C++ PROGRAMMING:

FrRom PROBLEM ANALYSIS TO PROGRAM DESIGN

FOURTH EDITION

D.S. MALIK

G

~% COURSE TECHNOLOGY
1~ CENGAGE Learning

Australia e Brazil e Japan e Korea e Mexico e Singapore o Spain e United Kingdom e United States

COURSE TECHNOLOGY

CENGAGE Learning"

C++ Programming: From Problem Analysis
to Program Design, Fourth Edition

by D.S. Malik

Senior Product Manager: Alyssa Pratt
Acquisitions Editor: Amy Jollymore
Content Product Manager: Jill Braiewa
Marketing Manager: Bryant Chrzan
Editorial Assistant: Patrick Frank

Print Buyer: Julio Esperas

Cover Designer: Lisa Kuhn, Curio Press, LLC
Compositor: Integra

Art Director: Marissa Falco

Validation: Green Pen Quality Assurance
Proofreader: Green Pen Quality Assurance
Indexer: Liz Cunningham

Printed in Canada
1234567141312 111009 08

© 2009 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced, transmitted, stored or used
in any form or by any means graphic, electronic, or mechanical,
including but not limited to photocopying, recording, scanning,
digitizing, taping, Web distribution, information networks, or
information storage and retrieval systems, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act,
without the prior written permission of the publisher.

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit
all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

ISBN-13: 978-1-4239-0209-6
ISBN-10: 1-4239-0209-2

Course Technology
25 Thomson Place
Boston, MA 02210
USA

Visual® C++ .NET and PowerPoint® are registered trademarks
of the Microsoft Corporation; Pentium® is a registered
trademark of Intel Corporation; IBM is a registered trademark
of Industrial Business Machines.

Disclaimer

Course Technology reserves the right to revise this publication
and make changes from time to time in its content without
notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed for any
particular intent beyond educational purposes. The authors and
the publisher do not offer any warranties or representations, nor
do they accept any liabilities with respect to the programs.

Cengage Learning is a leading provider of customized
learning solutions with office locations around the globe,
including Singapore, the United Kingdom, Australia, Mexico,
Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada
by Nelson Education, Ltd.

For your lifelong learning solutions, visit
course.cengage.com
Visit our corporate website at cengage.com

TO

My Daughter

Shelly Malik

BRIEF CONTENTS

PREFACE XXVil
1. An Overview of Computers and Programming Languages 1
2. Basic Elements of C++ 29
3. Input/Output 115
4. Control Structures | (Selection) 167
5. Control Structures Il (Repetition) 231
6. User-Defined Functions | 307
7. User-Defined Functions Il 345
8. User-Defined Simple Data Types, Namespaces,

and the string Type 415
9. Arrays and Strings 469
10. Applications of Arrays (Searching and Sorting)

and the vector Type 545
11. Records (structs) 603
12. Classes and Data Abstraction 641
13. Inheritance and Composition 717
14. Pointers, Classes, Virtual Functions, and Abstract Classes 785
15. Overloading and Templates 853
16. Exception Handling 943
17. Recursion 981
18. Linked Lists 1017

19. Stacks and Queues 1111

vi | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

APPENDIX A Reserved Words 1219
APPENDIX B Operator Precedence 1221
APPENDIX C Character Sets 1223
APPENDIX D Operator Overloading 1227
APPENDIX E Additional C++ Topics 1229
APPENDIX F Header Files 1251
APPENDIX G~ Memory Size on a System and Random

Number Generator 1261
APPENDIX H Standard Template Library (STL) 1263
APPENDIX | Answers to Odd-Numbered Exercises 1305

INDEX 1327

TABLE OF CONTENTS

Preface XXVil

AN OVERVIEW OF COMPUTERS

AND PROGRAMMING LANGUAGES 1
Introduction 2
A Brief Overview of the History of Computers 2
Elements of a Computer System 3
Hardware 4
Central Processing Unit 4
Main Memory 5
Secondary Storage 6
Input/Output Devices 6
Software 6
The Language of a Computer 6
The Evolution of Programming Languages 8
A C++ Program 10
Processing a C++ Program 12
Programming with the Problem
Analysis—Coding—Execution Cycle 14
Programming Methodologies 22
Structured Programming 22
Object-Oriented Programming 22
ANSI/ISO Standard C++ 24
Quick Review 24

Exercises 26

viii

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

BASIC ELEMENTS OF C++

The Basics of a C++ Program
Comments
Special Symbols
Reserved Words (Keywords)
Identifiers
Whitespaces

Data Types
Simple Data Types
Floating-Point Data Types

Arithmetic Operators and Operator Precedence
Order of Precedence

Expressions
Mixed Expressions

Type Conversion (Casting)
string Type

Input
Allocating Memory with Constants and Variables
Putting Data into Variables
Assignment Statement
Saving and Using the Value of an Expression
Declaring and Initializing Variables
Input (Read) Statement
Variable Initialization

Increment and Decrement Operators
Output

Preprocessor Directives
namespace and Using cin and cout in a Program
Using the string Data Type in a Program

Creating a C++ Program

Program Style and Form

Syntax
Use of Blanks

29

30
32
32
33
33
34

34
35
38

40
44

45
46

48
50

51
52
54
54
58
59
60
63

67
69

77
78
78

79

83

83
84

Table of Contents | ix

Use of Semicolons, Brackets, and Commas 84
Semantics 84
Naming ldentifiers 84
Prompt Lines 85
Documentation 86
Form and Style 86
More on Assignment Statements 88
Programming Example: Convert Length 99
Programming Example: Make Change 93
Quick Review 97
Exercises 99
Programming Exercises 107
INPUT/OUTPUT 115
1/0 Streams and Standard 1/0 Devices 116
cin and the Extraction Operator >> 117
Using Predefined Functions in a Program 123
cin and the get Function 125
cin and the ignore Function 126
The putback and peek Functions 128
The Dot Notation Between I/0 Stream Variables
and 1/0 Functions: A Precaution 130
Input Failure 131
The clear Function 133
Output and Formatting Output 135
setprecision Manipulator 135
fixed Manipulator 136
showpoint Manipulator 136
setw 138
Additional Output Formatting Tools 141
setfill Manipulator 141
left and right Manipulators 143

Input/Output and the string Type 145

x | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

File Input/Output 146
Programming Example: Movie Ticket Sale and
Donation to Charity 150
Programming Example: Student Grade 155
Quick Review 158
Exercises 160
Programming Exercises 163
n CONTROL STRUCTURES | (SELECTION) 167
Control Structures 168
Relational Operators 169
Relational Operators and Simple Data Types 171
Comparing Floating-point Numbers for equality 171
Comparing Characters 172
Relational Operators and the string Type 173
Logical (Boolean) Operators and Logical Expressions 175
Order of Precedence 177
Short-Circuit Evaluation 181
int Data Type and Logical (Boolean) Expressions 182
bool Data Type and Logical (Boolean) Expressions 183
Selection: if and if...else 184
One-Way Selection 185
Two-Way Selection 187
Compound (Block of) Statements 191
Multiple Selections: Nested if 192
Comparing if...else Statements with
a Series of if Statements 196
Using Pseudocode to Develop, Test, and Debug a Program 196
Input Failure and the if Statement 199
Confusion Between the Equality Operator (==) and
the Assignment Operator (=) 202
Conditional Operator (2 :) 203

switch Structures 204

Table of Contents |

Terminating a Program with the
assert Function

Programming Example: Cable Company Billing
Quick Review
Exercises

Programming Exercises

CONTROL STRUCTURES Il (REPETITION)
Why Is Repetition Needed?
while Looping (Repetition) Structure

Designing while loops
Case 1: Counter-Controlled while Loops
Case 2: Sentinel-Controlled while Loops
Case 3: Flag-Controlled while Loops
Case 4: EOF-Controlled while Loops
eof Function
More on Expressions in while Statements

Programming Example: Checking
Account Balance

Programming Example: Fibonacci Number
for Looping (Repetition) Structure
Programming Example: Classifying Numbers
do...while Looping (Repetition) Structure
Choosing the Right Looping Structure
break and continue Statements

Nested Control Structures

Quick Review

Exercises

Programming Exercises

211
213
219
220
225

231
232
233

235
236
239
243
247
248
249

250
259
264
270
274
278
278
281
288
290
300

Xi

xii | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

USER-DEFINED FUNCTIONS |
Predefined Functions
User-Defined Functions

Value-Returning Functions
Syntax: Value-Returning Functions
Syntax: Formal Parameter List
Function Call
Syntax: Actual Parameter List
return Statement
Syntax: return Statement
Function Prototype
Syntax: Function Prototype
Flow of Execution

Programming Example: Largest Number
Programming Example: Cable Company
Quick Review

Exercises

Programming Exercises

USER-DEFINED FUNCTIONS II

Void Functions
Void Functions without Parameters
Void Functions with Parameters

Value Parameters

Reference Variables as Parameters

Value and Reference Parameters and Memory Allocation
Reference Parameters and Value-Returning Functions
Scope of an Identifier

Global Variables, Named Constants, and Side Effects

Static and Automatic Variables

307
308
311

312
314
314
314
314
315
315
318
319
325

326
327
333
335
340

345

346
346
349

354
356
360
370
370
374
376

Table of Contents

Function Overloading: An Introduction
Functions with Default Parameters
Programming Example: Classify Numbers
Programming Example: Data Comparison
Quick Review

Exercises

Programming Exercises

n USER-DEFINED SIMPLE DATA TYPES,
NAMESPACES, AND THE string TYPE

Enumeration Type
Declaring Variables
Assignment
Operations on Enumeration Types
Relational Operators
Input/Output of Enumeration Types
Functions and Enumeration Types
Declaring Variables When Defining the Enumeration Type
Anonymous Data Types
typedef Statement

Programming Example: The Game of Rock, Paper,
and Scissors

Namespaces

string Type
Additional string Operations
length Function
size Function
find Function
substr Function
swap Function

Programming Example: Pig Latin Strings
Quick Review

| xiii

378
380
383
388
398
400
407

415

416
418
418
419
419
420
422
424
424
425

426
437

442
446
446
448
449
452
454

454
460

xiv. | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Exercises 463
Programming Exercises 466
n ARRAYS AND STRINGS 469
Arrays 471
Accessing Array Components 472
Processing One-Dimensional Arrays 475
Array Index Out of Bounds 479
Array Initialization During Declaration 480
Partial Initialization of Arrays During Declaration 480
Some Restrictions on Array Processing 481
Arrays as Parameters to Functions 482
Constant Arrays as Formal Parameters 483
Base Address of an Array and Array in Computer Memory 485
Functions Cannot Return a Value of the Type Array 488
Integral Data Type and Array Indices 491
Other Ways to Declare Arrays 491
C-strings (Character Arrays) 492
String Comparison 494
Reading and Writing Strings 496
String Input 496
String Output 497
Specifying Input/Output Files at Execution Time 498
string Type and Input/Output Files 498
Parallel Arrays 499
Two- and Multidimensional Arrays 500
Accessing Array Components 502
Two-Dimensional Array Initialization During Declaration 503
Two-Dimensional Arrays and Enumeration Types 503
Initialization 507
Print 507
Input 507
Sum by Row 508

