Implementing Email
Secunty and To en

-... J-"

SEAN TURNER + RUSS HOUSLEY

Implementing Email
Security and Tokens:
Current Standards,

Tools, and Practices

Sean Turner
Russ Housley

WILEY

Wiley Publishing, Inc.

Implementing Email Security and Tokens: Current Standards, Tools, and Practices

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-25463-9

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http:/ /www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of
this work and specifically disclaim all warranties, including without limitation warranties
of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the informa-
tion the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data is available from publisher.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other
countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

www.wiley.com

Dedicated to all those who helped develop the Internet and those who
will help develop it in the future.

— S.T. and RH.

Thanks for the loving support from Sue, Ryan, and Patrick.

—RH.

Thanks for all the support Mom and Dad.

—-S.T.

About the Authors

Sean Turner — Mr. Turner is vice president and a co-founder of International
Electronic Communications Analysts Inc. (www.ieca.com), a Virginia-based
consulting services firm that specializes in information security, protocol
design, and technical standardization for both the government and commer-
cial sectors. His consulting efforts draw on his vast experience in secure
systems analysis, architecture, design, and engineering of email, public key
infrastructures, and key management systems. He assists clients with Ser-
vice Oriented Architecture concepts, developing certificate policies, applying
security to web services, and addressing issues of security policy and access
control. He has been active in technical standards efforts in the IETF for over
12 years, and he is the author of numerous RFCs. He has been the S/MIME
WG co-chair since mid-2003.

Mr. Turner holds a bachelor’s degree in Electrical Engineering from the
Georgia Institute of Technology. He has been an IEEE member since 1995.

Russ Housley — Mr. Housley is owner and founder of Vigil Security,
LLC (www.vigilsec.com), a very small firm that provides computer and
networking security consulting. He has contributed to the development of
many standards, including PKIX Part 1, Privacy-Enhanced Mail and S/MIME.
He began participating in the development of Internet security specifications
in 1988 as a member of the Privacy and Security Research Group. He was the
chair of the IETF S/MIME WG when it was formed, passing the reigns to Sean

vi

About the Authors

Turner and Blake Ramsdell when he accepted the position as IETF Security
Area Director. Mr. Housley is now serving as the chair of the IETF. He is the
author of more than 30 RECs.

Mr. Housley holds a bachelor’s degree in Computer Science from
Virginia Tech and a master’s degree in Computer Science from George Mason
University. He has been a member of ACM and IEEE since 1987.

Executive Editor
Carol Long

Development Editor
Julie M. Smith

Production Editor
Angela Smith

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Sossity Smith

Indexer
Johnna VanHoose Dinse

vii

Acknowledgments

Part |
Chapter 1

Chapter 2

Chapter 3

Email and Security Background

Introduction
How This Book Is Organized
Part I: Email and Security Background
Part II: PKI Basics
Part III: Secure Email
Part IV: Tokens
Part V: Case Studies
Part VI: Expectations for the Future
Appendices
Who Should Read This Book

Understanding Email
History and Evolution
Internet Email
Wow! Email Is Just Like Snail Mail
Process
Formats
Commands
Mail Transfer System Architecture
Emailing
Email Client
Webmail

Security Fundamentals

Who Wants to Read Your Email?
Governments
Businesses

Contents

XV

O N U1 U1 U U WO W

X

Contents

Chapter 4

Part Il
Chapter 5

Criminals

Hackers

Reporters and Bloggers
Friends and Family Members

Where They Can Read Your Email
How They Can Read Your Email

Eavesdrop
Masquerade

What Else Can They Do to the MTS?

How You Can Stop Them
Security Services
Fundamental Services
Derivative Services
Cryptographic Mechanisms
Encryption
Digital Signatures
One-Way Hash Functions
Basic Security Tools
Access Control Lists
Fake Traftfic
Logs
Nonces
Signed Receipts
Sequence Numbering
Time
More Attacks

Cryptography Primer
Symmetric Cryptography
Types
Algorithms
Modes
Symmetric Key Management
Symmetric Integrity Functions
Asymmetric Cryptography
Public Key Encryption
Digital Signatures

Asymmetric Key Management

PKI Basics

Understanding Public Key Infrastructure

Trust
PKI Architectures
Single CA
Trust Lists
Hierarchical PKI

27
27
28
28
28
29
29
29
30
30
31
31
32
33
33
33
34
34
34
34
34
35
35
35
35
35

37
38
38
39
39
40
42
45
45
47
51

55
56
57
57
58
59

Contents

Mesh PKI
Cross-Certified PKIs
Bridge CAs
X.509 Public Key Certificates
Tamper-Evident Envelope
Basic Certificate Contents
Certificate Extensions
Subject Type Extensions
Name Extensions
Key Attributes
Policy
Additional Information
X.509 Certificate Revocation Lists
Signed Certificate List
CRL Extensions
CRL Entry Extensions
PKI Components and Users
Infrastructure Users
Subscribers
Replying Parties
Infrastructure Components
Certification Authorities
Registration Authority
Repository
Archive

Part 1l Secure Email

Chapter 6 Protecting Email Message Contents
Evolution
Privacy Enhanced Mail
Pretty Good Privacy
MIME Object Security Services
Message Security Protocol
Public-Key Cryptography Standard #7
Secure Multipurpose Internet Mail Extensions
Protecting Email Content
Concepts
CMS Content Types
Encapsulating
Version Numbers
Attributes
MIME Layer
Protecting CMS Content Types
Signed Data
Enveloped Data
Encrypted Data

61
62
64
66
66
67
68
69
69
70
71
72
73
73
75
77
78
78
79
79
79
80
83
84
84

87
87
88
89
90
91
91
91
92
93
93
93
95
95
95
96
96
98
102

xii Contents

Digest Data 102
Authenticated Data 103
Authenticated-Enveloped Data 104
Non-Protecting Content Types 104
Data 105
Compressed Data 105
Receipt Syntax 105
Content Collection 106
Content with Attributes 107
Attributes 107
Content Type 108
Message Digest 109
Signing Time 110
Counter Signatures 110
S/MIME Capabilities 111
Encryption Key Preference 111
Signed Receipts 112
Content Hints 115
Content Reference 116
Signing Certificates 116
Security Labels 117
Equivalent Labels 118
Secure Mail Lists 118
Algorithms 120
Generating an S/MIME Message 122
Chapter 7 Protecting Email Passwords, Headers, and Commands 125
Password Scramble 126
Connection Security 127
Transport Layer Security 128
Handshake Protocol 129
Record Protocol 132
IPsec 133
Security Associations 134
Authentication Header 136
Encapsulating Security Payload 137
Internet Key Exchange (IKE) 139

Part IV Tokens
Chapter 8 Tokens and Hardware Security Modules 143
Evaluation Criteria 144
Tokens 148
PC Cards 149
Smart Cards 151
Looking under the Hood 153
Operating Systems and Smart Cards 154

Contents

PartV
Chapter 9

Chapter 10

Chapter 11

Choosing Smart Cards
USB Tokens
Software Tokens
iButton Tokens
Embedded Tokens
Hardware Security Modules

154
155
156
156
157
158

Network-Attached Multi-User Hardware Security Modules 159

Application Program Interfaces

Case Studies

Signatures and Authentication for Everyone
SAFE Architecture
Cryptographic Algorithms
PKI Architecture
Certificate Policies
Certificate, CRL, and OCSP Profiles
Tokens and Cryptographic Modules
Applications
Successes and Shortcomings
Lessons Learned

Department of Defense Public Key Infrastructure,
Medium Grade Service, and Common Access Card
Architectures

Cryptographic Algorithms

PKI Architecture

DEERS/RAPIDS Architecture

Certificate Policies

Certificate and CRL Profiles

Certificate Status Responders

Repositories

CAC and Cryptographic Modules

Applications
Success and Shortcomings
Lessons Learned

National Institute of Standards and Technology
Personal Identity Verification
PIV Architecture
Cryptographic Algorithms
Architecture
Certificate Policies
Certificate, CRL, and OCSP Profiles
Cards and Cryptographic Modules
Applications
Lessons Learned

160

165
166
166
167
169
169
173
174
175
176

181
182
182
183
184
186
188
190
191
193
194
196
197

201
203
203
205
206
209
215
218
220

xiv Contents
Part VI Expectations for the Future
Chapter 12 Future Developments 223
Email 223
Evolution of Messaging 223
Stopping spam 225
Cryptography 229
Competing Hash Algorithms 229
Adopting Elliptic Curve Cryptography 231
Public Key Infrastructure 232
Trending Architectures 233
Checking Certificate Status 233
Online Certificate Status Protocol 234
Server-Based Certificate Validation Protocol 236
Authorizing with Attribute Certificates 239
Delegating with Proxy Certificates 242
Managing Trust Anchors 244
Security 245
Tokens 246
Physical Access Control 246
Conclusion 247
Appendix A ABNF Primer 249
Rules 249
Operators 250
Operator Precedence 251
Appendix B ASN.1 Primer 253
Syntax Definition 254
Simple Types 255
Structured Types 256
Implicit and Explicit Tagging 256
Other Types 257
Basic Encoding 257
Distinguished Encoding Rules 258
Appendix C MIME Primer 259
Character Sets 260
Transfer Encoding 261
Content Type 262
Multipart Messages 264
Appendix D RFC Summaries 267
References 277
Index 287

Acknowledgments

All the mistakes and incorrect reading of our Magic 8 Ball belong to the authors.
Numerous people have contributed to this book, directly and indirectly. Most
notably, we could never have completed the book without the patience and
support of one wife (Sue), one girlfriend (Alexis), and two loving families.

Some friends and colleagues provided review, and other provided technical
input. Thank you for the help: Chris Bonatti, Richard Guida, Cindy Cullen,
Randy Sabett, George Rathbun, Jon Weisberg, Bill Bialick, John Marchioni, Bill
Price, Barbara Keller, and Tim Polk. We’d also like to thank Carol Long for her
hard work, and Julie Smith for cracking the whip.

Finally researchers, standards developers, and application developers have
been developing this technology for the last 50 years. Our intent was to provide
all appropriate credit to those who came before us. We hope that no one was
inadvertently omitted.

a¥ll

Email and Security

Background

Introduction

In the early days of the Internet, no one worried about security. Those days
are long gone. Today, everyone uses the Internet, and electronic mail is used
for both business communication and personal communication. Much of it is
sensitive, making security necessary. Secure electronic mail is available, yet
very few people use it.

Many people are under the mistaken impression that email is point-to-point
communication protocol. It is not. Many servers are involved, and each one
of them can mess with the messages — unless you protect them. You do not
want the messages read by anyone other than the intended recipient. You do
not want anyone to change the message content. And, you do not want others
to masquerade as you. Luckily, the tools are all readily available for providing
these protections.

In this book, we explain security tools, including cryptography, security
protocols, tokens, and hardware security modules to protect your email. You
donot need to be an expert in these technologies to secure your email. Products
are available that can help you. This book provides the information needed to
first select wisely from these security offerings and then successfully deploy
them. The case studies at the end of the book allow you to emulate the successes
and avoid the potholes found by others.

How This Book Is Organized

We organized this book in to six sections. The later sections build on mate-
rial presented in the earlier ones. A person familiar with email and who
understands fundamental security services may be able to skip the earlier
parts, but most readers will want to read the book from beginning to end.

Part 1 » Email and Security Background

We start by introducing Internet email, which is what we want to secure.
Next, we provide motivation for why you should want to secure your email
from prying eyes and then show you how to do it. Finally, we discuss the
mechanism necessary to secure email. Three case studies give you hands-on
lessons concerning these programs that will prove invaluable to you. Finally,
we provide our Magic 8 Ball predictions for the future. Obviously, only time
will tell if our Magic 8 Ball was lying.

Part I: Email and Security Background

Part I contains four chapters, including this one. Chapter 2, “Understanding
Email,” explains the Internet electronic mail transport and content standards.
We use postal service analogies, hoping to make it easier to understand by
leveraging things that you already know about the postal service (sometimes
called snail mail). Chapter 3, “Security Fundamentals,” explains who might
want to read your email, how they might try to do it, and what you can do
to stop them. Chapter 4, “Cryptography Primer,” introduces the basics of
cryptography, which is one of the key arrows in your quiver for thwarting the
attackers introduced in Chapter 3.

Part II: PKI Basics

Part II contains only one chapter, dealing with Public Key Infrastructure
(PKI). Chapter 5, “Understanding PKI,”" explains who should be trusted to
properly perform specific activities in a PKI. It describes the most common PKI
architectures, explains the public key certificates, and elucidates the certificate
revocation lists structures produced by a PKI.

Part IlI: Secure Email

Part III contains two chapters, both detailing the ins and outs of email security.
Chapter 6, “Protecting Email Message Contents,” provides a history of email
security mechanisms and explains the most common mechanism to protect
your emails” contents, whereas Chapter 7, “Protecting Email Passwords,
Message Headers, and Commands,” explains how to make sure that your
passwords aren’t disclosed to attackers and how to protect the email message
headers and commands.

Part IV: Tokens

Part IV also contains a single chapter. Chapter 8, “Tokens and Hardware
Security Modules,” describes the different types of devices that can be used
to store and protect your private keys. We also discuss the ways that these
devices are evaluated by professionals in certified laboratories.

Chapter 1 = Introduction

Part V: Case Studies

Part V contains three chapters, one for each case study. Each chapter describes
an implementation that includes secure email, PKI, and tokens. Chapter 9,
“Signatures and Authentication For Everyone,” describes the SAFE program
in the pharmaceutical community, which interconnects the PKIs from many
members of that community to support secure email, as well as other applica-
tions that make use of digitally signed documents. Chapter 10, ““Department
of Defense Public Key Infrastructure, Medium Grade Service, and Common
Access Cards” describes PKI, Medium Grade Service (MGS), and Common
Access Card (CAC) programs of the U.S. Department of Defense. Chapter 11,
“National Institute of Standards and Technology Personal Identity and Veri-
fication,” describes the smart-card-based standard developed by the National
Institute of Standards and Technology (NIST) and the way that it is being used
to fulfill the requirements in HSPD12.

Part VI: Expectations for the Future

Part VI contains a single chapter. Chapter 12, “Future Developments,” offers
predictions for developments in each of the areas discussed in this book.

Appendices

We provide supplemental information in four appendices. Appendix A,
“ABNF Primer,” provides an introduction to Augmented Backus-Noir Form,
which is the formal language used to describe the syntax for character-based
protocols, such as electronic mail. Appendix B, ““ASN.1 Primer,” provides an
introduction to Abstract Syntax Notation One, which is the formal language
used to describe the syntax in many binary-oriented protocols. Appendix C,
“MIME Primer,” explains how arbitrary data is included in character-based
email messages using Multipurpose Internet Mail Extensions. We provide
sufficient detail for reading and understanding the structures used in this
book, but you’ll need to look elsewhere for a complete coverage of these
topics. Appendix D, “RFC Summaries,” provides a summary of the Requests
for Comments (RFCs) that are referenced in this book.

Who Should Read This Book

This book is intended for the chief technology officer (CTO) or perhaps
the person whom the CTO assigns to implement an enterprise secure email
solution, including PKI and tokens. It will also help people who want to buy
the various components of such a system, but who may not have the expertise
to do so confidently.

Part 1 » Email and Security Background

Keep in mind that this is not a guide for developers. However, developers
of one component within an overall email security system will find it useful to
understand how their component interacts with the rest of the system. It is not
possible to include every detail of every component in this book. Therefore, we
recommend that developers refer to the Internet Engineering Task Force (IETF)
standards for details on the syntax and semantics of email-related protocols
and PKI-related protocols.

You are presented with many choices when implementing an email security
system. We hope that this book will help you wade through these options and
achieve the benefits of secure email.

Understanding Email

Before you can run, you have to walk, and before that you have to crawl.
Likewise, before we explain how to secure email, you first have to understand
the origins of email.

Email has evolved into one of today’s most powerful and oft-used com-
munication tools. In some circles, it has supplanted speech as the primary
mode of communication. How many times have you seen someone on their
“Crackberry” or heard someone else laugh out loud while staring at a com-
puter screen? How many times has it been you? Email didn’t just appear; it
has developed over a number of years (roughly 40). It is important that you
have a basic understanding of when and why email was developed and where
and how it has evolved to provide background for how to better secure your
email. Of course, email is still evolving, and security is sure to play a big role
in its evolution.

It’s slightly more complicated to give a definition of email today. Bear with
us, though, because we promise to do it. As you might have guessed, there are
a lot of parts that work together to move the message you typed or scribbled
on your computer, phone, or personal data assistant (PDA) to your coworker,
boss, friend, or mom. When you get to the end of this chapter, you will
know how email messages are formatted and how email messages get from
here to there. We are going to make Alice, Bob, and others do all the work.
Obviously, to fully implement email you'll need to refer to the interoperability
specifications for each of the parts; for that, we provide references at the end
of the book.

Part |l = Email and Security Background

History and Evolution

Email has been around for a very long time. It’s been around almost as long as
computers or at least shortly after there was more than one program and one
user on a computer. In the beginning, engineers and computer scientists used
a form of email to leave messages for one another, but they could only leave
messages on the same computer. Remember, there weren’t many computers
around in the 1960s, and very few of them had a communications link to
another computer. Once computer networks began to emerge, email really
took off.

One early network was called the Advanced Research Projects Agency
Network (ARPANET), and itis this network that later evolved into the Internet.
According to [ISOC00], the engineers and computer scientists were motivated
to develop email so that they could coordinate amongst each other. Personally,
we think Dilbert and his followers would be shocked to know that email
evolved because they needed an easy way to schedule meetings — the horror!

WHY TEXT MESSAGES?

So why is email based on text messages? Why not voice? Sure, speech would
have been great, but the microphones to capture the sound; the speakers to
play it back; and the processing power to capture analog voice, convert it to
digital, and then back again were not readily available. In the 1960s, the human
user interacted with computers through connected teletype machines. The
keyboard was the readily available human input device, and a typewriter-style
printer was the readily available output device, which made the text-based
message the natural choice. In fact, it was the only choice.

The initial email application supported sending and receiving small mes-
sages that were composed entirely of alphanumeric characters. Sending and
receiving a message was a lot like moving a file from one computer to another.
It was not until the next phase in email evolution (developed by Lawrence R.
Roberts) that email added, among other things, the ability to read messages in
any order, to forward messages, and to reply to messages. Email has continued
to evolve ever since by adding many other features including;:

m Carbon Copy (CC)

m Blind Carbon Copy (BCC)

m [owercase letters

m Character sets (for non-English languages)

m Attachments

Chapter 2 » Understanding Email

m Notifications
= mportance
m Sjze restrictions

m Security

Features were not added willy-nilly. You can’t do this with computers
because it won’t work. Imagine if you started making up words and using
them with the people around you; the words would mean something to
you but absolutely nothing to anybody else, unless they had a babelfish.
Coordination and documentation of what the new word(s) and their meaning
is needed to make changes successful. Luckily, the folks developing the
APRANET knew this. They had meetings to discuss, agree, and document the
agreements. From these documented agreements, people developed computer
programs that would talk with programs developed by others. In other
words, implementers use standards to develop computer programs that are
interoperable; sometimes these agreements are referred to as interoperability
standards.

Today, the Internet Engineering Task Force (IETF) has filled the role as the
organization that develops interoperability standards related to the Internet.
Email is just one of the important protocols specified in these standards.
Table 2-1 lists some of the important interoperability standards that we will
discuss later in the chapter.

Table 2-1 Important Internet Standards*

RFC NUMBER TITLE

RFC 791 Internet Protocol

RFC 793 Transmission Control Protocol

RFC 1035 Domain Names - Implementation and Specifications
RFC 1939 Post Office Protocol - Version 3

RFC 2045-2049 Multipurpose Internet Mail Extensions

RFC 2131 Dynamic Host Configuration Protocol

RFC 2821 Simple Mail Transfer Protocol

RFC 2822 Internet Mail Transfer Protocol

RFC 3501 Internet Message Access Protocol - Version 4rev1

*It's important to note that some of these are updates of earlier RFCs, making the earlier work
obsolete. Yet, backward compatibility is always a consideration.

10 Partl = Email and Security Background

INTEROPERABILITY STANDARDS

Many of the standards referenced in this book were developed by the IETF. It is
an organization made up of individuals that meet, discuss, and agree on
interoperability standards that are relevant to the Internet. For a more
complete coverage of the Internet Standards process we suggest [RFC2026],
where Scott Bradner describes the process by which an idea becomes an
Internet Standard. While there have been other email “standards,” the Internet
Standard is the most important.

The number of individuals that attend the IETF has grown over the years from
less than 50 to around 3000 and settled down to around 1200 participants
nowadays. Obviously, to focus this number of participants, some organizational
structure is needed. The IETF is organized into areas of interest, including
Applications, Routing, Security, and Transport. Within these broad areas,
specific topics are discussed in working groups.

The standardization process begins with a document called an Internet Draft
(ID), and results in a document called a Request for Comment (RFC). Don’t get
hung up on this name. The name doesn’t really align with the standards
process used today, but it would be too painful to change, so everyone lives
with the name. Even the standardization process is published in an RFC. RFCs
are on different tracks, but in this case we are almost exclusively interested in
standards track RFCs. To keep things simple, the RFCs are sequentially
numbered, started at 1, and total just over 5000 now. That's about 125 per year
since 1969. Over 400 were published in 2006!

It is not all hard work. The powers that be serve cookies at meeting breaks,
and there are a long line of “April Fools” RFCs, such as the one that describes
how carrier pigeons can be used to carry Internet traffic. And, yes, people took
the joke to the next level; it has been implemented.

Everyone on a mainframe computer used email to communicate with other
users on the same mainframe, but up to this point (the mid-1980s) you probably
would never have heard of email because it was almost exclusively used by
researchers at universities and government agencies. In the late 1980s, MCIMail
was the first commercial email provider; others followed. Email use increased
as businesses began to use it. When service providers like CompuServe and
America Online (AOL), which were originally glorified Bulletin Board Systems
(BBSs), were created they brought email to the masses.

BULLETIN BOARD SYSTEMS

Yes, there was life before the World Wide Web. Before the Web there was the
Bulletin Board System (BBS). The BBS allowed users to dial in over Plain Old
Telephone System (POTS) and share information: pictures, software, news, and
messages. Initially many BBSs were run by hobbyists and were free of charge.

(continued)

Chapter 2 » Understanding Email

BULLETIN BOARD SYSTEMS (continued)

When commercial companies like CompuServ and AOL arrived, they charged
a fee for their “content.” Content is information created for your consumption.
It includes catalogues for online shopping.

So at this point many people had email at work, and some had it at home
through various service providers, and then along comes the World Wide Web.
Companies like Excite, AltaVista, Yahoo!, and later Google began to provide
free webmail. Combine free email with the spread of wireless technologies to
laptops, PDAs, and cell phones, and you have a recipe for an almost viral-like
growth of email.

Now people give out email addresses instead of phone numbers, put email
addresses on their business cards, and send billions of emails every year. Life
has changed.

Internet Email

As we mentioned earlier, email has many moving parts. This is because
engineers and computer scientists break complex problems down into smaller
more manageable problems. We are going to follow this same philosophy and
explain the technical parts of email in two manageable byte-sized pieces. The
first is the process and format of email, and the second is the system that
moves the email.

Wow! Email Is Just Like Snail Mail

With a name like email, you shouldn’t be surprised that email is a lot like
regular postal service mail. The process, formats, and commands for email
have postal service analogies.

Process

To email or not to email: that is the question. If you are like Alice and Bob,
then email it is. For Alice to send an email message to Bob, the steps are similar
to using snail mail. Alice, Bob, and some infrastructure in the middle need to
work together. Table 2-2 highlights the similarities in the snail mail and email
process. Alice and Bob are the same in both, but in the email process the Simple
Message Transfer Service, which we will shorten to the Mail Transfer Service
(MTS), replaces the postal service. In the real world, there are many MTSs run
by each service provider (such as your company, Google, and Yahoo!).

More complicated work flows are permitted. For example, Alice and Pat
work together, but they are really busy and are senior enough to have an
assistant, Doug. Alice and Pat can compose an email together during one of
their arduous retreats in Palm Springs, and then they get Doug to send it to Bob.

12 Partl

Email and Security Background

Table 2-2 Snail Mail and Email Process Similarities

STEP SNAIL MAIL EMAIL

Compose Alice pulls out pen and paper and Alice either starts a dedicated
writes her letter. email application or a web

browser to compose her
email message.

Submit Alice pulls out pen and addresses, Alice’s email application or
stamps, and stuffs her envelope. Alice ~ web browser submits the
drops the letter in to the mailbox. email message to MTS. MTS
Postal Service checks for stamp and accepts email from Alice.
accepts snail mail.

Transfer Postal Service examines envelope, MTS determines location of
determines the location of Bob's Bob’s electronic mailbox and
mailbox, and transfers letter from post transfers email to the part of
office to post office until it reaches the the MTS servicing Bob.
post office serving his neighborhood.

Deliver Bob's post office delivers snail mailto ~ MTS delivers mail to Bob's
Bob’s personal mailbox. personal electronic mailbox.

Retrieve Bob walks, wheels, hops, or skips over Bob either starts his
to get his mail. dedicated email application

or web browser to retrieve his
email.

Read Bob opens envelope, pulls out letter, Bob selects the email
and reads it. message in his personal

electronic mailbox, displays it,
and reads it.
Formats

Figure 2-1 shows the two parts of a snail mail that Alice sends to Bob and
Matt. The first part of the snail mail is the letter, which includes: Alice’s name,
address, and signature; Bob’s name and address; Matt’s name; the date Alice
wrote the letter; the subject of the letter; and the body of the letter. The second
part of the snail mail is the envelope which, unfortunately for Alice, is the
regular envelope and not the flying variety from Hogwarts. Alice’s envelope
includes a stamp, her name and address, and Bob’s name and address. You
should notice that some of the fields appear in both the letter and on the
envelope. Also shown in Figure 2-1 is Bob’s reply to Alice.

Figure 2-2 shows a simple version of Alice’s email message. You'll see that
the information used in email is similar to the information used in snail mail.
It shows what Alice sends and what Bob and Matt receive. Like snail mail,
email has two main parts, an envelope and the content, each of which also has
subparts, as described below.

Chapter 2 » Understanding Email

13

Alice Adams

123 Politics Street
Washington, DC 20001
11 February 2008

Bob Burton
509 Golden Beaches
Pleasantville, CA 99999

Dear Bob,
SUBJECT: MEETING DATE AND TIME

Can we meet on Tuesday 1 April 2008?

Bob Burton
509 Golden Beaches
Pleasantville, CA 99999

Alice Adams
123 Politics Street
Washington, DC 20001

Dear Alice,
SUBJECT: RE: MEETING DATE AND TIME

Sure we can. How about 1 p.m.? I've also
included a map to get you to our offices.

Sincerly, Sincerly,
Alice Adams Bobk7Qg
CC: Matt CC: Matt
Alice Adams ;
123 Politics Street Stamp Alr*port
Washington, DC 20001 ¢
Bob Burton

509 Golden Beaches
Pleasantville, CA 99999

Figure 2-1 Snail Mail: Letters and Envelopes

Golden beaches

_> =509

Bob Burton
509 Golden Beaches Stamp
Pleasantville, CA 99999

Alice Adams
123 Politics Street
Washington, DC 20001

14

Part 1

Email and Security Background

Date: Mon, 11 Feb 2008 09:55:06 -0400
From: Alice <aadams@washington.dc.us>
Subject: Meeting Date and Time

To: Bob <bburton@pleasantville.ca.us>
Cc: Matt <mrogers@pleasantville.ca.us>
Message-ID: <1234@washington.dc.us>

Bob,
Can we meet on Tuesday 1 April 20087

Alice

Received: from 123.123.12.1 (EHLO
washington.dc.us) (123.123.12.1)

by pleasantville.ca.us with SMTP; Mon,

11 Feb 2008 09:55:07 -0400

Date: Mon, 11 Feb 2008 09:55:06 -0400
From: Alice <aadams@washington.dc.us>
Subject: Meeting Date and Time

To: Bob <bburton@pleasantville.ca.us>
Cc: Matt <mrogers@pleasantville.ca.us>
Message-1D: <1234@washington.dc.us>

Bob,

Can we meet on Tuesday 1 April 2008?

Alice

Figure 2-2 Alice's Message

Envelope. The email envelope is composed of fields that are mostly

behind the scenes, but they are the workhorse fields that make email
go. Envelope fields are used by the MTS to get the email from Alice to
Bob and Matt, and they are a combination of data passed in protocol
commands and fields in the email message. Alice, Bob, and Matt do not
see the email envelope; it is usually removed (or hidden) by the email
application in the same way that a secretary might remove the envelope
from executive correspondence. The email envelope has two parts:

The protocol commands (see the next section for more information).
Those that are part of the envelope are MAIL FroM: and RCPT TO:. They
are defined in [RFC2821]. MAIL FROM: provides the sender informa-
tion and rcpT TO: provides the recipient information. The information
passed in the commands is normally derived from the message’s
content.

Two envelope fields, Received: and Return-Path:, from [RFC2822] are
added to the message as the message moves around the MTS. These
are akin to every person in the postal service marking Alice’s letter as it
moved through their possession from Washington to Los Angeles (i.e.,
just like the United Parcel Service).

.Ima Some argue that the design of email should have a clean break
between the envelope and content fields. We will leave that argument for the
zealots and focus on more important things. We do, however, note that some
information is repeated in both the envelope and content.

Content. The email content is the information Alice wants to send to Bob

and Matt, and it all goes in the paTa: command defined in [RFC2821].

Chapter 2 » Understanding Email

15

The content has a header and a body, but technically only the header is
required:

Header. The header is composed of fields that provide a service, user
information, and transaction information. From [RFC2822], the header
fields are listed below. pate: and From: or Sender: are the only re-
quired fields, but typically most emails also include To:, subject:,
and Message-ID:. Many mail applications only show the pate:, From:,
To:,Cc:,and Subject: fields, and Bob would need to hunt in his email
program to see the other fields, because most people really do not care
about the other fields.

pate: Alice uses this field to indicate the date and time at which she
considered the message complete and ready for the MTS. That is the
date and time when she hit send. This field is almost always filled in
by Alice’s email program.

From: Alice uses this field to indicate that she authored the message.
In our example there is only Alice, but more than one author can be
included.

sender: Doug, if he was acting on behalf of Alice, would use this field
to indicate that he and not Alice sent the message. In most cases,
Alice is both author and sender, then only the From: field is used.

Reply-To: Alice uses this field to indicate where replies should be sent.
For example, if Alice cannot be bothered to read the replies, she puts
her assistant Doug’s email address here. In most cases, this field is
absent and replies are sent to the email address in the From: value.

To: Alice uses this field to indicate the primary recipient(s) of the mes-
sage, which in this case is Bob.

cc: Alice uses this field to indicate the carbon copy recipients (some-
times called a courtesy copy), which in our case is Matt.

Bcc: Alice uses this field to indicate the blind carbon copy recipient(s),
those the other recipients do not know about; in this case there are
none.

Message-ID: Alice uses this field to indicate a unique message identi-
fier that refers to a particular version of a particular message. This
field is almost always filed in by Alice’s email program when she
hits send;

In-Reply-To: If Alice is responding to a previous message, she uses
this field to indicate the unique message identifier of that message,
in this case there are none.

16

Part 1 » Email and Security Background

References: Alice uses this field to refer to a thread of conversations;
in this case there are none.

subject: Alice uses this field to indicate what the message is about. If
Bob replies to Alice’s message, his email program will add “Re:” to
the beginning of the subject provided by Alice.

comments: Alice uses this field to indicate additional comments on the
contents of the message; in this case there are none.

Keywords: Alice uses this field to add words she thinks Bob might find
useful; in this case there are none.

Resent-Date:, Resent-From:, Resent-Sender:, Resent-To:, Resent-
Cc:, Resent-Bec:, and Resent-Message-ID: These fields are added
by Alice if she has to resend the message to Bob and Matt. These
fields are almost always filled in by Alice’s email program when
she hits send.

Body. The body, which is optional, is either a text message or a struc-
tured message.

Text. This is limited to the ASCII characters minus the Carriage
Return (CR) and Line Feed (LF).

Structured messages. These use the Multipurpose Internet Mail
Extensions (MIME) standards [RFC2045-2049]. MIME has three main
features. First it defines the encoding for arbitrary data in plaintext,
which is sometimes referred to as ASCII Armor. Second, it allows
multipart messages, which allows you to have text, video, audio,
and other attachment types in one message. Third, message type
indicators, which allow email applications to determine whether
they support the attachment type. Appendix C provides a detailed
explanation of ASCII Armor. Figure 2-3 shows Bob’s reply message,
which is a multipart message.

The RFCs referenced in this section have many formatting and processing
rules, and they should be consulted if you are going to write code for an email
program. The general rule in these implementations, though, is to be liberal in
what you receive and conservative in what you send. This philosophy helps
various implementations interoperate.

Commands

Email protocol commands are used to move the message around the MTS
much like the postal workers move snail mail around the postal system.
Email commands (i.e., the email system language) are defined by the Simple
Mail Transfer Protocol (SMTP) [RFC2821]. SMTP involves an SMTP client
that makes requests of an SMTP server and the SMTP server responding to

Chapter 2 » Understanding Email

the request. SMTP is all about SMTP clients asking SMTP servers to transmit
their messages. SMTP servers can become SMTP clients as they transmit the
message through a network of SMTP servers. The protocol commands are:

EHLO or HELO: Asserts to the SMTP server the identity of the SMTP client.
MAIL FROM: Tells the SMTP server the source of the email message.

rRCPT TO: Tells the SMTP server the destination of the email message. If
there is more than one recipient, then multiple commands are issued.

paTA: Provides the email message content.
RESET: Aborts the current transaction with the SMTP server.
VERIFY: Asks the SMTP server to confirm a user or mailbox.

ExPN: Asks the SMTP server to confirm a mailing list, and if it does, to
return the membership of that list.

HELP: Asks the SMTP server to send helpful information to the SMTP client.
Noop: Asks that the SMTP server send an ok reply.

ouiT: Tells the SMTP server to send an ok reply and then close the trans-
mission channel.

Date: Mon, 11 Feb 2008 09:57:06 -0400

From: Bob <bburton@pleasantville.ca.us>

To: Alice <alice@washington.dc.us>

Cc: Matt <matt@pleasantville.ca.us>

Subject: Re: Meeting Date and Time

Message-ID: <5678@pleasantville.ca.us>

In-Reply-To: <1234@washington.dc.us>

MIME-Version: 1.0

Content-Type: multipart/mixed;
boundary="notice the boundry"

--notice the boundary
Content-type: text/plain; charset=us-ascii

Alice,

Sure we can. How about 1 p.m.? I've also
included a map to get you to our offices.

Bob
--notice the boundary
Content-type: image/jpeg

Converted map picture goes here
--notice the boundary

Figure 2-3 Bob’s Reply

Part 1 » Email and Security Background

Message Transfer Service

MSA |« MTA MTA MDA

Mail
wers@) B G

h

User 4— MTA —P User

A 4
A
A 4
A
v

Figure 2-4 Email Architecture

Response Codes. These tell the SMTP client the status of the previous com-
mand. Every command results in a response code, which is a three-digit
code. The digits provide an increasing level of granularity: the first digi-
tal indicates whether the response is good, bad, or incomplete, the second
digit provides information on where the error occurred, and the third
digit is reserved for the most granular error.

Figure 2-4 provides an illustration of a successful SMTP client-server inter-
action. In Listing 2-1, S stands for server and C stands for client. Response
Codes returned are: 220 SMTP server ready for SMTP commands, 250 SMTP
server successfully completed request, 254 SMTP server waiting for pDaTa:
command, and 221 SMTP server is closing transmission channel.

220 pleasantville.ca.us

EHLO washington.dc.us

250-pleasantville.ca.us greets washington.dc.us
250-8BITMIME

250-SIZE

250-DSN

250 HELP

MAIL FROM: <aadams@washington.dc.us>

250 sender <aadams@washington.dc.us> OK

RCPT TO:<bburton@pleasantville.ca.us>

250 recipient <bburton@pleasantville.ca.us> OK
RCPT TO:<mrogers@pleasantville.ca.us>

N QO nh Q0 QN n h h Q0N

250 recipient <mrogers@pleasantville.ca.us> OK

Listing 2-1 SMTP client-server interaction

Chapter 2 » Understanding Email

19

C: DATA

S: 354 Start mail input; end with <CRLF>.<CRLF>
C: Date: Mon, 11 Feb 2008 09:55:06 -0400
C: From: Alice <aadams@washington.dc.us>
C: Subject: Meeting Date and Time

C: To: Bob <bburton@pleasantville.ca.us>
C: Cc: Matt <mrogers@pleasantville.ca.us>
C: Message-ID: <l1234@washington.dc.us>

Cg

C: Bob,

Cg

C: Can we meet on Tuesday 1 April 20087

Cg

C: Alice

Cs o

S: OK

C: QUIT

Sk

221 pleasantville.ca.us closing transmission channel
Listing 2-1 (continued)

Also note that other commands have been defined, but they are no longer
used (e.g., SEND, soML, and samL). Further, commands can be defined for
bilateral use. You may have also noticed the 250 response codes from the
server. These are SMTP service extensions [RFC1869]. The full list of SMTP
service extensions are found in [[TANAM]. They are:

m S[ZE [RFC1870] indicates the maximum message the SMTP server
supports.

m 8BITMIME [RFC1652] indicates the SMTP server supports relaying
SMTP content body consisting of text containing octets outside of the
US-ASCII character set.

m DSN [RFC1891] indicates the SMTP server supports Delivery Status
Notifications (DSN).

Mail Transfer System Architecture

The MTS can be characterized as transactional store-and-forward message
exchange architecture. Just like in the postal service, there are different entities
that perform the steps in the email process (see Table 2-2). There is the email
application that Alice uses to compose her message, but depending on which
email application she is using, it may or may not include an SMTP client
to submit to the MTS. Once the MTS has the email message, it has delivery
responsibility for the message. The MTS delivers it to Bob and Matt, but if not

20

Part 1 » Email and Security Background

able to do so directly, it sends the message on to the next SMTP server and so
on until the reaches an SMTP server that does have delivery responsibility for
the recipient’s mailbox. To abstract out the MTS functionality, the following
terms are used:

m Do not get hung up on trying to split the functions between the
MUA and MTA. Even the interoperability standard, [RFC2821], which defines the

MTS indicates “the implied boundaries between MUAs and MTAs often do not
accurately match common, and conforming, practices with Internet mail.” If those
authors are not hung up on this split, then you shouldn’t be either.

Message User Agent (MUA). This provides access to the MTS for users
and are the sources and targets of email. Users can be humans like Alice,
Bob, and Matt or nonhuman like sensors. Users are categorized in three
ways:

Originators. These are the sources of email messages. In this example,
Alice is the originator.

Recipients. These are the destination of email messages. In this
example, both Bob and Matt are recipients.

Senders. These are the sources of email messages. They are a special
case in which they did the sending but not the composition of the
email. There is no sender in our example.

Message Transfer Agent (MTA). These submit, transfer, and deliver
email. MTAs implement SMTP. Implementers have made special case
MTAs that partially support the functions:

Message Submission Agent (MSA). These accept email from MUAs
and submit it to the MTS.

Message Delivery Agent (MDA). These deliver email from the MTS to
the MUAs.

Mail Relay. These transfer the email from MTA to MTA. It does not
deliver the message the final MTA.

Mail Gateway (not shown). These act as an interface to a separate
MTS that support different formats and transport mechanisms.

There are number of ways to construct an MTS. If there are limited numbers
of users with no need to interact with the outside world, there’s no need for
an MSA or MDA and perhaps a single MTA would work. For large systems
that interact with the outside world, an MSA is a good idea because the MSA
can implement security policies, which we will get to later. For a more detail
analysis of an MTS architecture, we suggest Marshall Rose’s book The Internet
Message [ROSE92].

Chapter 2 » Understanding Email

21

SECURITY OBSERVATIONS

Regardless of how the email system is implemented there are a few
observations that need to be made:

¢ The email envelope is seen by every MTA (regardless of type) that handles
the email message.

& The email headers are seen by every MTA (regardless of type) that handles
the email message. The Date: , From: , To:,CC:,and Subject: are avail-
able to the MTAs.

¢ The user’s mailbox is on an MTA and at some point the mailbox will contain
email.

The importance of all these observations will be explained in the security
chapters.

Emailing

The email steps in Table 2-2 rely on many different peer-to-peer pairings (i.e.,

hops) to get the email in, around, and out of the MTS. There are also other

interoperability standards that are necessary to get access to the network. The

following highlights the protocols that the email peer-to-peer pairings use:
Network. Internet Protocol (IP) and Transmission Control Protocol (TCP)
Network Access. Dynamic Host Configuration Protocol (DHCP)
Address Translation. Domain Name Service (DNS)

Submit, Transfer, and Deliver. Simple Mail Transfer Protocol (SMTP)
and Enhanced SMTP (ESMTP)

Retrieve. Post Office Protocol (POP) or Internet Mail Access Protocol
(IMAP)

Alice is now going to compose an email, send it to Bob, and copy Matt (i.e.,
make Matt a carbon copy recipient). A scenario is provided for each of the two
most common email applications, email client and webmail.

Email Client

Assuming that Alice has opened her email application and drafted her email
message, she now needs to submit the email message, but before she can

22

Part 1 » Email and Security Background

do that her computer needs to have an IP address to use the network. Her
computer’s DHCP client automatically obtains an IP address from the DHCP
server operated by her Internet service provider (ISP). Once she has an IP
address she can use SMTP/ESMTP to submit the email message. Normally,
she is submitting the email to an MSA that is operated by her ISP, which
will check that she is allowed to submit email. ISPs do not want to be the
source of spam, so they generally check that the email message is coming
from one of their customers. The MSA will often pass all email downstream
to a downstream MTA for further handling. The MTA will use DNS client to
obtain Bob and Matt’s email host IP addresses, and then use SMTP/ESMTP
to transfer the message to one or more MTAs that are responsible for Bob and
Matt. The MTA serving Bob and MTA serving Matt will transfer the message
to the appropriate MDA for delivery. Bob and Matt will use the same process
to get an IP address and then use POP or IMAP to retrieve the email from their
MDA.

Webmail

For webmail, Alice needs to obtain an IP address; again DHCP is used. Alice
will use a browser to open navigate to her provider’s website using HTTP;
she will click to open her web browser and get to the compose mail inter-
face. She will type the email message and upload it with HTTP. When she is
done she hits send and the web server uses SMTP/ESMTP to submit the email
to her MSA. At the receiving end, Bob and Matt use their web browsers to
access a web server that is usually running in the same computer room as their
MDA. The web browser and server act together to be a distributed MUA.

Security Fundamentals

Chapter 2 provided some security observations and an explanation of the
insecure Mail Transfer Service (MTS). You're probably ready to learn how to
secure your email system; however, before we tell you about email security,
we need to help you figure out which security services are necessary and
relevant in an email environment by asking you some questions. To get into
the right frame of mind, you might need to put on your thinking cap and take a
conservative viewpoint when you're thinking about these questions and their
answers.

Here are the kinds of questions you should be asking yourself, in no
particular order:

= How valuable is your information?

= Who wants to read your email?

m Where can they get at your email in the network?
= How can they read your email?

m What can they do to the MTS?

m Can someone else damage my reputation by sending email that appears
to come from me?

What’s with all the questions? Answering questions like these can help
you determine your risk, and the process itself is called a security assessment.
Risk is calculated by determining threats and vulnerabilities, so that you can
determine the appropriate approach for your security solution. Just as you
wouldn’t protect a penny — unless it’s a buffalo penny — with an army of
security guards, likewise you may not need a lot of security if your MTS is
on your desktop and you aren’t connected to the Internet. But it's more likely

23

24

Part 1 » Email and Security Background

that your email goes over the Internet and that you sometimes use a wireless
network. If this sounds like you, well, then you really ought to start asking
yourself these questions. For more detailed examination of risk management
concepts we suggest Andy Jones and Debi Ashenden’s book Risk Management
for Computer Security [RISK] and for security assessment we suggest Douglas
Landoll’s book Performing an Information Security Risk Assessment [ASSESS].

We can’t really help you determine the value of your information. It's hard
to put a value on business-related information or personal communications,
but you might be able to guess at the value. Ask yourself, how much time
went into the development of your business plan, chip design, or screenplay?
Remember from Chapter 2, that email heading fields (for example, From, To,
and subject), contents, and attachments are all available to prying eyes from
the outside world in an insecure MTS.

In this chapter, we'll help you answer the previous questions, and then
we’ll describe some security services and mechanisms that you can use to
protect your email. Taken together, the technical term for these services and
mechanisms is countermeasures.

Who Wants to Read Your Email?

As long as there has been mail, there has been somebody trying to read it.
Just envision diplomatic correspondences between heads of state, and you get
the idea. As Bruce Schneier pointed out in [SCHNO00], there are all kinds of
organizations and individuals — we’ll call them attackers in this book — that
want to read your email. To be honest, the attackers that Bruce described in
1995 haven’t changed much, except that there are now more of them and they
are more sophisticated (see Figure 3-1).

The amount of damage an attacker can cause varies with their individual
skills, intelligence, motivation, and resources. Also, attackers can either be
passive or active. Passive attackers just listen, while active attackers, as its name
implies, do something to the emails. This “something’” will be discussed in
later sections. We’ll begin by describing the different kinds of attackers to be
found when dealing with email security.

Governments

Governments are arguably at the apex of predators. They have smart, special-
ized, and dedicated employees backed by enormous sums of money. They are
motivated to protect the nation’s interests. Governments also have one thing
that other attackers lack: the authority to be attackers.

One national interest is to protect the nation from attack by another state, and
this involves monitoring other countries” military capabilities. The five-cent
term for this is state-sponsored espionage, but most of us just call it spying.

Chapter 3 = Security Fundamentals

25

You and your information

Bloggers

w

Business

Confidentiality

Access Control

Figure 3-1 Attackers Are Everywhere

You can pretty much bet that if a country has a military capability, whether it’s
a developing country or an already highly developed country, some part of
that military capability is spying on the capabilities of its neighbors. Nations
with a larger reach look farther afield, and their spy agencies are made famous
in the movies (and sometimes the news): Russia had the KGB, the United
States has the NSA, Great Britain has MI6, and France has DGSE. We don’t
want to pick on any one country in particular, but the point is, do not be a fool;
they do exist, and they are out there looking and listening and reading email.
So now you're thinking “I'm not in the military; why would I care about
governments spying on me?”” Another national interest, which governments
do not openly discuss, is to spy on businesses from other countries to gain
competitive advantage. That is, one country might spy on companies based
in another country and then give the information to a similar company based
in their own country. While government might not openly discuss this policy,
there are many unsubstantiated stories. We'll let you Google for one about
your favorite government’s spy agency and its industrial espionage exploits.
Yet another national interest is to maintain law and order, which sometimes
means monitoring citizens. Obviously, in a perfect world, the monitored

26

Part 1 » Email and Security Background

citizens would all be criminals, but because we don'’t live in a perfect world,
you could unwittingly be targeted. Stop to think about the number of state,
local, and federal agencies involved in law enforcement. With a court order,
in most cases, these agencies can get access to just about anything, including
your email.

In countries where freedom of speech is severely limited by the government,
you need to think about keeping your email private from prying eyes to avoid
repercussions. Depending on which country you are in, you could find yourself
censured, in cuffs and heading to jail, or with your head on a chopping block.
Needless to say we support free speech, and we thought it important enough to
highlight this issue here.

Businesses

Businesses spy on one another just like countries do, although they call it
market research or business intelligence. For a good read on this topic, we
recommend Adam Peneberg and Marc Barry’s book Spooked: Espionage in
Corporate America [SPOOK]. Regardless of what it’s called, the whole point
of “business intelligence” is to collect information about competitors. Most
businesses are legitimate and ask consumers, vendors, and clients to fill out
surveys, but there are certainly less legitimate businesses out there that stoop
to attacking the email communications of a competitor.

Why do they do this? Competitive advantage. Think about it. Your company
just spent $500,000 on developing a product, brand, or customer list. If another
company stole the plans, tagline, or list that you just emailed to your coworker,
then they would only be out the cost of the attack in order to obtain the very
same information.

Sometimes the value of information comes from the damage that could be
done to one’s reputation if it is not adequately protected. Lawyers need to
keep their legal arguments safe from the opposition. Medical professionals are
required by law to protect medical records. The bottom line: make the bad
guys work hard to steal your information. It is probably worth spending some
money to secure your email.

Businesses spy on their employees too. Sometimes the purpose of the
monitoring is to enforce the proper use of company assets, but there are cases
where companies have done much, much more. Remember the HP board room
scandal that forced the resignation of the CEO and other top officials [HP]? The
CEO wanted to figure out who was leaking board discussions, so she ordered
electronic surveillance of board members, which included “bugging” emails.

Chapter 3 = Security Fundamentals

27

COKE AND PEPSI RIVALRY

How much would Pepsi like to know Coca-Cola’s secret formula? Most of us
would think that would be invaluable to Pepsi. Well we’d be very wrong. In
2006, a Coke employee stole Coke’s crown jewel and tried to sell it to Pepsi,
but Pepsi did the right thing and called the FBI. The conspirators were arrested,
charged, and found guilty [DOJ]. We are glad to see that some companies have
enough integrity to keep them from perpetrating these nasty attacks on their
competition. Sadly, not all companies have high integrity.

Criminals

It should come as no surprise that criminals want to read email for easy,
ill-gotten gains. They have moved from their brick-and-mortar environment
to the world of ecommerce, just like legit businesses have. Sending your
personal identification numbers (PINs), Social Security number (SSN), and
passwords over an insecure MTS is not only dangerous, it's downright foolish.
A book to read on the topic is Judith Collin’s Investigating Identity Theft: A
Guide for Businesses, Law Enforcement, and Victims [IDTFT]. These criminals
often use a technique referred to as phishing, whereby the attacker tricks the
email recipient into divulging personal information about him- or herself. For
more information on phishing, we recommend Rachael Lininger and Russell
Dean Vines’ book Phishing: Cutting the Identity Theft Line [PHISH].

Criminals do not just go after personal information; they are just as likely
to be targeting your business to learn information about what’s in that next
shipment coming from or going to your facility. I bet Jimmy Conway from
the movie Goodfellas would rather hijack a truck full of high-end electronics
than a truck full of Styrofoam pellets; I mean forgettaboutit. Likewise, I bet
he would’ve loved to have gotten his hands on your customer database with
names, credit card numbers, expiration dates, and addresses, which you just
sent to your coworker to review.

Hackers

Some might consider hackers a subset of criminals, but the difference is that
these attackers have always been part of the ecommerce world. They wear
different-colored hats: white hats are good, black hats are bad, and gray hats
are both at different times. Sometimes they hack systems for financial gain,
sometimes for notoriety, and sometimes just because it’s cool. You can even
read on of those “Dummy’”” books and hack like Kevin Beaver and Stuart
McClure’s book Hacking For Dummies [HACK]. Hackers have penetrated
systems just to expose insecurity numerous times; they publish the account
names and passwords just to prove it can be done. Hackers penetrated the

28

Part 1 » Email and Security Background

cell phone of Paris Hilton, and then posted her cell phone address book,
making many celebrity phone numbers and email addresses public. This was
certainly not done for financial gain. Needless to say, with a little more security
planning, this might be harder for them to pull off.

Reporters and Bloggers

Old school reporters and new school bloggers want to do the same thing: pub-
lish information. Their credo is “freedom of the press,” and while reporters
do sometimes exercise restraint, they probably wouldn’t hesitate to publish
an email that had multiple sources to back it up. Bloggers may have even less
restraint and printjust about anything. Imagine what would happen if an email
describing the personal exploits of a public figure got out; it would get pub-
lished no doubt. If you need proof, remember Michael Brown, the former head
of FEMA, and his emails begging to quit [BROWN], and the uproar it caused.

Friends and Family Members

If busybody, control freak, nosy, or jealous are adjectives that have been
applied to any of your friends or family members, you may have to worry
about them reading your email. They might not have the resources of any of
the other attackers, but they may be more motivated. You probably don’t need
to protect your tee times from your significant other, but if you're complaining
about your father-in-law or trying to surprise your significant other with a
vacation, then you probably have something to worry about.

Where They Can Read Your Email

There are a couple of places an attacker can get at your email:

m As Alice types it: Eve, our evil attacker, can simply look over Alice’s
shoulder. She could also be in the building across the street with a pair
of binoculars, looking through a pinhole camera in the A/C vent, or
by installing a keystroke logger. This book does not address physical
security, but it pays to think about who is around and which way your
screen faces.

m As Alice sends it: Eve can monitor the network, which we will address
in the very next section.

m As it traverses the MTS: Eve could own an MTS and be able to watch
every message as it passes through.

m As Bob retrieves it: Eve can monitor the network, which we will
address in the very next section.

m As Bob reads it: Eve could glance at Bob’s screen as she walks by or
Bob could leave a copy on the printer for Eve to intercept.

Chapter 3 » Security Fundamentals

29

Eavesdrop Masquerade: Fabrication
Alice T» Bob Alice /-b Bob
Eve Eve
Masquerade: Replay Masquerade: Man-in-the-Middle
Alice v Bob Alice \/V Bob
Eve Eve

Figure 3-2 Eavesdrop and masquerade attacks

How They Can Read Your Email

Now you know where criminals can attack your email. Here are the two main
types of attacks against insecure email, as shown in Figure 3-2.

Eavesdrop

This is a passive attack where Eve collects, intercepts, snoops, or sniffs
communications unbeknownst to the communicating parties (Alice, Bob, and
Matt). This is surprisingly easy to do with a $29.95 program off the Internet.
The program works by turning your computer, which normally only listens
for its own network traffic, into a capture device that collects all the data
traversing the network. If you are furiously typing your email to send it before
you get on a plane from an airport hotspot, then when you hit send, Eve could
simply capture everything you send. Once the message has been collected,
an unauthorized disclosure has occurred. Additionally, Eve can perform traffic
analysis on the message, because she knows all the message’s originators and
recipients. By watching the email over time, Eve learns who you talk to, and
how often you talk to them.

Masquerade

This is an active attack where Eve impersonates one or more of the communi-
cating parties, and which is sometimes called spoofing. Obviously, this is only
a successful attack if the communicating parties do not detect the attack, but
if successful, Eve can insert herself between Alice and Bob and intercept the
message. Masquerade attacks can be categorized in three ways:

m Fabrication: This is the generic masquerade attack where Eve origi-
nates the message for Bob acting as Alice or for Alice acting as Bob. This
attack is as simple as changing the “From:”” address in the email message
header field (many ISPs now check for this).

30

Part 1 » Email and Security Background

m Replay: A specific type of masquerade attack where Eve collects
messages (i.e., she eavesdrops) and then resends them. This can be done
by capturing the email asking for $50 dollars and then resending your
request 50 more times.

= Man-in-the-middle: A specific type of masquerade attack where Eve
has fooled Alice into thinking she is Bob and Bob into thinking she is
Alice.

What Else Can They Do to the MTS?

The one other major attack that Eve can perform is referred to as a denial of
service (DoS) attack or distributed denial of service (DDoS) attack. The intent is
to foul up the MTS somehow and interrupt the system to keep it from doing
its job. With DDoS, Eve uses many computers to mount the attack. Shutting
down one of the computers has little impact; the attack continues. There are
two main ways to do this:

Hacking. Eve somehow, some way, some time gets into the computer
that runs the MTS or the network connecting the MTS to the rest of the
world, and then she makes it stop working. Maybe Eve was eavesdrop-
ping on the network administrator and captured his or her username and
password, thereby allowing unfettered access to the SMTP server pro-
gram files and configuration.

Flooding. Eve sends so many requests or responses to the MTS that it
overwhelms the SMTP server either slowing the process down or
stopping it altogether. Eve may queue up thousands of computers,
each sending thousands of messages at the same time to the
SMTP server.

How You Can Stop Them

Hopefully, the last couple of sections have not depressed you. Be assured,
all is not lost. You, Alice, Bob, and anybody else who wants to secure their
email have many available countermeasures to stop would be attackers. Next,
we’ll describe the security services (or properties) that can counteract the
attacks we have described, and then describe some basic and cryptographic
tools that implement these services. These cryptographic tools are called
security mechanisms. As you'll see, some of the service names correspond to
the mechanism that is often used to implement them, but more often they
correspond to the protection that is provided.

Chapter 3 = Security Fundamentals

31

Security Services

Some would say that all of the security services are fundamental, but we're
going to divide them into two categories: fundamental and derivative. Fun-
damental security servers are those that are required to make all the other
services work in a secure manner. Derivative services are those services that
are made possible by the fundamental services. We're not going to try to list
all the possible derivative services, because depending on whom you talk to
almost everything is a derivative service. [ISO74982] is considered by many as
the definitive source for the security service definitions, so we’ll use it as our
reference. That standard defines an abstract security architecture for commu-
nications systems and describes security services and mechanisms. The thing
to remember about these services is that you may not need all of these services
all of the time, but you need most of them at one time or another.

Fundamental Services

There are few types of fundamental services, including access control, authen-
tication, confidentiality, integrity, and non-repudiation. We'll define each of
these in this section.

Access Control

Access control is a service that controls and logs access to systems, resources,
and applications and protects against their unauthorized use. While access
control makes the decision, which is called an access control decision, and
provides access to the system, resource, and application, for the decision to
be a “good” decision the input ought to include an authenticated identity to
ensure that only those authorized gain access.

Authentication

Authentication is a service that protects against masquerade attacks. Peer
entity authentication corroborates a user identity and data origin authentication
corroborates the source of data. One integral mechanism for this service is
digital signatures, which we’ll describe later on in the chapter.

m Authentication by itself does not protect against unauthorized
modification. Additionally, it does not protect against replay attacks.

Identity authentication. There are two ways to authenticate identities:
unilateral or mutual authentication. In unilateral authentication only one
party verifies the identity (e.g., the SMTP server authenticates the SMTP
client). In mutual authentication both parties verify each other.

32

Part 1 » Email and Security Background

m Identification and authentication (1&A) are often discussed as one service
because it is normally of little use to have an unauthenticated identity. Technically,
identification could be defined as a separate service where the identities could be
authenticated or unauthenticated.

Confidentiality

Confidentiality is the service that protects against unauthorized disclosure.
Confidentiality can be applied to data in transit and storage. It protects the
communication channel between clients and servers, protects against passive
attackers, and, depending on a number of factors, from active attackers as
well. Don’t worry, we will address these various factors as we come to them.
Encryption, a cryptographic tool described later, implements this service.

Integrity

Integrity is the service that protects communications from unauthorized, unde-
tectable modification. One-way hash functions, a cryptographic mechanism
described later, are used to implement this service.

Non-repudiation

Non-repudiation is the service that prevents either the sender or receiver from
denying the content of a transmitted message. When the recipient has proof
that the sender sent the content, this is called non-repudiation with proof of origin.
When the sender has proof that the recipient has the content, then it is called
non-repudiation with proof of delivery. A lot of parts are needed to implement
either non-repudiation service, but the fundamental mechanism necessary to
implement non-repudiation is digital signatures.

m Non-repudiation can be a volatile subject for some and has
probably consumed hundreds of man hours debating what non-repudiation means
and how it can be implemented. The basic point to remember is that anything and
everything can be repudiated. To determine whether the claim is actually
repudiated, it is up to an arbiter or judge to sift through the proof presented by
each party and the relevant facts to decide on a claim. The point of the
non-repudiation service is to generate this proof.

Derivative Services

There are few types of derivative services, including accountability, authoriza-
tion, availability, and notary. We’ll define each of these in this section.

Accountability

Accountability is a service that ensures that a user’s actions can be accurately
linked to that user and that holds that user responsible for their actions.
Accountability uses logging tools to store the information about the actions.

Chapter 3 = Security Fundamentals 33

Authorization

Authorization is the service that grants a user’s request to perform a requested
action. It is invoked as part of the Access Control.

m Authentication and authorization are often confused; they do not
provide the same service. Just because a user has been identified doesn’t mean
they are authorized to perform every function.

Availability

Awvailability is a service that ensures a system, resource, or application is
available upon request to authorized users. This service can only really be
provided if access control is implemented.

Notary

Notary is a service — provided by a trusted third party — that can attest to
the origin, destination, and integrity of a particular content. Additionally, the
notary service can attest to the time of origin and receipt.

Cryptographic Mechanisms

Cryptographic mechanisms are important tools; they are part of your arsenal
against attackers. This section introduces the cryptographic mechanisms, while
Chapter 4 will provide a more detailed explanation.

Encryption

The best way to make sure that your communications are not disclosed to
unauthorized individuals is to not talk to anyone, but this really isn’t very
practical. To send communications without fear of disclosure, you can use
an encryption algorithm. Encryption algorithms vary in complexity, but the
basic concept is that the message is scrambled so that only the communicating
parties can unscramble the message.

Digital Signatures

One mechanism used to implement the authentication security service is
the digital signature algorithm, which is the digital equivalent of a wet
signature that Alice applied to the message in Figure 2-1. The process uses
public key cryptography, and it relies on the basic concept of keeping a
private key to yourself while providing wide distribution to the corresponding
public key.

.m One of the primary themes in this book is the protection of private keys. If
you cannot keep the key private, then the basis for most of the security is lost.

34

Part 1 » Email and Security Background

One-Way Hash Functions

One mechanism to implement the integrity security service is the symmetric
integrity function. These functions produce a fingerprint of the data, and any
change in the data will yield a different fingerprint. It is astronomically difficult
to find two email messages that have the same fingerprint. So, if the fingerprint
is not as expected, you'll know you are being attacked.

Basic Security Tools

Cryptographic mechanisms are very powerful, but they are not the only tool
in your toolbox. The following set of basic security tools can be employed in
conjunction with cryptography to better protect your email. Luckily for you,
many of these services are already built into security protocols that we will
describe later.

Access Control Lists

Access Control Lists (ACLs) are lists that can be used to check a user’s identity
before access to a system, resource, or application is granted. Depending on
the policy of the system, resource, or application, the identity presented may
be a username and password or a piece of data digitally signed by the user. The
service implementing the ACL then authenticates the user’s identity, evaluates
the user’s authorizations (for example, Alice is allowed to send email through
this server because she has an account here), provides access to the system,
resource, or application (like email), and logs positive and negative outcomes
of these events.

Fake Traffic

If you have encrypted your email or the connection on which your email flows,
attackers may still be able to determine how much email is being sent and
then possibly determine where your email is going. One countermeasure for
this type of passive attack is to send dummy network traffic on the connection
or to the recipients. If the connection always has the same amount of traffic
or if the recipient always gets the same amount of email, an attacker cannot
determine whom is talking to who, or how often.

Logs

Logs are linked to accountability. If you don’t keep track of who is doing what
and when, then it’s hard to figure out what went wrong and what or who
might have caused it to go wrong. Obviously, these logs are very important
and need to be protected (just like your email), and at a minimum they should
be stored in an integrity-protected file.

Chapter 3 = Security Fundamentals

35

Nonces

Nonces are a technique that we can use to deter attackers from replaying
messages. The concept is simple: include some information in the message
that is sent that must be repeated in the message that is returned. If the nonces
do not match, ignore the response. This technique is sometimes called cookies.

Signed Receipts

One way to make sure that the recipient got the message is to ask explicitly
for a signed receipt. If the signed receipt includes some information from
the original message, then the originator of the first message will know the
recipient actually got the intended message. If the receipt isn’t signed, then it
could be Eve masquerading as Bob sending the unsigned receipt.

Sequence Numbering

Sequence numbers are a technique for receivers to determine whether messages
arrived in order or whether the message sequence has been modified. This is
important if a process requires a particular order of messages.

Time

A time server provides an indication of the time. It can be used to prove at a
later date that the message existed before a particular time or that an action
occurred at a particular time.

