

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

224_HPXML_FM.qxd 7/1/02 9:02 AM Page i

224_HPXML_FM.qxd 7/1/02 9:02 AM Page ii

®

1YEAR UPGRADE
BUYER PROTECTION PLAN

‘ken’@ftu
Dr. Everett F. Carter, Jr.
Jeremy Faircloth
Curtis Franklin, Jr.
Larry Loeb Technical Editor

224_HPXML_FM.qxd 7/1/02 9:02 AM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack
Proofing®,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.
KEY SERIAL NUMBER
001 H7GYPK9V43
002 CVFN7T6Q2U
003 HF8J953ATX
004 6N7H8Z2B9Y
005 T5MPR3U83S
006 NC47ES6B6X
007 EP4Q2G8DAK
008 UJ6MRD9BK7
009 V6SP7FW4KH
010 9Z5BVM3F7U

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
Hack Proofing XML

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-931836-50-7
Technical Editor: Larry Loeb Cover Designer: Michael Kavish
Technical Reviewer:Adam Sills and Vitaly Osipov Page Layout and Art by: Shannon Tozier
Acquisitions Editor: Catherine B. Nolan Copy Editor:Adrienne Rebello
Developmental Editor: Jonothan Babcock Indexer: Nara Wood

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

224_HPXML_FM.qxd 7/1/02 9:02 AM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Ralph Troupe, Rhonda St. John, Emlyn Rhodes, and the team at Callisma for their
invaluable insight into the challenges of designing, deploying and supporting world-
class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, Frida Yara, Jon Mayes, John Mesjak, Peg O’Donnell,
Sandra Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia Kelly,Andrea
Tetrick, Jennifer Pascal, Doug Reil, David Dahl, Janis Carpenter, and Susan Fryer of
Publishers Group West for sharing their incredible marketing experience and
expertise.

Jacquie Shanahan,AnnHelen Lindeholm, David Burton, Febea Marinetti, Rosie
Moss, and Judy Chappell of Elsevier Science for making certain that our vision
remains worldwide in scope.

David Buckland,Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Jackie Gross, Gayle Voycey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene
Morrow, Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell, and the rest of the great folks at
Jaguar Book Group for their help with distribution of Syngress books in Canada.

A special welcome to the folks at Woodslane in Australia! Thank you to David Scott
and everyone there as we start selling Syngress titles through Woodslane in Australia,
New Zealand, Papua New Guinea, Fiji Tonga, Solomon Islands, and the Cook Islands.

224_HPXML_FM.qxd 7/1/02 9:02 AM Page v

vi

Contributors

Hal Flynn is a Threat Analyst at SecurityFocus, the leading provider of
Security Intelligence Services for Business. Hal functions as a Senior
Analyst, performing research and analysis of vulnerabilities, malicious
code, and network attacks. He provides the SecurityFocus team with
UNIX and Network expertise. He is also the manager of the UNIX
Focus Area and moderator of the Focus-Sun, Focus-Linux, Focus-BSD,
and Focus-GeneralUnix mailing lists.

Hal has worked the field in jobs as varied as the Senior Systems and
Network Administrator of an Internet Service Provider, to contracting the
United States Defense Information Systems Agency, to Enterprise-level
consulting for Sprint. He is also a veteran of the United States Navy
Hospital Corps, having served a tour with the 2nd Marine Division at
Camp Lejeune, NC as a Fleet Marine Force Corpsman. Hal is mobile,
living between sunny Phoenix,AZ and wintry Calgary,Alberta, Canada.
Rooted in the South, he still calls Montgomery,AL home.

Curtis Franklin, Jr. is President and Editorial Director of CF2 Group.
CF2 Group is a technology assessment and communications firm head-
quartered in Gainesville, FL. CF2 Group provides technology assessment,
product review, competitive product comparison and editorial creative
services to manufacturers, end-user organizations and publications across
the high-tech spectrum. Curtis provides leadership and principal creative
input to project technologies ranging from embedded systems to Web-
based enterprise infrastructure.

Curtis is the Founder of two major industry testing labs, the BYTE
Testing Lab and Client/Server Labs. He has published over 1,400 articles
in his career, and has led performance and technology assessment projects
for clients including IBM, Intel, Microsoft, and HP. Curtis hold’s a bach-
elor’s degree from Birmingham-Southern College. He lives in Gainesville,
FL with his family, Carol and Daniel.

Curtis is grateful for the unending support and encouragement of his
wife, Carol, who has been a source of love and inspiration for so very long.

224_HPXML_FM.qxd 7/1/02 9:02 AM Page vi

vii

Dr. Everett F. (Skip) Carter, Jr. is President of Taygeta Network
Security Services (a division of Taygeta Scientific Inc.). He is also
CEO/CTO of CaphNet, Inc. Skip has expert level knowledge of multiple
programming/scripting languages (Ada, C, C++, C+ FORTRAN, Forth,
Perl, HTML,WML, and XML) as well as multiple operating systems
(DOS, NT, PalmOS, Unix: SYSV, BSD and Linux). Skip, through Taygeta
Network Security Services, is the “tip of the sword” for Internet intrusion
investigation and network security assessments.Taygeta Scientific Inc. pro-
vides contract and consulting services in the areas of scientific computing,
smart instrumentation, and specialized data analysis. CaphNet, Inc. is a
start-up providing WML, cHTML and xHTML Browser Software
Platforms for mobile devices.

Skip holds both a Ph.D. and master’s in Applied Physics from Harvard
University. In addition, he holds two bachelor’s degrees from the
Massachusetts Institute of Technology—one in Physics and the other in
Earth and Planetary Sciences (Geophysics). Skip is a member of the
American Society for Industrial Security (ASIS). He has authored several
articles for Dr. Dobb’s Journal, and Computer Language magazines as well a
numerous scientific articles and is a past columnist for Forth Dimensions
magazine. Skip resides in Monterey, CA with his wife of 17 years,Trace
and their 12-year-old son, Rhett.

‘ken’@FTU has helped suppliers to conduct B2B XML transactions with
large e-commerce portals including Ariba. He is also credited with discov-
ering security vulnerabilities in software products by major vendors such as
Microsoft and IBM. Currently he works at a bank doing technical auditing
and penetrating testing of their networks, systems and applications.

Jeremy Faircloth (CCNA, MCSE, MCP+I,A+) is a Systems Analyst for
Gateway, Inc. where he develops and maintains enterprise-wide client/
server and Web-based technologies. He also acts as a technical resource
for other IT professionals, using his expertise to help others expand their
knowledge.As a Systems Analyst with over 10 years of real-world IT
experience, he has become an expert in many areas of IT including
Web development, database administration, programming, enterprise
security, network design, and project management. He is a co-author of

224_HPXML_FM.qxd 7/1/02 9:02 AM Page vii

viii

ASP .NET Developer’s Guide (Syngress Publishing, ISBN: 1-928994-51-2)
and C# for Java Programmers (Syngress, ISBN: 1-931836-54-X). Jeremy
currently resides in Dakota City, NE and wishes to thank Christina
Williams for her support in his various technical endeavors.

Joe Dulay (MCSD) is the Vice-President of Technology for the IT Age
Corporation. IT Age Corporation is a project management and software
development firm specializing in customer-oriented business enterprise
and e-commerce solutions located in Atlanta, GA. His current responsibil-
ities include managing the IT department, heading the technology
steering committee, software architecture, e-commerce product manage-
ment, and refining development processes and methodologies.Though
most of his responsibilities lay in the role of manager and architect, he is
still an active participant of the research and development team. Joe holds
a bachelor’s degree from the University of Wisconsin in Computer
Science. His background includes positions as a Senior Developer at
Siemens Energy and Automation, and as an independent contractor spe-
cializing in e-commerce development. Joe is also co-author of Syngress
Publishing’s Hack Proofing Your Web Applications (ISBN:
1-928994-31-8). Joe would like to thank his family for always being
there to help him.

F.William Lynch (SCSA, CCNA, LPI-I, MCSE, MCP, Linux+,A+) is
co-author for Syngress Publishing’s Hack Proofing Sun Solaris 8 (ISBN:
1-928994-44-X) and Hack Proofing Your Network, Second Edition
(1-928994-70-9). He is an independent security and systems administra-
tion consultant and specializes in firewalls, virtual private networks, secu-
rity auditing, documentation, and systems performance analysis.William
has served as a consultant to multinational corporations and the Federal
government including the Centers for Disease Control and Prevention
headquarters in Atlanta, GA as well as various airbases of the USAF. He is
also the Founder and Director of the MRTG-PME project, which uses
the MRTG engine to track systems performance of various UNIX-like
operating systems.William holds a bachelor’s degree in Chemical
Engineering from the University of Dayton in Dayton, OH and a master’s
of Business Administration from Regis University in Denver, CO.

224_HPXML_FM.qxd 7/1/02 9:02 AM Page viii

ix

Larry Loeb is the Principal of pbc enterprises in Wallingford, CT, a con-
sulting firm specializing in IT matters. He has been a Consulting Editor
for BYTE magazine, Contributing Editor for Circuit Cellar Ink, Senior
Editor for WebWeek, Editor of the Macintosh Exchange on BIX, and a
columnist for ITworld. He currently writes a monthly column for IBM’s
online developer Works.

Larry has also contributed to the Internet Business Analyst (U.K.),
MacUser, Internet World, BYTEWeek, Macworld,VARBusiness, Home/Office
Computing, Solutions Integrator, and other publications. He is the author of
the book Secure Electronic Transactions: Introduction and Technical Reference.

Adam Sills is a Software Architect at GreatLand Insurance, a small insur-
ance company parented by Kemper Insurance. He works in a small IT
department that focuses on creating applications to expedite business pro-
cesses and manage data from a multitude of locations. Previously, he had a
small stint in consulting and also worked at a leading B2B e-commerce
company designing and building user interfaces to interact with a large-
scale enterprise eCommerce application.Adam’s current duties include
building and maintaining Web applications, as well as helping to architect,
build, and deploy new Microsoft .NET technologies into production use.
Adam has contributed to the writing of a number of books for Syngress
including ASP .NET Developer’s Guide (ISBN: 1-928994-51-2), C# .NET
Web Developers Guide (ISBN: 1-9289984-50-4) and the XML.NET
Developer’s Guide (ISBN: 1-928994-47-4).Additionally,Adam is an active
member of a handful of ASP and ASP.NET mailing lists, providing sup-
port and insight whenever he can.

Technical Editor

Technical Reviewers

224_HPXML_FM.qxd 7/1/02 9:02 AM Page ix

x

Vitaly Osipov (CISSP, CCSA, CCSE, CCNA) is a Security Specialist
with a technical profile. He has spent the last five years consulting various
companies in Eastern, Central, and Western Europe on information secu-
rity issues. Last year Vitaly was busy with the development of managed
security service for a data center in Dublin, Ireland. He is a regular con-
tributor to various infosec-related mailing lists and recently co-authored
Check Point NG Certified Security Administrator Study Guide (Syngress
Publishing, ISBN: 1-928994-74-1) and Managing Cisco Network Security,
Second Edition (Syngress Publishing, ISBN: 1-931836-56-6).Vitaly has a
degree in mathematics. Currently he lives in the British Isles.

224_HPXML_FM.qxd 7/1/02 9:02 AM Page x

Contents

xi

Foreword xix

Chapter 1 The Zen of Hack Proofing 1
Introduction 2
Learning to Appreciate the Tao of the Hack 2

Hacker 3
Cracker 4
Script Kiddie 5
Phreaker 7

Black Hat,White Hat,What’s the Difference? 7
Gray Hat 8

The Role of the Hacker 10
Criminal 10
Magician 11
Security Professional 12
Consumer Advocate 13
Civil Rights Activist 14
Cyber Warrior 15

Motivations of a Hacker 16
Recognition 16
Admiration 17
Curiosity 17
Power and Gain 18
Revenge 19

The Hacker Code 21
Summary 22
Solutions Fast Track 23
Frequently Asked Questions 25

Learning to
Appreciate the Tao of
the Hack

Hackers can be
categorized into a series
of different types, for
instance: Crackers, Script
Kiddies or Kidiots,
Phreakers, White Hats,
Black Hats, and many
more. Hackers can be
many things—however
one thing that all hackers
have is a love of a
challenge and the ability
to stretch their computing
knowledge—whether it be
for noble or ignoble
motivations.

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xi

xii Contents

Chapter 2 Classes of Attack 27
Introduction 28
Identifying and Understanding the Classes

of Attack 28
Denial of Service 29

Local Vector Denial of Service 29
Network Vector Denial of Service 32

Information Leakage 37
Service Information Leakage 38
Protocol Information Leakage 39
Leaky by Design 41
Leaky Web Servers 42
A Hypothetical Scenario 42
Why Be Concerned with Information

Leakage? 43
Regular File Access 44

Permissions 44
Symbolic Link Attacks 45

Misinformation 47
Standard Intrusion Procedure 48

Special File/Database Access 50
Attacks against Special Files 50
Attacks against Databases 50

Remote Arbitrary Code Execution 53
The Attack 54
Code Execution Limitations 55

Elevation of Privileges 55
Remote Privilege Elevation 55

Identifying Methods of Testing for Vulnerabilities 58
Proof of Concept 58

Exploit Code 59
Automated Security Tools 59
Versioning 60

Standard Research Techniques 62
Whois 62
Domain Name System 66
Nmap 69
Web Indexing 70

The Seven Classes
of Attack

■ Denial of service

■ Information leakage

■ Regular file access

■ Misinformation

■ Special file/database
access

■ Remote arbitrary code
execution

■ Elevation of privileges

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xii

Contents xiii

Summary 73
Solutions Fast Track 75
Frequently Asked Questions 76

Chapter 3 Reviewing the Fundamentals
of XML 79

Introduction 80
An Overview of XML 80

The Goals of XML 81
What Does an XML Document Look Like? 81
Creating an XML Document 82

Creating an XML Document
in VS.NET XML Designer 82

Empty Element 86
Structure of an XML Document 87

Well-Formed XML Documents 87
Transforming XML through XSLT 88

XSL Use of Patterns 92
XPath 95
Summary 97
Solutions Fast Track 97
Frequently Asked Questions 99

Chapter 4 Document Type:
The Validation Gateway 101

Introduction 102
Document Type Definitions and
Well-Formed XML Documents 102

Schema and Valid XML Documents 106
XML Schema Data Types 110

Learning About Plain-Text Attacks 112
Plain-Text Attacks 113

Example: HTML Escape Codes 114
Unicode 116

Understanding How Validation Is Processed
in XML 117

Validate the Input Text 118

Well-Formed XML
Documents

When developing an XML
document, certain rules
must be followed:

■ The document must
have exactly one root
element.

■ Each element must
have a start-tag and
end-tag.

■ The elements must be
properly nested.

■ The first letter of an
attribute’s name must
begin with a letter or
with an underscore.

■ A particular attribute
name can appear only
once in the same start-
tag.

Answers to Your
Frequently Asked
Questions

Q: Can DTDs and schemas
be used together?

A: Yes, they can. It’s
perfectly acceptable to
define the structure of
data with a DTD and
constrain the contents
of the structure with a
schema.

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xiii

xiv Contents

Canonicalization 118
Validating Unicode 121

Validate the Document or Message 124
Is the XML Well Formed? 126
Using DTDs for Verifying the Proper

Structure 126
Using Schema for Data Consistency 127
Online Validation Methods and

Mechanisms 128
Summary 135
Solutions Fast Track 138
Frequently Asked Questions 140

Chapter 5 XML Digital Signatures 143
Introduction 144
Understanding How a Digital Signature Works 144

Basic Digital Signature and Authentication
Concepts 144

Why a Signature Is Not a MAC 145
Public and Private Keys 145
Why a Signature Binds Someone to

a Document 146
Learning the W3C XML Digital

Signature 146
Applying XML Digital Signatures to Security 149

Examples of XML Signatures 150
An Enveloping Signature Example 152
An Example of an Enveloped Signature 154
A Detached Signature Example 157
All Together Now:An Example

of Multiple References 161
Signing Parts of Documents 163

Using XPath to Transform a Document 164
Using XSLT to Transform a Document 166
Using Manifests to Manage Lists of Signed

Elements 169
Establishing Identity By Using X509 172

XML Signatures Can
Be Applied in Three
Basic Forms

■ Enveloped form The
signature is within the
document.

■ Enveloping form The
document is within the
signature, as shown in
the following example.

■ Detached form The
signature references a
document that is
elsewhere through a
universal resource
identifier (URI).

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xiv

Contents xv

Required and Recommended Algorithms 173
Cautions and Pitfalls 175

Vendor Toolkits 176
Summary 178
Solutions Fast Track 179
Frequently Asked Questions 181

Chapter 6 Encryption in XML 183
Introduction 184
Understanding the Role of

Encryption in Messaging Security 184
Security Needs of Messaging 185

Privacy and Confidentiality 185
Authentication and Integrity 186
Nonrepudiation 190

Encryption Methods 191
AES 191
DES and 3-DES 193
RSA and RC4 195
Stream and Block Ciphers 196
Key Management Schemes 197

Learning How to Apply Encryption to XML 199
XML Transforms Before Encryption 204

Canonicalization 205
Flowchart of Encryption Process 207

Understanding Practical Usage of Encryption 207
Signing in Plain Text, Not Cipher Text 207

XPATH Transforms 210
Signing the Cipher-Text Version

Prevents Encryption Key Changes 210
Authentication by MAC Works on

Cipher Text 210
Cipher Text Cannot Validate Plain Text 211
Encryption Might Not Be Collision

Resistant 211
Summary 213
Solutions Fast Track 213
Frequently Asked Questions 214

Tools & Traps…

IBM’s XML Security Suite

Although IBM is planning
to release a new version
relatively soon, we cover
some points of XML
Security Suite here:

■ XML signatures Verify
a digital signature,
canonicalize a
document, and verify
its form as well as
XPATH transformations.

■ Nonrepudiation It is
designed to provide
nonrepudiation.

■ Java It is written in
Java, hence, you must
be running Java to use
the security suite.

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xv

xvi Contents

Chapter 7 Role-Based Access Control 215
Introduction 216
Learning About Stateful Inspection 216

Packet Filtering 216
Application Layer Gateway 217
The FTP Process 219
Firewall Technologies and XML 220
First,You Inspect the State 221

Baselines 222
Evaluating State Changes 223
Default Behavior Affects Security 225

Learning About Role-Based Access Control
and Type Enforcement Implementations 227

NSA:The Flask Architecture 229
SELinux 232

Applying Role-Based Access Control Ideas
in XML 238

Know When to Evaluate 243
Protect Data Integrity 244
RBAC and Java 245

Fencing in JavaScript 246
Validate Your Java Code 246
Validate Your ActiveX Objects 247

Tools to Implement RBAC Efforts 248
Summary 254
Solutions Fast Track 255
Frequently Asked Questions 256

Chapter 8 Understanding .NET and
XML Security 257

Introduction 258
The Risks Associated with Using

XML in the .NET Framework 258
Confidentiality Concerns 259

.NET Internal Security as a Viable Alternative 260
Permissions 261
Principal 262

Tools & Traps…

Viewing XML Files

If you want to view an
XML file as it would be
parsed, simply use your
Web browser to open the
file. Most current Web
browsers have built-in
XML parsers that allow
you to view XML files in
an expandable/collapsible
format. In addition, some
even support the use of
DTD files to verify the
format of your XML file.

.NET Code Access
Security Model

The .NET code access
security model is built
around a number of
characteristics:

■ Stack walking

■ Code identity

■ Code groups

■ Declarative and
imperative security

■ Requesting permissions

■ Demanding
permissions

■ Overriding security
checks

■ Custom permissions

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xvi

Contents xvii

Authentication 263
Authorization 263
Security Policy 263
Type Safety 264

Code Access Security 264
.NET Code Access Security Model 264

Stack Walking 265
Code Identity 266
Code Groups 267
Declarative and Imperative Security 270
Requesting Permissions 271
Demanding Permissions 275
Overriding Security Checks 277
Custom Permissions 282

Role based Security 283
Principals 284

WindowsPrincipal 284
GenericPrincipal 286
Manipulating Identity 287

Role-Based Security Checks 288
Security Policies 291

Creating a New Permission Set 294
Modifying the Code Group Structure 299
Remoting Security 305

Cryptography 306
Security Tools 309
Securing XML—Best Practices 311

XML Encryption 311
XML Digital Signatures 317

Summary 320
Solutions Fast Track 321
Frequently Asked Questions 326

Chapter 9 Reporting Security Problems 331
Introduction 332
Understanding Why Security Problems Need

to Be Reported 332

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xvii

xviii Contents

Full Disclosure 333
Determining When and to Whom to Report

the Problem 337
Whom to Report Security Problems to? 337

How to Report a Security Problem
to a Vendor 340

Deciding How Much Detail to Publish 341
Publishing Exploit Code 341
Problems 342

Repercussions from Vendors 342
Reporting Errors 344
Risk to the Public 344

Summary 345
Solutions Fast Track 346
Frequently Asked Questions 347

Hack Proofing XML Fast Track 351

Index 369

Deciding How Much
Detail to Publish

■ Take great care in
deciding whether or
not you want to
provide exploit code
with your NSF report.
Be aware that there are
times when exploit
code is necessary for
reporting the problem.

■ You must be prepared
to take a slight risk
when reporting
security flaws. You
could end up facing
the vendor’s wrath or
imposing undue risk on
the public at large.

■ Be extra cautious in
describing any security
flaw that requires the
circumvention of a
vendor’s copyright
protection
mechanisms, as this is
a very gray area for the
time being.

224_HPXML_TOC.qxd 6/28/02 4:37 PM Page xviii

The book you are holding in your hand is a battle plan.You are engaged in mortal
combat and might not even recognize the kind of battle you have to fight. But fight
it you will, and fight it you must.

If you are reading this foreword, the title Hack Proofing XML has interested you.
You might have picked it up in some bookstore and are thumbing through it to get a
sense of whether or not you are willing to plunk down the ducats to buy it. Or you
might have ordered it online. How you got the book into your hands doesn’t matter
a whit.You are here, and the dialogue has begun.

Wherever these words find you, find a comfortable place to sit down and read
these few introductory pages in one swoop. It will only take a few minutes, but it’s
important. Really.

One of the problems of writing (and reading) a technical book is that these
tomes are generally are unreadable.You want information, but the style and manner
of technical writing is usually so dense and impenetrable that getting that informa-
tion requires you to navigate the word puzzles implicit in the style in order to come
up with the nuggets of information you are looking for.The book’s publishers
(Syngress) have figured out a way to fix that. (“Yeah, riiiight,” I hear you say.Wait a
moment before you get cynical.) The fact is, the people at Syngress had to convince
me about their solution before I would undertake to write the book you are
holding.And I’m no pushover.

I’ve been writing in the field for the last 20 years or so. Like all writers, I’ve had to
use many styles for many different purposes. My last book was such an effort that I
swore I would never do it again. I didn’t think I could survive the process once more.

When the Syngress folks approached me about doing this book, I was rather
skeptical.They didn’t know it; but two other publishers had recently been sniffing
around my e-mail address.When I asked those other publishers what they would do

xix

Foreword

224_HPXML_fore.qxd 6/28/02 5:02 PM Page xix

xx Foreword

www.syngress.com

to help the process of writing; they mentioned money and let it go at that.When I
asked Syngress, they told me about the Syngress Outline.

Syngress has developed a method to communicate information that actually
works. It is both deceptively simple and flexible. Even better, it encourages commu-
nication among collaborators. It works by focusing on the important information,
thereby eliminating extraneous fluff. Using this method, authors funnel their efforts
into writing that has a positive signal-to-noise ratio, something that doesn’t always
end up happening in books put out by other publishers. Syngress’s method is not a
panacea for bad writing, but it sure does encourage good and effective writing.

Even with this tool, I was somewhat leery of the title Hack Proofing XML. I told
Syngress that I felt that truly “proofing” anything against a determined hacker was
impossible, and I was not interested in leveraging my reputation for delivering the lit-
erary goods on a marketing ploy.They countered that weatherproofing a house
doesn’t protect against all weather conditions, either, but it does mitigate the harm
that weather can cause a house. I realized they had a point, and that idea became the
overall goal of this book.You’ll never make any system totally secure against any and
all attacks. But you don’t have to leave yourself wide open to abuse, either.

Let’s take a look at what you can expect from this book.We made an assumption
during the preparation of the book about who the Reader will be: Just about
anyone—not just the technical folk, but their bosses as well. Both the wizards and the
trolls can stroll under the tent flap and feel confident that they will come away with
something useful. It might be heresy to say so, but it goes back to what I’ve already
mentioned about tech writing.The usual approach to writing on technical subjects
has been that unless you know the secret code words of the field (whatever they are),
you are considered not worth addressing.

I think it crucial that it be understood from the beginning that it is not a cook-
book of magical incantations meant to be sprinkled over code with gleeful abandon.
That kind of approach just does not work in the long term.We don’t just give you a
fish to eat, we want to teach you how to fish. XML is a fluid and changing arena,
and cookie-cutter code would be obsolete even as the book came off the presses.
Not that this book doesn’t contain illustrative code examples, but they are just that:
Illustrative of a concept or method.The code is there to show how something can be
brought down to the practical level from the abstract.

Not to belittle coders, but this book isn’t simply about code. I’ve tried to be
more inclusive in the ground that it covers.Tech writing often focuses on techniques
to the exclusion of everything else.That approach seems to me sterile and limiting.

224_HPXML_fore.qxd 6/28/02 5:02 PM Page xx

www.syngress.com

Living up to the promise made by this book’s title requires a multifaceted approach
to the problem.

We begin by first stepping back from the purely technical side of things to try to
understand the adversary we will be dealing with.A defender (as has been recognized
since the writing of Sun Tzu’s The Art of War in ancient times) has a logistical
problem in that he cannot be everywhere at the same time with the necessary
resources for defense.An enlightened defense strategy has to begin with the threat
model.Who will pose the threat and how they will do so becomes the topic for con-
templation.We try to anticipate the attack by looking at what motivates and drives
the attacker.

We then consider the types of attacks that can be made against computer systems
in general.Again, we start from the general and work toward the specific. It is a safe
bet that whatever attack is mounted in the specific instance you experience, but it
will follow the form of one or another that has preceded it. By appreciating the
methods used in the general form of attack, you can get a feel for how your efforts
will progress.The secret knowledge here (don’t tell anyone who doesn’t know the
club handshake!) is that attackers tend to be lazy, and they hate to reinvent the wheel.
If something has worked in the past, there’s a very good chance that someone will
try it again until it no longer works.

Time now to get specifically into XML.We start with a review of what makes up
XML and the syntax used, to get everyone on the same metaphoric page.Although
the VP of sales who has been reading with interest up to this point might feel threat-
ened; she or he shouldn’t.We’ve made an effort to explain the building blocks used
later in the text in plain American-style English.

The why and how of XML digital signatures is a topic that can get fairly “geeky”
very quickly.This fact has made a thorough understanding of the principles behind
signatures available only to a favored few. Rubbish, say I. If anyone is interested in the
security of a system, they can understand and apply the techniques and assumptions
that lie underneath digital signatures. Even better, they can appreciate when these
tools should be used and when they should be avoided. Like a firewall, signatures can
be eith a useful tool or a security nightmare if misapplied.

The seventh chapter forms what I consider to be the heart of the book:A gen-
eral security approach called Role-based Access Control (RBAC) is introduced along
with a look at how it has been implemented in the past.We then go on to show how
this approach can be used in the XML environment and the benefits it provides.
Here is where the rubber meets the metaphoric road, where the Hack Proofing

Foreword xxi

224_HPXML_fore.qxd 6/28/02 5:02 PM Page xxi

xxii Foreword

really gets applied. Of course, the approach can be used in other ways than only
XML, but it works so nicely for it, it’s a shame not to use it.As a bonus, coders will
find example code and tools here.You’re welcome.

It’s a sad but true fact that XML will see a lot of use in the proprietary .NET
environment over the Internet.We therefore take a look at this topic as well.

Wrapping up, we look at the paperwork so often ignored in an attack: reporting.
How you should report an attack and why you should do so are covered.Your own
self-interest demands that you report attacks as well, since the whole idea is to learn
from the problems that others experience.You never can tell on which side of the
fence you’ll be on any given day.

Those are the book’s main points laid out for you. If you’re in some bookstore
sitting in a comfy chair reading this book, get up and buy the doggone thing.To me,
books are like pinball. If you score enough, you get to play again.Working on this
book was fun enough that I want to play again. I think that after reading it, you’ll
want me to do more as well.

—Larry Loeb

www.syngress.com

224_HPXML_fore.qxd 6/28/02 5:02 PM Page xxii

The Zen of Hack
Proofing

Solutions in this chapter:

■ Learning to Appreciate the Tao
of the Hack

■ Black Hat, White Hat: What’s the
Difference?

■ The Role of the Hacker

■ Motivations of A Hacker

■ The Hacker Code

Chapter 1

1

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_01.qxd 6/27/02 3:26 PM Page 1

2 Chapter 1 • The Zen of Hack Proofing

Introduction
The way (which is also the definition of Tao) of the hacker is the topic of this
chapter.We will find the way that the hacker has walked to become one.

It is impossible to defend one’s work without first appreciating the adversary
that attacks that work.We take a journey along the path that evolved a culture
still reflected in the current day mischief of some.

To hack is not to crack. Clever does not have to mean destructive.The ability
to knock down a door should not mean that you must do so.The true way of
the hack is to explore, comprehend, and then leave without disturbing anything
behind you.Any other way shows a lack of grace and an inability to restore that
which you encountered to its original and untouched state.

To maximize security in code requires that we, as developers, try and achieve
an understanding of not just how an attack can be carried out, but why the
attack is made in the first place.The object of the attack flows from the motiva-
tion of the attacker. Since defense against attack can never be perfect and all per-
vasive, protecting your code starts with first understanding what the attacker’s
probable goals are, and then planning and preparing your defenses from there.

Learning to Appreciate
the Tao of the Hack
Before we launch into the meat of this book, we’d like a chance to explain our-
selves. Unlike most of the rest of this book, which covers the how, this chapter
will cover the why.This chapter is about the politics of hacking, the nontechnical
aspects.

In an ideal world, the reasons that hackers are needed would be self-evident,
and would not require explanation.We don’t live in an ideal world, so this
chapter will attempt to provide the explanation.

If you are reading this book, then you’re probably aware that there are many
different interpretations of the word hacker. Given that, our first stop in our quest
to explain ourselves is a dictionary of sorts.

There are probably as many definitions of the word hacker as there are people
who are called hackers, either by themselves or by someone else.There are also a
number of variants, such as cracker, script kiddie, and more.We’ll go over each of
the better-known words in this area.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 2

www.syngress.com

Hacker
The word hacker is the most contested of the bunch. Most of the other terms
came later, and are attempts to be more explicit about what type of person is
being discussed.

Where does the word hacker come from? One of the earlier books on the
subject is Hackers: Heroes of the Computer Revolution by Steven Levy.You can find
his summary of the book here: www.stevenlevy.com/hackers.html. In this book,
Mr. Levy traces the origin of the word hacker to the Massachusetts Institute of
Technology (MIT) in the 1950s; specifically, its use in the MIT Model Railroad
Club.A sample of the book can be read here:
www.usastores.com/gdl/text/hckrs10.txt.This sample includes the portions rele-
vant to this discussion. MIT is generally acknowledged as the origin of the
modern use of the word hacker.There are a few folks who claim that the word
hacker was also used earlier among folks who experimented with old tube radio
sets and amplifiers.The original definition of the word hacker had to do with
someone who hacked at wood, especially in reference to making furniture.

For a wide range of definitions, check here: www.dictionary.com/cgi-bin/
dict.pl?term=hacker. Naturally, we’re concerned with the term hacker as it relates
to computers.This version of the word has come into such wide popular use that
it has almost entirely eliminated the use of the word hacker for all other purposes.

One of the most popular definitions that hackers themselves prefer to use is
from The Jargon File, a hacker-maintained dictionary of hacker terms.The entry
for hacker can be found here: www.tuxedo.org/~esr/jargon/html/entry/
hacker.html

Here’s a section of it, though you’ll want to check it out at least once online,
as The Jargon File is extensively hyperlinked, and you could spend a fair amount of
time cross-referencing words:

hacker n.
[originally, someone who makes furniture with an axe]
1. A person who enjoys exploring the details of programmable sys-
tems and how to stretch their capabilities, as opposed to most
users, who prefer to learn only the minimum necessary. 2. One who
programs enthusiastically (even obsessively) or who enjoys pro-
gramming rather than just theorizing about programming. 3. A
person capable of appreciating hack value. 4. A person who is
good at programming quickly. 5. An expert at a particular program,
or one who frequently does work using it or on it; as in `a Unix

The Zen of Hack Proofing • Chapter 1 3

224_HPXML_01.qxd 6/27/02 3:26 PM Page 3

4 Chapter 1 • The Zen of Hack Proofing

hacker.’ (Definitions 1 through 5 are correlated, and people who fit
them congregate.) 6. An expert or enthusiast of any kind. One
might be an astronomy hacker, for example. 7. One who enjoys the
intellectual challenge of creatively overcoming or circumventing lim-
itations. 8. [deprecated] A malicious meddler who tries to discover
sensitive information by poking around. Hence `password hacker,’
`network hacker.’ The correct term for this sense is cracker.

Cracker
The Jargon File also makes reference to a seemingly derogatory term, cracker. If you
were viewing the hacker definition in your Web browser, and you clicked on the
“cracker” link (www.tuxedo.org/~esr/jargon/html/entry/cracker.html), you’d see
the following:

cracker n.
One who breaks security on a system. Coined ca. 1985 by hackers
in defense against journalistic misuse of hacker (q.v., sense 8). An
earlier attempt to establish `worm’ in this sense around 1981–82
on Usenet was largely a failure.

Use of both these neologisms reflects a strong revulsion against the
theft and vandalism perpetrated by cracking rings. While it is
expected that any real hacker will have done some playful cracking
and knows many of the basic techniques, anyone past larval stage
is expected to have outgrown the desire to do so except for imme-
diate, benign, practical reasons (for example, if it’s necessary to get
around some security in order to get some work done).

Thus, there is far less overlap between hackerdom and crackerdom
than the mundane reader misled by sensationalistic journalism
might expect. Crackers tend to gather in small, tight-knit, very
secretive groups that have little overlap with the huge, open poly-
culture this lexicon describes; though crackers often like to describe
themselves as hackers, most true hackers consider them a separate
and lower form of life.

It’s clear that the term cracker is absolutely meant to be derogatory. One
shouldn’t take the tone too seriously though, as The Jargon File is done with a
sense of humor, and our statement is said with a smile.As we can see from the
above, illegal or perhaps immoral activity is viewed with disdain by the “true

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 4

The Zen of Hack Proofing • Chapter 1 5

hackers,” whomever they may be. It also makes reference to cracker being a pos-
sible intermediate step to hacker, perhaps something to be overcome.

Without debating for the moment whether this is a fair definition or not, we
would like to add an additional, slightly different, definition of cracker. Many
years ago when I got my first personal computer, most software publishers
employed some form of copy protection on their software as an attempt to keep
people from pirating their programs.As with all copy protection, someone would
eventually find a way to circumvent the protection mechanism, and the copies
would spread.The people who were able to crack the copy protection mecha-
nisms were called crackers.There’s one major difference between this kind of
cracker and those mentioned before: copy protection crackers were widely
admired for their skills (well, not by the software publishers of course, but by
others). Often times, the crack would require some machine language debugging
and patching, limiting the title to those who possessed those skills. In many cases,
the cracker would use some of the free space on the diskette to place a graphic
or message indicating who had cracked the program, a practice perhaps distantly
related to today’s Web page defacements.

The thing that copy protection crackers had in common with today’s crackers
is that their activities were perhaps on the wrong side of the law. Breaking copy
protection by itself may not have been illegal at the time, but giving out copies was.

Arguments could be made that the act of breaking the protection was an
intellectual pursuit. In fact, at the time, several companies existed that sold soft-
ware that would defeat copy protection, but they did not distribute other people’s
software.They would produce programs that contained a menu of software, and
the user simply had to insert their disk to be copied, and choose the proper pro-
gram from the menu. Updates were distributed via a subscription model, so the
latest cracks would always be available. In this manner, the crackers could practice
their craft without breaking any laws, because they didn’t actually distribute any
pirated software.These programs were among those most coveted by the pirates.

Even though the crackers, of either persuasion, may be looked down upon,
there are those who they can feel superior to as well.

Script Kiddie
The term script kiddie has come into vogue in recent years.The term refers to
crackers who use scripts and programs written by others to perform their intru-
sions. If one is labeled a script kiddie, then he or she is assumed to be incapable
of producing his or her own tools and exploits, and lacks proper understanding of

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 5

6 Chapter 1 • The Zen of Hack Proofing

exactly how the tools he or she uses work.As will be apparent by the end of this
chapter, skill and knowledge (and secondarily, ethics) are the essential ingredients
to achieving status in the minds of hackers. By definition, a script kiddie has no
skills, no knowledge, and no ethics.

Script kiddies get their tools from crackers or hackers who have the needed
skills to produce such tools.They produce these tools for status, or to prove a
security problem exists, or for their own use (legitimate or otherwise).Tools pro-
duced for private use tend to leak out to the general population eventually.

Variants of the script kiddie exist, either contemporary or in the past.There
are several terms that are used primarily in the context of trading copyrighted
software (wares, or warez).These are leech, warez puppy, and warez d00d.These are
people whose primary skill or activity consists of acquiring warez.A leech, as the
name implies, is someone who takes, but doesn’t give back in return.The term
leech is somewhat older, and often was used in the context of downloading from
Bulletin Board Systems (BBSs). Since BBSs tended to be slower and had more
limited connectivity (few phone lines, for example), this was more of a problem.
Many BBSs implemented an upload/download ratio for this reason.This type of
ratio would encourage the trading behavior. If someone wanted to be able to
keep downloading new warez, he or she typically had to upload new warez the
BBS didn’t already have. Once the uploaded warez were verified by the SYStem
Operator (SYSOP), more download credits would be granted. Of course, this
only applied to the BBSs that had downloads to begin with. Many BBSs didn’t
have enough storage for downloads, and only consisted of small text files, message
areas, and mail.The main sin that someone in the warez crowd can commit is to
take without giving (being a leech).

A different variant to the script kiddie is the lamer or rodent.A lamer is, as the
name implies, someone who is considered “lame” for any of a variety of annoying
behaviors.The term rodent is about the same as lamer, but was used primarily in
the 1980s, in conjunction with BBS use, and seems to no longer be in current
use.The term lamer is still used in connection with Internet Relay Chat (IRC).

Warez traders, lamers, etc., are connected with hackers primarily because their
activities take place via computer, and also possibly because they posses a modest
skill set slightly above the average computer user. In some cases, they are depen-
dent on hackers or crackers for their tools or warez. Some folks consider them to
be hacker groupies of a sort.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 6

The Zen of Hack Proofing • Chapter 1 7

Phreaker
A phreaker is a hacker variant, or rather, a specific species of hacker. Phreaker is
short for phone phreaker (freak spelled with a ph, like phone is). Phreakers are
hackers with an interest in telephones and telephone systems. Naturally, there has
been at times a tremendous amount of overlap between traditional hacker roles
and phreakers. If there is any difference between the two, it’s that hackers are pri-
marily interested in computer systems, while phreakers are primarily interested in
phone systems.The overlap comes into play because, for the last 30 years at least,
phone systems ARE computer systems.Also, back when hackers exchanged infor-
mation primarily via the telephone and modem, phone toll was a big issue.As a
result, some hackers would resort to methods to avoid paying for their phone
calls for dial-up modems.A great deal of the incentive to bypass toll has disap-
peared as the Internet has gained popularity.

The first personal computers were arguably outgrowths of the hardware cir-
cuits used by phreakers.Analog circuitry was the first kind of electronics that
were used to generate the tones needed to confuse a phone system enough so
that the phone company would be unable to bill the phreaker. (For historical
purposes, I should note that the Bell Technical Journal of November 1965 listed the
exact frequencies needed. It is also interesting to note that that issue is no longer
available to the general public.) The problem with analog circuit tone generators
was that they drifted over time and use, meaning that they had to be constantly
tweaked. But digital circuitry held the promise of stable and repeatable tone gen-
eration. Indeed, one of the first documented uses of the Apple II was to generate
these kinds of stable and repeatable tones.

Black Hat, White Hat,
What’s the Difference?
The Black Hat Briefings conference is an annual three-day security conference
held in Las Vegas, Nevada, their official Web site is www.blackhat.com.Topics
range from introductory to heavily technical.The idea behind the conference was
to allow some of the hackers, the “black hats,” to present to the security profes-
sionals, in a well-organized conference setting.The Black Hat Briefings are orga-
nized by Jeff Moss (aka Dark Tangent), who is also the driving force behind the
DEF CON conference (www.defcon.org). DEF CON is a longer-running con-
ference that now takes place adjacent to Black Hat on the calendar, also in Las
Vegas.At DEF CON you can hear many of the same speakers, that you may see

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 7

8 Chapter 1 • The Zen of Hack Proofing

at Black Hat, but it’s not nearly as well organized. In addition to the security
talks, there are events such as Hacker jeopardy, and the L0pht TCP/IP Drinking
game. Many of the people who attend Black Hat would not attend DEF CON
because of DEF CON’s reputation. Plus, Black Hat costs quite a bit more to
attend than DEF CON, which tends to keep away individuals who don’t work
directly in the security field (i.e., who can’t afford it).

The reference to the “black hat” was clearly intended as a joke from the
beginning; at least, that there were implication that black hats were presenting
was a joke.The term was intended to be an intuitive reference to “the bad guys.”
Anyone who has seen a number of old western movies will recognize the refer-
ence to the evil gunfighters always wearing black hats, and the good guys
wearing white ones.

In the hacker world, the terms are supposed to refer to good hackers, and bad
hackers. So, what constitutes a good versus a bad hacker? Most everyone agrees
that a hacker who uses his or her skills to commit a crime is a black hat.And
that’s about the only thing most everyone agrees with.

The problem is, most hackers like to think of themselves as white hats, or
hackers who “do the right thing.” But, what exactly is the “right thing”? There
can be many opposing ideas as to what the right thing is. For example:

■ Many security professionals believe that exposing security problems, even
with enough information to exploit the holes, is the right way to handle
a security problem.This practice is often referred to as full disclosure.
These security professionals think that anything less is irresponsible.

■ Other security professionals believe that giving enough information to
exploit the problem is wrong.They believe that problems should be dis-
closed to the software vendor.These security professionals think that
anything more is irresponsible.

Here we have two groups with opposite beliefs, who both believe they’re
doing the right thing, and think of themselves as white hats. For more informa-
tion on the full disclosure issue, please see Chapter 9,“Reporting”.

Gray Hat
All the disagreement has lead to the adoption of the term gray hat.This refers to
the shades of gray in between white and black.Typically, people who want to call
themselves a gray hat do so because they hold some belief or want to perform
some action that some group of white hats condemn.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 8

The Zen of Hack Proofing • Chapter 1 9

Often times, this issue centers on full disclosure. Some folks think it’s irre-
sponsible to report security holes to the public without waiting for the vendor to
do whatever it needs to in order to patch the problem. Some folks think that not
notifying vendors will put them in a defensive posture, and force them to be
more proactive about auditing their code. Some folks just don’t like the vendor in
question (often Microsoft), and intentionally time their unannounced release to
cause maximum pain to the vendor. (As a side note, if you’re a vendor, then you
should probably prepare as much as possible for the worst-case scenario.At pre-
sent, the person who finds the hole gets to choose how he or she discloses it.)

One of the groups associated with coining the term gray hat is the hacker
think-tank The L0pht, which merged with the security company @stake
(www.atstake.com) in early 2000. Here’s what Weld Pond, a former member of
The L0pht, had to say about the term:

First off, being grey does not mean you engage in any criminal
activity or condone it. We certainly do not. Each individual is
responsible for his or her actions. Being grey means you recognize
that the world is not black or white. Is the French Government
infowar team black hat or white hat? Is the U.S. Government
infowar team black hat or white hat? Is a Chinese dissident activist
black hat or white hat? Is a U.S. dissident activist black hat or white
hat? Can a black hat successfully cloak themselves as a white hat?
Can a white hat successfully cloak themselves as a black hat? Could
it be that an immature punk with spiked hair named “evil fukker” is
really a security genius who isn’t interested in criminal activity?
Typically, a white hat would not fraternize with him.

Seems like there is a problem if you are going to be strictly white
hat. How are you going to share info with only white hats? What
conferences can you attend and not be tainted by fraternizing with
black hats? The black hats are everywhere. We don’t want to stop
sharing info with the world because some criminals may use it for
misdeeds.

—Weld Pond

One of the points of Weld’s statement is that it may not be possible to be
totally black or white. It would be as hard for a black hat to do nothing but evil
as it would for a white hat to stay totally pristine. (Some of the more strict white
hats look down on associating with or using information from black hats.)

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 9

10 Chapter 1 • The Zen of Hack Proofing

The Role of the Hacker
Now that we have some idea about what the various types of hackers are, what
purposes do hackers serve in society? First off, it’s important to realize that many
hackers don’t care what role they play.They do what they do for their own rea-
sons, not to fulfill someone else’s expectations of them. But like it or not, most
hackers fill some role in the world, good or bad. If you decide you want to
become some sort of hacker, you’ll be picking your own role; here are some of
the (very broad) categories that you could find yourself falling into.

Criminal
Probably the most obvious role to assign to hackers, and the one that the media
would most like to paint them with, is that of criminal.This is “obvious” only
because the vast majority of the public outside of the information security
industry thinks this is what “hacker” means. Make no mistakes, there are hackers
who commit crimes.The news is full of them. In fact, that’s probably the reason
why the public perception of what a hacker is has become so skewed, virtually all
hacker news stories have to do with crimes being committed. Unfortunately,
most news agencies just don’t consider a hacker auditing a codebase for overflows
and publishing his results to be front-page news. Even when something major
happens with hackers unrelated to a crime, such as hackers advising Congress or
the President of the United States of America, it gets relatively limited coverage.

Do the criminal hackers server any positive purpose in society? That depends
on your point of view. It’s the same question as “do criminals server any positive
purpose?”

If criminals did not exist, there would be no need to guard against crime.
Most people believe that criminals will always exist, in any setting. Consider the
case of whether or not people lock their house and car doors. I have always lived
in areas where it was considered unwise to not utilize my locks. However, I have
also visited areas where I have gotten funny looks when I pause to lock my car
(after so many years, it’s become a habit).The locks are there to, hopefully, prevent
other people from stealing your car or belongings. Do you owe the criminals a
favor for forcing you to lock your doors? Would society rather have done
without the crimes in the first place? Of course. Does a criminal do even a small
bit of public service when he forces 10,000 homeowners to lock their doors by
robbing 10? Questionable. It probably depends on whether you started locking
your doors before the other houses in the neighborhood started getting robbed,
or if you started after your house was robbed.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 10

The Zen of Hack Proofing • Chapter 1 11

The point is not to argue in favor of criminals scaring people into action, and
somehow justify their actions.The point is, there is a small amount of value in
recognizing threats, and the acceptance of the fact that potential for crime exists
whether we recognize it or not.

The cynics in the crowd will also point out that criminal hackers also repre-
sent a certain amount of job security for the information security professionals.

Magician
Let us imagine the hacker as something less serious and clear-cut as a burglar, but
perhaps still a bit mischievous. In many ways, the hacker is like a magician. I don’t
mean like Merlin or Gandalf, but rather David Copperfield or Harry Houdini.

While keeping the discussion of criminals in the back of your mind, think
about what magicians do.They break into or out of things, they pick locks, they
pick pockets, they hide things, they misdirect you, they manipulate cards, they
perform unbelievable feats bordering on the appearance of the supernatural, and
cause you to suspend your disbelief.

Magicians trick people.
So, what’s the difference between a magician and a con man, a pickpocket, or

a burglar? A magician tells you he’s tricking you. (That, and a magician usually
gives your watch back.) No matter how good a magician makes a trick look, you
still know that it’s some sort of trick.

What does it take to become a magician? A little bit of knowledge, a tremen-
dous amount of practice, and a little showmanship.A big part of what makes a
magician effective as a performer is the audience’s lack of understanding about
how the tricks are accomplished. I’ve heard numerous magicians remark in televi-
sion interviews that magic is somewhat ruined for them, because they are
watching technique, and no longer suspend their disbelief. Still, they can appre-
ciate a good illusion for the work that goes into it.

Hackers are similar to magicians because of the kinds of tricks they can pull
and the mystique that surrounds them. Naturally, the kinds of hackers we are dis-
cussing pull their tricks using computers, but the concept is the same. People
who don’t know anything about hacking tend to give hackers the same kind of
disbelief they would a magician. People will believe hackers can break into any-
thing.They’ll believe hackers can do things that technically aren’t possible.

Couple this with the fact that most people believe that hackers are criminals,
and you begin to see why there is so much fear surrounding the word “hacker.”
Imagine if the public believed there were thousands of skilled magicians out there

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 11

12 Chapter 1 • The Zen of Hack Proofing

just waiting to attack them. People would live in fear that they couldn’t walk
down the street for fear a magician would leap from the bushes, produce a
pigeon as if from nowhere, and steal their wallet through sleight-of-hand.

Do magicians perform any sort of public service? Absolutely. Nearly every
person in the world has seen a magic trick of some sort, whether it be the balls
and cups, a card trick, or making something disappear. Given that, it would be
rather difficult for someone to pull a con based on the balls and cups.When you
see someone on the sidewalk offering to bet you money that you can’t find the
single red card out of three, after watching him rearrange them a bit, you know
better.You’ve seen much, much more complicated card tricks performed by
magicians. Obviously, it’s trivial for someone who has given it a modest amount
of practice to put the card wherever he or she likes, or remove it entirely.

At least, people should know better. Despite that they’ve seen better tricks, lots
of folks lose money on three card monte.

Hackers fill much the same role.You know there are hackers out there.You
know you should be suspicious about things that arrive in your e-mail.You know
there are risks associated with attaching unprotected machines to the Internet.
Despite this, people are attaching insecure machines to the Internet as fast as they
can.Why do people believe that hackers can accomplish anything when they hear
about them in the news, and yet when they actually need to give security some
thought, they are suddenly disbelievers?

Security Professional
Are people who do information security professionally hackers? It depends on if
you discount the criminal aspect of the idea of “hacker” or not.That, plus
whether or not the person in question meets some arbitrary minimum skill set.

One of the reasons this book was put together stemmed from the group of
individuals who believe security professionals should be hackers (people who are
capable of defeating security measures).This book purports to teach people how
to be hackers. In reality, most of the people who buy this book will do so
because they want to protect their own systems, and applications, and those of
their employer.

The idea is: How can you prevent break-ins to your system if you don’t know
how they are accomplished? How do you test your security measures? How do
you make a judgment about how secure a new system is?

For more along these lines, see one of the classic papers on the subject:
“Improving the Security of Your Site by Breaking Into It,” which can be found at
www.fish.com/security/admin-guide-to-cracking.html.This paper was written

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 12

The Zen of Hack Proofing • Chapter 1 13

by Dan Farmer and Wietse Venema, who were also the authors of SATAN, the
Security Administrator’s Tool for Analyzing Networks. SATAN was one of the
first security scanners ever created and the release of this tool caused much con-
troversy. fish.com is Dan Farmer’s Web site, where he maintains copies of some of
his papers, including the classic paper just mentioned.

Consumer Advocate
One of the roles that some hackers consciously take on is that of consumer advo-
cate. Much of this goes back to the disclosure issue. Recall that many white hats
want to control or limit the disclosure of security vulnerability information. I’ve
even heard some white hats say that we might be better of if the information
were released to no one but the vendor.

The problem with not releasing information to the public is that there is no
accountability.Vendors need feel no hurry to get patches done in a timely
manner, and it doesn’t really matter how proactive they are. Past experience has
shown that the majority of software vendors have to learn the hard way how to
do security properly, both in terms of writing code and in maintaining an organi-
zation to react to new disclosures.

Just a few years ago, Microsoft was in the position most vendors are now.
When someone published what appeared to be a security hole, they would often
deny or downplay the hole, take a great deal of time to patch the problem, and
basically shoot the messenger. Now, Microsoft has assembled a team of people
dedicated to responding to security issues in Microsoft’s products.They have also
created resources like the Windows Update Web site, where Internet Explorer
users can go to get the latest patches that apply to their machines, and have them
installed and tracked automatically. My personal belief is that Microsoft has gotten
to this point only because of the pain caused by hackers releasing full details on
security problems in relation to their products. Security is no longer an
afterthought and is now the central focus of the Microsoft ideology.

Is it really necessary for the general public (consumers) to know about these
security problems? Couldn’t just the security people know about it? If there was
a problem with your car, would you want just your mechanic to know about it?

Would you still drive a Pinto?

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 13

14 Chapter 1 • The Zen of Hack Proofing

Civil Rights Activist
Recently, hackers have found themselves the champions of civil rights causes.To
be sure, these are causes that are close to the hearts of hackers, but they affect
everyone. If you’ve been watching the news for the last several months, you’ve
seen acronyms like MPAA (Motion Picture Association of America), DeCSS (De-
Content Scrambling System, a CSS decoder), and UCITA (Uniform Computer
Information Transactions Act).You may have heard of the Free Kevin movement.
Perhaps you know someone who received unusually harsh punishment for a
computer crime.

One of the big issues (which we’ll not go into great detail on here) is, what is
a reasonable punishment for computer crime? Currently, there are a few prece-
dents for damages, jail terms, and supervised release terms.When compared to the
punishments handed out for violent crimes, these seem a bit unreasonable. Often
the supervised release terms include some number of years of no use of com-
puters.This raises the question of whether not allowing computer use is a reason-
able condition, and whether a person under such conditions can get a job,
anywhere. For an example of a case with some pretty extreme abuses of
authority, please see the Free Kevin Web site: www.freekevin.com.

Kevin Mitnick is quite possibly the most notorious hacker there is.This fame
is largely due to his having been arrested several times, and newspapers printing
(largely incorrect) fantastic claims about him that have perpetuated themselves
ever since.The Free Kevin movement, however, is about the abuse of Kevin’s civil
rights by the government, including things like his being incarcerated for over
four years with no trial.

So, assuming you don’t plan to get arrested, what other issues are there?
There’s the long-running battle over crypto, which has improved, but is still not
fixed yet.There’s UCITA, which would (among others things) outlaw reverse
engineering of products that have licenses that forbid it.The MPAA it doing its
best to outlaw DeCSS, which is a piece of software that allows one to defeat the
brain-dead crypto that is applied to most DVD movies.The MPAA would like
folks to believe that this is a tool used for piracy, when in fact it’s most useful for
getting around not being able to play movies from other regions. (The DVD
standard includes geographic region codes, and movies are only supposed to play
on players for that region. For example, if you’re in the United States, you
wouldn’t be able to play a Japanese import movie on a U.S. player.) It’s also useful
for playing the movies on operating systems without a commercial DVD player.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 14

The Zen of Hack Proofing • Chapter 1 15

Nothing less than the freedom to do what you like in your own home with
the bits you bought are at stake.The guys at 2600 magazine are often at the fore-
front of the hacker civil rights movements. Check out their site for the latest:
www.2600.com.Why are the hackers the ones leading the fight, rather than the
more traditional civil rights groups? Two reasons: One, as mentioned, is because a
lot of the issues recently have to do with technology.Two, the offending legislation/
groups/lawsuits are aimed at the hackers. Hackers are finding themselves as defen-
dants in huge lawsuits. 2600 has had an injunction granted against them, barring
them from even linking to the DeCSS code from their Web site.

Cyber Warrior
The final role that hackers (may) play, and the most disturbing, is that of “cyber
warrior.”Yes, it sounds a bit like a video game, and I roll my eyes at the thought,
too. Unfortunately, in the not too distant future, and perhaps in the present, this
may be more than science fiction.There have been too many rumors and news
stories about governments building up teams of cyber warriors for this to be just
fiction. Naturally, the press has locked onto this idea, because it doesn’t get any
more enticing than this. Naturally, the public has no real detail yet about what
these special troops are. Don’t expect to soon, either, as this information needs to
be kept somewhat secret for them to be effective.

Nearly all types of infrastructure, power, water, money, everything, are being
automated and made remotely manageable.This does tend to open up the possi-
bilities for more remote damage to be done. One of the interesting questions sur-
rounding this issue is how the governments will build these teams.Will they
recruit from the hacker ranks, or will they develop their own from regular troops?
Can individuals with special skills expect to be “drafted” during wartime? Will
hackers start to get military duty offered as a plea bargain? Also, will the military
be able to keep their secrets if their ranks swell with hackers who are used to a
free flow of information?

It’s unclear why the interest in cyber warriors, as it would seem there are
more effective war tactics. Part of it is probably the expected speed of attack, and
the prospect of a bloodless battle. Doubtless, the other reason is just the “cool
factor” of a bunch of government hackers taking out a third-world country.The
plausible deniability factor is large as well.

Much of the same should be possible through leveraging economics, but I
suppose “Warrior Accountants” doesn’t carry the same weight.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 15

16 Chapter 1 • The Zen of Hack Proofing

Motivations of a Hacker
We’ve covered some of the “what” of hackers, now we’ll cover the “why.”What
motivates hackers to do what they do? Anytime you try to figure out why people
do things, it’s going to be complex.We’ll examine some of the most obvious rea-
sons out of the bunch of things that drive hackers.

Recognition
Probably the most widely acknowledged reason for hacking is recognition. It
seems that a very large number of the hackers out there want some amount of
recognition for their work.You can call it a desire for fame, you can call it per-
sonal brand building, you can call it trying to be “elite,” or even the oft-cited
“bragging in a chat room.”

Every time some new major vulnerability is discovered, the person or group
who discovers it takes great care to draft up a report and post it to the appro-
priate mailing lists, like BugTraq. If the discovery is big enough, the popular
media may become interested, and the author of the advisory, and perhaps many
individuals in the security business, will get interviewed.

Why the interest in the attention? Probably a big part is human nature. Most
people would like to have some fame.Another reason may be that the idea that
hackers want fame may have been self-fulfilling.

Are the types of people who become hackers naturally hungry for fame? Are
all people that way? Or, have people who wanted fame become hackers, because
they see that as an avenue to that end? We may never have a good answer for
this, as in many cases the choice may be subconscious.

It’s also worth noting that some measure of fame can also have financial
rewards. It’s not at all uncommon for hackers to be working for security firms
and even large accounting firms. Since public exposure is considered good for
many companies, some of these hackers are encouraged to produce information
that will attract media attention.

As further anecdotal evidence that many hackers have a desire for recogni-
tion, most of the authors of this book (myself included) are doing this at least
partially for recognition.That’s not the only reason, of course; we’re also doing it
because it’s a cool project that should benefit the community, and because we
wanted to work with each other.We’re certainly not doing it for the money.The
hackers who are writing this book routinely get paid much more for professional
work than they are for this book (when the amount of time it takes to write is
considered).

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 16

The Zen of Hack Proofing • Chapter 1 17

The criminal hackers also have a need for recognition (which they have to
balance with their need to not get caught).This is why many defacements, code,
disclosure reports, and so on, have a pseudonym attached to them. Of course, the
pseudonym isn’t of much value if the individual behind it can’t have a few friends
who know who he or she really is.

Admiration
A variation, or perhaps a consequence, of those who seek recognition are people
who want to learn to hack because they admire a hacker or hackers.This is similar
to people who become interested in music because they admire a rock star.The
analogy holds unfortunately well, because there are both positive and negative role
models in the hacker world. In fact, hackers who commit crimes make the news
much more often than those who are doing positive work do.This approaches the
problem that sports figures have, that they influence young fans, whether they
think they are a role model or not. Hackers who follow the cycle of commit
press-worthy crime, serve jail time, get media coverage, and get a prestigious job,
often look like they did things the right way. Sports figures make a lot of money,
and live exciting lives, and yet some have a drug problem, or are abusive.

Kids don’t realize that these people succeed despite their stupidity, not because
of it. Fortunately, there are a number of positive role models in the hacker world,
if people know where to look. Kids could do worse than to try to emulate those
hackers who stand up for their ideals, and who stay on the right side of the law.

Curiosity
A close contender for first place in the list of reasons for being a hacker is
curiosity. Many hackers cite curiosity as a driving force behind what they do.
Since some hackers seem to only give out details of what they find as an
afterthought, and given the amount of time that some of these people spend on
their craft, it’s difficult to argue otherwise. It’s not clear whether this is a “talent”
that some folks have, like others have a talent for art or music or math.That’s not
particularly important though; as with anything else, if the time is spent, the skill
can be developed.

A lot of folks who refer to “true” hackers claim this is (or should be) the pri-
mary motivation.When you extend the hacker concept beyond computers, this
makes even more sense. For example, a lot of hackers are terribly interested in
locks (the metal kind you find in doors).Why is this? It’s not because they want
to be able to steal things. It’s not because they want to make a living as locksmiths.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 17

18 Chapter 1 • The Zen of Hack Proofing

In some cases, perhaps they want to impress their friends with being able to pick
locks, but more often than not, it’s because they’re just curious.They’d like to
know how locks work. Once they know how locks work, they’d like to know
how hard it would be to bypass them.

The reason that so many hackers are working in the security industry lately is
because that’s a way to make a living doing hacking (or a reasonable approxima-
tion).They become so interested in their hobby that they’d like to arrange things
so that they can indulge in it as often as possible. Once your parents no longer
support you, and you have to get a job, why not choose something that really
interests you?

If you love to golf, wouldn’t you like to be able to make a living as a pro
golfer? If you like to play guitar, wouldn’t you like to be able to make a living as
a rock star?

The point is that many hackers do this for a living not primarily for money,
but because that’s what they want to do.The fact that they get paid is just a nice
side effect.

Power and Gain
Perhaps directly opposed to those hackers who hack because they enjoy it are
those who do so with a specific goal in mind. Every once in a while, someone
who could be classified as a hacker emerges whose primary goal appears to be to
power or financial gain.There have been a few famous examples that have made
the press, having to do with illegal wire transfers or selling stolen secrets to an
unfriendly government. So far, in all the well-publicized cases the hacker or
hackers appear to have developed their hacking skills first, and decided later to
use them toward a particular end.

One has to assume that this means there are those out there who attempt to
learn hacking skills specifically to further some end. For an example, see the sec-
tion “Cyber Warriors” in this chapter. Many professions lament that there are
those who learn the skills, but do not develop the respect they think should go
along with them. Martial arts are rarely taught without the teacher doing his or
her best to impart respect. Locksmiths often complain about those who learn
how to pick locks but don’t follow the same set of values that professional lock-
smiths do.

So, as you might expect, the hackers who learn because they want to learn
deride those who learn because they want to exploit the skills. However, most of
those kinds of hackers hold strong to the ideal that information must be shared,

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 18

The Zen of Hack Proofing • Chapter 1 19

so there is little to be done to prevent it. If hackers believe that hacking informa-
tion is a tool that everyone should have, it doesn’t leave much room for com-
plaint when folks they don’t like have that tool.

Revenge
As a special case of the person who wants to learn to hack to further a specific
end, there is the type who wants revenge.This category is listed separately for
two reasons: One, because it’s often a temporary desire (the desire for revenge is
either fulfilled, or it fades. Folks don’t too often hold on to the desire for revenge
for long periods of time).Two, because of the sheer volume of requests.

In nearly any forum where hackers are to be found, inevitably someone will
come along with a request for help to “hack someone.” Usually, that person feels
wronged in some way, and he or she wants revenge. In many cases, this is directed
at a former boyfriend or girlfriend, or even a current one under suspicion.A
common request is for help on stealing a password to an e-mail account. Some
goes as far as to state that they want someone’s records modified, perhaps issuing
a fake warrant, or modifying driver’s license data.

It’s rather gratifying that the requestor is almost always ridiculed for his or her
request. Many chime in and claim that that’s not what hacking is about.There is
often also a subtext of “if you want to do that, learn how to do it yourself.” Of
course, this is what takes place in the public forums.We have no idea what pri-
vate negotiations may take place, if any.

It’s unclear how many of these types spend the effort to learn any of the skills
for themselves. Since the initial request is usually for someone else to do it for
them, it’s probably a safe assumption that the number is small. Still, if they are
determined, there is nothing to stop them from learning.

The world is extremely fortunate that nearly all of the hackers of moderate
skill or better hack for the sake of hacking.They wouldn’t ever use their skills to
cause damage, and they publish the information they find.We’re fortunate that
most of those hackers who choose to cause trouble seem to be on the lower end
of the skill scale.We’re fortunate that the few who do cross the line still seem to
have some built-in limit to how much damage they will cause. Most viruses,
worms, and trojans are nothing more than nuisances. Most intrusions do minimal
damage.

There has been a lot of discussion about why the balance is skewed so much
toward the good guys. One popular theory has to do with one’s reasons for
learning, and how it corresponds to the skill level achieved.The idea is that you’re

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 19

20 Chapter 1 • The Zen of Hack Proofing

more likely to learn something, and excel at it, if you truly enjoy it.The folks who
enjoy hacking for it’s own sake seem a lot less inclined to cause trouble (though
some may revel in the fact that they could if they wanted).The amount of time
invested in learning the skill of hacking can be significant.Those who want just to
achieve an end are more likely to try to reduce that investment, and turn them-
selves into script kiddies. By doing so, they limit how much they may achieve.

If there was a larger percentage of bad guys, things could be much, much
worse.Another reason for us writing this book is that we want more good guys
on our side. I hope that now that hacking has become a marketable skill, the bal-
ance won’t move too far from the good guys.

www.syngress.com

Hacking Mindset
If you’re an IT professional charged with protecting the security of your
systems, and you’re reading this book, then you’ve probably decided to
take a “hacker approach” to security. Relevant to this chapter, you may
be thinking that you have no plans to make any lifestyle changes to con-
form to any of the hacker types presented here. That’s fine. You may be
worried or slightly insulted that we’ve placed you in some lesser cate-
gory of hacker. Don’t be. Like anything you set out to do, you get to
decide how much effort you dedicate to the task.

If you’ve achieved any success in or derived any enjoyment from
your IT, you’ll have no trouble picking up the hacking skills. The differ-
ence between regular IT work and hacking is subtle, and really pretty
small. The difference is a mindset, a way of paying attention.

Every day when you’re doing your regular work, weird things
happen. Things crash. Settings get changed. Files get modified. You
have to reinstall. What if instead of just shrugging it off like most IT
people, you thought to yourself “exactly what caused that? How could
I make that happen on purpose?” If you can make it happen on purpose,
then you’ve potentially got a way to get the vendor to recognize and fix
the problem.

The thing is, you’re probably presented with security problems all
the time; you’ve just not trained yourself to spot them. You probably
weren’t equipped to further research them if you did spot them.

This book is here to teach you to spot and research security problems.

Notes from the Underground…

224_HPXML_01.qxd 6/27/02 3:26 PM Page 20

The Zen of Hack Proofing • Chapter 1 21

The Hacker Code
There exist various “hacker code of ethics” ideals. Some are written down, and
some exist only in peoples’ heads, to be trotted out to use against someone who
doesn’t qualify. Most versions go along these lines: Information wants to be free,
hackers don’t damage systems they break into, hackers write their own tools and
understand the exploits they use, and most often, they cite curiosity.

Many of the codes do a decent job of communicating the feelings and drives
that propel many hackers.They also often seem to try to justify some degree of
criminal activity, such as breaking into systems. Justifications include a need to
satisfy curiosity, lack of resources (so they must be stolen), or even some socialist-
like ideal of community ownership of information or infrastructure.

One of the most famous such codes is “the” Hacker Manifesto: http://phrack
.infonexus.com/search.phtml?view&article=p7-3. Phrack is an online magazine (the
name is short for phreak-hack) that also has a history of government hounding.At
one point, the editor of Phrack was charged with tens of thousands of dollars in
damages for printing a paraphrased enhanced-911 operations manual.The damages
were derived from the cost of the computer, terminal, printer, and the salary of the
person who wrote the manual. Bell South claimed that highly proprietary docu-
ments had been stolen from them and published, and that they had suffered
irreparable damages.The case was thrown out when the defense demonstrated that
Bell South sold the same document to anyone who wanted it for 15 dollars.

I think to some degree, the idea that some level of intrusion is acceptable is
outdated.There used to be a genuine lack of resources available to the curious
individual a number of years ago.While breaking into other peoples’ systems may
not be justifiable, it was perhaps understandable.Today, it’s difficult to imagine
what kinds of resources a curious individual doesn’t have free, legitimate access
to. Most of the hackers that I know hack systems that they have permission to
hack, either their own, or others’ under contract.

If the “need” to break in to other peoples’ systems in order to explore is gone,
then I think the excuse is gone as well. For those who still break into systems
without permission, that leaves the thrill, power, and infamy as reasons. For those
who desire that, I suggest hacking systems you own, and posting the information
publicly. If your hack is sweet enough, you’ll get your fame, power, and thrill.

The important thing to remember each time someone says “hackers do this”
or “hackers don’t do this” is that they are espousing an ideal.That’s what they
want hackers to be.You can no more say all hackers do or don’t do something
than you can for bus drivers.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 21

22 Chapter 1 • The Zen of Hack Proofing

Summary
If you can understand why an attacker does what he does, you have a better
chance of anticipating his goals. By anticipating his goals, you can make a guess at
to where he will attack, and be there first.

A hacker is someone who has achieved some level of expertise with a com-
puter. Usually, this expertise allows this person to come up with creative solutions
to problems that most people won’t think of, especially with respect to informa-
tion security issues.

A cracker is someone who breaks into systems without permission.A script
kiddie is someone who uses scripts or programs from someone else to do his or
her cracking.The presumption is that script kiddies can’t write their own tools.A
phreaker is a hacker who specializes in telephone systems.

A white hat is someone who professes to be strictly a “good guy,” for some defi-
nition of good guy.A black hat is usually understood to be a “bad guy,” which usu-
ally means a lawbreaker.The black hat appellation is usually bestowed by someone
other than the black hats themselves. Few hackers consider themselves black hats, as
they usually have some sort of justification for their criminal activities.

A gray hat is someone who falls in between, because he or she doesn’t meet
the arbitrarily high white hat ideals. Every hacker is a gray hat.Why are all the
hackers so concerned over names and titles? Some theorize that the name game
is a way to hide from the real issue of the ethics of what they are doing.

Hackers fill a number of roles in society.They help keep the world secure.
They remind people to be cautious.The criminal hackers keep the other ones in
good infosec jobs. Some fill the role of civil rights activist for issues the general
public doesn’t realize apply to them. If anything like electronic warfare ever does
break out, the various political powers are likely to come to the hackers for help.
The hackers may have the time of their lives with all restrictions suddenly lifted,
or they may all just walk away because they’d been persecuted for so long.

Some hackers break the law.When they do, they earn the title of cracker.The
title “hacker” is awarded based on skillset. If a hacker commits a crime, that
skillset doesn’t disappear; they’re still a hacker. Other hackers don’t get to strip the
title simply because they’d rather not be associated with the criminal.The only
time a cracker isn’t a hacker is if he or she never got good enough to be a hacker
in the first place.The hacker code is whatever code you decide to live by.

Hackers are motivated by a need to know and a need for recognition. Most
hackers aspire to be known for their skill, which is a big motivation for finding
sexy holes, and being the first to publish them. Sometimes, hackers will get mad

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 22

The Zen of Hack Proofing • Chapter 1 23

at someone and be tempted to try to teach that person a lesson, and that will
drive them.

All holes that are discovered should be published. In most cases, it’s reasonable
to give the vendor some warning, but nothing is forcing you to.You probably
don’t want to buy software from the vendors who can’t deal with their bugs get-
ting reported. Publicly reporting bugs benefits everyone—including yourself, as it
may bestow some recognition.

There are as many reasons for hacking as there are hackers, but they tend to
aggregate into identifiable groups. Some folk want to increase their sense of self-
worth, some want to throw a monkey wrench into the system for some reason,
and some are just curious. However, to be a true hacker the ethos of “I do some-
thing because I can do it” may be the single unifying characteristic.

Solutions Fast Track

Learning to Appreciate the Tao of the Hack

Hackers can be categorized into a series of different types, for instance:
Crackers, Script Kiddies or Kidiots, Phreakers,White Hats, Black Hats,
and many more. Hackers can be many things—however one thing that
all hackers have is a love of a challenge and the ability to stretch their
computing knowledge—whether it be for noble or ignoble motivations.

The term script kiddie refers to crackers who use scripts and programs
written by others to perform their intrusions.Typically, script kiddies are
assumed to be incapable of producing their own tools and exploits, and
lacks proper understanding of exactly the tools they use work.

A phreaker is a hacker variant, short for phone phreak (freak spelled with
a ph, like phone is). Phreakers are hackers with an interest in telephones
and telephone systems.

Black Hat,White Hat,What’s the Difference?

The black hat and white hat hacker references were gleaned from the
old-time western movies. Unfortunately the distinction between the
good and the bad guys in the security market place is not always so cut
and dry.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 23

24 Chapter 1 • The Zen of Hack Proofing

A central issue to the Black Hat versus White Hat hacker debate, is the
issue of full-disclosure.

The debate of Black Hat versus White Hat has led to the term Grey
Hat. Grey Hat hackers acknowledge the lines of perception between
what is right and what is wrong in the realm of information security is
very blurry.

Roles of a Hacker

A hacker can be and is perceived as many things, including:A criminal, a
magician, a security professional, a cyber warrior, a consumer’s rights
activist, or a civil rights activist to name a few.

How can you prevent break-ins to your system if you don’t know how
they are accomplished? How do you test your security measures? How
do you make a judgment about how secure a new system is? The answer
is by being a skilled hacker yourself. Knowing how to break into things,
helps developers create more secure systems and programs by being
intimately aware of the type of breaches and techniques that exist.

Hackers who tout themselves as a consumer advocates believe that by
releasing security breaches to the general public, this forces corporations
and technology providers to fix potentially damaging errors more
quickly.

A civil rights hactivist is normally an individual who is concerned with
the sentencing of computer hackers. For example, two hackers break
into the same system. One breaks in just to break in and notify the
organization, the other breaks in and steals valuable and proprietary data.
Should they be given similar sentences?

Another type of civil rights hactivist is concerned with cryptography
standards and copyright law.

Motivations of a Hacker

Probably the most widely acknowledged reason for hacking is
recognition.You can call it a desire for fame, you can call it personal
brand building, you can call it trying to be “elite,” or even the oft-cited
“bragging in a chat room.”

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 24

The Zen of Hack Proofing • Chapter 1 25

A close contender for first place in the list of reasons for being a hacker
is curiosity.

The two most media-exploited motivations of a hacker are: Power and
gain, and revenge.Although,These are the “scariest” motivations, they are
in fact, the motivations that drive the least amount of hackers by the
truest sense of the word.

The Hacker Code

There are numerous versions (online, in print, and in people’s
imaginations) of the hacker’s code. For the most part, they tend to follow
along the mindset of: Information wants to be free, hackers don’t
damage systems they break into, hackers write their own tools and
understand the exploits they use, and most often, they cite curiosity.

Q: Why should I care why hackers, crackers, script kiddies, and such are doing
what they do?

A: You should always care what hackers are doing, because you can never be sure
when you could become their next victim.As an IT professional, you need to
be able to allocate your resources to defend the areas a hacker will attack. By
understanding what types of places are easy targets, when attacks are most
likely to occur, and what types of methods could be used to compromise your
system, you can be there first and hopefully head a miscreant off.

Q: My corporate security policy explicitly states that my company doesn’t hire
hackers.Why should I care about them?

A: Your company hires hackers, but doesn’t realize it. Most truly talented IT
employees have already hacked something, at some time, in some way.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_01.qxd 6/27/02 3:26 PM Page 25

26 Chapter 1 • The Zen of Hack Proofing

However, most hackers would never admit their exploits to Human
Resources—especially during a job interview.

Q: We have a firewall on our system.Won’t that protect me from a hacker?

A: No. Firewalls are dangerous as they lull many individuals into a false sense of
security, they can protect some things; however, you should keep in mind that
any determined person could get around a firewall with a concerted effort

Q: A person claiming to be a hacker just sent me an e-mail demanding money
or they will crash my system.What do I do?

