Digitized by Microsoft ${ }^{\circledR}$

Digitized by Microsoft ${ }^{\left({ }^{(}\right)}$

$$
\begin{aligned}
& \text { Miller } \\
& 3-M B F
\end{aligned}
$$

Digitized for Microsoft Corporation by the Internet Archive in 2008. From New York Public Library.
May be used for non-commercial, personal, research, or educational purposes, or any fair use.
May not be indexed in a commercial service.

Digitized by Microsoft ${ }^{\circledR}$

THE ESSENTIALS OF PERSPECTIVE

WITH ILLUSTRATIONS DRAWN BY THE AUTHOR

Principal of the School of Industriat Art of the Pennsyivania Museum, Pbiladelphia

DISCARDED.

THE NEW YORK PUBLIC LiBRARY 475% \% neton, lemox ame TiLCEM FW, NDATIGNE !.

Copyright, 1887, by Charles Scribner's Sons

PREFACE.

ICALL this little book "The Essentials of Perspective," because it seems to me that it contains as much iuformation about the science of which it treats as the artist or the draughtsman ever has occasion to make use of, except under the most unusual conditions.
I do not claim to have discovered any new thing, either in the principles or possible applications of perspective science. But it has oceurred to me, as I know it has oceurred to many others with a similar experience in teaching drawing, that a book on perspective, which should be exhanstive enough to redeem the study from the contempt with which it is too often treated by artists-an estimate which is, to a considerable extent, justified by such presentations of it as are usually found in the "hand." and "text-books " in common use-and yet free, as far as possible, from the technical difficulties which the unscientific mind is pretty sure to eucounter in the profounder treatises, might be of use.

If, on glancing through the book, some things are found to have been left ont which are usually introduced into a work of this kind, I ask the reader to look twice before he finds fault with the omission, as this weeding out of what have seemed, to me, messential things has been the means on which I have mainly relied in the effort to make clear the really important truths. I ilave aimed, too, to make the illustrations such as shonld seem to connect the study with the work of the artist rather than to use them as diagrams by which to demonstrate abstractions, and sucin also as might, for the most part, be uuderstood without the help of letters of reference.

It may be of interest to teachers of drawing to know that theseallustrations are of precisely the same character as those which I have used for many years in teaching perspective from the black-board; and while
pupils do not always make as good transcripts of them in their note-books as one would like to see, they make them quite good enough to fix in the mind the lesson which each is intended to convey, and find them infinitely more interesting and practical than the pure theory to which they are so often treated in conneation with this branch of study.

The reader who cares to go farther in the scientific study of perspective than I have attempted to lead him will find "Modem Perspective," by Professor W. R. Ware, of Columbia College, the best book for his purpose.

Mr. Ware was my teacher, and I have to thank him for the most that I know about the subject; and I am sure his work remains the most masterly and thorough presentation of it which has yet been made.
L. W. M.

Philadelphia, March, 1887.

CONTENTS.

CHAPTER I. FIRST PRINCIPLES GE
CHAPTER II. THE HORIZON 11
CHAPTER III. MEASUREMENT BY MEANS OF PARALLELS 21
CHAPTER IV. MEASUREMENT BY MEANS OF DIAGONALS 33
CHAPTER V. MEASUREMENT BY MEANS OF TRIANGLES 43
CHAPTER VI. THE PERSPECTIVE OF CURVES 59
CHAPTER VI. A QUESTION OF METHODS 63
CHAPTER VIII. SHADOWS 74
CHAPTER IX. REFLECTIONS 83
CHAPTER X CYLINDRICAL CURVLLINEAR OR PANORADLC PERSPECTIVE 90

Digitized by Microsoft ${ }^{\circledR}$

THE ESSENTIALS OF PERSPECTIVE.

CHAPTER I.

FIRST PRINCIPLES.

EVERYBODY knows well enough that when you look along a straight street or railway, or on a grarden or field phanted in regular rows, the lines which you see before you, and which you know to be parallel, seem to slope, or incline toward each other as if they would meet in a point if they were long enough. In other words, all parallel lines seem to eonverge as they recede from the observer. And everybody also knows, or onght to know, and must know before this inquiry can be carried any farther, that any set of parallel lines which may be in sight from the observer's position seem to converge toward a point which is exactly in front of his eye when he looks in the direction which he knows to be that of the actual lines. In the little sketch
 (Fig. 1) it will be noticed that thelinnésion mostminportance all rum in one direction, as if they would meet and disappear in one point, and drawings of this kind are sometimes said to be in one-point perspec-
tive. Sometimes it is called Parallel Perspective, perhaps because the lines of most importance are all parallel, perhaps becanse one end or side of each ohject represented (in this case the end of each house) is parallel with the flat shect of glass, or paper, or what not, on which the picture is supposed to be drawn. Please note the sketch a moment and try to realize the exact conditions under which it is supposed to have been made. Anyone who lives in a city can reproduce these conditions any day. Get possession of one of the forward seats in a horse car with the window closed and you have everything you want: The window in the end of the car is to be regarded as the surface throngh which you get the view and on which you might make a picture of it.

This picture (Fig. 1) looks just as if it had been drawn on such a vertical plane (or pane) of glass as the window of the car, which pane of glass wonld have been parallel with the nearest end of every house which appears in the picture, would it not? Notice, too, that with a few umimportant exceptions such as the line of shadow across the street, the edges of the lantern on the street lamp, and the lines of the grables of the dormer windows-of the church too, if you can make them out-notice that with these few exceptions every outline in the picture is either exactly parallel with that edge of the olject for which it stands or it is drawn toward a point which is directly in front of the observer's eye when he looks straight along the street. You will notice, too, that this point is a little to the left of the middle of the street and somewhat higher than the heads of the horses on the coal-eart, from which I hope you will be able to infer that the observer, in order to have obtained such a view as this, must have been standing a little to the left of the middle of the street, and on something high enough to emahle him to look orer the heads of the horses ; and if you understand this you will also understand that the whole character of the pictura would be changed if the observer were to move his heal, showing that the apparent direction of the sloping lines does not depend at all upon the position of the buildings to which they belong, but simply upon the position of the observer's eye. If this is mover, the point toward which the lines incline (and which we may as well begin to call the vaniohing. point, for that is its name) seems to movetoo; if he were to approach either curbstone, this point would
approach the same curbstone; if he were to raise or depress his head, the vanishing-point would be correspondingly raised or depressed. This may be demonstrated in a rery striking way by noting the changes which take place in the view one gets from the window of a moving railway car. The lines of the fences, or roads, or rows of planted corn which run straight away from the track along which you are moving seem to turn on a pivot as you pass them, and to point continually toward a point on the horizon, which seems to more along with you.

Now, what is true in this simple street view is true of any other. I have dwelt a little on this one because it is very simple, and the lessons it has to teach are easily leamed. But simple or not, it contains about everything that is necessary to illustrate every principle of the science by. We shall see how rarionsly these principles are applied more readily ly

Fig. 2. means of other illustrations; but the principles themselves conld really all be demonstrated hy means of this one, and nearly all the most important pictorial work that is ever done is in this same simple elementary "parallel "perspective.

You can, for that matter, draw anything according to the principles of parallel perspective; things seen cornerwise, as this sheepfold (Fig. 2) is, or presenting any mumber of ohlique lines, like the corner of the cottage roof (Fig. 3), just as well as those seen endwise, as is the case with the street in Fig. 1. But the way to do this is something whichilivilldty to show a littled further ome at may be well for the
present to say that the term is msually applied only to such views of oljects as Figs. 1 and 4 illutrate, and that objects which, like the sheepfold, present angles but involve the use of horizontal lines only, are said

Fig. 3. to be in "angular" or "two-point" perspective; while views which, like Fig. 3, consist mostly of ohlique lines, and so wonld involve, if all the lines were drawn to their vanishing-points, the use of at least three of these, are said to be in "oblique," or three-point perspective. These terms really mean next to nothing, as there may he oblique lines in the simplest views, such as those of the dorner windows in Fig. 1, whose vanishing.points are always to be found if anyone wants them, and as even in such cases as that shown in Fig. 3, there are always ways enough of doing withont these points in practice. But the terms are in common enough use, so that I was afraid the reader might think I had omitted to mention some very important matter if 1 left them out - a consideration, hy the way, which has ine duced me to insert a good many other things whicl, as fir as understanding the principles of perspective is

concerned, might as well have been igmored altorether. Firss 4 , and 6 illustrate all three of these phases of the subject as applied to one simple olject. You see there are three vamishing-points to the lid alone in Fig. G.

What is true, then, of the view obtained through the forward window of the horse-ear is true of that which any window commands, namely, that all lines traced on the glass in such a way as to form true pictures of the objects seen through it will he found to be either parallel with the edges of the objects themselves, or converging toward points which are directly in front of the observer's eye when he looks in the direction in which the edges of the objects are known to rum.

Anybody can understand this at a glance in cases where the only lines which have a vanishing. point run straight away from the olserver, as in Figs. 1 and 4 ; but it is not quite so obvious when the lines to be studied rum in other directions, and the vanishing-points to be located are more numerous. A little experimenting will, however, convince the student that the law just stated is as true in the one case as in the other.

If he will seat himself before a window which

Fig. 7. commands a view eontaining a building or two, not too far away, and which is fitted with a sereen of wire gauze to keep out the flies, he will have the best possible appraratus for conducting these experiments; for he can not only draw on the gauze, with a hit of chalk or chareoal, lines which cover, and so give the exact apparent directions of, the edges of the objects he is stndying. but, by tying hits of thread to the points on the sere where he locates his vanishing-points, and bringing the other end of each threat to his eve, he will be able to demonstrate, heyond a peradventure, the truth of the rule just stated, that all the lines in a picture either have just the same direction as the corresponding lines in the object itself, or are drawn toward vanishing-points which are to be found by tooking in the direction mitich the lines of the object are known to
follow-for the direction of any one of these threads will be found to be exactly the same as that of the corresponding line or edge of the olject represented. Fig. 7 and those which immediately follow it will illnstrate the points which I wish you to establish for yourselves at the window screen.

You will soon find when you hegin to draw on the sereen, that you can only represent what is seen by one eye, and that you have to keep your head pretty still, in order to accomplish anything even then. It is a

Fig. 8. great deal better, however, for you to find these things out for yourself; so, if you please, they will not be insisted upon here.

A bit of eardboard, or very thin metal, with a little hole pricked in it to look through, fixed firmly in an upright position, about two feet in front of the screen, will be of assistance in lieeping the "station-point" (for that is what the position of the observer's eye is called) stationary.

The limits of your picture are as far to the right and left, or up and down, as yon can manage to see through this little hole. You may turn your head as much as you have a mind to, and everything you may lave seen in books on perspective about the necessity of keeping the eye fixed, and about perspective not being true except within a certain distance from the centre of your field of vision is all humbug. Such statements hare bothered students of perspective more than a little before now. Don't let them bother you.

The "field of vision" is a term applied to the whole space which your view from the station-point includes. The point directly in front of your eye, when you look squarely at the screen, is manifestly the centre of this field, and is usually called the centre of fison. (1) Writers on perspective have sometimes
FIRST PRINCIPLES.

called the things which have just been defined by different names, hunt these which I have given are the most common, and are, I think, expressive enough to be easily remembered.
Now, if one were standing directly behind the observer whose position is indicated in Fig. 7, he would see that, with relation to the ranishing-point found in carrying out the lines of the picture of the church, the observer's eye, or "station-point," would be as it is shown
The relation of the station-point to the screen, and of the object represented to both of these, is stated diagrammatically in Fig. 9.
Fig. 10 shows how the case would have stood if these relations were altered so as to make the screen stand obliquely as compared with the sides of the church, instead of parallel with the front of it as
The dotted lines give in both cases some idea of the size of the drawing on the screen, which in the last instance would be something like Fig. 11.
Remember that all the diagrams are good for is to call your attention to the fact that the line from the station-point to the vanishingpoint will, in every case, be exactly parallel to the lines of the object with which this point is associated.
If the window at which your experiments
the, Position, of

- Statior:Toint
 Fig. 9.

Fig. 1.

of a flat, open country, where there are no hills or near woods in sight to obstruct the line of the horizon, you will find that all the horizontal or level lines which are anywhere in sight have their van-ishing-points somewhere in this horizon.

Do not confine your observations to the level lines however; it is especially desirable that you should pay a good deal of attention to the obligue lines which are to be found in roofs, lattices, the braces of open timber-work, etc., and it will, perhaps, be just as well, after all, if your window does not command a view of the horizon ; for you might think too much about it if you had it, and so might fail to observe other things which are of quite as much importance.

Ouly it would be well to verify for yourself at some window which did command an unobstructed view of the sea or plain, the statement just made, that the ranishing-points of all level lines are to be found in the horizon.

After that you can, in studying any view whatever, locate the horizon with perfect confidence by simply carring out until they meet any two lines drawn upon your screen to represent parallel horizontal lines. Their vanishing-point will, of course, indicate the place where the horizon is.