More Attacks

Just when you thought it was safe to send email, your adversaries developed a
new set of attacks, all of which are based on the tools you just employed. This
cat and mouse game will never end, because it’s really no different than bank
robbers developing new techniques when banks get better vaults. So, get used
to it. Assuming that you have implemented some cryptographic mechanisms,
your attackers will no doubt employ cryptanalysis, which is well beyond the
scope of this book but it is discussed in David Kahn's book The Codebreakers:
The Story of Secret Writing [KAHN]. We will, however, explain three dif-
ferent kinds of cryptography — specifically symmetric, symmetric integrity,
and asymmetric — in greater detail in the next chapter. These cryptographic
mechanisms will be one of your main defenses against the attacking horde.

Cryptography Primer

This book is not about cryptography; however, you must have a fundamental
understanding of cryptography to fully understand secure email. For this
reason, we include this primer. For a more complete coverage of cryptography,
we have a few suggestions for further study. Kahn [KAHNG67] provides a
remarkably complete history of cryptography, from its origins to the middle
of the twentieth century. Menezes, van Oorschot, and Vanstone [MENE97]
provide an encyclopedia of known techniques with an emphasis on both the
secure and the practical. Schneier [SCHN96] provides a complete discussion
of the applications of cryptography with a focus on engineers and computer
programmers.

The word cryptography means hidden or secret writing. Cryptography is
generally thought of as the scrambling, and the unscrambling, of private
messages. A message is scrambled to keep it private; it provides confidentiality.
Modern cryptographic techniques are also used to determine whether a
message has been changed since it was created and to identify the message’s
sender. An unaltered message has integrity. Knowledge of a message’s origin
is authentication.

A cryptographic algorithm defines the series of steps that a sender takes
to scramble a private message and the series of steps that a receiver takes to
unscramble it. Most cryptographic algorithms use two inputs to scramble the
message, protect its integrity, or authenticate its source. The first input is
the message content, and the second is a secret value known as a key. There
are several different types of cryptographic algorithms that are differentiated
by the security services that they provide and the type of keys that they
employ.

37

38

Part 1 » Email and Security Background

Symmetric Cryptography

In symmetric cryptography, both the sender and the receiver use the same key
value. As a result, symmetric key systems are sometimes called shared secret
key systems. When Alice wants to send a private message to Bob, she selects an
encryption algorithm and a key that Bob knows. Alice encrypts the plaintext
message using the encryption algorithm and the key, obtaining ciphertext.
Alice sends the ciphertext to Bob. Bob uses the decryption algorithm and key
to recover the plaintext from the ciphertext (see Figure 4-1).

For an attacker, Eve, to obtain the plaintext, she must guess or intercept
the key. The most difficult keys to guess are random bit strings. Eve may use
a computer to try all possible key values. Such a brute-force attack will take
centuries on many cooperating fast computers if the key is long. To make it
difficult for Eve to intercept the key during distribution, it must be encrypted
during transmission. Secure key distribution of shared secret keys is a difficult
task, and some of the tools needed to do it are discussed later in this chapter.

Types

There are two primary symmetric encryption algorithm types: stream ciphers
and block ciphers. Stream ciphers operate on the plaintext 1 bit at a time. (A few
stream algorithms operate an octet at a time, but they are not the normal case.)
RC4 is a well-known stream cipher. Block ciphers operate on a group of bits
called a block.

; Encryption ;
Plaintext —»[Algorithm j—» Ciphertext

A

|

i

|

| .

. . Decryption ;

i Plaintext 4—[Algorithm j<— Ciphertext
|

Figure 4-1 Symmetric encryption and decryption

Chapter 4 » Cryptography Primer

39

Algorithms

The Data Encryption Standard (DES), also known as the Data Encryption
Algorithm (DEA), is the most well-known symmetric block cipher. The U.S.
Government made DES a standard in 1977, and many people adopted DES
because the U.S. Government supported it. DES is published as FIPS PUB 46
[FIPS46] and ANSI X3.92 [X392]. It uses a 56-bit key, and encrypts a 64-bit block
with each operation. Many cryptographers are concerned about the DES key
length; they believe that a longer key is needed to provide security. Computing
power has increased many fold since DES became a standard in 1977, and a
56-bit random key is no longer sufficient to protect against a brute-force attack
[EFF98]. In plain English: do not use DES!

Using the DES encryption multiple times can increase the effective key size
[TUCH?9, X952] and thus its strength. Triple-DES involves the encryption
with one key, followed by the decryption of the resulting ciphertext with a
second key, followed by the encryption of the result with a third key. This is
called Three-Key Triple-DES. If the same key value is used for the first and third
keys, the algorithm is called Two-Key Triple-DES. Both Two-Key Triple-DES
and Three-Key Triple-DES are significantly stronger than DES.

The Advanced Encryption Standard (AES) has replaced DES as the U.S.
Government’s symmetric cipher. Rijndeal (the author’s original name for the
cipher that became AES) was developed by two Belgian scientists, Dr. Joan
Daemen and Dr. Vincent Rijmen. It was evaluated against a number of other
algorithms, and it won an open competition held by the U.S. National Institute
of Standards and Technology (NIST), based on its combination of security,
memory requirements, hardware and software performance, efficiency, ease
of implementation, and flexibility. AES is published in [FIPS197]. It supports
key sizes of 128, 192, and 256 bits, and it has a block size of 128 bits.

HOW SECURE IS AES?

The U.S. Government is confident enough in AES that it recommends using it to
protect classified information up to the TOP SECRET level, based on which key
size you use [CNSS]. This is the first time a publicly available algorithm has
been approved for this kind of use.

Modes

In order to encrypt arbitrary messages with a block cipher, the blocks must be
processed one after another. The handling of the blocks is called the mode of
operation. [SP800-38] defines eight common modes of operation:

m Electronic Codebook (ECB)
m Cipher Block Chaining (CBC)

40 Partl = Email and Security Background

m Cipher Feedback (CFB)

m Qutput Feedback (OFB)

m Counter (CTR)

m Cipher Based-MAC (CMAC)

m Counter with CBC-MAC (CCM)
m Galois Counter Mode (GCM)

CBC encryption is by far the most common, and it works as follows. The
message is broken into a sequence of blocks, with the last block padded to
create a complete block if necessary. A random block, called the initialization
vector (IV), is then generated. Each block is XORed (that is, bitwise exclusive
OR) with the ciphertext from the previous block before it is encrypted. The
IV serves as the previous ciphertext block for the first plaintext block. The IV
need not be kept secret. All of the encryption and decryption operations are
performed with the same key. If one block obtains an error in transmission,
the decryption will synchronize after two garbled blocks. When the message
is decrypted, only the block that contains the transmission error and the block
that follows will be garbled (see Figure 4-2).

TWO BIRDS: ONE STONE

The CCM and GCM are new. They are authenticated encryption modes, which
means that the mode provides both confidentiality and authentication. They
provide both of these security services by producing two outputs: the encrypted
data and an authentication tag. The authentication tag can cover additional
data, such as packet headers or message attributes. These modes require a
large cipher block, so to date they have primarily been used with AES.

Symmetric Key Management

The trick to being successful with symmetric cryptography is to distribute the
shared symmetric key without the attacker getting it too. The key is fairly
small, so distributing it is easier than distributing an entire message that you
want to keep private.

When Alice wants to encrypt a message for Bob, the two parties must first
share the same symmetric key value. The creation, distribution, use, archive,
and destruction of that key is called key management. If Alice wants to send the
same encrypted message to multiple people she has two choices:

Individual Keys. Alice shares a different key with each recipient. That is,
Alice has one key she uses with Bob, another one she uses with Matt,
another for Pat, and so on. In this case, Alice will need to separately
store each key. The creation, distribution, and storage techniques must

Chapter 4 » Cryptography Primer

11

protect the keys from disclosure, and they must ensure that the keys
remain associated with the correct party. If Bob’s key and Matt’s key
are swapped in Alice’s protected key storage, then Matt may be able to
decrypt messages that Alice intended only for Bob.

Alice
L
: Plaintext
! A i\

! Plain 1 || Pain2 | | Plain3
!

| QR R 3
i D D "
|

i Key A 4 J (A 4) (A 4)
i Encrypt Encrypt Encrypt
i % neryp ncryp ncryp
|

i A 4 A 4 A 4
i Cipher 1 | | Cipher2 | | Cipher3
i \/ L/

: Ciphertext
]
Bob
.

; Ciphertext

! A i\

: Cipher 1 || Cipher2 | | Cipher3
i

: Key A 4) (A 4 J (A 4 J
. Decrypt Decrypt Decrypt
() =S

| LI SV
@ D D "
|

i y y y
i Pain1 || Pain2 || Plin3
I \/ \/

: Plaintext

i

Figure 4-2 Cipher block chaining (CBC) mode

42

Part 1 » Email and Security Background

Group Keys. Alice shares the same key with each recipient. If Alice uses
a group or net key, then she does not need to store each separate key. Of
course, there is no way to tell from the key whether Alice, Matt, Pat, or
anybody else with the group key sent the message.

WHERE'S THE BEEF?

We can't stress enough that the security of symmetric cryptography is about
keeping the key(s) secret. Also, designing a key management system that is
based solely on symmetric key cryptography is challenging because you need
authentication to make sure that each key goes to the right person and that it
came from the right person. You can do this distribution through physical
means, but if the keys are short lived you're going to rack up a lot of frequent
flyer miles.

You can avoid many of the complexities associated with the distribution
and storage of symmetric keys by using asymmetric cryptography to provide
just-in-time key establishment, which we’ll discuss shortly.

Symmetric Integrity Functions

A value that is carried with the message and used to ensure that the message
sent by Alice is the message received by Bob can be called an Integrity
Check Value (ICV), a Message Integrity Check (MIC), an Authentication Tag, or a
Message Authentication Code (MAC). Unfortunately, all of these terms are in
common use.

AES MAC uses AES encryption in CBC mode to provide integrity. An IV
of all zero bits is used, which is the same as having no IV at all. Instead of
transmitting the ciphertext blocks, all except the last one are discarded. Alice
transmits this last block, or a portion of it, along with her message to Bob.
Bob performs the same encryption on the received message. If the received
MAC and the locally computed one match, Bob can be sure that the received
message was not altered (see Figure 4-3).

Plaintext | wac |
A 4

Plain 1 || Plain 2 || Plain 3

4

) 4 b
:() :() Truncate

A

A A

Key 4
O —>(Enclrypt)(Enclrypt) Enclrypt)

Figure 4-3 Message Authentication Code (MAC)

Y

Chapter 4 » Cryptography Primer

43

If Alice wants to provide confidentiality by encrypting with AES CBC, and
authentication and integrity by computing an AES MAC, independent keys
must be used for the two operations. Furthermore, it is generally best to
compute the MAC, and then encrypt the message as well as the MAC.

Since both Alice and Bob have access to the key, either party can compute
a MAC. The MAC ensures that Eve, the attacker, cannot alter the message
without Bob detecting it. However, the MAC is not helpful in resolving
disputes between Alice and Bob. Using the key, either Alice or Bob can
generate an altered message and an associated valid MAC. Alice and Bob can
each provide a different message to a judge, and both messages will have a
valid MAC. In addition, the symmetric key must be provided to the judge for
him or her to validate the MAC. This disclosure permits the judge to generate
another altered message with a valid MAC.

One-way hash functions may also be used to provide integrity. One-way
hash functions operate on an arbitrary-length-input message and produce a
fixed-length output. Many functions have this property, but a one-way hash
function must also have two additional properties:

= |t is computationally infeasible to recreate the input message from the
hash value.

m [t is computationally infeasible to construct two different input messages
that produce the same output hash value.

Any weakness in these properties may result in weakness in the integrity
and authentication mechanisms that depend on the one-way hash function.

The Secure Hash Algorithm 1 (SHA-1) is the most well-known one-way
hash function. It is published as FIPS PUB 180-1 [FIPS180a] and ANSI X9.30-2
[X9302]. It produces a 160-bit output. There have been a number of attacks
against hash algorithms recently [NIST1], and current guidance recommends
the U.S. Government stop using SHA-1 for applications that require collision
resistance as soon as possible [NIST2]. It may be used after 2010 for limited
purposes.

m You can continue to use SHA-1 for as long as you'd like, but it
ought to strike you as odd to ignore advice given by the people who invented the
algorithm.

The replacement for SHA-1 is the SHA-2 family of one-way hash functions
published as FIPS PUB 180-2 [FIPS180b]: SHA-224, and SHA-256, SHA-384,
SHA-512. The new algorithms provide longer hash values for the purpose of
offering integrity and authentication functions that are of comparable strength
to the AES encryption algorithm.

The hash-based message authentication code (HMAC) [KRAW97, FIPS198]
function is the most common method of using a shared secret, or key, with a

44

Part | = Email and Security Background

one-way hash function for creating an integrity check value (see Figure 4-4).
This method applies the one-way hash function twice.

If “Hash Challenge” causes you envision two chefs from the Food Network
battling it out while preparing some mouthwatering breakfast food, you'd be
hungry just like me. With all the recent attacks against hash algorithms, NIST is
increasingly interested in investigating other hash algorithms. They've
sponsored two workshops, one in November 2005 and the other in April 2006.
Their intent was to allow cryptographers to publish and discuss possible new
hash algorithms. The timeline for publishing the successor to FIPS 180-2 is
2012, and NIST is planning to hold a competition for future one-way hash
function standards in a manner similar to the competition that resulted in AES
[NIST3]. The hash competition hasn’t been formally announced yet, but in
addition to the technical discussions about hashes, you can only hope they're
going to have a Food Network star there to prepare some delicious breakfasts
for you.

Alice has the same problem with symmetric integrity functions as she does
with symmetric cryptography; namely, when Alice wants to MAC a message
being sent to Bob, the two parties must first share the same symmetric key
value. They key management issues have not gone away, and in some respects
they are worse because Alice can’t use a MAC to provide confidentiality of the
key during distribution.

Plaintext | HumAC

A
9—>| Prefix 1 | Plaintext
h
L

y

Key

o

;—>| Prefix 2 || Temp |
L J

HMAC = Hash ((Key XOR OuterPad) || Hash ((Key XOR InnerPad) || Plaintext))

Figure 4-4 Keyed Hashing for Message Authentication (HMAC)

Chapter 4 » Cryptography Primer

45

Asymmetric Cryptography

Asymmetric cryptography is also called public key cryptography because there are
two distinct keys: one that must be kept private and one that can be made
public. The two keys are complementary, but the value of the private key
cannot be determined from the public key. Public key cryptography greatly
simplifies the management of symmetric keys used for encryption or integrity
by significantly reducing the number of keys that need to be stored for an
extended period. Generally, the symmetric keys are used for a short period
of time and are then discarded. Only the private key must be protected for
an extended period. Furthermore, public keys can be distributed openly since
they do not need to be kept secret. Public key cryptography supports both
encryption and digital signatures.

HONEY, HAVE YOU SEEN MY KEYS?

One of the main points, if not the main point, of asymmetric cryptography is to
keep the private key secret. You could print it out and keep it in your sock
drawer, but that would make it more difficult to ensure that you typed it in
properly every time — even worse if you have fat finger syndrome. You could
keep the naked file on your computer, but how secure is your computer? In our
opinion, it is far better to store it on a personal portable cryptographic token,
which we'll discuss in Chapter 8.

Public Key Encryption

Public key cryptography supports encryption, but it is not generally used to
encrypt user data. Public key algorithms require significantly more compu-
tational power than comparable symmetric encryption algorithms. Thus, the
expensive public key operations are performed infrequently for the estab-
lishment of symmetric keys, and the efficient symmetric algorithm is used to
encrypt the bulk of the data.

There are two key management public key algorithm types:

Key agreement. With key agreement algorithms, Alice and Bob exchange
public keys and then combine their own private key with the public key
of the other party to compute a symmetric key that is known only to the
two parties. The Diffie-Hellman algorithm [DIFF76] (see Figure 4-5) is
the most well-known key agreement algorithm.

Key transport. With key transport algorithms, Alice creates a symmetric
key and encrypts it with Bob’s public key. Bob then uses his own private
key to decrypt the value and recover the symmetric key. The RSA algo-
rithm [RIVE78] (see Figure 4-6) is the most well-known key transport
algorithm.

46

Part |

Email and Security Background

Generate Private Key
Xa = Random()

Compute Public Key
Ya=g*amod p

| Send Public Key

Ya

Generate Private Key
Xb = Random()

Compute Public Key
Yb =g X" mod p

| Receive Public Key

l¢

Yb

» Receive Public Key

|‘

Compute Symmetric Key
key = Yb *amod p
=(g**)*modp
=g %X mod p

Alice and Bob have prior agreement on the generator, g, and the prime modulus, p.

: } Send Public Key

Compute Symmetric Key
key = Ya*P mod p
=(g**)* modp
=g %X mod p

Alice and Bob compute the same symmetric key, g *8X> mod p.
An eavesdropper cannot derive the key value from Ya and Yb.

Figure 4-5 Diffie-Hellman key agreement

| Generate Symmetric Key

i key = Random()

| Receive Public Key

l¢

(e,n)

o !

. Generate Private and

| Public Keys

. p = RandomPrime()

| g = RandomPrime()

. phi = (p-1)(a-1)

| e = RelativePrime(phi)
n=pq

d = Multinv(e mod phi)

' Send Public Key

| Encrypt Symmetric Key
with Public Key

i cipher = (Pad(key))® mod n

i | Send Ya

cipher

Receive Encrypted

L

[Symmetric Key

| Decrypt Symmetric Key
. with Private Key
| key = (cipher) ¢ mod n

L .

The symmetric key generated by Alice is securely transferred to Bob.
An eavesdropper cannot derive the key value from e, n, and cipher.

Figure 4-6 RSA key transport

Chapter 4 = Cryptography Primer

47

EMERGING PUBLIC KEY ENCRYPTION ALGORITHMS

As the attackers evolve, so do the algorithms. New algorithms almost always
add more security, which is always good, but one way to measure an algorithm
is based on the amount of time it has been studied, attacked, and survived.

Diffie-Hellman (DH) and RSA might be most famous; here are some other
algorithms creeping (or being dragged kicking and screaming based on your
point of view) into the world:

RSA Optimal Asymmetric Encryption Padding (RSA-OAEP). Eliminates
the vulnerability to adaptive chosen ciphertext attacks that is in the form
of RSA that is widely used today.

RSA Key Encapsulation Method (RSA-KEM). Eliminates structures that
might aid cryptanalysis by always encrypting a completely random value
of the largest possible size for the recipient’s public key.

Elliptic Curve Diffie-Hellman (ECDH). Same as traditional Diffie-Hellman,
except that elliptic curve is used instead of discrete logarithms, resulting
in smaller key sizes for the same security and faster computations.

Elliptic Curve Menezes-Qu-Vanstone (ECMQV). Like ECDH, elliptic curves
are used. At the cost of additional computation, ECMQV offers improved
authentication.

There will always be new algorithms that come along, hopefully the ones you
implement have been vetted by experts and have withstood many years of
attackers attempting to break them.

Authentication of the public key is needed with both key agreement
and key transport algorithms. Alice must know that the public key she is
using corresponds to the private key known only to Bob. If this is not the
case, then Alice ends up sharing a symmetric key with an unknown party. In
a few circumstances, this situation is desirable, but in general, this situation
is completely unacceptable. Alice needs an additional mechanism to comple-
ment key agreement and key transport algorithms. Alice needs a mechanism
that connects the public key to the user who holds the corresponding private
key.

Digital Signatures

Public key cryptography also provides the basis for digital signatures. The
private key is used to generate signatures, and the public key is used to
validate them. In real-world applications, messages are not digitally signed
directly. Rather, the message is hashed using a one-way hash function, and
then the resulting hash value, also called a message digest, is signed.

48

Part 1 » Email and Security Background

Unlike symmetric integrity functions, digital signatures can provide impor-
tant evidence in a dispute. If Alice uses her private key to sign a message, Bob
can validate it with her public key. Since Bob does not need Alice’s private
key to validate the signature, he does not have the information he needs to
generate a valid signature on an altered message. Furthermore, the judge can
use Alice’s public key to validate the signed message.

There are two digital signature public key algorithm types:

Digital signature with message recovery. With these algorithms, Alice
signs by encrypting the message digest with her own private key. Bob
validates the signature by comparing a message digest that he com-
putes locally with one that is obtained by decrypting the signature value
with Alice’s public key. If the two message digest values match exactly,
then the digital signature is valid. The RSA algorithm [RIVE78] (see
Figure 4-7) is the most well-known digital signature with message recov-
ery algorithm.

Digital signature without message recovery. With these algorithms,
Alice uses her private key and the message digest to generate the sig-
nature value. Alice may also need to provide additional parameters,
such as a unique random value. Bob validates the signature value with
Alice’s public key and a locally computed message digest and gives
it to the verify function. The verify function returns a result of either
valid or invalid, rather than the message digest. The Digital Signature
Algorithm (DSA) [FIPS186a] (see Figure 4-8) is the most well-known
digital signature algorithm that does not provide message recovery.

EVOLVING DIGITAL SIGNATURE ALGORITHMS

As you may have guessed, digital signature algorithms are evolving, too.

RSA Signature Scheme with Appendix Probabilistic Signature Scheme
(RSASSA-PSS). This was developed in an effort to have more mathe-
matically provable security. It is specified in [RFC3447].

Elliptic Curve Digital Signature Algorithm (ECDSA). As with ECDH, ECDSA
takes advantage of the smaller key size and faster computation offered
by elliptic curve cryptography. It is specified in [FIPS186b, X942, SEC1].

Again, implement only those algorithms that have been vetted by experts and
have stood the test of time.

Chapter 4 » Cryptography Primer

49

Private Key

Figure 4-7 RSA Digital Signature

Digest 2

If exact match,
then signature |
is valid

Authentication of the public key is needed with all digital signature algo-
rithms. Bob must know that the public key he is using corresponds to the
private key known only to Alice. If this is not the case, then Bob has no proof
of the origin of the message. Bob has evidence that the message has not been
modified since the signer signed it, but he does not know who signed it. As
with key management, Bob needs an additional mechanism to complement
digital signature algorithms. He needs a mechanism that connects the public
key to the user who holds the corresponding private key.

50

Part 1 » Email and Security Background

Private Key
k = Random()
RE
Sign‘;ture
Bob
e s s _I
| Message |

Signature | Digest |
" | | s (Velrify) Public Key

If exact match,
then signature
is valid

Figure 4-8 DSA Digital Signature

Public key certificates are the solution. As you will see in Chapter 5,
certificates are used to bind an identity to the public key. By using certificates,
Bob can be sure that he is using Alice’s public key and, therefore, that Alice
signed the message.

Chapter 4 » Cryptography Primer

51

Asymmetric Key Management

Key management, well at least the distribution part, for public keys is easy
to grasp: distribute the public part as widely as possible and keep the private
key to yourself. Don’t share it with anyone, even your spouse. The other
aspects of creating, storing, use, and destruction can be accomplished by a
couple of techniques. But, public key certificates and the supporting Public
Key Infrastructure (PKI) are the most widely implemented asymmetric key
management technique. Add in a security token, and you are on your way to
securing your email.

Understanding Public Key
Infrastructure

Now that you understand email from your reading of Chapter 2 and have
the security fundamentals mastered from Chapter 3, it’s time to start doing
some security. You learned in Chapter 4 that cryptography is a powerful tool
that you can use to provide access control, authentication, confidentiality,
integrity, and non-repudiation services. There is always a catch, and when
using cryptography the catch is key management. This chapter is going to
focus on the most widely used of the three key management techniques, which
is by far, asymmetric key management systems.

There are number of ways to distribute public keys, such as with public
key servers or a direct exchange between Alice and Bob, but using a Public
Key Infrastructure (PKI) is arguably the most widely deployed because it offers
greater scalability. For email, we need a key management solution that scales
to billions of users. PKI is used to solve the asymmetric key management
problem by distributing public keys in public key certificates. Going forward,
we simply call these certificates.

Certificates include more information than just the public key, and it’s all
digitally signed to ensure that the key and other information are unaltered. A
third party, called a certification authority, or CA, issues certificates to Alice and
Bob, and both Alice and Bob have confidence in the content of the certificate
because they have chosen to rely on this CA. To support email, the CA issues
certificates that bind the public key to the appropriate email address. We'll
describe the functions of a CA in much more detail later in this chapter.

That'’s the basics, but we’re going to go in to more depth. We can’t address
every PKl issue in this chapter, but we cover the fundamentals. For complete
coverage of a PKI, we suggest Housley and Polk’s Planning for PKI [HP] and

55

Part Il = PKI Basics

Adams and Llyod’s Understanding PKI: Concepts, Standards, and Deployment
Considerations [AL]. Both books offer comprehensive coverage, and they are
the number one and number two selling books on PKI.

Trust

The reliance on the CA is what makes a PKI work. The CA is a trusted third party.
Alice and Bob are relying on the CA to ensure that the person asserting that
they control the private key that corresponds to the public key in the certificate
actually does control it and that their email address is correct. Obviously,
the more rigorous the checking performed by the CA, the more confidence
Alice, Bob, and others can place in the certificate. For example, the CA can
have greater confidence in Alice’s identity if she presents a government-issued
passport instead of her Mickey Mouse Club Card.

CERTIFICATE POLICIES AND CERTIFICATION PRACTICE STATEMENTS

How do Alice and Bob know what the CA is doing to earn their trust? The CA
has a Certification Policy (CP) that spells out in detail (and yes it can be very
long) what the CA must do to check that the person with the private key has
the key, the ways that person must identify themselves to the CA, how the CA
protects the private key used to sign certificates, and so on. (The CA has six
fundamental responsibilities, which we’'ll discuss later in this chapter.) The CA
also has a Certification Practice Statement (CPS) that reveals how the CA
implemented the CP. The CP and the CPS can be in the same document or in
separate documents. These documents allow Alice, Bob, and others to
determine how much they should trust the CA. One shouldn’t trust the CA very
much if its private key is stored in the CA operator’s sock drawer.

Often, CPs will define a set of criteria to get a certificate issued under policy
A and then more rigorous set of criteria to get a certificate issued under policy
B. Sometimes A and B are named by numbers; other times, they are named by
colors: A =0 and B = 1 or A = bronze and B = gold. If you're picking the name
for a policy, don't pick low and high; nobody will want to be associated with a
policy called low.

Another part of trust is the belief by Alice and Bob that at the time the
private key was used the binding was still considered valid. If Alice is using
her public key certificate to sign something that is validated by Bob, then Bob
needs to ask two questions:

m [s Alice’s certificate still okay? The signature on the certificate must be
good, and the certificate must not have expired. Additionally, the CA can
indicate problems with the certificate, usually through a certificate revoca-
tion list (CRL).

Chapter 5 = Understanding Public Key Infrastructure

57

m s Alice’s signature okay? Bob checks the digital signature to see if it
is valid. To be valid, the digital signature check must be performed with a
public key from a valid certificate.

Answering both these question is a process called digital signature verification.
When Bob checks that Alice’s certificate is valid, it called certificate validation.
The process of collecting the certificates is called certificate path building or
certificate path construction. The process of checking each certificate in the
certificate path is called certification path validation.

PKI Architectures

If there was only one CA in the world, then that CA would be very busy.
Luckily, there is more than one CA. There can be multiple CAs to serve various
user communities. PKIs can be organized to support simple user requirements
and more complex enterprise requirements. Each of the architectures described
in the following sections has strengths and weaknesses. Each is appropriate
for some environments and inappropriate for others.

Single CA

The most basic PKI architecture is a single CA that provides all the certificates
and CRLs for a community of users. In this configuration, all users trust the
CA that issued their own certificate. By definition, new CAs cannot be added
to the PKI. Since there is only one CA, there are no CA trust relationships.
The user accepts only certificates and CRLs issued by their CA. As a result,
certification paths can be built with a single certificate and a single CRL. Since
all certificates are user certificates, path analysis will not include information
that describes or limits CA trust relationships. Certificate path construction
and analysis can’t get any easier than that.

lIEﬂ] This architecture is only really applicable to a single enterprise that does
not need to communicate with the outside world. It is included here for
completeness.

Figure 5-1 depicts a single CA — the Fox Consulting CA — which issues
certificates to the employees of the Fox Consulting company. Alice and Bob
are two of those employees. Alice trusts the Fox CA, so she can easily build
and validate Bob’s certification path.

While it’s the simplest to implement, this architecture does not scale easily
to support very large or diverse use communities. As Alice and Bob expand
their set of secure applications, they may need to communicate with Carol at
Hawk Data. The Fox CA only offers services to Fox Consulting employees,

58

Part Il = PKI Basics

Fox Consulting CA

CA X issued
Alice Bob a certificate

to User.

Figure 5-1 A PKI with a single CA

so Carol must get her certificate from another CA. Alice and Bob need an
architecture that incorporates additional CAs to communicate with Carol.

The single CA PKI presents a single point of failure. Compromise of the CA
invalidates the trust point information and all certificates that have been issued
in this PKI. Every user in the PKI must be informed about the compromise
immediately, or they may establish security based on unreliable information.
To reestablish the CA, all certificates must be reissued and the new trust point
information must be distributed to other users.

Trust Lists

The trust list is the most straightforward way to handle more than a single
CA, as described previously. In this architecture, more than one CA provides
PKI services, but there are no trust relationships between CAs. In this model,
Alice maintains a list of CAs that she trusts. She trusts valid certificates issued
by any of them. New CAs can be added to the PKI by modifying the trust
list. As with a single CA, there are no trust relationships. The users accept
only certificates and CRLs issued by CAs in their trust list. As a result, one
certificate and one CRL are all that is needed for any user. However, this is
complicated slightly by the increase in the number of trust points. There are
no CA certificates, so complex certificate extensions do not appear. Certificate
path construction and analysis are very easy.

In Figure 5-2, Carol has obtained certificates for Hawk Data Company CA.
There is no trust relationship between the Fox CA and the Hawk CA. Alice
wants to communicate with Carol securely, but there is no certificate path
beginning with Fox CA (whom Alice trusts most) that ends with Carol’s
certificate. Alice needs to add a new CA to her trust list. Once Hawk CA is
added to her trust list, Alice can verify Carol’s certificate.

The primary advantage of this architecture is simplicity, because there are
no certification paths, just single certificates. In addition, the mechanism of
adding a new CA to the PKI is very straightforward; Alice simply adds one
more CA to her list of trusted CAs.

Chapter 5 = Understanding Public Key Infrastructure

59

Legend
Alice's CAX

Tru;t))l(_ist | Mice | | Bob | beory
Hawk @ <> CAXi?sued
rtificat
| Carol | Doug | ?ocﬁselzrl(?.e

Figure 5-2 Supporting multiple CAs through a trust list

There are important disadvantages, however. Alice added the new CA
to her trust list out of expediency because she wanted to communicate with
Carol. However, Alice really should have investigated the Hawk CA before she
added it to her trust list. In addition, Alice should maintain critical information
about every CA that she trusts. As this number grows, it will be very difficult
for her to keep this information up to date.

CA compromise is very difficult to handle with trust lists. If the Hawk CA
private key is compromised, then it will probably notify all its users immedi-
ately. However, the Hawk CA does not have a direct relationship with Alice;
the Hawk CA probably does not even know that it is a member of Alice’s trust
list. Alice will continue to trust certificates issued by the compromised CA.

Hierarchical PKI

The traditional PKI architecture is hierarchical PKI. In this architecture,
multiple CAs provide PKI services, and the CAs are related through superior-
subordinate relationships. In this architecture, all users trust the same central
root CA. With the exception of the root CA, all the CAs have a single superior
CA. CAs may have subordinate CAs, issue certificates to users, or both. Each
CA trust relationship is represented by a single certificate. The issuer is the
superior CA, the subject is the subordinate.

To add a new CA to the PKI, one of the existing CAs issues a certificate to
the new CA. The new CA is grafted directly under the CA of the existing PKI,
and the new CA becomes the subordinate of the issuing CA. Two hierarchical
PKIs may be merged in the same fashion.

Certification paths are easy to develop in a hierarchy because every CA has
a single superior CA. There is a simple, obvious, and deterministic path from a
user’s certificate back to the single trust point at the root. The certification paths
are relatively short. The longest path is equal to the depth of the tree: a CA
certificate for each subordinate CA, plus the user’s certificate. Superior CAs
may impose restrictions upon the subordinate’s actions. These restrictions

60

Part Il = PKI Basics

could be maintained through procedural mechanisms or imposed through
the certificates themselves. In the last case, the CA certificate will contain
additional information to describe these restrictions. (The types of restrictions
are discussed later in this chapter.)

In Figure 5-3, the R&D, Legal, and Ops CAs have joined a small hierarchical
PKI. The root CA is the HQ CA. Alice sets her trust point to HQ, even though
she obtained her certificate from the R&D CA. Alice can easily construct
Carol’s certification path, which contains a single certificate. The path contains
more certificates, and the CA certificates contain additional information that
must be processed.

Hierarchical PKIs handle the compromise of a single CA within the infras-
tructure easily, as long as it is not the root CA. If a CA is compromised, its
superior CA simply revokes its certificate. The superior issues a new certifi-
cate to the CA, containing the new public key and bringing it back into the
hierarchy. Once the CA has been reestablished, it issues new certificates to all
of its users. In the interim, transactions between any two users outside the
compromised part of the PKI can proceed. Of course, users in the compromised
part of the hierarchy lose all services.

On the other hand, the compromise of a root CA has as catastrophic an
impact as in the single CA architecture. It is critical to inform all the users in
the hierarchical PKI that the root CA has been compromised. Until the root
CA is reestablished, issues new certificates to its subordinates, and distributes
the new trust point information, users cannot use the PKI to establish secure
communications. There is one advantage in comparison to a PKI consisting
of a single CA: The root CA will have to reissue a much smaller number of
certificates. In addition, the root CA can operate offline, significantly reducing
the likelihood of key compromise.

o>
T RGP RS

[mice | [Bob | | Carol | | Bob |
Legend
Cx D omx aaxis YD caxissued
superior to a certificate

User Z CAY. to User Y.

Figure 5-3 A hierarchical PKI for Alice, Bob, Carol, and Doug

Chapter 5 = Understanding Public Key Infrastructure

61

Mesh PKI

The mesh PKI architecture is the primary alternative to a hierarchy. This archi-
tecture is also referred to as the network PKI or a web of trust. In this
architecture, multiple CAs provide PKI services, and the CAs are related
through peer-to-peer relationships. Each user trusts a single CA; however, the
trust point is not the same for all users.

In general, users will trust the CA that issued their certificate. CAs issue
certificates to each other; a pair of certificate describes their bidirectional trust
relationship.

A new CA can easily be added to a mesh PKI. The new CA issues a certificate
to at least one CA thatis already a member of the mesh, and itissues a certificate
to the new CA. However, path construction is particularly difficult in a mesh
PKI. In a hierarchy, building a certification path from a user’s certificate to
a point of trust is deterministic. In a mesh, this process is nondeterministic.
Path discovery is more difficult since there are often multiple choices. Some of
the choices lead to a valid path, but others result in useless dead ends. Even
worse, it is possible in a mesh PKI to construct an endless loop of certificates.
The length of a path may be longer than in a typical hierarchical PKI. In the
worst case, the path length can approach the number of CAs in the PKI.

Certificates issued in a mesh PKI are also more complex. Since the CAs have
peer-to-peer relationships, they cannot impose conditions governing the types
of certificates other CAs can issue. If a CA wishes to limit the trust, it must
specify these limitations as certificate extensions in the certificates it issues to
all of its peers.

Mesh PKIs are very resilient since there are multiple trust points. Com-
promise of a single CA cannot bring down the entire PKI. CAs that issued
certificates to the compromised CA simply revoke them, thereby removing
the compromised CA from the PKI. Users associated with other CAs will still
have a valid trust point, and can communicate securely with the remaining
users in their PKI. In the best case, the PKI shrinks by a single CA and its
associated user community. At worst, the PKI fragments into several smaller
PKIs. Recovery from a compromise is simpler in a mesh CA than in a hierarchy
PKI, primarily because it affects fewer users.

In Figure 5-4, the CAs are incorporated into a mesh PKI. Alice and Bob trust
the R&D CA, Carol trusts the Legal CA, and Doug trusts the Ops CA. It is
more difficult for Alice to find and analyze a certification path for Carl than in
a hierarchical PKI. The certification path may contain two or three certificates.
It contains two if the path from the R&D CA directly to the Legal CA is used.
However, it contains three certificates if the path through the Ops CA to the
Legal CA is used. While attempting to find one of these valid paths, Alice may
also follow other paths that result in dead-ends. For example, Alice might try a
path that includes the HQ CA. The certificates will also be more complicated to

62

Part Il = PKI Basics

process, since all limitations in trust relationships are expressed as additional
information in the certificate.

Cross-Certified PKIs

If two user communities have an ongoing requirement for secure communi-
cations, their PKIs may wish to establish peer-to-peer trust relationships. In
Figure 5-5, Alice’s CA has cross-certified with the Hawk hierarchical PKI's
root CA, and R&D CA in the Dove, Inc. mesh. In addition, these CAs have
cross-certified with each other.

Each user can maintain a single trust point. Alice, Bob, and Doug trust
the CA that issued their certificates, and Carol trusts her root CA. While the
cross-community relationships are peer-to-peer, it is either peer-to-peer or
hierarchical relationships that relate CAs within the PKI.

Unlike with the trust list, Alice cannot add a new PKI on her own. CA
administrators must renew the policies and practices of another CA before
they cross-certify. On the other hand, the CA administrators are probably
better qualified than Alice to determine if a CA or PKI is trustworthy. Once
the CAs are cross-certified, Bob can also validate user certificates in the other
PKI. Therefore, one administrator action enables secure communications for
the whole user population. With the trust list architecture, both Bob and Alice
need to update their own trust lists.

Certification paths in this environment may be quite complex. Since
the resulting PKI includes both mesh and hierarchical sections, the path
building algorithms must combine both hierarchical and mesh certification
path-building techniques to perform efficiently in this architecture. Certifi-
cates may be quite complex, and finding a valid path may be difficult. On the
plus side, Alice is building paths from a single trust point.

CA X and
@ CAX CA X issued CAY have a
a certificate {)eert-tO-peer
to User. rus
- UserZ relationship.

Figure 5-4 A mesh PKI for Alice, Bob, Carol, and Doug

Chapter 5 = Understanding Public Key Infrastructure

63

Dove, Inc.

————ee e — o

—_—_——— e e e —

Figure 5-5 Three cross-certified PKls

Many of Alice’s problems with CA compromise are resolved by this archi-
tecture. Alice is maintaining a single trust point, and she has a direct trust
relationship with that CA. She can expect immediate notification if her own
CA is compromised. Alice’s CA has a direct relationship with the three
cross-certified CAs. If either is compromised, Alice’s CA will be notified and
will revoke the appropriate certificate. In addition, if CAs within the other
PKIs are compromised, they will be handled as discussed earlier.

The architecture is an appropriate solution when a small number of PKIs
must establish trust relationships. In Figure 5-5, three peer-to-peer relation-
ships and six CA certificates were required to establish these relationships.
However, this number grows rapidly as the number of PKIs increases.
Cross-certifying n PKIs requires (n*> — n)/2. For example, if there are 8
PKIs, then cross-certifying each pair requires 28 peer-to-peer relationships
and 56 CA certificates. Since establishing these relationships requires a
time-consuming review of policies and practices, this architecture rapidly
becomes an intractable problem.

64

Part Il = PKI Basics

Bridge CAs

The bridge CA architecture was designed to address the shortcomings of the
trust list and cross-certified PKI architectures. The user cannot be expected to
maintain current information on a large number of trust points. One the other
hand, CA administrators need a mechanism for establishing trust relationships
with other PKIs in a more efficient fashion.

The bridge CA meets these requirements, acting as sort of arbitrator. Unlike
a mesh CA, the bridge CA does not issue certificate directly to users. Unlike
a root CA in a hierarchy, the bridge CA does not issue certificates directly to
users. All PKI users consider the bridge CA as an intermediary. The bridge CA
establishes peer-to-peer relationships with different PKIs. These relationships
can be combined to form a bridge of trust that connects the users from the
different PKIs.

If the trust domain is implemented as a hierarchical PKI, the bridge CA will
establish a relationship with the root CA. If the domain is implemented as a
mesh PKI, the bridge CA will establish a relationship with only one of its CAs.
In either case, the CA that enters into a trust relationship with the bridge CA
is termed the principle CA.

In Figure 5-6, the bridge CA has established relationships with three PKIs.
The first is Bob and Alice’s CA, the second is Carol’s hierarchical PKI, and
the third is Doug’s mesh PKI. None of the users trusts the bridge CA directly.
Alice and Bob trust the CA that issued their certificates, they trust the bridge
CA because the Fox CA issued a certificate to it. Carol’s trust point is the root
CA of her hierarchy; she trusts the bridge CA because the root CA issued a
certificate to it. Doug trusts the CA in the mesh that issued his certificate; he
trusts the bridge CA because there is a valid certification path from the CA
that issued him a certificate to the bridge CA. Alice (or Bob) can use the chain
of valid certificates, which includes certificates to and from the bridge CA, to
establish relationships with Carol and Doug.

The trust relationship between the bridge CA and the principle CAs are all
peer-to-peer. The trust relationships within the PKIs it connects are determined
by their own architecture. Within the hierarchical PKI, trust relationships are
superior-subordinate. Within the mesh PKI, the trust relationships are peer to
peer.

It is easy to add new CAs, or entire PKIs, to a bridge-connected PKI. The
change is transparent to the users, since no change in trust points is required.
As the PKI grows, the number of trust relationships that must be established is
far more manageable. In Figure 5-6, three trust relationships were established
for three PKIs. This is the same as the cross-certified example shown in
Figure 5-5. However, a bridge CA with PKIs will require 8 trust relationships,
rather than the 28 required by the cross-certified example.

Chapter 5 = Understanding Public Key Infrastructure

65

—— o —

— e

|

|

|

|

|

l

| Bridge CA

:| Mice | | Bob | 1 T~ NI 1
|

|

Figure 5-6 Connecting three PKIs with a bridge CA

The bridge CA does not resolve the certification path construction or
validation problem. Path construction is just as complex as in a mesh PKI,
since some of the PKIs are themselves a mesh. Certificates issued to and
by the bridge may be very complex to ensure that the trust relationship is
accurately conveyed. This increases the complexity of the path validation
software.

In a bridge CA architecture, the PKI can easily recover from compromise.
If the principle CA from a PKI is compromised, the bridge CA revokes its
certificate. This invalidates the trust relationship between that PKI and any
other PKIs. The rest of the relationships are not affected. If the bridge CA itself
is compromised, it notifies the principle CAs. Since none of the users has the
bridge CA as a trust point, the principle CAs simply revoke the certificates
they issued to the bridge CA. For completeness, the bridge CA can issue a CRL
revoking the certificates it has issued as well. The result is a set of separate
PKIs, so users from different PKIs will lose the ability to establish secure
services. On the other hand, it is straightforward to reestablish the PKI after
rebuilding the bridge CA.

66

Part Il = PKI Basics

X.509 Public Key Certificates

X.509 Certificates (see Figure 5-7) may be considered as three nested com-
ponents. The first component is the tamper-evident envelope, provided by the
digital signature. Inside the envelope, we find the basic certificate content, which
includes the information that must be present in every certificate. The basic
certificate content may include an optional set of certificate extensions. The
vast majority of certificates generated today will include certificate extensions.

Tamper-Evident Envelope

At the outermost level, certificates have just three fields: the to-be-signed
certificate, the signature algorithm identifier, and the signature value. Consider
the tamper-evident envelope as a transparent plastic envelope around the
certificate content. The message is easily read, but it cannot be modified
without tearing the envelope. The fields are defined as follows:

tbsCertificate. This field contains the signed certificate, and its struc-
ture is discussed in the next section.

signatureAlgorithm. This field contains an AlgorithmIdentifier that
identifies an algorithm with an object identifier (OID) and optional

+ version «—
serialNumber <« 48
signature <«— ECDSA with SHA-256
issuer <«+— (=US; 0=Hawk; CN=CA1
validity <«— 0802141200007 to 080214120000Z
subject <«+— (=US; 0=Hawk; OU=R&D; CN=Alice

subjectPublicKeyInfo <4— RSA,30818902818100a7 ... 01

» Tamper Evident Envelope

|¢—— Certificate Contents

» issuerUniqueID <— (Omitted)
S

S subjectUniquelID <— (Omitted)
f extensions

signatureAlgorithm <4— ECDSA with SHA-256

signaturevalue 4+—302c0258ae187cf216...8d 48

v

Figure 5-7 X.509 certificate structure

Chapter 5 » Understanding Public Key Infrastructure 67

parameters. Here, only the algorithm identifier is included, and it iden-
tifies the digital signature algorithm used by the CA to sign the certifi-
cate. The optional parameters field is not used to validate the signature
because this field is not inside the tamper-evident envelope. The informa-
tion in this field is repeated in the signature field within the to-be-signed
certificate, which is protected.

signaturevalue. This field contains the digital signature. The digital
signature is computed using the ASN.1 DER encoded to-be-signed cer-
tificate. The resulting signature value is encoded as a bit string, using
conventions defined for the specified signature algorithm.

Basic Certificate Contents

The to-be-signed certificate is the real meat of the X.509 certificate; it contains
all the basic certificate information. At a minimum, it contains six fields:
the serial number, the certificate signature algorithm identifier, the certificate
issuer name, the certificate validity period, the public key, and the subject
name. The subject is the party that controls the corresponding private key.
There are four optional fields: the version number, two unique identifiers, and
the extensions. These optional fields appear only in version 2 and version 3
certificates. The fields are described next:

version. The optional version field describes the syntax of the certificate.
When the version field is omitted, the certificate is encoded in the orig-
inal, version 1 syntax. Version 1 certificates do not include the unique
identifiers or extensions. When the certificate includes unique identifiers
but not extensions, the version field indicates version 2. When the certifi-
cate includes extensions, as almost all modern certificates do, the version
field indicates version 3.

serialNumber. The serial number is an integer assigned by the certifi-
cate issuer to each certificate. The serial number must be unique for
each certificate generated by a particular issuer. The combination of the
issuer name and serial number uniquely identifies any certificate.

signature. The signature field is an algorithm identifier. It is a copy of the
signature algorithm contained in the signature algorithm field; however,
the digital signature protects this value.

issuer. The issuer field contains the X.500 distinguished name of the cer-
tificate issuer. The Internet Certificate and CRL profile [RFC3280] requires
the issuer field to contain a nonempty name. The distinguished name can
include any attributes; however, for interoperability, the issuer should be
limited to the naming attributes described previously.

validity. The validity field has two components, indicating the dates on
which the certificate becomes valid (notBefore) and the date on which

68 Part Il = PKI Basics

the certificate expires (notafter). CAs must encode these fields as UTC
time for dates through the year 2049, and generalized time for dates in
the year 2050 and beyond.

subject. The subject field contains the distinguished name of the holder
of the private key corresponding to the public key in this certificate.
The subject may be a CA or an end entity. End entities can be human
users, hardware devices, or anything else that might make use of the pri-
vate key. The distinguished name can include any attributes; however,
for interoperability, the subject name should be limited to the naming
attributes described earlier. In the development of a certification path, the
subject names in CA certificates must match the issuer name in the certifi-
cate that follows.

subjectPublicKeyInfo. The subjectPublicKeyInfo field contains the sub-
ject’s public key and algorithm identifier. Unlike the signature or sig-
nature algorithm fields, which also make use of algorithm identifiers,
the parameters within this field convey important information about the
public key. For example, the parameters field will contain the domain
parameters (p, q, and g) associated with DSA or Diffie-Hellman public
keys. If the parameters are omitted, then the subject and issuer have the
same public key parameters. Parameter inheritance simply reduces the size
of certificates by not repeating the same values over and over again.

issuerUniqueldentifier and subjectUniqueldentifier. These fields contain
identifiers, and they only appear in version 2 or version 3 certificates. The
subject and issuer unique identifiers are intended to handle the reuse of
subject names or issuer names over time. However, this mechanism has
proven to be an unsatisfactory solution. The Internet Certificate and CRL
profile [RFC3280] recommends omission of these fields. Even so, imple-
mentations must parse these fields or reject certificates containing them.

extensions. This optional field only appears in version 3 certificates. If
present, this field contains one or more certificate extensions. Each exten-
sion includes an extension identifier, a criticality flag, and an extension
value. Common certificate extensions are described in the next section.

Certificate Extensions

Early PKI deployments clearly demonstrate that the basic certificate content
described earlier is insufficient. Certificate users are unable to determine
important information about the issuer, the subject, or the public key itself.
The missing information can be divided into five groups. Each group is
characterized by the questions that it answers:

Subject type. Is Bob a CA or an end entity?

Chapter 5 = Understanding Public Key Infrastructure

69

Names and identity information. Are alice@fox.com and c=US; o=Fox
Consulting; cn=Alice Adams the same person?

Key attributes. Can this public key be used for key transport? Can it also
be used to verify a digital signature?

Policy information. Can I trust Alice’s certificate? Is it appropriate for
large value transactions?

Additional information. Where can I find certificates issued to the Fox
Consulting CA? Where can I get CRLs issued by the Fox Consulting CA?

Certificate extensions allow the CA to include information not supported by
the basic certificate content. Any organization may define a private extension to
meet its particular business requirements. However, most requirements can be
satisfied using standard extensions. Standard extensions are widely supported
by commercial products. Standard extensions offer improved interoperability,
and they are more cost-effective than private extensions.

Extensions have three components: extension identifier, a criticality flag,
and extension value. The extension identifier is an OID, and it indicates the
format and semantics of the extension value. The criticality flag indicates the
importance of the extension. When the criticality flag is set, the information
is essential to certificate use. Therefore, if an unrecognized critical extension
is encountered, the certificate must not be used. Alternatively, unrecognized
noncritical extensions may be ignored.

ITU-T and IETF have defined several extensions for X.509 v3 certificates.
They are specified in [X50997], [X50900], [RFC3280], and [RFC3851].

Subject Type Extensions

The inability to determine whether a certificate belongs to a CA or an end
entity makes certificate path construction more difficult. When Alice obtains
certificates for both Bob and the Hawk Manufacturing CA, she cannot deter-
mine from the basic certificate content that Bob is not a CA. Therefore, she
may try to use the certificate to construct a certification path. Eventually, she
will discover that no certificates chain to Bob’s distinguished name. The basic
constraints extension resolves this issue.

Basic Constraints. The basic constraints extension indicates whether
the subject of the certificate is an end entity or a CA. It also allows a
CA to indicate whether subordinate CAs are also allowed to have
subordinate CAs.

Name Extensions

In X.509 v1 certificates and X.509 v2 certificates, distinguished names were
the only name form available. If a ubiquitous X.500 Directory had quickly

70

Part Il = PKI Basics

emerged, this would be the only name form needed. Every system and user
would have an entry in the X.500 Directory, and this name would be a
unique identity. However, the global X.500 Directory did not emerge (and
will probably never emerge) as a unified system. Further, Internet expansion
shows no signs of slowing, and X.500 Directory names are not the preferred
name form on the Internet.

Issuer Alterative Name. The issuer alternative name extension provides
a list of general names. Generally, the names of CAs are not important to
certificate users. The issuer information that is important to certificate users
is addressed later in this chapter. However, this extension can advertise the
electronic mail address of the CA.

Subject Alternative Name. The subject alternative name extension is
extremely useful for end entity certificates. This is the place where electronic
mail addresses are placed.

Name Constraints. The name constraints extension allows CA to constrain
the names allowed in a certificate. The name constraints extension offers two
constraint types: permitted subtrees and excluded subtrees. Permitted subtrees
specify acceptable names, and excluded subtrees specify unacceptable names.
Permitted subtrees could limit the Hawk Data to distinguished names that
begin with C=US, o=Hawk Data, and electronic mail addresses that end with
hawk.com. Excluded subtrees could prohibit Hawk Data’s use of distinguished
names that begin with C=US, o=Fox Consulting, and electronic mail addresses
that end with fox.com. A name is acceptable only if it falls within one of the
permitted subtrees and is not within any of the excluded subtrees.

Key Attributes

X.509 v1 certificates and X.509 v2 certificates specify the public key algorithm
and parameters, but they do not offer any other key attributes. Most CAs
and end entities have more than one public/private key pair, and they use
different key pairs to implement different security services. To differentiate the
public keys in different certificates, CAs employ four standard certificate
extensions: key usage, extended key usage, authority key identifier, and the
subject key identifier:

Key Usage. The key usage extension identifies the security services that
a public key might provide. This extension offers nine security services,
with the CA selecting the appropriate combination.

Extended Key Usage. The extended key usage extension indicates spe-
cific applications for public keys. The extended key usage extension is
composed of a sequence of OIDs, where each OID identifies a particular
application context in which the public key may be used. For example,
the id-kp-serverAuth OID (1.3.6.1.5.5.7.3.1) indicates that the public key
may be used by a TLS Web server.

Chapter 5 » Understanding Public Key Infrastructure

71

Authority Key Identifier. The authority key identifier extension provides
a means for identifying certificates signed by a particular CA private key.
This extension aids certification path construction. If the CA has several
certificate signing keys, this extension identifies the correct one to verify
a particular certificate signature. Without such a pointer, each public key
must be tried in succession until the signature is verified or until all pos-
sibilities are exhausted!

Subject Key Identifier. The subject key identifier extension provides a
means for identifying certificates containing a particular public key. The
subject key identifier contains a string that names the key. If the subject
has multiple certificates — especially if multiple CAs issue them — the
subject key identifier provides a means to quickly identify the certificates
containing the public key of interest.

Policy

In early PKI implementations using X.509 v1 certificates and X.509 v2 certifi-
cates, each CA issued certificates under one and only one policy. The policy
was implicit. Implicit policy information proved unacceptable. No single pol-
icy fit all needs. Further, it was, and still remains, inefficient to deploy a
separate CA for each policy. It was difficult for certificate users to track which
policy was used by each CA. Tracking issuer distinguished directory names to
policies and policies to application requirements was too complicated; it was
not implemented.

Two standard policy extensions fulfill these needs: the certificate policies
extension and the policy mapping extension. The certificate policies extension
indicates the policy or policies under which a certificate was issued. In a
CA certificate, this indicates the policies under which the CA operates. In an
end entity certificate, this indicates the policy (or policies) under which the
certificate was issued. An object identifier, usually referred to as a policy OID,
identifies the certificate policy. The policy mapping extension translates policy
OIDs from one PKI to the equivalent policy OIDs in another PKI.

Certificate Policies. The certificate policies extension indicates the certifi-
cate policies under which the certificate was issued. The CA asserts that
the procedures used to issue the certificate satisfy the listed policies. Cer-
tificate users must know which policy or policies are acceptable for their
application. In end entity certificates, this extension describes the policies
satisfied. In CA certificates, this extension defines the set of policies that
can be included in subordinate certificates.

Policy Mapping. The policy mapping extension is used in CA certificates
to translate policy information between two policy domains. Generally,
certificate users recognize only a handful of policy OIDs. Normally, these

72

Part Il = PKI Basics

are the policy OIDs that appear in certificates issued by their own CA.
When two CAs operate under different policies, their users will not be
able to use the policy information. A policy mapping extension provides
the translation needed to make the remote policy information useful. Pol-
icy mapping translates remote policy OIDs into local policy OIDs that the
certificate user already knows.

Policy Constraints. The policy constraints extension is used to impose
limitations on valid certification paths. This extension can constrain path
validation in two ways. First, it can be used to prohibit policy mapping.
Second, it can require that each certificate in a path contain an acceptable
policy OID. Either restriction can be imposed immediately, or the restric-
tion can begin after the certification path reaches a specified length.

Additional Information

Several standard extensions provide certificate users with pointers to addi-
tional information, including issuer certificates, CRLs, delta CRLs, and online
certificate status servers. Further, attributes associated with the certificate sub-
ject may be included directly in the certificate. The CRL distribution points
extension, freshest CRL extension, authority information access extension, sub-
ject information access extension, and the subject directory attribute extension
provide this additional information.

CRL Distribution Points. The CRL distribution points extension tells cer-
tificate users where and how to obtain CRLs needed to determine if the
certificate is revoked.

Freshest CRL. The freshest CRL extension could have been named the
delta CRL distribution point extension. It identifies how delta CRL infor-
mation is obtained. The same syntax is used for this extension and for the
CRL distribution points” extension described in the previous section. The
same conventions apply to both extensions.

Authority Information Access. The authority information access exten-
sion tells how to access CA information and services. This information
and services may include CA policy data and online certificate status ser-
vices. However, the location of CRLs is not specified in this extension;
that information is provided by the CRL distribution points” extension.

Subject Information Access. The subject information access extension
tells more information about the subject. It has the same syntax as the
authority information access extension.

S/MIME Capabilities. The S/MIME capabilities extension indicates the
cryptographic capabilities of the sender of a signed S/MIME message.
Recipients can use this information to select the appropriate crypto-
graphic algorithms in future S/MIME secured exchanges.

Chapter 5 = Understanding Public Key Infrastructure

73

X.509 Certificate Revocation Lists

Figure 5-8 illustrates the structure of the X.509 v2 CRL. The tbs prefix means
to be signed. Therefore, the to-be-signed certificate list is the portion of the
CRL that is ASN.1 DER encoded and digitally signed by the CRL issuer.

The top-level structure of the CRL parallels that described for certificates. The
top-level structure of the CRL provides a tamper-evident envelope for the CRL
content and is composed of three fields: tbscertList, signatureAlgorithm,
and signaturevalue. These fields perform the same function as the fields in
the certificate.

Signed Certificate List

The to-be-signed certificate list contains the signature algorithm identifier, the
CRL issuer, and the CRL issue date. It should always contain the date by
which a new CRL will be issued, even though the syntax specifies the next

version +“— V2
signature <4— ECDSA with SHA-256
issuer <+— (=US; O=Hawk; CN=CA1
thisUpdate <+— 0802141200002
nextUpdate <+— 0802211200002

(/——— revokedCertificates

crlExtensions

signatureAlgorithm <— ECDSA with SHA-256

signaturevalue 4+— 302c02149¢d86bc17d..9% b2
\ SEQUENCE OF

userCertificate <+— 110592

revocationDate <+— (071226183000Z

crlEntryExtensions

Figure 5-8 CRL structure

74

Part Il = PKI Basics

update field as optional. Failure to include the next update field significantly
complicates validation of a certificate. When there are no revoked certificates,
the revoked certificates portion of the structure is absent. When one or more
certificates are revoked, each entry on the revoked certificate list is defined by
a structure containing the user certificate serial number, revocation date, and
optional CRL entry extensions.

The to-be-signed certificate list may also contain CRL extensions. CRL entry
extensions provide information about a single revoked certificate, while CRL
extensions provide information about the whole list.

The fields within the signed portion of the CRL are described next:

version. The optional version field describes the syntax of the CRL.
When extensions are used, which is usually the case, the field speci-
ties version two (v2). CRL issuers may set the version field to v2 even
if extensions are absent, so very few version one (v1) CRLs are actually in
use today.

signature. The signature field contains the algorithm identifier for the
digital signature algorithm used by the CRL issuer to sign the to-be-
signed certificate list. This field must contain the same algorithm identi-
fier as the signature algorithm field in the top-level structure of the CRL.
The two algorithm identifiers are redundant; however, the digital signa-
ture covers one and not the other.

issuer. The issuer field contains the X.500 distinguished name of the
CRL issuer. The Internet Certificate and CRL profile [RFC3280] requires
the issuer field to contain a nonempty name. This is generally the identity
of the CA; however, some CAs may choose to delegate some or all CRL
functions to another authority by including a CRL Distribution Point
extension in certificates. Such CRLs are called Indirect CRLs since the
certificate issuer and the CRL issuer are different authorities. Additional
names, or aliases, for the CRL issuer may also appear in the issuer alter-
native name extension.

thisupdate. The thisUpdate field indicates the issue date of this CRL.
There are two forms of date supported: UTC time and generalized time.
CRL issuers must encode the this-update field as UTC time for dates
through the year 2049, and CRL issuers must encode the this-update
field as generalized time for dates in the year 2050 and beyond. This is
the same rule as described earlier for the validity period in the certificate.

nextUpdate. The nextUpdate field indicates the date by which the next
CRL will be issued. The same two date forms are supported: UTC time
and generalized time. The next CRL could be issued before the indicated
date, but it must not be issued any later than the indicated date. As stated
previously, CRL issuers ought to include this field, even though it is

Chapter 5 = Understanding Public Key Infrastructure 75

optional. CRL issuers should include a nextUpdate time equal to or later
than all previous CRLs issued for the same distribution point. If this sim-
ple rule is not followed, then clients trying to determine when to fetch an
updated CRL from the repository may not check when an updated one is
available.

revokedCertificates. The revokedCertificates structure lists the
revoked certificates. The revokedcertificates structure is optional but
should only be absent when none of the unexpired certificates has been
revoked. When there are no unexpired revoked certificates, the revoked-
Certificates structure is absent; otherwise, the revokedcertificates
structure contains one entry for each revoked certificate. The structure
contains the certificate serial numbers, time of revocation, and optional
CRL entry extensions.

userCertificate. The usercertificate field within the revoked-
Certificate structure specifies the serial number of the revoked cer-
tificate. Certificates are uniquely identified by the combination of their
certificate issuer name and their certificate serial number. Generally,
the certificate issuer and the CRL issuer are the same authority, so the
CRL structure is optimized for this case. That is, the issuer name is car-
ried once in the issuer field, and it applies to the entire list of serial num-
bers. When the CRL issuer and the certificate issuer are different, the
certificate issuer must be paired with each serial number. The certificate
issuer CRL entry extension provides the certificate issuer name. This CRL
entry extension, as well as the others, is described later in the chapter.

revocationDate. The revocationbate field specifies the date on which
the revocation occurred. The same two date forms are supported: UTC
time and generalized time.

crlEntryExtensions. The crlEntryExtensions field is used to pl‘OVide
additional information about CRL entries. This field may only appear
if the version is v2. The certificate issuer described previously is one
example. This CRL entry extension and others are discussed later.

crlExtensions. The crlExtensions field is used to pl‘OVide additional
information about the whole CRL. Again, this field may only appear if
the version is v2. CRL extensions are discussed in the next section.

CRL Extensions

ITU-T and ANSI X9 have defined several CRL extensions for X.509 v2 CRLs,
which are specified in [X50997] and [X955]. Each extension in a CRL may
be designated as critical or noncritical. A CRL validation fails if an unrec-
ognized critical extension is encountered. However, unrecognized noncritical

76

Part Il = PKI Basics

extensions may be ignored. The X.509 v2 CRL format allows communities to
define private extensions to carry information unique to those communities.
Communities are encouraged to define noncritical private extensions so that
their CRLs can be readily validated by all implementations.

The following CRL extensions are the ones that should be properly handled
by all implementations:

Authority Key Identifier. The authority key identifier extension pro-
vides a means of identifying the public key needed to validate the sig-
nature on the CRL. The identification can be based on either the key
identifier (the subject key identifier extension from the CRL issuer’s
certificate) or on the issuer name and serial number (again, from the
CRL issuer’s certificate). This extension is especially useful where a CRL
issuer has more than one signing key. In this case, the CRL issuer should
have more than one certificate, one corresponding to each signing key.

Issuer Alternative Name. The issuer alternative names extension allows
additional name forms to be associated with the issuer of the CRL.
Defined options include an RFC 822 name (an electronic mail address), a
DNS name (an Internet host name), an IP address, and a URI (usually a
WWW URL). Multiple instances of a name and multiple name forms may
be included.

CRL Number. The CRL number extension conveys a monotonically
increasing sequence number for each CRL issued by a CRL issuer. This
extension allows users to easily determine when a particular CRL super-
sedes another CRL from the same CRL issuer.

Delta CRL Indicator. The delta CRL indicator extension identifies a CRL
as a delta CRL. A delta CRL contains updates to revocation information
previously issued and distributed in a complete CRL. This earlier CRL
is called the base CRL. In some environments, using delta CRLs can sig-
nificantly reduce network load and processing time. A delta CRL will
generally be smaller than the base CRL that it updates, so applications
that obtain a delta CRL consume less network bandwidth than appli-
cations that obtain the corresponding complete CRL. Applications that
store revocation information in a format other than the CRL structure
can add new revocation information to such a local database without
reprocessing the older information that is already in the database.

