENT
The stream echo client, SECLIENT, follows the same basic outline as DECLIENT.
The primary difference lies in the implementation of the CMainView object. The header
file for the CMainView object is shown in Listing 8.20. Its implementation is shown in
Listing 8.21. This object performs most of the work for the SECLIENT application.
CMainView::OnInitialUpdate() is called soon after the object is created. This function
is responsible for creating a socket, connecting to the server, waiting to send and receive
data, and setting a timer to be used for sending data. When the connection with
the server is made, data is ready to be received, or data can be sent, the
CMainView::OnAsyncSelect() member function is called due to the message mapping
of the user-defined message WM_USER_ASYNC_SELECT. The CMainView::OnTimer()
function is called every five seconds to format a string to send to the echo server.

Listing 8.20. MAINVIEW.H for SECLIENT.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

public:
 SOCKET m_s; // socket
 SOCKADDR_IN m_addr; // address of server
 IN_ADDR m_in; // IP address of server
 int m_nBytesToSend; // bytes left to send in the buffer
 int m_nTotalBytesToSend; // total bytes in the buffer
 char m_pBuf[101]; // buffer to send

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

 Chapter 8 ■ Sample Applications 187

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnAsyncSelect(WPARAM wParam, LPARAM lParam);
 afx_msg void OnTimer(UINT nIDEvent);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_ASYNC_SELECT (WM_USER + 1)

Listing 8.21. MAINVIEW.CPP for SECLIENT.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “seclient.h”
#include “mainview.h”
#include “servdlg.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 m_s = INVALID_SOCKET; // initialize socket to invalid handle

 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
}

CMainView::~CMainView()
{
 // if the socket was opened successfully, close it

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming188

 if (m_s != INVALID_SOCKET)
 {
 closesocket(m_s);
 m_s = INVALID_SOCKET;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_ASYNC_SELECT, OnAsyncSelect)
 ON_WM_TIMER()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

void CMainView::OnInitialUpdate()
{
 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // prompt for server information (IP and port)
 CServerDlg dlg;
 if (dlg.DoModal() == IDCANCEL)
 return;

 plb->InsertString(0, “Initializing...”);

 // create the socket
 m_s = socket(AF_INET, SOCK_STREAM, 0);
 if (m_s == INVALID_SOCKET)
 plb->InsertString(0, “Stream echo client could not create socket”);
 else
 {
 // fill out the server’s address
 m_addr.sin_family = AF_INET;
 m_addr.sin_port = htons(atoi(dlg.m_stringPort));
 m_addr.sin_addr.s_addr = inet_addr(dlg.m_stringIP);

 // save sending client’s IP address
 memcpy(&m_in, &m_addr.sin_addr.s_addr, 4);

 // do the asynchronous select to wait for data
 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER_ASYNC_SELECT, FD_CONNECT) ==
 SOCKET_ERROR)
 plb->InsertString(0, “Stream echo client could not do async select”);

Listing 8.21. continued

 Chapter 8 ■ Sample Applications 189

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 else
 {
 // try to make the connection
 // if it doesn’t succeed it may still be ok as long
 // as the error was that the connection would block
 if (connect(m_s, (LPSOCKADDR)&m_addr, sizeof(m_addr)) == SOCKET_ERROR)
 {
 int nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 plb->InsertString(0, “Stream echo client could not connect”);
 }
 SetTimer(1, 5000, NULL);
 }
 }
}

///
// CMainView::OnAsyncSelect()
//
LONG CMainView::OnAsyncSelect(WPARAM wParam, LPARAM lParam)
{
 char pszMessage[100]; // informational message
 static char pBuf[101]; // send/recv buffer
 int nBytesRecv; // number of bytes received
 int nBytesSent; // number of bytes sent
 int nError; // WinSock error

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 {
 wsprintf(pszMessage, “Datagrem echo client async select got error %d”,
 WSAGETSELECTERROR(lParam));
 plb->InsertString(0, pszMessage);
 return 0L;
 }

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_CONNECT:
 // the connection has been completed

 plb->InsertString(0, “Stream echo client connected”);

 if (WSAAsyncSelect(m_s, m_hWnd, WM_USER_ASYNC_SELECT,
 FD_READ | FD_WRITE | FD_CLOSE) == SOCKET_ERROR)
 plb->InsertString(0, “Stream echo client could not do async select”);
 break;

 case FD_CLOSE:
 // close the socket

 closesocket(m_s);
 m_s = INVALID_SOCKET;

continues

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming190

 plb->InsertString(0, “Server closed connection”);
 break;

 case FD_WRITE:
 plb->InsertString(0, “FD_WRITE”);

 // is there any data to send?
 if (m_nBytesToSend != 0)
 {
 // send the data
 nBytesSent = send(m_s, &m_pBuf[m_nTotalBytesToSend - m_nBytesToSend],
 m_nBytesToSend, 0);

 // check for send error
 if (nBytesSent == SOCKET_ERROR)
 {
 // if the error is just that the send would block,
 // don’t do anything...we’ll get another FD_WRITE soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK);
 {
 wsprintf(pszMessage, “Error %d sending data to %s, %d”,
 nError, inet_ntoa(m_in), ntohs(m_addr.sin_port));
 plb->InsertString(0, pszMessage);

 m_nBytesToSend = m_nTotalBytesToSend = 0;
 }
 }
 else
 {
 wsprintf(pszMessage, “Data sent (%s) to %s, %d”,
 m_pBuf, inet_ntoa(m_in), ntohs(m_addr.sin_port));
 plb->InsertString(0, pszMessage);

 m_nBytesToSend = m_nBytesToSend - nBytesSent;
 if (m_nBytesToSend == 0)
 m_nTotalBytesToSend = 0;;
 else
 // there are more bytes to send so we’ll trigger
 // the FD_WRITE event again
 PostMessage(WM_USER_ASYNC_SELECT, m_s,
 WSAMAKESELECTREPLY(FD_WRITE, 0));
 }
 }
 break;

 case FD_READ:
 plb->InsertString(0, “FD_READ”);

 // receive data
 nBytesRecv = recv(m_s, pBuf, 100, 0);

 // check for receive error
 if (nBytesRecv == SOCKET_ERROR)
 {

Listing 8.21. continued

 Chapter 8 ■ Sample Applications 191

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

 // if the error is just that the receive would block,
 // don’t do anything...we’ll get another FD_READ soon
 nError = WSAGetLastError();
 if (nError != WSAEWOULDBLOCK)
 {
 wsprintf(pszMessage, “Error %d receiving data”, nError);
 plb->InsertString(0, pszMessage);
 }
 }
 else
 {
 pBuf[nBytesRecv] = ‘\0’;
 wsprintf(pszMessage, “Data received (%s) from %s, %d”,
 pBuf, inet_ntoa(m_in), ntohs(m_addr.sin_port));
 plb->InsertString(0, pszMessage);
 }
 break;

 default:
 break;
 }

 return 0L;
}

///
// CMainView::OnTimer()
//
// Timer to generate a string to send. Won’t send
// unless the previous string is completely sent.
//
void CMainView::OnTimer(UINT nIDEvent)
{
 static int nSendCount = 1; //

 if (m_nBytesToSend == 0)
 {
 wsprintf(m_pBuf, “Hello %d”, nSendCount);
 ++nSendCount;
 m_nBytesToSend = m_nTotalBytesToSend = lstrlen(m_pBuf);
 PostMessage(WM_USER_ASYNC_SELECT, m_s, WSAMAKESELECTREPLY(FD_WRITE, 0));
 }

 CFormView::OnTimer(nIDEvent);
}

Running the Stream Echo Server and Client
A sample sequence of events of running the stream echo server and client is as follows:

Run SESERV. It displays on which port it’s listening for connections.

Run SECLIENT on the same or a different computer. It prompts for the IP
address and port SESERV is using. A connection is attempted and eventually

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Part II ■ Basics of WinSock Programming192

succeeds. SECLIENT’s CMainView::OnAsyncSelect() is called with the
FD_CONNECT event.

SESERV’s CMainView::OnAsyncSelect() is called with the FD_ACCEPT event
and, if the m_sClient socket isn’t yet connected, a connection is made.

In five seconds the timer will trigger in SECLIENT, causing
CMainView::OnTimer() to get called. No bytes are waiting to be sent yet, so the
outgoing buffer is filled and a WinSock FD_WRITE message is faked to trigger the
sending of the data. This has to be done because the real FD_WRITE may have
been missed or it may have occurred when there was nothing to send yet.

CMainView::OnAsyncSelect() is called in SECLIENT with an FD_WRITE event.
There are bytes to be sent, so an attempt to transmit them to the stream echo
server is made. If the attempt succeeds, the number of bytes remaining to be
sent is reduced. If there was an error sending but the error was simply that the
send would block, the count of bytes to send is retained because you’ll get a real
FD_WRITE eventually. If all the bytes to be sent can’t be transmitted in a single
call to send() (unlikely given the size of the data in the sample), FD_WRITE
events will continue to be generated and the byte count will be reduced until
it’s eventually 0 (zero).

Assuming that SECLIENT sends a buffer, CMainView::OnAsyncSelect() is
called in SESERV with an FD_READ notice. SESERV only has one buffer for
both incoming and outgoing data, so FD_READ is ignored if there are any bytes
still to be echoed back to the client. If the data is read successfully, a byte count
is recorded and a fake FD_WRITE message is generated to force the sending of the
just-received data back to the originator (SECLIENT).

CMainView::OnAsyncSelect() is called in SESERV with an FD_WRITE event.
There are bytes to be sent, so an attempt to transmit them to the stream echo
client is made. If the attempt succeeds and bytes are written, the number of
bytes yet to send is reduced by however many bytes were successfully written. If
there was an error sending but the error was simply that the send would block,
the count of bytes to send is retained because you’ll get a real FD_WRITE eventu-
ally. Several FD_WRITE events may be generated until the entire buffer is echoed
(although this is highly unlikely in this example, given the small buffer size).

Assuming that SESERV sends a buffer, CMainView::OnAsyncSelect() is called
in SECLIENT with an FD_READ notice and the client reads the echoed data.

Another timer goes off in SECLIENT and the process repeats.

 Chapter 8 ■ Sample Applications 193

p2/v6 Programming WinSock #30594-1 tullis 11.8.94 CH08 LP #3

Figure 8.10 shows SESERV and SECLIENT running on the same computer, which
has the IP address 166.78.16.150. The server and client were assigned ports 1067 and
1068, respectively. Notice the additional status messages regarding connections as com-
pared to the datagram-based sample.

FIGURE 8.10.
SESERV and
SECLIENT running
on the same computer.

Summary
This chapter demonstrates the use of many important WinSock functions in complete
applications. Functions are demonstrated that initialize WinSock, provide detailed in-
formation about the WinSock TCP/IP stack on the computer, do database lookups,
and transfer data over stream and datagram sockets.

Several enhancements could be made to the programs explained here to make them more
robust. One modification you may want to explore on your own is the capability to
enter a host name, rather than simply an IP address, into the DECLIENT and
SECLIENT applications. Try using WSAAsyncGetHostByName() for this purpose, but don’t
forget to call inet_addr() first just in case the user did enter an IP address.

Chapters 9 through 13 introduce several C++ classes that encapsulate WinSock func-
tionality and make it even easier to write networked applications.

P2/V6/Q7 Programming Winsock 30594-1 aw 11.15.94 Parts LP #3

IIIIII
WinSock
Class Library
WinSock
Class Library

9 Design Goals

10 CWinSock

11 CDatagramSocket

12 CStreamSocket

13 Bringing It All Together

P2/V6/s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH09 LP #3

 Chapter 9 ■ Design Goals 197

9

Design GoalsDesign Goals

9

Part III ■ WinSock Class Library198

P2/V6/s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH09 LP #3

The previous chapter examined several sample programs that utilize WinSock functions.
You may notice that the applications are “littered” with WinSock-specific function calls.
Although that style of programming may have been considered satisfactory a few years
ago, today’s object-oriented concepts and languages allow applications to better isolate
explicit functionality, such as networking.

The remainder of this book presents a framework upon which networked applications
are built, along with several sample applications that use the framework. This frame-
work is built as a set of C++ classes.

Objectives
The objectives of generating a class library to manage WinSock network communica-
tion are similar to the objectives that object-oriented programming has, including sim-
plification, generalization, and encapsulation. When designing the class library, you
shouldn’t think of how to incorporate all of the WinSock functions into a class; you
should instead look at it from the application’s perspective and ask, “What does an
application need to do?”

You can see from the previous sample programs that networked applications perform
relatively few functions. Don’t confuse functions with function calls, though. The
WinSock functionality used most often is the following:

■ Start and stop WinSock.

■ Resolve names humans like to use into a format useable by the computer.

■ Create an end-point of communication and optionally assign a name to it.

■ Destroy an end-point.

■ Listen for and accept connections to an end-point.

■ Connect to an end-point.

■ Send and receive data to and from an end-point.

Essentially, that is all the functionality WinSock provides to an application. Of course,
the devil is in the details. The objective of the class library is to hide these details from
the application. This allows the application to be developed and debugged separately
from the networking portion. The networking portion, the WinSock class library, is
developed and debugged until it’s fully functional. The application can then use the
class library as a simple black box; feed a certain input into the black box and get a cer-
tain output from it.

P2/V6/s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH09 LP #3

 Chapter 9 ■ Design Goals 199

Judging from the functionality list, a good class breakdown might have three classes:

■ Start, stop, and retrieve information on WinSock

■ Datagram socket (send to and receive from)

■ Stream socket (listen, accept, connect, send, and receive)

Encapsulation
The class library encapsulates many of the details required to effectively use WinSock.
Looking at the previous samples, you can see the need for several variables, many of
which are used once and then discarded. The class library encapsulates these variables
and only exposes to the application those that are essential.

Simplification
The class library also has a goal of simplifying the application’s access to network func-
tionality. Part of that simplification is handled by the encapsulation of variables and
functions in the class, and another part comes from exposing only what is absolutely
necessary to the application. The class library hides the intricacies of performing certain
functions. For example, examine the very common WinSock functionality of sending
stream data. In the previous samples, the application had to know when it was able to
send more data. It also had to keep track of how much of the data was left to send in the
buffer after each successful, but partial, send. By using the class library, the application
can simply perform a send on a piece of data and the object keeps track of when data
can be sent and how much of the data remains to be sent. The object may then notify
the application when it has completed the send, but in the meantime, the application
divorces itself from the details of sending the data.

Generalization
Designing a class library mandates that the functionality be generalized. These classes
may be base classes for some future derived classes. They must be general enough to not
prevent their use as base classes, but they must also have enough functionality to be use-
ful right away.

Compromises
To maintain the generality of the class, some compromises are made. When consider-
ing what the compromises are, you must look back to the list that describes the WinSock
functionality of which an application takes advantage.

Part III ■ WinSock Class Library200

P2/V6/s&n4 Programming WinSock #30594-1 jrt 11.11.94 CH09 LP #3

As an example of a compromise that could be made, look at a sample server application.
The two servers presented in the preceding chapter, DESERV and SESERV, didn’t
specify which port they operated on. Instead, they let WinSock assign one dynamically.
In this case, the matching client program needed to know this port number before it
could communicate with the server. It’s much more common that the port to which a
service is assigned is hard-coded or entered into the services file on the hosts, allowing
the port number to be resolved by its name. With this in mind, a compromise could be
made mandating that a server socket specify either a port number or a service name;
letting WinSock decide whether the port number could be prevented. This compromise
simplifies both the server and client, and hence the class library itself.

Implementation Details
The entire WinSock class library, composed of several classes, is implemented in the
CWINSOCK.CPP file with CWINSOCK.H containing the class declarations. This
source file is simply added to each project that requires WinSock functionality. This is
in contrast to creating a dynamic link library that is then linked to the application.
If you want to create a DLL out of the WinSock classes, you have to use a Microsoft
Foundation Class Extension DLL because some of the WinSock classes are derived from
MFC classes. The creation of such a DLL is beyond the scope of this book, but docu-
mentation on how to do so is available from Microsoft sources such as the Developer
Network CD.

The actual code for the WinSock class libraries follows the convention used in the
Microsoft Foundation Class library. All class names begin with a capital C, as in:

class CWinSock

All class member variables begin with the m_ prefix. The Hungarian naming conven-
tion is appended after the m_ prefix but before the actual variable name. For example, an
integer containing the length of a buffer might look like the following:

int m_nBufLen;

This naming convention should ensure quick, easy recognition and understanding of
WinSock class references in your applications.

Summary
This chapter introduces the notion of a WinSock class library, including its require-
ments and possible limitations. Chapters 10 through 13 describe several classes that
compose the WinSock class library. These classes are then used in fully functional pro-
grams in Chapters 14 through 16.

 Chapter 10 ■ CWinSock 201

P2/V6/ Programming WinSock #30594-1 tullis 11.14.94 CH10 LP #3

CWinSock

1010

CWinSock

Part III ■ WinSock Class Library202

P2/V6/ Programming WinSock #30594-1 tullis 11.14.94 CH10 LP #3

This chapter discusses the CWinSock class.

This class is responsible for initializing the WinSock subsystem, shutting down WinSock,
and retrieving WinSock TCP/IP stack information.

The class declaration is as follows:

///
// CWinSock
//
class CWinSock
{
private:
 WORD m_wVersionRequired; // WinSock version required by application
 int m_nLastError; // last WinSock error
 WSADATA m_wsaData; // WinSock information

public:
 CWinSock(WORD wVersionRequired = MAKEWORD(1, 1));
 int Startup();
 int Shutdown();
 void Information(LPWSADATA pwsaData);
 int LastError() { return m_nLastError; }
};

The class contains three private member variables, which are inaccessible outside the
class implementation.

CWinSock Constructor
The constructor for the CWinSock object simply initializes two member variables. The
m_wVersionRequired variable is the WinSock version that’s required by the application.
It’s passed into the constructor by the application. If this parameter is not supplied, it
defaults to version 1.1. The class’ constructor looks like the following:

///
// CWinSock constructor
//
// Constructs the CWinSock object. Initializes member variables
//
CWinSock::CWinSock(WORD wVersionRequired/*= MAKEWORD(1, 1)*/)
{
 // initialize member variables
 m_wVersionRequired = wVersionRequired;
 m_nLastError = 0;
}

CWinSock::Startup()
The Startup() member function actually initializes the WinSock subsystem. It must
be called before any other WinSock data manipulation functions are called. If an error

 Chapter 10 ■ CWinSock 203

P2/V6/ Programming WinSock #30594-1 tullis 11.14.94 CH10 LP #3

occurs during initialization, the function returns the CWINSOCK_WINSOCK_ERROR error code
and the m_nLastError member variable contains the actual WinSock error. Its imple-
mentation looks like the following:

///
// CWinSock::Startup()
//
// Start the WinSock sub–system.
//
int CWinSock::Startup()
{
 int nStatus = CWINSOCK_NOERROR;

 m_nLastError = WSAStartup(m_wVersionRequired, &m_WSAData);

 if (m_nLastError != 0)
 nStatus = CWINSOCK_WINSOCK_ERROR;

 return nStatus;
}

CWinSock::Shutdown()
The Shutdown() member function cleans up the WinSock subsystem. If an error occurs
during shutdown, the function returns the CWINSOCK_WINSOCK_ERROR error code and the
m_nLastError member variable contains the actual WinSock error. Its implementation
looks like the following:

///
// CWinSock::Shutdown()
//
// Shutdown the WinSock sub–system.
//
int CWinSock::Shutdown()
{
 int nStatus = CWINSOCK_NOERROR;

 if (WSACleanup() != 0)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 }

 return nStatus;
}

CWinSock::Information()
The Information() member function copies the WinSock TCP/IP stack informational
structure to a WSADATA structure passed in by the calling application. This gives the
application access to some interesting data, such as the vendor information string, without

Part III ■ WinSock Class Library204

P2/V6/ Programming WinSock #30594-1 tullis 11.14.94 CH10 LP #3

you having to worry about the application wrongly modifying the m_wsaData member
variable. Its implementation looks like the following:

///
// CWinSock::Information()
//
// Copy the WinSock information structure.
//
void CWinSock::Information(LPWSADATA pwsaData)
{
 memcpy(pwsaData, &m_wsaData, sizeof(WSADATA));
}

CWinSock::LastError()
The LastError() member function is implemented as an in-line function. It simply
returns the m_nLastError value that contains the last WinSock error message generated
by the CWinSock object.

Summary
This chapter describes the simplest of the WinSock classes, but also the class that must
appear in any application that expects to use WinSock in a data-handling capacity. The
next chapter describes a class that handles datagram socket communications.

 Chapter 11 ■ CDatagramSocket 205

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

1111

CDatagramSocketCDatagramSocket

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library206

This chapter discusses the CDatagramSocket class. This class simplifies an application’s
interaction with a datagram socket. This class is responsible for creating a datagram socket,
optionally binding the socket to a name, sending and receiving data, and destroying the
socket.

The class declaration is as follows:

///
// CDatagramSocket
//
class CDatagramSocket : public CWnd
{
private:
 CWnd *m_pParentWnd; // window to receive event notification
 UINT m_uMsg; // message to send to m_pParentWnd on event
 SOCKET m_s; // socket handle
 SOCKADDR_IN m_sinLocal; // name bound to socket m_s
 int m_nLastError; // last WinSock error
 BOOL m_bServer; // TRUE if socket m_s is bound to a name
 CPtrList m_listWrite; // data waiting to be sent
 CPtrList m_listRead; // data read

public:
 CDatagramSocket(CWnd *pParentWnd, UINT uMsg);
 virtual ~CDatagramSocket();
 int CreateSocket(int nLocalPort);
 int CreateSocket(LPSTR pszLocalService = NULL);
 int DestroySocket();
 int Write(int nLen, LPVOID pData, LPSTR pszRemoteName, int nRemotePort);
 int Write(int nLen, LPVOID pData, LPSTR pszRemoteName, LPSTR pszRemoteService);
 int Write(int nLen, LPVOID pData, LPSOCKADDR_IN psinRemote);
 LPVOID Read(LPINT pnLen, LPSOCKADDR_IN psinRemote = NULL);
 int LastError() { return m_nLastError; }

private:
 void InitVars(BOOL bInitLastError = TRUE);
 LONG HandleRead(WPARAM wParam, LPARAM lParam);
 LONG HandleWrite(WPARAM wParam, LPARAM lParam);

 // message map functions
protected:
 //{{AFX_MSG(CStreamSocket)
 //}}AFX_MSG
 LONG OnWinSockEvent(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

The class contains several private member variables that are inaccessible outside of the
class implementation. Of particular interest are the m_listWrite and m_listRead mem-
ber variables. These CPtrObject-derived objects maintain pointers to the incoming and
outgoing data. The data maintained by these lists has the following structure:

// structure used for datagram socket read/write queue
typedef struct tagDATAGRAMDATA
{

 Chapter 11 ■ CDatagramSocket 207

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

 LPVOID pData;
 int nLen;
 SOCKADDR_IN sin;
} DATAGRAMDATA, FAR * LPDATAGRAMDATA;

CDatagramSocket Constructor
The constructor for the CDatagramSocket object initializes the class’ member variables.
The m_pParentWnd variable is the window object that’s creating this datagram socket
object. This parameter is required because the CDatagramSocket object uses Windows
messaging to communicate certain status information back to the object’s user. Simi-
larly, the m_uMsg variable is the actual Windows message that m_pParentWnd receives when
the datagram socket needs to notify the application of certain information. The class’
constructor looks like:

///
// CDatagramSocket constructor
//
// Constructs the CDatagramSocket object. Initializes member variables
//
CDatagramSocket::CDatagramSocket(CWnd *pParentWnd, UINT uMsg)
{
 // initialize member variables
 m_pParentWnd = pParentWnd;
 ASSERT(m_pParentWnd != NULL);
 m_uMsg = uMsg;
 ASSERT(m_uMsg != 0);
 InitVars();
}

CDatagramSocket::InitVars()
The InitVars() member function initializes several private member variables. Its imple-
mentation looks like the following:

///
// CDatagramSocket::InitVars()
//
// Initialize class member variables.
//
void CDatagramSocket::InitVars(BOOL bInitLastError/*= TRUE*/)
{
 if (bInitLastError)
 m_nLastError = 0;

 m_s = INVALID_SOCKET;
 memset(&m_sinLocal, 0, sizeof(m_sinLocal));
 m_bServer = FALSE;
}

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library208

CDatagramSocket::CreateSocket()
The CreateSocket() member function creates a hidden window that’s used for WinSock
messages (that is, FD_READ and FD_WRITE). This function also creates a datagram socket
and optionally binds the socket to a name. There are two implementations of the
CreateSocket() member function. One implementation takes an integer parameter
representing the port number, in host byte order, that should be bound to the socket.
The other version of CreateSocket() accepts a string containing the numerical port
number or service name to bind to the socket, or NULL. If NULL is specified, or if the
function is called with no parameter at all, the socket is not bound to a name. Generally
speaking, the parameter is specified only for server type sockets.