You can draw fairly well on the window-pane with a brush of color, and fix the threads to the glass with wafers ; but the wire screen will be found to be much the most convenient if any considerable cimber of lines are to bedrarn and tested.

If you will convince yourself liy a little of this kind of experimenting of the truth of the following statements, nothing that this hook contains onglit to give you much trouble afterward.

Perspective science is simply the application to the optical laws which these experiments will determine, of a little very elementary geometry; certainly not more than any schoolboy ought to know by the time he is fifteen year's old."

Establish, then, to your own satisfaction, these truths hy actual observation:
First. All lines or edges in nature which are parallel with your pictureplane are accurately represented by lines having the same directions as themselves, and as any number of such lines or edges that happen to be parallel to each other are still parallel in the picture-plane, they have no vanishing-point at all. Thus the pieture of a rertical line will always be vertical, and the slope of any gable, which squarely faces your picture-plane, or your picture-plane indefinitely extended, will be just the same in the picture as it is in reality.

Second. When there are two or more such lines or edges as these which are equal in length, the pictures of them will be equal to each other too, and any regular figure which they may form in reality will appear just as regular in the picture. The cart-wheel in Fig. 1, for example, is, or ought to be, perfectly round, and the front of the box in Fig. 4, is a perfect rectangle.

Thirl. All lines or edges in mature which are not parallel to your picture-plane are represented by lines which have a different direction from that of the lines or edges themselves, and which incline toward a point which may always be found on the picture-plane if this is sufficiently extended.

Fourth. This point is the picture of the place where the line itself would disappear if extended indefinitely.

[^0]Fiftl. This point may he established by means of a line from the statiou-point to the picture-plane drawn parallel to the lines in the object which ranish at this point.

Sixth. This point being common to all lines running in that direction may also be found by drawing the pictures of any two of them and extending them until they meet.

Seventh. The vanishing-points of all horizontal lines will be found in the horizon.
Eighth. The lorizon will be represented by a level line across the picture, which line will be just as high as the observer's eye. Note this carefully, and make sure of the fact that, however high up you may happen to be, you do not have to look down to see the horizon.

But this matter of the horizon is one of sufficient importance to be given in a chapter by itself.

CHAPTER II.

THE HORIZON.

0
UR-observations at the screen have shown us, anong other things, that the horizon, whether it is aetually in sight or whether its position is determined ly finding the vanishing-point of any set of horizoutal lines, is always apparently just on a level with the ohserver's eye, however high or however low that may happen to be; but observe other illustrations of the same phenomenon.

Look at the lines of the bridge in Fig. 12, for example. All the horizontal lines below the eye that are not actually parallel with the horizon seem, you see, to slope upward toward it, while all those above the eve seem just acobviously to slope downard towarl it, showing that the only place where the lines do not slope one way or the other must lee just at the level of the eye.

Fig. 13 is introduced merely to show that all the lines to be sturliel may be athove the aye. We berome so arcustomed to thinking of the horizon as the alge of the earth which is beneath our feet, that it is sometimes nee-

Fig. 12. essary to be remimed of the fact that it is the vanishing.line of encrythiny that is level: whether it is under our feet or over our heads.

Digitized by Microsoft \circledR^{\circledR}

The cloud surfaces are often just as level as a plain and present the same perspective effects. Shelley's-

> "Glides glimmering o'er
> My fleece-like floor

By the miluight breezes strewn "-
show that he had observed this more accurately than a good many land-
 scape painters have done.

Now, when you think of it, any lerel line of whose existence it is possible to conceire may he thought of as drawn on a plane surface or fioner, may it not? and if you imagine any horizontal line which you have occasion to draw as lying in such a plane, or on such a floor (which means the same thing), you can easily see that the only place where the line and its

Fig. 14. ranishing-point and the flom itself would, all he lost in one straight line would be that in which the floor on which the line was drawn happenel to hel seen edgewise, as ose of them is in this little sketch of the obser.
vatory (Fig. 14). And so you can always locate the horizon accurately if you can manage to get a glimpse anywhere of a flat surface which is seen ellgewise. Wherever in your picture or in the view which forms the sulject of it, a lerel surface is seen edgewise, it will appear as a straight line which exactly coincides with the horizon.

Now, if this simple and very obvions fact were always borne in mind it would enalle artists to avoid some rery awkwad mistakes. Fig. 15 shows one of these mistakes. It occurred in a picture shown at one of the regular exhibitions in Philadelphia a little while ago.

I have not copied the picture (the artist would never lave forgiven me if I had done that) but I have copied the mistake which it contained ; slightly exaggerated it may be, hut certainly not much. It was just such a subject as this-and it was not prainted by a beginner either, but by a rery gool artist, else I would not hare selected it - long lines in the buildings on both sides of the pieture ran, each set toward its proper vanishing-point, but the two

Fig. 15. vanishing-points were unfortmately not
on a level, and so the horizon could not have been level itself, as it must have been if it had coincided with a horizontal plane seen edgewise. Such a plane in this case as you see, wonk pass through the tops of the windows of the building on the right if we regarl the left ham vanishing-point as properly placed.

A very scientific and comprelnensive way of regarding all the lines which occur in a picture is to think of them with reference to the planes in whith they lie. This is sometimes a little difticult where the lines are isolated, but it will be fomm rery insefinzind cases where the Glanes are as realily observed as the lines
themselves, as they certainly are in the sketch of the hritge (Fig. 12), m, better still perhaps, in this one of an elevated railroad (Fig. 16).

In both of these all the lines of any importance are either in horizontal or in vertical planes-and what I want you to notice about them is, that the vanshing-points of the lines in the rertical planes hear just the same relation to each other as those in the horizontal plames do; that is, they are always to be fomm

Fig. 16. along a line which would coincide with one of these same planes scen edgewise if there shouk happen to be sueh a plane in the right place. In Fig. 16, as you see, the vertical plabes are purposely given more prominence than the others and one of them is conveniently seen elgewise, and the fact noted above is apmarent enongh. The line in which the van-ishiug-points are situated is vertical in this case, of course, becanse a vertical plane seen edgewise camot appear like anything except a vertical line. It is erqually clear, I hope, that however many different directions the lines of the hraces in the supports to this raihoad might have harl, the ranishiug-points of all of them must have heen in this verti(al line.

Experiment with this drawing, or liy means of the screen with any view that will give you the same kind of lines, and see if you can make the vanishing. points come anywhere else except along this line.

Now, to show how easy it is to overlook so obvious a fact as this, I give, in Fig. 17 , a cut which is copied exactly from one of the illustrations to a series of articles on perspective which appeared in one of the best of our art magazines ouly the other day. It is supposed to show how to draw a honse with a hip-roof when you want to be very accirite arontitiv Microsoft (A)

What the anthor of this instruetive diagram knew about perspective was that pictures of parallel lines have a eommon vanishing-point, but what he failed to notice was that the gable end of his house was a vertical wall! If he had seen this lie must have known that one vanishing-point would be right over the other.

It las not seemed to be worth while to make many of the illustrations in this book large enongh

Fig. 18.

 doubts about very readily by laying on a ruler. If he cares to test the longest inclined lines in Fig. 17, he will find them still farther out of the way than the short ones are. The way in which the drawing should have been matle is shown in Fig. 18.

As printed in the magazine the illnstration containerl another error, for the lomzontal lines which run off to the right are deseribed as haring started to go "to the vanishing.jemint," a destination which anyborly can see they will never reach, as they are perfectly parallel in the diagram. Fig. 19 shows that what has just been observed regarding horizontal and rertical planes is just as trne of thone which are ohfitue. (B)

The roof of the porch is seen edgewive and its edge coincides with the line in which the vamishing-points of all the lines in the other roofs, which are parallel with this one, are situated.

I wish you would take a ruler and test this drawing and see that what has just heen stated is true, and that it makes no difference at all whether some of the lines in the roofs are horizontal or not.

No matter what their direction may be, they lie in ollique planes, and that is enough. You will find their vanishing-points in the ohlique line of which the edge of the roof of the porel forms a part.

If you care to think of these horizontal lines as lying in horizontal planes too, you are quite at liberty to
 do so, and you will find their vanishing-points in the level horizon just where the ollique line crosses it.

There might be roofs having half a dozen different inclinations in the picture, hut as long as their horizontal etges were all parallel, the ollique lines which indicated the actual slope of the different roofs would all cross each other at the same point in the horizon. Fig. 20 illustrates this. The buidings in this sketch (Fig. 20) all stand either parallel with, or at right angles to, each other, so that all the horizontal lines in the picture ranish either at the point in the horizon where the other lines cross it, or at one other which is outsicle the picture, to the right.
All the roofs have the same slaut as those of the honse in the immediate foreground ; that is, they are all just as steep as one or the other of these, but as some of the buidings stand at right angles to this one, of course the lines of some of the roofs have other vanishing-points than those employed in drawing the nearest ones. In studying the sketch, do not mind any of the roofs except those which are parallel to those of the nearest house.

These are the left-hand roof of the fowed, which is parallep to the left-hand roof in the foregromer, as
it is to the left-hand roofs of the big building close beside the tower, and the right-hand roof of the low, dark building in the middle of the picture, which is parallel with that part of the roof in the foreground which comes nearest to being: level.

Now mote the fact, please, that most of the horizontal lines in the picture are just as obsionsly in vertical plames as in either horizontal or oblique ones, and that their vanishing-point is in a rertical line just as much as in either of the others; and that the ramishing points of the roofs of buildings which face the same way as the big building to the extreme right does, are to be found somewhere up or down this vertical line.

The same state of things exists at the ran-ishing-point which is not shown in the picture, and you conld not have a better exercise than to make a tracing of this drawing, aud, having fastened it to a drawing.bourd, to go over it with a ruler and find all the vanishing-points that were used in making it.

Notice, too, that one side of the chimmey to the left, is seen elgewise on the vertital line
 of most importance, and that the top of another chimney is seen edgemise and wormeriles with the horizon.
 rections of the different phanes, bear exactly the same relation to the phanes which they represent as the horizon bears to the horizontal planes. It has been suggested * that all such lines
 which seems to be quite permissible, be called" horizons" too.

It will simplify the whole business very much if we adopt this name for them : and
 so, wherever it has seemed desirable to indicate ally of these lines by printing names on them, you will see that they have heen

Fig. 23.
called horizons, and they will hereafter be mentioned by that name in the text.
Λ very interesting class of perspective phenomena is that represented by planes which incline either up or down, directly in front of the observer. The inclination has no other effect on the perspective calculations involved than

Fig. 25.
to raise or depress the original horizon with the vanish-ing-points which happen to be situated in it. The sketches of a box given on page 18 (Figs. 21, 22, and 23) show this, the original horizon being indicated as the "first horizon" and the others as second and third in the order in which they are employed. In this particular case it would not be necessary to have these horizontal "horizons". at all-that of the vertical plane in which the end of the lid moves up and down answering every purpose-but it might be convenient to have them sometimes, and so their positions are indieated here.

Suppose, for instance, that instead of the box-lid shown in Fig. 23 we had a roof to draw covered with slates or tiles, then the ranishingpoints of the edges of these wolfd be

Fig. 26.
somewhere in this "third horizon." The effect is shown in Fig. 24. The upper horizon in this figure is numbered "third" to correspond with Fig. 23 for the sake of the comparison just suggested ; but in this view of a strcet in Tille Franche (Fig. $\varrho 6$, or rather in the little diagran, Fig. ϱ^{2}, which explains the construction of it), the two "horizons" are nmmbered in the natural order. It would only have confused this diagram to draw the vertical "horizon," Jot you will sce that the two principal vanishing-points would be in such a line if it were to be drawn.

Notice that all the level lines in the picture run to vanishing-points in the original or first horizon, while the lines of the street, being inclined, vanish ligher up. 'Toward the top of the picture the street turns to the left, but you can see by the diagram that the slope remains the same, becanse its ranishing.point is still in the same "horizon." It only remains to be said that the little street crossing the picture horizontally near the bottom is level, and the slight bend in the gutter in the middle of the street, which shows plainly enough in Fig. 26, has been left out of the diagram for the sake of simplifying it.

CHAPTER III.

ONE CLASS OF MEASUREMENTS.-THOSE OBTALNED BY IIEANS OF PARALLELS.

THE principles of perspective have thus far heen considered with reference only to the direction of the lines of the picture. It remains to consider them as applied to fixing the sizes of the objects represented. In the first place, let it be clearly understood that the only measurements which are of any consequence to the draughtsman are relative measurements. As far as the artist is concerned, he never thinks of any others ; but architects and others who work from plans and elevations which are drawn to scale do indeed use the actual measures, because in their case that is the most convenient way, but even then the actual measures become relative as fast as they are applied to the drawing, and these last are the only ones which appear in the result.

For the term "drawing to scale," an expression constantly usel in comnection with the construction of geometrical plans and diagrams, has absolutely no significance when applied to a drawing in perspective. You may draw two or three lines in it by scale if you wish, lut all the others will have to be measured by means of these; and even the first two or three may be put in just exactly as well without reference to any scale at all, and, indeed, much better, as far as producing a goorl effect is concerned.