Issuing Distribution Point. The issuing distribution point extension
identifies the CRL distribution point for a particular CRL, and it indicates
whether the CRL covers revocation for end entity certificates only, CA
certificates only, or a limited set of reason codes.

Freshest CRL. The freshest CRL extension identifies how to obtain delta
CRL information for the base CRL that contains the extension. Given the
base CRL, the delta CRL can be fetched and processed. This extension has

Chapter 5 » Understanding Public Key Infrastructure

77

exactly the same syntax as the CRL distribution point certificate exten-
sion and the freshest CRL certificate extension. All of the conventions dis-
cussed in the previous chapter apply.

CRL Entry Extensions

ITU-T and ANSI X9 have defined several CRL entry extensions for X.509 v2
CRLs. They are specified in [X50997] and [X955], and they associate additional
attributes with CRL entries. Each entry extension in a CRL entry may be
designated as critical or noncritical. A CRL validation fails if an unrecognized
critical entry extension is encountered. However, unrecognized noncritical
entry extensions may be ignored. The X.509 v2 CRL format allows communities
to define private extensions to carry information unique to those communities.
Communities are encouraged to define noncritical private extensions so that
their CRLs can be readily validated by all implementations.

The following CRL entry extensions are the ones that should be properly
handled by all implementations.

Reason Code. The reason code entry extension identifies the reason for
certificate revocation. We strongly encourage CRL issuers to include
meaningful reason codes in CRL entries; however, the reason code entry
extension should be absent instead of using unspecified (enumerated
value of zero) as the reason code value.

Hold Instruction Code. The hold instruction code entry extension pro-
vides a registered instruction identifier that indicates the action to be
taken after encountering a certificate that has been placed on hold.

Invalidity Date. The invalidity date entry extension provides the date on
which it is known or suspected that the private key was compromised
or that the certificate otherwise became invalid. This date may be earlier
than the revocation date in the CRL entry, which is the date on which the
CRL issuer processed the revocation. When a revocation is first posted in
a CRL, the invalidity date may precede the date of issue of earlier CRLs,
but the revocation date should not precede the date of issue of earlier
CRLs. Whenever this information is available, we strongly encourage
CRL issuers to share it.

Certificate Issuer. The certificate issuer entry extension allows a CRL
to include entries from more than one certificate issuer. As stated ear-
lier, such CRLs are called indirect CRLs, and they have the indirect CRL
flag set in the issuing distribution point extension. The certificate issuer
entry extension identifies the certificate issuer associated with an entry in
an indirect CRL. If this entry extension is not present in the first entry
in an indirect CRL, the certificate issuer for that entry defaults to the
CRL issuer. On subsequent CRL entries where the entry extension is not

78

Part Il = PKI Basics

present, the certificate issuer for the entry is the same as that for the pre-
ceding entry.

PKI Components and Users

It is difficult to build a single component that can securely create and distribute
certificates and CRLs. PKIs are built from a variety of components, each
designed to perform a few tasks particularly well. This section reviews the
tasks facing an issuer, groups similar tasks, and assigns these groups to the
four basic functional components of a PKI:

m The certification authority
m The registration authority
= The repository

= The archive

So far, Alice and Bob played various user roles. At the simplest level, there
are always two distinct users in any PKI-enabled transaction. The first user has
a private key and is the subject of a certificate containing the corresponding
public key. This user is called the subscriber or certificate holder and will
participate in the transaction using the private key. The second user obtains
the certificate and uses the corresponding public key to participate in the
transaction. The second user is called the relying party or certificate user.

Infrastructure Users

In this section we introduce the two types of users supported by a PKI and
then describe their functionality. The two types of PKI users are subscribers
and relying parties. Subscribers are the subject of a certificate and hold the
corresponding private key. Relying parties use the public key in a certificate
to verify signatures, encrypt data (key transport), or perform key agreement.

In email security solutions, most entities hold both subscriber and relying
party roles. In addition, the CA and RA are generally PKI users themselves.
They generate and verify signatures and perform key agreement or key
transport between themselves and with users.

SUBSCRIBER AND RELYING PARTY AGREEMENTS

When the CA spent all that time writing a CP, he wasn't just thinking about
himself. The CP also relates to Alice and Bob as subscriber and relying party.
The CA makes Alice sign agreements about how she can legitimately use her
certificate; this is a subscriber agreement. Also, the CP tells Bob what to expect
if he chooses to rely on Alice’s certificate. In some cases, the CA will even ask
Bob to sign a Relying Party Agreement.

Chapter 5 = Understanding Public Key Infrastructure

79

Subscribers

Subscribers obtain certificates from the infrastructure and use their private
keys to implement security services. They generate digital signatures, decrypt
data (for example, they might recover symmetric keys encrypted with their
public key), and use their private key to establish symmetric keys through key
agreement.

To meet these goals, a subscriber must perform the following tasks:

m [dentify a CA to issue the certificate(s).
m Request a certificate directly from the CA or through the RA.

m [nclude the certificate in transactions as appropriate.

Subscribers may need to interact with the repository to obtain their own
certificate but do not need to regularly interact with the repository.

Replying Parties

Relying parties use the PKI to implement security services by employing the
public key in another user’s certificate. They can verify digital signatures,
encrypt data (for example, they might encrypt a symmetric key), and use
the public key in another party’s certificate to establish a symmetric key
through key agreement. Relying parties may include CAs, RAs, persons, and
computing systems such as routers and firewalls.

To implement these security services, a relying party must perform the
following:

m Jdentifying a CA as its initial trust point

m Verifying signatures on certificates and CRLs

m Obtaining certificates and CRLs from a repository

m Constructing and validating certification paths

A relying party interacts with the repositories on a day-to-day basis. Its

interactions with CAs are limited to selection of an initial trust point. Relying
parties have no interactions with RAs.

Infrastructure Components

In this section, we introduce the four components of the PKI and describe their
functionality. The functionality described for these components is present in
any PKI. However, specific implementations may divide this functionality
differently. Functions may be combined into a single component or may be
assigned to multiple components. For example, the certification authority and
registration authority are sometimes combined into a single component. This

80

Part Il = PKI Basics

does not affect what functions must be performed, just where those functions
are performed.

Certification Authorities

The certification authority (CA) is the basic building block of the PKI. The CA
is a collection of computer hardware, software, and the people who operate
it. The CA is known by two attributes: its name and its public key. The CA
performs four basic PKI functions:

m [ssuing certificates (that is, creating and signing them)
= Maintaining certificate status information and issuing CRLs

m Publishing its current (unexpired) certificates and CRLs, so that users
can obtain the information they need to implement security services

= Maintaining archives of status information about the expired or revoked
certificates that it issued

We examine each of these functions and identify responsibilities and require-
ments they impose on the CA. These requirements may be difficult to satisfy
simultaneously. To fulfill these requirements, the CA may delegate certain
functions to the other components of the infrastructure.

Issuing Certificates

A CA may issue certificates to subscribers, to other CAs, or both. When a
CA issues a certificate, it is asserting that the subject (the entity named in the
certificate) has the private key that corresponds to the public key contained
in the certificate. If the CA includes additional information in the certificate,
the CA is asserting that information corresponds to the subject as well. This
additional information might be an email address or policy information.
When the subject of the certificate is another CA, the issuer is asserting that
the certificates issued by the other CA are trustworthy.

The CA inserts its name in every certificate and CRL it generates, and signs
them with its private key. Once users establish that they trust a CA (directly
or through a certification path), they can trust certificates issued by that CA.
Users can easily identify certificates issued by that CA by comparing its name.
To ensure that the certificate is genuine, they verify the signature using the
CA’s public key.

The CA’s name is generally public information, and the CA’s signature is
the actual basis of trust for these certificates. If an attacker obtains the CA’s
private key, users will trust the certificates the attacker generates as if the CA
itself generated them. The CA must take significant measures to protect its private
key from disclosure.

Chapter 5 = Understanding Public Key Infrastructure

To protect the private key, a CA must protect the private key when in use and
in storage. To meet this requirement, the CA relies on a cryptographic module.
Cryptographic modules generate keys, protect private keys, and implement
cryptographic algorithms. They may be implemented in hardware, software,
or a combination of hardware and software. Software cryptographic modules
are programs that run on the computer system. Hardware cryptographic
modules, are peripheral devices that perform cryptographic operations on an
external processor. Hardware cryptographic modules keep the private key out
of the host system memory, so their security is less dependent on the operating
system.

Cryptographic modules may also offer varying levels of protection due
to flaws in their design or implementation. The National Institute of Stan-
dards and Technology (NIST) developed FIPS 140, “Security Requirements
for Cryptographic Modules,” which specifies four increasing security levels
[FIPS140]. NIST and the Canadian Communications Security Establishment
(CSE) accredit third-party laboratories to perform validation testing of crypto-
graphic modules against the FIPS 140 standard.

A CA’s private key is at risk when stored in host memory or on a hardware
device that has not been validated. A CA should always use a validated
hardware cryptographic module to generate its signing key and to protect it
at all times. At a minimum, the module must be validated as meeting FIPS 140
Level 2. Higher levels of assurance may be required if the CA is located on a
site where physical security is weak.

Of course, the contents of the certificates must be correct to be useful. The
information in the certificate must all correspond to the subject named in the
certificate. The CA follows specific procedures to verify the information in a certificate
before it is issued.

Verifying a user’s identity, personal information, and policy information
are quite different from protecting the CA’s private key. Performing this
verification is inherently an external matter; it relies on information provided
by parties outside the CA operational staff.

The CA can verify some of the certificate contents based on technical
mechanisms, though. In particular, the CA can use the digital signature
mechanism to ensure that a user actually has the private key corresponding to
the public key in the certificate. This verification process is often called proof
of possession. Proof of possession may be achieved by examining the request
itself, rather than examining external data.

In addition to correctness, the contents of the certificates and CRLs must
also reflect the CA’s certificate profile. A CA specifies the types of information
that it will include in certificates. Assume the Little Shop of Certificates CA
has stated that it will only issue certificates for email. It cannot issue Bob a
certificate for contract signing, even if Bob has that authority. The CA must
ensure that all certificates and CRLs it issues conform to its profile.

82

Part Il = PKI Basics

To ensure that a CA issues certificates and CRLs that conform to its profile, a
CA has to perform two actions: it must protect the integrity of the profile, and
it must verify that each and every certificate and CRL it generates conforms to
the profile.

To protect the integrity of the profile, the CA restricts access to the CA
components. These restrictions may be physical restrictions (for example,
locked and guarded rooms or keycard access), logical restrictions (such as
network firewalls), or procedural restrictions. Procedural restrictions might
require two CA staff members to modify the system or prevent system
operators from approving the audit logs.

Maintaining Status Information and Issuing CRLs

As with certificates, the contents of the CRLs must be complete and correct
to be useful. Errors of omission may cause a user to accept an untrustworthy
certificate, resulting in a loss of security. Listing trustworthy certificates or
incorrect revocation dates may cause a user to reject a trustworthy certificate,
resulting in denial of service. The CA must accurately maintain the list of certificates
that should no longer be trusted.

Protecting the certificate status information is similar to protecting the
profile. However, the decision to modify the status of a certificate relies on
information provided by parties outside the CA operational staff. This is
similar to verifying identity and other attributes of the certificate subject.

Publishing Certificates and CRLs

A CA is only useful if the certificates and CRLs that it generates are available
to the users. If Alice and Bob cannot obtain the certificates and CRLs they
need, they will not be able to implement the security services they want. Of
course, Alice and Bob can always exchange their own personal certificates and
their CRLs. However, each may need additional CA certificates to establish a
certification path. The CA must distribute its certificates and CRLs.

When a CA serves an unrestricted user community, distribution of certifi-
cates and CRLs is all about availability and performance, not security. There
is no requirement to restrict access to certificates and CRLs, since they need
not be secret. An attacker could deny service to Alice and Bob by deleting or
modifying information, but the attacker cannot make them trust the altered
information without obtaining the CA’s private key.

A CA may restrict its services to a closed community, though. In this case,
the CA may wish to deny the attacker access to the certificates. To achieve
these goals, the CA may wish to secure the distribution of certificates and
CRLs. The integrity of the certificates and CRLs is not at risk, but the CA may
not wish to disclose the information they contain. For example, if a company’s
certificates implicitly identify its R&D personnel, this information could be

Chapter 5 = Understanding Public Key Infrastructure

83

exploited by a competitor. The competitor could determine the types of R&D
by their backgrounds or simply try to hire the personnel.

Maintaining Archives

Finally, the CA needs to maintain information to identify the signer of an old
document based on an expired certificate. To support this goal, the archive
must identify the actual subject named in a certificate, establish that they
requested the certificate, and show that the certificate was valid at the time
the document was signed.” The archive must also include any information
regarding the revocation of this certificate. The CA must maintain sufficient
archival information to establish the validity of certificates after they have expired.

CAs are well suited to the generation of archive information but not to its
maintenance. A CA can create a detailed audit trail, with sufficient information
to describe why it generated a certificate or revoked it. This is a common
attribute of computer systems. However, maintaining that information for
long periods of time is not a common function.

Delegating Responsibility

The CA sometimes delegates some of its responsibilities. An entity that verifies
certificate contents (especially identifying the user) is called a registration
authority (RA). An RA may also assume some of the responsibility for certificate
revocation decisions. An entity that distributes certificates and CRLs is called
a repository. A repository may be designed to maximize performance and
availability. The entity that provides long-term secure storage for the archival
information is called an archive. An archive does not require the performance
of a repository but must be designed for secure storage.

A CAisnot restricted to a single RA, repository, or archive. In practice, a CA
is likely to have multiple RAs; different entities may be needed for different
groups of users. Repositories are often duplicated to maximize availability,
increase performance, and add redundancy. There is no requirement for
multiple archives.

Registration Authority

As stated previously, an RA is designed to verify certificate contents for
the CA. Certificate contents may reflect information presented by the entity
requesting the certificate, such as a driver’s license or recent pay stub. They
may also reflect information provided by a third party. A certificate may
reflect data from the company’s Human Resources department or a letter from
a designated company official. For example, Bob’s certificate could indicate

*This may require additional information, such as a cryptographic timestamp. Additional
information on cryptographic timestamps may be found in [TSP].

84

Part Il = PKI Basics

that he has signature authority for small contracts. The RA aggregates these
inputs and provides this information to the CA.

Like the CA, the RA is a collection of computer hardware, software, and the
person or people who operate it. Unlike a CA, a single person often operates
an RA. Each CA will maintain a list of accredited RAs; that is, a list of RAs
determined to be trustworthy. Each RA is known to the CA by a name and
a public key. By verifying the RA’s signature on a message, the CA can be
sure that an accredited RA provided the information, and it can be trusted.
Therefore, it is important that the RA provide adequate protection for its own
private key. RAs should always use hardware cryptographic modules that
have been validated against FIPS 140.

Repository

A repository distributes certificates and CRLs. A repository accepts certificates
and CRLs from one or more CAs and makes them available to parties that
need them to implement security services.

A repository is a system, and is known by its address and access protocol.
It provides certificates and CRLs upon request. Requests could be based on
the name of a user or CA or other information. Repositories are not trusted
entities; the user accepts the certificates and CRLs because the CA signed them.
The source of the information does not affect its trustworthiness. Since the
data itself establishes its integrity, a repository may be designed to maximize
availability and performance.

Of course, repositories need to restrict the set of users who can update the
information. If an attacker replaces the correct certificates with garbage, or
simply inserts an expired CRL, he or she can achieve a denial of service (DoS)
attack. Users of the PKI would not be fooled into accepting the out-of-date
information but may be denied the security services they need.

Archive

An archive accepts the responsibility for long-term storage of archival infor-
mation on behalf of the CA. An archive asserts that the information was good
at the time it was received and has not been modified while in the archive.
The information provided by the CA to the repository must be sufficient to
determine if a certificate was actually issued by the CA as specified in the
certificate and was valid at that time. The archive protects that information
through technical mechanisms and appropriate procedures while in its care.
If a dispute arises at a later date, the information can be used to verify that
the private key associated with the certificate was used to sign a document.
This permits the verification of signatures on old documents (such as wills) at
a later date.

E

I

Protecting Email
Message Contents

While email has been around since the 1960s, it wasn’t until the late 1980s
that email security protocols appeared. Of course, instead of one mechanism,
numerous competing protocols showed up. You might expect competition
to lead to the ultimate adoption of the strongest protocol, but unfortunately
the various alternatives did not work with each other. Too many choices
hampered adoption of any of them. Luckily one de facto standard emerged,
and this chapter will focus on it. But first we are going to describe the various
alternatives, because many of the features supported by today’s widespread
email security solutions have been cherry-picked, taking important features
from their predecessors and competitors.

Interoperability of the security protocol is important. Alice may use security
protocol A to secure the message content of an email that she sends to Bob,
but if Bob doesn’t support the same content security protocol, then Bob can’t
process the contents. The same is true of the algorithms Alice uses when she’s
securing the contents. If she picks an algorithm that Bob doesn’t support, then
Bob is going to be out of luck when he receives the message.

As explained in Chapter 2, email has two parts: the commands and the
content. This chapter will focus on securing the content, and Chapter 7 will
address securing the commands.

Evolution

There have been six notable solutions to secure email contents: Privacy Enhanced
Mail (PEM), Pretty Good Privacy (PGP), MIME Object Security Services (MOSS),
Message Security Protocol (MSP), Public-Key Cryptography Standard #7 (PKCS#7),
and Secure Multiple Purpose Internet Mail Extensions (S/MIME). All provide

87

Part Il » Secure Email

confidentiality, data origin authentication, message integrity, and non-
repudiation of origin, but they all do it differently. Most emerged at around
the same time and (some say) competed against each another for supremacy,
but really they all evolved and adopted features from one another [HOUS1].

Privacy Enhanced Mail

PEM is the granddaddy of secure Internet email standards. Originally, PEM
was developed by the Privacy and Security Research Group (PSRG), but it was
transitioned to the IETF to make a standards track document. The IETF first
published it in 1987, and it was updated three times, finally resulting in a four
part standard in 1993:

RFC 1421 Part I: Message Encryption and Authentication Procedures.
This defines the message encryption and authentication procedures.
Three message structures are defined:

m MIC-CLEAR, where MIC is message integrity check, provides authen-
tication and integrity, but without confidentiality. The message is said
to be clear-signed because the message contents are not encoded (i.e.,
the message contents are human-readable).

m MIC-ONLY provides authentication and integrity, but without confi-
dentiality. MIC-ONLY is different from MIC-CLEAR because it
encodes the contents similar to MIME (i.e., the message contents are
not human-readable).

m ENCRYPTED supports authentication, integrity, and confidentiality
services.

RFC 1422 Part II: Certificate-Based Key Management. This defines the
key management architecture and infrastructure. It supports both asym-
metric and symmetric key management techniques.

RFC 1423 Part III: Algorithms, Modes, and Identifiers. This provides
definitions, formats, references, and citations for cryptographic algo-
rithms, usage modes, and associated identifiers and parameters. The
hash algorithms are MD2 or MD?5, the signature algorithm is RSA, and
the confidentiality algorithm is DES in either ECB or CBC mode.

RFC 1424 Part IV, Key Certification and Related Services. This describes
three services that support PEM: key certification, CRL storage, and CRL
retrieval.

PEM never really took off, primarily because it was invented before MIME
was invented. PEM did introduce numerous ideas that have survived:

Choice of Security Services. By defining multiple message formats, PEM
allowed users to select which services they needed. Accepting that one

Chapter 6 = Protecting Email Message Contents

89

size doesn’t fit all was a really good idea, but PEM did require that
encrypted messages be signed first. In this way, authentication was
always provided.

Transfer Encoding. PEM was the first to describe the encoding for arbi-
trary data in plaintext, which is sometimes referred to as ASCII Armor.
This technique is the basis for MIME. PEM invented Base64 encoding.

PKI enrollment request/response. While X.509 may have defined the
public key certificate format in 1988, PEM introduced the idea of client
requests and responses to obtain a certificate.

Certificate Profile. X.509 describes the certificate structure, but it doesn’t
say what must be included for a particular environment. PEM was the
first to describe which of the fields in an X.509 certificate are required and
values that must be supported. This idea was not lost and the IETF pub-
lished [RFC3280] as its profile for X.509 certificates.

There were two main reasons why PEM did not take off:

m PEM’s PKI called for single hierarchical root CA. First, the cost of imple-
menting one root CA for all of the Internet that would be liable for all
of the actions of its users was daunting. Second, privacy pundits, most
notably Zimmerman and Gilmore, objected to the concept of a single
root because it placed too much power in one entity’s hands. Gilmore
insisted on support for persona identities for pseudo-anonymous com-
munications. Think about what could happen if the uber-root CA
decided it didn’t like you, your company, or, heck, your country. It could
just revoke the certificate, and you’d be unable to send secure email.

= PEM only supported text messages and didn’t support MIME
attachments.

Pretty Good Privacy

Phil Zimmerman didn’t like PEM so much that he went out and wrote his own

program called PGP. It was first available in 1991 but not standardized until
1996 in [RFC1991]. PGP defines message formats for digitally signed messages
and encrypted messages. It also defines its own public key certificate format
and format for storing them. Eventually, support for X.509 certificates was
added to PGP, and it was renamed OpenPGP [RFC4880].

PGP introduced the following concepts:

Decentralized trust. The main goal of PGP was to decentralize trust, and
it did just that with its web-of-trust. The premise is based on introductions
and how much you trust the person doing the introduction, which could
be completely, partially, or not at all. If Alice knows and completely
trusts Bob, and Bob introduces Matt to Alice, then Alice trusts Matt.

90

Part Ill » Secure Email

Partial trust is a configuration setting that allows Alice to indicate how
many people must trust the new person before she will completely trust
them. Untrusted keys can be used, but PGP will warn you when it
happens.

Key generation. PGP allowed users to choose how strong their keys were
and then to generate the key themselves. This exposed to the user that
there were different grades of encryption. The user’s choice was based
either on some thought or paranoia.

Internet names. X.509 is part of the X.500 Directory Service series of stan-
dards, and it obviously named its subject with X.500 names. PGP was
developed without that burden. Various Internet-related name forms are
now supported in certificates in the issuer and subject alternative name
extensions.

Key fingerprints. Users needed to determine whether a key was unal-
tered, so PGP gave the users a tool to make a key fingerprint. It’s really
just a hash of the key. When Alice wants to know that she got Bob’s
key, she calls him and reads out his key fingerprint. If it matches, then
Alice knows she’s got Bob’s key. Key fingerprint is now in the certificate.
It’s in the authority key identifier and subject key identifier certificate
extensions.

Compression. PGP optionally provides for the compression of messages,
which shrinks the message size. The standard indicates that compression
is always applied after the signature but before encryption to reduce the
quantity of known plaintext to an attacker; more importantly the other
order would not work well because ciphertext does not compress.

There were two main reasons why PGP wasn’t embraced more widely:

Late to standardize. Security folks like to scrutinize everything and the
more time they have to scrutinize things the better. While PGP was first
available in 1991, no one got around to standardizing it for many years.
Development of secure email standards in open fora leads to peer review,
which in turn leads to greater confidence that the promised
security is really being provided.

User involvement. PGP put trust management in the hands of every-
day users. Many technology-inclined people (a.k.a. geeks and nerds)
embraced PGP and still use it today, but for the common user the number
of actions required for trust management was too great.

MIME Object Security Services

MIME Object Security Services (MOSS) was based on PEM but was specifi-
cally aimed at supporting Multipurpose Internet Mail Extensions (MIME) and

Chapter 6 = Protecting Email Message Contents

91

the multipart/signed MIME type. Both were published in 1995, with MOSS
published as [RFC1848] and multipart/signed MIME type was published
as [RFC1847]. The designers embraced MIME, which had not been invented
when PEM was created. MOSS also included better support for Internet names
and completely separating security services, which allowed unsigned but
encrypted messages. It was never widely implemented because of S/MIME.

Message Security Protocol

Message Security Protocol (MSP) was the U.S. military’s standard for secur-
ing email. Development of MSP began at about the same time as PEM. It
was originally developed by contractors working for NSA and published by
NIST [NISTMSPR]. It was designed to secure X.400 electronic mail, a failed
competitor of Internet email, but it also included rudimentary support for
Internet email. It used military grade cryptographic algorithms, and it had
features like signed receipts, security labels, and encryption for mail lists.
Numerous vendors offer MSP, primarily aimed at the government market, but
MSP ultimately failed to capture any significant market share.

Public-Key Cryptography Standard #7

Public-Key Cryptography Standard #7 (PKCS#7) was developed by RSA Data
Security Inc. as a general syntax for cryptographically protected data; it was
not developed specifically for email. It was published in 1991 as part of the
Public-Key Cryptography Standards (PKCS) series. RSA Data Security started
the effort to address some concerns with PEM, especially creating an encap-
sulation layer for each security service and the ability to use different keys for
signature and encryption. At the time export control was a big concern, so a
strong signature key used with a weaker encryption key was an important
feature.* PKCS#7 was widely deployed, and a consortium was formed to bring
PKCS#7 to the IETF. PKCS#7 version 1.5 was published as [RFC2315], which
is an information track document, and then RSA Data Security ceded change
control to the IETF.

Secure Multipurpose Internet Mail Extensions

Secure Multipurpose Internet Mail Extensions (5/MIME) makes use of PKCS#7
and MIME to create a security solution for Internet email. RSA Data Security
lead the effort, starting in 1995. S/MIME version 2 was published as [RFC2311],
which is an information track document, and then RSA Data Security ceded
change control to the IETF.

*Actually, export control was a concern for all of the efforts. Many vendors addressed export
control concern by offering support for weak encryption algorithms in “exportable” versions of
their products or embedding a key escrow capability.

92

Part Ill » Secure Email

S/MIME version 3 was developed in the IETF. It includes an update to
PKCS#7 (referred to as the Cryptographic Message Syntax, or CMS), and
it addresses the biggest shortcomings in PKCS#7 version 1.5 and S/MIME
version 2; they were designed for the RSA algorithm, and there was no
consideration for the Diffie-Hellman key agreement algorithm or the DSA
signature algorithm. Additionally, the RSA algorithm, at the time, was patent
protected, so the IETF publishing a standards track document with patented
technology was not desired. In addition to the CMS specification [RFC2630],
the IETF published two documents that specified S/MIME: MSG [RFC2633]
and CERT [RFC2632], and both have since been updated. MSG is the message
specification, and it indicates which parts of PKCS #7 need to be supported.
CERT specifies the certificate-handling procedures. CMS, as an update to
PKCS#7, added support for additional key management techniques and digital
signature algorithms.

CRYPTOGRAPHIC MESSAGE SYTNAX

CMS [RFC3852] is the star of the S/MIME show. CMS defines the syntax for the
secure messages in a transport-agnostic way. In fact, it can be used to protect
files on your hard disk, too. CMS doesn’t care whether the content is a binary
file, the body of an email, a web page, or anything else for that matter. S/MIME
makes use of MIME to encode CMS-protected content.

Since S/MIME and CMS are supported by almost every email client software
package, we will focus on S/MIME and CMS as the mechanism to protect
email’s contents.

Protecting Email Content

The first part of protecting email is protecting the message content. CMS
defines a number of mechanisms to do this, but before we get in to the
nitty-gritty of those mechanisms we need to cover some basic concepts.

m We assume that you have some familiarity with ASN.1. If you need
a primer, we suggest starting with Appendix B. Additionally, RFCs are in the
process of moving from the 1988 version of ASN.1 to the 2002 version. This
document uses the work-in-progress 2002 ASN.1 syntax. This transition is being
done to make use of the new constraints mechanism and because the 1988
version of ASN.1 is now no longer supported by the ITU-T.

Chapter 6 = Protecting Email Message Contents

93

Concepts

A number of foundational concepts are needed. Content types, encapsulation,
version numbers, attributes, and MIME layers are important to understand
the design principles.

CMS Content Types

CMS defines a number of content types. This term was taken from MIME
and referred to media types; for example, message, audio, and video. The
same can be said of CMS content types; it’s just that sometimes the media
is encrypted, signed, or compressed. We'll divide the CMS content types in
to two categories: protecting CMS content types and non-protecting CMS content
types. The difference being that the protecting CMS content types provide one
or more of the security services described in Chapter 3 — remember, access
control, authentication, integrity, confidentiality, and non-repudiation. The
protecting content types are: signed-data, enveloped-data, encrypted-data,
digested-data, authenticated-data, and authenticated-enveloped-data. The
non-protecting content types on the other hand provide no security ser-
vices. The non-protecting content types are: data, compressed-data, receipt,
content-collection, and content-with-attributes.

The ASN.1 structure below provides an example definition for a content type.
It uses TYPE-IDENTIFIER from X.681, where the content type is simply the name
of the content type (e.g., ct-ContentTypeName), the definition links the syntax
associated with the content type (e.g., ContentTypesyntax),and the objectiden-
tifier that names the content type (e.g., id-ContentTypeObjectIdentifier). All
of the content type definitions use a similar syntax.

CONTENT-TYPE ::= TYPE-IDENTIFIER

ct-ContentTypeName CONTENT-TYPE ::=
{ ContentTypeSyntax IDENTIFIED BY id-ContentTypeObjectIdentifier }

Encapsulating

CMS makes extensive use of the concept of encapsulating, which is also
referred to as enveloping, layering, or wrapping. The idea is simple: put one
content type inside of another content type. (It's akin to putting an envelope
in another envelope.) This concept is not unique to CMS and is used in many
communications protocols. Figure 6-1 shows an example of this technique and
a special case called triple-wrapping. Triple-wrapped refers to a content being
encapsulated in a signed-data, which is in turn encapsulated in an enveloped-

94

Part Ill » Secure Email

Contentinfo Contentinfo
CMS Content Type 1 SignedData
CMS Content Type 2 EnvelopedData
Message SignedData
Message

Figure 6-1 Encapsulating content types and triple wrapping

data, which is in turn encapsulated in signed-data, and finally encapsulated
in a content info. The signed-data encapsulated in the enveloped-data is said
to the inner layer, and the signed-data that encapsulates the enveloped-data is
said to be the outer layer.

The very first layer in CMS is always the contentInfo layer. It simply
carries the object identifier for the content type that it encapsulates. It uses
the following ASN.1, which looks more complicated, but it is really pretty
straightforward:

ContentInfo ::= SEQUENCE {
contentType CONTENT-TYPE. &id ({ContentSet}),
content [0] EXPLICIT CONTENT-TYPE.&Type

({ContentSet} {@contentType}) }

ContentInfo is a sequence of the object identifier for the content type
followed by the content itself.

The protecting content types use two special encapsulation syntaxes.
Signed-data, digested-data, and authenticated-data use the Encapsulated-
ContentInfosyntax, while enveloped-data, encrypted-data, and authenticated
-enveloped-data use the EncryptedContentInfo. Both Encapsulated-
ContentInfo and EncryptedContentInfo indicate the syntax of the content
type with an object identifier and both have a syntax of ocTer sTrRING. If
you're wondering why they don’t just use contentInfo it's because cryp-
tographic algorithms work best with octet strings as inputs. There are two
differences between the EncryptedContentInfo and EncryptedContentInfo
syntaxes. First, EncryptedContentInfo needs to indicate which algorithm
was used to encrypt the content; otherwise, we’d have to guess. Second,
EncryptedContentInfo carries an encrypted content. The ASN.1 syntaxes for
both are listed next:

EncapsulatedContentInfo ::= SEQUENCE {
eContentType CONTENT-TYPE. &id ({ContentSet}),
eContent [0] EXPLICIT OCTET STRING (CONTAINING CONTENT-TYPE.&Type

({ContentSet} {@eContentType}) OPTIONAL }

Chapter 6 = Protecting Email Message Contents

95

EncryptedContentInfo ::= SEQUENCE ({
contentType CONTENT-TYPE. &id ({ContentSet}),
contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
encryptedContent [0] IMPLICIT OCTET STRING OPTIONAL }

Version Numbers

A version number is included at the beginning of many of the ASN.1 structures.
This allows for evolution of the protocol and allows implementations to know
what version of the syntax they’re handling. You might note that not all of
version numbers are sequential. This is so because of an update to PKCS#7
that was never formally published.” Because of this, some version numbers
were skipped as CMS evolved to ensure that anyone who implemented the
unpublished version would not run into trouble. The original authors of
PKCS#7 had the foresight to include version numbers from the beginning,
which has been very helpful as the protocol has been revised.

Attributes

All of the protecting content types, except digested-data, support the inclusion
of attributes with the encapsulated content type (see Table 6-1). Signed and
authenticated attributes are cryptographically bound to the content, so that
verifiers will be able to detect their removal. Unsigned, unprotected, and
unauthenticated attributes are not cryptographically bound or encrypted;
therefore, intermediaries can add or remove attributes without affecting the
protecting content type.

Some attributes are limited to the content type and the place in the content
type in which they can appear. Also, some attributes are limited as to where
they can appear in the encapsulation layers because some attributes require
protection themselves. With triple-wrapped messages, some attributes are
restricted to the inner layer or the outer layer, while others have no restrictions.
We'll return to the subject of attributes later in this chapter, and we’ll explain
which attributes can in which layer.

MIME Layer

CMS doesn’t require a MIME layer between for each content type, but S/MIME
does. This adds overhead, and if there are many layers, it can add up to a lot
of overhead. We'll return to this subject later in the chapter.

*An unpublished version was used for the Secure Electronic Transaction (SET) specification
generated by MasterCard and VISA. SET was designed to secure bankcard transactions over
open networks like the Internet.

96 Part Il » Secure Email

Table 6-1 Protecting Content Types That Allow Attributes

CONTENT TYPE ATTRIBUTES ALLOWED

signed-data Signed attributes
Unsigned attributes

enveloped-data Unprotected attributes
encrypted-data Unprotected attributes
digested-data N/A
authentication-data Authenticated attributes

Unauthenticated attributes

authenticated-enveloped-data Authenticated-attributes
Unauthenticated attributes

Protecting CMS Content Types

There are six CMS protecting content types defined. This section addresses
them all: signed-data, enveloped-data, encrypted-data, digest-data, authen-
ticated-data, and authenticated-enveloped-data. Note however, that S/MIME
only makes use of signed-data and enveloped-data.

Signed Data

Signed-data is the workhorse content type. The signed-data content type
provides data origin authentication and integrity. It also supports access
control, peer-entity authentication, non-repudiation with proof of origin, and
non-repudiation with proof of delivery. It does everything but clean the kitchen
sink and provide confidentiality. Things to note about signed-data:

Digest Algorithms. The requirement for the digestaAlgorithms field says
that it may be empty, but in practice each digest algorithm used by a
signer is normally included.

Certificates. Technically the cert-bag, which is a grab bag of certificates for
the signer or signers, certificates are optional, but the originator normally
includes all of them in the certification path up to but not including the
trust anchor.

CRLs. It seems like a good idea to include revocation information in-
message so that the relying party doesn’t need to go and get it. Well, if
you were an attacker, wouldn’t you make sure that you put a revocation
information in that said your certificate was valid? On a less sinister note,
email is store-and-forward, which means that it can take some amount

Chapter 6 = Protecting Email Message Contents 97

ContentInfo

SignedData

EncapContentlnfo

Signerinfo 1

Signerinfo 2

Figure 6-2 Parallel signatures

of time for delivery to occur, and during this delay new revocation
information might become available. So practically, even if revocation
information is included, it’s ignored. For these reasons, most leave it out,
because it just makes the message unnecessarily larger.

The signed data content type is identified by the id-signedpata object
identifier, and it has the following syntax:

ct-SignedData CONTENT-TYPE ::=
{ SignedData IDENTIFIED BY id-signedData }

id-signedData OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs7(7) 2 }

SignedData ::= SEQUENCE ({
version CMSVersion,
digestAlgorithms SET OF DigestAlgorithmIdentifier,
encapContentInfo EncapsulatedContentInfo,
certificates [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
signerInfos SignerInfos }

SignerInfos ::= SET OF SignerInfo

One of the more interesting things to note is the SET OF SignerInfo.
This translates, in layman’s terms, to the supporting of signatures over the
same content from multiple signers, or parallel signatures. Figure 6-2 shows an
example of one message with two signerInfo structures, each generated by a
different signer. Different signed and unsigned attributes can be conveyed by
each signer. Different algorithms can be used by each signer. The signatures do
not need to be applied at the same time either, as addition of a new signerInfo
does not affect the previous signerInfo.

98

Part Ill » Secure Email

SignerInfo has the following syntax:

SignerInfo ::= SEQUENCE {
version CMSVersion,
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmIdentifer,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }
SignerIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier }
Signaturevalue ::= OCTET STRING

.Im: There is a link back to the signer’s certificate, which must contain the key
usage extension with at least the digitalsignature orthe nonRepudiation
bit set.

Enveloped Data

The thing to note about the enveloped-data content type is key management.
Five different key management techniques are defined to get the content
encryption key to the recipient. Key transport recipient info, key agreement
recipient info, key encryption key recipient info, password recipient info, and
other recipient info are described later in the chapter.

The encrypted-data content type is identified by the id-envelopedpata
object identifier, and it has the following syntax:

ct-EnvelopedData CONTENT-TYPE ::=
{ EnvelopedData IDENTIFIED BY id-envelopedData }

id-envelopedData OBJECT IDENTIFIER ::=
{ is0o(1l) member-body(2) us(840) rsadsi(113549) pkcs(l) pkcs7(7) 3 }

EnvelopedData ::= SEQUENCE {
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
encryptedContentInfo EncryptedContentInfo,
unprotectedAttrs [1] IMPLICIT Attributes

{{UnprotectedAttribute}} OPTIONAL }

Chapter 6 = Protecting Email Message Contents

99

OriginatorInfo ::= SEQUENCE ({

certs [0] IMPLICIT CertificateSet OPTIONAL,

crls [1] IMPLICIT RevocationInfoChoices OPTIONAL }
RecipientInfos ::= SET SIZE (1..MAX) OF RecipientInfo
EncryptedContent ::= OCTET STRING
RecipientInfo ::= CHOICE {

ktri KeyTransRecipientInfo,

kari [1] KeyAgreeRecipientInfo,

kekri [2] KEKRecipientInfo,

pwri [3] PasswordRecipientinfo,

ori [4] OtherRecipientInfo }

Key Transport Recipient Info

The KeyTransportRecipientInfo is used, as its name implies, to support key
transport algorithms, namely RSA. If you remember our discussion of RSA
from Chapter 4, Alice creates a symmetric key and encrypts it with Bob’s public
key, and then Bob uses his own private key to decrypt the value and recover
the symmetric key. That’s why there’s no need to include the originator’s
certificate. The recipient figures out which KeyTransportRecipientInfo is
theirs with the rid field. The encryptedkey contains the encrypted content
encryption key. A separate KeyTransportRecipientInfo is needed for each
recipient. The KeyTransportRecipientInfo uses the following syntax:

KeyTransRecipientInfo ::= SEQUENCE ({
version CMSVersion, -- always set to 0 or 2
rid RecipientIdentifier,

keyEncryptionAlgorithm AlgorithmIdentifier
{{KeyTransportAlgorithmList}},

encryptedKey EncryptedKey }
RecipientIdentifier ::= CHOICE {

issuerAndSerialNumber IssuerAndSerialNumber,

subjectKeyIdentifier [0] SubjectKeyIdentifier }

.]m: There is a link to the recipient’s certificate; it must contain the key usage
extension with the keyEncipherment bit set.

100

Part Ill » Secure Email

Key Agreement Recipient Info

The xeyagreeRecipientInfo is used to support key agreement algorithms;
for example, DH, ECDH, and ECMQV. If you remember our discussion of
DH from Chapter 4, Alice fetches Bob’s certificate to obtain his public key
and then Alice generates a public/private key pair in the same group as
Bob’s key pair. Alice combines her private key with Bob’s public key to
obtain a pairwise symmetric key. Bob needs Alice’s public key to combine
with his private key to obtain the same pairwise symmetric key. That’s
why you need to include either Alice’s certificate or just her public key.
The ukm field is used by some key management schemes that make use of
additional private keying material. Unlike the KeyTransportRecipientInfo,
one KeyAgreeRecipientInfo can be used by all recipients, assuming that the
same algorithm and originator public key are used. Inside, there is a sequence
of RecipientEncryptedkey values, one for each intended recipient. Recipients
figure out which keyagreerecipientInfois theirs by examining the rid field.
The KeyagreeRecipientInfo uses the following syntax:

KeyAgreeRecipientInfo ::= SEQUENCE ({
version CMSVersion, -- always set to 3
originator [0] EXPLICIT OriginatorIdentifierOrKey,
ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
keyEncryptionAlgorithm AlgorithmIdentifier
{{KeyEncryptionAlgorithmList}},
recipientEncryptedKeys RecipientEncryptedKeys }
OriginatorIdentifierOrKey ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier,
originatorKey [1] OriginatorPublicKey }
OriginatorPublicKey ::= SEQUENCE ({

algorithm AlgorithmIdentifier {{AlgorithmList}},
publicKey BIT STRING }

RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey
RecipientEncryptedKey ::= SEQUENCE ({
rid KeyAgreeRecipientIdentifier,

encryptedKey EncryptedKey }

KeyAgreeRecipientIdentifier ::= CHOICE ({
issuerAndSerialNumber IssuerAndSerialNumber,
rKeyId [0] IMPLICIT RecipientKeyIdentifier }

Chapter 6 = Protecting Email Message Contents

RecipientKeyIdentifier ::= SEQUENCE {
subjectKeyIdentifier SubjectKeyIdentifier,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
SubjectKeyIdentifier ::= OCTET STRING

.m There is a link back to the recipient’s certificate; it must contain the key
usage extension with the keyagreement bit set.

Key Encryption Key Recipient Info

The kKEKRecipientInfo is used when the originator and recipient support pre-
viously distributed key-encryption keys. The originator indicates which key
was used with kekid field, and the encryptedkey is the content-encryption
key encrypted with the previously distributed key-encryption key. The
KEKRecipientInfo uses the following syntax:

KEKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 4
kekid KEKIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }

KEKIdentifier ::= SEQUENCE ({
keyIdentifier OCTET STRING,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }

Password Recipient Info

The passwordrecipientInfoisused when the originator and recipient support
a previously distributed shared password or secret as the key-encryption key.
The originator indicates how the key is derived and the key encryption
algorithm that is used. The encryptedkey is the encrypted content-encryption
key. The PasswordRecipientInfo uses the fOHOWing syntax:

PasswordRecipientInfo ::= SEQUENCE ({
version CMSVersion, -- Always set to 0
keyDerivationAlgorithm [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifiers,
encryptedKey EncryptedKey }

102 Part Il = Secure Email

Other Recipient Info

The otherRecipientInfo permits the definition of additional key management
techniques. It identifies them with an object identifier, which also indicates
the syntax of the key management fields. The otherRecipientInfo uses the
following syntax:

OTHER-RECIPIENT ::= TYPE-IDENTIFIER

OtherRecipientInfo ::= SEQUENCE {
oriType OTHER-RECIPIENT. &id ({SupportedOtherRecipInfo}),
orivValue OTHER-RECIPIENT.&Type ({SupportedOtherRecipInfo}{@oriType})}

SupportedOtherRecipInfo OTHER-RECIPIENT ::= { ... }

Encrypted Data

The encrypted data content type provides content confidentiality. Unlike
enveloped-data, it provides for no key management information for originator
or recipients. The keys must be managed via other means. It is often used
for when keying material is available from other sources. The encrypted-data
content type is identified by the id-encryptedpata object identifier, and it has
the following syntax:

ct-EncryptedData CONTENT-TYPE ::=
{ EncryptedData IDENTIFIED BY id-encryptedData }

id-encryptedData OBJECT IDENTIFIER ::=
{ is0o(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs7(7) 6 }

EncryptedData ::= SEQUENCE {
version CMSVersion,
encryptedContentInfo EncryptedContentInfo,
unprotectedAttrs [1] IMPLICIT Attributes
{{UnprotectedAttributes}} OPTIONAL }
Digest Data

The digested-data content type provides content integrity. Used by itself, this
content type has dubious value because both the hash value and the contents
are available; this is why it’s normally used an input to enveloped-data.
The digested data content type is identified by the id-digestedpata object
identifier, and it has the following syntax:

ct-DigestedData CONTENT-TYPE ::=
{ DigestedData IDENTIFIED BY id-digestedData }

id-digestedData OBJECT IDENTIFIER ::=
{ is0o(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs7(7) 5 }

Chapter 6 = Protecting Email Message Contents

103

DigestedData ::= SEQUENCE {
Version CMSVersion,
digestAlgorithm DigestAlgorithmIdentifier,
encapContentInfo EncapsulatedContentInfo,

digest Digest }
Digest ::= OCTET STRING
Authenticated Data

The authenticated-data content type provides content integrity. The difference
between this content type and the digested-data content type is that an
authentication-key is also provided for each recipient for verifying the integrity
of the content. Things to note include the following;:

Content. Arbitrary content types are supported, but it is unencrypted.

Key management. This uses the same originatorInfo and
RecipientInfo structures as the enveloped-data content type. It
supports key transport, key agreement, password, and other key
management techniques.

Attributes. Both authenticated and unauthenticated attributes are sup-
ported, but only the authenticated attributes are cryptographically bound
to the content. Neither set of attributes is encrypted.

The authenticated-data content type is identified by the
id-authenticatedbata object identifier, and it has the following syntax:

ct-AuthenticatedData CONTENT-TYPE ::=
{ AuthenticatedData IDENTIFIED BY id-authenticatedData }

id-ct-authData OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) ct(l) 2 }

AuthenticatedData ::= SEQUENCE ({
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
macAlgorithm MessageAuthenticationCodeAlgorithm,
digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
encapContentInfo EncapsulatedContentInfo,
authAttrs [2] IMPLICIT AuthAttributes OPTIONAL,
mac MessageAuthenticationCode,
unauthAttrs [3] IMPLICIT UnauthAttributes OPTIONAL }

MessageAuthenticationCode ::= OCTET STRING

104

Part Ill » Secure Email

Authenticated-Enveloped Data

The authenticated-enveloped-data content type provides content integrity
and confidentiality. It's similar to authenticated-data except the content is
encrypted as well as authenticated. Things to note include:

Content. Arbitrary content types are supported, and it is encrypted.

Key Management. This uses the same originatorInfo and Recipient-
info structures as the enveloped-data content type. It supports key trans-
port, key agreement, password, and other key management techniques.

Attributes. Both authenticated and unauthenticated attributes are sup-
ported, but only the authenticated attributes are cryptographically bound
to the content. Neither set of attributes is encrypted. The message-digest
attribute is not included in authenticated attributes because it exposes
plaintext.

The authenticated-enveloped-data content type is identified by the id-auth
envelopedData object identifier, and it has the following syntax:

ct-AuthEnvelopedData CONTENT-TYPE ::=
{ AuthEnvelopedData IDENTIFIED BY id-authEnvelopedData }

id-ct-authEnvelopedData OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) ct(l) 23 }

AuthEnvelopedData ::= SEQUENCE {
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
authEncryptedContentInfo EncryptedContentInfo,
authAttrs [1] IMPLICIT AuthAttributes OPTIONAL,
mac MessageAuthenticationCode,
unauthAttrs [2] IMPLICIT UnauthAttributes OPTIONAL }

Non-Protecting Content Types

A number of non-protecting content types have been defined in various
RFCs. This section addresses the following content types: data, receipt,
compressed-data, content-collection, and content-with-attributes. S/MIME
only makes use of data and compressed-data.

m None of these content types provides a security service by itself;
they all must be encapsulated by one of the protecting CMS content types

described eatrlier.

Chapter 6 = Protecting Email Message Contents

105

Data

The data content type, as defined in [RFC3852], is used to convey arbitrary
octet strings. It can carry whatever you want, including text files, video, audio,
and so on; however, S/MIME uses the data content type to identify MIME
encoded content. The data content type is identified by the id-data object
identifier, and it has the following syntax:

ct-Data CONTENT-TYPE ::=
{ OCTET STRING IDENTIFIED BY id-data }

id-data OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs7(7) 1 }

Compressed Data

PGP-supported compression and so does CMS. The compressed-data content
type, defined in [RFC3274], consists of a version number, the compression
algorithm identifier, and the compressed contents. Compressed data can be
used, as it was in PGP, after the signature, but before encryption to reduce
the quantity of known plaintext available to an attacker. The compressed-data
content type is identified by the id-ct-compressedpata object identifier, and
it has the following syntax:

ct-CompressedData CONTENT-TYPE ::=
{ CompressedData IDENTIFIED BY id-ct-compressedData }

id-ct-compressedData OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9)
smime (16) ct(l) 9 }

CompressedData ::= SEQUENCE {
version CMSVersion,
compressionAlgorithm CompressionAlgorithmIdentifier,
encapContentInfo EncapsulatedContentInfo }

Receipt Syntax

Recipients use the receipt content-type, defined in [RFC2634], when generating
asigned receipt. The receipt is cryptographically bound to the original message
providing proof of delivery. The original value from the content-identifier
attribute, explained later, in the original message is copied to the receipt
content. The receipt content type is always included in a signed-data content
type. The receipt content type is identified by the id-ct-receipt object
identifier, and it has the following syntax:

ct-Receipt CONTENT-TYPE ::=
{ Receipt IDENTIFIED BY id-ct-receipt }

106 Partlll = Secure Email

id-ct-receipt OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) id-ct(l) 1 }

Receipt ::= SEQUENCE ({
version ESSVersion,
contentType ContentType,

signedContentIdentifier ContentIdentifier,
originatorSignatureValue OCTET STRING }

ESSVersion ::= INTEGER { v1(1l) }

Content Collection

The CMS encapsulation technique allows you to include one layer in another.
It’s perfect for when you need to attach one thing to another, but what would
you do if you wanted to attach more that just one thing? The content-collection
content type, from [RFC4073], was defined for exactly this purpose. Figure 6-3
shows an example where the originator has included three contents, an offer
to sell their car, an image of their car, and a signed appraisal letter, gathered
together in a content collection and then signed. With this content type you
can group things and apply one signature instead of signing three separate
contents.

The content collection content type is identified by the id-ct-content
Collection object identifier, and it has the following syntax:

ct-ContentCollection CONTENT-TYPE ::=
{ ContentCollection IDENTIFIED BY id-ct-contentCollection }

id-ct-contentCollection OBJECT IDENTIFIER ::=
{ is0(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs9(9)
smime (16) ct(l) 19 }

ContentCollection ::= SEQUENCE SIZE (1..MAX) OF ContentInfo

ContentInfo
SignedData
ContentCollection

Owner's Image of SignedData
Orfer o Car Appraised
Sell Car Value

Figure 6-3 Content Collection content type

Chapter 6 = Protecting Email Message Contents

107

ContentInfo
SignedData
ContentCollection

ContentWithAttributes ContentWithAttributes
Image of Car Image of Title
Attribute 1 Attribute 1

Figure 6-4 Content with attribute content type

Content with Attributes

Not all content types are defined to allow the addition of arbitrary attributes,
and the content-with-attributes allows the addition of arbitrary attributes to
any content before applying a protecting content type. Figure 6-4 shows an
example where the originator has two images, each with some attributes.
Both of these images are wrapped in separate content with attribute contents,
further encapsulated with a content collection, and then finally signed. Again,
only one signature is needed over the two different images and the associated
attributes.

The content with attributes content type is identified by the id-ct-content
withAttrs object identifier, and it has the following syntax:

ct-ContentWithAttrs CONTENT-TYPE ::=
{ ContentWithAttributes IDENTIFIED BY id-ct-contentWithAttrs }

id-ct-contentWithAttrs OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l)pkcs9(9)
smime(16) ct(l) 20 }

ContentWithAttributes ::= SEQUENCE ({
content ContentInfo,
attrs SEQUENCE SIZE (1..MAX) OF Attribute }
-
Attributes

CMS uses attributes to add additional services. Fifteen attributes are defined in
RECs that support CMS and S/MIME. Of these, content-type, message-digest,
signing-time, and counter-signature are defined in [RFC3852] because they

108 Part Il = Secure Email

are used by multiple content types in the base document. [RFC2634] defines
nine attributes: content-identifier, receipt-request, message-signature-digest,
content-hints, content-reference, signing-certificates, security-label, equiva-
lent-label, and ml-expansion-history (see the “Enhanced security services”
sidebar). The content-identifier, receipt-request, and message-signature-digest
attributes are discussed under the heading Receipt Request because they all
work together to support signed receipts. [RFC3851] defines two attributes:
S/MIME-capabilities and encryption-key-preference, and these attributes
relate directly to S/MIME.

ENHANCED SECURITY SERVICES

To avoid a monolithic RFC, the S/MIME optional enhanced security services
were published as [RFC2634]. It specifies four services: signed receipts, security
labels, secure mail lists, and signing certificates. Three of these are derived
directly from MSP. As you will see, the services from MSP were appropriate for
the business and finance communities as well as the government community.
Adoption of these services in S/MIME essentially put the final nail in MSP’s
coffin, with the authors of MSP swinging the hammer.

All CMS attributes use the same syntax. Each attribute has an object identifier
that uniquely identifies the syntax. The attribute syntax was adopted from the
X.500 Directory environment, and it can technically have more than one value.
That is, it can be multi-valued. However, in CMS these attributes constrain
the attrvalues field to one and only one value. Likewise, attributes may only
appear once in the attributes field for the content types. The following syntax
is used to define an attribute:

ATTRIBUTE ::= TYPE-IDENTIFIER
Attribute { ATTRIBUTE:AttrList } ::= SEQUENCE ({
attrType ATTRIBUTE.&id ({AttrList}),

attrValues SET OF ATTRIBUTE.&Type ({AttrList}{@QattrType}) }

Attributes ::= SET SIZE OF (1..MAX) Attribute

As mentioned earlier, attributes are sometimes restricted for use with a
particular content type and location within that content type.

Content Type

The way they are computed results in the content-type object identifier not
being part of the signature. The content-type attribute is used to provide
protection for the object identifier for the encapsulated content-type. The

Chapter 6 = Protecting Email Message Contents 109

content-type attribute is identified by the id-aa-contentType object identifier,
and it has the following syntax:

attr-contentType ATTRIBUTE ::=
{ ContentType IDENTIFIED BY id-contentType }

id-contentType OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs9(9) 3 }

ContentType ::= OBJECT IDENTIFIER

The recipient must confirm that the protected content-type object identifier
in the attribute matches the content-type object identifier carried in the CMS
protecting content type itself.

If the content-type attribute is included in a signed-data or authenticated-
data, then it must be signed or authenticated attribute. If any signed or
authenticated attributes are present, then the content-type attribute must be
included. It may appear in either an inner or outer layer.

.m Interoperability with PKCS#7 is the reason for the special case logic for
including the content-type attribute.

Message Digest

When a content type provides integrity, it uses the message-digest attribute
to include the output of the integrity algorithm. The message-digest attribute
is identified by the id-aa-messageDigest object identifier, and it has the
following syntax:

attr-messageDigest ATTRIBUTE ::=
{ MessageDigest IDENTIFIED BY id-messageDigest}

id-messageDigest OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs9(9) 4 }

MessageDigest ::= OCTET STRING

If the content-type attribute is included in a signed-data or authenticated-
data, then it must be a signed or authenticated attribute. If any signed or
authenticated attributes are present, then the content-type attribute must be
included. It may appear in either an inner or outer layer. The message-digest
attribute is not included in the authenticated-enveloped data content type
because it would disclose the unencrypted digest of the contents. This infor-
mation could be used by an attacker to determine if the plaintext matches one
or more candidate contents.

110

Part Ill » Secure Email

.Im: Interoperability with PKCS#7 is the reason that the special case logic
includes the message-digest attribute.

Signing Time

One obvious attribute that originators of signed-data, authenticated-data,
and authenticated-enveloped-data want is an indication of the time the mes-
sage was originated. Email messages already have this feature as part of a
Submission Time: but it’s not cryptographically protected. The signing-time
attribute conveys a cryptographically protected time. It is either uTcTime or
GeneralizedTime, just like Time in the certificate. For times before 2049, use
UTCTime; for times after 2049 use GeneralizedTime. The time that is included
by the originator is not usually from a trusted time source, so it’s up to the
recipient to determine the appropriate use of the purported time as the signing
time. The signing-time attribute is identified by the id-aa-signingTime object
identifier, and it has the following syntax:

attr-signingTime ATTRIBUTE ::=
{ SigningTime IDENTIFIED BY id-signingTime }

id-signingTime OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs9(9) 5 }

SigningTime ::= Time
Time ::= CHOICE {
utcTime UTCTime,

generalizedTime GeneralizedTime }

If the signing-time attribute is included in a signed-data, authenticated-data,
or authenticated-enveloped-data, then it must be a signed or authenticated
attribute. It may appear in either an inner or outer layer.

Counter Signatures

CMS supports parallel signatures, so it should come as no surprise that CMS
supports a serial signature, which is a signature placed over another signature.
A serial signature authenticates only the digital signature, not the contents. In
fact, this service is targeted at notary services, where the service doesn’t really
care about the contents of the message, but it does care that the signature
value hasn’t been altered. The counter-signature attribute is identified by the
id—aa—countersignatureobkmtidenﬁﬁer,andithasthefoﬂomdngsyrnax

attr-countersignature ATTRIBUTE ::=
{ SignerInfo IDENTIFIED BY id-countersignature }

Chapter 6 = Protecting Email Message Contents

id-countersignature OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs9(9) 6 }

The same syntax is used for the original signature: signerInfo from
signed-data. It follows the same rules with two minor changes. First, the
content-type attribute is not included because there’s not a content type.
Second, the input to the signature process is the signaturevalue (the ocTET
STRING minus the tag and length octets).

If the counter-signature attribute is included in a signed-data, then it must
be an unsigned attribute. It may appear in either an inner or outer layer.

S/MIME Capabilities

Originators often need to indicate to recipients the capabilities that they
support, mostly notably the cryptographic algorithms that they support. This
information is obviously most helpful before the originator and recipient start
communicating, so it can be placed in a repository or it can be exchanged in a
signed or authenticated attribute during the communications. The capabilities
are indicated by an object identifier. The S/MIME-capabilities attribute is
identified by the id-aa-smimeCapabilities object identifier, and it has the
following syntax:

attr-smimeCapabilities ATTRIBUTE ::=
{ SMIMECapabilities IDENTIFIED BY id-smimeCapabilities }

smimeCapabilities OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9) 15 }

SMIMECapabilities ::= SEQUENCE OF SMIMECapability
SMIME-CAPS ::= TYPE-IDENTIFIER
SMIMECapability ::= SEQUENCE ({

capabilityID SMIME-CAPS.&id ({SMimeCapsSet}),
parameters SMIME-CAPS.&Type ({SMimeCapsSet}{@capabilityID}) OPTIONAL }

SMimeCapsSet SMIME-CAPS ::= { ... }

If the S/MIME-capabilities attribute is included in a signed-data, authen-
ticated-data, or authenticated-enveloped-data, then it must be signed or
authenticated attribute. It may appear in either an inner or outer layer.
The smime-capabilities attribute is also a certificate extension, as documented
in [RFC4262].

Encryption Key Preference

If an originator uses the same public/private key pair for both digital sig-
natures and key management, then it’s easy to figure out which key to use

112

Part Ill » Secure Email

when replying or generating a receipt, but nowadays many originators use
separate key pairs for digital signatures and encryption. Recipients can use
the S/MIME-encryption-key-preference attribute to locate the public key that
the signer would like others to use for key management operations. Now
you might be thinking, “Isn’t that what the key usage certificate extension is
intended to do?” and you’d be right; however, if the signer has more than one,
then additional clues are needed. The S/MIME-encryption-key-preference
attribute is identified by the id-aa-encrypkeypref object identifier, and it has
the following syntax:

attr-encryptKeyPref CMS-ATTRIBUTE ::=
{ SMIMEEncryptionKeyPreference IDENTIFIED BY id-aa-encrypKeyPref }

id-aa-encrypKeyPref OBJECT IDENTIFIER ::=
{ iso(1l) member-body(2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9)
smime (16) id-aa(2) 11 }

SMIMEEncryptionKeyPreference ::= CHOICE {
issuerAndSerialNumber [0] IssuerAndSerialNumber,
receipentKeyId [1] RecipientKeyIdentifier,

subjectAltKeyIdentifier [2] SubjectKeyIdentifier }

If the S/MIME-capabilities attribute is included in a signed-data, authen-
ticated-data, or authenticated-enveloped-data, then it must be signed or
authenticated attribute. It may appear in either an inner or outer layer.

Signed Receipts

Signed receipts allow originators to verify that the message has been delivered
to the recipients, which is called proof of delivery. Originators can then use the
signed receipt to prove to a third party that the recipient was able to verify the
signature of the original message.

.Ima Proof of delivery does not indicate that the recipients actually understood
the message; it indicates only that they could process the signed message. If the
originator wants that kind of assurance, they need to explicitly ask the recipient
send a signed reply in the body of the message.

The process works with multiple attributes and the receipt content type.
The process is shown in Figure 6-5.

Content Identifier

For receipts to work, messages need to be uniquely identifiable. Email messages
already have this feature as part of a Message ID: header, but it’s not signed
and it’s assigned after the message signature has been generated. [RFC2634]
recommends that the concatenation of username or key identifier, current

Chapter 6 = Protecting Email Message Contents

113

Alice Bob
Compose message
Construct signed-data with
signed-receiptrequest,
message-digest, and

content-identifier attributes Rett
—_— >
Send message etrieve message

Verify signed-data with
signed-receipt-request attribute
Generate Signed Receipt content
type encapsulated in a signed-data
with message-signature-igest and
message-digest attributes
Receive message <4—— Send signed receipt message
Verify signed-data that
encapsulates signed receipt
Verify message-signature-digest
attribute matches original
message-digest attribute

Figure 6-5 Signed receipts

time, and a random number. The content-identifier attribute is identified by
the id-aa-contentIdentifier objectidentifier,and it has the following syntax:

attr-ContentIdenfier ATTRIBUTE ::=
{ ContentIdentifier IDENTIFIED BY id-aa-contentIdentifier }

id-aa-contentIdentifier OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) id-aa(2) 7 }

ContentIdentifier ::= OCTET STRING

The content-identifier may be included in either the inner or outer layer, and
it may be a signed attribute. If it's used as part of the signed receipt request
process, then it’s included as a signed attribute.

Receipt Request
Another primary thing for receipts to work is the actual request for the receipt.
There are three parts to the receipt request:

1. Pointing to the message’s content-identifier attribute

2. Requesting whom you want receipts from

3. Indicating where receipts should be sent

Pointing to the message’s content-identifier attribute is easy because the field
is just copied from the attribute and placed in the signedcontentIdentifier

field. You can request receipts from all recipients, non-mail-list recipients,
or specific recipients. You can also request where receipts should be sent;

114

Part Ill » Secure Email

maybe your boss wants to be copied on everything or maybe you want an
administrative assistant to track the receipts for you. Either way, you can
include your name, someone else’s name, or an arbitrary list. The receipt-
request attribute is identified by the id-aa-receiptRequest object identifier,
and it has the following syntax:

attr-receiptRequest ATTRIBUTE ::=
{ ReceiptRequest IDENTIFIED BY id-aa-receiptRequest }

id-aa-receiptRequest OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) id-aa(2) 1 }

ReceiptRequest ::= SEQUENCE {
signedContentIdentifier ContentIdentifier,
receiptsFrom ReceiptsFrom,
receiptsTo SEQUENCE SIZE (1..ub-receiptsTo)

OF GeneralNames }

ub-receiptsTo INTEGER ::= 16
ReceiptsFrom ::= CHOICE {
allOrFirstTier [0] AllOrFirstTier,
receiptList [1] SEQUENCE OF GeneralNames }
AllOrFirstTier ::= INTEGER {

allReceipts (0),
firstTierRecipients (1) }

The receipt-request attribute must be included in an inner layer, and it must
be a signed attribute.