Sum by Column 508

Table of Contents | xv

Largest Element in Each Row and Each Column 508
Reversing Diagonal 509
Passing Two-Dimensional Arrays as Parameters to Functions 511
Arrays of Strings 514
Arrays of Strings and the string Type 514
Arrays of Strings and c-Strings (Character Arrays) 515
Another Way to Declare a Two-Dimensional Array 516
Multidimensional Arrays 517
Programming Example: Code Detection 518
Programming Example: Text Processing 525
Quick Review 532
Exercises 534
Programming Exercises 539

APPLICATIONS OF ARRAYS (SEARCHING

AND SORTING) AND THE vector TYPE 545
List Processing 546
Searching 546
Bubble Sort 551
Selection Sort 555
Insertion Sort 559
Sequential Search on an Ordered List 566
Binary Search 569
Performance of Binary Search 572
vector Type (class) 574
Programming Example: Election Results 579
Quick Review 595
Exercises 597

Programming Exercises 600

xvi | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

m RECORDS (structS) 603
Records (structs) 604
Accessing struct Members 606
Assignment 608
Comparison (Relational Operators) 609
Input/Output 610
struct Variables and Functions 610
Arrays versus structs 611
Arrays in structs 612
structs in Arrays 614
structs within a struct 617
Programming Example: Sales Data Analysis 621
Quick Review 635
Exercises 635
Programming Exercises 637
m CLASSES AND DATA ABSTRACTION 641
Classes 642
Unified Modeling Language Class Diagrams 645
Variable (Object) Declaration 646
Accessing Class Members 647
Built-in Operations on Classes 648
Assignment Operator and Classes 649
Class Scope 650
Functions and Classes 650
Reference Parameters and Class Objects (Variables) 650
Implementation of Member Functions 651
Accessor and Mutator Functions 656
Order of public and private Members of a Class 661
Constructors 662
Invoking a Constructor 664
Invoking the Default Constructor 664
Invoking a Constructor with Parameters 665

Constructors and Default Parameters 668

Table of Contents

Classes and Constructors: A Precaution
Arrays of Class Objects (Variables) and Constructors
Destructors

Data Abstraction, Classes, and Abstract Data Types

A struct versus a class
Information Hiding

Executable Code

Static Members of a Class
Programming Example: Candy Machine
Quick Review

Exercises

Programming Exercises

INHERITANCE AND COMPOSITION

Inheritance
Redefining (Overriding) Member Functions
of the Base Class
Constructors of Derived and Base Classes
Multiple Inclusions of a Header File
C++ Stream Classes
Protected Members of a Class
Inheritance as public, protected, of private

Composition

Object-Oriented Design (O0OD) and
Object-Oriented Programming (OOP)
Identifying Classes, Objects, and Operations

Programming Example: Grade Report
Quick Review
Exercises

Programming Exercises

| xvii

670
671
673

674
676
677
681
685
691
706
708
713

117
718

721
728
736
738
739
739

743

748
750

751
772
773
779

xviii | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

m POINTERS, CLASSES, VIRTUAL FUNCTIONS, AND

ABSTRACT CLASSES 785
Pointer Data Type and Pointer Variables 786
Declaring Pointer Variables 786
Address of Operator (&) 787
Dereferencing Operator (*) 788
Classes, Structs, and Pointer Variables 794
Initializing Pointer Variables 797
Dynamic Variables 797
Operator new 798
Operator delete 799
Operations on Pointer Variables 801
Dynamic Arrays 803
Functions and Pointers 806
Pointers and Function Return Values 806
Dynamic Two-Dimensional Arrays 807
Shallow versus Deep Copy and Pointers 810
Classes and Pointers: Some Peculiarities 812
Destructor 813
Assignment Operator 814
Copy Constructor 816
Inheritance, Pointers, and Virtual Functions 823
Classes and Virtual Destructors 830
Abstract Classes and Pure Virtual Functions 830
Address of Operator and Classes 838
Quick Review 841
Exercises 844

Programming Exercises 851

Table of Contents | xix

m OVERLOADING AND TEMPLATES 853
Why Operator Overloading Is Needed 854
Operator Overloading 855

Syntax for Operator Functions 856
Overloading an Operator: Some Restrictions 856
Pointer this 857
Friend Functions of Classes 862
Operator Functions as Member Functions
and Nonmember Functions 865
Overloading Binary Operators 868
Overloading the Stream Insertion (<<) and
Extraction (>>) Operators 874
Overloading the Assignment Operator (=) 879
Overloading Unary Operators 887
Operator Overloading: Member versus Nonmember 893
Classes and Pointer Member Variables (Revisited) 894
Operator Overloading: One Final Word 894
Programming Example: clockType 894
Programming Example: Complex Numbers 903

Overloading the Array Index (Subscript) Operator ([1) 908

Programming Example: newString 910
Function Overloading 916
Templates 917
Function Templates 917

Class Templates 919

Quick Review 927
Exercises 929
Programming Exercises 934

m EXCEPTION HANDLING 943
Handling Exceptions within a Program 944

C++ Mechanisms of Exception Handling 948

XX

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

try/catch Block 948
Using C++ Exception Classes 955
Creating Your Own Exception Classes 959
Rethrowing and Throwing an Exception 965
Exception Handling Techniques 970
Terminate the Program 970
Fix the Error and Continue 970
Log the Error and Continue 972
Stack Unwinding 972
Quick Review 976
Exercises 978
Programming Exercises 980
RECURSION 981
Recursive Definitions 982
Direct and Indirect Recursion 985
Infinite Recursion 985
Problem Solving Using Recursion 986
Tower of Hanoi: Analysis 997
Recursion or Iteration? 998

Programming Example: Converting a Number from

Binary to Decimal 999
Programming Example: Converting a Number from
Decimal to Binary 1004
Quick Review 1008
Exercises 1009
Programming Exercises 1012
LINKED LISTS 1017
Linked Lists 1018
Linked Lists: Some Properties 1019

Building a Linked List 1028

Table of Contents

Linked List as an ADT
Structure of Linked List Nodes
Member Variables of the class linkedListType
Linked List Iterators
Print the List
Length of a List
Retrieve the Data of the First Node
Retrieve the Data of the Last Node
Begin and End
Copy the List
Destructor
Copy Constructor
Overloading the Assignment Operator

Unordered Linked Lists
Search the List
Insert the First Node
Insert the Last Node
Header File of the Unordered Linked List

Ordered Linked Lists
Search the List
Insert a Node
Insert First and Insert Last
Delete a Node
Header File of the Ordered Linked List

Print a Linked List in Reverse Order
(Recursion Revisited)

Doubly Linked Lists
Default Constructor
isEmptyList
Destroy the List
Initialize the List
Length of the List
Print the List
Reverse Print the List
Search the List
First and Last Elements

[xxi

1032
1034
1034
1034
1041
1041
1042
1042
1042
1043
1044
1044
1045

1045
1046
1047
1048
1053

1054
1056
1056
1061
1062
1063

1066

1069
1072
1072
1072
1073
1073
1073
1073
1074
1074

XXii

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Circular Linked Lists
Programming Example: Video Store
Quick Review

Exercises

Programming Exercises

m STACKS AND QUEUES
Stacks

Stack Operations

Implementation of Stacks as Arrays
Initialize Stack
Empty Stack
Full Stack
Push
Return the Top Element
Pop
Copy Stack
Constructor and Destructor
Copy Constructor
Overloading the Assignment Operator (=)
Stack Header File

Programming Example: Highest GPA

Linked Implementation of Stacks
Default Constructor
Empty Stack and Full Stack
Initialize Stack
Push
Return the Top Element
Pop
Copy Stack
Constructors and Destructors
Overloading the Assignment Operator (=)

1080
1081
1101
1101
1105

1111

1112
1114

1116
1119
1120
1120
1120
1122
1122
1124
1124
1125
1125
1126

1130

1134
1137
1138
1138
1139
1141
1141
1143
1144
1144

Table of Contents | xxiii

Stack as Derived from the
class unorderedLinkedList 1146

Application of Stacks: Postfix Expressions Calculator 1148

Main Algorithm 1153
Function evaluateExpression 1153
Function evaluateOpr 1155
Function discardExp 1157
Function printResult 1157

Removing Recursion: Nonrecursive Algorithm to Print a

Linked List Backward 1160
Queues 1167
Queue Operations 1167
Implementation of Queues as Arrays 1169
Linked Implementation of Queues 1180
Queue Derived from the class
unorderedLinkedListType 1185
Application of Queues: Simulation 1186
Designing a Queuing System 1187
Customer 1188
Server 1191
Server List 1194
Waiting Customers Queue 1199
Main Program 1201
Quick Review 1206
Exercises 1207
Programming Exercises 1213
APPENDIX A: RESERVED WORDS 1219
APPENDIX B: OPERATOR PRECEDENCE 1221

APPENDIX C: CHARACTER SETS 1223

XXiv

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

ASCII (American Standard Code for
Information Interchange)

EBCDIC (Extended Binary Coded Decimal
Interchange Code)

APPENDIX D: OPERATOR OVERLOADING

APPENDIX E: ADDITIONAL C++ TOPICS

Binary (Base 2) Representation of a
Nonnegative Integer
Converting a Base 10 Number to a
Binary Number (Base 2)
Converting a Binary Number (Base 2) to Base 10
Converting a Binary Number (Base 2) to Octal (Base 8)
and Hexadecimal (Base 16)

More on File Input/Output
Binary Files
Random File Access

Naming Conventions of Header Files in ANSI/ISO
Standard C++ and Standard C++

APPENDIX F: HEADER FILES
Header File cassert (assert.h)
Header File cctype (ctype.h)
Header File cfloat (float.h)
Header File climits (1imits.h)

Header File cmath (math.h)
Header File cstddef (stddef.h)
Header File cstring (string.h)

1223

1224

1227

1229

1229

1229
1231

1232

1234
1234
1240

1248

1251
1251
1252
1253
1254

1256
1257
1257

Table of Contents | xxv

APPENDIX G: MEMORY SIZE ON A SYSTEM
AND RANDOM NUMBER GENERATOR

Random Number Generator

APPENDIX H: STANDARD TEMPLATE
LIBRARY (STL)

Components of the STL

Container Types
Sequence Containers
Sequence Container: Vectors
Member Functions Common to All Containers
Member Functions Common to Sequence Containers
copy Algorithm
Sequence Container: deque
Sequence Container: 1ist

Iterators
|OStream lterators
Container Adapters

Algorithms
STL Algorithm Classification
STL Algorithms
Functions £111 and £i11 n
Functions find and find if
Functions remove and replace
Functions search, sort, and binary search

APPENDIX |1: ANSWERS TO ODD-NUMBERED
EXERCISES

Chapter 1
Chapter 2
Chapter 3
Chapter 4

1261
1262

1263
1263

1264
1264
1264
1273
1275
1276
1280
1283

1288
1289
1289

1293
1293
1295
1295
1298
1299
1301

1305
1305
1308
1310
1310

XXVi

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19

INDEX

1311
1313
1313
1314
1315
1316
1316
1317
1319
1320
1321
1322
1323
1323
1324

1327

PREFACE

WELCOME TO THE FOURTH EDITION OF C++ Programming: From Problem Analysis to
Program Design. Designed for a first Computer Science (CS1) C++ course, this text provides
a breath of fresh air to you and your students. The CS1 course serves as the cornerstone of the
Computer Science curriculum. My primary goal is to motivate and excite all CS1 students,
regardless of their level. Motivation breeds excitement for learning. Motivation and
excitement are critical factors that lead to the success of the programming student. This text
is a culmination and development of my classroom notes throughout more than fifty semesters
of teaching successful programming to Computer Science students.