The version of CreateSocket() that accepts an integer port number simply converts the
integer into a string and calls the other version of CreateSocket(). It’s implemented as
follows:

///
// CDatagramSocket::CreateSocket()
//
// Create a hidden window that will receive asynchronous messages
// from WinSock. Also creates a socket and optionally binds it to
// a name if the socket is a server socket.
//
// This version of the CreateSocket() function takes a
// port number, in host order, as input. A port number
// should only be specified if the socket is to be bound
// to a certain port. If you don’t care which port is
// assigned to the socket, just call CreateSocket() without
// any parameter, causing CreateSocket(NULL) to be called.
//
int CDatagramSocket::CreateSocket(int nLocalPort)
{
 // if this version of the function is being called,
 // a valid port number must be specified
 if (nLocalPort <= 0)
 return CWINSOCK_PROGRAMMING_ERROR;

 // convert the port number into a string and
 // call the version of CreateSocket() which
 // accepts a string
 char pszLocalService[18];
 _itoa(nLocalPort, pszLocalService, 10);
 return CreateSocket(pszLocalService);
}

The version of CreateSocket() that accepts a string port number or service name is imple-
mented in the code that follows. If the datagram socket need not be bound to a specific
port number or service name, simply call this function with no parameter. The C++
default argument feature will pass NULL to the function, triggering CreateSocket() to
not bind the socket.

 Chapter 11 ■ CDatagramSocket 209

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

///
// CDatagramSocket::CreateSocket()
//
// Create a hidden window that will receive asynchronous messages
// from WinSock. Also creates a socket and optionally binds it to
// a name if the socket is a server socket.
//
// This version of the CreateSocket() function takes a
// string containing a service name or port number.
// A parameter should only be specified if the socket is to be
// bound to a certain port. If you don’t care which port is
// assigned to the socket, just call CreateSocket() without
// any parameter, causing CreateSocket(NULL) to be called.
//
int CDatagramSocket::CreateSocket(LPSTR pszLocalService/*= NULL*/)
{
 int nStatus = CWINSOCK_NOERROR;

 while (1)
 {
 // Make sure the socket isn’t already created.
 // If the socket handle is valid, return from this
 // function right away so the existing parameters of
 // the object are not tampered with.
 if (m_s != INVALID_SOCKET)
 return CWINSOCK_PROGRAMMING_ERROR;

 InitVars();

 // create the hidden window
 RECT rect;
 rect.left = 0;
 rect.top = 0;
 rect.right = 100;
 rect.bottom = 100;
 if (Create(NULL, NULL, WS_OVERLAPPEDWINDOW, rect, m_pParentWnd, 0) == 0)
 {
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }

 // create the socket
 m_s = socket(PF_INET, SOCK_DGRAM, 0);
 if (m_s == INVALID_SOCKET)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 DestroyWindow();
 break;
 }

 // If pszLocalService is not NULL, this is a server socket
 // that will accept data on the specified port.
 if (pszLocalService != NULL)
 {
 // this socket is bound to a port number
 // so set the server flag
 m_bServer = TRUE;

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library210

 // assign the address family
 m_sinLocal.sin_family = AF_INET;

 // assign the service port (may have to do a database lookup
 // if a service port number was not specified)
 m_sinLocal.sin_port = htons(atoi(pszLocalService));
 if (m_sinLocal.sin_port == 0)
 {
 LPSERVENT pSent = getservbyname(pszLocalService, “udp”);
 if (pSent == NULL)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroyWindow();
 break;
 }
 m_sinLocal.sin_port = pSent–>s_port;
 }

 // assign the IP address
 m_sinLocal.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the server socket to the name containing the port
 if (bind(m_s, (LPSOCKADDR)&m_sinLocal, sizeof(m_sinLocal)) == SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroyWindow();
 break;
 }
 }

 // start asynchronous event notification
 long lEvent = FD_READ | FD_WRITE;
 if (WSAAsyncSelect(m_s, m_hWnd, CWINSOCK_EVENT_NOTIFICATION, lEvent) ==
 SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroySocket();
 break;
 }

 break;
 }

 // if anything failed in this function, set the
 // socket variables appropriately
 if (nStatus != CWINSOCK_NOERROR)
 InitVars(FALSE);

 return nStatus;
}

 Chapter 11 ■ CDatagramSocket 211

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

CDatagramSocket::Write()
The Write() member function writes data to the specified destination host and port.
The data is not immediately sent out the socket, though. Instead, the data, its length,
and the data’s destination address are added to the write queue. The data is not sent
until the datagram socket receives the FD_WRITE message from the WinSock subsystem,
notifying it that sending is now possible.

Because the data is not sent immediately, the data specified by the data pointer must
not be deallocated or reused until the window that owns the datagram socket receives
the m_uMsg message with wParam set to CWINSOCK_DONE_WRITING or
CWINSOCK_ERROR_WRITING. When this message is received by the application window,
lParam is the pointer to the data sent. At this point, the data specified by the pointer can
be freed or reused. If the Write() function fails immediately, denoted by the function
returning something other than CWINSOCK_NOERROR, the data pointer may be freed or
reused (the m_uMsg write message will never be received for this data pointer).

There are three implementations of the Write() member function. All three functions
have parameters that specify the number of bytes to send and a pointer to the data. The
remaining function parameters vary depending on how you call Write(). Write() re-
turns CWINSOCK_NOERROR on success.

One implementation takes a string containing the dotted-decimal IP address of the
destination or the destination host name, and an integer parameter representing the port
number, in host byte order. This version of Write() simply converts the integer to a
string and calls another version of the function that’s designed to accept a string con-
taining the port number or service name.

///
// CDatagramSocket::Write()
//
// Write data to the socket specified by the name and port.
//
// This version of the Write() function takes an integer
// representing the length of the data to send, a pointer
// to the data to send, a pointer to a string representing
// the host name to send the data to, and an integer
// representing the port number to send to.
//
// The data pointed to by pData must remain valid until either
// the Write() function returns with an error, or the
// write’s completion is notified by the m_uMsg being sent
// to the window that owns this datagram object with wParam set
// to CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING.
//
int CDatagramSocket::Write(int nLen, LPVOID pData,
 LPSTR pszRemoteName, int nRemotePort)

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library212

{
 // convert the port number into a string and
 // call the version of Write() which accepts
 // a string service name or number
 char pszRemoteService[18];
 _itoa(nRemotePort, pszRemoteService, 10);
 return Write(nLen, pData, pszRemoteName, pszRemoteService);
}

The second implementation of Write() takes a string containing the dotted-decimal IP
address of the destination or the destination host name, and a string containing either
a port number or service name. This version of Write() converts the two strings into a
SOCKADDR_IN Internet address structure and calls another version of the Write() func-
tion.

///
// CDatagramSocket::Write()
//
// Write data to the socket specified by the name and service
// name or number.
//
// This version of the Write() function takes an integer
// representing the length of the data to send, a pointer
// to the data to send, a pointer to a string representing
// the host name to send the data to, and a string representing
// the service name or port number to send the data to.
//
// The data pointed to by pData must remain valid until either
// the Write() function returns with an error, or the
// write’s completion is notified by the m_uMsg being sent
// to the window that owns this datagram object with wParam set
// to CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING.
//
int CDatagramSocket::Write(int nLen, LPVOID pData,
 LPSTR pszRemoteName, LPSTR pszRemoteService)
{
 int nStatus = CWINSOCK_NOERROR; // error status
 LPHOSTENT pHent; // pointer to host entry structure
 LPSERVENT pSent; // pointer to service entry structure
 SOCKADDR_IN sinRemote; // Internet address of destination

 while (1)
 {
 // assign the address family
 sinRemote.sin_family = AF_INET;

 // assign the service port (may have to do a database lookup
 // if a service port number was not specified)
 sinRemote.sin_port = htons(atoi(pszRemoteService));
 if (sinRemote.sin_port == 0)
 {
 pSent = getservbyname(pszRemoteService, “udp”);
 if (pSent == NULL)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 break;

 Chapter 11 ■ CDatagramSocket 213

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

 }
 sinRemote.sin_port = pSent–>s_port;
 }

 // assign the IP address (may have to do a database lookup
 // if a dotted decimal IP address was not specified)
 sinRemote.sin_addr.s_addr = inet_addr(pszRemoteName);
 if (sinRemote.sin_addr.s_addr == INADDR_NONE)
 {
 pHent = gethostbyname(pszRemoteName);
 if (pHent == NULL)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 break;
 }
 sinRemote.sin_addr.s_addr = *(u_long *)pHent–>h_addr;
 }

 // call the version of Write() that takes an
 // Internet address structure
 return Write(nLen, pData, &sinRemote);
 }

 return nStatus;
}

The third implementation of Write() takes a pointer to an Internet address structure
representing the data’s destination. This is the function that does the actual work of
adding the data to the write queue. After the data, its length, and the destination ad-
dress are added to the write queue, a message is posted to the datagram object to trigger
the sending of the data. This message is normally sent by the WinSock subsystem when-
ever it’s safe to send data out the socket. But when the last message arrived from the
WinSock subsystem, there might not have been any data in the write queue that was
waiting to be sent. Faking the WinSock FD_WRITE event causes the socket to check the
write queue and send the first piece of data waiting to be sent.

///
// CDatagramSocket::Write()
//
// Write data to the socket specified by the Internet address.
//
// This version of the Write() function takes an integer
// representing the length of the data to send, a pointer
// to the data to send, and a pointer to an Internet address
// structure to send the data to.
//
// The data pointed to by pData must remain valid until either
// the Write() function returns with an error, or the
// write’s completion is notified by the m_uMsg being sent
// to the window that owns this datagram object with wParam set
// to CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING.
//
int CDatagramSocket::Write(int nLen, LPVOID pData,
 LPSOCKADDR_IN psinRemote)

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library214

{
 int nStatus = CWINSOCK_NOERROR;

 while (1)
 {
 // dynamically allocate a structure to hold the
 // data pointer, the data’s length, and the destination address
 LPDATAGRAMDATA pDatagramData = new DATAGRAMDATA;
 if (pDatagramData == NULL)
 {
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }
 pDatagramData–>pData = pData;
 pDatagramData–>nLen = nLen;
 memcpy(&(pDatagramData–>sin), psinRemote, sizeof(SOCKADDR_IN));

 // add the data to the list
 TRY
 {
 m_listWrite.AddTail(pDatagramData);
 }
 CATCH (CMemoryException, e)
 {
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }
 END_CATCH

 // trigger the FD_WRITE handler to try to send
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, m_s, WSAMAKESELECTREPLY(FD_WRITE, 0));
 break;
 }

 return nStatus;
}

CDatagramSocket::Read()
The Read() member function retrieves data that was sent to the socket. The application
may call Read() when the window that owns the datagram socket receives the m_uMsg
message with wParam set to CWINSOCK_DONE_READING. When this message is received by
the application window, lParam is the number of Read() function calls that can be ex-
ecuted (that is, lParam is the number of datagram packets presently stored in the read
queue). The Read() function takes a pointer to an integer (pnLen) and, optionally, a
pointer to a SOCKADDR_IN structure (psinRemote). Upon successful completion of Read(),
a pointer to the data is returned and the integer pointed to by pnLen contains the num-
ber of bytes in the datagram returned. If a pointer was supplied for the psinRemote pa-
rameter, the address of the sender of the data is returned. On error, NULL is returned.

///
// CDatagramSocket::Read()

 Chapter 11 ■ CDatagramSocket 215

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

//
// Read data that has been received by the socket.
//
// This function takes a pointer to an integer that will be filled
// with the length of the data read and an optional pointer
// to an Internet address structure that will be filled with
// the address of the sender of the data.
//
// A pointer to the data is returned on success. The application
// using this object must free this pointer. NULL is returned on failure.
//
LPVOID CDatagramSocket::Read(LPINT pnLen, LPSOCKADDR_IN psinRemote/*= NULL*/)
{
 LPVOID pData = NULL;

 // check to see if there is data to retrieve
 if (!m_listRead.IsEmpty())
 {
 // remove the stream data from the list
 LPDATAGRAMDATA pDatagramData = (LPDATAGRAMDATA)m_listRead.RemoveHead();
 pData = pDatagramData–>pData;
 *pnLen = pDatagramData–>nLen;
 if (psinRemote != NULL)
 memcpy(psinRemote, &(pDatagramData–>sin), sizeof(SOCKADDR_IN));
 delete pDatagramData;
 }

 return pData;
}

CDatagramSocket::OnWinSockEvent()
The OnWinSockEvent() member function handles the asynchronous event notification
messages sent by the WinSock subsystem. The WinSock events of interest are FD_READ
and FD_WRITE. Interest in these events is registered by the call to WSAAsyncSelect() in
the CreateSocket() member function. The Microsoft Foundation Class message map
facility is used to map the CWINSOCK_EVENT_NOTIFICATION message to the OnWinSockEvent()
function. The message map looks like the following:

// message map
BEGIN_MESSAGE_MAP(CDatagramSocket, CWnd)
 //{{AFX_MSG_MAP(CDatagramSocket)
 //}}AFX_MSG_MAP
 ON_MESSAGE(CWINSOCK_EVENT_NOTIFICATION, OnWinSockEvent)
END_MESSAGE_MAP()

The code for OnWinSockEvent() follows. It simply checks for errors and, if there are none,
calls an appropriate message handler.

///
// CDatagramSocket::OnWinSockEvent()
//
// Called when there is an asynchronous event on the socket.
//

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library216

LONG CDatagramSocket::OnWinSockEvent(WPARAM wParam, LPARAM lParam)
{
 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 return 0L;

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_READ:
 return HandleRead(wParam, lParam);
 break;
 case FD_WRITE:
 return HandleWrite(wParam, lParam);
 break;
 default:
 // this should never happen
 ASSERT(0);
 break;
 }

 return 0L;
}

CDatagramSocket::HandleRead()
The HandleRead() member function handles the asynchronous FD_READ event notifica-
tion messages sent by the WinSock subsystem. This function is called when WinSock
thinks a read from the socket will succeed. The first portion of this function allocates
memory for the datagram data structure. A recvfrom() is then attempted. If the receive
is successful, the data is added to the read queue. If everything goes OK, the m_uMsg
message is posted to the application window that owns this datagram socket object, with
wParam set to CWINSOCK_DONE_READING and lParam set to the number of datagrams wait-
ing to be read. When the application receives this message, it should call the Read()
member function. If there is an error in receiving the datagram, wParam is set to
CWINSOCK_ERROR_READING.

///
// CDatagramSocket::HandleRead()
//
// Called when there is an asynchronous read event on the socket.
//
// If the read was successful, the data, its length, and the address
// of the sender of the data, are stored in the read queue. Upon
// a successful read, the application window using this object is
// then notified with the m_uMsg message (wParam set to
// CWINSOCK_DONE_READING; lParam set to the number of data chunks
// in the read queue). At this point, the application should call
// Read(). If the read fails for some reason, the m_uMsg is sent
// with wParam set to CWINSOCK_ERROR_READING.
//
LONG CDatagramSocket::HandleRead(WPARAM wParam, LPARAM lParam)

 Chapter 11 ■ CDatagramSocket 217

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

{
 while (1)
 {
 // allocate memory for incoming data
 LPVOID pData = malloc(READ_BUF_LEN);
 LPDATAGRAMDATA pDatagramData = new DATAGRAMDATA;
 if ((pData == NULL) || (pDatagramData == NULL))
 {
 // free anything that was allocated
 if (pData != NULL)
 free(pData);
 pData = NULL;
 if (pDatagramData != NULL)
 delete pDatagramData;
 pDatagramData = NULL;

 // tell the parent that a possible data read failed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_READING);

 // fake the event to try again
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, m_s,
 WSAMAKESELECTREPLY(FD_READ, 0));

 break;
 }

 // receive data
 int nAddrLen = sizeof(SOCKADDR_IN);
 int nBytesRead = recvfrom(m_s, (LPSTR)pData, READ_BUF_LEN, 0,
 (LPSOCKADDR)&(pDatagramData–>sin), &nAddrLen);
 if (nBytesRead == SOCKET_ERROR)
 {
 // free memory for incoming data
 free(pData);
 pData = NULL;
 delete pDatagramData;
 pDatagramData = NULL;

 // if the error is just that the read would block,
 // don’t do anything; we’ll get another FD_READ soon
 m_nLastError = WSAGetLastError();
 if (m_nLastError == WSAEWOULDBLOCK)
 m_nLastError = 0;
 else
 // tell the parent that a data read failed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_READING);

 break;
 }

 // add the data to the list
 pDatagramData–>pData = pData;
 pDatagramData–>nLen = nBytesRead;
 TRY
 {
 m_listRead.AddTail(pDatagramData);
 }
 CATCH (CMemoryException, e)

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library218

 {
 free(pData);
 pData = NULL;
 delete pDatagramData;
 pDatagramData = NULL;
 // tell the parent that a data read failed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_READING);
 break;
 }
 END_CATCH

 // tell the parent that data has been read
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_DONE_READING,
 (LPARAM)m_listRead.GetCount());

 break;
 }

 return 0L;
}

CDatagramSocket::HandleWrite()
The HandleWrite() member function handles the asynchronous FD_WRITE event notifi-
cation messages sent by the WinSock subsystem. This function is called when WinSock
thinks a write out of the socket will succeed. The first portion of this socket checks to
see whether there is any data waiting to be sent from the write queue. This queue is
added to by the application calling the Write() member function. If there is data in the
write queue, a sendto() is attempted. If the sendto() would block, the data is retained
to have another send attempted at a later time. If the sendto() fails with an error other
than WSAEWOULDBLOCK, the data is removed from the write queue and the m_uMsg mes-
sage is sent to the application window with wParam set to CWINSOCK_ERROR_WRITING and
lParam the pointer to the data that was unsuccessfully sent. If the sendto() succeeds,
wParam is CWINSOCK_DONE_WRITING and lParam is the data pointer. When the application
receives this message notification, it’s safe to free or reuse the storage space pointed to
by the pointer returned in lParam.

///
// CDatagramSocket::HandleWrite()
//
// Called when there is an asynchronous write event on the socket.
//
// If there is data in the write queue waiting to be sent,
// a WinSock send is attempted. If the send is successful,
// a m_uMsg message is sent to the application window with
// wParam set to CWINSOCK_DONE_WRITING and lParam set to the
// address of the data that was sent. On send failure,
// wParam is set to CWINSOCK_ERROR_WRITING and lParam set to
// the address of the data which couldn’t be sent. In either
// case, the application may free the pointer pointing to
// the data or reuse that data buffer.

 Chapter 11 ■ CDatagramSocket 219

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

//
LONG CDatagramSocket::HandleWrite(WPARAM wParam, LPARAM lParam)
{
 while (1)
 {
 // check to see if there is any data to send
 if (m_listWrite.IsEmpty())
 break;

 // get pointers to data, data length, and destination address
 LPDATAGRAMDATA pDatagramData = (LPDATAGRAMDATA)m_listWrite.GetHead();
 LPVOID pData = pDatagramData–>pData;
 int nLen = pDatagramData–>nLen;
 SOCKADDR_IN sin;
 memcpy(&sin, &(pDatagramData–>sin), sizeof(SOCKADDR_IN));

 // send the data
 BOOL bRemove = FALSE; // remove data from queue?
 int nBytesSent = sendto(m_s, (LPCSTR)pData, nLen, 0,
 (LPSOCKADDR)&sin, sizeof(SOCKADDR_IN));
 if (nBytesSent == SOCKET_ERROR)
 {
 // if the error is just that the send would block,
 // don’t do anything; we’ll get another FD_WRITE soon
 m_nLastError = WSAGetLastError();
 if (m_nLastError == WSAEWOULDBLOCK)
 m_nLastError = 0;
 else
 {
 bRemove = TRUE;
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_WRITING,
 (LPARAM)pData);
 }
 }
 else
 {
 // if data was sent, we must still check to see
 // if all the bytes were sent
 bRemove = TRUE;
 if (nBytesSent == nLen)
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_DONE_WRITING,
 (LPARAM)pData);
 else
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_WRITING,
 (LPARAM)pData);
 }

 // if the data was sent or there was a real
 // error, remove the data from the queue
 if (bRemove)
 {
 delete pDatagramData;
 m_listWrite.RemoveHead();
 }

 // if there is more data to send, trigger this FD_WRITE handler
 if (!m_listWrite.IsEmpty())
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, m_s,

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library220

 WSAMAKESELECTREPLY(FD_WRITE, 0));

 break;
 }

 return 0L;
}

CDatagramSocket::DestroySocket()
The DestroySocket() member function removes any data queued up on the read or
write queues, closes the socket, and destroys the hidden window that’s used for WinSock
messages. It’s implemented as follows:

///
// CDatagramSocket::DestroySocket()
//
// Close the socket, remove any queued data,
// and destroy the hidden window.
//
int CDatagramSocket::DestroySocket()
{
 int nStatus = CWINSOCK_NOERROR;

 // make sure the socket is valid
 if (m_s == INVALID_SOCKET)
 nStatus = CWINSOCK_PROGRAMMING_ERROR;
 else
 {
 // remove any data in the write queue
 while (!m_listWrite.IsEmpty())
 {
 LPDATAGRAMDATA pDatagramData = (LPDATAGRAMDATA)m_listWrite.RemoveHead();
 LPVOID pData = pDatagramData–>pData;
 delete pDatagramData;

 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_WRITING,
 (LPARAM)pData);
 }

 // remove any data in the read queue
 while (!m_listRead.IsEmpty())
 {
 LPDATAGRAMDATA pDatagramData = (LPDATAGRAMDATA)m_listRead.RemoveHead();
 free(pDatagramData–>pData);
 delete pDatagramData;
 }

 // close the socket and initialize variables
 closesocket(m_s);
 InitVars();

 // destroy the hidden window
 DestroyWindow();

 Chapter 11 ■ CDatagramSocket 221

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

 }

 return nStatus;
}

CDatagramSocket::LastError()
The LastError() member function is implemented as an in-line function. It simply re-
turns the m_nLastError value that contains the last WinSock error message generated
by the CDatagramSocket object. This function should be called whenever a
CDatagramSocket member function returns CWINSOCK_WINSOCK_ERROR.

Application Responsibility
The goal of this object is to enable the rapid development of a networked application
using datagram sockets. The public interface to the CDatagramSocket object consists of
the following functions: CreateSocket(), DestroySocket(), Read(), Write(), and
LastError().

The application must provide a certain level of support for the datagram object. The
application must provide a message handler to receive messages sent from the object.
Also, the datagram object’s constructor requires a pointer to the application window
object and a message. A sample call to a datagram object constructor looks like the fol-
lowing:

pdg = new CDatagramSocket(this, WM_USER + 1);

An entry must be made in the message map to associate the WM_USER + 1 message to an
application member function.

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 //}}AFX_MSG_MAP
 ON_MESSAGE(WM_USER + 1, OnWinSockEvent)
END_MESSAGE_MAP()

The function that handles the WM_USER + 1 message, OnWinSockEvent in this case, must
have handlers for four different wParam values. In the following code snippet, m_pdg is a
member variable of the CMainFrame class, which points to a CDatagramSocket object.
The following code may be used as a template for your datagram socket object message
handler:

LONG CMainFrame::OnWinSockEvent(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten;
 LPVOID pDataRead;
 int nLen;

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library222

 SOCKADDR_IN sin;

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 // the data storage space pointed to by pDataWritten
 // may now be freed or reused
 break;
 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 // the data storage space pointed to by pDataWritten
 // may now be freed or reused
 break;
 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_pdg–>Read(&nLen, &sin);
 // the data storage space pointed to by pDataRead
 // may be freed after your processing is complete
 break;
 case CWINSOCK_ERROR_READING:
 break;
 default:
 break;
 }

 return 0L;
}

Allocating the datagram socket object doesn’t make the socket available for communi-
cation. The CreateSocket() member function must be called first. If the socket is to act
as a server, it must be bound to a specific port or service name. To do that, call the func-
tion in one of the following ways:

int nPort;
char pszServiceName[100];
int nStatus;

...assign port or service name...

nStatus = m_pdg–>CreateSocket(nPort);
nStatus = m_pdg–>CreateSocket(pszServiceName);

If this socket isn’t a server, simply call CreateSocket(), as in:

nStatus = m_pdg–>CreateSocket();

To send data, the application must provide the number of bytes to send, a pointer to
the data, and the destination specifier. The data must remain allocated until the mes-
sage handler discussed previously receives a message with wParam set to
CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING. In this case, lParam is the pointer

 Chapter 11 ■ CDatagramSocket 223

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

initially passed to Write(). The data may also be deallocated if Write() returns an error
value. There are several options for the destination specifier. The following code shows
the many ways of calling Write():

int nLen;
LPVOID pData;
char pszHostName[100];
char pszHostIP[100];
int nPort;
char pszServiceName[100];
SOCKADDR_IN sin;
int nStatus;

... allocate data buffer and assign destination specifiers...

nStatus = m_pdg–>Write(nLen, pData, pszHostName, nPort);
nStatus = m_pdg–>Write(nLen, pData, pszHostIP, nPort);
nStatus = m_pdg–>Write(nLen, pData, pszHostName, pszServiceName);
nStatus = m_pdg–>Write(nLen, pData, pszHostIP, pszServiceName);
nStatus = m_pdg–>Write(nLen, pData, &sin);

You also have an option with the way the data buffer is allocated. You may allocate one
buffer that gets continually reused. You know when it’s safe to reuse the buffer when
the write notification message comes in with wParam set to CWINSOCK_DONE_WRITING or
CWINSOCK_ERROR_WRITING. The other option you have is to allocate a new buffer when-
ever you want to send. In this case you would simply free each buffer when the
CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING message arrives.

To receive data, the application must provide a pointer to an integer to retrieve the
number of bytes read. A pointer to a SOCKADDR_IN structure can optionally be provided
to retrieve the address of the datagram’s sender. The Read() function returns a pointer
to the data or NULL on error. Read() should be called when the message handler is acti-
vated with wParam set to CWINSOCK_DONE_READING. Following are the two ways to call
Read():

LPVOID pDataRead;
int nLen;
SOCKADDR_IN sin;

pDataRead = m_pdg–>Read(&nLen);
pDataRead = m_pdg–>Read(&nLen, &sin);

It’s the application’s responsibility to free the pointer returned by Read().