Message Signature Digest

The recipient needs to bind the original message that included the receipt
to the signed receipt. This is done by placing the message digest of the
original message in the message-signature-digest attribute. Recipients do this
by including signed attributes from the original message, which was validated
when the signature was verified. The message-signature-digest attribute is
identified by the id-aa-msgSigbigest object identifier, and it has the following
syntax:

attr-msgSigDigest ATTRIBUTE ::=
{ MsgSigDhigest IDENTIFIED BY id-aa-msgSigDigest }

id-aa-msgSigDigest OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)

smime (16) id-aa(2) 5 }

MsgSigDigest ::= OCTET STRING

Chapter 6 = Protecting Email Message Contents

115

The message-signed-digest attribute must be included in an inner layer, and
it must be a signed attribute.

Content Hints

The content-hints attribute is used to peek into encrypted messages that are
also signed. By including a content-hints in the outer signed-data content, the
originator can provide the content type and a description of the contents of
the inner signed data, as shown in Figure 6-6. The content-hints attributes can
be used by a recipient with an inbox full of encrypted messages decide which
ones to decrypt and read first.

m Any description you put in this attribute will be available to an
attacker; it is not encrypted.

The content-hints attribute is identified by the id-aa-contentHint object
identifier, and it has the following syntax:

attr-contentHints ATTRIBUTE ::=
{ ContentHints IDENTIFIED BY id-aa-contentHint }

id-aa-contentHint OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9)
smime (16) id-aa(2) 4 }

ContentHints ::= SEQUENCE {
contentDescription UTF8String (SIZE (1..MAX)) OPTIONAL,
contentType ContentType }

The content-hints may be included in either the inner or outer layer, and it
may be a signed attribute.

Contentlnfo
SignedData
EncryptedData

SignedData

Image of Car

ContentHint
{ Picture of Car, SignedData }

Figure 6-6 Content hints attribute

116

Part Ill » Secure Email

Content Reference

Like the content-hint attribute, the content-reference attribute isn’t necessarily
used with signed receipts. It's used by recipients to cryptographically link a
reply to a previous signed message, which is much different than a receipt. The
content-type, content-identifier, and the original signed attributes are used to
link back to original message. The content-reference attribute is identified by
the id-aa-contentReference object identifier, and it has the following syntax:

attr-contentReference ATTRIBUTE HEE
{ ContentReference IDENTIFIED BY id-aa-contentReference }

id-aa-contentReference OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) id-aa(2) 10 }

ContentReference ::= SEQUENCE {
contentType ContentType,
signedContentIdentifier ContentIdentifier,
originatorSignaturevValue OCTET STRING }

The signed-content-reference may be in either an inner or outer layer, and it
must be a signed attribute.

Signing Certificates

CMS carries certificates outside of the protecting content types, meaning
that they are vulnerable to attackers. Attackers can remove the certificate
in a denial of service attack, or they can substitute a different certificate.
Substituting one certificate for another might seem like a silly attack, but
recall the discussion in Chapter 5; if Eve pulls the key out of a certificate
and re-signs it, then she can make the relying party look up a different
certification path. You can stop this attack by placing a signing-certificate-V2
attribute in signed-data to identify the certificate you expect to be used for
validation of your signature. The signing-certificates-V2 attribute is identified
by the id-aa-signingCertificatev2 object identifier, and it has the following
syntax:

attr-signingCertificatev2 ATTRIBUTE ::=
{ SigningCertificatev2 IDENTIFIED BY id-aa-signingCertificatev2 }

id-aa-signingCertificatev2 OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs9(9)
smime (16) id-aa(2) 47 }

Chapter 6 = Protecting Email Message Contents

117

SigningCertificatev2 ::= SEQUENCE ({
certs SEQUENCE OF ESSCertIDv2,
policies SEQUENCE OF PolicyInformation OPTIONAL }

ESSCertIDv2 ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier DEFAULT {algorithm id-sha256},
certHash Hash,
issuerSerial IssuerSerial OPTIONAL }
Hash ::= OCTET STRING
IssuerSerial ::= SEQUENCE {
issuer GeneralNames,

serialNumber CertificateSerialNumber }

m ESS was updated by [RFC5035] to add one-way hash algorithm
agility. Previously, the hash algorithm used to generate the reference to the
certificate used to sign the message was fixed to SHA-1. EssCertIDv2 allows the
signer to indicate any hash algorithm.

The signed-content-reference may be in either an inner or outer layer, and it
must be a signed attribute.

Security Labels

Large enterprises have security policies that address both physical and elec-
tronic security requirements. One requirement that has manifested itself
electronically is the marking of documents with information like company
confidential, highly confidential, or legal department use only. The security
label provides a mechanism to indicate these markings. The security policy, like
the certificate policy, is indicated with an object identifier, and it provides the
syntax and semantics for the remaining fields. The security-classification
indicates the classification of the message, say as highly confidential, via an
integer. The privacy-mark includes information not used in an access con-
trol decision. The security-categories are a little more complicated and
only necessary for complex security policies, but they are a way to provide
arbitrary categories, compartments, and caveats. [RFC3114] provides three
example company security policies. The security-label attribute is identified
by the id-aa-securityLabel object identifier, and it has the following syntax:

attr-securitylLabel ATTRIBUTE ::=
{ SecurityLabel IDENTIFIED BY id-aa-securityLabel }

id-aa-securityLabel OBJECT IDENTIFIER ::=
{ iso(1l) member-body(2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9)
smime (16) id-aa(2) 2 }

118 Partlll = Secure Email

ESSSecurityLabel ::= SET {
security-policy-identifier SecurityPolicyIdentifier,
security-classification SecurityClassification OPTIONAL,
privacy-mark ESSPrivacyMark OPTIONAL,
security-categories SecurityCategories OPTIONAL }

The security-label attribute may be in either an inner or outer layer, and it
must be a signed or authenticated attribute.

Equivalent Labels

Obviously, there are many security policies. Enterprises are allowed to define
their own. When two enterprises communicate a lot, they may wish to define
equivalencies between their security policies. The equivalent-labels attribute
allows enterprises to do just that. The equivalent-labels attribute is identified
by the id-aa-equivalentLabels object identifier, and it has the following
syntax:

attr-equivalentLabels ATTRIBUTE ::=
{ EquivalentLabels IDENTIFIED BY id-aa-equivalentLabels }

id-aa-equivalentLabels OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) id-aa(2) 9 }

EquivalentLabels ::= SEQUENCE OF ESSSecurityLabel

The equivalent-labels attribute may be in either an inner or outer layer, and
it must be a signed attribute.

Secure Mail Lists

The concept of a secure mail lists comes from the Mail List Agent (MLA)
defined by MSP and heavily used in the US DoD Defense Message System.
In that system, messages are signed and encrypted, and sometimes there
are many, many recipients. The processing power to generate thousands of
recipient tokens is quite significant, and it takes a very long time. To eliminate
this burden from the user’s email client, the MSP authors invented the MLA.
The originator sends one message to the MLA, and then the MLA generates
all the recipient tokens for the recipients, as shown in Figure 6-7.

Mail lists get interesting when there’s more than one MLA involved. These
are called nested mail lists. Since you want to avoid the case where the mail
lists end up sending messages in an endless loop, you also need to uniquely
identify the mail lists, indicate which MLAs have handled the message, and set

Chapter 6 = Protecting Email Message Contents

119

Recipient 1
QOriginator
Recipient n
Recipient 1
Originator —»
Recipient n

Figure 6-7 Mail List Agent

receipt policies. When a MLA is about to expand the message for its recipients,
it adds the ml-expansion-history attribute to provide this information. When
the next MLA gets the message, it examines the ml-expansion-history attribute
to detect and break loops. The ml-expansion-history attribute is identified
by the id-aa-mlExpansionHistory object identifier, and it has the following
syntax:

attr-mlExpansionHistory ATTRIBUTE ::=
{ MLExpansionHistory IDENTIFIED BY id-aa-mlExpansionHistory }

id-aa-mlExpandHistory OBJECT IDENTIFIER ::=
{ iso(1l) member-body (2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime (16) id-aa(2) 3}

MLExpansionHistory ::= SEQUENCE
SIZE (1..ub-ml-expansion-history) OF MLData

MLData ::= SEQUENCE {
maillListIdentifier EntityIdentifier,
expansionTime GeneralizedTime,
mlReceiptPolicy MLReceiptPolicy OPTIONAL }
EntityIdentifier ::= CHOICE {

issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier SubjectKeyIdentifier }

MLReceiptPolicy ::= CHOICE {
none [0] NULL,
insteadOf [1] SEQUENCE SIZE (1..MAX) OF GeneralNames,
inAdditionTo [2] SEQUENCE SIZE (1..MAX) OF GeneralNames }

ub-ml-expansion-history INTEGER ::= 64

The ml-expansion-history attribute may be in either an inner or outer layer,
and it must be a signed attribute.

120 Part lll = Secure Email

Algorithms

Algorithms supported by S/MIME have changed over time. Tables 6-2
through 6-5 provide a history of the hash, signature, key-encryption, and
content-encryption algorithms from S/MIME version 2 (v2) through the latest
proposed (soon to be approved) S/MIME documents. CMS, when it was origi-
nally published, also included algorithms, and they matched those in S/MIME
v3 specification. The algorithms were removed from CMS and placed in their
own RFC, [RFC3370], so that every time an algorithm was changed it wasn’t
necessary to perturb the baseline protocol document, which is much more
stable.

Table 6-2 Hash Algorithms

ALGORITHM
DOCUMENT SENDING RECEIVING
S/MIME v2 SHA-1 SHOULD SHA-1 MUST
MD5 MUST
S/MIME v3 SHA-1 MUST SHA-1 MUST
MD5 SHOULD
S/MIME v3.1 SHA-1 MUST SHA-1 MUST
MD5 SHOULD
S/MIME v3.2 SHA-256 MUST SHA-256 MUST
SHA-1 SHOULD- SHA-1 SHOULD-
MD5 SHOULD-
Table 6-3 Signature Algorithms
ALGORITHM
DOCUMENT SENDING RECEIVING
S/MIME v2 RSA MUST Same as sending
S/MIME v3 DSA MUST Same as Sending
RSA SHOULD
S/MIME v3.1 RSA with SHA-1 or DSA MUST
DSA with SHA-1 MUST RSA MUST
S/MIME v3.2 RSA with SHA-256 MUST Same as Sending

RSA with SHA-1 SHOULD-
RSA-PSS with SHA-256 SHOULD+
DSA with SHA-1 SHOULD-

RSA with MD5 SHOULD-

Chapter 6 = Protecting Email Message Contents

121

Table 6-4 Key Management

ALGORITHM
DOCUMENT SENDING RECEIVING
S/MIME v2 RSA MUST Same as sending
S/MIME v3 E-S D-H' MUST Same as Sending
RSA SHOULD
S/MIME v3.1 RSA MUST Same as Sending
E-S D-H! SHOULD
S/MIME v3.2 RSA MUST Same as Sending

RSA-OAEP SHOULD+
E-S D-H' SHOULD-

"There are two popular modes of Diffie-Hellman: Ephemeral-Static (E-S D-H) and Static-Static
(S-S D-H). When S-S D-H is used, both the originator and recipient have a static and certified
key pair. When E-S D-H is used, the recipient has a static certified key pair, but the originator
generates a new key pair for each message. It's called ephemeral because it's only used for that
one message.

Table 6-5 Content Encryption and Key Wrap

ALGORITHM
DOCUMENT SENDING RECEIVING
S/MIME v2 RC2 MUST Same as Sending
S/MIME v3 Triple-DES MUST Same as Sending
RC2 SHOULD
S/MIME v3.1 Triple-DES MUST Same as Sending
RC2 SHOULD

AES 128 CBC SHOULD
AES 192 CBC SHOULD
AES 256 CBC SHOULD

S/MIME v3.2 AES 128 CBC MUST Same as Sending
AES 192 CBC SHOULD+,
AES 256 CBC SHOULD+
Triple-DES SHOULD-

The switch from S/MIME v2 to v3 was done primarily because RSA Data
Security held patents on the signature algorithm. Patented technology in a
standard isn’t unheard of, but there were other unencumbered solutions avail-
able, namely DSA. Almost immediately after these patents expired, S/MIME
v3.1 was produced to return to the de facto standard algorithm. The proposed
update will move to a new hash algorithm.

122 Partlll » Secure Email

REQUIREMENTS TERMINOLOGY

[RFC2119] defines the terms that are used to indicate whether a protocol
element or algorithm needs to be implemented. The terms, which are
capitalized in Internet Drafts and RFCs, are:

MUST, SHALL, and REQUIRED. Implementation of this protocol element,
algorithm, and so on is an absolute requirement.

MUST NOT and SHALL NOT. Implementation of this protocol element,
algorithm, and so on is prohibited.

SHOULD and RECOMMENDED. Implementation of this protocol element,
algorithm, and so on can be ignored in certain scenarios. However, the
full consequences of not implementing it must be understood and care-
fully weighed before choosing to not implement it.

SHOULD NOT and NOT RECOMMEND. Implementation of this protocol
element, algorithm, and so on can be carried out in certain scenarios;
however, the full consequences of not implementing it must be under-
stood and carefully weighed before choosing to not implement it.

MAY and OPTIONAL. Implementation of this protocol element, algorithm,
and so on is up to individual implementors.

Protocol specifications are living documents. You may have deduced that
algorithms in the security protocol specifications get updated relatively often.
To provide additional information to implementers many RFCs have started to
use:

SHOULD+. This means the same things as SHOULD, but in the next version
of the RFC it will likely be changed to a MUST.

SHOULD-. This means the same things as SHOULD, but in the next version
of the RFC it will likely be changed to a MAY or removed.

MUST-. This means the same this as MUST, but in the next version of the
RFC it will likely not be a MUST.

All of this is very necessary so that implementors know what it is they need
to implement to achieve interoperable products from many different vendors.

Generating an S/MIME Message

The previous sections describe CMS and S/MIME. To recap, here’s S/MIME
v3.1 requirements for content types and attributes:

Content types. Compressed-data, data, enveloped-data, and signed-data
MUST be supported.

Attributes. Content-type, message-digest, signing-time, signing-
certificate, smime-capabilities, and smime-key-encryption-preference

Chapter 6 = Protecting Email Message Contents

123

SHOULD be supported. However, content-type and message-digest
MUST be supported if any others are supported because the others are
signed attributes.

The process to create an S/MIME message is defined in [RFC3851]:

m MIME type is prepared: Examples of MIME types include text, audio,
and video.

= MIME leaf parts are canonicalized: You might be asking yourself:
what’s canonicalization? It’s the process of making sure that there is
one and only one representation of data. This is very important in secu-
rity because we want to compare two copies of the data to make sure
that they use the same representation; the desired representation is the
canonical one.

= Transfer encoding is applied to MIME leaf parts: If you're wonder-
ing, a transfer encoding is a reversible transformation applied so that 8-bit
or binary data may be sent via a channel that only handles 7-bit data.
More information on transfer encodings can be found in Appendix C.

The next stage depends really on the selected services. In most cases, service
selection involves clicking on either a pen/lock button or ticking some boxes
in security settings. Many applications allow you to set defaults so you only
have to check the boxes once.

m Very few webmail providers support S/MIME. Many times they
advertise secure email, but they are probably referring to the security solutions

described in the next chapter. This is because the webmail server would need
access to the private key, so you would need significant confidence in the serer
and its operators. Most people would be very uncomfortable with the server
holding their private key. A few do support encrypted email, but it is password
based and both originator and recipients must use the same service provider.

Signed only. If an originator wishes to invoke authentication and
integrity services, then he or she has two choices (see Figure 6-8):

multipart/signed; application/pkcs7-signature. This option allows
the signer to include a signature and the cleartext so that those that
do not support digital signatures can still read the message; this is a
clear-signed message. This uses the same concept as the PEM MIC-
CLEAR message.

application/pkcs7-mime; smime-type=signedbData. This option is MIME
encoded and does not include the cleartext. Usually recipients can tell
this was chosen because you need to click on a View Message button to
read the message. This uses the same concept as the PEM MIC-ONLY
message.

124 Part lll = Secure Email

Encrypted only. If an originator wishes to invoke confidentiality services,
then he or she should choose this option. It uses enveloped-data.

Signed and encrypted. If an originator wishes to invoke authentication,
integrity, and confidentiality, then he or she should choose this option.
An enveloped-data wraps either one of the two signature options.

Certificates only. If an originator wishes to convey just the certificates
or CRLs, then they choose this option. The signed-data content type
includes the certificate and CRLs fields they wish to send to the recipi-
ent, but they omit the signerInfos field. The application/pkcs7-mime;
smime-type=certsOnly is used.

Clear-signing

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=sha256; boundary=boundary42

--boundary42
Content-Type: text/plain

This format is preferred. Recipients that cannot verify signatures or
decode PKCS#7 ASN.1 objects can still read the message content.

--boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbBIHGAVQpfyF467GhIGIHTYT6
4VQpfyF467GhIGFHFYT6]H77n8HHGghyHhHUujhJh756tbBOHGTrfvbn;
n8HHGTrfvhJhjH776tbBIHG4VQbnj7567GhIGIHfYT6ghyHhHUUjpfyF4
7GhIGfHfYT64VQbnj756

--boundary42--

Unclear-signing

Content-Type: application/pkcs7-mime; smime-type=signed-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUUjpfyF4f8HHG TrfvhJhjH776tbBOHGAVQbN]7
77n8HHGTOHGAVQpfyF467GhIGFHFYT6rfvbnj756tbBghyHhHUUjhJhiH
HUujhJhdVQpfyF467GhIGIHFYGTrivbniT6jH7756tbBIH7n8HHGghyHh
6YT64V0GhIGTHfQbNj75

Figure 6-8 Clear- and unclear-signed messages

Protecting Email Passwords,
Headers, and Commands

In Chapter 6, you learned how to secure an email message that is sent from
the originator to a list of recipients. This chapter explains security for the other
parts of the email system — namely protecting the network. If you're using
S/MIME to protect the content, then there are two network security issues:

1. Making sure the password that you use to access your mail server is not
disclosed. If you don’t protect it, then you may be sending secure email,
but some spammer could also be using your account to blast out Viagra
emails or worse.

2. Protecting the headers from disclosure. You can protect your email
headers from originator to recipients (called end-to-end) only if you con-
trol the entire network and you run encryption between all the servers
as well as client-server connections. However, you probably don’t con-
trol the entire network, so you should protect your communication with
your server, and then hope the recipients of your email do the same.

There are two popular techniques for performing these functions: scrambling
your password and encrypting the link between you and your mail server.
This chapter will explain both of these possible solutions.

Unlike securing email contents, interoperability between Alice and Bob is not
required on an end-to-end basis. Say that Alice secures the SMTP commands
sent to her server with protocol X, but Bob protects the SMTP commands sent
to his server with security protocol Y. Since each interacts with their own
server, each can use different protocols without any interoperability concerns.
If they’'re using the same server, the server could support both protocol X and
protocol Y, and Alice and Bob could still have client software that supports
only one of the protocols.

125

126 Partlll » Secure Email

Password Scramble

Scrambling your password is something you can do to thwart attackers, but
if you don’t support encryption, how do you do it? There are two popular
methods, while neither method requires encryption, both methods require that
the client and server share a secret. Neither method sends the password in the
clear over the connection. Both methods use the concept of a server challenge
followed by a client response, which is referred to as a challenge-response
authentication mechanism:

AUTH Command. The SMTP Service Extension for Authentication [RFC
2554] defines an SMTP command called “auTts”. It starts with the server
indicating that it supports one both of these mechanisms. The two ver-
sions supported are:

CRAM-MDS5. Listing 7-1 shows the same interaction in Listing 2-1, but
extended with server’s AuTH crRaM-MD5 command. This new server com-
mand indicates that it supports CRAM-MD5, where CRAM stands
for Challenge-Response Authentication Mechanism. The client takes
the server up on its offer and returns an AuTH cRaM-MD5 command.
The server returns a challenge, which is random data. The client then
responds with its username, a space, and a digest value, all of which is
base64 encoded. The digest is the output of the HMAC with the MD5
hash function [RFC2104] using the shared secret and the server’s ran-
dom data as inputs. When the server receives the client’s response,
it matches the digest value presented to the one it computes over the
same data. If the two match, then access is granted.

: 220 pleasantville.ca.us

: EHLO washington.dc.us

: 250-pleasantville.ca.us greets washington.dc.us

: 250-8BITMIME

: 250-SIZE

: 250-DSN

: 250 HELP

: 250 AUTH CRAM-MD5

: AUTH CRAM-MD5

: 334 PENCeUxXFREJoUONnbmhNWitOMjNGNndAZWx3b29kILmlubm9zb2Z0LmNvbT4=
: ZnJ1ZCA5ZTk1YWV1IMD1 jNDBhZ]jJiODRhMGMyYjNiYmF1Nzg227Q==
: 235 Authentication successful

: MAIL FROM: <aadams@washington.dc.us>

: 250 sender <aadams@washington.dc.us> OK

QN QO nh QN QN n N N n hh QN

: RCPT TO: <bburton@pleasantville.ca.us>

Listing 7-1 AUTH SMTP service extension interaction

Chapter 7 = Protecting Email Passwords, Headers, and Commands

127

: 250 recipient <bburton@pleasantville.ca.us> OK
: RCPT TO: <mrogers@pleasantville.ca.us>

: 250 recipient <mrogers@pleasantville.ca.us> OK
: DATA

: 354 Start mail input; end with <CRLF>.<CRLF>

: Date: Mon, 11 Feb 2008 09:55:06 -0400

: From: Alice <aadams@washington.dc.us>

: Subject: Meeting Date and Time

: To: Bob <bburton@pleasantville.ca.us>

: Cc: Matt <mrogers@pleasantville.ca.us>

: Message-ID: <1234@washington.dc.us>

: Bob,

: Can we meet on Tuesday 1 April 20087
: Alice

:6K

: QUIT
: 221 pleasantville.ca.us closing transmission channel

n O0On o000 nnaQnN

Listing 7-1 (continued)

DIGEST-MD5. This signaling mechanism for DIGEST-MD5 [RFC2831]
is basically the same as the CRAM-MD5 mechanism except that the
server indicates AuTH DIGEST-MD5. The real difference is the information
passed in the challenge. The information passed is much richer and
allows for authentication at a later time using a previous challenge-
response result.

IMAP AUTHENTICATE. IMAP uses the auTHENTICATE command [RFC
2195] in much the same way as auTH cRAM-MD5 command; obviously, the
connection is to an IMAP server and not an SMTP server. The only real
difference is the random data returned is a timestamp.

Connection Security

Protecting the link between your MUA and MTA is a better choice than
scrambling your password because it not only protects your password from
unauthorized disclosure but also protects the email header, at least on submis-
sion, from unauthorized disclosure. If you don’t control the network (i.e., own
and operate the MTAs) and you can’t force the recipient to use these same mech-
anisms (perhaps because he or she doesn’t work for the same enterprise), then

128

Part Il » Secure Email

your headers are going to be exposed to someone at some point. This section
addresses two of the most popular choices for providing connection security.

Transport Layer Security

The most readily available solution is to use the Transport Layer Security (TLS),
or the Secure Sockets Layer (SSL), protocol. Many ISPs support this solution, and
using it simply becomes a matter of you checking some boxes and changing
some port settings in your email application. As always, the devil is in the
details, as you'll see. For complete coverage of SSL and TLS, we recommend
Eric Rescorla’s SSL and TLS: Designing and Building Secure Systems [RESC].

Netscape originally published the SSL [SSL] specification. Attempting to
gain broader acceptance, Netscape released the specifications to the IETF. The
IETF process does not simply publish specifications developed elsewhere, so
the IETF made several improvements. The results are the TLS Version 1.0
[RFC2246, RFC3546] specification, and later, the TLS Version 1.1 [RFC4346,
RFC4366] specification.” The IETF also published [RFC3207] to indicate how
to use TLS with SMTP and [RFC2595] to indicate how to use TLS with IMAP
and POP.

The goal of both SSL and TLS is to provide authentication, integrity, and
confidentiality between two communicating applications. The protocols are
composed of two layers: the Handshake Protocol and the Record Protocol.
The Handshake Protocol authenticates the server and the client, negotiates an
encryption algorithm, and establishes cryptographic keys before any applica-
tion protocol data is transferred. The Record Protocol encapsulates and protects
higher-level protocols, including the Handshake Protocol. The Record Proto-
col depends on a reliable, stream-oriented transport protocol such as TCP
[RFC793]. For this reason, SSL and TLS cannot easily provide protection
for UDP [RFC768] or connectionless application protocols.” SSL and TLS are
application-protocol independent, so any stream-oriented application protocol
can transparently operate on top of SSL or TLS. Both SSL and TLS provide
stream-oriented security with the following three properties:

Authentication. The identity of the peer is confirmed. The Handshake
Protocol uses certificates and digital signature verification to confirm the
identity of the remote application.

*Some differences between SSL and TLS are to be expected, such as changing version numbers
and removing nonpublic algorithms; others are more fundamental, such as changing the message
authentication procedure, adding additional message types, and changing key material gener-
ation procedures. Both result in noninteroperable solutions. Although they don’t interoperate,
the TLS 1.1, TLS 1.0, and SSL 3.0 implementations support negotiation to the highest version
supported by both parties. The IETF is currently developing TLS 1.2 [TLS12].

*The Datagram Transport Layer Security (DTLS) protocol [RFC4347] was developed to handle
these situations.

Chapter 7 = Protecting Email Passwords, Headers, and Commands

129

Integrity. The application protocol data is protected from undetected
modification. The Record Protocol employs an integrity check value,
computed by using HMAC, to confirm that the data stream is unaltered.

Confidentiality. The connection is private. After the Handshake Protocol
establishes a symmetric encryption key, the Record Protocol encrypts the
remainder of the session.

Both SSL and TLS can provide mutual authentication. However, this is not
the way that they are most commonly used. Usually, SSL and TLS provide
certificate-based authentication of the server to the client, then some other
means of authenticating the client is employed over the encrypted session. For
example, the server may ask the client to provide a username and password
or a valid credit card number and expiration date.

Handshake Protocol

The Handshake Protocol is composed of three subprotocols that allow peers
to agree upon security parameters for the Record Protocol, authenticate them-
selves, instantiate negotiated security parameters, and report error conditions
to each other.

The Handshake Protocol is responsible for negotiating a session for the
Record Protocol, which consists of the following items:

Session identifier. This is an arbitrary byte sequence chosen by the server
to identify a session.

Peer certificate. This is an X.509 certificate of the peer. This element may
be absent if authentication is not performed.

Compression method. This is the algorithm used to compress data prior
to encryption.

Cipher spec. This specifies the bulk data encryption algorithm (such as
Triple DES) and the HMAC one-way hash algorithm (such as SHA-1). It
also defines cryptographic attributes (such as hash size).

Master secret. This is a large secret value shared between the client and
server.

Is resumable. This is a flag indicating whether the master secret for this
session can be used to initiate new sessions.

These items are then used to set Record Protocol security parameters. The
resumption feature allows many protected connections to be established from
the single handshake. This feature is used to reduce the overhead and is
especially important when a client and server have several short connections.

The cryptographic parameters are produced by the Handshake Proto-
col. When a client and server first start communicating, they agree on a

130 Part Il = Secure Email

protocol version, select cryptographic algorithms, optionally authenticate each
other, and use public key cryptography to establish shared secret values. The
Handshake Protocol involves the following six steps. Figure 13-7 illustrates
the protocol messages that implement these six steps.

1. Exchange hello messages to negotiate algorithms and exchange random
values.

2. Exchange cryptographic parameters to agree on the premaster secret.

3. Optionally exchange certificates and cryptographic information to
authenticate the client and server to each other.

4. Generate a master secret from the premaster secret and exchanged ran-
dom values.

5. Provide security parameters to the Record Protocol layer.
6. Confirm that the peer has calculated the same security parameters and
that the handshake occurred without tampering.

To improve performance by avoiding pipeline stalls, the change cipher spec
message is an independent TLS Protocol content type, and it is not actually a
TLS Handshake Protocol message. Figure 7-1 includes the change cipher spec
message to show the logical flow.

))

ClientHello

v

ServerHello
[Certificate]
[ServerKeyExchange]
[CertificateRequest]
ServerHelloDone

A

[Certificate]
ClientKeyExchange
[CertificateVerify]
{ChangeCipherSpec}
Finished

Alice BobServer

v

{ChangeCipherSpec}
Finished

A

Protected Application Data

— —

v

Legend:
[1 Optional Handshake Protocol message
{} Not really part of the Handshake Protocol

Figure 7-1 TLS Handshake Protocol

Chapter 7 = Protecting Email Passwords, Headers, and Commands

131

When the client wants to resume a previous session or duplicate an existing
session, the client sends a client hello message that includes the Session ID of
the session to be resumed. If the server still has the session parameters in its
cache and the server is willing to reestablish the connection, the server sends
a server hello message with the same Session ID value. At this point, both the
client and server send change cipher spec messages and finished messages.

One should not rely on the Handshake Protocol to always negotiate the
strongest possible protection for a connection between two peers. Eve, employ-
ing a man-in-the-middle attack, may be able to convince two peers to select an
insecure set of parameters. For example, Eve might cause the peers to negotiate
an unauthenticated connection. To avoid man-in-the-middle attacks, the appli-
cation protocol must be cognizant of its security requirements and not transmit
on the protected stream unless those requirements are met. Of course, this is in
conflict with transparently layering applications on SSL and TLS. To preserve
transparency, all of the offered alternatives in the negotiation should meet
the application protocol security requirements. The SSL and TLS protocols are
secure to the level of the cipher suite that is selected. If an AES-128 symmetric
key is transferred using a 2048-bit RSA key from a validated certificate, then
one can expect very reasonable cryptographic security.

The certificate and key exchange messages convey the data necessary to
establish the premaster secret. When RSA is employed, the client generates
the random premaster secret value and encrypts it in the server’s RSA pub-
lic key. When Diffie-Hellman is employed, the client and server exchange
public keys, then the result of the classic Diffie-Hellman key agreement
computation is used as the premaster secret.

In TLS 1.0 and TLS 1.1, a pseudorandom function (PRF) built from SHA-1
[FIPS180] and MD5 [RFC1321] is used to generate the master secret and
symmetric keying material. Two different one-way hash functions are used
to ensure security even if one of the algorithms is found to have a flaw. The
problem is that both of them have been shown to weaker than expected. It is
not a catastrophic failure by any mean, and this concern is being addressed
by the IETF in the TLS 1.2 specification. The first use of the PRF generates
the master secret from the premaster secret and the random values from
the client hello message and the server hello message. The second use of the
PRF generates two symmetric keys, two initialization vectors (IVs), and two
Message Authentication Code (MAC) secret values from the master secret and
the random values from the client hello message and the server hello message.
In a resumed session, the master secret from the parent session is used, but
new random values are employed, resulting in different keying material.

The Record Protocol uses one symmetric key, one IV, and one MAC secret
value to protect the traffic flowing from the client to the server. The Record
Protocol uses the other symmetric key, the other IV, and the other MAC secret
value to protect the traffic flowing from the server to the client. Obviously,

132

Part Ill » Secure Email

both client and server need all six secret values for correct operation of the
Record Protocol.

Record Protocol

The Record Protocol is composed of several sublayers. It processes application
protocol data by fragmenting the data into manageable blocks, optionally
compressing the data, computing the integrity check value, encrypting the
output from the previous sublayer, and finally transmitting the result. Received
data is processed in the opposite order. It is decrypted, integrity checked,
optionally decompressed, reassembled, and then delivered to the application.

The Fragmentation sublayer breaks information into records. A record is
16,384 bytes or less. Application protocol message boundaries may not be
preserved. Multiple application protocol messages of the same content type
may be aggregated into a single record; also, a single application protocol
message may be fragmented into several records.

The Compression sublayer performs compression and decompression on
all fragments. Initially, the compression method is null, but a real compression
algorithm can be negotiated. Compression must not lose data.

The Payload Protection sublayer computes an integrity check value on the
compressed record and then encrypts the compressed record and the integrity
check value. The integrity check value is referred to as a MAC, even though a
keyed hash (HMAC) is used. On reception, decryption recovers the plaintext,
and the MAC is recomputed to ensure the integrity of the plaintext. The MAC
computation also includes an implicit sequence number to detect missing,
extra, or repeated compressed records.

When encryption employs a block cipher with a mode that requires an
IV, such as Cipher Block Chaining (CBC) mode, the IV for the first record is
generated when the security parameters are set by the Handshake Protocol.
The IV for subsequent records is the last ciphertext block from the previous
record. This technique avoids the transmission of explicit IVs.

Figure 7-2 shows a TLS Record Protocol data unit with all of the sublayer
protocol control information. The Payload Protection sublayer includes a
header and a trailer; the pad and pad length fields are only present when
a block cipher is used for encryption. There is no need for padding when a
stream cipher, such as RC4, is used.

Protection Head: Compression: Fragmentation: Application Protection Tail:
ContentType ContentType ContentType Protocol MAC
ProtocolVersion ProtocolVersion ProtocolVersion Data Pad (Optional)
Length Length Length Pad Length (Optional)

Figure 7-2 TLS Record Protocol

Chapter 7 » Protecting Email Passwords, Headers, and Commands

133

IPsec

While TLS provides a publicly and readily available connection security
protocol, the other common approach to solve connection security is IPsec.
Currently though, IPsec is really only available to those who own and control
their network because it is not offered by most ISPs yet.

IPsec provides security for individual IP (Layer 3) datagrams; all Internet
traffic is carried by IP datagrams. IPsec protects communication from one
machine to another, or it protects communications from one border of an
organizational enclave to another. IPsec is the security protocol used to imple-
ment virtual private networks (VPNs). There were many proprietary solutions
developed before the IETF began development of the IPsec specification. Many
of these proprietary solutions were studied in the development of IPsec, but
none was selected. Rather, IPsec is a hybrid of the many proprietary solutions.
The result is a comprehensive, but complex, IP security architecture.

IPsec is described in a series of eight documents. The series begins with an
overview of the IPsec architecture [RFC4301]. Security associations (SAs) form
the foundation of the cryptographic security services provided by IPsec. A
security association is shared symmetric keying material and attributes that
govern its use. Next, the Authentication Header (AH) is specified [RFC4302,
RFC4304, RFC4305]. The AH protocol provides IP datagram authentication
and integrity, and AH optionally provides anti-replay protection. Next, the
Encapsulating Security Payload (ESP) is specified [RFC4303, RFC4304, RFC4305].
The ESP protocol may provide IP datagram confidentiality, authentication,
and integrity, and ESP optionally provides limited address hiding and/or
anti-replay protection. Finally, the Internet Key Exchange (IKE) is specified
[RFC4306, RFC4307]. The IKE protocol provides security associations for AH
and ESP. Basically, IKE establishes symmetric keying material and negotiates
the attributes that will govern the use of that keying material.

It makes it easy to configure IPsec, some shorthand conventions to select the
most commonly used cryptographic algorithms were defined in [RFC4308].

There are several ways to implement IPsec in a host, router, or firewall.
An IPsec-enabled router or firewall is called a security gateway. Common
implementation alternatives include:

Integration into the native stack. Many operating system vendors will
integrate IPsec capabilities directly into their IP stack. Access to the IP
source code is needed, so third-party vendors cannot use this approach.
In many popular operating systems, this code resides in the kernel.

Replacement stack. A third-party vendor may write a complete replace-
ment for the original stack that includes IPsec capabilities in addition to
the original communication capabilities. Significant effort is needed to

134 Partlll = Secure Email

recreate the native IP capabilities, and the operating system architecture
may make the installation quite difficult.

Bump-in-the-stack implementations. A third-party vendor may insert an
IPsec implementation into the native IP stack. IPsec is inserted between
the native IP and the local network drivers. Source code access for the
IP stack is not required, making this implementation approach espe-
cially appropriate for legacy systems. Using APIs can make this approach
much more straightforward and avoids the tedious task of reverse engi-
neering module interfaces.

Bump-in-the-wire implementations. Outboard cryptographic processors
are commonly used in military and financial industry network secu-
rity systems. Bump-in-the-wire implementations are usually dual-port
devices with high-quality IPsec capabilities and minimal communica-
tions capabilities. The bump-in-the-wire device usually has an IP address
of its own. When providing security services for a single host, the bump-
in-the-wire device may be quite analogous to a bump-in-the-stack
implementation. However, when providing security services for a router
or firewall, the bump-in-the-wire device must operate as a security gate-
way.

Security Associations

Security associations are simplex — they apply to communication in a single
direction. Two security associations are needed to secure normal bidirectional
communications: one for incoming datagrams and one for outgoing datagrams.
The security association attributes vary for each protected connection. The
security association can name the security protocol (AH or ESP), specify
symmetric algorithms and their mode of operation, include authentication
keys and encryption keys, define key validity periods, and identify peer
IP addresses. These security association attributes direct the processing of
incoming security protocol packets, and they direct the security protocol
processing for outgoing packets.

A security association is uniquely identified by three items: a security
parameter index (SPI), a destination IP address, and a security protocol identifier
(identifying either AH or ESP). The SPI is an identifier that is carried in AH
and ESP to identify the security association. The destination IP address
identifies the IPsec peer. In principle, the destination IP address may be a
unicast address, a broadcast address, or a multicast group address. However,
IKE is currently defined only for unicast addresses. Support for broadcast
addresses and multicast group addresses presently requires manual key
distribution to all destinations.

Chapter 7 = Protecting Email Passwords, Headers, and Commands

135

Two types of security associations are defined for both AH and ESP: transport
mode and tunnel mode. Table 7-1 shows when each type of security association
must be employed. Figure 7-3 shows two protocol stacks, one employing
transport mode and the other employing tunnel mode.

Table 7-1 Security Association Type Used for Different Communicating Peers

HOST ROUTER OR FIREWALL

Host Transport mode or tunnel mode Tunnel mode
Router or Firewall Tunnel mode Tunnel mode
Application
Protocol
_— Transport
Application
Protocol
Protocol (TGP, UDP, etc)
Transport Internet
Protocol Protocol
(TCP, UDP, etc) (IPv4, IPv6)
Security Security
Protocol Protocol
(AH or ESP) (AH or ESP)
Internet Internet
Protocol Protocol
(IPv4, IPv6) (IPv4, IPv6)
Data Link Data Link
Protocol Protocol
(Ethernet, etc) (Ethernet, etc)

Transport Mode
Protocol Stack

Tunnel Mode
Protocol Stack

Figure 7-3 Transport mode and tunnel mode protocol stacks

A transport mode security association provides protection between two
hosts. In transport mode, the AH or ESP security protocol header appears
between the IP header and the higher-layer protocol such as TCP or UDP.
Transport mode ESP protects only the higher-layer protocol; it does not protect
any part of the IP header. Transport mode AH protects the higher-layer
protocol and also protects selected portions of the IP header.

136 Partlll » Secure Email

A tunnel mode security association provides protection to an IP tunnel.
If either end of a security association is a router or firewall, a tunnel mode
security association must be employed. Tunnel mode security associations
avoid potential problems with fragmentation and reassembly of AH and ESP
packets and problems when multiple paths exist to the same destination
behind the IPsec-aware router or firewall. In tunnel mode, the AH or ESP
security protocol header appears between two IP headers. The outer IP header
specifies the IPsec processing destination, and the inner IP header specifies the
ultimate destination for the unprotected datagram. Tunnel mode ESP protects
the inner IP header and higher-layer protocol; it does not protect any part
of the outer IP header. Tunnel mode AH protects the inner IP header, the
higher-layer protocol, and selected portions of the outer IP header.

Authentication Header

The Authentication Header (AH) security protocol provides integrity for an
individual IP datagram, and it authenticates the datagram source, either by
the source’s IP address or by the end-system’s domain name. AH provides
integrity for selected portions of the IP header in addition to the higher-layer
protocol. AH also offers anti-replay service (really a partial sequence integrity
service) to the receiver. This service helps counter denial of service attacks.
AH does not provide confidentiality.

Originally, the AH integrity check value was computed using either a
MD?5 or a SHA-1 one-way hash value combined with a symmetric shared
secret (i.e, HMAC MD5 or HMAC SHA-1). It’s been updated and now
HMAC MD?5 is downgraded to MAY, HMAC SHA-1 remains MUST, and
AES-XCBC-MAC [RFC3566] has been added as SHOULD+. This AES variation
includes extensions to protect variable length messages.

Figure 7-4 illustrates a typical AH protocol data unit. AH contains the
following five fields:

Next Header. The next header field tells which higher-layer protocol is
encapsulated by AH. In tunnel mode, the next header field will always
indicate IP (either IPv4 or IPv6). In transport mode, the next header field
will usually indicate TCP, UDP, or ICMP.

Length. The length field tells the size of the AH protocol header. The
size depends on the one-way hash function employed since the integrity
check value is contained in the only variable length field.

SPI. The security parameter index (SPI) field contains a 32-bit arbitrary
value that identifies the security association. The SPI and the destination
IP address uniquely identify the AH security association for this data-
gram.

Chapter 7 = Protecting Email Passwords, Headers, and Commands

137

Sequence Number. The sequence number field contains the anti-replay
sequence number. It contains an unsigned 32-bit monotonically increas-
ing counter value. The sender must include this value; the receiver may
either process it or ignore it.

Authentication Data. The authentication data field contains the integrity
check value for this datagram. The field is variable length, but it must be
a multiple of 32 bits in length.

. L’:gi:;?l Authentication T;:’(;z’;z‘: Application
(1P, 1PVE) Header (TCP, UDP, etc) Protocol

!

Next Header

Length

Reserved (Must be zero)

SPI (Security Parameters Index)

Sequence Number

Authentication Data
(Multiples of 32 bits)

Figure 7-4 AH protocol header

On transmission, the sequence number is incremented, and then portions
of the IP header and the higher-layer protocol are hashed along with the
symmetric shared secret to create the integrity check value. On reception,
the same calculation is performed. If the calculated integrity check value does
not match the one received in the AH protocol, the datagram is discarded.
Also, if the security association indicates that the anti-replay facility is in use,
then the sequence number must fall within the expected range and it must not
duplicate any prior value. If either check fails, the datagram is discarded.

Encapsulating Security Payload

The Encapsulating Security Payload (ESP) protocol can provide confidentiality,
authentication, and integrity. ESP provides confidentiality by encrypting the
payload (and part of the ESP Header and ESP Trailer). The strength of
the confidentiality service depends primarily on the encryption algorithm
employed. ESP provides authentication and integrity using an integrity check
value (just like AH). Although both confidentiality and authentication (which

138

Part Il » Secure Email

encompasses integrity) are optional, at least one of them must be provided in
each ESP security association. If authentication is used, an anti-replay service
with the same features as the AH anti-replay service is available. ESP provides
narrower authentication and integrity protection than does AH. The IP header
that carries the ESP header is not covered by the integrity check value.

If tunnel mode ESP using encryption is active between two security gate-
ways, then partial traffic flow confidentiality is provided. The use of tunnel
mode encrypts the inner IP headers, concealing the identities of the ultimate
traffic source and destination. However, the addresses of the security gate-
ways are clearly available. Further, the truly paranoid can employ ESP payload
padding to hide the size of the datagrams, somewhat concealing the external
characteristics of the traffic.

Originally, either DES or Triple DES could be used for encryption. ESP has
been updated since, so that DES is SHOULD NOT, Triple DES is SHOULD-,
AES-CBC with 128 bit keys is SHOULD+, and AES-CTR is SHOULD.

Originally, the ESP integrity check value was computed using either a MD5
or a SHA-1 one-way hash value combined with a symmetric shared secret (i.e.,
HMAC MD5 or HMAC SHA-1). It’s been updated, and HMAC MD5 has been
downgraded to MAY, HMAC SHA-1 remains MUST, and AES-XCBC-MAC
[RFC3566] was added as SHOULD+-.

Figure 7-5 illustrates a typical ESP protocol data unit. ESP includes a header
and a trailer. The ESP Header contains two fields:

SPI. The security parameter index (SPI) field contains a 32-bit arbitrary
value that identifies the security association. The SPI and the destination
IP address uniquely identify the ESP security association for this data-
gram.

Sequence Number. The sequence number field contains the anti-replay
sequence number. It contains an unsigned 32-bit monotonically increas-
ing counter value. The sender must include this value; the receiver may
either process it or ignore it.

The ESP Trailer contains four fields:

Padding. The padding field ensures that the size of the data to be encryp-
ted is a multiple of the cryptographic block size and that the next header
field ends on a 32-bit boundary.

Pad Length. The length field tells the size of the padding. The size
depends on the encryption algorithm employed and the extent of traffic
flow confidentiality that is desired.

Next Header. The next header field tells which higher-layer protocol is
encapsulated by ESP. In tunnel mode, the next header field will always
indicate IP (either IPv4 or IPv6). In transport mode, the next header field
will usually indicate TCP, UDP, or ICMP.

Chapter 7 = Protecting Email Passwords, Headers, and Commands

139

Authentication Data. The authentication data field contains the integrity
check value for this datagram. The field is a variable length, but it must
be a multiple of 32 bits in length. If authentication and integrity are not
desired, then the authentication data field is absent (or zero bits long).

Internet Encapsulating Transport Auplication Encapsulating
" Protocol Security Payload Protocol Ilj’l:otocol Security Payload
(IPv4, IPv6) (ESP) Header (TCP, UDP, etc) (ESP) Trailer
SPI (Security Parameters Index)
Sequence Number
v
Padding (0 to 255 bits)
Pad Length Next Header

Authentication Data
(Multiples of 32 hits)

Figure 7-5 ESP protocol header and trailer

On transmission, the sequence number is incremented, and then the ESP
Header, the higher-layer protocol, and the ESP Trailer, with the exception of
the authentication data, are hashed along with the symmetric shared secret
to create the integrity check value. Next, the higher-layer protocol and ESP
Trailer, except the authentication data, are encrypted. If an IV is needed, it is
carried as a prefix to the ciphertext. On reception, decryption is performed, and
then the same integrity check value calculation is performed. If the calculated
integrity check value does not match the one received in the ESP trailer,
then the datagram is discarded. Also, if the security association indicates that
the anti-replay facility is in use, then the sequence number must fall within the
expected range and it must not duplicate any prior value. If either check fails,
then the datagram is discarded.

Internet Key Exchange (IKE)

Widespread use of IPsec requires scalable, automated security association
management. The on-demand creation of security associations and the

140

Part Ill » Secure Email

anti-replay features of AH and ESP require an automated solution. The Inter-
net Key Exchange (IKE) protocol is the automated solution. IKEv1 [REC2407,
RFC2409] is a subset of ISAKMP [RFC2408] and OAKLEY [RFC2412].

The Internet Security Association and Key Management Protocol (ISAKMP)
is a complex and comprehensive key management protocol. ISAKMP provides
a cryptographic, mechanism-independent authentication and key exchange
framework. IKEv1 selects a core set of features from ISAKMP and selects
OAKLEY as the means for symmetric key establishment.

IKEv1 uses OAKLEY to establish a shared symmetric key between two IPsec
implementations. OAKLEY includes a variant of Diffie-Hellman key agree-
ment. OAKLEY key determination establishes an initial security association,
and then allows a more lightweight exchange to establish subsequent security
associations.

IKEv1 operates in two phases. The first phase establishes an authenticated
and encrypted channel. This creates two IKEv1 security associations, one for
communication in each direction. DSA is usually used to provide authenti-
cation in the first phase. In both cases, certificates are needed to bind the
identity of the remote IPsec implementation to the public key. The second
phase establishes one or more security associations for AH and ESP.

The idea of IKE was well liked by the IETF IPsec Working Group and the
people developing security solutions relying on IPsec, but IKEv1 was consid-
ered too complicated. IKEvl was described in four documents. Developers
wanted a protocol that was as simple and straightforward as possible, and the
result is IKEv2, which is defined in one document for the protocol [RFC4036]
and one for the algorithms [RFC4307]. This split was done so that the algo-
rithms could be changed over time without touching the protocol specification
at all. The biggest change was to reduce the complexity; with IKEv2 only four
messages are needed to establish the SA, whereas IKEv1 took eight messages
to set up the SA. There were many changes, but the most significant ones are:

= Changed the IKEv2 protecting cryptographic syntax be similar to that
used in ESP

m Removed domain of interpretation (DOI), situation (SIT), and label
domain identifier fields

m Added support for Network Address Translation (NAT) and the Extensible
Authentication Protocol (EAP)

m Reduced the number of error states

m Fixed cryptographic weakness

Tokens and Hardware
Security Modules

One of the main themes of this book is the protection of your symmetric keys
and private keys, as well as the reliance on infrastructure components to do
this as well. We're not putting the discussion off any further.

The term token (and in some situations the term credential) describes a
wide variety of devices that aid authentication in one way or another. Some
tokens are hardware devices, while some are software programs. Some tokens
support PKI operations, while others merely store PKI information, especially
private keys. Some tokens provide tamper resistance, while others do not.
We're going to limit our discussion to tokens that support cryptographic
operations either by storing cryptographic information such as keys and
certificates or by performing cryptographic operations. As a result, we’re not
discussing tokens such as RSA Security’s SecurelD that rely on a time-based
authentication mechanism to authenticate the token holder. Likewise, we're
not discussing tokens such as VeriSign’s Unified Authentication tokens, which
rely on a shared secret and a challenge-response authentication protocol to
authenticate the token holder. These authentication tokens have an important
role in network security, but they do not support the protection of PKI-related
secrets needed to secure email.

Technically, a token can be used to protect both user and infrastructure
keys, but the term hardware security module (HSM) is very often used when
talking about a device that stores and protects infrastructure private keys. The
main difference between tokens and HSMs is portability. A token is a small
device that is easily portable, whereas an HSM shouldn’t be. Why? Important
infrastructure keys should be intentionally less portable, making them much
harder to steal.

143

144 PartIV » Tokens

A second difference is that HSMs need to be faster. Infrastructure compo-
nents need to perform many, many more cryptographic operations compared
to a single user, so it follows that the infrastructure operations need to be
accelerated. Think of the CA that needs to support a million users: The number
of hash and signature operations per day that the CA performs will greatly
outnumber the operations per day of even the most advanced single power
user. HSMs aren’t restricted to infrastructure components, but their cost makes
them impractical for deployment for most single users.

This chapter will explain the evaluation criteria for selecting tokens and
HSMs. We're not going to explain the microprocessor design of either the
tokens or the HSMs in great detail; instead, we're going to try to arm you with
the knowledge to ask the right questions when you're evaluating products.
This chapter also discussions popular application programming interfaces
(APIs) that are required to make use of the keys stored in tokens and HSMs.

Evaluation Criteria

Before we get in to the details of tokens and HSMs, it’s a good idea to explain
the jargon associated with them because it will help you understand the
marketing literature. There are two sets of jargon that shouldn’t be confused.

The first set of jargon comes from the NIST FIPS 140-2 [FIPS140], which
we mentioned briefly in Chapter 5. [FIPS140] provides requirements for
cryptographic modules and defines ““requirements for four security levels
for cryptographic modules to provide for a wide spectrum of data sensitivity
(e.g., low value administrative data, million dollar funds transfers, and life
protecting data) and a diversity of application environments (e.g., a guarded
facility, an office, and a completely unprotected location).” There are three
important things to note here:

m Conformance to FIPS 140-2 does not ensure the security of the overall
system. This is a warning to make sure that you pick the right level for
the information you are trying to protect. Picking a Level 1 software
module to protect a Fortune 500 company’s CA keys is not prudent.

m Using a validated module does not ensure the security of the overall sys-
tem. That is, the cryptographic module is one component in an overall
system. Make sure that you give adequate attention to the other com-
ponents too. There are any number of secure products that have been
deployed in an insecure manner. A good, strong product implemented
incorrectly is just a waste of money. And, it provides a false sense of
security.

Chapter 8 » Tokens and Hardware Security Modules

145

m FIPS 140-2 evaluated products may have features that were not tested in
the evaluation. Beware of these features because you may not know how

well they actually work.

The requirements address eleven areas of cryptographic module design:
module specification; cryptographic module ports and interfaces; roles, ser-
vices, and authentication; finite state models; physical security; operational
environment; cryptographic environment; cryptographic key management;
electromagnetic interference (EMI) and electromagnetic compatibility (EMC);
self-tests; design assurance; and mitigation of other attacks. In general, the

requirements increase as the FIPS 140-2 Level number increases.

The four FIPS 140-2 levels can be quickly summarized as follows and as

shown in Figure 8-1:

Level 1 Level 2

Level 3

Level 4

Cryptographic
Module Specification

Specification of cryptographic module, cryptographic boundary, Approved algorithms, and

Approved modes of operation. Description of cryptographic module, including all hardware,

software, and firmware components. Statement of module

security policy.

Cryptographic Module
Ports and Interfaces

Required and optional interfaces. Specification
of all interfaces and of all input and output data
paths.

from other data ports.

Data ports for unprotected critical security
parameters logically or physically separated

Roles, Services, and
Authentication

Logical separation of Role-based or identity-
required and optional based operator
roles and services. ication

and services.

Logical separation of required and optional roles

Finite State Model

Specification of finite state model. Required states and opti
and specification of state transitions.

onal states. State transition diagram

Physical Security

Production grade Locks or tamper
equipment. evidence.

Tamper detection and
response for covers
and doors.

Tamper detection and
response envelope
EFP or EFT.

Operational
Environment

Referenced PPs
evaluated at EAL2 with
specified discretionary

Single operator.
Executable code. |

. . access contro
Apprqved integrity mechanisms and
technique. auditing.

Referenced PPs plus

trusted path evaluated
at EAL3 plus security
policy modeling.

Referenced PPs plus
trusted path evaluated
at EAL4.

Cryptographic Key

Key management mechanisms: random number and key generation, key establishment, key

distribution, key entry/output, key storage, and key zeroizatio

S

and policy
correspondence.
Guidance documents.

specification.

implementation.

Management Secret and private keys established using Secret and private keys established using
manual methods may be entered or output in manual methods shall be entered or output
plain text form. encrypted or with split knowledge procedures.
47 GFR FCC Part 15. Subpart B, Class A 47 GFR FCC Part 15. Subpart B, Class B

EMI/EMC (Business use). Applicable FCC requirements
X (Home use).
(for radio).
Self-Tests Power-up tests: cryptographic algorithm tests, software/firmware integrity tests, critical functions
tests. Conditional tests.
Configuration
management (CM). Formal model
) Secure installation and C.M s.ystgm, Securg High-level language Detailed explanations
Design Assurance generation. Design distribution. Functional

(informal proofs).
Preconditions and
postconditions.

Mitigation of Other
Attacks

Specification of mitigation of attacks for which no testable requirements are currently available.

Figure 8-1 Summary of security requirements

146 PartlIV » Tokens

Level 1. This is the basic level of security requirements. Major
characteristics include one approved algorithm and production-grade
components. Modules can be implemented in either software or hard-
ware and do not need to be the only software implemented on the
computing system.

Level 2. This level enhances the security requirements of Level 1. Pri-
marily, Level 2 adds tamper-evidence requirements and asks that a role
(e.g., user and crypto officer) be authenticated prior to performing a ser-
vice (e.g., self-test and algorithms). The module is allowed to run on a
general-purpose computer system only if the computer system must
meet a Common Criteria (CC) Protection Profile (PP) evaluation assur-
ance level EAL2. (We'll explain more about CC, PP, and EAL shortly.)

Level 3. This level further enhances the security requirements of Level 2.
The physical protections are beefed up; there must be a high probabil-
ity of detecting and responding to physical access or modification of the
module. That is, opening the module will cause it to be zeroized, which
is the destruction of the sensitive data that an attacker might want to
access. The module must also support identity-based authentication of
the operator. This level requires that the input and output ports for the
Critical Security Parameters (CSPs) are physically separated from other
ports. The module is allowed to run on a general-purpose computer
system only if a trusted path is provided and the computer system must
meet a CC PP evaluation assurance level EAL3. A trusted path provides
confidence that the human user is communicating with the intended
part of the system, ensuring that attackers can’t intercept or modify the
data is being communicated.

.m A trusted path protects the cryptographic module’s plaintext
CSPs, the software, and the firmware components from other untrusted
software or firmware that may be executing on the system. By ensuring
the cryptographic module is not affected by other untrusted components, the
security of the cryptographic module is increased. The trusted path should
stop Trojan horse software from fooling the user into providing sensitive data
to anything other than the legitimate (and trusted) cryptographic module.

Level 4. This is the highest level, and it builds on the security require-
ments of Level 3. The physical protections are strengthened even
further; there must be a very high probability of detecting and respond-
ing to physical access or modification of the module; opening the module
must cause it to immediately zeroize. There are also protections against
environmental changes outside of the module’s normal operating range
(e.g., it’s too cold or too hot). The module is still allowed to run on a
general-purpose computer system only if the trusted path is EAL 4. As
part of the design assurance requirements, formal modeling of the mod-
ule is required.

Chapter 8 » Tokens and Hardware Security Modules

147

The second set of jargon comes from the Common Criteria for Information
Technology Security Evaluations, which is simply called the Common Criteria
or CC. The CC was defined jointly by the International Organization for
Standardization (ISO) and International Electrotechnical Committee (IEC)
in [ISO15408] and [CC], both of which are three-part standards.” Instead of
specifying requirements like FIPS 140-2, CC “specifies a common set of require-
ments for the security functionality of IT products and for assurance measures
applied to these IT products during security evaluation.” A user community
specifies a Protection Profile (PP), which lists the desired security functionality,
properties, and behavior. A developer then writes a Security Target (ST) to
indicate the security properties of the Target of Evaluation (TOE), which is the
security software, firmware, or hardware. The TOE and ST are inputs to the
Common Criteria evaluation against a particular Protection Profile. In practice,
what’s happened is governments and consortia have developed PPs for com-
mercial product offerings and for internal development projects. One aspect
of a commercial operating system PP will address the trusted path. Then, ven-
dors that want to supply to these customers have their product tested against
the appropriate PP. This is depicted in Figure 8-2. To make things easier on
everyone, the standard defined a set of Evaluation Assurance Levels (EAL).

Assurance
Components

Consumer Protection Security .

Functional
Components

Figure 8-2 Common criteria concepts

*Also see www . commoncriteriaportal.org/public/files/ccintroduction.pdf
for additional information.

148

Part IV » Tokens

Seven levels are defined, like the FIPS 140-2 levels, as the number increases
so does the depth of the evaluation. The first level gives some confidence that
the product will work as advertised, and the seventh level offers an extremely
high confidence. This assurance comes from the increase in documentation
and much more rigorous testing. The seven EAL levels are:

m EALI: Functionally Tested

m EAL2: Structurally Tested

m EAL3: Methodically Tested and Checked

m EAL4: Methodically Designed, Tested, and Reviewed
m EALS5: Semi-formally Designed and Tested

m EAL6: Semi-formally Verified Design and Tested

m EAL7: Formally Verified Design and Tested

An assertion by a manufacturer that a product meets a FIPS 140-2, an EAL,
or is compliant with standards, is a completely empty statement and possibly
fraudulent unless, of course, it was actually tested by a certified, independent
evaluator. NIST in conjunction with Canada’s Computer Security Establish-
ment (CSE) developed the Cryptographic Module Verification Program (CMVP)
that accredits third-party Cryptographic Module Testing (CMT) laboratories.
For CC evaluations, each lab must conform to [ISO17025]. NIST also devel-
oped the National Voluntary Laboratory Accreditation Program (NVLAP) to
accredit the Common Criteria Testing Laboratories (CCTL). Of course, testing
isn’t free, and the price goes up with the level. The testing also takes a sig-
nificant amount of time. It costs somewhere on the order of $100K for a FIPS
certificate and even more for CC. Once a product is tested, a certificate is pro-
vided that states the level that was achieved. If a product claims that they’re
compliant or conformant, then ask for the product’s certificate number and
also make sure that the product was actually tested, by going to the website
and looking it up yourself.*

Tokens

Tokens come in a variety of form factors and connect to desktops, laptops,
and PDAs via a number of interfaces. Some tokens are more cryptographically
aware than others, but all of them are of some use to us. This section will
address various token characteristics.

*See http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/
140val-all.htm for a complete list of the FIPS 140 certificates.

Chapter 8 » Tokens and Hardware Security Modules

149

PC Cards

The first type of card we're going to look at is the PC Card, which is offi-
cially called the Personal Computer Memory Card International Association
(PCMCIA) card. The PCMCIA was formed in the late 1980s to develop common
standards for expansion cards. Prior to the PCMCIA standards, peripherals
like additional memory, network interface cards, and modems were designed
to work with only one manufacturer’s machine. Additionally, when mobile
computing evolved, there was often no room in the machine for both Eth-
ernet and modem circuitry. The PCMCIA standards abstracted the interface
and allowed the vendors to develop peripherals for multiple manufacturers’
machines.

There have been multiple versions of the PCMCIA standard release with
the major developments in Releases 1, 2, 5, and 8. Release 1, published in 1990,
was the original release, but it only addressed memory cards. Release 2 added
I/O support. Release 5 added CardBus support, more about this later. Release
8 published in 2001 added CardBay support, more about this later too.

.m “Plug-and-play” was one of the most important features that the PC Card
supported. Normally, adding a peripheral required rebooting for the peripheral to
be recognized. With plug-and-play, there’s no need to reboot to have the
peripheral recognized by Windows.

Physically the PC Cards are 54 mm wide by 85.6 mm long and have a 68-pin
connector. The thickness of the PC Card varies; they can be 3.3, 5.0, or 10.5 mm.
The thickness signifies the type of PC Card: Type Iis 3.3 mm, Type Il is 5.0 mm,
and Type Il is 10.5 mm. The different thickness support different applications;
Type I is typically used to support memory devices. Type II is physically
larger so that it can support small rotating media, but its big use is for modem
cards with the connector extended out beyond the end of the card or via a
dongle. Type III is thick enough to support larger rotating media, full-sized
phone connectors, and Ethernet connectors. The PC Cards are a combination
of plastic and stainless steel, making them relatively rugged.

The throughput on the card varies based on the interface. The 16-bit memory
interface supports either a 10 or 20 MB per second, with the speed depending on
which transfer mode the card is using; the 16-bit I/ O interface supports 3.92 or
7.84 MB per second; the 32-bit interface support 33, 66, and 132 MB per second.
The 32-bit interface is referred to as CardBus because it uses a busmastering*
technique to achieve the higher speeds. The addition of a grounding strip is a
visual confirmation that the PC Card supports CardBus. Type I only supports

*Busmastering is a feature that allows a device connected to the bus to communicate with other
devices connected to the bus without going through the CPU.

150

Part IV » Tokens

the 16-bit memory interface, while Type II and Type III cards support the
16-bit I/O and 32-bit interfaces. The CardBay interface, defined in Release 8
of the PCMCIA standard, intended to allow the Universal Serial Bus (USB)
interface with a PC Card format, but it has not been widely adopted.

PCMCIA is an interface standard, so the internals of the PC Cards are
almost always company proprietary. In general, the cryptographic PC Cards
have miniature computers that communicate with the host machine through
the PCMCIA connector. These miniature computers include a microcontroller
or central processing unit (CPU) that runs the PC Card’s operating system
stored in the read-only memory (ROM). There’s also random access memory
(RAM) that the CPU uses for temporary storage. Some include coprocessors
to speed up the math computations necessary for cryptography, which is why
the coprocessor is sometimes called a cryptographic module. The operating
system, which manages the hardware resources on the miniature computer, is
also proprietary.

There have been many PC Cards developed that support either storing
cryptographic keying material or performing cryptographic operations. Most
TypeI cards are memory-only, so at most they’d be good for storing encrypted
private keys and certificates. There is little difference between this and storing
them on your local hard drive, except that the PC Card is more portable, allow-
ing it to be kept with the owner. There have been many Type II and Type III
PC Cards developed that support storing private keys and certificates as well
as performing cryptographic operations.

.Im: Arguably the most famous type of PC Card tokens is the FORTEZZA Crypto
Cards developed by the NSA to support the U.S. Defense Message System (DMS).
SPYRUS was the primary vendor and they delivered around 500,000 cards.