C++ Programming: From Problem Analysis to Program Design started as a collection of brief
examples, exercises, and lengthy programming examples to supplement the books that were
in use at our university. It soon turned into a collection large enough to develop into a text.
The approach taken in this book is, in fact, driven by the students’ demand for clarity and readability.
The material was written and rewritten until the students felt comfortable with it. Most of the
examples in this book resulted from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their recipes. Budding
violinists practice their scales. New programmers must practice solving problems and writing
code. This is not a C++ cookbook. We do not simply list the C++ syntax followed by an
example; we dissect the “why” behind all the concepts. The crucial question of “why?” is
answered for every topic when first introduced. This technique offers a bridge to learning
C++. Students must understand the “why?” in order to be motivated to learn.

Traditionally, a C++ programming neophyte needed a working knowledge of another
programming language. This book assumes no prior programming experience. However,
some adequate mathematics background, such as college algebra, is required.

Changes in the Fourth Edition

The fourth edition contains more than 20 new programming exercises in Chapters 2 to 13, and
15. Certain programming examples and programming exercises require input from a file. In the
earlier editions the input file was assumed to be stored on the floppy disk in drive A. However,
newer computers label drives differently. So in this edition, we assume that the input file is in
the same directory (subdirectory) as the project containing the source code file. Furthermore,
some parts of Chapters 1, 2, 4, and 5 are rewritten and updated. When a programming
assignment is given, typically, students are required to include the author of the program and
a brief explanation describing the purpose of the program. To emphasize this requirement,
Programming Examples in each chapter are modified by including comments showing the
author(s) of the programs and a brief explanation describing the purpose of the program.

xxviii | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Approach

The programming language C++, which evolved from C, is no longer considered an
industry-only language. Numerous colleges and universities use C++ for their first program-
ming language course. C++ is a combination of structured programming and object-oriented
programming, and this book addresses both types.

This book can be easily divided into two parts: structured programming and object-oriented
programming. The first 11 chapters form the structured programming part; Chapters 12
through 19 form the object-oriented part. However, only the first seven chapters are essential
to move on to the object-oriented portion.

In July 1998, ANSI/ISO Standard C++ was officially approved. This book focuses on ANSI/
ISO Standard C++. Even though the syntax of Standard C++ and ANSI/ISO Standard C++
is very similar, Chapter 8 discusses some of the features of ANSI/ISO Standard C++ that are
not available in Standard C++.

Chapter 1 briefly reviews the history of computers and programming languages. The reader can
quickly skim through this chapter and become familiar with some of the hardware components
and the software parts of the computer. This chapter contains a section on processing a C++
program. This chapter also describes structured and object-oriented programming.

Chapter 2 discusses the basic elements of C++. After completing this chapter, students
become familiar with the basics of C++ and are ready to write programs that are complicated
enough to do some computations. Input/output is fundamental to any programming
language. It is introduced early, in Chapter 3, and is covered in detail.

Chapters 4 and 5 introduce control structures to alter the sequential flow of execution.
Chapters 6 and 7 study user-defined functions. It is recommended that readers with no prior
programming background spend extra time on Chapters 6 and 7. Several examples are provided
to help readers understand the concepts of parameter passing and the scope of an identifier.

Chapter 8 discusses the user-defined simple data type (enumeration type), the namespace
mechanism of ANSI/ISO Standard C++, and the string type. The earlier versions of C did
not include the enumeration type. Enumeration types have very limited use; their main
purpose is to make the program readable. This book is organized such that readers can skip
the section on enumeration types during the first reading without experiencing any disconti-
nuity, and then later go through this section.

Chapter 9 discusses arrays in detail. Chapter 10 describes various searching and sorting
algorithms as well as an introduction to the vector class. Chapter 11 introduces records
(structs). The introduction of structs in this book is similar to C structs. This chapter is
optional; it is not a prerequisite for any of the remaining chapters.

Chapter 12 begins the study of object-oriented programming (OOP) and introduces classes.
The first half of this chapter shows how classes are defined and used in a program. The second
half of the chapter introduces abstract data types (ADTs). This chapter shows how classes in
C++ are a natural way to implement ADTs. Chapter 13 continues with the fundamentals of

Preface | xxix

object-oriented design (OOD) and OOP and discusses inheritance and composition. It
explains how classes in C++ provide a natural mechanism for OOD and how C++ supports
OOP. Chapter 13 also discusses how to find the objects in a given problem.

Chapter 14 studies pointers in detail. After introducing pointers and how to use them in a
program, this chapter highlights the peculiarities of classes with pointer data members and
how to avoid them. Moreover, this chapter also discusses how to create and work with
dynamic two-dimensional arrays. Chapter 14 also discusses abstract classes and a type of
polymorphism accomplished via virtual functions.

Chapter 15 continues the study of OOD and OOP. In particular, it studies polymorphism
in C++. The chapter specifically discusses two types of polymorphism—overloading and
templates.

Chapter 16 discusses exception handling in detail. Chapter 17 introduces and discusses recur-
sion. Moreover, this is a standalone chapter, so it can be studied anytime after Chapter 10.

Chapters 18 and 19 are devoted to the study of data structures. Discussed in detail are linked
lists in Chapter 18 and stacks and queues in Chapter 19. The programming code developed in
these chapters is generic. These chapters effectively use the fundamentals of OOD.

Appendix A lists the reserved words in C++. Appendix B shows the precedence and
associativity of the C++ operators. Appendix C lists the ASCII (American Standard Code
for Information Interchange) and EBCDIC (Extended Binary Coded Decimal Interchange
Code) character sets. Appendix D lists the C++ operators that can be overloaded.

Appendix E has three objectives. First, we discuss how to convert a number from decimal to
binary and binary to decimal. We then discuss binary and random access files in detail.
Finally, we describe the naming conventions of the header files in both ANSI/ISO Standard
C++ and Standard C++. Appendix F discusses some of the most widely used library
routines, and includes the names of the standard C++ header files. The programs in
Appendix G show how to print the memory size for the built-in data types on your system
as well as how to use a random number generator. Appendix H gives an introduction to
the Standard Template Library, and Appendix I provides the answers to odd-numbered
exercises in the book.

xxx | C++ Programming: From Problem Analysis to Program Design, Fourth Edition

How to Use the Book

This book can be used in various ways. Figure 1 shows the dependency of the chapters.

A8

Chapter 4

i

l l

Chapter 8

Chapter 10

FIGURE 1 Chapter dependency diagram

/
Chapter 17

\

Chapter 12
|
\ Y Y
Chapter 13 Chapter 14 Chapter 16
Chapter 15

b

Chapter 18

|

Chapter 19

Preface | xxxi

In Figure 1, dotted lines mean the preceding chapter is used in one of the sections of the
chapter and is not necessarily a prerequisite for the next chapter. For example, Chapter 9
covers arrays in detail. In Chapters 11 and 12, we show the relationship between arrays and
structs and arrays and classes, respectively. However, if Chapter 12 is studied before
Chapter 9, then the section dealing with arrays in Chapter 12 can be skipped without any
discontinuation. This particular section can be studied after studying chapter 9.

It is recommended that the first seven chapters be covered sequentially. After covering the
first seven chapters, if the reader is interested in learning OOD and OOP early, then Chapter
12 can be studied right after Chapter 7. Chapter 8 can be studied any time after Chapter 7.

After studying the first seven chapters in sequence, some of the approaches are:

1. Study chapters in the sequence: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
2. Study chapters in the sequence: 9, 12, 14, 15, 13, 17, 18, 19, 10, 16.
3. Study chapters in the sequence: 12, 9, 10, 14, 15, 13, 17, 18, 19, 16.
4. Study chapters in the sequence: 12, 9, 14, 15, 13, 17, 18, 19, 10, 16.

FEATURES OF THE BooK

Selection: if and if..

using namespace std;

int main ()

{
ifstream inFile; //input file stream variable
ofstream cutFile; //output file stream variable

double testl, test2, test3, testd, testSs;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //open the input file

if (l!inFile)
{
cout << "Cannot open the input file.
<< "The program terminates." <<
return 1;

}

outFile.open("testavg.out™); //open the output

outFile << fixed << showpoint;

ngth outFile << setprecision(2);

Four-color
cout << "Processing data" << endl; interior design
inFile >> firstName >> lastName; shows
outFile << "Student name: " << firstName

<< " " << lastName << endl; accurate C++
inFile >> testl >> test2 >> test3 code and

>> testd >> test5; related
outFile << "Test scores: " << setw(4) << testl

<< setw(4) << test2 << setw(4) << test3 comments.

<< setw(d) << testd << setw(4) << test5
<< endl;

average = (testl + test2 + test3 + testd + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;

168 | Chapter 4: Control Structures | (54

Chapter 2 defined a program as a sequence of statements who!
accomplish some task. The programs you have examined so

and straightforward. To process a program, the computer beg

cutabl wement and exec the statements in order until it comes to the end.
In this chapter and er 5, you will learn how to tell a computer that it does
ot have to follow a simple sequenual order of statements; it can also m:
decisions and repeat certain statements over and over until certain conditions

A computer can proce ¢
by making a cho als led a branch; repe
over and over, iz a structure called a loop; or by calling a function. Figure 4-1
illustrates the first three types of program flow. (In Chapter 7, we will show how function

work.) The programming examples in Chapters 2 and 3 included simple sequential
programs. With such a program, the computer starts at the b g and follows the
statements in order. No choices are made; there is no repe Control structures
provide alternatives to sequential program execution and are used to alter the

scution, The two most common control structures are selection and re;

In selectiy = p 3 cecutes ps I statements
In reperition, the program repeats particular statements a certain number of tir
some condit

More than 300
visual diagrams,
both extensive
and exhaustive,
illustrate difficult

concepts.
a, Sequence b. Selection ¢, Repetition

FIGURE 4-1 Flo

Notes highlight important facts about
the concepts introduced in the
chapter.

Arithmetic Operators and Operator Precedence | 43

=34 / 5, the quotient is —6 and the remainder is —4. Similarly, 34 $ =5=4.b
the division =34 / 5, the quotient is —6 and the remainder is 4. Also =34 % -5 =
because in the division =34 / =5, the quotient is 6 and the remainder is -4.

The following example shows how arithmetic operators work with floating-point
numbers.

The following C++ program evaluates various floating-point expressions. (The details, of
how the expressions aluated, are left as an ¢ ¢ for you.)
// This program illustrates how floating-point expressions
// are evaluated. Numbered examples
finclude <iostream> illustrate the key
ngth 7 7
using name ce std; Concepts with their
& Salhies relevant cgde. The
cout "5.0 + 3.5 = " << 5, programmlng COde_
cout << "3.0 + 9.4 = " << 3. in these examples is
cout "16.3 = 5.2 = " <<
cout << "4.2 * 2,5 = " << 4. followed by a
cout "5.0 / 2.0 = " << 5,
cout << "34.5 / 6.0 = " << 34. : ; Sample Run. An
t "34.5 / 6.5 = " << 4. f
cou explanation then
return 0; follows that

describes what each
line in the code
does.

Programming
Examples are
complete programs
featured in each
chapter. These
examples include the
accurate, concrete
stages of Input,
Output, Problem
Analysis and
Algorithm Design, and
a Complete Program
Listing.

Chapter &: User-Defined Functions |

PROGRAMMING EXaMPLE: Largest Number

In this programn nple, the function larger is used to determine the la
. For the purpose of illustration, this p
1 a set of 10 numbers. You can eas

program to accommodate any set of numbers.