To end the use of the datagram socket object, call DestroySocket(), as in:

int nStatus;
nStatus = m_pdg–>DestroySocket();

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH11 LP #3

Part III ■ WinSock Class Library224

Summary
This chapter describes a class to manipulate a datagram socket. The goal of this object
is to enable the rapid development of a networked application using datagram commu-
nication. The next chapter describes a class that handles stream socket communications.
Chapters 14 and 15 use the CDatagramSocket object in complete programs.

 Chapter 12 ■ CStreamSocket 225

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

1212

CStreamSocketCStreamSocket

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library226

This chapter discusses the CStreamSocket class. This class simplifies an application’s
interaction with a stream socket. This class is responsible for the following: creating a
stream socket; optionally binding the socket to a name; listening for client connection
requests and accepting client connections; sending and receiving data; and destroying
the socket.

The class declaration is as follows:

///
// CStreamSocket
//
class CStreamSocket : public CWnd
{
private:
 CWnd *m_pParentWnd; // window to receive event notification
 UINT m_uMsg; // message to send to m_pParentWnd on event
 SOCKET m_s; // socket handle
 SOCKADDR_IN m_sinLocal; // name bound to socket m_s
 SOCKADDR_IN m_sinRemote; // name on other side of m_s
 int m_nLastError; // last WinSock error
 BOOL m_bServer; // TRUE if socket m_s is bound to a name
 CPtrList m_listWrite; // data waiting to be sent
 CPtrList m_listRead; // data read

public:
 CStreamSocket(CWnd *pParentWnd, UINT uMsg);
 virtual ~CStreamSocket();
 int CreateSocket(int nLocalPort);
 int CreateSocket(LPSTR pszLocalService = NULL);
 int DestroySocket();
 int Connect(LPSTR pszRemoteName, int nRemotePort);
 int Connect(LPSTR pszRemoteName, LPSTR pszRemoteService);
 int Connect(LPSOCKADDR_IN psinRemote);
 int Accept(CStreamSocket *pStreamSocket);
 int Write(int nLen, LPVOID pData);
 LPVOID Read(LPINT pnLen);
 int GetPeerName(LPSOCKADDR_IN psinRemote);
 int LastError() { return m_nLastError; }

private:
 void InitVars(BOOL bInitLastError = TRUE);
 LONG HandleRead(WPARAM wParam, LPARAM lParam);
 LONG HandleWrite(WPARAM wParam, LPARAM lParam);

 // message map functions
protected:
 //{{AFX_MSG(CStreamSocket)
 //}}AFX_MSG
 LONG OnWinSockEvent(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

The class contains several private member variables that are inaccessible outside of the
class implementation. Of particular interest are the m_listWrite and m_listRead

 Chapter 12 ■ CStreamSocket 227

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

member variables. These CPtrObject-derived objects maintain pointers to the incom-
ing and outgoing data. The data maintained by these lists has the following structure:

// structure used for stream socket read/write queue
typedef struct tagSTREAMDATA
{
 LPVOID pData;
 int nLen;
} STREAMDATA, FAR * LPSTREAMDATA;

CStreamSocket Constructor
The constructor for the CStreamSocket object initializes the class’ member variables. The
m_pParentWnd variable is the window object that’s creating this stream socket object. This
parameter is required because the CStreamSocket object uses Windows messaging to
communicate certain status information back to the object’s user. Similarly, the m_uMsg
variable is the actual Windows message that m_pParentWnd receives when the stream socket
needs to notify the application of certain information. The class’ constructor looks like
the following:

///
// CStreamSocket constructor()
//
// Constructs the CStreamSocket object. Initializes member variables
//
CStreamSocket::CStreamSocket(CWnd *pParentWnd, UINT uMsg)
{
 m_pParentWnd = pParentWnd;
 ASSERT(m_pParentWnd != NULL);
 m_uMsg = uMsg;
 ASSERT(m_uMsg != 0);
 InitVars();
}

CStreamSocket::InitVars()
The InitVars() member function initializes several private member variables. Its imple-
mentation looks like the following:

///
// CStreamSocket::InitVars()
//
// Initialize class member variables.
//
void CStreamSocket::InitVars(BOOL bInitLastError/*= TRUE*/)
{
 if (bInitLastError)
 m_nLastError = 0;

 m_s = INVALID_SOCKET;

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library228

 memset(&m_sinLocal, 0, sizeof(SOCKADDR_IN));
 memset(&m_sinRemote, 0, sizeof(SOCKADDR_IN));
 m_bServer = FALSE;
}

CStreamSocket::CreateSocket()
The CreateSocket() member function creates a hidden window that’s used for WinSock
messages (that is, FD_READ, FD_WRITE, FD_ACCEPT, FD_CONNECT, and FD_CLOSE). This function
also creates a stream socket and optionally binds the socket to a name. There are two
implementations of the CreateSocket() member function. One implementation takes
an integer parameter representing the port number, in host byte order, that should be
bound to the socket. The other version of CreateSocket() accepts a string containing
the numerical port number or service name to bind to the socket, or NULL. If NULL is
specified, or if the function is called with no parameter at all, the socket is not bound to
a name. This parameter is only specified for server type sockets.

The version of CreateSocket() that accepts an integer port number simply converts the
integer into a string and calls the other version of CreateSocket(). It’s implemented as
follows:

///
// CStreamSocket::CreateSocket()
//
// Create a hidden window that will receive asynchronous messages
// from WinSock. Also creates a socket and optionally binds it to
// a name if the socket is a server socket.
//
// This version of the CreateSocket() function takes a
// port number, in host order, as input. A port number
// should only be specified if the socket is to be bound
// to a certain port. If you don’t care which port is
// assigned to the socket, just call CreateSocket() without
// any parameter, causing CreateSocket(NULL) to be called.
//
int CStreamSocket::CreateSocket(int nLocalPort)
{
 // if this version of the function is being called,
 // a valid port number must be specified
 if (nLocalPort <= 0)
 return CWINSOCK_PROGRAMMING_ERROR;

 // convert the port number into a string and
 // call the version of CreateSocket() which
 // accepts a string
 char pszLocalService[18];
 _itoa(nLocalPort, pszLocalService, 10);
 return CreateSocket(pszLocalService);
}

 Chapter 12 ■ CStreamSocket 229

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

The version of CreateSocket() that accepts a string port number or service name is imple-
mented in the code that follows. If the stream socket need not be bound to a specific
port number or service name, simply call this function with no parameter. The C++
default argument feature will pass NULL to the function, triggering CreateSocket() to
not bind the socket.

///
// CStreamSocket::CreateSocket()
//
// Create a hidden window that will receive asynchronous messages
// from WinSock. Also creates a socket and optionally binds it to
// a name if the socket is a server socket.
//
// This version of the CreateSocket() function takes a
// string containing a service name or port number.
// A parameter should only be specified if the socket is to be
// bound to a certain port. If you don’t care which port is
// assigned to the socket, just call CreateSocket() without
// any parameter, causing CreateSocket(NULL) to be called.
//
int CStreamSocket::CreateSocket(LPSTR pszLocalService/*= NULL*/)
{
 int nStatus = CWINSOCK_NOERROR;

 while (1)
 {
 // Make sure the socket isn’t already created.
 // If the socket handle is valid, return from this
 // function right away so the existing parameters of
 // the object are not tampered with.
 if (m_s != INVALID_SOCKET)
 return CWINSOCK_PROGRAMMING_ERROR;

 InitVars();

 // create the hidden window
 RECT rect;
 rect.left = 0;
 rect.top = 0;
 rect.right = 100;
 rect.bottom = 100;
 if (Create(NULL, NULL, WS_OVERLAPPEDWINDOW, rect, m_pParentWnd, 0) == 0)
 {
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }

 // create the socket
 m_s = socket(PF_INET, SOCK_STREAM, 0);
 if (m_s == INVALID_SOCKET)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 DestroyWindow();
 break;
 }

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library230

 // If pszLocalService is not NULL, this is a server socket
 // that will accept data on the specified port.
 if (pszLocalService != NULL)
 {
 // this socket is bound to a port number
 // so set the server flag
 m_bServer = TRUE;

 // assign the address family
 m_sinLocal.sin_family = AF_INET;

 // assign the service port (may have to do a database lookup
 // if a service port number was not specified)
 m_sinLocal.sin_port = htons(atoi(pszLocalService));
 if (m_sinLocal.sin_port == 0)
 {
 LPSERVENT pSent = getservbyname(pszLocalService, “tcp”);
 if (pSent == NULL)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroyWindow();
 break;
 }
 m_sinLocal.sin_port = pSent–>s_port;
 }

 // assign the IP address
 m_sinLocal.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind the server socket to the name containing the port
 if (bind(m_s, (LPSOCKADDR)&m_sinLocal, sizeof(SOCKADDR_IN)) == SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroyWindow();
 break;
 }
 }

 // start asynchronous event notification
 long lEvent;
 if (m_bServer)
 lEvent = FD_READ | FD_WRITE | FD_ACCEPT | FD_CLOSE;
 else
 lEvent = FD_READ | FD_WRITE | FD_CONNECT | FD_CLOSE;
 if (WSAAsyncSelect(m_s, m_hWnd, CWINSOCK_EVENT_NOTIFICATION, lEvent) ==
 SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroySocket();
 break;
 }

 Chapter 12 ■ CStreamSocket 231

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

 // if this is a server, listen for client connections
 if (m_bServer)
 {
 if (listen(m_s, 3) == SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(m_s);
 DestroySocket();
 break;
 }
 }

 break;
 }

 // if anything failed in this function, set the
 // socket variables appropriately
 if (nStatus != CWINSOCK_NOERROR)
 InitVars(FALSE);

 return nStatus;
}

CStreamSocket::Connect()
The Connect() member function is used by client sockets to connect to a server. There
are three implementations of Connect() that specify the server address in different ways.

One implementation takes a string containing the dotted-decimal IP address of the
destination or the destination host name, and an integer parameter representing the port
number, in host byte order. This version of Connect() simply converts the integer to a
string and calls another version of the function that’s designed to accept a string con-
taining the port number or service name.

///
// CStreamSocket::Connect()
//
// Connect the client socket to a server specified by the name and port.
//
// This version of the Connect() function takes a pointer to a
// string representing the host name to send the data to and
// an integer representing the port number to connect to.
//
int CStreamSocket::Connect(LPSTR pszRemoteName, int nRemotePort)
{
 // convert the port number into a string and
 // call the version of Connect() which accepts
 // a string service name or number
 char pszRemoteService[18];
 _itoa(nRemotePort, pszRemoteService, 10);
 return Connect(pszRemoteName, pszRemoteService);
}

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library232

The second implementation of Connect() takes a string containing the dotted-decimal
IP address of the destination or the destination host name, and a string containing ei-
ther a port number or service name. This version of Connect() converts the two strings
into a SOCKADDR_IN Internet address structure and calls another version of the Connect()
function.

///
// CStreamSocket::Connect()
//
// Connect the client socket to a server specified by the name and
// service name or port.
//
// This version of the Connect() function takes a pointer to a
// string representing the host name to send the data to and
// an integer representing the service name or port number to
// connect to.
//
int CStreamSocket::Connect(LPSTR pszRemoteName, LPSTR pszRemoteService)
{
 int nStatus = CWINSOCK_NOERROR; // error status
 LPHOSTENT pHent; // pointer to host entry structure
 LPSERVENT pSent; // pointer to service entry structure
 SOCKADDR_IN sinRemote; // Internet address of destination

 while (1)
 {
 // assign the address family
 sinRemote.sin_family = AF_INET;

 // assign the service port (may have to do a database lookup
 // if a service port number was not specified)
 sinRemote.sin_port = htons(atoi(pszRemoteService));
 if (sinRemote.sin_port == 0)
 {
 pSent = getservbyname(pszRemoteService, “tcp”);
 if (pSent == NULL)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 break;
 }
 sinRemote.sin_port = pSent–>s_port;
 }

 // assign the IP address (may have to do a database lookup
 // if a dotted decimal IP address was not specified)
 sinRemote.sin_addr.s_addr = inet_addr(pszRemoteName);
 if (sinRemote.sin_addr.s_addr == INADDR_NONE)
 {
 pHent = gethostbyname(pszRemoteName);
 if (pHent == NULL)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 break;
 }
 sinRemote.sin_addr.s_addr = *(u_long *)pHent–>h_addr;

 Chapter 12 ■ CStreamSocket 233

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

 }

 // call the version of Connect() that takes an
 // Internet address structure
 return Connect(&sinRemote);
 }

 return nStatus;
}

The third implementation of Connect() takes a pointer to an Internet address structure
representing the server. This is the function that does the actual work of connect-
ing to the server. When the asynchronous connect operation succeeds, a
CWINSOCK_YOU_ARE_CONNECTED message is sent to the parent of the CStreamSocket ob-
ject.

///
// CStreamSocket::Connect()
//
// Connect the client socket to a server specified by the
// Internet address.
//
// This version of the Connect() function takes a pointer
// to an Internet address structure to connect to.
//
int CStreamSocket::Connect(LPSOCKADDR_IN psinRemote)
{
 int nStatus = CWINSOCK_NOERROR;

 while (1)
 {
 // only clients should call connect
 if (m_bServer)
 {
 nStatus = CWINSOCK_PROGRAMMING_ERROR;
 break;
 }

 // copy the Internet address of the remote server to connect to
 memcpy(&m_sinRemote, psinRemote, sizeof(SOCKADDR_IN));

 // attempt the asynchronous connect
 if (connect(m_s, (LPSOCKADDR)&m_sinRemote, sizeof(SOCKADDR_IN)) ==
 SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 if (m_nLastError == WSAEWOULDBLOCK)
 m_nLastError = 0;
 else
 nStatus = CWINSOCK_WINSOCK_ERROR;
 break;
 }

 break;
 }

 return nStatus;
}

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library234

CStreamSocket::Accept()
The Accept() member function is used by server sockets to accept a client connection
request. Accept() is called when the parent who owns the server CStreamSocket object
receives the CWINSOCK_READY_TO_ACCEPT_CONNECTION message. Accept() takes a pointer
to another CStreamSocket object. It’s this object that’s used for data transfer between
the client and server. The original server socket remains available for listening for more
client connection requests.

///
// CStreamSocket::Accept()
//
// Accept a connection request from a client.
//
// This function takes a pointer to a CStreamSocket object. This
// pointer will become the newly connected socket.
//
int CStreamSocket::Accept(CStreamSocket *pStreamSocket)
{
 int nStatus = CWINSOCK_NOERROR;

 while (1)
 {
 // must have valid CStreamSocket object pointer passed in
 if (pStreamSocket == NULL)
 {
 ASSERT(0);
 nStatus = CWINSOCK_PROGRAMMING_ERROR;
 break;
 }

 // only servers should call accept
 if (!m_bServer)
 {
 nStatus = CWINSOCK_PROGRAMMING_ERROR;
 break;
 }

 // Make sure the socket isn’t already created.
 // If the socket handle is valid, return from this
 // function right away so the existing parameters of
 // the object are not tampered with.
 if (pStreamSocket–>m_s != INVALID_SOCKET)
 return CWINSOCK_PROGRAMMING_ERROR;

 pStreamSocket–>InitVars();

 // create the hidden window
 RECT rect;
 rect.left = 0;
 rect.top = 0;
 rect.right = 100;
 rect.bottom = 100;
 if (pStreamSocket–>Create(NULL, NULL, WS_OVERLAPPEDWINDOW, rect,
 pStreamSocket–>m_pParentWnd, 0) == 0)

 Chapter 12 ■ CStreamSocket 235

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

 {
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }

 // accept the client connection
 pStreamSocket–>m_s = accept(m_s, NULL, NULL);
 if (pStreamSocket–>m_s == INVALID_SOCKET)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 pStreamSocket–>DestroyWindow();
 break;
 }

 // start asynchronous event notification
 long lEvent;
 lEvent = FD_READ | FD_WRITE | FD_CONNECT | FD_CLOSE;
 if (WSAAsyncSelect(pStreamSocket–>m_s, pStreamSocket–>m_hWnd,
 CWINSOCK_EVENT_NOTIFICATION, lEvent) == SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 closesocket(pStreamSocket–>m_s);
 pStreamSocket–>DestroySocket();
 break;
 }

 break;
 }

 // if anything failed in this function, set the
 // socket variables appropriately
 if (nStatus == CWINSOCK_WINSOCK_ERROR)
 pStreamSocket–>InitVars(FALSE);
 else if (nStatus == CWINSOCK_NOERROR)
 // notify the parent if the connection was accepted successfully
 pStreamSocket–>m_pParentWnd–>PostMessage(m_uMsg,
 CWINSOCK_YOU_ARE_CONNECTED);

 return nStatus;
}

CStreamSocket::GetPeerName()
The GetPeerName() member function is used to find the Internet address at the other
end of a connected stream socket. This is a useful function for servers that may wish to
log the names of the clients that use its services.

///
// CStreamSocket::GetPeerName()
//
// Copies the Internet address of the other end of the socket
// connection into the pointer provided.
// Useful for server’s to use after an Accept().
//

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library236

int CStreamSocket::GetPeerName(LPSOCKADDR_IN psinRemote)
{
 int nStatus = CWINSOCK_NOERROR;
 int nLen = sizeof(SOCKADDR_IN);

 // make sure the listening socket doesn’t call this function
 if (m_bServer)
 nStatus = CWINSOCK_PROGRAMMING_ERROR;
 else if (getpeername(m_s, (LPSOCKADDR)psinRemote, &nLen) == SOCKET_ERROR)
 {
 m_nLastError = WSAGetLastError();
 nStatus = CWINSOCK_WINSOCK_ERROR;
 }

 return (nStatus);
}

CStreamSocket::Write()
The Write() member function writes data to the connected socket. The data is not
immediately sent out the socket, though. Instead, the data is added to the write queue.
The data is not sent until the stream socket receives the FD_WRITE message from the
WinSock subsystem, notifying it that sending is now possible.

Because the data is not sent immediately, the data specified by the data pointer must
not be deallocated or reused until the window that owns the stream socket receives the
m_uMsg message with wParam set to CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING.
When this message is received by the application window, lParam is the pointer to the
data sent. At this point, the data specified by the pointer can be freed or reused. If the
Write() function fails immediately, denoted by the function returning something other
than CWINSOCK_NOERROR, the data pointer may be freed or reused (the m_uMsg write mes-
sage will never be received for this data pointer).

Write() takes parameters that specify the number of bytes to send and a pointer to the
data. After the data and its length are added to the write queue, a message is posted to
the stream object to trigger the sending of the data. This message is normally sent by
the WinSock subsystem whenever it’s safe to send data out the socket. But when the
last message arrived from the WinSock subsystem, there may not have been any data in
the write queue that was waiting to be sent. Faking the WinSock FD_WRITE event causes
the socket to check the write queue and send the first piece of data waiting to be sent.

///
// CStreamSocket::Write()
//
// Write data to the socket..
//
// This function takes an integer representing the length of the
// data to send and a pointer to the data to send.
//

 Chapter 12 ■ CStreamSocket 237

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

// The data pointed to by pData must remain valid until either
// the Write() function returns with an error, or the
// write’s completion is notified by the m_uMsg being sent
// to the window that owns this stream object with wParam set
// to CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING.
//
int CStreamSocket::Write(int nLen, LPVOID pData)
{
 int nStatus = CWINSOCK_NOERROR;

 while (1)
 {
 // dynamically allocate a structure to hold the
 // data pointer and the data’s length
 LPSTREAMDATA pStreamData = new STREAMDATA;
 if (pStreamData == NULL)
 {
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }
 pStreamData–>pData = pData;
 pStreamData–>nLen = nLen;

 // add the data to the list
 TRY
 {
 m_listWrite.AddTail(pStreamData);
 }
 CATCH (CMemoryException, e)
 {
 delete pStreamData;
 nStatus = CWINSOCK_WINDOWS_ERROR;
 break;
 }
 END_CATCH

 // trigger the FD_WRITE handler to try to send
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, m_s, WSAMAKESELECTREPLY(FD_WRITE, 0));
 break;
 }

 return nStatus;
}

CStreamSocket::Read()
The Read() member function retrieves data that was sent to the socket. The application
may call Read() when the window that owns the stream socket receives the m_uMsg message
with wParam set to CWINSOCK_DONE_READING. When this message is received by the appli-
cation window, lParam is the number of Read() function calls that may be executed (that
is, lParam is the number of data buffers presently stored in the read queue). The Read()
function takes a pointer to an integer (pnLen). Upon successful completion of Read(), a

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library238

pointer to the data is returned and the integer pointed to by pnLen contains the number
of bytes in the data buffer returned. On error, NULL is returned.

///
// CStreamSocket::Read()
//
// Read data that has been received by the socket.
//
// This function takes a pointer to an integer that will be filled
// with the length of the data read.
//
// A pointer to the data is returned on success. The application
// using this object must free this pointer. NULL is returned on failure.
//
LPVOID CStreamSocket::Read(LPINT pnLen)
{
 LPVOID pData = NULL;

 // check to see if there is data to retrieve
 if (!m_listRead.IsEmpty())
 {
 // remove the stream data from the list
 LPSTREAMDATA pStreamData = (LPSTREAMDATA)m_listRead.RemoveHead();
 pData = pStreamData–>pData;
 *pnLen = pStreamData–>nLen;
 delete pStreamData;
 }

 return pData;
}

CStreamSocket::OnWinSockEvent()
The OnWinSockEvent() member function handles the asynchronous event notification
messages sent by the WinSock subsystem. The WinSock events of interest are FD_READ,
FD_WRITE, and FD_CLOSE. If the socket is a server, interest is also expressed in the FD_ACCEPT
event. For clients, FD_CONNECT is the additional event of interest. Interest in these events
is registered by the call to WSAAsyncSelect() in the CreateSocket() member func-
tion. The Microsoft Foundation Class message map facility is used to map the
CWINSOCK_EVENT_NOTIFICATION message to the OnWinSockEvent() function. The mes-
sage map looks like the following:

// message map
BEGIN_MESSAGE_MAP(CStreamSocket, CWnd)
 //{{AFX_MSG_MAP(CStreamSocket)
 //}}AFX_MSG_MAP
 ON_MESSAGE(CWINSOCK_EVENT_NOTIFICATION, OnWinSockEvent)
END_MESSAGE_MAP()

OnWinSockEvent() checks for errors and, if there are none, executes an appropriate message
handler. For the FD_ACCEPT, FD_CONNECT, and FD_CLOSE events, a message is simply re-
layed to the parent of the stream object. Before the FD_CLOSE message is relayed to the

 Chapter 12 ■ CStreamSocket 239

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

application by the sending of the CWINSOCK_LOST_CONNECTION message, a check is made
for additional data arriving on the socket. The CWINSOCK_LOST_CONNECTION message isn’t
sent to the application until all queued data is received and processed.

///
// CStreamSocket::OnWinSockEvent()
//
// Called when there is an asynchronous event on the socket.
//
LONG CStreamSocket::OnWinSockEvent(WPARAM wParam, LPARAM lParam)
{
 // check for an error
 if (WSAGETSELECTERROR(lParam) != 0)
 return 0L;

 // what event are we being notified of?
 switch (WSAGETSELECTEVENT(lParam))
 {
 case FD_READ:
 return HandleRead(wParam, lParam);
 break;
 case FD_WRITE:
 return HandleWrite(wParam, lParam);
 break;
 case FD_ACCEPT:
 // tell the parent window that a client would like to connect
 // to the server socket
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_READY_TO_ACCEPT_CONNECTION);
 break;
 case FD_CONNECT:
 // tell the parent window that the socket has connected
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_YOU_ARE_CONNECTED);
 break;
 case FD_CLOSE:
 // check for more data queued on the socket
 // (don’t tell the application that the socket is closed
 // until all data has been read and notification has been posted)
 if (HandleRead(wParam, lParam))
 {
 // fake the close event to try again
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, wParam, lParam);
 break;
 }

 // tell the parent window that the socket is closed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_LOST_CONNECTION);
 break;
 default:
 // this should never happen
 ASSERT(0);
 break;
 }

 return 0L;
}

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library240

CStreamSocket::HandleRead()
The HandleRead() member function handles the asynchronous FD_READ event notifica-
tion messages sent by the WinSock subsystem. This function is called when WinSock
thinks a read from the socket will succeed. The first portion of this function allocates
memory for the data and the data’s length. A recv() is then attempted. If the receive is
successful, the data is added to the read queue. If everything goes OK, the m_uMsg mes-
sage is posted to the application window that owns this stream socket object, with wParam
set to CWINSOCK_DONE_READING and lParam set to the number of data buffers waiting to
be read. When the application receives this message, it should call the Read() member
function. If there is an error in receiving the data, wParam is set to CWINSOCK_ERROR_READING.
If data is received and the CWINSOCK_DONE_READING message is sent to the application, a
1 is returned by HandleRead(), otherwise, 0 is returned. This differentiation is used by
OnWinSockEvent()’s FD_CLOSE handler to let it know when all data received on the socket
is completely processed.