In addition to the PC Card there needs to be a PC Card reader as well as
drivers for the computer to access the card. Initially, no computers had PC
Card readers, but eventually all laptops included at least two. The desktops, on
the other hand, rarely had a PC Card reader. The DoD tried to combat this by
specifying a policy that required all computers including desktops to have two
slots, but this never really took off in the commercial world. Now, readers are
available that connect via USB and Small Computer System Interface (SCSI).*
Regardless, not having the readers built into the computer definitely slowed
PC Card deployment for desktop computers.

In addition to the PC Card reader, drivers and middleware also need to
be installed on the machine. Both have always proved expensive to develop,
challenging to keep updated, and difficult to manage.

The PCMCIA has closed development on PC Card standard and notes
that future developers should move to the ExpressCard standard. The last

*SCSl is another standard for connecting peripherals to computers.

Chapter 8 » Tokens and Hardware Security Modules

151

version of the PCMCIA standard was published in 2001. There were many
of PC Card implementations, but there are significantly fewer ExpressCard
implementations available.

.m There are numerous ExpressCard smart card readers. They use the
ExpressCard interface to connect to the computer, PDA, or tablet and then insert
the smart card in to it. To date there haven’t been ExpressCards that support
cryptographic operations.

The PC Card has been overtaken by USB as the de facto interface for both
laptops and desktops. The widespread support for USB has really dampened
support for PC Cards. Other reasons PC Cards are no longer in favor:

m The amount of space required for a PC Card socket is significantly larger
than that required for USB connectors.

m The 68-pin connectors are more problematic than the USB connector —
bending a pin in the reader can cause all kinds of problems.

m Smart card performance has greatly improved.

m The focus of PC Cards, namely FORTEZZA Crypto Cards, was to do all
of the cryptography on the card and support end-to-end security. The
focus now has changed to be protecting the private key and allowing
some of the cryptography to be performed on the desktop and laptops.

If you're looking to implement tokens, we’d suggest looking at smart cards
or USB tokens because that’s where all the innovation is taking place.

Smart Cards

The next token we're going to look at is smart cards. They’ve been around
since the mid-1970s when a credit card was first merged with a microprocessor
(we refer to the chip on a smart card as an integrated circuit chip, or ICC).
Independently, the two have become enormously popular, and coupled they
are becoming the runaway favorite choice for tokens. For a complete and much
more detailed look at the internals of smart cards we recommend Rankl and
Effing’s book the Smart Card Handbook [WOLFGANG] and Dreifus and Monk’s
book Smart Cards: A Guide to Building and Managing Smart Card Applications
[DRIEFUS].
There are four important standards that define a smart card:

ISO/IEC 7810. This defines the dimensions of the credit card, which are
85.60 mm by 53.98 mm and .76 mm thick. The cards can be made of plas-
tic, paper, or another material, but typically the cards are made of plastic,
specifically polyvinyl chloride (PVC).

152 PartIV = Tokens

ISO/IEC 7816 Parts 1-13 and 15. This defines just about everything else
about smart cards. The various parts of the standard address properties
such as

m The amount of X-rays, UV light, and static electricity they must be able
to withstand

m How much the card can bend before it breaks

m The physical location of ICC; the size of the ICC (10.25 mm by
19.23 mm); the number of ICC contacts (there are 8)

m What each contact does; the electrical characteristics of the contacts
m A common syntax and format for cryptographic information
m Mechanisms by which to share this information

ISO/TIEC 14443 Parts 1-4. This defines what is referred to as Proximity
Cards. This multipart standard specifies contactless smart cards: physical
dimensions as specified in ISO/IEC 7810; radiofrequency (13.56 MHz);
communication protocols; transmission protocols. It allows for the card
be about 10 cm away from the contactless card reader.

ISO 15693 Parts 1-3. This defines what is referred to as Vicinity Cards.
This multipart standard is similar to ISO/IEC 1443 except that the card
and card reader can be between 1 and 1.5 meters apart. This standard has
never really taken off, but it’s included in this list for completeness.

.Ima There are other standards that apply to what goes on the physical
surface of the card, such as embossed letters and magnetic strips, but we're
going to focus on the ICC interface.

There are a number of ways to categorize smart cards, but we'll keep it
simple and use just two categories: how the card is read and the type of card.

Readers. Smart cards work with two types of readers: contact or contactless.
With contact card readers, the card needs to be inserted into the reader
for it to be read, but with contactless cards the card does not actually
need to touch the reader. It needs to be within either 10 cm or 1.5m of
the reader. There are some technical differences between the two read-
ers, of course. The contact reader has more available power, whereas the
contactless readers have less wear and tear, but need antennas as well
as security protocols for communicating with the card and the reader.
There is also one big practical difference: Contact readers are about 10
times cheaper than contactless card readers, with contact readers are cur-
rently going for around $20, while contactless ones are going for around
$200. Some cards now support both and are referred to as combi cards.

Chapter 8 » Tokens and Hardware Security Modules

153

Type. With all the marketing hype and brand names in the smart cards
retail space it’s easy to be confused about the types of cards. Next, you'll
find a list of the card types in order of increasing security:

Memory-only. Because they have the same form factor as an ICC, some
advertise this type of card as a smart card, but these are really on the
lowest rung of the security ladder and shouldn’t be considered smart
cards at all. In reality, these read-only memory cards are only a lit-
tle better than the magnetic strips on the back of credit cards, and
even then they’re only better because they can store more informa-
tion than the strip alone can, not because they are more secure.

Serial Protected. These cards, which are also sometimes referred to as
Segmented Memory Cards or Intelligent Memory Cards, are on the next
step up the security ladder, but they shouldn’t really be considered
smart cards either. (They are sometimes grouped with the memory-
only cards.) These cards offer both read and write capability. Manufac-
turers often claim that these cards support “authentication,” but this
usually refers to the card identifier that allows the card to be tracked or
the fact that some of the memory can be protected with a PIN or sym-
metric key. What makes them better than the memory-only cards is
the built-in logic that controls access to the memory on the card, which
allows some or all of the memory to be protected.

Wired Logic. One more step up the security ladder are Wired Logic
cards, sometimes referred to as ROM-mask cards. The ROM-mask,
which contains the chip’s OS, also contains a logic-based state machine
supporting encrypted memory and authenticated access to the
memory. However, the ROM is burned in when the card is manu-
factured, so once the card leaves the factory, there’s no changing the
way the card works. Wired Logic cards really shouldn’t be considered
smart cards either.

Secure Microcontroller. These cards are at the top of the smart card
ladder, because they really are smart. What puts them above the rest is
the addition of a CPU that runs programs, performs calculations, and
manages data. These are really the only cards that should be referred to
as ““smart cards,” so beware of the marketing hype!

Looking under the Hood

Without digressing too much into microprocessor design, you should take a
quick look at the internals of the four cards and note their similarities and
differences.

154

Part IV » Tokens

The previous three card types have address and security logic: EEPROM
and ROM, whereas the secure microcontroller removes the address and
security logic and adds a CPU, an optional coprocessor, and some RAM.

Asmentioned earlier, the ROM holds most of the operating system. EEPROM
is the nonvolatile, read /write memory (NVM), which in Secure Microcontroller
cards ranges up to 256 KB. The EEPROM is important because it stores infor-
mation even when the card is not powered; PINs, keys, and certificates are
stored here. EEPROM also stores the parts of the operating system that are
critical to software patches and updates. RAM also serves as temporary storage
for data.

The CPU runs the operating system and applications. CPUs range in
processing power from 8 bit to 32 bit; more bits means more processing
power for quicker cryptographic operations. Some smart cards also include
a coprocessor to accelerate cryptographic operations. These coprocessors are
sometimes called a cryptographic module. Obviously, for the types of smart
cards discussed in the book, you should be looking for one with a coprocessor;
it’s important to achieve an acceptable user experience.

Operating Systems and Smart Cards

There are a number of OSs that run on smart cards. Initially, all OSs were
proprietary and required their own middleware. Now the Multiple Operating
System (MULTOS) and the Java OS have been developed to abstract the card
and allow middleware from different vendors. Smart cards that run the Java
OS are referred to as Java Smart Cards. There are also a variety of application
development tools. The lack of a standard in this area has actually been a
problem, but the Global Platform and OpenCard are being filling this void by
providing interfaces for both smart cards and applications on the card.

Choosing Smart Cards

We believe the smart card is a prudent token choice, especially in environments
where there is a desire to couple a picture identification badge with the token.
Smart cards offer the ability to print photos, logos, magnetic strips, and text
on the card’s surface. The only choice left now is the reader.

Contact readers are available in many places now. They are integrated
into keyboards for desktops and directly into laptops, and there are also a
number of readers that support PCMCIA and USB connectors. As mentioned
previously, contactless readers are also readily available, but they’re currently
an order of magnitude more expensive. It’s not an obvious choice, because the
way you want to use the card will influence your choice. For example, in some
cases physical access control might be better suited to contactless smart cards
because the reader can read the card without requiring that the users remove

Chapter 8 » Tokens and Hardware Security Modules

155

the badges hanging from their necks — speeding access control decisions for
high-flow areas.

OPEN STANDARDS WIN AGAIN

The primary reason that smart cards have taken off is their adherence to open
standards (granted they are ISO/IEC standards), which helps ensure
interoperability. The ICC, the contacts, the communication protocol, and the
readers are all standardized. Vendors offer features and specialized commands
outside of these standards, especially in the area of loading cryptographic
keying material. Also, the operating system in the ROM and application
development tools are often vendor specific. However, there are efforts to
develop standards in these areas as well.

This standardization effort, of course, won’t actually happen unless developers
feel there’s a market — and there is. All over the world, governments and
businesses are realizing the need for smart cards, and they're investing in them
as well as the systems that support them.

USB Tokens

The Universal Serial Bus (USB) has been around since the mid-1990s when Intel,
Microsoft, and others wanted to lower the number of peripheral connection
standards. Before USB, there were serial ports, parallel ports, keyboard ports,
mouse ports, joystick ports, and so on. It was out of hand! As always, there
were early adoption issues, but now USB is nearly ubiquitous. Many credit
this to the iMAC; from 1998 on it had only USB connectors. There is now
a USB Implementors Forum (USB-IF) that oversees development of the USB
standards.

There have been three major releases of the USB standard. 1.0, 1.1, and 2.0.
USB 1.0 offered speeds up to 1.5 Mbps, whereas USB 1.1 supported 12 Mbps
for high-speed devices and 1.5Mbps for lower bandwidth devices (such as
keyboards and joysticks). USB 2.0 offers speeds up to 480 Mbps. USB 3.0 is
rumored to be in the works, and it’s said to be shooting for 4.8 Gbps.

USB supports seven different connectors: USB A, USB B, Mini-A, Mini-B,
Mini-AB, and Micro-A, and Micro-B. The Mini and Micro are normally used
for small devices like cameras and cell phones, while the normal sizes are
used by devices like printers, keyboards, and joysticks.

There are no standards for USB cryptographic tokens other than the con-
nectors. They come in two flavors. The first are memory-only devices — think
of a USB memory stick. They are basically little portable hard drives that offer
the same amount of security as the other memory-only devices. The second
type is characterized by either proprietary chips on a stick or a connection to
an ICC that is eerily similar to the ICCs offered on smart cards.

156

Part IV » Tokens

One major advantage that USB tokens have over smart cards is that there is
no need for a reader, since just about every computer on the planet has one or
more USB connector. They’'re on monitors, desktops, laptops, and keyboards.
USB is the de facto connector choice for the foreseeable future.

USB cryptographic tokens are a prudent choice for environments where
integration with a picture identification badge isn’t required or where readers
difficult to deploy.

Software Tokens

Software tokens are private keys and certificate stored in software. Obviously,
storing private keys without somehow associating them with their corre-
sponding certificates would make them difficult to use. Further, storing them
in plaintext is insecure. The de facto standard for performing the task of associ-
ating a private key with a certificate and encrypting them for storage in a file is
PKCS#12 [PKCS12]. It defines an ASN.1 structure for storing encrypted private
keys and certificates — and unsurprisingly it makes use of CMS. If the key
is encrypted with a password, then it’s placed in an Encryptedpata. If the key is
encrypted using public key cryptography, it’s placed in an Envelopedpata. The
contents are called a safeBag, and it contains an unencrypted public key, and
an encrypted private key, a certificate bag, a CRL bag, miscellaneous secrets, or
another safeBag. Attributes about the bag are also supported, such as friendly
names for the safeBag. The file extension is either . p12 or .pfx. Originally, .p12
was used by Netscape and .pfx was used by Microsoft, but they’re considered
synonymous at this point, and everyone supports both file extensions.

Software tokens can be used to make those not-so-smart memory-only
PCMCIA, smart cards, and USB tokens a little more secure. If you can store
the encrypted private keys and their associated certificates, or even just the
symmetric keys, that’s one step more secure than storing unencrypted keys on
a memory stick. Software tokens are extremely portable because they can be
copied to multiple tokens or to any file system for that matter, allowing easy
backup copies to be made, too. This is also their danger. If there are too many
copies, it gets difficult to keep track of them.

For some environments, this type of token is a prudent choice. It is best
suited for environments where there are strong procedures to make sure that
the machines on which the software tokens are used have not been infected
with Trojan horses.

iButton Tokens

An iButton isn’t a new Apple product or an expansion thingamajig for your
iPod —it’s a security token developed by Dallas Semiconductor, which was
bought by Maxim Integrated Products. The token itself is about the size of

Chapter 8 » Tokens and Hardware Security Modules

157

a round lithium camera battery; it’s a stainless steel “‘can” that is 17.35mm
in radius and either 3.10 or 5.89 mm thick. A microchip and various types of
memory are housed inside, and when the iButton is touched to the reader, the
chip communicates with the 1-Wire protocol at either 16 Kbps or 142 Kbps. Both
read and write operations are supported. It is, however, company proprietary,
so tokens, readers, software development kits (kits are free), and so on all
come from the same company.

iButtons can be simple, memory-only devices. They’re probably slightly
more secure than the other devices because the attacker is going to need some
uncommon drivers to access the iButton and a not-so-common reader, but
neither of these things will stop a determined attacker.

They also developed a Java-powered cryptographic iButton. The can con-
tained a microcontroller, a clock, a math accelerator, and 64 Kbytes of ROM
and NVM. The catch is that there were no keys implemented, and the token
only supported SHA-1.

The one advantage iButton has over smart cards is the durability of the
“can.” Since it’s stainless steel, it can take a pounding — literally.

For future token deployments, the iButton falls a little short. If you're just
looking for a memory-only token, we suggest a USB device because you don’t
need to buy a reader. For a cryptographic token, smart cards or USB are better
choices.

Embedded Tokens

Up to now we’ve talked about tokens that are inserted or installed in on your
desktop, laptop, or PDA, but what about having them burned directly into the
chips that run the desktop, laptop, or PDA? Enter the Trusted Computer Group
(TCG), which aims to dojust that. The TCG was formed in 2003 to develop open
standards for trusted computing. There are currently around 170 members,
including Intel, Sun, Microsoft, AMD, IBM, Dell, and many more.

One of their standards specifies what’s called the Trusted Platform Module
(TPM). Their website states:

The TPM is a microcontroller that stores keys, passwords and digital certificates.
It typically is affixed to the motherboard of a PC. It potentially can be used in any
computing device that requires these functions. The nature of this silicon ensures
that the information stored there is made more secure from external software
attack and physical theft. Security processes, such as digital signature and key
exchange, are protected through the secure TCG subsystem. Access to data and
secrets in a platform could be denied if the boot sequence is not as expected.
Critical applications and capabilities such as secure email, secure web access and
local protection of data are thereby made much more secure. TPM capabilities
also can be integrated into other components in a system.

158 PartlIV » Tokens

The private keys stored on the TPM can be used to authenticate a particular
desktop, laptop, or PDA, so it is called a fixed token. If lots of people use the
same machine, then the only thing that’s authenticated is the actual machine,
not the users. Add a smart card or USB token though and you can authenticate
both the machine and the user. If only one person ever uses the machine, then
the keys in the TPM could authenticate both the user and the machine. The
TCG knows that their solution needs to support a variety of environments so
they say that user tokens are complementary.

The TCG also has developed the Trusted Computer Group Software Specification
(TSS). This specification defines the API that is used to access the functions of
the TPM. Without it, the TPM wouldn’t be very useful.

TCG took machine authentication one step further when they developed the
Trust Network Connect (TNC) protocol. The TNC collects endpoint configura-
tion and user data, transmits the data to the organization, and then compares
it to an organization for comparison against a predefined set of criteria. Access
is granted based on an appropriate level. For example, if you logged in using
your work machine that’s got your organization’s standard software load,
you’d get complete access, but if you access from a machine you tweaked you
might get none at all. This way the organization is in control of who accesses
their networks and what they do it with. The whole process uses the keys
resident in the TPM.

Currently, TPM v1.2 requires support for SHA-1 and RSA. It also includes
a random number generator that, along with the TSS API, other applications
can use. 3DES is the symmetric algorithm, and this version doesn’t support
AES, but we’ll bet a version in the not to distant future will.

As for speed — well it’s on the chip, so it’s fast. There are claims of 1024-bit
RSA claim signatures in 100 ms and 2048-bit RSA signatures in 500 ms. This is
good because most of the keys are required to be 2048-bit.

The other added benefit of on TPM is that there’s absolutely positively no
need for a reader.

Hardware Security Modules

If you had to pick a place to put your most important set of valuables, then
you’d probably pick a well-established bank with a safe deposit box that’s got
24-hour guards, a sophisticated alarm system, and multiple keys for the box.
Well the same should be true of infrastructure keys because they are the basis
of trust for the whole PKI. Now, though the HSM vendors won’t provide the
guards or the room (I bet they know somebody who could), they will provide
an HSM that’s been put through the NIST 140-2 ringer. Obviously, these are a
little more costly than what’s provided to users because HSMs are designed
to be more secure.

Chapter 8 » Tokens and Hardware Security Modules

159

You won’t be mortgaging the house though because you usually only need
a couple of them: one for each key generator, signing engine, high-speed VPN
authenticator — and anyway the vendors need to make their money somehow.

HSMs come in two varieties: blades that plug into the Peripheral Component
Interconnect (PCI) slots on a computer’s motherboard and standalone external
devices. In either case, the machine that is connected to an HSM is solely to
make keys, sign objects, and validate signatures.

Network-Attached Multi-User
Hardware Security Modules

Traditional PKI systems are based on distributing keys to the end users, which,
aside from security concerns [Marchesini], creates a high burden in logistics,
cost, help-desk support and user acceptance [Whitten] and also introduces
training obstacles [Nielsen]. Management of a large distributed system of any
kind is extremely hard and PKI systems are no exception.

Network-attached multi-user (NAMU) HSMs may improve the scalability
and adoption of PKI-driven applications by offering secure centralized key
management for a large community of users with diverse distributed applica-
tion environments, while alleviating administrative overhead associated with
provisioning and managing individual tokens. Other efficiencies offered by
this approach include a reduction in revocation management. When users’
privileges must be revoked, their private keys can instantly be revoked from a
central HSM server. The need for distributing CRLs or OCSP checking may be
greatly diminished since the users will no longer have access to their private
key. For key management and real-time authentication, denying access to the
private key may be sufficient. For signatures, removing access to private key
prevents the creation of new signatures, but previously generated ones will
still be considered valid. So, the need for revocation must be considered in
this light.

The NAMU HSM can be viewed as a virtual, network-attached token. Each
user has a profile within the NAMU HSM that maintains their keys while
allowing key operations only after successfully using a specified user authen-
tication mechanism. Depending on the assurance needs, the user authenti-
cation could make use of simple username/password, Kerberos, biometrics,
one-time-password tokens, or strong cryptographic-based challenge-response
protocols. User authentication to the NAMU HSM usually runs on top of SSL
or TLS.

Some administrators manage the NAMU HSM and the user-directory sys-
tems together. In this way, any user listed in the enterprise directory has
keying material available to them. This is sometimes called directory-driven

160

Part IV » Tokens

deployment, and its primary benefit is one user management and authen-
tication policy can administer for all applications, whether PKI-enabled
or not.

NAMU HSMs can greatly reduce the cost of ownership and administrative
overheard associated with a PKI-enabled application. The NAMU HSM may
offer these savings:

1. Eliminate costs associated with acquiring key tokens, their provisioning,
and their ongoing management

2. Leverage existing authentication infrastructure and security policies
3. Leverage existing directory systems and user-management policies
4. Reduce the need to distribute CRLs and to subscribe to OCSP responders

Application Program Interfaces

All of the tokens require some kind of application programming interface (API).
If the cryptographic operations are performed on the token, then the API
minimally needs to support passing the data that is going to be encrypted,
hashed, or signed on and off the card. Proprietary APIs were the norm for a
very long time. If every application that makes use of cryptography needs to
write its own code, cryptographic adoption will be slow and bug riddled. With
standardized APISs, applications don’t need to know about the cryptography;
they just need to know about the API. Two APIs have emerged to meet this
need: Microsoft’s Cryptographic API (CAPI) and RSA’s PKCS #11.

If you're going to do cryptography on a Microsoft operating system, then
you need to learn how to use Microsoft CAPIL. Microsoft CAPI 1.0 has a
number of predefined functions to perform operations such as generating keys,
hashing data, generating signatures, verifying signatures, encrypting files,
and decrypting files. Cryptographic operations are performed by independent
modules known as cryptographic service providers (CSP). With this architecture,
all thatis necessary to add anew module is to add anew CSP. So, each hardware
device vendor needs to provide a CSP that works with their particular device,
handling any functions that are not implemented in the hardware in the
CSP software. CAPI 2.0 added a lot of support for PKI, including functions
to validate certificates. Windows Vista includes a major upgrade to CAPI,
called the Cryptography API Next Generation (CNG). It supports all the
algorithms that CAPI 1.0 and 2.0 supports but accesses them a differently.
It uses what are referred to as routers to access the different algorithms:
random number generator router, hash router, symmetric encryption router,
asymmetric encryption router, signature router, and secret agreement router.
This approach is better for hardware device vendors. CNG adds support for

Chapter 8 » Tokens and Hardware Security Modules

161

ECC algorithms, replaceable random number generator, and a kernel mode
among other things. The kernel mode operation allows the cryptographic
functions to be accessed by parts of the operating system kernel, such as the
IPsec implementation. CNG is targeted at FIPS Level 2 certification.

If you're going to do cryptography on a UNIX operating system (or one of the
many spin-off operating systems such as Linux), then you need to learn PKCS
#11 [PKCS11]. PKCS#11 is sometimes referred to as Cryptoki, which is short for
cryptographic token interface. Cryptoki, like Microsoft CAPI, specifies data
types and functions for applications that need to use cryptographic functions.
The interface was greatly influenced by token vendors, and it includes features
that are important to them, such as separation of user and security office
(SO) roles. The SO initializes the token and sets the PIN. Applications access
the token in sessions that are either read-only or read-write. Once access
is granted different operations can be performed, such as initializing signa-
tures, hashes, encryption, and decryption. As with Microsoft CSPs, a PKCS#11
library provided by a hardware device vendor will often include some func-
tionality in software in order to give a comprehensive solution, not just the
functionality that is offered by the hardware.

Signatures and Authentication
for Everyone

The Signatures and Authentication for Everyone (SAFE) initiative, previously
known as Secure Access for Everyone, evolved out of a Pharmaceuticals
Research and Manufacturers of America (PhRMA) strategic project started
in 2003 to build a business case for identity management. The business case
was successful because it was based on open standards for digital signatures,
identities, and PKI that would be used not only for business communica-
tions but also for regulatory communications. The business case showed
how the biopharmaceutical industry could save money by adopting digital
signatures as equivalent to, and therefore as replacements for, traditional
wet signatures.

The SAFE-BioPharma Association was formed by a coalition of nine
founding biopharmaceutical companies: AstraZeneca, Bristol-Myers Squibb
Company, GlaxoSmithKline, Johnson & Johnson, Merck, Pfizer, Procter &
Gamble, and Sanofi-Aventis. They developed the SAFE Standard Version 1.0,
which included operating policies, legal structure, a business and governance
model, technical specifications, and functional processes.

The SAFE-BioPharma Association is a not-for-profit organization, which at
first might seem like odd arrangement for a business. The drivers are cost
savings and business efficiency for the association’s members. The estimates of
these members show that they were spending over $1 billion on independent
identity management systems, that 40 percent of annual research and develop-
ment costs (around $9 billion) were a result of paper-based business processes,
and that 31 percent of health care costs (around $500 billion) were the result
of paperwork. Reducing paper-related costs, time, management, and storage,
would be a huge savings for them and their customers, which undoubtedly
includes you.

166 PartV = Case Studies

Another major driver of the SAFE-BioPharma Association is regulatory
compliance. The members must deal with regulatory bodies, such as the
US. Food and Drug Administration (FDA) and the European Medicines
Agency (EMEA), that want to make sure that there are excellent practices
in every process: clinical, lab, safety, trials, and manufacturing. There are
also huge privacy protection concerns and data integrity requirements. The
Association involved the regulatory bodies early in the process to ensure that
they considered the effort worthwhile and invited them to join the association
in an advisory role.

In this chapter, we present the architecture for the SAFE-BioPharma Asso-
ciation and discuss the successes and lessons learned by the SAFE effort.
We'll focus on the current version of the SAFE Standard, which is currently
Version 2.17.

For more information on SAFE see www.safe-biopharma.org.

SAFE Architecture

In this section, we provide an overview of the SAFE architecture. The discussion
includes cryptographic algorithms; PKI architecture; certificate, CRL, and
Online-Certificate Status Protocol (OCSP) profiles; cryptographic tokens

and modules; and SAFE-enabled applications.

Cryptographic Algorithms
SAFE uses commercial algorithms to provide authentication, integrity, confi-
dentiality, and to enable non-repudiation services for SAFE-enabled
applications. Specifically, SAFE uses

m RSA for digital signatures and key management.

m SHA-1 or SHA-256 for one-way hash functions.

m Triple-DES or AES-128 for symmetric encryption.

Because they’re dealing with the FDA, it’s no surprise that SAFE follows the
NIST guidelines [NISTSP] for key sizes and algorithm migration:

m RSA 1024-bit keys before 2011 and 2048-bit keys beyond 2010.
m SHA-1 before 2011 and SHA-256 beyond 2010.

m 80 bits of strength through 2010 and 112 bits thereafter. Triple-DES
provides 112 bits, and AES-128 provides 128 bits.

Chapter 9 = Signatures and Authentication for Everyone

167

PKI Architecture

Making a number of independent and heterogeneous PKIs from different
companies interoperable is a challenge. Realistically, there are two approaches:
everyone cross-certifies with each other or a bridge is used. SAFE chose to
implement a bridge CA, which is called the SAFE Bridge CA (SBCA). The
bridge is the least labor-intensive approach to achieve cross-certification.

The SBCA was designed by SAFE, but it outsourced the day-to-day oper-
ations to Cybertrust/Verizon Business. The SBCA was tested in mid-2005
and has been in operation since late 2005. It is in the process of being
cross-certification with U.S. Federal Bridge Certificate Authority (FBCA) to
enable trust paths between SAFE certificate issuers and U.S. Government CAs.
Figure 9-1 shows the SAFE architectural vision, but note that not all of the
cross-certified domains are shown. The Federal Bridge Certification Authority
is shown because it is the route to interoperate with the FDA and DEA.

Member PKIs may be either hierarchical or mesh PKIs. Member PKIs are
also free to establish other bilateral cross-certification relationships amongst
each other. The SBCA can cross-certify with a Principal CA or a sub-CA. The
Principal CA may be a self-signed CA or it may utilize an existing trust anchor.

Figure 9-1 SBCA architecture

168

Part V » Case Studies

The SBCA also provides a repository for cross-certificates; access by HTTP
is supported.

The SAFE architecture also supports a Certificate Status Authority (CSA).
Status response via either OCSP or SCVP may be supported. OCSP provides
status information on one or more certificates. SCVP provides a full path
validation service. The SBCA currently implements an OCSP responder.

The cross-certification process can be daunting to those with PKIs who want
to join SAFE, SAFE produced a document to describe the cross-certification
process and to provide a checklist to make sure all the i’s are dotted and t’s are
crossed. They divided the cross-certification process into six phases:

1.

Initiation: In the first phase, the applicant applies for cross-certification.
There’s a form to fill out and agreements to sign. The idea is that major
differences will be documented and used as input to the second stage.

Policy review: In the second phase, both parties review the application
to determine suitability and resolve any policy differences. The outcome
of this step could be to stop the entire process, get a waiver, or proceed.
Theoretically, this is a give-and-take process, but in reality it’s almost
always the applicant that has to change their policy to avoid the need to
revisit existing cross-certifications.

. Technical interoperability testing: In the third phase, assuming that

the outcome of phase two was successful or a waiver was obtained, tests
are performed to ensure that both cross-certificates can be verified, that
repositories interoperate, and that the right OCSP responders can be
accessed. Depending on the agreement, there may be fees associated with
this testing.

. Agreement: In the fourth phase, lawyers get involved to review the

agreements that dictate the actions of the applicant as they pertain to
the cross-certification. Once everything is agreed on, the applicant
signs the agreement.

. Cross-certification: In the fifth phase, the SBCA signs the CA’s digital

certificate and vice versa. The public portion of each is published on the
Internet.

. Maintenance: In the sixth phase, the SBCA needs to perform compli-

ance audits to ensure that the cross-certification agreements are
implemented properly and any uncovered problems are addressed.

If any changes are planned that affect the trust of the cross-certificate,
then these changes must be discussed by both parties. Cross-certification
agreements indicate the duration of the agreement, and it’s normal that
the agreements need to be reviewed and in some cases terminated.

Chapter 9 = Signatures and Authentication for Everyone

169

Certificate Policies

SAFE does not support encrypted email and does not have key archive. We
know that any large-scale PKI will be used with many applications beyond
email. The primary focus for the use of SAFE certificates is strong authenti-
cation and digital signatures. The certificate policies needed to support this
situation can be application specific or can be assigned according to assurance
level. The former approach, while prudent for a small, fixed set of applications,
is not prudent for a PKI intended to support general interoperability. Think of
the proliferation of object identifiers and the need to change the cross-certificate
every time a new application is developed. For this reason, SAFE followed the
FBCA lead and defines two categories, or classes, that group the applications
based on assurance level. Table 9-1 lists them in decreasing levels of assurance.
The assurance levels are:

Medium Hardware. With the medium hardware, the private key is gen-
erated in and protected by a hardware device or hardware security
module (HSM). The maximum lifetime of the private key is five years.

Medium Software. With the medium software policy, the private key
is generated in and protected by software. The maximum lifetime of the
private key is five years.

When the SBCA cross-certifies with a member’s principle CA or another
bridge CA, itis expected to use the policy-mapping extension to indicate which
subject domain policies may be accepted as equivalent to the SBCA policies.
Principal CAs are likewise expected to use the policy-mapping extension to
indicate which SBCA policies may be accepted by its users as equivalent to the
local policy. Members that have not already deployed a PKI can use the SBCA
policies in their own PKIL

Certificate, CRL, and OCSP Profiles

The SBCA CP includes profiles for certificates issued by the SBCA to Principal
CAs, certificates issued by the Principal CA to the SBCA, Issuer CA certifi-
cates, and subscriber signature certificates. There is a profile for encryption
certificates, but it’s only for reference purposes. All of the certificates are

Table 9-1 SBCA Certificate Policy Object Identifiers
LEVEL OF ASSURANCE OID NAME OBJECT IDENTIFIERS

Medium Hardware mediumHardware 1.3.6.1.4.1.23165.1.3

Medium Software mediumSoftware 1.3.6.1.4.1.23165.1.2

170

Part V » Case Studies

version 3 certificates, as they include extensions, and all of the certificates
use X.500 distinguished names. The SBCA uses the X.500-style (e.g., c=, o=,
ou=, cn=) for its subject name, but Principle CAs are free to use either the
X.500-style or DNS-style (e.g., dc=, dc=, ou=, cn=) in their names and
the names they issue. We're going to focus on the certificates issued by and to
the SBCA.

Table 9-2 lists the extensions included in certificates issued by the SBCA to
Principal CAs. Only four critical extensions are required in these certificates:

m The basic constraints extension to identify the subject as a CA.

m The key usage extension to identify the subject public key as appropriate
for signing certificate and CRLs.

= The name constraints extension to protect against transitive trust rela-
tionships between a member PKI and an external CA by restricting the
names to the agency name space.

m The policy constraints extension to indicate that a certificate policy must
be present in every certificate and that policy mapping may only be per-
formed by the SBCA and Principal CA.

Table 9-2 Extensions in Certificate Issued to Principal CAs

EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA=True; path length constraints is
optional.

Key usage Critical The keyCertSign and cRLSign bits

are asserted.

Name constraints Critical Permitted subtrees for X.500
distinguished names is set to the
Principal CA’s name up to the
organization level (e.g., dc=com,
dc=Pfizer).

Policy Constraints Critical All certificates must include a
certificate policy. All certificates, except
those issued to another BCA, must
inhibit policy mapping.

Policy mapping Non-critical SBCA mediumHardware and/or
mediumSoftware poIicy may appear
as issuer domain policies mapping to
member policies. This extension may
also be omitted.

(continued)

Chapter 9 = Signatures and Authentication for Everyone

171

Table 9-2 (continued)

EXTENSION CRITICALITY CONTENTS
Certificate Non-critical The SBCA mediumHardware and/or
policies mediumSoftware policy asserted in

policy mapping must be asserted
in this extension.

Inhibit any-policy Non-critical The any-policy object identifier is
not considered equivalent to SCBA
policies.

CRL distribution Non-critical Identifies the HTTP and LDAP directory

points entry that contains the CRL.

Authority Non-critical Two access methods are included one

information for the CA (both HTTP and LDAP) and

access one for the OCSP responder. The CA

access method points to a .p7c file
contain certificates issued to the SBCA.

Authority key Non-critical Bit string identifying the key used to
identifier sign the certificate.

Subject key Non-critical Bit string identifying the public key in
identifier the certificate.

The path length constraints in basic constraints may also be included if the
member PKI uses a hierarchical PKI. The other extensions are non-critical.
Certificate policies and policy-mapping extensions are used to translate locally
relevant policy information into SBCA policies. Inhibit any-policy indicates
that the special any-policy is not considered equivalent. The remaining four
extensions provide hints for certificate path and construction validation.

.]m] The word “everyone” in SAFE ought to be a dead give-away that it's an
inclusive group. For that reason, certificate policies and policy mapping are
non-critical to allow those that don’t support the policy to still be able to generate
and validate signatures.

The certificates issued to the SBCA are similar to the certificates issued by the
SBCA to the Principal CA, as shown in Table 9-3. The same critical extensions
are included. The differences are that the member’s name is excluded in name
constraints, the policies in policy mapping are swapped from the certificate
issued to the Principal CA, the revocation information points to the Principal
CA’s CRL location, and the AIA points to its OCSP responder.

172 PartV = Case Studies

Table 9-3 Extensions in Certificate Issued by Principal CAs to SBCA
EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA=True; path length constraints is
omitted (recommended).

Key usage Critical The keyCertSign and cRLSign bits
are asserted.

Name constraints Critical Excluded subtrees for X.500
distinguished names is set to the
Principal CA’s name up to the o level
(e.g., c=US, o=Pfizer).

Policy Constraints Critical All certificates must include a
certificate policy. Inhibit policy
mapping is omitted.

Policy mapping Non-critical SBCA policy may appear as subject
domain policies mapping to member
policies. This extension may also be
omitted.

Certificate policies Non-critical SBCA equivalent policies asserted in
policy mapping must be asserted
in this extension.

CRL distribution Non-critical Identifies the X.500 and LDAP directory
points entry that contains the CRL (optional).
Authority Non-critical Two access methods may be included
information access one for the CA (HTTP and/or LDAP)

and one for the OCSP responder. If the
PCA is a trust anchor the CA access
method is omitted.

Inhibit any-policy Non-critical The any-policy object identifier is not
considered equivalent to SCBA
policies.

Authority key Non-critical Bit string identifying the key used to

identifier sign the certificate.

Subject key identifier Non-critical Bit string identifying the public key in

the certificate.

CRLs issued by the SBCA are always version 2 CRLs, since they include two
non-critical CRL extensions: the CRL number and authority key identifier. The
invalidity date and reason code non-critical CRL entry extensions may also be
included but normally won't be.

Chapter 9 = Signatures and Authentication for Everyone

173

OCSP requests and responses are also profiled in the CP; we’ll describe why
in the “Applications” section later in this chapter. The OCSP requests and
responses are version 1 and optionally allow the use of a nonce request
extension to protect against replay attacks. The OCSP request must include
the Distinguished Name (DN) of the requestor and the OCSP responder is
identified by their subject key identifier. Requestors can ask for the status of
one or more certificates. Likewise, responses can include information about
more than one certificate.

Tokens and Cryptographic Modules

All of the components in the SAFE architecture must use FIPS 140—-evaluated
cryptographic modules, as listed in Table 9-4.

Within the SAFE infrastructure, all entities must use hardware crypto-
graphic modules to generate private keys and to perform any operation that
requires the use of the private key. CAs and CSAs must use hardware modules
evaluated to FIPS 140 Level 3 or higher. The SBCA uses the nCipher crypto-
graphic module, and the SBCA’s CSA use the nCipher cryptographic module.
RAs and LRAs must use hardware modules evaluated to FIPS 140 Level 2 or
higher.

SAFE subscribers asserting the medium hardware policy must use hardware
cryptographic modules to generate private keys, and subscribers asserting the
medium software policy may use either hardware or software to generate
private keys. SAFE also supports networked hardware credentials, which is a
virtual token in a network-attached HSM. Private keys can be generated either
on the user’s tokens or by a key generator. In the later case, the private key
must be securely transferred to the subscriber’s token or software.

Table 9-4 FIPS 140 Levels

PKI ENTITY TYPE FIPS 140 LEVEL

CAs Hardware Level 3 (or higher)
CSAs Hardware Level 3 (or higher)
RAs Hardware Level 2 (or higher)
LRAs Hardware Level 2 (or higher)
EE: Medium Hardware Hardware Level 2 (or higher)
EE: Medium Software Software Level 1 (or higher)*

*Generated in an environment that provides private key protections comparable to FIPS 140
Level 2 (or higher).

174 PartV = Case Studies

Applications

As mentioned earlier, SAFE supports strong authentication, digital signatures,
and web-based applications, as well as applications that support regulatory
filings and other business-related processes. An application that enforces the
SAFE rules is said to be SAFE-enabled. The signature process is similar to

the normal process:

m Signer selects data to sign; signer acknowledges SAFE signature.
m Signer acknowledges the reason for signing.

m Signer provides strong authentication to use the private key, such as
entering a token PIN or pass phrase.

The explicit acknowledgement of the signature’s purpose is the additional
part. On the relying party side, the signature verification process is automated
by the application as it validates the entire certification path. This process
is supported by CRLs as well as OCSP. Figure 9-2 depicts the actions of a
SAFE-enabled application.

User A: Signer User B: Relying Party
SAFE End-Enabled SAFE End-Enabled
Application Application
A A
SAFE

Transaction

Verification Request
Verification Response

A
_/ Verification Request \

4 Verification Response

Cross Certification Cross Certification
CRL Publishing CRL Publishing

Figure 9-2 SBCA in action

Portable signatures are a tantalizing prospect, made possible by the Portable
Document Format (PDF) from Adobe. Adobe Acrobat allows anyone to apply

Chapter 9 » Signatures and Authentication for Everyone

175

signatures to PDFs (as well as encrypt PDFs). When applying signatures,
signers can indicate the reason for signing:

= | have reviewed this document.

m | am the author of this document.

m | am approving this document.

m | attest to the accuracy and integrity of this document.

m | agree to the terms defined by the placement of my signature on this
document.

m | agree to specified portions of this document.
The signature is added to the document as an RSA PKCS#7 (the earlier
version of CMS as described in Chapter 6) block stored in a PDF dictionary

object reference by a PDF for field. Relying parties can click on the signature
to verify the signature and determine why the signer applied the signature.

Successes and Shortcomings

SAFE has seen the greatest adoption with applications and business processes
that are under the control of an organization. Two successful implementations
were Pfizer’s Chemistry electronic Notebook (CeN) application

and AstraZeneca’s implementation of the FDA Electronic Submission
Gateway (ESG):

CeN. CeN was developed to replace the paper-based process used dur-
ing the discovery phase for a new drug. Before CeN, scientists recorded
their experiments in a paper lab notebook, signed the experiments, and
then met with another scientist who witnessed the experiment. After the
experiments were completed and witnessed, the notebook was provided
to a records management organization for archiving. The signature, wit-
ness, and date and time provide non-repudiation for the discovery of a
new compound. This process is important when defending a patent for
the drug many years later. With CeN, the scientists complete their exper-
iment and digitally sign in to CeN, using their SAFE credential. After
submission of the experiment, an email is automatically sent to a witness,
who reviews it and digitally signs it. A PDF of the signed and witnessed
experiment is automatically sent to the records management database
for archival. Scientists have found the application nonintrusive; it fits in
with their daily work, and it is faster than the paper process because they

176 PartV » Case Studies

spend less time managing paper (and more time in the lab). Also, the
process is timely and speedy, resulting in greater compliance with inter-
nal policies.

FDA ESG. The FDA has accepted submission of Advanced Evidence
Reporting System (AERS) reports, which are drug safety reports, since
2000, but the FDA only supports one type of report, and the FDA Elec-
tronic Standards for the Transfer of Regulatory Information (ESTRI)
gateway was in need of an update. The FDA ESG web-based submission
service is the single point of entry for the transfer and processing of elec-
tronic submissions. For AstraZeneca to support these submissions, they
needed to have digital signatures that conform to Title 21 Code of Federal
Regulations Part 11 (21 CFR Part 11) and the Health Insurance Portability
and Accountability Act (HIPAA). Fortunately, SAFE meets, and in many
cases exceeds. these requirements. SAFE signatures on the FDA forms
(a PDF) and the validation report, which shows the digital signature was
valid at the time it was applied, can be verified by the FDA through the
FBCA and SAFE cross-certification. The certificates are also used to pro-
vide confidentiality for the submission by using a TLS protected channel.
In September of 2006, AstraZeneca submitted the first digitally signed
submission to the FDA that had no paper copies. AstraZeneca sees great
cost savings as they eliminate activities to create, sign, store, and main-
tain paper copies.

Trust can be a hard thing to establish between competing companies. SAFE
solved this problem by setting up an independent third party to run the SBCA.
With this arrangement, there are many fewer issues with trust.

Users lose all kinds of things, especially if the item isn’t used very often.
Storing the credential on the integrated badge helps minimize the chance of
it being lost. People use their badge everyday for building access and are,
therefore, more likely to have it with them. Additionally, users will always
have their badge with them when performing cryptographic operations such
as singing a document.

Lessons Learned

The lessons learned listed next are drawn from SBCA lessons learned as well as
individual SAFE member experiences. Many of the individual member lessons
learned are taken from white papers produced by the SAFE members [ASAFE,
PSAFE]. Some of the most important lessons learned during SAFE are:

Build business case for all players. The SBCA was realized because the
competing businesses came together and built industry-wide business
cases to support lower costs for information technology, especially by

Chapter 9 » Signatures and Authentication for Everyone 177

eliminating costs associated with paperwork and document storage.
Going paperless can save everyone money and increase productivity.

Involve regulators early in the process. SAFE involved the FDA early
in the process. By gaining FDA support early in the process, it saved
time in the long run, as the FDA saw the benefit to both the industry and
themselves. The FDA continues in an advisory role as new efforts are
being developed to ensure that course corrections, when necessary, are
received as early as possible in the design process.

Desktop setup can be a challenge. Drivers for tokens and smart cards are
a major challenge. These Drivers are not under the control of SAFE, but
the members need to make sure that these are loaded on user’s machines.
Additional issues relating to the desktop included the following:

m Often there were conflicts with existing drivers and software.

m Users did not have administrative control of the desktop and could not
install drivers themselves.

m Due to HIPPA considerations, some users did not have access to USB
ports.

m Desktop challenges are the primary reason that SAFE ultimately
accepted the use of software-based credentials and credentials hosted
on network-attached devices in the SAFE policy framework.

Streamline initial identification and authentication process. The iden-
tification and authentication can require several steps and may involve
a paper notary service. Often users wouldn’t complete all of the steps. A
streamlined process will increase the likelihood that users will complete
the process in a timely manner.

Start small. The Pfizer team learned that small pilots are adequate to
test business and information technology concepts. The scale makes it
easier to isolate and fix any problems that arise; however, one should
never ignore the issue of scale, particularly when it comes to provision-
ing and ease of use. For example, Pfizer choose to centralize signing with
an application environment based on a product called MySignatureBook
from TriCipher. This solution removed much of the complexity from of
the desktop, putting it into a centralized, more manageable environment
that was easily accessible by all Pfizer’s users.

Stay focused. Instead of trying to solve the entire company’s identity
management problem, stay within the scope of the pilot. AstraZeneca
found that the FDA ESG application could easily have been late and over
budget if they had tried to expand beyond SAFE signatures. By expand-
ing the scope of an application, more systems and business areas are
affected, resulting in the need for credentials for many more users.

178 PartV » Case Studies

By staying focused on their FDA ESG application, they avoided these pit-
falls and delivered on time and on budget.

Test firewall access. The SAFE architecture requires the exchange of in-
formation between the user and SAFE CA both for certification request/
response and for certificate status checks. Both Pfizer and AstraZeneca
found this required access through their firewalls, but the solution to
the problem was different for each company. Adequate time for test-
ing and problem resolution must be built into the project timeline.

Application configurations might need to be updated. Interfacing with
the tokens requires token drivers, middleware, and the application itself.
AstraZeneca found that its standard desktop configuration had an ear-
lier version of Adobe Acrobat than the one required by SAFE, which is
Acrobat 6 or above. Installing new applications on user machines does
cause some disruption, but the benefits outweighed the risks, and they
decided to install Acrobat 7 Professional for their FDA ESG users.

Rely on existing infrastructure. Wherever possible rely on existing infras-
tructure. Users are generally comfortable with existing infrastructure,
which eliminates human anxiety and the need for training in some-
thing new.

Build strong partnership with the internal legal organization. Affixing
a wet signature to a document has legal ramifications and this is also
true for digital signatures. Information technology people need to work
hand in hand with legal professionals to resolve issues in this area. Infor-
mation technologists usually delve into too much technical detail, and
let’s face it, they’re not lawyers. The best approach is to engage with the
attorneys from the beginning. Make sure that the attorneys understand
the issue, and then work with the attorneys to answer the business ques-
tions regarding non-repudiation and other legal issues. Attorneys are
a great help when it comes to formalizing internal policies, explaining
records management, and determining risk management approaches.

Involve all potential business colleagues from the beginning. Mov-
ing from wet signatures to digital signatures requires business process
change. For a smooth and successful transition to the new digital busi-
ness process, everyone involved in the wet signatures process should be
involved in design of the new business process, preferably from the start.
Primarily, this allows everyone to understand the new process, but it also
allows everyone to provide input so that process actually works. What
Pfizer found was that changing the business process actually had more
impact than the technology, and introducing digital signatures required
many hours of education and process review with the people concerned
with business and quality assurance.

Chapter 9 = Signatures and Authentication for Everyone

179

Determine dispute resolution policy. Cross-organization systems
involve more than one IT group. It is helpful if there’s one IT sponsor to
resolve priorities and solve resourcing issues. If you're going across mul-
tiple companies, it’s helpful to have a dispute resolution process that is
acceptable to all of the stakeholders.

Make use and installation painless. User uptake is based almost entirely
on ease of use. Application installation is the first step that is visible to
the users. If the application is complicated to install, users won't accept
it and use it. Not everyone has enough computer savvy (it’s actually
often patience) to wade through a complicated installation. Further,
providing the training to make everyone computer savvy would be too
expensive. The key to successful application deployment and
acceptance is ease of use.

Department of Defense
Public Key Infrastructure,

Medium Grade Service,
and Common Access Card

The U. S. Department of Defense (DoD) has three well-known programs that
work together to provide security for their email (and some other things, too):
the DoD Public Key Infrastructure (PKI), the Medium Grade Service (MGS),
and the Common Access Card (CAC).

The DoD PKI was started as a pilot program in 1997 by the DoD Defense
Information Systems Agency (DISA). It was started as part of the effort to
transition to a paperless DoD environment, but a more compelling reason was
to support the vast majority of DoD users who didn’t need and couldn’t afford
the high-assurance Multi-level Information Systems Security Initiative (MISSI)
PKI, which was a major part of the Defense Message System (DMS). DMS pro-
vides formal messaging between organizations and uses X.400 in combination
with the Message Security Protocol (MSP). It is official record traffic, such as
military orders. By contrast, MGS provides an informal messaging capability
to satisfy the messaging needs of individuals, which are vital for making any
large organization function. It uses SMTP and S/MIME.

The first application targeted to use the DoD PKI was the Defense Travel
System (DTS) that resides on the NIPRNet, or the DoD Unclassified but
Sensitive Internet Protocol Router Network. In 1999, the DoD PKI Program
Management Office (PMO) was formed to oversee the DoD PKI pilot program
and bring it to Initial Operational Capability (IOC). The program manager
comes from the National Security Agency (NSA), an organization that recog-
nizes the importance of security. The deputy program manager comes from
the DISA, which recognizes the large impact the PKI will have on many DoD
information systems. The DoD PKI has been wildly successful, issuing over
23 million certificates for people and devices. It has also been instrumental

182

PartV » Case Studies

in evolving PKI-enabled products and arguably speeding their availability in
commercial markets.

In 1998, DISA also launched the Medium Grade Service (MGS), which has
also been called Medium Assurance Messaging and Medium Grade Messaging
(MGM). The DMS program uses cryptographic algorithms that are rarely
used outside governmental circles, but MGS uses commercial cryptographic
algorithms — more on the distinction later in the chapter.

In 1999, the DoD Defense Manpower Data Center (DMDC) was tasked
to deliver a smart-card-based identity management card for each person on
active duty military, as well as most National Guard, Reserve, DoD civilian
employees, and DoD on-site contractor personnel. The DoD Common Access
Card office and the DoD PKI PMO were tasked to work together to deliver the
CAC with DoD PKI certificates in 1999. (That’s right; delivery was expected the
same year that they were asked to do it.) The DoD CAC process would serve as
the enrollment front end for subscribers. The Real-Time Automated Personnel
Identification System (RAPIDS) interacts with the Defense Enrollment Eligi-
bility Reporting System (DEERS) to determine eligibility for a CAC. The end
result was a set of CAC requirements that is met by more than one vendor. The
CAC hasn’t fully replaced the Uniformed Services Identification and Privilege
Cards because, while the roll out has been very fast and extensive, not all
National Guard, Reserves, DoD civilian employees, contractors, retirees, and
family members have them yet. DoD has issued around 12 million CACs,
and there are around 3.5 million active CACs. With numbers like that they are
getting closer every day.

In this chapter, we present the architecture that supports the DoD PKI, MGS,
and CAC programs and discuss the successes and the lessons learned.

Architectures

This section provides an overview of the different system components that
make the whole system work. This is really a system of systems. The discus-
sion includes the cryptographic algorithms, PKI architecture, DEERS/RAPIDS
architecture, certificate and CRL profiles, CAC and other cryptographic mod-
ules, and, finally, applications.

Cryptographic Algorithms

The DoD PKI supports both military and commercial algorithms for providing
authentication, integrity, confidentiality, and the enabling of non-repudiation
services for DoD PKI-enabled applications. The algorithms supported are:

m RSA, DSA, and ECDSA for digital signatures.
m Key Encryption Algorithm (KEA) and RSA for key management.

Chapter 10 = DoD PKI, MGS, and CAC

183

m SHA-1 for one-way hash functions with DSA and ECDSA.
m SHA-256, SHA-384, and SHA-512 with RSA.
m SKIPJACK, Triple-DES, and AES for symmetric encryption.

The DoD PKI supports a variety of algorithms, but for the DoD MGS
and CACs only commercial-grade algorithms are supported. Algorithms are
updated as the commercial applications develop support for newer crypto-
graphic algorithms; however, some algorithms that are used in commercial
products are simply not acceptable to DoD. These are mostly proprietary
algorithms, and support for them is turned off when the products are installed
for DoD users. Currently, the MGS supports:

m RSA for digital signatures and key management.
m SHA-1 for one-way hash functions.

m Triple-DES and AES for symmetric encryption.

DoD helps shape policy for the key sizes, but right now they specify only
those in the list that follows, but be assured DoD will adopt the NIST guidelines
[NISTSP] for key sizes and algorithm migration when the time comes:

= Digital Signature: RSA and DSA 1024-bit keys and ECDSA on curve
P256 or P384.

m Key management: KEA and RSA 1024-bit keys.
m Symmetric encryption: At least 80 bits of strength.

Again, the DoD MGS and CAC only support commercial key sizes. For
signature and key management a 1024-bit key for RSA is supported. For
symmetric algorithms, AES with a 128-bit key is available in many commercial
packages, and it is much more efficient in software than Triple-DES. AES
is used even though the key management is not up to the same strength.
Triple-DES offers 112 bits of strength.

PKI Architecture

The DoD PKI architecture is hierarchical, with two levels of certificate issuers.
The root CA issues certificates to subordinate CAs and OCSP responders. The
root CA is policy agnostic to allow the different communities to communicate
with their users and those outside of the DoD. Subordinate CAs issue certifi-
cates to subscribers. A directory is also support for storage of names, email
address, encryption certificates, and CRLs. Another component supported is
the Key Recovery Agent. Registration Authorities (RAs) and Local Registra-
tion Authorities (LRAs) are also supported to ease the CAs job of application
processing. Figure 10-1 depicts this hierarchy.

184 PartV » Case Studies

Global Key
Issuance h 0CSP
RA I I | Directory Recovery I
| [Portal Service Agent Responder

Infrastructure

Subscribers |||| | Relying Parties m”

Figure 10-1 DoD PKI architecture

The root CA generates its own key pairs and signs a certificate for itself.
This self-signed certificate contains the root’s X.500 distinguished name and its
public key. The self-signed certificate is installed in the subscriber’s certificate
store and establishes a trust point. To trust more than one root CA, the
subscriber includes additional certificates in the certificate store.

Registration of users relies on the DEERS/RAPIDS system, described below,
while the RAs/LRAs are used to generate certificates for devices and some
others.

DEERS/RAPIDS Architecture

The DoD PKI wants to give certificates only to those who are eligible. They
don’t have that kind of information on hand at every enrollment station, but
the organization responsible for paying active duty and civilian employees
has the information in their database. That’s why the RAPIDS system accesses
the DEERS database, which is where information on everyone who has served
in the U.S military is stored. This is shown in Figure 10-2.

The process of getting a CAC is called CAC Issuance. A person wishing to
get a CAC card must present themselves in person to the verification officer
(VO). The process involves four components:

RAPIDS workstation. VOs use the RAPIDS workstation to interact with
the DEERS database and the issuance portal. The VO is authenticated
before they are allowed to issue CACs to others. The VO must insert
their CAC, type in their PIN, and provide a fingerprint scan. The DEERS
database is then queried to determine whether the person logging in is

Chapter 10 = DoD PKI, MGS, and CAC 185

authorized to act as a VO, and the issuance portal is queried to deter-
mine whether the person logging in is authorized to request certificates.
Both of these interactions (and the upcoming interactions) with DEERS
database and issuance portal are SSLv3 or TLS protected. The VO's cer-
tificate is used to provide client authentication.

DEERS database. The DEERS database is queried as part of the VO
authentication process and as part of the CAC issuance process. It serves
as DoD’s central repository for personal information. The database is
available 24 hours a day 7 days a week because it serves a worldwide
audience.

Issuance portal. The issuance portal is accessed as part of the VO authen-
tication process and as part of the CAC issuance process. During the
issuance process, it creates a secure channel between the CAC that is
about to be issued and itself. This channel is used to instantiate Java
applets on the CAC. Three applet types are installed: PKI applets, a PIN
applet, and generic container applets. There are two PKI applets: one for
the identity /signer and one for encryption private keys. There’s only
one PIN applet, because there is only one PIN per card. The number
of generic container applets varies by manufacturer, but many support
four. The issuance portal also interacts with the CA to request certifi-
cates. These interactions with the CA are SSLv3 or TLS protected. The
issuance portal also acts with three other components, but these aren’t
shown in the figures:

Issuance Portal audit system. This component records every RAPIDS
workstation command and its outcome.

DEERS
Database

Issuance
Portal

RAPIDS
Workstation

Figure 10-2 DEERS/RAPIDS architecture

186 PartV = Case Studies

Card Repository System (CRS). This component tracks everything
about each card, including which applets were loaded and unloaded,
the size of the applet, and the applet version.

Inventory Logistics Portal (ILP). This component manages the card
inventory, ordering more cards for specific CAC-issuing sites as
required.

Certification Authority. The CA processes certification requests and
signs certificates. Two types of certificates are issued to subscribers:

Identity/signature.* The public key used for identity/signature ver-
ification is provided as part of the identity/signature certification
request. The private key is generated on the card. The certificate is
returned as part of the certification response.

Encryption. The encryption key is generated by the CA and stored in
a key escrow database. This allows authorized individuals to recover
data that was encrypted even if the card is lost or damaged.

The CAC issuance process can be summarized as follows:
m Verify VO

m Verify applicant

m |nitialize CAC

m [oad and initialize Java applets

m Update ILP and DEERS

Certificate Policies

The DoD has a large number of policies and many people working to set policy.
DoD’s policies affect its entire enterprise, so it’s no wonder that they created
a group for the DoD PKI called the DoD PKI Certificate Policy Management
Working Group (CPMWG) to provide a forum for CP discussions and the
final approving authority for their CP [DODCP]. The CPMWG is chaired
by the DoD PKI PMO and has members from the Combatant Command,
Services, and Agencies (CC/S/As) with both technical and legal focus. The
latest approved CP v9.0 is dated February 9, 2005, and it includes information
on four certificate policies that apply to the DoD PKI in support of MGS, CAC,
and DMS; they are listed in Table 10-1 in increasing level of assurance. The
policies are designed in a pragmatic way that identifies the environment in
which the policy is used and the level of protection of the network. Information

“Initially, the CA issued three certificates: one for identity, one for the digital signa-
ture, and one for encryption. The identity certificate was used for Windows smart card
logon. Today, one certificate is used for identity and the digital signature.

Chapter 10 = DoD PKI, MGS, and CAC 187

is categorized as low value, medium value, and high value, and the networks
are categorized as minimally, moderately, and highly protected environments.

DoD Basic. Applications that handle unclassified information of low
value in a minimally or moderately protected environment assert this
policy. Not surprisingly, the DoD doesn’t issue certificates under this
policy, but it does allow relying parties to use what they consider com-
mercially equivalent certificates for access to information available for
unlimited distribution. Things like meeting coordination and website
access. This policy level could also be met through cross-certification.

DoD Medium. Applications that handle unclassified medium-value in-
formation in moderately protected environments, unclassified high-value
information in highly protected environments, and discretionary access
control of classified information in highly protected environments assert
this policy. This CP is asserted in a software certificate associated with
private keys stored in computer files. That is, the private key is not pro-
tected by a hardware token.

DoD Medium Hardware. Applications that handle unclassified medium-
value information in minimally protected environments, unclassified
high-value information in moderately protected environments, and dis-
cretionary access control of classified information in highly protected
environments assert this policy. This level has a higher degree of assur-
ance and technical non-repudiation. This CP is asserted in certificates
associated with private keys stored in a CAC.

DoD Medium High. Applications that handle high-value unclassified
information in minimally protected environments assert this policy.
This CP is asserted in certificates associated with private keys stored in a
FORTEZZA Crypto Card, which is the hardware token used in DMS.

.m As we mentioned in Chapter 5, picking a good CP name counts. DoD
Basic was Class 2, DoD Medium was Class 3, and DoD High was Class 4.

Table 10-1 DoD PKI Certificate Policy Object Identifiers

LEVEL OF

ASSURANCE OBIJECT IDENTIFIER NAME OBJECT IDENTIFIERS

DoD Basic 1d-US-dod-basic 2.16.840.1.101.2.1.11.2
DoD Medium 1d-US-dod-medium 2.16.840.1.101.2.1.11.5
DoD Medium id-US-dod-mediumhardware 2.16.840.1.101.2.1.11.9
Hardware

DoD High id-Us-dod-high 2.16.840.1.101.2.1.11.4

188 PartV = Case Studies

Table 10-2 DoD ECA Certificate Policy Object Identifiers

LEVEL OF
ASSURANCE OBJECT IDENTIFIER NAME OBJECT IDENTIFIERS

ECA Medium id-eca-medium 2.16.840.1.101.3.2.1.12.1

ECA Medium id-eca-medium-hardware 2.16.840.1.101.3.2.1.12.2
Hardware

The DoD needs to interoperate with other communities beyond their active
duty and civilian employee subscribers, especially with their industry suppli-
ers. The idea of issuing certificates to these very different communities from the
same PKI is not palatable for a number of reasons. To support interoperability
with various external communities, the DoD PKI developed the External Cer-
tification Authority (ECA) program. Operational Research Consultants (ORC)
was the first vendor in this program, and they were followed by IdenTrust and
Verisign. Each vendor is required to conform to the ECA CP, but they are free
to offer different services. For example, ORC offers six types of EE certificates,
and IdenTrust offers five types of EE certificates. As of this writing IdenTrust
doesn’t offer code-signing certificates, but they may well do so in the future.
We describe the certificate types in more detail in the next section. The latest
approved version, v3.1, of the ECA CP is dated August 2006, and it includes
information on two policies, which are listed in Table 10-2 in increasing levels
of assurance.

.Im3 The architecture for the ECA PKI is identical to the DoD PKI, but it is a
separate and distinct architecture.

ECA Medium. Applications handling sensitive medium-value informa-
tion, with the exception of transactions involving issuance or acceptance
of contracts and contract modifications, assert this policy.

ECA Medium Hardware. Applications operating in environments appro-
priate for medium assurance but that require a higher degree of assur-
ance and technical non-repudiation assert this policy.

m It's interesting to note that neither one of these CPs conform to
[RFC3647], but they do conform to the earlier [RFC2527].

Certificate and CRL Profiles

The ECA CP includes certificate profiles for a number of different certificates.
All of the certificates are version 3 certificates, as they include extensions, and
all of the certificates use X.500 distinguished names. Tables 10-3-10-7 list the
required extensions.

Chapter 10 = DoD PKI, MGS, and CAC

Table 10-3 Extensions in Self-Signed Root CAs

EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA = True; path length is omitted.

Key usage Critical The digitalSignature, keyCertSign, and
cRLSign bits are asserted.

Certificate policies ~ Non-critical The id-eca-medium and
id-eca-medium-hardware object
identifiers are both included.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key identifier Non-critical

Bit string identifying the public key in the
certificate.

Table 10-4 Extensions in Subordinate CAs

EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA = True;path length = 0.

Key usage Critical The digitialSignature, keyCertSign,
and cRLSign bits are asserted.

Certificate policies Non-critical The id-eca-medium and
id-eca-medium-hardware object
identifiers are both included.

Authority information Non-critical Optional — contains id-ocsp access

access methods.

CRL distribution points Non-critical Identifies LDAP directory entry that
contains the CRL.

Authority key identifier ~ Non-critical Bit string identifying the key used to sign
the certificate.

Subject key identifier Non-critical Bit string identifying the public key in the

certificate.

The latest version of the DoD PKI certificate profile is considered sensitive.
Although we’re not sure why they are considered sensitive because certificates
that follow this profile are used on the Internet every day. We are not trying to
pick a fight, so we have omitted these profiles from this discussion.

CRLs issued by the SBCA are always version 2 CRLs, since they include
two non-critical CRL extensions: CRL number and authority key identifier.
The reason-code non-critical CRL entry extension is also always included. The
invalidity date non-critical CRL entry extensions may also be included.