Input A set of 10 numbers
Dutput The largest of 10 numbers
Suppose that the inpuc data i

15 20 7 B8 28 21 43 12 35 3

Read the first number of the data set. Because this is the only number read to this
it 1s the lar number so far and call it max. Read the
1 it num. No mp. an and store the
ber into max. Now max contains the larger of the
third number. Compare it with max and store the larg
point, max contains the largest of the first three 3 ad the next number,
compare it with max, and store the larger into max. Repeat this pro for each
aining number in the data s rgest number in
the data set. This discussion translates into the following algorithm:

Reead the first number. B ¢ this is the only number ¢
have read so far, it is the largest number so far. Save it in a
called max.

For cach remaining number in the list:

Reead the next number. Store it

Compare num and masx. If max < num, then num is the new
largest number anc update the value of max 1

into max. [f max >= num, discard num; that

3. Because max now contains the largest number, print it

To find the larger of two numbers, the program uses the function larger.

COMPLETE PROGRAM LIST
;‘,"**1***t**i*i*ni***aiw*niA***t******At**aiﬁ*itﬁ**ii**a***
// Ruthor: D.S. Malik

/i

// This program finds the largest number of a set of 10
// numbers.

L e T e

Exercises further
reinforce learning
and ensure that
students have, in
fact, mastered the

Exercises | 99 .
material.

EXERCISES

Mark the following statements as true or
atifier can be any sequence of digits and letters.
+, there is no difference between a reserved word and a pre-
defined identifier,
A C++ identifier can start with a digit.
The operands of the modulus operator must be integers.
and b = 3;, then after the statement a =b; the value of b is
sl 3.
In the statement ein>> y; y can only be an int or a double variable,
In an output statement, the newline character may be a part of the
2.
The following is a legal C++ program:
int main()
{
}

In a mixed expression, all the operands are converted to floating-point
numbers,

return 0;

ngth

Suppose x = 5. After the statement y = x++; executes, y is 5 and
X is 6.

Suppose a = 5. After the statement ++a; executes, the value of a 1
ilue of the expression is not saved in another

variable.

Which of the following are valid C++ identifie

myFirstProgram

MIX-UP

C++Program2

quiz?

ProgrammingLecture2

lfootEqualsl2Inches

Mike'sFirstAttempt

Update Grade

4th

New_Student

Programming Exercises

RAMMING EXERCISES

nsider’the definition of the function main:

int main ()

{

Programming

rate, hours; Exercises challenge
students to write
C++ programs with
a specified
outcome.

1

The variables x, v, z, rate, and hours referred to in items a thre
below are the variables of the function main, Each of the functions described
must have the appropriate parameters to ss these varnables. Wrte the

following definiti

Write the definition of the function initialize that initializes % and y
to 0, and z to the blank character.
Write the definition of the function getHoursRate that prompts the
user to input the hours worked and rate per hour to initialize the
ngth variables hours and rate of the function main.
Write the definition of the value-returning function payCheck that
calculates and returns the amount to be paid to an employee based on
te per hour. The hours worked and rate per
hour are stored in the variables hours and rate, respectively, of the
function main. The formula for caleulating the amount to be paid
n rate; for hours over

Write the definition of the function printCheck that prints the hours

worked, rate per hour, and the amount due.

Write the definition of the function funcOne that prompts the user o

input a number. The function then changes the value of x by assigning

the value of the expression 2 times the (old) value of x plus the value of

y minus the value entered by the user.

Write the definition of the function nextChar that sets the value of z to

the next cl ter stored in z.

Write the defimition of a function main that tests each of these functions.
The function printGrade in Example 7-6 is written as a void function
to compute and output the course grade. The course score is p.

a parameter to the function printGrade. Rewrite the function

SUPPLEMENTAL RESOURCES

The following supplemental materials are available when this book is used in a classroom
setting.

Student Online Companion

This robust Web site, accessible at www.course.com/malik/cpp, offers students a plethora of
review and self-assessment options. Each chapter includes a Concepts Review, Chapter
Summary, Key Terms, Self-Tests, and Assignments. In addition, the Online Companion
features related Web links, source code for all chapters, and compiler tutorials.

All instructor teaching tools, outlined below, are available with this book on a single
CD-ROM.

Electronic Instructor’s Manual

The Instructor’s Manual that accompanies this textbook includes:

e Additional instructional material to assist in class preparation, including suggestions
for lecture topics.

® Solutions to all the end-of-chapter materials, including the Programming Exercises.

ExamView®

This textbook is accompanied by ExamView, a powerful testing software package that allows
instructors to create and administer printed, computer (LAN-based), and Internet exams.
ExamView includes hundreds of questions that correspond to the topics covered in this
text, enabling students to generate detailed study guides that include page references for
further review. These computer-based and Internet testing components allow students to take
exams at their computers, and save the instructor time because each exam is graded auto-
matically.

PowerPoint Presentations

This book comes with Microsoft PowerPoint slides for each chapter. These are included as a
teaching aid for classroom presentations, either to make available to students on the network
for chapter review, or to be printed for classroom distribution. Instructors can add their own
slides for additional topics that they introduce to the class.

Supplemental Resources | xxxix

Distance Learning

Course Technology Cengage Learning is proud to present online courses in WebCT and
Blackboard to provide the most complete and dynamic learning experience possible. When

you add online content to one of your courses, you're adding value to your course: Topic
Reviews, Practice Tests, Review Questions, Assignments, PowerPoint presentations, and,
most of all, a gateway to the 21st century’s most important information resource. We hope
you will make the most of your course, both online and offline. For more information on
how to bring distance learning to your course, contact your local Course Technology
Cengage Learning sales representative.

Source Code

The source code, in ANSI/ISO Standard C++, is available at www.course.com, and is also
available on the Teaching Tools CD-ROM. The input files needed to run some of the
programs are also included with the source code.

Solution Files

The solution files for all Programming Exercises, in ANSI/ISO C++, are available at
www.course.com, and are also available on the Teaching Tools CD-ROM. The input files
needed to run some of the Programming Exercises are also included with the solution files.

ACKNOWLEDGEMENTS

There are many people that I must thank who, one way or another, contributed to the success
of this book. First, I would like to thank all the students who, during the preparation, were
spontaneous in telling me if certain portions needed to be reworded for better understanding
and clearer reading. Next, I would like to thank those who e-mailed numerous comments to
improve upon the second edition. I am thankful to Professors S.C. Cheng, John N.
Mordeson, and Vasant Raval for constantly supporting this project. I must thank Lee I.
Fenicle, Director, Office of Technology Transfer, Creighton University, for his involvement,
support, and for providing encouraging words when I needed them. I am also very grateful to
the reviewers who reviewed earlier versions of this book and offered many critical suggestions
on how to improve it.

I would like to thank the reviewers of the proposal package: William Barrett, San Jose State
University; Vana Doufexi, Northwestern University; William Duncan, Louisiana State Uni-
versity; Brian Noble, University of Michigan; Kami Makki, University of Toledo; Jeanna
Matthews, Clarkson University; Patricia Smallwood, Regis University; David Topham,
Ohlone College; and Umit Uyar, City College of New York. The reviewers will recognize
that their criticisms have not been overlooked and, in fact, made this a better book. All this
would not have been possible without the careful planning of Senior Product Manager Alyssa
Pratt. I extend my sincere thanks to Alyssa, as well as to Content Project Manager Jill
Braiewa. I also thank Tintu Thomas of Integra Software Services for assisting us in keeping
the project on schedule and Green Pen Quality Assurance for carefully testing the code.

I am thankful to my parents for their blessings.

Finally, I am thankful for the support of my wife Sadhana and especially my daughter Shelly,
to whom this book is dedicated. She cheered me up whenever I was overwhelmed during the
writing of this book, and also made sure that the corrections were in place. Shelly always
draws special joy whenever I undertake such projects.

I welcome any comments concerning the text. Comments may be forwarded to the following
e-mail address: malik@creighton.edu

D. S. Malik

)
1

A1

AN OVERVIEW OF COMPUTERS
AND PROGRAMMING LANGUAGES

IN THIS CHAPTER, YOU WILL:

B Learn about different types of computers

B Explore the hardware and software components of a computer
system

Learn about the language of a computer

Learn about the evolution of programming languages
Examine high-level programming languages
Discover what a compiler is and what it does
Examine a C++ program

Explore how a C++ program is processed

Learn what an algorithm is and explore problem-solving
techniques

Become aware of structured design and object-oriented design
programming methodologies

B Become aware of Standard C++ and ANSI/ISO Standard C++

2 | Chapter 1: An Overview of Computers and Programming Languages

Introduction

Terms such as “the Internet,” which were unfamiliar just 20 years are now common.
Students in elementary school regularly “surt” the Internet and use computers to design
their classroom projects. Many people use the Internet to look for information and to
communicate with others. This is all made possible by the availability of different software,
also known as computer programs. Without software, a computer is useless. Software is
developed by using programming languages. The programming language C++ is especially
well suited for developing software to accomplish specific tasks. Our main objective is to help
you learn how to write programs in the C++ programming language. Before you begin
programming, it is useful to understand some of the basic terminology and different
components of a computer. We begin with an overview of the history of computers.

A Brief Overview of the History of Computers

The first device known to carry out calculations was the abacus. The abacus was invented in
Asia, but was used in ancient Babylon, China, and throughout Europe until the late middle
ages. The abacus uses a system of sliding beads in a rack for addition and subtraction. In 1642,
the French philosopher and mathematician Blaise Pascal invented the calculating device
called the Pascaline. It had eight movable dials on wheels and could calculate sums up to
eight figures long. Both the abacus and Pascaline could perform only addition and subtrac-
tion operations. Later in the 17th century, Gottfried von Leibniz invented a device that was
able to add, subtract, multiply, and divide. In 1819, Joseph Jacquard, a French weaver,
discovered that the weaving instructions for his looms could be stored on cards with holes
punched in them. While the cards moved through the loom in sequence, needles passed
through the holes and picked up threads of the correct color and texture. A weaver could
rearrange the cards and change the pattern being woven. In essence, the cards programmed a
loom to produce patterns in cloth. The weaving industry may seem to have little in common
with the computer industry. However, the idea of storing information by punching holes on
a card proved to be of great importance in the later development of computers.

In the early and mid-1800s, Charles Babbage, an English mathematician and physical
scientist, designed two calculating machines—the difference engine and the analytical
engine. The difference engine could perform complex operations such as squaring
numbers automatically. Babbage built a prototype of the difference engine, but the actual
device was never produced. The analytical engine’s design included input device, data
storage, a control unit that allowed processing instructions in any sequence, and output
devices. However, the designs remained in blueprint stage. Most of Babbage’s work is
known through the writings of his colleague Ada Augusta, Countess of Lovelace. Augusta
is considered the first computer programmer.

At the end of the 19th century, U.S. Census officials needed help in accurately tabulating
the census data. Herman Hollerith invented a calculating machine that ran on electricity
and used punched cards to store data. Hollerith’s machine was immensely successful.
Hollerith founded the Tabulating Machine Company, which later became the computer
and technology corporation known as IBM.

Elements of a Computer System | 3

The first computer-like machine was the Mark I. It was built, in 1944, jointly by IBM and
Harvard University under the leadership of Howard Aiken. Punched cards were used to feed
data into the machine. The Mark I was 52 feet long, weighed 50 tons, and had 750,000 parts.
In 1946, the ENIAC (Electronic Numerical Integrator and Calculator) was built at the
University of Pennsylvania. It contained 18,000 vacuum tubes and weighed some 30 tons.