///
// CStreamSocket::HandleRead()
//
// Called when there is an asynchronous read event on the socket.
//
// If the read was successful, the data and its length are stored
// in the read queue. Upon a successful read, the application
// window using this object is then notified with the m_uMsg message
// (wParam set to CWINSOCK_DONE_READING; lParam set to the number of
// data chunks in the read queue). At this point, the application
// should call Read(). If the read fails for some reason, the m_uMsg
// is sent with wParam set to CWINSOCK_ERROR_READING.
//
LONG CStreamSocket::HandleRead(WPARAM wParam, LPARAM lParam)
{
 while (1)
 {
 // allocate memory for incoming data
 LPVOID pData = malloc(READ_BUF_LEN);
 LPSTREAMDATA pStreamData = new STREAMDATA;
 if ((pData == NULL) || (pStreamData == NULL))
 {
 // free anything that was allocated
 if (pData != NULL)
 free(pData);
 pData = NULL;
 if (pStreamData != NULL)
 delete pStreamData;
 pStreamData = NULL;

 // tell the parent that a possible data read failed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_READING);

 // fake the event to try again
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, m_s,
 WSAMAKESELECTREPLY(FD_READ, 0));

 Chapter 12 ■ CStreamSocket 241

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

 break;
 }

 // receive data
 int nBytesRead = recv(m_s, (LPSTR)pData, READ_BUF_LEN, 0);
 if (nBytesRead == SOCKET_ERROR)
 {
 // free memory for incoming data
 free(pData);
 pData = NULL;
 delete pStreamData;
 pStreamData = NULL;

 // if the error is just that the read would block,
 // don’t do anything; we’ll get another FD_READ soon
 m_nLastError = WSAGetLastError();
 if (m_nLastError == WSAEWOULDBLOCK)
 m_nLastError = 0;
 else
 // tell the parent that a data read failed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_READING);

 break;
 }

 // make sure some data was read
 if (nBytesRead == 0)
 {
 // free memory for incoming data
 free(pData);
 pData = NULL;
 delete pStreamData;
 pStreamData = NULL;

 break;
 }

 // add the data to the list
 pStreamData–>pData = pData;
 pStreamData–>nLen = nBytesRead;
 TRY
 {
 m_listRead.AddTail(pStreamData);
 }
 CATCH (CMemoryException, e)
 {
 free(pData);
 pData = NULL;
 delete pStreamData;
 pStreamData = NULL;
 // tell the parent that a data read failed
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_READING);
 break;
 }
 END_CATCH

 // tell the parent that data has been read

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library242

 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_DONE_READING,
 (LPARAM)m_listRead.GetCount());

 // 1 is returned if there is data so CStreamSocket::OnWinSockEvent()’s
 // FD_CLOSE handler will know when the socket can really be closed
 return 1L;

 break;
 }

 return 0L;
}

CStreamSocket::HandleWrite()
The HandleWrite() member function handles the asynchronous FD_WRITE event notifi-
cation messages sent by the WinSock subsystem. This function is called when WinSock
thinks a write out of the socket will succeed. The first portion of this socket checks to
see whether there is any data waiting to be sent from the write queue. This queue is
added to by the application calling the Write() member function. If there is data in the
write queue, a send() is attempted. If the send() would block, the data is retained to
have another send attempted at a later time. If the send() fails with an error other than
WSAEWOULDBLOCK, the data is removed from the write queue and the m_uMsg message is
sent to the application window with wParam set to CWINSOCK_ERROR_WRITING and lParam
the pointer to the data that was unsuccessfully sent. If the send() succeeds but not all of
the bytes are sent, a pointer into the buffer is retained until the next time HandleWrite()
is executed. When the entire buffer is successfully sent, wParam is set to
CWINSOCK_DONE_WRITING and lParam is the data pointer. When the application receives
this message notification, it’s safe to free or reuse the storage space pointed to by the
pointer returned in lParam.

///
// CStreamSocket::HandleWrite()
//
// Called when there is an asynchronous write event on the socket.
//
// If there is data in the write queue waiting to be sent,
// a WinSock send is attempted. If the send is successful,
// a m_uMsg message is sent to the application window with
// wParam set to CWINSOCK_DONE_WRITING and lParam set to the
// address of the data that was sent. On send failure,
// wParam is set to CWINSOCK_ERROR_WRITING and lParam set to
// the address of the data which couldn’t be sent. In either
// case, the application may free the pointer pointing to
// the data or reuse that data buffer. It is possible for the
// entire amount of data to not be sent in one call to send().
// In this case, an attempt is made to send the remaining portion
// of that block of data the next time HandleWrite() is invoked.
//
//

 Chapter 12 ■ CStreamSocket 243

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

LONG CStreamSocket::HandleWrite(WPARAM wParam, LPARAM lParam)
{
 LPSTREAMDATA pStreamData; // pointer to stream data structure
 LPVOID pData; // pointer to buffer to send
 int nLen; // total length of buffer to send
 static LPVOID pDataRemaining = NULL; // pointer into buffer to send
 static int nLenRemaining = 0; // number of bytes left to send

 while (1)
 {
 // check to see if there is any data to send
 if (m_listWrite.IsEmpty())
 break;

 // if we are not in the middle of another buffer send,
 // get data and data length from the write queue
 pStreamData = (LPSTREAMDATA)m_listWrite.GetHead(); // not RemoveHead()
 pData = pStreamData–>pData;
 nLen = pStreamData–>nLen;
 if (pDataRemaining == NULL)
 {
 pDataRemaining = pData;
 nLenRemaining = nLen;
 }

 // send the data
 BOOL bRemove = FALSE; // remove data from queue?
 int nBytesSent = send(m_s, (LPCSTR)pDataRemaining, nLenRemaining, 0);
 if (nBytesSent == SOCKET_ERROR)
 {
 // if the error is just that the send would block,
 // don’t do anything; we’ll get another FD_WRITE soon
 m_nLastError = WSAGetLastError();
 if (m_nLastError == WSAEWOULDBLOCK)
 m_nLastError = 0;
 else
 {
 bRemove = TRUE;
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_WRITING,
 (LPARAM)pData);
 }
 }
 else
 {
 // if data was sent, we must still check to see
 // if all the bytes were sent
 if (nBytesSent == nLenRemaining)
 {
 bRemove = TRUE;
 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_DONE_WRITING,
 (LPARAM)pData);
 }
 else
 {
 // the complete buffer was not sent so adjust
 // these values accordingly
 pDataRemaining = (LPVOID)((LPCSTR)pDataRemaining + nBytesSent);
 nLenRemaining = nLenRemaining – nBytesSent;
 }

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library244

 }

 // if the data was completely sent or there was
 // a real error, remove the data from the queue
 if (bRemove)
 {
 delete pStreamData;
 m_listWrite.RemoveHead();
 pDataRemaining = NULL;
 nLenRemaining = 0;
 }

 // if there is more data to send, trigger this FD_WRITE handler
 if (!m_listWrite.IsEmpty())
 PostMessage(CWINSOCK_EVENT_NOTIFICATION, m_s,
 WSAMAKESELECTREPLY(FD_WRITE, 0));

 break;
 }

 return 0L;
}

CStreamSocket::DestroySocket()
The DestroySocket() member function removes any data queued up on the read or
write queues, closes the socket, and destroys the hidden window that’s used for WinSock
messages. It’s implemented as follows:

///
// CStreamSocket::DestroySocket()
//
// Close the socket, remove any queued data,
// and destroy the hidden window.
//
int CStreamSocket::DestroySocket()
{
 int nStatus = CWINSOCK_NOERROR;

 // make sure the socket is valid
 if (m_s == INVALID_SOCKET)
 nStatus = CWINSOCK_PROGRAMMING_ERROR;
 else
 {
 // remove any data in the write queue
 while (!m_listWrite.IsEmpty())
 {
 LPSTREAMDATA pStreamData = (LPSTREAMDATA)m_listWrite.RemoveHead();
 LPVOID pData = pStreamData–>pData;
 delete pStreamData;

 m_pParentWnd–>PostMessage(m_uMsg, CWINSOCK_ERROR_WRITING,
 (LPARAM)pData);
 }

 Chapter 12 ■ CStreamSocket 245

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

 // remove any data in the read queue
 while (!m_listRead.IsEmpty())
 {
 LPSTREAMDATA pStreamData = (LPSTREAMDATA)m_listRead.RemoveHead();
 free(pStreamData–>pData);
 delete pStreamData;
 }

 // close the socket and initialize variables
 closesocket(m_s);
 InitVars();

 // destroy the hidden window
 DestroyWindow();
 }

 return nStatus;
}

CStreamSocket::LastError()
The LastError() member function is implemented as an in-line function. It simply re-
turns the m_nLastError value that contains the last WinSock error message generated
by the CStreamSocket object. This function should be called whenever a CStreamSocket
member function returns CWINSOCK_WINSOCK_ERROR.

Application Responsibility
The goal of this object is to enable the rapid development of a networked application
using stream sockets. The public interface to the CStreamSocket object consists of the
following functions: CreateSocket(), DestroySocket(), Read(), Write(), Connect(),
Accept(), GetPeerName(), and LastError().

The application must provide a certain level of support for the stream object. The ap-
plication must provide a message handler to receive messages sent from the object. Also,
the stream object’s constructor requires a pointer to the application window object and
a message. A sample call to a stream object constructor looks like the following:

ps = new CStreamSocket(this, WM_USER + 1);

An entry must be made in the message map to associate the WM_USER + 1 message to an
application member function.

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 //}}AFX_MSG_MAP
 ON_MESSAGE(WM_USER + 1, OnWinSockEvent)
END_MESSAGE_MAP()

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library246

The function that handles the WM_USER + 1 message, OnWinSockEvent in this case, must
have handlers for six different wParam values. In the following code snippet, m_ps is a
member variable of the CMainFrame class that points to a CStreamSocket object. The
following code may be used as a template for your stream socket object message
handler:

LONG CMainFrame::OnWinSockEvent(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten;
 LPVOID pDataRead;
 int nLen;

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 // the data storage space pointed to by pDataWritten
 // may now be freed or reused
 break;
 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 // the data storage space pointed to by pDataWritten
 // may now be freed or reused
 break;
 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_ps–>Read(&nLen);
 // the data storage space pointed to by pDataRead
 // may be freed after your processing is complete
 break;
 case CWINSOCK_ERROR_READING:
 break;
 case CWINSOCK_LOST_CONNECTION:
 // the other side of the socket closed the connection
 break;

 // the following handler is required for a client only
 case CWINSOCK_YOU_ARE_CONNECTED:
 break;

 // the following handler is required for a server only
 case CWINSOCK_READY_TO_ACCEPT_CONNECTION:
 // Accept() may now be called
 break;

 default:
 break;
 }

 return 0L;
}

Allocating the stream socket object doesn’t make the socket available for communica-
tion. The CreateSocket() member function must be called first. If the socket is to act

 Chapter 12 ■ CStreamSocket 247

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

as a server, it must be bound to a specific port or service name. To do that, call the func-
tion in one of the following ways:

int nPort;
char pszServiceName[100];
int nStatus;

...assign port or service name...

nStatus = m_ps–>CreateSocket(nPort);
nStatus = m_ps–>CreateSocket(pszServiceName);

If this socket isn’t a server, simply call CreateSocket(), as in:

nStatus = m_ps–>CreateSocket();

A client must connect to a server before it can send or receive data. A connection is made
by specifying a host specifier. There are five possible ways to call Connect():

char pszHostName[100];
char pszHostIP[100];
int nPort;
char pszServiceName[100];
SOCKADDR_IN sin;
int nStatus;

... assign destination specifiers ...

nStatus = m_ps–>Connect(pszHostName, nPort);
nStatus = m_ps–>Connect(pszHostIP, nPort);
nStatus = m_ps–>Connect(pszHostName, pszServiceName);
nStatus = m_ps–>Connect(pszHostIP, pszServiceName);
nStatus = m_ps–>Connect(&sin);

A server must accept a connection from a client before data transfer can take place. When
a connection is accepted, a new CStreamSocket object is used. The Accept() member
function is called in response to the CWINSOCK_READY_TO_ACCEPT_CONNECTION message
from the server stream socket:

CStreamSocket *psClient; // will communicate with the client
int nStatus;

psClient = new CStreamSocket(this, WM_USER + 2);

// m_ps is the server socket
nStatus = m_ps–>Accept(psClient);

If a server wishes to know the Internet address of the client on the other side of an ac-
cepted connection, GetPeerName() is used. This function is called from the socket passed
to the Accept() call, as in:

SOCKADDR_IN sin; // address of client on other side of socket
int nStatus;

nStatus = psClient–>GetPeerName(&sin);

p2v6 Prog. WinSock #30594-1 tullis 11.14.94 CH12 LP #3

Part III ■ WinSock Class Library248

To send data, the application must provide the number of bytes to send and a pointer
to the data. The data must remain allocated until the message handler discussed previ-
ously receives a message with wParam set to CWINSOCK_DONE_WRITING or
CWINSOCK_ERROR_WRITING. In this case, lParam is the pointer initially passed to Write().
The data may also be unallocated if Write() returns an error value. The following code
shows how Write() is called:

int nLen;
LPVOID pData;
int nStatus;

... allocate data buffer ...

nStatus = m_ps–>Write(nLen, pData);

You have an option with the way the data buffer is allocated. You may allocate one buffer
that gets continually reused. You know that it’s safe to reuse the buffer when the write
notification message comes in with wParam set to CWINSOCK_DONE_WRITING or
CWINSOCK_ERROR_WRITING. The other option you have is to allocate a new buffer when-
ever you want to send. In this case you would simply free each buffer when the
CWINSOCK_DONE_WRITING or CWINSOCK_ERROR_WRITING message arrives.

To receive data, the application must provide a pointer to an integer to retrieve the
number of bytes read. The Read() function returns a pointer to the data or NULL on
error. Read() should be called when the message handler is activated with wParam set to
CWINSOCK_DONE_READING. Following are the two ways to call Read():

LPVOID pDataRead;
int nLen;

pDataRead = m_ps–>Read(&nLen);

It’s the application’s responsibility to free the pointer returned by Read().

To end the use of the stream socket object, call DestroySocket(), as in:

int nStatus;
nStatus = m_ps–>DestroySocket();

Summary
This chapter describes a class to manipulate a stream socket. The goal of this object is to
enable the rapid development of a networked application using stream communication.
The next chapter wraps up the class library. Chapters 14 through 16 use the
CStreamSocket object in fully functional programs.

 Chapter 13 ■ Bringing It All Together 249

p2/v6—sn8 Programming WinSock #30594-1 Casey 11.15.94 CH13 LP #3

1313

Bringing It All
Together
Bringing It All
Together

p2/v6—sn8 Programming WinSock #30594-1 Casey 11.15.94 CH13 LP #3

Part III ■ WinSock Class Library250

This chapter discusses the last pieces of the WinSock class library, including a function
to display a WinSock error message.

CWinSockErrorBox()
One thing that is missing thus far is a function to display an error message with a tex-
tual description of the actual WinSock error. The CWinSockErrorBox() function does
just that.

The first parameter to CWinSockErrorBox() is an integer representing the WinSock er-
ror as returned by WSAGetLastError(). The second parameter is an optional pointer to
a string that contains additional information you would like to present to the user.

The prototype for the function is as follows:

void CWinSockErrorBox(int nError, LPSTR pszMessage = NULL);

The CWinSockErrorBox() function is implemented as follows:

///
// CWinSockErrorBox
//
void CWinSockErrorBox(int nError, LPSTR pszMessage/*= NULL*/)
{
#define ERROR_BUF_LEN (1000)
 char pszError[ERROR_BUF_LEN];

 wsprintf(pszError, “WinSock error %d: “, nError);

 switch (nError)
 {
 case WSAEINTR:
 lstrcat(pszError, “Interrupted system call”);
 break;
 case WSAEBADF:
 lstrcat(pszError, “Bad file number”);
 break;
 case WSAEACCES:
 lstrcat(pszError, “Permission denied”);
 break;
 case WSAEFAULT:
 lstrcat(pszError, “Bad address”);
 break;
 case WSAEINVAL:
 lstrcat(pszError, “Invalid argument”);
 break;
 case WSAEMFILE:
 lstrcat(pszError, “Too many open files”);
 break;
 case WSAEWOULDBLOCK:
 lstrcat(pszError, “Operation would block”);
 break;

 Chapter 13 ■ Bringing It All Together 251

p2/v6—sn8 Programming WinSock #30594-1 Casey 11.15.94 CH13 LP #3

 case WSAEINPROGRESS:
 lstrcat(pszError, “Operation now in progress”);
 break;
 case WSAEALREADY:
 lstrcat(pszError, “Operation already in progress”);
 break;
 case WSAENOTSOCK:
 lstrcat(pszError, “Socket operation on non–socket”);
 break;
 case WSAEDESTADDRREQ:
 lstrcat(pszError, “Destination address required”);
 break;
 case WSAEMSGSIZE:
 lstrcat(pszError, “Message too long”);
 break;
 case WSAEPROTOTYPE:
 lstrcat(pszError, “Protocol wrong type for socket”);
 break;
 case WSAENOPROTOOPT:
 lstrcat(pszError, “Protocol not available”);
 break;
 case WSAEPROTONOSUPPORT:
 lstrcat(pszError, “Protocol not supported”);
 break;
 case WSAESOCKTNOSUPPORT:
 lstrcat(pszError, “Socket type not supported”);
 break;
 case WSAEOPNOTSUPP:
 lstrcat(pszError, “Operation not supported on socket”);
 break;
 case WSAEPFNOSUPPORT:
 lstrcat(pszError, “Protocol family not supported”);
 break;
 case WSAEAFNOSUPPORT:
 lstrcat(pszError, “Address family not supported by protocol family”);
 break;
 case WSAEADDRINUSE:
 lstrcat(pszError, “Address already in use”);
 break;
 case WSAEADDRNOTAVAIL:
 lstrcat(pszError, “Can’t assign requested address”);
 break;
 case WSAENETDOWN:
 lstrcat(pszError, “Network is down”);
 break;
 case WSAENETUNREACH:
 lstrcat(pszError, “Network is unreachable”);
 break;
 case WSAENETRESET:
 lstrcat(pszError, “Network dropped connection on reset”);
 break;
 case WSAECONNABORTED:
 lstrcat(pszError, “Software caused connection abort”);
 break;
 case WSAECONNRESET:
 lstrcat(pszError, “Connection reset by peer”);
 break;

p2/v6—sn8 Programming WinSock #30594-1 Casey 11.15.94 CH13 LP #3

Part III ■ WinSock Class Library252

 case WSAENOBUFS:
 lstrcat(pszError, “No buffer space available”);
 break;
 case WSAEISCONN:
 lstrcat(pszError, “Socket is already connected”);
 break;
 case WSAENOTCONN:
 lstrcat(pszError, “Socket is not connected”);
 break;
 case WSAESHUTDOWN:
 lstrcat(pszError, “Can’t send after socket shutdown”);
 break;
 case WSAETOOMANYREFS:
 lstrcat(pszError, “Too many references: can’t splice”);
 break;
 case WSAETIMEDOUT:
 lstrcat(pszError, “Connection timed out”);
 break;
 case WSAECONNREFUSED:
 lstrcat(pszError, “Connection refused”);
 break;
 case WSAELOOP:
 lstrcat(pszError, “Too many levels of symbolic links”);
 break;
 case WSAENAMETOOLONG:
 lstrcat(pszError, “File name too long”);
 break;
 case WSAEHOSTDOWN:
 lstrcat(pszError, “Host is down”);
 break;
 case WSAEHOSTUNREACH:
 lstrcat(pszError, “No route to host”);
 break;
 case WSAENOTEMPTY:
 lstrcat(pszError, “Directory not empty”);
 break;
 case WSAEPROCLIM:
 lstrcat(pszError, “Too many processes”);
 break;
 case WSAEUSERS:
 lstrcat(pszError, “Too many users”);
 break;
 case WSAEDQUOT:
 lstrcat(pszError, “Disc quota exceeded”);
 break;
 case WSAESTALE:
 lstrcat(pszError, “Stale NFS file handle”);
 break;
 case WSAEREMOTE:
 lstrcat(pszError, “Too many levels of remote in path”);
 break;
 case WSAEDISCON:
 lstrcat(pszError, “Disconnect”);
 break;
 case WSASYSNOTREADY:
 lstrcat(pszError, “Network sub–system is unusable”);
 break;
 case WSAVERNOTSUPPORTED:
 lstrcat(pszError, “WinSock DLL cannot support this application”);

 Chapter 13 ■ Bringing It All Together 253

p2/v6—sn8 Programming WinSock #30594-1 Casey 11.15.94 CH13 LP #3

 break;
 case WSANOTINITIALISED:
 lstrcat(pszError, “WinSock not initialized”);
 break;
 case WSAHOST_NOT_FOUND:
 lstrcat(pszError, “Host not found”);
 break;
 case WSATRY_AGAIN:
 lstrcat(pszError, “Non–authoritative host not found”);
 break;
 case WSANO_RECOVERY:
 lstrcat(pszError, “Non–recoverable error”);
 break;
 case WSANO_DATA:
 lstrcat(pszError, “Valid name, no data record of requested type”);
 break;
 default:
 lstrcpy(pszError, “Not a WinSock error”);
 break;
 }

 lstrcat(pszError, “\n”);

 int n = lstrlen(pszError);
 if (pszMessage != NULL)

n += lstrlen(pszMessage);
 if ((pszMessage != NULL) && (n < ERROR BUF LEN))
 lstrcat(pszError, pszMessage);

 AfxMessageBox(pszError);
}

If the WinSock error is WSANOTINITIALISED, the result of the following code looks like
Figure 13.1:

if (...WinSock function fails...)
 CWinSockErrorBox(WSAGetLastError());

Supplying the second parameter to CWinSockErrorBox(), as in the following sample,
results in that shown in Figure 13.2:

if (...WinSock function fails...)
 CWinSockErrorBox(WSAGetLastError(),
 “Contact your software distributor for technical support”);

FIGURE 13.1.
CWinSockErrorBox().

p2/v6—sn8 Programming WinSock #30594-1 Casey 11.15.94 CH13 LP #3

Part III ■ WinSock Class Library254

FIGURE 13.2.
CWinSockErrorBox()
with second parameter.

Implementation Details
The error message strings that are copied into pszError within the large switch state-
ment consume a significant amount of DGROUP space in your application. If you get
compiler errors referring to DGROUP space, consider moving these error message strings
into the string table of your project’s resource file. You can then use the LoadString()
function to retrieve the appropriate text.

As discussed in Chapter 9, “Design Goals,” the three classes (CWinSock, CDatagramSocket,
and CStreamSocket) and the CWinSockErrorBox() function are implemented in the
CWINSOCK.CPP file. The class and function prototypes are contained in the
CWINSOCK.H file. The CWINSOCK.CPP source file is simply added to each project
that requires WinSock functionality.

Summary
This chapter wraps up the WinSock class library. The remaining chapters of the book
examine several sample programs that make use of the class library developed in Chap-
ters 9 through 13.

P2/V6/Q7 Programming Winsock 305941 aw 11.15.94 Parts LP #3

Programming
with the
WinSock Class
Library

Programming
with the
WinSock Class
Library

14 Sample Applications Using the Class Library

15 Practical Client/Server Database Application

16 Finger Application in a Heterogeneous UNIX
Environment

IVIV

 Chapter 14 ■ Sample Applications 257

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

1414

Sample
Applications
Sample
Applications

Part IV ■ Programming with the WinSock Class Library258

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

This chapter presents the reimplementation of two of the samples described in Chapter
8, “Sample Applications.” This time, the WinSock class library, developed in the pre-
ceding chapters, is used rather than the raw WinSock API. The two samples are com-
posed of two programs each: a client that sends either datagrams or stream data, and a
server that receives them and sends them back to the client.

Datagram Echo Client and Server
These programs, CDESRV and CDECLNT, demonstrate the use of the
CDatagramSocket object. The CDESRV server application receives data and sends it back
to the client. The CDECLNT client application sends data to the server and receives
the echoed reply. These programs are generated using Visual C++’s AppWizard feature.

Datagram Echo Server CDESRV
As in the DESERV program described in Chapter 8, this sample uses a CFormView-
derived object named CMainView as its primary user interface. The CMainView header
file is shown in Listing 14.1. The m_pWinSock member variable controls the starting and
stopping of the WinSock subsystem for this program. The m_pDatagram member vari-
able is a pointer to the datagram socket object that receives data from clients. The
OnDatagram() member function receives status information for the datagram socket
object. It’s triggered by the WM_USER_DATAGRAM user-defined message.

Listing 14.1. MAINVIEW.H for CDESRV.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

private:
 CWinSock * m_pWinSock; // WinSock sub-system startup/.shutdown
 CDatagramSocket * m_pDatagram; // Datagram socket to receive from

protected:

 Chapter 14 ■ Sample Applications 259

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnDatagram(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_DATAGRAM (WM_USER + 1)

The implementation of the CMainView object is shown in Listing 14.2. This object per-
forms most of the work for the CDESRV application. OnInitialUpdate() is called soon
after the object is created. This function is responsible for starting the WinSock sub-
system and creating a server datagram socket that waits for data to arrive on port 2000.
When data is ready to be received on the socket, the OnDatagram() member function is
triggered with wParam set to CWINSOCK_DONE_READING. Data is read and a write attempt is
made to echo the data back to the client. When the write finishes, OnDatagram() is called
with wParam set to CWINSOCK_DONE_WRITING. At this point, the data pointer is freed. When
the server application is closed, CMainView’s destructor is called, destroying the datagram
socket object and shutting down the WinSock subsystem.