190 PartV » Case Studies

Table 10-5 Extensions in Identity/Signature and Encryption Certificates

EXTENSION CRITICALITY CONTENTS

Key usage Critical Identity: The digitalSignature and
nonRepudiation bits are asserted.
Encryption: The keyEncipherment bit is
asserted.

Certificate policies Non-critical Either id-eca-medium is asserted or both
id-eca-medium and
id-eca-medium-hardware are included.

Subject alternative Non-critical Always present and includes RFC822 email

name address.

Subject directory Non-critical Contains id-pda-countryOfCitizenship

attributes to include two letter ISO country code for
subject’s citizenship.

Authority Non-critical Contains both id-ocsp and id-caIssuers

information access access methods.

CRL distribution Non-critical Identifies the LDAP directory entry that

points contains the CRL.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key identifier Non-critical

Bit string identifying the public key in the
certificate.

Certificate Status Responders

It is well known that the DoD PKI has very large CRLs, on the order of tens of
megabytes. To speed up certificate path validation, they support OCSP. They
support OCSP responders that are:

Enterprise-wide. A self-signed v3 certificate with no extensions is in-
stalled in the client certificate trust store and all OCSP responses from
that server are trusted. It’s also configured as a well-known location
in the relying party application to ensure that all requests are sent to
the proper responder.

CA specific. A v3 certificate issued from a subordinate CA that is similar
to an identity /signature certificate with the following differences: sub-
ject alternative name includes a URL for the OCSP responder, a critical
extended key usage extension is included to indicate id-kp-0CSPSigning,
and the no check extension is included. The id-kp-0cspSigning extended
key usage indicates that the public key can be used to validate OCSP
responses. The no check certificate extension indicates that the relying

Chapter 10 = DoD PKI, MGS, and CAC

191

Table 10-6 Extensions in Code-Signing Certificates

EXTENSION CRITICALITY CONTENTS

Key usage Critical The digitalSignature and
nonRepudiation bits are asserted.

Extended key usage Critical The id-kp-codeSigning object identifier is
included.

Certificate policies Non-critical Both id-eca-medium and
id-eca-medium-hardware are asserted.

Subject alternative Non-critical Always present and includes X.500 DN of

name private key holder.

Subject directory Non-critical Contains id-pda-countryOfCitizenship

attributes to include two-letter ISO country code for
subject’s citizenship.

Authority Non-critical Contains both id-ocsp and id-caIssuers

information access access methods.

CRL distribution Non-critical Identifies the LDAP directory entry that

points contains the CRL.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key identifier Non-critical Bit string identifying the public key in the
certificate.

party does not need to check the status of the OCSP responder’s certifi-
cate during its validity period, which essentially makes the OCSP respon-
der a trusted certificate until it expires.

OCSP requests and responses are profiled in the CP. The OCSP requests and
responses are version 1, and the request may include the DN of the requestor.
Requestors can ask for the status of one or more certificates. The request can
be unsigned, and no extensions are required. Likewise, responses can include
information about more than one certificate.

Repositories

The DoD PKI includes a directory, as shown in Figure 10-1, but it is not
the responsibility of the DoD PKI; rather, the DoD PKI is one customer of
a directory that was set up to serve the whole DoD. PKIs are responsible
for publishing certificates and CRLs, while a general-purpose directory is
responsible for a lot more “white pages”” information, which includes names,
phone numbers, postal address, email address, and other information. That’s

192 PartV = Case Studies

Table 10-7 Extensions in Component (Server) Certificates

EXTENSION CRITICALITY CONTENTS

Key usage Critical The digitalSignature and
keyEncipherment bits are asserted.

Certificate policies Non-critical The id-eca-medium object identifier is
included.

Subject alternative Non-critical Always present and includes host URL, host

name name, or IP address.

Authority Non-critical Contains both id-ocsp and id-caIssuers

information access access methods.

CRL distribution Non-critical Identifies the LDAP directory entry that

points contains the CRL.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key identifier Non-critical Bit string identifying the public key in the

certificate.

why the DoD has the Global Directory Service (GDS). The GDS interfaces
with the DoD PKI directory and the CC/S/As directories to collect the data
and provide a common place for users to retrieve certificates as well as point
of contact information, as shown in Figure 10-3. The DoD PKI only supplies
names, email addresses, email encryption certificates, and CRLs. There’s no
need to include the signature certificate, since it is provided by the signer at
the time the message is composed and signed.

PKI Di

Publish
Encryption
Certificates

rectory

and CRLs
y

==

Global Directory

Push Encryption | Service
Certificates and
CRLs for all to

Access and Retrieval
of Encryption
Certificates and CRLs

Relying Parties

Figure 10-3 DoD PKI repository and GDS interaction

Chapter 10 = DoD PKI, MGS, and CAC 193

>
5
2
[3~3
(&)
. <
Service/Agency >
Seal 3
Color &
Photograph g
g
=
=
Status 5
(&)
1]
Last Name, Bar Code = | Bar Code
First Name Middle Initial é

Pay Grade: Rank:

Bar

Code Issue Date:

ICC | yyyYMMMDD
Expiration Date:
YYYYMMMDD

Medical Information

Identification and Privilege Card

Figure 10-4 CAC layout

CAC and Cryptographic Modules

As noted earlier, the DoD PKI supports issuing certificates for different policy
levels in three token formats: software, CAC, and FORTEZZA Crypto Card.
We're focusing in this section on the CAC.

The CAC is a multipurpose smart card. The CAC layout was studied,
had briefs prepared on it, and was debated. The end result is as shown in
Figure 10-4. As noted earlier, the CAC was designed to be multipurpose.

m [t provides an integrated circuit chip (ICC) to store the subscriber’s
private keys and public key certificates. There are two certificates
issued: one for identity and authentication and the other for
encryption.

m [t works as a badge. It provides a picture, an affiliation, a rank, a status,
and other identifying information. It also serves as Geneva Convention
identification.

m [t provides two barcodes that can be used for physical access to build-
ings, without the use of cryptography.

194 PartV » Case Studies

"CODE BLUE"

Access to the private key requires the use of a personal identification number
(PIN). Well guess what — users lose their PINs at an alarming rate. Without a
mechanism to reset the PINs, the CAC becomes useless when the PIN is lost. It
does still work as a visual identity badge, but it won’t help with email security.
Initially, there was one option — go back to the DEERS/RAPIDS workstation and
get a new one issued. This was not practical for the operational community at
the CC/S/As, so they developed the CAC PIN Reset (CPR) system. The CPR
system is a single-purpose client-server application that provides timely PIN
resetting. The process works as follows:

1. The Certified Trusted Agent (CTA) logs in to the CPR application and asks the
CAC holder to insert his or her CAC into the reader.

2. The CAC holder places a finger on the fingerprint reader.

3. If the fingerprint doesn’t match the fingerprint in the DEERS database, the
CTA sends the CAC holder to a DEERS/RAPIDS workstation.

4. If the fingerprint matches the fingerprint stored in the DEERS data-
base, a picture of the CAC holder appears on the screen.

5. The CTA verifies that the individual on the screen is the individual pre-
senting the locked CAC.

6. The CAC holder enters a new 6- to 8-digit PIN, twice. If the two entries are
the same, the CAC is reset to use with the new PIN.

The original CAC had 32KB of space on the ICC. With manufacturer
overhead, PIN applets, and generic containers there is a little more than 10 KB
available for PKI data. If each certificate and private key is less than 2 KB and
there are two certificates, then there’s plenty of room. The next-generation
CAC is a 64-KB card that will comply with Homeland Security Presidential
Directive (HSPD) 12. We'll talk more about this in Chapter 11.

The CAC and all of the components in the DoD and ECA architecture must
use FIPS 140 evaluated cryptographic modules, as listed in Table 10-8.

The CAC also requires a card reader. Adding a card reader also means
adding drivers to allow the host to communicate with the card reader and the
CAC that is inserted into the reader. There’s also middleware, which is a soft-
ware application that serves as the interface between host applications (such
as email, host logon, and web browsers) and the CAC, that needs to be added.

Applications

There are three main applications that have been implemented DoD-wide and
as more web-enabled applications use security mechanisms more applications
are PKI-enable every day:

Medium Grade Service (MGS). MGS allows users to sign and encrypt
email. MGS supports individual email, which is basically email exchange

Chapter 10 = DoD PKI, MGS, and CAC 195

of working level information within administrative channels between
individual DoD personnel that does not commit or direct an organi-
zation. Most of the implementations use Microsoft Exchange, which
supports S/MIME v3. Policies are in place to require signing of all mes-
sages within the DoD and to encourage encryption.

Secure websites. DoD uses the World Wide Web just like everybody else.
They could have physically separated their servers, but this would not
meet the needs of the DoD community. To make sure that only autho-
rized users are granted access. DoD implemented a two-phase plan. The
first phase required all private DoD servers to enable server-side authen-
tication, which means that the servers need to get certificates for TLS
sessions. The second phase required all private DoD servers to require
client-side authentication, which means the clients use their private keys
for authentication during TLS session setup. The first phase allows server
administrators to rely on username and passwords over an encrypted
channel. Protected passwords are far better than passwords passed in
the clear or relying on other methods such as filtering IP addresses. The
second phase replaces the need for the username and passwords. Obvi-
ously, the second phase can only take place once all DoD personnel have
been issued CACs.

Table 10-8 FIPS Levels

PKI ENTITY TYPE FIPS 140 LEVEL
DoD PKI

CA Hardware Level 2
RA Hardware Level 2
CSA Hardware Level 2
Subscriber: high Hardware Level 2
Subscriber: medium hardware Hardware Level 1*
Subscriber: medium Hardware Software Level 1
DoD ECA

CA Hardware Level 2
RA Hardware Level 2
CSA Hardware Level 2
Subscriber: medium hardware Hardware Level 1

Subscriber: medium Hardware Software Level 1

196 PartV = Case Studies

Defense Travel Service (DTS). The DTS allows DoD personnel to book
travel and get reimbursed for travel expenses. It was one of the original
applications targeted by the CAC and PKI. Travelers search the DTS, cre-
ate an itinerary, estimate the trip’s cost, and then submit it to the DTS.
Submissions are signed using the CAC. The DTS then routes the sub-
mission to the Commercial Travel Office (CTO), the travel agent, for
reservation booking. The CTO computes a cost and routes it through the
DTS for authorization. The authorizing user accepts the cost by applying
a digital signature to an approval. The approval is routed through the
DTS to the CTO for final ticketing.

Success and Shortcomings

An absolute undeniable success of the DoD PKI, MGS, and CAC programs is
that they used the lessons learned from the DMS program:

One size does not fit all. In DMS there was one PKI assurance level asso-
ciated with the DMS application. In the DoD PKI there are a range of
assurance levels to support a range of applications, in some application,
like MGS, use more than one level. In DMS all messages were signed and
encrypted. In MGS all messages are signed, but encrypting the messages
is optional.

Leverage industry direction and open standards. DMS choose X.400 and
developed MSP. MGS choose SMTP and S/MIME. DMS developed the
FORTEZZA Crypto Card. DMDC and CAC choose commercial algo-
rithms provided by the DoD PKI.

Without a doubt the DoD PKlI is a shining star, that has only gotten brighter
over the years. A huge deployment, it has evolved from a pilot project to a
full-blown operational system generating tens of thousands of certificates
a day.

The DoD PKI and CAC programs are a testament to the power of having
high-level guidance bring many large and powerful organizations together,
even if they are kicking and screaming about it, to work and implement a DoD
enterprise solution based on commercial standards.

The biggest shortcoming is clearly the absolutely huge CRLs, which have
steadily grown to over 100 MB. The CRLs have grown for practical reasons,
which include revocations for normal reasons like name changes and employ-
ment status, but are magnified by the large user community and the inclusion
of some certificates that were never really deployed. For example, when there
is a problem issuing a CAC, the certificates generated for it are revoked, even
though the private keys for the associated certificates never left the issuing

Chapter 10 = DoD PKI, MGS, and CAC

197

station before being destroyed. Large CRLs impact certificate path validation
processing times; it takes a long time to download and search the CRL for a
certificate. From the users’ perspective, these long processing times make them
less productive, makes them think that the system is not working, and results
in low user satisfaction. From an infrastructure perspective, the large CRLs
take up storage space and utilize (often precious) bandwidth. Fortunately,
OCSP was adopted, which allows relying parties to ask for the status of only
the certificates needed for a given transaction.

Admittedly, DoD hasn’t reached its goal of replacing all other DoD identi-
fication cards with a CAC, but that’s partly because not everyone who gets a
DoD ID card is eligible to get a CAC, not because the system couldn’t support
issuing cards to everyone. Also, some DoD-issued ID cards provide access
to very sensitive places, and they require more strenuous identity validation
than is required to obtain a CAC.

It never fails. No matter how big a program, there’s always a bigger and bet-
ter program coming down the pike. Enter stage left, the NIST Personal Identity
Verification (PIV) requirements (discussed in Chapter 11) are applicable to the
DoD CAC. Stay tuned for CAC v2.

Lessons Learned

There are number of lessons from the DoD PKI, MGS, and CAC deployments.
We'll list only a few of the major ones here; listing them all would make the
chapter much too long.

A powerful champion is required. In the DoD, the smart card, the PKI,
and the payroll data are under the auspices of three separate programs.
Without a powerful mandate and extremely strong leadership, the com-
bination of the PKI, CAC, and DEERS/RAPIDS would never have come
to pass.

Provision properly. Initially the issuance portals were problematic. In the
beginning, they could not handle the load placed on them and network
connections between the issuance portal, CA, and DEERS/RAPIDS, so
they were not always available. This lead to user dissatisfaction and
long and sleepless nights at the DoD PKI help desk and PMO. The sys-
tem must be designed for growth and spikes in transaction volume and
failover. Additionally, the databases that track all the interactions in the
system and internally in the CA need to support tracking every audited
action.

Have PIN reset mechanism available. Sometimes users forget the PIN
to unlock the CACs. They couldn’t remember in 2001, they can’t remem-
ber now, and they probably won't be able remember in 2020. PIN resets

198 PartV » Case Studies

will always be needed. Put the reset capability as close to the users as
possible.

Drivers and middleware are required and they’re temperamental. Pick-
ing a PKI, smart card, and PKI-enabled application doesn’t necessarily
mean they're all going to work together. Care must be taken to ensure
the readers, drivers, middleware, and applications all work together.
Education materials for the smart cards and middleware must be avail-
able to application developers long before the applications are needed.

Understand vendor timelines. Programs that embrace commercial offer-
ings and open standards must rely on what vendors have to offer. Ven-
dors make statements about when the products will be ready and the
capabilities that will be provided. The products don’t always perform as
described in the marketing brochure. Make sure that the schedule works,
with a little bit of time to deal with bugs. Make sure that the selected
products can scale to meet your needs.

Modifying any part of the platform could be problematic. Changing
any part of the platform mix (operating system, card reader, application,
middleware, or card) could cause the system to stop working. Extensive
system testing must be performed to ensure that the upgraded com-
ponent works with the other components before it is deployed.

Large CRLs don’t scale. One-hundred-MB CRLs are just too large for
relying parties to download and check, even with caching. Even down-
loading them once a day is too much, and in some environments, once
a week is too often. If the PKI is going to be very large, deploy certificate
status servers based on either OCSP or SCVP.

Centralized CAs work well when coupled with widely distributed RAs.
Centralized CAs mean that only a small number of CAs are actually
used, but a large number of RAs will be needed to support the decentral-
ization. If the program is enterprise-wide, make sure to indicate where
the RAs are going to be located, who will staff and operate them, and
what workload are they expected to handle. RA operators need to be
trained to ensure that polices are enforced.

Train, train, and train some more. If everyone in the organization is
going to be issued a hardware token or software token, everyone needs
to know what they are, how to use them, when and why they must be
used, and how to protect them appropriately. They need to know the
consequences of losing a token.

Client-side authentication is a challenge. Implementing both client-side
and server-side TLS authentication is the goal. Mutual authentication is
valuable. Enabling client-side authentication continues to be problem.
Until client-side authentication is omnipresent, servers are going to have

Chapter 10 = DoD PKI, MGS, and CAC 199

support usernames and passwords over server-side authenticated TLS
sessions.

It only takes two. Initially the PKI issued three certificates: one for
identity that was used for windows smart card logon, one for digital
signatures that was used to sign email messages and perform TLS client
authentication, and one for encryption that was used to encrypt email
messages. Each certificate had extensions that limited the certificate’s
use and forced the separation of the identity and signature certificate.
Windows 2000 required these extensions, and despite changes made in
Windows XP, it took until Windows Vista for this separation to go away.
It takes about two products cycles to get everyone on the same page.

Sell, sell, and sell. Develop a comprehensive public relations effort to
inform smart card users and application developers well ahead of time.
This effort will facilitate the adoption and implementation process and
will permit users to fully capitalize on the enhancements provided by the
smart card and PKI technology.

Rolling Root CAs is hard but not impossible. Many PKI's Root CAs are
extremely long-lived. Let’s be honest; many designers think “I'll be long
gone before they need to roll the Root CA.” This is because rolling an
installed user base from one trust anchor to another takes a lot of coor-
dination. The trust anchor needs to be instantiated, certificates need to
be issued to the older trust anchor, and vice versa, old CAs need to stop
issuing certificates, new CAs need to start issuing certificates, and much
more. The DoD PKI has proved that it is possible to make this transition.

National Institute of Standards

and Technology Personal
Identity Verification

Building on the experience of the DoD, the rest of the U.S. Government has
been in the process of getting into the token issuing game. President George
W. Bush issued Homeland Security Presidential Directive 12, which is commonly
referred to as HSPD-12. It provides a “Policy for a Common Identification
Standard for Federal Employees and Contractors” [HSPD-12]. As its name
implies, HSPD-12 aims to develop a common identification standard for all
federal employees and contractors. HSPD-12 says:

Wide variations in the quality and security of forms of identification used to gain
access to secure Federal and other facilities where there is potential for terrorist
attacks need to be eliminated. Therefore, it is the policy of the United States
to enhance security, increase Government efficiency, reduce identity fraud, and
protect personal privacy by establishing a mandatory, Government-wide standard
for secure and reliable forms of identification issued by the Federal Government
to its employees and contractors (including contractor employees).

Previously, each department and agency developed its own format for ID
cards. This obviously led to issues, because the ID cards were only accepted
for entry in buildings operated by a federal employee’s own agency, not
all government buildings, and it certainly didn’t permit access to computer
systems across the federal government. The goal of HSPD-12 is to eliminate
these issues.

The 800-pound gorillas in the room are “How on earth are we going
to implement this?”” and “Get this done now.” To quiet those gorillas, the
National Institute of Standards and Technology (NIST) developed the Personal
Identity Verification (PIV) process on a very short and pressure-packed timeline.
All federal departments and agencies must follow the standard procedures

201

202

PartV » Case Studies

outlined in the PIV process to authenticate the identity of their employees
and contractors prior to issuing them PIV cards, which can be used for both
physical and logical access. To make it easier for the federal agencies and
departments to meet the deadlines for compliance, there are two phases:

PIV-I. This phase standardizes federal agency and department processes
for issuing ID badges to their employees and contractors. The process,
in a nutshell, requires that employees and contractors be sponsored by a
designated federal employee, that their identity be verified against a list
of approved documents, and that the employee undergo a background
check. The line drawn in the sand for all federal agencies and depart-
ments to implement this phase was October 27, 2005.

PIV-II. This phase builds on PIV-], issuing and using the standardized
common identification card, a smart card that meets the requirements in
the standard. Each federal agency and department was required to issue
at least one PIV-II-compliant card by October 27, 2006. The final line in
the sand is October 2008, at which time all federal employees and con-
tractors must have a PIV-II card.

NIST produced an impressive number of documents, among them one
FIPS PUB, ten Special Publications (SP), and one Interagency Report (IR),
all providing the details necessary for implementing every step of the PIV
process:

m PUB 201: Personal Identification and Verification for Federal Employees
and Contractors. [PUB201]

m SP 800-63: Electronic Authentication Guideline. [SP800-63]
m SP 800-73: Interfaces for Personal Identity Verification (PIV). [SP800-73]

m SP 800-76: Biometric Data Specification for Personal Identity Verification.
[SP800-76]

m SP 800-78: Cryptographic Algorithms and Key Sizes for Personal Identity
Verification. [SP800-78]

m SP 800-79: Guidelines for the Certification and Accreditation of PIV Card
Issuing Organizations. [SP800-79]

m SP 800-85: PIV Card Application and Middleware Interface Test Guide-
lines (SP800-73 compliance). [SP800-85]

m SP 800-87: Codes for the Identification of Federal and Federally Assisted
Organizations. [SP800-87]

m SP 800-96: PIV Card to Reader Interoperability Guidelines. [SP800-96]

m SP 800-100 Information Security Handbook: A Guide for Managers.
[SP800-100]

m SP 800-104: A Scheme for PIV Visual Card Topography. [SP800-104]

Chapter 11 = NIST PIV

203

m NIST IR 7337: Personal Identity Verification Demonstration Summary
[IR7337]

m NIST IR 7452: Secure Biometric Match-on-Card Feasibility Report.
[IR7452]

NIST provided the implementation details, but they can’t quiet the gorillas
alone. The Office of Management and Budget (OMB), the General Services
Agency (GSA),” and the Chief Information Officer (CIO) council also have
produced memorandum and documents to aid purchase and deployment of
the PIV process:

m OMB M-04-04: E-Authentication Guidance for Federal Agencies.
[M-04-04]

m OMB M-05-24: Implementation of Homeland Security Presidential Direc-
tive (HSPD) 12 — Policy for a Common Identification Standard for Fed-
eral Employees and Contractors. [M-05-24]

m OMB M-06-18: Acquisition of Products and Services for Implementation
of HSPD-12. [M-06-18]

m GSA Memorandum: Acquisitions of Products and Services for Imple-
mentation of HSPD-12. [GSAMEM]

m GSA: Government Smart Card Handbook [GSCH].

m Federal Identity Credentialing Committee: Federal Identity Management
Handbook. [FIMH]

In this chapter, we present the architecture for the PIV process and discuss
the lessons learned by the PIV effort.

PIV Architecture

Our discussion of the PIV architecture includes the cryptographic algorithms,
certificate and CRL profiles, cards and cryptographic modules, and applica-
tions.

Cryptographic Algorithms

The PIV card is based on commercially available algorithms. It must support
one asymmetric private key (the PIV authentication key in the following list),
a corresponding public key certificate, and private key operations on the card.
Four other keys are optional:

PIV authentication key. This key is used to authenticate the card and
prove the identity of the card holder to the external entity. As mentioned
earlier, this key is an asymmetric key, and it is required.

*GSA FIPS PUB 201 siteis fips20lep.cio.gov.

204 PartV = Case Studies

Card authentication key. This key is used to authenticate the card. This
key may be either an asymmetric key or a symmetric key, and it is
optional.

Digital signature key. This key is used to generate digital signatures. This
key is obviously an asymmetric key, and it is optional.

Key management key. This key is used for key transport or key agree-
ment. This key is an asymmetric key, and it is optional.

Card management key. This key is used for card personalization or post
issuance activities. This key is a symmetric key, and it is optional.

The digital signature and key management keys are optional, but most
agencies include them on their PIV cards. The incremental cost is very low,
and the opportunities to secure applications are very appealing.

The algorithms that are allowed for use with these keys are specified in
[SP800-78] and summarized in Figure 11-1.

PIV authentication key
RSA 1024
RSA 2048
ECDSA (P256)
Card authentication key
2TEA
Triple-DES
AES 128, 198, 256
RSA 1024
RSA 2048
ECDSA (P256)
Digital Signature Key
RSA1024
RSA 2048
ECDSA (P256 or P384)

Key Management Key
RSA 1024

RSA 2048
ECDH or ECMQV (P256 or P384)

v

vy

v

vy

v

vyyYy

vy

vy

12/31/2008 ——
12/31/2009 ——
12/31/2010 ——
12/31/2011 ——
12/31/2012——
12/31/2013 ——

Figure 11-1 PIV key type algorithms and key size requirements

m Don't be confused by the 2008 date for RSA 1024 in Figure 11-1. The
Federal Identity Credentialing Committee’s certificate profiles [FICCCP] indicates
RSA with SHA-1 is allowed until 2010. But, if you read carefully, it says that the
certificates that use RSA with SHA-1 must expire before December 31, 2010.

Chapter 11 = NIST PIV

205

The message digest algorithms specified in [SP800-78] refer to the ones used
to protect the information stored on the PIV card. They do not apply to the
message digest algorithms used with the digital signatures generated with the
digital signature certificate. Figure 11-2 shows the timeline for digital signature
and message digest migration.

RSA 2048, 3072, 4096 with SHA-1 and PKCS#1 v1.5 Padding >
RSA 2048, 3072, 4096 with SHA-256 and PKCS#1 v1.5 Padding

RSA 2048, 3072, 4096 with SHA-256 and PSS Padding

ECDSA with SHA-256

ECDSA with SHA-384

v

v

v

12/31/2010 ————

Figure 11-2 PIV signature and message digest algorithm timeline

Architecture

The PIV architecture is composed of three subsystems, all of which are depicted
in Figure 11-3. They are:

Front end. Composed of the PIV card, PIV card readers, PIV card writ-
ers, PIN input device, and biometric reader, the PIV card holder uses this
subsystem to gain physical, and optionally logical, access after their
identity has be verified by the access control subsystem.

Issuance and management. Composed of three processes and two com-
ponents, the PIV card holder, front-end subsystem, and access control
subsystem rely on outputs of this subsystem to issue cards, verify identi-
ties, and permit access.

Identity proofing and registration. This process gathers and maintains
all information required to verify the applicant’s identity. Information
collected includes name, date of birth, fingerprints, and so on.

Card issuance and management. This process personalizes the visual
surface of the card and loads the contents of the smart card’s integrated
circuit chip (ICC) before providing the PIV card to the applicant. The
applicant’s photo, name, employer, and other information is printed on

206 PartV = Case Studies

the PIV card (more on this later in the chapter). The ICC is also loaded
with PIV card applications, biometrics, and other data. The process also
maintains the card after issuance.

Key management. This process generates some of the key pairs,
manages certificates, and generates certificate status information. The
certificates are posted to the PKI directory component, and the certificate
status information is provided to the certificate status component.

PKI directory. This component is populated by the key management pro-
cess and queried by the access control subsystem for PIV card holders.

Certificate status responder. This component provides certificate status
information to support signature verification.

Access control. Composed of two parts, the Logical Access Control Sys-
tem (LACS) and the Physical Access Control System (PACS), this process
is used when the PIV card is used to authenticate a PIV card holder who
wishes to gain access to a logical or physical resource. Both the LACS and
PACS initially verify and authenticate the PIV card holder, and then they
check the PIV card holder’s authorizations prior to granting access to the
resource.

PIV

dentity Proofing &

Card Issuance and Management PKI Directory &

Certificate Status
Responder

Card Issuance &

Authorization
Card Writer/Reader\ | | | —————-———-——-—---— Data

}

4 1&A Identification and Authentication

v Legend
PIV Card

Plli\gl(éz:d —— Direction of Information Flow
PIN Input Device \ | | |:| Process
D O Components

I

Biometric Input
Device I

PIV Front End

Figure 11-3 PIV architecture

Certificate Policies

The PIV specifications require certificates for each of the asymmetric keys
defined for the PIV card. Certificate policies indicate the procedures required
for certificate issuance and the requirements imposed on the user for protection

Chapter 11 = NIST PIV

207

of the private key. Rather than develop an entirely new set of policies for PIV,
NIST adopted a suite of policies known as the Common Policy Framework.

These certificate polices were defined by the Federal PKI Policy Author-
ity Advisory (FPKIPA), which is an interagency body established under the
Chief Information Officers Council, otherwise known as the CIO Council. The
FPKIPA enforces digital certificate standards for trusted identity authentica-
tion across federal agencies and between federal agencies and outside bodies,
such as universities, state and local governments, and commercial entities.
The FPKIPA originally published the Common Policy Framework support
procurement of interoperable PKI services. The FPKIPA added two additional
policies to enhance alignment with PIV requirements. These additional policies
specifically support the PIV Authentication and Card Authentication keys.

OMB defined four assurance levels for authentication of people in [M-04-04].
The four levels are based on the degree of confidence that is placed in the
process to establish the person’s identity on the PIV card and the degree of
confidence that the PIV card holder is actually the person to whom the PIV
card was issued. The four assurance levels are described next:

1. Level 1 indicates that little or no confidence exists in the asserted identity.
2. Level 2 indicates that some confidence in the asserted identity.
3. Level 3 indicates high confidence in the asserted identity.

4. Level 4 indicates very high confidence in the asserted identity.

Technical guidance for achieving each of these levels has been published in
[SP 800-63].

The latest FPKI CP is the X.509 Certificate Policy for the U.S. Federal PKI
Common Policy Framework v1.3 dated 12/12/2007 [FPKICP]. There are six
CPs defined in the single document, and they are listed in Table 11-1 as they
are listed in the [FPKICP] along with the corresponding PIV key types. A brief
summary of the applicability of each policy, and its relationship to the OMB
assurance levels, is provided next:

Common-Policy. This policy is included in CA and subscriber certificates
to support digital signatures or key management. Certificates assert-
ing this policy meet the requirements for Level 3 authentication.

Common-Hardware. This policy is included in CA and subscriber cer-
tificates to support digital signatures or key management. Certificates
asserting this policy meet the requirements for Level 4 authentication.

Common-Device. This policy is issued to devices. Since the OMB Memo-
randum 04-04 [M-04-04] applies to authentication of a person’s identity,
certificates asserting this policy do not correspond to the OMB levels of
assurance.

208 PartV = Case Studies

Common-Authentication. This policy is issued to subscribers supporting
authentication but not digital signature. Certificates asserting this policy

meet the requirements for Level 4 authentication.

Common-High. This policy is included in CA and subscriber certificates

to support digital signatures or key management. Certificates assert-

ing this policy meet the requirements for Level 4 authentication.

Card Authentication. This policy is issued to subscribers supporting
authentication where the private key can be used without user authen-

tication. Since these certificates are used to authenticate the PIV card,

rather than the card holder, there is no correspondence to the OMB

assurance levels.

Table 11-1 FPKI Certification Policy Object Identifiers

PIV KEY TYPES OBIJECT IDENTIFIER NAME OBJECT IDENTIFIER

N/A* id-fpki-common-policy 2.16.

840

.1.101.3.

2.

1.

3.

6

PIV Digital id-fpki-common-hardware 2.16.

Signature Key

PIB Key
Management
Key

840

.1.101.3.

2.

1.

3.

7

PIV Content id-fpki-common-devices 2.16.

Signers**

840

.1.101.3.

PIV id-fpki-common-authentication 2.16.

Authentication
Key

840

.1.101.3.

.13

PIV Digital id-fpki-common-high 2.16.

Signature Key

PIV Key
Management
Key

840

.1.101.3.

.16

PIV Card id-fpki-common-cardAuth 2.16.

Authentication
Key

840

.1.101.3.

.17

*This policy is for software cryptomodules and does not apply to PIV.
**This certificate is issued to devices; therefore, it only applies when the PIV content signer is a
system rather than a person. When the PIV content signer is a person, the certificate policy will
be either id-fpki-common-hardware or id-fpki-common-high.

Chapter 11 = NIST PIV

209

Certificate, CRL, and OCSP Profiles

The Federal Identity Credentialing Committee, another interagency body under
CIO Council, developed the certificate and CRL profiles that CA must follow
to be conformant to the FPKI CP. There are 9 worksheets: 3 for infrastructure
certificates, 1 for CRLs, and 5 for EE certificates.

The infrastructure certificates are for self-signed certificate profile, self-sign-
ed CA certificate, a cross-certificate, and a CRL. All of the certificates are
version 3 certificates. Tables 11-2 through 11-4 list the infrastructure certificate

profile extensions.

Table 11-2 Self-Signed Certificate Extensions

EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA=True; path length constraints is
omitted.

Key usage Critical The keyCertSign and cRLSign bits are
asserted.

Subject information Non-critical Contains id-ad-caRepository and

access ldap://...Orhttp://... pointer.

Subject key identifier Non-critical Bit string identifying the public in the

certificate.

Issuer alternative name Non-critical

Optional. Includes the email address of
the PKI administrator.

Table 11-3 Self-Issued CA Certificate Extensions

EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA=True; path length constraints is omitted.

Key usage Critical The keyCertsSign and cRLSign bits are
asserted.

Certificate policies Non-critical Includes one or more policies from Table 11-1.

CRL distribution Non-critical Identifies the X.500 directory entry with an

point

X.500 DN. It also includes two pointers:

ldap://...and http://...

Authority
information access

Non-critical Contains id-caIssuers with both the

ldap://...and http://... access methods.

Subject
information access

Non-critical Contains id-ad-caRepository and

ldap://...Orhttp://... access methods.

(continued)

210 PartV = Case Studies

Table 11-3 (continued)

EXTENSION CRITICALITY CONTENTS

Authority key Non-critical Bit string identifying the key used to sign the
identifier certificate.

Subject key Non-critical Bit string identifying the public in the certificate.
identifier

Issuer alternative Non-critical Optional. Includes the email address of the PKI
name administrator.

Table 11-4 Cross-Certificate Profile Extensions

EXTENSION CRITICALITY CONTENTS

Basic constraints Critical cA=True; path length constraints is optional.

Key usage Critical The keyCertsSign and cRLSign bits are
asserted.

Certificate policies ~ Non-critical Includes one or more policies from Table 11-1.

CRL distribution Non-critical Identifies the X.500 directory entry with an

point X.500 DN. It also includes two pointers:
ldap://...and http://. ..

Authority Non-critical Contains id-caTIssuers with both

information access ldap://...and http://... access methods.

Subject Non-critical Contains id-ad-caRepository and

information access ldap://...Orhttp://...access methods.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key Non-critical Bit string identifying the public in the certificate.

identifier

Issuer alternative Non-critical Optional. Includes the email address of the PKI

name administrator.

Policy mappings Non-critical Optional. Includes mapped certificate policies.

Name constraints Critical Optional. May include excluded and permitted
subtrees.

The CRLs are version 2 and include one mandatory CRL entry extension
(reason code to indicate why the certificate was revoked) as well as one
optional CRL entry extension (invalidity date if the invalidity date proceeds
the revocation date). The CRLs also include the authority key identifier and

Chapter 11 = NISTPIV 211

CRL number CRL extensions, and it may include the issuing distribution point
extension to support segmented CRLs.

The end entity certificates are all X.509v3 certificates. The end entity certifi-
cate profiles are as listed in Tables 11-5 through 11-9. The PIV authentication
and card authentication certificates include two new pieces of information.
The first piece of information is the Federal Agency Smart Credential Number
(FASC-N), which is provided as a general name within the other name choice.
This uses the ASN.1 syntax specified in [FIPS201], but the string format is
specified in [FASC-N]. The FASC-N is the standard numbering scheme used
to uniquely identify the PIV card. It is used in the PIV authentication and
card authentication certificates to support physical access procedures. It is not
modified during the lifetime of the PIV card, which means that it can be used
to track the card throughout its lifetime.

Table 11-5 Digital Signature Certificate Extensions
EXTENSION CRITICALITY CONTENTS

Key usage Critical The digitalSignature and nonRepudiation
bits are asserted.

Certificate policies ~ Non-critical id-fpki-common-policy,
id-fpki-common-hardware,
id-fpki-common-high are allowed.

CRL distribution Non-critical Identifies the X.500 directory entry with an

points X.500 DN. It also includes two pointers:
ldap://...and http://...

Authority Non-critical Contains id-caIssuers with both

information access ldap://...and http: /... access methods.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key Non-critical Bit string identifying the public key in the

identifier certificate.

Subject alternative ~ Non-critical Includes the email address of the subject.

name

Extended key Optionally Optional. Includes either the

usages Critical id-PIV-content-signing or

id-anyExtendedKeyUsages.

Issuer alternative Non-critical Optional. Contains the email address of the PKI
name administrator.
Subject alternative Non-critical Optional. Contains the email address of the

name subject.

212 PartV = Case Studies

Table 11-6 Key Management Certificate Extensions

EXTENSION CRITICALITY CONTENTS

Key usage Critical Either keyEncipherment (for RSA) or
keyAgreement for (ECDH or ECMQV) bit are
asserted.

Certificate policies Non-critical id-fpki-common-policy,

id-fpki-common-hardware,
id-fpki-common-high are allowed.

CRL distribution Non-critical Identifies the X.500 directory entry with an

points X.500 DN. It also includes two pointers:
ldap://...and http://. ..

Authority Non-critical Contains id-caTIssuers with both

information access ldap://...and http://... access methods.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key Non-critical Bit string identifying the public key in the

identifier certificate.

Issuer alternative Non-critical Optional. Contains the email address of the PKI

name administrator.

Subject alternative ~ Non-critical Optional. Contains the email address of the

name subject.

Table 11-7 Devices Certificate Extensions

EXTENSION CRITICALITY CONTENTS

Key usage Critical May assert digitalSignature and either
keyEncipherment with RSA or keyAgreement
with EC.

Certificate policies Non-critical id-fpki-common-devices is asserted.

CRL distribution Non-critical Identifies the X.500 directory entry with an

points X.500 DN. It also includes two pointers:
ldap://...and http://...

Authority Non-critical Contains id-caIssuers with both

information access ldap://...and http://... access methods.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key Non-critical Bit string identifying the public key in the

identifier certificate.

(continued)

Chapter 11 = NISTPIV 213

Table 11-7 (continued)

EXTENSION CRITICALITY CONTENTS

Extended key Optionally Optional. Indicates id-PIV-content-signing
usage critical or id-anyExtendedKeyUsage.

Issuer alternative Non-critical Optional. Contains the email address of the PKI
name administrator.

Subject alternative Non-critical Optional. Includes the email or IP address of
name the subject.

Table 11-8 Card Authentication Certificate Extensions

EXTENSION CRITICALITY CONTENTS

Key usage Critical May assert digitalSignature and either
keyEncipherment with RSA or keyAgreement
with EC.

Certificate policies Non-critical id-fpki-common-devices is asserted.

CRL distribution Non-critical Identifies the X.500 directory entry with an

points X.500 DN and it identifies the LDAP directory

entry with either 1dap://... orhttp://...
that contains the CRL.

Authority Non-critical Contains the id-caIssuers access method

information access with either and 1dap://... orhttp://...
pointer.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key Non-critical Bit string identifying the public key in the

identifier certificate.

Extended key Optionally Indicates id-PTV-content-signing or

usage critical id-anyExtendedKeyUsage.

Subject alternative Optionally Criticality depends on presence of subject field.

name critical Must include the FASC-N other-name.

PIV Interim Non-critical Boolean indicating whether the National

Criminal History Fingerprint Check has been
completed successfully and the NACI has been
successfully completed (FaLSE) or the NACI has
been initiated (TRUE).

Issuer alternative Non-critical Optional. Contains the email address of the PKI
name administrator.

214 PartV = Case Studies

Table 11-9 PIV Card Authentication Certificate Extensions

EXTENSION CRITICALITY CONTENTS

Key usage Critical May assert digitalSignature and either
keyEncipherment with RSA or keyAgreement
with EC.

Certificate policies Non-critical id-fpki-common-devices is asserted.

CRL distribution Non-critical Identifies the X.500 directory entry with an

points X.500 DN and it identifies the LDAP directory

entry with either 1dap://... orhttp://...
that contains the CRL.

Authority Non-critical Contains the id-caIssuers access method

information access with either and 1dap://... orhttp://...
pointer.

Authority key Non-critical Bit string identifying the key used to sign the

identifier certificate.

Subject key Non-critical Bit string identifying the public key in the

identifier certificate.

Subject alternative Optionally Criticality depends on presence of subject field.

name critical Must include the FASC-N other-name.

PIV Interim Non-critical Boolean indicating whether the National

Criminal History Fingerprint Check has been
completed successfully and the NACI has been
successfully completed (FaLsE) or the NACI has
been initiated (TRUE).

Extended Key Non-critical Optional. Includes either the

Usages id-PIV-content-signing Or
id-anyExtendedKeyUsages.

Issuer alternative Non-critical Optional. Contains the email address of the PKI

name administrator.

The second piece of information is the PIV National Agency Check with
Inquires (NACI) indicator certificate extension. It indicates whether the PIV
card holder’s background check has been completed at the time of PIV card’s
issuance. The extension is set to FALSE if the Federal Bureau of Investigation
(FBI) National Criminal History Fingerprint Check has been completed suc-
cessfully and the NACI has been successfully adjudicated, whereas it is set
to TrRUE if the NACI has been initiated but not completed. The PIV NACI
indication extension’s syntax, which is always non-critical, is as follows:

piv-interim EXTENSION ::= {
SYNTAX NACI_indicator

Chapter 11 = NIST PIV

215

IDENTIFIED BY id-piv-NACI}
id-piv-NACI OBJECT IDENTIFIER ::= { 2 16 840 1 101 3 6 9 1}

NACI_indicator ::= BOOLEAN DEFAULT FALSE

There are also three defined extended key usages:

id-PIV-content-signing. This extended key usage indicates that the pub-
lic key contained in the certificate can be used to verify signatures on PIV
Card Holder Unique Identifiers (CHUIDs) and PIV Biometrics, which
will be discussed in the next section. This extension can be included
in digital signature certificates for both humans and devices. It's only
included when the EE is a trusted participant in the PIV issuing process.

id-anyExtendedKeyUsage. From [RFC3280], this extended usage indicates
that the private key is not restricted to a particular key usage. In fact, it
can be used for any extended key usage. This extension can be included
in digital signature certificates for both humans and devices.

id-pIv-cardauth. This extended key usage indicates that the public key in
the certificate authenticates the PIV card rather than the PIV card holder.
This extension must be present in card authentication certificates.

Cards and Cryptographic Modules

All of the components in the PIV architecture must use FIPS 140-2 (or later)
evaluated cryptographic modules. Depending on which PKI entity the cryp-
tographic module may be implemented in hardware or software. Table 11-10
lists the requirements for each PKI entity.

Physical access means two things: that the card can be read by a card
reader and that the card can be examined by humans. [PUB201, SP800-104]
standardizes the PIV card’s “visual topography,” which uses a 10-cent word
to describe the card’s printed surfaces. There are 20 printing zones identified

Table 11-10 FIPS 140 Levels

PKI ENTITY TYPE FIPS 140 LEVEL
CA* Hardware Level 3
CA Hardware Level 2
RA Hardware Level 2
EE** Hardware Level 2

*If the CA issues certificates that contain id- fpki-common-high certificate policy.
**All PIV cards are required to be FIPS 140 Level 2 with Level 3 physical security.

216

PartV » Case Studies

on the card, with 7 of the zones are required, while the remaining 10 zones are
optional (some of them are background for required layers). There are several
configurations available. Figure 11-4 shows a typical government PIV card,
both the front and back, including all of the mandatory zones. The mandatory
zones are:

m Photograph

= Name

= Employee affiliation

= Organizational affiliation

m Agency card serial number

m [ssuer identification.

Back
Contact

Color Affiltion: Chip 5

Photograph Employee Affiliation pu
Agency/Department: a
Employee Agency/ @
Department
Expires:
YYYYMMMDD

Last Name,

First Name Middle Initial

Serial Number

Front
Contact
Chip

Figure 11-4 PIV card physical layout

The PIV card’s ICC is required to support the following:

Personal identification number (PIN). The PIN is used to gain access
to other items stored on the PIV card. For example access to the bio-
metric fingerprint data and PIV authentication data requires the user
to authenticate to the PIV card prior to the PIV card providing this data.

Card Holder Unique Identifier (CHUID). The CHUID is used by the
PACS to support physical access to federal agency and department

Chapter 11 = NISTPIV 217

buildings. Activation of the CHUID does not require the PIV card holder
enter their PIN. The requirements for the CHUID are found in [SP800-73]
and [TIG-SCEPAS]. The FASC-N, Global Unique Identifier (GUID), expira-
tion date, and issuer asymmetric signature are required, while an agency
code, an organization identifier, a Data Universal Numbering System
(DUNS), and authentication key map are optional. To make sure that the
CHUID isn’t modified on the card, it is included in a CMS Signedpata.
The structure is:

= yersion iS set to 3.

m digestAlgorithms identifies the algorithm used to compute the
message-digest attribute.

= ccontentInfo represents a detached signature by including an
eContentType set to id-PIV-chuidSecurityObject, and the econtent
is omitted.

m certificates includes the CHUID signer’s certificate.
= crls is omitted.

®m singerInfos includes one signerInfo and the following signed
attributes:

®m pessage-digest includes a hash value that is calculated from the
CHUID, excluding the asymmetric signature field.

= piv-Signed-DN includes the DN of the CHUID signer.

PIV authentication data. The PIV authentication data is the PIV authenti-
cation key and the PIV authentication certificate. It must be activated by
the PIV card holder by entering his or her PIN.

Two biometric fingerprints. The two fingerprints are collected to support
PACs (more about this in the next section). A facial scan and a full set of
fingerprints are taken as part of the identity proofing and PIV registra-
tion process, but only two of the fingerprints are required to be stored
on the PIV card. To make sure that the fingerprints aren’t modified on
the card, they are included in a CMS signedpata. The structure is:

®m yersion is set to 3.

m digestAlgorithms identifies the algorithm used to compute the
message-digest attribute.

= cContentInfo represents a detached signature by including an
eContentType set to id-PIV-chuidSecurityObject, and the econtent
is omitted.

m certificates includes the biometric signer’s certificate, but only if it’s
different than the CHUID signer’s certificate.

218 PartV = Case Studies

= crls is omitted.

®m singerInfos includes one signerInfo and the following signed
attributes:

= nessage-digest includes a hash value that is calculated from of
the biometric data, excluding the asymmetric signature field.

m ,ivFASC-N includes FASN-C of the PIV card.

®m piv-Signed-DN includes the DN of the biometric signer.

.Im3 The PIV card actually holds the CHIUD string and biometrics and an
asymmetric signatures physically on the PIV card. Since detached signatures are
used, the stored data is not encapsulated in a signedData content type.

The ICC on the PIV card supports both a contact and a contactless interface.
The NIST requirements tell which pieces of information stored on the ICC are
allowed to be provided through the contact and contactless interfaces.

The ICC on the PIV card may also support other optional elements such as
the other keys and algorithms listed the “’Cryptographic Algorithms” section
of this chapter.

Applications

PIV cards support both physical and logical access when the PIV card holder
is authenticated. There are five options, each providing different levels of
assurance.

The first option, which is referred to as VIS authentication, involves authen-
ticating the PIV card holder using the PIV visual credentials, which is the
information printed on the PIV card. The process requires a guard to check the
physical description information on the PIV card against the PIV card holder.
Access is only granted after the guard performs the visual checks.

The second option, which is referred to as CHUID authentication, involves
authenticating the PIV card holder using the CHUID stored on the PIV card.
The process checks the expiration date in the CHUID and one or more CHUID
elements. The card reader may also support checking the digital signature on
the CHUID. Access is granted only after it has been verified that the CHUID
has not expired and that the CHUID elements authorize the PIV card holder’s
access.

The third option, which is referred to as BIO authentication, involves
authenticating the PIV card holder, using the biometrics stored on the PIV
card. The process requires an electronic card reader, a PIN input device, and
a biometric reader. The electronic card reader reads the CHUID; the PIN
reader accepts the PIN, and the biometric reader obtains the PIV card holder’s

Chapter 11 = NISTPIV 219

Table 11-11 Authentication for Physical Access

PIV ASSURANCE LEVEL REQUIRED APPLICABLE PIV

BY APPLICATION/RESOURCE AUTHENTICATION MECHANISM
SOME CONFIDENCE VIS, CHUID

HIGH CONFIDENCE BIO

VERY HIGH CONFIDENCE BIO-A, PKI

fingerprint(s). The PIV card must not be expired, the PIN must be correct,
the biometric must match, the CHUID FASC-N must match the FASC-N
in the signedpata, and one or more CHUID elements must permit the PIV
card holder access. The signature on the biometric can optionally be verified.

The fourth option, which is referred to as BIO-A authentication, involves
authenticating the PIV card holder with biometrics stored on the card, but this
time the PIN is entered in front of an attendant. The difference in this process
as compared to the BIO authentication process is that the PIN is entered in
front of the attendant to ensure liveness.

The fifth option, which is referred to PKI authentication, involves authen-
ticating the PIV card holder with the PKI. The process requires an electronic
card reader and a PIN input device. The card reader reads the PIV card, and
the PIN input device allows the PIV card holder to input his or her PIN. The
card reader then issues a challenge to the card; the card responds with a signed
response computed with the PIV authentication key; the card reader verifies
the signature on the response and the response value, and the subject’s DN
and FASC-N are passed to the authorization function. Access is only granted
after the authorization function returns a successful response.

Obviously, VIS authentication is only applicable to physical access, but the
other four are applicable to both physical and logical access. Table 11-11 lists
the authentication requirements for physical access, and Table 11-12 lists the
requirements for logical access.

Table 11-12 Authentication for Logical Access
i DA APP AR » 1 i N fl

DCA DR ATIO REMOC DR
DN/RESOUR RO VIRONMEN

N

REQUIRE
DD o

b4

SOME CONFIDENCE CHUID PKI

HIGH CONFIDENCE BIO PKI

VERY HIGH CONFIDENCE BIO-A, PKI PKI

220 PartV = Case Studies

.Im] Federal agencies and departments that don’t have card readers will
initially rely upon visual inspection of the PIV card, but will eventually be required
to implement PIV card readers. The various assurance levels allow agencies and
departments the ability to implement the right solution at the building, floor, and
door.

If the digital signature and key management certificates are populated on

the PIV card, they can support secure email (i.e., S/MIME), secure web, and
other secure applications.

Lessons Learned

NIST caged the gorillas, but it took longer than anticipated. There are many
lessons learned from the PIV effort. The following are some points you should
take home from this case study:

m Physical security systems are not Internet applications. Each facility
makes their own rules for access, so a PIV card issuance process might
satisfy some but not all of these rules. Also, PIV card status information
is hard to leverage across organizations.

m Physical security is very concerned with speed, so vendors are very
reluctant to go beyond FASC-N checks to ensure that their system is
responsive. Digital signatures on CHUID and data are rarely used.

m Contactless interface is faster, but the communication channel is gen-
erally insecure. Biometrics are not available over the contactless inter-
face to ensure privacy constraints imposed in HSPD-12 are met.

m |n practice, PIV cards are not updated at the user’s desktop. This means
that agencies issue PIV cards with a three year lifetime rather than a five
year lifetime. As a result, certificates require renewal.

m [nteroperability concerns have deterred agencies from deploying ECC,
in spite of the obvious performance implications. No one wants to be the
pioneer.

m The initial version of SP 800-78 specified six different ECC curves, which
amplified interoperability concerns. The first revision of SP 800-78
reduced the set to two ECC curves, which has resulted in increased
interest.

m Agencies prefer RSA 1024 since it is much faster than 2048 bit RSA.
When deployments are forced to choose between 2048 bit RSA and
ECC-256 for the PIV Authentication keys, ECC may prove more
attractive.

a¥ll

Vi

Expectations
for the Future

Future Developments

This book has focused on features that are widely available in today’s email,
such as secure email, PKI, and tokens. Some of these fields have been around
for a while, but they are continuing to evolve. With our Magic 8 Ball we can’t
predict which features will prove important, but we’ll make some educated
guesses in this chapter.

This chapter examines features that may become important over the next
few years and is organized to mirror the presentation of material in this book,
rather than the relative order of importance of the various topics.

Email

Email has been around for about 50 years, and it’s been evolving continually.
The saying “evolve or die” is definitely applicable to email because it has been
around for so long. New features keep appearing, and there is little doubt that
email will continue to be around for many more years.

The two key things we expect to see in the future are the continuing
evolution of messaging and increasing interest in stopping spam.

Evolution of Messaging

It’s interesting that the term messaging has started to encompass more than just
email. Now instant messaging (IM), which is commonly referred to as chatting,
and Short Message Service (SMS), which is commonly referred to as texting, are
referred to in the same breath as email. To be honest, it’s only the people that
run the infrastructure that really care about the difference, except when there

223

224

Part VI = Expectations for the Future

is a price difference. Users don’t care which method they use as long as they
can communicate with their friends, family, and colleagues.

Instant messaging has been around for as long as email. It’s different from
email because it is session-oriented, which means that both parties must be
available (well, at least both devices need to be available) at the same time. On
the other had, email is store-and-forward, which allows the parties (and their
devices) to be connected to the network at vastly different times. Depending
on how it’s implemented, IM seems instant because of the session, even
if a stored-and-forwarded network is used behind the scenes. The first IM
specification for the Internet was published in 1993; it was the Internet Relay
Chat (IRC) protocol [RFC1459] and later updated by [RFC2810-2812]. It worked
by opening a window on your computer where you typed and could see what
the other person typed. IRC was popular with many techies but was never
widely adopted outside of that community.

The first IM commercial success was a program called ICQ, which provided
this feature along with a graphical user interface (GUI) and a presence
indicator, which indicates whether the user is available. The GUI made it easier
for non-techies to use, while the presence indicator let you know whether or
not your contacts were available. If ICQ started the craze, then America Online
(AOL) Instant Messenger (AIM) took it to the next level, which was quickly
followed by Microsoft MSN Messenger and Yahoo! Messenger, each wanting
to make sure that their user base had the same functionality. Guess what: they
didn’t interoperate because they were all proprietary solutions. Now, there
are two sets of open standards that are vying for dominance in this space:

wm Extensible Messaging and Presence Protocol (XMPP), which gives homage
to its root with the Extensible Markup Language (XML) community, and
is documented in [RFC3920-3923].

m Session Initiation Protocol for Instant Messaging and Presence Leveraging
Extensions (SIMPLE), which uses the Session Initiation Protocol (SIP)
protocol and is documented in about 30 different documents [SIMPLE].

We're not sure which one will ultimately win out, but we're hoping that the
interoperability mess will be sorted out.

SMS is part of Global System for Mobile communication or GSM for
short. GSM is defined by the GSM Association as ““an open, digital cellular
technology used for transmitting mobile voice and data services.” SMS allows
short message of up to 160 characters to be sent between mobile phones. It’s
wildly popular. The Multimedia Messaging Service (MMS) is an evolution of
SMS that also supports multimedia messages.

IM and SMS/MMS won'’t replace email anytime soon. In fact, they might
never do so, especially since they are being touted as a part of enterprise
messaging services. IM and SMS/MMS are in fact aimed at providing different
services than email, which is considered by many to be more formal, whereas

Chapter 12 » Future Developments

225

texting and chatting are considered less so. There are a number of reasons
for this social difference. One reason is that email has been around for longer
and has been integrated into business processes. Another related reason is
that email is more often archived in records management systems. Another
possible reason is that some people don’t want to be “instant,” preferring to
take their time when responding to correspondence (i.e., they want to sit and
think before responding). With some IM applications, there’s also the problem
of not having subjects or an inbox for storing messages in any kind of related
way. Of course, IM is developing work flow and sharing applications, so it’s
not sure how it’ll all turn out. Some enterprises have started to archive all IM
traffic because it is becoming business critical.

Until very recently IM security was unavailable. There was some security for
SMS because it uses the telephone network. In future, we expect that security
for IM, and the phone network, will continue to improve and become more
standard. IM and SMS/MMS do provide some of the same functionality, but
we don’t think SMS/MMS is going to be replaced by IM because SMS/MMS
is part of the GSM standard. However, gateways between the two are already
beginning to appear.

While email might not be replaced by IM, we do see email and IM merging.
Gateways will move shorter email messages through instant messaging and
vice versa. Larger messages will be sent to the inbox, with notifications of its
arrival being sent through IM. Users will get to choose the delivery method
based on presence information.

People are just beginning to think about security for the presence informa-
tion. As the presence information expands to include geographic location, this
kind of security will become more important.

Just as we have seen text and voice capabilities come together on mobile
phones, we can expect to see further integration. A single application that
provides email, IM, voice, and video to the desktop is coming, and the email
address book will be combined with IM buddy lists and voice address books.
And to cut down on unwanted email traffic (spam), the application will also
support subscriptions to various information feeds, using the Atom Publishing
Protocol [RFC5023].

Stopping spam

Some studies suggest that about half of all email delivered to a user’s inbox is
spam. The amount of spam on the Internet backbone is even higher because
it is addressed to mailboxes that don’t exist. It's generated by bots that have
infected unsuspecting home and office computers and sent by unscrupulous
individuals and businesses. The good thing is that everybody wants to stop it.
Spam costs money by consuming unnecessary bandwidth, leads to fraud, and
damages the reputations of both people and organizations.

226

Part VI = Expectations for the Future

There have been a number of efforts to stop spam, including DomainKeys
[RFC4870], Sender 1D [RFC4406], and Sender Policy Framework [RFC4408]. These
three standards are either historic or experimental specifications.

One specification that is on the standards track and is gaining traction is
Domain Key Identified Mail (DKIM) [RFC4871]. DKIM wants to provide an
authentication mechanism for the email domain that sent the email. DKIM can
be deployed without MUA upgrades, does not require a large infrastructure
or trusted third parties, and can be implemented at low cost.* DKIM works by
allowing the MTA representing a domain, such as your-company.com, to hash
and sign both the message contents and header fields. Verification can then be
performed by MTAs representing other domains to see if the message contents
and header fields have been modified. The intent is to have domains sign only
those messages for which they are accepting responsibility. Signers can decide
what to do if they won’t sign email, and verifiers can decide what to do if
email isn’t signed. In any case, not accepting them and not delivering them
is allowed. Put this all together, and it’s a way to stop masquerading open
relay mail bots that fill everyone’s inboxes with spam. DKIM allows verifiers
to verify an identity, determine whether the identity is known, and determine
whether a known identity is trusted.

Figure 12-1 shows the DKIM architecture. It shows two message paths from
Alice to Matt and Bob; all of whom are all in different MTAs. Alice’s message
to Bob goes from her MTA #1, transits through MTA #2, and is delivered to
Bob’s MTA #3. Alice’s message to Matt goes from her MTA #1, to MTA #4, and
finally to Matt’'s MTA #5. MTAs can be arranged in an almost arbitrary way:
MTA #2 is a transit for MTA #3, while MTA #5 is a subdomain of MTA #4.

MTA #4
MTA #1 Edge 1 MTA #5
Edge Matt
Alice MTA #2
Transit
MTA #3
Edge
Bob

Figure 12-1 DKIM architecture

The DKIM signature structures, as well as the signature generation and
verification rules, are specified in [RFC4871]. The DKIM signature is added
in the DKIM-Signature header. An example DKIM-Signature header is listed

*The DKIM working group in the IETF scoped their work and they purposefully choose to not
address message content encryption.

Chapter 12 » Future Developments 227

in Listing 12-1. The following is a summary of the pKIM-Signature fields and
their support requirements:

v=This indicates the DkIM-Signature version. It must be included.
a=This identifies the signature algorithm. It must be included.
b=This is the signature value. It must be included.

bh=This is the hash of the message body. It must be included.

d=This identifies the domain that performed the signature. It must be
included.

h=This lists the header fields that were included in the. It must be included,
but the From field is the only required header field required to be signed.

s=This subdivides the name space of the domain. It must be included.

t=This indicates when the message was signed. It is recommended that this
field be included.

x=This indicates the date after which the signature should not be consid-
ered valid. It is recommended that this field be included.

c=This indicates the canonicalization scheme used on the message body
and header fields. This field is optional. The default if not included is for
simple canonicalization.

i=This indicates the identity of the end user. This field is optional.

1=This indicates the number of octets of the message body that was used
as input to the hash algorithm. This field is optional. The default is the
entire message body.

g=This indicates methods to retrieve the public key. This field is optional.
There is only one mechanism defined dns/text, which indicates the pub-
lic key is retrieved from the DNS.

z=This includes headers the original headers and their values. This field is
optional.

DKIM-Signature: v=1; a=rsa-sha256; s=brisbane;
d=example.com; c=simple/simple; g=dns/txt;
i=joe@football.example.com;
h=Received : From : To : Subject : Date : Message-ID;
t=1117574938; x=1118006938;
bh=2jUSOHINhtVGCQWNr9BrIAPreKQjoO6Sn7XIkfJvOzv8=;
b=AuUOFEfDxTDkH1LXSZEpZ]j79LICEps6eda7W3deTVFOk4yAUogOB

4dnujc7YopdG5dAWLSANG 6XNAZPpOPr+kHxt1IrE+NahM6L /LbvaHut
KVAKLLkpVavvQPzeRDI0O09S02TI15Lu7rDNH6mZckBdrIx0orELZV
4dbmp/YzhwvcubU4=;

Listing 12-1 DKIM-Signature Heading Field Example

228 Part VI = Expectations for the Future

The private keys are retained by the signer, whereas the public keys* are
stored and distributed by the DNS in a resource record (RR). A RR is the format
for data stored in the DNS; DKIM uses the unstructured TXT RR. Domain
keys are stored in subdomains named “ domainkey” to allow verifiers to use
the g=, d=, and s= to format a DNS query for the correct key. DKIM defines the
following key tags for use in the unstructured text:

p=This is the public key. This field is required.
v=This indicates the version of the DKIM key record. This field is optional.

g=This indicates the granularity of the key. This field is optional. The
default is all.

h=This indicates the acceptable hash algorithms. This field is optional, but
both the SHA-1 and SHA-256 algorithms must be supported. The default
is all.

k=This indicates the key type. This field is optional. The default is RSA and
it uses the syntax for rRsa~PublicKey from [RFC3447].

n=This includes notes that humans might find interesting. This field is
optional.

s=This indicates the service type to which this key applies. This field is
optional. The default is all.

t=This includes flags. This field is optional. The default is no flags.

Large email service providers are pushing to implement DKIM because
users are being inundated with spam and phishing messages. DKIM increases
the chance that email comes from the indicated originator, but this won’t com-
pletely work until everyone implements it. If DKIM is widely implemented,
users might not even see the spam when their spam filter is configured to
delete messages that aren’t signed. DKIM doesn’t provide authentication of the
message originator because the private key is not controlled by the originator.
There’s also no support for confidentiality, but that was a conscious decision.
An improper setting of the 1= field can cause some interesting results. Namely,
if the length is shorter than the full length of the message, then it’s possible
that an attacker could modify the part of the message that wasn’t used as an
input to the message digest. This capability cannot be removed because text
is sometimes legitimately added to the end of message. For example, when
people send to a mail list, the mail list server might add information to the end
of every message that it processes. The other thing is that there’s no visible
indication in mail clients even though the message was actually authenticated.
The DKIM-Signature header is often hidden, so if you want to know that it

*There’s no certificate it’s just the public key.

Chapter 12 » Future Developments

229

was signed you have to enable verbose/full headers. A visible indication of a
DKIM signed message would be very helpful.

As DKIM becomes widely deployed, sending domains will develop rep-
utations as sources of spam or useful messages. Since DKIM provides
authentication of the domain, this reputation will be useful. For example,
banks are not the real source of phishing messages. Once you are able to
authenticate your bank’s domain, you will be able to distinguish the phishing
messages from messages that really originate with your bank.

Cryptography

The recent focus in the cryptography field has been two fold: hash and elliptic
curve algorithms. This section addresses both.

Competing Hash Algorithms

In the not-too-distant past, there was a huge push to transition encryption
algorithms from DES to Triple-DES and then to AES. Now the focus has turned
to message digest algorithms (recall that these are also called one-way hash
functions). The reason for this is the cryptographic attacks that have been
theorized against SHA-1.*

Hash algorithms need to have two important properties: being collision-free
and being one-way. To show that an algorithm is weaker, an attack must
show that it will take less than the optimal number of operations to produce a
collision or that the function is not one-way.

Collision attacks occur when two messages result in the same hash value. For
a strong hash algorithm, the number of operations necessary to find these two
messages is supposed to be 22, where L is the number of bits in the resulting
hash value.

Attacks on the one-way property occur either when the attacker has a hash
value and tries to find a message that returns the same hash value or when
the attacker has a message and tries to find another message that has the same
hash value. For a strong hash algorithm, the number of operations necessary to
find either the hash or message is 2". The first attack on the one-way property
is called a first-preimage attack, and the second attack is called a second-preimage
attack.