A: Don’t go into denial.The first thing you need to do is go to the appropriate
authorities, your system administrator, your Chief Security Officer (CSO), the
local police, the FBI, etc.These resources will help you identify and prosecute
this person for what they are:An extortionist.

www.syngress.com

224_HPXML_01.qxd 6/27/02 3:26 PM Page 26

Classes of Attack

Solutions in this chapter:

■ Identifying and Understanding the
Classes of Attack

■ Identifying Methods of Testing for
Vulnerabilities

Chapter 2

27

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_02.qxd 6/27/02 3:28 PM Page 27

28 Chapter 2 • Classes of Attack

Introduction
How seriously one must evaluate a particular attack type is dependent on two
things:The method it uses, and what eventual damage is done to the compro-
mised system.An attacker being able to run external code on the target machine
is probably the most serious kind of attack for a typical individual user. For an
e-commerce company, a denial of service (DoS) attack or information leakage
may be of more immediate concern. Each vulnerability that can lead to compro-
mise can usually be traced to a particular category, or class, of attack.The proper-
ties of each class give you a rough feel for how serious an attack in that class is, as
well as how hard it is to defend against.

In this chapter, we explain each of the attack classes in detail, including what
kinds of damage they can cause the victim, as well as what the attacker can gain
by using them.

Identifying and Understanding
the Classes of Attack
As we mentioned, attacks can be placed into one of a few categories.Attacks can
lead to anything from leaving your applications or systems without the ability to
function, to giving a remote attacker complete control of your systems to do
whatever he pleases.We discuss severity of attacks later in this chapter, placing
them on a line of severity. Let’s first look at the different types of external attacks
and discuss them.

In this section, we examine seven categorized attack types.These seven attack
types are the general criteria used to classify security issues:

■ Denial of service

■ Information leakage

■ Regular file access

■ Misinformation

■ Special file/database access

■ Remote arbitrary code execution

■ Elevation of privileges

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 28

www.syngress.com

Denial of Service
What is a denial of service (DoS) attack? A DoS attack takes place when avail-
ability to a resource is intentionally blocked or degraded by an attacker. In other
words, the attack impedes the availability of the resource to its regular authorized
users.These types of attacks can occur through one of two vectors: either on the
local system, or remotely from across a network.The attack can concentrate on one
of the following:

■ Degrading processes

■ Degrading storage capability

■ Destroying files to render the resource unusable

■ Shutting down parts of the system or processes

Let’s take a closer look at each of these items.

Local Vector Denial of Service
Local DoS attacks are common, and in many cases, may be preventable.Although
any type of DoS can be frustrating and costly, local denial of service attacks are
typically the most preferable to encounter. Given the right security infrastructure,
these types of attacks are easily traced, and the attacker is easily identified.

Three common types of local denial of service attacks are process degradation,
disk space exhaustion, and index node (inode) exhaustion.

Process Degradation
One local denial of service is the degrading of processes.This occurs when
the attacker reduces performance by overloading the target system, by either
spawning multiple processes to eat up all available resources of the host system,
by spawning enough processes to fill to capacity the system process table, or by
spawning enough processes to overload the central processing unit (CPU).

An example of this type of attack is exhibited through a recent vulnerability
discovered in the Linux kernel. By creating a system of deep symbolic links, a
user can prevent the scheduling of other processes when an attempt to derefer-
ence the symbolic link is made. Upon creating the symbolic links, then
attempting to perform a head or cat of one of the deeply linked files, the process
scheduler is blocked, therefore preventing any other processes on the system from
receiving CPU time.The following is source code of mklink.sh; this shell script

Classes of Attack • Chapter 2 29

224_HPXML_02.qxd 6/27/02 3:28 PM Page 29

30 Chapter 2 • Classes of Attack

will create the necessary links on an affected system (this problem was not fully
fixed until Linux kernel version 2.4.12):

#!/bin/sh

by Nergal

mklink()

{

IND=$1

NXT=$(($IND+1))

EL=l$NXT/../

P=""

I=0

while [$I -lt $ELNUM] ; do

P=$P"$EL"

I=$(($I+1))

done

ln -s "$P"l$2 l$IND

}

#main program

if [$# != 1] ; then

echo A numerical argument is required.

exit 0

fi

ELNUM=$1

mklink 4

mklink 3

mklink 2

mklink 1

mklink 0 /../../../../../../../etc/services

mkdir l5

mkdir l

Another type of local denial of service attack is the fork bomb.This problem is
not Linux-specific, and it affects a number of other operating systems on various
platforms.The fork bomb is easy to implement using the shell or C.The code for
shell is as follows:

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 30

Classes of Attack • Chapter 2 31

($0 & $0 &)

The code for C is as follows:

(main() {for(;;)fork();})

In both of these scenarios, an attacker can degrade process performance with
varying effects—these effects may be as minimal as making a system perform
slowly, or they may be as extreme as monopolizing system resources and causing
a system to crash.

Disk Space Exhaustion
Another type of local attack is one that fills disk space to capacity. Disk space is a
finite resource, though it has always been a supposition by many UNIX program-
mers that a lack of hardware is a user problem, not a programming one. In the
past, disk space was an extremely expensive resource, although the current
industry has brought the price of disk storage down significantly.Though you can
solve many of the storage complications with solutions such as disk arrays and
software that monitors storage abuse, disk space will continue to be a bottleneck
to all systems. Software-based solutions such as per-user storage quotas are
designed to alleviate this problem.

This type of attack prevents the creation of new files and the growth of
existing files.An added problem is that some UNIX systems will crash when the
root partition reaches storage capacity.Although this isn’t a design flaw on the
part of UNIX itself, a properly administered system should include a separate
partition for the log facilities, such as /var, and a separate partition for users, such
as the /home directory on Linux systems, or /export/home on Sun systems.

Attackers can use this type of denial of service to crash systems, such as when
a disk layout hasn’t been designed with user and log partitions on a separate slice.
They can also use it to obscure activities of a user by generating a large amount
of events that are logged to via syslog, filling the partition on which logs are
stored and making it impossible for syslog to log any further activity.

Such an attack is trivial to launch.A local user can simply perform the fol-
lowing command:

cat /dev/zero > ~/maliciousfile

This command will concatenate data from the /dev/zero device file (which
simply generates zeros) into maliciousfile, continuing until either the user stops the
process, or the capacity of the partition is filled.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 31

32 Chapter 2 • Classes of Attack

A disk space exhaustion attack could also be leveraged through such attacks as
mail bombing.Although this is an old ploy, it is not commonly seen in the pre-
sent (even with the advent of anonymous remailers).The reasons are perhaps that
mail is easily traced via SMTP headers, and although open relays or remailers can
be used, finding the purveyor of a mail bomb is not rocket science. For this
reason, most mail bombers find themselves either without Internet access, jailed,
or both.

Inode Exhaustion
The last type of local denial of service attack we discuss is inode exhaustion, similar
to the disk capacity attack. Inode exhaustion attacks are focused specifically on
the design of the file system.The term inode is an acronym for the words index
node. Index nodes are an essential part of the UNIX file system.

An inode contains information essential to the management of the file
system.This information includes, at a minimum, the owner of a file, the group
membership of a file, the type of file, the permissions, size, and block addresses
containing the data of the file.When a file system is formatted, a finite number of
inodes are created to handle the indexing of files with that slice.

An inode exhaustion attack focuses on using up all the available inodes for
the partition. Exhaustion of these resources creates a similar situation to that of
the disk space attack, leaving the system unable to create new files.This type of
attack is usually leveraged to cripple a system and prevent the logging of system
events, especially those activities of the attacker.

Network Vector Denial of Service
Denial of service attacks launched via a network vector can essentially be broken
down into one of two categories: an attack that affects a specific service, or an attack
that targets an entire system.The severity and danger of these attacks vary signifi-
cantly.These types of attacks are designed to produce inconvenience, and are
often launched as a retaliatory attack.

To speak briefly about the psychology behind these attacks, network vector
denial of service attacks are, by and large, the choice method of cowards.The rea-
sons, ranging from digital vigilantism to Internet Relay Chat (IRC) turf wars,
matter not. Freely and readily available tools make a subculture (and we borrow
the term coined by Jose Oquendo—also known as sil of antioffline.com fame)
called script kiddiots possible.The term script kiddiot, broken down into base form,
would define script as “a prewritten program to be run by a user,” and kiddiot

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 32

Classes of Attack • Chapter 2 33

being a combination of the words kid and idiot. Fitting.The availability of these
tools gives these individuals the power of anonymity and ability to cause a nui-
sance, while requiring little or no technical knowledge.The only group with
more responsibility for these attacks than the script kiddiots is the group of pro-
fessionals who continue to make them possible through such things as lack of
egress filtering.

Network vector attacks, as mentioned, can affect specific services or an entire
system; depending on who is targeted and why, these types of attacks include
client, service, and system-directed denials of service.The following sections look at
each of these types of denial of service in a little more detail.

Client-Side Network DoS
Client-side denials of service are typically targeted at a specific product.Their pur-
pose is to render the user of the client incapable of performing any activity with
the client. One such attack is through the use of what’s called JavaScript bombs.

By default, most Web browsers enable JavaScript.This is apparent anytime one
visits a Web site, and a pop-up or pop-under ad is displayed. However, JavaScript
can also be used in a number of malicious ways, one of which is to launch a DoS
attack against a client. Using the same technique that advertisers use to create a
new window with an advertisement, an attacker can create a malicious Web page
consisting of a never-ending loop of window creation.The end result is that so
many windows are “popped up,” the system becomes resource-bound.

This is an example of a client-side attack, denying service to the user by exer-
cising a resource starvation attack as we previously discussed, but using the net-
work as a vector.This is only one of many client-side attacks, with others
affecting products such as the AOL Instant Messenger, the ICQ Instant Message
Client, and similar software.

Service-Based Network DoS
Another type of DoS attack launched via networks is service-based attacks.A ser-
vice-based attack is intended to target a specific service, rendering it unavailable
to legitimate users.These attacks are typically launched at a service such as a
Hypertext Transfer Protocol Daemon (HTTPD), Mail Transport Agent (MTA), or
other such service that users typically require.

An example of this problem is a vulnerability that was discovered in the Web
configuration infrastructure of the Cisco Broadband Operating System (CBOS).
When the Code Red worm began taking advantage of Microsoft’s Internet

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 33

34 Chapter 2 • Classes of Attack

Information Server (IIS) 5.0 Web servers the world over, the worm was discov-
ered to be indiscriminate in the type of Web server it attacked. It would scan net-
works searching for Web servers, and attempt to exploit any Web server it
encountered.

A side effect of this worm was that although some hosts were not vulnerable
to the malicious payload it carried, some hosts were vulnerable in a different way.
CBOS was one of these scenarios. Upon receiving multiple Transmission Control
Protocol (TCP) connections via port 80 from Code Red infected hosts, CBOS
would crash.

Though this vulnerability was discovered as a casualty of another, the problem
could be exploited by a user with one of any readily available network auditing
tools.After attack, the router would be incapable of configuration, requiring a
power-cycling of the router to make the configuration facility available.This is a
classic example of an attack directed specifically at one service.

System-Directed Network DoS
A DoS directed towards a system via the network vector is typically used to pro-
duce the same results as a local DoS: Degrading performance or making the
system completely unavailable.A few approaches are typically seen in this type of
attack, and they basically define the methods used in entirety. One is using an
exploit to attack one system from another, leaving the target system inoperable.
This type of attack was displayed by the land.c, Ping of Death, and teardrop exploits
of a couple years ago, and the various TCP/IP fragmented packet vulnerabilities
in products such as D-Link routers and the Microsoft ISA Server.

Also along this line is the concept of SYN flooding.This attack can be
launched in a variety of ways, from either one system on a network faster than
the target system to multiple systems on large pipes.This type of attack is used
mainly to degrade system performance.The SYN flood is accomplished by
sending TCP connection requests faster than a system can process them.The
target system sets aside resources to track each connection, so a great number of
incoming SYNs can cause the target host to run out of resources for new legiti-
mate connections.The source IP address is, as usual, spoofed so that when the
target system attempts to respond with the second portion of the three-way
handshake, a SYN-ACK (synchronization-acknowledgment), it receives no
response. Some operating systems will retransmit the SYN-ACK a number of
times before releasing the resources back to the system.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 34

Classes of Attack • Chapter 2 35

One can detect a SYN flood coming from the preceding code by using a
variety of tools, such as the netstat command shown in Figure 2.1, or through
infrastructure such as network intrusion detection systems (IDSs).

On several operating system platforms, using the –n parameter displays
addresses and port numbers in numerical format, and the –p switch allows you to
select only the protocol you are interested in viewing.This prevents all User
Datagram Protocol (UDP) connections from being shown so that you can view
only the connections you are interested in for this particular attack. Check the
documentation for the version of netstat that is available on your operating system
to ensure that you use the correct switches.

Additionally, some operating systems support features such as TCP SYN
cookies. Using SYN cookies is a method of connection establishment that uses
cryptography for security.When a system receives a SYN, it returns a SYN+ACK,
as though the SYN queue is actually larger.When it receives an ACK back from
the initiating system, it uses the recent value of the 32-bit time counter modulus
32, and passes it through the secret server-side function. If the value fits, the
extracted maximum segment size (MSS) is used, and the SYN queue entry rebuilt.

Let’s also look at the topic of smurfing or packeting attacks, which are typically
purveyed by the previously mentioned script kiddiots.The smurf attack performs

www.syngress.com

Figure 2.1 Using netstat to Detect Incoming SYN Connections

224_HPXML_02.qxd 6/27/02 3:28 PM Page 35

36 Chapter 2 • Classes of Attack

a network vector DoS against the target host.This attack relies on an interme-
diary, the router, to help, as shown in Figure 2.2.The attacker, spoofing the source
IP address of the target host, generates a large amount of Internet Control
Message Protocol (ICMP) echo traffic directed toward IP broadcast addresses.The
router, also known as a smurf amplifier, converts the IP broadcast to a Layer 2
broadcast and sends it on its way. Each host that receives the broadcast responds
back to the spoofed source IP with an echo reply. Depending on the number of
hosts on the network, both the router and target host can be inundated with
traffic.This can result in the decrease of network performance for the host being
attacked, and depending on the number of amplifier networks used, the target
network becoming saturated to capacity.

The last system-directed DoS attack using the network vector is distributed
denial of service (DDoS).This concept is similar to that of the previously men-
tioned smurf attack.The means of the attack, and method of which it is lever-
aged, however, is significantly different from that of a smurf attack.

This type of attack depends on the use of a client, masters, and daemons (also
called zombies).Attackers use the client to initiate the attack by using masters,
which are compromised hosts that have a special program on them allowing the
control of multiple daemons. Daemons are compromised hosts that also have a
special program running on them, and are the ones that generate the flow of
packets to the target system.The current crop of DDoS tools includes trinoo,

www.syngress.com

Figure 2.2 Diagram of a Smurf Attack

Router

IBM AS/400 IBM 3174 Cray Supercomputer

Attacker sends spoofed ICMP
packets to a smurf amplifying network.

Packets enter router, and all hosts on the
network respond to the spoofed source address.

The target machine receives large amounts
of ICMP ECHO traffic, degrading performance.

Internet

224_HPXML_02.qxd 6/27/02 3:28 PM Page 36

Classes of Attack • Chapter 2 37

Tribe Flood Network,Tribe Flood Network 2000, stacheldraht, shaft, and
mstream. In order for the DDoS to work, the special program must be placed
on dozens or hundreds of “agent” systems. Normally an automated procedure
looks for hosts that can be compromised (buffer overflows in the remote proce-
dure call [RPC] services statd, cmsd, and ttdbserverd, for example), and then
places the special program on the compromised host. Once the DDoS attack
is initiated, each of the agents sends the heavy stream of traffic to the target,
inundating it with a flood of traffic.To learn more about detection of DDoS
daemon machines, as well as each of the DDoS tools, visit David Dittrich’s
Web site at http://staff.washington.edu/dittrich/misc/ddos.

Information Leakage
Information leakage can be likened to leaky pipes.Whenever something comes
out, it is almost always undesirable and results in some sort of damage.

www.syngress.com

The Code Red Worm
In July of 2001, a buffer overflow exploit for the Internet Server
Application Programming Interface (ISAPI) filter of Microsoft’s IIS was
transformed into an automated program called a worm. The worm
attacked IIS systems, exploited the hole, then used the compromised
system to attack other IIS systems. The worm was designed to do two
things, the first of which was to deface the Web page of the system it
had infected. The second function of the worm was to coordinate a
DDoS attack against the White House. The worm ended up failing,
missing its target, mostly due to quick thinking of White House IT staff.

The effects of the worm were not limited to vulnerable Windows
systems, or the White House. The attack cluttered logs of HTTP servers
not vulnerable to the attack, and was found to affect Cisco digital sub-
scriber line (DSL) routers in a special way. Cisco DSL routers with the Web
administration interface enabled were prone to become unstable and
crash when the worm attacked them, creating a DoS. This left users of
Qwest, as well as some other major Internet service providers, without
access at the height of the worm, due to the sheer volume of scanning.

Notes from the Underground…

224_HPXML_02.qxd 6/27/02 3:28 PM Page 37

38 Chapter 2 • Classes of Attack

Information leakage is typically an abused resource that precludes attack. In the
same way that military generals rely on information from reconnaissance troops
that have penetrated enemy lines to observe the type of weapons, manpower, sup-
plies, and other resources possessed by the enemy, attackers enter the network to
perform the same tasks, gathering information about programs, operating systems,
and network design on the target network.

Service Information Leakage
Information leakage occurs in many forms. Banners are one example. Banners are
the text presented to a user when they attempt to log into a system via any one
of the many services. Banners can be found on such services as File Transfer
Protocol (FTP), secure shell (SSH), telnet, Simple Mail Transfer Protocol (SMTP),
and Post Office Protocol 3 (POP3). Many software packages for these services
happily yield version information to outside users in their default configuration,
as shown in Figure 2.3.

Another similar problem is error messages. Services such as Web servers yield
more than ample information about themselves when an exception condition is
created.An exception condition is defined by a circumstance out of the ordinary,

www.syngress.com

Figure 2.3 Version of an SSH Daemon

224_HPXML_02.qxd 6/27/02 3:28 PM Page 38

Classes of Attack • Chapter 2 39

such as a request for a page that does not exist, or a command that is not recog-
nized. In these situations, it is best to make use of the customizable error configu-
rations supplied, or create a workaround configuration. Observe Figure 2.4 for a
leaky error message from Apache.

Protocol Information Leakage
In addition to the previously mentioned cases of information leakage, there is also
what is termed protocol analysis. Protocol analysis exists in numerous forms. One
type of analysis is using the constraints of a protocol’s design against a system to
yield information about a system. Observe this FTP system type query:

elliptic@ellipse:~$ telnet parabola.cipherpunks.com 21

Trying 192.168.1.2...

Connected to parabola.cipherpunks.com.

Escape character is '^]'.

220 parabola FTP server (Version: 9.2.1-4) ready.

SYST

215 UNIX Type: L8 Version: SUNOS

www.syngress.com

Figure 2.4 An HTTP Server Revealing Version Information

224_HPXML_02.qxd 6/27/02 3:28 PM Page 39

40 Chapter 2 • Classes of Attack

This problem also manifests itself in such services as HTTP. Observe the
leakage of information through the HTTP HEAD command:

elliptic@ellipse:~$ telnet www.cipherpunks.com 80

Trying 192.168.1.2...

Connected to www.cipherpunks.com.

Escape character is '^]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 05 Dec 2001 11:25:13 GMT

Server: Apache/1.3.22 (Unix)

Last-Modified: Wed, 28 Nov 2001 22:03:44 GMT

ETag: "30438-44f-3c055f40"

Accept-Ranges: bytes

Content-Length: 1103

Connection: close

Content-Type: text/html

Connection closed by foreign host.

Attackers also perform protocol analysis through a number of other methods.
One such method is the analysis of responses to IP packets, an attack based on
the previously mentioned concept, but working on a lower level.Automated
tools, such as the Network Mapper, or Nmap, provide an easy-to-use utility
designed to gather information about a target system, including publicly reach-
able ports on the system, and the operating system of the target. Observe the
output from an Nmap scan:

elliptic@ellipse:~$ nmap -sS -O parabola.cipherpunks.com

Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)

Interesting ports on parabola.cipherpunks.com (192.168.1.2):

(The 1533 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 40

Classes of Attack • Chapter 2 41

80/tcp open http

Remote operating system guess: Solaris 2.6 - 2.7

Uptime 5.873 days (since Thu Nov 29 08:03:04 2001)

Nmap run completed -- 1 IP address (1 host up) scanned in 67 seconds

First, let’s explain the flags (also known as options) used to scan parabola.The sS
flag uses a SYN scan, exercising half-open connections to determine which ports
are open on the host.The O flag tells Nmap to identify the operating system, if
possible, based on known responses stored in a database.As you can see, Nmap was
able to identify all open ports on the system, and accurately guess the operating
system of parabola (which is actually a Solaris 7 system running on a Sparc).

All of these types of problems present information leakage, which could lead
to an attacker gaining more than ample information about your network to
launch a strategic attack.

NOTE

One notable project related to information leakage is the research being
conducted by Ofir Arkin on ICMP. Ofir’s site, www.sys-security.com, has
several papers available that discuss the methods of using ICMP to
gather sensitive information. Two such papers are “Identifying ICMP
Hackery Tools Used In The Wild Today,” and “ICMP Usage In Scanning”
available at www.sys-security.com/html/papers.html. They’re not for the
technically squeamish, but yield a lot of good information.

Leaky by Design
This overall problem is not specific to system identification. Some programs hap-
pily and willingly yield sensitive information about network design. Protocols
such as Simple Network Management Protocol (SNMP) use clear text commu-
nication to interact with other systems.To make matters worse, many SNMP
implementations yield information about network design with minimal or easily
guessed authentication requirements, ala community strings.

Sadly, SNMP is still commonly used. Systems such as Cisco routers are
capable of SNMP. Some operating systems, such as Solaris, install and start SNMP
facilities by default.Aside from the other various vulnerabilities found in these
programs, their default use is plain bad practice.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 41

42 Chapter 2 • Classes of Attack

Leaky Web Servers
We previously mentioned some Web servers telling intrusive users about them-
selves in some scenarios.This is further complicated when things such as PHP,
Common Gateway Interface (CGI), and powerful search engines are used. Like
any other tool, these tools can be used in a constructive and creative way, or they
can be used to harm.

Things such as PHP, CGI, and search engines can be used to create interactive
Web experiences, facilitate commerce, and create customizable environments for
users.These infrastructures can also be used for malicious deeds if poorly
designed.A quick view of the Attack Registry and Intelligence Service (ARIS)
shows the number three type of attack as the “Generic Directory Traversal
Attack” (preceded only by the ISAPI and cmd.exe attacks, which, as of the time
of current writing, are big with the Code Red and Nimda variants).This is, of
course, the dot-dot (..) attack, or the relative path attack (…) exercised by
including dots within the URL to see if one can escape a directory and attain a
listing, or execute programs on the Web server.

Scripts that permit the traversal of directories not only allow one to escape
the current directory and view a listing of files on the system, but they allow an
attacker to read any file readable by the HTTP server processes ownership and
group membership.This could allow a user to gain access to the passwd file in
/etc or other nonprivileged files on UNIX systems, or on other implementations,
such as Microsoft Windows OSs, which could lead to the reading of (and, poten-
tially, writing to) privileged files.Any of the data from this type of attack could
be used to launch a more organized, strategic attack.Web scripts and applications
should be the topic of diligent review prior to deployment. More information
about ARIS is available at http://aris.securityfocus.com.

A Hypothetical Scenario
Other programs, such as Sendmail, will in many default implementations yield
information about users on the system.To make matters worse, these programs
use the user database as a directory for e-mail addresses.Although some folks may
scoff at the idea of this being information leakage, take the following example
into account.

A small town has two Internet service providers (ISPs). ISP A is a newer ISP,
and has experienced a significant growth in customer base. ISP B is the older ISP
in town, with the larger percentage of customers. ISP B is fighting an all-out war
with ISP A, obviously because ISP A is cutting into their market, and starting to

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 42

Classes of Attack • Chapter 2 43

gain ground on ISP B. ISP A, however, has smarter administrators that have taken
advantage of various facilities to keep users from gaining access to sensitive infor-
mation, using tricks such as hosting mail on a separate server, using different logins
on the shell server to prevent users from gaining access to the database of mail
addresses. ISP B, however, did not take such precautions. One day, the staff of ISP
A gets a bright idea, and obtains an account with ISP B.This account gives them a
shell on ISP B’s mail server, from which the passwd file is promptly snatched, and
all of its users mailed about a great new deal at ISP A offering them no setup fee
to change providers, and a significant discount under ISP B’s current charges.

As you can see, the leakage of this type of information can not only impact
the security of systems, it can possibly bankrupt a business. Suppose that a com-
pany gained access to the information systems of their competitor.What is to
stop them from stealing, lying, cheating, and doing everything they can to under-
mine their competition? The days of Internet innocence are over, if they were
ever present at all.

Why Be Concerned with Information Leakage?
Some groups are not concerned with information leakage.Their reasons for this
are varied, including reasons such as the leakage of information can never be
stopped, or that not yielding certain types of information from servers will break
compliance with clients.This also includes the fingerprinting of systems, per-
formed by matching a set of known responses by a system type to a table identi-
fying the operating system of the host.

Any intelligently designed operating system will at least give the option of
either preventing fingerprinting, or creating a fingerprint difficult to identify
without significant overhaul. Some go so far as to even allow the option of
sending bogus fingerprints to overly intrusive hosts.The reasons for this are clear.
Referring back to our previous scenario about military reconnaissance, any group
that knows they are going to be attacked are going to make their best effort to
conceal as much information about themselves as possible, in order to gain the
advantage of secrecy and surprise.This could mean moving, camouflaging, or
hiding troops, hiding physical resources, encrypting communications, and so
forth.This limiting of information leakage leaves the enemy to draw their own
conclusions with little information, thus increasing the margin of error.

Just like an army risking attack by a formidable enemy, you must do your best
to conceal your network resources from information leakage and intelligence gath-
ering.Any valid information the attacker gains about one’s position and perimeter
gives the attacker intelligence from which they may draw conclusions and fabricate

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 43

44 Chapter 2 • Classes of Attack

a strategy. Sealing the leakage of information forces the attacker to take more intru-
sive steps to gain information, increasing the probability of detection.

Regular File Access
Regular file access can give an attacker several different means from which to
launch an attack. Regular file access may allow an attacker to gain access to sensi-
tive information, such as the usernames or passwords of users on a system, as we
discussed briefly in the “Information Leakage” section. Regular file access could
also lead to an attacker gaining access to other files in other ways, such as
changing the permissions or ownership of a file, or through a symbolic link attack.

Permissions
One of the easiest ways to ensure the security of a file is to ensure proper permis-
sions on the file.This is often one of the more overlooked aspects of system secu-
rity. Some single-user systems, such as the Microsoft Windows 3.1/95/98/ME
products, do not have a permission infrastructure. Multiuser hosts have at least one,
and usually several means of access control.

For example, UNIX systems and some Windows systems both have users and
groups. UNIX systems, and Windows systems to some extent, allow the setting of
attributes on files to dictate what user, and what group have access to perform
certain functions with a file.A user, or the owner of the file, may be authorized
complete control over the file, having read, write, and execute permission over
the file, while a user in the group assigned to the file may have permission to
read, and execute the file.Additionally, users outside of the owner and group
members may have a different set of permissions, or even no permissions at all.

Many UNIX systems, in addition to the standard permission set of owner,
group, and world, include a more granular method of allowing access to a file.
These infrastructures vary in design, offering something as simple as the capability
to specify which users have access to a file, to something as complex as assigning
a member a role to allow a user access to a variety of utilities.The Solaris oper-
ating system has two such examples: Role-Based Access Control (RBAC), and
Access Control Lists (ACLs). (The RBAC acronym is also used for Rule Based
Access Control, a more general and non-Solaris dependent format.The more
general type of RBAC is covered in Chapter 7.)

ACLs allow a user to specify which particular system users are permitted
access to a file.The access list is tied to the owner and the group membership. It
additionally uses the same method of permissions as the standard UNIX permis-
sion infrastructure.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 44

Classes of Attack • Chapter 2 45

RBAC is a complex tool, providing varying layers of permission. It is cus-
tomizable, capable of giving a user a broad, general role to perform functions
such as adding users, changing some system configuration variables, and the like.
It can also be limited to giving a user one specific function.As we shall see later,
the concept can be used in the general sense to keep code from going places it
shouldn’t be playing in.

Symbolic Link Attacks
Symbolic link attacks are a problem that can typically be used by an attacker to
perform a number of different functions.They can be used to change the permis-
sions on a file.They can also be used to corrupt a file by appending data to it or
by overwriting a file completely, destroying the contents.

Symbolic link attacks are often launched from the temporary directory of a
system.The problem is usually due to a programming error.When a vulnerable
program is run, it creates a file with one of a couple attributes that make it vul-
nerable to being attacked.

One attribute making the file vulnerable is permissions. If the file has been cre-
ated with insecure permissions, the system will allow an attacker to alter it.This will
permit the attacker to change the contents of the temporary file. Depending on the
design of the program, if the attacker is able to alter the temporary file, any input
placed in the temporary file could be passed to the user’s session.

Another attribute making the file vulnerable is the creation of insecure tem-
porary files. In a situation where a program does not check for an existing file
before creating it, and a user can guess the name of a temporary file before it is
created, this vulnerability may be exploited.The vulnerability is exploited by cre-
ating a symbolic link to the target file, using a guessed file name that will be used
in the future.The following example source code shows a program that creates a
predictable temporary file:

/* lameprogram.c - Hal Flynn <mrhal@mrhal.com> */

/* does not perform sufficient checks for a */

/* file before opening it and storing data */

#include <stdio.h>

#include <unistd.h>

int main()

{

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 45

46 Chapter 2 • Classes of Attack

char a[] = "This is my own special junk data storage.\n";

char junkpath[] = "/tmp/junktmp";

FILE *fp;

fp = fopen(junkpath, "w");

fputs(a, fp);

fclose(fp);

unlink(junkpath);

return(0);

}

This program creates the file /tmp/junktmp without first checking for the
existence of the file.

When the user executes the program that creates the insecure temporary file,
if the file to be created already exists in the form of a symbolic link, the file at
the end of the link will be either overwritten or appended.This occurs if the user
executing the vulnerable program has write-access to the file at the end of the
symbolic link. Both of these types of attacks can lead to an elevation of privi-
leges. Figures 2.5 and 2.6 show an exploitation of this program by user haxor to
overwrite a file owned by the user ellipse.

www.syngress.com

Figure 2.5 Haxor Creates a Malicious Symbolic Link

224_HPXML_02.qxd 6/27/02 3:28 PM Page 46

Classes of Attack • Chapter 2 47

Misinformation
The concept of misinformation can present itself in many ways. Let’s go back to
the military scenario. Suppose that guards are posted at various observation points
in the field, and one of them observes the enemy’s reconnaissance team.The
guard alerts superiors, who send out their own reconnaissance team to find out
exactly who is spying on them.

Now, you can guess that the enemy general has already thought about this
scenario. Equally likely, he has also considered his options. He could hide all of
his troops and make it appear as if nobody is there.“But what if somebody saw
my forces entering the area” would be his next thought.And if the other side
were to send a “recon” team to scope out his position and strength, discovering
his army greater than theirs, they would likely either fortify their position, or
move to a different position where they would be more difficult to attack, or
where they could not be found.

Therefore, he wants to make his forces seem like less of a threat than they
really are. He hides his heavy weapons, and the greater part of his infantry, while
allowing visibility of only a small portion of his force.This is the same idea
behind misinformation.

www.syngress.com

Figure 2.6 Ellipse Executes the Lameprogram, and the Data in Lamedata Is
Overwritten

224_HPXML_02.qxd 6/27/02 3:28 PM Page 47

48 Chapter 2 • Classes of Attack

Standard Intrusion Procedure
The same concept of misinformation applies to systems.When an attacker has
compromised a system, much effort is made to hide her presence and leave as
much misinformation as possible.Attackers do this in any number of ways.

One vulnerability in Sun Solaris can be taken advantage of by an attacker to
send various types of misinformation.The problem is due to the handling of
ACLs on pseudo-terminals allocated by the system. Upon accessing a terminal,
the attacker could set an access control entry, then exit the terminal.When
another user accessed the system using the same terminal, the previous owner of
the terminal would retain write access to the terminal, allowing the previous
owner to write custom-crafted information to the new owner’s terminal.The
following sections look at some of the methods used.

Log Editing
One method used by an attacker to send misinformation is log editing.When an
attacker compromises a system, the desire is to stay unnoticed and untraceable as
long as possible. Even better is if the attacker can generate enough noise to make
the intrusion unnoticeable or to implicate somebody else in the attack.

Let’s go back to the previous discussion about DoS.We talked about gener-
ating events to create log entries.An attacker could make an attempt to fill the
log files, but a well-designed system will have plenty of space and a log rotation
facility to prevent this. Instead, the attacker could resort to generating a large
amount of events in an attempt to cloak their activity. Under the right circum-
stances, an attacker could create a high volume of various log events, causing one
or more events that look similar to the entry made when an exploit is initiated.

If the attacker gains administrative access on the system, any hopes of log
integrity are lost.With administrative access, the attacker can edit the logs to
remove any event that may indicate intrusion, or even change the logs to impli-
cate another user in the attack. In the event of this happening, only outside sys-
tems that may be collecting system log data from the compromised machine or
network intrusion detection systems may offer data with any integrity.

Some tools include options to generate random data and traffic.This random
data and traffic is called noise, and is usually used as either a diversionary tactic or
an obfuscation technique. Noise can be used to fool an administrator into
watching a different system or believing that a user other than the attacker, or
several attackers, are launching attacks against the system.

The goal of the attacker editing the logs is to produce one of a few effects. One
effect would be the state of system well-being, as though nothing has happened.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 48

Classes of Attack • Chapter 2 49

Another effect would be general and total confusion, such as conflicting log entries
or logs fabricated to look as though a system process has gone wild—as said earlier,
noise. Some tools, such as Nmap, include decoy features.The decoy feature can
create this effect by making a scan look as though it is coming from several dif-
ferent hosts.

Rootkits
Another means of misinformation is the rootkit.A rootkit is a ready-made pro-
gram designed to hide an attacker’s activities inside a system. Several different
types of rootkits exist, all with their own features and flaws. Rootkits are an
attacker’s first choice for keeping access to a system on a long-term basis.

A rootkit works by replacing key programs on the system, such as ls, df, du, ps,
sshd, and netstat on UNIX systems, or drivers, and Registry entries on Windows
systems.The rootkit replaces these programs, and possibly others with the pro-
grams it contains, which are customized to not give administrative staff reliable
details. Rootkits are used specifically to cloak the activity of the attacker and hide
his presence inside the system.

These packages are specifically designed to create misinformation.They create
an appearance of all being well on the system. In the meantime, the attacker con-
trols the system and launches attacks against new hosts, or he conducts other
nefarious activities.

Kernel Modules
Kernel modules are pieces of code that may be loaded and unloaded by a run-
ning kernel.A kernel module is designed to provide additional functionality to a
kernel when needed, allowing the kernel to unload the module when it is no
longer needed to lighten the memory load. Kernel modules can be loaded to
provide functionality such as support of a non-native file system or device con-
trol. Kernel modules may also have facinorous purposes.

Malicious kernel modules are similar in purpose to rootkits.They are
designed to create misinformation, leading administrators of a system to believe
that all is well on the host.The module provides a means to cloak the attacker,
allowing the attacker to carry out any desired deeds on the host.

The kernel module functions in a different way from the standard rootkit.
The programs of the rootkit act as a filter to prevent any data that may be
incriminating from reaching administrators.The kernel module works on a much
lower level, intercepting information queries at the system call level, and filtering
out any data that may alert administrative staff to the presence of unauthorized

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 49

50 Chapter 2 • Classes of Attack

guests.This allows an attacker to compromise and backdoor a system without the
danger of modifying system utilities, which could lead to detection.

Kernel modules are becoming the standard in concealing intrusion. Upon
intrusion, the attacker must simply load the module, and ensure that the module
is loaded in the future by the system to maintain a degree of stealth that is diffi-
cult to discover. From that point on, the module may never be discovered unless
the drive is taken offline and mounted under a different instance of the operating
system.

Special File/Database Access
Two other methods used to gain access to a system are through special files and
database access.These types of files, although different in structure and function,
exist on all systems and all platforms. From an NT system to a Sun Enterprise
15000 to a Unisys Mainframe, these files are common amongst all platforms.

Attacks against Special Files
The problem of attacks against special files becomes apparent when a user uses
the RunAs service of Windows 2000.When a user executes a program with the
RunAs function,Windows 2000 creates a named pipe on the system, storing the
credentials in clear text. If the RunAs service is stopped, an attacker may create a
named pipe of the same name.When the RunAs service is used again, the cre-
dentials supplied to the process will be communicated to the attacker.This allows
an attacker to steal authentication credentials, and could allow the user to log in
as the RunAs user.

Attackers can take advantage of similar problems in UNIX systems. One such
problem is the Solaris pseudo-terminal problems we mentioned previously. Red
Hat Linux distribution 7.1 has a vulnerability in the upgrade portion of the
package.A user upgrading a system and creating a swap file exposes herself to
having swap memory snooped through.This is due to the creation of the swap file
with world-readable permissions.An attacker on a system could arbitrarily create a
heavy load on system memory, causing the system to use the swap file. In doing
so, the attacker could make a number of copies of swap memory at different states,
which could later be picked through for passwords or other sensitive information.

Attacks against Databases
Databases present a world of opportunity to attackers. Fulfilling our human
needs to organize, categorize, and label things, we have built central locations of

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 50

Classes of Attack • Chapter 2 51

information.These central locations are filled with all sorts of goodies, such as
financial data, credit card information, payroll data, client lists, and so forth.The
thought of insecure database software is enough to keep a CEO awake at night,
let alone send a database administrator into a nervous breakdown. In these days of
post-dot-com crash, e-commerce is still alive and well.And where there is com-
merce, there are databases.

Risky Business
Databases are forced to fight a two-front war.They are software, and are therefore
subject to the problems that all software must face, such as buffer overflows, race
conditions, denials of service, and the like.Additionally, databases are usually a
backend for something else, such as a Web interface, graphical user interface tool,
or otherwise. Databases are only as secure as the software they run and the inter-
faces they communicate with.

Web interfaces tend to be a habitual problem for databases.The reasons for
this are that Web interfaces fail to filter special characters or that they are
designed poorly and allow unauthorized access, to name only two.This assertion
is backed by the fact that holes are found in drop-in e-commerce packages on a
regular basis.

Handling user-supplied input is risky business.A user can, and usually will,
supply anything to a Web front end. Sometimes this is ignorance on the part of
the user, while other times this is the user attempting to be malicious. Scripts
must be designed to filter out special characters such as the single quote (`), slash
(/), backslash (\), and double quote (“) characters, or this will quickly be taken
advantage of.A front-end permitting the passing of special characters to a
database will permit the execution of arbitrary commands, usually with the per-
mission of the database daemons.

Poorly designed front-ends are a different story.A poorly designed front-end
will permit a user to interact and manipulate the database in a number of ways.
This can allow an attacker to view arbitrary tables, perform SQL commands, or
even arbitrarily drop tables.These risks are nothing new, but the problems con-
tinue to occur.

Database Software
Database software is an entirely different collection of problems.A database is
only as secure as the software it uses—oftentimes, that isn’t particularly reassuring.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 51

52 Chapter 2 • Classes of Attack

For example, Oracle has database software available for several different plat-
forms.A vulnerability in the 8.1.5 through 8.1.7 versions of Oracle was discov-
ered by Nishad Herath and Brock Tellier of Network Associates COVERT Labs.
The problem they found was specifically in the TNS Listener program used with
Oracle.

For the unacquainted,TNS Listener manages and facilitates connections to
the database. It does so by listening on an arbitrary data port, 1521/TCP in
newer versions, and waiting for incoming connections. Once a connection is
received, it allows a person with the proper credentials to log into a database.

The vulnerability, exploited by sending a maliciously crafted Net8 packet to
the TNS Listener process, allows an attacker to execute arbitrary code and gain
local access on the system. For UNIX systems, this bug was severe, because it
allowed an attacker to gain local access with the permissions of the Oracle user.
For Windows systems, this bug was extremely severe, because it allowed an
attacker to gain local access with LocalSystem privileges, equivalent to adminis-
trative access.We discuss code execution in the next section.

SECURITY ALERT!
Oracle is not the only company with the problem described in this sec-
tion. Browsing various exploit collections or the SecurityFocus vulnera-
bility database, one can discover vulnerabilities in any number of
database products, such as MySQL and Microsoft SQL. And although this
may lead to the knee-jerk reaction of drawing conclusions about which
product is more secure, do not be fooled. The numbers are deceptive,
because these are only the known vulnerabilities.

Database Permissions
Finally, we discuss database permissions.The majority of these databases can use
their own permission schemes separate from the operating system. For example,
version 6.5 and earlier versions of Microsoft’s SQL Server can be configured to
use standard security, which means they use their internal login validation process
and not the account validation provided with the operating system. SQL Server
ships with a default system administrator account named SA that has a default
null password.This account has administrator privileges over all databases on the
entire server. Database administrators must ensure that they apply a password to
the SA account as soon as they install the software to their server.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 52

Classes of Attack • Chapter 2 53

Databases on UNIX can also use their own permission schemes. For example,
MySQL maintains its own list of users separate from the list of users maintained
by UNIX. MySQL has an account named root (which is not to be confused with
the operating system’s root account) that, by default, does not have a password. If
you do not enter a password for MySQL’s root account, then anyone can connect
with full privileges by entering the following command:

mysql –u root

If an individual wanted to change items in the grant tables and root was not
passworded, she could simply connect as root using the following command:

mysql –u root mysql

Even if you assign a password to the MySQL root account, users can connect
as another user by simply substituting the other person’s database account name
in place of their own after the –u if you have not assigned a password to that par-
ticular MySQL user account. For this reason, assigning passwords to all MySQL
users should be a standard practice in order to prevent unnecessary risk.

Remote Arbitrary Code Execution
Remote code execution is one of the most commonly used methods of
exploiting systems. Several noteworthy attacks on high profile Web sites have
been due to the ability to execute arbitrary code remotely. Remote arbitrary
code is serious in nature because it often does not require authentication and
therefore may be exploited by anybody.

Returning to the military scenario, suppose the enemy General’s reconnais-
sance troops are able to slip past the other side’s guards.They can then sit and
map the others’ position, and return to the General with camp coordinates, as
well as the coordinates of things within the opposing side’s camp.

The General can then pass this information to his Fire Support Officer
(FSO), and the FSO can launch several artillery strikes to “soften them up.” But
suppose for a moment that the opposing side knows about the technology
behind the artillery pieces the General’s army is using.And suppose that they
have the capability to remotely take control of the coordinates input into the
General’s artillery pieces—they would be able to turn the pieces on the General’s
own army.

This type of control is exactly the type of control an attacker can gain by
executing arbitrary code remotely. If the attacker can execute arbitrary code
through a service on the system, the attacker can use the service against the

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 53

54 Chapter 2 • Classes of Attack

system, with power similar to that of using an army’s own artillery against them.
Several methods allow the execution of arbitrary code.Two of the most common
methods used are buffer overflows and format string attacks.

NOTE

For additional buffer overflow information, study Aleph1’s “Smashing
The Stack For Fun And Profit,” Phrack issue 49, article 14 available at
www.phrack.com/show.php?p=49&a=14.

For information on format string vulnerabilities, we recommend
that you study Team Teso’s whitepaper at www.team-teso.net/articles/
formatstring/index.html.

Both of these topics are covered in depth in the book Hack Proofing
Your Network, Second Edition (ISBN: 1-928994-70-9) available from
Syngress Publishing (www.syngress.com).

The Attack
Remote code execution is always performed by an automated tool.Attempting
to manually remotely execute code would be at the very best near impossible.
These attacks are typically written into an automated script.

Remote arbitrary code execution is most often aimed at giving a remote user
administrative access on a vulnerable system.The attack is usually prefaced by an
information gathering attack, in which the attacker uses some means such as an
automated scanning tool to identify the vulnerable version of software. Once
identified, the attacker executes the script against the program with hopes of
gaining local administrative access on the host.

Once the attacker has gained local administrative access on the system, the
attacker initiates the process discussed in the “Misinformation” section.The
attacker will do his best to hide his presence inside the system. Following that, he
may use the compromised host to launch remote arbitrary code execution attacks
against other hosts.

Although remote execution of arbitrary code can allow an attacker to execute
commands on a system, it is subject to some limitations.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 54

Classes of Attack • Chapter 2 55

Code Execution Limitations
Remote arbitrary code execution is bound by limitations such as ownership and
group membership.These limitations are the same as imposed on all processes
and all users

On UNIX systems, processes run on ports below 1024 are theoretically root-
owned processes. However, some software packages, such as the Apache Web
Server, are designed to change ownership and group membership, although it
must be started by the superuser.An attacker exploiting an Apache HTTP process
would gain only the privileges of the HTTP server process.This would allow the
attacker to gain local access, although as an unprivileged user. Further elevation of
privileges would require exploiting another vulnerability on the local system.This
limitation makes exploiting nonprivileged processes tricky, as it can lead to being
caught when system access is gained.

The changing of a process from execution as one user of higher privilege to a
user of lower privilege is called dropping privileges.Apache can also be placed in a
false root directory that isolates the process, known as change root, or chroot.

A default installation of Apache will drop privileges after being started.A sep-
arate infrastructure has been designed for chroot, including a program that can
wrap most services and lock them into what is called a chroot jail.The jail is
designed to restrict a user to a certain directory.The chroot program will allow
access only to programs and libraries from within that directory.This limitation
can also present a trap to an attacker not bright enough to escape the jail.

If the attacker finds himself with access to the system and bound by these lim-
itations, the attacker will likely attempt to gain elevated privileges on the system.

Elevation of Privileges
Of all attacks launched, elevation of privileges is certainly the most common.An
elevation of privileges occurs when a user gains access to resources that were not
authorized previously.These resources may be anything from remote access to a
system to administrative access on a host. Privilege elevation comes in various
forms.

Remote Privilege Elevation
Remote privilege elevation can be classified to fall under one of two categories.
The first category is remote unprivileged access, allowing a remote user unautho-
rized access to a system as a regular user.The second type of remote privilege
elevation is instantaneous administrative access.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 55

56 Chapter 2 • Classes of Attack

A number of different vectors can allow a user to gain remote access to a
system.These include topics we have previously discussed, such as the filtering of
special characters by Web interfaces, code execution through methods such as
buffer overflows or format string bugs, or through data obtained from informa-
tion leakage.All of these problems pose serious threats, with the end result being
potential disaster.

Remote Unprivileged User Access
Remote privilege elevation to an unprivileged user is normally gained through
attacking a system and exploiting an unprivileged process.This is defined as an
elevation of privileges mainly because the attacker previously did not have access
to the local system, but does now. Some folks may scoff at this idea, as I once did.
David Ahmad, the moderator of Bugtraq, changed my mind.

One night over coffee, he and I got on the topic of gaining access to a
system.With my history of implementing secure systems, I was entirely convinced
that I could produce systems that were near unbreakable, even if an attacker were
to gain local access. I thought that measures such as non-executable stacks,
restricted shells, chrooted environments, and minimal setuid programs could keep
an attacker from gaining administrative access for almost an eternity. Later on that
evening, Dave was kind enough to show me that I was terribly, terribly wrong.

Attackers can gain local, unprivileged access to a system through a number of
ways. One way is to exploit an unprivileged service, such as the HTTP daemon,
a chrooted process, or another service that runs as a standard user.Aside from
remotely executing code to spawn a shell through one of these services, attackers
can potentially gain access through other vectors. Passwords gained through ASP
source could lead to an attacker gaining unprivileged access under some circum-
stances.A notorious problem is, as we discussed previously, the lack of special-
character filtering by Web interfaces. If an attacker can pass special characters
through a Web interface, the attacker may be able to bind a shell to a port on the
system. Doing so will not gain the attacker administrative privileges, but it will
gain the attacker access to the system with the privileges of the HTTP process.
Once inside, to quote David Ahmad,“it’s only a matter of time.”

Remote Privileged User Access
Remote privileged user access is the more serious of the two problems. If a
remote user can obtain access to a system as a privileged user, the integrity of the
system is destined to collapse. Remote privileged user access can be defined as an
attacker gaining access to a system with the privileges of a system account.These

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 56

Classes of Attack • Chapter 2 57

accounts include uucp, root, bin, and sys on UNIX systems, and Administrator or
LocalSystem on Windows 2000 systems.

The methods of gaining remote privileged user access are essentially the same
as those used to gain unprivileged user attacks.A few key differences separate the
two, however. One difference is in the service exploited.To gain remote access as
a privileged user, an attacker must exploit a service that runs as a privileged user.

The majority of UNIX services still run as privileged users. Some of these,
such as telnet and SSH, have recently been the topic of serious vulnerabilities.
The SSH bug is particularly serious.The bug, originally discovered by Michal
Zalewski, was originally announced in February of 2001. Forgoing the deeply
technical details of the attack, the vulnerability allowed a remote user to initiate a
malicious cryptographic session with the daemon. Once the session was initiated,
the attacker could exploit a flaw in the protocol to execute arbitrary code, which
would run with administrative privileges, and bind a shell to a port with the
effective userid of 0.

Likewise, the recent vulnerability in Windows 2000 IIS made possible a
number of attacks on Windows NT systems. IIS 5.0 executes with privileges
equal to that of the Administrator.The problem was a buffer overflow in the
ISAPI indexing infrastructure of IIS 5.0.This problem made possible numerous
intrusions, and the Code Red worm and variants.

Remote privileged user access is also the goal of many Trojans and backdoor
programs. Programs such as SubSeven, Back Orifice, and the many variants pro-
duced can be used to allow an attacker remote administrative privileges on an
infected system.The programs usually involve social engineering, broadly defined
as using misinformation or persuasion to encourage a user to execute the pro-
gram.Though the execution of these programs do not give an attacker elevated
privileges, the use of social engineering by an attacker to encourage a privileged
user to execute the program can allow privileged access. Upon execution, the
attacker needs simply to use the method of communication with the malicious
program to watch the infected system, perform operations from the system, and
even control the users ability to operate on the system.

Other attacks may gain a user access other than administrative, but privileged
nonetheless.An attacker gaining this type of access is afforded luxuries over the
standard user, because this allows the attacker access to some system binaries, as
well as some sensitive system facilities.A user exploiting a service to gain access as
a system account other than administrator or root will likely later gain adminis-
trative privileges.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 57

58 Chapter 2 • Classes of Attack

These same concepts may also be applied to gaining local privilege elevation.
Through social engineering or execution of malicious code, a user with local
unprivileged access to a system may be able to gain elevated privileges on the
local host.

Identifying Methods of
Testing for Vulnerabilities
Testing a system for vulnerabilities is the best way to ensure that the system is, or
is not, vulnerable to a particular problem.Vulnerability testing is a necessary and
mandatory task for anybody involved with the administration or security of
information systems.You can only ensure system security by attempting to break
into your own systems.

Up to this point, we have discussed the different types of vulnerabilities that
may be used to exploit a system. In this section, we discuss the methods of
finding and proving that vulnerabilities exist, including exploit code.We also dis-
cuss some of the methods used in gathering information prior to launching an
attack on a system, such as the use of Nmap.

Proof of Concept
One standard method used among the security community is what is termed
proof of concept. Proof of concept can be roughly defined as an openly discussed
and reliable method of testing a system for a vulnerability. It is usually supplied by
either a vendor, or a security researcher in a full disclosure forum.

Proof of concept is used to demonstrate that a vulnerability exists. It is not a
exploit per se, but more of a demonstration of the problem through either some
small segment of code that does not exploit the system for the attacker’s gain, or
a technical description that shows a user how to reproduce the problem.This
proof of concept can be used by a member of the community to identify the
source of the problem, recommend a workaround, and in some cases recommend
a fix prior to the release of a vendor-released patch. It can also be used to iden-
tify vulnerable systems.

Proof of concept is used as a tool to notify the security community of the
problem, while giving a limited amount of details.The goal of this approach is
simply to produce a time buffer between the time when the vulnerability is
announced, to the time when malicious users begin producing code to take
advantage of this vulnerability and go into a frenzy of attacks.The time buffer is

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 58

Classes of Attack • Chapter 2 59

created for the benefit of the vendor to give them time to produce a patch for
the problem and release it.

Exploit Code
Another method used in the community is exploit code. Exploit code can be
roughly defined as a program that is designed to take advantage of a problem in
some piece of software and to execute a set of the attacker’s choosing. Exploit
code will allow a user to take advantage of a problem for personal gain.

Exploit code is also a type of proof of concept. It is designed to show more
detail of how the vulnerability can be attacked and exploited and to prove further
that the vulnerability is not theoretical. Exploit code can be written in one of any
number of languages.

Exploit code is a double-edged sword. It provides the community with a
working program to demonstrate the vulnerability, take advantage of the vulnera-
bility, and produce some gain to the user executing the program. It also makes
the attack of systems by malicious users possible. Exploit code is in general a
good thing, because it offers clarity in exploitation of the vulnerability, and pro-
vides motivation to vendors to produce a patch.

Often, a vendor will happily take its sweet time to produce a patch for the
problem, allowing attackers who may know of the problem, and have their own
working exploit for the problem, to take advantage of it and break into systems.
Producing a working exploit and releasing it to the community is a method of
lighting a fire of motivation under the rear-ends of vendors, making them the
responsible party for producing results after the vulnerability has been
announced.

The system is, as mentioned, a double-edged sword. Releasing a working
exploit means releasing a working program that takes advantage of a problem to
allow the user of the program personal gain. Most forums that communicate
technical details in the vulnerability of software and share working exploits in
programs are monitored by many members, all with their own motivations.The
release of such a program can allow members with less scruples than others to
take advantage of the freely available working exploits, and use them for personal
and malicious gain.

Automated Security Tools
Automated security tools are software packages designed by vendors to allow
automated security testing.These tools are typically designed to use a nice user

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 59

60 Chapter 2 • Classes of Attack

interface and generate reports.The report generation feature allows the user of
the tool to print out a detailed list of problems with a system and track progress
on securing the system.

Automated security tools are yet another double-edged sword.They allow
legitimate users of the tools to perform audits to secure their networks and track
progress of securing systems.They also allow malicious users with the same tool
to identify vulnerabilities in hosts and potentially exploit them for personal gain.

Automated security tools are beneficial to all.They provide users who may be
lacking in some areas of technical knowledge the capability to identify and secure
vulnerable hosts.The more useful tools offer regular updates, with plug-ins
designed to test for new or recent vulnerabilities.

A few different vendors provide these tools. Commercially available are the
CyberCop Security Scanner by Network Associates, NetRecon by Symantec, and
the Internet Scanner by Internet Security Systems. Freely available is Nessus,
from the Nessus Project. Nessus is available at (www.nessus.org).

Versioning
Versioning is the failsafe method of testing a system for vulnerabilities. It is the
least entertaining to perform in comparison to the previously mentioned
methods. It does, however, produce reliable results.

Versioning consists of identifying the versions, or revisions, of software a
system is using.This can be complex, because many software packages include a
version, such as Windows 2000 Professional, or Solaris 8, and many packages
included with a versioned piece of software also include a version, such as wget
version 1.7.This can prove to be added complexity, and often a nightmare in
products such as a Linux distribution, which is a cobbled-together collection of
software packages, all with their own versions.

Versioning is performed by monitoring a vendor list.The concept is actually
quite simple—it entails checking software packages against versions announced to
have security vulnerabilities.This can be done through a variety of methods. One
method is to actually perform the version command on a software package, such
as the uname command, shown in Figure 2.7.

Another method is using a package tool or patch management tool supplied
by a vendor to check your system for the latest revision (see Figure 2.8).

Versioning can be simplified in a number of ways. One is to produce a
database containing the versions of software used on any one host.Additionally,
creating a patch database detailing which fixes have been applied to a system can
ease frustration, misallocation of resources, and potential vulnerability.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 60

Classes of Attack • Chapter 2 61

www.syngress.com

Figure 2.7 uname –a Gives Kernel Revision on a Linux Machine

Figure 2.8 showrev –p on a Sun Solaris System

224_HPXML_02.qxd 6/27/02 3:28 PM Page 61

62 Chapter 2 • Classes of Attack

Standard Research Techniques
It has been said that 97 percent of all attackers are script kiddiots.The group to
worry about is the other three percent.This group is exactly who you want to
emulate in your thinking. Lance Spitzner, one of the most well rounded security
engineers in the security community wrote some documents sometime ago that
summed it up perfectly. Borrowing a maxim written by Sun Tzu in The Art of
War, Spitzner’s papers were titled “Know Your Enemy.”They are available through
the Honeynet Project at http://project.honeynet.org.

We should first define an intelligent attack.An attack is an act of aggression.
Intelligence insinuates that cognitive skills are involved. Launching an intelligent
attack means first gathering intelligence.This can be done through information
leakage or through a variety of other resource available on the Internet. Let’s look
at some methods used via a Whois database, the Domain Name System (DNS),
Nmap, and Web indexing.

Whois
The whois database is a freely available compilation of information designed to
maintain contact information for network resources. Several whois databases are
available, including the dot-com whois database, the dot-biz whois database, and
the American Registry of Internet Numbers database, containing name service-
based Whois information, and network-based whois information.

Name Service-Based whois
Name service-based whois data provides a number of details about a domain.
These details include the registrant of the domain, the street address the domain
is registered to, and a contact number for the registrant.This data is supplied to
facilitate the communication between domain owners in the event of a problem.
This is the ideal method of handling problems that arise, although these days the
trend seems to be whining to the upstream provider about a problem first (which
is extremely bad netiquette). Observe the following information:

elliptic@ellipse:~$ whois cipherpunks.com

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered

with many different competing registrars. Go to http://www.internic.net

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 62

Classes of Attack • Chapter 2 63

for detailed information.

Domain Name: CIPHERPUNKS.COM

Registrar: ENOM, INC.

Whois Server: whois.enom.com

Referral URL: http://www.enom.com

Name Server: DNS1.ENOM.COM

Name Server: DNS2.ENOM.COM

Name Server: DNS3.ENOM.COM

Name Server: DNS4.ENOM.COM

Updated Date: 05-nov-2001

>>> Last update of whois database: Mon, 10 Dec 2001 05:15:40 EST <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and

Registrars.

Found InterNIC referral to whois.enom.com.

Access to eNom's Whois information is for informational

purposes only. eNom makes this information available "as is,"

and does not guarantee its accuracy. The compilation, repackaging,

dissemination or other use of eNom's Whois information in its

entirety, or a substantial portion thereof, is expressly prohibited

without the prior written consent of eNom, Inc. By accessing and

using our Whois information, you agree to these terms.

Domain name: cipherpunks.com

Registrant:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 63

64 Chapter 2 • Classes of Attack

PO Box 211206

Montgomery, AL 36121

US

Administrative:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

Billing:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

Technical:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

DOMAIN CREATED : 2000-11-12 23:57:56

DOMAIN EXPIRES : 2002-11-12 23:57:56

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 64

Classes of Attack • Chapter 2 65

NAMESERVERS:

DNS1.ENOM.COM

DNS2.ENOM.COM

DNS3.ENOM.COM

DNS4.ENOM.COM

In this example, you can see the contact information for the owner of the
Cipherpunks.com domain. Included are the name, contact number, fax number,
and street address of the registering party.

The whois database for name service also contains other information, some of
which could allow exploitation. One piece of information contained in name
service records is the domain name servers.This data can present a user with a
method to attack and potentially control a domain.

Another piece of information that is regularly abused in domain name
records is the e-mail address. In a situation where multiple people are adminis-
tering a domain, an attacker could use this information to launch a social engi-
neering attack. (Social engineering is a polite name given to the methods of getting
people to give you desired information you want. Other names for the tech-
niques used in the effort might include “lying a lot” and “taking advantage of
stupid people’s respect for impersonated authority figures”.) More often then not
though, this information is targeted by spammers. Companies such as Network
Solutions even sell this information to “directed marketing” firms (also know as
spam companies) to clutter your mail box with all kinds of rubbish, according to
Newsbytes article “ICANN To Gauge Privacy Concerns Over ‘whois’ Database”
available at www.newsbytes.com/news/01/166711.html.

Network Service-Based whois
Network service-based Whois data provides details of network management data.
This data can aid network and security personnel with the information necessary
to reach a party responsible for a host should a problem ever arise. It provides
data such as the contact provider of the network numbers, and in some situations
the company leasing the space. Observe the following whois information:

elliptic@ellipse:~$ whois -h whois.arin.net 66.38.151.10

GT Group Telecom Services Corp. (NETBLK-GROUPTELECOM-BLK-

3) GROUPTELECOM-BLK-3

66.38.128.0 - 66.38.255.255

Security Focus (NETBLK-GT-66-38-151-0) GT-66-38-151-0

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 65

66 Chapter 2 • Classes of Attack

66.38.151.0 - 66.38.151.63

To single out one record, look it up with "!xxx", where xxx is the

handle, shown in parenthesis following the name, which comes first.

The ARIN Registration Services Host contains ONLY Internet

Network Information: Networks, ASN's, and related POC's.

Please use the whois server at rs.internic.net for DOMAIN related

Information and whois.nic.mil for NIPRNET Information.

As you can see from this information, the address space from 66.38.151.0
through 66.38.151.63 is used by SecurityFocus.Additionally, this address space is
owned by GT Group Telecom.

This information can give an attacker boundaries for a potential attack. If the
attacker wanted to compromise a host on a network belonging to SecurityFocus,
the attacker would need only target the hosts on the network segment supplied
by ARIN.The attacker could then use a host on the network to target other
hosts on the same network, or even different networks.

Domain Name System
Domain Name System (DNS) is another service an attacker may abuse to gain
intelligence before making an attack on a network. DNS is used by every host on
the Internet, and provides a choke point through its design.We do not focus on
the problems with the protocol, but more on abusing the service itself.

A host of vulnerabilities have been discovered in the most widely deployed
name service resolving package on the Internet.The Berkeley Internet Name
Domain, or BIND, has in the past had a string of vulnerabilities that could allow
an attacker to gain remote administrative access.Also notable is the vulnerability
in older versions that allowed attackers to poison the DNS cache, fooling clients
into visiting a different site when typing a domain name. Let’s look at the
methods of identifying vulnerable implementations of DNS.

Digging
Dig is freely available—it’s distributed with BIND packages. It is a flexible com-
mand-line tool that can be used to gather information from DNS servers. Dig
can be used both in command-line and interactive modes.The dig utility is sup-
plied with many free operating systems and can be downloaded as part of the
BIND package from the Internet Software Consortium.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 66

Classes of Attack • Chapter 2 67

Dig can be used to resolve the names of hosts into IP addresses, and reverse-
resolve IP addresses into names.This can be useful, because many exploits do not
include the ability to resolve names, and need numeric addresses to function.

Dig can also be used to gather version information from name servers. In
doing so, an attacker may be able to gather information on a host and potentially
launch an attack. By identifying the version of a name server, we may be able to
find a name server that can be attacked and exploited to our gain (recall our dis-
cussion about versioning).

Consider the following example use of dig:

elliptic@ellipse:~$ dig @pi.cipherpunks.com TXT CHAOS version.bind

; <<>> DiG 8.2 <<>> @pi.cipherpunks.com TXT CHAOS version.bind

; (1 server found)

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUERY SECTION:

;; version.bind, type = TXT, class = CHAOS

;; ANSWER SECTION:

VERSION.BIND. 0S CHAOS TXT "8.2.1"

;; Total query time: 172 msec

;; FROM: ellipse to SERVER: pi.cipherpunks.com 192.168.1.252

;; WHEN: Mon Dec 10 07:53:27 2001

;; MSG SIZE sent: 30 rcvd: 60

From this query, we were able to identify the version of BIND running on
pi, in the cipherpunks.com domain.As you can see, pi is running a version of
BIND that is vulnerable to a number of attacks, one of which is NXT buffer
overflow discovered in 1999, and allows an attacker to gain remote access to the
vulnerable system with the privileges of BIND (typically run as root).

Loosely implemented name services may also yield more information than
expected. Utilities such as dig can perform other DNS services, such as a zone
transfer.A zone transfer is the function used by DNS to distribute its name ser-
vice records to other hosts. By manually pulling a zone transfer, an attacker can
gain valuable information about systems and addresses managed by a name server.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 67

68 Chapter 2 • Classes of Attack

nslookup
nslookup, short for Name Service Lookup, is another utility that can be handy. It
can yield a variety of information, both good and bad. It is also freely available
from the Internet Software Consortium.

nslookup works much the same way as dig, and like dig provides both a com-
mand line and interactive interface to work from. Upon use, nslookup will seek
out information on hosts through DNS and return the information. nslookup
can yield information about a domain that may be sensitive as well, albeit public.

For example, nslookup can be used to find information about a domain such
as the Mail Exchanger, or MX record.This can lead to a number of attacks
against a mail server, including attempting to spam the mail server into a DoS,
attacking the software to attempt to gain access to the server, or using the mail
server to spam other hosts if it permits relaying. Observe the following example:

elliptic@ellipse:~$ nslookup

Default Server: cobalt.speakeasy.org

Address: 216.231.41.22

> set type=MX

> cipherpunks.com.

Server: cobalt.speakeasy.org

Address: 216.231.41.22

cipherpunks.com preference = 10, mail exchanger = parabola.

cipherpunks.com

cipherpunks.com nameserver = DNS1.ENOM.COM

cipherpunks.com nameserver = DNS2.ENOM.COM

cipherpunks.com nameserver = DNS3.ENOM.COM

cipherpunks.com nameserver = DNS4.ENOM.COM

cipherpunks.com nameserver = DNS5.ENOM.COM

DNS1.ENOM.COM internet address = 66.150.5.62

DNS2.ENOM.COM internet address = 63.251.83.36

DNS3.ENOM.COM internet address = 66.150.5.63

DNS4.ENOM.COM internet address = 208.254.129.2

DNS5.ENOM.COM internet address = 210.146.53.77

Here, you can see the mail exchanger for the cipherpunks.com domain.
The host, parabola.cipherpunks.com, can then be tinkered with to gain more

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 68

Classes of Attack • Chapter 2 69

information. For example, if the system is using a version of Sendmail that allows
you to expand user accounts, you could find out the e-mail addresses of the
system administrators. It can also yield what type of mail transport agent software
is being used on the system, as in the following example:

elliptic@ellipse:~$ telnet modulus.cipherpunks.com 25

Trying 192.168.1.253...

Connected to 192.168.1.253.

Escape character is '^]'.

220 modulus.cipherpunks.com ESMTP Server (Microsoft Exchange Internet

Mail Service 5.5.2448.0) ready

As you can see, the mail server happily tells us what kind of software it is
(Microsoft Exchange). From that, you can draw conclusions about what type of
operating system runs on the host modulus.

Nmap
An attack to gain access to a host must be launched against a service running on
the system.The service must be vulnerable to a problem that will allow the
attacker to gain access. It is possible to guess what services the system uses from
some methods of intelligence gathering. It is also possible to manually probe
ports on a system with utilities such as netcat to see if connectivity can be made
to the service.

The process of gathering information on the available services on a system is
simplified by tools such as the Network Mapper, or Nmap. Nmap, as we previ-
ously mentioned, uses numerous advanced features when launched against a
system to identify characteristics of a host.These features include things such as
variable TCP flag scanning and IP response analysis to guess the operating system
and identify listening services on a host.

Nmap can be used to identify services on a system that are open to public
use. It can also identify services that are listening on a system but are filtered
through an infrastructure such as TCP Wrappers, or firewalling. Observe the fol-
lowing output:

elliptic@ellipse:~$ nmap -sS -O derivative.cipherpunks.com

Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)

Interesting ports on derivative.cipherpunks.com (192.168.1.237):

(The 1533 ports scanned but not shown below are in state: closed)

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 69

70 Chapter 2 • Classes of Attack

Port State Service

21/tcp open ftp

22/tcp open ssh

23/tcp filtered telnet

25/tcp open smtp

37/tcp open time

53/tcp open domain

80/tcp open http

110/tcp open pop-3

143/tcp open imap2

Remote operating system guess: Solaris 2.6 - 2.7

Uptime 11.096 days (since Thu Nov 29 08:03:12 2001)

Nmap run completed -- 1 IP address (1 host up) scanned in 60 seconds

Let’s examine this scan a piece at a time. First, we have the execution of Nmap
with the sS and O flags (options).These flags tell Nmap to conduct a SYN scan
on the host, and identify the operating system from the IP responses received.
Next, we see three columns of data. In the first column from the left to right, we
see the port and protocol that the service is listening on. In the second column,
we see the state of the state of the port, either being filtered (as is the telnet ser-
vice, which is TCP Wrapped), or open to public connectivity, like the rest.

Web Indexing
The next form of intelligence gathering we will mention is Web indexing, or what
is commonly called spidering. Since the early 90s, companies such as Yahoo!,
WebCrawler, and others have used automated programs to crawl sites, and index
the data to make it searchable by visitors to their sites.This was the beginning of
the Web Portal business.

Site indexing is usually performed by an automated program.These programs
exist in many forms, by many different names. Some different variants of these
programs are robots, spiders, and crawlers, all of which perform the same function
but have distinct and different names for no clear reason.These programs follow
links on a given Web site and record data on each page visited.The data is
indexed and referenced in a relational database and tied to the search engine.
When a user visits the portal, searching for key variables will return a link to the
indexed page.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 70

Classes of Attack • Chapter 2 71

However, what happens when sensitive information contained on a Web site is
not stored with proper access control? Because data from the site is archived, this
could allow an attacker to gain access to sensitive information on a site and gather
intelligence by merely using a search engine.As mentioned before, this is not a
new problem. From the present date all the way back to the presence of the first
search engines, this problem has existed. Unfortunately, it will continue to exist.

The problem is not confined to portals.Tools such as wget can be used to
recursively extract all pages from a site.The process is as simple as executing the
program with the sufficient parameters. Observe the following example:

elliptic@ellipse:~$ wget -m -x http://www.mrhal.com

--11:27:35-- http://www.mrhal.com:80/

=> `www.mrhal.com/index.html'

Connecting to www.mrhal.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 1,246 [text/html]

0K -> . [100%]

11:27:35 (243.36 KB/s) - `www.mrhal.com/index.html' saved [1246/1246]

Loading robots.txt; please ignore errors.

--11:27:35-- http://www.mrhal.com:80/robots.txt

=> `www.mrhal.com/robots.txt'

Connecting to www.mrhal.com:80... connected!

HTTP request sent, awaiting response... 404 Not Found

11:27:35 ERROR 404: Not Found.

--11:27:35-- http://www.mrhal.com:80/pics/hal.jpg

=> `www.mrhal.com/pics/hal.jpg'

Connecting to www.mrhal.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 16,014 [image/jpeg]

0K -> [100%]

11:27:35 (1.91 MB/s) - `www.mrhal.com/pics/hal.jpg' saved [16014/16014]

[…]

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 71

72 Chapter 2 • Classes of Attack

FINISHED --11:27:42--

Downloaded: 1,025,502 bytes in 44 files

We have denoted the trimming of output from the wget command with the
[…] symbol, because there were 44 files downloaded from the Web site
www.mrhal.com (reported at the end of the session). Wget was executed with the
m and x flags.The m flag, or mirror flag, sets options at the execution of wget to
download all of the files contained within the Web site www.mrhal.com by fol-
lowing the links.The x flag is used to preserve the directory structure of the site
when it is downloaded.

This type of tool can allow an attacker to index or mirror a site.Afterwards,
the attacker can make use of standard system utilities to sort through the data
rapidly. Programs such as grep will allow the attacker to look for strings that may
be of interest, such as “password,”“root,”“passwd,” or other such strings.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 72

Classes of Attack • Chapter 2 73

Summary
There are seven categories of attack, including denial of service (DoS), informa-
tion leakage, regular file access, misinformation, special file/database access,
remote arbitrary code execution, and elevation of privileges.

A DoS attack occurs when a resource is intentionally blocked or degraded by
an attacker. Local DoS attacks are targeted towards process degradation, disk space
consumption, or inode consumption. Network DoS attacks may be launched as
either a server-side or client-side attack (one means of launching a DoS attack
against Web browsers are JavaScript bombs). Service-based network DoS attacks
are targeted at a particular service, such as a Web server. System-directed network
DoS attacks have a similar goal to local DoS attacks; to make the system unus-
able. One way to accomplish a system-directed network DoS attack is to use
SYN flooding to till connection queues.Another is the smurf attack, which can
consume all available network bandwidth. Distributed denial of service (DDoS)
attacks are also system-directed network attacks; distributed flood programs such
as tfn and shaft can be used deny service to networks.

Information leakage is an abuse of resources that usually precludes attack.We
examined information leakage through secure shell (SSH) banners and found that
we can fingerprint services such as a Hypertext Transfer Protocol (HTTP) or File
Transfer Protocol (FTP) server using protocol specifications.The Simple Network
Management Protocol (SNMP) is an insecurely designed protocol that allows
easy access to information;Web servers can also yield information, through dot-
dot-slash directory traversal attacks.We discussed an hypothetical incident where
one Internet service provider (ISP) stole the passwd file of another to steal cus-
tomers, and we dispelled any myths about information leakage by identifying a
system as properly designed when it can cloak, and even disguise, its fingerprint.

Regular file access is a means by which an attacker can gain access to sensi-
tive information such as usernames or passwords, as well as the ability to change
permissions or ownership on files—permissions are a commonly overlooked
security precaution.We differentiated between single-user systems without file
access control and multiuser systems with one or multiple layers of access control;
Solaris Access Control Lists (ACL) and Role or Rule Based Access Control
(RBAC) are examples of additional layers of permissions.We discussed using
symbolic link attacks to overwrite files owned by other users.

Misinformation is defined as providing false data that may result in inade-
quate concern. Standard procedures of sending misinformation include log file
editing, rootkits, and kernel modules. Log file editing is a rudimentary means of

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 73

74 Chapter 2 • Classes of Attack

covering intrusion; the use of rootkits is a more advanced means by replacing
system programs; and kernel modules are an advanced, low-level means of com-
promising system integrity at the kernel level.

Special file/database access is another means to gain access to system
resources.We discussed using special files to gain sensitive information such as
passwords. Databases are repositories of sensitive information, and may be taken
advantage of through intermediary software, such as Web interfaces, or through
software problems such as buffer overflows. Diligence is required in managing
database permissions.

Remote arbitrary code execution is a serious problem that can allow an
attacker to gain control of a system, and may be taken advantage of without the
need for authentication. Remote code execution is performed by automated
tools. Note that it is subject to the limits of the program it is exploiting.

Elevation of privileges is when a user gains access to resources not previously
authorized.We explored an attacker gaining privileges remotely as an unprivi-
leged user, such as through an HTTP daemon running on a UNIX system, and
as a privileged user through a service such as an SSH daemon.We also discussed
the use of Trojan programs, and social engineering by an attacker to gain privi-
leged access to a host, and noted that a user on a local system may be able to use
these same methods to gain elevated privileges.

Vulnerability testing is a necessary and mandatory task for anybody involved
with the administration or security of information systems. One method of
testing is called proof of concept, which is used to prove the existence of a vulnera-
bility. Other methods include using exploit code to take advantage of the vulner-
ability, using automated security tools to test for the vulnerability, and using
versioning to discover vulnerable versions of software.

An intelligent attack uses research methods prior to an attack.Whois
databases can be used to gain more information about systems, domains, and net-
works. Domain Name System (DNS) tools such as dig can be used to gather
information about hosts and the software they use, as well as nslookup to identify
mail servers in a domain.We briefly examined scanning a host with Nmap to
gather information about services available on the host and the operating system
of the host. Finally, we discussed the use of spidering a site to gather information,
such as site layout, and potentially sensitive information stored on the Web.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 74

Classes of Attack • Chapter 2 75

Solutions Fast Track

Identifying and Understanding the Classes of Attack

There are seven classes of attacks: denial of service (DoS), information
leakage, regular file access, misinformation, special file/database access,
remote arbitrary code execution, and elevation of privileges.

DoS attacks can be leveraged against a host locally or remotely.

The gathering of intelligence through information leakage almost always
precedes attack.

Insecure directory and file permissions can allow local users to gain
access to information that may be sensitive to other users or the system.

Information on a compromised system can never be trusted and can
only again be trusted when the operating system has been restored from
a known secure medium (such as the vendor distribution medium).