Listing 14.2. MAINVIEW.CPP for CDESRV.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “cdesrv.h”
#include “mainview.h”

continues

Part IV ■ Programming with the WinSock Class Library260

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 m_pDatagram = NULL;
}

CMainView::~CMainView()
{
 // free the datagram and WinSock objects

 if (m_pDatagram)
 {
 m_pDatagram->DestroySocket();
 delete m_pDatagram;
 m_pDatagram = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock->Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

Listing 14.2. continued

 Chapter 14 ■ Sample Applications 261

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 // initialize the WinSock object

 m_pWinSock = new CWinSock;
 if (m_pWinSock->Startup() == CWINSOCK_NOERROR)
 plb->InsertString(0, “WinSock initialized”);
 else
 {
 plb->InsertString(0, “WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 // initialize the datagram socket object

 m_pDatagram = new CDatagramSocket(this, WM_USER_DATAGRAM);
 if (m_pDatagram->CreateSocket(2000) == CWINSOCK_NOERROR)
 plb->InsertString(0, “Datagram created (port 2000)”);
 else
 {
 plb->InsertString(0, “Datagram creation failed”);
 delete m_pDatagram;
 m_pDatagram = NULL;
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_DATAGRAM, OnDatagram)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnDatagram()
//
// Receives messages from the datagram object.
//
LONG CMainView::OnDatagram(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 LPVOID pDataRead; // pointer to data just read
 int nLen; // length
 SOCKADDR_IN sin; // Internet address of data’s sender
 IN_ADDR in; // IP address of data’s sender
 char pszMessage[1000];// informational message

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Data sent (%s)”, pDataWritten);

continues

Part IV ■ Programming with the WinSock Class Library262

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 plb->InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending data (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_pDatagram->Read(&nLen, &sin);
 // display informational message (data must be NULL terminated)
 memcpy(&in, &sin.sin_addr.s_addr, 4);
 wsprintf(pszMessage, “Data received (%s) from %s, %d”,
 pDataRead, inet_ntoa(in), ntohs(sin.sin_port));
 plb->InsertString(0, pszMessage);

 // echo the data back to the sender
 if (m_pDatagram->Write(nLen, pDataRead, &sin) != CWINSOCK_NOERROR)
 {
 wsprintf(pszMessage, “Error sending data (%s)”, pDataRead);
 plb->InsertString(0, pszMessage);
 free(pDataRead);
 }

 break;

 case CWINSOCK_ERROR_READING:
 break;

 default:
 break;
 }

 return 0L;
}

Datagram Echo Client CDECLNT
The datagram echo client, CDECLNT, is a reimplementation of the DECLIENT pro-
gram described in Chapter 8. It uses a CFormView-derived object as its main interface.
The header file for the CMainView object is shown in Listing 14.3. Its implementation is
shown in Listing 14.4. This object performs most of the work for the CDECLNT appli-
cation. OnInitialUpdate() is called soon after the object is created. This function is
responsible for starting the WinSock subsystem, creating a client datagram socket,

Listing 14.2. continued

 Chapter 14 ■ Sample Applications 263

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

prompting for the host name or IP address of the CDESRV datagram echo server, and
setting a five-second interval timer used for data writes. When the timer goes off,
OnTimer() is called. If there is no data waiting to be sent, denoted by the first byte of the
outgoing buffer m_pszBuf containing a NULL, an outgoing data stream is formatted and
the datagram socket object’s Write() member function is called to send data to port
2000 on the designated server. When the write completes, OnDatagram() is called with
wParam set to CWINSOCK_DONE_WRITING. The first byte of m_pszBuf is set to NULL to indi-
cate that the buffer is available. This buffer usage method is in contrast to dynamically
allocating and freeing memory. The CMainView object is continually waiting for its pre-
viously sent data to be echoed back. When data arrives on the datagram socket,
OnDatagram() is triggered with wParam set to CWINSOCK_DONE_READING. The data is read
and the read buffer is then freed. When the client application is closed, CMainView’s
destructor is called, destroying the datagram socket object and shutting down the
WinSock subsystem.

Listing 14.3. MAINVIEW.H for CDECLNT.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

private:
 CWinSock * m_pWinSock; // WinSock sub-system startup/.shutdown
 CDatagramSocket * m_pDatagram; // Datagram socket to receive from
 char m_pszBuf[100]; // buffer to send
 char m_pszServer[100]; // host name or IP address of datagram server

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes

continues

Part IV ■ Programming with the WinSock Class Library264

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnDatagram(WPARAM wParam, LPARAM lParam);
 afx_msg void OnTimer(UINT nIDEvent);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_DATAGRAM (WM_USER + 1)

Listing 14.4. MAINVIEW.CPP for CDECLNT.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “cdeclnt.h”
#include “mainview.h”
#include “servdlg.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 m_pDatagram = NULL;

Listing 14.3. continued

 Chapter 14 ■ Sample Applications 265

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 (*m_pszBuf) = ‘\0’;
}

CMainView::~CMainView()
{
 // free the datagram and WinSock objects

 if (m_pDatagram)
 {
 m_pDatagram->DestroySocket();
 delete m_pDatagram;
 m_pDatagram = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock->Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 // start the timer used to trigger the socket writes

 SetTimer(1, 5000, NULL); // 5 second timer

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // initialize the WinSock object

 m_pWinSock = new CWinSock;
 if (m_pWinSock->Startup() == CWINSOCK_NOERROR)
 plb->InsertString(0, “WinSock initialized”);
 else
 {
 plb->InsertString(0, “WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 // prompt for server information
 // (host name or IP address of datagram server)

 while (1)

continues

Part IV ■ Programming with the WinSock Class Library266

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 {
 CServerDlg dlg;
 dlg.DoModal();
 if (dlg.m_stringServer.GetLength() < sizeof(m_pszServer))
 {
 lstrcpy(m_pszServer, dlg.m_stringServer);
 break;
 }
 else
 AfxMessageBox(“Host name or IP address too long”);
 }

 // initialize the datagram socket object

 m_pDatagram = new CDatagramSocket(this, WM_USER_DATAGRAM);
 if (m_pDatagram->CreateSocket() == CWINSOCK_NOERROR)
 plb->InsertString(0, “Datagram created”);
 else
 {
 plb->InsertString(0, “Datagram creation failed”);
 delete m_pDatagram;
 m_pDatagram = NULL;
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_DATAGRAM, OnDatagram)
 ON_WM_TIMER()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnDatagram()
//
// Receives messages from the datagram object.
//
LONG CMainView::OnDatagram(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 LPVOID pDataRead; // pointer to data just read
 int nLen; // length
 SOCKADDR_IN sin; // Internet address of data’s sender
 IN_ADDR in; // IP address of data’s sender
 char pszMessage[1000];// informational message

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent

Listing 14.4. continued

 Chapter 14 ■ Sample Applications 267

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Data sent (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 (*m_pszBuf) = ‘\0’; // same as (*pDataWritten) = ‘\0’;
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending data (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 (*m_pszBuf) = ‘\0’; // same as (*pDataWritten) = ‘\0’;
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_pDatagram->Read(&nLen, &sin);
 // display informational message (data must be NULL terminated)
 memcpy(&in, &sin.sin_addr.s_addr, 4);
 wsprintf(pszMessage, “Data received (%s) from %s, %d”,
 pDataRead, inet_ntoa(in), ntohs(sin.sin_port));
 plb->InsertString(0, pszMessage);
 free(pDataRead);
 break;

 case CWINSOCK_ERROR_READING:
 break;

 default:
 break;
 }

 return 0L;
}

void CMainView::OnTimer(UINT nIDEvent)
{
 static int nSendCount = 1; // used to generate unique message
 char pszMessage[1000]; // informational message

 // make sure we are not sending out of a bad datagram socket
 if (m_pDatagram == NULL)
 return;

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // send the buffer unless the previous send hasn’t completed yet
 if ((*m_pszBuf) == ‘\0’)
 {
 wsprintf(m_pszBuf, “Hello %d”, nSendCount);
 ++nSendCount;
 // be sure to send terminating NULL character
 if (m_pDatagram->Write(lstrlen(m_pszBuf) + 1, m_pszBuf,
 m_pszServer, 2000) != CWINSOCK_NOERROR)
 {
 (*m_pszBuf) = ‘\0’;

continues

Part IV ■ Programming with the WinSock Class Library268

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 wsprintf(pszMessage, “Error sending data (%s)”, m_pszBuf);
 plb->InsertString(0, pszMessage);
 }
 }

 CFormView::OnTimer(nIDEvent);
}

Running the Datagram Echo Server and Client
Following is a sample sequence of events that occur when the datagram echo client and
server are run:

1. Run CDESRV.

2. Run CDECLNT on the same or a different computer. It prompts for the host
name or IP address of CDESRV.

3. In five seconds the timer will trigger in CDECLNT, causing
CMainView::OnTimer() to get called. The outgoing buffer is not in use, so the
outgoing buffer is filled and written using m_pDatagram’s Write() member
function.

4. CMainView::OnDatagram() is called in CDECLNT with a
CWINSOCK_DONE_WRITING notice. The outgoing buffer is then marked as unused
so that it may be used with the next triggering of CMainView::OnTimer().

5. CMainView::OnDatagram() is called in CDESRV with a CWINSOCK_DONE_READING
notice. The data is read and immediately echoed back to the client.

6. CMainView::OnDatagram() is called in CDESRV with a
CWINSOCK_DONE_WRITING notice. The data is then freed.

7. CMainView::OnDatagram() is called in CDECLNT with a
CWINSOCK_DONE_READING notice. The echoed data is read and then
freed.

8. Another timer goes off in CDECLNT and the process repeats.

Stream Echo Client and Server
These programs, CSESRV and CSECLNT, demonstrate the use of the CStreamSocket
object. The CSESRV server application receives data and sends it back to the client.
The CSECLNT client application sends data to the server and receives the echoed
reply.

Listing 14.4. continued

 Chapter 14 ■ Sample Applications 269

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

Stream Echo Server CSESRV
As in the SESERV program described in Chapter 8, this sample uses a CFormView-
derived object named CMainView as its primary user interface. The CMainView header
file is shown in Listing 14.5. The m_pWinSock member variable controls the starting and
stopping of the WinSock subsystem for this program. The m_pStreamSrv member vari-
able is a pointer to the stream socket object that waits for connections from clients. The
m_pStream member variable is the stream socket that actually receives data from and sends
data to the client. The OnStreamSrv() member function receives status information for
the server stream socket object. It’s triggered by the WM_USER_STREAMSRV user-defined
message whenever a client requests a connection to the server. The OnStream() member
function receives status information for the stream socket object that actually commu-
nicates with the client. It’s triggered by the WM_USER_STREAM user-defined message
whenever a client connection is made or lost and when data is available to be read or is
finished being written.

Listing 14.5. MAINVIEW.H for CSESRV.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

private:
 CWinSock * m_pWinSock; // WinSock sub-system startup/.shutdown
 CStreamSocket * m_pStreamSrv; // Stream socket to wait for connections on
 CStreamSocket * m_pStream; // Stream socket to receive from

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes

continues

Part IV ■ Programming with the WinSock Class Library270

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnStreamSrv(WPARAM wParam, LPARAM lParam);
 afx_msg LONG OnStream(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_STREAMSRV (WM_USER + 1)
#define WM_USER_STREAM (WM_USER + 2)

The implementation of the CMainView object is shown in Listing 14.6. This object per-
forms most of the work for the CSESRV application. OnInitialUpdate() is called soon
after the object is created. This function is responsible for starting the WinSock sub-
system and creating a server stream socket that waits for connection requests to arrive
on port 2000. When a client requests a connection, the OnStreamSrv() member func-
tion is triggered with wParam set to CWINSOCK_READY_TO_ACCEPT_CONNECTION. The m_pStream
object is then used to accept the client connection request. When the connection is made,
OnStream() is called with wParam set to CWINSOCK_YOU_ARE_CONNECTED. When data ar-
rives from the client, OnStream() is called with wParam set to CWINSOCK_DONE_READING.
Data is read and a write attempt is made to echo the data back to the client. When the
write finishes, OnStream() is called with wParam set to CWINSOCK_DONE_WRITING. At this
point, the data pointer is freed. When the server application is closed, CMainView’s de-
structor is called, destroying the two stream socket objects and shutting down the
WinSock subsystem.

Listing 14.6. MAINVIEW.CPP for CSESRV.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “csesrv.h”
#include “mainview.h”

Listing 14.5. continued

 Chapter 14 ■ Sample Applications 271

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 m_pStreamSrv = NULL;
 m_pStream = NULL;
}

CMainView::~CMainView()
{
 // free the stream and WinSock objects

 if (m_pStreamSrv)
 {
 m_pStreamSrv->DestroySocket();
 delete m_pStreamSrv;
 m_pStreamSrv = NULL;
 }

 if (m_pStream)
 {
 m_pStream->DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock->Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP

continues

Part IV ■ Programming with the WinSock Class Library272

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

}

void CMainView::OnInitialUpdate()
{
 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // initialize the WinSock object

 m_pWinSock = new CWinSock;
 if (m_pWinSock->Startup() == CWINSOCK_NOERROR)
 plb->InsertString(0, “WinSock initialized”);
 else
 {
 plb->InsertString(0, “WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 // initialize the stream socket object

 m_pStreamSrv = new CStreamSocket(this, WM_USER_STREAMSRV);
 if (m_pStreamSrv->CreateSocket(2000) == CWINSOCK_NOERROR)
 plb->InsertString(0, “Stream server created (port 2000)”);
 else
 {
 plb->InsertString(0, “Stream server creation failed”);
 delete m_pStreamSrv;
 m_pStreamSrv = NULL;
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_STREAMSRV, OnStreamSrv)
 ON_MESSAGE(WM_USER_STREAM, OnStream)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnStreamSrv()
//
// Receives messages from the stream server object.
//
LONG CMainView::OnStreamSrv(WPARAM wParam, LPARAM lParam)
{
 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {

Listing 14.6. continued

 Chapter 14 ■ Sample Applications 273

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 case CWINSOCK_READY_TO_ACCEPT_CONNECTION:
 // make sure the server is not already servicing a client
 if (m_pStream != NULL)
 {
 plb->InsertString(0, “Already servicing a client”);
 break;
 }

 // accept the client connection
 int nStatus;
 m_pStream = new CStreamSocket(this, WM_USER_STREAM);
 nStatus = m_pStreamSrv->Accept(m_pStream);
 if (nStatus != CWINSOCK_NOERROR)
 {
 delete m_pStream;
 m_pStream = NULL;
 plb->InsertString(0, “Error accepting client connection”);
 break;
 }
 else
 plb->InsertString(0, “Accepted client connection”);

 break;

 default:
 break;
 }

 return 0L;
}

///
// CMainView::OnStream()
//
// Receives messages from the connected stream object.
//
LONG CMainView::OnStream(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 LPVOID pDataRead; // pointer to data just read
 int nLen; // length
 char pszMessage[1000];// informational message
 SOCKADDR_IN sin; // Internet address of client
 IN_ADDR in; // IP address of client
 int nStatus; // error status

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Data sent (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 free(pDataWritten);
 break;

continues

Part IV ■ Programming with the WinSock Class Library274

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending data (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_pStream->Read(&nLen);
 wsprintf(pszMessage, “Data received (%s)”, pDataRead);
 plb->InsertString(0, pszMessage);

 // echo the data back to the sender
 if (m_pStream->Write(nLen, pDataRead) != CWINSOCK_NOERROR)
 {
 wsprintf(pszMessage, “Error sending data (%s)”, pDataRead);
 plb->InsertString(0, pszMessage);
 free(pDataRead);
 }

 break;

 case CWINSOCK_ERROR_READING:
 break;

 case CWINSOCK_YOU_ARE_CONNECTED:
 // print out client information
 nStatus = m_pStream->GetPeerName(&sin);
 if (nStatus == CWINSOCK_NOERROR)
 {
 memcpy(&in, &sin.sin_addr.s_addr, 4);
 wsprintf(pszMessage, “Connected to client %s, %d”,
 inet_ntoa(in), ntohs(sin.sin_port));
 plb->InsertString(0, pszMessage);
 }
 else
 plb->InsertString(0, “Error getting client name”);
 break;

 case CWINSOCK_LOST_CONNECTION:
 // client closed the connection
 m_pStream->DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 plb->InsertString(0, “Client closed connection”);
 break;

 default:
 break;
 }

 return 0L;
}

Listing 14.6. continued

 Chapter 14 ■ Sample Applications 275

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

Stream Echo Client CSECLNT
The stream echo client, CSECLNT, is a reimplementation of the SECLIENT program
described in Chapter 8. It uses a CFormView-derived object as its main interface. The
header file for the CMainView object is shown in Listing 14.7. Its implementation is shown
in Listing 14.8. This object performs most of the work for the CSECLNT application.
OnInitialUpdate() is called soon after the object is created. This function is respon-
sible for starting the WinSock subsystem, creating a client stream socket, prompting
for the host name or IP address of the CSESRV stream echo server, and setting a
five-second interval timer used for data writes. When the server accepts the client’s
connection request on port 2000, OnStream() is called with wParam set to
CWINSOCK_YOU_ARE_CONNECTED. When the five-second timer goes off, OnTimer()is called.
If there is no data waiting to be sent—denoted by the first byte of the outgoing buffer
m_pszBuf containing a NULL—an outgoing data stream is formatted and the stream socket
object’s Write() member function is called to send data to the designated server. When
the write completes, OnStream() is called with wParam set to CWINSOCK_DONE_WRITING.
The first byte of m_pszBuf is set to NULL to indicate that the buffer is available. The
CMainView object is continually waiting for its previously sent data to be echoed back.
When data arrives on the stream socket, OnStream() is triggered with wParam set to
CWINSOCK_DONE_READING. The data is read and the read buffer is then freed. When the
client application is closed, CMainView’s destructor is called, destroying the stream socket
object and shutting down the WinSock subsystem.

Listing 14.7. MAINVIEW.H for CSECLNT.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

private:
 CWinSock * m_pWinSock; // WinSock sub-system startup/.shutdown
 CStreamSocket * m_pStream; // Stream socket to receive from
 char m_pszBuf[100]; // buffer to send
 char m_pszServer[100]; // host name or IP address of stream server

continues

Part IV ■ Programming with the WinSock Class Library276

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnStream(WPARAM wParam, LPARAM lParam);
 afx_msg void OnTimer(UINT nIDEvent);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_STREAM (WM_USER + 1)

Listing 14.8. MAINVIEW.CPP for CSECLNT.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “cseclnt.h”
#include “mainview.h”
#include “servdlg.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

Listing 14.7. continued

 Chapter 14 ■ Sample Applications 277

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 m_pStream = NULL;
 (*m_pszBuf) = ‘\0’;
}

CMainView::~CMainView()
{
 // free the stream and WinSock objects

 if (m_pStream)
 {
 m_pStream->DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock->Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 // start the timer used to trigger the socket writes

 SetTimer(1, 5000, NULL); // 5 second timer

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // initialize the WinSock object

 m_pWinSock = new CWinSock;
 if (m_pWinSock->Startup() == CWINSOCK_NOERROR)
 plb->InsertString(0, “WinSock initialized”);
 else
 {

continues

Part IV ■ Programming with the WinSock Class Library278

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 plb->InsertString(0, “WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 // prompt for server information
 // (host name or IP address of stream server)

 while (1)
 {
 CServerDlg dlg;
 dlg.DoModal();
 if (dlg.m_stringServer.GetLength() < sizeof(m_pszServer))
 {
 lstrcpy(m_pszServer, dlg.m_stringServer);
 break;
 }
 else
 AfxMessageBox(“Host name or IP address too long”);
 }

 // initialize the stream socket object

 m_pStream = new CStreamSocket(this, WM_USER_STREAM);
 if (m_pStream->CreateSocket() == CWINSOCK_NOERROR)
 plb->InsertString(0, “Stream created”);
 else
 {
 plb->InsertString(0, “Stream creation failed”);
 delete m_pStream;
 m_pStream = NULL;
 }

 // connect the client to the server
 if (m_pStream->Connect(m_pszServer, 2000) == CWINSOCK_NOERROR)
 plb->InsertString(0, “Stream connect attempt made”);
 else
 {
 plb->InsertString(0, “Stream connect attempt failed”);
 delete m_pStream;
 m_pStream = NULL;
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_STREAM, OnStream)
 ON_WM_TIMER()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///

Listing 14.8. continued

 Chapter 14 ■ Sample Applications 279

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

// CMainView::OnStream()
//
// Receives messages from the stream object.
//
LONG CMainView::OnStream(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 LPVOID pDataRead; // pointer to data just read
 int nLen; // length
 char pszMessage[1000];// informational message

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Data sent (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 (*m_pszBuf) = ‘\0’; // same as (*pDataWritten) = ‘\0’;
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending data (%s)”, pDataWritten);
 plb->InsertString(0, pszMessage);
 (*m_pszBuf) = ‘\0’; // same as (*pDataWritten) = ‘\0’;
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_pStream->Read(&nLen);
 wsprintf(pszMessage, “Data received (%s)”, pDataRead);
 plb->InsertString(0, pszMessage);
 free(pDataRead);
 break;

 case CWINSOCK_ERROR_READING:
 break;

 case CWINSOCK_YOU_ARE_CONNECTED:
 plb->InsertString(0, “Connected to server”);
 break;

 case CWINSOCK_LOST_CONNECTION:
 // server closed the connection
 m_pStream->DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 plb->InsertString(0, “Server closed connection”);
 break;

 default:
 break;
 }

continues

Part IV ■ Programming with the WinSock Class Library280

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

 return 0L;
}

void CMainView::OnTimer(UINT nIDEvent)
{
 static int nSendCount = 1; // used to generate unique message
 char pszMessage[1000]; // informational message

 // make sure we are not sending out of a bad stream socket
 if (m_pStream == NULL)
 return;

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // send the buffer unless the previous send hasn’t completed yet
 if ((*m_pszBuf) == ‘\0’)
 {
 wsprintf(m_pszBuf, “Hello %d”, nSendCount);
 ++nSendCount;
 // be sure to send terminating NULL character
 if (m_pStream->Write(lstrlen(m_pszBuf) + 1, m_pszBuf) != CWINSOCK_NOERROR)
 {
 (*m_pszBuf) = ‘\0’;
 wsprintf(pszMessage, “Error sending data (%s)”, m_pszBuf);
 plb->InsertString(0, pszMessage);
 }
 }

 CFormView::OnTimer(nIDEvent);
}

Running the Stream Echo Server and Client
Following is a sample sequence of events that occur when the stream echo client and
server are run:

1. Run CSESRV.

2. Run CSECLNT on the same or a different computer. It prompts for the host
name or IP address CSESRV is using. A connection to the server is attempted.

3. CSESRV’s CMainView::OnStreamSrv() is called with the
CWINSOCK_READY_TO_ACCEPT_CONNECTION event and, if the m_pStream socket is
not yet connected to a client, a connection attempt is made.

4. When the server’s connection accept succeeds, OnStream() is called with wParam
set to CWINSOCK_YOU_ARE_CONNECTED.

5. CDECLNT’s CMainView::OnStream() is also called with the
CWINSOCK_YOU_ARE_CONNECTED event.

Listing 14.8. continued

 Chapter 14 ■ Sample Applications 281

P2/Vol.6 Programming WinSock #30594-1 tullis 11.14.94 CH14 LP #3

6. In five seconds, the timer will trigger in CSECLNT, causing
CMainView::OnTimer() to get called. No bytes are waiting to be sent yet, so the
outgoing buffer is filled and written to the connected server.

7. CMainView::OnStream() is called in CSECLNT with a CWINSOCK_DONE_WRITING
notice. The outgoing buffer is then marked as unused so that it may be used
with the next triggering of CMainView::OnTimer().

8. CMainView::OnStream() is called in CSESRV with a CWINSOCK_DONE_READING
notice. The data is read and immediately echoed back to the client.

9. CMainView::OnStream() is called in CSESRV with a CWINSOCK_DONE_WRITING
notice. The data is then freed.

10. CMainView::OnStream() is called in CSECLNT with a CWINSOCK_DONE_READING
notice. The echoed data is read and then freed.

11. Another timer goes off in CSECLNT and the process repeats.

If CSECLNT is closed first, CMainView::OnStream() is called in CSESRV with a
CWINSOCK_LOST_CONNECTION notice. If CSESRV is closed first, CMainView::OnStream()
is called in CSECLNT with a CWINSOCK_LOST_CONNECTION notice.

Summary
This chapter demonstrates the use of the CWinSock, CDatagramSocket, and CStreamSocket
objects. These objects are designed to make socket programming easier for you.

It is hoped that the comparison of these sample programs with those of Chapter 8 proves
that the design goals of the WinSock class library, described in Chapter 9, are met. A
comparison also reveals one of the limitations of the CDatagramSocket and CStreamSocket
objects. These objects don’t have the capability of letting the WinSock subsystem as-
sign an unused port to a server socket. Instead, the port must be specified in terms of its
port number or service name, in this case to port number 2000.

The next chapter uses the WinSock class library objects in a sample client-server data-
base environment.

 Chapter 15 ■ Practical Client/Server Database Application 283

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

1515

Practical Client/
Server Database
Application

Practical Client/
Server Database
Application

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library284

This chapter presents a practical client/server database application set that uses the
WinSock class library described in the preceding chapters. The application set consists
of a client application and a server application. The client sends database requests to the
server and the server responds with a positive or negative acknowledgment.

The client (INICLNT) and server (INISRV) use the CDatagramSocket and CStreamSocket
objects. In previous chapters, the server examples could handle only one client connec-
tion at a time. This server is more realistic in that it can service several clients simulta-
neously. The server is implemented as a Multiple Document Interface application in
which each window represents a client connection. The client is a simple Single Docu-
ment Interface application. A stream socket connection is used to transmit database
commands and responses between the client and server. A datagram socket is used to
send a heartbeat message from the server to the client. The heartbeat is a block of data
that is sent between the client and server to let each know that the other side is still ac-
tive and able to communicate. This heartbeat allows the client program to show a visual
indication of the client/server link status.