Figure 12-2 shows three types of attacks against hash algorithms. Table 12-1
shows the number of operations necessary to find collision and image attacks
against the SHA-1 and SHA-2 hash algorithms.

“It’s a theorized attack because there are no known verifications of the attack. Though the
computation is very large, NIST surmised that it is not out of the realm of possibility for a highly
motivated and highly resourced attacker; therefore, they accept that the attack deserves serious
consideration.

230 Part VI = Expectations for the Future

->| Message | Message |<- | Message |<- | Message

| Message |<-

No Try Again

No Try Again No Try Again No Try Again

Collision Attack First-preimage Attack Second-preimage Attack

Figure 12-2 Hash algorithm attacks: collision, first-preimage, second-preimage

Table 12-1 Number of Operations to Find Hash Collision or Image
ALGORITHM OPERATIONS TO FIND COLLISION OPERATIONS TO FIND IMAGE

SHA-1 263 280

SHA-224 2112 2224
SHA-256 2128 2256
SHA-384 2192 2384
SHA-512 2256 2512

In 2005, Professor Xiaoyun Wang announced a collision attack against
SHA-1 that lowered its strength from 2% to 2% [WANG].* Other collision
attacks have also been published that further lower the number of operations.
With the handwriting on the wall, NIST has developed a three phase plan to
develop the next family of hashing algorithms, which they are referring to as
the SHA-3 family. The three steps are as follows:

1. Migrate to SHA-2 algorithms. This strategy is a “walk towards the
exit” strategy as opposed to a “run towards the exit” strategy. There is
every indication that the SHA-2 family of algorithms will be secure for at
least the next decade. It’s a prudent strategy because the number of oper-
ations necessary to compute the attacks is so large that there’s still time
to develop a replacement before any real problems emerge. The strat-
egy is also smart because there is always significant lag time between the
announcement of a new algorithm, standards being updated that include
the new algorithm, and products becoming available that implement

*The attacks do not seem to affect HMACs or KDFs based on SHA-1.

Chapter 12 » Future Developments

231

the standard. By allowing a transition period and backing the timeline
up with NIST documents, NIST helps stimulate a market, and provides
time for vendors to develop and test their products. This kind of strategy
should come as no surprise, as NIST is part of the U.S. Department of
Commerce.

2. Encourage hash function research. NIST does this by hosting work-
shops. (They’ve held two so far.) The first was held in late 2005, address-
ing, among other things, the status the status of SHA-1 and SHA-256,
deployment challenges for new algorithms, and potential replacement
options. The second was held in mid-2006, addressing mathematical
foundations, analysis and design, and practical uses and pitfalls. The
workshop outputs were used to develop the minimum acceptability
requirements, submission requirements, and evaluation criteria. On
November 2, 2007 the formal announcement was published, request-
ing algorithm submissions and listing their requirements and evaluation
criteria.

3. Host hash function competition. The AES selection process worked
well, and it is being used as the model for selecting the SHA-3 hash algo-
rithms. The selection process will accept submissions until the fourth
quarter of 2008, and then three hash function candidate conferences will
be held. They are scheduled to take place in the second quarter of 2009
and the second quarter of 2010, with the final one taking place in the first
quarter of 2012.

Adopting Elliptic Curve Cryptography

The other focus in the field of cryptography is on adopting Elliptic Curve
Cryptography (ECC). After AES was announced, work began to establish
public key algorithms offering the same strength as the new symmetric cipher.
NIST published [SP800-57] to provide some guidance.* As you can see in
Table 12-2, as the number of bits of security increases so does the public
key size. For AES-128, the key size of equal strength using the RSA or
Diffie-Hellman algorithm is 3200 bits, which doesn’t seem too unreasonable,
but the equivalents for AES-192 and AES-256 are well beyond the capabilities
of small, cheap cryptographic tokens. It’s not the storage that will be the
problem; the issues will be the key pair generation and the time needed
to perform private key operations. Therefore, we expect to see more tokens
that support the Elliptic Curve Digital Signature Algorithm (ECDSA) to be
developed and deployed. One indication of this transition is the support in
Microsoft Windows Vista for ECDSA with the CNG (Cryptographic Next
Generation).

*We added SKIPJACK to the 80-bit row.

232 Part VI = Expectations for the Future

Table 12-2 Comparative Algorithm Strength

RSA/DSA PRIME FIELD BINARY FIELD
ONE-WAY DIFFIE- ELLIPTIC ELLIPTIC

BITS OF SYMMETRIC HASH HELLMAN CRUVE CURVE
SECURITY ALGORITHM FUNCTION KEY LENGTH KEY LEGNTH LENGTH

80 SKIPJACK SHA-1 1,024 lIpl| =192 m=163
112 Triple-DES SHA-224 2,048 lIpl| =224 m =233
128 AES-128 SHA-256 3,200 lIpl| = 256 m =283
192 AES-192 SHA-384 7,500 lIpl| = 384 m =409
256 AES-256 SHA-512 15,000 lIpl| =512 m=571

The one issue with ECC is intellectual property rights (IPR). There are lots
of IPR statements and patents in this space dealing with some specific curves,
issuance, and optimizations. The U.S. Government has done their part and
bought the rights for many patents under these two conditions:

m With elliptic curves over GF(p), where p is a prime number greater
than 2%°

m When the product is approved by the U.S. National Security Agency
or is used for national security and is compliant with FIPS 140-2 or its
successors

There is also some interesting research into making RSA friendlier to the
limited processing capabilities of tokens, especially smart cards. Multi-Prime
RSA [PKCS1v21] also offers hope by using more than two prime factors,
making the RSA private key operations become less processor intensive. If this
research becomes widely accepted and deployed, then the uptake of ECC will
take longer.

Public Key Infrastructure

The amount of experience gained in small-, mid-, and large-scale PKI deploy-
ments over the last five years has been substantial. All of the architectures
described in Chapter 5 have been implemented.

The basic certificate structure remains unchanged, but new extensions are
defined for by many different communities. The base IETF PKI standard has
been published twice, and it is being readied for a third publication. The basic
certificate structure is unchanged, but a few new extensions, matching rules,
and processing rules have been added. Additional extensions have also been

Chapter 12 » Future Developments

233

defined in other documents. We don’t expect that the base certificate structure
will change in the next five years, but we do expect more and more extensions.

Interconnecting the different enterprise PKIs has lead to some interesting
trends that will likely continue. Revocation checking has actually started to
occur on a regular basis.

Unfortunately, authorization information is continuing to creep into cer-
tificates. We see two ways that authorization information can be addressed:
attribute and proxy certificates. We also think that large enterprises will
start to demand that they mange their own trust stores. We discuss all of
these next.

Trending Architectures

We believe there will be more PKIs but fewer CAs within any given
large-enterprise PKI. Initially, CAs were going to be distributed to every
organization so that the organization could maintain control, but after spread-
ing out the CAs the organizations found the cost was too high for training,
equipping, and maintaining their CA. As a result, CAs are now being central-
ized. If the CAs are properly provisioned to support the needed operations
with high availability, then they are more than adequate to do the job. The
catch is that more RAs are needed to help with the registration process. This
separation of duties is better for the organization because they can concentrate
their efforts on a relatively smaller number of CAs by getting higher-assurance
infrastructure components.

Bridge CAs are being used for the interoperability of enterprise PKI. Enter-
prises were developing CPs, but then the concern about all the comparisons
necessary to cross-certify has resulted in everyone moving towards bridges
with the same assurance-based CPs being used by large communities. We
believe this trend will continue.

At some point, though, the number of bridges could get out of control.
Bridges for bridges would lead to extremely complex certification path devel-
opment. When relying parties start to go through three or four bridge CAs, we
predict that we’ll start to see them consolidate.

Checking Certificate Status

When PKiIs first emerged very few clients checked the certificate status. When
certificate status checking was finally implemented, CRLs issued by some CAs
were growing at an alarming rate. The result was interest in online certificate
status checking. OCSP has started to take off, and we expect continued growth
of online certificate status checking, eventually replacing CRLs. Granted, CRLs
will still be produced, but relying parties won’t be checking them directly. The
CRLs will provide information to OCSP responders and in the not-too-distant
future also to SCVP servers.

234

Part VI = Expectations for the Future

Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP) is defined in [RFC2560]. OCSP
enables applications to determine the status of a particular certificate by
querying an OCSP responder. An OCSP client issues a status request to
the OCSP responder and suspends acceptance of the certificate in question
until the OCSP responder provides a reply. The OCSP responder sends the
certificate status information to the requester. Support for OCSP in included
in a certificate using the authority information access certificate extension.
CAs may host this service locally or delegate this responsibility to an OCSP
responder operated by someone else.

Figure 12-3 depicts a simple OCSP response. The request from Bob shown
here includes four data items. The cert1D field describes the certificate that
Bob is interested in and it includes the hash algorithm, issuer name hash, issuer
key hash, and serial number. The issuer name hash is the result of hashing
the certificate issuer name field. Similarly, the issuer key hash is the result of
hashing the issuer public key, as obtained from the subject public key field
in the issuer’s certificate. The hash algorithm used for both these hashes is
identified in the hash algorithm field. The serial number is the serial number of
the certificate for which status is being requested. In Figure 12-3, the certificate
of interest has serial number 2560. Bob has included a nonce in an extension
field to guard against replay.

Version <4— v1 by default

[Requester Name] | «#— (C=US; O=Hawk Data; CN=Bob

id-sha256,
299758548972a8e8822ad47fa1017ff72f06f3ff6a016851f45c398732bc50c,
[Single Request a1802914d2535f78d1fe02c19095f29¢286a60cc67faaed5994¢6579053445d9, 1222

Extension]

certID

[Request Extensions]| <— nonce =48

Legend:
[] Optional Field

Figure 12-3 An OCSP request message

When using CRLs, the pairing of issuer name and serial number identifies
a certificate, whereas OCSP uses the more complicated certificate identifier
structure. In the absence of a global directory system, it is possible that two
CAs could choose the same name. Since an OCSP responder may provide
service for multiple CAs, the OCSP responder must be able to distinguish CAs
with the same issuer name. Two CAs will not have the same public key. By
using the hash of the issuer public key in addition to the hash of the issuer
name to identify the issuer, the possibility of collisions is removed.

As shown in Figure 12-3, Bob has requested status information for one
certificate. The OCSP request format supports requesting status for multiple
certificates in a single request. In that case, the certIp and the optional single
request extension fields appear for each certificate. Bob may optionally sign his

Chapter 12 » Future Developments

235

OCSP request. By omitting the signature, lightweight clients may reduce the
number of expensive signature operations they perform. However, an OCSP
responder may insist on signed requests for billing or access control purposes.

An OCSP response includes the version, the responder identifier, the time
the message was produced, the certificate identifier, the certificate status, the
time that the status was last updated, and the time when the next status update
for this certificate is expected. In the single extensions, the OCSP responder
includes additional information about that particular certificate. If the response
conveys information about more than one certificate, the certificate identifier,
status, update information, and single extension appear for each certificate.
The response extensions include additional information for the entire response.
Every OCSP response is digitally signed by the OCSP responder.

Figure 12-4 depicts the data in the OCSP response to Bob’s request. The
response came from the Hawk Data’s OCSP1 server. The message was pro-
duced at 2:12 P.M. Greenwich Mean Time on February 2, 2008. The certificate
was revoked on January 17, 2008, at 8 P.M. Greenwich Mean Time. The last
update for this certificate’s status was 8 A.M. that same morning. The next
update is expected at 8 A.M. the following morning.

Version «4— v1 by default

Responder ID 4— (=US; O=Hawk Data; CN=OCSP1

Produced At <4— 20080202141200Z

id-sha256, 299758548972a8e8822ad47fa10171f72f06f3ff6a016851f45¢398732bc50c,
4— a1802914d2535f78d1fe02¢1909529e286a60cc67faaed5994c6579053445d9,

1222
Certificate Status|4— revoked at 20080117200000Z,
reason: affiliation changed

This Update <4— 20080202080000Z

Certificate ID

Next Update <4— 20080203080000Z

Single Extensions | 4— CRL is http:/pki.nawk.com/2008020208.crl

Response Extensions | €4— nonce =48

Figure 12-4 An OCSP response message

OCSP is often described as providing revocation information in a more
timely fashion than CRLs. An OCSP responder can provide the most up-to-date
information it possesses without repository latency. If the OCSP responder is
also the CA, the most up-to-date information will be provided. With CRLs,
the CA may have additional information that it cannot provide to certificate
users. However, in practice, there has been little difference in freshness of the
certificate status information provided by an OCSP responder and a CRL.

Most OCSP responders are not CAs. Rather, they are single-purpose
machines that handle certificate status requests for a large number of CAs.
Typically, these servers obtain their revocation information periodically in the
form of CRLs. The information obtained by the requester is no fresher than if
they obtained the same CRLs themselves.

236

Part VI = Expectations for the Future

When the OCSP response is returned to the requestor, it is digitally signed.
The requestor must validate the signature on the response. How can the
requestor determine if the OCSP responder has been revoked? To do this, the
requestor needs to ask the OCSP responder for status information on itself or
validate the certification path of the OCSP responder, including CRL checks.
Of course, asking the OCSP responder about itself is rather silly, and the point
of OCSP is to avoid CRL checks. Therefore, the actions needed to revoke OCSP
responders that use the noCheck extension [RFC2560] are similar to the actions
needed to remove a trust anchor from a certificate trust list.

The real utility of OCSP lies in the single-response extension fields. If Bob is
checking a signature on a purchase order, he could request approval for this
signature and a particular dollar amount. The OCSP responder could provide a
response stating that the certificate status was good and whether the signature
could be accepted for the stated dollar amount. This is the added functionality
provided to the credit card companies through the online request. This is the
functionality that CRLs cannot deliver.

Coupling business decisions with certificate validation has significant
advantages. The organization can administer one OCSP responder and be
assured that all clients are applying the same business rules for all transactions.

If there is a need for transaction-specific authorization information, then
OCSP may be the best choice. If not, the advantages of CRL caching may
outweigh the benefits of online checking.

Another benefit arises if CRLs are very large. In this situation, the OCSP
traffic for several days may be much less than the download of a single CRL.
Very large CRLs can be a big burden on network bandwidth and user patience.
Users are often unaware of the processing that is taking place when a CRL
is being fetched; after all, they were simply trying to open a digitally signed
email message when the hourglass appeared.

Server-Based Certificate Validation Protocol

The Server-Based Certificate Validation Protocol (SCVP) is defined in
[RFC5055]. SCVP enables applications to delegate both certification path
construction and certificate path validation. The services are characterized as
follows:

Delegated Path Validation. The delegated path validation (DPV) service
targets at applications that want to allow a trusted server to do all the
work. SCVP clients request that the server confirm that the public key
belongs to the identity named in the certificate and confirmation that the
public key can be used for the intended purpose.

Delegated Path Discovery. The delegated path discovery (DPD) service
targets applications that want to offload certification path construction.

Chapter 12 » Future Developments

237

SCVP clients request that the server construct a valid certification path
and return it to them and they’ll do the certification path validation.

This protocol evolved out of the growing concern with the complexity
of constructing and then validating X.509v3 certification paths. Certification
path validation was relatively straightforward in X.509v1 and X.509v2. Each
certificate in the sequence had to be within its validity period and a CRL
checked for each certificate. The names and signatures needed to chain for
each subsequent certificate in the path. If these checks passed, the chain started
at a known trust anchor, and the client could determine that each issuer was a
CA, then the certification path was valid.

X.509v3 added both functionality and complexity to certification path vali-
dation. Now, certificates identify CAs explicitly. They also include limitations
on subject names, the appropriate use of public keys, and certificate policies.
The concept of criticality added additional processing requirements. Initially,
different vendors supported different sets of standard extensions. This led to
inconsistent results, as valid certification paths were rejected when unrecog-
nized critical extensions were encountered. The Internet Certificate and CRL
Profile [RFC3280] has generated greater consensus but inconsistent results
persist because implementers have interpreted non-critical extensions differ-
ently. If one implementation ignores a constraint in a non-critical extension
and another implementation honors the constraint, the two implementations
can return different results.

SCVP uses CMS as its protective wrapper; signedbata and Authenticated
Data allowed.* Requests use the cvrRequest content type. Figure 12-6 shows the
syntax of the cvrRequest. There are two mandatory fields: the version and the
query. There are eight optional fields: a requestor reference to detect looping in
relay environments, a requestor nonce to stop replays, the requestor’s name, the
name of the requested responder, request extensions, the signature algorithm,
the hash algorithm, and arbitrary text added by the requestor. The query
must contain the certificates to be checked, what checks are to be performed,
and what policy is applied during these checks. Queries may also include
additional information that the requestor wants back from the responder (e.g.,
the valid certification path), information from previous request-responses (e.g.,
nonces), the time at which the validation should be performed (this time can
be in the past), intermediate certificates, revocation information, an indication
that caches responses are allowed, and extensions for this query. In Figure 12-5,
Bob includes Alice’s certificate and wants the path built, checked, and returned
using the default validation policy. He also includes a nonce to protect against
replay attacks.

*It is up to the SCVP server whether the client certificate needs to included the id-kp-
scvpClient extended key usage.

238 Part VI » Expectations for the Future

CV Request Version |« v1 by default
Query 44— Queried Certificates | 44— Alice’s certificate

[Requestor . .

Reference] Checks 44— id-stc-build-status-checked-pkc-path
[Requestor Nonce] |«— nonce =48 [Want Backs] 4— id-swh-pkc-best-cert-path
[Requestor Name] Validation Policy |<¢— id-svp-defaultValPolicy
[Responder Name] [Response Flags]

. [Server Context

[Request Extensions] Information]

[Signature . . .
Algorithm] [Validation Time]

. [Intermediate

[Hash Algorithm] Certificates]

[Revocation

[Requestor Text] Information]

[Produced At]

Legend:
[] Optional Field [Query Extensions]

Figure 12-5 An SCVP request

SCVP responses use the cvrResponse content, as shown in Figure 12-6. The
four required fields indicate the version, the configuration of the server, the
time the response was produced, and the status of the response. There are a
number of optional fields to indicate the policy that was used during validation,
a reference to the request, the requestor reference from the request, the
requestor’s name, the reply objects, a server nonce, server context information
returned from the request, extensions, and text returned from the request.
The reply objects include the information the requestor wanted including
the certificate being checked, the status of this reply, the time the reply was
validated, the checks that were performed, and the want backs. Optional
validation errors, a next update time, and extensions can also be included. In
Figure 12-6, the SCVP responder replies to Bob’s request from Figure 12-5.
The response includes a server configuration identifier, the time the response
was produced, the response status of okay, and a responder nonce. The reply
objects include Alice’s certificate, a reply status of success, a reply validation
time of February 2, 2008 at 2:12 P.M., an indication that the entire path was
checked and is valid, and the entire certification path.

As with OCSP responders, an SCVP responder can also be a CA or be a
separate entity. Also like OCSP responses, the SCVP response is signed and the
requestor must validate the signature on the response. To do this, the requestor
needs to ask the SCVP responder for status information on itself or validate
the certification path of the SCVP responder, including CRL checks. Of course,
asking the SCVP responder about itself is rather silly, and the point of SCVP
is to avoid path construction and CRL checks. Therefore, the actions needed
to revoke SCVP responders that are configured as trust anchors are similar to
the actions needed to remove a trust anchor from a certificate trust list.

Chapter 12 » Future Developments

239

CV Response Version | €— v1 by default

Server Configuration
Identification

<4+ 1234

Produced At <4— 20080202141200Z

Response Status 44— okay

[Response Validation
Policy]

[Request Reference]

[Requestor
Reference]

[Requestor Name]

[Reply Objects] — Certificate «4— Alice’s certificate

[Responder Nonce] |<—nonce=384 Reply Status «4— sucess
s Context i i ¢
[Server Contex Reply V‘lalldatlon 20080202141200Z
Info] Time

id-stc-build-status-checked-pkc-path,
valid

[CV Response

Extensions] Reply Checks

[Requestor Text] Reply Want Backs | 4— Certification Path

[Validation Errors]

[Next Update]

Legenq:) [Certificate Reply
[] Optional Field Extensions]

Figure 12-6 An SCVP response

The IETF took a very long time to finish the SCVP specification. We think
SCVP will eventually replace OCSP because the whole path can be validated
in one request. Further, SCVP supports delegating path validation so that
devices that don’t have the wherewithal to do path validation can hand it
off to an SCVP server. This ability may allow the bridge CA environments to
become more complex than might otherwise be possible.

Authorizing with Attribute Certificates

The certificates we’ve been talking about so far in this book have been
public key certificates. Public key certificates bind the subject and the public
key. Establishing and maintaining this binding was the focus of Chapter 5.
However, the relationship between the subject and public key ought to be
long-lived. Most end-entity certificates include a validity period of less than
three years.

Organizations seek to improve access control. Public key certificates can be
used to authenticate the identity of a user, and this identity can be used as
an input to access control decision functions. However, in many contexts, the
identity is not the criterion used for access control decisions. The access control
decision may depend upon role, security clearance, group membership, or
ability to pay.

240

Part VI = Expectations for the Future

Authorization information, such as membership in a group, often has a
shorter lifetime than the binding of the identity and the public key. Authoriza-
tion information could be placed in a public key certificate extension. However,
this is not a good strategy for two reasons. First, the certificate is likely to be
revoked because the authorization information needs to be updated. Revoking
and reissuing the public key certificate with updated authorization informa-
tion is quite expensive. Second, the CA that issues the public key certificates is
not likely to be authoritative for the authorization information. This results in
additional steps for the CA to contact the authoritative authorization informa-
tion source.

The X.509 attribute certificate (AC) binds attributes to an AC holder [X50997,
RFC3281]. Since the AC doesn’t contain a public key, the AC is used in con-
junction with a public key certificate. An access control decision function may
make use of the attributes in an AC, but it is not a replacement for authenti-
cation. The public key certificate must first be used to perform authentication,
then the AC is used to associate attributes with the authenticated identity.

ACs may also be used in the context of a data origin authentication service
and non-repudiation service. In these contexts, the attributes contained in the
AC provide additional information about the signing entity. The information
can be used to make sure that the entity is authorized to sign the data. This
kind of checking depends either on the context in which the data is exchanged
or on the data that had been digitally signed.

An AC resembles a public key certificate. The AC is an ASN.1 DER encoded
object and is signed by the issuer. An AC contains nine fields: version,
holder, issuer, signature algorithm identifier, serial number, validity period,
attributes, issuer unique identifier, and extensions. The AC holder is similar
to the public key certificate subject, but the holder may be specified with a
name, the issuer and serial number of a public key certificate, or the one-way
hash of a certificate, public key, or an arbitrary object. The attributes describe
the authorization information associated with the AC holder. The extensions
describe additional information about the AC and how it may be used.

The contents of an AC are shown in Figure 12-7, wherein the AC permits
Alice to administer the VPN for four hours. As a result of the short validity
period, the AC issuer does not need to maintain revocation information. By
the time the revocation information could be compiled and distributed, the
AC would expire. So, with short-lived ACs, revocation information is not
distributed. In this example, Hawk Data accepts the risk for that four-hour
window rather than maintain CRLs for attribute certificates. If an AC has a
longer life span (for example, weeks or months), then Hawk Data would need
to maintain AC status information.

The Hawk Data VPN server can obtain Alice’s AC in two different ways,
as shown in Figure 12-8. Alice may provide the AC to the server when she
initiates a connection. This is knows as the push model. Alternatively, Hawk

Chapter 12 » Future Developments

241

version

holder

issuer

signature

serial number

validity

attributes

issuerUniqueID

extensions

«— 2

<+— (=US; 0=Hawk Data; 0OU=R&D; CN=Alice

«+— (=US; O=Hawk Data; CN=Attribute Authority

<+— RSA with SHA-256

+— 1222

<+— 20080117080000Z to 20080117120000Z

<+— role=VPN Administrator

<+— (omitted)

No revocation information available,
target= HAWK Data VPN server

Figure 12-7 An attribute certificate for Alice

VPN server can request the AC from the AC issuer or a repository when Alice
initiates the connection. This is known as the push model. A major benefit of the
pull model is that it can be implemented without changes to the client or the
client-server protocol. The pull model is especially well suited for interdomain
communication where the client’s rights are assigned with in the server’s
domain rather than within the client’s domain.

AC Issuance
Retrieve AC
(Pull Model)
v v
AC Holder Access (Pull Model) N VPN Server
(Alice) Access & AC (Push Model)
y

A

Retrieve AC
(Pull Model)

Repository

Figure 12-8 An attribute certificate architecture

242

Part VI = Expectations for the Future

Returning to the AC in Figure 12-7, the AC specifies the Hawk VPN server
as the target through an AC extension. The intent of this extension is to specify
the servers or services that may use this AC. This means that a trustworthy
server that is not listed a target will reject the AC.

The X.509 specification supports a broader definition of authorization than
the IETF AC profile. X.509 defines authorizations as the “conveyance or
privilege from one entity that holds such privilege, to another entity.” The
privilege could be further delegated by the AC holder if he or she chose to do
so. X.509 allows for the construction and validation of an attribute certificate
path that describes the delegation of authority.

Assume that all of Hawk Data privileges derive from the CEO. The CEO
could delegate authority for all network access decisions to the corporate
security officer. The corporate security officer could delete authority to manage
VPN access to the VPN administrator, Alice. The VPN administrator could
delegate the privileges to use the VPN to employees who are authorized to
telecommute. In the extreme case, an AC represents each of these delegations
of privilege.

The Hawk Data VPN server’s access control function must construct a path
of four ACs to verify an employee VPN access. The Hawk server will also
need to construct a path for the employee’s public key certificate so that it can
perform authentication. In fact, the Hawk Data VPN server must construct a
certification path for each link in the delegated privilege chain, so they can
verify the signature on each AC!

This adds considerable complexity, and our experience with ACs is quite
limited. As a result, the IETF developed [RFC3281] and does not recommend
use of AC chains. This is good advice, at least for the near term. The simple case,
where a single authority issues all of the ACs for a particular attribute, adds
considerable functionality without adding considerable complexity. There are
also scenarios in which more than one AC is required. For example, Alice
might need an AC to demonstrate membership in the R&D group and another
AC to assert a managerial role. Different authorities issue each of these ACs.
Implementations should be ready to support such scenarios.

Delegating with Proxy Certificates

Another option for delegation is proxy certificates, which are defined in
[RFC3820]. The idea came from the Grid community. In a nutshell, proxy
certificates allow Alice to grant Bob the rights for Bob to be authorized with
others as if Bob were Alice. Alice does not need to offer Bob all of her
authorizations; she can provide an explicit subset of her authorizations. In
other words, Bob acts as a proxy on behalf of Alice. It doesn’t have to be a
person; Alice could allow her proxy to be an application running on a particular
host connected to the Internet. For example, Alice wants to synchronize her
VPN access databases between her servers on Hawk’s intranet-based grid.
She wants to do this from her laptop and wants to submit the requests and

Chapter 12 » Future Developments

243

then go offline without waiting for it to complete. Alice’s will leave an agent
running on her laptop that will check on the process of the synchronization by
contacting the application. She also wants to do this securely and so does her
company that requires she use her smart card. For all this to happen:

m Alice needs to mutually authenticate with the synchronization applica-
tion to ensure that she’s allowed to perform the operation.

= The synchronization application needs to mutually authenticate with
the databases on the different servers, and it needs to do this on behalf
of Alice.

m The master and slave databases need to mutually authenticate each
other.

= The agent running on Alice’s laptop must mutually authenticate with
the synchronization application in order to check the progress of the
operation.

| NOTE[KT computing can be thought of as a group of computers working on
the same task. A popular one is the Search for Extraterrestrial Intelligence (SETI),
where they've listened to the stars with a radio telescope. Processing the data is a
huge task. What they’'ve done is write a small application that uses spare
computing time to process the data. Volunteers load this application onto their
machines and then churn on the data doing whatever processing is necessary.
Other programs targeted at more worldly endeavors include: protein folding, drug
candidates, and cancer research.

A proxy certificate allows Alice to proxy her rights to the agent for per-
forming synchronization of the databases. Only one access to the smart cards
is required if the agent acts as her proxy. Proxy certificates can also allow the
agent, servers, and remote processes need to be proxies for Alice.

A proxy certificate is an X.509 public key certificate that is issued from a
proxy issuer. A proxy issuer is either an entity with an EE certificate or a proxy
certificate that issues other proxy certificates. The proxy issuer’s certificate
must include the key usage extension, and it must have the digital signature
bit set. The proxy certificate is signed with the private key associated with
the proxy issuer. The proxy certificate has its own distinct private public key
pair, but this private key cannot be used to sign EE certificates. The subject
of the proxy certificate is name of the proxy issuer with an additional CN
attribute appended to the end of the proxy issuer’s name. The serial number is
unique, and the validity period is assigned by the proxy issuer. The key usage
digital signature bit must be set in the proxy certificate. A proxy certificate
also contains the critical Proxy Certificate Information certificate extension. This
extension indicates the allowed depth of proxy certificate hierarchy. It’s like the
pathlength constraints within the basic constraints certificate extension; a value
of zero indicates that no more proxy certificates are allowed. The extension also

244 Part VI = Expectations for the Future

indicates the proxy certificate policies. An example proxy certificate hierarchy
that allows two proxy certificates is depicted in Figure 12-9.

Legend
— Issue Certificate

Figure 12-9 Proxy certificates

Like X.509 public key certificates, proxy certificates also have certification
path validation rules. They're very similar to X.509 public key certificates
except that that the path ends with the EE and not with the CA. Granted, the
EE certificate must also be valid and that involves validating its certification
path.

The difference between delegating with proxy certificates and attribute
certificates is that proxies delegate the identity, whereas attributes delegate a
particular set of authorizations for an identity.

Managing Trust Anchors

Currently, the most widely implemented architecture is trust lists. They’re in
every operating system and in every browser (Mozilla, Opera, and Safari), as
well as in many other applications. There are 40 or more trusted root CAs in
each store. In most cases, these stores are now updated via software updates.

If an enterprise wishes to constrain the contents of the trust store, then they
need to work with the operating system, browser, or application developer to
ensure that only the trusted root CAs the enterprise wants installed on their
desktops are included in the software distribution. If users can install whatever
certificates they want in the trust store, then it’s hard for the enterprise to make
sure that they can control the enterprise trust relationships.

For devices, it’s a little more interesting, since many don’t support features
like automatic software updates and they don’t have the storage capacity for
a huge list of trust anchors. These devices really need is a simple mechanism
to know what trust anchor is allowed to do what.

We see the need for a protocol to manage trust anchors. Administrators
should be able to remote query for what'’s in their users trust lists and add and

Chapter 12 » Future Developments

245

remove the trust anchors from their user’s trust list. Work is just beginning on
such a protocol in the IETF. We seriously hope this protocol emerges much
more rapidly than SCVP.

Security

CMSwas designed for flexibility. If a new class of algorithm comes along all that
needs to be done to support the new class is to define a new content type. For
example, authenticated-enveloped data was defined to support authenticated
encryption algorithms like AES-GCM and AES-CCM. Therefore, we don’t see
the need for any major changes to CMS in the near future.

Work on S/MIME will continue as long as algorithms evolve. S/MIME 3.2
won’t be the last update.

S/MIME has embraced algorithm agility. It is much more algorithm agile
than most protocols. As noted in Chapter 6, parallel signatures are supported
by one or more signers. In the near feature, we expect one signer to start
applying two signatures: one with SHA-1 and one with SHA-256. To make sure
that a downgrade attack isn’t performed, which is where an attacker removes
the signature applied with the stronger algorithm, the multiple-signatures
signed attribute was defined. It protects a signer who applies two signatures
in parallel to ensure detection if one of the signatures is removed. The signed
attribute is fairly straightforward: every signerinfo includes a pointer to
every other signerInfo created by a particular signer. If a multiple-signatures
attribute is removed the verifier can detect it because the number of SignerInfo
doesn’t match the expected number of multiple-signatures attributes. This is
shown in Figure 12-10.

SignedData
DigestAlg=sha-1, sha-256
Signerinfo 1 Signerinfo 2
DigestAlg=sha-1 DigestAlg=sha-256
SignatureAlg=dsawithsha1 SignatureAlg=dsawithsha256
SignedAttributes= SignedAttributes=
SigningTime=1 SigningTime=1
MessageDigest=1 MessageDigest=2
MultiSig 1= MultiSig 2=
BodyHashAlg=sha-256 BodyHashAlg=sha-1
SignAlg=ecdsawithsha256 SignAlg=dsawithsha1
SignAttsHash= SignAttsHash=
AlgID=sha-1 AlgID=sha-256
AlgID=value 1 AlgID=value 2

Figure 12-10 Multiple signers signed attribute

246 Part VI » Expectations for the Future

There have been numerous attempts to protect email heading information.
S/MIME has a mechanism, as does DKIM. We expect more work on this issue.

Tokens

In the next couple of years, feedback on large-scale token deployments will
become available. We expect that PCMCIA tokens for end users will disap-
pear and that smart cards and USB tokens will be widely deployed. As the
processing power and storage capacity increases on the ICC, we’ll see more
and more cryptographic operations being performed on the token.

We expect that wireless card readers will become the norm and possibly be
included in laptops and desktops natively. This will reduce the wear and tear
on tokens from insertions in the reader.

In terms of form factor, there has been some discussion about using cell
phones as tokens. You might be wondering why, and the reason is that almost
everybody has a cell phone, and they have it with them almost all the time.
The processing power of a phone is beyond that of a smart card or USB token.
As yet, it is unclear which protocol will be used to get the data to the phone
for private key operations. The protocol would need to be secure, so that the
phone isn’t tricked into using the private key when it shouldn’t. Many cell
phones support TLS/SSL, so maybe this will be used to secure the protocol.
Maybe Bluetooth can be used. Maybe this is a place for proxy certificates.
Needless to say, we expect research and innovation in this area.

Physical Access Control

The proximity tokens used for physical access today offer much less security
than the PKI-enabled alternatives, such as the NIST PIV card. Today, the
proximity transmits its card identifier to the reader mounted by the door,
the card identifier is checked against an access control list (ACL), and then,
as shown in Figure 12-11, if the card identifier is on the ACL, open the
door. The ACL is normally updated on a daily basis. The transmission of the
card identifier to the reader occurs over an unsecure radiofrequency. So, one
straightforward attack is to record the transmission of a legitimate card, and
then simply replay the transmission to gain access at any time in the future.

Card Reader
Present Card

Check ¢ Daily download of ACL
ACL from central source

Granted/Deny Access

Figure 12-11 Today's card architecture

Chapter 12 » Future Developments

247

One important design consideration is latency. The door lock must open
quickly for legitimate users. The system will be perceived as broken or worse
if legitimate users have a long wait at the door.

PKI-enabled tokens offer two significant improvements. First, revocation
of the certificate will deny access to all doors, regardless of the number of
controller systems. With today’s systems, the revoked user must be removed
from the ACLs in each controller system by their individual administrators.
Second, a challenge-response protocol is used, completely eliminating the
record-and-retransmit attack.

We envision a physical access system based on PKl-enabled tokens with
these capabilities:

= Enrollment involves presenting the token to the controller. At this time,
the controller validates the certificate, and the card identifier and the
certificate are stored in a local database to be revalidated at regular inter-
vals. If the certificate is revoked, this periodic revalidation will detect it.
This procedure ensures certificate validity without spending any time on
certificate status checking while the user is trying to get in the door.

= The controller provides the card identifiers and public keys to the reader
as part of the upgraded ACL structure.

m When a token is presented at the reader, a challenge is generated and
transmitted to the token. Next, the token digitally signs the challenge
and returns this response to the reader. Then, the reader checks the dig-
ital signature with the public key associated with the card identifier. If
the signature is valid the door opens; otherwise, it remains locked.

Conclusion

Some of the technologies discussed in this book are considered mature, and
some are still young and up and coming. All continue to evolve. We have
made some predictions about the new features that will appear in products in
the next few years. We’ve used our Magic 8 Ball; hopefully it’s not lying. We're
hoping that these technologies emerge sooner rather than later, but only time
will tell.

ABNF Primer

The Backus-Naur Form (BNEF), first invented by John Backus and later
improved by Pater Naur [BNF], is a formal notation that describes the syntax
of a language. Many IETF specifications adopted some version of BNF. There’s
BNF, Extended BNF, and Augmented BNF (ABNF). They all can be used to
specify a formal language, because, as the ABNF standard [RFC4234] indicates,
“It balances compactness, simplicity with reasonable representational power.”
We'll focus on ABNF for two reasons. First, because it’s used to define email
protocols and MIME. Second, it’s formally documented.

While we didn’t include any ABNF in this book, we figured it was worth
giving you a quick primer on the topic in case you actually decided to take a
look at the email protocol or MIME references. They are all online and easy to
find. The ABNF standard [RFC4234] is relatively short at only 16 pages. We
recommend this as the best place to go for more information.

Rules

All rules have names. The names are case-insensitive, and they must begin with
alphabetic characters. The rest of the rule name may contain alphanumeric
characters and dashes. Angle brackets, composed of the less-than sign (<) and
the greater-than sign (>), are optional.

249

250 Appendix A = ABNF Primer

The rules themselves include the rulename followed by an equal sign (=),
the elements, and a crLF, which is a carriage-return character followed by a
line-feed character, not shown. elements are either another rule or a string of
terminals. Terminals can be printable characters as well as binary, decimal,
and hexadecimal values. Some examples are listed next; all of these examples
are for the same rule.

rulename = elements

RuleName = elements

<rulename> = elements

Operators

Like all good computer languages, rules must be able to be operated on, and
ABNF does not disappoint. The rules can be:

Combined. Rules can contain multiple elements. When including mul-
tiple elements, which is referred to as concatenated, more than one rule
is listed after the equal sign. The date rule shown next, from [RFC2822],
concatenates the day, month, and year elements.

date = day month year

ORed. Rules need to allow for alternative elements, which are indicated
by the forward slash (/) used to separate the different alternative ele-
ments. The day-name rule shown next, from [RFC2822], offers the three-
letter abbreviations of the seven days of the week.

day-name = "Mon" / "Tue" / "Wed" / "Thu" / "Fri" / "Sat" / "Sun"

Expanded. Rules can be expanded by using the same rule name followed
by the forward slash and equal sign (/=) and the new element or ele-
ments. Say that the day-name rule originally only included Monday but
was later expanded to include the other days of the week, as shown next.

day-name = "Mon"
day-name /= "Tue" / "Wed" / "Thu" / "Fri" / "Sat" / "Sun"

Ranged. Rules can be assigned numeric ranges by using a dash (-). The
DIGIT rule shown next, from [RFC4234], restricts the values of DIGIT to
the ASCII characters for 0 through 9.

DIGIT = %$30-39

Grouped. Rules can group elements together using the parenthesis:
(and). The carorTruck rule below evaluates to either sports car or
sports utility-vehicle.

carOrTruck = sports (car / utility-vehicle)

Appendix A = ABNF Primer

251

Repeated. Multiple elements are included in one of two ways, referred

to as variable and specific repetitions. Both variable and specific repeti-
tions use the asterisk (*) to indicate the repetition. Variable repetition
indicates a minimum and maximum amount of elements. Specific repe-
tition indicates a specific number of elements that must be present. The
rules shown next provide two examples. The first example shows vari-
able repetition where there is either one or two elements. The second
example shows specific repetition where there are exactly two elements.
The default for the number before the asterisk is zero, and the default for
the number following the asterisk is infinity.

rulename = 1*2element

rulename = 2element

Optioned. Optional elements are enclosed in square brackets: [and].

The rulename in the rule shown next requires this and that be present,
but other can be omitted. Note that, repetition can be used to do much
the same thing by placing *1 or 0*1 before other the element and remov-
ing the square brackets.

rulename = this that [other]

Commented. Comments can be added by including a semicolon followed

by the comment. If the comment is more than one line long, another
semicolon is needed on the second line because the first comment
ends CRLF.

Operator Precedence

Precedence is assigned to the operators in following order:

1.

NS A e N

Strings, Names formation
Comment

Value range

Repetition

Grouping, optional
Concatenation

Alternative

ASN.1 Primer

The reader must have a fundamental understanding of ASN.1 to fully under-
stand the data structures presented in this book, including CMS content types,
X.509 certificates, and certificate revocation lists (CRLs). For this reason, we've
included this primer as an appendix. We do not attempt to cover ASN.1
completely. Rather, we present just enough material to provide you with
an understanding of the data structures presented in this book. For a more
complete coverage of ASN.1, we suggest a few sources. Kaliski [KALI93a]
provides a tutorial of ASN.1-1988 [X20888] aimed at programmers and stan-
dards developers, and it is available online as a Microsoft Word document at
ftp://ftp.rsasecurity.com/pub/pkcs/doc/layman.doc. Steedman [STEE9Q]
provides a complete discussion of ASN.1-1988. Larmouth [LARMO0] provides
a complete discussion of ASN.1-1997 [X68097], and he covers ASN.1-1988 as
well. We use ASN.1-2003 [X68003] throughout this book. The features we use
are identical to those in ASN.1-1997.

Much of the discussion in this appendix is adapted with permission from
Kaliski [KALI93a]; we updated the material to conform to ASN.1-2003.

Open Systems Interconnection (OSI, defined in [IS7498]) describes a widely
accepted architecture for the interconnection of computers. It defines seven
protocol layers, from the physical layer up to the application layer. Abstract
Syntax Notation One (ASN.1, defined in [X68003]) is a tool for specifying the
syntax of data objects used in the application layer. The semantics of the data
elements within the data structures aren’t covered by ASN.1; generally, prose

253

254

Appendix B = ASN.1 Primer

is used to specify the semantics. ASN.1 is a flexible notation, permitting the
definition of a variety of data types. Simple types, such as integers and bit
strings, are provided as primitive types. Structured types, such as sets and
sequences, can be constructed from a collection of these primitive types.

ASN.1 encoding is the set of rules for representing data structures as a
stream of bits. The output for each type consists of a type identifier, a length,
and a value. The Basic Encoding Rules (BER, defined in [X69003]) describe
how to represent values of each ASN.1 type as a string of octets. Unfortunately,
there is almost always more than one way to BER-encode any given value.
BER-encoded objects are not suitable for digital signatures, since the signature
will only be valid for one of the legal encodings. This property led to the
creation of a subset of BER that only permits a single encoding. This subset is
called the Distinguished Encoding Rules (DER).

ASN.1 has two flavors: old and new. The older syntax is specified in
ASN.1-1988. The newer syntax emerged in 1993, and updates were published
in 1997 and 2003, respectively. The newer syntax is referred to as ASN.1-2003.
ASN.1-2003 is used exclusively in this book. Many programming tools are
available that support ASN.1-1988, but recently freeware compilers have
become available for both ASN.1-1988 and ASN.1-2003. Fortunately, experts
can define a data structure in ASN.1-1988 and in ASN.1-2003, such that the
resulting DER-encoded output is identical.

Syntax Definition

ASN.1 is a notation for describing abstract types and values. Some types
permit a finite number of values; others permit an infinite number of values.
ASN.1 has four type classes: simple, structured, tagged, and other. Simple
types are primitive; they have no additional components. Structured types
have components; they are sets or sequences of other types. Tagged types are
derived from any of the other types. Other types are special ones that do not
fit in the first three categories; cHOICE and any are examples of other types.
Types are given names with the ASN.1 assignment operator (::=), and then
those names can be used in defining other types.

ASN.1 types, except cHOICE and ANy, have tags. There are four tag classes:
universal, application, private, and context-specific.

Universal tags. These tags are associated with types whose meaning is
the same in all applications; these types are only defined in the ASN.1
specification.

Application tags. These tags are associated with types whose meaning is
specific to one application. For example, application tags are used in the
specification of directory names. Care must be exercised with these tags;

Appendix B = ASN.1 Primer

255

two different applications may have the same application-specific tag but
with completely different meanings.

Private tags. These tags are associated with types whose meaning is spe-
cific to a given enterprise. No private tags are used in this book. Context-
specific tags are associated with types whose meaning is specific to a
given structured type.

Context-specific tags. These tags are used to distinguish components
within a set or sequence that would otherwise be indistinguishable. For
example, if a sequence includes two optional integer types, a context-
specific tag is used to remove ambiguity when an instance only includes
one of the optional integers.

Types with universal tags are assigned universal tag numbers. Types with
other tags are always obtained by either implicit or explicit tagging.

ASN.1 uses a notation that is very similar to a programming language.
Comments start with a pair of hyphens (--). Comments end with another pair
of hyphens or at the end of the line. Identifiers must begin with a lowercase
letter, and type references must begin with uppercase letters.

Simple Types
Simple types are primitive; they have no additional components. The simple
types used in this book are briefly described next.
BIT STRING. This is a string of bits. The length in bits does not have to be a
multiple of eight.

BMPString. This is a multilingual string. BMPString is a subtype of
UniversalString that models the Basic Multilingual Plane of ISO/IEC
10646-1. This universal type is not part of ASN.1-1988, but most tools that
support ASN.1-1988 allow it to be easily added.

BooLEAN. This is a single bit value, either TRUE or FALSE.

GeneralizedTime. This is a coordinated universal time value, including
the date and the time of day. The year is represented with four digits.

1a5string. This is a string of ASCII characters.

INTEGER. This is an integer. The value may be positive, zero, or negative.
nuLL. This is a null (or empty) value.

NumericString. This is a string of digits.

OBJECT IDENTIFIER. This isa sequence of integer components that identify
an object. Object identifiers are often used to name cryptographic algo-
rithms, attributes, name components, and extensions.

256 Appendix B = ASN.1 Primer

ocTET STRING. This is a string of octets. The length in bits must be a
multiple of eight.

PrintablesString. This is a string of printable characters.
TeletexString. This is a string of teletext characters.
T61lstring. This is a string of T.61 characters. Each character is 8 bits long.

UniversalString. This isa multilingual string. This universal type is not
part of ASN.1-1988, but most tools that support ASN.1-1988 allow it to be
easily added.

urcrime. This is a coordinated universal time value, including the date
and the time of day. The year is represented with two digits; the century
digits are omitted.

uTF8string. This is a multilingual string. The content of this type con-
forms to RFC 2279. This universal type is not part of ASN.1-1988, but
most tools that support ASN.1-1988 allow it to be easily added.

Structured Types

Structured types are those consisting of components. The structured types
used in this book are briefly described next.

sEQUENCE. This is an ordered collection of one or more types. Some or all
of the types may be optional.

SEQUENCE oF. This is an ordered collection of zero or more instances of
the same type.

seT. This is an unordered collection of one or more types. Some or all
of the types may be optional.

sET oF. This is an unordered collection of zero or more instances of the
same type.

Implicit and Explicit Tagging

Tagging is commonly used to distinguish component types within a structured
type. Often, optional components within a set or sequence are given distinct
context-specific tags to avoid ambiguity. There are two ways to tag a type:
implicitly and explicitly. Implicitly tagged types are derived from other types
by changing the tag of the underlying type. Implicit tags are denoted by
[number] ImMPLICIT. Explicitly tagged types are derived from other types by
adding an additional tag (or prefix tag) to the underlying type. Think of
explicitly tagged types as structured types with a single component of the
underlying type. Explicit tags are denoted by [number] EXPLICIT.

Appendix B = ASN.1 Primer

257

Explicit tags may be required to avoid ambiguity if the tag of the underlying
type is indeterminate. That is, explicit tags may be required if the underlying
type is CHOICE or ANY.

CHOICE is another ASN.1 type. The CHOICE type provides a list of
alternative types. Only one of the alternative types may be selected for a
particular instance.

In ASN.1-1988, the ANY type was used to denote an arbitrary value of an
arbitrary type. An object identifier or an integer value was often used to define
the syntax within the arbitrary type. In the more recent versions of ASN.1,
information object class definitions provide this functionality and also offer a
way to include a table of supported values and component relation constraints.

Other Types

Other types in ASN.1 include crorce and anvy. The cHOICE type provides a
list of alternative types. Only one of the alternative types may be selected for
a particular instance. The ANy type denotes an arbitrary value of an arbitrary
type. An object identifier or an integer value is often used to define the syntax
within the arbitrary type.

Basic Encoding

The ASN.1 Basic Encoding Rules (BER) provide one or more unambiguous
ways to represent any ASN.1 value as a stream of octets. BER provides three
ways to encode an ASN.1 value, depending on the type and whether the length
of the value is known. Simple string types employ any of the methods, but
structured types employ either of the constructed methods. The three methods
are as follows:

Primitive, definite-length method. This method applies to simple types
and implicitly tagged types that are derived from simple types. This
method requires that the length of the value be known in advance. Sim-
ple nonstring types employ this method.

Constructed, definite-length method. This method applies to simple
string types, structured types, implicitly tagged types that are derived
from simple string types and structured types, and any explicitly tagged
types. This method requires that the length of the value be known in
advance.

Constructed, indefinite-length method. This method applies to simple
string types, structured types, implicitly tagged types that are derived
from simple string types and structured types, and any explicitly tagged
types. It does not require that the length of the value be known in
advance.

258 Appendix B = ASN.1 Primer

In each method, the BER encoding has three or four parts:

Identifier. These octets identify the class (universal, application, context-
specific, or private), indicate whether the type is primitive or constructed,
and include the tag number of the ASN.1 value. If the tag number is
between 0 and 30, then the identifier is a single octet.

Length. For definite-length methods, these octets contain the number of
octets within the contents. If the length is between 0 and 127, then the
length is a single octet. For the constructed, indefinite-length method,
these octets contain a flag (a value of ‘80" hexadecimal) that indicates that
the length is indefinite.

Contents. For the primitive, definite-length method, these octets con-
tain a representation of the value. For the constructed methods, these
octets contain the concatenation of the BER-encoded components.

End-of-contents. For the constructed, indefinite-length method, these
two octets denote the end of the contents. The two octets contain a value
of “00 00" hexadecimal. For the other methods, these octets are absent.

Distinguished Encoding Rules

The ASN.1 Distinguished Encoding Rules (DER) are a subset of BER, providing
exactly one way to representany ASN.1 value. DER is intended for applications
in which a unique (or distinguished) octet stream encoding is needed. For
example, a distinguished octet stream is needed when a digital signature
is computed on an ASN.1 value, such as the CMS signed attributes or the
contents of an X.509 certificate. DER was originally defined in Section 8.7 of
[X50988], but DER is now defined in [X69003].

DER requires that definite-length encoding always be used. When the length
is between 0 and 127, the length must be encoded as a single octet. When the
length is 128 or greater, the length must be encoded in the minimum number of
octets. For simple string types and implicitly tagged types that are derived from
simple string types, the primitive, definite-length method must be employed.
For structured types, implicitly tagged types that are derived from structured
types, and any explicitly tagged types, the constructed, definite-length method
must be employed.

Other restrictions are defined for particular types. These rules ensure that
there is only one way to encode any ASN.1 value. In general, the fewest
possible number of octets is used to represent the value using definite-length
encoding.

MIME Primer

The reader must have a fundamental understanding of Multipurpose Internet
Mail Extensions (MIME) to fully understand the email and S/MIME data
structures presented in this book. For this reason, we include this primer
as an appendix. We do not attempt to cover MIME completely; rather, we
present just enough material to understand the data structures presented in
this book. For a more complete coverage of MIME, we suggest Marshall Rose’s
The Internet Message [MR]. Rose provides a more detailed look at the syntax of
MIME, and he also addresses rendering and storage issues. MIME is based on
a series of five RFCs:

MIME Part One: Format of Internet Message Bodies. [RFC2045].
MIME Part Two: Media Types. [RFC2046].

MIME Part Three: Message Header Extensions for Non-ASCII Text.
[REC2047].

MIME Part Four: Media Type specification and Registration Procedures.
[RFC2048].

MIME Part Five: Conformance Criteria and Examples. [RFC2049].
In these five RFCs, MIME defines support for four important concepts:
1. Character sets other than US-ASCII in text messages.

2. Different formats for non-text messages.

259

260

Appendix C = MIME Primer

3. Multipart message bodies.
4. Character sets other than US-ASCII in text headers.

The four concepts are intertwined. For example, you can’t support additional
character sets without a new header to indicate the character set, and you also
need a new transfer encoding scheme to convey the characters. We’ll skip dis-
cussions about registration and conformance criteria and cover the four main
concepts: character sets, transfer encodings, MIME types, and multipart mes-
sages. But first, email messages that include MIME indicate their support with
the MIME-version email heading field. Version 1.0 is the only defined value.

Character Sets

Character sets are actually quite a complicated subject. Think about all the
languages in the world and then think about every single character needed
to write those languages. Needless to say there are thousands of characters,
numbers, and punctuation marks. A few things need to be done to support
multiple character sets:

Collect characters for character set. The individual characters need to be
collected in order to recognize what the character set. The most famous
one is the printable portion of the US ASCII character set.

Punctuation marks. !"#$%&’()*+,-./;<=>?@[\]"_'{|}~ and space
Digits. 0-9
Characters. a-z and A-Z

Register character set. This value will be used in the protocol to indicate
which character set is being used.

Assign characters a value. Characters are not transmitted; rather binary
representations of them are transmitted. The US ASCII table includes 128
entries, there are also nonprintable characters. For example, the space has
a decimal value of 32, and tilda (~) has a decimal value of 126. In binary,
you only need 7 bits to encode these values — hence the name 7bit encod-
ing. If you've got more characters you're going to need more bits.

Determine character’s transfer encoding. Determine the character’s
encoding based on the supported transport mechanism, which we’ll
get in to in the next section.

Indicate character set in message. An indication is needed for the recipi-
ent so that their MUA will know how to process the character set, which
we’ll get into in the content type section.

Appendix C = MIME Primer

261

Transfer Encoding

Email messages traverse the Internet. Because the Internet has evolved over
time, it should come as no surprise that it is not a uniform network and there
are multiple mechanisms to transport email messages. MIME acknowledged
this by deﬁning the content-Transfer-Encoding email heading extension. It
indicates one of five transfer encodings:

7bit. 7bit is the default and indicates that the data is represented with
lines of 998 octets or less. Each line is separated by a sequence of car-
riage return and line feed characters (CRLF). Carriage return (CR) and
line feed (LF) are only allowed as part of the CRLF. Null characters are
not allowed. Each octet must have a decimal value less than 127.

8bit. 8bit is the same as 7bit, except that octets may have a decimal
value larger than 127, up to 255.

binary. binary allows arbitrary octets to be transferred, including an
octet of all zero bits.

quoted-printable. quoted-printable allows 8-bit octets to be conveyed
over 7-bit transport via a conversion process. The mechanism is rela-
tively simple: an equal sign (=) followed by hexadecimal representation
from the character table. For example, the British Pound sign (£) is repre-
sent by =A3, where the decimal value of 163 is converted to hexadecimal
A3. The US ASCII characters are represented by themselves, except for
tab and space. There are also special rules for line breaks, as well as tab
and the space that appears at the end of lines. Lines are limited to 76
characters.

base64. base64, like quoted-printable, allows 8-bit octets to conveyed
over 7-bit transport via a conversion process; this conversion process
is different from the quoted-printable conversion process. The pro-
cess converts arbitrary data to the base64 encoding, and all you need
to know is how to convert from the string of characters to binary and
back again. We'll use an US ASCII example: convert each character to
decimal value from the standard US ASCII table, convert each charac-
ter’s decimal value to binary, take 6 bits, convert to decimal, do a base64
table lookup, and assign a base64 encoding value (from RFC2035). In
Figure C-1, the original text is “S/MIME” and the base64-encoded value
is “Uy9NSU3E".

x-token. x-token allows private non-standard transfer encodings.

262 Appendix C = MIME Primer

Text S/MIME

Convert to character to S converts to 83
decimal value from ASCII / converts to 47
Table M converts to 77

| converts to 73
M converts to 77
E converts to 69

Converteach charcter’s 010100110010111101001101010010010100110101000101
decimalvalueto binary

Convert to base64: Take 6 010100 converts to U

bits, convert to decimal, 110010 converts to y

assign encoding from 111101 converts to 9

base64 table 001101 converts to N

010010 converts to S
010100 converts to U
110101 converts to 3
000101 converts to F

Figure C-1 Base64 encoding example

Content Type

To support more than just text in email messages, there needs to be a
mechanism to indicate the type of the message content. MIME defines what
it refers to as MIME types or content types. The content-Type email heading
has three parts:

1. type: This indicates the MIME media type or the general type of data.
It is either a discrete-type Or a composite-type. The composite-type is
either message or multipart, which we’ll discuss in the next section. The
discrete-type content types are opaque as far as MIME is concerned.
Some examples are:

Content-type: application. This is the catch-all type for content that
don’t fit in another category. The content must be processed by an
application, which is specified by the sub-type, before it is useful to
the user.

Content-type: audio. This indicates that the content type contains
audio data.

Content-type: image. This indicates that the content type contains
image data.

Content-type: message. This indicates that the content type contains
message data.

Content-type: text. This indicates that the content type contains text
data.

Appendix C = MIME Primer 263

Content-type: video. This indicates that the content type has video
data.

2. sub-type: This indicates the subtype of the MIME media type or the
specific format for the data. It is required, and it follows the content type
and a forward slash (/). Some examples, which include the type, are:

Content-type: application/pkcs7-mime
Content-type: application/pkcs7-signature
Content-type: audio/basic

Content-type: image/jpeg

Content-type: message/rfc822
Content-type: text/plain

Content-type: video/mpeg

3. parameters: Indicates additional information about the sub-type. Some
examples are:

Content-type: text/plain; charset=us-ascii

Content-type: application/pkcs7-mime; smime-type=enveloped-data;
name=p7m

Content-type: application/pkcs7-mime; smime-type=signed-data; name=p7m

Listing C-1 provides a complete example that includes many of the EHLO
commands discussed in this book and a Multipart Message and discrete-type
data.

220 pleasantville.ca.us

EHLO washington.dc.us

250-pleasantville.ca.us greets washington.dc.us
250-8BITMIME

250-SIZE

250-DSN

250 HELP

250 AUTH CRAM-MD5

AUTH CRAM-MD5

334 PENCeUxFREJoUONnbmhNWitOMjNGNndAZWx3b29kLmlubm9zb2Z0LmNvbT4=
ZnJ1ZCA5ZTk1YWV1MD1 jNDBhZjJi0DRhMGMyY jNiYmF1Nzg2zQ==
235 Authentication successful

MAIL FROM: <aadams@washington.dc.us>

250 sender <aadams@washington.dc.us> OK

RCPT TO:<bburton@pleasantville.ca.us>

250 recipient <bburton@pleasantville.ca.us> OK
RCPT TO:<mrogers@pleasantville.ca.us>

250 recipient <mrogers@pleasantville.ca.us> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
Date: Mon, 11 Feb 2008 09:55:06 -0400

MIME Version: 1.0

QN0 nh Qn QN Qn OQn QNn QN N nn n h N QN

Listing C-1 Signed-Only Message Example

264 Appendix C = MIME Primer

From: Alice <aadams@washington.dc.us>
Subject: Meeting Date and Time

To: Bob <bburton@pleasantville.ca.us>
Cc: Matt <mrogers@pleasantville.ca.us>

Q000N

Message-ID: <1234@washington.dc.us>

Content-Type: application/pkcs7-mime; smime-type=signed-data;
name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGEHEYT6ghyHhHUU pfyF4 £8HHGTr £vhIhiH776tbBIHGAVObn 7
77n8HHGT9HGAVQpEyF467GhIGEHEYT6r fvbny756tbBghyHhHUujhJhiH
HUu3hJh4VQpfyF467GhIGEHEYGTr fvbniT67H7756 tbB9H7nSHHGohyHh

6YT64V0GhIGEHEQbnG 75

Cs o

S: OK

C: QUIT

S: 221 pleasantville.ca.us closing transmission channel

Listing C-1 (continued)

Multipart Messages

There are a plethora of content types, and more are registered every year. So
it’s obvious that there needs to be a way of conveying more than one content
type at a time. Otherwise, you would need messages to send a portable
document format (PDF) file of the contract and the note to say when it needs to
be returned. The multipart composite-type fulfills this need. One additional
part that is required is a mechanism to indicate where each content type
begins and ends. The boundary parameter indicates the start and end of each
content type within the message. Listing C-2 provides a complete example that
includes many of the EHLO commands discussed in this book and a Multipart
Message:

220 pleasantville.ca.us

EHLO washington.dc.us

250-pleasantville.ca.us greets washington.dc.us
250-8BITMIME

250-SIZE

250-DSN

250 HELP

N nn n v n QO 0

Listing C-2 Multipart-Signed Example

Appendix C = MIME Primer

265

QN0 nOnOQNn QOO O N

250 AUTH CRAM-MD5

AUTH CRAM-MD5

334 PENCeUxFREJoUONnbmhNWitOMjNGNndAZWx3b29kLmlubm9zb2Z0LmNvbT4=
ZnJ1ZCA5ZTk1YWV1MD1jNDBhZ§Ji0DRhMGMyYINiYmF1Nzg22Q==
235 Authentication successful

MAIL FROM: <aadams@washington.dc.us>

250 sender <aadams@washington.dc.us> OK

RCPT TO:<bburton@pleasantville.ca.us>

250 recipient <bburton@pleasantville.ca.us> OK

RCPT TO:<mrogers@pleasantville.ca.us>

250 recipient <mrogers@pleasantville.ca.us> OK

DATA

354 Start mail input; end with <CRLF>.<CRLF>

Date: Mon, 11 Feb 2008 09:55:06 -0400

MIME Version: 1.0

From: Alice <aadams@washington.dc.us>

Subject: Meeting Date and Time

To: Bob <bburton@pleasantville.ca.us>

Cc: Matt <mrogers@pleasantville.ca.us>

Message-ID: <l1234@washington.dc.us>

Content-Type: multipart/signed;

protocol="application/pkcs7-signature";
micalg=sha256; boundary=HereIsTheBoundary

--HereIsTheBoundary

Content-Type: text/plain

This is a clear-signed message.

--HereIsTheBoundary

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH7 7n8HHGTr fvbnj756 tbBOHGAVQpfyF467GhIGEHEYT6
4VQpfyF467GhIGEHEYT6jH7 7Tn8HHGghyHhHUUjhJh756 tbB9HGTr fvbnj
n8HHGTrfvhJdhjH776tbBIHG4VQbnj7567GhIGEHEYT6ghyHhHUujpfyF4
7GhIGEfHfYT64VQbnj756

--HereIsTheBoundary--

Cs

S:
C:
S

OK
QUIT
221 pleasantville.ca.us closing transmission channel

Listing C-2 (continued)

RFC Summaries

We reference over 80 RFCs in this book and we thought it would be use-
ful to summarize them. We don’t note the RFC track, but remember that
there are three of them: information, standards, and experimental. Many of
these summaries are taken from the RFC’s abstract section. The following
standards-track RFCs are referenced in this book:

RFC 768 — User Datagram Protocol. This RFC defines the User Data-
gram Protocol (UDP). UDP is a transaction-oriented (sometimes referred
to as datagram-oriented) transport layer protocol. UDP provides no
reliability, and it provides no guarantee of ordering. As a result, pack-
ets can be dropped, duplicated, or arrive out of order. UDP assumes
that the Internet Protocol (IP) is used as the underlying protocol. It’s
used by network applications like the Domain Name System (DNS)
and Voice over IP (VoIP), which require speed more than reliability.

RFC 791 - Internet Protocol. This RFC defines the Internet Protocol (IP).
While this remains the workhorse of the Internet, a new version has been
specified. RFC 791 specifies IPv4, and the new version is IPv6. IPv5 was
never really deployed. IPv4 is an unreliable, connectionless, transaction-
oriented network layer protocol. IPv4 also provides an addressing
scheme that identifies sources and destinations for the packets.

267

268 Appendix D = RFC Summaries

RFC 793 — Transmission Control Protocol. This RFC defines the
Transmission Control Protocol (TCP). TCP is a connection-oriented trans-
port layer protocol. Unlike UDP, TCP provides a reliable service that
guarantees packet ordering. This protocol assumes that the IP is used
as the underlying protocol. It's used by applications like email, the File
Transfer Protocol (FTP), and the Hypertext Transfer Protocol (HTTP).