Databases may be attacked either through interfaces such as the Web
or through problems in the actual database software, such as buffer
overflows.

Many remote arbitrary code execution vulnerabilities may be mitigated
through privilege dropping, change rooting, and non-executable stack
protection.

Privilege elevation can be exploited to gain remote unprivileged user
access, remote privileged user access, or local privileged user access.

Identifying Methods of Testing for Vulnerabilities

Vulnerability testing is a necessary part of ensuring the security of a
system.

“Proof of concept” is the best means of communicating any vulnerability,
because it helps determine where the problem is, and how to protect
against it.

Exploit code is one of the most common “proof of concept” methods.
Exploit code can be found in various repositories on the Internet.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 75

76 Chapter 2 • Classes of Attack

The use of automated security tools is common. Most security groups of
any corporation perform regularly scheduled vulnerability audits using
automated security tools.

Versioning can allow a busy security department to assess the impact of a
reported vulnerability against currently deployed systems.

Information from Whois databases can be used to devise an attack
against systems or to get contact information for administrative staff
when an attack has occurred.

Domain Name System (DNS) information can yield information about
network design.

Web spidering can be used to gather information about directory
structure or sensitive files.

Q: Can an attack be a member of more than one attack class?

A: Yes. Some attacks may fall into a number of attack classes, such as a DoS that
stems from a service crashing from invalid input.

Q: Where can I read more about preventing DDoS attacks?

A: Dave Dittrich has numerous papers available on this topic.These are available
on his Web site www.washington.edu/People/dad.

Q: How can I prevent information leakage?

A: A number of papers are available on this topic. Some types of leakage may be
prevented by the alteration of things such as banners or default error mes-
sages. Other types of leakage, such as protocol-based leakage, will be stopped
only by rewrite of the programs and the changing of standards.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_02.qxd 6/27/02 3:28 PM Page 76

Classes of Attack • Chapter 2 77

Q: Is preventing information leakage “security through obscurity?”

A: Absolutely not.There is no logical reason for communicating credentials of a
software package to users that should not be concerned with it. Stopping the
flow of information makes it that much more resource-intensive for an
attacker and increases the chances of the attacks being discovered.

Q: Where can I get exploit code?

A: Through full disclosure mailing lists such as Bugtraq (www.securityfocus.com)
or through exploit archives such as PacketStorm (www.packetstormsecurity.org)
or Church of the Swimming Elephant (www.cotse.com).

Q: How can I protect my Whois information?

A: Currently, there is little that you can do.You can always lie when you register
your domain, but you might have problems later when you need to renew.
Also, should you ever get into a domain dispute, having false registration
information won’t be likely to help your case.

Q: Can other information be gained through DNS digging?

A: Yes. Misconfigured name servers may allow zone transfers to arbitrary hosts,
which could yield information about network design.

www.syngress.com

224_HPXML_02.qxd 6/27/02 3:28 PM Page 77

224_HPXML_02.qxd 6/27/02 3:28 PM Page 78

Reviewing the
Fundamentals
of XML

Solutions in this chapter:

■ An Overview of XML

■ Well-Formed XML Documents

■ Transforming XML through XSLT

■ XPath

Chapter 3

79

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_03.qxd 6/27/02 3:31 PM Page 79

80 Chapter 3 • Reviewing the Fundamentals of XML

Introduction
XML is quickly becoming the universal protocol for transferring information
from site to site via HTTP.Whereas the HTML will continue to be the language
for displaying documents on the Internet, developers will find new and inter-
esting ways to harness the power of XML to transmit, exchange, and manipulate
data using XML.

XML offers, at heart, a very simple solution to a complex problem. It offers a
standard format for structuring data or information in a self-defined document
format.This way, the data are kept independent of the processes that will con-
sume the data. Obviously, the concept behind XML is nothing new. XML hap-
pens to be a proper subset of a massive specification named SGML developed by
the World Wide Web Consortium (W3C) in 1986.The W3C began to develop
the standard for XML in 1996 with the motivation that XML would be simpler
to use than SGML but will have more rigid structure than HTML. Since then,
many software vendors have implemented various features of XML technologies.
For example,Ariba has built its entire B2B system architecture based on XML,
many Web servers (such as WebLogic Server) use XML specifications for config-
uring various server-related parameters, Oracle has included necessary parsers and
utilities to develop business applications in its 8i/9i suites, and finally, the .NET
has also embraced the XML technology.

XML contains self-defined data in document format; so as a syntax it is plat-
form independent. It is also easy to transmit a document from one site to another
easily via HTTP. However, the applications of XML do not necessarily have to be
limited to conventional Internet applications only; it can be used to communicate
and exchange information in other contexts, too. For example, a Visual Basic
(VB) client can call a remote function by passing the function name and param-
eter values using an XML document.The server can return the result via a subse-
quent XML document.

An Overview of XML
Extensible Markup Language (XML) is fast becoming a standard for data
exchange in the next generation’s Internet applications. XML allows user-defined
tags that make XML document handling more flexible than the conventional
language of the Internet, the HyperText Markup Language (HTML).The fol-
lowing section touches on some of the basic concepts of XML.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 80

www.syngress.com

The Goals of XML
Ten goals were defined by the creators of XML, which give definite direction as
to how XML is to be used.

■ XML shall be compatible with SGML.

■ It shall be easy to write programs that process XML documents.

■ The number of optional features in XML is to be kept to the absolute
minimum; ideally, zero.

■ XML documents should be human-legible and reasonably clear.

■ The XML design should be prepared quickly.

■ The design of XML shall be formal and concise.

■ XML documents shall be easy to create.

■ Terseness in XML markup is of minimal importance.

■ XML shall be straightforwardly usable over the Internet.

■ XML shall support a variety of applications.

In other words, XML is for sharing information easily via a nonproprietary
format over the Internet. XML is made for everybody, to be used by everybody,
for almost anything. In becoming the universal standard, XML has faced and met
the challenge of convincing the development community that it is a good idea
prior to another organization developing a different standard.The way in which
XML achieved this was by being easy to understand, easy to use, and easy to
implement.

What Does an XML Document Look Like?
The major objective is to organize information in such a way so that human
beings can read and comprehend the data and its context; in addition, the docu-
ment itself is technology and platform independent (nonproprietary, remember?).
Consider the following text file:

F10 Shimano Calcutta 47.76

F20 Bantam Lexica 49.99

Obviously, it is difficult to understand exactly what information the preceding
text file contains.

Reviewing the Fundamentals of XML • Chapter 3 81

224_HPXML_03.qxd 6/27/02 3:31 PM Page 81

82 Chapter 3 • Reviewing the Fundamentals of XML

Now consider the following XML document (shown in Figure 3.1).The
code is available in the Catalog1.xml file on the companion Solutions Web site for
the book (www.syngress.com/solutions).

Figure 3.1 Catalog1.xml

<?xml version="1.0"?>

<Catalog>

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product>

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

The document in Figure 3.1 is XML’s way of representing data contained in
a product catalog. It has many advantages: it is easily readable and compre-
hendible, self-documented, and technology-independent.

Creating an XML Document
We can use Notepad or any other text editor to create an XML document.
Microsoft’s proprietary VS.NET offers an array of tools packaged in the XML
Designer to work with XML documents.We will demonstrate the usages of the
XML Designer later. Right now, go ahead and open the Catalog1.xml file from
the Solutions Web site for the book (www.syngress.com/solutions) in IE 5.0 or
later.You will see that the IE displays the document in a very interesting fashion
with drill-down features as shown in Figure 3.2.

Creating an XML Document
in VS.NET XML Designer
It is very easy to create an XML document in VS.NET by following these steps:

1. From the Project menu, select Add New Item.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 82

Reviewing the Fundamentals of XML • Chapter 3 83

2. Select the XML File icon in the Add New Item dialog box.

3. Enter a name for your XML file.

4. The VS.NET will automatically load the XML Designer and display the
XML document template.

5. Finally, enter the contents of your XML document.

The system will display two tabs for two views: the XML view and the Data
view of your XML document.These views are shown in Figures 3.3 and 3.4,
respectively.The XML Designer has many other tools to work with, which we
will introduce later in this chapter

www.syngress.com

Figure 3.2 Catalog1.xml Displayed in IE

Figure 3.3 The XML View of an XML Document in VS .NET XML Designer

224_HPXML_03.qxd 6/27/02 3:31 PM Page 83

84 Chapter 3 • Reviewing the Fundamentals of XML

An XML document contains a variety of constructs (also referred to as
elements). Some of the frequently used ones include:

Declaration Each XML document can have the optional entry
<?xml version=“1.0”?>. This standard entry is used to identify the doc-
ument as an XML document conforming to the W3C recommendation
for version 1.0.

Comment An XML document can contain HTML-style comments
such as <!--Catalog data -->.

Schema or Document Type Definition (DTD) In certain situa-
tions, a schema or DTD might precede the XML document.A schema
or DTD contains the rules about the elements of the document. For
example, we can specify a rule like “A product element must have a
ProductName, but a ListPrice element is optional.”

Elements An XML document is mostly comprised of elements.An ele-
ment has a start-tag and an end-tag. In between the start-tag and end-
tag, we include the content of the element.An element might contain a
piece of character data, or it might contain other elements. For example,
in the Catalog1.xml, the Product element contains three other elements:
ProductId, ProductName, and ListPrice. On the other hand, the first
ProductName element contains a piece of character data such as Shimano
Calcutta.

Root Element In an XML document, one single main element must
contain all other elements inside it.This specific element is often called
the root element. In our example, the root element is the Catalog element.
The XML document can contain many Product elements, but there must
be only one instance of the Catalog element.

www.syngress.com

Figure 3.4 The Data View of an XML Document in VS.NET XML Designer

224_HPXML_03.qxd 6/27/02 3:31 PM Page 84

Reviewing the Fundamentals of XML • Chapter 3 85

Attributes Okay, we agree that we didn’t tell you the entire story in
our first example. So far, we have said that an element can contain other
elements, or data, or both. Besides these, an element can also contain
zero or more so-called attributes.An attribute is just an additional way to
attach a piece of data to an element.An attribute is always placed inside
the start-tag of an element, and we specify its value using the name=value
pair protocol.

You can find a more complete list of XML’s constructs at www.w3c.org/xml.
Let us revise our Catalog1.xml and include some attributes to the Product ele-

ment. Here, we will assume that a Product element will have two attributes, Type
and SupplierId.As shown in Figure 3.4, we will simply add the Type=“Spinning
Reel” and SupplierId=“5” attributes in the first product element. Similarly, we will
also add the attributes to the second product element.The code shown in Figure
3.5 is also available on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 3.5 Catalog2.xml

<?xml version="1.0"?>

<Catalog>

<Product Type="Spinning Reel" SupplierId="5">

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product Type ="Baitcasting Reel" SupplierId="3">

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

Let us not get confused with the attribute label! An attribute is just an addi-
tional way to attach data to an element. Rather than using the attributes, we
could have easily modeled them as elements as follows:

<Product>

<ProductID>F10</ProductID>

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 85

86 Chapter 3 • Reviewing the Fundamentals of XML

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

<Type>Spinning Reel</Type>

<SupplierId>5</SupplierId>

</Product>

Alternatively, we could have modeled the entire product element to be com-
prised of only attributes as follows:

<Product ProductID="F10" ProductName="Shimano Calcutta"

ListPrice = "47.76" Type="Spinning Reel" SupplierId= "5" >

</Product>

At the initial stage, the necessity of an attribute might appear questionable.
Nevertheless, they exist in the W3C recommendation, and in most situations
become handy in designing otherwise complex XML-based systems.

Empty Element
We have already mentioned a couple of times that an element can contain other
elements, or data, or both. However, an element does not necessarily have to have
any of these; if needed, it can be kept totally empty. For example, observe the fol-
lowing element:

<Input type="text" id="txtCity" runat="server" />

The preceding element is a correct XML element.The name of the element
is Input. It has three attributes: type, id, and runat. However, it does not contain
any subelements, nor does it contain any explicit data. Hence, it is an empty ele-
ment.We can specify an empty element in one of two ways:

■ Just before the > symbol of the start-tag, add a slash /, as shown in the
preceding code.

■ Terminate the element using a standard end-tag as follows:

<Input type="text" id="txtCity" runat="server" ></Input>

Examples of empty elements include
, <Pup Age=1 />,
<Story></Story>, and <Mail/>.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 86

Reviewing the Fundamentals of XML • Chapter 3 87

Structure of an XML Document
In an XML document, the data are stored in a hierarchical fashion.A hierarchy is
also referred to as a tree in data structures. Conceptually, the data stored in the
Catalog1.xml can be represented as a tree diagram as shown in Figure 3.6. Please
note that certain element names and values have been abbreviated in the tree dia-
gram, mostly to conserve real estate on the page.

In Figure 3.6, each rectangle is a node in the tree. Depending on the context,
a node can be of different types. For example, each product node in the figure is
an “element-type” node. Each product node happens to be a child node of the cat-
alog node.The catalog node can also be termed as the parent of all product nodes.
Each product node, in turn, is the parent of its PId, PName, and Price nodes.

In this particular tree diagram, the bottom-most nodes are not of element-type,
but rather of text-type.There could have been nodes for each attribute and its
value too, although we have not shown those in this diagram.

The Product nodes are the immediate descendants of the Catalog node. Both
Product nodes are siblings of each other. Similarly, the PId, PName, and Price nodes
under a specific product node are also siblings of each other. In short, all children
of a parent are called siblings. Figure 3.6 illustrates these terms.

Well-Formed XML Documents
At first sight, an XML document might appear to be like a standard HTML doc-
ument with additional user-given tag names. However, the syntax of an XML
document is much more rigorous than that of an HTML document.The HTML

www.syngress.com

Figure 3.6 The Tree Diagram for Catalog1.xml

Catalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

The Root: Also Known As:
Document.Element

Siblings

First Child of Catalog

A Text-Type Node

224_HPXML_03.qxd 6/27/02 3:31 PM Page 87

88 Chapter 3 • Reviewing the Fundamentals of XML

document allows us to spell many tags incorrectly (the browser will just ignore
it), and it is a free world out there for people who are not case-sensitive. For
example, we can use <BODY> and </Body> in the same HTML document
without getting into trouble.When developing an XML document, however, cer-
tain rules must be followed. Some basic rules, among many others, include:

■ The document must have exactly one root element.

■ Each element must have a start-tag and end-tag.

■ The elements must be properly nested.

■ The first letter of an attribute’s name must begin with a letter or with
an underscore.

■ A particular attribute name can appear only once in the same start-tag.

An XML document that is syntactically correct is often called a well-formed
document. If the document is not well-formed, Internet Explorer will provide an
error message. For example, the following XML document will receive an error
message, when opened in Internet Explorer, just because of the case sensitivity of
the tag <product> and </Product>.

<?xml version="1.0"?>

<product>

<ProductID>F10</ProductID>

</Product>

Transforming XML through XSLT
Extensible Stylesheet Language Transformation (XSLT) is the transformation
component of the XSL specification by the W3C (www.w3.org/Style/XSL).
It is essentially a template-based declarative language that can be used to trans-
form an XML document to another XML document, or to documents of other
types (e.g., HTML and text).We can develop and apply various XSLT templates
to select, filter, and process various parts of an XML document. In .NET, we
can use the Transform() method of the XslTransform class to transform an XML
document.

Internet Explorer (5.5 and later) has a built-in XSL transformer that automat-
ically transforms an XML document to an HTML document.That is how, when
we open an XML document in IE, it displays the data using a collapsible list

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 88

Reviewing the Fundamentals of XML • Chapter 3 89

view. However, Internet Explorer cannot be used to transform an XML docu-
ment to another XML document. Now, why would we need to transform an
XML document to another XML document? Well, suppose that we have a very
large document that contains our entire catalog’s data.We want to create another
XML document from it, which will contain only the productId and productNames
of those products that belong to the “Fishing” category.We would also like to
sort the elements in ascending order of the unit price. Further, we might want to
add a new element in each product, such as “Expensive” or “Cheap,” depending
on the price of the product.To solve this particular problem, we can either
develop relevant codes in a programming language such as C#, or we can use
XSLT to accomplish the job. XSLT is a much more convenient way to develop
the application, because XSLT has been developed exclusively for these types of
scenarios.

Since the majority of XML/XSLT transformations take place online, we will
be using ASP.NET with VB.NET as our programming language to provide the
following example. Before we can transform a document, we need to provide the
transformer with the instructions for the desired transformation of the source
XML document.These instructions can be coded in XSL.We have illustrated this
process in Figure 3.7.

The following example will apply XSLT to transform an XML document to
an HTML document.We know that IE can automatically transform an XML
document to a HTML document and display it on the screen in collapsible list
view. However, in this particular example, we do not want to display all of our
data that way; we want to display the filtered data in tabular form.Thus, we will
transform the XML document to an HTML document to our choice (and not
to IE’s choice).The transformation process will select and filter some XML data
to form an HTML table.

www.syngress.com

Figure 3.7 XSL Transformation Process

XML Source File

XSL Instructions

.NET XSL
Transformer

Target File

• HTML
• XML
• Text

224_HPXML_03.qxd 6/27/02 3:31 PM Page 89

90 Chapter 3 • Reviewing the Fundamentals of XML

We will apply XSLT to extract the account information for Ohio customers
from the Bank3.xml file shown in Figure 3.8, which is also available on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.8 Bank3.xml file

<Bank>

<Account AccountNo="A1112">

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

<Account AccountNo="A2564">

<Name>Misty Bishop</Name>

<Balance>1245.78</Balance>

<State>OH</State>

</Account>

<Account AccountNo="A5689">

<Name>Catherine Jones</Name>

<Balance>1458.11</Balance>

<State>OH</State>

</Account>

</Bank>

The extracted data will be finally displayed in an HTML table.The output of
the application is shown in Figure 3.9.

www.syngress.com

Figure 3.9 Transforming an XML Document into an HTML Document

224_HPXML_03.qxd 6/27/02 3:31 PM Page 90

Reviewing the Fundamentals of XML • Chapter 3 91

If we need to use XSLT, we must first develop the XSLT style sheet (i.e.,
XSLT instructions).We have saved our style sheet in a file named XSLT1.xsl.
In this style sheet, we have defined a template as <xsl:template match=“/”> …
</xsl:template>. The match=“/” will result in the selection of nodes at the root
of the XML document. Inside the body of this template, we have first included
the necessary HTML elements for the desired output.

The “<xsl:for-each select=Bank/Account[State=‘OH’] >” tag is used to select all
Account nodes for those customers who are from “OH”.The value of a node can
be shown using a <xsl:value-of select= attribute or element name>. In case of an
attribute, its name must be prefixed with an @ symbol. For example, we are dis-
playing the value of the State node as <xsl:value-of select=“State”/>. The com-
plete listing of the XSLT1.xsl file is shown in Figure 3.10, and is available on the
companion Solutions Web site for the book (www.syngress.com/solutions). In the
aspx file, we have included the following asp:xml control:

<asp:xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

While defining this control, we have set its DocumentSource attribute to
“Bank3.xml,” and its TransformSource attribute to XSLT1.xsl.The complete code
for the aspx file, named XSLT1.aspx, is shown in Figure 3.11, and is available on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.10 XSLT1.xsl

<?xml version="1.0" ?>

<!-- Chapter 4\XSLT1.xsl -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<h4>Accounts</h4>

<table border="1" cellpadding="5">

<thead><th>Acct Number</th><th>Name</th>

<th>Balance</th><th>State</th></thead>

<xsl:for-each select="Bank/Account[State='OH']" >

<tr align="center">

<td><xsl:value-of select="@AccountNo"/></td>

<td><xsl:value-of select="Name"/></td>

www.syngress.com

Continued

224_HPXML_03.qxd 6/27/02 3:31 PM Page 91

92 Chapter 3 • Reviewing the Fundamentals of XML

<td><xsl:value-of select="State"/></td>

<td><xsl:value-of select="Balance"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Figure 3.11 XSLT1.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:Xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

</form></body></html>

XSL Use of Patterns
Pattern matching occurs to define which XML elements belong to which XSL
templates.To see an illustration of this function, look at the following examples of
an XML document and an XSL style sheet.We used patterns in XSLT1.xsl to
determine the location of the XML elements within Bank3.xml. Let’s look at
another, simpler example of patterns to better understand what they are. Figure
3.12 is an XML document containing some product information.

Figure 3.12 XML Product Information

<?xml version="1.0">

<Products>

<Product>

<ProductID>1001</ProductID>

<ProductName>Baseball Cap</ProductName>

<ProductPrice>$12.00</ProductPrice>

www.syngress.com

Figure 3.10 Continued

Continued

224_HPXML_03.qxd 6/27/02 3:31 PM Page 92

Reviewing the Fundamentals of XML • Chapter 3 93

</Product>

<Product>

<ProductID>1002</ProductID>

<ProductName>Tennis Visor</ProductName>

<ProductPrice>$10.00</ProductPrice>

</Product>

</Products>

Now let’s look at Figure 3.13 to see the XSL patterns used to transform our
XML to Figure 3.14, the code for Figure 3.13 (products.xsl) can be found on the
Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.13 XSL Style Sheet for Product Information (products.xsl)

<?xml version="1.0">

<xsl:template xmlns:xsl="uri.xsl">

<HTML>

<HEAD>

<TITLE>Product list</TITLE>

</HEAD>

<BODY>

<TABLE cellpadding="3" cellspacing="0" border="1">

<xsl:repeat for="Products/Product>

<TR>

<TD>

<xsl:get-value for="ProductName"/>

</TD>

<TD>

<xsl:get-value for="ProductPrice">

</TD></TR>

</xsl:repeat>

</TABLE>

</BODY>

</HTML>

</xsl:template>

www.syngress.com

Figure 3.12 Continued

224_HPXML_03.qxd 6/27/02 3:31 PM Page 93

94 Chapter 3 • Reviewing the Fundamentals of XML

Figure 3.14 XML Product Info HTML Source Output

<HTML>

<HEAD>

<TITLE>Product list</TITLE>

</HEAD>

<BODY>

<TABLE cellpadding="3" cellspacing="0" border="1">

<TR>

<TD>

Baseball Cap

</TD>

<TD>

$12.00

</TD></TR>

<TR>

<TD>

Tennis Visor

</TD>

<TD>

$10.00

</TD></TR>

</TABLE>

</BODY>

</HTML>

As you can see, you can use a combination of XML documents and XSL style
sheets to transform your data into HTML.Why do this at all, you might ask? It
does seem like a lot more work than just generating HTML at runtime on the
server.Well, it is more work, but the added benefits are worth it.Typically, your
Web application will generate XML documents at runtime instead of HTML
documents.The separation of data from display allows for parallel development of
the presentation and business services of a Web application.This also reduces the
friction between your Web developers and your component developers, as they
tend to step on each other’s toes a bit less.Also, you can use different style sheets
to transform different HTML documents for different browsers, in an effort to uti-
lize the additional functionality provided by those browsers.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 94

Reviewing the Fundamentals of XML • Chapter 3 95

XPath
XPath is another XML-related technology that has been standardized by the
W3C. XPath is a language used to query an XML document for a list of nodes
matching a given criteria.An XPath expression can specify both location and a
pattern to match.You can also apply Boolean operators, string functions, and arith-
metic operators to XPath expressions to build extremely complex queries against
an XML document. XPath also provides functions to do numeric evaluations such

www.syngress.com

Debugging XSL
The interaction of a style sheet with an XML document can be a compli-
cated process, and, unfortunately, style sheet errors can often be cryptic.
Microsoft has an HTML-based XSL debugger you can use to walk through
the execution of your XSL. You can also view the source code to make your
own improvements. One can only assume that the site www.msdn
.microsoft.com/downloads/samples/internet/xml/xsl_debugger/default.asp
is best viewed with Internet Explorer 5.0.

The following list contains examples of style sheet error messages
you might run into when using Microsoft’s XML Parser 3.0:

Error Message Description

Named template You are trying to call or apply a style
‘<template-name>’ does sheet by name that does not exist.
not exist in the style sheet. Remember that XML is case sensitive.

Make sure that the style sheet you are
attempting to reference exists and is
the correct case.

End-tag ‘<tag-name>’ does Your XSL style sheet is not well-formed.
not match the start-tag Check your HTML to ensure that it is
‘<different-tag-name>’. well-formed and that all your elements

either are closed or are specified as
empty tags.

The character ‘<’ cannot be Typically, this error results from a
used in an attribute value. missing “ within an attribute list of an

element.

Debugging…

224_HPXML_03.qxd 6/27/02 3:31 PM Page 95

96 Chapter 3 • Reviewing the Fundamentals of XML

as summations and rounding.The full W3C XPath specification can be found at
www.w3.org/TR/xpath.The following are some of the capabilities of the XPath
language:

■ Find all children of the current node

■ Find all ancestor elements of the current context node with a
specific tag

■ Find the last child element of the current node with a specific tag.

■ Find the nth child element of the current context node with a
given attribute.

■ Find the first child element with a tag of <tag1> or <tag2>.

■ Get all child nodes that do not have an element with a given attribute.

■ Get the sum of all child nodes with a numeric element.

■ Get the count of all child nodes.

The preceding list just scratches the surface of the capabilities available using
XPath.Again, the .NET framework provides support for XPath queries against
XML DOM documents and read-only XPath documents.We will be working
with XPath throughout the book by using its respective System.XML classes.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 96

Reviewing the Fundamentals of XML • Chapter 3 97

Summary
XML has emerged as the Web standard for representing and transmitting data
over the Internet.The W3C has worked to establish standards for XML and
related technologies, including XML DOM, XPath, XSL, and XML schemas.
XML DOM is an API that is used to create, modify, and traverse XML docu-
ments. XPath is a language that is used to query XML documents. XSL translates
XML documents from one format to another. XML schemas define the structure
and data types of the nodes in an XML document.All of these technologies are
industry standards backed by the W3C. Microsoft has taken all of these standards
and packaged them into their .NET architecture. Here, we have focused heavily
on the System.xmL class, where can be found all of the necessary support for cre-
ating, reading, editing, and working with XML, Schemas, XPath, and limited
XSL.This chapter was meant to be just a review of XML so that, as we look
through the rest of the chapters, you will have a fresh memory of XML against
which to reference.

Solutions Fast Track

An Overview of XML

XML stands for eXtensible Markup Language. It is a subset of a larger
framework named SGML.The W3C developed the specifications for
SGML and XML.

XML provides a universal way for exchanging information between
organizations.

XML cannot be singled out as a standalone technology. It is actually a
framework for exchanging data. It is supported by a family of growing
technologies such as XML parsers, XSLT transformers, XPath, XLink,
and schema generators.

Well-Formed XML

Valid XML should be well-formed, it is a good habit to get into.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 97

98 Chapter 3 • Reviewing the Fundamentals of XML

There are two ways to provide validation for XML:Through schema and
DTD.

Schemas allow for greater flexibility and precision compared to DTD.

You can use VS.NET to generate a schema for your XML file.

Transforming an XML Document Using XSLT

You can use XSLT (XML Style Sheet Language Transformation) to
transform an XML document to another XML document, or to
documents of other types (e.g., HTML and text).

XSLT is a template-based declarative language.We can develop and
apply various XSLT templates to select, filter, and process various parts
of an XML document.

You can use the Transform() method of XslTransform class to transform an
XML document.

XPath

XPath is another W3 recommendation that acts as a query language for
XML.

XPath uses pattern-matching with expressions, just like XSLT, but with
more support and functionality.

XPath is not used to transform XML, but rather to facilitate the
searching and querying of data.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 98

Reviewing the Fundamentals of XML • Chapter 3 99

Q: How do I know when to use an element versus an attribute when defining
the structure of my XML?

A: It is very hard to define catchall rules to determine when to use an element
versus an attribute. Remember, though, that you can do very little validation
with attributes other than making sure that they exist. For the most part, if
there is any doubt, use an element to describe your content.

Q: Are there any XML editors out there?

A: Yes, quite a few, one of which is XML Notepad by Microsoft, which is
not very good.The one we personally prefer to use is XML Spy
(www.xmlspy.com).You might have a little learning curve with the user
interface, but it is by far the best XML editor available when considering
price. Sometimes, though, nothing beats Notepad when you need something
down and dirty.

Q: Do I always have to define a schema for my XML document?

A: No, you don’t always need a schema. Schemas are great for when you have to
do validation—typically when exchanging XML documents over the
Internet. Performing validation all the time might seem like a great idea, but
it is a very expensive operation that can bog down a Web server.When
shooting out XML to the Web, you typically don’t need a schema, although it
is a great way to document your XML.

Q: How can I use XSL to make my applications completely browser independent?

A: XSL is a tool you can use to transform XML to HTML.You can create sev-
eral style sheets. Each can be especially suited for a particular browser, and
depending on the browser of the client, you can transform the XML using
the respective style sheet.This not only allows you to support Netscape and

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_03.qxd 6/27/02 3:31 PM Page 99

100 Chapter 3 • Reviewing the Fundamentals of XML

Internet Explorer, but also allows you to support almost any Internet-enabled
device, from handhelds to cell phones.

Q: What W3C level of support is provided in the XML classes supplied with the
.NET Framework?

A: The XmlDataDocument class supports W3C DOM Core Level 1 and Core
Level 2 specifications.The XmlSchema class supports W3C XML Schemas
for Structures and the XML Schemas for Data Types specifications.The
XslTransform class supports the XSLT 1.0 specification. See the W3C Web
site for details on the specifications at www.w3c.org.

www.syngress.com

224_HPXML_03.qxd 6/27/02 3:31 PM Page 100

Document Type: The
Validation Gateway

Solutions in this chapter:

■ Document Type Definitions and Well-
Formed XML Documents

■ Schema and Valid XML Documents

■ Learning About Plain-Text Attacks

■ Understanding How Validation Is
Processed in XML

Chapter 4

101

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_04.qxd 6/27/02 3:33 PM Page 101

102 Chapter 4 • Document Type: The Validation Gateway

Introduction
The document type definition (DTD) and schema are concepts central to ensuring
that an XML document is correct.The two facilities are related in many ways, yet
each has a role to play in verifying that an XML document will do what you
intend. Making proper use of DTDs and schemas helps free the programmer to
concentrate on data structure design rather than worrying about whether typo-
graphical and form errors will slow the development effort.

In this chapter, we first consider the DTD and schema data road maps that
XML provides us.We look at how DTDs and schemas differ and how they can
be used together to ensure a document’s correctness.We then go on to examine
the general plain-text attack, and we finish the chapter with some ideas on what
to look for when validating XML.

Validation of the XML document and of the messages going to that docu-
ment is the first line of defense in hack proofing XML.The same properties that
make XML a powerful language for defining data across systems make it vulner-
able to attacks. More important, since many firewalls will pass XML data without
filtering, a poorly constructed and unvalidated document can constitute a serious
system-level vulnerability.

Document Type Definitions and
Well-Formed XML Documents
DTDs are structural validation tools for XML documents. Referenced DTDs can
describe characteristics of attributes, elements, and entities that are used in an XML
document.The characteristics described include the content, quantity, and structure
of each item. DTDs can be part of an XML document, or they can be external to
the document that uses them. DTDs can be proprietary descriptions of data struc-
tures, they can be part of specifications used between business partners, or they can
be standard documents used by XML developers around the world.

Before a DTD can be used to validate whether a document is well formed,
the DTD must be declared.A DTD declaration for a simple catalog entry might
look like this:

<?xml version="1.0"?>

<!DOCTYPE catalog [

<!ELEMENT Catalog (Product*)>

<!ELEMENT Product (ProductID*, ProductName*, ListPrice*)>

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 102

www.syngress.com

<!ELEMENT ProductID (#PCDATA)>

<!ELEMENT ProductName (#PCDATA)>

<!ELEMENT ListPrice (#PCDATA)>

<!ENTITY comment_outofstock "This item is out of stock.">

]>

This section of DTD code indicates that a catalog may have any number of
product entries, though it is not required to have even one. Each product may
(but is not required to) have a ProductID, ProductName, and ListPrice, each of
which is character data. In addition, a literal entity is defined that always contains
a message noting when the product is out of stock. Note that although the DTD
can constrain an element to contain character data, it does not limit that element
to any particular arrangement of numbers, letters, or control characters unless it’s
defining a literal string translation for the entity name.As we’ll see later in this
chapter, schemas allow for far finer control than DTDs in these contexts.

The previous example could define the same information in a slightly dif-
ferent structure by defining attributes to the element Product. Created in this way,
the DTD would look like this:

<?xml version="1.0"?>

<!DOCTYPE catalog [

<!ELEMENT Catalog (Product*)>

<!ELEMENT Product EMPTY>

<!ATTLIST Product ProductID CDATA #REQUIRED>

ProductName CDATA #REQUIRED>

ListPrice CDATA #REQUIRED>

<!ENTITY comment_outofstock "This item is out of stock.">

]>

This DTD says that the element Catalog has one subelement, Product.There
can be any number of Products, including 0. Product has no subelements but has
three attributes:

■ ProductID

■ ProductName

■ ListPrice

Document Type: The Validation Gateway • Chapter 4 103

224_HPXML_04.qxd 6/27/02 3:33 PM Page 103

104 Chapter 4 • Document Type: The Validation Gateway

These three attributes must have values if a Product element exists.The infor-
mation defined is the same in both instances, but there are subtle differences in
the way in which the data is structured and in the control of child data by the
parent.

NOTE

A DTD is not written in the syntax of an XML document.

Looking at the simple DTDs we’ve used as examples, you’ll notice that struc-
ture of the language differs from normal XML syntax.This means that a DTD
document cannot be validated by an XML-validating parser. One of the reasons
schema were developed was to rid XML of the need for two different grammars,
one for XML documents and one for the tool used to give them structure and
validity.

DTDs can be either internal (found within the XML document itself) or
external (residing on a server accessible by the document). External DTDs are
common and frequently used as a means of enforcing a particular data structure
or stylistic consistency among documents created by different departments or
partner entities. Referencing an external DTD requires the use of an external
declaration of the form:

<!DOCTYPE catalog SYSTEM "http://tempuri.org/Catalog1.dtd">

Several key declarations and attributes cover the vast majority of statements
found in DTDs, whether internal or external.Table 4.1 shows the most impor-
tant attribute types and their uses.Table 4.2 provides the most useful DTD ele-
ment declarations and qualities.Table 4.3 offers the most frequently used DTD
attributes and their definitions.

Table 4.1 DTD Attribute Types and Uses

Attribute Attribute
Type Use Characteristics

CDATA <!ATTLIST name CDATA> Character data. Can contain
characters (<), name references
(<), or numeric references
(&60;)

www.syngress.com

Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 104

Document Type: The Validation Gateway • Chapter 4 105

ENTITY <!ENTITY photo1 SYSTEM Reference to an entity that will
“c:\photo1.jpg”> not be parsed. Graphics or mul-

timedia files are often refer-
enced by ENTITY declarations.

Enumeration <!ATTLIST brick finish (new | A list of attributes. When sepa-
tumbled) #REQUIRED> rated by a pipe (|), the

attributes must be taken by
the element.

ID <!ATTLIST Hammer SKU ID The attribute value must be a
#REQUIRED> legal XML name. It must also be

unique within the document.
This is similar to the way key
attributes are used in databases.

IDREF <!ATTLIST Hardware The attribute value is the ID of
HammerSKU IDREF another element. It must be a
#REQUIRED> precise match (remembering

that attributes are case sensi-
tive). This attribute is used to
call the IDs declared with the ID
attribute.

NMTOKEN <!ATTLIST wrench NMTOKEN The attribute value must be a
#REQUIRED> legal XML name. In this case,

the name has no special func-
tion or power; it functions pri-
marily as a label. This can be
useful when you want to pass
information through the XML
document to a programming
language such as Java.

NOTATION <!ATTLIST graphictype Another way of indicating a file
NOTATION #REQUIRED> or other resource, such as multi-

media content, that will not be
parsed.

www.syngress.com

Table 4.1 Continued

Attribute Attribute
Type Use Characteristics

224_HPXML_04.qxd 6/27/02 3:33 PM Page 105

106 Chapter 4 • Document Type: The Validation Gateway

Table 4.2 DTD Element Declarations and Qualities

Element
Declarations Declaration Qualities

#PCDATA Parsed character data. Similar to the CDATA attribute type.
Contents must be only characters

ANY Indicates that the element can contain data of any type.
Choices The element can contain any of a list of child elements. Child

elements separated by commas may all be present. When
child elements are separated by pipes (|), one or another
may be present, but not all.

Table 4.3 DTD Attributes and Their Definitions

Attribute
Defaults Attribute Definitions

#Fixed The attribute will have the value defined in the declaration.
The value cannot be changed. This becomes a constant value
throughout the application’s operation

#Implied An optional attribute. The defined element can be left blank
with no adverse effects.

Literal The attribute has a beginning, or default, value listed in the
declaration. The value can be changed by input or application
activity.

#Required A value must be assigned to the attribute.

Schema and Valid XML Documents
For an XML document to function properly, it must be well formed and valid,
two distinct descriptions for two quite separate qualities.A well-formed XML
document might not be a valid XML document, but an XML document that is
not well-formed cannot be valid.A well-formed XML document follows certain
rules about root tags, start and end tags, elements and attributes, and legal charac-
ters. Well-formed describes the structure of the document, not its content.A valid
XML document, on the other hand, conforms to the rules specified in its DTD
or schema.

DTDs and schemas are actually two different ways to specify the rules about
the contents of an XML document.The DTD has a longer history and more

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 106

Document Type: The Validation Gateway • Chapter 4 107

stable standardization but has several significant limitations compared to the
schema. First, a DTD document does not have to be coded in XML.That means
that a DTD is itself not an XML document. Second, the data types available to
define the contents of an attribute or element are very limited in DTD.A schema
not only defines the structure of the data described by a document; it allows the
developer to define the specific contents of the data structure.

Both DTDs and schemas may be used within a single XML document, but
the control allowed by the schema makes it more valuable tool than a DTD for
securing the data and messages defined by the document.This is why we focus
more attention on the schema specification in this chapter.The W3C has put for-
ward the candidate proposal for the standard schema specification (www.w3.org/
XML/Schema.html#dev).

A schema is simply a set of predefined rules that describe the data contents of
an XML document. Conceptually, a schema is very similar to the definition of a
relational database table. In an XML schema, we define the structure of an XML
document, its elements, the data types of the elements and associated attributes,
and most important, the parent/child relationships among the elements.We can
develop a schema in many different ways. One way is to enter the definition
manually using Notepad.We can also develop schema using visual tools such as
VS.NET or XML Authority. Many automated tools can also generate a rough-
cut schema from a sample XML document (similar to reverse engineering). If we
do not want to code a schema manually, we can generate a rough-cut schema of
a sample XML document using VS.NET XML Designer.We can then polish the
rough-cut schema to conform to our exact business rules. In VS.NET, it is just a
matter of one click to generate a schema from a sample XML document.To gen-
erate a rough-cut schema for our Catalog1.xml document (shown in Figure 4.1),
follow these steps:

1. Open the Catalog1.xml file (found on the Solutions Web site for this
book at www.syngress.com/solutions) in a VS.NET Project.VS.NET
will display the XML document and its XML view and the Data view
tabs at the bottom.

2. Click the XML menu item on the Main menu and select Create
Schema.

That’s all! The systems will create the schema named Catalog1.xsd. If you
double-click the Catalog1.xsd file in the Solution Explorer, you see the screen
shown in Figure 4.1. Note the DataSet view tab and the XML view tab at the
bottom of the screen.We elaborate on the DataSet view later in the chapter.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 107

108 Chapter 4 • Document Type: The Validation Gateway

For discussion purposes, Figure 4.2 also lists the contents of the schema.The
XML Schema Declaration (XSD) starts with certain standard entries at the top.
Although the code for an XSD might appear complex, there is no need to be
overwhelmed by its syntax.Actually, the structural part of an XSD is very simple.
An element is defined to contain either one or more complexType or simpleType
data structures.A complexType data structure nests other complexType or simpleType
data structures.A simpleType data structure contains only data.

In our XSD example (see Figure 4.2), the Catalog element can contain one or
more (unbounded) instances of the Product element.Thus, the Catalog element is
defined to contain a complexType structure. Besides containing the Product ele-
ment, the Catalog element can also contain other elements; for example, it could
contain an element Supplier. In the XSD construct, we specify this rule using a
choice structure as follows:

<xsd:element name="Catalog" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

--- --- ---

--- --- ---

</xsd:choice>

</xsd:complexType>

</xsd:element>

Because the Product element contains further elements, it also contains a
complexType structure.This complexType structure, in turn, contains a sequence of
ProductId and ListPrice.The ProductId and the ListPrice do not contain further ele-
ments.Thus, we simply provide their data types in their definitions.The auto-
mated generator failed to identify the ListPrice element’s text as decimal data; we

www.syngress.com

Figure 4.1 Truncated Version of the XSD Schema Generated by the XML
Designer

224_HPXML_04.qxd 6/27/02 3:33 PM Page 108

Document Type: The Validation Gateway • Chapter 4 109

converted its data type to decimal manually.The complete listing of Catalog1.xsd
is shown in Figure 4.2.The code is also available on the companion Solutions
Web site for this book (www.syngress.com/solutions).

NOTE

An XSD is itself a well-formed XML document.

Figure 4.2 Partial Contents of Catalog1.xsd

<xsd:schema id="Catalog"

targetNamespace="http://tempuri.org/Catalog1.xsd"

xmlns="http://tempuri.org/Catalog1.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

attributeFormDefault="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID"

type="xsd:string" minOccurs="0" />

<xsd:element name="ProductName"

type="xsd:string" minOccurs="0" />

<xsd:element name="ListPrice"

type="xsd:decimal" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 109

110 Chapter 4 • Document Type: The Validation Gateway

XML Schema Data Types
When an XML file acts as a database, and XSL and XPath act as SQL queries to
render the XML file, we need a place where the contents in the XML file are
declared somewhere with their data types.As in any database, whether SQL Server
or Oracle, all columns are defined with data types, which is the relational-oriented
concept.This concept led to the requirement of having data types in XML schema.

www.syngress.com

XML Validation in VS.NET
VS.NET provides a number of tools to use in your work on XML docu-
ments. One tool allows us to check if a given XML document is well
formed. While on the XML view of an XML document, you can use XML
| Validate XML Data in the Main menu to see if the document is well
formed. The system displays its findings in the bottom-left corner of the
status bar. Similarly, you can also use the Schema Validation tool to
check if your schema is well formed. While on the XML view of the
schema, use the Schema | Validate Schema option of the Main menu
to perform this task.

However, none of the preceding tests guarantees that your XML
data is valid according to the rules specified in the schema. To accom-
plish this task, you first need to link your XML document to a particular
schema. Then you can test the validity of the XML document. Follow
these steps to assign a schema to an XML document:

1. Display the XML document in XML view (in the XML
Designer).

2. Display its Property sheet (it will be captioned DOCUMENT).

3. Open the drop-down list box at the right-hand side of the
targetSchema and select the appropriate schema.

4. Now go ahead and validate the document using the XML |
Validate XML Data in the Main menu.

By the way, many third-party software packages can also test if an
XML document is well formed, and if it is valid (against a given schema).
In this context, we have found the XML Authority (by TIBCO) and XML
Writer (by Wattle Software) to be very good. An excellent tool named
XSV is also available from www.w3.org/2000/09/webdata/xsv.

Tools & Traps…

224_HPXML_04.qxd 6/27/02 3:33 PM Page 110

Document Type: The Validation Gateway • Chapter 4 111

There are two types of data types: primitive and derived. Primitive data types
are as is and are not derived from any other data types (e.g., float). Derived data
types are based on other data types.The integer data type is derived from the dec-
imal data type, for example.

The primitive data type defined for the purpose of XML schema need not be
the same for other specifications or other databases, the same way the user-
defined data types meant for XML schema are not meant for any other resources.
Table 4.4 lists the various data types of which XML schemas can take advantage.

Table 4.4 XML Schema Data Types

Primitive Derived Data Fundamental Constraining
Data Type Type Facets Facets

String normalizedString equal length
Boolean Token ordered minLength
Decimal Language bounded maxLength
Float NMTOKEN cardinality pattern
Double NMTOKENS numeric enumeration
Duration Name N/A whiteSpace
dateTime NCName N/A maxInclusive
Time ID N/A maxExclusive
Date IDREF N/A minExclusive
gYearMonth IDREFS N/A minInclusive
gMonthDay ENTITY N/A totalDigits
GDay ENTITIES N/A fractionDigits
GMonth Integer N/A N/A
hexBinary nonPositiveInteger N/A N/A
base64Binary negativeInteger N/A N/A
AnyURI Long N/A N/A
Qname Int N/A N/A
NOTATION short N/A N/A
GYear Byte N/A N/A
N/A nonNegativeInteger N/A N/A
N/A unsignedLong N/A N/A
N/A unsignedInt N/A N/A
N/A unsignedShort N/A N/A

www.syngress.com
Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 111

112 Chapter 4 • Document Type: The Validation Gateway

N/A unsignedByte N/A N/A
N/A positiveInteger N/A N/A

Learning About Plain-Text Attacks
Plain-text attacks are one of the most insidious tools hackers can use to compro-
mise a database or application.They take advantage of XML’s reliance on standard
language characters and the fact that those characters can have several numeric
representations at different points in a computer application and system. Hackers
use nonstandard coding for control characters (such as end-of-text or flow con-
trol characters) or strings that allow access to otherwise hidden files and embed
them within input strings or messages. Understanding how XML understands
text is an important first step in protecting databases, applications, and systems
against these attacks.

When we say that XML is written and communicates in plain text, we mean
that it makes use of the ISO-Latin-1 character set.This is the same character set
used by software developers in virtually all Western European and English-
speaking nations, and it is also known as the American Standard Code for Information
Interchange (ASCII) character set.A different, more expansive group of character
sets, collectively called Unicode, supports characters used across most of the world’s
major languages as well as mathematics, logic, and simple object drawing.A
Unicode character set-maps directly to ISO-Latin-1, and both character sets pro-
vide access to letters, numbers, punctuation—and some interesting extras such as
the characters that control the flow of information through the application and
those that indicate to the system whether input strings have been successfully
received. (More on Unicode’s features and attributes follows this section.)

Directly manipulating character sets requires you to bracket the numeric repre-
sentation of the character with an ampersand (&) and a semicolon (;).This differs
slightly from the HTML convention that requires bracketing the numeric charac-
ters with an ampersand and number sign (&#) and a semicolon (;). For example:

&65;

This is the letter A. To represent the number 2 in XML we would use:

&50;

www.syngress.com

Table 4.4 Continued

Primitive Derived Data Fundamental Constraining
Data Type Type Facets Facets

224_HPXML_04.qxd 6/27/02 3:33 PM Page 112

Document Type: The Validation Gateway • Chapter 4 113

These seem simple and straightforward. On the other hand, the following is
translated “cancel line”:

&24;

Suddenly, the possibilities of ASCII seem somewhat larger.
In both HTML and XML, characters can be passed as part of an input or

message string in one of three ways.There are three ways to refer to every print-
able character used by XML: its symbol (what we’re used to looking at), its name,
and its hexadecimal decoding.The most common way is for the character to
simply be typed in—for example, the sign for “less than” is typed as <.The char-
acter can also be referenced by its character name, if the name is preceded by the
symbol &. Referenced by name, then,“less than” becomes:

<

The third method, and the one most commonly used by hackers to launch a
plain-text attack, is to reference the character by its hexadecimal representation.
XML requires that you bracket the hexadecimal representation with the charac-
ters & and ;.“Less than” then becomes:

&60;

This is slightly different from HTML’s hexadecimal representation, which
brackets numbers with &# and ;, so that “less than” is referred to as:

<

Some characters within the character sets used by most applications have only
two representations: name and hexadecimal encoding.This is because they are
nonprinting, or control, characters. Control characters include everything from car-
riage return (&13;) and space (&32;) to “end of transmission” (&4;) and “negative
acknowledge” (&21;). Embedding characters for control of an application or
system within the plain-text character stream adds to the utility of the character
sets, but it also adds to their vulnerability to malicious attacks.

Plain-Text Attacks
Programmers and database developers most often use ASCII numeric representa-
tions in dealing with characters not found on the standard English keyboard.The
characters common in Nordic names, for example, or the accented characters
found in many French, Spanish, or German words are all readily expressed
through numeric character representations. Even when the only language of the
database and its display is English, numeric representations can allow a degree of

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 113

114 Chapter 4 • Document Type: The Validation Gateway

typographical control beyond the limits of the characters found on standard key-
boards. Specific lengths of spaces and dashes, for example, are defined and acces-
sible through the full ASCII character set, though they’re not seen on standard
computer keyboards.

NOTE

The exploitation of Microsoft’s Internet Information Services (IIS) through
a noncanonical input string is far from the only vulnerability to plain-text
attacks. A search of the Computer Emergency Response Team (CERT)
Web site (www.cert.org) returns nearly 30 separate alerts on plain-text
vulnerability, and Internet searches reveal hundreds more. The warnings
posted on CERT and other sites point out that noncanonical character
encoding is not the only tool hackers can use to exploit an application.
Sometimes the mere quantity of the plain text is enough to cause prob-
lems for targeted systems and applications.

Many plain-text attacks exploit vulnerabilities such as application
input buffers that can overflow and pass incoming data directly to exe-
cution streams rather than passing it through normal security parsers.
Application limits on the length of input strings are important tools in
helping to limit hacker access to these most frequently used tools.

The entire ASCII character set definition comprises 256 separate entities. Most of
these are characters, numbers, and other printable characters, but two ranges of
definitions fall outside the normal character definitions. Characters 0 through 31
are instructions to printing or communications devices.They range from
Carriage Return (&13;) to Device Control 3, generally reserved for the XOFF
message (&19;). Characters 128 through 159 are not defined by the standard and
are reserved for future use or individual implementation.This means that
characters in this range have effects that depend on the browser, database, and
other applications that interpret the document. In the best case, if there’s not a
prior agreement on the definition of a character, the undefined entry is simply
ignored. In the worst case, the application’s response is unpredictable.

Example: HTML Escape Codes
Content carried within XML character messages can include ASCII and Unicode
character encoding, XML name-reference and hexadecimal representations, and

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 114

Document Type: The Validation Gateway • Chapter 4 115

hexadecimal representations of Hypertext Markup Language (HTML) character
and escape codes. HTML escape codes present an interesting vulnerability because
they are so seldom considered dangerous, yet the potential for mischief is great.

How can a character set be used for an attack? Many of the vulnerabilities
have to do with unauthorized changes to the information that viewers might see
displayed on a screen.As an example, consider a Web site that seeks to make a
message visible to the greatest number of browser types by using colors named in
HTML 4.0.The site developer explicitly makes characters black (#000000) on a
yellow (#FFFF00) background. By inserting tags defining specific words as
yellow into text, those words exist but are not visible to site visitors. In this case, a
simple check to make sure that each data reference has an entry shows no
trouble, and an unsophisticated check of generated page source code might also
fail to indicate the problem.

Another example deals with characters that don’t result in any printed repre-
sentation.These nonprinting characters cover control codes such as Escape (&27;)
and typographical niceties such as Space (&32;).The vulnerabilities of these char-
acters are tied up in the fact that the ASCII representation remains constant while
other representations (such as Unicode, which is discussed in an upcoming sec-
tion) may differ from language to language.

SECURITY ALERT

One notable example of a plain-text exploit of buffer overflow involved
Oracle 9i and a vulnerability passed to it through Apache, the open-
source software Oracle uses as a Web server for its database engine.
Apache Procedural Language/Structured Query Language (PL/SQL) is the
instruction module Oracle uses. It was discovered that a simple, plain-
text attack using query strings longer than those anticipated by the
application could cause a buffer overflow, allowing text following the
overflow to be parsed and executed without the intervention of normal
security code. Stored procedures within the database could be called and
executed, and system utilities could be called and executed at the priority
level of the Apache server. Given that the Apache server tends to execute
at the system level within Windows NT-based systems, a hacker using
this approach could gain complete control of the target system.

Oracle issued a patch, and security workaround techniques were sug-
gested, but this sort of attack is one of the most common, striking all
major application, operating system, and network router vendors at one
time or another.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 115

116 Chapter 4 • Document Type: The Validation Gateway

Unicode
Unicode is a wide-ranging group of standards for dealing with the character sets
used by most of the world’s major languages. For an XML developer, the flexi-
bility Unicode offers is considerable, but there are vulnerabilities inherent in the
different ways that applications can interpret the information underlying the
Unicode characters. (For a complete list of the Unicode character sets and how
they’re used, see www.unicode.org).

When a system uses both ASCII and Unicode character sets, certain problems
can exist because of a fundamental difference between the two encoding standards.
Traditional ASCII uses single-byte (8-bit) encoding, leading to the 256-character
limit of the standard. Unicode employs a 2-byte (16-bit) encoding. Because virtu-
ally all computer systems operate with ASCII as the native display and print
encoding while using Unicode as an extended code that is mapped to the ASCII
representation, security routines that scan for particular “forbidden”ASCII character
strings can miss potentially damaging instructions embedded within a URL.

One of the major security vulnerabilities comes in choosing the method for
mapping Unicode to ASCII. Because Unicode must deal with many different
symbols in many different languages, characters can be 16, 24, or even 32 bits in
length.All Latin characters (those used in English) are 16-bit characters, but some
of the characters (including punctuation and control characters) used in the Latin
character set are also found in other languages. In those other character sets, the
slashes, periods, and control characters could have representations that are longer
than those found in the Latin character set.

The Unicode Consortium defines the methods for mapping in Unicode
Transformation Format-8 (UTF-8). UTF-8 specifies that all software encoding
data into Unicode must use the shortest possible implementation.The standard
leaves open the possibility, though, that software might use any of the possible
representations in decoding characters.This ambiguity can be exploited to move
otherwise forbidden characters through a security process.

In a well-known incident, Microsoft’s IIS became vulnerable to a request for
secure files. Normally, a string such as:

/../../

is not allowed by the IIS security routines because of the access the string would
grant to directories by relative addressing.When the Unicode characterization of
%c0%af was inserted as part of the URL, in the following sequence, the security
validation routines—programmed to use shortest-implementation decoding—did
not recognize forward slashes (/).

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 116

Document Type: The Validation Gateway • Chapter 4 117

%c0%af../.. %c0%af

The string was passed through to the command interpreter, which was more
flexible in its decoding.The string was decoded as the relative address-enabling
string, and the vulnerability was exploited.

Understanding How
Validation Is Processed in XML
XML validation is a formal process of checking your XML file against the relevant
DTDs or schemas, or both. First, though, understand that an XML document does
not require either a DTD or a schema reference to be perfectly functional.The
document cannot be said to be valid unless it has a reference to at least one of these
and that reference has been validated by a validating processor. It’s important to
know the sequence in which DTDs and schemas are used in validating an XML
document and precisely what is being validated so that you will be able to make
appropriate use of the built-in facilities of XML processors for security. It’s also
important to understand what they don’t do so that you will be able to construct
appropriate internal validation routines for data passed through XML.

XML validation mechanisms, whether DTD or schema, are primarily for
structural quality, data type constraints, and enforced consistency throughout an
organization or system of applications.They are not designed or appropriate for
checking data for consistency or appropriateness to the application. If you think
of the two types of validation as sieves, formal XML validation is a coarse sieve,
straining out major structural and data inconsistencies.The finer sieve that ensures
that data falls within the limits of reason (that, for example, the price of a pack of
chewing gum isn’t listed as $29.00 rather than $0.29) falls to data-verification
routines written by the local developer. In these routines, input must be validated
for character type, correctly decoded, and then verified for content.All this must
be done in a way that doesn’t impose unacceptable performance costs on either
the server or the client software.

The payoffs for proper validation are enormous. First, proper validation and
verification disallow most of the major plain-text attack types that have been seen
to this point. Characters that are of an unusual encoding or with a decoded value
outside the logical parameters of the data entity are filtered out of the data stream
before being executed or stored in the database. In addition, quality control for
the application data is enhanced, since data entries far out of logical bounds are
rejected at the input stage.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 117

118 Chapter 4 • Document Type: The Validation Gateway

Validate the Input Text
There’s a strong temptation to look at the XML validation capabilities and decide
that they provide all the input security necessary for data transmitted through
XML documents. Unfortunately, as we’ve seen, it’s all too easy for hackers to
exploit plain-text inconsistencies from one character set to another to launch
attacks against systems that are using well-formed and validated XML. It therefore
falls to the developer to create separate validation routines for data coming into
an application through a validated XML document.

The proper approach is to break the problem of verification into a number of
discrete steps. First in order, though last in our examination, are formal validation
of the foundation data definition documents through DTD and Schema vali-
dating parsers. Next comes treatment of the input stream as it is received into the
application. Ensuring that each input character is valid within the definition of
the language and that each is decoded according to a mapping agreed to by all
the components of the application is the crucial next step. Finally, requiring each
properly decoded entry to fall within logical bounds of the application helps
weed out both malicious programming mischief and the unintended conse-
quences of human error.

Canonicalization
Canonicalization is the ability to put a document into its simplest form. It makes
semantically equivalent documents out of nonequal ones by normalizing the data,
parsing it and arranging it to get the bits into a syntactically neutral form.We
look at canonicalization a bit more in Chapter 6, but for now we need to briefly
examine how it is used in XML digital signatures.

Using Canonicalization in XML Digital Signatures
The nature of Unicode means that certain frequently used characters (spaces, car-
riage return, line feed, and so on) have representations in character sets of many
different lengths. In its latest versions of the coding standards, the Unicode orga-
nization has decreed that all software will encode characters into their shortest
representations; however, software is allowed to decode from all possible represen-
tations to maintain backward-compatibility with earlier software.This means that
existing XML parsers will turn several different hexadecimal representations into
common characters, leading to the sort of attack possibilities mentioned earlier in
the chapter.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 118

Document Type: The Validation Gateway • Chapter 4 119

XML developers must also be aware of the varying level of ASCII and
Unicode support provided by the programming tools they use. Programming lan-
guages such as Perl and Python Tcl and interfaces such as Simple API for XML
(SAX) and Document Object Module (DOM) are commonly used in program-
ming that incorporates XML. Each provides facilities for dealing with one or
more varieties of Unicode characters, but they vary widely in precisely how those
facilities operate.

Perl, for example, returns data in UTF-8 format even though it does not sup-
port the full Unicode implementations. If characters outside the UTF-8 encoding
are required, they must be explicitly supported through use of the Unicode::String
module. Some of the XML processors available for Perl, such as SAX or DOM,
do handle full Unicode in native form. Since there are several SAX and DOM
processors and each deals with Unicode in a slightly different manner, you should
review the documentation for the module you decide to use to confirm the
specifics of character encoding.

Unlike Perl, Python doesn’t use Unicode or a form of Unicode as its native
character-encoding format. Instead, Python provides Unicode strings as a type of
data object available to the programmer.Any character string can be encoded as a
Unicode object if the character u is placed before the string. Here is an example:

fastship = 'Available for immediate shipping'

This string is encoded as ASCII.The following example encodes the same
string as Unicode:

fastship = u'Available for immediate shipping'

Tcl does directly support Unicode through the TclXML parser. If you want
to handle particular strings of characters in other encodings, the encoding function
provides a straightforward way to move from Unicode to ASCII, UTF-8 to
UTF-16, or between other character encodings that might be supported on par-
ticular systems.

It should be obvious that, with so many ways to encode character informa-
tion depending on the toolset used for programming, it’s incumbent upon the
developer to devise validation routines for data coming into the application
through XML.To guard against attacks based on nonshortest representations of
characters, multiple Unicode character sets might need to be supported through
explicit statements in related processes.Alternatively, you can make the decision,
especially if the language used within the data sets involved in the application is
limited, to support only UTF-8 character encoding.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 119

120 Chapter 4 • Document Type: The Validation Gateway

www.syngress.com

Tools for Validating XML Documents
Tools for validating XML documents and the data that conforms to them
can be classified according to the three major stages of validation that
must take place to minimize the potential for inadvertent or malicious
damage to systems. Those major stages are XML integrity, canonical
input, and application validity. In two of the stages, XML integrity and
canonical input, tools are available to help build a hacker-resistant appli-
cation. In all three areas, the strengths of the validation methods must
be weighed against their cost and potential weaknesses. Let’s take a
look at each:

■ XML integrity XML documents that are well formed and
valid lay the foundation for correct data. Both DTDs and
schemas are useful in creating proper documents, and tools
exist to help ensure that the document conforms to XML
standards, DTDs, and schemas. O’Reilly, Brown University,
and the W3 Consortium all have tools available online to
scan and validate XML documents. Each tool is different,
with Brown having the most exhaustive reporting and
O’Reilly the most succinct, but using a combination of two or
more will help ensure that your code is well formed and con-
forms to included DTDs and schemas. Local system tools are
also available. Altova’s XMLSpy is the leading commercial
tool for developing and validating XML documents. Microsoft
and Sun Microsystems make validation tools available for free
download, though Microsoft’s is an unsupported utility and
Sun’s frequently updated tool is the basis for the open-
source Apache XML validator.

■ Canonical input There are many ways that characters, espe-
cially nonprinting characters and characters common to all
languages, can be represented numerically within the system.
Proper use of programming-language functions such as
Microsoft’s MultiByteWidetoChar, Python’s encode() and uni-
codedata, and Tcl’s convertfrom and convertto help ensure
that characters in the many different Unicode character sets
are converted to a single, shortest-length representation
before processing of the encoded data begins.

Tools & Traps…

Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 120

Document Type: The Validation Gateway • Chapter 4 121

Validating Unicode
Protecting a system from plain-text attacks depends largely on controlling the
encodings used in passing characters between one format and another, typically
between ASCII and one of the Unicode forms.As an example of how systems
deal with the conversion, let’s look at the facility Microsoft provides for con-
verting input character strings to Unicode.

The MultiByteToWideChar function maps an input character string to a
Unicode multibyte string, whether or not the input characters require a multi-
byte representation. From a cost standpoint, the function trades storage efficiency
for the advantages of a single, consistent mapping for all characters. Since plain-
text attacks have tended to take advantage of differences in representation
between 8- and 16-bit characters, putting all input strings on an equal footing is
a solid beginning to eliminate the problem.The structure and arguments of
MultiByteToWideChar are shown in Figure 4.3.

Figure 4.3 Structure and Arguments of MultiByteToWideChar

Int MultiByteToWideChar {

UINT CodePage,

DWORD dwFlags,

www.syngress.com

■ Application validity The final step in data integrity assur-
ance is ensuring that all incoming data is of the proper type,
configuration, and range for the purpose of the application.
There are no “standard” tools for this process, because every
application is different, but there are some principles with
which developers should be familiar:

1. Schemas are poor choices for validating the input of
heavily used sites, because they must be called and
interpreted with each input.

2. Java is a good choice for validating the input, because it
can take a schema as input to develop the model for a
validation tool.

3. All input validation is expensive—it takes system resources
and CPU cycles. A successful application calls the validator
hundreds or thousands of times a minute. Optimize the
code.

Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 121

122 Chapter 4 • Document Type: The Validation Gateway

LPCSTR lpMultiByteStr,

Int cbMultiByte,

LPWSTR lpWideCharStr,

Int cchWideChar

};

Here CodePage is the code page to be used in the conversion. Currently, two
values are supported. Let’s take a look at what is involved here:

■ CP_ACP Uses the ANSI code page

■ CP_OEMCP Refers to an OEM code page.

■ dwFlags Specifies whether the characters are precomposed or single-
character values (MB_PRECOMPOSED), composite characters
(MB_COMPOSITE); whether characters should be translated into
glyphs rather than control characters (MB_USEGLYPHCARS); and
whether an error should be returned if an invalid character is encoun-
tered (MB_ERR_INVALID_CHARS).

■ lpMultiByteStr Points to the input character string.

■ cbMultiByte The size, in bytes, of the input string. If the value is -1, the
length is calculated automatically.

■ lpWideCharStr The output buffer where the translated string will be
placed.

■ cchWideCar The size, in wide characters, of the output buffer.

In addition to the MultiByteToWideChar function, Microsoft provides support
for character translation through related functions such as WideCharToMultiByte,
which essentially reverses the process of MultiByteToWideChar;
TranslateCharsetInfo, which translates based on a particular, specified character set
and is useful if known languages based on a non-Latin character set will be
encountered; and IsDBCSLeadByte, which determines whether a particular char-
acter should be translated as a single-byte character or as the first byte of a 2-byte
composite character.

Other languages provide equal levels of control over translation between
ASCII and Unicode strings.We’ve already seen, for example, that Python allows
an input string to be encoded into Unicode through the u prefix. Python also

www.syngress.com

Figure 4.3 Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 122

Document Type: The Validation Gateway • Chapter 4 123

allows more fine-grained control through other available functions.A particular
language-set encoding can be specified with the encode () method. Using the ear-
lier example of:

fastship = u'Available for immediate shipping'

This string could be forced from the perhaps unknown Unicode format
native to the host system into Unicode that maps directly to the ASCII 8-bit
table this way:

fastship = 'Available for immediate shipping'

fastship.encode ('latin-1')

Similar methods can translate from Unicode into non-Unicode formats.
Translating from a non-Unicode format into Unicode can make use of the uni-
code() method, which can accept arguments to force a particular Unicode
encoding. For example:

unicode ('Available for immediate shipping','utf-16')

This code snippet places the string into the double-character encoding of the
Unicode UTF-16 character set.

It is possible, in these translations, to try to convert a character into a set in
which it has no representation. Python allows three programmer-selectable possi-
bilities for dealing with the error.The options are used in the method that follows:

unicode ('Available for immediate shipping','utf-

16','strict|ignore|replace')

Here, strict will result in the method’s failure if a mapping is not possible;
ignore leads to the unconverted character being deleted from the output string;
and replace substitutes \uFFFD (the official Python replacement character) for the
problem character. \uFFFD will be defined individually in each of the various
codecs available for use.

In the examples we’ve seen, the facilities exist within a programming system
for the developer to control how a translation takes place. Regardless of the
system used, the key is for the programmer to take the positive step of choosing
and consistently applying a translation method throughout the XML document
and application. Consistent application of a single translation scheme minimizes
the chances for unintended consequences and inadvertent vulnerabilities due to
mismatched character representations as data strings are passed from software
component to component.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 123

124 Chapter 4 • Document Type: The Validation Gateway

Validate the Document or Message
Once it can be reasonably assumed that the input to the system is composed of
legal, nondestructive characters, the most compute-intensive portion of the vali-
dation process begins.This step validates data and messages to make sure that the
values are appropriate within the confines of the application we’ve written.

Let’s think about the catalog application that we’ve referred to in this chapter.
There are likely to be several types of constraints that can be placed on values to
make sure that data is appropriate for the application. Prices, for example, will be
numeric data rather than alphabetic characters. Product numbers will follow spe-
cific patterns of characters and numbers. Credit card numbers for payment fall
within known length limits, as do (in the United States) telephone numbers and
ZIP codes. Each of these values is a candidate for strict validation to ensure that
data does not fall out of logical bounds.

Because we’re working in XML, it’s logical to think about using a schema as
a way to constrain data. In the case of the telephone number, it’s easy to build
schema elements to make sure that the telephone number conforms to the basic
format of the U.S. system.A section of the schema for a catalog application is
shown in Figure 4.4.The schema fragment in the figure allows only data that
conforms to the numeric format of standard U.S. telephone numbers, though it
has provision for an extension of up to five digits.

Figure 4.4 A Schema Fragment That Constrains Data to the Form of U.S.
Standard Telephone Numbers

<xsd:schema id="Catalog"

targetNamespace="http://tempuri.org/Catalog1.xsd"

xmlns="http://tempuri.org/Catalog1.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

attributeFormDefault="qualified" elementFormDefault="qualified">

<xsd:complexType name="telephone">

<xsd:sequence>

<xsd:element name="areacode">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d\d\d"/>

</xsd:restriction>

</xsd:simpleType>

www.syngress.com
Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 124

Document Type: The Validation Gateway • Chapter 4 125

</xsd:element>

<xsd:element name="exchange">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d\d\d"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="number">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d\d\d\d"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="extension">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d\d\d\d\d"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

This fragment, using pattern matching to enforce that numeric digits must be
in the sequence XXX-XXX-XXXX-XXXXX (allowing for a five-digit extension),
is easy to write and understand. It would be a relatively straightforward, if some-
what laborious, process to create schema constraints for all data within our cat-
alog. Knowing that we could do this, the next question is whether we want to.

For all their power, XML schemas have several serious issues that would lead
us to think twice about using them as the sole basis for validating data for our
application.The first is that the specification for XML schema has not yet been
finalized and ratified. If application code is built around schema, there’s the quite
real possibility that minor changes in the final specification could cause recoding

www.syngress.com

Figure 4.4 Continued

224_HPXML_04.qxd 6/27/02 3:33 PM Page 125

126 Chapter 4 • Document Type: The Validation Gateway

in the application code.The second issue is perhaps more important because it
deals directly with the performance of our application.

XML schema must be invoked and parsed every time there is a call for vali-
dation. In the case of a successful online catalog or a call-center application, that
could mean data validation requests thousands of times per minute. It’s possible
that the schema could be converted into a DOM document object and cached,
thus saving the time required to fetch the schema from disk on every invocation,
but that would still not take away the requirement for parsing the schema with
each invocation.When you look at the computational overhead of repeated
schema-parsing runs, it becomes obvious that data validation based purely on a
schema model is a very, very expensive way to go.

It makes far more sense to use XML schema to define the data restraints, then
convert the schema into a programming language such as Tcl, Python, or Java for
execution. Such a method of validation could also be computationally intensive,
but probably less so than the parsing method. Both of these point out the need
for any XML transaction server to be over-specified in hardware.The process
needs to be as fast as possible, which implies that the fastest hardware needs to be
used at this point, lest it become a system choke-point.This could also be a place
where parallel-processing servers need to be used, distributing the computational
load over several physical machines.

Is the XML Well-Formed?
The first step in protecting an application from attacks (or even from inadvertent
catastrophic errors) is making sure that the structure and contents of the data
stream act as the developer wants them to. XML provides two ways to do this:
DTDs and schemas.As we’ve seen, DTDs are tools for verifying that an XML
document is well formed—that is, that it conforms to proper XML grammar and
usage and that data entities and structures are used consistently throughout the
document. Schemas can be used for validating whether a document is well-
formed, but they go considerably beyond the structural issues, allowing devel-
opers to control the type and content of the entities and structures themselves.
Both DTDs and schemas are valuable tools, and the two can be used together in
a single XML document. Understanding the differences between them can help
you build more secure documents.

Using DTDs for Verifying the Proper Structure
The DTD is an XML document’s first line of quality assurance. DTD validation
confirms that an XML document is well formed—that is, that the structure of

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 126

Document Type: The Validation Gateway • Chapter 4 127

the document conforms to the structure defined by the DTD.The validation can
be accomplished either through an external parser or through the parser con-
tained within an editor or development systems such as XML Spy or VS.Net.

DTDs are the older form of validation for XML documents and are sup-
ported by all XML parsers.They are also parsed and validated before schemas are
processed. DTDs are also, unfortunately, considerably less capable than schemas.
They are still valuable, however, for their ability to enforce common structure
within documents.A substantial portion of this value comes from the external
DTD’s ability to enforce common structures across the XML documents created
throughout an organization or across business relationships. Unfortunately, this
significant benefit carries with it a substantial security risk, one amplified in the
XML schema.

In many cases, external DTDs are stored on servers outside the local XML
developer’s control.When this is the case, accessing the DTD means calling on a
source that might or might not be secure. If it is not secure, a compromised DTD
can cascade a vulnerability through other organizations.This is especially true if
entity types such as ENTITY and NOTATION are used extensively—for multi-
media database creation, for example.An entity that had had its type changed
from CDATA to ENTITY would, for example, allow character data to be used
with no errors generated. However, it would also allow an application command
line to be passed through the XML system into the target computer with no
security validation from the XML system.

Using Schema for Data Consistency
We’ve seen that schemas alone are not necessarily the best solutions for validating
input data for consistency and applicability.That doesn’t mean they don’t have
their place.They are still valuable tools in enforcing standards on XML docu-
ments and consistency across organizations.

One of the advantages held by schemas is that they are, in themselves, valid
XML documents.When a document containing a schema invokes a validating
parser, the schema itself will be validated before it is used to validate the docu-
ment.The level of consistency made possible by this multitier validation is con-
siderable.

A current issue with schemas is their lack of final standards approval.There
are currently three major varieties of schema in use. Microsoft’s XML schema are:

■ XML Data Reduced (XDR) Used in the first version of Simple
Object Access Protocol (SOAP) and supported by Microsoft. For

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 127

128 Chapter 4 • Document Type: The Validation Gateway

more information, refer to http://msdn.microsoft.com/library/
default.asl?url=/library/en-us/xmlsdk30/htm/
xmconrepresentingthexmlschemaasadtd.asl.

■ Regular Language description for XML (RELAX) A simplified
schema that is designed for easy transitions between DTDs and schemas.
Additional information can be found at www.xml.gr.jp/relax

■ W3C XML schema This is the one everyone is talking about when
they mention “standard schema.”The W3C XML schema is also the one
for which many developers are anxiously awaiting the final version. For
more information, go to www.w3.org/TR/xmlschema-0.

One issue that DTDs and schemas share is the question of external refer-
ences.As with DTDs, many schemas are external resources linked to by a broad
range of different XML documents. Because schemas control data and structure
so much more tightly than do DTDs, the potential vulnerability to a compro-
mised schema is greater. It is therefore even more incumbent on developers to
make sure that all external schemas are referenced on secure servers hosted by
trusted partners.

Online Validation Methods and Mechanisms
When it’s time to validate XML documents, you can take one of many roads.The
common factor among all options is the requirement that a validating parser read
each line and section of a document and return a report of any exceptions to
validity or well-founded structure.All XML validation options satisfy the simplest
criterion: that they read each line and section of an XML document and return a
report for any errors or exceptions they find. Beyond that simple criterion, there
are many options via which you can approach a validating parser.Validating
parsers may be standalone products or part of an editing or development suite.
Virtually all validation tools are able to validate to DTDs, providing one of the
strengths of the older mechanism.The following sections introduce you to some
of the readily available online tools to validate DTDs and schemas.

XML Spy 4.3
XML Spy 4.3, created by Altova, is a development environment for XML and
includes DTD and schema validation, Open Database Connectivity (ODBC)
database access, and a completely integrated development environment.A free
30-day evaluation is available for download from the site www.xmlspy.com.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 128

Document Type: The Validation Gateway • Chapter 4 129

The W3C Online Validator for Schema
You can find the W3C organization’s online validator for schema at the W3C
Web site at www.w3.org/2001/03/webdata/xsv.The site has entries for schema
that are accessible via the Web as well as those behind corporate firewalls (see
Figure 4.5).

Developers can pass XML documents to the W3C validator by either pro-
viding an accessible URI or uploading a file from the local network.A well-
formed document returns a simple notice screen, shown in Figure 4.6.

www.syngress.com

Figure 4.5 The Opening Screen of the W3C XML Validator

Figure 4.6 A Well-Formed Document’s Returned Screen Notice

224_HPXML_04.qxd 6/27/02 3:33 PM Page 129

130 Chapter 4 • Document Type: The Validation Gateway

When a document with errors is passed through the validator, an error screen
returns, indicating the type of error and the location within the file, such as the
one in Figure 4.7.

You should note one important thing about the W3C validator: Like many
old-style code-validation tools, it stops after it finds the first error. If you have a
long, error-filled document to validate, it could take many passes through this
validator to ensure a well-formed foundation.

Brown University’s XML Validation Form
Developers at Brown University have created an XML validation form.This form
is available online at www.stg.brown.edu/service/xmlvalid/.This page contains a
validator for XML documents. Small documents can be cut and pasted into the
page; larger documents are called by reference.

When you first access the Brown University validation form, you are pre-
sented with the simple interface screen shown in Figure 4.8.