No one can tell in looking at a perspective dratring whether a building is twenty feet high or fifty feet, except by comparing it with some other object for which we carry a fairly accurate standard in our minds. Steps, for example, are of ahout the same height for all kinds of buildings, and furnish a pretty good standard by which to measure other things; and lamp-posts, gate-ways for foot-paths, etc., serve a similar purpose. The commonest and surest standard of heights is, however, the hmman figure. The horse answers pretty well, hut you are not so sure of him. A ponythateasily me mistakenforthorse, but a child will never be mis-
taken for a man if he has been drawn in any respectahle fashion; and so the magnitudes of a picture become intelligible the moment the human figure is introdnced.

Then, a word regarling the amonnt of measuring which it is necessary to do will be in order. Students sometimes give themselves a great deal of unnecessary trouble about this.

You cau, of course, space off with mathematical precision the wilth of every monlding, and the size of every ornament, in the cornice of the building you

Fig. 27. want to draw-you may even determine exactly toward which point of the compass the weathercock is pointing, and the length of the sparrow's tail on the point of the gable; but if you are really trying to draw the huilding you will not trouble yourself about these things, or rather, if you cau draw it at all, you will settle all such details accurately enough without resorting to mechanieal methots. Not only is it umecessary in practice to determine with precision the measurements of insignificant details, but the habit of doing so has often liad the effect of diverting the mind from the more important phases of the science, and even of discrediting it altogether. It is hard to account for the size of the bughear which this study has grown to be, among students of art, on any other ground than that of the gradual obscuring of the main questions which it presents by the lost of mimportant, although often amusing, ones which suggest themselves to the student. One who lias mastered the principles of the science thoroughly often finds the solution of such problems extremely diverting ; but they are very perplexing to the beginner, and should not be allowed to embarrass him in his effortito grasp the central, and only essential, truths.

Two kinds of measurements are employed in making pictures. The first enables us to determine the apparent size of an object with reference to some rery obvions dimension-its height, for instance ; the other relates to the foreshortening of objects, and to fixing distances between them, along lines which rum to it ranishing-point.

The two processes are quite distinct, although they may not seem to be so at first. Look at Fig. 27, for instance. It is quite a different, and a very much easier, matter to determine how high one driver's head ought to be, as compared with the other's, than it would be to measure the distance between the two. Now, the length of the house might be compared with that of another one which was known to stand parallel with it-supposing such a one to have appeared in the pictureby just such a process as that employed to determine the relative heights of the two men; but the width of the end of the honse - which, as you see, faces the road-would have to be letermined by the same method as that which would be employed to measure the distance between the carts.

Fig. 28.

The same is manifestly true of the spacing of the posts in the fence, or of the widths of the windows, and, generally, of all distances which one has occasion to measure along lines which are said to run "into the picture," because they go to a van-ishing-point.

The same thing is shown in Fig. ㄹS, where it is perhaps a little elearer still, as only straight lines bave
been employed in the lines rmming "into the picture;" and as the widths of the walls and the pathway are indicated by lines parallel with the picture-plane, the measurements are applied to them as well as to the height of the two figures, and in exactly the same way.

The construction in these tro illustrations is precisely the same as that in Fig. 25, except that in these the slope is downward instead of upward. In all such cases as those just given, the only mathematical principle insolved in making the measurements is the very simple proposition-as nearly self-evident, perlaps, as anything can be-that parallels between parallels are equal. In both these examples the lines representing the height of the oljects are known to be parallel to each other, because

Fig. 29. they are both rertical, and the line throngh the top of both is known to be parallel to that through the hottom, because it has the same vanish-ing-perint; and as parallels between parallels must be equal, the height of the olject which is farthest off must be aceurately indicated by the vertical line which is nearest to ns, and that is all there is to be said about it.

The line on the grond is the first one to be drawn, because that will give the ranishing-point whenever it cuts the horizon of the plane in which it lies. This point happens, in Fig. 28 , to lee the same point as that used in drawing the inclined walk, but that is only because the line through the feet of the two fignres is parallel to those of the walls at the sides. In the same way, the lines ruming downhill from one cart to the other, in Fig. 27, are parallel to those of the fence. These two figures illustrate the principle only as appliel to the measmement of lines which are parallel to the picture-plane; but as far as measuring one line by another which is parallel to it is concerned, the rule applies to any others just as well. You are just as sure, for example, that the railroal-ties in Fig. 29-wthat part of them, at least, which lies between the rails-are all of the same length, as you are that the fence-posts are all of the same height.

Observe that this does not contradiet what was said on the preceding page ahout the impossibility
of measuring distances by this method along lines which run to a ranishing.point. Strictly speaking, we do not measure the ties in Fig. 29 at all-we only know that whaterer the length of one of them is, that of

Fig. 30.

Fig. ${ }^{1}$ r.

Fig. 32.
 all the others is the same. Figs. 30, 31, and 32 illustrate in a general and abstract way the truth of the proposition just stated. As long as the dotted lines in either figure are parallel, the lines between them, heing also parallel to each other, must he equal to each other in length, whatever the direction of any of the lines may be.

Fig. 33 is Fig. 30 scen in perspective, except that the short lines in it are evenly spaced, to correspond with the railroad-ties shown in Fig. 29, while in Fig. 30 these spaces are irregular.

All this seems very obvious and simple, no doubt, but it is often overlooked by artists, and most of the mistakes which are usually made are violations of just such simple rules as this. The measurements in Fig. 34 are copied carefully from a drawing made by the artist himself of a picture exhibited at the Pennsylvania Acalemy a few seasons ago. The actual forms of the picture are not copied, for ohvious reasons, but every measurement indicated here is taken very carefully from the original rork.

I wish the student would study this little picture long enough to sat-

Fig. 33. isfy himself regarding the importance of the principle which it is designed to illustrate. The error it contains is a very common one, and disenssions abont it sometimes become extremely perplexing. But I want the reade tifsitisfy linnselfioy dittle reflection that it really a rery easy
matter to correct it, and that there can be no possible excuse for him if it ever occurs in his orn work. Please notice that, as the whole foregronnt is olviously intended to le lerel, a line from the feet of the figure through any one of those belonging to the cows must be a horizontal line; and being horizontal, it would have its vanishing-point in the horizon-which, happily for us, is in plain sight. It is only necessary, then, to draw

such a line, and to continue it until it euts the horizon to find the vanishing-point, and then to remember that any line that vanishes at the same point must he parallel to this ne.

If such a parallel is drawn at that part of the cow's back, in Fig. 34, which is directly over the feet through which the first line passed, it will, as you see, cut the old man's legg about half-way up the thigh, showing that if the cow were standingleside fan lierback wond come no higher than this.

The size of the house is best indicated by the line throngh the top of the old man's head. Imagine him walking along the line on the ground until he reaches the house, and you will convince yourself that he is almost as tall as the house itself. Fig. 35 shows how the mistake might have been corrected without changing the size of the figure.

Fig. 35.
Fig. 36, a tracing from a photograph of Raphatels cartoon " Panl preaching at Athens," is introduced to show how the same test may be applied to drawings in which the objects to he measured-one by means of another-are not on the same level. The principal figure in this composition is standing on a raised platform, three steps higher than the level of the parement onf hich lis Cadichet io (R) grouper. As he is standing close
to the edge of the top step, however, it is a very easy matter to find out just how much these three steps amount to, and so to locate the level of the parement at a point directly under the preacher's feet. Then a line from this point through the feet of any one of the figures standing in the street must be level, and its

Fig. 36.
vanishing-point would be found as in Fig. 34. The horizon is not in sight, it is true, but it can easily be located by carrying out any two horizontal lines in the picture until they mect. Then a line through the second man's head, parallel to that through his feet, enables us to compare his height with that of the principal figure.

Fig. 37 gives this business of the measurement ly itself. Raphael's drawing is very accurate, as you see, the preacher being very properly represented as about half a heal taller than the little man on the pavement, who has been selected to compare him with. It is not always, however, that even the work of the

Fig. 37.
masters will bear such a test as this. Fig. 38 is traced from a photograph of Tintoretto's "Presentation of the Virgin." It has been treated in precisely the same way as the last picture ; and if the comparison of one figure with another is not quite so direct is in theother caseritcisony becanse all the figures are on steps, which are, moreover, eurved instead of straight.

That the nearer figure is lower than the farther one, insteal of higher, will, I hope, not give the reader any trouble. It is to be noted that she is lending over a little; and allowance has been made for this in the

Fig. ${ }^{38}$.
diagram (Fig. 39), in which lines showing the height of the two figures are placed side by side. The painter may have had a very good reason formakingethe wonnii orhosis lialfiway up the steps rather more than a head taller than the one at the bottom; whether he had or not does not form the subject of the present
inquiry, which is only concerned with establishing the fact that she is unquestionably considerably the taller of the two-and on the face of it, taken in connection with other peculiarities of the picture, it does

Fig. 39.
look as if the master had been just a little careless in his drawing. In these last illustrations the proposition that parallels between parallels are equal is exemplified only as applied to measuring the heights of objects; but the reader will remember that in Figs.gitato horizontal measurements (the widths of the pathway,
the walls, and the railroad) were determined in the same way. And, indeed, by far the greater number of measmrements which the draughtsman ever has occasion to make are made by the application of this very simple rule. Still there are some others in every drawing which lave to be determined, if at all, in some other way; and it is mainly becanse it enalles us to accurately determine measurements of the kind which we have yet to consider that perspective is to be dignified with the name of a seience at all.

These other measurements, which relate to what is known as "foreshortening," one learns by practice to determine with considerable accuracy by the eye alone; so much so that an artist hardly ever takes the trouble to fix them in any other way, except in the case of subjects where there are very pronounced architectural features. Even the arehitect soon learns to sketch his building so nearly right that only a few of the more important measurements have to be corrected by mechanical means; but, as the Kentuckian felt about his revolver, which was only for an occasional emergeney, the need of knowing how to make such corrections is pressing when it actually oceurs.

We will consider this part of the subject in a chapter by itself.

CHAPTER IV.

another class of measurements.-Those obtained by means of diagonals.

IN approaching the suhject of foreshortening, or the measurement of lines which run to a vanishing-point, we find that here, again, it is possible to divide the subject, and to treat the laying-off of actual dimen-sions-as the length of a house, for instance-in one way, and the dividing of distances already obtained in quite another way; one, too, that shall lee quicker and more convenient.

In Fig. 40 the honse, as a whole, was simply "sketched," which means that the relation of the length to the depth, and of the height to either of the other two dimensions, was determined by the massisted eye. Whether any one of these measurements is a little wrong or not is a matter of very small consequence, and any error of this kind that may exist in the drawing would probably not be detected, even if the picture were compared critically with the house itself-on the spot; but an error in the spacing of the windows would be quite a different matter.

There are six openings in each story, set regularly along the front of the house, so that the centre lines of these openings divide the front into seven equal parts; and the drawing wonld look badly if these equal divisions did not diminish in regular order as the building recedes from the eye of the observer. All that was necessary, however, was to accnrately locate these six centre lines, as the windows may readily be sketched with precision enough after this is accomplished. © This is easily done by means of a diagonal across the house-front.

Everybody knows that if you divide the opposite sides of a parallelogram in the same way-that is, in such a manner that lines connecting the corresponding points in the two divided sides shall be parallel to

each other and to the other two sides of the parallelogram-everyborly knows, or can find out by a moment's reflection, that these parallel lines aeross the figure will divide its diagonals in just the same proportion as that in which the sides are themselves divider.

Now, in Fig. 40 the two ends of the front of the honse are divided into seven equal parts, and lines connecting the points of division divide the diagonal in the same way. Then vertical lines through the prints in the diagonal indicate the centres of all the openings. It would have been just as well to divide one end of the house, and to draw the horizontal lines to the vaishing.point, if this had not been so far away that it would have been more inconvenient to use it than it was to divide the other end of the house.

If the centre of the door does not seem to agree with those of the windows in this drawing, it is hecause the archway projects somewhat leyond the line of the house-front; for this reason the doorway has been omitted altogether in the little diagrim, which gives the construction of this illustration by itself.

Measurements may be set off in the same way on any

Fig. 4 r. inclined line-the edge of a roof, for example-whether you have occasion to regarl it as a diagonal or not. And such lines are often used in drawing stairways, etc., as is shown in Fig. 41.

Divisions of surfaces into any even mumber of parts are usnally made by drawing both diagonals. The diagram in Fig. 40 shows how these were nsed to locate the points of the gables, those in the dormer windows as well as those in the main roof.

Fig. 42 shows how a surface may he asifteadily divided hito quaters, eighths, ete., as into halves, merely
liy increasing the number of diagonals. Now, as you increase the number of these diagonals, by adding those of the rectangular spaces into which the smface comes to be divided, yon notice that these diagonals form other sets of parallei lines which wonld have their own ranishing-points in the "horizon" of the plane in which they happened to lie. Carry out the three diagomals in Fig. 49, and see if they do not meet in a point which is directly under the vanishing-point of the horizontal lines.