The computers that we know today use the design rules given by John von Neumann in
the late 1940s. His design included components such as an arithmetic logic unit, a control
unit, memory, and input/output devices. These components are described in the next
section. Von Neumann’s computer design makes it possible to store the programming
instructions and the data in same memory space. In 1951, the UNIVAC (Universal
Automatic Computer) was built and sold to the U.S. Census Bureau.

In 1956, the invention of transistors resulted in smaller, faster, more reliable, and more
energy-efficient computers. This era also saw the emergence of the software development
industry with the introduction of FORTRAN and COBOL, two early programming
languages. In the next major technological advancement, transistors were replaced by tiny
integrated circuits or “chips.” Chips are smaller and cheaper than transistors and can contain
thousands of circuits on a single chip. They give computers tremendous processing speed.

In 1970, the microprocessor, an entire CPU on a single chip, was invented. In 1977,
Stephen Wozniak and Steven Jobs designed and built the first Apple computer in their
garage. In 1981, IBM introduced its personal computer (PC). In the 1980s, clones of the
IBM PC made the personal computer even more affordable. By the mid-1990s, people
from many walks of life were able to afford them. Computers continue to become faster
and less expensive as technology advances.

Modern-day computers are powerful, reliable, and easy to use. They can accept spoken-word
instructions and imitate human reasoning through artificial intelligence. Expert systems assist
doctors in making diagnoses. Mobile computing applications are growing significantly. Using
hand held devices, delivery drivers can access global positioning satellites (GPS) to verify
customer locations for pickups and deliveries. Cell phones permit you to check your e-mail,
make airline reservations, see how stocks are performing, and access your bank accounts.

Although there are several categories of computers, such as mainframe, midsize, and
micro, all computers share some basic elements, described in the next section.

Elements of a Computer System

A computer is an electronic device capable of performing commands. The basic commands
that a computer performs are input (get data), output (display result), storage, and perfor-
mance of arithmetic and logical operations.

In today’s market, personal computers are sold with descriptions such as a Pentium 4
Processor 2.80 GHz, 1 GB RAM, 250 GB HD, VX750 19" Silver Flat CRT Color
Monitor, preloaded with software such as an operating system, games, encyclopedias, and
application software such as word processors or money management programs. These
descriptions represent two categories: hardware and software. Items such as “Pentium 4

4 | Chapter 1: An Overview of Computers and Programming Languages

Processor 2.80 GHz, 1GB RAM, 250GB HD, VX750 19" Silver Flat CR'T Color Monitor”
fall into the hardware category; items such as “operating system, games, encyclopedias, and
application software” fall into the software category. Let’s consider the hardware first.

Hardware

Major hardware components include the central processing unit (CPU); main memory
(MM), also called random access memory (RAM); input/output devices; and secondary
storage. Some examples of input devices are the keyboard, mouse, and secondary storage.
Examples of output devices are the screen, printer, and secondary storage. Let’s look at
each of these components in more detail.

Central Processing Unit

The central processing unit (CPU) is the brain of the computer and the single most
expensive piece of hardware in a personal computer. The more powerful the CPU, the faster
the computer. The main components of the CPU are the control unit (CU), arithmetic logic
unit (ALU), and registers. Figure 1-1 shows how certain components of the CPU fit
together.

Central Processing Unit (CPU)

FIGURE 1-1 Hardware components of a computer

Elements of a Computer System | 5

The CPU components shown in Figure 1-1 work as follows:

® The control unit (CU) has three main functions: fetch and decode the
instructions, control the flow of information (instructions or data) in and out
of main memory, and control the operation of the CPU’s internal components.

® The arithmetic logic unit (ALU) carries out all arithmetic and logical
operations.

e The CPU contains various registers. Some of these registers are for
special purposes. For example, the instruction register (IR) holds the
instruction currently being executed. The program counter (PC)
points to the next instruction to be executed. All registers provide
temporary storage. The number of registers in the CPU is small.

Main Memory

The main memory is directly connected to the CPU. All programs must be loaded into
main memory before they can be executed. Similarly, all data must be brought into main
memory before a program can manipulate it. When the computer is turned off, every-
thing in main memory is lost for good.

The main memory is an ordered sequence of cells, called memory cells. Each cell has a
unique location in main memory, called the address of the cell. These addresses help you
access the information stored in the cell. Figure 1-2 shows main memory with storage cells.

1000
1001

2000
2001

FIGURE 1-2 Main memory with some data

Today’s computers come with main memory consisting of millions to billions of cells.
Although Figure 1-2 shows data stored in cells, the content of a cell can be either a
programming instruction or data. Moreover, this figure shows the data as numbers and
letters. However, as explained later in this chapter, main memory stores everything as
sequences of 0s and 1s. The memory addresses also are expressed as sequences of 0s and 1s.

6 | Chapter 1: An Overview of Computers and Programming Languages

Secondary Storage

Because programs and data must be stored in main memory before processing and
because everything in main memory is lost when the computer is turned off, information
stored in main memory must be transferred to some other device for permanent storage.
The device that stores information permanently (unless the device becomes unusable or
you change the information by rewriting it) is called secondary storage. To be able to
transfer information from main memory to secondary storage, these components must be
directly connected to each other. Examples of secondary storage are hard disks, flash
drives, floppy disks, ZIP disks, CD-ROMs, and tapes.

Input/Output Devices

For a computer to perform a useful task, it must be able to take in data and programs and
display the results of calculations. The devices that feed data and programs into computers
are called input devices. The keyboard, mouse, and secondary storage are examples of
input devices. The devices that the computer uses to display results are called output
devices. A monitor, printer, and secondary storage are examples of output devices.

Software

Software are programs written to perform specific tasks. For example, word processors
are programs that you use to write letters, papers, and even books. All software is written
in programming languages. There are two types of programs: system programs and
application programs.

System programs control the computer. The system program that loads first when you
turn on your PC is called the operating system. Without an operating system, the
computer is useless. The operating system monitors the overall activity of the computer
and provides services. Some of these services include memory management, input/output
activities, and storage management. The operating system has a special program that
organizes secondary storage so that you can conveniently access information.

Application programs perform a specific task. Word processors, spreadsheets, and
games are examples of application programs. The operating system is the program that
runs application programs.

The Language of a Computer

When you press A on your keyboard, the computer displays A on the screen. But what is
actually stored inside the computer’s main memory? What is the language of the
computer? How does it store whatever you type on the keyboard?

Remember that a computer is an electronic device. Electrical signals are used inside the
computer to process information. There are two types of electrical signals: analog and
digital. Analog signals are continuous wave forms used to represent such things as
sound. Audio tapes, for example, store data in analog signals. Digital signals represent

The Language of a Computer | 7

information with a sequence of Os and 1s. A O represents a low voltage, and a 1
represents a high voltage. Digital signals are more reliable carriers of information than
analog signals and can be copied from one device to another with exact precision. You
might have noticed that when you make a copy of an audio tape, the sound quality of
the copy is not as good as the original tape. On the other hand, when you copy a CD,
the copy is as good as the original. Computers use digital signals.

Because digital signals are processed inside a computer, the language of a computer, called
machine language, is a sequence of 0s and 1s. The digit 0 or 1 is called a binary digit, or
bit. Sometimes a sequence of 0s and 1s is referred to as a binary code or a binary number.

Bit: A binary digit 0 or 1.

A sequence of eight bits is called a byte. Moreover, 2'” bytes = 1,024 bytes is called a
kilobyte (KB). Table 1-1 summarizes the terms used to describe various numbers of bytes.

TABLE 1-1 Binary Units

Byte 8 bits

Kilobyte KB 210 bytes = 1024 bytes

Megabyte MB 1024 KB = 2% KB = 22° bytes = 1,048,576 bytes

Gigabyte GB 1024 MB = 2'° MB = 23 bytes = 1,073,741,824 bytes
__nlO __ n40 .

Terabyte B 1024 GB = 2" GB = 2" bytes =

1,099,511,627,776 bytes

1024 TB = 2'° TB = 2% pytes =

Petabyt PB
SRR 1,125,899,906,842,624 bytes
1024 PB = 20 PB = 20 bytes =
Exabyt EB
R 1,152,921,504,606,846,976 bytes
__nlO __n70 _
Zottabyte - 1024 EB = 210 EB — 27° bytes —

1,180,591,620,717,411,303,424 bytes

Every letter, number, or special symbol (such as * or {) on your keyboard is encoded as a
sequence of bits, each having a unique representation. The most commonly used encoding
scheme on personal computers is the seven-bit American Standard Code for Information
Interchange (ASCII). The ASCII data set consists of 128 characters numbered 0 through
127. That is, in the ASCII data set, the position of the first character is 0, the position of
the second character is 1, and so on. In this scheme, A is encoded as the binary number
1000001. In fact, A is the 66th character in the ASCII character code, but its position is

8 | Chapter 1: An Overview of Computers and Programming Languages

65 because the position of the first character is 0. Furthermore, the binary number 1000001
is the binary representation of 65. The character 3 is encoded as 0110011. Note that in
the ASCII character set, the position of the character 3 is 51, so the character 3 is the
52nd character in the ASCII set. It also follows that 0110011 is the binary representation
of 51. For a complete list of the printable ASCII character set, refer to Appendix C.

The number system that we use in our daily life is called the decimal system or hase 10.
Because everything inside a computer is represented as a sequence of Os and 1s, that is,
binary numbers, the number system that a computer uses is called binary or hase 2. We
indicated in the preceding paragraph that the number 1000001 is the binary representation
of 65. Appendix E describes how to convert a number from base 10 to base 2 and vice versa.

Inside the computer, every character is represented as a sequence of eight bits, that is, as
a byte. Now the eight-bit binary representation of 65 is 01000001. Note that we added
0 to the left of the seven-bit representation of 65 to convert it to an eight-bit representa-
tion. Similarly, the eight-bit binary representation of 51 is 00110011.

ASCII is a seven-bit code. Therefore, to represent each ASCII character inside the
computer, you must convert the seven-bit binary representation of an ASCII character
to an eight-bit binary representation. This is accomplished by adding 0 to the left of the
seven-bit ASCII encoding of a character. Hence, inside the computer, the character
A is represented as 01000001, and the character 3 is represented as 00110011.

There are other encoding schemes, such as EBCDIC (used by IBM) and Unicode, which
is a more recent development. EBCDIC consists of 256 characters; Unicode consists of
65,536 characters. To store a character belonging to Unicode, you need two bytes.

The Evolution of Programming Languages

The most basic language of a computer, the machine language, provides program
instructions in bits. Even though most computers perform the same kinds of operations,
the designers of the computer may have chosen different sets of binary codes to perform
the operations. Therefore, the machine language of one machine is not necessarily the
same as the machine language of another machine. The only consistency among com-
puters is that in any modern computer, all data is stored and manipulated as binary codes.

Early computers were programmed in machine language. To see how instructions are
written in machine language, suppose you want to use the equation:

wages = rate - hours

to calculate weekly wages. Further, suppose that the binary code 100100 stands for load,
100110 stands for multiplication, and 100010 stands for store. In machine language, you
might need the following sequence of instructions to calculate weekly wages:

100100 010001
100110 010010
100010 010011

The Evolution of Programming Languages | 9

To represent the weekly wages equation in machine language, the programmer had to
remember the machine language codes for various operations. Also, to manipulate data, the
programmer had to remember the locations of the data in the main memory. This need to
remember specific codes made programming not only very difficult, but also error-prone.