It’s obvious that the programming group at Brown takes a different approach to
validation from that used by the other online validators, because a document vali-
dated by W3C and RUWF validators returns the screen shown in Figure 4.9 from
Brown.As you can see, the document has received extensive criticism from Brown.

www.syngress.com

Figure 4.7 A Document That Contains Errors Generating an Explicit Error
Message from the W3C Validator

224_HPXML_04.qxd 6/27/02 3:33 PM Page 130

Document Type: The Validation Gateway • Chapter 4 131

www.syngress.com

Figure 4.8 The Brown University Online Validation Form

Figure 4.9 A File Passed by Other Validators Draws Extensive Criticism
from Brown

224_HPXML_04.qxd 6/27/02 3:33 PM Page 131

132 Chapter 4 • Document Type: The Validation Gateway

Most of the errors enumerated by the Brown validation form would be, at
most, warnings from other tools. If you need absolute certainty about a complex
document, the Brown tool will help provide it, but other tools will tell you
whether the document will work and in many fewer lines of commentary. One
of the concerns about the Brown approach comes in validating a file with known
problems.The file that produced the error conditions in the W3C and RUWF
validators produced the screen in Figure 4.10 from the Brown validation file.
Notice that results from a bad file resemble those from one known to be good.

There was little difference between the output generated by the two input
documents. In the “bad” output screen, the errors found by the other validators
were buried in the list of warnings. Brown’s form is an exhaustive tool, but it’s
one that should be used in conjunction with, rather than instead of, the other
validation tools.

Microsoft’s Unsupported XML Validation Tool
Microsoft offers an unsupported tool that validates XML documents against both
DTD and schema.You can find the validation tool at http://msdn.microsoft
.com/downloads/default.asp?url=/downloads/topic.asp?URL=/MSDN-FILES/
027/000/537/msdncompositedoc.xml&frame=true.

www.syngress.com

Figure 4.10 The Brown Validator’s Results for a Bad File

224_HPXML_04.qxd 6/27/02 3:33 PM Page 132

Document Type: The Validation Gateway • Chapter 4 133

XML.com’s XML Validation Tool
The Web site XML.com offers an online validation tool available at
http://xml.com/pub/a/tools/ruwf/check.html. Developers can either enter a
URL that will be called and checked for validation or they can cut-and-paste
XML code into the site’s window (see Figure 4.11).The welcome screen provides
access to the validation tool along with pointers to other tools.

A well-formed document pasted into the XML window of the page returns a
small window of congratulations, such as the one shown in Figure 4.12.

www.syngress.com

Figure 4.11 The RUWF Syntax Checker Allows You to Enter URLs or Paste Text
But Not Upload Files

Figure 4.12 The RUWF Syntax Checker Provides Only the Simplest Message
for Well-Formed Documents

224_HPXML_04.qxd 6/27/02 3:33 PM Page 133

134 Chapter 4 • Document Type: The Validation Gateway

When the document is not well-formed, RUWF returns an error window
that lists each error and its location. RUWF is not as encyclopedic as Brown in
its error messages, but it does completely process the document, even after an
error is found—an approach that places it between the other two online valida-
tion pages.

Sun’s Multischema XML Validator
Sun’s Java-based software validates against RELAX NG, RELAX Namespace,
RELAX Core,TREX, XML DTDs, and a subset of XML Schema Part 1
schema.This is the basis for the Apache Web Suite validation software.You’ll find
Sun’s multischema XML validator at wwws.sun.com/software/xml/developers/
multischema/.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 134

Document Type: The Validation Gateway • Chapter 4 135

Summary
Validating XML is a multistep process ensuring that the XML document is struc-
turally correct and logically consistent and that the data received is appropriate
for the application. None of the steps are required for an XML document or its
related data, but all work together to protect the application and its system from
deliberate attack or unintended error.

The standards that define XML include two separate but similar validation
methods: document type definitions (DTDs) and schemas. DTDs are concerned
with the structure of the XML document—whether the document is well
formed—with only the most rudimentary control over the type of data defined
by the document. DTDs are an older and more established mechanism than are
schemas, and as such they are supported by virtually all XML parsers, browsers,
and development tools. Using DTDs to define the structure of data used within
an XML document can bring consistency to documents created throughout an
organization or across organizational boundaries.Verifying that the XML docu-
ment is well formed against one or more DTDs provides a high level of assurance
that there are no inconsistencies within the data structure used in the document.

Even with their advantages, DTDs carry three significant disadvantages. First,
DTDs are not written in standard XML grammar nor in the grammar of any
other language.This means that DTD validation tools can’t validate the DTDs
themselves. Next, DTDs have only the most rudimentary control over the defini-
tion of data that will populate the structure defined in the XML document.
DTDs have no facilities for defining the size or content of any data item. Finally,
the same external DTDs that provide structural consistency across many organi-
zational lines can pose a significant security risk if the server on which they are
stored is compromised in any way.

Schemas have been proposed as a mechanism to replace DTDs in validating
XML documents. Schemas allow the same sort of structural control provided by
DTDs but add significant capabilities for data content control within XML docu-
ments. Schemas can be used, for example, to restrict data to specific character
types (numbers or letters) and lengths. Schemas can exist in the same document
as DTDs and are frequently used to constrain data types in structures that have
been defined by DTDs.

Schemas are written in standard XML grammar, allowing them to be validated
by the same validating parsers used for normal XML documents.As with DTDs,
schemas can either be internal to the XML document, residing in a designated
location at the beginning of the code, or external to the document, referenced by

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 135

136 Chapter 4 • Document Type: The Validation Gateway

filename and location. External schemas have the benefit of allowing centralized
schemas to define data structure and content across organizational lines. Just as with
DTDs, though, this ability carries with it one of schemas’ two major liabilities.

The first major liability schemas carry is that they are not yet fully standard-
ized.Although it is unlikely that dramatic shifts will be seen in schemas’ structure
or function, changes significant enough to “break” existing schemas are possible
before final standards ratification. Lack of formal standardization is the reason that
there remain XML development tools and parsers that will not verify schemas—
their publishers are waiting for a “hard” standard before they commit to verifica-
tion code. Schemas share their second major liability with DTDs. External
schemas, so useful in standardizing data structures and content across depart-
mental or corporate boundaries, introduce the possibility of unauthorized code
when referenced on a poorly protected site that has been compromised.

When the document has been verified to be well formed and to consist of
valid data definitions, the XML internal validation mechanisms have done their
jobs. Unfortunately, some steps are still required before the application and data
based on the XML document can be considered secure from inadvertent damage
and intentional attack.The application’s programmer must build routines that val-
idate the data coming into the application, whether from keyboard input, remote
file transfer, or machine-generated data stream.The input validation can be
broken into three broad steps: canonicalization of the input data stream; Unicode
validation; and document or message validation.

Two of the three steps, canonicalization and Unicode validation, are necessary
because there are many different ways that characters can be represented and
translated as they pass from screen and keyboard through network transmission
and application processing.These different representation options allow hackers
the option of a plain-text attack, transmitting strings of characters that control the
application or system in a way contrary to the application developer’s intention.
Most applications and systems have routines that look for strings of characters
that are known to provide access to functions not allowed to general users, but
plain-text attacks assume that these string-matching routines depend on one par-
ticular way of representing the characters, when several different character-
encoding options are allowed by the system and application. Using a less
common encoding method, hackers attempt to “hide in plain sight” the destruc-
tive payload of instructions.

The most common representation of the characters used in English is ASCII,
an 8-bit character set that is used by most personal computers and many Web
servers. For storage in a database and processing within an application, though,

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 136

Document Type: The Validation Gateway • Chapter 4 137

many developers and programming languages translate the ASCII characters into
one of the character sets of Unicode, a set of international standards for alphanu-
meric data. Because many written languages use more characters than English
does and may use characters that are more complex than the characters used in
English, Unicode uses characters of 16 to 32 bits, depending on the particular
language.

The problem arises when certain elements common to all written lan-
guages—spaces, carriage returns, line feeds, and control characters indicating
beginning and end of transmission, among others—have representations in char-
acter sets of varying lengths. It’s up to the programmer to make sure that the
ASCII characters are translated into the shortest possible Unicode representation
to avoid confusion and possible unintended program instructions.

Once characters have been translated into a Unicode representation, routines
must be written to make sure that the representations are consistent and do not
include characters and control elements that might cause the application or
system to store meaningless data in a field or violate system security in a mean-
ingful way.This step is necessary because most programming languages allow
Unicode characters to be transmitted in hexadecimal or name-reference format
as well as their ASCII representations.Although hexadecimal representations
might make their way past simple security routines that check for particular for-
bidden character strings, validation after the entire string has been translated to
Unicode ensures that forbidden instructions and character sequences are identi-
fied and neutralized, regardless of their initial transmission mapping.

Finally, after the XML verification and validation and after the input string
has been confirmed as properly translated into harmless Unicode, the input char-
acter string can be verified as a logically valid document or message—a message
that makes sense within the parameters of the application.This frequently means
checking strings to make sure that, for example, an input credit card number con-
forms to the numeric pattern of the particular type of card.This is a stage of ver-
ification that is crucial but that must be undertaken with great care because of
the compute-intensive nature of the activity. Many programmers might think that
XML schema offer a straightforward, verifiable method for creating a message-
verification solution, but the nature of XML (which requires the schema to be
called from storage and reparsed each time a verification is necessary) makes this
an undesirable option for applications that might need to verify input messages
thousands of times a minute.

Regardless of the implementation methods chosen, verification and validation
through all the steps, from well-formed structure through method validation,

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 137

138 Chapter 4 • Document Type: The Validation Gateway

yield applications and data input that fulfill organizational needs while mini-
mizing exposure to malicious hacking attempts.

Solutions Fast Track

Document Type Definitions and
Well-Formed XML Documents

Document type definitions (DTDs) are used to verify that an XML
document is well formed, or structurally correct.

DTDs are not required in any XML document.

DTDs can be part of the XML document, or they can be separate
documents called by reference of a uniform resource indicator (URI) in
the XML document.

DTDs are not written in standard XML grammar.

DTDs do not place constraints on the contents of an XML element—
they deal only with the structure of the XML document.

DTDs may be used in an XML document alongside schema.

Schema and Valid XML Documents

XML schema are used to enforce a structure for the data described in an
XML document. Schema can also enforce constraints on the data within
individual data elements.

Schema are not required in any XML document.

Schema may be part of the XML document, or they may be separate
documents called by reference of a uniform resource indicator (URI) in
the XML document.

Schema are written in standard XML grammar and are themselves well-
formed XML documents.

Schema may be used in an XML document alongside DTDs.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 138

Document Type: The Validation Gateway • Chapter 4 139

Learning About Plain-Text Attacks

Plain-text attacks take advantage of different methods of representing
characters that are common across languages and systems.

Plain-text attacks often use hexadecimal representations of common
control or system characters (for example, the /../../ string) taken from
uncommon 32-bit Unicode language representations to avoid detection
and neutralization by pattern-matching security routines.

Plain-text attacks can be defeated by the dual process of canonicalization
(ensuring that all incoming character strings are translated into the
shortest possible Unicode representation) and Unicode verification.

Understanding How Validation Is Processed in XML

If a DTD-validating parser is used, DTDs are validated before schema, to
ensure that the XML document is well formed (structurally correct).

XML documents are validated against schema after being validated
against DTDs. Schema enforce data consistency and content for the data
structure defined by the XML document.

Application programmers are responsible for canonicalization—ensuring
that all incoming character strings are translated from ASCII into the
shortest possible Unicode representation.

Once a canonical Unicode string has been produced, it must then be
verified to be harmless—to carry no strings that would try to invoke
unauthorized applications or access unauthorized files.

The final step in validation is document or message validation, in which
the incoming string is checked for logical suitability for the data element
that is its target. Care must be taken at this step to ensure that the valida-
tion method is efficient so that users are not impacted by system delays.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 139

140 Chapter 4 • Document Type: The Validation Gateway

Q: Do I always have to define a schema for my XML document?

A: No, you don’t always need a schema. Schemas are great for when you have to
do validation—typically when exchanging XML documents over the
Internet. Performing validation all the time might seem like a great idea, but
it is a very expensive operation that can bog down a Web server.When
shooting out XML to the Web, you typically don’t need a schema, although it
is an excellent way to document your XML.

Q: Do I always have to define a DTD for my XML document?

A: No. Just as with schemas, DTDs are completely optional in any XML docu-
ment. DTDs carry computational costs similar to those of schemas, but
because DTDs are not involved with the contents of entities and structures,
they offer less temptation to validate the document each time it’s called.

Q: Which Unicode character set should I be using?

A: That depends on the language of your application. If English is the language
of your application, Unicode UTF-8 provides the shortest representation of
every character you’ll need. If your application must accept other languages,
you can consult the Unicode Web site (www.unicode.org) for confirmation
of the right character set, but you’ll still want to make sure that all non-
printing characters are mapped to the shortest possible representation.

Q: Why do I need to write my own routines for validating the input strings?
Won’t a good schema do the job for me?

A: The major reason for coding your own routines for input validation is perfor-
mance. Schemas must be called and parsed every time the affected document
is validated. On a busy catalog Web site, for example, that could be hundreds
or thousands of times each minute.The computational overhead for calling,

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_04.qxd 6/27/02 3:33 PM Page 140

Document Type: The Validation Gateway • Chapter 4 141

parsing, and validating a schema every time a customer wants to place an
order is unacceptably high.

Q: Is there a way to keep up with the latest attacks used by hackers?

A: The CERT home page (www.cert.org) is the best source for information on
all types of computer attacks and how to defend against them.The site offers
e-mail notification of new attacks and a database to bring you up to date on
existing vulnerabilities.

www.syngress.com

224_HPXML_04.qxd 6/27/02 3:33 PM Page 141

224_HPXML_04.qxd 6/27/02 3:33 PM Page 142

XML Digital
Signatures

Solutions in this chapter:

■ Understanding How a Digital
Signature Works

■ Applying XML Digital Signatures
to Security

■ Using XPath to Transform a Document

■ Using XLST to Transform a Document

■ Using Manifests to Manage Lists of
Signed Elements

■ Cautions and Pitfalls

Chapter 5

143

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_05.qxd 6/28/02 12:31 PM Page 143

144 Chapter 5 • XML Digital Signatures

Introduction
Digital signatures are widely used as security tokens, not just in XML. In this
chapter, we look at how to create a digital signature and the way that digital sig-
natures are constructed.We examine the current W3C XML digital signature and
consider the effects of the structure of this XML-specific tool.The chapter con-
cludes by finding where this construct fits into overall XML security and its
potential uses.

Understanding How a
Digital Signature Works
The XML digital signature specification (www.w3.org/TR/2002/REC-xmldsig-
core-20020212) is a final draft. Its scope includes how to describe a digital signa-
ture using XML and the XML-signature namespace.The signature is generated
from a hash over the canonical form of the manifest, which can reference mul-
tiple XML documents.To canonicalize something is to put it in a standard format
that everyone generally uses. Because the signature is dependent on the content it
is signing, a signature produced from a noncanonicalized document could pos-
sibly be different from that produced from a canonicalized document. Remember
that this specification is about defining digital signatures in general, not just those
involving XML documents.The manifest may also contain references to any dig-
ital content that can be addressed or even to part of an XML document.

Basic Digital Signature and
Authentication Concepts
To better understand the specification, knowing how digital signatures work is
helpful.The goal of a digital signature is to provide three things for the data.To
ensure integrity, a digital signature must provide a way to verify that the data has
not been modified or replaced. For authentication, the signature must provide a
way to establish the identity of the data’s originator. For nonrepudiation, the signa-
ture must provide the ability for the data’s integrity and authentication to be
provable to a third party.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 144

www.syngress.com

Why a Signature Is Not a MAC
Message authentication codes (MACs) are a way to assure data integrity and authenti-
cate some data.You use a MAC by having the message creator perform a one-
way cryptographic hash operation, which requires a secret key in order to
function.This MAC and the data are then sent to the recipient.The recipient
uses the same secret key to independently generate the hash value and compares
that calculation with the one that was sent.We assume that the secret key is prop-
erly and securely managed so that the originator and the recipients are the key’s
only possessors. How the receiver actually gets this key isn’t important right now;
maybe it shows up in an interoffice memo.We assume that the receiver has the
secret key and that it is and always will be correct. Getting the same MAC value
proves data integrity.That is, the mail did get through. Since the receiver knows
that the originator has the key, only the originator could have generated the
MAC (the receiver didn’t send the data to itself), so this authenticates the data to
the receiver.A MAC does not, however, provide nonrepudiation.This is because
both sides have the secret key and therefore have the ability to generate the
MAC. Consequently, there is no way a third party could prove who actually
created the MAC.

MACs are usually faster executing than the encrypt/decrypt used in digital
signatures because of their usually shorter bit length.This is the same reason that
message digests or thumbprints are useful when you are validating on the fly. If
you have your own private network established (and hence non-repudiation is not
an issue), MACs might be all you need to authenticate and validate a message.

Public and Private Keys
If we could somehow split the keying that is used for the MAC so that one key
is used to create the MAC and another is used for verification, we could create a
MAC that included nonrepudiation capabilities. Such a system with split keys is
known as asymmetric encryption and was something of a holy grail for cryptog-
raphy until it was shown to be possible in 1976 by Whitfield Diffie, Martin
Hellman, and Ralph Merkle. Ronald Rivest,Adi Shamir, and Leonard Adelman
created the first practical implementation of this method in 1978.

Once you have an asymmetric encryption method, you can do something
that was previously unthinkable in cryptography:You can publicly publish your
key! You still keep one key private, but you want the other key to be as widely
known as possible, so you make it public.The reason that you want to do this
(with regard to digital signatures) is that anybody who has your public key can

XML Digital Signatures • Chapter 5 145

224_HPXML_05.qxd 6/28/02 12:31 PM Page 145

146 Chapter 5 • XML Digital Signatures

authenticate your signatures. Proper key management is still a requirement with a
public key system.The secrecy of your private key must be maintained.Also, the
publication of the public key must be done in such a way that it is trusted to
actually be yours and not as somebody else posing as you.As mentioned before,
these key management issues are beyond the scope of this chapter.

Why a Signature Binds Someone to a Document
Digitally signing a document requires the originator to create a hash of the mes-
sage itself and then encrypt that hash value with his own private key. Only the
originator has that private key, and only he can encrypt the hash so that it can be
unencrypted using his public key.The recipient, upon receiving both the message
and the encrypted hash value, can decrypt the hash value, knowing the origi-
nator’s public key.The recipient must also try to generate the hash value of the
message and compare the newly generated hash value with the unencrypted hash
value received from the originator. If the hash values are identical, it proves that
the originator created the message, because only the actual originator could
encrypt the hash value correctly.

This process differs from that of a MAC in that even the recipient cannot
generate the identical signature, because he does not have the private key.As a
result, we now have non-repudiation, only the originator could have created the
signature (provided that the private key has not been compromised by being lost
or stolen).Again, a signature is not a guarantor.A perfectly mathematically valid
signature may have been created through attack or in error. Even VeriSign messes
up every now and then. Entropy always wins.

Learning the W3C XML Digital Signature
The XML specification is responsible for clearly defining the information
involved in verifying digital certificates. XML digital signatures are represented by
the Signature element, which has a structure in which:

■ * Represents zero or more occurrences.

■ + Represents one or more occurrences.

■ ? Represents zero or one occurrences.

We assume that the secret key is properly and securely managed so that the origi-
nator and the recipients are the key’s only possessors.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 146

XML Digital Signatures • Chapter 5 147

Figure 5.1 shows the structure of a digital signature as currently defined
within the specification.

Figure 5.1 XML Digital Signature Structure

<Signature ID?>

<SignedInfo>

<CanonicalizationMethod/>

<SignatureMethod/>)

(<Reference URI?>

(<Transforms>)?

<DigestMethod>

<DigestValue>

</Reference>)+

</SignedInfo>

<SignatureValue>

(<KeyInfo>)?

(Object ID?)*

</Signature>

Let’s break down this general structure in order to understand it properly.The
Signature element is the primary construct of the XML digital signature specifica-
tion.The signature can envelop or be enveloped by the local data that it is
signing, or the signature can reference an external resource. Such signatures are
detached signatures. Remember, this is a specification to describe digital signa-
tures using XML, and no limitations exist as to what is being signed.

The SignedInfo element is the information that is actually signed.This data is
sequentially processed through several steps on the way to becoming signed.A
graphical representation of this process is shown in Figure 5.2.

www.syngress.com

Figure 5.2 The Stages of Creating an XML Digital Signature

Canonicalization TransformsSignedInfo DigestMethod DigestValue

224_HPXML_05.qxd 6/28/02 12:31 PM Page 147

148 Chapter 5 • XML Digital Signatures

There may be zero or more Transforms steps. If there are multiple Transforms,
each one’s output provides the input for the next.

The CanonicalizationMethod element contains the algorithm used to canoni-
calize the data, or structure the data in a common way agreed on by almost
everyone.This process is very important for the reasons mentioned at the begin-
ning of this section. Canonicalization can be used to do such things as apply a
standard end-of-line convention, removing comments, or doing any other manip-
ulation of the signed document that your needs require.

The Reference element identifies the resource to be signed and any algorithms
used to preprocess the data.These algorithms are listed in the Transforms element
and can include operations such as canonicalization, encoding/decoding, com-
pression/inflation, or even XPath or XSLT transformations.The Reference element
can contain multiple Transforms elements; each one that is listed in Reference will
operate in turn on the data. Notice that the Reference element contains a URI
attribute that is optional. If a signature contains more than one Reference element,
the presence of the URI attribute is optional for only one Reference element; all
the others must have a URI attribute.The syntax of the definition of Signature
displayed previously in Figure 5.1 does not make this point very clear; however,
the W3C XML Digital Signature specification document (www.w3.org/TR/
2002/REC-xmldsig-core-20020212) does.

The DigestMethod is the algorithm applied to the data after any defined trans-
formations are applied to generate the value within DigestValue. It should be rec-
ognized that the DigestValue is applied to result of the canonicalization and
transform process, not the original data. Consequently, if a change is made to
these documents that is transparent to these manipulations, the signature of the
document will still verify.As a simple example, suppose we had created a canoni-
calization method that converts all text in a file to lowercase and used it to sign a
document that originally contained mixed case. If we subsequently changed the
original document by converting it to entirely uppercase, that modified docu-
ment would still be validly verified by the original signature.

Signing the DigestValue binds resource content to the signer’s key.The algo-
rithm used to convert the canonicalized and transformed SignedInfo into the
SignatureValue is specified in the SignatureMethod element.The SignatureValue con-
tains the actual value of the digital signature.

The KeyInfo element is where the information about the signing key is to be
placed. Notice that this element is allowed to occur zero times; in other words,
it’s optional. Under typical circumstances, when you want to create a standalone
signature, the KeyInfo element needs to be there, since the signer’s public key is

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 148

XML Digital Signatures • Chapter 5 149

necessary in order to validate the signature.Why then is this element optional and
not required? Several situations justify this field being optional. First, we might
already know the public key and have it available elsewhere. In this case, having
the key information in the signature is redundant, and as our following examples
show, the KeyInfo element takes up a significant amount of space once it is filled
in. So, if we already have the information elsewhere, we can avoid the extraneous
clutter in the signature.Another situation that might be important is one in
which the signer does not want just anybody to be able to verify the signature;
instead, that ability is to be restricted to only certain parties. In that case, you
would have arranged for only those parties to obtain a copy of your public key.

To put this structure in context with the way in which digital signatures
work, the information being signed is referenced within the SignedInfo element,
along with the algorithm used to perform the hash (DigestMethod) and the
resulting hash (DigestValue). The public key is then passed within SignatureValue.
There are variations as to how the signature can be structured, but this explana-
tion is the most straightforward.

To validate the signature, you must digest the data object referenced using the
relative DigestMethod. If the digest value generated matches the DigestValue speci-
fied, the reference has been validated.Then, to validate the signature, obtain the
key information from the SignatureValue and validate it over the SignedInfo ele-
ment.As with encryption, the implementation of XML digital signatures allows
the use of any algorithm to perform any of the operations required of digital sig-
natures, such as canonicalization, encryption, and transformations.To increase
interoperability, the W3C does have recommendations for which algorithms
should be implemented within any XML digital signature implementations; we
go into this topic in more detail later in this chapter.

Applying XML Digital
Signatures to Security
XML signatures can be applied in three basic forms:

■ Enveloped form The signature is within the document, as shown in
the following example:

<document>

<signature>...</signature>

</document>

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 149

150 Chapter 5 • XML Digital Signatures

■ Enveloping form The document is within the signature, as shown in
the following example:

<signature>

<document>...</document>

</signature>

■ Detached form The signature references a document that is elsewhere
through a universal resource identifier (URI), as shown in the following
example:.

<signature>...</signature>

These are just the basic forms; remember, those “one or more” and “zero or
more” sections of the specification.An XML digital signature can not only sign
more than one document, but it could also be simultaneously more than one of
the enveloped, enveloping, and detached forms.

NOTE

A universal resource locator (URL) is considered informal and is no longer
used in technical documents; URI is used instead. A URI has a name asso-
ciated with it and is of the form Name=URI.

Examples of XML Signatures
In order to make this discussion less abstract, we now present some sample XML
digital signatures.There are libraries that implement XML digital signatures for
many languages, including C, Perl, Java, and many others. (See the “Vendor
Toolkits” section toward the end of the chapter.) However, since the XML digital
signature specification is relatively new, almost all these libraries are in a state of
flux.This means that the application programming interfaces (APIs) for each lan-
guage has yet to settle down; therefore, instead of showing code to use these
libraries, which will most likely become obsolete in a short period of time, we
explain the steps in a more generic manner.

The first step is to generate a signature private key (see the Tools & Traps
sidebar) and to save it someplace safe.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 150

XML Digital Signatures • Chapter 5 151

Once we have our key, we next make a template of the signature.To do this, we
chose the mode we will use and fill in the structure for all the required elements of
Figure 5.1.The format in which all the required elements, including the “one or
more” elements, known as the canonical form (www.w3.org/TR/xml-c14n), is
required when working with XML digital signatures.

www.syngress.com

Generating Keys with openssl
If you want to experiment with XML digital signatures and do not
already have suitable keys, here is how to generate them from the com-
mand-line tool openssl (which can be found at www.openssl.org). First,
we choose the type of key we will use.

To generate a private RSA key, we enter the command:

openssl genrsa —passout stdin —out myrsakey.pri

After entering this command, type the pass phrase and press Enter.
If we create our signatures without the KeyInfo element, we need

the public key; otherwise, it’s not needed, since it is automatically placed
within the XML signature when the signature is generated. This is how
to obtain the public key from the private key:

openssl rsa -passout stdin -in myrsakey.pri -out myrsakey.pub -

pubout

Again, after entering this command, type the pass phrase and press
Enter.

To generate a private DSA key, we enter the commands:

openssl dsaparam -out mydsakey.params 1024

and:

openssl gendsa -out mydsakey.pri -aes128 mydsakey.params

This second command prompts you for the pass phrase. In this
example, we have chosen to encrypt the key with 128-bit AES encryption.
(We could have chosen any of DES, triple DES, IDEA, and 128-, 192-, or
256-bit AES.) Again, the public key can obtained from the private key:

openssl dsa -in mydsakey.pri -out mydsakey.pub -pubout

Tools & Traps…

224_HPXML_05.qxd 6/28/02 12:31 PM Page 151

152 Chapter 5 • XML Digital Signatures

An Enveloping Signature Example
As our first example, let’s consider an enveloping signature that uses a DSA key.
The canonical form of this signature is shown in Figure 5.3.

Figure 5.3 Canonical Enveloping XML Digital Signature

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://example.org/envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n

-20010315" />

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<Reference URI="">

<Transforms>

</Transforms>

<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

</SignatureValue>

<KeyInfo>

<KeyValue />

</KeyInfo>

<Object Id="object">

The data that we want to sign...

</Object>

</Signature>

</Envelope>

Note a couple of important points about this file. First, the dsa-sha1 in the
SignatureMethod line determines the type of key that will be used for generating
this signature. In addition, as part of the canonical form, the elements that will get

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 152

XML Digital Signatures • Chapter 5 153

filled in by the process of generating the signature are also present.These are the
DigestValue, SignatureValue, and KeyValue elements.

Generating the digital signature for this code using the sender’s DSA private
key produces the data that we see in Figure 5.4.

Figure 5.4 Complete Enveloping XML Digital Signature

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC

-xml-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1"/>

<Reference URI="">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>MTQ/83w25zYROpMFldXwpm8Jzvk=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>d78rbgHr/LlTcYDbidLv1nwKDNhs94DOuVk6IQIEl5HNXI+1kBnyhw==

</SignatureValue>

<KeyInfo>

<KeyValue>

<DSAKeyValue>

<P>

uM0PZvpZLel3HEnPfTzT5/1VBboQDI2ezVSh8eiSye78chVDfBOXYJnYHU7GFJ+6

JhFR6R5fVcsMDcMhKO3AtWHb7StCSX17x/DitfFZylvlZ20bRYwN6g7mDot3VKiS

qZk84g9D8XZ+3Yx7xmHXu8OC7sgKVAY+bpnI8tuaruU=

</P>

<Q>

ht4nuLDIMBh18uzAVl3VzXkTMtM=

</Q>

<G>

jYLsH5EONMBWAaL/hgCTPKk2ihau5nKgtkUI6gQeet5I3S9Zja4eP5ZZ653D9IEe

/7O/bx+/7qgwBDlMvwGqxakwM/rgxx51Hsc8bRcNQl6Y1f8pNo/lxWFmaLfj6dM5

www.syngress.com
Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 153

154 Chapter 5 • XML Digital Signatures

Y/EIpZkBrnVvZA3MvPEJ7ogd3jdMhoiv22sMC7RwLX8=

</G>

<Y>

Ewtznkij4904qLeMAQ6695qrnHe5EDzGj9Ud2++6MiVmo/1bBJEAJXk4lKBGF9h5

HoR66tSMPb7KEbf5I07ep4x4KhNKmIUi+vnr4aMBJfANeeN9SYzbtXYfWLXENuGT

PZrd1vNgczNbnujTjhBL84HCchA34n2yAapmdDxCiX4=

</Y>

</DSAKeyValue>

</KeyValue>

</KeyInfo>

<Object Id="object">The data that we want to sign...</Object>

</Signature>

</Envelope>

Changing any aspect of this file (including the addition or removal of spaces)
will be detected by anybody with the tools to verify an XML digital signature.
Furthermore, if you had a copy of someone’s public DSA key, you could also
conclusively determine if that person is the person who generated it. Notice all
the data placed into the KeyValue element.This is a copy of one party’s public
DSA key that is required in order to authenticate the data’s integrity.This infor-
mation cannot be used alone for the purposes of nonrepudiation.

An Example of an Enveloped Signature
Next let’s consider an enveloped signature that will use an RSA key.The canonical
form of this signature is shown in Figure 5.5.

Figure 5.5 Canonical Enveloped XML Digital Signature

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://example.org/envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="">

www.syngress.com

Figure 5.4 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 154

XML Digital Signatures • Chapter 5 155

<Transforms>

<Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

</SignatureValue>

<KeyInfo>

<KeyValue />

</KeyInfo>

</Signature>

<Data>

The information that we want to sign goes here...

</Data>

</Envelope>

Obviously, the rsa-sha1 in the SignatureMethod line determines the type of key
that will be used for generating this signature.

There are a couple of important points to notice about this file.The
enveloped-signature in the Transform element specifies that this signature be an
enveloped one.You should also note that the element Data can be called anything
(and it can be physically placed anywhere in the file outside of the Signature con-
text); as far as the digital signature process is concerned, it is irrelevant as long as
the entire file is well-formed (i.e., proper) XML.

Generating the digital signature for this code using an RSA private key gives
the result that we see in Figure 5.6.

Figure 5.6 Complete Enveloped XML Digital Signature

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

www.syngress.com

Figure 5.5 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 155

156 Chapter 5 • XML Digital Signatures

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml

-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa

-sha1"/>

<Reference URI="">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#

enveloped-signature"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>V6v9a5iZeDglRdlKiuYxu3VgVKA=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>FCAR1EF2wv7H6YaLC1XoM7qMnU55rMRSYouXKsnL1zDdR2R58WN6XiZQW

4exvrq56OuVFHNdJWbtgcuXAkW5wg==</SignatureValue>

<KeyInfo>

<KeyValue>

<RSAKeyValue>

<Modulus>

pLdQ0GGla/imcV1JZve+J881NtZvHD0gcGmkAIdYlM33bHopEhKC7c+rIDSceLx0

As+WKaVAcxIJVsfZCtpGQQ==

</Modulus>

<Exponent>

AQAB

</Exponent>

</RSAKeyValue>

</KeyValue>

</KeyInfo>

</Signature>

<Data>

The information that we want to sign goes here...

</Data>

</Envelope>

www.syngress.com

Figure 5.6 Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 156

XML Digital Signatures • Chapter 5 157

A Detached Signature Example
As a final basic example, let’s consider a detached signature.This form can be
used when it is undesirable or impractical to physically merge the digital signa-
ture and its data (see Figure 5.7).

Figure 5.7 Canonical Detached XML Digital Signature

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315" />

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<Reference URI="file:///home/skip/xml/weather.xml">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue/>

<KeyInfo>

<KeyValue/>

</KeyInfo>

</Signature>

</Envelope>

The only thing new about this canonical form is that the Reference URI is
now filled in.This URI can be anything that both the signer and the verifier will
have read access authorization to. In this example, we used a local file, but it could
have easily been a remote file accessible through HTTP, FTP, or other protocols.

For our example file, we use an XML file that contains some weather reports
(see Figure 5.8).

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 157

158 Chapter 5 • XML Digital Signatures

Figure 5.8 An Example of Weather Data Stored as XML

<?xml version="1.0" encoding="UTF-8"?>

<document>

<header>

<title>The latest weather</title>

</header>

<content>

<weather Id="KMRY">

<location> Monterey, Monterey Peninsula Airport, CA, United States (KMRY)

36-35-26N 121-50-51W 66M </location>

<time> Apr 19, 2002 - 10:54 AM EST / 2002.04.19 1554 UTC </time>

<wind> from the WNW (300 degrees) at 6 MPH (5 KT) </wind>

<visibility> 10 mile(s) </visibility>

<sky> clear </sky>

<temperature> 54.0 F (12.2 C) </temperature>

<dewpt> 46.0 F (7.8 C) </dewpt>

<humidity> 74% </humidity>

<press> 30.15 in. Hg (1020 hPa) </press>

<!-- KMRY 191554Z 30005KT 10SM CLR 12/08 A3015 RMK AO2 SLP223

T01220078 -->

<!-- 16 -->

</weather>

<weather Id="KSFO">

<location> San Francisco, San Francisco International Airport, CA, United

States (KSFO) 37-37-11N 122-21-53W 26M </location>

<time> Apr 19, 2002 - 10:56 AM EST / 2002.04.19 1556 UTC </time>

<wind> from the W (260 degrees) at 5 MPH (4 KT) </wind>

<visibility> 10 mile(s) </visibility>

<sky> clear </sky>

<temperature> 55.9 F (13.3 C) </temperature>

<dewpt> 39.0 F (3.9 C) </dewpt>

<humidity> 52% </humidity>

<press> 30.15 in. Hg (1020 hPa) </press>

<!-- KSFO 191556Z 26004KT 10SM CLR 13/04 A3015 RMK AO2 SLP211

www.syngress.com

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 158

XML Digital Signatures • Chapter 5 159

T01330039 -->

<!-- 16 -->

</weather>

<weather Id="KMVY">

<location> Vineyard Haven, Marthas Vineyard Airport, MA, United States

(KMVY) 41-23-32N 070-37-00W 16M </location>

<time> Apr 19, 2002 - 10:53 AM EST / 2002.04.19 1553 UTC </time>

<wind> from the S (170 degrees) at 9 MPH (8 KT) </wind>

<visibility> 6 mile(s) </visibility>

<sky> overcast </sky>

<note> haze </note>

<temperature> 55.0 F (12.8 C) </temperature>

<dewpt> 48.9 F (9.4 C) </dewpt>

<humidity> 79% </humidity>

<press> 30 in. Hg (1015 hPa) </press>

<!-- KMVY 191553Z 17008KT 6SM HZ OVC005 13/09 A3000 RMK AO2 SLP159

T01280094 -->

<!-- 16 -->

</weather>

</content>

</document>

For the purposes of the digital signatures, the file that is being signed does not
have to be an XML file—it can be any kind of file.We use an XML file in this
example because it will be useful to illustrate other aspects of signing a document
later on.The signature generated using the template in Figure 5.7 with the data file
shown in Figure 5.8 gives the digital signature that is illustrated in Figure 5.9.

Figure 5.9 Complete Detached XML Digital Signature

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

www.syngress.com

Figure 5.8 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 159

160 Chapter 5 • XML Digital Signatures

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC

-xml-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa

-sha1"/>

<Reference URI="file:///home/skip/xml/weather.xml">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>NQb4am0ZWOLeZmw1MTZ60hNOAWA=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>Jf1NyfOBeV96YXvI5+n0TIuZlDgGR74QzhAK4SmvhCTUCTLLcxSE9A==

</SignatureValue>

<KeyInfo>

<KeyValue>

<DSAKeyValue>

<P>

uM0PZvpZLel3HEnPfTzT5/1VBboQDI2ezVSh8eiSye78chVDfBOXYJnYHU7GFJ+6

JhFR6R5fVcsMDcMhKO3AtWHb7StCSX17x/DitfFZylvlZ20bRYwN6g7mDot3VKiS

qZk84g9D8XZ+3Yx7xmHXu8OC7sgKVAY+bpnI8tuaruU=

</P>

<Q>

ht4nuLDIMBh18uzAVl3VzXkTMtM=

</Q>

<G>

jYLsH5EONMBWAaL/hgCTPKk2ihau5nKgtkUI6gQeet5I3S9Zja4eP5ZZ653D9IEe

/7O/bx+/7qgwBDlMvwGqxakwM/rgxx51Hsc8bRcNQl6Y1f8pNo/lxWFmaLfj6dM5

Y/EIpZkBrnVvZA3MvPEJ7ogd3jdMhoiv22sMC7RwLX8=

</G>

<Y>

Ewtznkij4904qLeMAQ6695qrnHe5EDzGj9Ud2++6MiVmo/1bBJEAJXk4lKBGF9h5

HoR66tSMPb7KEbf5I07ep4x4KhNKmIUi+vnr4aMBJfANeeN9SYzbtXYfWLXENuGT

PZrd1vNgczNbnujTjhBL84HCchA34n2yAapmdDxCiX4=

</Y>

</DSAKeyValue>

www.syngress.com

Figure 5.9 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 160

XML Digital Signatures • Chapter 5 161

</KeyValue>

</KeyInfo>

</Signature>

</Envelope>

All Together Now:An Example
of Multiple References
We can combine these basic forms in whatever way is necessary for a particular
use. In particular, we can sign multiple messages by having an appropriate
Reference element for each data message.We can even create a digital signature
that is enveloped and enveloping a detached all at the same time. Figure 5.10
shows how easily this can be done. (For the sake of brevity, we do not show the
canonical template—by now you can see what it should look like.

Figure 5.10 An Enveloped XML Signature, Enveloping and Detached
Simultaneously

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-

xml-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-

sha1"/>

<Reference URI="file:///home/skip/xml/weather.xml">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>NQb4am0ZWOLeZmw1MTZ60hNOAWA=</DigestValue>

</Reference>

<Reference URI="">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped

-signature"/>

www.syngress.com

Figure 5.9 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 161

162 Chapter 5 • XML Digital Signatures

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>lA8fnbvPSqShrMeJtL0Gh8KMrl4=</DigestValue>

</Reference>

<Reference URI="">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>1lCKWAfJg9712sQ9o9ekL6o7Mg8=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>EOv6jsXN2Dq+JVnc6rCINGu7rz67V9aC2QfQB3IKcsicNxtkBtJ+6FfJ3

nDDJRJTHzP3k4OZn9Flv+I4wvxpAw==</SignatureValue>

<KeyInfo>

<KeyValue>

<RSAKeyValue>

<Modulus>

pLdQ0GGla/imcV1JZve+J881NtZvHD0gcGmkAIdYlM33bHopEhKC7c+rIDSceLx0

As+WKaVAcxIJVsfZCtpGQQ==

</Modulus>

<Exponent>

AQAB

</Exponent>

</RSAKeyValue>

</KeyValue>

</KeyInfo>

<Object> Some enveloped data (so the signature is enveloping) to be

signed </Object>

</Signature>

<Data> And some enveloping data (so the signature is enveloped) to be

signed as well </Data>

</Envelope>

www.syngress.com

Figure 5.10 Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 162

XML Digital Signatures • Chapter 5 163

Signing Parts of Documents
We can also sign only a portion of a document, if that is desired.This might be
useful if the information is dynamic and changes too often for a signature to be
meaningful for the whole document, but for parts of it, it is important to main-
tain a signature.Another possibility is that the file is dynamic but different por-
tions change at different times. In our weather report file, for example, each city
may get updated independently of the others, so it makes sense to maintain the
signatures for each city separately. Figure 5.11 shows how to do this for a
detached signature. It shows how to sign only the data for San Francisco
(National Weather Service station KSFO). If a signature is generated based on this
template, that signature would verify only the part of the file within the element
weather that has the ID KSFO. Changes to other parts of the file will have no
impact on the result of a signature verification process.

Figure 5.11 Signing Only the San Francisco Weather Data

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="file:///home/skip/xml/weather.xml#KSFO">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue/>

<KeyInfo>

<KeyValue/>

</KeyInfo>

</Signature>

</Envelope>

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 163

164 Chapter 5 • XML Digital Signatures

This code obviously works only if the referenced document is an XML docu-
ment, in which case the datastream that moves through the transform processes is
called a node set.A non-XML document is treated as binary data and the datas-
tream is called an octet stream.The type of stream could change as the data moves
through the transforms; for example, a MIME encoder could convert some binary
image data into base-64 encoding, and that data could become placed inside an
XML template for output—an octet stream in and a node set out. Because the
data can change in this way as it goes through the transform process, one should
be careful about the input requirements of the transforms that are being used. In
some cases, it might be necessary to provide an intermediate transform to change
the data as a way of “gluing” together two different desired transform algorithms.

Using XPath to Transform a Document
For our weather report data, signing the report for an individual station might
not be that useful, since the stations (usually) report an update every hour.
Suppose instead that we wanted to sign only certain static elements in the file.
With the mechanisms that we have seen so far, this would be an awkward thing
to accomplish, given the way the weather report file is structured.We need some
mechanism to sign only certain elements (in this case, let’s consider the location
elements) of the file.This is exactly what the XPath (www.w3.org/TR/1999/
REC-xpath-19991116 and www.w3.org/TR/2001/WD-xpath20-20011220)
transformation mechanism can provide for us.The XPath transformation is a way
to filter a node set and act on only those elements that match a given rule.We
could have implemented our previous example of signing only the data for San
Francisco using an XPath, as shown in Figure 5.12.

Figure 5.12 Using XPath to Sign Only San Francisco Weather Data

<Reference URI="file:///home/skip/xml/weather.xml">

<Transforms>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-

19991116">

<XPath>

//weather[@Id="KSFO"]

</XPath>

</Transform>

</Transforms>

www.syngress.com

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 164

XML Digital Signatures • Chapter 5 165

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

The XPath syntax describes a node at a time test. Each node (either a single
XML element or any of its data) is checked, and only those that satisfy the test
are passed.The filter is applied a single node at a time for the entire document. In
our example in Figure 5.12, the test defined by the line //weather[@Id=“KSFO”]
means,“Is the current node either the descendant of or the definition itself of the
element weather that has the ID KSFO?”

XPath provides a more general method for choosing the element(s) that we
want to sign. It allows us to specify complicated ways of choosing the accepted
elements. So, for our scenario of just signing the weather station location data we
can use a filter like the one shown in Figure 5.13 below.

Figure 5.13 Using XPath to Sign Only the Weather Station Locations

<Reference URI="file:///home/skip/xml/weather.xml">

<Transforms>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

<XPath>

ancestor-or-self::location

</XPath>

</Transform>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

In this case, just for variety, we have used a different style of the XPath syntax
ancestor-or-self::location, which filters for any node that is the location node in the
document or for which the location node is the node’s ancestor.

XPath is in the Recommended category of algorithms for XML digital signa-
tures, so it might not necessarily be available universally.You should keep this in
mind when you create a signature. If you are going to use XPath algorithms, you
will find it useful to have an XPath syntax validator such as XPathTester (see

www.syngress.com

Figure 5.12 Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 165

166 Chapter 5 • XML Digital Signatures

“Vendor Toolkits”); otherwise, you might discover that you are actually signing
something different from what you think you are signing.

Using XSLT to Transform a Document
As powerful as XPath is, it is a fairly passive mechanism. Data is or is not allowed
to pass, but XPath does nothing to the data.The optional XSLT algorithm pro-
vides the ability to actively manipulate the data on its way to getting signed.The
basic steps are the same as applying XPath: Define a Transform element that will
use the XML style sheet language (XSLT) to manipulate the data. In order to do
this, you define a style sheet that will provide the desired processing to the input
data.The XSLT language is worthy of study on its own; it provides a rich syntax
for defining the manipulations that you want to apply. In this section, we look
only at a simple example, the same problem that we have addressed using XPath:
stripping out all but the location element from the weather report data.

A simple style sheet that can accomplish this task is shown in Figure 5.14.

Figure 5.14 A Simple Style Sheet for Obtaining Only the Weather Station
Locations

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output encoding="UTF-8" indent="no" method="xml" />

<xsl:template match="document/header">

</xsl:template>

<xsl:template match="document">

<xsl:apply-templates />

</xsl:template>

<xsl:template match="content/weather">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="location">

<xsl:apply-templates />

</xsl:template>

www.syngress.com
Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 166

XML Digital Signatures • Chapter 5 167

<xsl:template match="time|wind|visibility|sky|note|dewpt|press|temperature

|humidity">

</xsl:template>

</xsl:stylesheet>

If this style sheet were to be applied to the weather report file with a stan-
dalone XSLT processor, you would see that only the location elements are output.
To use this transformation in our XML digital signature, we define an XSLT
transform and use this signature for that particular transform.The result of signing
such a template is shown in Figure 5.15.

Figure 5.15 A Signed XML Weather Report of the Station Locations
Using XSLT

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml

-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa

-sha1"/>

<Reference URI="file:///home/skip/xml/weather.xml">

<Transforms>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xslt-19991116">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output encoding="UTF-8" method="xml"/>

<xsl:template match="document/header">

</xsl:template>

<xsl:template match="document">

<xsl:apply-templates/>

</xsl:template>

www.syngress.com

Figure 5.14 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 167

168 Chapter 5 • XML Digital Signatures

<xsl:template match="content/weather">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="location">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="time|wind|visibility|sky|note|dewpt|press

|temperature|humidity">

</xsl:template>

</xsl:stylesheet>

</Transform>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>cMH2OCnUZui3DZtMnwl1QAlCtb8=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>lfLsdCZzOut1lOFJCDyYtKO/9CATXzt9ZgoImW7Nak7UOlGXi6KVB

1Z9nwu/sQ/7+QRNJxGUkwTBBIJblwXCjQ==</SignatureValue>

</Signature>

</Envelope>

NOTE

You can write your own code to perform XSL transformations on the
server, or you can use the XSL ISAPI extension to automatically transform
the XML page that includes a reference to the XSL style sheet. Some of
the advantages to using the ISAPI filter are automatic selection and exe-
cution of style sheets on the server, style sheet caching for improved per-
formance, and the option to allow the pass-through of the XML for
client-side processing. To learn more about the XSL ISAPI extension, visit
http://msdn.microsoft.com/xml/general/xslisapifilter.asp.

www.syngress.com

Figure 5.15 Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 168

XML Digital Signatures • Chapter 5 169

Using Manifests to Manage
Lists of Signed Elements
We saw in our example of the signature that was enveloped, enveloping, and
detached all simultaneously that there can be multiple Reference elements in a sig-
nature.We showed that example in order to demonstrate the flexibility of the
XML digital signature syntax. In the real world, that type of signature is not likely
to be common.A more practical example that uses multiple Reference elements is
a signature for our weather report data in which we explicitly signed the reports
for each city separately.This is readily accomplished by taking our example from
Figure 5.11 and adding a Reference element for each of the cities in the file.

Now let’s consider the scenario in which our multicity weather report is sup-
posed to be signed by more than one person. In order to accomplish this goal
with the techniques we have so far, we would have to create an XML document
that has two Signature elements that would be near duplicates of each other.This
approach is not very scalable; consider what happens if, after creating such a tem-
plate, we add one more city to our list.We would have to correctly add the
Reference element for that city to every Signature. For a large file, it would be easy
to miss one.This process would be much easier to manage if we had a macro to
use in a single Reference element (for each signature) that would identify a list of
references.This is precisely what a Manifest element does.The manifest is a list of
references and is an element of Object for an enveloping signature. So, our multi-
city, two-signer signature would look like Figure 5.16.

Figure 5.16 Signing the Weather Data Using a Manifest

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="urn:envelope">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#" Id="Signer1">

<SignedInfo>

<CanonicalizationMethod

Algorithm=http://www.w3.org/TR/2001/REC-xml-c14n-20010315/>

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="#WeatherReport" Type="http://www.w3.org/2000/09/

xmldsig#Manifest">

<Transforms>

</Transforms>

www.syngress.com

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 169

170 Chapter 5 • XML Digital Signatures

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue/>

<KeyInfo>

<KeyValue/>

</KeyInfo>

<Object>

<Manifest Id="WeatherReport"}

<Reference URI="file:///home/skip/xml/weather.xml#KMRY">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

<Reference URI="file:///home/skip/xml/weather.xml#KSFO">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

<Reference URI="file:///home/skip/xml/weather.xml#KMVY">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

</Manifest>

</Object>

</Signature>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#" Id="Signer2">

<SignedInfo>

<CanonicalizationMethod

Algorithm=http://www.w3.org/TR/2001/REC-xml-c14n-20010315/>

www.syngress.com

Figure 5.16 Continued

Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 170

XML Digital Signatures • Chapter 5 171

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="#WeatherReport" Type="http://www.w3.org/2000/09/

xmldsig#Manifest">

<Transforms>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue/>

<KeyInfo>

<KeyValue/>

</KeyInfo>

</Signature>

</Envelope>

The list of Reference elements inside a manifest is independent of any Reference
list in the SignedInfo element.At most, one of the manifest Reference elements may
leave out the URI attribute.

Notice that within the Manifest itself, the Reference elements still have their
required DigestValue elements.These will be filled in during the signature genera-
tion using the (canonicalized and transformed) data to which the URI refers.The
DigestValue within the Reference element that is inside SignedInfo will be the digest
for the manifest itself, not the data to which the manifest refers.This subtle
change gives us another useful ability:We can handle partial failures of the signa-
ture validation. Before a change in any of the weather reports results in a failure
of the entire signature.With the use of a Manifest, the overall signature will still
be valid, but the individual Reference digest within the Manifest where the change
occurred will fail.The others will still succeed.This tool is very powerful because
it gives an application that uses the XML signature mechanism the ability to
know exactly where the change has happened, and it can then efficiently take the
appropriate action.

Imagine an entire Web site with a hundred pages that are signed using a single
XML digital signature. Imagine that someone makes an unauthorized change to

www.syngress.com

Figure 5.16 Continued

224_HPXML_05.qxd 6/28/02 12:31 PM Page 171

172 Chapter 5 • XML Digital Signatures

one page. (Let’s assume for this scenario that the tamperer knows how to preserve a
file timestamp and checksum.) Without the manifest approach, all the Webmaster
knows is that some page somewhere has been tampered with. Using a manifest,
the Webmaster knows exactly which page has been tampered with.

Establishing Identity By Using X509
In everything that we have discussed so far the identity of the signer is established
by the fact that signer has provided the key to the signature verifier through
some external means.This is not a problem if we are using the signatures inter-
nally or between two parties that have already established a relationship. But what
about a situation where the two parties have never met before, such as what typi-
cally happens in an e-commerce scenario? The solution to establishing the iden-
tity of the signer for this case is for the signer to have the key,“notarized” by a
trusted third party and to attach the notarization information to the signature. It
is exactly this process that is handled by the X509 mechanism which is typically
used for Web servers that are handling e-commerce.The key is sent to a
Certificate Authority (CA) that will sign the key with its own signature once it
has satisfied itself with the establishment of your identity.The CA will then
return a copy of the certificate to the signer.

Once we have a valid certificate, we can generate an XML Digital signature
that incorporates an X509 certificate by adding a <X509Data> element to the
<KeyInfo> element in the signature template:

<KeyInfo>

<X509Data/>

<KeyValue/>

</KeyInfo>

When the signature is generated the X509Data element is filled in with the
information from the CA:

<KeyInfo>

<X509Data>

<X509Certificate>MIICmjCCAkSgAwIBAgIBBzANBgkqhkiG9w0BAQQFADCBvTELMAkGA1UE

BhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCE1vbnRlcmV5MSAwHgYDVQQKE

xdUYXlnZXRhIFNjaWVudGlmaWMgSW5jLjEoMCYGA1UECxMfQ2VydGlmaWNhdGlvbiBTZXJ2aW

NlcyBEaXZpc2lvbjEZMBcGA1UEAxMQdmVnYS50YXlnZXRhLmNvbTEfMB0GCSqGSIb3DQEJARY

Qc2tpcEB0YXlnZXRhLmNvbTAeFw0wMjA2MDYwODIzMzJaFw0wMzA2MDYwODIzMzJaMDoxFzAV

BgNVBAMTDkV2ZXJldHQgQ2FydGVyMR8wHQYJKoZIhvcNAQkBFhBza2lwQHRheWdldGEuY29tM

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 172

XML Digital Signatures • Chapter 5 173

IGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCw3RzQ6Rtkqn1qmyCwmQpC+q37u5cYd6qET8

d4PkTB9w/7GWqgcQdtNGcoym/0RNN8m7c3W5rmzUlHS8PkiiitOvQ+oXGoiyHkT/kLZBLkSLH

F957B+20EC9WlCggGOM2U2OPTiMoLV/RW22lO/m5G8K54sFJNF28a0wjeRdaD0QIDAQABo20w

azAbBgNVHREEFDASgRBza2lwQHRheWdldGEuY29tMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwF

oAU/g8Leo1SC4i5XE3LdvnCR+jCzTgwHQYDVR0lBBYwFAYIKwYBBQUHAwIGCCsGAQUFBwMEMA

0GCSqGSIb3DQEBBAUAA0EAGKzEY81y3mA61q6Od7NkovXdXMO9PSX+eQPQiYvk7Fzffo1620W

JTds2TRkkromSIfoLxVH49c8T0Efpg0HvDA==</X509Certificate>

</X509Data>

<KeyValue>

<RSAKeyValue>

<Modulus>

sN0c0OkbZKp9apsgsJkKQvqt+7uXGHeqhE/HeD5EwfcP+xlqoHEHbTRnKMpv9ETT

fJu3N1ua5s1JR0vD5IoorTr0PqFxqIsh5E/5C2QS5EixxfeewfttBAvVpQoIBjjN

lNjj04jKC1f0VttpTv5uRvCueLBSTRdvGtMI3kXWg9E=

</Modulus>

<Exponent>

AQAB

</Exponent>

</RSAKeyValue>

</KeyValue>

</KeyInfo>

The signing process will need access to both the signers private key and the
certificate in order to generate the signature.This form of the signature gives us
assurance that the signer is who they say they are (assuming we can trust the CA;
you have to trust somebody!).

Required and Recommended Algorithms
As we noted earlier, the choice of algorithms to be applied for canonicalization,
transformation, and the like is up to the signature’s creator.The W3C has pre-
scribed the algorithms that can be expected to be available to all signers and veri-
fiers of an XML digital signature (and therefore provide the signature’s maximum
portability).A W3C conformant XML digital signature implementation must pro-
vide the required components.A conformant implementation may optionally
provide the recommended components, but if it does, it must conform with the
W3C specification for it.Table 5.1 provides a quick summary of the standard
algorithms for XML digital signatures.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 173

174

Ta
b

le
 5

.1
St

an
da

rd
 A

lg
or

it
hm

s
fo

r
X

M
L

D
ig

it
al

 S
ig

na
tu

re
s

El
em

en
t

A
lg

o
ri

th
m

R
eq

u
ir

em
en

t
U

R
I

D
ig

es
t

SH
A

1
Re

qu
ir

ed
w

w
w

.w
3.

or
g/

20
00

/0
9/

xm
ld

si
g#

sh
al

En
co

di
ng

ba
se

64
Re

qu
ir

ed
w

w
w

.w
3.

or
g/

xm
ls

ig
#

ba
se

64
M

A
C

H
M

A
C

-S
H

A
1

Re
qu

ir
ed

w
w

w
.w

3.
or

g/
20

00
/0

9/
xl

m
ds

ig
#

hm
a-

sh
a1

Si
gn

at
ur

e
D

SA
 w

it
h

SH
A

1
(D

D
S)

Re
qu

ir
ed

w
w

w
.w

3.
or

g/
20

00
/0

9/
xm

ld
si

g#
ds

a-
sh

a1
RS

A
 w

it
h

SH
A

1
Re

co
m

m
en

de
d

w
w

w
.w

3.
or

g/
20

00
/0

9/
xm

ld
si

g#
rs

a-
sh

a1
C

an
on

ic
al

iz
at

io
n

C
an

on
ic

al
 X

M
L

Re
qu

ir
ed

w
w

w
.w

3.
or

g/
TR

/2
00

1/
RE

C
-x

m
l-c

14
n-

20
01

03
15

C
an

on
ic

al
 X

M
L

Re
co

m
m

en
de

d
w

w
w

.w
3.

or
g/

TR
/2

00
1/

RE
C

-x
m

l-c
14

n-
w

it
h

C
om

m
en

ts
20

01
03

15
#

W
it

hC
om

m
en

ts
Tr

an
sf

or
m

En
ve

lo
pe

d
Si

gn
at

ur
e

Re
qu

ir
ed

w
w

w
.w

3.
or

g2
00

0/
09

/x
m

ld
si

g#
en

ve
lo

pe
d-

si
gn

at
ur

e
X

Pa
th

Re
co

m
m

en
de

d
w

w
w

.w
3.

or
g/

TR
/1

99
9/

RE
C

-x
pa

th
-1

99
91

11
6

X
SL

T
O

pt
io

na
l

w
w

w
.w

3.
or

g/
TR

/1
99

9/
RE

C
-x

sl
t-

19
99

11
16

224_HPXML_05.qxd 6/28/02 12:31 PM Page 174

XML Digital Signatures • Chapter 5 175

Cautions and Pitfalls
Some of the foundation components of XML digital signatures—for example the
XPath and XLST components—are in a state of flux.Therefore, you need to be
careful when listing these algorithms in any transformations for you signatures.

In our discussion, we have been careful to state that the XML digital signa-
ture mechanism provides a way to verify who originated the signature, not who sent
the signed message.You should never confuse the message originator with the
message sender. Consider the following scenario. G.Washington sends a signed
message to B.Arnold stating:

<Data>

We need to talk. Meet me outside my office at dawn on Friday.

</Data>

B.Arnold wants no part of this activity and sets about confusing matters by
anonymously sending the signed message on to T. Jefferson.T. Jefferson can only
conclude that the message is a genuine one from G.Washington (which it is), but
he has no way of knowing that the message was not intended for him or that it
was not sent to him by G.Washington. Public key encryption does not help mat-
ters, because after B.Arnold gets the message encrypted for him, he can re-
encrypt it with T. Jefferson’s public key before sending it on. Because of the goals
of generality of the XML digital signal standard, this problem is not really consid-
ered a flaw of the standard but instead a potential problem with the application of
the process.

The solution is this: If you plan to send messages of this nature, make sure
that the complete context of the information is provided within the signed body.
This information could include such things as a timestamp, the recipient’s name,
and references to information to provide a context for the message:

<Data>

<To>B. Arnold</To>

<Date>15 July 1780</Date>

<Subject>Your negotiations regarding West Point</Subject>

We need to talk. Meet me outside my office at dawn on Friday.

</Data>

Now B.Arnold is stuck.There is no way he can manipulate this message
without breaking the signature. If T. Jefferson gets the message in its intact form,
he will know that it was not intended for him.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 175

176 Chapter 5 • XML Digital Signatures

Issues such as this one are extremely important to consider if you are a soft-
ware developer—say, for example, if you are creating a secure e-mail application
that uses XML digital signatures behind the scene so that the user never actually
sees the XML.

You will probably see an increase in the use of encryption and digital signa-
tures when both the XML encryption and XML digital signature specifications
are finalized.They both provide a well-structured way in which to communicate
each respective process, and with ease of use comes adoption. Encryption ensures
that confidential information stays confidential through its perilous journey over
the Internet, and digital signatures ensure that you are communicating with the
person you think you are communicating with and that the data has not been
altered.Yet both these specifications have some evolving to do, especially when
they are used concurrently. Currently, there is no way to determine if a document
that was signed and encrypted was signed using the encrypted or unencrypted
version of the document.Typically, these little bumps find a way of smoothing
themselves out over time.

Vendor Toolkits
Several toolkits are available for working with XML digital signatures.The fol-
lowing is a partial list of useful tools. Be aware that the standard does not specify
the API for any toolkits; it only defines the behavior of the libraries.
Consequently, the APIs can differ between toolkits and are subject to change
between releases for a given toolkit.The current versions of the open tools are
available at ftp://ftp.taygeta.com/pub/xml.Take a look at these toolkits:

■ http://xml.apache.org/security/ Provides Java software that imple-
ments a suggested programming API for the creation and verification of
arbitrary forms of XML signatures.

■ http://www.aleksey.com/xmlsec/ This is the XML Security
Library, an excellent C library implementation of an XML digital signa-
ture API.This software package includes a demonstration front-end pro-
gram, xmlsec, which can be used for the creation and verification of
digital signatures from the command line. Most examples demonstrated
in this chapter were created with the use of xmlsec.

■ http://xmlsoft.org/XSLT/ This is the XSLT C library for Gnome.
This library implements the XML XSLT language. It is part of the
Gnome project (hence the name), but it does not require Gnome in

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 176

XML Digital Signatures • Chapter 5 177

order to run.This library is a prerequisite for xmlsec, but it also provides
a front-end command-line program, xsltproc, that can be used to com-
bine an XML document with at style sheet, making it very helpful if
you expect to use XSLT in your XML digital signatures.

■ www.alphaworks.ibm.com/tech/xmlsecuritysuite The IBM
XML Security Suite is a Java implementation that will run on most
operating systems that have a Java runtime environment.The software is
available as a free 90-day trial.

■ www.fivesight.com This is a program XPathTester, a Java application
used for interactively verifying XPath syntax. If you will use XPath in
your signatures, you’ll find this program very helpful.After opening your
XML file, you type an XPath statement on the input line, and it high-
lights all the elements that match your statement.

■ http://tjmather.com/xml-canonical/ This is a Perl implementa-
tion of an XML Canonical Recommendation Version 1.This could be a
useful component of a Perl application of XML digital signatures.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 177

178 Chapter 5 • XML Digital Signatures

Summary
A digital signature provides a mechanism for assuring integrity of data, the
authentication of its signer, and the nonrepudiation of the entire signature to an
external party.A digital signature differs from a message authentication code
(MAC) in that a public key system is used to create the signature, whereas a
MAC uses a shared key.The use of the public key gives the ability to have nonre-
pudiation for a digital signature, whereas a MAC cannot have this property.This
is because a private key is used for the signing and the public key is used only for
the verification.As a consequence, provided that the private key is not lost or
stolen, you can be assured of the identity of the signer of the datastream.

The XML specification for digital signatures is flexible. It gives you the ability
to sign anything from a simple message embedded in a signature or a message
that contains the signature within it or external resources. If necessary, you can
create complicated signatures that can be simultaneously any number of the three
basic forms. You can also sign parts of documents or an arbitrary list of docu-
ments or data sources.The original data is not actually signed; instead, the signa-
ture is applied to the output of a chain of canonicalization and transformation
algorithms, which are applied to the data in a designated sequence.This system
provides the flexibility to accommodate whatever “normalization” or desired pre-
processing of the data that might be required or desired before subjecting it to
being signed.

The preprocessing transformations can be simple go/no-go filtering of XML
nodes through the use of XPath. If desired, you can dictate more complicated
transformations by applying a style sheet through the use of an XSLT transforma-
tion. Finally, using the XML digital signature manifest mechanism, it is easy to
manage lists of signed elements.This method is especially useful when there are
multiple signers of long lists of elements.An XML digital signature that uses mani-
fests signs both the manifest itself (i.e., the list) as well as the actual listed elements.

The W3C specification describes the algorithms that are to be available to an
XML digital signature mechanism, but these are necessary only if your signatures
are to be verified by someone. Private mechanisms can also be incorporated into
the signature scheme by specifying their algorithms without breaking the overall
formalism.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 178

XML Digital Signatures • Chapter 5 179

Solutions Fast Track

Understanding How a Digital Signature Works

A digital signature must provide the following for a datastream:
verification of signer authentication and provability of the authentication
for an outside party (nonrepudiation).

Applying XML Digital Signatures to Security

An enveloping signature is one in which the signature node itself
actually contains the data that is to be signed.

An enveloped signature is one for which the signature node is contained
within the signed datastream.

A detached signature is one for which the data that is being signed is
located in a separate location from the signature itself.This is useful in
situations in which it is not practical or desirable to combine the data
into a single signed entity.

An XML digital signature can be used to sign multiple datastreams.
These datastreams do not all have to have the same relationship to the
signature, so that the signature can simultaneously be any combination of
multiples of the three basic types (enveloping, enveloped, and detached).

If the datastream is an XML document, it is called a node set.

A node set can be signed partially if desired; it is possible to define a
signature so that a specific XML node is the signed data.The rest of the
XML node set will be ignored.

Using XPath to Transform Documents

We can use the XML XPath mechanism to apply a transformation to a
datastream that is to be signed.

XPath applies to a node set and is used to create a filter that has the
effect of blocking a node or passing it on for further processing. XPath is
a recommended feature for a standards-conformant XML digital

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 179

180 Chapter 5 • XML Digital Signatures

signature implementation. Consequently, it might not be universally
available.

Using XSLT to Transform Documents

The XML XSLT processing language can also be applied as a
transformation that is used for an XML digital signature.

XSLT works by applying a style sheet to the XML node set. XSLT can
actively change the data in the process; this differs from XPath, which
can only block or allow a node, not change it in any way.

XSLT is a powerful mechanism that can be used to perform elaborate
manipulations of the nodes if desired. XSLT is an optional feature for a
standards-conformant XML digital signature implementation, so it might
not be universally available.

Using Manifests to Manage Lists of Signed Elements

Using the XML digital signature manifest mechanism, it is easy to
manage lists of signed elements.

This method is especially useful when there are multiple signers of long
lists of elements.An XML digital signature that uses manifests signs both
the manifest itself (i.e., the list) as well as the actual listed elements.

Cautions and Pitfalls

Some of the foundation components of XML digital signatures are in a
state of flux, so be careful when listing these algorithms in any
transformations for your signatures.

Never confuse the message originator with the message sender. In order
to reduce the problems in distinguishing who originated and signed the
message versus who sent the message, be sure that the complete context
of the information is provided within the signed body.This information
could include such things as a timestamp, the recipient’s name, and
references to information to provide a context for the message.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 180

XML Digital Signatures • Chapter 5 181

Q: What is the difference between RECOMMENDED and OPTIONAL in the
standards?

A: A RECOMMENDED feature is one that the standard suggest should be
implemented. But the implementer can choose not to for any reason, and still
claim compliance to the standard.An OPTIONAL feature is truly optional,
the implementer is completely free to make a decision about including such a
feature.

Q: Are Digital Signatures legally binding, like a signature in ink?

A: Generally, no, although in some places it is, for example Florida.This may
change with time as the legal profession gains familiarity and comfort with
using digital signatures.

Q: What are the advantages of XML digital signatures over other digital signa-
tures?

A: XML digital signatures have the advantage of being an open standard.As
such, they can be utilized in a wide variety of applications and on many plat-
forms. XML digital signatures are also very flexible and can be applied to
many different types of situations, such as signing portions of documents or
using multiple signers.

Q: How can an XML digital signature be created using alternative encryption
schemes?

A: Alternative encryption mechanisms can be defined in the <SignatureMethod
/> element.The applications that will create and verify the signatures will
need to be enhanced in order to understand the new method in the specifi-
cation.Alternative encryption methods should be public key systems in order
to retain the non-repudiation property of the signature.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_05.qxd 6/28/02 12:31 PM Page 181

182 Chapter 5 • XML Digital Signatures

Q: How can an XML digital signature be created that uses an alternative hashing
scheme?

A: The XML digital signature can be defined to use an alternative to HMAC-
SHA1 by placing the hashing specification in the <DigestMethod /> element.
The applications that will create and verify the signatures will need to be
enhanced in order to understand the new method in the specification.

www.syngress.com

224_HPXML_05.qxd 6/28/02 12:31 PM Page 182

Encryption in XML

Solutions in this chapter:

■ Understanding the Role of Encryption in
Messaging Security

■ Learning How to Apply Encryption to XML

■ Understanding Practical Usage of
Encryption

Chapter 6

183

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_06.qxd 6/28/02 10:39 AM Page 183

184 Chapter 6 • Encryption in XML

Introduction
Over the last 30 years, the role of encryption has become a multipurpose one.
Where mainly governments once used encryption to communicate secrets, today
most people engage in processes that use encryption, whether they know it or
not. Encryption’s roles are becoming increasingly expanded, especially in the area
of commerce and e-commerce.When average people on the street think of
encryption and the Internet, they envision a world in which their sensitive data is
kept private over an insecure channel.They think of the confidentiality of their
data.They do not see the transfer of a certificate from the client to the server for
validation; they do not see the various checks employed against their private infor-
mation to guarantee it was not altered.Average people are not aware that they
authenticate the server with which they are communicating and that there are
processes that guarantee the integrity of their data. Integrity, authentication, and
confidentiality are the most common aspects of encryption. But there is another:
nonrepudiation. Nonrepudiation is the ability to guarantee that the sender cannot
deny that he or she sent the message, and the sender cannot deny its content.

XML is the current rage. It is an incredibly flexible language that concen-
trates on semantics of the language rather then on the syntax (within reason).The
XML protocols allow you to create variations of the same document that can be
parsed and understood equally well. XML’s usage runs wide: It is used in every-
thing from Web pages and business-to-business (B2B) e-commerce to instant
messaging.

The purpose of this chapter is to explain encryption’s role in XML.The
chapter discusses how XML encryption allows for integrity, authentication, confi-
dentiality—and now, nonrepudiation.

Understanding the Role of
Encryption in Messaging Security
Internet use is an everyday occurrence in most people’s lives.The Internet is used
as a daily means of communication. Most businesses now rely on the Internet to
conduct business of some type.Whether as a corporate Web presence, an e-com-
merce site, or just plain e-mail, the Internet is a cornerstone of modern business.

The essential aspect of any given transaction, such as the preceding examples,
is trust.You must trust that the e-mail you received from your best friend in fact
came from your best friend. Businesses must know the people with whom they
conduct business and must trust their partners. Encryption’s properties of non-

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 184

www.syngress.com

repudiation, confidentiality, integrity, and authentication are essential for estab-
lishing trust between parties. Business participants must know that the entities
they are dealing with are actually the entities they believe they are.These partici-
pants must know whether or not they can trust the other entity.

Security Needs of Messaging
Today people communicate more frequently than in the days before electronic
communication.Various types of communication, such as e-mail and instant mes-
saging, are sent at a faster rate than before. Often we make decisions based on the
information we receive via these electronic means, whether the source is our
friend or a news service.At minimum, we must know that the information is
reliable and that the source who provided that information can be held account-
able. Encryption in messaging provides security to both parties: the message cre-
ator and the recipient.The creator is guaranteed that an attacking third-party
cannot misrepresent him.The recipient is guaranteed that the message is truly
from the creator and was not altered by a third party.

Privacy and Confidentiality
Privacy is the assurance that the information a customer provides to some party
will remain private and protected.This information generally contains the cus-
tomer’s personal nonpublic information that is protected by both regulation and
civil liability law.

Encryption Affects Privacy
Normally when someone sends an e-mail message, it is sent in plain-text.This
means that anyone can read the message. So if an attacker read an e-mail message
about your plans to surprise your spouse with a great anniversary gift, they could
spoil the surprise. Perhaps that example was trivial. But if your credit card infor-
mation or your username and password for your online bank account was sent in
plain-text and was read by an attacker, the ramifications become more serious.
Encryption provides privacy and confidentially by scrambling the message text.
This scrambling is called cipher-text.The distinction between cipher-text and
plain-text is essential.

Encryption Foils Eavesdroppers Who Lack Decryption Ability
cipher-text cannot be read without the corresponding key to decrypt it and turn
it back into plain-text.This means that we can float cipher-text e-mails stating

Encryption in XML • Chapter 6 185

224_HPXML_06.qxd 6/28/02 10:39 AM Page 185

186 Chapter 6 • Encryption in XML

how much we hate attackers right past an attacker’s nose and he cannot read it.
We can also send that information regarding your spouse’s surprise anniversary
gift without worrying that an attacker will ruin the surprise.The attacker sees
only what appears to be garbage floating past his computer.

Authentication and Integrity
My friend recently received a speeding ticket from a police officer.After doing
80 mph on the highway, my friend noticed flashing lights in his rearview mirror.
He pulled over to the side of the road and handed the officer his driver’s license.
My friend then received this piece of paper mandating that he pay a fee.You may
ask,“So, how does this story pertain to encryption and security?” Simple:The
police officer needed a way to determine the driver’s identity. He asked for a
state-issued paper called a driver license. Similarly, the driver needed to guarantee
the police officer’s identity. My friend assumed that the flashing lights were
attached to a police car.When the individual walked to the window of his car,
my friend noticed a uniform and a badge.With this evidence, each party trusted
that the other was who they said they are.As a backup to their initial responses,
which implied trust, they authenticated each other’s identity through various
pieces of identification.The officer authenticated the driver with his license, the
driver with the ticket the officer issued.

Authentication provides for a sender and a receiver of information to validate
each other as the appropriate entities that each wants to work with. If entities
that want to communicate cannot properly authenticate each other, no trust of
the activities or information can be provided by either party. It is only through a
trusted and secure method of authentication that we are able to provide for a
trusted and secure communication or activity.

The simplest form of authentication is the transmission of a shared password
between the entities that want to authenticate each other.This transmission could
be as simple as a secret handshake or a key.As with all simple forms of protection,
once knowledge of the secret key or handshake is disclosed to nontrusted parties,
there can no longer be trust in terms of who is using the secrets.

Many methods can be used to acquire a simple secret key, from something as
simple as tricking someone into disclosing it to high-tech monitoring of com-
munications between parties to intercept the key as it is passed from one party to
the other. However the code is acquired, once it is in a nontrusted party’s hands,
that party is able to utilize it to falsely authenticate and identify him- or herself as
a valid party, forging false communications or utilizing the user’s access privileges
to gain permissions to the available resources.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 186

Encryption in XML • Chapter 6 187

The original digital authentication systems simply shared a secret key
across the network with the entity with which they wanted to authenticate.

www.syngress.com

Clear-Text Authentication
Clear-text (unencrypted) authentication is still widely used by many
people who receive their e-mail through POP, which by default sends the
password unprotected in clear text from a mail client to a server. You can
protect your e-mail account password in several ways, including con-
nection encryption as well as not transmitting the password in clear-text
through the network by hashing with MD5 or some similar algorithm.

Encrypting the connection between the mail client and the server is
the only way to truly protect your mail authentication password. This
action prevents anyone from capturing your password or any of the mail
you might transfer to your client. SSL is generally the method used to
encrypt the connection stream from the mail client to the server and is
supported by most mail clients today.

If you simply protect the password through MD5 or a similar cryp-
tocipher, anyone who happens to intercept your “protected” password
could identify it through a brute orce attack. A brute-force attack is one
in which someone generates every possible combination of characters
by running each version through the same algorithm used to encrypt the
original password until a match is made and your password is found.

Authentication POP (APOP) is a method used to provide password-
only encryption for mail authentication. It employs a challenge-and-
response method, defined in RFC1725, that uses a shared timestamp
provided by the server being authenticated to. The timestamp is hashed
with the username and the shared secret key through the MD5 algorithm.

There are still a few problems with this method, the first of which is
that all values are known in advance except the shared secret key. For that
reason, there is nothing to provide protection against a brute-force attack
on the shared key. Another problem is that this security method attempts
to protect your password. Nothing is done to prevent anyone who might
be listening to your network from then viewing your e-mail as it is down-
loaded to your mail client. You can find an example of a brute-force pass-
word dictionary generator that can produce a brute-force dictionary from
specific character sets at www.dmzs.com/tools/files.