Fig. 42. We shall find that this vamishing-point of diagonals can be made to do good service in determining measurements, if we only know to what kind of figures the diagonals which ranish there belong.

Suppose, for instanse, that you knew the end of the barn in Fig. 43 to be, leaving off the roof, a square. To state it as such wonld manifestly he the same thing as saying that the lower edge of it, where it rests on the gromel, was just as long as either of its rertical edges. So that it might bave been measured in the first place by drawing the diagonal from the toj, of the nearest vertical edge down to the vanishingpoint of diagonals, if we had had this point to begin with.

By drawing such another dingonal from the top of the farther vertical elge of the l,uilding, yon wonld measure off the same length on the ground-line again, and the operation might be continued indefinitely, or at least until the spaces in your drawing hecame so small that you could not work any longer. You wonld always have something left to measure, however, and theoretically you might go on laying off these rlimensions forever: The ice-honses in Fig. 43 are measured in this way; the only difference between these measmrements and those in Fig. 42 being that the end of each ice-house is twice as high as it is wide, so that each diagonal measures off the width of two houses. A horizontal line across the bouses half-way up the ends of them cuts each diagonal in two, as explained on page 35, Fig40yitized by Microsoft (\square).

The case is just the same when you have horizontal squares to deal with as it is with these vertical ones. You have only to locate on the pavement, floor, ceiling, or

Fig. 43. any other horizontal surface that may be convenient, a figure which looks as you think asquare ought to look in that position-one side of it forming part of the line you wish to measure, and another side, which joins this one, lying parallel with the horizon. (Notice that this is the case in Figs. 42 and 43, where the only horizon employed is verticil.)

Do not give yourself any trouble about the proof of this figure being really a square-we will make that all right very soon; just make sure that the opposite sides are parallel-two of them you can draw with a "T" square, and of course the other two will go to the vanishing-point and your square will do well enough. Then drav the diagonal that would comespond to the one user in Fig. 42, and, having carried it out to its vanishing-point in the horizon, go on with the measuring as in Fig. 43. The process is illustrated in Fig. 44.

The squares employed may, of course, have some connection with the objects represented, or they may be merely supposed to exist in order to serve a temporary purpose in fixing measurements, and the diagonal of

Fig. 44. one hig square may often be made to to the work of several smaller ones; pavements, however large, which are mate up of square figures being usually drawn by means of very
few measuring-lines, as shown in Fig. 45. These little squares are often very useful, too, to get larger meas. urements by ; for, supposing their sides to represent feet, or

Fig. 45 . any other unit of measurement, you have only to count off as many of them as yon want in order to outain the distance re-
quired. Indeed, as we shall see by and by, it cousti.
tutes a very convenient and fairly complete "method" of perspective, especially in the case of figure-pictures, to rule off the whole of the ground which is to show in the picture in just such squares as those in Fig. 45, the ohjects represented heing all sketched in with is free hand, as can be done easily enough, the squares fumishing a perfectly accurate scale for any part of the picture.

The location of the vanishing-point of diagonals never need give you any troulle; whatever looks right for a pretty grod-sized square somewhere in the foregromid of your picture will be right for the rest of the drawing.

It need nerer give you eren the trouble of being too

Fig. 46. far away to make its employment convenient, for you can always get as long a measurement higotianish withoutgoing beyont the edge of your canvas or paper.

The little diagram at "A," in Fig. 47, shows that the vanishing point of diagonals may be brought as near as you please without changing the result, if you only reduce the measurement with which you begin in a corresponding degree. Compare Fig. 46 with Fig. 47 in this respeet. The measurements obtained are just the same in both; but the size of the picture might be redured to that of the reetangle sketehed in the lower right-hand corner of the latter, and even smaller, if found desirable, and the point used to get the measurements by still be kept inside the frame.

The two vanishing-points in Fig. 46 are placed just far enough apart so that the measming-line is the diagonal of a square, and the measurement with which we begin -the distanee from the telegraph-pole to the outer rail-is aecurately laid off on the line which runs from one pole to another. If we place the two vanishing-points half as far apart as they are here, then we ought to take only half of our original measurement to obtain the same result. If the distance between the vanishing-points be reduced to one-fourth, make the given measurement one-fourth, too, and the perspective measurement will be just as eorrect. Or, what is the same thing, you can leave the measure-

Fig. 47. ment in the foreground as it is, and then the measuringline, if drawn to the "half" point, will measure twice as much; if drawn to the "quarter" point, four times as mueh, and so on. This is what has been done in Fig. 47. Now a word or two about the correctness of the square with which you start. If youmill hook at Fig. 45 you will see that a square in perspective may
look like almost anything that can be formed with four lines, if only the opposite sides are kept parallel (either actually drawn so or rauishing to the same point) ; and if the figure is somewhat foreshortenedfor, as every slab in the pavement, or every stone in the wall (unless the wall face you exactly, and then it can hardly be said to be in perspective), is viewed more or less obliquely, it must, of course, appear somewhat foreshortened-how much it is foreshortened depends
 simply on how obliquely it is viewed.

Consequently, if yon observe the conditions which have just been insisted upon, you cannot go wrong in sketching the first square of your pavement or wall-you will in any case make it a possible picture of a perfect square. See Fig. 48.

Yon may make the square too large or too small; but that is an error which can easily he corrected at any time, and that will not have any influence except on the square itself, for the vanishing-point of diagonals is just the same for hige squares as for little ones. Or you may make the square too much foreshortened, or too little; but this is merely a question of appearance, and has no reference whatever to the correctness of the perspective.
For, as the appearance of the square is determined by the observer's position, and as it is a poor rule that will not work both ways, it is equally trme that the observer's position is indicated by the appearance of the square.

If you lappen to get the square foreshortened more than you intended to have it, the effect will be to make the picture look as if the observer werestanding farther off than yon intended; that is all, and the coutrary is just as true. In other words, the character of this first square, and the general appearance of the
picture, which is determined by it, are purely and simply matters of design, and are always treated as such by architectural and mechanical draughtsmen, as well as by painters.

As a matter of practical convenience, it will be well to make this first square rather large-the whole width of the room or the street, pernaps, rather than a single slab in the pavement-because any slight mis. calculation which you might make at the outset, regarding what the fimal result was to be, will in that case be less and less apparent as you proceed to smaller details, while the same miscalculation in drawing a small thing would be pretty sure to lend to worse and worse results as other and larger offegts cane to be affected by it.

Olserve, however, that, as far as the use of horizontal squares is concerned, this method of determining perspective measmrements is only applicable to that kind of drawing which we have learned to know an parallel" or "one-point" perspective; but where vertical sifuares are used, as in Figss. 42 and 43 , it is just ass general a method as any other.

The reason for this limitation is simply this: It is obvions that you can only measure in this way lines that are at right angles to those from which you take the measurements. It has already been insisted upon (prage 37), and the proof will, I hope, be clear rery soon, that these last must lee parallel with the horizon of the plane in which they lie. It follows, then, that the only lines that will combine with these in such a way as to make squares must be those ruming straight away from the observer, as in Fig. 48. But as any horizontal line is sure to be at right angles to any vertical one, it makes no difference what its actual direction may be. Now for the reason why the line from which the measures are taken, which we will hereafter call the "line of measures," must always be parallel with the horizon of its phane. All accuracy in work of this kind must depend on our having something assured to begin with. Things which we know to be really of a given size seem to be smaller when they are farther away, and larger when they are nearer the observer; but hefore we can exactly determine their apparent size in any particular position we must lave some standard by which to judge them in all positions that is, we must have some place in which measurements which are alike slaall appear alike.

Your experiments with the sereen must already have tanght you under what conditions this can happen.
It only happens, you will find, when the line in your picture along which the measmrements are taken has actually the same direction as the line in nature which it represents. This is the same thing as saying that real and apparent proportions are just the same only when they are set off on lines parallel with the picture plane; and being parallel with this plane, they are bound to be parallel to the horizon of the plane in which the! lie. Prove this for yourself, however, hy actual observation.

The windows in the honses across the street seem, as you look ont of your window, to grow smaller and smaller as you look farther and farther down the street; but if you set the screen in your own window so that it is just paralle] with those in the other honses, you will find that, measured on the sereen, the windows are all of the same width still.

It is just the same with the vertical distances; lont this does not surprise you as the other probably does. There is mothing any more remarkalle, however, about one case than the other; the same observations that convinced you, the first time you looked through the sereen, that the pictures of such edges of objects as were parallel with the streen must have the same direction as the edges themselves, ought also to have convinced you of this other fact, which is of just as much importance, that measurements along such edges are relatively the same in the picture as they are in the real objects.

And so you see why it is that vertical edges may he divided anywhere, in any way yon please, as in Figs. 40 and 43, the geometrical proportions being all right for the pictorial representation of them, and that any measurements that such lines may stand for may he transferred to any horizontal line by this use of diagonals of squares ; and if you camot always feel as sure of horizontal or other lines, or use them in the same way, it is because they are not, as the rertical ones are, always parallel to your imaginary pictme-plane - your remembered window-screen. When they are parallel with it, and the lines to be measured are at right angles to them, you can do just the same with them as you can with the serticals.

CHAPTER V.

MEasurement by means of triangles.

IF the method of measuring by means of diagonals of squares is not applicable to every case that can possibly arise in the course of a dranghtsman's practice, another and more general statement of what really amounts to the same principle will be found to be so ; and as the greater includes the less, this other method might have been deseribed in the first place and all that has been said about diagonals omit. ted, if the method just explained had not been not only simpler, and for that reason more convenient whenever it was applicable (and it almost always is, as artists use perspective), but being somewhat easier to understand, its discussion beforehand serves a very good purpose. For it establishes, without much tronble, certain points which it is necessury for us to know before we face the more general question.

If in measuring the windows in Fig. 40 it bad also been necessary or desirable to determine the exact length of the house itself, the reader will see that we have not yet learned enough about perspective to do it ; there is a way, however, of fixing such measures, and this is what we are coming to now.

The width of each window and the length of the house itself in Fig. 49 were fixed in this way-at least they might have been so determined, if the drawing had been made to measure instead of being sketched on the spot.

The line to be measured is, in this case, the ground line of the front of the honse. Let us measure its length first and atteud to the wiudows afterward. We have seen (page 41) that any measures we may have occasion to use must be set off, if we are to be sure of them, ou some line that is parallel to the picture-plane, and that such a line is always parallel to the horizon of the plame in which it lies; that is, it is always parallel to the original or actual horizon when drawn on levepforfaces and always vertical or up-

right when drawn on vertical surfaces, and so on. Our olservations at the screen tanght us that long ago. Such a line is drawn, then, in such a position as to have one point in common with the line to be measured. Theoretically this may be wherever you please, but in practice it will usually be most convenient to draw this imaginary line through the nearest end of the line to be measured. As it is never used for any other purpose except to set off 'measures on, it may be called the " line of measures." In some "systems" of perspective it is confounded with the botton of the picture-plane and this becomes a source of endless amoyance to the pupil—and all for nothing, ton-for anyborly can see that the line has nothing to do with the picture-plane excēpt to be parallel with it. The two things may be, and often' are, on opposite sides of the street ; indeed, that is just the case with Fig. 49.

The true length of the house, then-that is, its length as compared with its height at the nearest corner -is laid off in a line drawn on the sidewalk through this nearest comer, and parallel to the horizon.

Now, you see that this "line of measures" is just such a one as was used in Fig. 48, only, in that case, it and the line to be measmed formed two sides of a spuare, while now, as they form an acute angle with each other, they can only be regarded as forming two sides of a triangle. But when you think of it, the two sides of the square in Fig. 48 form with the diagonal a triangle too. What, then, is the difference between them? There is no difference, unless we choose to make one out of the fact that in Fig. 48 the triangle has one square corner, while in Fig. 49 the corresponding corner is an acute angle; in every other respect the two cases are exactly alike, and, instead of calling the line whieh gave us the perspective measurement in Fig. 48 the diagonal of a square, we might just as well have called it the base of an isosceles triangle which had one right angle. Why, then, may we not adopt the same process in Fig. 49 as was employed in Fig. 48, which wonld consist in making the line to be measured somewhat shorter than the line of measures (for, of course, it would always be a little foreshortened) by completing the isosceles triangle, the equal sides of which the two are supposed to form, by drawing the base ; and then, by carrying out the base to its vanishing-point in the horizon and using this point to measure everything, else, make, the picture consistent, and therefore correct?

We could do so without any trouble or any doubt regarding the absolute correctness of the result if
there were only one face to the building ; and, in fact, it is the only really satisfactory way to do, as soon as you know how to reconcile the two sides of the luilding to each other; so that, when you lay off your triangle on the sidewalk, you know not only that it looks pretty well but that it must be correct. It is pos. sible to do this; and its explanation gives the key to the whole matter.

The point which was called the vanishing-point of diagonals in the preceding figures has been ealled the vanishing-point of the base of the triangle in Fig. 49 (see the little diagram in the corner).