The “database” in this example uses Windows’ built-in INI file facility. An INI file is
used to maintain configuration information for an application. An example INI file is
shown below:

[boot]
386grabber=ajvga.3gr
oemfonts.fon=vgaoem.fon

[keyboard]
subtype=
type=4

[boot] is called the section. 386grabber is an example of an entry or key. ajvga.3gr is its
value. The GetPrivateProfileString() and WritePrivateProfileString() SDK func-
tions are used to read and write an INI file string value, respectively.

Client INICLNT
The client application, INICLNT, uses a CFormView-derived object as its main inter-
face. The header file for the CMainView object is shown in Listing 15.1, which appears
later in this section. Its implementation is shown in Listing 15.2, which also appears
later in this section. This object performs most of the work for the INICLNT applica-
tion. OnInitialUpdate() is called soon after the object is created. This function is re-
sponsible for starting the WinSock subsystem, creating a client stream socket, creating
a server datagram socket for the heartbeat, prompting for the host name or IP address
of the INISRV server, and setting a timer interval used for the heartbeats. When the

 Chapter 15 ■ Practical Client/Server Database Application 285

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

server accepts the client’s connection request, OnStream() is called with wParam set to
CWINSOCK_YOU_ARE_CONNECTED.

Command Identifier
The user enters the read or write parameters into the appropriate fields and then selects
either the Read or Write button, triggering OnClickedButtonRead() or
OnClickedButtonWrite(), respectively. These functions format the database command
and call FillAndSendDBCmd(), which assigns a unique identifier to the database com-
mand and sends it to the server. The database command has the following structure:

typedef struct tagDBCOMMAND
{
 int nID; // database command identifier
 int nCommand; // database command
 char szFile[DBBUFSIZE]; // INI file
 char szSection[DBBUFSIZE]; // section of INI file
 char szEntry[DBBUFSIZE]; // entry within section of INI file
 char szValue[DBBUFSIZE]; // value of entry within section of INI file
} DBCOMMAND, FAR * LPDBCOMMAND;

ClassWizard is used to limit the number of bytes that may be entered into the data entry
fields of CMainView. This limit is set to 40 to match the DBBUFSIZE value used in the
preceding DBCOMMAND definition.

Possible commands for the client are DB_READ and DB_WRITE. A unique identifier is as-
signed because there could be multiple outstanding database requests; the client and
server operate totally asynchronously. The identifier may be used to correlate the com-
mand and its asynchronous response. Once the command is successfully sent, OnStream()
is called with wParam set to CWINSOCK_DONE_WRITING. When the server is done processing
the database command, it sends a response to the client, triggering OnStream() with wParam
set to CWINSOCK_DONE_READING. The HandleRead() function processes the database re-
sponse sent by the server.

Heartbeat Link Status Indicator
This application has a timer that’s used to keep track of missing heartbeat messages.
The OnDatagram() function handles reception of the heartbeats sent from the connected
server. If one heartbeat message is missed, the traffic light status indicator changes to a
yellow light. Missing two or more heartbeats causes the light to turn red. If the heart-
beats are received without fail, the light remains green. This provides for a visual cue as
to the state of the server.

When CMainView’s destructor is called, the stream and datagram sockets are destroyed
and the WinSock subsystem is shut down.

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library286

Listing 15.1. MAINVIEW.H for INICLNT.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes
#include “db.h”

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

private:
 CWinSock * m_pWinSock; // WinSock sub–system startup/.shutdown
 CStreamSocket * m_pStream; // Stream socket to receive from
 CDatagramSocket * m_pDatagram; // Datagram socket to receive heartbeat
 char m_pszServer[100]; // host name or IP address of stream server
 int m_nHeartbeat; // heartbeat count
 HICON m_hRed, m_hYellow, m_hGreen; // link status icons

 void HandleRead();
 void FillAndSendDBCmd(LPDBCOMMAND pdb, LPCSTR szFile,
 LPCSTR szSection, LPCSTR szEntry, LPCSTR szValue = NULL);

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 CString m_stringFile;
 CString m_stringSection;
 CString m_stringValue;
 CString m_stringEntry;
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnStream(WPARAM wParam, LPARAM lParam);

 Chapter 15 ■ Practical Client/Server Database Application 287

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 afx_msg LONG OnDatagram(WPARAM wParam, LPARAM lParam);
 afx_msg void OnTimer(UINT nIDEvent);
 afx_msg void OnClickedButtonRead();
 afx_msg void OnClickedButtonWrite();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_STREAM (WM_USER + 1)
#define WM_USER_DATAGRAM (WM_USER + 2)

Listing 15.2. MAINVIEW.CPP for INICLNT.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “iniclnt.h”
#include “mainview.h”
#include “servdlg.h”
#include “db.h”
#include “common.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 m_stringFile = “”;
 m_stringSection = “”;
 m_stringValue = “”;
 m_stringEntry = “”;
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 m_pStream = NULL;
 m_pDatagram = NULL;
 m_nHeartbeat = 0;

 // load link status icons
 m_hRed = AfxGetApp()–>LoadIcon(IDI_ICON_RED);

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library288

 m_hYellow = AfxGetApp()–>LoadIcon(IDI_ICON_YELLOW);
 m_hGreen = AfxGetApp()–>LoadIcon(IDI_ICON_GREEN);
}

CMainView::~CMainView()
{
 // free the stream and WinSock objects

 if (m_pStream)
 {
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 }

 if (m_pDatagram)
 {
 m_pDatagram–>DestroySocket();
 delete m_pDatagram;
 m_pDatagram = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock–>Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 DDX_Text(pDX, IDC_EDIT_FILE, m_stringFile);
 DDV_MaxChars(pDX, m_stringFile, 40);
 DDX_Text(pDX, IDC_EDIT_SECTION, m_stringSection);
 DDV_MaxChars(pDX, m_stringSection, 40);
 DDX_Text(pDX, IDC_EDIT_VALUE, m_stringValue);
 DDV_MaxChars(pDX, m_stringValue, 40);
 DDX_Text(pDX, IDC_EDIT_ENTRY, m_stringEntry);
 DDV_MaxChars(pDX, m_stringEntry, 40);
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 // start the timer used to keep track of heartbeats

 SetTimer(1, HEARTBEAT_DELAY, NULL);

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // initialize the WinSock object

Listing 15.2. continued

 Chapter 15 ■ Practical Client/Server Database Application 289

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 m_pWinSock = new CWinSock;
 if (m_pWinSock–>Startup() == CWINSOCK_NOERROR)
 plb–>InsertString(0, “WinSock initialized”);
 else
 {
 plb–>InsertString(0, “WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 // prompt for server information
 // (host name or IP address of stream server)

 while (1)
 {
 CServerDlg dlg;
 dlg.DoModal();
 if (dlg.m_stringServer.GetLength() < sizeof(m_pszServer))
 {
 lstrcpy(m_pszServer, dlg.m_stringServer);
 break;
 }
 else
 AfxMessageBox(“Host name or IP address too long”);
 }

 // initialize the stream socket object

 m_pStream = new CStreamSocket(this, WM_USER_STREAM);
 if (m_pStream–>CreateSocket() == CWINSOCK_NOERROR)
 plb–>InsertString(0, “Stream created”);
 else
 {
 plb–>InsertString(0, “Stream creation failed”);
 delete m_pStream;
 m_pStream = NULL;
 return;
 }

 // initialize the datagram socket object for the heartbeat

 m_pDatagram = new CDatagramSocket(this, WM_USER_DATAGRAM);
 if (m_pDatagram–>CreateSocket(DATAGRAM_PORT) == CWINSOCK_NOERROR)
 plb–>InsertString(0, “Heartbeat datagram created”);
 else
 {
 plb–>InsertString(0, “Error creating heartbeat datagram”);
 delete m_pDatagram;
 m_pDatagram = NULL;

 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;

 return;
 }

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library290

 // connect the client to the server
 if (m_pStream–>Connect(m_pszServer, STREAM_PORT) == CWINSOCK_NOERROR)
 plb–>InsertString(0, “Stream connect attempt made”);
 else
 {
 plb–>InsertString(0, “Stream connect attempt failed”);
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;

 m_pDatagram–>DestroySocket();
 delete m_pDatagram;
 m_pDatagram = NULL;
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_STREAM, OnStream)
 ON_MESSAGE(WM_USER_DATAGRAM, OnDatagram)
 ON_WM_TIMER()
 ON_BN_CLICKED(IDC_BUTTON_READ, OnClickedButtonRead)
 ON_BN_CLICKED(IDC_BUTTON_WRITE, OnClickedButtonWrite)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnStream()
//
// Receives messages from the stream object.
//
LONG CMainView::OnStream(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 char pszMessage[1000];// informational message

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Data sent (ID %d)”,
 ((LPDBCOMMAND)pDataWritten)–>nID);
 plb–>InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending

Listing 15.2. continued

 Chapter 15 ■ Practical Client/Server Database Application 291

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending data (ID %d)”,
 ((LPDBCOMMAND)pDataWritten)–>nID);
 plb–>InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 HandleRead();
 break;

 case CWINSOCK_ERROR_READING:
 break;

 case CWINSOCK_YOU_ARE_CONNECTED:
 plb–>InsertString(0, “Connected to server”);
 break;

 case CWINSOCK_LOST_CONNECTION:
 // server closed the connection
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 m_pDatagram–>DestroySocket();
 delete m_pDatagram;
 m_pDatagram = NULL;
 plb–>InsertString(0, “Server closed connection”);
 break;

 default:
 break;
 }

 return 0L;
}

///
// CMainView::HandleRead()
//
// Receives data from the connected stream object.
//
void CMainView::HandleRead()
{
 char pszMessage[1000];// informational message
 LPVOID pDataRead; // pointer to data read
 int nLen; // length
 DBCOMMAND dbcmd; // database command structure

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // read the data
 pDataRead = m_pStream–>Read(&nLen);
 plb–>InsertString(0, “Received response from server”);

 // verify that the data represented an entire
 // database command structure

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library292

 if (nLen != sizeof(dbcmd))
 {
 plb–>InsertString(0, “This client cannot handle partial blocks”);
 free(pDataRead);
 return;
 }

 // copy the data to a database command structure
 memcpy(&dbcmd, pDataRead, sizeof(dbcmd));
 free(pDataRead);

 // display database command results
 if (dbcmd.nCommand == DB_OK)
 wsprintf(pszMessage, “OK (ID %d, \”%s\”)”, dbcmd.nID, dbcmd.szValue);
 else if (dbcmd.nCommand == DB_ERROR)
 wsprintf(pszMessage, “Error (ID %d, \”%s\”)”, dbcmd.nID, dbcmd.szValue);
 else
 lstrcpy(pszMessage, “Invalid database response”);
 plb–>InsertString(0, pszMessage);
}

///
// CMainView::OnClickedButtonRead()
//
void CMainView::OnClickedButtonRead()
{
 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // allocate memory for database command structure
 LPDBCOMMAND pdb = (LPDBCOMMAND)malloc(sizeof(DBCOMMAND));
 if (pdb == NULL)
 plb–>InsertString(0, “Cannot allocate memory for command”);
 else
 {
 memset(pdb, 0, sizeof(DBCOMMAND));
 UpdateData(TRUE);
 FillAndSendDBCmd(pdb, m_stringFile, m_stringSection, m_stringEntry);
 }
}

///
// CMainView::OnClickedButtonWrite()
//
void CMainView::OnClickedButtonWrite()
{
 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // allocate memory for database command structure
 LPDBCOMMAND pdb = (LPDBCOMMAND)malloc(sizeof(DBCOMMAND));
 if (pdb == NULL)
 plb–>InsertString(0, “Cannot allocate memory for command”);
 else
 {
 memset(pdb, 0, sizeof(DBCOMMAND));

Listing 15.2. continued

 Chapter 15 ■ Practical Client/Server Database Application 293

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 UpdateData(TRUE);
 FillAndSendDBCmd(pdb, m_stringFile, m_stringSection, m_stringEntry,
 m_stringValue);
 }
}

///
// CMainView::FillAndSendDBCmd()
//
void CMainView::FillAndSendDBCmd(LPDBCOMMAND pdb, LPCSTR szFile,
 LPCSTR szSection, LPCSTR szEntry, LPCSTR szValue/*= NULL*/)
{
 char pszMessage[1000]; // informational message
 static int nID = 1; // database command identifier

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // fill out command parameters
 pdb–>nID = nID;

 lstrcpy(pdb–>szFile, szFile);
 lstrcpy(pdb–>szSection, szSection);
 lstrcpy(pdb–>szEntry, szEntry);

 if (szValue == NULL)
 pdb–>nCommand = DB_READ;
 else
 {
 pdb–>nCommand = DB_WRITE;
 lstrcpy(pdb–>szValue, szValue);
 }

 // send the command to the server
 if (m_pStream–>Write(sizeof(DBCOMMAND), pdb) != CWINSOCK_NOERROR)
 {
 wsprintf(pszMessage, “Error sending data (ID %d)”, pdb–>nID);
 plb–>InsertString(0, pszMessage);
 free(pdb);
 }
 else
 ++nID;
}

///
// CMainView::OnDatagram()
//
// Receives messages from the heartbeat datagram object.
//
LONG CMainView::OnDatagram(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 LPVOID pDataRead; // pointer to data just read
 int nLen; // length
 char pszMessage[1000];// informational message

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library294

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 // should never happen but make sure the memory is freed just in case
 pDataWritten = (LPVOID)lParam;
 free(pDataWritten);
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 // should never happen but make sure the memory is freed just in case
 pDataWritten = (LPVOID)lParam;
 free(pDataWritten);
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = m_pDatagram–>Read(&nLen);
 lstrcpy(pszMessage, “Heartbeat received”);
 plb–>InsertString(0, pszMessage);
 free(pDataRead);
 m_nHeartbeat = 0;
 ((CStatic *)GetDlgItem(IDC_ICON_STATUS))–>SetIcon(m_hGreen);
 break;

 case CWINSOCK_ERROR_READING:
 break;

 default:
 break;
 }

 return 0L;
}

///
// CMainView::OnTimer()
//
// Receives timer messages
//
void CMainView::OnTimer(UINT nIDEvent)
{
 ++m_nHeartbeat;

 if (m_nHeartbeat > 1)
 ((CStatic *)GetDlgItem(IDC_ICON_STATUS))–>SetIcon(m_hYellow);

 if (m_nHeartbeat > 2)
 ((CStatic *)GetDlgItem(IDC_ICON_STATUS))–>SetIcon(m_hRed);

 CFormView::OnTimer(nIDEvent);
}

Listing 15.2. continued

 Chapter 15 ■ Practical Client/Server Database Application 295

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Server INISRV
The INISRV program uses the Multiple Document Interface. The program has two
views that are derived from the CFormView object. CMainView, shown in Listings 15.3
and 15.4, shows status information for the server socket that waits for connection re-
quests from clients. CServerView, shown in Listings 15.5 and 15.6, shows status infor-
mation for the connected socket that processes database commands sent by clients.

CMainView’s m_pWinSock member variable controls the starting and stopping of the
WinSock subsystem for this program. g_pStreamSrv is a global variable that points to
the server stream socket object that waits for connections from clients.

The CMainView OnStreamSrv() member function receives status information for the server
stream socket object. It’s triggered by the WM_USER_STREAMSRV user-defined message
whenever a client requests a connection to the server.

The implementation of the CMainView object is shown in Listing 15.4. This object per-
forms the initialization work for the INISRV application. CMainView’s OnInitialUpdate()
is called soon after the object is created. This function is responsible for starting the
WinSock subsystem and creating a server stream socket that waits for connection re-
quests to arrive from clients.

Multiple Views
When a client requests a connection, the OnStreamSrv() member function is triggered
with wParam set to CWINSOCK_READY_TO_ACCEPT_CONNECTION. A new view, of type
CServerView, is then launched to accept the client connection. This new view is sup-
ported by having two document templates, as shown in Listing 15.3 and 15.4. One
template uses CMainView and the other uses CServerView.

Listing 15.3. MAINVIEW.H for INISRV.

// mainview.h : header file
//

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CMainView : public CFormView
{

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library296

 DECLARE_DYNCREATE(CMainView)

private:
 CWinSock * m_pWinSock; // WinSock sub–system startup/.shutdown

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnStreamSrv(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_STREAMSRV (WM_USER + 1)

Listing 15.4. MAINVIEW.CPP for INISRV.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “inisrv.h”
#include “mainfrm.h”
#include “mainview.h”
#include “global.h”
#include “common.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

Listing 15.3. continued

 Chapter 15 ■ Practical Client/Server Database Application 297

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 g_pStreamSrv = NULL;
}

CMainView::~CMainView()
{
 // free the stream and WinSock objects

 if (g_pStreamSrv)
 {
 g_pStreamSrv–>DestroySocket();
 delete g_pStreamSrv;
 g_pStreamSrv = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock–>Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // initialize the WinSock object

 m_pWinSock = new CWinSock;
 if (m_pWinSock–>Startup() == CWINSOCK_NOERROR)
 plb–>InsertString(0, “WinSock initialized”);
 else
 {

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library298

 plb–>InsertString(0, “WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 // initialize the stream socket object

 g_pStreamSrv = new CStreamSocket(this, WM_USER_STREAMSRV);
 if (g_pStreamSrv–>CreateSocket(STREAM_PORT) == CWINSOCK_NOERROR)
 plb–>InsertString(0, “Stream server created”);
 else
 {
 plb–>InsertString(0, “Stream server creation failed”);
 delete g_pStreamSrv;
 g_pStreamSrv = NULL;
 }
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_STREAMSRV, OnStreamSrv)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnStreamSrv()
//
// Receives messages from the stream server object.
//
LONG CMainView::OnStreamSrv(WPARAM wParam, LPARAM lParam)
{
// temporary code
CMDIChildWnd *pActiveChild;

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_READY_TO_ACCEPT_CONNECTION:
 plb–>InsertString(0, “Client requesting connection”);

 // accept the client connection by creating
 // a CServerView window
 pActiveChild =
 ((CMainFrame *)(AfxGetApp()–>m_pMainWnd))–>MDIGetActive();
 CDocument *pDocument;
 if (pActiveChild != NULL)
 {
 if ((pDocument = pActiveChild–>GetActiveDocument()) != NULL)

Listing 15.4. continued

 Chapter 15 ■ Practical Client/Server Database Application 299

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 {
 CDocTemplate *pTemplate =
 ((CInisrvApp *)AfxGetApp())–>m_pServerTemplate;
 ASSERT_VALID(pTemplate);
 CFrameWnd *pFrame =
 pTemplate–>CreateNewFrame(pDocument, pActiveChild);
 if (pFrame == NULL)
 {
 plb–>InsertString(0, “Failed to create window to handle client”);
 }
 else
 {
 pTemplate–>InitialUpdateFrame(pFrame, pDocument);
 }
 }
 }

 break;

 default:
 break;
 }

 return 0L;
}

The CServerView object handles the actual communication with the client. Its m_pStream
member variable is the stream socket that actually receives data from and sends data to
the client.

CServerView’s OnStream() member function receives status information for the stream
socket object that does the actual communication with the client. It’s triggered by the
WM_USER_STREAM user-defined message whenever a client connection is made or lost, and
when data is available to be read or finished being written.

The m_pStream object is then used to accept the client connection request. When the
connection is made, OnStream() is called with wParam set to CWINSOCK_YOU_ARE_CONNECTED.
When data arrives from the client, OnStream() is called with wParam set to
CWINSOCK_DONE_READING. The database command is read and carried out. A response is
formulated and sent back to the client. When the write finishes, OnStream() is called
with wParam set to CWINSOCK_DONE_WRITING letting the server know the data send has
completed.

CServerView also has a datagram socket that, in combination with the timer handled by
OnTimer(), handles the periodic sending of a heartbeat message to the client. Notice the
HEARTBEAT_TEST ifdef in the CServerView’s OnTimer() function. By defining this vari-
able, the client’s traffic light feature is easily tested. After the client is connected to the
server for 10 and then 20 seconds, the client’s status should go from green to yellow to
red, and back to green.

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library300

Listing 15.5. SRVVIEW.H for INISRV.

// srvview.h : header file
//

///
// CServerView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CServerView : public CFormView
{
 DECLARE_DYNCREATE(CServerView)

private:
 CStreamSocket * m_pStream; // Stream socket which communicates with client
 CDatagramSocket * m_pDatagram; // Datagram socket which sends heatbeats to client
 SOCKADDR_IN m_sinClient; // Client’s address
 char m_pszHeartbeat[20]; // Heartbeat message sent to client
 void HandleRead();

protected:
 CServerView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CServerView)
 enum { IDD = IDD_DIALOG_SERVER };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CServerView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CServerView)
 afx_msg LONG OnStream(WPARAM wParam, LPARAM lParam);
 afx_msg LONG OnDatagram(WPARAM wParam, LPARAM lParam);
 afx_msg void OnTimer(UINT nIDEvent);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

 Chapter 15 ■ Practical Client/Server Database Application 301

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

#define WM_USER_STREAM (WM_USER + 1)
#define WM_USER_DATAGRAM (WM_USER + 2)

Listing 15.6. SRVVIEW.CPP for INISRV.

// srvview.cpp : implementation file
//

#include “stdafx.h”
#include <string.h>
#include “inisrv.h”
#include “srvview.h”
#include “global.h”
#include “db.h”
#include “common.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CServerView

IMPLEMENT_DYNCREATE(CServerView, CFormView)

CServerView::CServerView()
 : CFormView(CServerView::IDD)
{
 //{{AFX_DATA_INIT(CServerView)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 m_pStream = NULL;
 m_pDatagram = NULL;
 (*m_pszHeartbeat) = ‘\0’;
}

CServerView::~CServerView()
{
 // free the stream and WinSock objects

 if (m_pStream)
 {
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 }

 if (m_pDatagram)
 {
 m_pDatagram–>DestroySocket();
 delete m_pDatagram;
 m_pDatagram = NULL;

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library302

 }
}

void CServerView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CServerView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

void CServerView::OnInitialUpdate()
{
 // start the timer used to trigger the heartbeat writes

 SetTimer(1, HEARTBEAT_DELAY, NULL);

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // accept the client connection
 int nStatus;
 m_pStream = new CStreamSocket(this, WM_USER_STREAM);
 nStatus = g_pStreamSrv–>Accept(m_pStream);
 if (nStatus != CWINSOCK_NOERROR)
 {
 plb–>InsertString(0, “Error accepting client connection”);
 delete m_pStream;
 m_pStream = NULL;
 return;
 }

 plb–>InsertString(0, “Accepted client connection”);

 // get address of client and convert it to be used for sending heartbeat
 if (m_pStream–>GetPeerName(&m_sinClient) != CWINSOCK_NOERROR)
 {
 plb–>InsertString(0, “Cannot get name of client”);
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 return;
 }
 m_sinClient.sin_port = htons(DATAGRAM_PORT);

 // create the heartbeat datagram
 m_pDatagram = new CDatagramSocket(this, WM_USER_DATAGRAM);
 nStatus = m_pDatagram–>CreateSocket();
 if (nStatus != CWINSOCK_NOERROR)
 {
 delete m_pDatagram;
 m_pDatagram = NULL;
 plb–>InsertString(0, “Error creating heartbeat datagram”);

Listing 15.6. continued

 Chapter 15 ■ Practical Client/Server Database Application 303

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;

 return;
 }
 plb–>InsertString(0, “Heartbeat datagram created”);
}

BEGIN_MESSAGE_MAP(CServerView, CFormView)
 //{{AFX_MSG_MAP(CServerView)
 ON_MESSAGE(WM_USER_STREAM, OnStream)
 ON_MESSAGE(WM_USER_DATAGRAM, OnDatagram)
 ON_WM_TIMER()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CServerView message handlers

///
// CServerView::OnStream()
//
// Receives messages from the connected stream object.
//
LONG CServerView::OnStream(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 char pszMessage[1000];// informational message
 SOCKADDR_IN sin; // Internet address of client
 IN_ADDR in; // IP address of client
 int nStatus; // error status

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Data sent (ID %d)”,
 ((LPDBCOMMAND)pDataWritten)–>nID);
 plb–>InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending data (ID %d)”,
 ((LPDBCOMMAND)pDataWritten)–>nID);
 plb–>InsertString(0, pszMessage);
 free(pDataWritten);
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library304

 HandleRead();
 break;

 case CWINSOCK_ERROR_READING:
 break;

 case CWINSOCK_YOU_ARE_CONNECTED:
 // print out client information
 nStatus = m_pStream–>GetPeerName(&sin);
 if (nStatus == CWINSOCK_NOERROR)
 {
 memcpy(&in, &sin.sin_addr.s_addr, 4);
 wsprintf(pszMessage, “Connected to client %s, %d”,
 inet_ntoa(in), ntohs(sin.sin_port));
 plb–>InsertString(0, pszMessage);
 }
 else
 plb–>InsertString(0, “Error getting client name”);
 break;

 case CWINSOCK_LOST_CONNECTION:
 // client closed the connection
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 m_pDatagram–>DestroySocket();
 delete m_pDatagram;Listing 15.6. continued.
 m_pDatagram = NULL;
 plb–>InsertString(0, “Client closed connection”);
 break;

 default:
 break;
 }

 return 0L;
}

///
// CServerView::HandleRead()
//
// Receives data from the connected stream object.
//
void CServerView::HandleRead()
{
 char pszMessage[1000];// informational message
 LPVOID pDataRead; // pointer to data read
 int nLen; // length
 DBCOMMAND dbcmd; // database command structure

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // read the data
 pDataRead = m_pStream–>Read(&nLen);
 plb–>InsertString(0, “Received command from client”);