Damage & Defense…

224_HPXML_06.qxd 6/28/02 10:39 AM Page 187

188 Chapter 6 • Encryption in XML

Applications such as Telnet, File Transfer Protocol (FTP), and Post Office
Protocol (POP) mail are examples of programs that simply transmit the password,
in clear text, to the party with whom they are authenticating.The problem with
this method of authentication is that anyone who is able to monitor the network
could possibly capture the secret key and then use it to authenticate him- or her-
self in order to access these same services.This party could then access your
information directly or corrupt any information you send to other parties.The
person might even be able to attempt to gain higher privileged access with your
stolen authentication information.

To solve the problem of authentication through sharing common secret keys
across an untrusted network, the concept of zero-knowledge passwords was cre-
ated.The idea of zero-knowledge passwords is that the parties who want to
authenticate each other want to prove to one another that they know the shared
secret, yet not share the secret with each other in case the other party truly
doesn’t have knowledge of the password.At the same time, these parties want to
prevent anyone who might intercept the communications between the parties
from gaining knowledge as to the secret that is being used.

Public-key cryptography has been shown to be the strongest method of creating
zero-knowledge passwords.This type of cryptography was originally developed
by Whitfield Diffie and Martin Hellman and presented publicly at the 1976
National Computer Conference.Their concept was published a few months later
in their paper, New Directions in Cryptography.Another cryptoresearcher, Ralph
Merkle, working independently from Diffie and Hellman, invented a similar
method for providing public-key cryptography about the same time, but his
research was not published until 1978.

Public-key cryptography introduced the concept of keys working in pairs—
an encryption key and a decryption key—that are created in such a way that
generating one key from the other is infeasible. (The mathematics of the relation-
ship can show that the probability of discerning one from the other is related to
the ability of factoring a huge number—not impossible, but not simply done
with today’s technology.) The encryption key is then made public to anyone who
wants to encrypt a message to the holder of the secret decryption key. Because
identifying or creating the decryption key from the encryption key is infeasible,
anyone who happens to have the encrypted message and the encryption key will
be unable to decrypt the message or determine the decryption key needed to
decrypt the message.

Public-key encryption generally stores the keys or uses a certificate hierarchy.
The certificates are rarely changed and often are used just for encrypting data, not

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 188

Encryption in XML • Chapter 6 189

authentication. Zero-knowledge password protocols, on the other hand, tend to use
ephemeral keys. Ephemeral keys are temporary keys that are randomly created for a
single authentication, then discarded once the authentication is completed.

Note that public-key encryption is still susceptible to a chosen-cipher-text
attack.This attack centers on someone who already knows what the decrypted
message is and has knowledge of the key used to generate the encrypted message.
Knowing the decrypted form of the message lets the attacker possibly deduce the
secret decryption key.This attack is unlikely to occur with authentication sys-
tems, because the attacker will not have knowledge of the decrypted message—
your password. If the attacker had that, she would already have the ability to
authenticate as you and not need to determine your secret decryption key.

Message Authentication Code Uses Key
Suppose that you do not mind that someone reads your e-mail or instant mes-
saging conversation. Now imagine that you are chatting with your girlfriend or
boyfriend about your pets, your weekend plans, and perhaps your future goals.
You do not see anything confidential in your conversation, so you believe it can
be conducted freely and in the open. If an attacker is listening in on your (text)
conversation as it is in transit from your computer to your friend’s computer, how
can you guarantee that the attacker does not change your “I love you” to “I hate
you”? It is easily foreseeable how such a change could cause all types of havoc!
Equally important to consider is the case in which an attacker intercepts and
changes a message to call off a business deal or change the price of a product.

The answer to this dilemma is to use a message authentication code, or MAC, for
short.A MAC uses a key to generate a unique string based on the text of your
message.This string, called a hash, cannot be duplicated against a different set of
bits. In math terms, a hash is considered a “one-way” function, since the result
can’t generate the input that created it.

MAC Sent with a Message
After the hash is generated, you send it with the message.The message receiver
then takes the message and independently generates a second hash.The hash gen-
erated by the sender and the hash generated by the recipient are then compared.
If both hashes match, the message was not changed during transit.You can then
rest assured that your product price is as you sent it and that if love turns to hate,
it is certainly not due to an external attack. If the message was changed the
slightest bit (yes, the pun was intended), the receiver’s hash will differ from the
sender’s hash, and you will know something is amiss.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 189

190 Chapter 6 • Encryption in XML

NOTE

It is important to note that in this example we use a MAC as it relates to
a plain-text message that remains plain-text throughout its transit. It is
important to note that we can create a MAC and include it before we
encrypt the message. This means that we guarantee the message
integrity before we guarantee its privacy across a public medium. This is
important to remember and will come into play when we explore
encryption as it applies to XML.

Nonrepudiation
Everyone hates spam—those unsolicited e-mails you get trying to sell you stuff
you don’t want or even target your computer for virus attacks. Let’s suppose that
you receive a particularly nasty piece of spam and that you miraculously find the
junk mailer’s home address.You walk up to the door and ring the bell.The
spammer opens the door to find you demanding that he tell you why he sent
you the e-mail. He coolly replies that he never sent a thing.What? Sure, he says,
he never sent the e-mail you have in your hand. He tells you that you must be
mistaken. He then proceeds to tell you that someone probably hijacked his
account and sent the unsolicited e-mail to you as well as thousands of others.To
this answer, you’re stuck.You do not possess a method by which you can guar-
antee that it was this particular spammer who sent the e-mail.

Nonrepudiation is the ability to bind the individual who created and sent a
given document.Traditionally, the mechanism that guarantees nonrepudiation is a
handwritten signature. Other methods of nonrepudiation include watermarks and
wax seals with insignia. Watermarking guarantees that, for example, printed money
is issued by a specific country and is not counterfeit. Wax sealing a document
incorporates all the properties of encryption—at a lower standard, of course. In
olden times, royalty would seal documents in wax to both ensure privacy (the
unbroken wax seal was proof that the letter was not opened) and authentication
(the receiving party knew that particular royal’s seal and therefore knew it was
not a forgery) as well as nonrepudiation (a person cannot deny he or she sent a
letter if that person seals it).

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 190

Encryption in XML • Chapter 6 191

Digital Signatures
At this point we know how we can send a message that will protect our privacy.
We also know how to guarantee that a third party will not change a message. But
how do we guarantee who sent the message? For example, perhaps a group of
businesspeople decide to cajole private information from their company’s com-
petitor.They create a fake message coming from a known and “trusted” party
asking for sensitive information.The recipient sees that the message appears to
come from a colleague and replies with the requested documents.Then the next
morning they speak to the person they thought requested the documents, only to
discover that the supposed requestor did not send a message at all.

Digital signatures are used to solve this problem. Present encryption systems
use two keys: one to encrypt the data, and one to decrypt the data.This is known
as a key pair. Normally, encryption works in the following way:You would like to
send a message that you do not want anyone else to read besides the recipient.
You take the part of the key pair available to everyone—called the public key—
and use it to encrypt your text.You send the encrypted text, and because the
recipient has the corresponding key, she can decrypt the message and read it.

Digital signatures work in exactly the opposite way.To digitally sign a message,
you encrypt your key and send it to the recipient. Because each key can decrypt
the other, if the recipient can decrypt your text with your public key, the recipient
knows the message must have been sent by you! This method works because each
key has the ability to decrypt the contents encrypted by the other key.

Encryption Methods
There are various algorithms and techniques to perform encryption. Let’s take a
look at a few of them.

AES
Advanced Encryption Standard (AES) is also known as Rijndael. It is the choice of
the U.S. federal government for information processing to protect sensitive (read:
classified) information.The government chose AES for the following reasons:
security, performance, efficiency, ease of implementation, and flexibility. It is also
unencumbered by patents that might limit its use.The government agency
responsible for the choice calls it a “very good performer in both hardware and
software across a wide range of computing environments” (www.nist.gov/
public_affairs/releases/aesq&a.htm).

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 191

192 Chapter 6 • Encryption in XML

In 1997, as the fall of DES loomed ominously closer (challenges to crack
DES were becoming common and were indeed cracking it faster than anyone
had previously thought possible), the National Institute for Standards and
Technology (NIST) announced the search for AES, the successor to DES. Once
the search began, most of the big-name cryptography players submitted their own
AES candidates.Among the requirements of AES candidates were:

■ AES would be a private key symmetric block cipher (similar to DES).

■ AES needed to be stronger and faster then 3-DES.

■ AES required a life expectancy of at least 20 to 30 years.

■ AES would support key sizes of 128 bits, 192 bits, and 256 bits.

■ AES would be available to all—royalty free, nonproprietary, and
unpatented.

Within months, NIST had a total of 15 different entries, six of which were
rejected almost immediately on grounds that they were considered incomplete.
By 1999, NIST had narrowed the candidates down to five finalists: MARS, RC6,
Rijndael, Serpent, and Twofish.

Selecting the winner took approximately another year because each of the
candidates needed to be tested to determine how well it performed in a variety
of environments.After all, applications of AES would range anywhere from
portable smart cards to standard 32-bit desktop computers and high-end opti-
mized 64-bit computers. Since all the finalists were highly secure, the primary
deciding factors were speed and ease of implementation (which in this case
meant memory footprint).

Rijndael was ultimately announced as the winner in October 2000 because
of its high performance in both hardware and software implementations and its
small memory requirement.The Rijndael algorithm, developed by Belgian cryp-
tographers Dr. Joan Daemen and Dr.Vincent Rijmen, also seems resistant to
power- and timing-based attacks.

So how does AES/Rijndael work? Instead of using Feistel cycles in each
round, as DES does,AES/Rijndael uses iterative rounds like IDEA (discussed
in the next section). Data is operated on in 128-bit chunks, which are grouped
into four groups of 4 bytes each.The number of rounds is also dependent on the
key size, such that 128-bit keys have 9 rounds, 192-bit keys have 11 rounds, and
256-bit keys require 13 rounds. Each round consists of a substitution step of one
S-box per data bit followed by a pseudo-permutation step in which bits are

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 192

Encryption in XML • Chapter 6 193

shuffled between groups.Then each group is multiplied out in a matrix fashion
and the results are added to the subkey for that round.

How much faster is AES than 3-DES (discussed in the following section)? It’s
difficult to say, because implementation speed varies widely depending on the
type of processor performing the encryption and whether or not the encryption
is being performed in software or running on hardware specifically designed for
encryption. However, in similar implementations,AES is always faster than its
3-DES counterpart. One test performed by Brian Gladman has shown that on a
Pentium Pro 200 with optimized code written in C,AES/Rijndael can encrypt
and decrypt at an average speed of 70.2Mbps, versus DES’s speed of only
28Mbps.You can read his other results at fp.gladman.plus.com/
cryptography_technology/aes.

DES and 3-DES
One of the oldest and most famous encryption algorithms is the Data Encryption
Standard (DES), which was developed by IBM and was the U.S. government
standard from 1976 until about 2001.The algorithm at the time was considered
unbreakable and therefore was subject to export restrictions and then subse-
quently adapted by the U.S. Department of Defense.Today companies that use
the algorithm apply it three times over the same text, hence the name 3-DES.

DES was based significantly on the Lucifer algorithm invented by Horst
Feistel, which never saw widespread use. Essentially, DES uses a single 64-bit
key—56 bits of data and 8 bits of parity—and operates on data in 64-bit chunks.
This key is broken into 16 separate 48-bit subkeys, one for each round, which are
called Feistel cycles. Figure 6.1 gives a schematic of how the DES encryption algo-
rithm operates.

Each round consists of a substitution phase, wherein the data is substituted
with pieces of the key, and a permutation phase, wherein the substituted data is
scrambled (reordered). Substitution operations, sometimes referred to as confusion
operations, are said to occur within S-boxes. Similarly, permutation operations, some-
times called diffusion operations, are said to occur in P-boxes. Both of these opera-
tions occur in the F module of the diagram.The security of DES lies mainly in
the fact that since the substitution operations are nonlinear, the resulting cipher-
text in no way resembles the original message.Thus, language-based analysis tech-
niques (discussed later in this chapter) used against the cipher-text reveal nothing.
The permutation operations add another layer of security by scrambling the
already partially encrypted message.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 193

194 Chapter 6 • Encryption in XML

SECURITY ALERT

How can symmetric algorithms such as DES be made more secure?
Theoretically, there are two ways: Either the key length needs to be
increased or the number of rounds in the encryption process needs to be
increased. Both of these solutions tend to increase the processing power
required to encrypt and decrypt data and slow the encryption/decryption
speed because of the increased number of mathematical operations
required. Examples of modified DES include 3-DES (a.k.a. Triple DES) and
DESX. Triple DES uses three separate 56-bit DES keys as a single 168-bit
key, though sometimes Keys 1 and 3 are identical, yielding 112-bit secu-
rity. DESX adds an additional 64 bits of key data. Both 3-DES and DESX
are intended to strengthen DES against brute-force attacks.

www.syngress.com

Figure 6.1 Diagram of the DES Encryption Algorithm

Preliminary Permutation

56-Bit Data Input
8-Bit Parity Input

Incoming Data Stream
(Clear-Text)

010011001101011

XOR
F

Module

64-Bits

Subkey N
K N

48-Bits

Repeat for N
Iterations

Final Permutation

56-Bit Data Output

Outgoing Data Stream
(Cipher-Text)

111010!10100101

224_HPXML_06.qxd 6/28/02 10:39 AM Page 194

Encryption in XML • Chapter 6 195

Every five years from 1976 until 2001, NIST reaffirmed DES as the encryp-
tion standard for the U.S. government. However, by the 1990s the aging algo-
rithm had begun to show signs that it was nearing its end of life. New techniques
that identified a shortcut method of attacking the DES cipher, such as differential
cryptanalysis, were proposed as early as 1990, though it was still computationally
unfeasible to do so.

Significant design flaws such as the short 56-bit key length also affected the
longevity of the DES cipher. Shorter keys are more vulnerable to brute-force
attacks.Although Whitfield Diffie and Martin Hellman were the first to criticize
this short key length, even going so far as to declare in 1979 that DES would be
useless within 10 years, DES was not publicly broken by a brute-force attack
until 1997.

The first successful brute-force attack against DES took a large network of
machines over four months to accomplish. Less than a year later, in 1998, the
Electronic Frontier Foundation (EFF) cracked DES in less than three days using a
computer specially designed for cracking DES.This computer, code-named Deep
Crack, cost less than $250,000 to design and build.The record for cracking DES
stands at just over 22 hours and is held by Distributed.net, which employed a
massively parallel network of thousands of systems (including Deep Crack).Add
to this the fact that Bruce Schneier has theorized that a machine capable of
breaking DES in about six minutes could be built for a mere $10 million. Clearly,
NIST needed to phase out DES in favor of a new algorithm.

RSA and RC4
In the year following the Diffie-Hellman proposal, Ron Rivest,Adi Shamir, and
Leonard Adleman proposed another public key encryption system.Their proposal
is now known as the Rivest-Shamir-Adleman (RSA) algorithm, based on the last
names of the researchers. It was developed in 1977 and is normally used for
either digitally signing a message and/or general encryption. RSA shares many
similarities with the Diffie-Hellman algorithm in that RSA is also based on mul-
tiplying and factoring large integers. However, RSA is significantly faster than
Diffie-Hellman, leading to a split in the asymmetric cryptography field that refers
to Diffie-Hellman and similar algorithms as public key distribution systems
(PKDS) and RSA and similar algorithms as public key encryption (PKE). PKDS
systems are used as session-key exchange mechanisms; PKE systems are generally
considered fast enough to encrypt reasonably small messages. However, PKE sys-
tems such as RSA are not considered fast enough to encrypt large amounts of
data such as entire file systems or high-speed communications lines.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 195

196 Chapter 6 • Encryption in XML

NOTE

RSA, Diffie-Hellman, and other asymmetric algorithms use much larger
keys than their symmetric counterparts. Common key sizes include 1024
bits and 2048 bits; the keys need to be that large because factoring,
although still a difficult operation, is much easier to perform than the
exhaustive key search approach used with symmetric algorithms. The rel-
ative slowness of PKE systems is also due in part to these larger key sizes.
Since most computers can handle only 32 bits of precision, different
“tricks” are required to emulate the 1024-bit and 2048-bit integers.
However, the additional processing time is somewhat justified, since for
security purposes 2048-bit keys are considered to be secure “forever”—
barring any exponential breakthroughs in mathematical factoring algo-
rithms, of course.

Because of the former patent restrictions on RSA, the algorithm saw only
limited deployment, primarily from products by RSA Security, until the mid-
1990s. Now you are likely to encounter many programs that make extensive use
of RSA, such as Pretty Good Privacy (PGP) and Secure Shell (SSH).The RSA
algorithm has been in the public domain since RSA Security placed it there two
weeks before the patent expired in September 2000.Thus the RSA algorithm is
now freely available for use by anyone, for any purpose.

RC4 is a stream cipher originally used exclusively by RSA.The algorithm
was not patented and kept a trade secret until it was posted anonymously to the
Internet in 1994. One rumor has it that the U.S. Government believed the algo-
rithm was too good to be made public, so RSA could not patent RC4.Another
rumor proposed the possibility that the laws dealing with cryptology and expor-
tation made patenting RC4 too much of a hassle.

Stream and Block Ciphers
A cipher involves a process of taking plain-text and scrambling it. Ciphers do not
operate based on the content of what needs to be scrambled. Rather, it operates
on each specific bit, regardless of the content or context.A given number of bits
taken together constitute and define a block.A block cipher, therefore, is designed to
operate on a specific number of bits at a time. In contrast to this is a stream cipher,
which works by scrambling individual elements.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 196

Encryption in XML • Chapter 6 197

Key Management Schemes
The ability to exchange the key by which two parties will scramble their clear
text is essential to the security of the document.We will look at a few methods
by which two parties coordinate how they will encrypt and decrypt the data they
transfer.Without proper key management schemes, third parties could both read
and alter confidential information without the sender and recipient knowing.

Public and Private Keys
Until the 1970s, there was only one way to encrypt and decrypt messages. Each
party needed the same secret key to create and unlock the cipher-text.This
system was quite cumbersome. Consider this: If you are one side of the country
(or the world, for that matter) and I am on the other, how would we make sure
that we can share the secret key without another party discovering it? Should
someone get their hands on our single key, that party would have just as much
control over the message as we did.

Diffie-Hellman changed that.This system splits the key into a pair.With this
idea, we can exchange half of our key (the public one) and use that to encrypt our
message. Since we keep the other half secret, no one can decrypt the message.

Key Agreement: Diffie-Hellman
Without going into the mathematics, Diffie-Hellman allows parties to create and
share a private key from a public one. Unfortunately, it is vulnerable to a man-in-
the-middle attack. In 1992, Diffie worked with van Oorschot and Wiener to
combine the authentication mechanisms in public and private keys to withstand
man-in-the-middle attacks. Ultimately, it is the private key from the public/pri-
vate key pair that allows you to sign messages that allow Diffie-Hellman to with-
stand the attack.

As mentioned earlier in the chapter, in 1976, after voicing their disapproval of
DES and the difficulty in handling secret keys,Whitfield Diffie and Martin
Hellman published the Diffie-Hellman algorithm for key exchange.This was the
first published use of public key cryptography and arguably one of the cryptog-
raphy field’s greatest advances. Because of the inherent slowness of asymmetric
cryptography, the Diffie-Hellman algorithm was not intended for use as a general
encryption scheme—rather, its purpose was to transmit a private key for DES (or
some similar symmetric algorithm) across an insecure medium. In most cases,
Diffie-Hellman is not used for encrypting a complete message because it is 10 to
1,000 times slower than DES, depending on implementation.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 197

198 Chapter 6 • Encryption in XML

Prior to publication of the Diffie-Hellman algorithm, it was quite painful to
share encrypted information with others because of the inherent key storage and
transmission problems (as discussed later in this chapter). Most wire transmissions
were insecure, since a message could travel between dozens of systems before
reaching the intended recipient and any number of snoops along the way could
uncover the key.With the Diffie-Hellman algorithm, the DES secret key (sent
along with a DES-encrypted payload message) could be encrypted via Diffie-
Hellman by one party and decrypted only by the intended recipient.

In practice, this is how a key exchange using Diffie-Hellman works:

■ The two parties agree on two numbers; one is a large prime number, the
other is an integer smaller than the prime.They can do this in the open
and it doesn’t affect security.

■ Each of the two parties separately generates another number, which they
keep secret.This number is equivalent to a private key.A calculation is
made involving the private key and the previous two public numbers.
The result is sent to the other party.This result is effectively a public key.

■ The two parties exchange their public keys.They then privately perform
a calculation involving their own private key and the other party’s public
key.The resulting number is the session key. Each party will arrive at the
same number.

■ The session key can be used as a secret key for another cipher, such as
DES. No third party monitoring the exchange can arrive at the same
session key without knowing one of the private keys.

The most difficult part of the Diffie-Hellman key exchange to understand is
that two separate and independent encryption cycles are happening.As far as
Diffie-Hellman is concerned, only a small message is being transferred between
the sender and the recipient. It just so happens that this small message is the
secret key needed to unlock the larger message.

Diffie-Hellman’s greatest strength is that anyone can know either or both of
the sender and recipient’s public keys without compromising the security of the
message. Both the public and private keys are actually just very large integers.The
Diffie-Hellman algorithm takes advantage of complex mathematical functions
known as discrete logarithms, which are easy to perform forward but extremely dif-
ficult to find inverses for. Even though the patent on Diffie-Hellman has been
expired for several years now, the algorithm is still in wide use, most notably in

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 198

Encryption in XML • Chapter 6 199

the Internet Protocol Security (IPSec) protocol. IPSec uses the Diffie-Hellman
algorithm in conjunction with RSA authentication to exchange a session key
that is used for encrypting all traffic that crosses the IPSec tunnel.

Learning How to Apply
Encryption to XML
The goal of the XML Encryption specification is to describe a digitally
encrypted Web resource using XML.The Web resource can be anything from an
HTML document to a GIF file or even an XML document.With respect to
XML documents, the specification provides for the encryption of an element,
including the start and end tags, the content within an element between the start
and end tags, or the entire XML document.The encrypted data is structured
using the <EncryptedData> element that contains information pertaining to
encrypting and/or decrypting the information.This information includes the
pertinent encryption algorithm, the key used for encryption, references to
external data objects, and either the encrypted data or a reference to the
encrypted data.The schema as defined so far is shown in Figure 6.2.

Figure 6.2 XML Encryption DTD

<!DOCTYPE schema

PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN" http://www.w3.org/2000/10/

XMLSchema.dtd

[

<!ATTLIST schema xmlns:ds CDATA #FIXED "http://www.w3.org/2000/10/

XMLSchema">

<!ENTITY enc 'http://www.w3.org/2000/11/xmlenc#'>

<!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>

]>

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:ds="&dsig;"

xmlns:xenc="&enc;"

targetNamespace="&enc;"

version="0.1"

www.syngress.com

Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 199

200 Chapter 6 • Encryption in XML

elementFormDefault="qualified">

<element name="EncryptedData">

<complexType>

<sequence>

<element ref="xenc:EncryptedKey" minOccurs=0/ maxOccurs="unbounded"/>

<element ref="xenc:EncryptionMethod" minOccurs=0/>

<element ref="ds:KeyInfo" minOccurs=0/>

<element ref="xenc:CipherText"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="Type" type="string" use="optional"/>

</complexType>

</element>

<element name="EncryptedKey">

<complexType>

<sequence>

<element ref="xenc:EncryptionMethod" minOccurs=0/>

<element ref="xenc:ReferenceList" minOccurs=0/>

<element ref="ds:KeyInfo" minOccurs=0/>

<element ref="xenc:CipherText1"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="NameKey" type="string" use="optional"/>

</complexType>

</element>

<element name="EncryptedKeyReference">

<complexType>

<sequence>

<element ref="ds:Transforms" minOccurs="0"/>

</sequence>

<attribute name="URI" type="uriReference"/>

</complexType>

</element>

www.syngress.com

Figure 6.2 Continued

Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 200

Encryption in XML • Chapter 6 201

<element name="EncryptionMethod">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="Algorithm" type="uriReference" use="required"/>

</complexType>

</element>

<element name="ReferenceList">

<complexType>

<sequence>

<element ref="xenc:DataReference" minOccurs="0" maxOccurs=

"unbounded"/>

<element ref="xenc:KeyReference" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="DataReference">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="uriReference" use="optional"/>

</complexType>

</element>

<element name="KeyReference">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="uriReference" use="optional"/>

www.syngress.com

Figure 6.2 Continued

Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 201

202 Chapter 6 • Encryption in XML

</complexType>

</element>

<element name="CipherText">

<complexType>

<choice>

<element ref="xenc:CipherText1"/>

<element ref="xenc:CipherText2"/>

</choice>

</complexType>

</element>

<element name="CipherText1" type="ds:CryptoBinary">

<element name="CipherText2">

<complexType>

<sequence>

<element ref="ds:transforms" minOccurs="0"/>

</sequence>

</complexType>

<attribute name="URI" type="uriReference" use="required"/>

</element>

</schema>

The schema is quite involved in describing the means of encryption.The
described elements that are the most notable of the specification are discussed in
the following paragraphs.

The EncryptedData element is at the crux of the specification. It is used to
replace the encrypted data, whether the data being encrypted is within an XML
document or the XML document itself. In the latter case, the EncryptedData ele-
ment actually becomes the document root.The EncryptedKey element is an
optional element containing the key that was used during the encryption process.
EncryptionMethod describes the algorithm applied during the encryption process
and is also optional. CipherText is a mandatory element that provides the
encrypted data.You might have noticed that EncryptedKey and EncryptionMethod

www.syngress.com

Figure 6.2 Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 202

Encryption in XML • Chapter 6 203

are optional—the nonexistence of these elements in an instance represents the
sender making an assumption that the recipient knows this information.

The processes of encryption and decryption are straightforward.The data
object is encrypted using the algorithm and key of choice.Although the specifi-
cation is open to allow the use of any algorithm, each implementation of the
specification should implement a common set of algorithms to allow for interop-
erability. If the data object is an element within an XML document, it is removed
along with its content and replaced with the pertinent EncryptedData element. If
the data object being encrypted is an external resource, a new document can be
created with an EncryptedData root node containing a reference to the external
resource. Decryption follows these steps in reverse order: Parse the XML to
obtain the algorithm, parameters, and key to be used; locate the data to be
encrypted; and perform the data decryption operation.The result will be a UTF-
8 encoded string representing the XML fragment.This fragment should then be
converted to the character encoding used in the surrounding document. If the
data object is an external resource, the unencrypted string is available to be used
by the application.

There are some nuances to encrypting XML documents. Encrypted XML
instances are well-formed XML documents, but they might not appear valid
when you attempt to validate them against their original schema. If schema vali-
dation is required of an encrypted XML document, a new schema must be cre-
ated to account for those elements that are encrypted. Figure 6.3 contains an
XML instance that illustrates the before and after effects of encrypting an ele-
ment within the instance.

Figure 6.3 XML Document to Be Encrypted

<?xml version="1.0"?>

<customer>

<firstname>John</firstname>

<lastname>Doe</lastname>

<creditcard>

<number>4111111111111111</number>

<expmonth>12</expmonth>

<expyear>2000</expyear>

</creditcard>

</customer>

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 203

204 Chapter 6 • Encryption in XML

Now let’s say we want to send this information to a partner, but we want to
encrypt the credit card information. Following the encryption process laid out by
the XML Encryption specification, the result is shown in Figure 6.4.

Figure 6.4 XML Document After Encryption

<?xml version="1.0"?>

<customer>

<firstname>John</firstname>

<lastname>Doe</lastname>

<creditcard>

<xenc:EncryptedData

xmlns:xenc='http://www.w3.org/2000/11/temp-xmlenc' Type="Element">

<xenc:CipherText>AbCd….wXYZ</xenc:CipherText>

</xenc:EncryptedData>

</creditcard>

</customer>

The encrypted information is replaced by the EncryptedData element, and the
encrypted data is located within the CipherText element.This instance of
EncryptedData does not contain any descriptive information regarding the encryp-
tion key or algorithm; it is assumed that the document’s recipient already has this
information.There are some good reasons that you might want to encrypt at the
element level, considering the XLink and XPointer supporting standards, which
enable users to retrieve portions of documents (although there is a debate as to
restricting encryption to the document level).You might want to consolidate a
great deal of information in one document yet restrict access only to a subsection.
In addition, encrypting only sensitive information limits the amount of information
to be decrypted. Encryption and decryption are expensive operations.Although
encryption is an important step in securing your Internet-bound XML, at times
you might want to ensure that you are receiving information from the person you
think you are communicating with.The World Wide Web Consortium (W3C) is
also in the process of drafting a specification to handle digital signatures.

XML Transforms Before Encryption
Let’s now examine the methods by which we change an XML document. Here
we examine both the current implementation problems and solutions you face

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 204

Encryption in XML • Chapter 6 205

when you encrypt XML documents.We also examine the process an application
must follow when implementing XML encryption.

Canonicalization
Earlier we discussed that encryption can provide confidentiality, integrity, authen-
tication, and nonrepudiation. Encryption routines such as SSL can provide confi-
dentiality, integrity, and authentication, but they do not provide for
nonrepudiation. XML encryption does provide this feature via a digital signature
in the document. However, there is a problem: Digital signatures require the doc-
ument to remain static.To guarantee that the document has not been altered, not
a single bit of the data can change.This includes white spaces! This limitation is
in direct contradiction to XML’s flexibility. One power of XML is the ability to
have equivalent but nonidentical representations of data.

Here is a good example of this concept, taken from the IBM article The
XML Security Suite: Increasing the Security of eBusiness, which can be found at
www-4.ibm.com/software/developer/library/xmlsecuritysuite/index.html:

These two lines are semantically but clearly not syntactically equivalent.An
XML parser will correctly parse, represent, and understand both lines. But a dig-
ital signature cannot capture this flexibility. Ultimately, this lack of flexibility
becomes what we call the multiple data stream problem. Simply put, this means that
a multitude of bit arrangements (or streams) can be used to represent the same
data semantically.

Here is where canonicalization is important. Canonicalization is the ability to
put a document into its simplest form. It makes semantically equivalent docu-
ments out of nonequal ones. How is this possible? Canonicalization normalizes
the data by parsing it and arranging it to get the bits into a syntactically neutral
form.This is critical.To guarantee that an XML document is the same as the one
sent, canonicalization is almost mandatory. It is most likely the case that our XML
parser will represent the reconstructed document in a different form than the one
that the sender created.Without canonicalization, even a bit of white space would
invalidate our document after MACs were compared.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 205

206 Chapter 6 • Encryption in XML

www.syngress.com

Figure 6.5 Basic Method of Encrypting and Decrypting XML Element

Select Algorithm

Obtain Key

Encrypt 'element'/
content

Build
<EncryptedData>

Replace Clear Text
Determine Node

Algorithm

Get Encrypted Key

Decrypt Cipherdata

Decrypt 'element'/
content

Replace with Clear
Text

Encryption Decryption

IBM’s XML Security Suite
Although IBM is planning to release a new version relatively soon, we
cover some points of XML Security Suite here:

■ XML signatures Verify a digital signature, canonicalize a doc-
ument, and verify its form as well as XPATH transformations.

■ Nonrepudiation It is designed to provide nonrepudiation.
■ Java It is written in Java, hence, you must be running Java

to use the security suite.

The IBM security suite can be found here: www.alphaworks.ibm
.com/tech/xmlsecuritysuite.

Tools & Traps…

224_HPXML_06.qxd 6/28/02 10:39 AM Page 206

Encryption in XML • Chapter 6 207

Flowchart of Encryption Process
Figure 6.5 represents the basic method of encrypting and decrypting XML ele-
ments. Since XML documents can be worked on in various ways (different sec-
tions at different times), these steps might need to be applied repetitively.
Encryption and decryption are each a five-step process.

Understanding Practical
Usage of Encryption
As we said earlier, encryption is used as the primary modern means of estab-
lishing trust between two communicating parties. Earlier we discussed integrity,
confidentiality, and authentication as aspects of the encryption process. Every day,
we see these themes playing themselves out on the Internet. E-commerce is one
area that regularly relies on all three aspects of encryption.

The next practical use of encryption is nonrepudiation.When you digitally sign
a document, it is attributed to you; you cannot deny it is yours. Nonrepudiation’s
guarantee of accountability is promising. Digitally signing a document is now con-
sidered just as binding as physically signing a document by hand. It means that
recourse is now possible in a way that it was not before the advent of nonrepudia-
tion technology.

How does this change play itself out in the digital world? We can now sign
contracts digitally via the Internet, without ever seeing the other party.
Consumers are able to sign for their merchandise over the Internet just as they
currently do in a bricks-and-mortar store. Due to XML’s flexibility, multiple
people can sign the same document!

Now let’s turn to a discussion of how signatures work in XML.

Signing in Plain-Text, Not Cipher-Text
As a general rule, it is important to sign in plain-text and not cipher-text. Here
we delve into both semantic issues and practical ones. First, the practical issues. In
general, how do you know what you are truly signing if you do not sign the
plain-text version? Since the cipher-text version is already scrambled, if you sign
that version, how can you guarantee that the price of your widget is still the
price you believe it is?

Second, XML gives various users the ability to sign parts of a document. But
we cannot infer that if you sign the cipher-text version, you are confirming the

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 207

208 Chapter 6 • Encryption in XML

plain-text underneath. Here is a scenario that demonstrates that signing cipher-
text is not the same as signing plain-text. Suppose I sign part of a document and
then encrypt it.You come along and sign over the cipher-text. Here is a case
where we can clearly see that the signature over the cipher-text is not the same
as the one over the plain-text. Semantically, you did not confirm the content of
the plain-text.You only confirmed that you are responsible for the cipher-text,
whatever it is! Unless the protocol you are using specifically requests that cipher-
text be signed, keep sane as well as semantically safe: Sign the plain-text version!
Note: plain-text does not mean preformatted text! Here are two general rules to
follow: First, operate over data that was transformed (canonicalized), not the pre-
transformed data; second, present the user with the transformed document to
sign. Be aware that signing documents after a transformation introduces an
implicit trust relationship between what one believes one is signing and what
one actually signs.

Figure 6.6 represents an XML digital signature.The two pieces of code that
follow represent an order someone would like to place for a new P7 computer
(so hot on the market it hasn’t been invented yet!). Notice the <Reference> tag.
The URI contained within the element references the XML structures that
follow the figure.

Figure 6.6 A Digital Signature That References Either an Encrypted or
Unencrypted XML Structure

<Signature Id="SampleSignature" xmlns="http://www.w3c.org/…" >

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3c.org/…" />

<Signature Method Algorithm="http://www.w3c.org/…" />

<Reference URI="#NewComp">

<DigestMethod Algorithm="http://www.w3c.org/…" />

<DigestValue>qdEchuSo+3fHk9wZ3ioTy7vbV8=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>Ir78koi98Y7…</SignatureValue>

<KeyInfo>

<X509Data>

<X509SubjectName>CN=ken@FTU, STREET=1600 Pennsylvania Avenue NW

, L=Washington, ST=DC, C=US</X509SubjectName>

<X509Data>

www.syngress.com

Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 208

Encryption in XML • Chapter 6 209

</KeyInfo>

</Signature>

Here is the code for the unencrypted order:

<NewComp>

<customer>

<firstname>ken</firstname>

<mi>@</mi>

<lastname>FTU</lastname>

<order>

<ordernumber>12345</ordernumber>

<itemnumber>1337</itemnumber>

<itemdesc1>P7</itemdesc1>

<itemdesc2>2560RAM</itemdesc2>

<itemdesc3>10.4Ghz</itemdesc2>

</order>

</customer>

</NewComp>

Here is the code for the encrypted order:

<NewComp>

<EncryptedData

xmlns='http://www.w3c.org/…'>

<CipherText>khj43skjfh9834y234jk….

</CipherText>

</EncryptedData>

</NewComp>

Let’s return to the discussion about signing plain-text.As you can see, if I
were to sign the unencrypted <NewComp> I would know what it is I am
signing. If a transformation occurred and the <EncryptedData> element block is
already substituted for the original piece of XML, I might not know what I am
signing. In the example, if a user signs the <EncryptedData>, the only context the
user would understand is that <NewComp> is an order for a new computer.A
user might believe he or she is signing a P7 order when in fact the user is signing
(and perhaps approving) an order to buy an old P1 75MHz machine with 32MB

www.syngress.com

Figure 6.6 Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 209

210 Chapter 6 • Encryption in XML

of RAM. In fact, the user might sign an order purchasing a P7 for another indi-
vidual, since after encryption, the user cannot even guarantee the name on the
document!

XPATH Transforms
The key to XML encryption is a transformation.A transformation is any change to
a given XML document that replaces the document, in whole or part, with dif-
ferent (bitwise) text.Transformations include, but are not limited to, signing an
XML document, replacing plain-text with cipher-text (encryption), and decryp-
tion.The primary means of transformation is XPATH.

Suppose you’re a manager and would like to purchase pencils for your
department.You create a document with your corporate credit card and submit it
to your superior.Your manager approves it and sends the form to be processed.
Using XML, you would encrypt the credit card information and sign the docu-
ment stating that you are the one who is submitting this proposal; there is no
reason that your boss should view your credit card information.Your superior
then reads the document and signs off on it. Before sending the form, you have a
program that needs to validate both signatures. But herein lies the problem. In
order to verify your signature, the program needs to decrypt your superior’s sig-
nature because a signature cannot be verified after its been encrypted.

In general, XPATH is used to find specific nodes in a document. In cases like
the one mentioned, XPATH would be used to know the order in which to
decrypt and verify your superior’s signature and then your signature.

Signing the Cipher-Text Version
Prevents Encryption Key Changes
By signing cipher-text, you are prevented from changing the key.The reasoning is
simple. If you sign a document, you cannot then change it. Consequently, if you
sign cipher-text, you cannot do a transformation over that block of text, because
that would fundamentally change the bit pattern. If you were to change the bit pat-
tern, the signature would be worthless because your checks to guarantee the docu-
ment is sound would fail.You cannot sign a piece of cipher-text, decrypt it, and
then reencrypt it with a different key. Doing so would invalidate your signature.

Authentication by MAC Works on Cipher-Text
As stated earlier, MACs are hash values that allow you to verify that a message has
not been altered.This same principle applies to authenticating cipher-text. If we

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 210

Encryption in XML • Chapter 6 211

digest cipher-text, we will be able to determine if the cipher-text was altered.
Using a MAC in this case prevents an attacker from replacing the generated
cipher stream with his own cipher stream created with the same process.

Cipher-Text Cannot Validate Plain-Text
Implicit in our earlier example—when I sign a plain-text version and then you sign
the cipher-text—is the fact that the cipher-text does not give us any underlying
associate with the plain-text underneath. For this reason, we must decrypt the
cipher-text to retrieve the signed plain-text using XPATH. Since it is important to
know which XML structure you are validating against semantically, XPATH gives
us a LocationPath, in most cases represented as child::[specific attributes] tags to tell us
the order in which to decrypt the cipher-text.

Encryption Might Not Be Collision Resistant
A collision occurs when one hashing algorithm produces the same hash number
for different plain-text.This is a known flaw in MD5 checksums. Because dif-
ferent keys may be used to create different parts of the document—and hence
different keys used to decrypt different parts of the document—some keys could
be prone to collision.

The implication of this fact is that we cannot validate if text is what it is
claimed to be. If two different pieces of text give the same MAC, we cannot
guarantee that the plain-text was not altered. For this reason, we again fall back
on XPATH’s child:: tag.As noted earlier, the importance of this structure is that it
tells us the order in which to decrypt the information. It is also possible that two
different plain-texts can be encrypted with different keys and generate the same
cipher-text.This makes the decryption ordering essential to retrieving the correct
plain-text.

www.syngress.com

The Finney Plain-Text Attack
Finney points out that signatures over encrypted data can reveal infor-
mation. The reason this occurs is due to the order of transformations.
Imamura and Maruyama give this example:

Damage & Defense…

Continued

224_HPXML_06.qxd 6/28/02 10:39 AM Page 211

212 Chapter 6 • Encryption in XML

www.syngress.com

“Consider: Alice encrypts element A and the signature over the
parent of A. Bob encrypts element B (sibling of A) but not the signature
since he does not know about it. Alice then decrypts A and its signature,
which may provide information to a subsequent plain-text attack on the
encrypted B.”

Here is the case worded a bit differently: We have a parent and child
relationship. The child contains information that is semantically related to
the parent. Assume these stems: We encrypt the parent and then sign over
the parent. Next we encrypt the child. But if the parent is encrypted and
signed independently from the child (which is perfectly reasonable from
an XML standpoint), the person with the key to the parent (and lacking a
key to the child) might be able to begin to guess the contents of the child
because the child is semantically related to the parent. This context gives
the attacker a much smaller range of possibilities to try.

You can find the Finney e-mail at http://lists.w3.org/Archives/Public/
xml-encryption/2000Nov/0064.html and the Imamura and Maruyma
piece here: www.w3.org/Encryption/2001/Drafts/xmlenc-decrypt.html.

224_HPXML_06.qxd 6/28/02 10:39 AM Page 212

Encryption in XML • Chapter 6 213

Summary
In this chapter, you learned about various encryption algorithms such as AES and
RC4.You also learned that encryption is a necessary function to build trust over
an insecure medium. Encryption in XML now provides for nonrepudiation and
is flexible enough to allow multiple signatures for a particular document. It also
provides the other essential elements of security: integrity of the document, con-
fidentiality of content, and authentication.

Encryption and decryption in XML are provided through transformations.
We use XPATH to transform documents. Canonicalization of an XML docu-
ment is essential to obtain a standard format (syntax) that does not interfere with
the messages content (semantics), within certain bounds, before digitally signing
messages.You also learned when and how it is proper to sign XML documents. It
is possible to sign XML documents in any order at any time.

Solutions Fast Track

Understanding the Role of
Encryption in Messaging Security

Encryption provides authentication, confidentiality, integrity and
nonrepudiation.

Encryption algorithms include AES, RC4, and DES/3DES.

Stream and block ciphers are two methods of encryption.

Learning How to Apply Encryption to XML

Encrypted documents result in <EncryptedData></EncryptedData> with
cipher data specifically in <CipherData><CipherValue></CipherValue>
</CipherData>.

Encryption can be applied to a given document at any time and in
any order.

Signing messages now allows for nonrepudiation.

www.syngress.com

224_HPXML_06.qxd 6/28/02 10:39 AM Page 213

214 Chapter 6 • Encryption in XML

Understanding Practical Usage of Encryption

XPATH is the method for transforming XML documents.

Canonicalization is the method by which documents obtain a
standard form.

Sign the plain-text, not the cipher-text.

Q: Should I canonicalize my documents before encrypting?

A: Yes.You will definitely want all your documents in a standard form.This will
prevent checksum problems after you decrypt the documents.

Q: Where can I find more information on XML encryption?

A: The W3C, short for World Wide Web Consortium.This organization’s Web site
URL is www.w3c.org. Once you’re at the site, scroll down the page to the
bottom-left side.There you will find a link to the documents pertaining to
XML. XML-Encryption is a good place to start.

Q: The W3C documents reference keys through a URL located on the W3C
site.Why?

A: These are the public keys shared to make a private key through Diffie-Hellman.

Q: What advantage does XML encryption offer that other methods of encryp-
tion (such as SSL) don’t?

A: Nonrepudiation:With XML encryption, digital signatures can now be
included in a document.

Q: How do we avoid the Finney plain-text attack?

A: Make sure that you encrypt and sign your documents in the proper order.

www.syngress.com

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_06.qxd 6/28/02 10:39 AM Page 214

Role-Based
Access Control

Solutions in this chapter:

■ Learning About Stateful Inspection

■ Learning About Role-Based Access Control
and Type Enforcement Implementations

■ Applying Role-Based Access Control
Ideas in XML

Chapter 7

215

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_07.qxd 6/28/02 10:41 AM Page 215

216 Chapter 7 • Role-Based Access Control

Introduction
XML does a good deal of wrapping and unwrapping of data as befits its object-
oriented programming heritage. Every time this happens, you expose yourself to
a plain-text attack or other form of attack in the data you’ve unwrapped.

One way that this kind of security situation has been dealt with in the past
has been to implement role-based access control (RBAC, or as some people refer
to it, rule-based access control) on the system to be defended.This kind of effort
denies access unless that access is explicitly permitted by the supervisory process.
In other words, everything that is not explicitly permitted is forbidden.

In this chapter, we first look at the idea of stateful inspection, from there go
to RBAC implementations, and finish with applying all these concepts to XML
hack proofing.

Learning About Stateful Inspection
Stateful inspection is a term coined by Check Point Software in 1993; it refers to
dynamic packet-filtering firewall technology that was first implemented in Check
Point’s FireWall-1 product that came out the same year. Dynamic packet filtering
is a compromise between two existing firewall technologies that makes imple-
mentation of good security easier and more effective. Let’s look at these types of
firewall technologies, and then we’ll examine stateful inspection in more detail.

Packet Filtering
The first and most common type of firewall technology is simple packet filtering.
With this technology, each packet is inspected as it enters the firewall, and its
header is examined. From the packet’s header, the firewall determines the origi-
nating IP address and port as well as the destination IP address and port.This
information is then checked against a static list of rules that either allow or deny
the connection based on the IPs and port numbers. Using this technology, a spe-
cific port is either open or closed, and specific IP addresses are either allowed or
denied access to these ports. For example, rules can be put in place that allow an
FTP connection (port 21) from specific IP addresses or allow an HTTP connec-
tion (port 80) from any IP address.

Packet filtering does have both its benefits and drawbacks. One of the bene-
fits is speed. Since only the header of a packet is examined and a simple table of
rules is checked, this technology is very fast.A second benefit is ease of use.The

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 216

www.syngress.com

rules for this type of firewall are easy to define, and ports can be opened or
closed quickly.

There are really two major drawbacks to packet filtering.The first is that a
port is either open or closed.With this configuration, there is no way of simply
opening a port in the firewall as a specific application needs it and then closing it
when the transaction is complete.When a port has been opened, you always have
a hole in your firewall waiting for someone to attack.The second drawback is
that firewalls utilizing packet filtering do not understand the contents of any
packet beyond the header.Therefore, if the packet has a valid header, it can con-
tain any payload.This is a common failing point that is easily exploited.The
operation of packet-filtering firewall technology is illustrated in Figure 7.1.

Application Layer Gateway
The second firewall technology we’ll look at is called an application layer gateway.
This technology is much more advanced than packet filtering; it examines the
entire packet and determines what should be done with the packet based on spe-
cific rules that have been defined. For example, with an application layer gateway, if
a Telnet packet is sent through the standard FTP port, the firewall can determine
this activity and block the packet if a rule is defined that disallows Telnet traffic.

One of the major benefits of application layer gateway technology is its appli-
cation layer awareness. Since it can determine much more information from a

Role-Based Access Control • Chapter 7 217

Figure 7.1 Packet-Filtering Technology

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

OSI Model

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Open Port

Client Server

Packet
Filtering
Firewall

224_HPXML_07.qxd 6/28/02 10:41 AM Page 217

218 Chapter 7 • Role-Based Access Control

packet than a simple packet filter, it can use more complex rules to determine the
validity of any given packet.Therefore, it provides much better security than a
packet filter.

Although the technology behind application layer gateways is much more
advanced than packet-filtering technology, it certainly does come with its draw-
backs. Due to the fact that every packet is disassembled completely, then checked
against a complex set of rules, application layer gateways are much slower than
packet filters. In addition, only a limited set of application rules is predefined, and
any application not included in that list must have custom rules defined and
loaded into the firewall. Finally, application layer gateways actually process the
packet at the application layer of the OSI model. By doing so, the application
layer gateway must then rebuild the packet from the top down and send it back
out.This really breaks the concept behind client/server architecture as well as
slows the firewall even further.

Of course, we can postulate a solution to this problem (while sidestepping
entirely the question of whether or not breaking client/server is a good thing) by
invoking some sort of linear increase in processor power, such as Moore’s Law (or
distributed computing power, for that matter), making packet-handling speed less
an issue in the future than it is right now. Faster CPUs are always welcome as a
way to counteract the time spans inherent in the physical world. Faster hardware
is always good. If the application can react to events quickly enough, this
approach could be an answer to some problems.The lure of using simple and
high-level entry points is a strong one.That’s one of the reasons people use XML
in the first place.

The operation of application layer gateway technology is illustrated in
Figure 7.2.

As previously mentioned, stateful inspection is a compromise between these
two existing technologies. It overcomes the drawbacks of both simple packet fil-
tering and application layer gateways while enhancing the security provided by
your firewall. Stateful inspection technology supports application layer awareness
without actually breaking the client/server architecture by breaking down and
rebuilding the packet. In addition, it’s much faster than an application layer
gateway due to the way packets are handled. It’s also more secure than a packet-
filtering firewall due to the application layer awareness as well as the introduction
of application and communication-derived state awareness.

The primary feature of stateful inspection is the monitoring of application
and communication states.This means that the firewall is aware of specific appli-
cation communication requests and knows what should be expected out of any

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 218

Role-Based Access Control • Chapter 7 219

given communication session.This information is stored in a dynamically updated
state table, and any communication not explicitly allowed by a rule in this table is
denied.This allows a firewall to dynamically conform to the needs of your appli-
cations and open or close ports as needed. Because the ports are closed when the
requested transactions are completed, another layer of security is provided by not
leaving these particular ports open attack. Standard system ports may still be
open, but it is hoped that they are monitored by the stateful inspection process.

The FTP Process
A great example of how these technologies work is the File Transfer Protocol
(FTP) process.With FTP, the client has the option of requesting that the server
open a back-connection.With a packet-filtering firewall, you have only the
options of leaving all ports beyond port 1023 open, thus allowing this back-con-
nection to be permitted, or closing them, which makes this attempted communi-
cation fail.With an application layer gateway, this type of communication can
easily be permitted, but the performance of the entire session will be degraded
due to the additional sessions created by the application layer gateway itself as it
rebuilds and retransmits packets.With stateful inspection, the firewall simply
examines the packet where the back-connection is requested, then allows the

www.syngress.com

Figure 7.2 Application Layer Gateway Technology

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Client Server

Application Layer Gateway

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Authorized
Packet

224_HPXML_07.qxd 6/28/02 10:41 AM Page 219

220 Chapter 7 • Role-Based Access Control

back-connection to go through the firewall when the server requests it on the
port previously specified by the requesting packet. (The more paranoid reader
might ask,“What if the previous packet is in error or has been spoofed by an
attacker?” Consider well the revisions of “wu-ftp” for the answer.) When the FTP
session is terminated, the firewall closes all ports that were used and removes their
entries from the state table.

Firewall Technologies and XML
Knowing how firewall technologies work is certainly useful, but how does it
apply to XML? The same concepts used for firewall technologies can also be
applied to XML to enhance the security of your application. For example, when
users have been authenticated, they are granted access at a specific authorization
level. By monitoring XML requests submitted by a user in a manner similar to
stateful inspection, you can determine if a user is attempting to send requests not
authorized by that user’s security level and block the request.This capability
allows you to incorporate a higher level of security into your environment.

Now let’s examine stateful inspection in a little more detail, but first, take a
look at Figure 7.3 for an overview of how stateful inspection works in compar-
ison to other firewall technologies.

www.syngress.com

Figure 7.3 Stateful Inspection Technology

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Client Server

Stateful Inspection

Application
Presentation

Session
Transport

Network

Data Link

Physical

Authorized
Packet

Sta
te

Inspected

224_HPXML_07.qxd 6/28/02 10:41 AM Page 220

Role-Based Access Control • Chapter 7 221

First, You Inspect the State
The primary focus of stateful inspection is the application state.This basically
means that the current application state is determined and then compared with
either the last known application state or a predetermined baseline.This is a diffi-
cult concept to follow, so let’s take a look at a simple example of how it could be
applied in the real world. If you have developed an XML Web Service that allows
XML transactions to take place for the purpose of ordering merchandise from a
company, you would want to make this application as secure as possible. For
example, you wouldn’t want the user to be able to modify the price of an item
before she submits an order. If the service is designed to work in the way illus-
trated in Figure 7.4, this is a possibility.

As you can see from Figure 7.4, if the XML packets that you are sending the
end user are analyzed and the data coming back modified, the end user could
order anything available at any price she wants to pay.This situation is not exactly
ideal for you as the merchant.

Instead, if you were to inspect the state of the <PRICE> tag leaving the
server, then inspect the state of the <PRICE> tag coming back from the client,

www.syngress.com

Figure 7.4 XML Purchase Flow

Client Server

<FIND ITEM1INFO>
<GET PRICE>
</GET PRICE>
</FIND ITEM1INFO>

<INFO ITEM1INFO>
<PRICE 500.00>
</PRICE>
</INFO INTEM1INFO>

<ORDER ITEM1>
<QTY 1>
<PRICE 5.00>
</PRICE>
</QTY>
</ORDER ITEM1>

<CONFIRM ORDER 1>
<ITEM ITEM1>
<QTY 1>
<PRICE 5.00>
</PRICE>
</QTY>
</ITEM>
</CONFIRM ORDER 1>

<CONFIRM ORDER 1>
</CONFIRM>

<CONFIRM RECEIVED>
<SHIPPING ORDER 1>
</SHIPPING ORDER 1>
</CONFIRM RECEIVED>

224_HPXML_07.qxd 6/28/02 10:41 AM Page 221

222 Chapter 7 • Role-Based Access Control

this discrepancy would be easy to spot and correct.This is only one example of
how state inspection can aid you in designing secure applications, but there are
many places where this concept could be used.Verifying the state of a user’s cre-
dentials is another example. If the credentials for a user are stored within an XML
tag at some point, it’s possible that the user could attempt to change the creden-
tials to gain greater access. By comparing the state of the credentials tag as it was
assigned at the server against the state of the credentials tag coming back from
the client can help enforce security as well.

Basically, observation of critical data coming in and out of your system is of
utmost importance. By observing state changes, you give yourself an added level
of awareness as to what is happening at any given time.Armed with this knowl-
edge, you can head off possible security problems before they even occur.

Baselines
Observing the state changes that occur is useful, but it really does no good
without data to compare it against. In order to be able to successfully evaluate
whether state changes are permitted, we must know what state changes are
allowed for any given user.This list of allowed changes is known as a baseline.

A baseline of state data can either be derived from known states or by com-
piling a historical list of state changes and deriving a baseline from that data.An
example of creating a baseline derived from a known state is shown in our pre-
vious example of placing an order, illustrated in Figure 7.4. In this particular case,
we know what the price of the item was when we initially sent the XML to the
user; therefore, this information can be used as the baseline to make sure that the
user didn’t change the price when she sent the order information.

The alternative to using known state information for your baseline is to use
historically derived state data.A good example is the monitoring of quantity
information in orders.Take as an example a corporate customer who generally
orders between 50 and 100 cases of a particular product in each order.You can
safely derive from this that the customer’s order quantities range between 1 and
200.As a safeguard within your application, you could specify that if an order is
placed for a quantity far outside this historically derived baseline, a corporate
orders manager will be notified.This step provides additional protection to both
your company and your customer. In the event that the customer’s account infor-
mation has been stolen or hacked, this security measure would prevent the thief
from placing false orders in their name for very large quantities of products.

These are rather simple examples of how to use baselines, but many uses exist
for this concept.Any state change could be evaluated against a baseline to verify

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 222

Role-Based Access Control • Chapter 7 223

that it is a valid change or an allowed change. By having baselines for your var-
ious state changes, you actually have something to compare your observed state
changes against.With this information, you can move on to evaluating the
changes and deciding what to do from that point.

Evaluating State Changes
We mentioned the evaluation of state changes somewhat in the previous sections,
but let’s go into a little more detail on what we can do by evaluating observed
current data against known baselines. By implementing state inspection, you
know the current state changes that are occurring within your incoming and
outgoing data. In addition, by establishing a known baseline either from known
state data or from historically derived data, you know what state changes to
expect. Comparing these pieces of information allows you to evaluate whether
the state change is valid or allowed with your current security policy.

When you compare state changes against known valid state change baselines,
you can evaluate whether a specific state change is valid to be used by your appli-
cation. For example, you wouldn’t want to allow someone to purchase a negative
number of products, so if the state for product quantity were to change to a neg-
ative number, your application could spot the discrepancy and report an error.

This is also very useful in hack proofing your system. Many systems are
hacked by the hacker performing what is called a stack overflow.This is basically a
situation that arises when much more data than expected is sent to a system,
effectively confusing the system and causing access to be granted to restricted
areas. In some cases, it can even grant full control of a system to the remote user.
By evaluating state changes prior to sending the data through the program logic
to be executed, you can head off this type of situation before it occurs. For
example, if you are expecting a specific data size to be returned, you could eval-
uate the incoming data to verify that it does not exceed this amount. If it does,
an error message can be returned, notifying the user that invalid data has been
received.That way, this invalid data should never get processed by the actual
application logic, which eliminates the possibility of a stack overflow from this
specific state change.The basic concept is to try to get upstream of the problem
by qualifying data before it is logically sent to the application. (And in this the
application-level interface shows more of its appeal.) But to take the concept fur-
ther: If you operate a networked server, it’s reasonable to assume that you can
have fast enough hardware to do this sort of examination before serving.

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 223

224 Chapter 7 • Role-Based Access Control

By evaluating state changes, you can also determine whether or not a partic-
ular user has access to an area or function that the user is trying to use. (Even
better, access can now vary based on the matrix of area desired by the state change
versus user current application.) For example, if your application requires data to be
sent back from the user, and one of the tags is <NOTADMIN>, the user could
try changing that tag to <ADMIN> just to see what happens. If your application
is evaluating state changes, you could see that this user is not supposed to have
the higher level of access granted by this tag and reject the state change.This pro-
vides additional security to the system by verifying that state changes are not only
valid but authorized.

Another example of evaluating state changes to see if they are authorized is a
customer service application for a sales center.Take, for example, a telemarketing
center that does sales of products over the telephone. Many of these centers have
a policy in place whereby sales personnel can put an order into the system for a
customer, but the actual order must be verified by a third-party verification ser-
vice.This policy ensures that the customer actually intends to order a specific
product and that the sales personnel aren’t simply entering customer names
without the customers’ authorization in order to raise their number of sales and
earn a higher commission.To battle this problem from the information tech-
nology perspective, you can set certain rules regarding state changes for the order
process. For example, you could set logic in place to ensure that a sales represen-
tative can only put an order into a “pending” state and the third-party verifier
can only put an order into a “completed” state.This would prevent one or the
other from placing a complete order without working together. In this case, you
would monitor state changes for the order and generate an error if a sales repre-
sentative attempted to change the order state to “completed.”You would also
generate an error if the third-party verifier tried to change the order state to
“completed” if the previous state was not “pending.”

In the last example, not only did we use the state of the order, but we also
used the role of the specific user in our evaluation. By doing so, we provided an
additional layer of security by verifying that any given user’s role in the system
allows the user to make certain state changes.We cover roles in detail a little later
in the chapter; the important thing for now is to be aware that you can use mul-
tiple pieces of state data and multiple baselines when you are evaluating state
changes.

For example, using the user’s role in combination with a historically derived
state change baseline could allow you to evaluate whether a specific role has ever
made specific state changes.To clarify, refer to the example in the last section

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 224

Role-Based Access Control • Chapter 7 225

regarding placing an order for an unusually large quantity of products. From the
historically derived baseline, you know what the normal order quantity for the
company is, but based on the user’s role, you can evaluate how to handle a situa-
tion in which a larger order has been placed. If the user’s role is the manager of
the company’s bulk purchase group, you could allow the purchase to go through
unimpeded. Conversely, if the user’s role is just a normal purchaser from the
company, you could have the order sent to a sales manager in your company to
verify that the purchase is valid.

Default Behavior Affects Security
In dealing with system security, one point that is often forgotten is that it is most
often better to deny access than allow it. In the past, many people designed secu-
rity on their systems in such a way that complete access to the system was
allowed unless a user was explicitly denied access.A great example of this setup is
a very badly designed network environment I once saw.The administrator had
designed the network security so that all users had full access to every share on
the servers.The administrator was then tasked with securing the network share
that the accounting department used to make sure that only users in that depart-
ment could access the data in the share. His only solution was to explicitly deny
access to that share for every user on the network and every new user created!
This is truly an administrative nightmare.The better solution would have been to
deny all access to network shares unless explicitly granted.

By denying access by default, you have already increased your overall system
security by several magnitudes.This security concept comes into play at every
step of system design, from the security of where the application is kept to the
security within the application itself. If by default you deny access to an applica-
tion or function within an application, you effectively eliminate the possibility
that someone will stumble into a secure area and possibly cause problems.

With many application development projects, security is the last piece to be
implemented within the application; therefore, it is not always well thought out.
When security is implemented at the end of the application’s development, the
application is already in a mode in which access is granted by default until the
code is added into place to secure it.A better solution is to make security an
integral part of the application design. If this is done properly, access will be
denied by default unless explicitly granted to a user, role, or process.

This security strategy also comes into play when integrating multiple parts of
a large application. Some portions of the full application might need access to

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 225

226 Chapter 7 • Role-Based Access Control

change specific data, but if this data is critical, you want to ensure that only per-
mitted processes are allowed to make the changes.To implement this plan in your
application design, you would secure the data by denying access to the data.Then
create an exception where a specific process is allowed to modify the data.
Following this process will deny the ability to modify critical data to any process
except those for which it is required.

The main point to understand is that it is better to deny access by default and
grant access by exception rather than grant access by default and deny access by
exception.We’ve gone through a few examples where this rule becomes painfully
obvious in the long run, but it is something of which you should always be
aware, even in the simplest situations. In addition, keep in mind that this rule
applies not only to users accessing a system or data, but also users accessing other
processes or even system threads.As illustrated in the previous example, this is a
fairly straightforward process but one that is often overlooked.

www.syngress.com

Securing Applications from Other Applications
One of the more common hacks performed on systems is to attempt to
take control of a process that is running in the context of an account
with more system privileges than your own user account. This is typically
done by creating an application that takes over the previous applica-
tion’s security context, either by stealing control of the system thread or
causing the application to generate an exception. A good way to secure
yourself from this attack is to make sure that you’ve covered handling of
all possible exceptions that can be generated by your application (use of
a random input “monkey” program can help you find exceptions you
might not have otherwise found) as well as making sure that your appli-
cation does not allow any data in its memory space to be modified by
another application. The latter goal can be achieved by adding code to
your application code that does a quick verification of any critical data
stored in memory. This step could slow performance (remember that
increasing hardware performance can help here), but it does offer addi-
tional security to your application.

Tools & Traps…

224_HPXML_07.qxd 6/28/02 10:41 AM Page 226

Role-Based Access Control • Chapter 7 227

Learning About Role-Based
Access Control and Type
Enforcement Implementations
One of the worst problems with application-level security is that it is usually
undermined by an operating system that is not secure. Most businesses recognize
the need for security on systems that are critical for those businesses; however,
they tend to suffer from a flawed assumption.This assumption is that security can
be adequately provided at the application level without certain security features
present in the operating system. In fact, the operating system is responsible for
protecting the application level from tampering, bypassing, or spoofing.

In theory, a truly secure operating system supports several security features
that protect an application from these types of attack.These security features,
when implemented at the operating system level, provide a safe environment for
the application to run within. In addition, they should protect critical portions of
the system from being tampered with by the application in case the application-
level security has been compromised.

The first (and perhaps most critical) of these security features is mandatory
security policies. In a standard operating system, the use of security policies is dis-
cretionary. For example, in Windows NT, NTFS file permissions can optionally
be set to control access to certain files. However, by default, many critical files are
left unsecured and can be modified by any application. Furthermore, application
files tend to be left unsecured, and if the operating system is compromised, the
application’s operation can easily be changed.

The solution to this problem is to implement a mandatory security policy to
lock down the files used by specific applications to the most restrictive level pos-
sible. Many other security controls could and should be implemented in the
mandatory security policy. Using this security feature, you could guarantee that
“optional” security features are taken advantage of.

A second important security feature is that of type enforcement.Type enforce-
ment is a security concept that specifies that it is mandatory that any trusted
application is restricted to the minimal set of privileges required to perform its
function. It also specifies that these applications should have their use of these
privileges monitored in order to confine any possible damage caused by the
misuse of their privileges.

To illustrate the dangers of not implementing this concept, let’s turn again to
Windows NT. Some applications require that their services run in the security

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 227

228 Chapter 7 • Role-Based Access Control

context of an account that is a member of the local Administrators group.When
an application is running in this context, it has total control of the system! This
application could change anything on the system, and no controls are in place to
restrict it.A malicious application running in this context could easily remove all
users from the computer and change the password for the Administrator account.
This would effectively force the administrator to hack into his or her own system
to recover from the actions of this uncontrolled application.

The solution to this problem is to restrict the application to a less powerful
security context, which cuts down on the privileges held by the application. In
addition, the program should be run in a controlled environment that would
restrict it from accessing parts of the system with which it has no need to work,
such as the portion of the system registry that holds user account information.

The last security feature that we’ll mention is access control.When you’re
securing an application or operating system, there must be a secure and reliable
way to verify that an account on the system is authorized to access portions of
the system. In addition, the privileges granted to the account must be able to be
securely controlled.The security concept that covers this need is access control.

The best system of access control is to have a secure third-party system autho-
rize an account and determine the privileges to grant to the account.To make this
system secure, there must be two-way authentication between the requesting
system and the responding system.This system verifies that the requesting system
is authorized to request this information as well as ensuring the requesting system
that the responding system is authorized to provide the information.

In addition, the operating system must have a reliable method to enforce the
security decisions made by the third-party security system. For example, assume
that the operating system has requested authorization for an account and the
security server grants authorization. Specific privileges have also been granted to
this account by the operating system based on the information received from the
security server. Now, what happens when the account user revokes the account’s
privileges on the security server in order to restrict access? The operating system
must have some method of handling this eventuality in order to offer secure
access control.

Note too that regardless of the security in place within the operating system,
the system as a whole is still not secure unless appropriate application security is
also in place.The operating system and the applications running on it must work
together to provide a fully secure environment.

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 228

Role-Based Access Control • Chapter 7 229

NSA: The Flask Architecture
The Flask Security Architecture is a joint effort among members of the National
Security Agency (NSA), the Secure Computing Corporation, and the University
of Utah. Flask was designed to be the conceptual architecture of a secure oper-
ating system that implements the security features mentioned in the preceding
section, and more.A properly developed operating system designed to use this
architecture is the most secure environment available to run applications.

The primary goal of the Flask architecture is to provide flexibility in support
of security policies and a method by which these policies can be enforced.To do
this, the privileges on the system must be controlled at a very granular level and
support of privilege revocation must be provided.The architecture describes how
this can be done using a security server in combination with support of the
operating system to provide secure access control for the system.

The Flask architecture describes the process flow for this system as follows:A
client requests access to a specific object by sending a request to a request broker,
called an object manager.The object manager is responsible for controlling access to
its objects and does this by implementing policy enforcement. Policy enforcement
refers to the act of enforcing decisions made by a security policy.The object
manager receives the request from the client and sends the request on to the
security server.The security server is not necessarily a different system; it could
simply be another component of the operating system. It is responsible for
responding to requests regarding the system’s security policy.The security receives
the request from the object manager and refers to the system’s security policy in
order to make a decision regarding the request.The security server decides the
level of object access the client should be granted and responds to the object
manager with its decision.The object manager then takes this decision and
enforces the policy by granting access to the object at a specific level or denying
access to the object. Figure 7.5 illustrates this process.

Creating an operating system to support this architecture is not as easy as it
appears.There are many challenges to overcome, and the Flask architecture
addresses many of these areas.The first is identification of objects. How would
you control access to something if you can’t identify what it is? The Flask archi-
tecture addresses this issue by supporting a process known as object labeling.With
this process, all objects that are controlled by a security policy are labeled with
specific attributes.These attributes as a group comprise the object security context.

The problem that comes with the concept of applying a security context to
an object is how to make the association. Obviously, some sort of data needs to

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 229

230 Chapter 7 • Role-Based Access Control

be added to the object, but how would you make this work for all types of
objects in a system? The Flask architecture supplies two solutions to this problem.
Two different data types are defined in the architecture, both of which attach
some data to the object and allow it to be identified.

The first is the security context itself as stored in a string.This string is speci-
fied by the architecture to contain specific attributes such as a userid, classifica-
tion level, role, and a type enforcement domain. By storing the data in this
manner, any application that is able to understand the security policy can then
interpret the security context.The problem with using the security context
exclusively is that it can consume unnecessary resources on your system, because
there would be a different context for every object. Perhaps even multiple secu-
rity contexts would be applied to a single object, which would add up very fast.

An alternative is to use a security identifier (SID) to identify each object.The
SID is defined by the architecture as a fixed-size value that only the security
server itself can interpret.The security server takes the responsibility of mapping
the SID to a security context. Using this model, each object simply has a SID
applied to it, and the security server handles the translation of this SID into a
meaningful security context. Based on this context, the security server then
makes access control decisions.

The architecture also specifies a few more rules as to how these SIDs are to
be built and handled. First, the SID mapping is not guaranteed to be consistent
between reboots or between multiple servers. Second, there is no real structure to
a SID; it’s simply a 32-bit integer that can be built and assigned by the security
server as needed.Any structure applied to a particular SID is known only by the

www.syngress.com

Figure 7.5 Flask Access Control Flow

Client Server

Object
Manager

(Policy
Enforcement)

Security
Server

(Security Policy
Decisions)

Object Request

Object
Request

Policy Query

Policy Decision

Object
Acces

s Le
vel

Object (at specified access level)

224_HPXML_07.qxd 6/28/02 10:41 AM Page 230

Role-Based Access Control • Chapter 7 231

security server, and therefore only the security server can interpret the SID. In
addition, the security context for an object can be changed without requiring
that the SID be changed.This process allows for a more flexible security frame-
work while cutting system overhead.

Basically, the SID is simply a number that represents a security context on the
security server.This SID is applied to a specific object, and only the security server
has any idea what the SID means or what it translates to. Multiple SIDs can be
applied to an object to handle multiple security contexts, or multiple contexts can
be mapped to a single SID.As you can see, this is a very flexible architecture.

In addition to labeling objects with SIDs, individual users and systems also
have a SID applied to them.This way, an additional layer of authentication is pro-
vided by the Flask architecture.With the ability to positively identify a system or
a user, the security server can provide a greater level of security by being able to
verify that it is granting object access to an authorized system or user.This works
both ways; it also allows a client to positively identify that the object it is
receiving is coming from the correct system.The architecture also allows for this
identification to be overridden in a secure manner in order to allow a system to
make a request by proxy for another system or a user.

Another challenge the architecture faces is the performance degradation that
always comes with increased security. If a request is sent to the security server
every time any object is accessed, the system is incredibly secure but is also
incredibly slow. Every access to an object generates a new batch of requests and
responses.A solution to this problem is for the object manager to cache previous
responses from the security server. By doing so, the object manager can quickly
and easily grant access to objects based on previously authorized access requests.

This process comes with a small side effect that can prove to be a true hin-
drance in creating a secure operating system. Namely, what can you do when a
user’s access to an object has been revoked? If the object manager has cached the
security server’s previous response to an access request, it wouldn’t send a new
request and therefore would not know that the user should no longer be granted
access to the object.The Flask architecture addresses this problem by providing
revocation support mechanisms.

A revocation support mechanism allows the security server to control access
even when an object manager caches its previous responses. In the Flask architec-
ture, this is done by a series of steps. First, the security server identifies that a
change has been made to a security policy and sends a notification to that effect
to the object managers.As part of this notification, the security server also tells
the object manager which SIDs are related to the change.The second step of the

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 231

232 Chapter 7 • Role-Based Access Control

process is up to the object managers.They are required to dump the responses
related to these SIDs out of their cache.The third step is also the responsibility of
the object managers and specifies that they contact the security server to send a
notification that this process has been completed.The security server keeps a tally
of which object managers have replied and therefore is able to determine when a
policy change has taken effect throughout the entire secured enterprise.

As you can see at this point, the Flask architecture provides a very good
design for a secure operating system. By developing solutions for many of the
security challenges present in current operating systems, this architecture provides
a standard for a secure operating system that is flexible yet also capable of con-
trolling system security at a very granular level.

SELinux
The Flask architecture has been implemented in a new distribution of the Linux
operating system called Security-Enhanced Linux (SELinux).This operating
system applies the concepts that the Flask architecture outlines in order to make a
practical, secure, and reliable operating system.

SELinux offers support for mandatory access control policies that restrict
both user access and application access.As mentioned previously, these are two
requirements for a secure operating system based on the Flask architecture. In
SELinux, applications are restricted to the lowest level of privilege required to
perform their functions, therefore eliminating the security vulnerability created
by having applications running in a powerful security context.

SELinux was designed to embody the Flask architecture; therefore, it meets
these security criteria:

■ Prevents processes from reading data or programs

■ Prevents tampering with data or programs

■ Prevents bypassing of security mechanisms such as access control policies

■ Prevents execution of untrustworthy programs

■ Prevents interference with other processes

■ Confines potential damage caused by malicious or flawed programs

■ Allows a role-based access control model to be implemented

You can find this Linux distribution as well as all supporting documentation
at www.nsa.gov/selinux.You can also find the archives of the SELinux discussion

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 232

Role-Based Access Control • Chapter 7 233

list at this location; they are an invaluable source of information regarding the
number of specificities needed to implement SELinux on a specific system.

SELinux is not intended to be the ultimate in secure operating systems. Many
other important security factors must be incorporated in your infrastructure as a
whole to provide the highest level of security. Some of these other security fac-
tors include:

■ Regular auditing of secured systems

■ Constant vulnerability testing

■ Accurate system documentation

■ Physical security for secured systems

■ Internal personnel security audits

SELinux is simply a prototype operating system designed to show the effec-
tiveness and practicality of the Flask architecture as well as to demonstrate the
proper implementation of RBAC and mandatory access control within the oper-
ating system. Indeed, the provided distribution of SELinux is pretty useless as is,
since it only contains policies allowing for a prototypical user.You should always
keep in mind that a secure environment requires the factors of a secure operating
system, a secure application, and secure interaction between the two.

When we reviewed the Flask architecture, we learned that there were two
methods that could be used to identify objects.The first was applying a security
context to each object; the second was to use a security identifier, or SID. In
SELinux, it is the SID that is used for identification of all objects and processes.
Keep in mind that this does not mean only executable code or accessible data
files but also sockets, IPC objects, and other objects.The security server uses these
SIDs to make access control decisions for any object.The request for access to an
object is generally sent to the security server with the requesting process or
object SID, the requested process or object SID, and the level of access requested.
The security server takes these pieces of information and makes an access deci-
sion based on the system’s security policy. In addition, the security server can also
generate information related to access requests for auditing purposes.This process
is illustrated in Figure 7.6.

The heart and soul of making SELinux work as a secure operating system lie
in the proper configuration and implementation of your system’s security policy.
The fundamental rule is to make the security policy as restrictive as possible and
still give the users and processes the level of access that they need for specific

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 233

234 Chapter 7 • Role-Based Access Control

objects.A few other simple rules should be considered when you’re imple-
menting this system:

■ No object should ever be completely restricted. If nothing needed to
access it, it wouldn’t exist.

■ No process or user needs access to every object. Hard as it is to admit,
even system administrators don’t need full access to confidential data.

■ Every object should have some form of access control. Even if it simply
explicitly grants full access to every user, there must be some sort of
access control entry.

■ Very few processes need access to low-level system processes. Securing
system processes helps greatly in securing your system.

■ Very few processes need to interact with other processes running on the
system. Securing processes in their own virtual machine can help with the
implementation of this concept.

So, by properly configuring your security policy to support these rules, you
can make your system more secure. By combining the security offered by the
operating system security policy with properly implemented application security,
you can make your system as hackproof as possible.

www.syngress.com

Figure 7.6 SELinux Access Request Process

Client SELinux Server

Object
Manager

(Policy
Enforcement)

Security
Server

(Security Policy
Decisions)

Object Request

Client SID, Object
SID, Access Level

Object (at specified access level)

Security
Policy

Access granted or
denied

Client SID, Object SID, Access Level

Access Record for Auditing

224_HPXML_07.qxd 6/28/02 10:41 AM Page 234

Role-Based Access Control • Chapter 7 235

The SELinux security policy is actually a combination of several different files
that specify the type enforcement (TE) and RBAC rules. In addition, macros can
be defined to simplify the creation of TE transition rules.When all the rules that
you want as part of your security policy have been defined in these files, it’s time
to compile them.All these files are compiled into a single binary file, which is
essentially your complete security policy.The security server uses this file for
access control decisions.