This name is a grod one, because it does not allow the student to forget the real significance of the point, something which, as every teacher knows, pupils find it very easy to do ; but it is too long, and we shall have to call the point simply "measuring-point"-only do not forget that it always is the vanishing-point of the base of an isosceles triangle, otherwise it would not be of the slightest use as a measuring-point. If your pieture necessitates the establishing of many measurements, you have to regard it as in good part eovered with pictures of isosceles triangles the bases of which all vanish at one or other of these points. Hereafter, then, we will use the term "ranishing-point" (written V. P.) only as applied to the point where the line to be measured vanishes, and call the vanishing-point of the hase of the triangle the "measuring-point" (written M. P.); and whenever it is found necessary to use more than one of each it will be well to number them in such a way as to prevent any possible eonfusion-M. P. 1 to go with V. P. 1, M. P. 2 with Y. Pa and so on.

In some books on perspective the measuring-point is called ly one name in dealing with objects in "parallel" perspective and by another name in other eases; but there is no need of any such multiplication of terms, and in this book no distinction is made in this respect between drawings in which one vanishing-point is used and those in whieh half a dozen may have heen employed.

The location of any measuring-point depends entirely, as we lave seen already (page 40), on the position of the observer. It is near the ranshing-point when he is near his imaginary pieture-plane (try it with the screen, if you have any donbts about it) and farther off when his eye is more removed from this plane, and except for reconciling the different sides Afifirchilding (which we will attend to presently),
you cannot go wrong in placing it anywhere you like; for, to repeat what was said on page 40, with a ehange which will need no explanation, if you take care to make that side the slortest which you ean tell by

Fig. 50. looking at it is the one to be foreshortelled, you cannot go wrong in sketehing your first triangle. Anyone whieh you may draw on the pavement will be the possible picture of one whieh is perfectly isosceles. Whether you place the measur-ing-point too near the ranishing-point or too far away is purely a matter of appearauces. Fig. 50 and Fig. 51 represent the same house, and one is just as "correct" as the other; but the distance between the measmring-point and the vanishing-point is very much greater in one of them than in the other. All that is to be said about the result is, that one pietur looks rather better than the other.

If it were necessary to explain the difference in the two effects, it would be done simply by stating that in Fig. 51 the observer is supposed to have stepped backward a few paces from the prosition occupied when Fig. 50 was drawn. But all that the

Fig. ${ }^{1}$. dranghtsman need think about is the difference in the effect produced by the two pictures, for that is thefreally important thing after all. In drawing these two illustrations two "lines of measures" have been employed, merely as a matter of conveni-
ence. Such lines may be introduced at any corner where they are found to be of use. The main building was drawn first, and as the end to be measured was square, the line of measures at that point is just as long as the height of the corner at which it is placed. In the same way the low buiding to the right is three times as long as the height of its eares above the ground, and so its line of measures is three times as long as the height of the corner at which it is placed.

The difference in the relative lengths of these two lines, and, indeed, all other differences to be found in comparing the two drawings, arise from the difference in the placing of the measuring.point; for when this is once settled everything else is determined by it.

Now let us see about the relation of the two sides of the building to each other.
Turn back to Fig. 49 and look at the end of the house. You see it has only been sketched, the measurements being guessed at. How, then, do we know that this part agrees with the front of the building and that the whole is in true perspective?

We do not know, but we can very soon find ont.
In order to do this with absolute precision, however, and I hope the reader would not be contented with anything less, it will be necessary to analyze the drawing a little, and, by reference to our experimental win-dow-screen, to establish the conditions under which the picture was made.

The conditions are best represented by the sereen on which you have been drawing with chalk, but Fig. 52 , which is virtually a picture of that contri vance, will do pretty well, and it is desirable to have something in the book to refer to as we go along. The broken glass will answer pretty well in place of the windowscreen, and the open box instead of your neighbor's honse.

The box is painted on the glass just as it looks to this observer, and its lines laving been carried out until they cut the horizon of the picture, the points which are fixed in this way are found to just cover the points on the actual horizon (away out to sea, you know) toward which the lines of the box seem to be pointing.

Only one of these vanishing-pointsin tie actuat horizon is shown in the illustration, for the reason that
the other one would be so far away as to make the illustration inconveniently large if it were introduced; but if it were shown, it woukl be found to bear exactly the same relation to the one in the picture (V. P. 2) as the one which is represented bears to V. P. 1.

The lines running from the box to the observer's eye and to his feet have been used to make the pict-

Fig. 52.
ure of the box on the glass accurate. You can make out how this was done if you eare enough about understanding it to study the drawing a little, but you need not take the trouble to do so unless you are so minded.

The only thing which it is really necessuy for you to know is, that the two lines from the observer's eye (S. P.) to V. P. 1 and V. P. 2 have exactly the same direction as have the horizontal edges of the box itself.

Now, as it is a square-cornered box, these two lines must form a right angle at the station-point. And we shall find that they do so in the picture if we ean get such a riew of them as will enable us to judge what their true direction is. You prove this easily enough with the bits of thread in front of your window-screen, but we cannot do it quite so readily in this representation of it. If, howerer, you will take hold of the threads at the station-point and, withont allowing them to

Fig. 53. slacken or change their lengths in any way, will let them turn on V. P. 1 and V. P. 2 as if they were hinges until the threads lie flat on the screen, as shown in Fig. 53, and will then lay the screen itself flat on the table, you will have the same condition of things on your screen that we have in Fig. It; so that, while the direction of your threads remains relatively unchangerl, the picture will now answer just as well as the screen to talk about and make our demonstration by.

You will see that on this diagram (Fig. 54) the isosceles triangle which would be used to measure the perspective length of the lougest side of the hox has been added; its base has heen continued to its vanishing-point in the horizon and a line drawn from this point to the station-point, which line, as we have just seen, must he parallel with the actual base of the triangle. Now, then, we have all the necessary conditions of a perspective problem aceurately stated on the paper. It is not hy any means necessary that this statement shonld he based upon actual measurement of the olject and its position, as books on perspective nsually say it is. But it is necessary, when the correctness of the perspective comes to be demonstrated--to fix the station-point, and to fix it in such a maner that it shall hear the saine zelation to thellineoand points on the pieture as that indicated
in Fig. 54. This is not a difficult matter at all, and may be determined without once thinking abont the observer's distance from either the picture or the object.

Let us see what the requirements really are. In the first place it is necessary, when you have, as you usually do in representing buildings, a square-cornered object to draw, to have the station-point so placed

that the lines drawn from it to the vanishing-points shall form a right angle with each other ; and in the second place, the stution-point must be just as fur from either vanishing-point as the corresponding measur-ing-point is.

You see that this will always have to be so because, as the horizon of the picture is parallel to one side of the isosceles triangle on the parementand the liues from the station point are parallel with the other two, the
three lines on or in front of the pieture must form an isosceles triangle also," and that the line to the measur-ing-point is the base of it, so that the other two must be of the same length. This is the whole story, and if we adjust any drawing which we may happen to have in hand to these conditions we need

Fig. 55. not have any doubts about its correctness. Let us turn back and do this with the house in Fig. 49. I have said that it is possible to draw one side of the house without going into the questions which we have just been discussing. Suppose we draw the side which is measured in

Fig. 56. Fig. 49, fixing the measmingpoint at random and making the line of measures represent the known relation between the height of the nearest corner and the length of the house, with the result shown in Fig. 5 5.

Fig. 57.

Now this may be a perfeetly accurate measurement for this side. Next let us draw the other side by it. self, as in Fig. 5b, which, considered by itself, may be perfectly accurate too, although the measmring-point

[^1]was taken just as much at random as the other one was. Now let us see if they will go together as they

Fig. 5^{8}.
ought. Carry out the lines in the first one to their vanishing-point as in Fig. 57, and those in the other as in

Fig. 59.
Fig. 58. The nearest vertical line in théllonitecheing conmoño both drawings, you can readily determine
the position of the ranishing-point whieh remains to be found in either case by measuring its distance from this line along the horizon. Do this, and establish both vanishing-points on both drawings, as in Fig. 59 and Fig. 60. Having done this, it will be easy enough to fix on each picture the station-point as it wonld have to be in order to have the picture look as it does. For, as the cormer of the house is a right angle, and as

Fig. 60.
everybody knows that any angle inseribed in a semicircle is sure to be a right angle (if he has any doubts about it he must brush up his geometry to the extent of satisfying himself), we have only to draw a semicircle eonnecting the two vanishing-points, and are sure that the station-point must be somewhere in this. Then as we know that the station-point is just as far from the vanishing-point as the measuring-point is, we lay off this distance on the semieirele inith thedcompasses, and that gives us all we want to know. All the
points that could possibly he used have been established, and the aeeuracy of our original sketeh may be demonstrated to our heart's eontent.

Now let us put the pictures of the two sides together and see if they agree; that is, let us see if the point from which each side must have been seen to look like this would be right for the other side too. If

Fig. 6 .
you make a careful tracing of either drawing, and apply it to the other, you will obtain the result shown in Fig. 61, which is as complete a reductio ad absurdum as anyone eould wish, for the station-point certainly cannot be in both these places at onee. To correet the drawing of the house as a whole, it is neeessary either to retain one of these station-points, and, leaving onedralf as it is, make the rest of the drawing conform to it, or to take a new station-point altogether:

This last is usually the best way, because, by taking the station-point about half-way between the two, you do less violence to yonr original design than would result from the other course. This form of correction has been applied here, and the result is shown in Fig. 62.

Of course, if the base of the triangle measures the whole object correctly, lines parallel to the base will

Fig. 62.
measure any details and divisions just as correctly, so that nothing more need be said about the windows in Fig. 49 ; and as it makes no difference whether the triangle is horizontal or vertical, this method may be applied to such lines as those in the roof inf Fige 63 just/iswell as to the horizontal lines of the house.

If you should have recasion to make the corner of a building something else instead of a square one,
you can always manage it by comparing it with a square corner, as will he explained in the chapter on curves, or you will see in the chapter on methods a way of drawing any kind of a figure, no matter how irregular, by an easy application of the principles of parallel perspective.

I have a suspicion that, in spite of all my assurances about the correctness of the squares, imaginary or other; on which we have learned to depend for a large part of our perspective measurements, a good many readers will still be haunted by doubts about them. How do we know, they may have said to themselves more than once already, that the end of the house on page 47 was really square after all! Why may it not have been an oblong pretty nearly square, perhaps, but still not quite equilateral?

The figure which was sketchel on, the ground to start the measuring by may have been a square, but it may also have been an oblong, and had we wanted it to be one we shonld have drawn it in precisely the sane way. How, them, shall we know which one our drawing represents? Our experience with the two sides of the house in Fig. 49 will help us out in this case as well.

Every square has two diagonals, which cross each other at right angles. And anybody can see, ly looking at the diagrams which we have just been using, that if the one diagonal used in Fig. 50 vanishes where it does in M. P., the other one would vanish

Fig. 63. just as far to the other side of the vanishingrpoint at the end of the house (V. P.) ; and, having found the ranishing-point of the other diagonal, we could locate the station-point in this case in very much the same way as we did in the other (see Fig. 62). Then we shonld be ahle to prove that the picture of the end of the house represented a perfect square, as seen from this station-point.

Seen from any other it would, of course, represent an oblong just as correctly, and we could determine the precise character of the oblong just as well as we can demonstrate the squareuess of this figure, if we had accurate data concerning it. For the lines which meet in the station-point, as they stand for the actual directions of the diagonals of the figure represented, ulust meet at the same angle as that at which the diagonals
cross. Knowing what this angle is, we could locate onr measming-points and set off the length of the sides of the oblong just as correctly as we have those of the square.

One word more ahout the station-point in Fig. 50, and we are done. I said we conld locate it in "very much" the same way as we did the one in Fig. 62. Very much, but not quite. Very much more readily, perhaps, but in a way that may require a little explamation, all the same.

Suppose we had found both measuring-points in this illustration, then one of them would be just as far to one side of V. P. as the other one was to the other side; which is the same thing as saying that the ob). server must be standing directly in front of V. P. Satisfy yourelf abont this, if you have any doubts, either by looking at the picture or by experimenting with your sereen. The station-point, then, must be in a semicirele comecting the two measuring points and must be directly opposite V. P.

The distance from V. P. to the station-point will, you see, be just the radins of the semieircle, and if our drawing had leen based on assumptions of actual distances, or even on real measurements instead of on appearances, we might have set down our V. P. anywhere ; laid off the line to the station-point of the right length; drawn our semicircle, and so on, and this is the way it is often done.

CHAl'TER VI.

THE I'SRSPDETJVH OJ CURVES.

WIIE reader muderstands by this time how much easion it is to draw sfuares, or at least rectangular figures, in perspective tham amy others; and, as a matiter of fact, every thing one is matly drawn by mams of
 as in Fig. 64, or in an oblong, as in Fig. fin, and, having drawn these last in perpective, to mote where the curves louch their sides of cross their diagomals, and to lorate these points by means of

Fig. 64. parallel lines ruming into the pieture at; the right distanes from the sides. You can in this way ohatan as many prints as you need, and can then sketels the amve thromgh them accurately enough.