Assembly languages were developed to make the programmer’s job easier. In assembly
language, an instruction is an easy-to-remember form called a mnemonic. Table 1-2
shows some examples of instructions in assembly language and their corresponding
machine language code.

TABLE 1-2 Examples of Instructions in Assembly Language and Machine Language

LOAD 100100
STOR 100010
MULT 100110
ADD 100101
SUB 100011

Using assembly language instructions, you can write the equation to calculate the weekly
wages as follows:

IOAD rate
MULT hours
STOR wages

As you can see, it is much easier to write instructions in assembly language. However,
a computer cannot execute assembly language instructions directly. The instructions first
have to be translated into machine language. A program called an assembler translates
the assembly language instructions into machine language.

Assembler: A program that translates a program written in assembly language into an
equivalent program in machine language.

Moving from machine language to assembly language made programming easier,
but a programmer was still forced to think in terms of individual machine instruc-
tions. The next step toward making programming easier was to devise high-level
languages that were closer to natural languages, such as English, French, German,
and Spanish. Basic, FORTRAN, COBOL, Pascal, C, C++, C#, and Java are all
high-level languages. You will learn the high-level language C++ in this book.

In C++, you write the weekly wages equation as follows:

wages = rate x hours;

10 | Chapter 1: An Overview of Computers and Programming Languages

The instruction written in C++ is much easier to understand and is self-explanatory
to a novice user who is familiar with basic arithmetic. As in the case of assembly language,
however, the computer cannot directly execute instructions written in a high-level
language. To run on a computer, these C++ instructions first need to be translated into
machine language. A program called a compiler translates instructions written in high-
level languages into machine code.

Compiler: A program that translates instructions written in a high-level language into the
equivalent machine language.

A C++ Program

In Chapter 2, you will learn the basic elements and concepts of the C++ programming
language to create C++ programs. In addition to giving examples to illustrate various
concepts, we will also show C++ programs to clarify them. In this section, we provide an
example of a C++ program. At this point, you need not be too concerned with the
details of this program. You only need to know the eftect of an oufput statement, which is
introduced in this program.

Consider the following C++ program:

#include <iostream>
using namespace std;

int main()

{
cout << "My first C++ program." << endl;
cout << "The sum of 2 and 3 = " << 5 << endl;
cout << "7 4+ 8 = " << 7 + 8 << endl;

return 0;

}

Sample Run: (When you compile and execute this program, the following three lines are
displayed on the screen.)

My first C++ program.
The sum of 2 and 3 = 5
7+ 8 =15

These lines are displayed by the execution of the following three statements.

cout << "My first C++ program." << endl;
cout << "The sum of 2 and 3 = " << 5 << endl;
cout << "7 4+ 8 = " << 7 + 8 << endl;

Next we explain how this happens. Let us first consider the following statement:

cout << "My first C++ program." << endl;

A C++ Program | 11

This is an example of a C++ oufput statement. It causes the computer to evaluate
the expression after the pair of symbols << and display the result on the screen.

Usually, a C++ program contains various types of expressions such as arithmetic and
strings. For example, 7 + 8 is an arithmetic expression. Anything in double quotes
is a string. For example, "My first C++ program." and "7 + 8 = " are strings.
Typically, a string evaluates to itself. Arithmetic expressions are evaluated according to
rules of arithmetic operations, which you typically learn in an algebra course. Chapter 2
explains how arithmetic expressions and strings are formed and evaluated.

Also note that in an output statement, endl causes the insertion point to move to the beginning
of the next line. (On the screen, the insertion point is where the cursor is.) Therefore, the
preceding statement causes the system to display the following line on the screen.

My first C++ program.
Let us now consider the following statement:
cout << "The sum of 2 and 3 = " << 5 << endl;

This output statement consists of two expressions. The first expression, (after the first <<),
is "The sum of 2 and 3 = " and the second expression, (after the second <<), consists of
the number 5. The expression "The sum of 2 and 3 =" is a string and evaluates to itself.
(Notice the space after =) The second expression, which consists of the number 5,
evaluates to 5. Thus, the output of the preceding statement is:

The sum of 2 and 3 =5
Let us now consider the following statement:
cout << "7 + 8 = " << 7 + 8 << endl;

In this output statement, the expression "7 + 8 = ", which is a string, evaluates to itself.
Let us consider the second expression, 7 + 8. This expression consists of the numbers 7
and 8, and the C++ arithmetic operator +. Therefore, the result of the expression 7 + 8 is
the sum of 7 and 8, which is 15. Thus, the output of the preceding statement is:

7+ 8 = 15
The last statement, that is,
return 0;

returns the value 0 to the operating system when the program terminates. We will
elaborate on this statement in Chapter 2.

In the next chapter, until we explain how to properly construct a C++ program, we will
be using output statements such as the preceding ones to explain various concepts. After
finishing Chapter 2, you should be able to write C++ programs well enough to do some
computations and show results.

Before leaving this chapter, let us note the following about the preceding C++ program.
A C++ program is a collection of functions, one of which is the function main. Roughly

12 | Chapter 1: An Overview of Computers and Programming Languages

speaking, a function is a set of statements whose objective is to accomplish something.
The preceding program consists of the function main.

The first line of the program, that is,

#include <iostream>

allows us to use the (predefined object) cout to generate output and the (manipulator) endl.
The second line, that is,

using namespace std;

allows you to use cout and endl without the prefix std: :. It means that if you do not
include this statement, then cout should be used as std::cout and endl should
be used as std: :endl. We will elaborate on this in Chapter 2.

The third line consists of the following line:
int main()

This is the heading of the function main. The fourth line consists of a left brace. This
marks the beginning of the (body) of the function main. The right brace (at the last line of
the program) matches this left brace and marks the end of the body of the function main.
We will explain the meaning of the other terms, such as the ones shown in blue, later in
this book. Moreover, in C++, << is an operator, called the stream insertion operator.

Processing a C++ Program

In the preceding sections, we discussed machine language and high-level languages and
showed a C++ program. Because a computer can understand only machine language,
you are ready to review the steps required to process a program written in C++.

The following steps, as shown in Figure 1-3, are necessary to process a C++ program.

1. You use a text editor to create a C++ program following the rules, or
syntax, of the high-level language. This program is called the source
code or source program. The program must be saved in a text file
that has the extension .cpp. For example, if you saved the preceding
program in the file named FirstCPPProgram, then its complete name
is FirstCPPProgram. cpp.

Source program: A program written in a high-level language.

2. The C++ program given in the preceding section contains the statement
#include <iostream>. In a C++ program, statements that begin with
the symbol # are called preprocessor directives. These statements are pro-
cessed by a program called preprocessor.

3. After processing preprocessor directives, the next step is to verify that the
program obeys the rules of the programming language—that is, the program is
syntactically correct—and translate the program into the equivalent machine
language. The compiler checks the source program for syntax errors and, if no

Processing a C++ Program | 13

error 1s found, translates the program into the equivalent machine language.
The equivalent machine language program is called an object program.

Object program: The machine language version of the high-level language
program.

4. The programs that you write in a high-level language are developed using a
software development kit (SDK). The SDK contains many programs that are
useful in creating your program. For example, it contains the necessary code
(program) to display the results of the program and several mathematical
functions to make the programmer’s job somewhat easier. Therefore, if
certain code is already available, you can use this code rather than writing
your own code. Once the program is developed and successfully compiled,
you must still bring the code for the resources used from the SDK into your

program to produce a final program that the computer can execute. This
prewritten code (program) resides in a place called the library. A program
called a linker combines the object program with the programs from libraries.

Linker: A program that combines the object program with other programs
in the library, and is used in the program to create the executable code.

5. You must next load the executable program into main memory for execu-
tion. A program called a loader accomplishes this task.

Loader: A program that loads an executable program into main memory.

6. The final step is to execute the program.

Figure 1-3 shows how a typical C++ program is processed.

C++ Program

|
* Step 1

Step 2

Syntax
w Error SeP3
* Step 4

Step 5
Step &
FIGURE 1-3 Processing a C++ program

As a programmer, you need to be concerned only with Step 1. That is, you must learn,
understand, and master the rules of the programming language to create source programs.

14 | Chapter 1: An Overview of Computers and Programming Languages

As noted earlier, programs are developed using an SDK. Well-known SDKs used to create
programs in the high-level language C++ include Visual C++ 2005 Express and Visual
Studio .NET (from Microsoft), C++ Builder (from Borland), and CodeWarrior (from
Metrowerks). These SDKs contain a text editor to create the source program, a compiler to
check the source program for syntax errors, a program to link the object code with the
SDK resources, and a program to execute the program.

These SDKs are quite user-friendly. When you compile your program, the compiler not
only identifies the syntax errors but also typically suggests how to correct them. More-
over, with just a simple command, the object code is linked with the resources used from
the SDK. The command that does the linking on Visual C++ 2005 Express and Visual
Studio .NET is Build or Rebuild; on C++ Builder, it is Build or Make; and on
CodeWarrior, it is Make. (For further clarification regarding the use of these commands,
check the documentation of these SDKs.) If the program is not yet compiled, each of these
commands first compiles the program and then links and produces the executable code.

The Web site accompanying this book contains the necessary information, including
screen shots, on how to use some of the SDKs, such as Visual C++ 2005 Express and Visual
Studio .NET.

Programming with the Problem
Analysis—Coding—Execution Cycle

Programming is a process of problem solving. Different people use different techniques to
solve problems. Some techniques are nicely outlined and easy to follow. They not
only solve the problem but also give insight into how the solution was reached.
These problem-solving techniques can be easily modified if the domain of the
problem changes.

To be a good problem solver and a good programmer, you must follow good problem-
solving techniques. One common problem-solving technique includes analyzing a pro-
blem, outlining the problem requirements, and designing steps, called an algorithm, to
solve the problem.

Algorithm: A step-by-step problem-solving process in which a solution is arrived at in a
finite amount of time.

In a programming environment, the problem-solving process requires the following three steps:
1. Analyze the problem, outline the problem and its solution requirements,
and design an algorithm to solve the problem.

2. Implement the algorithm in a programming language, such as C++, and
verify that the algorithm works.

3. Maintain the program by using and modifying it if the problem domain changes.

Figure 1-4 summarizes this three-step programming process.

Programming with the Problem Analysis—Coding—Execution Cycle | 15

Problem

|

Analysis -

l
-l ‘
l

-

Preprocessor

O Comler L —eror—
|

- No Iirror
T
)

No Error

\
=N

FIGURE 1-4 Problem analysis—coding—execution cycle

To develop a program to solve a problem, you start by analyzing the problem. You then
design the algorithm; write the program instructions in a high-level language, or code the
program; and enter the program into a computer system.

Analyzing the problem is the first and most important step. This step requires you to do
the following:

1. Thoroughly understand the problem.

2. Understand the problem requirements. Requirements can include whether
the program requires interaction with the user, whether it manipulates data,

16 | Chapter 1: An Overview of Computers and Programming Languages

whether it produces output, and what the output looks like. If the program
manipulates data, the programmer must know what the data is and how it is
represented. That is, you need to look at sample data. If the program produces
output, you should know how the results should be generated and formatted.

3. If the problem is complex, divide the problem into subproblems and repeat
Steps 1 and 2. That is, for complex problems, you need to analyze each
subproblem and understand each subproblem’s requirements.