Figure 7.7 shows the contents of one of the files used for the security policy.
This file defines which users are allowed access to the system.

Figure 7.7 Users Configuration File

##################################

#

User configuration.

#

This file defines each user recognized by the system security policy.

Only the user identities defined in this file may be used as the

user attribute in a security context.

#

Each user has a set of roles that may be entered by processes

with the users identity. The syntax of a user declaration is:

#

user username roles role_set [ranges MLS_range_set];

#

The MLS range set should only be specified if MLS was enabled

for the module and checkpolicy.

#

system_u is the user identity for system processes and objects.

There should be no corresponding Unix user identity for system_u,

and a user process should never be assigned the system_u user

identity.

#

user system_u roles system_r;

#

user_u is a generic user identity for Linux users who have no

www.syngress.com

Continued

224_HPXML_07.qxd 6/28/02 10:41 AM Page 235

236 Chapter 7 • Role-Based Access Control

SELinux user identity defined. The modified daemons will use

this user identity in the security context if there is no matching

SELinux user identity for a Linux user. If you do not want to

permit any access to such users, then remove this entry.

#

user user_u roles user_r;

#

The following users correspond to Unix identities.

These identities are typically assigned as the user attribute

when login starts the user shell.

#

user root roles { user_r sysadm_r };

user jadmin roles { user_r sysadm_r };

user jdoe roles { user_r };

As you can see by looking at the contents of this file, every user who is
allowed access to the system must be defined here. In addition, the binding of any
security roles to the individual users is done here. In this example file, we have
defined five users and given them security roles based on their individual needs.
To add a new user, simply add another line to the file, such as the following:

user faircjer roles { user_r sysadm_r };

This line defines a new user with an ID of faircjer and grants that user the
user_r and sysadm_r roles.The roles, which are bound here, are defined in other
configuration files as part of the TE configuration. For example, in the admin.te
file, all roles related to sysadm are defined.This is shown in Figure 7.8.

Figure 7.8 The admin.te Configuration File

#

Domains for administrators.

#

include(admin_macros.te)

www.syngress.com

Figure 7.7 Continued

Continued

224_HPXML_07.qxd 6/28/02 10:41 AM Page 236

Role-Based Access Control • Chapter 7 237

sysadm_t is the system administrator domain.

type sysadm_t, domain, privlog, privowner, admin, userdomain;

system_r is authorized for sysadm_t for single-user mode.

role system_r types sysadm_t;

sysadm_r is authorized for sysadm_t for the initial login domain.

role sysadm_r types sysadm_t;

sysadm_t is granted the permissions common to most domains.

every_domain(sysadm_t)

sysadm_t is also granted permissions specific to administrator domains.

admin_domain(sysadm)

Audit grantings of avc_toggle to the administrator domains.

Due to its sensitivity, we always audit this permission.

auditallow admin kernel_t:system avc_toggle;

This file defines the TE security domains for these sysadm roles.The uncom-
mented line of the file defines a macro to include with this file when it is com-
piled.The second defines the type or domain that we’re going to be working
with.The third and fourth define the role and the type it is to be authorized to
access.You’ll notice that this is the same role that we granted to our new user
when we defined it previously. Finally, the last several lines define permissions and
auditing for this role.

In addition to the files mentioned, many other files define additional security
domains for type enforcement as well as control access to resources such as the
network or individual files. By properly editing these files, you can create a very
secure implementation of SELinux.The most important points to remember are:

■ Always rename or remove default user IDs in your security policy.

■ Always rename or remove unnecessary type enforcement domain
definitions.

■ Never run a default, out-of-the-box, unmodified implementation of
any security system.

www.syngress.com

Figure 7.8 Continued

224_HPXML_07.qxd 6/28/02 10:41 AM Page 237

238 Chapter 7 • Role-Based Access Control

After you’ve modified your configuration files for SELinux, your next step is
simply to compile and load the policy.A very important feature of SELinux is the
fact that a newly compiled policy file can be instantly implemented.To load a
new policy file into a running kernel, all you have to do is run the command
make load when you compile the security policy. If the changes don’t need to
be immediate, run the make install command to cause the new policy to be
loaded on the next kernel reboot.

The latest documentation and information on how the security architecture
in SELinux works or how to work with security under SELinux can be found at
the SELinux Web site listed earlier in this section. Keep in mind that this oper-
ating system is constantly evolving and being improved. Every step forward in the
creation of this secure operating system brings us closer to having a secure oper-
ating environment for our applications.

Applying Role-Based
Access Control Ideas in XML
The same RBAC concepts used in the Flask architecture or the SELinux oper-
ating systems can be applied at the application level. Some enterprise applications
already use these concepts in order to provide another layer of security to the
overall system. Just to recap, RBAC basically assigns users to specific roles and
assigns permissions to each role. In addition, there is a hierarchy within RBAC
whereby some roles can inherit permissions that are granted to another role. For
example, take a look at Figure 7.9.

www.syngress.com

Figure 7.9 RBAC Inheritance

Role: Medical
Specialist (surgeon)

Role: Medical Doctor
(general practitioner)

Role: Office Assistant
Access granted to

patient contact info

Access granted to
patient medical

records

Access granted to all
patient information

Inherited By:

Inherited By:

224_HPXML_07.qxd 6/28/02 10:41 AM Page 238

Role-Based Access Control • Chapter 7 239

Based on this illustration, you can see how roles can be inherited. In this
example, the Office Assistant role has access to only the patient’s contact informa-
tion.The Medical Doctor role has permission to view the patient’s medical
records. However, since the Medical Doctor role inherits the permissions of the
Office Assistant role, the patient’s contact information is accessible as well.The
Medical Specialist has been explicitly granted access to all patient information
and therefore has access not only to the contact information and medical records
but also anything else in the patient’s files.

A good RBAC implementation also offers the ability to block inheritance. In
some instances, for security reasons, you might want to limit privileges in the
access control hierarchy. For example, in a banking situation, you want to have
someone in the Bank Teller role have access to balance their register at the end of
the day. In addition, you want someone in the Floor Supervisor role to have
access to verify that the teller’s balance matches the actual money shown in the
final count. However, you really wouldn’t want the Floor Supervisor to be able to
balance the register as well; otherwise, the organization would be open to fraud
from a single person. In computer terms, we consider this role a single point of
failure.You can combat this point of failure by blocking inheritance in the hier-
archy.This process is shown in Figure 7.10.

In XML, we can implement the use of RBAC via special type of XML doc-
ument called the document type definition (DTD). A DTD provides the structure or
schema for an XML document. It can either be a separate file or included as part
of an existing XML file.The structure provided by a DTD can also include rules
for specific elements or attributes of an XML document. For example, if we
wanted to implement a structure similar to that outlined in Figure 7.9, we could
assign specific rules to the elements used for patient contact information, medical
records, and other information.

www.syngress.com

Figure 7.10 RBAC Inheritance Blocking

Role: Floor Supervisor

Role: Bank Teller
Access granted to

end-of-day register
information

Access granted to final
register tallies and actual

fund counts

NOT Inherited By:

224_HPXML_07.qxd 6/28/02 10:41 AM Page 239

240 Chapter 7 • Role-Based Access Control

Let’s take a look at a DTD that defines some rules that pertain to the struc-
ture we are trying to enforce.A DTD that shows a schema that would work for
our hypothetical needs is shown in Figure 7.11.

Figure 7.11 Example DTD

<!ELEMENT patient (rbac_roles+, patientid+, name, insurance_id, contact_

info, treatment_rec*)>

<!ELEMENT rbac_roles (#PCDATA)>

<!ELEMENT patientid (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT insurance_id (#PCDATA)>

<!ELEMENT contact_info (street,city,state,zipcode,phonenum,rbac_roles+)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

<!ELEMENT phonenum (#PCDATA)>

<!ELEMENT rbac_roles (#PCDATA)>

<!ELEMENT treatment_rec (date,doctor,diagnosis,notes,rbac_roles+)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT doctor (#PCDATA)>

<!ELEMENT diagnosis (#PCDATA)>

<!ELEMENT notes (#PCDATA)>

<!ELEMENT rbac_roles (#PCDATA)>

In this example DTD, we have defined several elements that contain parsable
data (PCDATA). In addition, on all rbac_roles elements, we have included the plus
sign (+) key, which indicates that this is a required element.To use this file, we
simply have to designate the fact that we will be using this DTD file within our
XML file.A sample valid XML file that conforms to this DTD is shown in
Figure 7.12.

Figure 7.12 Example XML

<!DOCTYPE patient_record SYSTEM "test.dtd">

<patient_record>

<patient>

<rbac_roles> office_assistant </rbac_roles>

www.syngress.com
Continued

224_HPXML_07.qxd 6/28/02 10:41 AM Page 240

Role-Based Access Control • Chapter 7 241

<patientid> PAT11101 </patientid>

<name> John Doe </name>

<insurance_id> 111-22-3333 </insurance_id>

<contact_info>

<street> 101 Main St. </street>

<city> Sioux City </city>

<state> IA </state>

<postcode> 58101 </postcode>

<phonenum> 712-555-1212 </phonenum>

<rbac_roles> office_assistant </rbac_roles>

</contact_info>

<treatment-rec>

<date> 5-20-2002 </date>

<doctor> Dr. John </doctor>

<diagnosis> A bad illness </diagnosis>

<notes>Patient took the news well.</notes>

<rbac_roles>medical_doctor</rbac_roles>

</treatment-rec>

</patient>

</patient_record>

In this XML file, the first line specifies that we want to use the DTD file
called test.dtd. If we save the code in Figure 7.11 under this filename, then place
the code from Figure 7.12 in a file within the same directory; the XML will be

www.syngress.com

Figure 7.12 Continued

Viewing XML Files
If you want to view an XML file as it would be parsed, simply use your
Web browser to open the file. Most current Web browsers have built-in
XML parsers that allow you to view XML files in an expandable/col-
lapsible format. In addition, some even support the use of DTD files to
verify the format of your XML file.

Tools & Traps…

224_HPXML_07.qxd 6/28/02 10:41 AM Page 241

242 Chapter 7 • Role-Based Access Control

verified against the DTD file that we have created. By making your application
parse these XML files against a DTD file, you can easily implement RBAC.

In order to do this, three additional steps are necessary.A list of valid roles
must be determined, inheritance rules must be defined, and users must be
assigned to these roles. Figure 7.13 shows an XML file that could be used to
specify these roles.

Figure 7.13 RBAC Roles

<role>

<rbac_role>office_assistant</rbac_role>

<user>Chris</user>

<user>Dianne</user>

<user>Mary</user>

<user>Sue</user>

<user>Joann</user>

<user>Barbara</user>

</role>

<role>

<rbac_role>medical_doctor</rbac_role>

<inherits>office_assistant</inherits>

<user>John</user>

<user>Jerry</user>

<user>Al</user>

<user>Austin</user>

</role>

<role>

<rbac_role>medical_specialist</rbac_role>

<inherits>medical_doctor</inherits>

<user>Jeff</user>

<user>Scott</user>

<user>Charlie</user>

</role>

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 242

Role-Based Access Control • Chapter 7 243

Know When to Evaluate
In the interest of system performance, it is best not to evaluate every conceivable
state change or access request. For example, if a user has been authenticated and a
session-id assigned to the session, what is the point in authenticating the user
again if the session-id is the same and the session expiry period has not elapsed?
It is better from a performance perspective to simply check the state of the ses-
sion-id and the session expiry period.

This same logic can be applied in many areas of your application to increase
the overall system performance.The key is knowing when to evaluate state
changes or other values provided by the user or application. If you are dealing
with confidential XML documents, it is best to verify that the user still has the
same session-id he or she had when originally authenticated. In addition, verify
any role the user has been granted against a list of roles that have had their per-
missions changed.This step provides an additional layer of security by providing a
facility to check for permission revocation.

You should always verify any critical data transferred to or from your applica-
tion. For example, assume that a user sends in a change that would modify a cus-
tomer’s phone number in an XML documentation store.The phone number
should be checked for format validity prior to changing the element in the XML
documentation store. Other examples are new access requests, protected data
changes, and any deletions.All these are examples of critical data changes.

In addition to data changes, if your application receives any data from a user,
you should always check the data to verify that it is valid prior to actually using
it. For example, if data is supposed to be received in XML, it should be evaluated
to verify that it is well formed.This means that it is a valid XML file and is able
to be successfully parsed. If the data is supposed to follow a specific format, how-
ever, the document should be evaluated against a DTD to verify that it is not
only well formed but also valid according to the rules put forth in the DTD.

Data that does not necessarily need to be constantly evaluated is called transi-
tional data. Examples of transitional data include such things as unused data that is
included with a request, unnecessary extended data (for example, a full timestamp
when only the date is needed), and data that is not expected to change, such as
the URL by which a user is accessing a specific Web site.

By not examining transitional data, you achieve several benefits. First, a per-
formance increase is incurred because the system does not have to examine as
many factors. Second, some system vulnerabilities can be eliminated.This comes
from the fact that since unexpected data is not evaluated, there is no possibility
that unexpected data could cause the application to malfunction. Last, from a

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 243

244 Chapter 7 • Role-Based Access Control

programmer’s perspective, you need to worry about keeping track of fewer vari-
ables.This allows for faster application development while focusing on making
the application as secure as possible.

Again, the key lies in knowing what to evaluate. If data or actions seem as
though they would be important to the functionality of your application or the
security of your application, evaluate them. If it seems that the data or actions are
unimportant or transitional, there is no need to waste system resources or incur
the possibility of system vulnerabilities by evaluating them.

After you’ve determined what data or actions need to be evaluated, you need
to determine when they should be evaluated. For example, although it might be
more secure to evaluate data in the data stream as it is received, that is not neces-
sarily the most efficient time to do so. If the data transfer is cancelled, for
example, you’ve just wasted unnecessary time evaluating data that isn’t even used.
It is generally best to wait until all the data for a transaction is received.After the
data is received, perform any necessary evaluations, and then commit the transac-
tion(s) needed for the data or actions that have been received and evaluated.

Protect Data Integrity
In the previous sections discussing Flask architecture and the SELinux Flask
implementation, we mentioned that one of the goals of a secure operating system
is to protect your application from tampering. Even if you’re not using SELinux,
this security vulnerability is one from which you must do your best to protect
yourself.This process is known as protecting data integrity. By data we mean not
only the information that your application makes available for your users but also
the application and its data files.You need to address several key points in the
interest of protecting your data’s integrity.

First, you must control access to the raw data files used or served by your
application.This is generally done with file-level permissions on your operating
system of choice.You can do this using either a RBAC implementation or a
simple access control group implementation.The most important thing to keep
in mind is that very few users should have access to these data files. In a client/
server situation, it is best to define file-level access to the degree that only admin-
istrators and the security context under which your server runs have access to the
data files.This policy ensures that no user can directly access the data files to
intentionally or unintentionally cause problems with your application or its data.

The second key point is that you must maintain the integrity of your soft-
ware. Some software does this by performing a cyclic redundancy check (CRC)
against its data files or configuration files and is able to detect whether or not

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 244

Role-Based Access Control • Chapter 7 245

they’ve been modified by some source other than the application itself.Another
part of maintaining your software’s integrity is to ensure that the application cannot
be corrupted by badly formed incoming data.This concept relates back to evalu-
ating the correct things at the correct times, as we mentioned in the last section.

Many applications do run as privileged processes and therefore have the
ability to cause a great deal of damage systemwide.The last two key points relate
to this fact. First, you must try to keep your application from executing any mali-
cious or flawed code if it is a privileged process. Since being a privileged process
gives your application a great deal of power, you must do your best to ensure that
your application does not abuse its privileges. In addition, you must ensure that if
for some reason your application does execute some malicious or flawed code, it
cannot cause any systemwide damage. In Java, you can do this by making all Java
code run within a virtual machine.You can do the same thing with your own
applications by examining all system calls leaving your application and verifying
that they should really be made (or at least that they are not currently forbidden).
Secure operating systems like SELinux make this easy by allowing you to restrict
your application to only the system resources that it needs.

As more and more security features are added to operating systems, the task
of protecting your data integrity will become easier. Until this happens, however,
it’s still up to you to provide as much protection as you can, both to your applica-
tion and the system that it is running on.

RBAC and Java
When working with XML, you might decide to base your application on Java
due to its ease of use for Web applications. If you should choose to do that, you
can implement RBAC in your Java application as well as any XML documents
that you serve.Thus you have yet another added layer of security to protect both
your application and the system it’s running on.

Since Java can work on either the client side or the server side, you can write
your code in such a way that the client-side application must request access to
objects from the server-side application, which in turn checks access permissions
against a security server. Does this sound familiar at all? The same implementation
used within the Flask architecture can be ported over to the Java platform.

Implementing RBAC in this security model allows you a great deal of con-
trol over the structure of access levels permitted by your application. Since
RBAC is based more on your organizational model than a group model, you can
make your Java applications mimic the structure that your organization has in
place.This makes it much easier to ensure that the correct people have access to
the correct data or application controls.

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 245

246 Chapter 7 • Role-Based Access Control

Fencing in JavaScript
We previously mentioned that it was a good idea to make sure that your applica-
tion is unable to execute malicious or flawed code in such a way that it can cause
systemwide problems.This process, known as fencing, basically means that your
code should run in a controlled area within the system. Since JavaScript is exe-
cuted on the user side of a served application, you need to ensure that your
JavaScript code cannot do any damage to the end user’s system.

To fence in your application, you need to put controls in place to ensure that
the application is unable to perform any privileged functions beyond those that it
was designed to do. For example, if your code includes the ability to open a file
on the user’s workstation but doesn’t perform any deletion functions, why not
restrict it from performing deletes? By restricting your application in that way,
you lose no functionality in the application, but you provide a method to control
what your application can do if something goes terribly wrong.

This concept is easier to understand in theory than it is to actually implement
in code, but just like any good security measure, it’s worth the effort. Some
browsers already provide some functionality that assists with this task. For example,
if a JavaScript application attempts to modify a system or read-only file, some
browsers alert the user to the problem and verify that this is what the user wants to
do.The same controls are in effect in some browsers for deletions or other poten-
tially destructive functions. On the other hand, you should never rely on someone
else to protect your reputation. If there’s the possibility that your code could cause
damage, you should do everything in your power to prevent it from doing so.

RBAC can assist with this task, even in JavaScript. Causing the code that calls
the JavaScript to verify that the JavaScript object has permissions to do what it’s
attempting to do gives you an added layer of protection as well.As an example,
assume that the JavaScript being executed has a role defined on it that gives it the
ability to communicate over the network but not to perform file IO. If this
JavaScript were being monitored by another part of your application, you would
be able to detect if it attempts to perform file IO and, based on its security per-
missions, prevent it from doing so.Again, this is very much like putting a fence
around your code to restrict it to what it’s supposed to be doing.

Validate Your Java Code
Just as you should fence in your JavaScript code, you should do the same with your
Java code. In addition, you should always validate that your code really does what it
was designed to do and nothing more.This means heavily testing every part of your

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 246

Role-Based Access Control • Chapter 7 247

application to ensure that it is truly safe. Part of any security implementation
involves throwing known exploits or standard hacking attempts against any new
application that you design or work with.This intensive testing cycle helps deter-
mine if the application is vulnerable to most of the usual tricks of the trade.

When you do perform testing on Java applications, it helps to run tools that
monitor disk access, network access, and similar functions.Testing helps you
determine if your application is attempting to access things that it really
shouldn’t. In addition, if you have implemented RBAC, you will be able to check
to see if the application is attempting to access something from which it is
restricted due to its role.This doesn’t necessarily always mean that the application
has to be changed.The behavior might be expected, in which case you need to
modify the role under which the application runs.Always tighten the security as
much as possible to prevent giving the application more permissions than it really
needs, but balance this by granting permissions that the application does need in
order to properly perform its functions.This delicate balancing act is always in
the forefront of any security implementation.

As part of your testing, you should also check to see if the application is
attempting to access some files or resources that it really doesn’t need. For
example, if you’re running Java code that is designed to be a chat program, what
purpose would it have for accessing your boot.ini or lilo.conf file? If the Java
application is one that you’ve written, you’ll need to go back over your code and
see if it’s really necessary for it to perform this activity and, if not, fix it. If it’s
code from some third party, contact that party and determine the reason for the
behavior before you grant the application permission to access.

As you can see, operating your code within a virtual fence has its advantages.
You can use this process to validate that the code isn’t doing anything that it
shouldn’t be and that it isn’t vulnerable to standard hacks. By testing the Java appli-
cation thoroughly, you can help ensure that your system is as secure as possible.

Validate Your ActiveX Objects
When dealing with ActiveX objects, the same fencing and testing procedures apply.
Just as you do when working with Java, always verify that an ActiveX component
is accessing only the system resources or files that it really needs to perform its
functions.ActiveX objects typically have more system-level access under the
Windows platform than Java and can therefore potentially be more destructive to
Windows systems.Whenever you implement a new ActiveX object, always test it
thoroughly to ensure that it’s doing what it’s supposed to do and no more.

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 247

248 Chapter 7 • Role-Based Access Control

Just as with Java code,ActiveX objects should be fenced in and controlled by
RBAC. By assigning roles to ActiveX objects, you can be sure that even if your
application does attempt to access files, processes, or ports that it is restricted
from, it cannot do so.As you can see, RBAC fits in with just about every security
effort that you can conceive of and is applicable in almost every situation.

With ActiveX objects, you need to keep in mind a couple more important
things. First, verify that the ActiveX component you are accessing is really the
one that you intended to use. Since ActiveX controls can be named anything and
can perform almost any function, it’s a really good idea to make sure that you’re
not unintentionally using the wrong component.Along these lines, it’s a good
idea to keep and maintain a list identifying the objects being used in your code.
You can do this in the documentation for your code or in comments within the
code itself. Either way, always have this list available so that if an object if changed
or updated, you can retest to verify that the behavior is the same.

Tools to Implement RBAC Efforts
Many tools and resources are available to you to assist with your XML and
RBAC efforts.The following sites are currently good starting points for research
or tools to download. Keep in mind that since the Web is constantly changing,
what’s there today might not be there tomorrow.With that in mind, take a look
at the following sites:

■ www.garshol.priv.no/download/xmltools/

■ www.alphaworks.ibm.com/

■ http://xml.apache.org/xerces2-j/index.html

■ www.w3c.org/

■ www.w3schools.com/

■ http://groups.google.com/

■ www.nsa.gov/selinux

■ http://csrc.nist.gov/rbac/

■ www.nue.et-inf.uni-siegen.de/~geuer-pollmann/xml_security.html

Let’s go through each of these sites and see what they have to offer to you.
We start with the Free XML Tools and Software site at www.garshol.priv.no/
download/xmltools.The front page for this site is shown in Figure 7.14.As you

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 248

Role-Based Access Control • Chapter 7 249

can see, the various products available at the site can be listed and organized by
several different methods.

Even though many useful tools are available through this site, we should
highlight a few that are extremely useful for implementing some of the things we
have discussed in this chapter.A few categories worth looking at are:

■ DTD Editors

■ DTD Generators

■ XSL Checkers

■ XML Editors

■ XML Parsers

For example, the ezDTD utility is available within the DTD Editors section.
ezDTD allows you to visually create DTD files and a related HTML file for use

www.syngress.com

Figure 7.14 The Free XML Tools and Software Web Site

224_HPXML_07.qxd 6/28/02 10:41 AM Page 249

250 Chapter 7 • Role-Based Access Control

with the DTD. Note that this utility is also available directly from the author’s site
at www.geocities.com/SiliconValley/Haven/2638/ezDTD.htm.A screenshot of
this application is shown in Figure 7.15.

The ezDTD application allows you to quickly and easily create DTD files for
XML validation.This and many other useful utilities are linked to through the
Free XML Tools and Software Web site.

The IBM alphaWorks site, located at www.alphaworks.ibm.com, provides
links to quite a few utilities IBM developed for use with XML.This site features
utilities that cover the cutting-edge of XML technology.

One of the more useful utilities for security-related work at this site is the
XML Security Suite (www.alphaworks.ibm.com/tech/xmlsecuritysuite).This utility
allows you to implement features such as digital signing, encryption, and access
control in XML documents.After installing this utility, all the documentation and
information regarding the tools can be accessed through the index.html file located
in the install directory.The page for this feature is shown in Figure 7.16.

One of the tools used by the XML Security Suite for implementing access
control in XML is the Xerces2 Java Parser. Information on this tool is located at
http://xml.apache.org/xerces2-j/index.html.The Xerces2 Java Parser is a fully
conforming XML schema processor as defined by the terms of the World Wide
Web Consortium (W3C) XML Schema documentation.This parser allows you
to implement DTD validation as well as providing a host of other features.

The XML schema documentation published by the W3C as well as all the
other standards documents for XML, HTTP, and the like are available at
www.w3c.org.This site is useful for getting the “down and dirty” information on
Web-related technologies.Although many of the papers make for very dry

www.syngress.com

Figure 7.15 The ezDTD Main Screen

224_HPXML_07.qxd 6/28/02 10:41 AM Page 250

Role-Based Access Control • Chapter 7 251

reading, they contain the best information available on standards used and imple-
mented on the Web.

For information on these Web technologies that is in a little more user-
friendly format, tutorials are available at www.w3schools.com.This site has refer-
ence and training material on many Web standards, including XML and DTD.
The main page for this site is shown in Figure 7.17; as you can see, the tutorials
here are free of charge and easily accessible.This is definitely a top-notch site for
learning about emerging Web technologies.

When you are learning anything new, questions inevitably arise. Chances are,
somebody else has already had the same question at some point.The Usenet
newsgroups are an excellent resource for both learning from other people’s ques-
tions and posting your own.These groups can be easily accessed and searched
using the Google Groups search engine located at http://groups.google.com.This
site, formerly located at www.dejanews.com, allows you to perform a simple
search through all available newsgroups or perform more advanced searches. In
addition, this site contains archived newsgroup data from the last 20 years, which
allows you to research information about older legacy software and systems.As
you can see from Figure 7.18, the search interface is very clean and easy to use.

In our SELinux discussion, we mentioned the NSA site, where information
about SELinux and the product itself can be downloaded.This site, located at
www.nsa.gov/selinux/, is very useful for finding documentation and information

www.syngress.com

Figure 7.16 The IBM alphaWorks XML Security Suite

224_HPXML_07.qxd 6/28/02 10:41 AM Page 251

252 Chapter 7 • Role-Based Access Control

regarding the SELinux application as well as the Flask architecture and other
prior work regarding secure operating systems.

www.syngress.com

Figure 7.17 The W3Schools.com Training Site

Figure 7.18 The Google Groups Search Engine

224_HPXML_07.qxd 6/28/02 10:41 AM Page 252

Role-Based Access Control • Chapter 7 253

For information related to RBAC and how it has been implemented or future
plans for this concept, be sure to take a look at the NIST Role Based Access
Control site.This site, located at http://csrc.nist.gov/rbac/, has a huge amount of
information about RBAC, the design and implementation of the RBAC model,
and various scenarios to which the model could be applied.The site also has links
to downloadable RBAC-based Web servers for both Windows and Unix systems.

For researching XML security, no Web site list is complete without the XML
Security Page located at www.nue.et-inf.uni-siegen.de/~geuer-pollmann/
xml_security.html.This regularly updated site provides links to hundreds of sites
that relate to security under XML.The links listed here are an invaluable source
of information regarding XML and past, present, and future security implementa-
tions.Although the links are listed in a simple format with no searching capa-
bility, this list includes links to research papers and other documentation that no
other site appears to have.The main page for this site is shown in Figure 7.19.

Some of the sites we’ve listed have links for free or commercial tools that can
help you with XML or RBAC; others simply allow you to search for informa-
tion or examples from other programmers or security experts. By researching
every facet of RBAC or XML, you can learn to implement these technologies in
the best and most secure way possible.

www.syngress.com

Figure 7.19 The XML Security Page

224_HPXML_07.qxd 6/28/02 10:41 AM Page 253

254 Chapter 7 • Role-Based Access Control

Summary
In this chapter, we covered a great deal of material about some important aspects
of security and how they relate to XML. First, you learned about stateful inspec-
tion firewall technology.This technology revolves around the inspection of the
state of any given variable.While stateful inspection was designed to be used with
firewall technology, the same concepts also apply to programming technology.

You also learned the process of stateful inspection and how it involves
inspecting the state and evaluating changes between the current state and an
established baseline.You learned about the default behavior of security and how
this relates to the overall security of your systems and applications.

Next, you studied RBAC and learned some of the basic concepts related to
its function.You also learned about secure operating system design, specifically
the Flask architecture.You saw how secure operating systems, in combination
with secure applications, give you the most hackproof design possible.

You also learned about a real-world practical implementation of the Flask
architecture, called SELinux.You took a look at the configuration of this system
and learned how it implements the concepts behind type enforcement and role-
based access control.You also learned how its configuration files work together to
create a policy that its security server uses to make access control decisions.

Next you learned about DTD files and how they relate to XML documents.
You saw how XML can implement RBAC through the use of DTD files to
create a secure manner of displaying the correct information to the correct user.

Then you learned when and what you should evaluate within your applica-
tions and how this behavior affects both performance and security.We also took a
look at how to protect our data integrity in both the form of our application
itself as well as the data it is serving.

Using RBAC concepts to implement fencing on Java and JavaScript was the
next topic.You learned how these concepts can make sure that malicious or erro-
neous code cannot cause more problems than they should be able to.Along these
lines, we also looked at some methods to validate both Java code and ActiveX
objects. By going through an intensive testing process, you can ensure to the best
of your abilities that your code will be safe to run.

Finally, we went over a few Web sites that serve information or offer some
tools that we can use for RBAC, XML, and security efforts related to both.With
proper research and the correct utilization of good tools, you can make your
applications or XML documents secure and safe to use.

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 254

Role-Based Access Control • Chapter 7 255

Solutions Fast Track

Learning About Stateful Inspection

Inspect the state of all important variables coming into or out of your
application.

Always develop a baseline against which to compare state changes.

Evaluate any changes between the current state and your baseline.
Determine what action to take based on these changes.

Default behavior has a great impact on security. It is better to deny by
default than allow by default, even if it causes performance degradation
compared to the unsecured system.

Learning About Role-Based Access Control
and Type Enforcement Implementations

A secure operating system working in conjunction with a secure
application provides the most hackproof design possible.

Flask is a conceptual architecture that shows how the design of a secure
operating system could work.

SELinux is an operating system that was designed to use the architecture
outlined in Flask.

Applying Role-Based Access Control Ideas in XML

RBAC can be implemented in XML with the use of DTD files.

All application components should be run within some sort of security
context to prevent them from performing functions that they should not
be allowed.

Completely testing all portions of an application is a very important part
of system security.

www.syngress.com

224_HPXML_07.qxd 6/28/02 10:41 AM Page 255

256 Chapter 7 • Role-Based Access Control

Q: If I run SELinux, is my system secure?

A: Not really. Keep in mind that SELinux is simply a prototype implementation
of the Flask architecture that shows how it can be done.There are many
other important security considerations that were never implemented in the
current release of SELinux by intention. SELinux simply serves as an example
at this point.

Q: I have designed my application to be as secure as I possibly can.All known bugs
and vulnerabilities have been taken care of, and everything functions perfectly.
There’s nothing else that I can do to make my application secure, right?

A: If you haven’t implemented good security practices at the operating system
level, you haven’t truly started to make your application hackproof.Always
keep in mind that there are more parts to overall system security than just the
application.

Q: Can RBAC be implemented in any application?

A: Certainly. Role-based access control concepts can be used for any application
that requires specific security controls to be implemented.

Q: A segment of my end users have tested my application and say it works fine.
Is this all that I need to do in the way of application testing?

A: No. Every single possible selection within your application should be
attempted, unexpected data should be sent at unexpected times, and known
security vulnerabilities should be tested against.This is much more intensive
testing than any end user can do, and it should be done on every application.

Q: Since XML is completely extensible, any security controls that I put in place
can be changed by the person receiving the XML document, can’t they?

A: They can if you sent the entire XML document to the recipient. Instead, use
a parser, which bases against your security implementation to send the recip-
ient only that which the recipient is authorized to view.

www.syngress.com

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_07.qxd 6/28/02 10:41 AM Page 256

Understanding .NET
and XML Security

Solutions in this chapter:

■ The Risks Associated with Using XML in
the .NET Framework

■ .NET Internal Security as a Viable
Alternative

■ Security Concepts

■ Code Access Security

■ Role-Based Security

■ Security Policies

■ Cryptography

■ Security Tools

■ Securing XML—Best Practices

Chapter 8

257

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_08.qxd 6/28/02 10:44 AM Page 257

258 Chapter 8 • Understanding .NET and XML Security

Introduction
The IT industry has a collective conscience, rudimentary though it be.As odd as
it might seem, security was never a requirement when XML was developed. Go
figure. Most likely, they didn’t want to get into a fight over security implementa-
tions. Even though a final candidate for digital XML signatures was submitted to
the W3C, manufacturers have yet to implement XML signatures and encryption
in a widespread manner.

Of course, we try to keep this security void under control by sending docu-
ments over secured channels, such as SSL and VPN. However, if somebody with
ill intent can make use of this secured channel, they can submit rogue XML doc-
uments into this channel.Without verifiable sender identification (and this is usu-
ally an authentication issue that may need to be implemented by trusted
processes), you can never be sure of the legitimacy of an XML document.
Moreover, even if you can sign your XML document, you need encryption at
some point in the transmission chain to obscure the content from prying eyes.

Since security is such an important subject, we will spend this chapter on
XML security within the .NET Framework.Then we will look at XML and its
internal security capabilities.

The Risks Associated with Using
XML in the .NET Framework
XML and XSL are very powerful tools, and when wisely and somewhat ideally
wielded can create Web applications that are simpler to maintain because of the
enforced separation of data and presentation.With a little planning, you can
reduce the amount of code necessary by compartmentalizing key aspects of func-
tionality using XML and XSL and reusing them throughout the application.
Along with changing the way in which your components communicate within
your application, XML will change the methods by which entities may commu-
nicate over the Internet, while trying to cram it all through port 80 HTTP or
HTTPS requests.

XML and XSL are open standards, which is one of the reasons why these
standards have become so popular. Many times, XML schemas are published by
organizations to standardized industry- or business-related information.This is
done in the hopes of further automating business processes, increasing collabora-
tion, and easily integrating with new business partners over the Internet. Others,
like Microsoft, try to use the framework of collective industry agreements to

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 258

www.syngress.com

advance their own proprietary version of a technology. Indeed, it may well be
that the greatest risk associated with .NET is the corral that Microsoft puts you
into when you use their version of web-based services. One can never be sure
that someone won’t at some point close the gate behind you and declare the
party over. If you depend on third party services for your own mission-critical
business functions, you are always held hostage by that provider.

As always, secure design and architecture are key to making sure that none of
that information is compromised during the exchange.The next sections provide
a basis for understanding and using the XML encryption and digital signature
specifications.

Confidentiality Concerns
The best way to protect data is to not expose it, and let’s face it; anything you
send over the Internet is fair game.Although you might feel safer making a pur-
chase over the Internet with a credit card than when your waiter picks up your
credit card at the restaurant, a risk is still a risk.

As always, when dealing with the Internet, security is an issue, but remember
that XML is about data, plain and simple, and XSL is about transforming XML.
Security needs to be carefully implemented in all Web applications, but it should
be implemented in a layer autonomous to XML and XSL. If information is not
meant to be seen, it is much safer to transform the XML document to exclude
the sensitive information prior to delivering the document to the recipient, rather
than encrypt the information within the document. Getting upstream of a
problem before it occurs can be a great way to deal with that problem.

XSL can be thought of as a way to “censor” your XML documents prior to
their delivery. Because XSL can be used to transform XML into anything,
including a new XML document, it will allow you to have very granular control
over what data gets sent to whom when it is used in conjunction with a well-
designed authentication process.

If you find yourself adding a username and password element to your XML,
stop. If you are encrypting values prior to entering them into an XML docu-
ment, stop.Tools already exist that you can use for authentication, authorization,
and encryption.These concepts are integral to Web applications, but at a higher
level in the overall architecture.

For example, let’s say that you have an e-commerce Web site that takes orders
over the Web and then sends that order to a fulfillment company via XML to be
packed and shipped. Because the credit card needs to be debited at the time of

Understanding .NET and XML Security • Chapter 8 259

224_HPXML_08.qxd 6/28/02 10:44 AM Page 259

260 Chapter 8 • Understanding .NET and XML Security

shipping, you feel it necessary to send the credit card number to the fulfillment
company in the XML document that contains the rest of the order information.
Feeling uncomfortable in exposing that information in clear text, you decide to
encrypt the credit card number within the XML document.Although your
intentions are good, the decision has consequences.The XML document no
longer becomes self-describing. It has also become proprietary because you need
the encryption algorithm in order to extract the credit card number.This deci-
sion reintroduces some of the problems XML was meant to eliminate. In many of
these cases, other solutions exist. One might be to not send the credit card infor-
mation to the fulfillment company along with the rest of the order.When the
order has been shipped, have the fulfillment company send a shipping notification
to your application and have your application debit the credit card.

Note that both your data and your code are at risk. XSL is a complete pro-
gramming language, and at times may be more valuable than the information
contained within the XML it transforms.When you perform client-side transfor-
mations, you expose your XSL in much the same way that HTML is exposed to
the client. Granted, most of your programming logic will remain secure on the
server, but XSL still comprises a great deal of your application. Securing it is as
important as securing your XML.

.NET Internal Security
as a Viable Alternative
As we discuss in the following sections, code access security and role-based security
are the most important vehicles to carry the security through your applications and
systems. However, let it be clear that we are not discussing VB or C# security, but
.NET security; that is, the security defined by the .NET Framework and enforced
by the CLR. Since the .NET Framework namespaces make full use of the security,
every call to a protected resource or operation when using one of these namespaces
automatically activates the code access security (CAS). Only if you start up the
CLR with the security switched off, CAS will not be activated.The CLR is able to
“sandbox” code that is executed, preventing code that is not trusted from accessing
protected resources or even from executing at all. Hopefully, anyway. (Didn’t we
hear this before when Java came out?) We discuss this more thoroughly in the Code
Access Security section later in this chapter.What is important to understand is that
you can no longer ignore security as a part of your design and implementation
phase. It is a priority to safeguard your systems from malicious code, and you also

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 260

Understanding .NET and XML Security • Chapter 8 261

want to protect your code/application from being “misused” by less-trusted code.
This is the sort of situation that viruses take advantage of, like CodeRed’s use of
buffer overflows in Microsoft’s IIS server software. For example, let’s say that you
implement an assembly that holds procedures/functions that modifies Registry set-
tings. Because these procedures/functions can be called by other unknown code,
these can become tools for malicious code if you do not incorporate the .NET
Framework security as part of your code.

To be able to use the .NET Security to your advantage, you need to under-
stand the concepts behind the security.

Permissions
In the real world, permission refers to an authority giving you, or anyone else
for that matter, the formal “OK” to perform a specified task that is normally
restricted to a limited group of persons.The same goes for the meaning of per-
mission in the .NET Security Framework: getting permission to access a pro-
tected resource or operation that is not available for unauthorized users and code.
An example of a protected resource is the Registry, and a protected operation is a
call to a COM+ component, which is regarded as unmanaged code and therefore
less secure.The types of permissions that can be identified include:

■ Code access permissions Protects the system from code that can be
malicious or just unstable; see the Code Access Security section for more
information.

■ Role-based security permissions (sometimes called Rule-based)
Limits the tasks a user can perform, based on the role(s) he plays or the
identity he has; see the Role-Based Security section for more information.

■ Identity permissions See the Role-Based Security section for more
information.

■ Custom permissions You can create your own permission in any of
the other three types, or any combination thereof.This demands a thor-
ough understanding of the .NET Framework security and the working
of permissions.An ill-constructed permission can create security vulner-
abilities.

You can use permissions through different methods:

■ Requests Code can request specific permissions from the CLR, which
will only authorize this request if the assembly in which the code resides

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 261

262 Chapter 8 • Understanding .NET and XML Security

has the proper trust level.This level is related to the security policy that is
assigned to the assembly, which is determined on the base of evidence the
assembly carries. Code can never request more permission than the secu-
rity policy defines; such a request will always be denied by the CLR.
However, the code can request less permission.What exactly security
policy and evidence consist of is discussed over the course of this chapter.

■ Grants The CLR can grant permissions based on the security policy
and the trustworthiness of the code, and it requests code issues.

■ Demands The code demands that the caller has already been granted
certain permissions in order to execute the code.This is the security part
for which you are actively responsible.

Principal
The term principal refers directly to the role-based security, being the security
context of the executed code.A principal is created based on the identity and
role(s) of the caller, whether it is a user or other code. In fact, every thread that is
activated is assigned a principal that is by default equal to the principal of the
caller.Although we just stated that the principal holds the identity of the caller,
this is not entirely correct, because the principal has only a reference to the
caller’s identity, which already exists prior to the creation of the principal.Three
types of principals can be identified:

■ Windows principal Identifies a user and the groups it is a member of
that exists within a Windows NT/2000 environment.A Windows prin-
cipal has the capability to impersonate another Windows user, which
resembles the impersonating capabilities you might recognize from the
COM+ applications.This is the same role as that of the “superuser”
under UNIX.

■ Generic principal Identifies a user and its roles, not related to a
Windows user.The application is responsible for creating this type of
principal. Impersonation is not a characteristic of a general principal, but
because the code can modify the principal, it can take on the identity of
a different user or role.

■ Custom principal You can construct these yourself to create a prin-
cipal with additional characteristics that better suits your application.
Custom principals should never be exposed, because doing so can create
serious security vulnerabilities.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 262

Understanding .NET and XML Security • Chapter 8 263

Authentication
In general, authentication is the verification of a user’s identity; hence, the creden-
tials he hands over. Because the identity of the caller in the .NET Framework is
presented through the principal, the identity of the principal has to be estab-
lished. Because your code can access the information that is available in the prin-
cipal, it can perform additional authentication tests. In fact, because you can
define your own principal, you can also be in control over the authentication
process.The .NET Framework supports not only the two most-used authentica-
tion methods within the Windows 2000 domain—NTLM and Kerberos V5.0—
but also supports other forms of authentication, such as Microsoft Passport.
Authentication is used in role-based security to determine if the user has a role
that can access the code.

Remember that Passport is a MS-specific credentialing wallet system. Other
solutions, such as the use of X.509-style certificates may be adequate for your
specific situation

Authorization
Authorization takes place after authentication, based on the established identity of
the principal.Authorization in relation to roles has to be part of the code and can
take place at every point in the code.You can use the user and role information
in the principal to determine if a part of the code can be executed.The permis-
sions the principal is given, based on its identity, determine if the code can access
specific protected resources.

Security Policy
To be able to manage the security that is enforced by the CLR, an administrator
can create new or modify existing security policies. Before an assembly is loaded,
its credentials are checked.This evidence is part of the assembly.The assembly is
assigned a security policy depending on the level of trust, which determines the
permissions the assembly is granted.The setting of security policies is controlled
by the system administrator and is crucial in fending off malicious code.The best
approach in setting the security policies is to grant no permissions to an assembly
for which the identity cannot be established.The stricter you define the security
policies, the more securely your CLR will operate.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 263

264 Chapter 8 • Understanding .NET and XML Security

Type Safety
A piece of code is labeled type safe if it only accesses memory resources that
belong to the memory assigned to it.Type safety verification takes place during
the JIT compilation phase and prevents unsafe code from becoming active.
Although you can disable type safety verification, it can lead to unpredictable
results.The best example is that code can make unrestricted calls to unmanaged
code, and if that code has malicious intent, the results can be severe.Therefore,
only fully trusted assemblies are allowed to bypass verification.Type safety can be
regarded as a form of “sandboxing”.

Code Access Security
The .NET Framework is based on the concept of distributed applications, in
which an application does not necessarily have a single owner.To circumvent the
problem of which parts of the application (being assemblies) to trust, code access
security is introduced.This is a very powerful way to protect the system from
code that can be malicious or just unstable. Remember that it is always active,
even if you do not use it in your own code. CAS helps you in:

■ Limiting access permissions of assemblies by applying security policies

■ Protecting the code from obtaining more permissions than the security
policy initially permits

■ Managing and configuring permission sets within security policies to
reflect the specific security needs

■ Granting assemblies specific permissions that they request

■ Enabling assemblies in demanding specific permissions from the caller

■ Using the caller’s identity and credentials to access protected resources
and code

.NET Code Access Security Model
The .NET code access security model is built around a number of characteristics:

■ Stack walking

■ Code identity

■ Code groups

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 264

Understanding .NET and XML Security • Chapter 8 265

■ Declarative and imperative security

■ Requesting permissions

■ Demanding permissions

■ Overriding security checks

■ Custom permissions

By discussing these characteristics, you will get a better understanding of how
CAS works, and how it can work for you during the design and implementation
of applications.

Stack Walking
Perhaps stack walking is the most important mechanism within CAS to ensure that
assemblies cannot gain access to protected resources and code during the course
of the execution.As mentioned before, one of the initial steps in the assembly
load process is that the level of trust of the assembly is determined, and corre-
sponding permission sets are associated with the assembly.The total package of
sets is the maximum number of permissions an assembly can obtain.

Because the code in an assembly can call a method in another assembly and
so forth, a calling chain develops (Figure 8.1), with every assembly having its own
permissions set. Suppose that an assembly demands that its caller have a specific
permission (UIPermission in Figure 8.1) to be able to execute the method. Now
the stack walking of the CLR kicks in.The CLR starts checking the stack where
every assembly in the calling chain has its own data segment. Going back in the
stack, every assembly is checked for the presence of this demanded permission, in
our case UIPermission. If all assemblies have this permission, the code can be exe-
cuted. If, however, somewhere in the stack an assembly does not have this per-
mission (in our case this is in the top assembly Assembly1), the CLR throws an
exception, and access to the method is refused.

Stack walking prevents calling code from getting access to protected resources
and code for which it initially does not have authorization.You can conclude that
at any point of the calling chain the effective permission set is equal to the inter-
section of the permission sets of the assemblies involved.

Even if you do not incorporate the permission demand in your code, stack
walking will take place because all class libraries that come with the CLR make
use of demand to ensure the secure working of the CLR.The only drawback of
stack walking is that it can have a serious performance impact, especially if the
calling chain is long. Suppose the stack contains eight assemblies, and the top

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 265

266 Chapter 8 • Understanding .NET and XML Security

assembly makes a call to a method that demands a specific permission and does
so in a 200-fold loop.After executing the loop, 200 security stack walks are trig-
gered. Since each stack walk performs eight security checks, the total number of
security checks is 1600.

Code Identity
The whole principle of the .NET Framework security rides on code identity, or to
what level a piece of code can be trusted.The code identity is established based
on the evidence that is presented to the CLR. Evidence can come from two
sources:

■ Evidence that is incorporated in the assembly, and put in there during
the coding and subsequent compiling of the code, or which can later be
added to the assembly.

■ Evidence that is provided by the host where the assembly resides.The
CLR controls the accepting of host evidence, through the security per-
mission ControlEvidence, which should be granted only to trusted hosts.

www.syngress.com

Figure 8.1 Performing Stack Walking to Prevent Unauthorized Access

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Succeeded

Succeeded

Succeeded

Succeeded

Failed
Sta

ck
 W

alk
 R

es
ult

: F
AI

L

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

224_HPXML_08.qxd 6/28/02 10:44 AM Page 266

Understanding .NET and XML Security • Chapter 8 267

Table 8.1 lists the default evidence that can be used to determine to what
code group code belongs. Because you cannot control the identity of the
assembly, you are never sure how reliable this evidence is, except for the signa-
tures provided.

Table 8.1 The Available Default Types of Evidence

Evidence Description

Directory The directory where the application—hence, assembly—is
installed.

Hash The cryptographic hash that is used in the code of the code:
MD5 or SHA1 (see the Cryptography section).

Publisher The signature of the assembly’s owner, in the form of a X.509
certificate, set through Authenticode.

Site The name of the site from which the assembly originates; for
example, www.company.com (prefixes and suffixes are disre-
garded).

Strong name The strong name consists of the assembly name (given name),
public key (of the publisher), version numbers, and culture.

URL The full URL, also called code base, including prefix and suffix:
https://www.company.com:4330/*.

Zone The zone in which the assembly originates. Default zones are
Internet, Local Intranet, My Computer, No Zone Evidence,
Trusted Sites, and Untrusted (Restricted) Sites.

The more evidence you can gather about the assembly, the better you can
determine to what extent you can grant it permissions.The strong name is of
great importance. If you and all other serious application developers are persistent
in providing assemblies with strong names, you can prevent your code from
becoming the vehicle of someone’s dubious intents. Sadly enough, malicious code
can still have a convincing strong name, which is why the best evidence is the
certificate and signature that should be present with the assembly. Once you have
established the trustworthiness of an assembly, based on all the evidence before
you, you can determine the appropriate permission sets. Here is where your
realm of control starts, by constructing appropriate code groups.

Code Groups
A code group can be defined as a group of assemblies that share the same value for
one, and only one, piece of evidence, called membership condition. Based on this

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 267

268 Chapter 8 • Understanding .NET and XML Security

evidence, a permission set is attached to the assembly. Because a code group is
part of a code group hierarchy (Figure 8.2), an assembly can be part of more
code groups.The effective permission set of the assembly is the union of the per-
missions sets of the code groups to which it belongs.

When an assembly is about to be loaded, the evidence is collected and the
code group hierarchy is checked.When the assembly is matched with a code
group, the CLR will check its child code groups.This implies that the construc-
tion of the hierarchy is very important and must be built starting with the gen-
eral evidence items—for example, starting with zone and moving on to more
specific ones such as publisher.A complicating factor is that there are three secu-
rity levels (Enterprise, Machine, and User), each with its own code group hier-
archy.All three are evaluated, resulting in three permission sets, which at the end
are intersected, thereby determining the effective permission set.

It is the administrator’s responsibility to construct code group hierarchies that
can quickly be scanned and enforce a high level of security.To do so, you must
take several factors into account:

■ Limit the number of levels.

■ Use membership conditions at the first level that are highly discrimina-
tory, preventing large parts of the hierarchy from being checked.

■ The hierarchy’s root, All Code, should have no permissions assigned, so
code that does not contain at least some evidence is not allowed to run.

www.syngress.com

Figure 8.2 Graphical Representation of a Code Group Hierarchy

All_Code
Permission set:

Nothing

Publisher:
msdn.one.microsoft.com

Permission set:
LocalIntranet

Zone:
Internet

Permission set:
Internet

Site:
msdn.one.microsoft.com

Permission set:
Nothing

Strong
Name:
MyOwnCompany

Permission set:
FullTrust

224_HPXML_08.qxd 6/28/02 10:44 AM Page 268

Understanding .NET and XML Security • Chapter 8 269

■ The more convincing the evidence—for example, the publishers certifi-
cate—the more permissions that can be granted.

■ Make no exceptions or shortcuts by giving out more permissions than
the evidence justifies.Assume that you have a specific application run-
ning in the intranet zone that needs to have full trust to operate. Because
it is your own application, you implicitly trust it, without the factual evi-
dence. If you do this, however, it can come back to haunt you.

Table 8.2 lists the available default membership conditions.You can construct
your own, but that is beyond the scope of this chapter. Membership conditions
are discussed in more detail later in the chapter.

Table 8.2 Default Membership Conditions for Code Groups

Membership Condition Description

All Code Applies to every assembly that is loaded.
Application directory Applies to all assemblies that reside in the same

directory tree as the running application; hence,
the Application domain.

Hash Applies to all the assemblies that use the same
hash algorithm as specified, or have the specified
hash value.

Publisher Applies to all assemblies that carry the specified
publishers certificate.

Site Applies to all assemblies that originate from the
same site.

Skip verification Applies to all assemblies that request the Skip
Verification permission. WARNING: This permis-
sion allows for the bypassing of type safety. Use
it only at the lowest level after you have estab-
lished that the code is fully trusted.

Strong name Applies to all assemblies that have the specified
strong name.

URL Applies to all assemblies that originate from the
specified URL, including prefix, suffix, path, and
eventual wildcard.

Zone Applies to all assemblies that reside in the speci-
fied zone.

(custom) Applies to custom-made conditions that are nor-
mally directly related to specific applications.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 269

270 Chapter 8 • Understanding .NET and XML Security

Declarative and Imperative Security
There are two ways to add security to your code.This can be a demand that
callers have a specific permission, or a request for a specific permission from
the CLR.

The first method is declarative security, which can be set at assembly, class,
and/or member level, so you can demand different permissions at different places
in the assembly. Permission demand at member level will only be effectuated, as
this part of the code is actually called.The VB.NET syntax of declarative code is
<[assembly:]Permission(SecurityAction.Member, State)>; for example:

<assembly: FileIOPermission(SecurityAction.Demand, Unrestricted := True)>

<FileIOPermission(SecurityAction.Request, Unrestricted := True)>

The first security example is valid for the entire assembly; hence, every call in
this assembly needs to have the FileIOPermission.The second example can be used
for a class or a single method. Only a reference to a class or a call of the method
will request the CLR for FileIOPermission.

As the syntax already suggests, by using brackets (<>), this code is not treated
as ordinary code. In fact, as you compile the code to an assembly, these lines are
extracted and placed in the metadata part of the assembly.This metadata is
checked at different points, such as during the load of the assembly or when a
method in the assembly is called. Using declarative security, you can demand,
request, or even override permissions before the code is even executed.This gives
you a powerful security tool during the development of the code and assemblies.
However, this means that you must be aware of the type of permissions you need
to request and/or demand your code.

The second method is imperative security, which becomes a part of your code
and can make permission demands and overrides. It is not possible to request
permissions using imperative security, because that makes it unclear at what point
a specific permission is needed and at what point it is no longer needed.That is
why permission requests are related to identifiable units of code.You might want
to use imperative security to check if the caller has a permission that is specific
for a part of the code. For example, just before a conditional part of the code
(this might even be triggered by the role-based security) wants to access a file or
a Registry key, you want to check if the caller has this FileIOPermission or
RegistryPermission. Imperative security (in general as well as in the .NET environ-
ment) can be your cornerstone method in Hack Proofing XML code.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 270

Understanding .NET and XML Security • Chapter 8 271

The VB.NET syntax of the imperative security in code looks like this:

Dim PermissionObject as New Permission()

PermissionObject.Demand()

Here is an example:

Dim CheckPermission as New FileIOPermission()

CheckPermission.Demand()

The permission object is valid only for the scope on which it is declared, and
it will be automatically discarded at the time the code returns to a higher scope.
During this scope, imperative security demands and overrides overrule the per-
missions demanded with a declarative security statement.

Having discussed declarative and imperative security, it is time to take a look
at how you can use this to request, demand, and override permissions.

Requesting Permissions
Requesting permissions is the best way to create a secure application and prevent
possible misuse of your code by malicious code.As mentioned before, based on the
evidence, an assembly hands over to the CLR, and then a permission set is deter-
mined, using security policies.These security policies are constructed independently
from the permissions an assembly needs. Of course, if you fully trust an assembly,
you can grant it all the permissions it needs.An assembly can be granted more per-
missions than it actually needs. Requesting permissions is not asking for more per-
missions than you are granted, based on the security profile, but refraining from
granting permissions the code does not need. By now you have probably started to
wonder what the use of requesting permissions is if the security policy decides
what permissions are available to the assembly.The term available implies two issues:

■ If an assembly requests more permissions than it is granted, based on the
security policy, it will not be loaded and/or the code will not be exe-
cuted. Instead, the CLR will throw an exception.

■ If an assembly requests less permissions, it protects itself from misuse of
these additional permissions somewhere up or down the calling chain.

Requesting permissions is a characteristic of proper .NET applications, and
demands from the developer a good understanding of the use of permissions
related to the code he writes. Because you can only request permissions by using
declarative security, you can first write and test the code and then add the per-
mission requests later.This can make the development process easier, saving you

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 271

272 Chapter 8 • Understanding .NET and XML Security

the hassle of constantly having to consider permission requests for unfinished
code.There are three types of permission requests:

■ RequestMinimum Defines the permissions the code absolutely needs to
be able to run. If the RequestMinimum permission is not part of the
granted permission set, the code is not allowed to run.

■ RequestOptional Defines the permissions the code might not neces-
sarily need to be able to run, but might need in certain circumstances. If
the RequestOptional permission is not part of the granted permission set,
the code is still allowed to run. However, you need the code to be able
to handle the situation in which the permission is needed but not
granted, thus handling exceptions.

■ RequestRefuse Defines the permissions the code will never need and
which should not be granted to the assembly. By refraining from certain
permissions you prevent malicious code or unstable code from misusing
these permissions.

After the code is completed and you compile assemblies, you should get into
the practice of making a minimum, optional, or refuse request for every permis-
sion (as listed in Table 8.3), based on the permissions needed by the code.
Eventually, you can make it more specific to relate it to classes or members.
Besides the fact that you can create secure assemblies, it is also a good way of
documenting the permissions related to your code.

Table 8.3 The Default Permission Classes Derived from the
CodeAccessPermission Class

Permission Permission
Class Type Description

DirectoryServicesPermission Resource Controls access to the
System.DirectoryServices classes.

DnsPermission Resource Controls access to the DNS
servers on the network.

EnvironmentPermission Resource Controls access to the user envi-
ronment variables.

EventLogPermission Resource Controls access to the event log
services.

FileDialogPermission Resource Controls access to files that are
selected through an Open File…
dialog.

www.syngress.com Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 272

Understanding .NET and XML Security • Chapter 8 273

FileIOPermission Resource Controls access to files and
directories.

IsolatedStorageFilePermission Resource Controls access to a private vir-
tual file system related to the
identity of the application or
component.

MessageQueuePermission Resource Controls access to the MSMQ
services.

OleDbPermission Resource Controls access to the OLE DB
data provider and the data
sources associated with it.

PerformanceCounterPermission Resource Controls access to the perfor-
mance counters of Windows
2000 (or NT).

PrintingPermission Resource Controls access to printers.
ReflectionPermission Resource Controls access to metadata

types.
RegistryPermission Resource Controls access to the Registry.
SecurityPermission Resource Controls access to

SecurityPermission, such as
Assert, Skip Verification, and
Call Unmanaged Code.

ServiceControllerPermission Resource Controls access to services on
the system.

SocketPermission Resource Controls access to sockets that
are needed to set up or accept a
network connection.

SqlClientPermission Resource Controls access to SQL server
databases.

UIPermission Resource Controls access to UI function-
ality, such as Clipboard.

WebPermission Resource Controls access to an Internet-
related resource.

PublisherIdentityPermission Identity Permission is granted if the evi-
dence publisher is provided by
the caller.

www.syngress.com

Table 8.3 Continued

Permission Permission
Class Type Description

Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 273

274 Chapter 8 • Understanding .NET and XML Security

SiteIdentityPermission Identity Permission is granted if the evi-
dence site is provided by the
caller.

StrongNameIdentityPermission Identity Permission is granted if the evi-
dence strong name is provided
by the caller.

UrlIdentityPermission Identity Permission is granted if the evi-
dence URL is provided by the
caller.

ZoneIdentityPermission Identity Permission is granted if the evi-
dence zone is provided by the
caller.

Now let’s look at some examples of the different types of requests:

<assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum, _

Flags := SecurityPermissionFlag.ControlPrincipal)>

In order for this assembly to run, it needs at least the permission to be able to
manipulate the principal object.This is a permission you would give only to an
assembly you trust.

<assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum, _

ControlEvidence : = True)>

In order for this assembly to run, it needs at least the permission to be able to
provide additional evidence and modify the evidence as provided by the CLR.
This is a powerful permission you would give only to fully trusted assemblies.

<FileIOPermissionAttribute(SecurityAction.RequestOptional, _

Write := "C:\Test*.cfg")> Public Class ClassAct

The ClassAct class requests the optional permission to be able to write to files
in the C:\Test directory with the extension .cfg. If the security policy permits
FileIOPermission, this restricted request is given. If the FileIOPermission is not
granted, then any subsequent write to a CFG file in C:\Test will fail.

<assembly: FileIOPermission(SecurityAction.RequestRefuse, Unrestricted :=

True)>

www.syngress.com

Table 8.3 Continued

Permission Permission
Class Type Description

224_HPXML_08.qxd 6/28/02 10:44 AM Page 274

Understanding .NET and XML Security • Chapter 8 275

The assembly refuses the FileIOPermission, even if the security policy grants
this permission. If you used this request in combination with the previous
example, and the security policy grants FileIOPermission, only ClassAct will get
this restricted FileIOPermission, and the rest of the code in the assembly will not
have any FileIOPermission.

<assembly: FileIOPermission(SecurityAction.RequestRefuse, _

All := "C:\Winnt\System32*.*")>

The assembly refuses only FileIOPermission to the access of files in the
C:\Winnt\System32 directory. If the security policy grants this permission, the
assembly can access all files, except for the one in the stated directory.

Instead of making requests for every code access permission, you can also
request one of the following named permission sets: Nothing, Execution, Internet,
LocalIntranet, SkipVerification, and FullTrust.You can do this by issuing the fol-
lowing request:
<assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, _

Name := NamedPermissionSet)>

Another way to request more code access permissions in one statement is to
use XML-coded permission sets:

<assembly: PermissionSetAttribute(SecurityAction.RequestMinimum,

File := "Filename.xml")>

Demanding Permissions
By demanding permissions, you force the caller to have a specific permission it
needs to execute the code. If the caller has this request, it is very likely that he
obtained it by requesting it at the CLR.As we discussed before, a permission
demand triggers a security stack walk. Even if you do not perform these demands
yourself, the .NET Framework classes will.This means that you should never per-
form permission demands related to these classes, because they will take care of
those themselves. If you do perform a demand, it will be redundant and only add
to the execution overhead.This does not mean that you should ignore it; instead,
when writing code, you must be aware of which call will trigger a stack walk,
and make sure that the code does not encourage a surplus of stack walks.
However, when you build your own classes that access protected resources, you
need to place the proper permission demands, using the declarative or imperative
security syntax.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 275

276 Chapter 8 • Understanding .NET and XML Security

Using the declarative syntax when making a permission demand is preferable
to using the imperative syntax, because the latter might result in more stack
walks.There are, of course, cases that are better suited for imperative permission
demands. For example, if a Registry key has to be set under specific conditions,
you will perform an imperative RegistryPermission demand just before the code is
actually called.This also implies that the caller can lack this permission, which
will result in an exception that the code needs to handle accordingly.Another
reason why you want to use imperative demands is when information is not
known at compile time.A simple example is FileIOPermission on a set of files
whose names are only known during runtime because they are user related.

Two types of demands are handled differently than previously described. First,
the link demand can be used only in a declarative way at the class or method level.
The link demand is performed only during the JIT compilation phase, in which
it is checked if the calling code has sufficient permission to link to your code.A
security stack walk is not performed because linking exists only in a direct rela-
tion between the caller and code being called.The use of link demands can be
helpful to methods that are accessible through reflection.The link demand will
not only perform a security check on code that obtains the MethodInfo object—
hence, performing the reflection—but the same security check is performed on
the code that will make the actual call to the method.The following two exam-
ples show a link demand at class and at method level:

<SecurityPermissionAttribute(SecurityAction.LinkDemand, _

Unrestricted := True)> Public Class ClassAct

Public Shared Function _

<SecurityPermissiobAttribute(SecurityAction.LinkDemand)> Act1() As

Integer ' body of the function

End Function

The second type of demand is inheritance demand, which can be used at both
the class and method level, through the declarative security. Placing an inheri-
tance demand on a class can protect that class from being inherited by a class that
does not have the specified permission.Although you can use a default permis-
sion, it makes sense to create a custom permission that must be assigned to the
inheriting class to be able to inherit from the class with the inheritance demand.
The same goes for the class that inherits from the inheriting class. For example,
let’s say that you have created the ClassAct class that is inheritable, but also has an
inheritance demand set.You have defined your own inherit permission InheritAct.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 276

Understanding .NET and XML Security • Chapter 8 277

Another class called ClassActing wants to inherit from your class, but because it is
protected with an inheritance demand, it must have the InheritAct permission in
order to be able to inherit. Let’s assume that this is the case. Now there is another
class called ClassReacting that wants to inherit from the class ClassActing. In order
for ClassReacting to inherit from ClassActing, it also needs to have the InheritAct
permission assigned.The inheritance demand would look like this:

<InheritActAttribute(SecurityAction.InheritanceDemand)> Public Class ClassAct

The inheritance demand at method level can be the following:

Public Overridable Function

<SecurityPermissionAttribute(SecurityAction.InheritanceDemand)>

Act1() as Integer

' Body of the function

End Function

Overriding Security Checks
Because stack walking can introduce serious overhead and thus performance
degradation, you need to keep stack walks under control.This is especially true if
they do not necessarily contribute to security, such as when a part of the execu-
tion can only take place in fully trusted code. On the other hand, your code has
permission to access specific protected resources, but you do not want code that
you call to gain access to these resources—so you want to have a way to prevent
this. In both cases, you want to take control of the permission security checks;
hence, overriding security checks.You can do this by using the security actions
Assert, Deny, and PermitOnly (meaning “deny everything but”).

WARNING

You can place more than one override of the same type—for example,
Deny—within the same piece of code. However, this is not acceptable to
the CLR. If during a stack walk, the CLR encounters more than one of the
same asserts it throws an exception, because it does not know which of
the overrides to trust. If you have more than one place in a piece of code
where you set an override, be sure to revert the first one before setting
the new one.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 277

278 Chapter 8 • Understanding .NET and XML Security

After the code sets an override, it can undo this override by calling the
corresponding Revert method: RevertAssert, RevertDeny, and RevertPermitOnly,
respectively. Get into the practice of first calling the Revert method before setting
the override, because performing a revert on a nonexistent override has no effect.

Assert Override
When you set an assert override on a specific permission, you force a stack walk
on this permission to stop at your code and not continue to check the callers of
your method.

WARNING

If you use an Assert override, you inadvertently create a security vulnera-
bility, because you prevent the CLR from completing security checks. You
must convince yourself that this vulnerability cannot be exploited.

The use of Assert makes sense in the following situations:

■ You have coded a part of an application that will never be exposed to
the outside world.The user of the application has no way of knowing
what happens within that part of the application.Your code does need
access to protected resources, such as system files and/or Registry keys,
but because the callers will never find out that you use these protected
resources, it is reasonably safe to set an Assert to prevent a full security
check from being performed.You do not care if the caller has that per-
mission or not.

■ Your code needs to make one or more calls to unmanaged code, but
because the caller of the code obtains access through your Web site, you
are safe in assuming that he will not have permissions to make calls to
unmanaged code. On the other hand, the callers cannot influence the
calls you make to unmanaged code.Therefore, it is reasonably safe to
assert the permission to access unmanaged code.

■ You know that somewhere in your code you have to perform a search,
using a Do..Loop structure that at one point has to access a protected
resource.You also know that the code that calls the protected resource
cannot be called from outside the loop.Therefore, you decide to set an

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 278

Understanding .NET and XML Security • Chapter 8 279

assertion just before the call to the protected resource, to prevent a sur-
plus of stack walks. In case the particular piece of code that does the call
to the protected resource can be called by other code, you have to move
up the assertion to the code that can only be called from the loop.

Let’s look at the stack walk that was initially used in Figure 8.1, but now let’s
throw in an assertion and see what happens (Figure 8.3).The Assert is set in
Assembly4 on the UIPermission. In the situation with no assert, the stack walk did
not succeed because Assembly1 did not have this permission. Now the stack walk
starts at Assembly6 performing a permission demand on UIPermission, and goes on
its way as it usually goes. Now the stack walk reaches Assembly4 and recognizes
an assert on the permission it is checking.The stack walk stops there and returns
with a positive result. Because the stack walk was short-circuited, the CLR has
no way of knowing that Assembly1 did not have this permission.

An Assert can be set using both the declarative and the imperative syntax. In
the first example, the declarative syntax is used.An Assert is set on the
FileIOPermission.Write permission for the CFG files in the C:\Test directory:

Public Function _

<FileIOPermission(SecurityAction.Assert, Write := "C:\Test*.cfg")> _

www.syngress.com

Figure 8.3 A Stack Walk Is Short-Circuited by an Assert

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Succeeded

Succeeded

Sta
ck

 W
alk

 R
es

ult
: S

UC
CE

SS

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

UIPermission(SA.Assert)

224_HPXML_08.qxd 6/28/02 10:44 AM Page 279

280 Chapter 8 • Understanding .NET and XML Security

Act1() As Integer

' body of the function

End Function

The second example uses the imperative syntax setting the same type of
Assert:

Public Function Act1() As Integer

Dim ActFilePerm As New FileIOPermission(FileIOPermissionAccess.Write, _

"C:\Test*.cfg")

ActFilePerm.Assert

' rest of body

End Function

Deny Override
The Deny does the opposite of Assert in that it lets a stack walk fail for the per-
mission the Deny is set on.There are not many situations in which a Deny over-
ride makes sense, but here is one:Among the permissions your code has is
RegistryPermission. Now it has to make a call to a method for which you have no
information regarding trust.To prevent that code from taking advantage of the
RegistryPermission, your code can set a Deny. Now you are sure that your code
does not hand over a high-trust permission.

Because unnecessary Deny overrides can disrupt the normal working of secu-
rity checks (because they will always fail on a Deny), you should revert the Deny
after the call ends for which you set the Deny.

For the sake of the example, we use the same situation as in Figure 8.3, but
instead of an Assert, there is a Deny (Figure 8.4).Again, the security stack walk is
triggered for the UIPermission permission in Assembly6.When the stack walk
reaches Assembly4, it recognizes the Deny on UIPermission and it ends with a fail.
In our example, the security check would ultimately have failed in Assembly1, but
if Assembly1 had been granted the UIPermission, the stack walk would have suc-
ceeded, if not for the Deny. Effectively this means that Assembly4 revoked the
UIPermission for Assembly5 and Assembly6.

You can set a Deny by using both the declarative and the imperative syntax.
In the first example, the declarative syntax is used.A Deny is set on the
FileIOPermission permission for all the files in the C:\Winnt\System32 directory:

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 280

Understanding .NET and XML Security • Chapter 8 281

Public Function _

<FileIOPermission(SecurityAction.Deny, All :=

"C:\Winnt\System32*.*")> _

Act1() As Integer

' body of the function

End Function

The second example uses the imperative syntax setting the same type of
Assert:

Public Function Act1() As Integer

Dim ActFilePerm As New

FileIOPermission(FileIOPermissionAccess.AllAccess, _

"C:\Winnt\System32*.*")

ActFilePerm.Deny

' rest of the body

End Function

www.syngress.com

Figure 8.4 A Stack Walk Is Short-Circuited by a Deny
Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Failed

Succeeded

Sta
ck

 W
alk

 R
es

ult
: F

AI
L

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

UIPermission(SA.Deny)

224_HPXML_08.qxd 6/28/02 10:44 AM Page 281

282 Chapter 8 • Understanding .NET and XML Security

PermitOnly Override
The PermitOnly override is similar to the negation of the Deny, by denying every
permission but the one specified.You use the PermitOnly for the same reason you
use Deny, only this one is more rigorous. For example, if you permit only the
UIPermission permission, every security stack walk will fail but the one that
checks on the UIPermission.Take Figure 8.4 and substitute Deny with PermitOnly.
If in Assembly6 the security check for UIPermission is triggered, the stack walk
will pass Assembly4 with success, but will ultimately fail in Assembly1. If any other
security check is initiated, it will fail in Assembly.The result is that Assembly5 and
Assembly6 are denied any access to a protected resource that incorporates a
Demand request, because every security check will fail.As you can see, PermitOnly
is a very effective way of killing any aspirations of called code in accessing pro-
tected resources.The PermitOnly is used in the same way as Deny and Assert.

Custom Permissions
The .NET Framework enables you to write your own code access permissions,
even though the framework comes with a large number of code access permis-
sion classes. Because these classes are meant to protect the protected resources and
code that are exposed by the framework, it might well be the case that the appli-
cation you are developing has defined resources that are not protected by the
framework permissions, or you want to use permissions that are more tuned
toward the needs of your application.

You are completely free to replace existing framework permission classes,
although this requires a large amount of expertise and experience. In case you are
just adding new permission classes to the existing ones, you should be particularly
careful not to overlap permissions. If more than one permission protects the same
resource or operation, an administrator has to take this into account if he has to
modify the rights to these resources.

Building your own permissions does not only imply that certain development
issues are raised, but even more so, the integrity of the entire security system
must be discussed.You have to take into account that you are adding to a rigid
security system that relies heavily on trust and permissions. If mistakes occur in
the design and/or implementation of a permission, you run the risk of creating
security holes that can become the target of attacks or let an application grant
access to protected resources that it is not authorized to access. Discussing the
process of designing your own permissions goes beyond the scope of this chapter.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 282

Understanding .NET and XML Security • Chapter 8 283

However, the following steps give you an understanding of what is involved in
creating a custom permission:

1. Design a permission class.

2. Implement the interfaces IPermission and IUnrestrictedPermission.

3. In case special data types have to be supported, you must implement the
interface ISerializable.

4. You must implement XML encoding and decoding.

5. You must implement the support for declarative security.

6. Add Demand calls for the custom permission in your code.

7. Update the security policy so that the custom permission can be added
to permission sets.

NOTE

The subject of overlapping permissions brings up a topic not discussed
earlier. Although the whole discussion of code access permission has
been from the standpoint of the CLR, or .NET Framework, eventually the
CLR has to access resources on behalf of the users/application. Even if
the code has been granted a specific permission to access a protected
resource, this does not automatically mean that it is allowed to access
that system resource. Take the example of a method having the
FileIOPermission permission to the directory C:\Winnt\System32. If the
identity of the Windows principal has not been given access to this part
of the file system, accessing a file in that directory will fail anyway. This
implies that the administrator not only has to set up the permissions
within the security policy, but he also has to configure the Windows
2000 platform to reflect these access permissions.

Role-Based Security
Role-based security is not new to the .NET Framework. If you already have
experience with developing COM+ components, you surely have come across
role-based security.The concept of role based security for COM+ applications is
the same as for the .NET Framework.The difference lies in the way in which it

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 283

284 Chapter 8 • Understanding .NET and XML Security

is implemented. If we talk about role based security, the same example comes up,
over and over again.This is not because we can’t create our own example, but
because it explains role-based security in a way everyone understands. So here it
is:You build a financial application that can handle deposit transactions.The rule
in most banks is that the teller is authorized to make transactions up to a certain
amount, let’s say $5,000. If the transaction goes beyond that amount, the teller’s
manager has to step in to perform the transaction. However, because the manager
is only authorized to do transactions up to $10,000, the branch manager has to
be called to process a deposit transaction that is over this amount.

Therefore, as you can see, role-based security has to do with limiting the tasks
a user can perform, based on the role(s) he plays or the identity he has.Within
the .NET Framework, this all comes down to the principal that holds the iden-
tity and role(s) of the caller.As discussed earlier in this chapter, every thread is
provided with a principal object. In order to have the .NET Framework handle
the role-based security in the same manner as it does code access security, the
permission class PrincipalPermission is defined.To avoid any confusion,
PrincipalPermission is not a derived class of CodeAccessPermission. In fact,
PrincipalPermission holds only three attributes: User, Role, and the Boolean
IsAuthenticated.

Principals
Let’s get back to where it all starts: the principal. From the moment an applica-
tion domain is initialized, a default call context is created to which the principal
will be bound. If a new thread it activated, the call context and the principal are
copied from the parent thread to the new thread.Together with the principal
object, the identity object is also copied. If the CLR cannot determine what the
principal of a thread is, a default principal and identity object is created so that
the thread can run at least with a security context with minimum rights.There
are three type of principals: WindowsPrincipal, GenericPrincipal, and CustomPrincipal.
The latter goes beyond the scope of this chapter and is not discussed any further.

WindowsPrincipal
Because the WindowsPrincipal that references the WindowsIdentity is directly
related to a Windows user, this type of identity can be regarded as very strong
because an independent source authenticated this user.