In the case of the eirele as shown in Fig. of, it makes no difference whether the simare is in "paratlel " perespecetive or mot; the result will in any vate lee an cllipe and it

Fig. 65. will always be a bevel clligne, if the circle represented is level in reality and is directly in front of the eye. Figs, fif and fit show at circle above the eye drawn in sumares in different positions, but the results, as you see, are precisely the sane.
Λ grood deal of energy has been wastel in curionsly chidish discmssions as to whether the perspective of a circle really was an ellipse or mot, and in some drawing hooks you will find the circles all drawn wrong.

The disenssion is not worth reviving, hat anyome who has any donlts about how a cirele appents may

we of a circle (unless it is seen edgewise, when it appears as a straight line, as any other plane figure does) is a section of a cone of which the circle itself is the base and the eye the vertex. Figs. 68, 69, and 70 may

Fig. 66.
. Fig. 67.
help the reader to remember noder what conditions a circle in perspective, or any part of one, becomes

Fig. 68. any kind of a curre other than an ellipse. It is, I hope, not necessary to say, that when the circle is rertical and parallel with your picture-plane, the representation if it is still a true circle, as shown by the cart-wheel in Fig. 1. But in any other case where the whole circle can be seen in the pieture, it appears as an ellipse.

To anyone standing on the circle that part of it which comes into his picture is a parabola; and, if he is fairly inside the circle, what he sees on his picture is a hyperbola. Remembering this, the student will always sketch his circle accurately enough if he fixes the width of his ellipse as comphodithen length hy first dratwing a square in the place where is to go.

Fig. 71 was sketched in this way, and may be useful as showing how to fix, with sufficient aceuracy for all practical purposes, the appearance of rims of

Fig. 69.

wheels, of the under side of arches, etc. If drawn at any considerable distance above or below the eye, and at the same time to the right or left of it, the ellipse will look "askew" as it does in Fig. 72 , the major axis

Fig. 71,

Fig. ${ }^{72}$ Microsoft (R)

Fig. 73.
of the ellipse being at right angles to the axis of the wheel or other cylindrical body with which it may be
associated. Disliking this effeet, draughtsmen sometimes take a little liberty with the perspective, and "straighten up" the ellipse as in Fig. 73. This often has a good effect, and indeed seems to be almost necessary in the case of horizontal circles, such as the tops of columns and towers, hut it is of doubtful utility as applied to vertical circles, as the reader will admit who compares the two drawings of a pulley given in Figs. 72 and 73.

Sometimes, however, in drawing the under side of arches the effect of the true perspective representation is decidedly offensive, and the error, for such it really is, of drawing a vertical ellipse instead of an oblique one, has to be introduced. Whether to do so or not is a question for the draughtsinan's grood sense-artistic sense-to determine:

Angular figures, other than rectangular ones, may be drawn in the same way as those which are bounded by curves, hy drawing square or rectangular shapes around or through them and measuring on the sides of the latter the points where the other figures touch, or cut them.

The obtuse angle of a building, for instanee, as at A, Fig. 7t, might be drawn easily enough by means of the square. You have only to draw the square in perspective and measure off the points A and B on its sides, so that you do not need to trouble yourself to find either the vanishing-point or the measuring-point of the line AB. A better way, however, to do anything of this kind will be found in the chapter on methods.

CHAPTER VII.

A QUESTION OF METHODS.

AN artist's knowledge of the mathematics of perspective is a good deal like a poor man's money in the savings bank. He wants to be sure of it, and is anxious about it if he is not, but he has little use for it from day to day. Occasionally he makes a little draft upon his capital fund to help him out of some immediate difficulty, but the bulk of his fortune may, and ought to, remain untouched most of the time.

But it is different with the architect or the mechanical draughtsman.

Plans and elevations drawn to scale have, in tlieir case to be transformed into perspective representations by a more or less mechanical application of the principles which have been considered in the preceding chapters. There are several

Fig. 75. different methods, fairly distinct, of making this application. Which one is most convenient in any particular case the draughtsman's own judgment must determine.

Diglitized by Microsoft ${ }^{\circledR}$

The one to which the most prominence is usually given in elementary works, of assuming the horizon, the station-point, and the size and position of the object, arlitrarily, and letting the effect take care of itself, is the most mechanical, and least satisfactory.

The better way usually, is to make a free-hand sketch, giving, as nearly as possible, the proportions of the object and indicating, at any rate, the desired effect. By going orer this sketch, as Fig. 49 was gone over in a preceding chapter, the necessary data

Fig. 7 б. for an accurate drawing are easily and quickly obtained, and the draughtsman has the satisfaction of secing the result something like the one intended, a thing which he is by no means sure of when working in the other way.

The draughtsman who has ever had occasion to construct some such drawing as that shown in Fig. it, having no other data than those furnished, let us say, by a photograph looking something like Fig. 75, taken from another point of view than one desired, and encumbered with shrubbery which he wishes to leave ont, and who, after much plotting and planning and "assuming" of station-points, has obtained a result something like that in Fig. 76 , finds little consolation in the certainty that his production is in true perspective.

Fig. 7 is just as correct, and looks a great deal better, simply because it was made over a sketch which was approximately right to begin witled by Microsoft (B

But aven when this peint regaring the gencmal mothoul of procelure is settler, there are different ways of going about a drawing, some of them being best suiterl to one class of work and some to another. The dranghtsmanis own genol semse must detemine which method is best in any particular ease.

You may, if you choose, find the vanishingropont and the correspondirg measurimgont for each set of lines in your drawing-the oblique ones, as well as thone which are horizontal or vertical-or, by referring to your clevation and phan, you can reduce ceverything to a question of relative heights and of meatswrements on the ground. As heights are always the easiest measurements to deter. mine-no other calculations than those apparent at at glance in any of the first illustrations used in this book being requiredit will not lee necessary to saty any more about them.

Confining ousclves, then, to the dimensions measired on the ground or floor, we shall see that it is always possiblas either to draw and measure each line by itself, involving the use of just ins many vanishing oints as there are directions, or, by establishing a certain number of measurements on lines which run directly into the picture, fix all the cornores sefarately, it being an casy matter to connect them afterward withont regard to where the lines comecting then would vanish. This method has the domble aldvantage of enabling you to represent objects in any position, without going outsilc the limits of your picture to find vanishing points, and to loceate any point ly reference to your geonetrical pan or clevation abone, withont regarding the rest of the picture. Fig. is has been drawn in this way, auch comer of the groundphan being

Fig. 78
height measured separately by means of the one vanishing.point. This brings the whole subject down to a question of "parallel" perspective, as you see, and to using the one ranishing-point which we have learned (Chap. I.) to call the centre of vision. Remember, however, that this does not mean that the point

Fig. 79.
Fig. 80.
Fig. 8I.
is necessarily in the middle of your paper or canvas, lut only that it is supposed to be directly in front of the observer's position, and so the centre of all thut he sees.

Another advantage to be derived from employing this methorl is, that you can try different effects by varying the position of the geometrical plan, as shown in Figs. 79, s0, and 81-the necessary data being furnished by the plan and elevations, Fig. siophrd each height establishen as in Fig. 83. Only, of course, it makes no difference in this last operation whether the line showing the real leight is set up at A and the

Fig. 84.
Digitized by Microsoft ©
parallels drawn to CV , or the height given at B and the parallels drann to the measuring-point ; all that is necessary being that parallels should be measured by parallels. If the reader objects that in these cases the measuring.point comes a good way off, he is reminded that he can bring it as

- Plan.

Another good way to do, and one which will be found more convenient than the last when the plan is at all complicated, is to measure off the edges of the ground plan by means of the vanishing-point and the measuring-point belonging to each set of lines, but making the measurements much easier to fix by putting them well below the object.

If the reader will turn back to Fig. 51 he will understand

Fig. 82. the significance of this. The measuring here is all done within such narfow limits, and the lines cross each other at such sharp angles, that it reguires great care to make the drawing accurate.

It would have been mucl? more convenient to put the measurements well out of the way, by extending the vertical lines downward and constructing a perspective plan, as has been done in Fig. 84. In architectural work this method has the advantage, also, of allowing any number of alternative treatments of the building to be represented without the tronble of redrawing the plan every time ; for this can be on another piece of paper, if you like.

In case the multiplicity of roofs of such subjects as this should ever give the student any trouble, the construction of dormers is explained in Figs. 85 and 86. The first one applies to such dormer's as are shown in

Fig. 83. this illustration (Fig. 84), where only onegyanishimpointisused and the other one shows what to do in case you have to employ more of these points.

This methorl of the perspective plan is a very good one when fou have polygomal or circular struetures to draw, like that in Fig. 87 , let us say. By setting your geometrical elevation side by side with the perspective view, you can carry the heights across from one to the other with a rule or " T " square. 'This will give all the heights on some one vertical plane, and you can then transfer them backward or forward in the picture in the way that has alreaty been explained. In Fig. 87 the lines of the hexagrons are lengthened a little, as if their vanishing-points had heen used, (and so they were in this case, for the reason that it was just as easy to draw heargons in this position as it would have been to draw squares, but the whole draving could hare been made with one vanishing-point junt as well.

Fig. 85.

Fig. 86.

Fig. 88 shows the same methor applied to another kind of boilding. If either of these seem at all hard to understand, howerer, I beg the reader not to trouble himself about them, as anything of this kind ca: be done just as accurately by means of an application of parallel perspective which is presently to be explained, and which is the one nsually made use of hy artists where a

Fig. go. good many ohjects have to be located and their sizes indicated.

By looking at Fig. 89, you will see that almost any problem that is likely to arise in an artist's practice can be solved by means of one-point perspective. You have only to make a geometrical plan of your subject, cover it with squares as big or as little as you choose, and, haring put these squares into perspective,

same process as that which one is accustomed to employ in enlarging or reducing a picture by means of geometrical squares.

Fig. 90 shows the plan used in Figs. 79, 80, and 81 drawn in this way, and Fig. 91 shows a row of arches treated in the same manner.

Fig. 91.

CHAPTER VIII.

SHADOWS.

IF our thoughts have so far heen oceupied with the outlines of objects rather than with such elements of pictorial effect as are furnished by shadors, and reflections, it is not becanse less importance is attached to the latter, but simply becanse it is not possible to think about everything at once. And as the subject must be divided somewhere, it has been thought best to limit our inquiries, at first, to those things which are most obviously elementary, and to take up afterward those which great numbers of drawings have to do without altogether.

As i matter of fact, the shadow is usually of more importance, from a pictorial point of view, than the outline, and I cannot help thinking that it is a great mistake to separate the tro in practice, as it is common to do in drawing-schools.

From the very first, pupils should be tanght to see that it is the shadow that shows the form, and that it is only by drawing this that the character of the object is expressed.

Drawings made in outline are diagrams, not pictmres, and no one can be said to know how to draw unless he grasps the laws which govem the representation of shadows as well as those which stand for the shapes of things.

The study of the light and shade on oljects hardly comes within the province of our present investigation, but the perspective of the shadows which they cast forms, not only one of the most interesting and instructive bramelies of onr subject, but it is also one of the easiest to understand and apply, as the same rays of light which cast them measure them also, and the vexations of separate measuring-points are all a voided.

Digitized by Microsoft ${ }^{\circledR}$

It is hoped that the illustrations to this chapter will, for the most part, explain themselves, and so render unnecessary any other explanation than that which a kind of running commentary on them will be found to furnish.

The direction and length of the shadows of the posts in Fig. 92 vary, of conrse, with the time of day; but one of them being drawn, the others are easily made to conform to it. The oblique lines through the tops of the posts are rays of sunlight which, being parallel too, have their own vanishing.point, which

Fig. 9 .

Fig. 93.
is quite independent of any other that would be employed in the picture. These lines would measure the shadows of the posts if they were not all measured at once by a line through the ends of them parallel to the rail. Notice this shadow of the rail, and remember the lesson which it has to teach; namely, that:

The shadow of a line on a surface to which it is parallel is always parallel to the line itself.
Notice, also, that what is true of the horizontal line linthissilustration is just as true of the vertical
one in Fig. 93. Notice, also, in both of these, as well as in the one which follows, Fig. 94, how well the character of the surface on which the shadow falls is expressed by the shadow, and do not forget that all the outlines you can erer draw will not convey half as goot an impression of a surface as a single shadow falling across it.

Fig. 94.

Fig. 95.

Fig. 96

What was just noted about lines is manifestly just as trone of shapes, and our first rule may readily be made to read as follows :

Where the shadow is cast hy smlight, it is not only similar to the line on shape which casts it, but it is of just the same size. When it is cast ly artificial light, howerer, the shadow grows larger as the surface on which it falls is farther removerl.

The shadow of a line on a surface with which it is at right angles changes with the direction of the rays of light, and so furnishes a pretty accurate indication of the position of the sun. You can see this very nicely in Fig. 92 and in Fig. 96.

Fig. 97.

Fig. 98.

Fig. 97 shows the shadows of lines on surfaces to which they are parallel, on those with which they are at right angles, and on those to which they are obilique.