RFC 1035 — Domain Names — Implementation and Specification. This
RFC defines the Domain Name System (DNS). The DNS is the system
that resolves domain names (e.g., www.ieca.com) into an IP address
(e.g., 196.196.0.0).

RFC 1321 — The MD5 Message-Digest Algorithm. This RFC describes
the MD5 message-digest algorithm. MD5 returns a 128-bit message digest
or hash regardless of the size of the input message.

RFC 1421 - Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures. This RFC, which
is the first in a set of four Privacy Enhanced Mail (PEM) RFCs, defines the
PEM message encryption and authentication procedures.

RFC 1422 - Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management. This RFC, which is the second
in a set of four PEM RFCs, specifies PEM key management mechanisms
based on public key certificates.

RFC 1423 - Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes. And Identifiers. This RFC, which is the third in a
set of four PEM RFCs, specifies algorithms, modes, and associated identi-
fiers used when processing PEM messages.

RFC 1424 - Privacy Enhancement for Internet Electronic Mail: Part IV:
Key Certification and Related Services. This RFC, which is the last
in a set of four PEM RFCs, specifies services used in conjunction with
the key management infrastructure, including conventions for certificate
requests.

RFC 1459 - Internet Relay Chat. This RFC defines the Internet Relay
Chat (IRC) protocol. The IRC is a text-based protocol that allows users
to “chat” among themselves. It is a client-server-based protocol.

RFC 1652 — SMTP Service Extensions for 8bit-MIMEtransport. This
RFC defines the sBITTIME extension to the Simple Mail Transport Pro-
tocol (SMTP) service. The extension indicates that server supports SMTP
content bodies that include arbitrary lines of octet-aligned material,
including characters outside of the US-ASCII octet range.

RFC 1847 — Security Multiparts for MIME: Multipart/Signed and
0 Multipart/Encrypted. This RFC defines two subtypes of the

Appendix D = RFC Summaries

269

multipart content type: signed and encrypted. The multipart/signed
and multipart/encrypted content types support the application of secu-
rity services to Multipurpose Internet Mail Extension (MIME) body parts.
Both multipart/signed and multipart/encrypted have two body parts:
one for the protected data and one for the control information that is
needed to remove the protection.

RFC 1848 — MIME Object Security Services. This RFC defines the MIME
Object Security Services (MOSS), which is a protocol that uses the two
content subtypes from RFC 1847, to support digital signature and encryp-
tion services.

RFC 1854 — SMTP Service Extensions for Command Pipelining. This
RFC defines the pTPELINIG extension to the SMTP service. The exten-
sion indicates that server supports the ability to accept multiple SMTP
commands in a single TCP send operation.

RFC 1869 — SMTP Service Extensions. This RFC defines the ExLO exten-
sion to the SMTP service and responses to it. The extension allows the
client to indicate that it supports SMTP service extensions. The server
then responds with the SMTP service extension(s) that it supports.

RFC 1870 — SMTP Service Extension for Message Size Declaration.
This RFC defines the s1zE extension to the SMTP service. The extension
indicates the maximum message size the server is willing to support.

RFC 1891 — SMTP Service Extension for Delivery Status Notifications.
This RFC defines the DsN extension to the SMTP service. It also defines
two optional parameters for the RcPT command, NOTIFY and ORCPT,
and two optional parameters for the MATL command, RET and ENVID.
The extension indicates the server supports Delivery Service Notifica-
tions (DSNs), which indicate whether or not the message was delivered
to the destination MTA. noT1FY indicates whether success, failure, or
both; orcpT indicates the originators address; RET indicates whether upon
failure the entire message or just the headers should be returned; Envip
propagates an identifier known to the sender for correlation with any
returned DSNs.

RFC 1939 - Post Office Protocol — Version 3. This RFC documents the
Post Office Protocol (POP) version 3 (commonly called POP3). SMTP
clients use POP3 to retrieve their email messages from SMTP servers. It
does not provide a mechanism to manage the mailbox. POP3 supports
deleting email after retrieval, retaining email permanently on the server,
or deleting the email after a specified time.

RFC 1991 - PGP Message Exchange Formats. This RFC defines the Pretty
Good Privacy (PGP) security protocol and associated procedures. PGP

270 Appendix D = RFC Summaries

supports confidentiality and digital signature services for email message
content.

RFC 2045 — Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. This RFC, which is the first in a set
of five MIME RFCs, defines the structure of MIME message bodies. The
RFC includes: MIME header definitions using Augment Backus-Naur
Form (ABNF), 7-bit, 8-bit, and binary transport procedures; and BASE64
content transfer encoding scheme. Note that Appendix C contains more
information on the MIME content transfer encoding.

RFC 2046 — Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types. This RFC, which is the second in a set of five MIME
RFECs, specifies the content-type MIME header’s media types. Five dis-
crete top-level media types are defined: text, image, audio, video, and
application. Two composite top-level media types are defined:
multipart and message.

RFC 2047 - MIME (Multipurpose Internet Mail Extensions) Part Three:
Message Header Extensions for Non-ASCII Text. This RFC, which
is the third in a set of five MIME RFCs, describes extensions to SMTP to
allow non-US-ASCII text data in email header fields.

RFC 2048 — Multipurpose Internet Mail Extensions (MIME) Part Four:
Registration Procedures. This RFC, which is the fourth in a set of five
MIME RECs, specifies the Internet Assigned Numbers Authority (IANA)
registration procedures for MIME-related facilities. These procedures are
used to register new MIME types and subtypes.

RFC 2049 — Multipurpose Internet Mail Extensions (MIME) Part Five:
Conformance Criteria and Examples. This RFC, which is the last in a
set of five MIME RFCs, describes MIME conformance criteria and
provides examples of MIME message formats.

RFC 2104 - HMAC: Keyed-Hashing for Message Authentication. This
RFC defines the Hash Message Authentication Code (HMAC) algorithm.
It uses any one-way hash function (e.g., SHA-256) and a secret key to
compute a message authentication code (MAC).

RFC 2131 - Dynamic Host Configuration Protocol. This RFC defines the
Dynamic Host Configuration Protocol (DHCP). DHCP is a client-server
protocol that allows clients to obtain IP addresses from a server. This
dynamic allocation allows service providers to give clients IP addresses
for a period of time as opposed to permanently.

RFC 2195 - IMAP/POP AUTHorize Extensions for Simple Challenge/
Response. This RFC defines the auTH extension to the POP3 service.
The extension allows the client to indicate that it wishes to perform

Appendix D = RFC Summaries 271

two-way authentication with the server using the prescribed mecha-
nism. The Challenge Response Authentication Mechanism (CRAM) MD5
(commonly called CRAM-MD?5) mechanism is defined in this RFC.

RFC 2246 — The TLS Protocol Version 1.0. This RFC defines the Trans-
port Layer Security (TLS) protocol version 1.0. This client-server protocol
allows servers to authenticate themselves to clients, and it allows clients
and servers to mutually authenticate each other. TLS also provides an
encrypted and integrity-protected session between the client and server.

RFC 2311 — S/MIME Version 2 Message Specification. This RFC defines
the Secure MIME (S/MIME) version 2 format for message specification.
It defines the protocol to convey digital signatures and encryption ser-
vices as well as the process to create a protected MIME body part.

RFC 2315 - PKCS #7: Cryptographic Message Syntax Version 1.5. This
RFC defines PKCS #7 version 1.5. PKCS #7 is a general-purpose syntax
for cryptographic protection of data, including digital signatures and
encryption. It supports an enveloping scheme that allows the protect-
ing content types to be nested inside another. Attributes can also be
applied to some of the content types to support additional services.

RFC 2407 — The Internet IP Security Domain of Interpretation for
ISAKMP. This RFC defines the Internet IP Security (IPsec) Domain
of Interpretation (DOI). The IPsec DOI instantiates the Internet Security
Association and Key Management Protocol (ISAKMP) for use with IP
when ISAKMP is used to negotiate security associations.

RFC 2408 - Internet Security Association and Key Management Proto-
col ISAKMP). This RFC defines the Internet Security Association and
Key Management Protocol (ISAKMP), which defines the authentication
procedures for communicating peers, creation and management of secu-
rity associations, key generation techniques, and threat mitigation.

RFC 2409 - The Internet Key Exchange (IKE). This RFC defines the
Internet Key Exchange (IKE) protocol. IKE is used in conjunction with
ISAKMP to obtain authenticated keying material for use with ISAKMP. It
is also used in the IPsec DOI for to establish security associations used by
other IPsec protocols, especially Authentication Header (AH) and Encap-
sulating Security Payload (ESP).

RFC 2412 - The OAKLEY Key Determination Protocol. This RFC defines
the OAKLEY key establishment algorithm. OAKLEY allows two authen-
ticated parties to agree on secure and secret keying material.

RFC 2554 — SMTP Service Extension for Authentication. This RFC
defines the auTH extension to the SMTP service. The extension allows the
client to indicate that it wishes to perform two-way authentication with

272

Appendix D = RFC Summaries

the server using the prescribed mechanism. It supports the CRAM-MD5
mechanism from RFC 2195.

RFC 2560 - X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol — OCSP. This RFC defines the Online Certificate Status
Protocol (OCSP). OCSP is a client-server protocol that allows the client to
query the server on the status of a digital certificate without requiring the
client to process CRLs.

RFC 2595 - Using TLS with IMAP, POP3, and ACAP. This RFC defines
the “sTARTTLS” extension to the Internet Mail Access Protocol (IMAP),
the Application Configuration Access Protocol (ACAP), and POP3 ser-
vices. In POP3, the stLs extension allows the client to indicate that it
wishes to use TLS when communicating with the server.

RFC 2630 — Cryptographic Message Syntax. This RFC defines the
Cryptographic Message Syntax (CMS), and it is the successor to PKCS#7
version 1.5. CMS provides a general-purpose syntax for the crypto-
graphic protection of data, including digital signatures and encryption. It
supports an enveloping scheme that allows the protecting content types
to be nested inside another. Attributes can also be applied to some of the
content types to support additional services.

RFC 2632 — S/MIME Version 3 Certificate Handling. This RFC
specifies the certificate formats and certificate-processing rules to be used
with S/MIME version 3.

RFC 2633 — S/MIME Version 3 Message Specification. This RFC
specifies S/MIME version 3. It makes RFC 2311 obsolete.

RFC 2634 - Enhanced Security Services for SSMIME. This RFC defines
four additional services for S/MIME. Additional content types and
attributes are defined to support signed receipts, security labels, secure
mailing lists, and signing certificates.

RFC 2810 — Internet Relay Chat: Architecture. This RFC documents the
Internet Relay Chat (IRC) architecture as of 2000.

RFC 2811 - Internet Relay Chat: Channel Management. This RFC
defines the IRC channel mechanism, which allows multiple users to
communicate in a forum. This RFC specifies how channels, their charac-
teristics, and their properties are managed by IRC servers.

RFC 2812 - Internet Relay Chat: Client Protocol. This RFC defines the
IRC client protocol. IRC is a simple text-based conferencing client-server
protocol.

RFC 2821 — Simple Mail Transfer Protocol. This RFC defines the
protocol electronic mail transport. It defines SMTP commands and the
responses that are used by SMTP clients and servers.

Appendix D = RFC Summaries

273

RFC 2822 - Internet Message Format. This RFC defines the syntax for
the electronic mail transported with the SMTP. Header fields like To,
FrROM, and sUBJECT are defined, along with supported characters.

RFC 2831 - Using Digest Authentication as a SASL Mechanism. This
RFC defines to use the HTTP Digest Authentication mechanism with the
Simple Authentication and Security Layer (SASL). It's an improvement
over the CRAM-MD5 mechanism.

RFC 3114 - Implementing Company Classification Policy with the
S/MIME Security Label. This RFC explains how a company’s security
policy for data classification might be mapped to the S/MIME ESS secu-
rity label. Multiple examples are provided.

RFC 3161 — Internet X.509 Public Key Infrastructure Time-Stamp Proto-
col (TSP). This RFC defines the Time-Stamp Protocol (TSP). The TSP is
client-server protocol that allows the client to request that a server attest
to a piece of data existence at a given time.

RFC 3207 - SMTP Service Extensions for Secure SMTP over Transport
Layer Security. This RFC defines the sTARTTLS extension to the SMTP
services. The sTARTTLS extension allows the client to indicate that it
wishes to use TLS when communicating with the server.

RFC 3274 — Compressed Data Content Type for Cryptographic Message
Syntax (CMS). This RFC defines the compress-data content type. This
content type can be used to compress encapsulated data.

RFC 3280 — Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile. This RFC defines the Internet
profile for X.509 certificates and CRLs. It includes requirements on for-
mat and processing of X.509 certificates and CRLs.

RFC 3281 — An Internet Attribute Certificate Profile for Authorization.
This RFC defines the Internet profile for X.509 attribute certificates. It
includes requirements on format and processing of attribute certificates.

RFC 3370 — Cryptographic Message Syntax (CMS) Algorithms. This
RFC documents the algorithms, their identifiers, and their use with
the CMS.

RFC 3447 — Public-Key Cryptographic Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. This RFC defines the
recommended implementation for public key cryptography based
on the RSA algorithm. RSA is most often used as specified in PKCS#1
version 1.5, and that information in repeated in this document, but it also
provides alternatives that are likely to be widely adopted in the future.

RFC 3546 — Transport Layer Security (TLS) Extensions. This RFC defines
extensions to the TLS protocol that may be used to add functionality.

274 Appendix D = RFC Summaries

RFC 3566 — The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec.
This RFC defines the use of the AES-XCBC-MAC-96 algorithm. This algo-
rithm is used to secure messages of varying lengths. It is especially useful
in the IPsec AH and ESP protocols.

RFC 3647 — Internet X.509 Public Key Infrastructure Certificate Policy
and Certification Practices Framework. This RFC provides a frame-
work that writers of certificate policies and certificate practice state-
ments can use to develop better certificate policies and certificate practice
statements. With a common framework it’s easier to evaluate certificate
policies and certificate practice statements.

RFC 3820 — Internet X.509 Public Key Infrastructure (PKI) Proxy
Certificate Profile. This RFC defines a certificate profile for Proxy cer-
tificates. Proxy certificates, which are based on X.509 public key certifi-
cates, allow an end entity to delegate some or all of its rights to another
entity allowing that entity to act as if it were the delegating entity.

RFC 3851 — Secure Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification. This RFC specifies S/MIME
version 3.1. This RFC makes RFC 2633 obsolete.

RFC 3852 — Cryptographic Message Syntax (CMS). This RFC defines
the Cryptographic Message Syntax (CMS). This RFC makes RFC 2630
obsolete.

RFC 3920 - Extensible Messaging and Presence Protocol (XMPP): Core.
This RFC defines the Extensible Messaging and Presence Protocol
(XMPP). The XMPP is a close-to-real-time protocol that supports stream-
ing Extensible Markup Language (XML) elements in order to exchange
structured information between any two network endpoints.

RFC 3921 - Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence. This RFC defines extensions to the XMPP.
These extensions provide basic instant messaging and presence
functionality.

RFC 3922 — Mapping Extensible Messaging and Presence Protocol
(XMPP) to Common Presence and Instant Messaging (CPIM). This
RFC defines a mapping between the Common Presences and Instant
Messaging (CPIM) specification and the XMPP.

RFC 3923 — End-to-End Signing and Object Encryption for the
Extensible Messaging and Presence Protocol (XMPP). This REC
defines the mechanisms to sign and encrypt XMPP exchanges. It is based
on CMS.

RFC 4073 — Protecting Multiple Contents with the Cryptographic
Message Syntax (CMS). This RFC defines the content-with-attributes
and content-collection content types. The content-with-attributes content

Appendix D = RFC Summaries

275

type can be used to add attributes to any other content type. The content-
collection content type can be used to collect more than one content type
together.

RFC 4234 — Augmented BNF for Syntax Specifications: ABNF. This RFC
defines the Augmented Backus-Naur Form (ABNF). ABNF is a formal
notation that describes the syntax of a language. It is used to specify the
syntax of many IETF protocols.

RFC 4262 - X.509 Certificate Extension for Multipurpose Internet Mail
Extensions (S/MIME) Capabilities. This RFC defines the S/MIME
capabilities certificate extension. This extension indicates the S/MIME
capabilities of the certificate’s subject.

RFC 4301 - Security Architecture for the Internet Protocol. This RFC
describes the Security Architecture for IP. It makes RFC 2401 obsolete.

RFC 4302 - IP Authentication Header. The RFC defines the IP Authen-
tication Header (AH). The AH provides authentication services in both
IPv4 and IPvé6.

RFC 4303 - IP Encapsulating Security Payload (ESP). This REC defines
the Encapsulating Security Payload (ESP). The ESP provides confiden-
tiality, data origin authentication, connectionless integrity, an anti-replay
service, and limited traffic flow confidentiality in both IPv4 and IPv6.

RFC 4305 - Cryptographic Algorithm Implementation Requirements
for Encapsulating Security Payload (ESP) and Authentication Header
(AH). This RFC defines the mandatory-to-implement algorithms in ESP
and AH. This RFC makes RFCs 2404 and 2406 obsolete.

RFC 4306 - Internet Key Exchange (IKEv2) Protocol. This RFC defines
IKE v2. This RFC makes RFCs 2407, 2408, and 2409 obsolete.

RFC 4307 — Cryptographic Algorithms for Use in the Internet Key
Exchange Version 2 (IKEv2). This RFC defines the mandatory-to-
implement algorithms for IKEv2.

RFC 4346 — The Transport Layer Security (TLS) Protocol Version 1.1.
This RFC defines the Transport Layer Security (TLS) protocol version
1.1. This client-server protocol allows servers to authenticate themselves
to clients, and it allows clients and servers to mutually authenticate each
other. TLS also provides for encrypted links between the client and
server. This RFC makes RFC 2246 obsolete.

RFC 4347 — Datagram Transport Layer Security. This RFC defines the
Datagram Transport Layer Security (DTLS) protocol. The DTLP is a
client-server protocol that provides communications privacy for data-
gram protocols. It’s based on TLS and provides similar security services
without requiring a reliable transport protocol like TCP.

276 Appendix D = RFC Summaries

RFC 4366 — Transport Layer Security (TLS) Extensions. This RFC defines
extensions to the TLS protocol that may be used to add functionality. It
makes RFC 4366 obsolete.

RFC 4406 — Sender ID: Authenticating Email. This RFC defines a mech-
anism that allows receiving Mail Transfer Agents (MTAs), Mail Delivery
Agents (MDAs), and /or Mail User Agents (MUAs) to determine whether
the received message was used with the permission of the owner of the
domain contained in that email address.

RFC 4408 — Sender Policy Framework (SPF) for Authorizing User of
Domains in Email, Version 1. This RFC defines the Sender Policy
Framework (SPF) protocol. The SPF protocol allows a domain to explic-
itly authorize hosts that are allowed to use its domain name. The SPF
protocol also allows a receiving host to check these authorizations.

RFC 4870 — Domain-Based Email Authentication Using Public Keys
Advertized in the DNS (DomainKey). This RFC defines a mechanism
that permits emails to be signed on a per-domain basis. With this mech-
anism, receiving MTAs can determine whether the mail originated in a
domain or whether the headers have been spoofed.

RFC 4871 — DomainKeys Identified Mail (DKIM) Signatures. This RFC
defines the DomainKeys Identified Mail (DKIM) signhature mechanism.
DKIM is a mechanism that allows domains to apply a digital signature
over the email message headers. Receiving MTAs and MUAs can then
use this digital signature to determine whether the email message came
from an authorized domain.

RFC 4880 — OpenPGP Message Format. This RFC defines the Open
Pretty Good Privacy (PGP) message format. It makes RFC 1991 obsolete.

RFC 5023 — The Atom Publishing Protocol. This RFC defines the Atom
Publishing (AtomPub) Protocol. AtomPub is protocol that is used to
publish and edit Web resources.

RFC 5035 — Enhanced Security Services (ESS) Update: Adding CertID
Algorithm Agility. This RFC defines an update to the ESS cert1D struc-
ture. ESS certificate identifiers originally only supported SHA-1, but this
update allows for hash algorithm agility.

RFC 5055 — Server-Based Certificate Validation Protocol (SCVP). This
RFC defines the Server-Based Certificate Validation Protocol (SCVP).
SCVP is a client-server protocol that allows a client to delegate certifica-
tion path construction and certification path validation to a server.

RFC 5083 — Cryptographic Message Syntax (CMS) Authenticated-
Enveloped-Data Content Type. This RFC defines the authenticated
-enveloped-data content type. This content type is defined for use with
authenticated encryption algorithms.

References

Chapter 2

[TANAM] www.iana.org/assignments/mail-parameters
[ISOCO00] www . isoc.org/internet /history/brief.shtml
[RFC0791] www.ietf.org/rfc/rfc791.txt

[RFC0793] www.ietf.org/rfc/rfc793.txt

[RFC1035] www.ietf.org/rfc/rfcl035.txt

[RFC1652] www.ietf.org/rfc/rfcl652. txt

[RFC1854] www.ietf.org/rfc/rfcl854.txt

[RFC1869] www.ietf.org/rfc/rfcl869.txt

[RFC1870] www.ietf.org/rfc/rfcl1870.txt

[RFC1891] www.ietf.org/rfc/rfcl891.txt

[RFC1939] www.ietf.org/rfc/rfc1939.txt

[RFC2045] www.ietf.org/rfc/rfc2045.txt

[RFC2046] www.ietf.org/rfc/rfc2046.txt

[RFC2047] www.ietf.org/rfc/rfc2047.txt

[RFC2048] www.ietf.org/rfc/rfc2048.txt

[RFC2049] www.ietf.org/rfc/rfc2049.txt

[RFC2131] www.ietf.org/rfc/rfc2131.txt

[RFC2821] www.ietf.org/rfc/rfc2821.txt

[RFC2822] www.ietf.org/rfc/rfc2822.txt

[ROSE92] Rose, Marshall, The Internet Message: Closing the Book With Electronic

Mail. New York: Prentice Hall, 1992, ISBN 978-0130929419.

Chapter 3

[ASSESS] Landoll, Douglas J., Performing an Information Security Risk Assess-
ment. Boca Rotan, FL: CRC, 2005, ISBN 978-0849329982.

UBR()VVPJ]http://i.a.cnn.net/cnn/2OOS/imageS/ll/03/brown.emails.pdf

U)CH]http://www.usdoj.gov/usao/gan/press/2006/07—05—06.pdf

[HP] http: / /www.msnbc .msn.com/1d/14687677/site/newsweek

[HACK] Beaver, Kevin and Stuart McClure. Hacking For Dummies, 2nd Edition,
Hoboken, NJ: Wiley, 2007, ISBN 978-0-470-05235-8

277

278 References

[IDTHFT] Collins, Judith M., Investigating Identity Theft: A Guide for Busi-
nesses, Law Enforcement, and Victims. Hoboken, NJ: Wiley, 2006, ISBN:
978-0-471-75724-5.

[ISO7498] ISO/IEC Part 2 ““Security Architecture for Open Systems Intercon-
nection for CCITT Applications,” 1991.

[KAHNG67] Kahn, D., The Codebreakers: The Story of Secret Writing, New York:
Macmillan, 1967.

[PHISH] Lininger, Rachael and Russell Dean Vines. Phishing: Cutting the
Identity Theft Line, Indianapolis, IN: Wiley, 2006, ISBN: 978-0-7645-8498-5.
[RISK] Jones, Andy and Debi Ashenden, Risk Management for Computer Security.

Burlington, MA: Butterworth-Heinemann, 2005, ISBN 978-0750677950.

[SCHNOO] Schneier, Bruce. Email Security: How to Keep Your Electronic Messages
Private. Indianapolis, IN: Wiley, 1995, ISBN 978-0-471-05318-7.

[SPOOK] Peneberg, Adam and Marc Barry. Spooked: Espionage in Corporate
America, New York: HarperCollins, 2000, ISBN 978-0738205939.

Chapter 4

[CNSS] http://www.cnss.gov/Assets/pdf/cnssp 15 fs.pdf

[DIFF76] Diffie, W., and M. Hellman. “New Directions in Cryptography”’,
IEEE Transactions on Information Theory, vol. IT-22, no. 6, 1976, pp. 644—654.

[EFF98] Electronic Frontier Foundation. Cracking DES, Sebastopol: O'Reilly &
Associates, Inc., 1998.

[FIPS46] U.S. Department of Commerce. Data Encryption Standard, Federal Infor-
mation Processing Standards, Publication 46, 1977.

[FIPS180a] U.S. Department of Commerce. Secure Hash Standard, Federal Infor-
mation Processing Standards, Publication 180-1, 1995.

[Supersedes FIPS PUB 180 published in 1993.]

[FIPS180b] U.S. Department of Commerce. Secure Hash Standard, Federal Infor-
mation Processing Standards, Publication 180-2, 2002.

[Supersedes FIPS PUB 180-1 published in 1995.]

[FIPS186a] U.S. Department of Commerce. Digital Signature Standard (DSS),
Federal Information Processing Standards, Publication 186, 1994.

[FIPS186b] U.S. Department of Commerce. Digital Signature Standard (DSS),
Federal Information Processing Standards, Publication 186, 1994.

[Supersedes FIPS PUB 186 published in 1994 and 186-1 published in 1998.]

[FIPS197] U.S. Department of Commerce. Advanced Encryption Standard, Federal
Information Processing Standards, Publication 197, 2001.

[FIPS198] U.S. Department of Commerce. The Keyed-Hash Message Authentica-
tion Code (HMAC), Federal Information Processing Standards,
Publication 198, 2002.

References

279

[KAHNG67] Kahn, D., The Codebreakers: The Story of Secret Writing. New York:
Macmillan, 1967.

[KRAWY97] Krawczyk, H., M. Bellare, and R. Canetti. "HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104, 1997.

[MENE97] Memezes, A., P. vanOorschot, and S. Vanstone, Handbook of Applied
Cryptography. New York: CRC Press LLP, 1997.

[NISTl] http://csrc.nist.gov/groups/ST/hash/statement.html

[NIST2] http://csrc.nist.gov/groups/ST/hash/policy.html

[NIST3] http://csrc.nist.gov/groups/ST/hash/documents/
SecondHashWshop%202006%20Report.pdf

[REC3447] www.ietf.org/rfc/rfc3447

[RIVE78] Rivest, R., A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems, Communications of the
ACM, vol. 21, no. 2, 1978, pp. 120-126.

[SCHNO96] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 2nd ed. Indianapolis, IN: Wiley, 1996.

[SEC1] “Standards for Efficient Cryptography, Elliptic Curve Cryptography,
SEC1 Version 1," 2000, http://www.secg.org/collateral/secl_final.pdf.

[SP800-38a] U.S. Department of Commerce. Recommendations for Block Cipher
Modes - Methods and Techniques, FIPS SP800-38A, 2001.

[SP800-38b] U.S. Department of Commerce. Recommendations for Block Cipher
Modes: The CMAC Mode of Authentication. FIPS SP800-38B, 2005.

[SP800-38c] U.S. Department of Commerce, Recommendations for Block Cipher
Modes: The CCM Mode for Authentication and Confidentiality. FIPS SP800-38C,
2004.

[SP800-38d] DRAFT U.S. Department of Commerce. Recommendations for Block
Cipher Modes: The Galois/Counter Mode (GCM) for Confidentiality and Authen-
tication, FIPS SP800-38C, 2001.

[TUCH79] Tuchman, W. “Hellman Presents No Shortcut Solutions to DES”,
IEEE Spectrum, vol. 6, no. 7, July 1979, pp. 40-41.

[X392] American National Standards Institute. Data Encryption Algorithm, ANSI
X3.92, 1981. [Most recently reaffirmed in 1998.]

[X942] American National Standards Institute. Public Key Cryptography Using
Irreversible Algorithms for the Financial Services Industry, Part 2: The Secure
Hash Algorithm (SHA-1), ANSI X9.30-2, 1997.

[X952] American National Standards Institute. Triple Data Encryption Algorithm
Modes of Operation, ANSI X9.52-1998, 1998.

[X9302] American National Standards Institute. Public Key Cryptography
Using Irreversible Algorithms for the Financial Services Industry, Part 2:
The Secure Hash Algorithm (SHA-1), ANSI X9.30-2,1997. (Originally published
in 1993.)

280 References

Chapter 5

[CL] Carlyle, A., and Lloyd, S., Understanding PKI: Concepts, Standards, and
Deployment Considerations, Second Edition. Boston, MA: Addison-Wesley,
2002.

[FIPS140] U.S. Department of Commerce, Security Requirements for Crypto-
graphic Modules, Federal Information Processing Standards Publication 140-1,
1994. [Supersedes FIPS 140 General Security Requirements for Equipment Using
the Data Encryption Standard.]

[HP] Housley, R., and Polk, T. Planning for PKI. New York: John Wiley & Sons,
Inc, 2001.

[RFC3161] www.ietf.org/rfc/rfc3161.txt

[RFC3280] www.ietf.org/rfc/rfc3280.txt

[RFC3851] www.ietf.org/rfc/rfc3851.txt

[X955] American National Standards Institute, “‘Public Key Cryptography For
The Financial Services Industry: Extensions To Public Key Certificates And
Certificate Revocation Lists,”” ANSI X9.55, 1995.

[X50900] ITU-T, The Directory — Authentication Framework, Recommen-
dation X.509, 2000.

[X50997] ITU-T, The Directory — Authentication Framework, Recommendation
X.509, 1997.

Chapter 6

[HOUSI1] Housley, Russell. “Electronic Message Security: A Comparison of
Three Approaches”. In Fifth Annual Computer Security Applications Conference
Proceedings, December 1989, pp 29.

[NISTMSPR] NISTIR 90-4250, “Secure Data Network System (SDNS) Net-
work, Transport, and Message Security Protocols,” Charles Dinkel, Editor,
February 1990.

[RFC1421] www.ietf.org/rfc/rfcl421.txt

[RFC1422] www.ietf.org/rfc/rfcld22.txt

[RFC1423] www.ietf.org/rfc/rfcl423.txt

[REC1424] www.ietf.org/rfc/rfcld24.txt

[REC1847] www.ietf.org/rfc/rfcl847.txt

[RFC1848] www.ietf.org/rfc/rfcl848.txt

[REC1991] www.ietf.org/rfc/rfcl1991.txt

[RFC2311] www.ietf.org/rfc/rfc2311.txt

[RFC2315] www.ietf.org/rfc/rfc2315.txt

[RFC2630] www.ietf.org/rfc/rfc2630.txt

[RFC2632] www.ietf.org/rfc/rfc2633.txt

References 281

[RFC2633] www.ietf.org/rfc/rfc2632. txt
[RFC2634] www.ietf.org/rfc/rfc2634.txt
[RFC3114] www.ietf.org/rfc/rfc3114.txt
[RFC3274] www.ietf.org/rfc/rfc3274 . txt
[RFC3280] www.ietf.org/rfc/rfc3280.txt
[RFC3370] www.ietf.org/rfc/rfc3370.txt
[RFC3851] www.ietf.org/rfc/rfc3851.txt
[RFC3852] www.ietf.org/rfc/rfc3852.txt
[RFC4073] www.ietf.org/rfc/rfcd073.txt
[RFC4262] www.ietf.org/rfc/rfcd262.txt
[RFC4880] www.ietf.org/rfc/rfc4880.txt
[RFC5035] www.ietf.org/rfc/rfc5035. txt

Chapter 7

[FIPS180] U.S. Department of Commerce, Secure Hash Standard, Federal
Information Processing Standards Publication 180-2, 2002. [Supersedes FIPS
PUB 180 published in 1995.]

[RESC] Rescorla, E., SSL and TLS: Designing and Building Secure Systems,
Boston, MA: Addison-Wesley, 2000, ISBN 978-0201615982.

[RFC768] www.ietf.org/rfc/rfc768.txt

[RFC793] www.ietf.org/rfc/rfc793.txt

[RFC1321] www.ietf.org/rfc/rfcl321.txt

[RFC2104] www.ietf.org/rfc/rfc2104.txt

[RFC2195] www.ietf.org/rfc/rfc2195.txt

[RFC2246] www.ietf.org/rfc/rfc2246.txt

[RFC2407] www.ietf.org/rfc/rfc2407.txt

[RFC2408] www.ietf.org/rfc/rfc2408.txt

[RFC2409] www.ietf.org/rfc/rfc2409.txt

[RFC2412] www.ietf.org/rfc/rfc2412.txt

[RFC2554] www.ietf.org/rfc/rfc2554.txt

[RFC2595] www.ietf.org/rfc/rfc2595. txt

[RFC2831] www.ietf.org/rfc/rfc2831.txt

[RFC3207] www.ietf.org/rfc/rfc3207.txt

[RFC3546] www.ietf.org/rfc/rfc3546.txt

[RFC3566] www.ietf.org/rfc/rfc3566.txt

[RFC4301] www.ietf.org/rfc/rfc4301.txt

[RFC4302] www.ietf.org/rfc/rfcd302.txt

[RFC4303] www.ietf.org/rfc/rfc4303.txt

[RFC4305] www.ietf.org/rfc/rfc4305.txt

[RFC4306] www.ietf.org/rfc/rfc4306.txt

[RFC4307] www.ietf.org/rfc/rfcd307.txt

282 References

[RFC4346] www.ietf.org/rfc/rfc4346.txt

[RFC4366] www.ietf.org/rfc/rfcd366.txt

[RFC4347] www.ietf.org/rfc/rfcd347.txt

[SSL] Freier, A., P. Karlton, and P. Kocher, The SSL Protocol, Version 3.0,
Netscape Communications, 1996. [http: //home.netscape.com/eng/ss13/
draft302.txt]

[TLS12] www.ietf.org/internet-drafts/draft-ietf-tls-rfc4346-
bis-07.txt

Chapter 8

[CX:]www.commoncriteriaportal.org/public/files/CCPART1V3.1R2.pdf
www . commoncriteriaportal.org/public/files/CCPART2V3.1R2.pdf
www.commoncriteriaportal.org/public/files/CCPART3V3.1R2.pdf
[CCPPL2] www.niap-ccevs.org/cc-scheme/pp/PP_0S_SL MR2.0 V1.91.pdf
Dreifus, Henry, and J. Thomas Monk. Smart Cards: A Guide to Building and
Managing Smart Card Applications. New York: John Wiley & Sons, Inc, 1998.

[FIPS140] http://csrc.nist.gov/publications/fips/fips140-2/
fipsl1402.pdf

[ISO15408] nttp: //standards.iso.org/ittf/PubliclyAvailableStandards/
c040612 ISO IEC 15408-1 2005(E).zip

http://standards.iso.org/ittf/PubliclyAvailableStandards/
c040612 ISO IEC 15408-2 2005(E).zip

http://standards.iso.org/ittf/PubliclyAvailableStandards/
040612 ISO IEC 15408-3 2005 (E).zip

[Nielsen] R. Nielsen, “Observations from the Deployment of a Large Scale
PKI”, Proceedings of the 4th Annual PKI Research Workshop, pp. 159-165,
August 2005.

Hﬂ<C511]ftp://ftp.rsasecurity.com/pub/pkcs/pkcs—ll/vZ—20/
pkcs-11v2-20.pdf

Hﬂ<C512]ftp://ftp.rsasecurity.com/pub/pkcs/pkcs—12/
pkcs-12vl.pdf

[Marchesini] J. Marchesini, S.W. Smith, M. Zhao, “Keyjacking: Risks of the
Current Client-side Infrastructure”, Proceedings of the 2nd Annual PKI
Research Workshop, pp. 128-144, April 2003.

[Whitten] A. Whitten and].D. Tygar, “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0”, Proceedings of the 8th USENIX Security Symposium,
pp- 169-184, August 1999

[WOLFGANG] Hoboken, NJ: Wiley, ISBN 978-0470856680.

References

283

Chapter 9

[ASAFE] “AstraZeneca Implementation of SAFE Digital Signature,” Version
1, 25 February 2007.

[NISTSP] http://csrc.nist.gov/publications/nistpubs/800-57/
SP800-57-Partl.pdf

[PSAFE] “Pfizer Implementation of SAFE Digital Signature for Electronic Lab
Notebook,” Version 1, 23 July 2007.

Chapter 10

[DODCP] http://iase.disa.mil/pki/dod-cp-v90-final-9-feb-05-
signed.pdf

[ECACP] nttp://iase.disa.mil/pki/eca/docs/ECA CP V3.1 30Aug2006
Final Signed.pdf

[RFC2527] www.ietf.org/rfc/rfc3647.txt

[RFC3647] www.ietf.org/rfc/rfc3647.txt

Chapter 11

[FASC-N] www . smartcard.gov/information/TIG SCEPACS v2.2.pdf

[FICCCP] www.cio.gov/ficc/documents/CertCRLprofileForCP.pdf

[FIMH] www.cio.gov/ficc/documents/FederalIdentityManagement -
Handbook.pdf

[FPKICP] www.cilo.gov/fpkipa/documents/CommonPolicy.pdf

[GSCH] www . smartcard.gov/information/smartcardhandbook.pdf

[GSAMEM] http://fips20lep.cio.gov/documents/GSA HSPD-12
Acquisition Guidance.pdf

[HSPD-12] www.whitehouse.gov/news/releases/2004/08/20040827-8 . html

[IR7337] http://csrc.nist.gov/publications/nistir/ir7337/
NISTIR-7337.pdf

[IR7452] http://csrc.nist.gov/publications/nistir/ir7452/
NISTIR-7452.pdf

[M-04-04] www . whitehouse.gov/omb/memoranda/fy2004/m04-04 .pdf

[M-05-24] www .whitehouse.gov/omb/memoranda/fy2005/m05-24 . pdf

[M-06-18] www.whitehouse.gov/omb/memoranda/fy2006/m06-18.pdf

[PUB201] nhttp://csrc.nist.gov/publications/fips/fips201-1/
FIPS-201-1-chngl.pdf

[RFC3280] www.ietf.org/rfc/rfc3280.txt

284 References

[SP800-63]http://csrc.nist.gov/publications/nistpubs/800—63/
sp800-63V1 0 _2.pdf

[SP800-73] http://csrc.nist.gov/publications/nistpubs/800-73-1/
sp800-73-1v7-April20-2006.pdf

[SP800-76]http://csrc.nist.gov/publications/nistpubs/800—76—1/
SP800-76-1_012407 .pdf

[SP800-78] http://csrc.nist.gov/publications/nistpubs/800-78-1/
SP-800-78-1 final2.pdf

[SP800-79] http://csrc.nist.gov/publications/nistpubs/800-79/
sp800-79.pdf

[SP800-85]http://csrc.nist.gov/publications/nistpubs/800—85A/
SP800-85A.pdf

http://csrc.nist.gov/publications/nistpubs/800-85B/SP800-85b-
072406-final.pdf

[SP800-87]http://csrc‘nist.gov/publications/nistpubs/800—87/
sp800-87-Final.pdf

[SP800-96]http://csrc.nist.gov/publications/nistpubs/800—96/
SP800-96-091106.pdf

[SP800-100] http: //csrc.nist.gov/publications/nistpubs/800-100/
SP800-100-Mar07-2007 .pdf

[SP800-104]http://csrc.nist.gov/publications/nistpubs/800—104/
SP800-104-June29 2007-final.pdf

[TIG-SCEPAS] www. smart.gov/information/TIG_SCEPACS_v2.2.pdf

Chapter 12

[PKCS1v21] PKCS #1 v2.1: RSA Cryptography Standard, June 14, 2002.
[RFC1459] www.ietf.org/rfc/rfcld59. txt
[RFC2560] www.ietf.org/rfc/rfc2560.txt
[RFC2810] www.ietf.org/rfc/rfc2810.txt
[RFC2811] www.ietf.org/rfc/rfc2811.txt
[RFC2812] www.ietf.org/rfc/rfc2812.txt
[RFC3280] www.ietf.org/rfc/rfc3280.txt
[RFC3281] www.ietf.org/rfc/rfc3281.txt
[RFC3447] www.ietf.org/rfc/rfc3447.txt
[RFC3820] www.ietf.org/rfc/rfc3820.txt
[RFC3920] www.ietf.org/rfc/rfc3920.txt
[RFC3921] www.ietf.org/rfc/rfc3921.txt
[RFC3922] www.ietf.org/rfc/rfc3922.txt
[RFC3923] www.ietf.org/rfc/rfc3923.txt
[RFC4870] www.ietf.org/rfc/rfc4870.txt
[RFC4406] www.ietf.org/rfc/rfcdd06.txt

References

285

[RFC4408] www.ietf.org/rfc/rfc4408.txt

[RFC4871] www.ietf.org/rfc/rfc4871.txt

[RFC5023] www.ietf.org/rfc/rfc5023.txt

[RFC5055] www.ietf.org/rfc/rfc5055. txt

[SIMPLE] http://ietf.org/html.charters/simple-charter.html

[SP800-57] http://csrc.nist.gov/publications/nistpubs/800-57/
SP800-57-Partl.pdf

[WANG] http://csrc.nist.gov/groups/ST/hash/documents/
Wang SHAl-New-Result.pdf

[X50997] ITU-T, The Directory — Authentication Framework, Recommendation
X.509, 1997.

Appendix A

[BNF] Naur, P. (ed.), 1963, “Revised report on the algorithmic language
ALGOL 60”7, Communications of the ACM 6:1, pp 1-17

Nnaur, Peter (ed.), “Revised Report on the Algorithmic Language ALGOL
60", Communications of the ACM, Vol. 3 No.5, pp. 299-314, May 1960.

[RFC2822] www.ietf.org/rfc/rfc2822. txt

[RFC4234] www.ietf.org/rfc/rfcd234. txt

Appendix B

[KALI93a] Kaliski, B., A Layman’s Guide to a Subset of ASN.1, BER, and DER, An
RSA Laboratories Technology Note, 1993. [ftp: //ftp.rsasecurity.
com/pub/pkcs/doc/layman. doc]

[LARMOO] Larmouth, J., ASN.1 Complete, San Diego: Morgan Kaufmann Aca-
demic Press, 2000.

[IS7498] ISO/IEC, Information Technology - Information Processing Systems -
Open System Interconnection - Basic Reference Mode - The Basic Model, ISO /IEC
7498-1: 1994.

[STEE90] Steedman, D., Abstract Syntax Notation One (ASN.1): The Tutorial and
Reference, Twickenham: Technology Appraisals Ltd., 1990.

[X20888] CCITT, Specification of Abstract Syntax Notation One (ASN.1), Recom-
mendation X.208, 1988.

[X50988] CCITT, The Directory - Authentication Framework, Recommendation
X.509, 1988.

[X68097] ITU-T, Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation, Recommendation X.680, 1997.

[X68003] ITU-T, Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation, Recommendation X.680, 2003.

286 References

[X69003] ITU-T, Information Technology - Abstract Syntax Notation One (ASN.1)
Encoding Rule: Specification of Basic Encoding Rules (BER), Canonical Encod-
ing Rules (CER) and Distinguished Encoding Rules (DER), Recommendation

X.690, 2003.

Appendix C

[MR] Marshall Rose, The Internet Message, New York: Prentice Hall, 1992, ISBN

978-0130929419.

[REC2045] www.ietf.
[REC2046] www.ietf.
[RFC2047] www.ietf.
[RFC2048] www.ietf.
[RFC2049] www.ietf.

org/rfc/rfc2045.
org/rfc/rfc2046.
org/rfc/rfc2047.
org/rfc/rfc2048.
org/rfc/rfc2049.

txt
txt
txt
txt
txt

A
access control, 31
accountability, 32
ACLs (Access Control Lists), 34
active attackers, 24
AES (Advanced Encryption Standard),
39
AH (authentication header), 133,
136-137
authentication data field, 137
length field, 136
next header field, 136
sequence number field, 137
SPI field, 136
algorithms, 88
hash algorithms, 120
signature algorithms, 120
AltaVista, 11
AOL (America Online), 10
APIs (application program interfaces),
160-161
application program interfaces (API),
160-161
archives, 84
ARPANET (Advanced Research
Projects Agency Network), 8
Ashenden, Debi, 24
asymmetric key management, 51
attachments, 8

Index

attackers, 24
active, 24
eavesdropping, 29
governments, 24-26
how they read email, 29-30
passive, 24
where they read email, 28-29
attributes, 95, 107-108
content-hints, 115-116
content-identifier, 113
content-reference, 116
content-type, 108—-109
counter-signature, 110-111
encryption-key-preference, 111-112
equivalent-labels, 118
message-digest, 109
message-signature-digest, 113
S/MIME-capabilities, 111
security-labels, 117-118
signed receipts, 112-115
signing-certificates, 116—-117
signing-time, 110
AUTH command, 126
AUTHENTICATE command, 127
authenticated data, 103
authenticated-enveloped data, 104
authentication, 31, 37
challenge-response, 126
identity authentication, 31

287

288

Index = A-C

authentication, (continued)
message encryption and
authentication procedures, 88
mutual authentication, 31
TLS, 128
unilateral authentication, 31
Authentication Tag, 42
authority key identifier, 76
authorization, 33
availability, 33

B
Barry, Marc, 26
BBSs (Bulletin Board Systems), 10
BCC (Blind Carbon Copy), 8
Bec field, 15
Beaver, Kevin, 27
block ciphers, 38
bloggers, 28
Body, 16
structured messages, 16
text, 16
bridge CAs, 64-66
Bulletin Board Systems (BBSs), 10
bump-in-the-stack implementation,
134
bump-in-the-wire implementation,
134
business intelligence, 26
businesses, 26—-27

C
CA (certification authority), 55
archives, 83
bridge CAs, 64—-66
CRLs, 82
issuing certificates, 80-82
publishing certificates, 82
status information, 82
trusted third party, 56
CAC (Common Access Card), 181
DoD, 193-194
CBC (Cipher Block Chaining), 39, 132
CC (Carbon Copy), 8
CC (Common Criteria for Information
Technology Security Evaluations),
147

Cc field, 15
CCM (Counter with CBC-MAC), 40
CCTL (Common Criteria Testing
Laboratories), 148
censure, 26
certificate issuer, 77
certificate policies
DoD, 186-188
SAFE architecture, 169
certificate profile, 89, 169-173
DoD, 188-190
certificate status responders, 190—-191
certificate-based key management, 88
certificates, 55
contents, 6768
enveloped data, 98
extensions, 170-171, 172
path building, 57
path construction, 57
signed data, 96-97
validation, 57
certification path validation, 57
CFB (Cipher Feedback), 40
challenge-response authentication, 126
character sets, 8
CMAC (Cipher Based-MAC), 40
CMS content types, 93
protecting
authenticated data, 103
authenticated-enveloped data, 103,
104
digest data, 102-103
encrypted data, 102
enveloped data, 98-102
signed data, 96-98
CMT (Cryptographic Module
Testing), 148
CMVP (Cryptographic Module
Verification Program), 148
Coke and Pepsi, 27
Collin, Judith, 27
commands, 16—19
AUTH, 126
AUTHENTICATE, 127
DATA, 17
EHLO, 17

Index = C-D

289

EXPN, 17
HELO, 17
HELP, 17
MAIL FROM, 17
NOOP, 17
QUIT, 17
RCPTO, 17
RESET, 17
response codes, 18
VERIFY, 17
Comments field, 16
compressed data content type, 105
CompuServe, 10
confidentiality, 31
content, 14-15
content encryption, key wrap and, 121
content-collection content type,
106-107
content-hints attributes, 115-116
content-identifier attribute, 113
content-reference attribute, 116
content-type attribute, 108—-109
content-with-attributes, 107
counter-signature attribute, 110-111
countermeasures, 24
CP (Certification Policy), 56
CPMWG (Certificate Policy
Management Working Group), 186
CPS (Certification Practice Statement),
56
CRAM (Challenge-Response
Authentication Mechanism), 126
credentials, 143
criminals, 27
CRL (certificate revocation list), 56
entry extensions
certificate issuer, 77
hold instruction code, 77
invalidity date, 77
reason code, 77
enveloped data, 98
extensions, 75-76
authority key identifier, 76
CRL number, 76
delta CRL indicator, 76
freshest CRL, 76

issuer alternative name, 76
issuing distribution point, 76
publishing certificates, 82
signed data, 96-97
signed list, 73-75
CRL number, 76
CRL profiles, 169-173
DoD, 188-190
cross-certified PKIs, 62—-63
CRS (Card Repository System), 186
cryptographic algorithms, 37
DoD PKI, 182-183
SAFE architecture, 166
cryptographic mechanisms
digital signtuares, 33
encryption, 33
one-way hash functions, 34
cryptographic modules
DoD, 193-194
SAFE and, 173
cryptographic tools, 30
cryptography
asymmetric
asymmetric key management,
47-50
digital signatures, 47-50
public key encryption, 45-47
definition, 37
symmetric, 38
algorithms, 39
block ciphers, 38
modes, 39-40
stream ciphers, 38
symmetric key management, 40—42
CTR (Counter), 40

D

Daemon, Dr. Joan, 39

DATA command, 17

data content type, 105

Date field, 15

DDoS (distributed denial of service),
30

DEA (Data Encryption Algorithm),
39

DEERS architecture, 184-186

290

Index = D-E

delta CRL indicator, 76
DES (Data Encryption Standard)
symmetric block cipher, 39
Three-Key Triple-DES, 39
DHCP (Dynamic Host Configuration
Protocol), 9, 21
Diffie-Hellman (DH), 47, 131
Elliptic Curve Diffie-Hellman
(ECDH), 47
digest algorithms
enveloped data, 98
signed data, 96-97
digest data, 102-103
DIGEST-MD5, 127
digital signatures, 31, 33, 47-50
algorithms, 48
message recovery, 48
verification, 57
directory-dirven deployment,
159-160
DISA (Defense Information Systems
Agency), 181
DMDC (Defense Manpower Data
Center), 182
DMS (Defense Message System), 181
DNS (Domain Name Service), 21
DoD (Department of Defense), 181
applications, 194-196
CAC, 193-194
certificate policies, 186—188
certificate profiles, 188-190
certificate status responders, 190-191
CRL profiles, 188-190
cryptographic modules, 193-194
DEERS architecture, 184—-186
PKI, 181
architecture, 183—-184
cryptographic algorithms, 182-183
PMO, 181
RAPIDS architecture, 184186
repositories, 191-193
domain names, 9
DoS (denial of service), 30
DTS (Defense Travel System),
181

E
EAL (Evaluation Assurance Levels),
147-148
eavesdropping, 29
ECB (Electronic Codebook), 39
EHLO command, 17
Elliptic Curve Diffie-Hellman (ECDH),
47
Elliptic Curve Digital Signature
Algorithm (ECDSA), 48
Elliptic Curve Menezes-Qu-Vanstone
(ECMQV), 47
email
envelope, 14
evolution of, 8-11
formats, 12-16
history of, 8-11
process, 11-12
protocol commands, 14
snail mail comparison, 12
email client, 21-22
embedded tokens, 157-158
encapsulating, 93-95
encrypted data, 102
ENCRYPTED message structure, 88
encryption, 33
CBC (Cipher Block Chaining), 39
CCM (Counter with CBC-MAC),
40
CFB (Cipher Feedback), 40
CMAC (Cipher Based-MAC), 40
CTR (Counter), 40
DES, 138
ECB (Electronic Codebook), 39
GCM (Galois Counter Mode), 40
message encryption and
authentication procecures, 88
OFB (Output Feedback), 40
Triple DES, 138
encryption-key-preference attribute,
111-112
envelope, 14
enveloped data
certificates, 98
CRLs, 98

Index = E-I

291

digest algorithms, 98

key management, 98
equivalent-labels attribute, 118
ESMTP (Enhanced SMTP), 21
ESP (Encapsulating Security Payload),

133,137-139

authentication data field, 139

next header field, 138

pad length field, 138

padding field, 138

sequence number field, 138

SPI field, 138
evolution of email, 8—11
Excite, 11
EXPN command, 17
ExpressCard, 150-151

F

fabrication, 29

fake traffic, 34

FIPS 140 levels, 173

FIPS 140-2, 144
levels, 145-146

fixed tokens, 158

flooding, 30

formats, 12-16

FORTEZZA CryptoCards, 151

free webmail, 11

freedom of speech, 26

freshest CRL, 76

friends and family, 28

From field, 15

fundamental services
access control, 31
authentication, 31
confidentiality, 32
integrity, 32
non-repudiation, 32

G
GCM (Galois Counter Mode), 40
Google, 11
governments
as attackers, 24-26
censure in, 26

H
hackers, 27-28
hacking, 30
Hacking For Dummies, 27
Handshake Protocol, TLS and,
129-132
cipher spec, 129
compression method, 129
is resumable, 129
master secret, 129
peer certificate, 129
session identifier, 129
hardware security modules, 158—159
hash algorithms, 120
headers, 15-16
HELO command, 17
HELP command, 17
hierarchical PKI, 59-60
history of email, 8-11
hold instruction code, 77
HSM (hardware security modules),
143

|

iButton tokens, 156—157

ICV (Integrity Check Value), 42

ID (Internet Draft), 10

identifiers, 88

identity authentication, 31

IETF (Internet Engineering Task
Force), 9

IKE (Internet Key Exchange), 133,
139-140

ILP (Inventory Logistics Portal), 186

IMAP (Internet Mail Access Protocol),
21

IMAP AUTHENTICATE, 127

importance, 9

In-Reply-To field, 15

initialization vector (IV), 40

integrity, 31, 37

Internet

origins of, 8
standards, 9
Internet Mail Transfer Protocol, 9

292

Index = I-N

Internet Message Access Protocol
Version 4revl, 9

interoperability standards, 10

invalidity date, 77

Investigating Identity Theft: A Guide for
Businesses, Law Enforcement and
Victims, 27

I0C (Initial Operational Capability),
181

IP (Internet Protocol), 9, 21

IPsec, 133

ISO (International Organization for
Standardization), 147

issuer alternative name, 76

issuing distribution point, 76

IV (initialization vector), 40, 131

J

Java Smart Cards, 154

Jones, Andy, 24

just-in-time key establishment, 42

K
Kahn, David, 35
KEKRecipientInfo, 101
key certification and related services,
88

key management

enveloped data, 98

S/MIME, 121
key wrap, content encryption and, 121
KeyAgreementRecipientInfo, 100
KeyTransportRecipientInfo, 99
Keywords field, 16

L

Landoll, Douglas, 24
Lininger, Rachael, 27
logs, 34

lowercase letters, 8

M

MAC (Message Authentication Code),
42,131

MAIL FROM command, 17

man-in-the-middle, 30

masquerading, 29-30
fabrication, 29
man-in-the-middle, 30
replay, 30
McClure, Stuart, 27
MCIMail, 10
memory sticks, 155
mesh PKI, 61-62
message encryption and
authentication procedures, 88
message-digest attribute, 109
Message-ID field, 15
message-signature-digest attribute,
113
MGS (Medium Grade Service), 181,
182
MIC (Message Integrity Check), 42
MIC-CLEAR message structure, 88
MIC-ONLY message structure, 88
military, 25
MIME (Multipurpose Internet Mail
Extensions), 9
structured messages, 16
MIME layer, 95-96
MISSI (Multi-level Information
Systems Security Initiative), 181
MLA (Mail List Agent), 118
modes, 88
MOSS (MIME Object Security
Services), 87, 90-91
MSP (Message Security Protocol), 87,
91,181
MTA (Message Transfer Agent), 20
MTS (Mail Transfer Service), 11
architecture, 19-21
DoS (denial of service), 30
MUA (Message User Agent), 20
MULTOS (Multiple Operating
System), 154
mutual authentication, 31

N

NAMU (Network-attached
multi-user) HSMs, 159-160

nested mail lists, 118

NIST FIPS 140-2, 144

Index = N-P

non-protecting content types, 104—-107

non-repudiation, 31

nonces, 35

NOOP command, 17

notary, 33

notifications, 9

NSA (National Security Agency), 181

NVLAP (National Voluntary
Laboratory Accreditation Program),
148

0

OAKLEY, 139-140

OCSP profiles, 169-173

OFB (Output Feedback), 40

one-way hash functions, 34, 43

OpenPGP, 89

organization of book, 3-5

OSs (operating systems), smart cards
and, 154

OtherRecipientInfo, 102

P
parallel signatures, 97
passive attackers, 24
PasswordRecipientInfo, 101
passwords, scrambling, 126
PC cards, 149-151
PCMCIA (Personal Computer
Memory Card International
Association) card, 149-150
peer entity authentication, 31
PEM (Privacy Enhanced Mail), 87,
88-89
Peneberg, Adam, 26
Pepsi and Coke, 27
Performing an Information Security Risk
Assessment, 24
PGP (Pretty Good Privacy), 87,
89-90
compression, 90
decentralized trust, 89
Internet names, 90
key fingerprints, 90
key generation, 90
OpenPGP, 89

standardization, 90
user involvement, 90
phishing, 27
Phishing: Cutting the Identity Theft Line,
27
PhRMA (Pharmaceuticals Research
and Manufacturers of America),
165
PINs (personal identification
numbers), 27
PKCS#7 (Public-Key Cryptography
Standard #7), 87, 91
PKI (Public Key Infrastructure), 55
architectures
bridge CAs, 64—-66
cross-certified PKIs, 62-63
hierarchical PKI, 59-60
mesh PKI, 61-62
single CA, 57-58
trust lists, 58—59
cross-certified, 62—63
DoD, 181
architecture, 183-184
enrollment request/response, 89
hierarchical, 59-60
infrastructure components, 79-80
archive, 84
certification authorities, 80—83
registration authority, 83-84
repository, 84
infrastructure users, 78
replying parties, 79
subscribers, 79
mesh PKI, 61-62
Planning for PKI, 55
PMO (Program Management Office),
181
POP (Post Office Protocol), 9, 21
POTS (Plain Old Telephone System),
10
PP (Protection Profile), 147
PRF (pseudorandom function), 131
proof of delivery, 112
protocol commands, 14
PSRG (Privacy and Security Research
Group), 88

294

Index = P-S

public key certificates, 55. See also
certificates
public key cryptography, 45
public key encryption
algorithms, 47
key agreement, 45
key transport, 45

Q
QUIT command, 17

R

RA (registration authority), 83

RAPIDS architecture, 184—-186

RCPT TO command, 17

reason code, 77

receipt syntax, 105

Record Protocol, TLS and, 132
Compression sublayer, 132
Fragmentation sublayer, 132
Payload Protection sublayer, 132

References field, 16

registration authority, 83-84

Reply-To field, 15

reporters, 28

repository, 84

Rescorla, Eric, 128

Resent-Bcec field, 16

Resent-Cc field, 16

Resent-Date field, 16

Resent-From field, 16

Resent-Message-ID field, 16

Resent-Sender field, 16

Resent-To field, 16

RESET command, 17

response codes, 18

respositories, DoD, 191-193

RFCs (Requests for Comment), 10
Internet standards, 9

Rijmen, Dr. Vincent, 39

risk, 23

Risk Management for Computer Security,

24
Roberts, Lawrence R., 8
RSA Key Encapsulation Method
(RSA-KEM), 47

RSA Optimal Asymmetric Encryption
Padding (RSA-OAEP), 47

RSA Signature Scheme with Appendix
Probabilistic Signature Scheme
(RSASSA-PSS), 48

S
S/MIME (Secure Multiple Purpose
Internet Mail Extensions), 87, 91-92
key management, 120
message generation, 122-124
S/MIME-capabilities attribute, 111
SAFE (Signatures and Authentication
for Everyone), 165
architecture
applications, 174-175
certificate policies, 169
certificate profiles, 169-173
CRL profiles, 169-173
cryptographic algorithms, 166
cryptographic modules, 173
OCSP profiles, 169-173
PKI, 167-168
tokens, 173
SAFE-BioPharma Association, 165
SAs (security associations), 133
SBCA certificate policy object
identifiers, 169
Schneier, Bruce, 24
attackers and, 24
Secure Hash Algorithm, 43
secure mail lists, 118-119
security, 9
countermeasures, 24
risk, 23
threats, 23
vulnerabilities, 23
security assessment, 23
security associations, 134-136
transport mode, 135
tunnel mode, 135
security gateway, 133-134
security services, 30
derivative services
accountability, 32
authorization, 33

Index = S-T

295

availability, 33
notary, 33
fundamental services
authentication, 31
confidentiality, 32
integrity, 32
non-repudiation, 32
security-labels attribute, 117-118
Sender field, 15
sequence numbers, 35
shared secret key systems, 38
signature algorithms, 120
signed certificate list, 73-75
signed data
certificates, 96
CRLs, 96-97
digest algorithm, 96
signed receipts, 35
signed-receipts attribute, 112-115
signing-certificates attribute,
116-117
signing-time attribute, 110
single CA, 57-58
size, restrictions, 9
Smart Card Handbook, 151
smart cards, 151
choosing, 154-155
CPUs, 154
EEPROM, 154
Global Platform, 154
Java Smart Cards, 154
memory-only, 153
OpenCard, 154
OSs (operating systems) and,
154
readers, 152
ROM, 154
secure microcontroller, 153
serial protected, 153
standards, 151-152
wired logic, 153
Smart Cards: A Guide to Building and
Managing Smart Card Applications,
151

SMTP (Simple Mail Transfer Protocol),
9,21
commands, 16
response codes, 18
service extensions, 19
snail mail, email comparison, 12
software tokens, 156
SPI (security parameter index), 134
spoofing, 29
Spooked: Espionage in Corporate America,
26
SSL (Secure Sockets Layer), 128
SSL and TLS: Designing and Building
Secure Systems, 128
SSNs (Social Security numbers), 27
ST (Security Target), 147
stream ciphers, 38
Subject field, 16
symmetric cryptography, 38
algorithms, 39
block ciphers, 38
modes, 39-40
stream ciphers, 38
symmetric key management, 40—42
symmetric integrity functions, 42-44
symmetric key management, 40—42

T
tamper-evident envelope, 66—67
TCG (Trusted Computer Group),
157
TCP (Transmission Control Protocol),
9,21
terminology, 122
text messages, reasons for, 8
The Codebreakers: The Story of Secret
Writing, 35
threats, 23
Three-Key Triple-DES, 39
time server, 35
TLS (Transport Layer Security),
128
authentication, 128
confidentiality, 129

296

Index = T-Y

Handshake Protocol, 128,
129-132
cipher spec, 129
compression method, 129
is resumable, 129
master secret, 129
peer certificate, 129
session identifier, 129
IMAP and, 128
integrity, 129
POP and, 128
Record Protocol, 128, 132
SMTP and, 128
TNC (Trust Network Connect),
158
To field, 15
TOE (Target of Evaluation), 147
tokens, 143, 148
embedded, 157-158
fixed tokens, 158
iButton, 156-157
PC cards, 149-151
SAFE and, 173
software tokens, 156
USB, 155-156
TPM (Trusted Platform Module),
157
traffic, fake traffic, 34
traffic analysis, 29
transfer encoding, 89
transport mode, 135
trust, 5657
CP (Certification Policy), 56
CPS (Certification Practice
Statement), 56

CRL (certificate revocation list), 56

trust lists, 58—59

TSS (Trusted Computer Group
Software Specification), 158

tunnel mode, 135

U

unauthorized disclosure, 29

Understanding PKI: Concepts, Standards,
and Deployment Considerations, 56

unilateral authentication, 31

USB memory stick, 155

USB tokens, 155-156

USB-IF (USB Implementors Forum),
155

\')

VERIFY command, 17

version numbers, 95

Vines, Russell Dean, 27

VPN (virtual private networks), 133
vulnerabilities, 23

w
webmail, 22

X
X.509 Certificate Revocation Lists,
signed certificate list, 73-75
X.509 Certificates
certificate contents, 67—-68
extensions, 68—69
authority information access, 72
CRL distribution points, 72
freshest CRL, 72
key attributes, 70-71
name, 69-70
policy, 71-72
S/MIME capabilities, 72
subject information access, 72
subject type, 69
tamper-evident envelope, 66—-67

Y
Yahoo!, 11