To be able to perform role-based validations, you have to create a
WindowsPrincipal object. In the case of the WindowsPrincipal, this is reasonably

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 284

Understanding .NET and XML Security • Chapter 8 285

straightforward, and there are actually two ways of implementing it.This depends
on whether you have to perform just a single validation of the user and role(s), or
you have to do this repeatedly. Let’s start with the single validation solution:

1. Initialize an instance of the WindowsIdentity object using this code:

Dim WinIdent as WindowsIdentity = WindowsIdentity.GetCurrent()

2. Create an instance of the WindowsPrincipal object and bind the
WindowsIdentity to it:

Dim WinPrinc as New WindowsPrincipal(WindIdent)

3. Now you can access the attributes of the WindowsIdentity and
WindowsPrincipal object:

Dim PrincName As String = WinPrinc.Identity.Name

Dim IdentName As String = WinIdent.Name 'this is the same as

the previous line

Dim IdentType As String = WinIdent.AuthenticationType

If you have to perform role-based validation repeatedly, binding the
WindowsPrincipal to the thread is more efficient, so that the information is readily
available. In the previous example, you did not bind the WindowsPrincipal to the
thread because it was intended to be used only once. However, it is good practice
to always bind the WindowsPrincipal to the thread because in case a new thread is
created, the principal is also copied to the new thread:

1. Create a principal policy based on the WindowsPrincipal and bind it to
the current thread.This initializes an instance of the WindowsIdentity
object, creates an instance of the WindowsPrincipal object, binds the
WindowsIdentity to it, and then binds the WindowsPrincipal to the current
thread.This is all done in a single statement:

AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.

WindowsPrincipal)

2. Get a copy of the WindowsPrincipal object that is bound to the thread:

Dim WinPrinc As WindowsPrincipal = Ctype(Thread.CurrentPrincipal, _

WindowsPrincipal)

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 285

286 Chapter 8 • Understanding .NET and XML Security

It is possible to bind the WindowsPrincipal in the first method of creation to the
thread. However, your code must be granted the SecurityPermission permission to do
so. If that is the case, you bind the principal to the thread with the following:

Thread.CurrentPrincipal = WinPrinc

GenericPrincipal
In a situation in which you do not want to rely on the Windows authentication
but want the application to take care of it, you can use the GenericPrincipal.

NOTE

Always use an authentication method before letting a user access your
application. Authentication, in any shape or form, is the only way to
establish an identity. Without it, you are not able to implement role-
based security.

Let’s assume that your application requested a username and password from
the user, checked it against the application’s own authentication database, and
established the user’s identity.You then have to create the GenericPrincipal to be
able to perform role-based verifications in your application:

1. Create a GenericIdentity object for the User1 you just authenticated:

Dim GenIdent As New GenericIdentity("User1")

2. Create the GenericPrincipal object, bind the GenericIdentity object to it,
and add roles to the GenericPrincipal:

Dim UserRoles as String() = {"Role1", "Role2", "Role5"}

Dim GenPrinc As New GenericPrincipal(GenIdent, UserRoles)

3. Bind the GenericPrincipal to the thread.Again, you need
SecurityPermission:

Thread.CurrentPrincipal = GenPrinc

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 286

Understanding .NET and XML Security • Chapter 8 287

Manipulating Identity
You can manipulate the identity that is held by a principal object in two ways.
The first is replacing the principal; the second is by impersonating.

Replacing the principal object on the thread is a typical action you perform
in applications that have their own authentication methods.To be able to replace
a principal, your code must have been granted the SecurityPermission, or more
specifically, the SecurityPermission attribute ControlPrincipal.This will allow your
own code to be able to pass on the PrincipalObject to other code.This attribute
grants you the permission to manipulate the principal, so you are allowed by the
CLR to pass on the principal. Replacing the principal object can be done by
performing these steps:

1. Create a new identity and principal object, and initialize it with the
proper values.

2. Bind the new principal to the thread:

Thread.CurrentPrincipal = NewPrincipalObject

Impersonating is also a way of manipulating the principal, with the intent to
take on the identity of another user to perform some actions on his behalf.You
can identify two variations:

■ The code has to impersonate the WindowsPrincipal that is attached to the
thread.This might seem a little odd, but you have to remember that your
code is part of an application domain that runs in a process.A user—
whether a system account, a service account, or even an interactive
user—starts this process on the Windows platform.Although the prin-
cipal can be used to perform role-based verification within the code,
accessing protected resources is still done with the identity of the process
user, unless you actively use the user account of principal through
impersonation.

■ The code has to impersonate a user that is not attached to the current
thread.The first thing you have to do is obtain the Windows token of
the user you want to impersonate.This has to be done with the unman-
aged code LogonUser.The obtained token has to be passed to a new
WindowIdentity object. Now you have to call the Impersonate method of
WindowsIdentity.The old identity—hence, token—has to be saved in a
new instance of WindowsImpersonationContext.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 287

288 Chapter 8 • Understanding .NET and XML Security

At the end of the impersonation, you have to change back to the original
user account by calling the Undo method of the WindowsImpersonationContext.

Remember, the principal object is not changed; rather, the WindowsIdentity
token, representing the Windows account, is switched with the current token.At
the end of the impersonation, the tokens are switched back again, as shown in
the following steps:

1. Call the LogonUser method, located in the unmanaged code library
advapi32.dll.You pass the username, domain, password, logon type, and
logon provider to this method that will return you a handle to a token.
For the sake of the example, we will call it hImpToken.

2. Create a new WindowsIdentity object and pass it the token handle:

Dim ImpersIdent As New WindowsIdentity(hImpToken)

3. Create a WindowsImpersonationContext object and call the Impersonate
method of ImpersIndent:

Dim WinImpersCtxt As WindowsImpersonationContext =

ImpersIdent.Impersonate()

4. At the end of the call, the original Windows token has to be put back in
the Identity object:

WinImpersCtxt.Undo()

You could have done Steps 2 and 3 in one statement that looks
like this:

Dim WinImpersCtct As WindowsImpersonationContext = _

WindowsIdentity.Impersonate(hImptoken)

Remember that you cannot impersonate when you use a GenericPrincipal
because it does not reference a Windows identity. For generic principals, you will
need to replace the principal with one that has a new identity.

Role-Based Security Checks
Having discussed the creation and manipulation of PrincipalObject, it is time to
take a look at how they can assist you in performing role-based security checks.
Here is where PrincipalPermission, already mentioned in the beginning of the sec-
tion Role-based Security, comes into play. Using PrincipalPermission, you can make
checks on the active principal object, be it the WindowsPrincipal or the

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 288

Understanding .NET and XML Security • Chapter 8 289

GenericPrincipal.The active principal object can be one you created to perform a
one-time check, or it can be the principal you bound to the thread. Like the
code access permissions, the PrincipalPermission can be used in both the declarative
and the imperative way.

To use PrincipalPermission in a declarative manner, you need to use the
PrincipalPermissionAttribute object in the following way:

Public Shared Function <PrincipalPermissiobAttribute(SecurityAction.Demand, _

Name := "User1", Role := "Role1")> Act2() As Integer

' body of the function

End Function

<assembly: PrincipalPermissionAttribute(SecurityAction.Demand, Role :=

"Administrator")>

To use the imperative manner, you can perform the PrincipalPermission check
as shown:

Dim PrincPerm As New PrincipalPermission("User1", "Role1")

PrincPerm.Demand()

It is also possible to use the imperative to set the PrincipalPermission object in
two other ways:

Dim PrincState As PermissionState = Unrestricted

Dim PrincPerm As New PrincipalPermission(PrincState)

The permission state (PrincState) can be None or Unrestricted, where None
means the principal is not authenticated.Therefore, the username is Nothing, the
role is Nothing, and Authenticated is false. Unrestricted matches all other principals.

Dim PrincAuthenticated As Boolean = True

Dim PrincPerm As New PrincipalPermission("User1", "Role1",

PrincAuthenticated)

The IsAuthenticated field (Princauthenticated) can be true or false.
In a situation in which you want PrincipalPermission.Demand() to allow more

than one user/role combination, you can perform a union of two PrincipalPermission
objects. However, this is only possible if the objects are of the same type.Thus, if
one PrincipalPermission object has set a user/role, and the other object uses
PermissionState, the CLR throws an exception.The union looks like this:

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 289

290 Chapter 8 • Understanding .NET and XML Security

Dim PrincPerm1 As New PrincipalPermission("User1", "Role1")

Dim PrincPerm2 As New PrincipalPermission("User2", "Role2")

PrincPerm1.Union(PrincPerm2).Demand()

The Demand will succeed only if the principal object has the user User1 in
the role Role1 or User2 in the role Role2.Any other combination fails.

As mentioned before, you can also directly access the principal and identity
object, thereby enabling you to perform your own security checks without the
use of PrincipalPermission. Besides the fact that you can examine a little more
information, it also prevents you from handling exceptions that can occur using
PrincipalPermission. .You can query the WindowsPrincipal in the same way the
PrincipalPermission does this:

■ The name of the user by checking the value of
WindowsPrincipal.Identity.Name:

If (WinPrinc.Identity.Name = "User1") or _

WinPrinc.Identity.Name.Equals("DOMAIN1\User1") Then

End If

■ An available role by calling the IsInRole method:

If (WinPrinc.IsInRole("Role1")) Then

End If

■ Determining if the principal is authenticated, by checking the value of
WindowsPrincipal.Identity.IsAuthenticated:

If (WinPrinc.Identity.IsAuthenticated) Then

End If

Additionally for PrincipalPermission, you can check the following
WindowsIdentity properties:

■ AuthenticationType Determines the type of authentication used. Most
common values are NTLM and Kerberos.

■ IsAnonymous Determines if the user is identified as an anonymous
account by the system.

■ IsGuest Determines if the user is identified as a guest account by the
system.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 290

Understanding .NET and XML Security • Chapter 8 291

■ IsSystem Determines if the user is identified as the system account of
the system.

■ Token Returns the Windows account token of the user.

Security Policies
This section takes a closer look at the way in which security policies are con-
structed and the way you can manage them.To create and modify a security
policy, the .NET Framework provides you two tools: a command-line interface
(CLI) tool, called caspol.exe (see the section Security Tools) and a Microsoft
Management Console snap-in, mcscorcfg.msc (Figure 8.5).The latter will be
used for demonstration purposes because it is more visual and intuitive. Not to
mention that the pictures look better in the book.

As you can see in Figure 8.5, the security policy model is comprised of the
following:

■ Runtime Security Policy levels

■ Enterprise Valid for all managed code that is used within the entire
organization (enterprise); therefore, this will have a restrictive policy
because it references a large group of code.

www.syngress.com

Figure 8.5 The .NET Configuration Snap-In

224_HPXML_08.qxd 6/28/02 10:44 AM Page 291

292 Chapter 8 • Understanding .NET and XML Security

■ MachineValid for all managed code on that specific computer.
Because this already limits the amount of code, you can be more
specific with handing out permissions.

■ User Valid for all the managed code that runs under that Windows
user.This will normally be the account that starts the process in
which the CLR and managed code runs. Because the identity of the
user is very specific, the granted permissions can also be more spe-
cific, thus less restrictive.

■ A code groups hierarchy that exists for each of the three policy levels.
We will look at how you can add code groups to the default structure,
which already exists for user and machine.

■ (Named) Permission Sets. By default, the .NET Framework comes with
seven named permission sets:

■ FullTrust Unlimited access to all protected resources and opera-
tions.

■ EveryThing Granted all .NET Framework permissions, except the
security permission SkipVerification.

■ LocalIntranet The default rights given to an application on the local
intranet.

■ Internet The default rights given to an application on the Internet.

■ Execution Has only the security permission EnableAssemblyExecution.

■ SkipVerification Has only the security permission SkipVerification.

■ Nothing Denied all access to all protected resources and operations.

■ Evidence, which is the attribute that the code hands over to the CLR
and on which it determines the effective permission set. Evidence is
used in the construction of code groups.

■ Policy assemblies that list the trusted assemblies that hold security objects
used during policy evaluation.You should add your assemblies to the list
that implements the custom permissions. If you omit this, the assemblies
will not be fully trusted and cannot be used during the evaluation of the
security policy.

Understand that the evaluation process of the security policy will result in the
effective permission set for a specific assembly. For all of the three policy levels,

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 292

Understanding .NET and XML Security • Chapter 8 293

the code groups are evaluated against the evidence presented by the assembly.All
the code groups that meet the evidence deliver a permission set.The union of
these sets determines the effective permission set for that particular security
policy level.After this evaluation is done at all three security levels, the three indi-
vidual permission sets are intersected, resulting in the effective permission set for
an assembly.This means that the code groups within the three security levels
cannot be constructed independently, because this can result in a situation in
which an assembly is given a limited permission set that is too limited to run.
When you take a look at the permission set for the All_Code of the enterprise
security policy, you will see that it is Full Trust. Doing the same for the All_Code
of the user security policy, you will see Nothing. Because the code group tree of
the enterprise is empty, it cannot make evidence decisions; therefore, it cannot
contribute to the determination of the effective permission set of the assembly.
By setting it to Full Trust, it is up to the machine and user security policy to
determine the effective permission set.

Because the user code group already has a limited code group tree, the root
does not need to participate in the determination of the permission set. By set-
ting it to Nothing, it is up to the rest of the code groups to decide what the effec-
tive permission group for the user security policy is.

You can determine the permission set of a code group by performing these
steps:

1. Run Microsoft Management Console (MMC) by choosing Start |
Run and typing mmc.

2. Open the .NET Management snap-in, via Console | Add/Remove
Snap-in.

3. Expand the Console Root | .NET Configuration | My
Computer.

4. Expand Runtime Security Policy | Enterprise |Code Groups.

5. Select the code group All_Code.

6. Right-click All_Code and select Properties.

7. Select the Permission Set tab.

8. The Permission Set field lists the current value.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 293

294 Chapter 8 • Understanding .NET and XML Security

Creating a New Permission Set
Suppose you decide that none of the seven built-in permissions sets satisfy your
need for granting permissions.Therefore, you want to make a named permission
set that does suit you.You have a few options:

■ Create a new permission from scratch.

■ Create a new permission set based on an existing one.

■ Create a new permission from an XML-coded permission set.

To get a better understanding of the working of the security policy and to
get some hands-on experience with the tool, we discuss the different security
policy issues in the following exercises.

We use the second option and base our new permission set on the permis-
sion set LocalIntranet for the user security policy level:

1. Expand the User runtime security policy, and expand Permission Sets
(Figure 8.6).

2. Right-click the permission set LocalIntranet and select Duplicate; a
permission set called Copy of LocalIntranet is added to the list.

3. Select the permission set Copy of LocalIntranet and rename it to
PrivatePermissions.Then, right-click it and select Properties. Change
the Permission Set Name to PrivatePermissions and, while you’re
at it, change the corresponding Permission Set Description.

www.syngress.com

Figure 8.6 The Users Permission Sets and Code Groups

224_HPXML_08.qxd 6/28/02 10:44 AM Page 294

Understanding .NET and XML Security • Chapter 8 295

4. Change the permissions of the permission set: Right-click the
PrivatePermissions permission set, and select Change Permissions.

5. The Create Permission Set dialog box appears (Figure 8.7).You see
two permissions lists: on the left, the Available Permissions that are not
assigned, and on the right, the list with assigned permissions.

Between the two Permissions lists are four buttons.The Add and Remove
buttons let you move individual permissions between the lists. Note that you
cannot select more than one at the same time; this is done to prevent you from
making mistakes.You will better understand a given permission if you select that
permission in the Assigned Permissions list and press the Properties button.You
can use the fourth button (Import) to load an XML-coded permission set. Now,
let’s make some modifications to the permission set, because that was the reason
to duplicate the permission set:

■ Add the FileIOPermission to the Assigned Permission list.

■ Add the RegistryPermission to the Assigned Permission list.

■ Modify the SecurityPermission properties.

To do so:

1. Select FileIO in the Available Permissions list. (Notice that if you have
selected a permission in the Assigned Permissions list, this permission
stays selected.)

www.syngress.com

Figure 8.7 Modify the Permission Set Using the Create Permission
Set Dialog Box

224_HPXML_08.qxd 6/28/02 10:44 AM Page 295

296 Chapter 8 • Understanding .NET and XML Security

2. Click Add.A Permission Settings dialog box for the FileIO appears
(Figure 8.8). (You can also double-click the permission to add it to the
Assigned Permissions list. However, do not double-click an assigned per-
mission by accident—this will remove the permission from the assigned
permission list.) On the Permission Settings dialog box, you are given
the option to select between Grant assemblies access to the fol-
lowing files and directories and Grant assemblies unrestricted
access to the file system.

3. Choose the first one, and because it is already selected, we can focus our
attention on the empty list window below the option.You may expect
an Add button below the list, especially because there is a Delete Entry
one. However, there is an auto-add list.You fill in a line, and it is auto-
matically added.Add a second line, and a third empty line will appear.

4. As you saw earlier this chapter, this resembles the way we used
FileIOPermission and FileIOPermissionAttribute to demand and request
access to specific files in a specific directory. Go ahead, fill in
“C:\Test*.cfg”. Surprised that you get an error message? The point is
that the field demands that you use UNC names.The advantage is that
you can reference to files on other servers in the domain. However, the
dialog box checks the existence of the path when you click OK, so be
sure that the UNC path exists.

5. Fill the File Path with a valid UNC of the machine you are working on,
and because we want to give full access, you can check all four boxes.

www.syngress.com

Figure 8.8 Modify the Settings of FileIO Using the Permission
Settings Dialog Box

224_HPXML_08.qxd 6/28/02 10:44 AM Page 296

Understanding .NET and XML Security • Chapter 8 297

6. Click OK and you have added a permission to the assigned permission
list.You are now ready for the next permission.

7. Double-click the Registry permission and a Permissions Setting
dialog box appears that looks a lot like the one you just saw with
FileIO. Keep the option Grant assemblies access to the following
registry keys.

8. Fill the Key field with a valid HKEY value, such as
HKEY_LOCAL_MACHINE, and check the Read box, so that
we can give read permission to the specified Registry tree.

9. Click OK, and you have added your second permission to your
permission set.

10. The last task is to modify the Security permission.Therefore, select the
Security permission in the Assigned Permissions list (do not double-
click, because that will remove the permission from the list) and click
Properties.

11. A Permission Settings dialog box (Figure 8.9) appears.You see that the
option Grant assemblies the following security permissions is
selected, together with the properties Enable assembly execution,
Assert any permission that has been granted, and Enable
remoting configuration.

www.syngress.com

Figure 8.9 Modify the Settings of Security Using the Permission
Settings Dialog Box

224_HPXML_08.qxd 6/28/02 10:44 AM Page 297

298 Chapter 8 • Understanding .NET and XML Security

12. We also want to grant our security policy the security permission proper-
ties. Check Allow calls to unmanaged assemblies because we want
to make calls to unmanaged code.Also check Allow principal control
because we want to be able to modify principal settings. Click OK, and
you are done, for now, with modifying your first permission set.

13. Click Finish.You will probably get a warning message stating that you
changed your security policy and you have to save it. Up until the point
you save the policy, an asterisk (*) will mark the user policy.

14. You can save the policy by right-clicking the User runtime security
policy and selecting Save.

If you want this permission set to also become part of the machine and/or
enterprise permission sets, you can simply copy and paste it. (It goes without
saying that checking the contents and results of a copy and paste operation is
mandatory so that inadvertent permissions are not granted by accident.)

You will also notice two other options: Reset and Restore Policy.The first
resets the policy back to the default setting of the policy.You can try it, but it will
wipe out all the changes you made up until now.The latter makes it possible to
go back to the previous save.This is possible because for each of the runtime
security policies, the settings are saved in an XML-coded file that becomes the
current one. Before this happens, it renames the old one with the extension .old.
The current one has the extension .cch.The default policy has no extension, so
to speak. For the user security policy, you have the following files:

■ security.config The default security; used by Reset.

■ security.config.cch The current/active policy.

■ security.config.old The last saved policy version; used by Restore Policy.

The enterprise security uses the name enterprisesec.config, and the machine uses
the name security.config.This is possible because the user security policy is saved in
the user’s directory tree in the following folder:

Document and Settings\User_Name\Application Data\Microsoft\CLR Security

config\v1.0.xxxx

The enterprise and machine security policies are saved in the following
directory:

WINNT\Microsoft.NET\Framework\v1.0.xxxx\CONFIG

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 298

Understanding .NET and XML Security • Chapter 8 299

This directory is located by the CLR through the HiveKey:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Catalog42\NetFrameworkv1\MachineConfigd

irectory

Because the configuration files are XML-coded, you can open them with a
Web browser and examine them.This will give you additional understanding of
how the permission sets are set up.This also means that you can modify the
default security policies.

Modifying the Code Group Structure
Now that we have created a security permission set, it makes sense to start using
it.We can do so by attaching it to a code group.We are going to modify the code
groups structure of the user security policy. By default, the user already has a
basic structure (Figure 8.10).

A few things might strike you at first sight:

■ There is a code group called Wizard_Machine_Policy.The description of
this group tells you that a wizard, called the Adjust Security Wizard,
copied this group from the computer’s policy level and that you should
not modify it.This description is not totally true. In fact, if you take a
closer look at these code groups, you will see that all groups that end
with _Zone have a permission set of Nothing.This means that you, the

www.syngress.com

Figure 8.10 The Default Code Group Structure for the User Security Policy

224_HPXML_08.qxd 6/28/02 10:44 AM Page 299

300 Chapter 8 • Understanding .NET and XML Security

user, cannot make use of the permission sets of the machine that are
based on the zone evidence. However, if you are given more permissions
based on the zone evidence, this will be toned down by the zone-based
permission of the machine policy.The user can have permissions based
on zoned evidence that is equal to or less than allowed by the machine.
However, you do see zone-based code groups at the same level as the
Wizard_Machine_Policy, because these are the code groups that are
copied from the machine policy.

■ The zone-based code groups contain NetCodeGroup and FileCodeGroup.
As the description states, they are generated by the .NET Configuration
Tool; hence, the tool we are working with at the moment.The custom
code groups are based on XML-code files and can therefore not be
edited by the tool. However, you can use the caspol.exe tool to do so.
Without going into detail regarding what exactly these groups entail, it
suffices to state that they are necessary for you to use the .NET
Configuration Tool. If you do not remove or modify them, you might
lock yourself out from using this tool.

Let’s create a small code groups structure that is made up of two code groups
directly under the All_Code group, and apply our own custom-made permission
set PrivatePermissions to the LocalIntranet_Zone group:

1. If you do not have the MMC with the .NET Management snap-in
open, open it now.

2. Expand the tree to .NET Configuration | My Computer |
Runtime Security Policy | User.

3. Now, expand Code Groups | All_Code.

4. Right-click All_Code and select New; the Create Code Group dialog
box appears.

5. You are given two options: Create a new code Group and Import a
code group from a XML File. Use the first option. (Note: For the
NetCodeGroup and FileCodeGroup, the latter is used.)

6. You have to enter at least the Name field. For this example, we choose
PrivateGroup_1. Now, click Next.

7. The dialog box shows you a second page called Choose a condition
Type and has just one field called Choose the condition type for
this code group.The field has a pull-down menu containing the values

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 300

Understanding .NET and XML Security • Chapter 8 301

from which you can choose.All of these, except the first and last one—
All Code and (custom)—are evidence-related (Figure 8.11).

8. Select Site from the drop-down menu.A new field, called Site Name
appears and is related to the Site condition. For the sake of the example,
we choose the MSDN Subscribers download site, so we enter the value
msdn.one.microsoft.com in the site field.

9. Click Next, and the third page, called Assign a Permission Set to
the Code Group, appears.

10. You can choose between the options Use existing permission set and
Create a new permission set. Because the site comes from the
Internet, that permission set will do.

11. Select the value Nothing from the drop-down menu (Note:The per-
mission set we just made is also part of the list.), and click Next.

12. Click Finish, and you have created your first code group.While we are
at it, let’s create the second code group, which will be the child of the
code group we just created.

13. Right-click the code group PrivateGroup_1 and select New.

14. Create a new code group named PrivateGroup_2 and click Next.

15. Select the value Publisher from the drop-down menu. Below the field,
a new box called Publisher Certificate Details appears and has to be

www.syngress.com

Figure 8.11 Select One of the Available Condition Types for a
Code Group

224_HPXML_08.qxd 6/28/02 10:44 AM Page 301

302 Chapter 8 • Understanding .NET and XML Security

filled by importing a certificate.You can do this by reading out of a
signed assembly using the Import from Signed File button. (Note: it
should say Import from signed Assembly.) Or, you can import a certifi-
cate file, using the Import from Certificate File button.

16. For the purpose of this example, we use the certificate from the
msdn.one.microsoft.com site. (Note: In case you have forgotten how this
is done, you go to a protected site, thus using SSL.You double-click the
icon indicating that the site is protected.This opens up the certificate.
Go to the Details tab and click the Copy to File button.)

17. Click the Import from Certificate File button, browse to the certifi-
cate file (the extension is .cer), and open it.You will see that the field in
the certificate box will be filled (Figure 8.12).

18. Click Next.

19. Select the existing permission group LocalIntranet.We can give more
permissions now that we know that the signed assemblies indeed comes
from Microsoft MSDN, but also originates from the corresponding
Web site.

20. Click Next, and then click Finish.

Before tackling our last task, let’s recap what we have done.We were concerned
with creating a permission set for signed assemblies that come from the

www.syngress.com

Figure 8.12 Importing a Certificate for a Publisher Condition in a
Code Group

224_HPXML_08.qxd 6/28/02 10:44 AM Page 302

Understanding .NET and XML Security • Chapter 8 303

msdn.one.microsoft.com site. So, what if the assembly comes from this Web site but
is not signed? It meets the condition of PrivateGroup_1, so it will get the permission
set of this code group. Because this is Nothing, this would mean that these assem-
blies are granted no permission. However, because the msdn.one.microsoft.com site
comes from the Internet Zone, it also meets the condition of the code group
Internet_Zone, which grants any assembly from this zone the Internet permission
set. Moreover, because a union is taken from all the granted permission sets, these
assemblies will still have enough permissions to run.

Why not make the PrivateGroup_2 a child of Internet_Zone, because unsigned
assemblies from msdn.one.microsoft.com are granted the Internet permission set
anyway? The reason is simple: we only want to give signed assemblies from
msdn.one.Microsoft.com additional permission if they also originate from the
appropriate Web site. In case such a signed assembly originates from another Web
site, we treat it as any other assembly coming from an Internet Zone.The reason
for giving PrivateGroup_1 the Nothing permission set is that it is only there to
force assemblies to meet both conditions, and PrivateGroup_1 is just an interme-
diate stage to meet all conditions.

What you have to keep in mind is that we only discussed how the actual per-
mission set is determined at the user security policy level.This will be intersected
with the actual permission set determined on the machine level. Moreover,
because at the machine level the assembly will be given only the Internet permis-
sion set, our signed assembly will wind up with the effective permission set of
Internet. Normally, the actual permission set of the enterprise is also taken into
the intersection, but because that code group tree has only the All_Code code
group with full trust, it will play no role in the intersection of this example.

Our last task, replacing a permission set, should be straightforward by now:

1. Right-click the code group LocalIntranet_Zone and select
Properties.The LocalIntranet_Zone Properties dialog box appears
(Figure 8.13).

2. Select the Permission Set tab.

3. Open the pop-up menu with available permission sets and select
PrivatePermissions.You will see that the list box will reflect the per-
missions that make up the PrivatePermissions permission set.

4. Click Apply and go back to the General tab.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 303

304 Chapter 8 • Understanding .NET and XML Security

On this tab is a frame called If the membership condition is met, which
shows two options:

■ This policy level will have only the permissions from the per-
mission set associated with this code group.This refers to the code
group attribute Exclusive.

■ Policy levels below this level will not be evaluated.This refers to
the code group attribute LevelFinal.

Both need some explanation, so let’s go back to our msdn.one.microsoft.com
example. Suppose you open the Properties dialog box of the Internet_Zone code
group and check the Exclusive option (of course, you have to save it first for it
to become active).We received a signed assembly from msdn.one.microsoft.com
that also originates from this site.We had established that it would be granted the
LocalIntranet_Zone permission at the user policy level. But now the Exclusive
option comes into play. Because our signed assembly also meets the Internet_Zone
condition, the Internet permission set is valid.The exclusive that is set for the
Internet_Zone code group forces all other valid permission sets to be ignored by
not taking a union of these permission sets. Instead, the permission set with the
exclusive attribute becomes the actual permission set for the user policy level.
Because it will be intersected with the actual permission sets of the other security
levels, it also determines the maximum set of permissions that will be granted to
the signed assembly. Use this attribute with care, because from all the code groups

www.syngress.com

Figure 8.13 Setting Attributes in the General Tab of the Code Group
Permission Dialog Box

224_HPXML_08.qxd 6/28/02 10:44 AM Page 304

Understanding .NET and XML Security • Chapter 8 305

of which an assembly is a member—hence, meets the condition—only one can
have the Exclusive attribute.The CLR determines if this is the case.When the
CLR determines that an assembly meets the condition of more than one code
group with the Exclusive attribute, it will throw an exception, and it fails to deter-
mine the effective permission set and the assembly is not allowed to execute.

The way in which the LevelFinal is handled is more straightforward.
Understand that by establishing the effective permission set of an assembly, the
CLR evaluates the security policies starting at the highest level (enterprise, fol-
lowed by user and machine).Again, take our MSDN example.We set a LevelFinal
in the PrivateGroup_2 code group and removed the Exclusive attribute from
Internet_Zone.When the effective permission set for a signed assembly from
msdn.one.microsoft.com that originates from that Web site has to be established,
the CLR starts with determining the actual permission set of the enterprise
policy level.This is for All_Code Full Trust, effectively taking this policy level out
of the intersection of actual permission sets. Now the user policy level gets its
turn in establishing the actual permission set.As you know by now, this will be
equal to the LocalIntranet_Zone permission set. However, the CLR has also
encountered the LevelFinal attribute. It refrains from establishing the actual per-
mission set of the machine policy level and intersects the actual permission sets
from the enterprise and user policy level.The actual permission set will be equal
to LocalIntranet_Zone.

Because the machine policy level is not considered, the actual permission set
in this case has more permission than in the situation in which the LevelFinal
attribute has not been set.

Remoting Security
Discussing security between systems always provides a new set of security issues.
This is no exception for remoting. Let’s start with the communication between sys-
tems. If you use an HttpChannel, you can make use of the SSL encryption.The
FtpChannel does not have encryption, but if both servers support IPSec, you are
able to create a secured channel through which the FtpChannel can communicate.

The next issue is to what extent you trust the other system. Even with a
secure channel in place, how do you know that the other system has not been
compromised? You need at least a sturdy authentication mechanism in place, and
need to avoid the use of anonymous users, although this will not always be pos-
sible.At least try to use NTLM or Kerberos for authentication.The latter is a
decent vehicle for handling impersonation between multiple systems. If you need

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 305

306 Chapter 8 • Understanding .NET and XML Security

to use anonymous users, you can use IIS as the storefront and let the IIS handle
the impersonation.You can also use a proxy to prevent a user from directly
accessing your IIS. (A rather good idea, given IIS’s vulnerabilities to attack)

The messages that are exchanged should always be signed so you are able to
verify the sender and/or origin. Even when you are sure that a message is trans-
ported over a secured channel, you are never sure if the message that is put in this
channel has been sent out of ill intent.

This chapter has discussed the use of code access and role-based security.The
more thoroughly you use this runtime security instrument, the better you can
control the remoting security.

Cryptography
There is no subject about security that does not reference cryptography.Although
it is an absolute necessity to create a secure environment, it is not the “Holy
Grail” of security.This section highlights the cryptography features that come
with the .NET Framework. If you already have worked with Windows 2000
Cryptographic Service Providers (CSPs) and/or used the CryptoAPI, you know
nearly everything there is to know about cryptography in the .NET Framework.

The most important observation is that the ease of use of crypto functionali-
ties has improved a lot over the way one had to use the CryptoAPI, which only
was available for C/C++.An important addition in the design concept of the
cryptography namespace is the use of CryptoStreams, which make it possible to
chain together any cryptographic object that makes use of CryptoStreams.This
means that the output from one cryptographic object can be directly forwarded
as the input of another cryptographic object without the need of storing the
output result in an intermediate object.This can enhance the performance signif-
icantly if large pieces of data have to be encoded or hashed.Another addition is
the functionality to sign XML code, although only for use within the .NET
Framework security system.To what extend these methods comply with the pro-
posed standard RFC 3075 (www.ietf.org/rfc/rfc3075.txt) is unclear.

Within the .NET Framework, three namespaces involve cryptography:

■ System.Security.Cryptography The most important one; resembles the
CryptoAPI functionalities.

■ System.Security.Cryptography.X509 certificates. Relates only to the
X509 v3 certificate used with Authenticode.

■ System.Security.Cryptography.Xml For exclusive use within the .NET
Framework security system.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 306

Understanding .NET and XML Security • Chapter 8 307

The cryptography namespaces support the following CSP classes that will be
matched on the Windows 2000 CSPs, by the CLR. If a CSP is available within
the .NET Framework, this does not automatically imply that the corresponding
Windows 2000 CSP is available on the system the CLR is running:

■ DESCryptoServiceProvider Provides the functionalities of the sym-
metric key algorithm Data Encryption Standard.

■ DSACryptoServiceProvider Provides the functionalities of the asym-
metric key algorithm Data Signature Algorithm.

■ MD5CryptoServiceProvider Provides the functionalities of the hash
algorithm Message Digest 5.

■ RC2CryptoServiceProvider Provides the functionalities for the symmetric
key algorithm RC 2 (named after the inventor: Rivest’s Cipher 2).

■ RNGCryptoServiceProvider Provides the functionalities for a Random
Number Generator.

■ RSACryptoServiceProvider Provides the functionalities for the asym-
metric algorithm RSA (named after the inventors Rivest, Shamir, and
Adleman).

■ SHA1CryptoServiceProvider Provides the functionalities for the hash
algorithm Secure Hash Algorithm 1. (SHA-1 is described at
www.nist.gov)

■ TripleDESCryptoServiceProvider Provides the functionalities for the
symmetric key algorithm 3DES, which can also be found at the NIST
site listed in the previous bullet)

To be complete, short descriptions of symmetric key algorithm, asymmetric
key algorithm, and hash algorithm are given.A symmetric key algorithm enables you
to encrypt/decrypt data that is sent between you and another party.The same key
is used to both encrypt and decrypt the data.That is why it is called a symmetric
algorithm.This algorithm forces you to exchange the key with your counter
party, but this must be done in a way that no other party can intercept this key.
Because symmetric key algorithms are often used for a short exchange of data, it
is also referred to as session key algorithm. For the exchange of session keys, the
parties involve use an asymmetric key algorithm.

An asymmetric key algorithm makes use of a key pair. One is private and is kept
under lock and key by the owner, and the other is public and available to

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 307

308 Chapter 8 • Understanding .NET and XML Security

everyone. Because the algorithm uses two related but different keys to encrypt
and decrypt, it is called an asymmetric algorithm, but is also referenced as a public
key algorithm.The public key is wrapped in a certificate that is a “proof of authen-
ticity,” and that certificate has to be issued by an organization that is trusted by all
involved parties.This organization is called a certificate authority (CA), of which
VeriSign is the best known. So, what about using an asymmetric key algorithm to
exchange symmetric keys? The best example is two Windows 2000 servers that
need to regularly set up connection between both servers on behalf of their
users. Each connection—hence, session—has to be secured and needs to use a
session key that is unique in relation to the other secured sessions.The servers
exchange a session key for every connection. Both have an asymmetric key-pair
and have exchanged the public key in a certificate.Therefore, if one server wants
to send a session key to the other server, it uses the public key of the other server
to encrypt the session key before it sends it.The server knows that only the other
server can decrypt the session key because that server has the private key that is
needed to decrypt the session key.

A hash algorithm, also referred to as a one-way hash algorithm, can take a vari-
able piece of data and transform it to a fixed-length piece of data, called a hash or
message digest that is nearly always much shorter; for example, 160 bits for SHA-1.
One-way means that you cannot derive the source data by examining the digest
only.Another important feature of the hash algorithm is that it generates a hash
that is unique for each piece of data, even if just one bit of data is changed.You
can see a hash value as the fingerprint of a piece of data. Let’s say, for example,
you send someone a plaintext e-mail. How do you and the receiver of the e-mail
know that the message was not altered while it was sent? Here is where the mes-
sage digest comes in. Before you send your e-mail, you apply a hash algorithm on
that message, and you send the message and message digest to the receiver.The
receiver can perform the same hash on the message, and if both the digest and
the message are the same, the message has not been altered.Yes, someone who
alters your message can also generate a new digest and obscure his act.Well, that
is where the next trick comes in.When you send the digest, you encrypt it with
your own private key, of which you know the receiver has the public part.This
not only prevents the message from being changed without you and the receiver
discovering it, but also confirms to the receiver that the message came from you
and only you. How?

Well, let’s assume that someone intercepts your message and wants to change
it. He has your public key, so he can decrypt your message digest. However,
because he doesn’t have your private key, he is unable to encrypt a newly gener-

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 308

Understanding .NET and XML Security • Chapter 8 309

ated digest.Therefore, he cannot go forward with his plan to change the e-mail
without anyone finding out. Eventually, the e-mail arrives at the receiver’s Inbox.
He takes the encrypted digest and decrypts it using your public key. If that suc-
ceeds, he knows that this message digest must have been sent by you because you
are the only one who has access to the private key. He calculates the hash on the
message and compares both digests. If they match, he not only knows that the
message hasn’t been tampered with, but also that the message came from only
you because every message has a unique hash. Moreover, because he already
established that the encrypted hash came from you, the message must also come
from you.

Security Tools
The .NET Framework comes with 10 command-line security tools (Table 8.4)
that help you to perform your security tasks. For a more thorough description of
these tools, you should consult the .NET Framework documentation.

Table 8.4 Command-Line Security Tools

Name of
Name of Tool Executable Description

Code Access Security Caspol.exe This tool can perform any operation
Policy Utility in relation to the code access security

policy. Because it can do more than
the .NET Configuration Tool we have
been using in this chapter, it is
important that you familiarize your-
self with it.

Certificate Verification Chktrust.exe With this tool, you can check a file
Utility that has been signed using

Authenticode.
Certificate Creation Makecert.exe Creates a X.509 certificate for testing
Utility purposes. A option you might con-

sider is to install the Certificates
Services on Windows 2000, which
makes it much easier to create and
maintain certificates for development
and testing purposes.

www.syngress.com

Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 309

310 Chapter 8 • Understanding .NET and XML Security

Certificate Manager Certmgr.exe This utility manages your certificates,
Utility certificate trust lists, and so on. Use

the Microsoft Management Console
with the Certificates snap-in, which
enables you to maintain not only
your own certificates, but also (if you
have the rights) the certificates of
your computer and service accounts.

Software Publisher Cert2spc.exe This tool creates a software pub-
Certificate Test Utility lishers certificate for one or more

X.509 certificates.
Permissions View Utility Permview.exe This tool enables you to view the

requested permissions of an
assembly.

PE Verify Utility Peverify.exe This tool enables you to verify the
type safety of a portable executable
file.

Secutil Utility Secutil.exe This tool extracts strong name or
public key information from an
assembly and converts it so that you
can use it directly in your code (for
example, for a permission demand).

File Signing Utility Signcode.exe This tool enables you to sign a PE file
with an Authenticode signature. If
this utility is called with no com-
mand-line options, a Digital
Signature Wizard is started.

Strong Name Utility Sn.exe This tool enables you to sign assem-
blies with strong names.

Set Registry Utility Setreg.exe This tools enables you to set Registry
keys for use of public key cryptog-
raphy. If you call this utility without
options, it will just list the settings.

Isolated Storage Utility Storeadm.exe This tool enables you to manage iso-
lated storage for the current user.

www.syngress.com

Table 8.4 Continued

Name of
Name of Tool Executable Description

224_HPXML_08.qxd 6/28/02 10:44 AM Page 310

Understanding .NET and XML Security • Chapter 8 311

Securing XML—Best Practices
Just as with HTML documents, digital certificates are the best way in which to
secure any document that has to transverse the Internet.Anytime you need to
perform a secure transaction over the Internet, a digital certificate should be
involved, whether the destination is a browser or an application. Certificates are
used by a variety of public key security services and applications that provide
authentication, data integrity, and secure communications across nonsecure net-
works such as the Internet. From the developer’s perspective, use of a certificate
requires it to be installed on the Web server, and that the HTTPS protocol is used
instead of the typical HTTP.

Access to XML and XSL documents on the server can be handled through
file access restrictions just like any other file on the server. Unfortunately, if you
are performing client-side XSL transformations, this requires that all the files
required to perform the transformation be exposed to the Internet for anyone to
use. One way to eliminate this exposure is to perform server-side transformation.
All XML and XSL documents can reside safely on the server where they are
transformed, and only the resultant document is sent to the client.

XML Encryption
The goal of the XML Encryption, this is described in detail in Chapter 6, specifi-
cation is to describe a digitally encrypted Web resource using XML.The Web
resource can be anything from an HTML document to a GIF file, or even an
XML document.With respect to XML documents, the specification provides for
the encryption of an element, including the start- and end-tags, the content
within an element between the start- and end-tags, or the entire XML docu-
ment.The encrypted data is structured using the <EncryptedData> element that
contains information pertaining to encrypting and/or decrypting the informa-
tion.This information includes the pertinent encryption algorithm, the key used
for encryption, references to external data objects, and either the encrypted data
or a reference to the encrypted data.The schema as defined so far is shown in
Figure 8.14.

Figure 8.14 XML Encryption DTD

<!DOCTYPE schema

PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN"

http://www.w3.org/2000/10/XMLSchema.dtd

[

www.syngress.com
Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 311

312 Chapter 8 • Understanding .NET and XML Security

<!ATTLIST schema xmlns:ds CDATA #FIXED

"http://www.w3.org/2000/10/XMLSchema">

<!ENTITY enc "http://www.w3.org/2000/11/temp-xmlenc">

<!ENTITY enc 'http://www.w3.org/2000/11/xmlenc#'>

<!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>

]>

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:ds="&dsig;"

xmlns:xenc="&enc;"

targetNamespace="&enc;"

version="0.1"

elementFormDefault="qualified">

<element name="EncryptedData">

<complexType>

<sequence>

<element ref="xenc:EncryptedKey" minOccurs=0/ maxOccurs="unbounded"/>

<element ref="xenc:EncryptionMethod" minOccurs=0/>

<element ref="ds:KeyInfo" minOccurs=0/>

<element ref="xenc:CipherText"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="Type" type="string" use="optional"/>

</complexType>

</element>

<element name="EncryptedKey">

<complexType>

<sequence>

<element ref="xenc:EncryptionMethod" minOccurs=0/>

<element ref="xenc:ReferenceList" minOccurs=0/>

<element ref="ds:KeyInfo" minOccurs=0/>

<element ref="xenc:CipherText1"/>

</sequence>

www.syngress.com

Figure 8.14 Continued

Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 312

Understanding .NET and XML Security • Chapter 8 313

<attribute name="Id" type="ID" use="optional"/>

<attribute name="NameKey" type="string" use="optional"/>

</complexType>

</element>

<element name="EncryptedKeyReference">

<complexType>

<sequence>

<element ref="ds:Transforms" minOccurs="0"/>

</sequence>

<attribute name="URI" type="uriReference"/>

</complexType>

</element>

<element name="EncryptionMethod">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="Algorithm" type="uriReference" use="required"/>

</complexType>

</element>

<element name="ReferenceList">

<complexType>

<sequence>

<element ref="xenc:DataReference" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="xenc:KeyReference" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="DataReference">

<complexType>

<sequence>

www.syngress.com

Figure 8.14 Continued

Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 313

314 Chapter 8 • Understanding .NET and XML Security

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="uriReference" use="optional"/>

</complexType>

</element>

<element name="KeyReference">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="uriReference" use="optional"/>

</complexType>

</element>

<element name="CipherText">

<complexType>

<choice>

<element ref="xenc:CipherText1"/>

<element ref="xenc:CipherText2"/>

</choice>

</complexType>

</element>

<element name="CipherText1" type="ds:CryptoBinary">

<element name="CipherText2">

<complexType>

<sequence>

<element ref="ds:transforms" minOccurs="0"/>

</sequence>

</complexType>

<attribute name="URI" type="uriReference" use="required"/>

</element>

</schema>

www.syngress.com

Figure 8.14 Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 314

Understanding .NET and XML Security • Chapter 8 315

The schema is quite involved in describing the means of encryption.The fol-
lowing described elements are the most notable of the specification.

The EncryptedData element is at the crux of the specification. It is used to
replace the encrypted data, whether the data being encrypted is within an XML
document or the XML document itself. In the latter case, the EncryptedData ele-
ment actually becomes the document root.The EncryptedKey element is an optional
element containing the key that was used during the encryption process.
EncryptionMethod describes the algorithm applied during the encryption process,
and is also optional. CipherText is a mandatory element that provides the encrypted
data.You might have noticed that the EncryptedKey and EncryptionMethod are
optional—the nonexistence of these elements in an instance is the sender making
an assumption that the recipient knows this information.

The processes of encryption and decryption are straightforward.The data
object is encrypted using the algorithm and key of choice.Although the specifi-
cation is open to allow the use of any algorithm, each implementation of the
specification should implement a common set of algorithms to allow for interop-
erability. If the data object is an element within an XML document, it is removed
along with its content and replaced with the pertinent EncryptedData element. If
the data object being encrypted is an external resource, a new document can be
created with an EncryptedData root node containing a reference to the external
resource. Decryption follows these steps in reverse order: parse the XML to
obtain the algorithm, parameters, and key to be used; locate the data to be
encrypted; and perform the data decryption operation.The result will be a UTF-
8 encoded string representing the XML fragment.This fragment should then be
converted to the character encoding used in the surrounding document. If the
data object is an external resource, then the unencrypted string is available to be
used by the application.

There are some nuances to encrypting XML documents. Encrypted XML
instances are well-formed XML documents, but might not appear valid when
validated against their original schema. If schema validation is required of an
encrypted XML document, a new schema must be created to account for those
elements that are encrypted. Figure 8.15 contains an XML instance that illustrates
the before and after effects of encrypting an element within the instance.

Figure 8.15 XML Document to Be Encrypted

<?xml version="1.0"?>

<customer>

www.syngress.com

Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 315

316 Chapter 8 • Understanding .NET and XML Security

<firstname>John</firstname>

<lastname>Doe</lastname>

<creditcard>

<number>4111111111111111</number>

<expmonth>12</expmonth>

<expyear>2000</expyear>

</creditcard>

</customer>

Now, let’s say we want to send this information to a partner, but we want to
encrypt the credit card information. Following the encryption process laid out by
the XML Encryption specification, the result is shown in Figure 8.16.

Figure 8.16 XML Document after Encryption

<?xml version="1.0"?>

<customer>

<firstname>John</firstname>

<lastname>Doe</lastname>

<creditcard>

<xenc:EncryptedData

xmlns:xenc='http://www.w3.org/2000/11/temp-xmlenc' Type="Element">

<xenc:CipherText>AbCd….wXYZ</xenc:CipherText>

</xenc:EncryptedData>

</creditcard>

</customer>

The encrypted information is replaced by the EncryptedData element, and the
encrypted data is located within the CipherText element.This instance of
EncryptedData does not contain any descriptive information regarding the encryp-
tion key or algorithm, assuming the recipient of the document already has this
information.There are some good reasons why you would want to encrypt at the
element level considering the XLink and XPointer supporting standards, which
enable users to retrieve portions of documents (although there is a debate as to
restricting encryption to the document level).You might want to consolidate a
great deal of information in one document, yet restrict access only to a subsec-
tion. In addition, encrypting only sensitive information limits the amount of

www.syngress.com

Figure 8.15 Continued

224_HPXML_08.qxd 6/28/02 10:44 AM Page 316

Understanding .NET and XML Security • Chapter 8 317

information to be decrypted. Encryption and decryption are expensive opera-
tions.Although encryption is an important step in securing your Internet-bound
XML, there are times when you might want to ensure that you are receiving
information from whom you think you are.The W3C has drafted a specification
to handle digital signatures.

XML Digital Signatures
The XML Digital Signature specification is a fairly stable working draft. Its scope
includes how to describe a digital signature using XML and the XML-signature
namespace.The signature is generated from a hash over the canonical form of the
manifest, which can reference multiple XML documents.To canonicalize some-
thing is to put it in a standard format that everyone generally uses. Because the
signature is dependent upon the content it is signing, a signature produced from a
non-canonicalized document could possibly be different from that produced from
a canonicalized document. (In practice, canonicalization is mostly used to nor-
malize the dataflow between documents that handle CR/LF pairs differently in
the actual document, but contain the same data elements.) Remember that this
specification is about defining digital signatures in general, not just those
involving XML documents—the manifest may also contain references to any dig-
ital content that can be addressed or even to part of an XML document.

To better understand this specification, knowing how digital signatures work
is helpful. Digitally signing a document requires the sender to create a hash of the
message itself, and then encrypt that hash value with his own private key. Only
the sender has that private key and only he can encrypt the hash so that it can be
unencrypted using his public key.The recipient, upon receiving both the message
and the encrypted hash value, can decrypt the hash value knowing the sender’s
public key.The recipient must also try to generate the hash value of the message
and compare the newly generated hash value with the unencrypted hash value
received from the sender. If both hash values are identical, it proves that the
sender sent the message, as only the sender could encrypt the hash value cor-
rectly.The XML specification is responsible for clearly defining the information
involved in verifying digital certificates.

XML digital signatures are represented by the Signature element, which has the
following structure where “?” denotes zero or one occurrence,“+” denotes one or
more occurrences, and “*” denotes zero or more occurrences. Figure 8.17 shows
the structure of a digital signature as currently defined within the specification.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 317

318 Chapter 8 • Understanding .NET and XML Security

Figure 8.17 XML Digital Signature Structure

<Signature>

<SignedInfo>

(CanonicalizationMethod)

(SignatureMethod)

(<Reference (URI=)? >

(Transforms)?

(DigestMethod)

(DigestValue)

</Reference>)+

</SignedInfo>

(SignatureValue)

(KeyInfo)?

(Object)*

</Signature>

The Signature element is the primary construct of the XML Digital
Signature specification.The signature can envelop or be enveloped by the local
data that it is signing, or the signature can reference an external resource. Such
signatures are detached signatures. Remember, this is a specification to describe
digital signatures using XML, and no limitations exist as to what is being signed.
The SignedInfo element is the information that is actually signed.The
CanonicalizationMethod element contains the algorithm used to canonicalize the
data, or structure the data in a common way agreed upon by most everyone.This
process is very important for the reasons mentioned at the beginning of this sec-
tion.The algorithm used to convert the canonicalized SignedInfo into the
SignatureValue is specified in the SignatureMethod element.The Reference element
identifies the resource to be signed and any algorithms used to preprocess the
data.These algorithms can include operations such as canonicalization,
encoding/decoding, compression/inflation, or even XSLT transformations.The
DigestMethod is the algorithm applied to the data after any defined transforma-
tions are applied to generate the value within DigestValue. Signing the DigestValue
binds resources content to the signer’s key.The SignatureValue contains the actual
value of the digital signature.

To put this structure in context with the way in which digital signatures
work, the information being signed is referenced within the SignedInfo element
along with the algorithm used to perform the hash (DigestMethod) and the

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 318

Understanding .NET and XML Security • Chapter 8 319

resulting hash (DigestValue).The public key is then passed within SignatureValue.
There are variations as to how the signature can be structured, but this explana-
tion is the most straightforward.There you go—everything you need to verify a
digital signature in one nice, neat package! To validate the signature, you must
digest the data object referenced using the relative DigestMethod. If the digest
value generated matches the DigestValue specified, the reference has been vali-
dated.Then, to validate the signature, obtain the key information from the
SignatureValue and validate it over the SignedInfo element.

As with encryption, the implementation of XML digital signatures allows the
use of any algorithms to perform any of the operations required of digital signa-
tures, such as canonicalization, encryption, and transformations.To increase inter-
operability, the W3C does have recommendations for which algorithms should be
implemented within any XML digital signature implementations.

You will probably see an increase in the use of encryption and digital signa-
tures when both the XML Encryption and XML Digital Signature specifications
are finalized.They both provide a well-structured way in which to communicate
each respective process, and with ease of use comes adoption. Encryption will
ensure that confidential information stays confidential through its perilous
journey over the Internet, and digital signatures will ensure that you are commu-
nicating with whom you think you are.Yet, both these specifications have some
evolving to do, especially when they are used concurrently.There’s currently no
way to determine if a document that was signed and encrypted was signed using
the encrypted or unencrypted version of the document.

NOTE

You can write your own code to perform XSL transformations on the
server, or you can use the XSL ISAPI extension to automatically transform
the XML page that includes a reference to the XSL style sheet. Some of
the advantages to using the ISAPI filter are automatic selection and exe-
cution of style sheets on the server, style sheet caching for improved per-
formance, and the option to allow the “pass through” of the XML for
client-side processing. To learn more about the XSL ISAPI Extension, visit
http://msdn.microsoft.com/xml/general/xslisapifilter.asp.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 319

320 Chapter 8 • Understanding .NET and XML Security

Summary
Positioning the .NET Framework as a distributed application environment,
Microsoft was well aware that they had to pay attention to how an application
can be secured, due to the great risks that distributed security incorporate.That is
why they introduced a scalable but rights- and permission-driven security mech-
anism: scalable because you can as much own your own designed and customized
permissions, and rigid because it is always, even if the application takes no notice
of permissions.To add to that, the CLR will check the code on type safety (it
checks whether the code is trying to stick its nose in places it does not belong)
during the JIT compilation.

The .NET Common Language Runtime (CLR) will always perform a secu-
rity check—called code access security—on an assembly if it wants to access a
protected resource or operation.To prevent an assembly from obscuring its
restricted permissions by calling another assembly, the CLR will perform a secu-
rity stack walk. It checks every assembly in a calling chain of assemblies to see if
every single one has this permission. If this is not the case, the assembly is not
given access to this protected resource or operation.

What permissions an assembly is granted and what permission an assembly
requests is controlled in two ways.The first is controlled by code groups that
grant permissions to an assembly based on the evidence it presents to the CLR.
The assembly itself controls the latter.A secure conscious assembly requests only
the permissions it needs, even if the CLR is willing to grant it more permissions.
By doing this, the assembly insures itself from being misused by other code that
wants to make use of its permission set.A code group hierarchy has to be set up
by an administrator, which he can do at different security policy levels: enterprise,
user, and machine.

To establish the effective set of permissions, the CLR uses a straightforward
and robust method: it determines all valid permission sets based on the evidence
an assembly presents per security policy level, and the actual permission set per
policy level is the union of the valid permission set.The CLR does this for all the
policy levels and intersects the actual permission set to determine the effective
permission set of an assembly.

Added to the code access security, the CLR still supports role-based security,
although its implementation differs slightly from what you were accustomed to
with COM. Every executing thread has a security context called principal that ref-
erences the identity of the user.The principal is also used for impersonation of
the executing user.The principal comes in a few forms: based on Windows users

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 320

Understanding .NET and XML Security • Chapter 8 321

and its authentication, generic and can be controlled by custom-made authentica-
tion services; and a base form that enables you to custom-make your own prin-
cipal and identity.The code can reference the principal to check if the user has a
specific role.

Still, the most important security feature is security policies, which allow you
to create code groups and build your own permission set that can be enriched
with custom permissions.The custom permissions can be added to the .NET
Framework without opening up the security system, provided that you make no
security mistakes in the coding of the permissions.

As can be expected from every framework that relies on security, the .NET
Framework comes with a complete set of cryptography functionalities, equal to
what was available with the CryptoAPI, only the ease of use has improved
markedly and is no longer dependent on C/C++.To control cryptographic func-
tionalities, such as certificates and code signing, the .NET Framework has a set of
security utilities that enable you to control and maintain the security of your
application during its development and deployment process.

We may need to rely on .NET’s security because current XML security is so
weak. (It could be argued , if you have a cynical point of view, that XML security
was designed weak so that manufacturers could fulfill this rather obvious need
with add-on products.) After all, XML is meant to be just a simple ASCII file for
data transfer. In a way, the security of an XML document should not really be left
to XML, but rather to the programmer. However, the W3C does have plans to
provide several crypto recommendations for XML, but, like any other mathemat-
ical algorithm, it is only a matter of time before the encryption is cracked.Your
best bet—and your users’—when using XML is to secure it by using a combina-
tion of .NET’s internal security classes (with some decent encrypting) as well as
rational security policies and methods embedded in the code .

Solutions Fast Track

The Risks Associated with Using XML

Anything and everything on the Internet is vulnerable. Expose only data
and code that is absolutely necessary.

If information is not meant to be seen, it is much safer to transform the
XML document to exclude the sensitive information prior to delivering

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 321

322 Chapter 8 • Understanding .NET and XML Security

the document to the recipient, rather than encrypt the information
within the document.

XSL is a complete programming language, and at times might be more
valuable than the information contained within the XML it transforms.
When you perform client-side transformations, you expose your XSL in
much the same way that HTML is exposed to the client.

.NET Security as a Viable Alternative

Permissions are used to control the access to protected resources and
operations.

Principal is the security context that is attached to every executing
thread in the CLR. It also holds the identity of the user, such as
Windows account information, and the roles that user has. It also
contributes to the capability of the code to impersonate.

Authentication and authorization can be controlled by the application
itself or rely on external authentication methods, such as NTLM and
Kerberos. Once Windows has authorized a user to execute CLR-based
code, the code has to control all other authorization that is based on the
identity of the user and information that comes with assemblies, called
evidence.

Security policy is what controls the entire CLR security system.A
system administrator can build policies that grant assemblies permissions
access to protected resources and operations.This permission granting is
based on evidence that the assemblies hand over to the CLR. If the rules
that make up the security policy are well constructed, it enables the
CLR to provide a secure runtime environment.

Type safety is related to the prevention of assembly code to reach into
memory/storage of other applications.Type safety is always checked
during JIT compilation and therefore before the code is even loaded
into the runtime environment. Only code that is granted the Skip
Verification permission can bypass type safety checking, unless this is
turned off altogether.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 322

Understanding .NET and XML Security • Chapter 8 323

Code Access Security

Code access security is based on granting an assembly permission and
enforcing that it can never gain more permissions.This enforcing is done
by what is known as security stack walking.When a call is made to a
protected resource or operation, the assembly that the CLR demanded
from the assembly has a specific permission. However, instead of checking
only the assembly that made the call, the CLR checks every assembly that
is part of a calling chain. If all these assemblies have that specific
permission, the access to the protected resource/operation is allowed.

To be able to write secure code, it is possible to refrain from permissions
that are granted to the code.This is done by requesting the necessary
permissions for the assembly to run, whereby the CLR gives the
assembly only these permissions, under the reservation that the requested
permissions are part of the permission set the CLR was willing to grant
the assembly anyway. By making your assemblies request a limited
permission set, you can prevent other code from misusing the extended
permission set of your code. However, you can also make optional
requests, which allow the code to be executed even if the requested
permission is not part of the granted permission set. Only when the
code is confronted with a demand of having such a permission, it must
be able to handle the exception that is thrown, if it does not have this
permission.

The demanding of a caller to have a specific permission can be done
using declarative and imperative syntax. Requesting permissions can only
be done in a declarative way. Declarative means that it is not part of the
actual code, but is attached to an assembly, class, or method using a
special syntax enclosed with brackets (<>).When the code is compiled
to the intermediate language (IL) or a portable executable (PE), these
demands/requests are extracted from the code and placed in the
metadata of the assembly.This metadata is read and interpreted by the
CLR before the assembly is loaded.The imperative way makes the
demands part of the code.This can be sensible if the demands are
conditional. Because a demand can always fail and result in an exception
being thrown by the CLR, the code has to be equipped for handling
these exceptions.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 323

324 Chapter 8 • Understanding .NET and XML Security

The code can control the way in which the security stack walk is
performed. By using Assert, Deny, or PermitOnly, which can be set with
both the declarative and imperative syntax, the stack walk is finished
before it reaches the end of the stack.When CLR comes across an Assert
during a stack walk, it finishes with a Succeed. If it encounters a Deny, it
is finished with a Fail.With the PermitOnly, it succeeds only if the
checked permission is the same or is a subset of the permission defined
with the PermitOnly. Every other demand will fail at the PermitOnly.

Custom permissions can be constructed and added to the runtime system.

Role-Based Security

Every executing thread in the .NET runtime system has an identity that
is part if the security context, called principal.

Based on the principal, role-based checks can be performed.

Role-based checks can be performed in a declarative, imperative, and
direct way.The direct way is by accessing the principal and/or identity
object and querying the values of the fields.

Security Policies

A security policy is defined on different levels: enterprise, user, machine,
and application domain.The latter is not always used.

A security policy has permission sets attached that are built in—such as
FullTrus , Internet—or custom made.A permission set is a collection of
permissions. By grouping permissions, you can easily address them, only
using the name of the permission set.

The important part of the policy is the security rules, called code groups;
these groups are constructed in a hierarchy.

A code group checks the assembly based on the evidence it presents. If
the assembly’s evidence meets the condition, the assembly is regarded as
a member of this code group and is successively granted the permissions
of the permission set related to the code group.After all code groups are
checked, the permission sets of all the code groups or which the
assembly is a member are united to an actual permission set for the
assembly at that security level.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 324

Understanding .NET and XML Security • Chapter 8 325

The CLR performs this code group checking on every security level,
resulting in three or four actual permission sets.These are intersected to
result in the effective permission set of permissions granted to the
assembly.

Remoting limits the extent to which the security policy can be applied.
To create a secure environment, you need to secure remoting in such a
way that access to your secured CLR environment can be fully
controlled.

Cryptography

The .NET Framework comes with a cryptography namespace that
covers all necessary cryptography functionalities that are at least equal to
the CryptoAPI that was used up until now.

Using the cryptography classes is much easier than using the CryptoAPI.

Security Tools

The .NET Framework comes with a set of security tools that enable
you to maintain certificates, sign code, create and maintain security
policies, and control the security of assemblies.

Two comparable tools enable you to maintain code access security.
Caspol.exe (Code Access Security Policy Utility) has to be operated
from the command-line interface.The .NET Configuration Tool comes
as a snap-in for the Microsoft Management Console (MMC) and is
therefore more intuitive and easier to use than caspol.exe is.

Securing XML—Best Practices

Use existing methods of security to protect your XML. HTTPS works
with your XML in the same way it does with HTML.

Try to keep everything on the server. Perform your XSL transformation
on the server, thus only sending HTML or relevant XML to the client.

The goal of the XML Encryption specification (currently in working-
draft form) is to describe a digitally encrypted Web resource using XML.
The specification provides for the encryption of an element including

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 325

326 Chapter 8 • Understanding .NET and XML Security

the start- and end-tags, the content within an element between the
start- and end-tags, or the entire XML document.The encrypted data is
structured using the <EncryptedData> element.

The XML Digital Signature specification’s scope includes how to
describe a digital signature using XML and the XML-signature
namespace.The signature is generated from a hash over the canonical
form of the manifest, which can reference multiple XML documents.

Q: I want to prevent an overload of security stack walk; how can I control this?

A: This can indeed become a major concern if it turns out that the code
accesses a significant number of protected resources and/or operations, espe-
cially if they happen in a long calling-chain.The only way to prevent this
from happening is to put in a SecurityAction.Assert just before a protected
resource/operation is called.This implies that you need a thorough under-
standing of when a stack walk—hence, demand—is triggered and on what
permission this stack walk will be performed. By just placing an Assert, you
create an uncontrolled security hole.What you can do is the following, which
can be applied in the situation in which you make a call to a protected
resource, but do this from within a loop-structure.You can also use it in a sit-
uation in which you call a method that makes a number of calls to (different)
protected resources/operations that trigger the demand for the same type of
permission.

The only way to prevent a number of stack walks is to place an imperative
assertion on the permission that will be demanded. Now you know that the
stack walk will be stopped in its tracks.To close the security hole you just
opened, you place an imperative demand for the permission you asserted in
front of the assertion. If the demand succeeds, you know that in the other part
of the calling-chain, everything is OK in regard to this permission. Moreover,

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_08.qxd 6/28/02 10:44 AM Page 326

Understanding .NET and XML Security • Chapter 8 327

because nothing will change if you check a second or third time, you can save
yourself from a lot of unnecessary stack walks.Think about a 1000-fold loop:
you just cleared your code from doing redundant 999 stack walks.

Q: When should I use the imperative syntax, and when should I use the
declarative?

A: First, make sure that you understand the difference in the effect they take.The
imperative syntax makes a demand, or override for that matter, on part of
your code. It is executed when the line of code that holds the demand/over-
ride is encountered during runtime.The declarative syntax brings these
demands and overrides right into the metadata of the assembly. During the
load phase of the assembly, the metadata is extracted and interpreted, meaning
that the CLR already takes action on this information. If a stack walk takes
place, the CLR can handle overrides much quicker than if they would occur
during execution, thus the imperative way. However, demands should only be
made at the point they are really necessary. Most of the time, demands are
conditional—think about whether the demand is based on a role-based secu-
rity check. If you would make a demand declarative for a class or method, it
will be trigger a stack walk every time this class or method is referenced, even
if demands turn out to be not needed.To recap: Make overrides declarative
and place them in the header of the method, unless all methods in the class
need the assertion; then, you place it in the class declaration. Remember that
an assembly cannot have more than one active override type. If you cannot
avoid this, you need to use declarative overrides anyway. Make demands
imperative and place them just before you have to access a protected
resource/operation.

Q: How should I go about building a code group hierarchy?

A: You need to remember four important issues in building a code group
hierarchy:

■ An assembly cannot be a member of code groups that have conflicting
permissions; for example, one with unrestricted FileIOPermission and one
with a more restricted FileIOPermission.

■ The bigger the code group hierarchy, the harder it is to maintain.

■ The larger the number of permission sets; the harder it is to maintain
them.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 327

328 Chapter 8 • Understanding .NET and XML Security

■ The harder it is to maintain code groups and permissions sets, the more
likely it is that they contain security holes.

Anyhow, the best approach is the largest common denominator. Security
demands simplicity with as few exceptions as possible. Before you start cre-
ating custom properties sets, convince yourself that this is absolutely necessary.
Nine out of 10 times, one of the built-in permission sets suffices.The same
goes for code groups—most assemblies will fit nicely in a code group based
on their zone identity. If you conclude that this will not do, add only code
groups that are more specific than the zone identity, like the publisher iden-
tity, but still apply to a large group of assemblies. Use more than one level in
the code group hierarchy only if it is absolutely necessary to check on more
than one membership condition—hence, identity attribute.Add a permission
set to the lowest level of the hierarchy only and apply the Nothing permis-
sion set to the parent code groups.

Take into account that the CLR will check on all policy levels, so check
if you have to modify the code group hierarchy of only one policy level, or
that this has to be done on more levels. Remember, the CLR will intersect
the actual permission sets of all the policy levels.

Q: How do I know when to use an element versus an attribute when defining
the structure of my XML?

A: It is very hard to define catchall rules to determine when to use an element
versus an attribute. Remember, though, that you can do very little validation
with attributes other than making sure that they exist. For the most part, if
there is any doubt, use an element to describe your content.

Q: Are there any XML editors out there?

A: Yes, quite a few, one of which is XML Notepad by Microsoft, which is not
very good.Another one is XML Spy, or (for the Macintosh) Bare Bone’s
Software’s BBedit—currently at version 6.x You might have a small learning
curve with XML Spy’s user interface, but it seems the best XML editor avail-
able for the PC platform when considering the price. On the Mac, BBEdit
has a history of being a professional tool with good, tight code and is also
easily extensible via a plug-in mechanism. Sometimes, though, nothing beats
Notepad when you need something down and dirty.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 328

Understanding .NET and XML Security • Chapter 8 329

Q: Do I always have to define a schema for my XML document?

A: No, you don’t always need a schema. Schemas are great for when you have to
do validation—typically when exchanging XML documents over the
Internet. Performing validation all the time might seem like a great idea, but
it is a very expensive operation that can bog down a Web server.When
shooting out XML to the Web, you typically don’t need a schema, although it
is a great way to document your XML.

Q: How can I use XSL to make my applications completely browser
independent?

A: XSL is a tool you can use to transform XML to HTML.You can create sev-
eral style sheets. Each can be especially suited for a particular browser, and
depending on the browser of the client, you can transform the XML using
the respective style sheet.This not only allows you to support Netscape and
Internet Explorer, but also holds out the promised of enabling you to support
almost any Internet-enabled device, from handhelds to cell phones.

www.syngress.com

224_HPXML_08.qxd 6/28/02 10:44 AM Page 329

224_HPXML_08.qxd 6/28/02 10:44 AM Page 330

Reporting Security
Problems

Solutions in this chapter:

■ Understanding Why Security Problems
Need to be Reported

■ Determining When and to Whom to
Report the Problem

■ Deciding How Much Detail to Publish

Chapter 9

331

Summary

Solutions Fast Track

Frequently Asked Questions

224_HPXML_09.qxd 6/28/02 10:46 AM Page 331

332 Chapter 9 • Reporting Security Problems

Introduction
Rod Kirkegaard once said that “The abyss, once seen, cannot be unseen.” So it is
with security problems. Once you see them, you cannot unsee them. Of course if
you’re actively looking, you’ll find more. Regardless of how you find the infor-
mation, you have to decide what to do with it.

There are many factors that determine how much detail you supply, and to
whom. First of all, the amount of detail you can provide depends on the amount
of time you have to spend on the issue, as well as your interest level. If you aren’t
interested in doing all of the research yourself, there are ways to basically pass the
information along to other researchers, which are also discussed in this chapter.
You may have gotten as far as fully developing an exploit, or the problem may be
so easy to exploit that no special code is required. In that instance, you have some
decisions to make—such as whether you plan to publish the exploit, and when.

How much detail to publish, up to and including whether to publish exploit
code, is the subject of much debate at present. It is unlikely that everyone will
agree on a single answer anytime soon. In this chapter, we discuss the pros and
cons, rights and wrongs, of the various options.

Understanding Why Security
Problems Need to Be Reported
Just why do security problems need to be reported in the first place? After all,
don’t vendors thoroughly test their products before release to ensure that any
security flaws are fixed? While it’s true that most vendors are responsible and
make efforts to secure the quality of their products, they are only human, and
security holes, just like any other software bug, do exist in almost every product
ever released by any vendor. It’s also impossible for vendors to test their products
under every conceivable set of conditions, and many exploits require using the
product in a non-standard way that was not intended by the vendor.While ven-
dors usually identify and correct some security flaws on their own, by and large
user communities and security professionals discover most security flaws. If you’re
a security professional, you probably already know what to do when you uncover
a new security hole. However, if you’re a member of a user community, you may
not know how to report potential security issues that you may discover.This
chapter is intended to inform you about how such reporting is usually done.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 332

www.syngress.com

Perhaps you believe that you don’t have the time or the inclination to
uncover security holes in the software or products that you happen to use. Don’t
feel alone; realize that many security holes are uncovered largely by accident.You
may be investigating a specific problem only to find out that your troubles are
only one aspect of a much larger and more complicated security flaw.

Once a security problem is uncovered, you have a moral obligation to report
it, be it to the vendor or the security community or user communities at large.
Don’t succumb to the fallacy that your problem may not be important to others
or that someone else will uncover the same problem and report it for you.The
next person to uncover the problem could decide to exploit it. Occasionally,
security loopholes may go unreported for years, all the while being exploited by
malcontents.

For example, for many years it was common knowledge in some circles that
you could disconnect dial-up users from the Internet by sending them a specially
crafted “ping” packet that included the modem’s escape sequence and the hang-
up command (+++ATH). Modem vendors did not fix this particular version of
the “ping of death” until years later, when the issue was discussed in high-visi-
bility public security forums. Clearly, unreported security holes that go unfixed
for long periods of time leave others vulnerable to attack.

By failing to report a security hole that you have uncovered you also run the
risk of creating a “knowledge gap” between those who are aware of the security
hole and those who are not. Some less scrupulous penetration testing teams and
security consultants have been known to hoard information about vulnerabilities
that they have uncovered to ensure that their penetrations will succeed by
including these unpublished vulnerabilities in their tests. Still others will claim
that they have not yet finished researching the extent of the vulnerability though
they are no longer actively researching the hole.

In both cases such withholding of information should be viewed as an unset-
tling practice, since the user community at large is vulnerable to a security hole
known only by a select few. Until someone else discovers the hole or these few
make an announcement, vendors will not even be able to begin working on a fix
for the problem.Therefore, it is up to the discoverer to make the appropriate
announcement (if only to the vendor) about a security hole or possible security
hole as soon as enough information has been identified to reproduce the problem.

Full Disclosure
How much of the security hole should be reported? What information beyond
the information necessary to reproduce the problem should be released? Should

Reporting Security Problems • Chapter 9 333

224_HPXML_09.qxd 6/28/02 10:46 AM Page 333

334 Chapter 9 • Reporting Security Problems

sample exploit code be available to the public at large? All of these questions stem
from the full disclosure philosophy, which holds that all details of a particular
problem should be released to the public at large to avoid the “knowledge gap”
problem already discussed.The full disclosure philosophy, which is sharply
debated to this day, is intended at a minimum to provide the public with enough
information to independently reproduce the problem, as well as providing more
information and including exploits where possible. However, full disclosure has
the unfortunate side effect of pointing hackers directly at weak points in com-
puter systems, and in the case of exploits, possibly supplying them with intrusion
tools.To fully understand the full disclosure philosophy, we’ll need to examine
some history prior to its conception.

Before full disclosure became common, information about security problems
was only shared among a few security experts.When vendors were informed of
security problems in their products or services, they generally would not act on
the information, or at best they would wait until the next product revision to
introduce a fix.When this happened, the fix was introduced quietly, so that the
public never knew there was a security problem in the first place.

The problem with this approach was that because security problems were not
made public, no one realized just how vulnerable they were, thus no one under-
stood how important it was to upgrade and no one asked their vendors for more
secure products and services. Since their customers were not asking for security, it
was not a priority for vendors to produce more secure products or services.
Consumers could not make judgments about how secure a product might be
based on the vendor’s track record.This created a vicious circle of insecurity.

To complicate matters, while the information was supposed to be kept private
among the few security experts privileged enough to know about the problems,
this highly sensitive information was often leaked to the hacker underground.
Additionally, hackers often found the same security problems independently of
the security experts.The hackers would then share this information within their
circle of associates.A few hackers made a practice of targeting security experts’
computers, specifically looking for security information. Each new problem they
found out about made it that much easier to get into the next computer.

For the most part, the public was ignorant of the existence of the many secu-
rity problems, let alone how to fix them. Ultimately, the combination of an unin-
formed public and informed hackers resulted in an alarming number of security
incidents.

The full disclosure philosophy emerged as a way to combat these problems.
People adhering to this philosophy shared the details of security problems they

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 334

Reporting Security Problems • Chapter 9 335

found with the public, with sufficient details for others to reproduce the prob-
lems.As a result, full disclosure had the following effects:

■ For the first time, people began to realize just how insecure the products
and services they had selected for their critical applications really were.

■ In many cases, the amount of time a system remained vulnerable before
a workaround or patch could be developed was minimized, as people
had a chance to test their systems for security problems and fix them
quickly without having to wait for the vendor to react.

■ Vendors became pressured to release security fixes quickly and make
security a higher priority as users demanded better security in their
critical applications.

■ Interest grew in computer security as a whole, because people could
now learn from the mistakes of others and search for security problems
themselves.

Unfortunately, full disclosure also has a dark side. By making vulnerability
details public, you are not only allowing well-meaning people to check their own
systems for the security problems, but you are also enabling people with less
noble intentions to check for the problem in other people’s systems. Because
there is no easy and effective way to contain the security knowledge by teaching
only well-meaning people how to find security problems, hackers also learn by
using the same information. But, recall that some hackers already have access to
such information and share it among themselves. In either scenario, with or
without full disclosure, hackers have access to security vulnerability information.
At least with full disclosure, those motivated to close newly discovered security
holes in their systems have a better chance of doing so before these holes can be
exploited by the hackerati.

The currently recommended approach is to try to contact the vendor before
making the details of the problem publicly known.You must try to work with
them to release a fix quickly at roughly the same time you reveal the security
problem to the public. In this way, you obtain the benefits of full disclosure, while
at the same time releasing a fix in a timely manner.This is also known as the
“give them two weeks to clean up their act” method.