Listing 15.6. continued

 Chapter 15 ■ Practical Client/Server Database Application 305

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 // verify that the data represented an entire
 // database command structure
 if (nLen != sizeof(DBCOMMAND))
 {
 plb–>InsertString(0, “This server cannot handle partial blocks”);
 free(pDataRead);
 return;
 }

 // copy the data to a database command structure
 memcpy(&dbcmd, pDataRead, sizeof(DBCOMMAND));
 free(pDataRead);

 // verify database command
 if ((dbcmd.nCommand != DB_READ) && (dbcmd.nCommand != DB_WRITE))
 {
 plb–>InsertString(0, “Invalid database command”);
 return;
 }

 // perform the database request and format a response
 LPDBCOMMAND pdbcmd = (LPDBCOMMAND)malloc(sizeof(DBCOMMAND));
 if (pdbcmd == NULL)
 {
 plb–>InsertString(0, “Cannot allocate memory for response”);
 return;
 }
 memcpy(pdbcmd, &dbcmd, sizeof(DBCOMMAND));
 pdbcmd–>nCommand = DB_OK;
 if (dbcmd.nCommand == DB_READ)
 ::GetPrivateProfileString(dbcmd.szSection, dbcmd.szEntry, “NOT FOUND”,
 pdbcmd–>szValue, DBBUFSIZE, dbcmd.szFile);
 else
 ::WritePrivateProfileString(dbcmd.szSection, dbcmd.szEntry,
 dbcmd.szValue, dbcmd.szFile);

 // send the response to the client
 if (m_pStream–>Write(sizeof(DBCOMMAND), pdbcmd) != CWINSOCK_NOERROR)
 {
 wsprintf(pszMessage, “Error sending data (ID %d)”, pdbcmd–>nID);
 plb–>InsertString(0, pszMessage);
 free(pdbcmd);
 }
}

///
// CServerView::OnDatagram()
//
// Receives messages from the datagram object.
//
LONG CServerView::OnDatagram(WPARAM wParam, LPARAM lParam)
{
 LPVOID pDataWritten; // pointer to data that is completely written
 LPVOID pDataRead; // pointer to data just read
 int nLen; // length
 char pszMessage[1000];// informational message

continues

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library306

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Heartbeat sent”);
 plb–>InsertString(0, pszMessage);
 (*m_pszHeartbeat) = ‘\0’; // same as (*pDataWritten) = ‘\0’;
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending
 pDataWritten = (LPVOID)lParam;
 wsprintf(pszMessage, “Error sending heartbeat”);
 plb–>InsertString(0, pszMessage);
 (*m_pszHeartbeat) = ‘\0’; // same as (*pDataWritten) = ‘\0’;
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 // should never happen but make sure the memory is freed just in case
 pDataRead = m_pDatagram–>Read(&nLen);
 free(pDataRead);
 break;

 case CWINSOCK_ERROR_READING:
 break;

 default:
 break;
 }

 return 0L;
}

///
// CServerView::OnTimer()
//
// Sends periodic heartbeats to the connected client through the datagram.
//

void CServerView::OnTimer(UINT nIDEvent)
{
 char pszMessage[1000]; // informational message

#ifdef HEARTBEAT_TEST
 static int nHeartbeatTest = 0;
 ++nHeartbeatTest;
 if ((nHeartbeatTest == 10) || (nHeartbeatTest == 11) ||
 (nHeartbeatTest == 20) || (nHeartbeatTest == 21))
 return;
#endif

Listing 15.6. continued

 Chapter 15 ■ Practical Client/Server Database Application 307

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

 // make sure we are not sending out of a bad datagram socket
 if (m_pDatagram == NULL)
 return;

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_STATUS);

 // send the buffer unless the previous send hasn’t completed yet
 if ((*m_pszHeartbeat) == ‘\0’)
 {
 lstrcpy(m_pszHeartbeat, HEARTBEAT_STRING);
 // be sure to send terminating NULL character
 if (m_pDatagram–>Write(lstrlen(m_pszHeartbeat) + 1, m_pszHeartbeat,
 &m_sinClient) != CWINSOCK_NOERROR)
 {
 (*m_pszHeartbeat) = ‘\0’;
 wsprintf(pszMessage, “Error sending heartbeat”);
 plb–>InsertString(0, pszMessage);
 }
 }

 CFormView::OnTimer(nIDEvent);
}

Figures 15.1 and 15.2 show the client and server in action.

FIGURE 15.1.
The client INICLNT.

Summary
This chapter demonstrates the use of the CWinSock, CDatagramSocket, and CStreamSocket
objects. It also shows how a server, which handles several clients simultaneously, is eas-
ily produced with the help of the WinSock class library.

p2/v6 SN8 Programming WinSock #30594-1 tullis 11.14.94 CH15 LP #3

Part IV ■ Programming with the WinSock Class Library308

There is much room for improvement in the client and server programs, though. One
important enhancement might be the ability to handle database commands and responses
that do not arrive in one contiguous block. Presently, the client and server can’t handle
such a circumstance. Luckily, however, the blocks of data being transferred are relatively
small and hence have little fragmentation on a lightly loaded network. This enhance-
ment would entail modifying the CWINSOCK_DONE_READING handlers for the stream socket
objects to buffer the incoming bytes until an entire DBCOMMAND structure arrives.

The next chapter uses the WinSock class library object in a finger application for a het-
erogeneous UNIX environment.

FIGURE 15.2.
The server INISRV.

 Chapter 16 ■ Finger Application in a Heterogeneous UNIX Environment 309

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

1616
Finger
Application in a
Heterogeneous
UNIX
Environment

Finger
Application in a
Heterogeneous
UNIX
Environment

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Part IV ■ Programming with the WinSock Class Library310

This chapter shows how easy it is to interface a program written with the WinSock API
to a program running on a UNIX computer. As discussed in the introductory chapters,
WinSock has its roots in Berkeley sockets as implemented in that university’s UNIX
offering. Using the WinSock class library developed in Part III of this text makes writing
such a program even easier.

This chapter presents a functional, if somewhat simplified, Finger client. A Finger client
uses the Finger protocol to retrieve user information from a host running the Finger
server, or the Finger daemon as it is called in the UNIX realm.

Finger Protocol
The Finger protocol is described in the Internet RFC 1288 authored by David
Zimmerman. The groundwork for Finger was introduced in Ken Harrenstien’s RFC
742 and by earlier work performed by Les Earnest, Earl Killian, and Brian Harvey. To
understand the complete working of the Finger protocol and to gain the knowledge
necessary to implement a Finger server, refer to RFC 1288. The simplified client
presented in this chapter obeys the following flow:

Create a socket and connect it to port 79 on the host running the Finger server.

Wait for the Finger server to accept the connection.

Send the Finger request to the Finger server.

Receive the response to the Finger request from the Finger server.

Wait for the Finger server to close its end of the socket connection.

Close the socket.

The Finger request has one of two formats:

<CR><LF> requests basic information about all users currently logged into the
specified host.

Username<CR><LF> requests detailed information about the specified user.

When the Finger server receives the Finger request, it responds with one or more lines
of text delineated by a carriage return. When the server has sent all data, it closes the
socket.

The Finger client presented here uses the CStreamSocket object. The client is a simple
Single Document Interface application. A stream socket connection is used to transmit
the Finger request and responses between the client and server.

 Chapter 16 ■ Finger Application in a Heterogeneous UNIX Environment 311

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Finger Client Design
The Finger client application, FINGER, uses the venerable CFormView-derived object
as its main interface. The header file for the CMainView object is shown in Listing 16.1.
Its implementation is shown in Listing 16.2 (both of these listings appear later in this
section). This object performs most of the work for the FINGER application.
OnInitialUpdate() is called soon after the object is created. The first thing this func-
tion does is to force the list box used for output to use a fixed-pitch font. This ensures
that any data formatted for an ASCII terminal looks appropriate. The function starts
the WinSock subsystem next and then initializes the data entry field used to accept a
username.

When the operator of the Finger client selects the button labeled Finger,
OnClickedButtonFinger() is called. First, the host and username fields are checked to
ensure that they contain valid data. If the username is valid, a Finger request string is
formatted. If the wildcard asterisk character (*) is entered for the username, the request
string consists of just a carriage return followed by a linefeed. Otherwise, the request
string is the username followed by carriage return and linefeed. Next, a stream socket is
created and the asynchronous connect is made to port 79 on the selected host. Last, the
Finger button is disabled to give the user visual feedback that the program is busy.

When the connect succeeds, OnStream() is called with wParam set to
CWINSOCK_YOU_ARE_CONNECTED. In response to this event, the Finger request, formatted
in the OnClickedButtonFinger() function, is sent. When the Finger request is sent,
OnStream() is called with wParam set to CWINSOCK_DONE_WRITING. In response to this event,
the list box used for output is cleared, readying itself for the response to the Finger request.

As data arrives, OnStream() is called with wParam set to CWINSOCK_DONE_READING. The
CWINSOCK_DONE_READING handler calls DisplayData() to buffer a complete line of text,
denoted by a carriage return, before adding the line to the output list box. The buffering
is necessary because it is possible for the data to be received in several pieces with some
lines only partially received.

When the Finger server is done sending its response to the Finger request, it closes its
side of the stream connection, causing OnStream() to be called with wParam set to
CWINSOCK_LOST_CONNECTION. This causes the client to destroy the stream socket. The Finger
button is enabled, signaling that it may be used again, with the same or a different host/
username combination.

Listing 16.1. MAINVIEW.H for FINGER.

// mainview.h : header file
//

continues

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Part IV ■ Programming with the WinSock Class Library312

///
// CMainView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

#include “cwinsock.h” // Windows Sockets classes

class CMainView : public CFormView
{
 DECLARE_DYNCREATE(CMainView)

private:
 void DisplayData(LPCSTR pDataRead, int nLen);
 CWinSock * m_pWinSock; // WinSock sub–system startup/shutdown
 CStreamSocket * m_pStream; // Stream socket
#define MAXUSERLEN (100)
 char m_szUser[MAXUSERLEN]; // user name to query finger with
#define MAXBUFLEN (200)
 char m_szBuf[MAXBUFLEN+1]; // one line of finger output

protected:
 CMainView(); // protected constructor used by dynamic creation

// Form Data
public:
 //{{AFX_DATA(CMainView)
 enum { IDD = IDD_DIALOG_MAIN };
 CString m_stringHost;
 CString m_stringUser;
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Implementation
protected:
 virtual ~CMainView();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate();
 // Generated message map functions
 //{{AFX_MSG(CMainView)
 afx_msg LONG OnStream(WPARAM wParam, LPARAM lParam);
 afx_msg void OnClickedButtonFinger();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

#define WM_USER_STREAM (WM_USER + 1)

Listing 16.1. continued

 Chapter 16 ■ Finger Application in a Heterogeneous UNIX Environment 313

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Listing 16.2. MAINVIEW.CPP for FINGER.

// mainview.cpp : implementation file
//

#include “stdafx.h”
#include “finger.h”
#include “mainview.h”

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainView

IMPLEMENT_DYNCREATE(CMainView, CFormView)

CMainView::CMainView()
 : CFormView(CMainView::IDD)
{
 //{{AFX_DATA_INIT(CMainView)
 m_stringHost = “”;
 m_stringUser = “”;
 //}}AFX_DATA_INIT

 // initialize class variables

 m_pWinSock = NULL;
 m_pStream = NULL;
 m_szBuf[0] = ‘\0’;
}

CMainView::~CMainView()
{
 // free the stream and WinSock objects

 if (m_pStream)
 {
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 }

 if (m_pWinSock)
 {
 m_pWinSock–>Shutdown();
 delete m_pWinSock;
 m_pWinSock = NULL;
 }
}

void CMainView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CMainView)
 DDX_Text(pDX, IDC_EDIT_HOST, m_stringHost);

continues

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Part IV ■ Programming with the WinSock Class Library314

 DDX_Text(pDX, IDC_EDIT_USER, m_stringUser);
 //}}AFX_DATA_MAP
}

void CMainView::OnInitialUpdate()
{
 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_OUTPUT);

 // change the font of the listbox so it is fixed pitch

 HFONT hFont = (HFONT)::GetStockObject(SYSTEM_FIXED_FONT);
 CFont *pFixedFont = CFont::FromHandle(hFont);
 plb–>SetFont(pFixedFont);

 // set the tab stops because some finger
 // servers format their data with tabs

 LONG lDialogBaseUnits = GetDialogBaseUnits();
 WORD wDialogUnitX = LOWORD(lDialogBaseUnits) / 4;
 int nTabIndex, anTabStops[10];
 for (nTabIndex=0; nTabIndex < 10; nTabIndex++)
 anTabStops[nTabIndex] = wDialogUnitX * (2 * nTabIndex);
 plb–>SetTabStops(10, anTabStops);

 // initialize the WinSock object

 m_pWinSock = new CWinSock;
 if (m_pWinSock–>Startup() != CWINSOCK_NOERROR)
 {
 AfxMessageBox(“WinSock initialization failed”);
 delete m_pWinSock;
 m_pWinSock = NULL;
 return;
 }

 m_stringUser = “*”;
 UpdateData(FALSE);
}

BEGIN_MESSAGE_MAP(CMainView, CFormView)
 //{{AFX_MSG_MAP(CMainView)
 ON_MESSAGE(WM_USER_STREAM, OnStream)
 ON_BN_CLICKED(IDC_BUTTON_FINGER, OnClickedButtonFinger)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainView message handlers

///
// CMainView::OnStream()
//
// Receives messages from the stream object.
//

Listing 16.2. continued

 Chapter 16 ■ Finger Application in a Heterogeneous UNIX Environment 315

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

LONG CMainView::OnStream(WPARAM wParam, LPARAM lParam)
{
 LPCSTR pDataRead; // pointer to data just read
 LPCSTR pOrigDataRead; // pointer to data just read
 int nLen; // length

 // get pointer to list box used for status messages

 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_OUTPUT);

 // check for invalid stream socket object
 if (m_pStream == NULL)
 {
 plb–>AddString(“Invalid stream socket object”);
 return 0L;
 }

 switch (wParam)
 {
 case CWINSOCK_DONE_WRITING:
 // lParam = pointer to data that was sent

 // lParam points to the static variable m_szUser
 // so it should not be freed

 // clear the list box
 while (plb–>GetCount() > 0)
 plb–>DeleteString(0);
 break;

 case CWINSOCK_ERROR_WRITING:
 // lParam = pointer to data that generated error sending

 // lParam points to the static variable m_szUser
 // so it should not be freed

 AfxMessageBox(“Error sending finger request”);
 break;

 case CWINSOCK_DONE_READING:
 // lParam = # data chunks in queue
 pDataRead = pOrigDataRead = (LPCSTR)m_pStream–>Read(&nLen);
 if (pDataRead != NULL)
 {
 DisplayData(pDataRead, nLen);
 free((LPVOID)pOrigDataRead);
 }
 break;

 case CWINSOCK_ERROR_READING:
 break;

 case CWINSOCK_YOU_ARE_CONNECTED:
 if (m_pStream–>Write(lstrlen(m_szUser), m_szUser) !=
 CWINSOCK_NOERROR)
 {
 AfxMessageBox(“Error sending finger request”);
 m_pStream–>DestroySocket();

continues

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Part IV ■ Programming with the WinSock Class Library316

 delete m_pStream;
 m_pStream = NULL;
 GetDlgItem(IDC_BUTTON_FINGER)–>EnableWindow(TRUE);
 }
 break;

 case CWINSOCK_LOST_CONNECTION:
 // server closed the connection
 m_pStream–>DestroySocket();
 delete m_pStream;
 m_pStream = NULL;
 GetDlgItem(IDC_BUTTON_FINGER)–>EnableWindow(TRUE);
 break;

 default:
 break;
 }

 return 0L;
}

///
// CMainView::OnClickedButtonFinger()
//
// Called when the Finger button is pressed.
// Creates a socket, connects to a finger server, and send the request.
//
void CMainView::OnClickedButtonFinger()
{
 // inititalize the buffer used to display the results
 m_szBuf[0] = ‘\0’;

 // make sure the user entered something for the host

 UpdateData(TRUE);

 if (m_stringHost.GetLength() == 0)
 {
 AfxMessageBox(“You must enter a host name or IP address”);
 return;
 }

#define MAXHOSTLEN (100)
 char szHost[MAXHOSTLEN];
 if (m_stringHost.GetLength() >= MAXHOSTLEN)
 {
 AfxMessageBox(“Host name or IP address is too long”);
 return;
 }
 lstrcpy(szHost, m_stringHost);

 // make sure the user entered something for the user

 if (m_stringUser.GetLength() == 0)
 {
 AfxMessageBox(“You must enter a user name or *”);

Listing 16.2. continued

 Chapter 16 ■ Finger Application in a Heterogeneous UNIX Environment 317

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

 return;
 }

 if (m_stringUser.GetLength() >= MAXUSERLEN)
 {
 AfxMessageBox(“User name is too long”);
 return;
 }

 // format the finger request

 if (m_stringUser.Compare(“*”) == 0)
 lstrcpy(m_szUser, “\n\r”);
 else
 {
 lstrcpy(m_szUser, m_stringUser);
 lstrcat(m_szUser, “\n\r”);
 }

 // initialize the stream socket object

 m_pStream = new CStreamSocket(this, WM_USER_STREAM);
 if (m_pStream–>CreateSocket() != CWINSOCK_NOERROR)
 {
 AfxMessageBox(“Stream creation failed”);
 delete m_pStream;
 m_pStream = NULL;
 return;
 }

 // connect the client to the finger server on port 79
 // (the finger server usually listens on TCP port 79 but we
 // could replace the hard–coded 79 with the “finger” string
 // to do a service lookup)

 if (m_pStream–>Connect(szHost, 79) != CWINSOCK_NOERROR)
 {
 AfxMessageBox(“Stream connect attempt failed”);
 delete m_pStream;
 m_pStream = NULL;
 return;
 }

 GetDlgItem(IDC_BUTTON_FINGER)–>EnableWindow(FALSE);
}

///
// CMainView::DisplayData()
//
void CMainView::DisplayData(LPCSTR pDataRead, int nLen)
{
 char szBuf[2]; // buffer for a one byte string

 // get pointer to list box used for status messages
 CListBox *plb = (CListBox *)GetDlgItem(IDC_LIST_OUTPUT);

 while (nLen > 0)
 {

continues

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

Part IV ■ Programming with the WinSock Class Library318

 // ignore linefeed
 if (*pDataRead != ‘\r’)
 {
 // don’t add carriage return to string
 if (*pDataRead != ‘\n’)
 {
 szBuf[0] = *pDataRead;
 szBuf[1] = ‘\0’;
 lstrcat(m_szBuf, szBuf);
 }
 if ((lstrlen(m_szBuf) >= MAXBUFLEN) || (*pDataRead == ‘\n’))
 {
 // check to see if the buffer has data in it
 if (m_szBuf[0] != ‘\0’)
 {
 plb–>AddString(m_szBuf);
 m_szBuf[0] = ‘\0’;
 }
 // check to see if we should insert a blank line
 else if (*pDataRead == ‘\n’)
 plb–>AddString(“ “);
 }
 }
 ––nLen;
 ++pDataRead;
 }
}

Running the Finger Client
Figure 16.1 shows the Finger client in action. A user needs only to enter the host name
or IP address of a computer running a Finger server, or daemon. If the user desires
information about all users on the host computer, the user field is left as an asterisk (*);
otherwise, a specific user’s name is entered. Simply pressing the Finger button begins
the request.

Listing 16.2. continued

 Chapter 16 ■ Finger Application in a Heterogeneous UNIX Environment 319

p2/v6 Programming WinSock #30594-1 tullis 11.14.94 CH16 LP #3

FIGURE 16.1.
The Finger client.

Summary
This chapter presents the last example of using the WinSock class library developed in
Part III. It shows how easy it is to interface a Windows program with a computer running
the same or a different operating system. With the help of industry-accepted protocols,
some programs become quite trivial.

 Appendix A ■ WINSOCK.H File Listing 323

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

AA

WINSOCK.H
File Listing
WINSOCK.H
File Listing

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes324

/* WINSOCK.H—definitions to be used with the WINSOCK.DLL
 *
 * This header file corresponds to version 1.1 of the Windows Sockets specification.
 *
 * This file includes parts which are Copyright (c) 1982–1986 Regents
 * of the University of California. All rights reserved. The
 * Berkeley Software License Agreement specifies the terms and
 * conditions for redistribution.
 *
 * Change log:
 *
 * Fri Apr 23 16:31:01 1993 Mark Towfiq (towfiq@Microdyne.COM)
 * New version from David Treadwell which adds extern “C” around
 * __WSAFDIsSet() and removes “const” from buf param of
 * WSAAsyncGetHostByAddr(). Added change log.
 *
 * Sat May 15 10:55:00 1993 David Treadwell (davidtr@microsoft.com)
 * Fix the IN_CLASSC macro to account for class–D multicasts.
 * Add AF_IPX == AF_NS.
 *
 */

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_

/*
 * Pull in WINDOWS.H if necessary
 */
#ifndef _INC_WINDOWS
#include <windows.h>
#endif /* _INC_WINDOWS */

/*
 * Basic system type definitions, taken from the BSD file sys/types.h.
 */
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

/*
 * The new type to be used in all
 * instances which refer to sockets.
 */
typedef u_int SOCKET;

/*
 * Select uses arrays of SOCKETs. These macros manipulate such
 * arrays. FD_SETSIZE may be defined by the user before including
 * this file, but the default here should be >= 64.
 *
 * CAVEAT IMPLEMENTOR and USER: THESE MACROS AND TYPES MUST BE
 * INCLUDED IN WINSOCK.H EXACTLY AS SHOWN HERE.
 */
#ifndef FD_SETSIZE
#define FD_SETSIZE 64
#endif /* FD_SETSIZE */

 Appendix A ■ WINSOCK.H File Listing 325

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

typedef struct fd_set {
 u_int fd_count; /* how many are SET? */
 SOCKET fd_array[FD_SETSIZE]; /* an array of SOCKETs */
} fd_set;

#ifdef __cplusplus
extern “C” {
#endif

extern int PASCAL FAR __WSAFDIsSet(SOCKET, fd_set FAR *);

#ifdef __cplusplus
}
#endif

#define FD_CLR(fd, set) do { \
 u_int __i; \
 for (__i = 0; __i < ((fd_set FAR *)(set))–>fd_count ; __i++) { \
 if (((fd_set FAR *)(set))–>fd_array[__i] == fd) { \
 while (__i < ((fd_set FAR *)(set))–>fd_count–1) { \
 ((fd_set FAR *)(set))–>fd_array[__i] = \
 ((fd_set FAR *)(set))–>fd_array[__i+1]; \
 __i++; \
 } \
 ((fd_set FAR *)(set))–>fd_count—; \
 break; \
 } \
 } \
} while(0)

#define FD_SET(fd, set) do { \
 if (((fd_set FAR *)(set))–>fd_count < FD_SETSIZE) \
 ((fd_set FAR *)(set))–>fd_array[((fd_set FAR *)(set))–>fd_count++]=fd;\
} while(0)

#define FD_ZERO(set) (((fd_set FAR *)(set))–>fd_count=0)

#define FD_ISSET(fd, set) __WSAFDIsSet((SOCKET)fd, (fd_set FAR *)set)

/*
 * Structure used in select() call, taken from the BSD file sys/time.h.
 */
struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
};

/*
 * Operations on timevals.
 *
 * NB: timercmp does not work for >= or <=.
 */
#define timerisset(tvp) ((tvp)–>tv_sec || (tvp)–>tv_usec)
#define timercmp(tvp, uvp, cmp) \
 ((tvp)–>tv_sec cmp (uvp)–>tv_sec || \
 (tvp)–>tv_sec == (uvp)–>tv_sec && (tvp)–>tv_usec cmp (uvp)–>tv_usec)

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes326

#define timerclear(tvp) (tvp)–>tv_sec = (tvp)–>tv_usec = 0

/*
 * Commands for ioctlsocket(), taken from the BSD file fcntl.h.
 *
 *
 * Ioctl’s have the command encoded in the lower word,
 * and the size of any in or out parameters in the upper
 * word. The high 2 bits of the upper word are used
 * to encode the in/out status of the parameter; for now
 * we restrict parameters to at most 128 bytes.
 */
#define IOCPARM_MASK 0x7f /* parameters must be < 128 bytes */
#define IOC_VOID 0x20000000 /* no parameters */
#define IOC_OUT 0x40000000 /* copy out parameters */
#define IOC_IN 0x80000000 /* copy in parameters */
#define IOC_INOUT (IOC_IN|IOC_OUT)
 /* 0x20000000 distinguishes new &
 old ioctl’s */
#define _IO(x,y) (IOC_VOID|(x<<8)|y)

#define _IOR(x,y,t) (IOC_OUT|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define _IOW(x,y,t) (IOC_IN|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define FIONREAD _IOR(‘f’, 127, u_long) /* get # bytes to read */
#define FIONBIO _IOW(‘f’, 126, u_long) /* set/clear non–blocking i/o */
#define FIOASYNC _IOW(‘f’, 125, u_long) /* set/clear async i/o */

/* Socket I/O Controls */
#define SIOCSHIWAT _IOW(‘s’, 0, u_long) /* set high watermark */
#define SIOCGHIWAT _IOR(‘s’, 1, u_long) /* get high watermark */
#define SIOCSLOWAT _IOW(‘s’, 2, u_long) /* set low watermark */
#define SIOCGLOWAT _IOR(‘s’, 3, u_long) /* get low watermark */
#define SIOCATMARK _IOR(‘s’, 7, u_long) /* at oob mark? */