Test the width of the shadow on the wall by drawing rays of light through the cormers of the shatter, and, having fond their vanishing-point, see if the shadow on the curtain inside the window is of the right width.

Fig. 98 shows the shadows of oblique lines on two surfaces at once. Go over it, drawing with a ruler lines which represent the rays of light, and see if the shadows of the rounds of the ladder agree with that of the little roof over the window.

Go over Fig. 99 in the same way, and see if you can find out how the position of the shadow of each ohject and angle was determined; for they were all determined by means of a ruler.

The shadows of a few points can le found easily enough in Fig. 100 by applying the results of our observations on the preceding illustrations, and the shadow sketched accurately enough through these.

Of course, you will enclose the circle in a square, as has been done with the horizontal circle beside

Fig. 99.

Fig. 100.
it, and draw an ellipse that will fit into the shadow of the square, and so make the shadow of the circle very aceurate; lut it is hardly necessary to fix more than two or three points in the shatow.

You ought, however, to be able to draw the shadow of a horizontal circle and of a vertical one as they appear on the wall in this illustration. These were drawn with the rays of liglt falling at the same angle for both, but you see they are very much alike, notwithstanding the difference in the position of the circles. One shadow is a little narrower and "steeper" "than the other; and that is about all the difference to be seen between them. If you vemember abont how they Yook, you can sketch any such application of
either of them as is shown in Fig. 101 reatily and confidently enongh. As sharlows always become the most conspicuons part of the plane on which they fall, it does not need to be pointed out that their van-

Fig. 10 .

Fig. 102.
ishing-points are always to be found in the horizon of that plane.

Fig. 103.

Fig. 104.
Digitized by Microsoft (®)
"tracked" from one plane to another by means of the surface on which it is easiest to fiud its vanishing.
point, even if this surface has to he partly an imaginary one. Fig. 103 shows how such a shadow is followed when the object casting it has to be lengthened in imagination in order to enable us to determine its direction.

If we looked into the matter a little more deeply-and it is necessary to do so in order to understand any but the most elementary facts of apparance-we should find that every line casts in space a plane of invisible

shadow, as it is called, though it hecomes visible on the dust or mist that sometimes fills the room or the street ; and it is the intersection of this plane of shadow with some other surface that forms the visible shadow. This plane of invisible shadow is, then, to be treated just like any opaque flat surface ; it may hare its own horizon and as many vanishing-points in it as may he called for. Fig. 104 shows such a plane when it is parallel with the plane of the picture, so that the edge where it euts the gromed is parallel with the horizon and has, consequently, no vanishing point. In Fig. 105 this line has a vanishing-point. Notice that the
shadow on the ground, which, of course, lies in both these planes, has its vanishing-point in both their horizons, just as we saw must be the case with the erges of the roofs in Fig. 20 (page 17).

This illustration (Fig. 105) shows the shadow as it looks when the light eomes from hehind the observer, but it may just as well come from somewhere in front of him, and then the case will be as shown in Fig. 106.

It is by molerstanding this matter of the phates of shadow that one is able to determine readily the

Fig. 10 g.

Fig. 110.
shadow of any point in an oblique line, like the side of the ladder, for example, in Fig. 98; or the slight buttress or partition in Fig. 107. The method of fixing the shadows of separate points is shown in Fig. 108.

The dotted verticals belong to the plane in which the oblique line is situated, while those on the ground and wall are the lines where the planes of invisible shadow would cut the ground or the wall. The oblique lines in the air by whieh these last are cut-off in the right place are rays of light.

Fig. 109 shows the effect olitained when the most important factor in the effect is a mass of light bounded by shadors, instead of the reverse. Go over it, and make sure that there is no mystery about it.

Where there is an artificial light to deal with, instead of the sun or mon, the rays radiate instead of being parallel to each other, that is all; no two planes of invisible shadow can, then, ever be parallel if cast by artificial light.

Fig. III.

Fig. 112.

Fig. 113.

The candle in Fig. 110 illnstrates this pretty well, and Fig. 111 better still, perhaps; while the bare facts to be noted in the latter are stated diagrammatically in Fig. 112.

Fig. 113 is simply a little more complex application of the same principles. It will explain itself to anyone who cares enough about the subject to study it with a little care.

CIIAPTER IX.

REFLECIIONS.

THE laws governing reflections are very few and very simple, but for want of understanding them, such as they are, the beginner often gives himself a good deal of trouble about them.

It is only necessary to remember that any point in an object which appears in reflection seems to be just as far beyond or below the reflecting surface as the point itself is on this side of or above it.

This is really the whole statement of the matter, and any question that may ever arise concerning the perspective of reflections might be settled by the application of this rule alone.

As the establishing of any great number of points might become a somewhat tedions process, however, even if carried on in imagination only, other rules may be deduced from this one, or rather the truth which this one expresses may be put in other forms whose application to pictures may seem to be more direct.

A moment's thinking will emable anyone to put it into this form, for instance: The reflections of lines which are either parallel with the reflecting surface or at right angles to it have just the same vanishing. points as the lines themselves, and if they have the same vanishing-points, of course they have the same measuring-points, and the reflection has no other influence on the lines than simply to extend or to double them (see Figs. 114 and 115) ; and as far as lines alone are concernerd this is perhaps enough to say about them, for in the case of those which are oblique to the reflecting surface one point cau be established in the reffection of each, by the method ilhnstrated in Fig. 74 , page 62, and the proper vanishingpoint found by extending the line to itshorizon, as is done tritifany otlier line. Even this is not necessary

Digitized 権 Microsoft (®)
Fig. 114.
unless one has to draw several such lines which are parallel, for the location of the end of the reflection is all that is needed (see Fig. 116). If this is the whole truth about the reflections of points and lines, is there anything else that requires explanation? There can hardly be anything, unless it be the fact that surfaces which are visible in the object are often wating in the reflection, and vice versa, either becanse the surface which is reflected is the reverse of that which is in sight on the object, or because one of them is

Fig. 115.

Fig. 116.

Fig. 117.
concealed by some intervening object. If, then, we were to examine these last statements a little in detail, we should probiably exhaust the subject.

Fig. 114 illustrates the first one well enough, and of those that follow it all except Figs. 115, 116, and 113 illustrate both.

Fig. 116 shows that the modifications in the appearance of the object reflected which are produced by the first of these inflnences may be considerable. V (The drawiug does not quite agree with the state-
ment, because the top of the board is not in sight, but anybody can see that it might just as well have been, and the indulgent reader will excuse the discrepancy.)

For what we see in the reflection is obvionsly what we should see in the reality if the eye were just as far on the other side of the mirror as it happens to be on this. This is expressed diagrammatically in Fig. 118.

Fig. 188.
What the wayfarer who is here represented sees in the water is just what he would see out of it if his eye were as far below the surface (at A) as it actually is above it.

Fig. 119 shows exactly what this amounts to, and Fig. 120 emphasizes both the statements which the diagram has been made to illustrate, for by showing what would be seen in reflection if the hit of intervening wall were removed it makes more apparent the difference in the appearance of the object which is caused by reversing it.

If the rader will turn the pagef dotion univard hervill Gee that the figme seems, in the reflion,
to be walking along the edge of a wall which is just as far above the eye as the edge of the real wall is below it, plus twice the height of the wall above the water.

Fig. 121 shows how the size of the portion of an olject which will appear in reflection may be accnrately determined. The dotted line through the bottom of the post on the right may be any line on the

Fig. 119.

Fig. 120.
surface of the ground. Any line, remember. It may run in any direction jou like. Having continued this line to the horizon, and so found its vanishing-point, it is easy to draw another one parallel with it and directly under it on the surface of the water, as if themater were extended indefinitejy, and the post standing. in the water ; then the case of the post is precisely like that in Fig. 115.

If the bank, as originally drawn, conceals the reflection, that is the end of it. If part of it is to appear you will know just how large it ought to be.

The dotted lines connecting the parallels in Fig. 121 are only to show the shape of the bauk as it is

Fig. 121.
described by the line on the ground as it runs down to the water. You ean determine the slope of the oblique one with mathematical exactuess if you care to study the drawing a little; but do not trouble yourself to do so unless you are really interested in the process, Anybody can sketch the line quite accurately cnough for all practical purposes if he has ayy inagintionat hil. Microsoft (B

Fig. 122.

It will he seen that any vanishing-points or measuring-points which may have been used for the lines and forms in front of the glass lave been used in just the same way for their reflections, and one figure is measured by means of the other, just as if there were in reality two figures. In the case of perfectly regular and symmetrical phane fig. ures like the slabs in the floor, even the rerersal of them in the reflection is not apparent, and one part of the pictme is merely a continuation of the other.

Merely yitized by Micesoft(®)
Fig. 123.

CHAPTER X.

CYLINDRICAL OR CURVILINEAR PERSPECTIVE.

IN all the examples which have hitherto been giren the pieture has been regarded as a vertical plane, so that all vertical lines appear vertical in the picture. When, however, yoin draw things as they appear when you are looking up at any considerable elevation, or downward at objects at any great depth below the eye, you notice the convergence in parallel vertical lines just as much as in any others, and may, perhaps, feel inclined to represent them so. In that case you are simply regarding your picture-plane as tilted one way or the other, so that vertieal lines, being mo longer parallel with it, they, too, have a vanishing. point whieh you locate just as you have learned to do with others; that is, by sketehing any two of a set, and earying them out until they meet, taking care that the rest of the picture is made to agree with this part.

This condition exists as a possibility, but probably no one erer had oceasion to work out a drawing in this way except as a curiosity, and so it can hardly be neeessary to go into details of the process here.

But the ease of very long horizontal lines, which seem in nature to have ranishing-points at both ends, is of somewhat more importance, as its recognition frequently modifies very appreciably an artist's treatment of his picture.

Figs. 124 and 125 will make this elearer than any amonnt of explanation in words conld do.
The actual relations existing hetween the ohjects represented are shown in Fig. 124; that is, the three

- honses are all in a row. The lines of one have precisely the same directions as those of each of the others, and the fronts of all three are parallel with the fence.

But the eye is the most restlessiofingans and undoubtedlyfershould see something a good deal like
what is shown in Fig. 125 if we occupied the position which the photographer did when he took the view from which that drawing has been made.

Something like it, but with this difference: our eyes would be contimally moring, so that the long lines would appear curved, whereas the camera was allowed to remain in one position until one impression was

Fig. 124.
recorded, and then turned in another direction, to remain fixed a little while longer--the result of which is a series of separate and distinct impressions regarding the objects hefore us.

Now, there can be no doubt about the truth of this last picture, when the conditions under which it was made are understood.

As has just been said, it was drawn from a photograph, and it undoubtedly records just what the observer, who happened also to be a photographer, actually saw.

No greater changes were made in the position of the camera in taking the picture than the observer's head underwent in looking at the view.

But looking at views is not making pictures, and the question arises as to which is the true picture of

Fig. 125.
the place after all. By which is meant: Which picture protuces on the ohserver's mind the impression most like that which the place itself would produce?

The impressions recorded in Fig. 125 form, not one picture, but a series of pictures, made on the inside of a polygonal prism, the surface of which is " leveloped," or reduced, to a flat surface afterward. If the impressions were contimed without interruption, the record of them would have to be made on the inside of a cylinder which, leing umrolled, wouk give curves where Fig. 125 shows jointed straight lines.

The conditions under which the objects represented would in that case be studied, and a comparison of the same with those under which perspective drawings are usually made, are indicated in the diagrams which follow.

Fig. 126 shows the relation existing lietween anmof orchesfith spare piers, the eye of an observer,

Fig. 126.

Digitized by Microsoft ${ }^{\circledR}$

Fig. 127.

Digitized by Microsoft ${ }^{\circledR}$
and a picture-plane fixed as was the window-screen described and illustrated in the first chapter. The dotted lines ruming from the piers to the station-point show just how wide each pier would hare to lee in the pictme; and, of course, the reader does not need to he told that the piers would all be drawn of the same height, so that the effect would be something like that in Fig. 130.

Now, suppose we were to substitute for the picture-plane employed in Fig. 126 the curved surface which is shown in Fig. 127. The conditions would then be materially changed. But this is precisely the state of things which the revolving camera represents, and which your picture-plane would represent if you kept turuing it so as to have it directly in front of you whichever way you were facing.

You will see by the diagram that, as represented in this cylindrical picture, the thickness of the piers as they recede, instead of increasing as it does in Fig. 130, remains about the same as that of those nearest to the observer, notwithstanding the fact that the more distant piers are seen comerwise while the nearest ones present hardly more than the width of one face to the observer. And you must also see, that in a picture, every part of which was at the same distance from the olserver's eye, the piers would appear shorter as the piers themselves were farther away. So that, if the observer were to draw on the cylindrieal screen shown in Fig. 127, and then flatten it out, the result would be like that in Fig. 128.

But pictures are not usually made on the inside of cylinders, to loc unrolled afterward. If they are made on this kind of a surface, as "panoramas" or "cycloramas" are, they are intended to be seen in just that position, and big circular honses are built for their special accommodation-built, too, in such a way that the observer cannot get very far away from the station-point and must, perforce, see the picture under just the conditions which governed the perspective calculations on which the representation was based.