Yet even today, you must be very careful that the vulnerability information
does not fall into the wrong hands while you are working with the vendor to
produce a fix. For example, in July of 1999, a vulnerability in the rpc.cmsd ser-
vice in Sun Solaris was discovered. One of the exploits found for this vulnerability

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 335

336 Chapter 9 • Reporting Security Problems

appears to have been authored by a well-known computer security company. It
seems that they were researching the problem and somehow the exploit leaked to
the computer underground before the research was finished. Obviously, diligence
and care must be taken to protect any unreleased security hole information from
premature release.

www.syngress.com

Microsoft’s Case against Full Disclosure
During the last quarter of 2001, after the Gartner group had advised
against using Microsoft’s IIS Web server because of its numerous security
holes, Microsoft announced its disapproval of the full disclosure security
philosophy. First, Microsoft’s Security Response Center Manager, Scott
Culp, wrote a scathing anti-disclosure editorial (www.microsoft.com/
technet/treeview/default.asp?url=/technet/columns/security/noarch.asp)
that charged full disclosure with being the equivalent of shouting “Fire!”
in a theatre (failing to point out that there actually is a fire).

Microsoft went on to found an as-yet-unnamed cabal that also
includes security firms such as Bindview, Foundstone, Guardent,
@Stake, and Internet Security Systems, which share a common goal of
denouncing full-disclosure-style security reporting. Instead, Microsoft
wanted to see a 30-day grace period wherein the public would be
allowed only vague information about possible vulnerabilities, but mem-
bers of its coalition (and those who sign non-disclosure agreements)
would share all information about newly discovered security holes. After
the grace period the general public would be given more details about
the security flaw, but the publication of any exploit code that could be
used to attack systems would be strictly prohibited.

The cartel plans to develop a Request for Comments (RFC) outlining
a new standard that discourages full disclosure and encourages
researchers to report security problems directly to the vendor (and not
to the public). If the RFC is approved by the Internet Engineering Task
Force (IETF), it could be used to pressure independent security
researchers to follow suit.

Due to all of the negative security reports against Microsoft in
recent years resulting from numerous worms and computer viruses, it’s
really no wonder they would want to establish this type of mindset.

Notes from the Underground…

Continued

224_HPXML_09.qxd 6/28/02 10:46 AM Page 336

Reporting Security Problems • Chapter 9 337

Determining When and to
Whom to Report the Problem
Once you have discovered a security hole and decided to report it, you need to
decide whether to report the hole to the vendor or to the public at large.You
should also ascertain whether or not you have enough information to report the
problem yet, or if you need to wait until you have performed additional research
to describe the problem thoroughly, if you are so inclined.

Whom to Report Security Problems to?
Selecting the appropriate party to report problems to is seldom a simple choice,
though usually you will choose between reporting the problem quietly to the
vendor or others in the product’s community, or to a computer security forum or
even directly to the media.The easiest way to narrow down the selection process
is to first identify who might possibly be affected by the security hole you have
discovered.

Suppose you have identified a security hole in some product or service. For
lack of a better name, we’ll call the security hole that you discovered a new secu-
rity flaw (NSF).The area of effect for your NSF probably falls under one of three
categories: low-profile single product or service, high profile single product or
service, or cross-platform multiple products or services.

As examples of these areas of effect, let’s consider the following:

www.syngress.com

After all, making it more difficult to publish vulnerability information
would mean less bad publicity for the company, if not better security for
systems. Additionally, the proposed new standard would benefit
Microsoft more than other vendors because vulnerability information
would need to be released according to Microsoft and its cabal’s rules,
or be subject to pressure by the group. If the cabal decides to charge a
fee for membership, it could shut out many non-profit open source
developers as well.

To be sure, there is something to Microsoft’s case in calling for a
standard reporting procedure, and perhaps in limiting the immediate
disclosure of all information pertaining to an individual vulnerability.
However, blocking the release of certain information (such as exploit
code) and creating a “secret society” for security information is clearly
not in the public’s best interest.

224_HPXML_09.qxd 6/28/02 10:46 AM Page 337

338 Chapter 9 • Reporting Security Problems

■ CD-Ex, a Windows-based digital audio extraction program is an
example of a low-profile single product.Any NSFs associated with this
product would only directly affect the users of the program. Revenue
loss, if any, would probably be limited to the product or service provider.

■ Microsoft’s Hotmail is an example of a high-profile single service
because of the large number of Internet users who maintain accounts
with the Hotmail service. NSFs associated with Hotmail would directly
affect legions of Hotmail users and potentially many others if the NSF
allows spammers to exploit the Hotmail service to send unwanted e-
mail to many other Internet users. NSFs on this scale will primarily cost
money for the operator of the service, but there could be some loss to
the service subscribers as well.

■ The Linux kernel is an example of a cross-platform multiple products
class. NSFs attributed to the Linux kernel potentially affect all users of
the Linux kernel.They could also potentially affect any applications run-
ning on top of the kernel, which these days are likely to include a fire-
wall or a database of sensitive information. NSFs of this type are likely to
be expensive to fix and have few workarounds.

NOTE

All of the examples in this section are hypothetical; We don’t want to
imply that any of these examples are especially vulnerable in any partic-
ular way.

If this NSF is identified in a free e-mail service such as Hotmail, then that
type of bug is likely to be limited in effect to only those using that e-mail ser-
vice. On the other hand, if the NSF is discovered in the Linux kernel, then it
potentially affects all users of the Linux operating system.

Generally, the body you select to report to should be of proportionate size to
the number of users affected by the security flaw that you have discovered.The
following lists appropriate reporting bodies for our examples:

■ For low-profile single products or services, you should report NSFs to
the vendor of the product or service and optionally to members of the
product or service’s user community. By doing so, you have informed

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 338

Reporting Security Problems • Chapter 9 339

only those most likely to be affected by the NSF and by not reporting
to other bodies you are not wasting the time and efforts of these other
bodies in tracking such a minor flaw. In our example, it would be coun-
terproductive to first notify the security community at large of security
flaws in the CD-Ex product because they are likely not going to be able
to assist in closing the hole.Their efforts are probably best spent directed
towards NSFs in the next two categories.

■ High-profile single products or services such as Hotmail, should have
NSFs reported directly to the vendor of the product or service and then
to the user and security communities after an appropriate grace period.
In that way, vendors have a chance to begin working on a fix for the
NSF before others can begin working on an exploit.

■ Cross-platform multiple product or service NSFs should be reported in
a similar manner. First, notify the vendor of the NSF you have discov-
ered. Depending on the severity of the NSF, after a short grace period
you may also want to alert the user and security communities of the
problem with much less detail than the notification you provide to the
vendor.This announcement may also state that more details about the
NSF will be released after a set time period or after the vendor releases a
patch.This way, the community gets a bit of a “heads up” notice that
there may be a problem affecting the product or service in a certain way,
but not enough information is released to allow exploits to be created
until after the vendor has had time to study the problem. In our
example, if you were to discover an NSF in the Linux kernel, you would
probably privately contact the kernel maintainers and the security
liaisons of the major Linux vendors such as Red Hat, SUSE and Debian
with your information. Shortly thereafter, you might announce to gen-
eral Linux mailing lists that you believe that an NSF was discovered and
provide vague details, with full details forthcoming in a specified time
period.After that time period, you would likely release all your NSF
information to the public at large.

Be aware, however, that these are only guidelines for deciding whom to alert
about NSFs.The length of the grace periods, exactly how much information to
disclose, and exactly whom to contact are hotly debated issues in the security
community.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 339

340 Chapter 9 • Reporting Security Problems

How to Report a Security Problem to a Vendor
If you decide to report a security problem to a vendor, you will need to follow
some basic procedures that we’ll cover in this subsection. Before beginning your
documentation, however, take a moment to check and see whether someone
else has already reported the NSF that you think you’ve found. If it has already
been discovered, you should be able to find a record of it in the vendor’s knowl-
edge base or bug reporting system.You should also check publicly available
vulnerability databases such as Common Vulnerabilities and Exposures (CVE)
(http://cve.mitre.org) and the SecurityFocus Vulnerability Database
(www.securityfocus.com/bid).

Be sure to include all of the information you’ve discovered in your report,
otherwise the vendor might not be able to duplicate the problem and create a
fix. If you are reporting a problem in a software product, include what platform
you run, your hardware configuration, the date and time you found the problem,
other software you may have installed, and what you were doing when you found
the problem. Remember to always include version numbers and a way for the
vendors to contact you. Similarly, if you are reporting a problem in a hardware
product include the model number and serial number of your device, the
firmware revision, and what you were doing when you found the problem.
Reporting problems with services can be a bit tricky, and you should take extra
care not to overstep your boundaries when collecting information. If you do spot
a bug, clearly document what the problem is and what you were doing to cause
it. Let the vendor take care of the bulk of the investigation, lest you accidentally
disrupt the service for others, or incur legal troubles.

Don’t expect the vendor to magically provide you with a quick fix in a
matter of hours.While you may be able to come up with a workaround for your
systems quickly, the reality is that the vendor needs to test any proposed fix in
many more configurations and platforms than you do.After all, it’s their reputa-
tion on the line.

From time to time, vendors will need to contact you for a few iterative
rounds of communications to clarify any areas in your report that they might not
understand.Vendors also need to allocate their own resources to the problem you
have reported, which may not happen immediately if your NSF is not severe.
Once the fix has been developed, the vendor typically subjects it to rigorous
testing. Only after that point will the fix be released and a security advisory
released in coordination with you.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 340

Reporting Security Problems • Chapter 9 341

Deciding How Much Detail to Publish
Once you have identified and isolated an NSF, you will need to decide exactly
how much information to publish about the NSF.Your decision will be based
largely upon which body you opt to report to.You should generally include at
least the amount of information necessary for others to independently identify
and reproduce the problem, and the biggest decision you will face will be
whether or not to include exploit code in your report.

Publishing Exploit Code
Suppose that you discover an NSF. In your NSF documentation, should you or
should you not create and distribute an exploit with the description of the secu-
rity problem? This is a difficult question that you will have to answer on your
own, often on a case-by-case basis.

Creating an exploit program can allow people to quickly test whether their
systems are vulnerable for problems that would be difficult to test otherwise. For
example, sending an exploit to the vendor as part of your report can make it
easier for them to reproduce the problem and pinpoint the problem, thus
enabling them to create a fix faster.Your exploit also virtually guarantees that the
vendor will be unable to deny that the problem exists. Some low-end vendors
may choose to deny the existence of any sort of security problem until the
problem is without a doubt proven to exist.

Releasing the exploit to the public also tends to speed up the delivery of a fix
from a vendor, since they can’t deny the existence of a problem. On the other
hand, by releasing an exploit you are adding a weapon to the hackers’ arsenal for
use against others. But factor in how difficult the exploit is to create—if a hacker
can create an exploit in one day of work, while a system administrator doesn’t
have the time to do so, whom are you benefiting by not releasing the exploit, the
hacker or the system administrator?

Some of the people who create exploits to illustrate security problems
attempt to make watered-down exploits that test for the problem but don’t per-
form any dangerous actions.This is usually an attempt to avoid handing malicious
readers a ready-made tool to break into other systems.This tends to be only
marginally effective, as it’s often pretty easy to modify the supplied exploit to per-
form the more dangerous action, provided that the hacker is knowledgeable
enough to modify the sample exploit.While “script kiddie” type attackers will
often be stopped cold by these types of “declawed” exploits, someone who knows

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 341

342 Chapter 9 • Reporting Security Problems

enough to produce a full-strength exploit but doesn’t feel the need to protect the
public will probably make one and post it.

Many security scanner software vendors face the same issue.They want to sell
products that allow buyers to test their own systems for vulnerabilities, but they’d
rather not hand out a point-and-click break-in tool. However, security scanner
vendors have the luxury of creating very “noisy” scans, such that anyone
watching the network might discover the scanner in use. Exploit writers don’t
necessarily have this luxury because exploit publications usually include source
code, and thus the knowledgeable attacker can remove any “noise” that the writer
has built into the exploit.

Problems
All actions have repercussions, and reporting NSFs are no exception. Be aware
that complications can arise whenever you release information about security
holes to the public. Specifically, we’ll look at vendor repercussions, reporting
errors and risk to the public.

Repercussions from Vendors
Although there have been very few cases, the possibility always exists that a
vendor may take issue with your reporting of holes in their product or service.
It’s also conceivable that someone may attempt to hold you liable if he or she
gets damaged as the result of an attack that leverages the NSF you reported.

Some vendors may claim you have broken their shrink-wrap or one-click
licensing agreement that forbids reverse engineering of their product or service.
Others may claim that you are releasing trade secrets.You have to be particularly
careful when dealing with copyright protection technologies, as these are explic-
itly protected from reverse engineering in the United States by the Digital
Millennium Copyright Act (DMCA), found at www.loc.gov/copyright/
legislation/hr2281.pdf, and by international treaties.The DMCA is especially
troublesome for reporting security holes because these reports occasionally
require some level of reverse engineering or circumvention of copyright and/or
encryption, which is expressly prohibited by the DMCA

For example, the Motion Picture Association of America (MPAA) has sued a
number of individuals who reverse engineered the Digital Versatile Disk (DVD)
encryption algorithms and found them to be extremely weak and insecure.The
MPAA was able to affect the seizure of a computer by law enforcement in a
foreign country.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 342

Reporting Security Problems • Chapter 9 343

www.syngress.com

Publish an Exploit, Go to Jail:
the Dmitry Sklyarov Story
There are many far-reaching aspects to this case, such as the validity of
the DMCA and the futility of encrypting consumer products, that, while
extremely interesting, are not relevant to this chapter. So instead we’ll
focus on how the NSF was publicized and what happened to the person
who publicized it.

Shortly after giving a speech at DefCon 9 in Las Vegas, NV (2001),
a convention of hackers and computer security experts, Russian national
Dmitry Sklyarov was arrested and jailed under the provision of the
DMCA that prohibits “circumventing protections on copyrighted mate-
rials.” Sklyarov’s presentation had shown the feebleness of the encryp-
tion mechanisms in Adobe’s eBook software.

Of course, there are extenuating circumstances to the case:
Sklyarov’s Moscow-based employer, ElComSoft, was distributing for
profit the “exploit” program which removed the copy-protection mea-
sures and allowed consumers to make fair-use copies of e-books they
had purchased. However, the program was developed entirely in Russia,
where such reverse engineering is entirely legal. Both Adobe and the FBI
were aware of the software’s existence and that Sklyarov was to make a
presentation at DefCon 9.

During his presentation, Sklyarov explained in detail the inadequate
copy protection mechanisms used by Adobe’s eBook software. Some of
these mechanisms used such inferior ciphers as ROT-13 (explained in
Chapter 6). The day following the presentation, Sklyarov was arrested
and jailed by the FBI, much to the outrage of the computer security com-
munity. In the days that followed, Adobe conceded that it was in error
in demanding Sklyarov’s arrest, and decreed that he should be released.
Adobe’s pleas to the FBI fell on deaf ears, however, and he would not be
released until some five months after his arrest, when charges against
him personally were dropped.

The terrifying point of this story is that due to the absurd provisions
championed by intellectual property lobbyists, it’s now possible to jail
anyone, including foreign citizens, for pointing out security flaws in
products that are intended to prevent consumers from copying digital
media. Only time can tell if these types of laws will stand, but you should

Tools & Traps…

Continued

224_HPXML_09.qxd 6/28/02 10:46 AM Page 343

344 Chapter 9 • Reporting Security Problems

Reporting Errors
What happens if you make a mistake in your reporting? Sometimes you don’t
have the time or resources necessary to investigate a problem thoroughly, and you
may make generalizations that turn out not to be so general. For the most part,
the security community understands errors of this type, and other members of
the community will supplement the original report with additional information
and minor corrections.

However, suppose you make a serious error and report information that is
just flat out wrong.You could end up needlessly inducing a panic amongst the
users in your product or service community.As a result, you and possibly your
employer could receive negative publicity that results in others discounting any
NSF reports from you or your company in the future.Therefore, before releasing
any NSF reports it would be wise to double- or even triple-check your work to
ensure that the information you are reporting is as valid and accurate as possible.

Risk to the Public
As mentioned earlier, releasing information about security problems to the public
not only informs well-intentioned people, but also people who will attempt to
make use of that information in malicious ways.We also came to the conclusion
that trying to keep the information secret does not necessarily prevent malicious
users from finding out about the security problem.

History has shown that while the full disclosure philosophy benefits security-
conscious people who keep up with the latest security news, in the short term
full disclosure harms those who do not pay close attention to security. In the long
run full disclosure benefits everyone, since vendors have incentive to continually
address and improve the security of their products and services. Full disclosure
benefits everyone by also creating an open atmosphere where security problems
are discussed and fixed quickly, and people can learn about computer security.

www.syngress.com

be wary of identifying vulnerabilities in a specific vendor’s products if
your vulnerability requires circumvention of even the most meager of
encryption schemes.

224_HPXML_09.qxd 6/28/02 10:46 AM Page 344

Reporting Security Problems • Chapter 9 345

Summary
There are many complexities and differing perspectives to consider when faced
with the task of reporting a security hole that you’ve uncovered—whether to
report it to the vendor or to the public and when exactly to report it, for
example.As for the question of whether or not to report it at all, one must con-
sider the moral obligation to report security flaws before hackers find and exploit
them. Even if you don’t have the ability to fully research a potential vulnerability,
it still needs to be reported.

The full disclosure philosophy holds that all details of a particular problem
should be released to the public at large. Full disclosure can point hackers directly
at weak points in computer systems, but its purpose is to pressure vendors to
release security fixes quickly and make security a higher priority. In addition,
informed users can generally demand better security in their critical applications.

Our search for understanding who security flaws should be reported to led us
to define three main categories for security flaws: low-profile single product or
service, high-profile single product or service, and cross-platform multiple prod-
ucts or services, each of which requires a different handling scheme.We looked at
the basic procedures that you should follow for reporting security problems to
your vendor and what needs to be included in the report, including the date and
time you found the problem, the hardware platform you were using, your hard-
ware configuration, what you were doing when you discovered the problem, and
your contact information so that they can work with you.

There is no clear position regarding whether or not to include sample exploit
code in your security reporting, but it’s not always a bad idea to do so. Indeed,
sometimes exploits might even be required to grab the vendor’s attention and
force them to address a problem they might otherwise pass off as “theoretical.”

There are hazards inherent in reporting security problems, including vendor
repercussions, errors in your report, and public damage.Therefore, do it right the
first time.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 345

346 Chapter 9 • Reporting Security Problems

Solutions Fast Track

Understanding Why Security
Problems Need to Be Reported

You have a moral obligation to report security problems; if you don’t,
someone with more malevolent intentions may discover the hole and
use it to attack other systems.

Don’t worry about not being knowledgeable or resourceful enough to
fully research and report a security problem that you have stumbled
across.There are plenty of others who would be willing to either assist
you or take over the task from you entirely.

Full disclosure means releasing all possible information about individual
security holes. Followers of this philosophy believe that hackers would
ultimately obtain intelligence on security holes through information and
their own efforts anyway, thus the public is better off under a full
disclosure system because they have a better chance of defending against
security problems.

Determining When and to
Whom to Report the Problem

New security flaws (NSFs) fall into one of three categories: low-profile
single product or service, high profile single product or service, and
cross-platform multiple products or services.An example of each is CD-
Ex, Hotmail, and the Linux kernel, respectively.

Each of the three categories requires a different level of reporting that
reflects the NSF’s impact on the userbase.

When reporting security problems to vendors, be sure to include as
much information about the problem and circumstances as possible. If
you don’t provide enough information, it will be a much more difficult
and lengthy process for the vendor to fix the hole, if they fix it at all.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 346

Reporting Security Problems • Chapter 9 347

Deciding How Much Detail to Publish

Take great care in deciding whether or not you want to provide exploit
code with your NSF report. Be aware that there are times when exploit
code is necessary for reporting the problem.

You must be prepared to take a slight risk when reporting security flaws.
You could end up facing the vendor’s wrath or imposing undue risk on
the public at large.

Be extra cautious in describing any security flaw that requires the
circumvention of a vendor’s copyright protection mechanisms, as this is a
very gray area for the time being.

Q: I want to make sure I keep my systems secure ahead of the curve. How can I
keep up with the latest vulnerabilities?

A: The best way is to subscribe to the Buqtraq mailing list, which you can do by
sending a blank e-mail to bugtraq-subscribe@securityfocus.com. Once you
reply to the confirmation, your subscription will begin.

For Windows-based security holes, subscribe to NTBugtraq by sending an
e-mail to listserv@listserv.ntbugtraq.com. In the body of your message,
include the phrase “SUBSCRIBE ntbugtraq Firstname Lastname” using your
first name and last name in the areas specified.

Q: I’ve found an aberration and I’m not sure if it is a vulnerability or not, or I’m
fairly certain I have found a vulnerability, but I don’t have the time to per-
form the appropriate research and write up.What should I do?

A: You can submit undeveloped or questionable vulnerabilities to the vuln-dev
mailing list by sending e-mail to vuln-dev@securityfocus.com.This mailing

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

224_HPXML_09.qxd 6/28/02 10:46 AM Page 347

348 Chapter 9 • Reporting Security Problems

list exists to allow people to report potential or undeveloped vulnerabilities.
The idea is to help people who lack the expertise, time, or information about
how to research a vulnerability to do so.To subscribe to vuln-dev, send an
e-mail to vuln-dev-subscribe@securityfocus.com with a blank message body.
The mailing list will then send you a confirmation message for you to reply
to before your subscription begins.You should be aware that by posting the
potential or undeveloped vulnerability to the mailing list, you are in essence
making it public.

Q: I was checking my system for a newly released vulnerability and I’ve discov-
ered that the vulnerability is farther-reaching than the publisher described.
Should I make a new posting of the information I’ve discovered?

A: Probably not. In a case like this, or if you find a similar and related vulnera-
bility, first contact the person who first reported the vulnerability and com-
pare notes.To limit the number of sources of input for a single vulnerability,
you may decide that the original discoverer should issue the revised vulnera-
bility information (while giving you due credit, of course). If the original
posting was made anonymously, then you should consider a supplementary
posting that includes documentation of your additional discoveries.

Q: I think I’ve found a problem, should I test it somewhere besides my own
system? (For example, Hotmail is at present a unique, proprietary system.
How do you test Hotmail holes?)

A: In most countries, including the United States, it is illegal for you to break
into computer systems or even attempt to do so, even if your intent is simply
to test a vulnerability for the greater good. By testing the vulnerability on
someone else’s system, you could potentially damage it or leave it open to
attack by others. Before you test a vulnerability on someone else’s system, you
must first obtain written permission. For legal purposes, your written permis-
sion should come from the owner of the system you plan to “attack.” Make
sure you coordinate with that person so that he or she can monitor the
system during your testing in case he or she needs to intervene to recover it
after the test. If you can’t find someone who will allow you to test his or her
system, you can try asking for help in the vuln-dev mailing list or some of
the other vulnerability mailing lists. Members of those lists tend to be more
open about such things.As far as testing services like Hotmail, it can’t legally
be done without the express written permission of Hotmail/Microsoft and

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 348

Reporting Security Problems • Chapter 9 349

you may even be subject to a DMCA violation (see the sidebar earlier in the
chapter), depending on the creativity of the vendor’s legal staff.

Q: I’ve attempted to report a security problem to a vendor, but they require you
to have a support contract to report problems.What can I do?

A: Try calling their customer service line anyway, and explain to them that this
security problem potentially affects all their customers. If that doesn’t work,
try finding a customer of the vendor who does have a service contract. If you
are having trouble finding such a person, look in any forums that may deal
with the affected product or service. If you still come up empty-handed, it’s
obvious the vendor does not provide an easy way to report security problems,
so you should probably skip them and release the information to the public.

www.syngress.com

224_HPXML_09.qxd 6/28/02 10:46 AM Page 349

224_HPXML_09.qxd 6/28/02 10:46 AM Page 350

Hack Proofing XML
Fast Track

This Appendix will provide you with a quick,
yet comprehensive, review of the most
important concepts covered in this book.

Appendix

351

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 351

352 Appendix • Hack Proofing XML Fast Track

❖ Chapter 1: The Zen of Hack Proofing

Learning to Appreciate the Tao of the Hack
Hackers can be categorized into a series of different types, for instance:
Crackers, Script Kiddies or Kidiots, Phreakers,White Hats, Black Hats, and
many more. Hackers can be many things—however one thing that all
hackers have is a love of a challenge and the ability to stretch their
computing knowledge—whether it be for noble or ignoble motivations.

The term script kiddie refers to crackers who use scripts and programs
written by others to perform their intrusions.Typically, script kiddies are
assumed to be incapable of producing their own tools and exploits, and lacks
proper understanding of exactly the tools they use work.

A phreaker is a hacker variant, short for phone phreak (freak spelled with a
ph, like phone is). Phreakers are hackers with an interest in telephones and
telephone systems.

Black Hat,White Hat,What’s the Difference?
The black hat and white hat hacker references were gleaned from the old-
time western movies. Unfortunately the distinction between the good and
the bad guys in the security market place is not always so cut and dry.

A central issue to the Black Hat versus White Hat hacker debate, is the issue
of full-disclosure.

The debate of Black Hat versus White Hat has led to the term Grey Hat.
Grey Hat hackers acknowledge the lines of perception between what is
right and what is wrong in the realm of information security is very blurry.

Roles of a Hacker
A hacker can be and is perceived as many things, including:A criminal, a
magician, a security professional, a cyber warrior, a consumer’s rights activist,
or a civil rights activist to name a few.

How can you prevent break-ins to your system if you don’t know how they
are accomplished? How do you test your security measures? How do you
make a judgment about how secure a new system is? The answer is by being
a skilled hacker yourself. Knowing how to break into things, helps

www.syngress.com

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 352

Hack Proofing XML Fast Track • Appendix 353

developers create more secure systems and programs by being intimately
aware of the type of breaches and techniques that exist.

Hackers who tout themselves as a consumer advocates believe that by
releasing security breaches to the general public, this forces corporations and
technology providers to fix potentially damaging errors more quickly.

A civil rights hactivist is normally an individual who is concerned with the
sentencing of computer hackers. For example, two hackers break into the
same system. One breaks in just to break in and notify the organization, the
other breaks in and steals valuable and proprietary data. Should they be
given similar sentences?

Another type of civil rights hactivist is concerned with cryptography
standards and copyright law.

Motivations of a Hacker
Probably the most widely acknowledged reason for hacking is recognition.
You can call it a desire for fame, you can call it personal brand building, you
can call it trying to be “elite,” or even the oft-cited “bragging in a chat room.”

A close contender for first place in the list of reasons for being a hacker is
curiosity.

The two most media-exploited motivations of a hacker are: Power and gain,
and revenge.Although,These are the “scariest” motivations, they are in fact,
the motivations that drive the least amount of hackers by the truest sense of
the word.

The Hacker Code
There are numerous versions (online, in print, and in people’s imaginations)
of the hacker’s code. For the most part, they tend to follow along the
mindset of: Information wants to be free, hackers don’t damage systems they
break into, hackers write their own tools and understand the exploits they
use, and most often, they cite curiosity.

www.syngress.com

Chapter 1 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 353

354 Appendix • Hack Proofing XML Fast Track

❖ Chapter 2: Classes of Attack

Identifying and Understanding the Classes of Attack
There are seven classes of attacks: denial of service (DoS), information
leakage, regular file access, misinformation, special file/database access,
remote arbitrary code execution, and elevation of privileges.

DoS attacks can be leveraged against a host locally or remotely.

The gathering of intelligence through information leakage almost always
precedes attack.

Insecure directory and file permissions can allow local users to gain access to
information that may be sensitive to other users or the system.

Information on a compromised system can never be trusted and can only
again be trusted when the operating system has been restored from a known
secure medium (such as the vendor distribution medium).

Databases may be attacked either through interfaces such as the Web or
through problems in the actual database software, such as buffer overflows.

Many remote arbitrary code execution vulnerabilities may be mitigated
through privilege dropping, change rooting, and non-executable stack
protection.

Privilege elevation can be exploited to gain remote unprivileged user access,
remote privileged user access, or local privileged user access.

Identifying Methods of Testing for Vulnerabilities
Vulnerability testing is a necessary part of ensuring the security of a system.

“Proof of concept” is the best means of communicating any vulnerability,
because it helps determine where the problem is, and how to protect
against it.

Exploit code is one of the most common “proof of concept” methods.
Exploit code can be found in various repositories on the Internet.

The use of automated security tools is common. Most security groups of
any corporation perform regularly scheduled vulnerability audits using
automated security tools.

www.syngress.com

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 354

Hack Proofing XML Fast Track • Appendix 355

Versioning can allow a busy security department to assess the impact of a
reported vulnerability against currently deployed systems.

Information from Whois databases can be used to devise an attack against
systems or to get contact information for administrative staff when an attack
has occurred.

Domain Name System (DNS) information can yield information about
network design.

Web spidering can be used to gather information about directory structure
or sensitive files.

❖ Chapter 3: Reviewing the
Fundamentals of XML

An Overview of XML
XML stands for eXtensible Markup Language. It is a subset of a larger
framework named SGML.The W3C developed the specifications for SGML
and XML.

XML provides a universal way for exchanging information between
organizations.

XML cannot be singled out as a standalone technology. It is actually a
framework for exchanging data. It is supported by a family of growing
technologies such as XML parsers, XSLT transformers, XPath, XLink, and
schema generators.

Well-Formed XML
Valid XML should be well-formed, it is a good habit to get into.

There are two ways to provide validation for XML:Through schema
and DTD.

Schemas allow for greater flexibility and precision compared to DTD.

You can use VS.NET to generate a schema for your XML file.

www.syngress.com

Chapter 2 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 355

356 Appendix • Hack Proofing XML Fast Track

Transforming an XML Document Using XSLT
You can use XSLT (XML Style Sheet Language Transformation) to
transform an XML document to another XML document, or to documents
of other types (e.g., HTML and text).

XSLT is a template-based declarative language.We can develop and apply
various XSLT templates to select, filter, and process various parts of an XML
document.

You can use the Transform() method of XslTransform class to transform an
XML document.

XPath
XPath is another W3 recommendation that acts as a query language for XML.

XPath uses pattern-matching with expressions, just like XSLT, but with
more support and functionality.

XPath is not used to transform XML, but rather to facilitate the searching
and querying of data.

❖ Chapter 4: Document Type:
The Validation Gateway

Document Type Definitions and
Well-Formed XML Documents

Document type definitions (DTDs) are used to verify that an XML
document is well formed, or structurally correct.

DTDs are not required in any XML document.

DTDs can be part of the XML document, or they can be separate
documents called by reference of a uniform resource indicator (URI) in the
XML document.

DTDs are not written in standard XML grammar.

DTDs do not place constraints on the contents of an XML element—they
deal only with the structure of the XML document.

www.syngress.com

Chapter 3 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 356

Hack Proofing XML Fast Track • Appendix 357

DTDs may be used in an XML document alongside schema.

Schema and Valid XML Documents
XML schema are used to enforce a structure for the data described in an
XML document. Schema can also enforce constraints on the data within
individual data elements.

Schema are not required in any XML document.

Schema may be part of the XML document, or they may be separate
documents called by reference of a uniform resource indicator (URI) in the
XML document.

Schema are written in standard XML grammar and are themselves well-
formed XML documents.

Schema may be used in an XML document alongside DTDs.

Learning About Plain-Text Attacks
Plain-text attacks take advantage of different methods of representing
characters that are common across languages and systems.

Plain-text attacks often use hexadecimal representations of common control
or system characters (for example, the /../../ string) taken from uncommon
32-bit Unicode language representations to avoid detection and
neutralization by pattern-matching security routines.

Plain-text attacks can be defeated by the dual process of canonicalization
(ensuring that all incoming character strings are translated into the shortest
possible Unicode representation) and Unicode verification.

Understanding How Validation Is Processed in XML
If a DTD-validating parser is used, DTDs are validated before schema, to
ensure that the XML document is well formed (structurally correct).

XML documents are validated against schema after being validated against
DTDs. Schema enforce data consistency and content for the data structure
defined by the XML document.

www.syngress.com

Chapter 4 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 357

358 Appendix • Hack Proofing XML Fast Track

Application programmers are responsible for canonicalization—ensuring that
all incoming character strings are translated from ASCII into the shortest
possible Unicode representation.

Once a canonical Unicode string has been produced, it must then be
verified to be harmless—to carry no strings that would try to invoke
unauthorized applications or access unauthorized files.

The final step in validation is document or message validation, in which the
incoming string is checked for logical suitability for the data element that is
its target. Care must be taken at this step to ensure that the validation
method is efficient so that users are not impacted by system delays.

❖ Chapter 5: XML Digital Signatures

Understanding How a Digital Signature Works
A digital signature must provide the following for a datastream: verification
of signer authentication and provability of the authentication for an outside
party (nonrepudiation).

Applying XML Digital Signatures to Security
An enveloping signature is one in which the signature node itself actually
contains the data that is to be signed.

An enveloped signature is one for which the signature node is contained
within the signed datastream.

A detached signature is one for which the data that is being signed is located
in a separate location from the signature itself.This is useful in situations in
which it is not practical or desirable to combine the data into a single signed
entity.

An XML digital signature can be used to sign multiple datastreams.These
datastreams do not all have to have the same relationship to the signature, so
that the signature can simultaneously be any combination of multiples of the
three basic types (enveloping, enveloped, and detached).

If the datastream is an XML document, it is called a node set.

www.syngress.com

Chapter 4 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 358

Hack Proofing XML Fast Track • Appendix 359

A node set can be signed partially if desired; it is possible to define a
signature so that a specific XML node is the signed data.The rest of the
XML node set will be ignored.

Using XPath to Transform Documents
We can use the XML XPath mechanism to apply a transformation to a
datastream that is to be signed.

XPath applies to a node set and is used to create a filter that has the effect of
blocking a node or passing it on for further processing. XPath is a
recommended feature for a standards-conformant XML digital signature
implementation. Consequently, it might not be universally available.

Using XSLT to Transform Documents
The XML XSLT processing language can also be applied as a transformation
that is used for an XML digital signature.

XSLT works by applying a style sheet to the XML node set. XSLT can
actively change the data in the process; this differs from XPath, which can
only block or allow a node, not change it in any way.

XSLT is a powerful mechanism that can be used to perform elaborate
manipulations of the nodes if desired. XSLT is an optional feature for a
standards-conformant XML digital signature implementation, so it might
not be universally available.

Using Manifests to Manage Lists of Signed Elements
Using the XML digital signature manifest mechanism, it is easy to manage
lists of signed elements.

This method is especially useful when there are multiple signers of long lists
of elements.An XML digital signature that uses manifests signs both the
manifest itself (i.e., the list) as well as the actual listed elements.

www.syngress.com

Chapter 5 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 359

360 Appendix • Hack Proofing XML Fast Track

Cautions and Pitfalls
Some of the foundation components of XML digital signatures are in a state
of flux, so be careful when listing these algorithms in any transformations
for your signatures.

Never confuse the message originator with the message sender. In order to
reduce the problems in distinguishing who originated and signed the
message versus who sent the message, be sure that the complete context of
the information is provided within the signed body.This information could
include such things as a timestamp, the recipient’s name, and references to
information to provide a context for the message.

❖ Chapter 6: Encryption in XML

Understanding the Role of
Encryption in Messaging Security

Encryption provides authentication, confidentiality, integrity and
nonrepudiation.

Encryption algorithms include AES, RC4, and DES/3DES.

Stream and block ciphers are two methods of encryption.

Learning How to Apply Encryption to XML
Encrypted documents result in <EncryptedData></EncryptedData> with
cipher data specifically in <CipherData><CipherValue></CipherValue>
</CipherData>.

Encryption can be applied to a given document at any time and in any order.

Signing messages now allows for nonrepudiation.

Understanding Practical Usage of Encryption
XPATH is the method for transforming XML documents.

Canonicalization is the method by which documents obtain a standard form.

Sign the plain-text, not the cipher-text.

www.syngress.com

Chapter 5 Continued

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 360

Hack Proofing XML Fast Track • Appendix 361

❖ Chapter 7: Role-Based Access Control

Learning About Stateful Inspection
Inspect the state of all important variables coming into or out of your
application.

Always develop a baseline against which to compare state changes.

Evaluate any changes between the current state and your baseline.
Determine what action to take based on these changes.

Default behavior has a great impact on security. It is better to deny by
default than allow by default, even if it causes performance degradation
compared to the unsecured system.

Learning About Role-Based Access Control
and Type Enforcement Implementations

A secure operating system working in conjunction with a secure application
provides the most hackproof design possible.

Flask is a conceptual architecture that shows how the design of a secure
operating system could work.

SELinux is an operating system that was designed to use the architecture
outlined in Flask.

Applying Role-Based Access Control Ideas in XML
RBAC can be implemented in XML with the use of DTD files.

All application components should be run within some sort of security
context to prevent them from performing functions that they should not be
allowed.

Completely testing all portions of an application is a very important part of
system security.

www.syngress.com

224_HPXML_AppFT.qxd 6/28/02 2:45 PM Page 361

362 Appendix • Hack Proofing XML Fast Track

❖ Chapter 8: Understanding
.NET and XML Security

The Risks Associated with Using XML
Anything and everything on the Internet is vulnerable. Expose only data and
code that is absolutely necessary.

If information is not meant to be seen, it is much safer to transform the
XML document to exclude the sensitive information prior to delivering the
document to the recipient, rather than encrypt the information within the
document.

XSL is a complete programming language, and at times might be more
valuable than the information contained within the XML it transforms.
When you perform client-side transformations, you expose your XSL in
much the same way that HTML is exposed to the client.

.NET Security as a Viable Alternative
Permissions are used to control the access to protected resources and
operations.

Principal is the security context that is attached to every executing thread in
the CLR. It also holds the identity of the user, such as Windows account
information, and the roles that user has. It also contributes to the capability
of the code to impersonate.

Authentication and authorization can be controlled by the application itself
or rely on external authentication methods, such as NTLM and Kerberos.
Once Windows has authorized a user to execute CLR-based code, the code
has to control all other authorization that is based on the identity of the user
and information that comes with assemblies, called evidence.

Security policy is what controls the entire CLR security system.A system
administrator can build policies that grant assemblies permissions access to
protected resources and operations.This permission granting is based on
evidence that the assemblies hand over to the CLR. If the rules that make
up the security policy are well constructed, it enables the CLR to provide a
secure runtime environment.

www.syngress.com

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 362

Hack Proofing XML Fast Track • Appendix 363

Type safety is related to the prevention of assembly code to reach into
memory/storage of other applications.Type safety is always checked during
JIT compilation and therefore before the code is even loaded into the
runtime environment. Only code that is granted the Skip Verification
permission can bypass type safety checking, unless this is turned off
altogether.

Code Access Security
Code access security is based on granting an assembly permission and
enforcing that it can never gain more permissions.This enforcing is done by
what is known as security stack walking.When a call is made to a protected
resource or operation, the assembly that the CLR demanded from the
assembly has a specific permission. However, instead of checking only the
assembly that made the call, the CLR checks every assembly that is part of a
calling chain. If all these assemblies have that specific permission, the access to
the protected resource/operation is allowed.

To be able to write secure code, it is possible to refrain from permissions
that are granted to the code.This is done by requesting the necessary
permissions for the assembly to run, whereby the CLR gives the assembly
only these permissions, under the reservation that the requested permissions
are part of the permission set the CLR was willing to grant the assembly
anyway. By making your assemblies request a limited permission set, you can
prevent other code from misusing the extended permission set of your code.
However, you can also make optional requests, which allow the code to be
executed even if the requested permission is not part of the granted
permission set. Only when the code is confronted with a demand of having
such a permission, it must be able to handle the exception that is thrown, if
it does not have this permission.

The demanding of a caller to have a specific permission can be done using
declarative and imperative syntax. Requesting permissions can only be done
in a declarative way. Declarative means that it is not part of the actual code,
but is attached to an assembly, class, or method using a special syntax
enclosed with brackets (<>).When the code is compiled to the interme-
diate language (IL) or a portable executable (PE), these demands/requests are
extracted from the code and placed in the metadata of the assembly.This

www.syngress.com

Chapter 8 Continued

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 363

364 Appendix • Hack Proofing XML Fast Track

metadata is read and interpreted by the CLR before the assembly is loaded.
The imperative way makes the demands part of the code.This can be sen-
sible if the demands are conditional. Because a demand can always fail and
result in an exception being thrown by the CLR, the code has to be
equipped for handling these exceptions.

The code can control the way in which the security stack walk is
performed. By using Assert, Deny, or PermitOnly, which can be set with both
the declarative and imperative syntax, the stack walk is finished before it
reaches the end of the stack.When CLR comes across an Assert during a
stack walk, it finishes with a Succeed. If it encounters a Deny, it is finished
with a Fail.With the PermitOnly, it succeeds only if the checked permission
is the same or is a subset of the permission defined with the PermitOnly.
Every other demand will fail at the PermitOnly.

Custom permissions can be constructed and added to the runtime system.

Role-Based Security
Every executing thread in the .NET runtime system has an identity that is
part if the security context, called principal.

Based on the principal, role-based checks can be performed.

Role-based checks can be performed in a declarative, imperative, and direct
way.The direct way is by accessing the principal and/or identity object and
querying the values of the fields.

Security Policies
A security policy is defined on different levels: enterprise, user, machine, and
application domain.The latter is not always used.

A security policy has permission sets attached that are built in—such as
FullTrus, Internet—or custom made.A permission set is a collection of
permissions. By grouping permissions, you can easily address them, only
using the name of the permission set.

The important part of the policy is the security rules, called code groups; these
groups are constructed in a hierarchy.

www.syngress.com

Chapter 8 Continued

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 364

Hack Proofing XML Fast Track • Appendix 365

A code group checks the assembly based on the evidence it presents. If the
assembly’s evidence meets the condition, the assembly is regarded as a
member of this code group and is successively granted the permissions of
the permission set related to the code group.After all code groups are
checked, the permission sets of all the code groups or which the assembly is
a member are united to an actual permission set for the assembly at that
security level.

The CLR performs this code group checking on every security level,
resulting in three or four actual permission sets.These are intersected to
result in the effective permission set of permissions granted to the assembly.

Remoting limits the extent to which the security policy can be applied.To
create a secure environment, you need to secure remoting in such a way that
access to your secured CLR environment can be fully controlled.

Cryptography
The .NET Framework comes with a cryptography namespace that covers all
necessary cryptography functionalities that are at least equal to the
CryptoAPI that was used up until now.

Using the cryptography classes is much easier than using the CryptoAPI.

Security Tools
The .NET Framework comes with a set of security tools that enable you to
maintain certificates, sign code, create and maintain security policies, and
control the security of assemblies.

Two comparable tools enable you to maintain code access security.
Caspol.exe (Code Access Security Policy Utility) has to be operated from
the command-line interface.The .NET Configuration Tool comes as a snap-
in for the Microsoft Management Console (MMC) and is therefore more
intuitive and easier to use than caspol.exe is.

Securing XML—Best Practices
Use existing methods of security to protect your XML. HTTPS works with
your XML in the same way it does with HTML.

www.syngress.com

Chapter 8 Continued

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 365

366 Appendix • Hack Proofing XML Fast Track

Try to keep everything on the server. Perform your XSL transformation on
the server, thus only sending HTML or relevant XML to the client.

The goal of the XML Encryption specification (currently in working-draft
form) is to describe a digitally encrypted Web resource using XML.The
specification provides for the encryption of an element including the start-
and end-tags, the content within an element between the start- and end-
tags, or the entire XML document.The encrypted data is structured using
the <EncryptedData> element.

The XML Digital Signature specification’s scope includes how to describe a
digital signature using XML and the XML-signature namespace.The
signature is generated from a hash over the canonical form of the manifest,
which can reference multiple XML documents.

❖ Chapter 9: Reporting Security Problems

Understanding Why Security
Problems Need to Be Reported

You have a moral obligation to report security problems; if you don’t,
someone with more malevolent intentions may discover the hole and use it
to attack other systems.

Don’t worry about not being knowledgeable or resourceful enough to fully
research and report a security problem that you have stumbled across.There
are plenty of others who would be willing to either assist you or take over
the task from you entirely.

Full disclosure means releasing all possible information about individual
security holes. Followers of this philosophy believe that hackers would
ultimately obtain intelligence on security holes through information and
their own efforts anyway, thus the public is better off under a full disclosure
system because they have a better chance of defending against security
problems.

www.syngress.com

Chapter 8 Continued

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 366

Hack Proofing XML Fast Track • Appendix 367

Determining When and to
Whom to Report the Problem

New security flaws (NSFs) fall into one of three categories: low-profile
single product or service, high profile single product or service, and cross-
platform multiple products or services.An example of each is CD-Ex,
Hotmail, and the Linux kernel, respectively.

Each of the three categories requires a different level of reporting that
reflects the NSF’s impact on the userbase.

When reporting security problems to vendors, be sure to include as much
information about the problem and circumstances as possible. If you don’t
provide enough information, it will be a much more difficult and lengthy
process for the vendor to fix the hole, if they fix it at all.

Deciding How Much Detail to Publish
Take great care in deciding whether or not you want to provide exploit
code with your NSF report. Be aware that there are times when exploit
code is necessary for reporting the problem.

You must be prepared to take a slight risk when reporting security flaws.
You could end up facing the vendor’s wrath or imposing undue risk on the
public at large.

Be extra cautious in describing any security flaw that requires the
circumvention of a vendor’s copyright protection mechanisms, as this is a
very gray area for the time being.

www.syngress.com

Chapter 9 Continued

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 367

224_HPXML_AppFT.qxd 6/28/02 2:46 PM Page 368

369

Index
2600 magazine, 15
3-DES, 193, 194

A
access

control, system for, 228
denying by default, 225–226
remote user, 56–58
state change evaluation and, 224
. See also role-based access

control (RBAC)
Access Control Lists (ACLs), 44
ActiveX objects, 247–248
Adjust Security Wizard, 299
admiration, 17
Adobe eBook software, 343
Advanced Encryption Standard

(AES), 191–193
Ahmad, David, 56
algorithms, 173–174, 307–308
Altova XML Spy 4.3, 128
American Standard Code for

Information Interchange
(ASCII), 112–114, 116, 119

Apache Server, 55, 115
APOP (Authentication POP), 187
application files, unsecure, 227
application layer gateway, 217–219
application state inspection,

221–223
applications

fencing, 246
integrity of, 244–245
securing from other

applications, 226
in SELinux, 232
type enforcement for, 227–228

arbitrary code execution, remote,
53–55

Ariba, 80
ARIS (Attack Registry and

Intelligence Service), 42
Arkin, Ofir, 41
The Art of War (Tzu), 62
ASCII. See American Standard

Code for Information
Interchange (ASCII)

assembly, 265, 267–269
Assert override, 278–280
asymmetric encryption, 145–146

asymmetric key algorithm,
307–308

attack classes, 28–72
denial of service, 29–37
elevation of privileges, 55–58
in general, 28
information leakage, 37–44
misinformation, 47–50
regular file access, 44–47
remote arbitrary code

execution, 53–55
special file/database access,

50–53
vulnerability testing methods,

58–72
Attack Registry and Intelligence

Service (ARIS), 42
attributes

of document type definitions,
103–106

transforming XML and, 91
of XML document, 85–86

authentication
credentials, stealing, 50
digital signature for, 144, 145
encryption for, 186–190
in .NET Framework, 263

Authentication POP (APOP), 187
authorization, .NET Framework,

263
automated security tools, 59–60
availability, 29

B
banner, 38
baseline, 222–223
BBSs (Bulletin Board Systems), 6
Bell South, 21
Bell Technical Journal, 7
Berkeley Internet Name Domain

(BIND), 66–67
Black Hat Briefings, 7
black hat vs. white hat hackers,

7–9
block ciphers, 196
Brown University’s XML

validation form, 130–132
browser,Web, 33
brute-force attack, 187, 195
buffer overflow, 54
Bulletin Board Systems (BBSs), 6

C
CA (Certificate Authority),

172–173
caller, 262
calling chain, 265–266
canonical XML digital signature

detached, 157
enveloped, 154–155
enveloping, 152

canonicalization
described, 205–206
digital signature and, 144
XML digital signature and,

118–119, 120, 317, 318
CanonicalizationMethod element,

148, 318
CAS. See code access security

(CAS)
case sensitivity, 88
caspol.exe tool, 300
CBOS (Cisco Broadband

Operating System), 33–34
CD-Ex, 337–342
central processing unit (CPU),

29–31
CERT (Computer Emergency

Response Team), 114
Certificate Authority (CA),

172–173
Certificate Creation Utility, 309
Certificate Manager Utility, 310
Certificate Verification Utility, 309
change root, 55
Check Point Software, 216
child node, 87
chroot, 55
cipher text, 185–186, 207–211
cipher-text attack, 189
ciphers, stream and block, 196
CipherText element, 202, 204
Cisco Broadband Operating

System (CBOS), 33–34
civil rights activist, hacker as,

14–15
ClassAct class, 274–275
clear-text authentication, 187
client-side network DoS, 33
CLR. See Common Language

Runtime (CLR)
code access permissions, 261

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 369

370 Index

code access security (CAS)
characteristics of, 264–265
code groups, 267–269
code identity, 266–267
declarative, imperative security,

270–271
.NET Framework and,

260–261
permissions, custom, 282–283
permissions, demanding,

275–277
permissions, requesting,

271–275
security checks, overriding,

277–282
stack walking, 265–266

Code Access Security Policy
Utility, 309

code execution, remote arbitrary,
53–55

code group
modifying structure of,

299–305
in .NET Framework, 267–269
permission set of, 293

code identity, 266–267
Code Red worm, 33–34, 37
code type safety, 264
CodeAccessPermission class,

272–274
collision, 211
command-line security tools,

.NET Framework,
309–310

comment, 84
Common Language Runtime

(CLR)
.NET Framework security and,

260
overriding security checks and,

277
permissions and, 261–262
stack walking of, 265–266

Common Vulnerabilities and
Exposures (CVE), 340

Computer Emergency Response
Team (CERT), 114

confidentiality, 259–260
consumer advocate, hacker as, 13
ControlPrincipal, 287
copy protection cracker, 5
copyright protection

technologies, 342–344

CPU (central processing unit),
29–31

cracker, 4–5
CRC (cyclic redundancy check),

244–245
credentials, authentication, 50
credentials, user, 222
credit card number, 259–260, 316
criminal, hacker as, 10–11
cross-platform multiple products

class, 338, 339
cryptoanalysis, differential, 195
CryptoAPI, 306
Cryptographic Service Providers

(CSPs), 307
cryptography, 188–189, 306–309
CryptoStreams, 306
Culp, Scott, 336
curiosity, 17–18
custom permissions, 261,

282–283
custom principal, 262
CVE (Common Vulnerabilities

and Exposures), 340
cyber warrior, hacker as, 15
cyclic redundancy check (CRC),

244–245

D
Daemen, Joan, 192
daemons, 36–37
Data Encryption Standard (DES),

192, 193–195
data, evaluation of, 243–244
data exchange, 80–81
data integrity protection,

244–245
data types, XML schema,

110–112
Data view, 83, 84
database attack, 50–53
DDoS (distributed denial of

service), 36–37
De-Content Scrambling System

(DeCSS), 14
debugging XSL, 95
declaration, 84
declarative security

Assert override as, 279–280
described, 270
for permission demands,

275–276
declarative syntax, 289

decryption
in public-key cryptography,

188
steps of, 315
with XML encryption, 203

DeCSS (De-Content Scrambling
System), 14

Deep Crack, 195
DEF CON conference, 7–8
default behavior, 225–226
demands, permission, 262
denial of service (DoS) attack

local vector, 29–32
network vector, 32–37

Deny override, 280–281
derived data type, 111–112
DES (Data Encryption Standard),

192, 193–195
DESX, 194
detached signature

defined, 147, 150
example of, 157–162

differential cryptoanalysis, 195
Diffie,Whitfield, 188, 197
diffusion operations, 193
dig utility, 66–67
DigestMethod algorithm, 148, 149,

318–319
DigestValue element

in manifest, 171
of XML digital signature, 148,

318–319
digital certificate, 311
Digital Millennium Copyright

Act (DMCA), 342–344
digital signature

canonicalization and, 205
function of, 191
in plain text, 207–211
XML Digital Signature

specification, 317–319
XPATH transforms for, 210

digital signatures, XML, 144–177
applying to security, 149–150
canonicalization in, 118–119
cautions, pitfalls of, 175–176
concepts of, 144–149
examples of, 150–162
manifests for list of signed

elements, 169–174
signing parts of document,

163–164
vendor toolkits for, 176–177

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 370

Index 371

XPath to transform document,
164–166

XSLT to transform document,
166–168

Digital Versatile Disk (DVD), 342
directory traversal, 42
disclosure. See full disclosure
discrete logarithms, 198
disk space exhaustion, 31–32
distributed denial of service

(DDoS), 36–37
Distributed.net, 195
Dittrich, David, 37
DMCA (Digital Millennium

Copyright Act), 342–344
DNS (Domain Name System),

66–69
document type definition (DTD)

schema and, 106–107
for structure verification,

126–127
well-formed XML documents

and, 102–106
for XML document, 84,

239–242
XML validation process with,

117
domain, 62–65
Domain Name System (DNS),

66–69
DoS attack. See denial of service

(DoS) attack
dropping privileges, 55
DSA key, private, 151
DTD. See document type

definition (DTD)
DVD (Digital Versatile Disk), 342

E
e-mail, 65, 190–191

. See also messaging security
ElComSoft, 343
Electronic Frontier Foundation

(EFF), 195
elements, XML document, 84, 86
elevation of privileges, 55–58
empty element, 86
encode () method, 123
EncryptedData element, 199–204,

311–315, 316
EncryptedKey element, 202–203,

315
encryption in XML

applying, 199–207
asymmetric encryption,

145–146
methods for, 191–199
practical usage of, 207–212
security needs of messaging,

184–191
XML digital signature and, 176
XML Encryption practices,

311–317
encryption key, 188
encryption methods

AES, 191–193
DES, 3-DES, 193–195
key management schemes,

197–199
RSA, RC4, 195–196
stream, block ciphers, 196

EncryptionMethod , 202–203,
315

enveloped signature
defined, 149
example of, 154–156, 161–162

enveloping signature
defined, 150
example of, 152–154, 161–162

ephemeral keys, 189
error message, 38–39
error, reporting, 344
escape codes, HTML, 114–115
ethics, hacker code of, 21
EveryThing permission, 292
evidence, 267–269
exception condition, 38–39
Exclusive attribute, 304–305
exDTD utility, 249–250
Execution permission, 292
exploit code

described, 59
publishing, 341–342
reporting, 332, 343–344

Extensible Markup Language
(XML)

file, viewing, 241
firewall technologies and, 220
in general, 80
goals of, 81
in .NET Framework, risks of,

258–260
RBAC in, 238–248
securing, 311–319
transforming through XSLT,

88–95

XPath and, 95–96
. See also digital signatures,

XML; validation, XML
Extensible Markup Language

(XML) document
appearance, 81–82
creation, 82–86
encryption, applying to,

199–207
schema for, 106–112
transforms before encryption,

204–206
validation of, 124–134
well-formed, 87–88, 102–106

Extensible Markup Language
(XML) Encryption
specification, 199–207

Extensible Stylesheet Language
(XSL)

debugging, 95
.NET Framework and,

258–260
transformations, 319

external DTD, 104

F
Farmer, Dan, 13
Feistel cycles, 193
Feistel, Horst, 193
fencing, 246, 247–248
file-level permissions, 244
File Signing Utility, 310
File Transfer Protocol (FTP),

219–220
FileCodeGroup, 300
FileIOPermission, 270, 274–275
fingerprinting, 43
firewall technologies

application layer gateway,
217–219

FTP process and, 219–220
packet filtering and, 216–217
XML and, 220

fix, 341
Flask Security Architecture,

229–232
fork bomb, 30–31
format string attacks, 54
Free Kevin Web site, 14
Free XML Tools and Software

site, 248–250
FTP (File Transfer Protocol),

219–220

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 371

372 Index

FTPChannel, 305
full disclosure

by hacker, 8–9
risk to the public, 344
of security problems, 333–337

FullTrust permission, 292

G
GenericPrincipal, 262, 286
Gladman, Brian, 193
Gnome, 176–177
Google Groups search engine,

251, 252
gray hat hacker, 8–9

H
hacker

black hat vs. white hat, 7–9
code of, 21
cracker, 4–5
described, 3–4
full disclosure and, 334–335
in general, 2
motivations of, 16–20
phreak, 7
plain-text attacks by, 112, 113
publishing exploit code and,

341–342
role of, 10–15
script kiddie, 5–6
stack overflow by, 223

Hacker Manifesto, 21
Hackers: Heroes of the Computer

Revolution (Levy), 3
hash

digital signature and, 146
in MAC, 189
in .NET Framework, 308–309

header, 217
Hellman, Martin, 188, 197
hexadecimal representation, 113
high-profile single service, 338,

339
Hotmail, Microsoft, 338, 339
Hypertext Markup Language

(HTML)
escape codes, 114–115
transforming XML to, 89–92
XML document and, 87–88

Hypertext Transfer Protocol
(HTTP), 40

I
IBM, 205
IBM alphaWorks site, 250, 251
IBM XML Security Suite, 177,

206
identity

manipulating, 287–288
permissions, 261
X509 for establishing, 172–173

identity object, 284, 290
IIS (Internet Information

Services), Microsoft, 114,
116–117

imperative security
Assert override as, 280
described, 270–271
for permission demands,

275–276
imperative syntax, 289
“Improving the Security of Your

Site by Breaking Into It”
(Farmer and Venema),
12–13

index nodes, 32
indexing,Web, 70–72
information leakage, 37–44

leaky by design, 41
leaky Web servers, 42
protocol, 39–41
reasons for concern, 43–44
scenario of, 42–43
service, 38–39

inheritance
blocking, 239
demand, 276–277
rules, 242

inode exhaustion, 32
input text, validation of, 118–123
integrity

data, 244–245
with digital signature, 144, 145
encryption for, 186–190

intelligent attack, 62
internal DTD, 104
Internet Explorer, Microsoft,

88–89
Internet Information Services

(IIS), Microsoft, 114,
116–117

Internet permission, 292

Internet Protocol Security
(IPSec), 199

Internet Software Consortium,
67, 68

Internet, the, 184–185
intrusion procedures, 48–50
IP address, 216
IPSec (Internet Protocol

Security), 199
ISO-Latin-1 character set, 112
Isolated Storage Utility, 310
iterative rounds, 192

J
The Jargon File, 3–4
Java, 245–248, 246–247
Java Parser, Xerces2, 250
JavaScript, 246
JavaScript bombs, 33

K
kernel modules, 49–50
key

for authentication, 186–189
collision of, 211
of DES, 193–195
generating with openssl, 151
management schemes, 197–199
pair, for digital signature, 191
of RSA and RC4, 195–196
symmetric, asymmetric key

algorithm, 307–308
XML digital signature and,

145–146, 317
KeyInfo element, 148–149
KeyValue element, 154
Kirkegaard, Rod, 332
“knowledge gap”, 333, 334

L
The L0pht, 9
lamer, defined, 6
leakage. See information leakage
leaky Web servers, 42
leech, defined, 6
LevelFinal, 305
Levy, Steven, 3
link attacks, symbolic, 45–47
link demand, 276
Linux

process degradation in, 29–30

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 372

Index 373

reporting security flaw of, 338,
339

local vector denial of service
disk space exhaustion, 31–32
inode exhaustion, 32
process degradation, 29–31

LocalIntranet permission, 292, 294
log editing, 48–49
low-profile single product,

338–339

M
MAC. See message authentication

code (MAC)
magician, hacker as, 11–12
make install command, 238
make load command, 238
man-in-the-middle attack, 197
manifests, 144, 169–174
Massachusetts Institute of

Technology (MIT), 3
masters, 36
MD5, 187
membership condition, 267–268,

269
Merkle, Ralph, 188
message, 124–134, 175
message authentication code

(MAC)
on cipher text, 210–211
sent with message, 189–190
XML digital signature and, 145

messaging security, 184–199
Advanced Encryption

Standard, 191–193
authentication, integrity,

186–190
DES, 3-DES, 193–195
key management schemes for,

197–199
nonrepudiation and, 190–191
privacy, confidentiality,

185–186
RSA, RC4, 195–196
stream, block ciphers, 196

Microsoft
full disclosure case and,

336–337
hackers and, 13
unicode validation by, 121–122

Microsoft Hotmail, 338, 339

Microsoft IIS Web server,
336–337

Microsoft Internet Explorer,
88–89

Microsoft Internet Information
Services (IIS), 114,
116–117

Microsoft Passport, 263
Microsoft unsupported XML

validation tool, 132
Microsoft VS.NET XML

Designer, 82–86, 107–108,
110

Microsoft Windows 2000, 50, 57
Microsoft Windows 2000 server,

308
Microsoft Windows NT, 227–228
Microsoft Windows system, 44
Microsoft XML Parser 3.0, 95
misinformation, 47–50
MIT (Massachusetts Institute of

Technology), 3
Mitnick, Kevin, 14
modem, 333
Moss, Jeff, 7
Motion Picture Association of

America (MPAA), 14, 342
MultiByteToWideChar function,

121–122
multiple data stream problem,

205
MYSQL, 53

N
name service-based Whois, 62–65
Name Service Lookup

(nslookup), 68–69
namespaces, 306
National Institute for Standards

and Technology (NIST),
192, 195, 253

National Security Agency (NSA),
229, 251–252

.NET Framework
code groups in, 267–269
code identity in, 266–267
cryptography in, 306–309
declarative, imperative security

in, 270–271
internal security as alternative,

260–264
permissions, custom, 282–283

permissions, demanding,
275–277

permissions, requesting,
271–275

risks of XML in, 258–260
role-based security in, 283–291
securing XML, practices for,

311–319
security checks, overriding,

277–282
security policies in, 291–306
security tools of, 309–310
stack walking in, 265–266

NetCodeGroup, 300
netstat command, 35
Network Mapper (Nmap),

40–41, 69–70
network service-based Whois,

65–66
Network Solutions, 65
network vector denial of service,

32–37
client-side, 33
service-based, 33–34
system-directed, 34–37

New Directions in Cryptography
(Whitfield and Hellman),
188

new security flaw (NSF),
337–342, 344

NIST (National Institute for
Standards and
Technology), 192, 195,
253

Nmap (Network Mapper),
40–41, 69–70

node, 87, 95–96
node set, 164–165
noise, 48–49
nonrepudiation

canonicalization and, 205
defined, 184
digital signature for, 144, 145,

146
function of, 207
for messaging security, 190–191

Nothing permission, 292, 303
NSA (National Security Agency),

229, 251–252
NSF (new security flaw),

337–342, 344

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 373

374 Index

nslookup (Name Service
Lookup), 68–69

O
object labeling, 229–230
object manager, 229
one-way hash algorithm, 308
online validation methods,

128–134
openssl tool, 151
operating system, 229–232
Oquendo, Jose, 32
Oracle, 52, 80
Oracle 9i, 115

P
packet filtering, 216–217
packeting attacks, 35–36
parent node, 87
partition, 31–32
Passport, Microsoft, 263
password authentication, 186–190
pattern matching, 92–94
PE Verify Utility, 310
performance, 231
Perl, 119
permissions

database, 52–53
described, 44–45
by RBAC, 238–239
symbolic link attacks and, 45

permissions, .NET Framework
code access security and, 264
custom, 261, 282–283
declarative, imperative security

for, 270–271
demanding, 275–277
new set creation, 294–299
requesting, 271–275
sets, 291–293
types of, 261–262

Permissions View Utility, 310
PermitOnly override, 282
permutation operations, 193
Phrack (online magazine), 21
phreaker, 7
“ping of death”, 333
PKDS (public key distribution

systems), 195
PKE (public key encryption), 195
plain-text attacks, 112–117,

211–212
plain text, signing in, 207–211
Pond,Weld, 9

port, 216–217, 219
Post Office Protocol (POP), 187
primitive data type, 111–112
principal

authentication and, 263
manipulating identity, 287–288
in .NET Framework, 262
for role-based security checks,

288–291
types of, 284–286

PrincipalPermission, 284,
288–291

privacy, 185–186
private key

Diffie-Hellman algorithm and,
197–199

generating with openssl, 151
XML digital signature and,

145–146, 317
privilege elevation, 55–58
privileges, dropping, 55
process degradation, 29–31
Product element, 103–104
proof of concept, 58–61

automated security tools,
59–60

exploit code, 59
versioning, 60–61

protocol information leakage,
39–41

public
full disclosure to, 336
publishing exploit code to,

341–342
reporting security problems to,

333, 334, 344
public key

Diffie-Hellman algorithm and,
197–199

generating with openssl, 151
in .NET Framework, 307–308
XML digital signature and,

145–146, 175, 317, 319
public-key cryptography,

188–189
public key distribution systems

(PKDS), 195
public key encryption (PKE), 195
Python, 119, 122–123

R
RBAC. See role-based access

control (RBAC)
RC4, 196

recognition, 16–17
Red Hat Linux, 50
Reference element

manifests and, 169–171
for multiple XML digital

signature, 161–162
resource identification with,

318
of XML digital signature, 148

regular file access, 44–47
Regular Language description for

XML (RELAX), 128
remote arbitrary code execution,

53–55
remote privilege elevation, 55–58
remote privileged user access, 55,

56–58
remote unprivileged user access,

56, 57
remoting security, 305–306
reporting security problems,

332–345
exploit code, publishing,

341–342
problems of, 342–344
procedures for, 340
reasons for, 332–337
whom to report to, 337–339

Request for Comments (RFC),
336–337

RequestMinimum, 272
RequestOptional, 272
RequestRefuse, 272
requests, permission, 261–262,

271–275
research techniques, standard,

62–72
Domain Name System, 66–69
Nmap, 69–70
Web indexing, 70–72
Whois database, 62–66

resources, 248–253
. See also Web sites

revenge, hacker and, 19–20
revocation support mechanism,

231–232
RFC (Request for Comments),

336–337
Rijmen,Vincent, 192
Rijndael, 191–193
Rivest-Shamir-Adleman (RSA)

algorithm, 195–196
rodent, defined, 6
role-based access control (RBAC)

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 374

Index 375

applying in XML, 238–242
data integrity protection and,

244–245
evaluation timing, 243–244
Flask Security Architecture,

229–232
implementation tools for,

248–253
Java and, 245–248
permissions with, 44, 45
SELinux, 232–238
types of, 227–228

role-based security, .NET
Framework

in general, 283–284
identity manipulation, 287–288
principals, 284–286
role-based security checks,

288–291
role-based security permissions,

261
roles

assigned by RBAC, 238–239
state change evaluation and,

224–225
in XML document, 242

root element, 84
rootkit, 49
router, 36
RSA key, 154–156
RSA (Rivest-Shamir-Adleman)

algorithm, 195–196
RunAs function, 50
RUWF Syntax Checker,

133–134

S
“sandboxing”, 264
SATAN (Security Administrator’s

Tool for Analyzing
Networks), 13

schema
contents of, 107–109
data consistency with, 127–128
data types, 110–112
versus DTD, 106–107
pros, cons of, 124–126
validation, 203, 315
of XML document, 84
XML validation process with,

117
Schneier, Bruce, 195
script kiddie, 5–6

script kiddiot, 32–33
secret handshake, 186
secret key, 145–146
Secure Computing Corporation,

229
Secure Sockets Layer (SSL), 187
security

default behavior and, 225–226
XML digital signatures for,

149–164
. See also messaging security;

reporting security
problems

Security Administrator’s Tool for
Analyzing Networks
(SATAN), 13

security checks
overriding, 277–282
role-based, 288–291
stack walking and, 266

security context, 229, 230, 231
Security-Enhanced Linux

(SELinux), 232–238
security identifier (SID),

230–232, 233
security policies, .NET

Framework, 291–306
code group structure

modification, 299–305
in general, 291–293
new permission set, 294–299
remoting security, 305–306

security policy
Flask Security Architecture for,

229
mandatory, 227
in .NET Framework, 263
of SELinux, 233–238

security professional, hacker as,
12–13

security scanner software
vendors, 342

security tools, 59–60, 309–310
SecurityPermission, 287
Secutil Utility, 310
SELinux, 232–238
server,Web, 33–34, 42, 336–337
service-based network DoS,

33–34
service information leakage,

38–39
services, reporting problems with,

338–339, 340

session key, 198, 307
Set Registry Utility, 310
SGML (Standard Generalized

Markup Language), 80
showrev -p command, 61
SID (security identifier),

230–232, 233
Signature element

manifests and, 169
structure of, 146–147
of XML digital signature,

317–318
SignatureMethod element, 148
SignatureValue element, 148, 149,

318–319
SignedInfo element, 147, 149,

318–319
Simple Network Management

Protocol (SNMP), 41
single point of failure, 239
SkipVerification permission, 292
Sklyarov, Dmitry, 343–344
smurf amplifier, 36
smurfing, 35–36
SNMP (Simple Network

Management Protocol), 41
social engineering, 57, 65
software, database, 51–52
software, integrity of, 244–245
Software Publisher Certificate

Test Utility, 310
Solaris operating system, 44
special file, attacks against, 50
spidering, 70–72
Spitzner, Lance, 62
SSH bug, 57
SSL (Secure Sockets Layer), 187
stack overflow, 223
stack walking

Assert override and, 279
in .NET Framework, 265–266
permission demand and,

275–276
security checks and, 277,

280–282
Standard Generalized Markup

Language (SGML), 80
standard security configuration,

52
state change evaluation, 223–225
stateful inspection, 216–226

application layer gateway and,
217–219

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 375

376 Index

application state inspection,
221–223

default behavior and security,
225–226

FTP process and, 219–220
packet filtering and, 216–217
state change evaluation,

223–225
XML and, 220

storage, 31–32
stream ciphers, 196
Strong Name Utility, 310
style sheet, XSLT, 91–95
substitution operations, 193
Sun multischema XML validator,

134
Sun Solaris, 48, 335–336
symbolic link attacks, 45–47
symmetric key algorithm, 307
SYN-ACK, 34, 35
SYN cookies, 35
SYN flood, 34–35
syntax, XML document, 87–88
system-directed network DoS,

34–37

T
TclXL parser, 119
TE. See type enforcement (TE)
telephone, 7
temporary files, 45–46
third-party security system, 228
thread, 284, 285–286
TNS Listener, 52
transforms

of XML document, 204–206
XPATH, 164–166, 210

Transforms element, 148
transitional data, 243–244
tree diagram, 87
type enforcement (TE)

explained, 227–228
in SELinux, 235, 236–237

type safety, 264
Tzu, Sun, 62

U
UCITA (Uniform Computer

Information Transactions
Act), 14

UIPermission, 265–266, 280, 282
uname command, 60, 61
Unicode

digital signatures and, 118–119

plain-text attacks and, 112
validation of, 121–123
vulnerability of, 116–117

Unicode Consortium, 116
Unicode Transformation Format-

8 (UTF-8), 116, 119
Uniform Computer Information

Transactions Act (UCITA),
14

unincode () method, 123
universal resource identifier

(URI), 148, 150, 157
University of Utah, 229
UNIX system

database permissions on, 53
disk space exhaustion on, 31
elevation of privileges on, 57
permissions on, 44–45
special file attacks on, 50

unprivileged user access, 56
URI (universal resource

identifier), 148, 150, 157
user access, 55–58
user credentials, 222
user identity, authentication of,

263
UTF-8 (Unicode Transformation

Format-8), 116, 119

V
valid XML document, 106–112
validation

of ActiveX objects, 247–248
of Java code, 246–247

validation, XML, 102–134
of document or message,

124–134
document type definitions,

well-formed XML
documents, 102–106

of input text, 118–123
plain-text attacks, 112–117
process of, 117
schema, valid XML documents,

106–112
vendors

full disclosure and, 334, 335
publishing exploit code to,

341–342
reporting security flaw to,

338–340
reporting security problems

and, 332, 342–343

of XML digital signature
toolkits, 176–177

Veneman,Wietse, 13
versioning, 60–61
VS.NET XML Designer,

Microsoft, 82–86,
107–108, 110

vulnerability, reporting, 333–337
vulnerability testing, 58–72

automated security tools for,
59–60

exploit code, 59
proof of concept, 58–59
research techniques for, 62–72
versioning, 60–61

W
W3C. See World Wide Web

Consortium (W3C)
w3schools training site, 251, 252
warez, 6
warez d00d, 6
watermarking, 190
wax sealing, 190
Web browser, 33
Web indexing, 70–72
Web interfaces, 51
Web server, 33–34, 42, 336–337
Web sites

ARIS, 42
DDoS tools, 37
Free Kevin, 14
Free XML Tools and Software,

248–250
hacker terms, 3
information leakage, 41
Microsoft full disclosure

editorial, 336
RBAC tools, 248
vulnerability databases, 340
XML constructs, 85
XML digital signature toolkits,

176–177
XSL ISAPI extension, 168

well-formed XML document
document type definitions and,

102–106
rules for, 87–88
tools for, 126

wget tool, 71–72
white hat, 8–9
Whois database

name service-based, 62–65

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 376

Index 377

network service-based, 65–66
WindowIdentity object, 287
Windows 2000, Microsoft, 50, 57
Windows 2000 server, Microsoft,

308
Windows NT, Microsoft,

227–228
Windows system, Microsoft, 44
WindowsIdentity object, 285,

290–291
WindowsPrincipal

creating, binding, 284–286
defined, 262
impersonating, 287–288
security check and, 290

withholding information, 333
Wizard_Machine_Policy code

group, 299–300
World Wide Web Consortium

(W3C)
online validator of, 129–130
XML development by, 80
XML digital signature, 144,

146–149
XML schema, 128, 250–251
XPath and, 95–96

worm, Code Red, 37

X
X509 mechanism, 172–173
XDR (XML Data Reduced)

schema, 127–128
Xerces2 Java Parser, 250
XLink standard, 204
XML. See Extensible Markup

Language (XML)
XML Data Reduced (XDR)

schema, 127–128
XML Encryption DTD, 311–317
XML Parser 3.0, Microsoft, 95
XML Schema Declaration

(XSD), 108–109
XML Security Library, 176
XML Security Page, 253
XML Security Suite, 250
The XML Security Suite:

Increasing the Security of
eBusiness (IBM), 205

XML Spy 4.3,Altova, 128
XML validation form, Brown

University, 130–132
XML view, 83
XML.com’s validation tool,

133–134

XPath syntax validator, 165–166
XPATH transforms, 164–166,

210
XPathTester, 177
XPointer standard, 204
XSD (XML Schema

Declaration), 108–109
XSL. See Extensible Stylesheet

Language (XSL)
XSL ISAPI extension, 168
XSL Transformations (XSLT),

88–95, 166–168
XSLT C library for Gnome,

176–177

Z
Zalewski, Michal, 57
zero-knowledge password,

188–189
zombies, 36–37

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 377

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

AVAILABLE NOW!
ORDER at
www.syngress.com

Developing .NET Web Services with XML
Web Services provide a new level of interaction to all kinds of applica-
tions. The ability to access and use a remote Web Service to perform a
function within an application enables programmers to quickly deliver
more sophisticated applications in less time. Programmers no longer
have to create and maintain all functions of an application. Reusability
is also greatly enhanced by creating multiple Web Services that perform
functions in multiple applications, thus freeing up time and resources to
work on other aspects of specific projects.
ISBN: 1–928994–81–4

Price: $49.95 USA, $77.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

XML .NET Developer’s Guide
XML is one of the cornerstones of the .NET Framework. .NET aims to
bridge the gap between desktop applications and online applications,
and facilitate the communication of objects between the two. XML .NET
Developer’s Guide will show you how to develop XML documents and
applications for use within the .NET Framework.
ISBN: 1–928994–47–4

Price: $49.95 USA, $77.95, CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

.NET Developer’s Kit, Including ASP, C#, and
Visual Basic
This 3-book box set will help developers build solutions for
the .NET platform. The set includes: ASP .NET Web
Developer’s Guide, C# .NET Web Developer’s Guide, and
VB .NET Developer’s Guide.
ISBN: 1–928994–61–X

Price: $119.95 USA, $185.95 CAN

224_HPXML_indx.qxd 6/28/02 5:09 PM Page 378

http://www.syngress.com
http://www.syngress.com/catalog/sg_main.cfm?pid=1552
http://www.syngress.com/catalog/sg_main.cfm?pid=2062

Document3 4/3/02 4:04 PM Page 1

	Cover
	Table of Contents
	Forward
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Appendix
	Index
	Related Titles