After you carefully analyze the problem, the next step is to design an algorithm to solve the
problem. If you broke the problem into subproblems, you need to design an algorithm for
each subproblem. Once you design an algorithm, you need to check it for correctness. You
can sometimes test an algorithm’s correctness by using sample data. At other times, you
might need to perform some mathematical analysis to test the algorithm’s correctness.

Once you have designed the algorithm and verified its correctness, the next step is to
convert it into an equivalent programming code. You then use a text editor to enter the
programming code or the program into a computer. Next, you must make sure that the
program follows the language’s syntax. To verify the correctness of the syntax, you run
the code through a compiler. If the compiler generates error messages, you must identify
the errors in the code, remove them, and then run the code through the compiler again.
When all the syntax errors are removed, the compiler generates the equivalent machine
code, the linker links the machine code with the system’s resources, and the loader places
the program into main memory so that it can be executed.

The final step is to execute the program. The compiler guarantees only that the program
follows the language’s syntax. It does not guarantee that the program will run correctly.
During execution, the program might terminate abnormally due to logical errors, such as
division by zero. Even if the program terminates normally, it may still generate erroneous
results. Under these circumstances, you may have to re examine the code, the algorithm,
or even the problem analysis.

Your overall programming experience will be successful if you spend enough time to
complete the problem analysis before attempting to write the programming instructions.
Usually, you do this work on paper using a pen or pencil. Taking this careful approach to
programming has a number of advantages. It is much easier to discover errors in a program
that is well analyzed and well designed. Furthermore, a carefully analyzed and designed
program is much easier to follow and modify. Even the most experienced programmers
spend a considerable amount of time analyzing a problem and designing an algorithm.

Throughout this book, you will not only learn the rules of writing programs in C++, but you
will also learn problem-solving techniques. Each chapter provides several Programming Exam-
ples that discuss programming problems. These Programming Examples teach techniques of
how to analyze and solve problems, design algorithms, code the algorithms into C++, and also
help you understand the concepts discussed in the chapter. To gain the full benefit of this book,
we recommend that you work through the Programming Examples at the end of each chapter.

Next, we provide examples of various problem-analysis and algorithm-design techniques.

Programming with the Problem Analysis—Coding—Execution Cycle | 17

EXAMPLE 1-1

In this example, we design an algorithm to find the perimeter and area of a rectangle.

To find the perimeter and area of a rectangle, you need to know the rectangle’s length and

width.
The perimeter and area of the rectangle are then given by the following formulas:

perimeter = 2 . (length + width)
area = length - width

The algorithm to find the perimeter and area of the rectangle is:

1. Get the length of the rectangle.
2. Get the width of the rectangle.

3. Find the perimeter using the following equation:

perimeter = 2 « (length + width)

4. Find the area using the following equation:

area = length - width

EXAMPLE 1-2

In this example, we design an algorithm that calculates the sales tax and the price of an item

sold in a particular state.

The sales tax is calculated as follows: The state’s portion of the sales tax is 4% and the city’s
portion of the sales tax 1s 1.5%. If the item is a luxury item, such as a car over $50,000, then
there is a 10% luxury tax.

To calculate the price of the item, we need to calculate the state’s portion of the sales
tax, the city’s portion of the sales tax, and, if it is a luxury item, the luxury tax.
Suppose salePrice denotes the selling price of the item, stateSalesTax denotes
the state’s sales tax, citySalesTax denotes the city’s sales tax, luxuryTax denotes
the luxury tax, salesTax denotes the total sales tax, and amountDue denotes the final
price of the item.

To calculate the sales tax, we must know the selling price of the item and whether the item is
a luxury item.

The stateSalesTax and citySalesTax can be calculated using the following
tormulas:

stateSalesTax = salePrice - 0.04
citySalesTax = salePrice - 0.015

18 | Chapter 1: An Overview of Computers and Programming Languages

Next, you can determine luxuryTax as follows:

if (item is a luxury item)
luxuryTax = salePrice - 0.1
otherwise
luxuryTax = 0

Next, you can determine salesTax as follows:

salesTax = stateSalesTax + citySalesTax + luxuryTax
Finally, you can calculate amountDue as follows:

amountDue = salePrice + salesTax

The algorithm to determine salesTax and amountDue is, therefore:

Get the selling price of the item.
Determine whether the item is a luxury item.

Find the state’s portion of the sales tax using the formula:
stateSalesTax = salePrice - 0.04
4. Find the city’s portion of the sales tax using the formula:

citySalesTax = salePrice . 0.015

5. Find the luxury tax using the following formula:

if (item is a luxury item)
luxuryTax = salePrice - 0.1
otherwise
luxuryTax = 0

6. Find salesTax using the formula:

salesTax = stateSalesTax + citySalesTax + luxuryTax

7. Find amountDue using the formula:

amountDue = salePrice + salesTax

EXAMPLE 1-3

In this example, we design an algorithm that calculates the monthly paycheck of a salesperson
at a local department store.

Every salesperson has a base salary. The salesperson also receives a bonus at the end of each
month, based on the following criteria: If the salesperson has been with the store for five years
or less, the bonus is $10 for each year that he or she has worked there. If the salesperson has
been with the store for more than five years, the bonus is $20 for each year that he or she has
worked there. The salesperson can earn an additional bonus as follows: If the total sales made
by the salesperson for the month are more than $5,000 but less than $10,000, he or she

Programming with the Problem Analysis—Coding—Execution Cycle | 19

receives a 3% commission on the sale. If the total sales made by the salesperson for the month
are at least $10,000, he or she receives a 6% commission on the sale.

To calculate a salesperson’s monthly paycheck, you need to know the base salary, the number of
years that the salesperson has been with the company, and the total sales made by the sales-
person for that month. Suppose baseSalary denotes the base salary, noOfServiceYears
denotes the number of years that the salesperson has been with the store, bonus denotes
the bonus, totalSales denotes the total sales made by the salesperson for the month, and
additionalBonus denotes the additional bonus.

You can determine the bonus as follows:

if (noOfServiceYears is less than or equal to five)
bonus = 10 . noOfServiceYears

otherwise
bonus = 20 . noOfServiceYears

Next, you can determine the additional bonus of the salesperson as follows:

if (totalSales is less than 5000)
additionalBonus = 0
otherwise
if (totalSales is greater than or equal to 5000 and
totalSales is less than 10000)
additionalBonus = totalSales . (0.03)
otherwise
additionalBonus = totalSales . (0.06)

Following the above discussion, you can now design the algorithm to calculate a salesperson’s
monthly paycheck:

Get baseSalary.
Get noOfServiceYears.

Calculate bonus using the following formula:

if (noOfServiceYears is less than or equal to five)
bonus = 10 . noOfServiceYears
otherwise

bonus = 20 - noOfServiceYears
Get totalSales.

5. Calculate additionalBonus using the following formula:

if (totalSales is less than 5000)
additionalBonus = 0
otherwise
if (totalSales is greater than or equal to 5000 and
totalSales is less than 10000)
additionalBonus = totalSales . (0.03)
otherwise
additionalBonus = totalSales - (0.06)

20 | Chapter 1: An Overview of Computers and Programming Languages

6. Calculate payCheck using the equation:

payCheck = baseSalary + bonus + additionalBonus

EXAMPLE 1-4

In this example, we design an algorithm to play a number-guessing game.

The objective is to randomly generate an integer greater than or equal to 0 and less than 100.
Then prompt the player (user) to guess the number. If the player guesses the number
correctly, output an appropriate message. Otherwise, check whether the guessed number is
less than the random number. If the guessed number is less than the random number
generated, output the message, “Your guess is lower than the number. Guess again!”;
otherwise, output the message, “Your guess is higher than the number. Guess again!”. Then
prompt the player to enter another number. The player is prompted to guess the random
number until the player enters the correct number.

The first step is to generate a random number, as described above. C++ provides the means to
do so, which is discussed in Chapter 5. Suppose num stands for the random number and
guess stands for the number guessed by the player.

After the player enters the guess, you can compare the guess with the random number as follows:

if (guess is equal to num)
Print "You guessed the correct number."
otherwise
if guess is less than num
Print "Your guess is lower than the number. Guess again!"
otherwise
Print "Your guess is higher than the number. Guess again!"

You can now design an algorithm as follows:

1. Generate a random number and call it num.

2. Repeat the following steps until the player has guessed the correct number:

a. Prompt the player to enter guess.

if (guess is equal to num)
Print "You guessed the correct number."
otherwise
if guess is less than num
Print "Your guess is lower than the number. Guess again!"
otherwise
Print "Your guess is higher than the number. Guess again!"

In Chapter 5, we use this algorithm to write a C++ program to play the guessing the number
game.

Programming with the Problem Analysis—Coding—Execution Cycle | 21

EXAMPLE 1-5

There are 10 students in a class. Each student has taken five tests and each test is worth 100
points. We want to design an algorithm to calculate the grade for each student, as well as the
class average. The grade is assigned as follows: If the average test score is greater than or equal
to 90, the grade is A; if the average test score is greater than or equal to 80 and less than 90,
the grade is B; if the average test score is greater than or equal to 70 and less than 80, the
grade is C; if the average test score is greater than or equal to 60 and less than 70, the grade is
D; otherwise the grade is F. Note that the data consists of students’ names and their test scores.

This is a problem that can be divided into subproblems as follows: There are five tests, so you
design an algorithm to find the average test score. Next, you design an algorithm to determine
the grade. The two subproblems are to determine the average test score and to determine the
grade.

Let us first design an algorithm to determine the average test score. To find the average test
score, add the five test scores and then divide the sum by 5. Therefore, the algorithm is:

1. Get the five test scores.
Add the five test scores. Suppose sum stands for the sum of the test scores.

Suppose average stands for the average test score. Then:
average = sum / 5;

Next, you design an algorithm to determine the grade. Suppose grade stands for the grade
assigned to a student. The following algorithm determines the grade:

if average is greater than or equal to 90

grade = A
otherwise
if average is greater than or equal to 80 and less than 90
grade = B
otherwise
if average is greater than or equal to 70 and less than 80
grade = C
otherwise
if average is greater than or equal to 60 and less than 70
grade = D
otherwise
grade = F

You can use the solutions of these subproblems to design the main algorithm as follows:
(Suppose totalAverage stands for the sum of the averages of each student’s test average.)

1. totalAverage = 0;
2. Repeat the following steps for each student in the class:
a. Get student’s name.

b. Use the algorithm as discussed above to find the average test score.

22 | Chapter 1: An Overview of Computers and Programming Languages

c. Use the algorithm as discussed above to find the grade.

d. Update totalAverage by adding the current student’s average test
score.

3. Determine the class average as follows:
classAverage = totalAverage / 10

A programming exercise in Chapter 7 asks you to write a C++ program to determine the
average test score and grade for each student in a class.

Programming Methodologies

Two popular approaches to programming design are the structured approach and the
object-oriented approach, which are outlined below.

Structured Programming

Dividing a problem into smaller subproblems is called structured design. Each subproblem
is then analyzed and a solution is obtained to solve the subproblem. The solutions to all the
subproblems are then combined to solve the overall problem. This process of implementing
a structured design is called structured programming. The structured-design approach
is also known as top-down design, bottom-up design, stepwise refinement, and
modular programming.