/*
 * Structures returned by network data base library, taken from the
 * BSD file netdb.h. All addresses are supplied in host order, and
 * returned in network order (suitable for use in system calls).
 */

struct hostent {
 char FAR * h_name; /* official name of host */
 char FAR * FAR * h_aliases; /* alias list */
 short h_addrtype; /* host address type */
 short h_length; /* length of address */
 char FAR * FAR * h_addr_list; /* list of addresses */
#define h_addr h_addr_list[0] /* address, for backward compat */
};

/*
 * It is assumed here that a network number
 * fits in 32 bits.
 */
struct netent {
 char FAR * n_name; /* official name of net */
 char FAR * FAR * n_aliases; /* alias list */

 Appendix A ■ WINSOCK.H File Listing 327

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

 short n_addrtype; /* net address type */
 u_long n_net; /* network # */
};

struct servent {
 char FAR * s_name; /* official service name */
 char FAR * FAR * s_aliases; /* alias list */
 short s_port; /* port # */
 char FAR * s_proto; /* protocol to use */
};

struct protoent {
 char FAR * p_name; /* official protocol name */
 char FAR * FAR * p_aliases; /* alias list */
 short p_proto; /* protocol # */
};

/*
 * Constants and structures defined by the internet system,
 * Per RFC 790, September 1981, taken from the BSD file netinet/in.h.
 */

/*
 * Protocols
 */
#define IPPROTO_IP 0 /* dummy for IP */
#define IPPROTO_ICMP 1 /* control message protocol */
#define IPPROTO_GGP 2 /* gateway^2 (deprecated) */
#define IPPROTO_TCP 6 /* tcp */
#define IPPROTO_PUP 12 /* pup */
#define IPPROTO_UDP 17 /* user datagram protocol */
#define IPPROTO_IDP 22 /* xns idp */
#define IPPROTO_ND 77 /* UNOFFICIAL net disk proto */

#define IPPROTO_RAW 255 /* raw IP packet */
#define IPPROTO_MAX 256

/*
 * Port/socket numbers: network standard functions
 */
#define IPPORT_ECHO 7
#define IPPORT_DISCARD 9
#define IPPORT_SYSTAT 11
#define IPPORT_DAYTIME 13
#define IPPORT_NETSTAT 15
#define IPPORT_FTP 21
#define IPPORT_TELNET 23
#define IPPORT_SMTP 25
#define IPPORT_TIMESERVER 37
#define IPPORT_NAMESERVER 42
#define IPPORT_WHOIS 43
#define IPPORT_MTP 57

/*
 * Port/socket numbers: host specific functions
 */
#define IPPORT_TFTP 69
#define IPPORT_RJE 77

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes328

#define IPPORT_FINGER 79
#define IPPORT_TTYLINK 87
#define IPPORT_SUPDUP 95

/*
 * UNIX TCP sockets
 */
#define IPPORT_EXECSERVER 512
#define IPPORT_LOGINSERVER 513
#define IPPORT_CMDSERVER 514
#define IPPORT_EFSSERVER 520

/*
 * UNIX UDP sockets
 */
#define IPPORT_BIFFUDP 512
#define IPPORT_WHOSERVER 513
#define IPPORT_ROUTESERVER 520
 /* 520+1 also used */

/*
 * Ports < IPPORT_RESERVED are reserved for
 * privileged processes (e.g. root).
 */
#define IPPORT_RESERVED 1024

/*
 * Link numbers
 */
#define IMPLINK_IP 155
#define IMPLINK_LOWEXPER 156
#define IMPLINK_HIGHEXPER 158

/*
 * Internet address (old style... should be updated)
 */
struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
#define s_addr S_un.S_addr
 /* can be used for most tcp & ip code */
#define s_host S_un.S_un_b.s_b2
 /* host on imp */
#define s_net S_un.S_un_b.s_b1
 /* network */
#define s_imp S_un.S_un_w.s_w2
 /* imp */
#define s_impno S_un.S_un_b.s_b4
 /* imp # */
#define s_lh S_un.S_un_b.s_b3
 /* logical host */
};

/*

 Appendix A ■ WINSOCK.H File Listing 329

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

 * Definitions of bits in internet address integers.
 * On subnets, the decomposition of addresses to host and net parts
 * is done according to subnet mask, not the masks here.
 */
#define IN_CLASSA(i) (((long)(i) & 0x80000000) == 0)
#define IN_CLASSA_NET 0xff000000
#define IN_CLASSA_NSHIFT 24
#define IN_CLASSA_HOST 0x00ffffff
#define IN_CLASSA_MAX 128

#define IN_CLASSB(i) (((long)(i) & 0xc0000000) == 0x80000000)
#define IN_CLASSB_NET 0xffff0000
#define IN_CLASSB_NSHIFT 16
#define IN_CLASSB_HOST 0x0000ffff
#define IN_CLASSB_MAX 65536

#define IN_CLASSC(i) (((long)(i) & 0xe0000000) == 0xc0000000)
#define IN_CLASSC_NET 0xffffff00
#define IN_CLASSC_NSHIFT 8
#define IN_CLASSC_HOST 0x000000ff

#define INADDR_ANY (u_long)0x00000000
#define INADDR_LOOPBACK 0x7f000001
#define INADDR_BROADCAST (u_long)0xffffffff
#define INADDR_NONE 0xffffffff

/*
 * Socket address, internet style.
 */
struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

#define WSADESCRIPTION_LEN 256
#define WSASYS_STATUS_LEN 128

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA;

typedef WSADATA FAR *LPWSADATA;

/*
 * Options for use with [gs]etsockopt at the IP level.
 */
#define IP_OPTIONS 1 /* set/get IP per–packet options */

/*

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes330

 * Definitions related to sockets: types, address families, options,
 * taken from the BSD file sys/socket.h.
 */

/*
 * This is used instead of –1, since the
 * SOCKET type is unsigned.
 */
#define INVALID_SOCKET (SOCKET)(~0)
#define SOCKET_ERROR (–1)

/*
 * Types
 */
#define SOCK_STREAM 1 /* stream socket */
#define SOCK_DGRAM 2 /* datagram socket */
#define SOCK_RAW 3 /* raw–protocol interface */
#define SOCK_RDM 4 /* reliably delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packet stream */

/*
 * Option flags per–socket.
 */
#define SO_DEBUG 0x0001 /* turn on debugging info recording */
#define SO_ACCEPTCONN 0x0002 /* socket has had listen() */
#define SO_REUSEADDR 0x0004 /* allow local address reuse */
#define SO_KEEPALIVE 0x0008 /* keep connections alive */
#define SO_DONTROUTE 0x0010 /* just use interface addresses */
#define SO_BROADCAST 0x0020 /* permit sending of broadcast msgs */
#define SO_USELOOPBACK 0x0040 /* bypass hardware when possible */
#define SO_LINGER 0x0080 /* linger on close if data present */
#define SO_OOBINLINE 0x0100 /* leave received OOB data in line */

#define SO_DONTLINGER (u_int)(~SO_LINGER)

/*
 * Additional options.
 */
#define SO_SNDBUF 0x1001 /* send buffer size */
#define SO_RCVBUF 0x1002 /* receive buffer size */
#define SO_SNDLOWAT 0x1003 /* send low–water mark */
#define SO_RCVLOWAT 0x1004 /* receive low–water mark */
#define SO_SNDTIMEO 0x1005 /* send timeout */
#define SO_RCVTIMEO 0x1006 /* receive timeout */
#define SO_ERROR 0x1007 /* get error status and clear */
#define SO_TYPE 0x1008 /* get socket type */

/*
 * Options for connect and disconnect data and options. Used only by
 * non–TCP/IP transports such as DECNet, OSI TP4, etc.
 */
#define SO_CONNDATA 0x7000
#define SO_CONNOPT 0x7001
#define SO_DISCDATA 0x7002
#define SO_DISCOPT 0x7003
#define SO_CONNDATALEN 0x7004
#define SO_CONNOPTLEN 0x7005
#define SO_DISCDATALEN 0x7006

 Appendix A ■ WINSOCK.H File Listing 331

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

#define SO_DISCOPTLEN 0x7007

/*
 * TCP options.
 */
#define TCP_NODELAY 0x0001

/*
 * Address families.
 */
#define AF_UNSPEC 0 /* unspecified */
#define AF_UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_IMPLINK 3 /* arpanet imp addresses */
#define AF_PUP 4 /* pup protocols: e.g. BSP */
#define AF_CHAOS 5 /* mit CHAOS protocols */
#define AF_IPX 6 /* IPX and SPX */
#define AF_NS 6 /* XEROX NS protocols */
#define AF_ISO 7 /* ISO protocols */
#define AF_OSI AF_ISO /* OSI is ISO */
#define AF_ECMA 8 /* European computer manufacturers */
#define AF_DATAKIT 9 /* datakit protocols */
#define AF_CCITT 10 /* CCITT protocols, X.25 etc */
#define AF_SNA 11 /* IBM SNA */
#define AF_DECnet 12 /* DECnet */
#define AF_DLI 13 /* Direct data link interface */
#define AF_LAT 14 /* LAT */
#define AF_HYLINK 15 /* NSC Hyperchannel */
#define AF_APPLETALK 16 /* AppleTalk */
#define AF_NETBIOS 17 /* NetBios–style addresses */

#define AF_MAX 18

/*
 * Structure used by kernel to store most
 * addresses.
 */
struct sockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

/*
 * Structure used by kernel to pass protocol
 * information in raw sockets.
 */
struct sockproto {
 u_short sp_family; /* address family */
 u_short sp_protocol; /* protocol */
};

/*
 * Protocol families, same as address families for now.
 */
#define PF_UNSPEC AF_UNSPEC
#define PF_UNIX AF_UNIX
#define PF_INET AF_INET
#define PF_IMPLINK AF_IMPLINK

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes332

#define PF_PUP AF_PUP
#define PF_CHAOS AF_CHAOS
#define PF_NS AF_NS
#define PF_IPX AF_IPX
#define PF_ISO AF_ISO
#define PF_OSI AF_OSI
#define PF_ECMA AF_ECMA
#define PF_DATAKIT AF_DATAKIT
#define PF_CCITT AF_CCITT
#define PF_SNA AF_SNA
#define PF_DECnet AF_DECnet
#define PF_DLI AF_DLI
#define PF_LAT AF_LAT
#define PF_HYLINK AF_HYLINK
#define PF_APPLETALK AF_APPLETALK

#define PF_MAX AF_MAX

/*
 * Structure used for manipulating linger option.
 */
struct linger {
 u_short l_onoff; /* option on/off */
 u_short l_linger; /* linger time */
};

/*
 * Level number for (get/set)sockopt() to apply to socket itself.
 */
#define SOL_SOCKET 0xffff /* options for socket level */

/*
 * Maximum queue length specifiable by listen.
 */
#define SOMAXCONN 5

#define MSG_OOB 0x1 /* process out–of–band data */
#define MSG_PEEK 0x2 /* peek at incoming message */
#define MSG_DONTROUTE 0x4 /* send without using routing tables */

#define MSG_MAXIOVLEN 16

#define MSG_PARTIAL 0x8000 /* partial send or recv for message xport */

/*
 * Define constant based on rfc883, used by gethostbyxxxx() calls.
 */
#define MAXGETHOSTSTRUCT 1024

/*
 * Define flags to be used with the WSAAsyncSelect() call.
 */
#define FD_READ 0x01
#define FD_WRITE 0x02
#define FD_OOB 0x04
#define FD_ACCEPT 0x08
#define FD_CONNECT 0x10

 Appendix A ■ WINSOCK.H File Listing 333

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

#define FD_CLOSE 0x20

/*
 * All Windows Sockets error constants are biased by WSABASEERR from
 * the “normal”
 */
#define WSABASEERR 10000
/*
 * Windows Sockets definitions of regular Microsoft C error constants
 */
#define WSAEINTR (WSABASEERR+4)
#define WSAEBADF (WSABASEERR+9)
#define WSAEACCES (WSABASEERR+13)
#define WSAEFAULT (WSABASEERR+14)
#define WSAEINVAL (WSABASEERR+22)
#define WSAEMFILE (WSABASEERR+24)

/*
 * Windows Sockets definitions of regular Berkeley error constants
 */
#define WSAEWOULDBLOCK (WSABASEERR+35)
#define WSAEINPROGRESS (WSABASEERR+36)
#define WSAEALREADY (WSABASEERR+37)
#define WSAENOTSOCK (WSABASEERR+38)
#define WSAEDESTADDRREQ (WSABASEERR+39)
#define WSAEMSGSIZE (WSABASEERR+40)
#define WSAEPROTOTYPE (WSABASEERR+41)
#define WSAENOPROTOOPT (WSABASEERR+42)
#define WSAEPROTONOSUPPORT (WSABASEERR+43)
#define WSAESOCKTNOSUPPORT (WSABASEERR+44)
#define WSAEOPNOTSUPP (WSABASEERR+45)
#define WSAEPFNOSUPPORT (WSABASEERR+46)
#define WSAEAFNOSUPPORT (WSABASEERR+47)
#define WSAEADDRINUSE (WSABASEERR+48)
#define WSAEADDRNOTAVAIL (WSABASEERR+49)
#define WSAENETDOWN (WSABASEERR+50)
#define WSAENETUNREACH (WSABASEERR+51)
#define WSAENETRESET (WSABASEERR+52)
#define WSAECONNABORTED (WSABASEERR+53)
#define WSAECONNRESET (WSABASEERR+54)
#define WSAENOBUFS (WSABASEERR+55)
#define WSAEISCONN (WSABASEERR+56)
#define WSAENOTCONN (WSABASEERR+57)
#define WSAESHUTDOWN (WSABASEERR+58)
#define WSAETOOMANYREFS (WSABASEERR+59)
#define WSAETIMEDOUT (WSABASEERR+60)
#define WSAECONNREFUSED (WSABASEERR+61)
#define WSAELOOP (WSABASEERR+62)
#define WSAENAMETOOLONG (WSABASEERR+63)
#define WSAEHOSTDOWN (WSABASEERR+64)
#define WSAEHOSTUNREACH (WSABASEERR+65)
#define WSAENOTEMPTY (WSABASEERR+66)
#define WSAEPROCLIM (WSABASEERR+67)
#define WSAEUSERS (WSABASEERR+68)
#define WSAEDQUOT (WSABASEERR+69)
#define WSAESTALE (WSABASEERR+70)
#define WSAEREMOTE (WSABASEERR+71)

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes334

#define WSAEDISCON (WSABASEERR+101)

/*
 * Extended Windows Sockets error constant definitions
 */
#define WSASYSNOTREADY (WSABASEERR+91)
#define WSAVERNOTSUPPORTED (WSABASEERR+92)
#define WSANOTINITIALISED (WSABASEERR+93)

/*
 * Error return codes from gethostbyname() and gethostbyaddr()
 * (when using the resolver). Note that these errors are
 * retrieved via WSAGetLastError() and must therefore follow
 * the rules for avoiding clashes with error numbers from
 * specific implementations or language run–time systems.
 * For this reason the codes are based at WSABASEERR+1001.
 * Note also that [WSA]NO_ADDRESS is defined only for
 * compatibility purposes.
 */

#define h_errno WSAGetLastError()

/* Authoritative Answer: Host not found */
#define WSAHOST_NOT_FOUND (WSABASEERR+1001)
#define HOST_NOT_FOUND WSAHOST_NOT_FOUND

/* Non–Authoritative: Host not found, or SERVERFAIL */
#define WSATRY_AGAIN (WSABASEERR+1002)
#define TRY_AGAIN WSATRY_AGAIN

/* Non recoverable errors, FORMERR, REFUSED, NOTIMP */
#define WSANO_RECOVERY (WSABASEERR+1003)
#define NO_RECOVERY WSANO_RECOVERY

/* Valid name, no data record of requested type */
#define WSANO_DATA (WSABASEERR+1004)
#define NO_DATA WSANO_DATA

/* no address, look for MX record */
#define WSANO_ADDRESS WSANO_DATA
#define NO_ADDRESS WSANO_ADDRESS

/*
 * Windows Sockets errors redefined as regular Berkeley error constants.
 * These are commented out in Windows NT to avoid conflicts with errno.h.
 * Use the WSA constants instead.
 */
#if 0
#define EWOULDBLOCK WSAEWOULDBLOCK
#define EINPROGRESS WSAEINPROGRESS
#define EALREADY WSAEALREADY
#define ENOTSOCK WSAENOTSOCK
#define EDESTADDRREQ WSAEDESTADDRREQ
#define EMSGSIZE WSAEMSGSIZE
#define EPROTOTYPE WSAEPROTOTYPE
#define ENOPROTOOPT WSAENOPROTOOPT
#define EPROTONOSUPPORT WSAEPROTONOSUPPORT
#define ESOCKTNOSUPPORT WSAESOCKTNOSUPPORT

 Appendix A ■ WINSOCK.H File Listing 335

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

#define EOPNOTSUPP WSAEOPNOTSUPP
#define EPFNOSUPPORT WSAEPFNOSUPPORT
#define EAFNOSUPPORT WSAEAFNOSUPPORT
#define EADDRINUSE WSAEADDRINUSE
#define EADDRNOTAVAIL WSAEADDRNOTAVAIL
#define ENETDOWN WSAENETDOWN
#define ENETUNREACH WSAENETUNREACH
#define ENETRESET WSAENETRESET
#define ECONNABORTED WSAECONNABORTED
#define ECONNRESET WSAECONNRESET
#define ENOBUFS WSAENOBUFS
#define EISCONN WSAEISCONN
#define ENOTCONN WSAENOTCONN
#define ESHUTDOWN WSAESHUTDOWN
#define ETOOMANYREFS WSAETOOMANYREFS
#define ETIMEDOUT WSAETIMEDOUT
#define ECONNREFUSED WSAECONNREFUSED
#define ELOOP WSAELOOP
#define ENAMETOOLONG WSAENAMETOOLONG
#define EHOSTDOWN WSAEHOSTDOWN
#define EHOSTUNREACH WSAEHOSTUNREACH
#define ENOTEMPTY WSAENOTEMPTY
#define EPROCLIM WSAEPROCLIM
#define EUSERS WSAEUSERS
#define EDQUOT WSAEDQUOT
#define ESTALE WSAESTALE
#define EREMOTE WSAEREMOTE
#endif

/* Socket function prototypes */

#ifdef __cplusplus
extern “C” {
#endif

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR *addr,
 int FAR *addrlen);

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR *addr, int namelen);

int PASCAL FAR closesocket (SOCKET s);

int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR *name, int namelen);

int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR *argp);

int PASCAL FAR getpeername (SOCKET s, struct sockaddr FAR *name,
 int FAR * namelen);

int PASCAL FAR getsockname (SOCKET s, struct sockaddr FAR *name,
 int FAR * namelen);

int PASCAL FAR getsockopt (SOCKET s, int level, int optname,
 char FAR * optval, int FAR *optlen);

u_long PASCAL FAR htonl (u_long hostlong);

u_short PASCAL FAR htons (u_short hostshort);

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes336

unsigned long PASCAL FAR inet_addr (const char FAR * cp);

char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

int PASCAL FAR listen (SOCKET s, int backlog);

u_long PASCAL FAR ntohl (u_long netlong);

u_short PASCAL FAR ntohs (u_short netshort);

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags);

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int flags,
 struct sockaddr FAR *from, int FAR * fromlen);

int PASCAL FAR select (int nfds, fd_set FAR *readfds, fd_set FAR *writefds,
 fd_set FAR *exceptfds, const struct timeval FAR *timeout);

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags);

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags,
 const struct sockaddr FAR *to, int tolen);

int PASCAL FAR setsockopt (SOCKET s, int level, int optname,
 const char FAR * optval, int optlen);

int PASCAL FAR shutdown (SOCKET s, int how);

SOCKET PASCAL FAR socket (int af, int type, int protocol);

/* Database function prototypes */

struct hostent FAR * PASCAL FAR gethostbyaddr(const char FAR * addr,
 int len, int type);

struct hostent FAR * PASCAL FAR gethostbyname(const char FAR * name);

int PASCAL FAR gethostname (char FAR * name, int namelen);

struct servent FAR * PASCAL FAR getservbyport(int port, const char FAR * proto);

struct servent FAR * PASCAL FAR getservbyname(const char FAR * name,
 const char FAR * proto);

struct protoent FAR * PASCAL FAR getprotobynumber(int proto);

struct protoent FAR * PASCAL FAR getprotobyname(const char FAR * name);

/* Microsoft Windows Extension function prototypes */

int PASCAL FAR WSAStartup(WORD wVersionRequired, LPWSADATA lpWSAData);

int PASCAL FAR WSACleanup(void);

void PASCAL FAR WSASetLastError(int iError);

int PASCAL FAR WSAGetLastError(void);

 Appendix A ■ WINSOCK.H File Listing 337

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

BOOL PASCAL FAR WSAIsBlocking(void);

int PASCAL FAR WSAUnhookBlockingHook(void);

FARPROC PASCAL FAR WSASetBlockingHook(FARPROC lpBlockFunc);

int PASCAL FAR WSACancelBlockingCall(void);

HANDLE PASCAL FAR WSAAsyncGetServByName(HWND hWnd, u_int wMsg,
 const char FAR * name,
 const char FAR * proto,
 char FAR * buf, int buflen);

HANDLE PASCAL FAR WSAAsyncGetServByPort(HWND hWnd, u_int wMsg, int port,
 const char FAR * proto, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetProtoByName(HWND hWnd, u_int wMsg,
 const char FAR * name, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber(HWND hWnd, u_int wMsg,
 int number, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetHostByName(HWND hWnd, u_int wMsg,
 const char FAR * name, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetHostByAddr(HWND hWnd, u_int wMsg,
 const char FAR * addr, int len, int type,
 char FAR * buf, int buflen);

int PASCAL FAR WSACancelAsyncRequest(HANDLE hAsyncTaskHandle);

int PASCAL FAR WSAAsyncSelect(SOCKET s, HWND hWnd, u_int wMsg,
 long lEvent);

int PASCAL FAR WSARecvEx (SOCKET s, char FAR * buf, int len, int *flags);

#ifdef __cplusplus
}
#endif

/* Microsoft Windows Extended data types */
typedef struct sockaddr SOCKADDR;
typedef struct sockaddr *PSOCKADDR;
typedef struct sockaddr FAR *LPSOCKADDR;

typedef struct sockaddr_in SOCKADDR_IN;
typedef struct sockaddr_in *PSOCKADDR_IN;
typedef struct sockaddr_in FAR *LPSOCKADDR_IN;

typedef struct linger LINGER;
typedef struct linger *PLINGER;
typedef struct linger FAR *LPLINGER;

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

Part V ■ Appendixes338

typedef struct in_addr IN_ADDR;
typedef struct in_addr *PIN_ADDR;
typedef struct in_addr FAR *LPIN_ADDR;

typedef struct fd_set FD_SET;
typedef struct fd_set *PFD_SET;
typedef struct fd_set FAR *LPFD_SET;

typedef struct hostent HOSTENT;
typedef struct hostent *PHOSTENT;
typedef struct hostent FAR *LPHOSTENT;

typedef struct servent SERVENT;
typedef struct servent *PSERVENT;
typedef struct servent FAR *LPSERVENT;

typedef struct protoent PROTOENT;
typedef struct protoent *PPROTOENT;
typedef struct protoent FAR *LPPROTOENT;

typedef struct timeval TIMEVAL;
typedef struct timeval *PTIMEVAL;
typedef struct timeval FAR *LPTIMEVAL;

/*
 * Windows message parameter composition and decomposition
 * macros.
 *
 * WSAMAKEASYNCREPLY is intended for use by the Windows Sockets implementation
 * when constructing the response to a WSAAsyncGetXByY() routine.
 */
#define WSAMAKEASYNCREPLY(buflen,error) MAKELONG(buflen,error)
/*
 * WSAMAKESELECTREPLY is intended for use by the Windows Sockets implementation
 * when constructing the response to WSAAsyncSelect().
 */
#define WSAMAKESELECTREPLY(event,error) MAKELONG(event,error)
/*
 * WSAGETASYNCBUFLEN is intended for use by the Windows Sockets application
 * to extract the buffer length from the lParam in the response
 * to a WSAGetXByY().
 */
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)
/*
 * WSAGETASYNCERROR is intended for use by the Windows Sockets application
 * to extract the error code from the lParam in the response
 * to a WSAGetXByY().
 */
#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
/*
 * WSAGETSELECTEVENT is intended for use by the Windows Sockets application
 * to extract the event code from the lParam in the response
 * to a WSAAsyncSelect().
 */
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)
/*

 Appendix A ■ WINSOCK.H File Listing 339

p2/v6—sn8 Programming WinSock #30594-1 tullis 11.14.94 AppA LP #3

 * WSAGETSELECTERROR is intended for use by the Windows Sockets application
 * to extract the error code from the lParam in the response
 * to a WSAAsyncSelect().
 */
#define WSAGETSELECTERROR(lParam) HIWORD(lParam)

#endif /* _WINSOCKAPI_ */

	PART I - Introduction to Networking
	Networking and Network Programming
	TCP/IP Overview
	WinSock Overview
	Visual C++

	PART II - Basics of WinSock Programming
	Startup and Shutdown Functions
	Conversion and Database Functions
	Socket Functions
	Sample Applications

	PART III - WinSock Class Library
	Design Goals
	CWinSock
	CDatagramSocket
	CStreamSocket
	Bringing It All Together

	PART IV - Programming with the WinSock Class Library
	Sample Applications
	Practical Client/ Server Database Application
	Finger Application in a Heterogeneous UNIX Environment

	APPENDIX A - WINSOCK.H File Listing