Fig. 128 shows that if we could unroll one of these cylindrical pictures we slould find that the representations of all straight lines, except the vertical ones, were really drawn as curves, so that the panorama is said to be drawn in curvilinear perspective; but when seen as they are intended to be seen, they look straight, as they certainly would not do if they had been drawn straight on a flat surface which had been rolled into the form of a cylinder afterward.

Now, on the face of it, the attempt to make flat pictures as if they were cylinders unrolled seems just as absurd as it would be to try to make cylindrical pictures out of flat ones rolled up.* There is more to the question than this, however, as we shall see.

Fig. 128.
Any picture-no matter whether it is drawn on a flat surface or on the inside of a cylinder-can appear quite right only when the observer's eye-and one eye, at that, remember-is at the station-point.

[^2]If yon have a cyclorama to exhibit, you can build a little enclosure for the spectator juse where he should be, in the middle of the building, and keep him there ; and in exhibiting single pictures of considerable importance very much the same thing is often done, but in the vast majority of cases the artist cannot count upon anything of the kind. If he could, it would be a very much simpler matter to make pictures than it is.

Remember, however, that, if drawn according to the principles of perspective which have been considered in the preceding chapters and under conditions which your window-screen illustrates, the picture will always be correct as long as it is seen from the station-point. The eye placed there may wander over the pieture as restlessly as it does over the natural scene, and everything represented falls into its place in the one case just as it does in the other; the long lines in Fig. 124 foreshorten themselves, and the road and the fence in the foreground taper away to the right and left in the picture just as they do in nature. In fact, the picture cannot help being deceptively right (so far as its drawing is concerned) as long as the eye is where the dranghtsman counted on having it when he made the picture.

Eren the question about a good part of the picture being out of focus, which has often been discussed, is one which takes care of itself entirely. One part of the picture is just as much out of focus when the eye is occupied somewhere else as the corresponding part of the natural scene would be. There is not a particle of difference between the two cases.

The dranghtsman has to think of something else besides getting his picture in true perspective, because he knows it will be looked at from every other point of view as well as from the one intendel. Indeed, the chances are, that not one person in a thousand who ever sees it will get himself into the exact position for which its perspective is calculated. A few inches backward or forward, even, will change the whole effect, as everybody knows who has tried to draw on the window-screen.

Most of us have probably criticised often enough the perspective of the scenery at the theatre, not remembering, or not knowing, that it wonld have been a perfectly easy matter for the painter to make the effect deceptively right for some one-eyed manat the baek of the houseenthegrallery, perhaps-at the expense of
everyborly else in the audience, to each of whom the effect would have been simply ridieulous. He eannot do this, and so he introduces a.goorl many modifications which he knows perfeetly well to be errors or liberties, for the sake of distributing these inevitable distortions more equitably. In making small pictures the draughtsman need not trouble himself much about this; but in large ones it hecomes a question of very great moment, and the difficulty has to be solved by drawing all detached objects of any importance as if they formed separate pictures by themselves, which the artist introduces into and reconciles with his composition as a whole the best way he ean.

All figures of men and of animals have to be treated in this way ; and, indeed, nearly all oljects not actually connected with other parts of the picture by straight lines may be, and usually are, drawn in this way, to the manifest alvantage of the whole effect.

Fig. 129, which is traced from a photograph of Titian's "Presentation of the Virgin," illustrates this well enough. The huildings are drawn in "parallel " perspective, just as you would draw your neighbor's house across the way on your wimdow-screen, lout the drawing of the figures is a different matter altogether.

The following diagram, Figs. 180 and 181, shows the kind of effect which would have been obtained if the proportions of the figures had been detemined by applying the principles of plane perspeetive. It simplifies matters to make use of one figure only, determining what its appearance would be in different parts of the picture, rather than to compare it with another figure; and, in order that we may determine with considerable precision what its appearance wonld be under different conditions, this simple architectural feature, an arcate, is introduced to measure its proportions by.

There is just such an arcade at the left-hand side of Titimn's picture, as you see. I have supposed a case in which it should run straight across the whole canvas, the piers being about as thick as these people in the picture seem to be. Then, hy changing the pillars into persons the monstrosity of figures drawn according to this principle is demonstrated.

The architecture does not look so very bad, even in the case of the pier that is farthest to the right ; but whether it does or not there seems tubédittlelpe for it, ind themastex has, as you see, unhesitatingly drawn
his buldings in just this way. But suppose this same pillar transformed into a man, as at C (Fig. 131), the figure being in the picture about as he is at A, and you see at once that that would not do at all.

The result of trying to apply this kind of perspective to such pictures as this has sometimes led teachers to refer the drawing of the figures to the principles of cylindrical or curvilinear perspective. A little stady of the diagrams, however, will show that this only helps as out of one difficulty to get us into another.

Fig. 129.

The areade in Fig. 132 is drawn in cylindrical perspective, but the figures into which its piers are transformed (Fig. 133) are not much nearer the mark than those in Fig. 131. They do not broaden out as they recede, it is true, but they turn their backs on us (or their faces), as it was never intended that they should do ; and, what is a far more serious matter, they grow smaller and smaller as they approach the frame, as they certainly do not in the original pieture.

Digitized by Microsoft ${ }^{(8)}$

Digitized by Microsoft ${ }^{\circledR}$

The fact of the matter is, then, that the figures in this picture of Titian's are not drawn in true perspective, either plane or cylindrical, as calculated for a fixed station-point. The buildings are, but the figures are not.

These last are drawn, not as they would look when the observer turned his head to look at them, turning his picture at the same time, but as they would look when he moved along so as to be opposite to cach in his turn.

This construction, as applied to the areade, is shown in Fig. 134, where just as many station-points hare been used as there were arches to be dramn. It is introduced in this phace only for the sake of its application to the human figure ; but where simulated architecture, indefinitely extended, is employed, as it often is in decoration-on the ceiling of the Sistine Chapel, for example-the same practice has to be resorted to.

Pictures made in this way (and all large figmrepieces are so constructed) are records, then, of a succession of impressions obtained from a station-point which moves along horizontally before the picture and in a line that is parallel with it, as the visitor to a gallery moves along the rail which keeps inm from going too near the pictures, and not from a station-point which revolves, as the visitor to the cyclorama has to do.

I have said that large pictures are always made in this way, but it would have been more correct to say that they are usually so constructed.

One is quite at liberty to draw his picture as if it were a cylinder unrolled if he clooses to do so, and that method has occasionally been adopted. It must be admitted, also, that the effect is admirable with certain kinds of subjects-extended landscapes, for instance, in which the principal forms are all at a considerable distance.

A good many of Turner's landscapes are drawn in this way, and there nsed to be a small picture of Allston's in the Boston Museum of Fine Arts to which the same method liad been applied.

Both of these masters, moreover, applied the principles of curvilinear perspective to the straight lines of the architecture as well as to detached/oljutets, which, of course, made the effeet very much like that in Fig.

Fig. 134.

Fig. 135.

Digitized by Microsoft ${ }^{\circledR}$

125 ; but this is by no means usual, and in Allston's case, at least, it is hardly to be regarded in any other light than that of an experiment.

What artists usually do is what Titian las done in the ease we have just been regarding, viz.: To draw the architectural part of their subjects in true perspective as applied to a plane like our windowsereen, and then to add the detached objects, such as figures, as if the observer were standing in front of each in his turn.

All columns and eapitals, and a good many other details of buildings, are sufficiently detachable and have enough interest as separate objects to le treated in this way too, and it is customary so to treat them.

Straight lines, like those in pavements, walls, lintels, and roofs, have to be left as originally drawn in plane perspective, as they could not otherwise be made to agree with the spectator's idea of what level things ought to be, as derived from the lines of the room in which the picture was lung, and even from its own frame.

And, generally speaking, the connection of all square-cornered members with the long lines of the picture is so close that the rule given above has to be ohserved; thus, a square post will usually be drawn as at A, Fig. 136, no matter how awkward the effeet may be to an observer who does not oceupy the station-point. But the circular one which miglat be made out of it would not, in the same position, be drawn as at B , which a strict regard for perspective would demand, but as at D instead, just as if the square stick from which it might have been made had been drawn as it is either at C or at E . As its lines are curves, there is no diffieulty in reconciling them with the straight lines around them. Eren the observer at the station-point does not notice that the posts are too small, and to everybody else they look a great deal better than they would have done if they had been drawn in true perspective.

As has just been said, this treatment has sometimes been extended to the long straight lines of the picture too, very notably ly Turner; and the result, where the architectural lines do not come too near the foreground, is certainly very delightful. The charm of it is to be ascribed partly to the picturesqueness of arrangement into which every detail of thefpicture meessaily falls when treated in this way, but partly,
also, to the association which a reflective observer discovers between the impression which the picture makes and that which he derives from nature.

Fig. 137, Turner's picture of the "Bridge at Coblentz," which is taken from Ruskin's "Elements of Drawing," is a firstrate example of this painter's application of the principles under discussion.

The eye wanders over such a picture as it does over nature, and finds everywhere the same retreating and converging lines, giving an idea of vastness which is not to be obtained in any other way.

Mr. Ruskin has felt the charm of the picture, and has written very beautifully about it, but, curionsly enough, he has entirely failed to discover the real motive for the peculiarity of treatment which renders it interesting. He has a great deal to say about the currents of rivers and the desirableness of not building bridges level, but the fact that the whole matter is purely one of perspective effect has somehow eluded him.

Fig. ${ }^{3} 6$.

A glance at the drawing, lowever, and a comparison of it with Fig. 125, will convince anybody that the curvature of the bridge is to be accounted for on this ground, and on no other.

Mr. Ruskin's theory, that bridges ought to have the highest arches where the water is deepest, may be a very good one, and Turner may have felt the same way about them, for aught we know. But there is nothing in the drawing before us to show that he had any opinion about it one way or the other. At any rate, the drawing of this bridge is not to be accounted for on any such grounds.

The curvature is exaggerated, it is true, for an observer would have to stand nearer to the bridge than the rest of the picture indicates, to obtimitas meh of lachere as this in ruming his eye along it ; but the
exaggeration is not a very great matter, after all, and the facts of nature have probably suffered quite as serious misrepresentation in the same picture in may things for which no good Turnerian would ever think of requiring au explanation.

And the fact is not to be denied, that in nature the curve is there. You can see it every time you run your eye along the roofs across the street, if you can only disabuse your mind of its preconceived notion that

the roofs are level. Indeed, you can hardly see anything else in the lines of the sky, whose dome-like character is purely a matter of perspective effect, the actual curvature that exists in the stratification of all the clouds to be seen from any point on the suface of the earth heing perfectly insignificant; and we perceive it, partly hecause the lines are so very long, but partly, also, because we do not have the flatness of the eloud-beds impressed upon us every moment of our lives, as we do the straightness of the edges of the buildings.

As a means of assisting the artist toferblicelthejimpressions which are made by nature, this modifica-
tion of details in accordance with the principles of cylindrical perspective is constantly resorted to, unconsciously, it may be, but none the less certainly.

Anyone painting an extended view out of doors represents distant objects, not as they would appear if projected upon a flat screen, but as if they were drawn on the inside of a cylinder, as Turner drew this bridge.

Whether it is, in general, desirable to carry the modification as far as Turner has done, in this and many other cases, it is not the purpose of this little book to discuss.

It is a poetic license, no doubt, but what would poetry be without its licenses? And what sacrilege it is to attempt to try such delightful productions as this by the standards of our dull prose!

It is to be distinctly understood, however, that the prose consists in limiting the painter who works on flat surfaces to the principles of plane perspective, not to the application of science, in its larger aspects, to his work. Turner's work is just as scientific as it is poetic, and furnishes as good an illustration as anyone could want of the truth ou which teachers like to dwell-that seientific habits of thinking, and the power that comes with them, have no quarrel with the imagination, aud offer no obstacle, but only helps, to its boldest flights.

Digitized by Microsoft ${ }^{\circledR}$

Digitized by Microsoft ${ }^{\circledR}$

Digitized by Microsoft ${ }^{\circledR}$

Digitized by Microsoft © ${ }^{(8)}$

[^0]: * It may he well enough to say in this place, that although the picture may be, and occasionally is, supposed to be made on an inclined surface, a series of vertical flat surfaces joined together at an angle, or even on one that is curver, such cases are altogether exceptional and will be considered by themselves by and by, and the niaingrinciples of thê science are frinally to be understood with reference to just such a picture-plane as your upright window screen represents, and just such a station-point as the perforated card-board stands for.

[^1]: * According to the familiar truth, "If the three sides of a triangle are parallel to the three sides of another triangle, each to each, the triangles are similar."

 Digtized by Milcrosotte

[^2]: * The reader who cares to investigate the mathematics of curvilinear perspective as applied to the construction of cyeloramas will find the subject explained and illustrated with admirable fnlness in Professor Ware's Modern Perspective