Object-Oriented Programming

Object-oriented design (OOD) is a widely used programming methodology. In OOD, the
first step in the problem-solving process is to identify the components called objects, which
form the basis of the solution, and to determine how these objects interact with one another.
For example, suppose you want to write a program that automates the video rental process for
a local video store. The two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specity for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include:

® movie name

® starring actors

® producer

® production company

® number of copies in stock
Some of the operations on a video object might include:
® checking the name of the movie
® reducing the number of copies in stock by one after a copy is rented

® incrementing the number of copies in stock by one after a customer returns a
particular video

Programming Methodologies | 23

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

Because an object consists of data and operations on that data, before you can design and
use objects, you need to learn how to represent data in computer memory, how to
manipulate data, and how to implement operations. In Chapter 2, you will learn the basic
data types of C++ and discover how to represent and manipulate data in computer
memory. Chapter 3 discusses how to input data into a C++ program and output the
results generated by a C++ program.

To create operations, you write algorithms and implement them in a programming
language. Because a data element in a complex program usually has many operations,
to separate operations from each other and to use them effectively and in a convenient
manner, you use functions to implement algorithms. After a brief introduction in
Chapters 2 and 3, you will learn the details of functions in Chapters 6 and 7. Certain
algorithms require that a program make decisions, a process called selection. Other
algorithms might require certain statements to be repeated until certain conditions are
met, a process called repetition. Still other algorithms might require both selection and
repetition. You will learn about selection and repetition mechanisms, called control
structures, in Chapters 4 and 5. Also, in Chapter 9, using a mechanism called an array,
you will learn how to manipulate data when data items are of the same type, such as items
in a list of sales figures.

Finally, to work with objects, you need to know how to combine data and operations on
the data into a single unit. In C++, the mechanism that allows you to combine data and
operations on the data into a single unit is called a class. You will learn how classes work,
how to work with classes, and how to create classes in the chapter Classes and Data
Abstraction (later in this book).

As you can see, you need to learn quite a few things before working with the OOD
methodology. To make this learning easier and more eftective, this book purposely
divides control structures into two chapters (4 and 5) and user-defined functions into
two chapters (6 and 7).

For some problems, the structured approach to program design will be very effective.
Other problems will be better addressed by OOD. For example, if a problem requires
manipulating sets of numbers with mathematical functions, you might use the struc-
tured design approach and outline the steps required to obtain the solution. The C++
library supplies a wealth of functions that you can use effectively to manipulate
numbers. On the other hand, if you want to write a program that would make a
candy machine operational, the OOD approach is more effective. C++ was designed
especially to implement OOD. Furthermore, OOD works well and is used in conjunction
with structured design.

24 | Chapter 1: An Overview of Computers and Programming Languages

Both the structured design and OOD approaches require that you master the basic compo-
nents of a programming language to be an effective programmer. In Chapters 2 to 9, you will
learn the basic components of C++, such as data types, input/output, control structures,
user-defined functions, and array, required by either type of programming. We illustrate
how these concepts work using the structured programming approach. Starting with the
chapter Classes and Data Abstraction, we use the OOD approach.

ANSI/ISO Standard C++

The programming language C++ evolved from C and was designed by Bjarne
Stroustrup at Bell Laboratories in the early 1980s. From the early 1980s through the
early 1990s, several C++ compilers were available. Even though the fundamental
features of C++ in all compilers were mostly the same, the C++ language, referred
to in this book as Standard C++, was evolving in slightly different ways in diftferent
compilers. As a consequence, C++ programs were not always portable from one
compiler to another.

To address this problem, in the early 1990s a joint committee of the American National
Standard Institution (ANSI) and International Standard Organization (ISO) was estab-
lished to standardize the syntax of C++. In mid-1998, ANSI/ISO C++ language
standards were approved. Most of today’s compilers comply with these new standards.

This book focuses on the syntax of C++ as approved by ANSI/ISO, referred to as ANSI/
ISO Standard C++.

QUICK REVIEW

1. A computer is an electronic device capable of performing arithmetic and
logical operations.

2. A computer system has two components: hardware and software.

3. The central processing unit (CPU) and the main memory are examples of
hardware components.

4. The control unit (CU) controls a program’s overall execution. It is one of
several components of the CPU.

5. The arithmetic logic unit (ALU) is the component of the CPU that performs
arithmetic and logical operations.

6. The instructor register (IR) holds the instruction currently being executed.

7. The program counter (PC) points to the next instruction to be executed.

8. All programs must be brought into main memory before they can be executed.
9. When the power is switched off, everything in main memory is lost.

10. Secondary storage provides permanent storage for information. Hard disks,
flash drives, floppy disks, ZIP disks, CD-ROMs, and tapes are examples of
secondary storage.

11.

12.

13.
14,

15.

16.

17.

18.
19.

20.
21.

22,

23.

24,

25.
26.

27.

28.

29.

30.

Quick Review

Input to the computer is done via an input device. Two common input devices
are the keyboard and the mouse.

The computer sends its output to an output device, such as the computer
screen.

Software are programs run by the computer.

The operating system monitors the overall activity of the computer and

provides services.

The most basic language of a computer is a sequence of Os and 1s called
machine language. Every computer directly understands its own machine
language.

A bit is a binary digit, 0 or 1.

A byte is a sequence of eight bits.

A sequence of Os and 1s is referred to as a binary code or a binary number.
One kilobyte (KB) is 2'” = 1024 bytes; one megabyte (MB) is 2° = 1,048,576
bytes; one gigabyte (GB) is 2°° = 1,073,741,824 bytes; one terabyte (TB) is
2% =1,099,511,627,776 bytes; one petabyte (PB) is 2°" = 1,125,899,906,842,624
bytes; one exabyte (EB) is 200 — 1,152,921,504,606,846,976 bytes; and one
zettabyte (ZB) is 2" = 1,180,591,620,717,411,303,424 bytes.

Assembly language uses easy-to-remember instructions called mnemonics.
Assemblers are programs that translate a program written in assembly language
into machine language.

Compilers are programs that translate a program written in a high-level
language into machine code, called object code.

A linker links the object code with other programs provided by the software
development kit (SDK) and used in the program to produce executable code.

Typically, six steps are needed to execute a C++ program: edit, preprocessor,
compile, link, load, and execute.

A loader transfers executable code into main memory.

An algorithm is a step-by-step problem-solving process in which a solution is
arrived at in a finite amount of time.

The problem-solving process has three steps: analyze the problem and design
an algorithm, implement the algorithm in a programming language, and
maintain the program.

Programs written using the structured design approach are easier to understand,
easier to test and debug, and easier to modify.

In structured design, a problem is divided into smaller subproblems. Each
subproblem is solved, and the solutions to all the subproblems are then
combined to solve the problem.

In object-oriented design (OOD), a program is a collection of interacting objects.

25

26 | Chapter 1: An Overview of Computers and Programming Languages

31. An object consists of data and operations on those data.
32. The ANSI/ISO Standard C++ syntax was approved in mid-1998.

EXERCISES

1. Mark the following statements as true or false.

a. In ASCII coding, every character is coded as a sequence of seven bits.
b. A compiler translates a high-level program into assembly language.

c. The arithmetic logic unit performs arithmetic operations and, if an error is
found, it outputs the logical errors.

d. Aloader loads the object code from main memory into the CPU for execution.
e. Processing a C++ program includes six steps.

. The CPU functions under the control of the control unit.

2. RAM stands for readily available memory.

A program written in a high-level programming language is called a source
program.

i. ZB stands for zero byte.

j. The first step in the problem-solving process is to analyze the problem.

2. Name some components of the central processing unit.

3. What is the function of the control unit?

4. Name two input devices.

5. Name two output devices.

6. Why is secondary storage needed?

7. What is the function of an operating system?

8. What is a source program?

9. Why do you need a compiler?

10. What kind or errors are reported by a compiler?

1. Why do you need to translate a program written in a high-level language into machine
language?

12. Why would you prefer to write a program in a high-level language rather than a

machine language?
13. What is linking?
14. What are the advantages of problem analysis and algorithm design over directly writing a
program in a high-level language?
15. What is the output of the following C++ statements?
a. cout << "C++ is a high level language." << endl;
h. cout << "Enter the distance traveled: " << endl;

c. cout << "The difference of 7 and 3 = " << 7 - 3 << endl;

16.

17.

18.

19.

20.

21,

22,

Exercises

What is the output of the following C++ program?

#include <iostream>
using namespace std;

int main ()

{
cout << "This is Exercise 16." << endl;
cout << "In C++, the multiplication symbol is *."
<< endl;
cout << "2 4+ 3 ¥ 5 =" <K 2 + 3 *5 << endl;
return 0;
}

Design an algorithm to find the weighted average of four test scores. The four
test scores and their respective weights are given in the following format:

testscorel weightl

For example, a sample data is as follows:

75 0.20

95 0.35

85 0.15

65 0.30

Design an algorithm to convert the change given in quarters, dimes, nickels,
and pennies into pennies.

Given the radius, in inches, and price of a pizza, design an algorithm to find the
price of the pizza per square inch.

A salesperson leaves his home every Monday and returns every Friday. He
travels by company car. Each day on the road, the salesperson records the
amount of gasoline put in the car. Given the starting odometer reading (that is,
the odometer reading before he leaves on Monday) and the ending odometer
reading (the odometer reading after he returns home on Friday), design an
algorithm to find the average miles per gallon. Sample data is as follows:

68723 71289 15.75 16.30 10.95 20.65 30.00
To make a profit, the prices of the items sold in a furniture store are
marked up by 60%. Design an algorithm to find the selling price of an item

sold at the furniture store. What information do you need to find the
selling price?

Suppose a, b, and ¢ denote the lengths of the sides of a triangle. Then the area of
the triangle can be calculated using the formula:

Vs(s —a)(s = b)(s —¢),

where s = (1/2)(a + b + ¢). Design an algorithm that uses this formula to find
the area of a triangle. What information do you need to find the area?

27

28

23.

24,

25.

(You must divide this problem into subproblems as follows: The first subproblem
determines the average test score. The second subproblem determines and prints the
names of all the students whose test score is below the average test score. The third
subproblem determines the highest test score. The fourth subproblem prints the names of
all the students whose test score is the same as the highest test score. The main algorithm

Chapter 1: An Overview of Computers and Programming Languages

A triangle ABC is inscribed in a circle, that is, the vertices of the triangle are on
the circumference of the circle. Suppose the triangle ABC divides the circum-
ference into lengths of a, b, and ¢ inches. Design an algorithm that asks the user
to specify the values of a, b, and ¢ and then calculates the radius of the circle.
Note that if r is the radius of the circle, then 2nmr = a + b + ¢

The cost of an international call from New York to New Delhi is calculated as
follows: Connection fee, $1.99; $2.00 for the first three minutes; and $0.45 for
each additional minute. Design an algorithm that asks the user to enter the
number of minutes the call lasted. The algorithm then uses the number of
minutes to calculate the amount due.

You are given a list of students’ names and their test scores. Design an algorithm
that does the following:

a. Calculates the average test scores.

b. Determines and prints the names of all the students whose test score is
below the average test score.

c. Determines the highest test score.

d. Prints the names of all the students whose test score is the same as the
highest test score.

combines the solutions of the subproblems.)

En—
—
——]
P
i
-

-

)

)
1

Basic ELEMENTS oF C++

IN THIS CHAPTER, YOU WILL:

Become familiar with the basic components of a C++ program,
including functions, special symbols, and identifiers

Explore simple data types

Discover how to use arithmetic operators

Examine how a program evaluates arithmetic expressions
Learn what an assignment statement is and what it does
Become familiar with the string data type

Discover how to input data into memory using input statements
Become familiar with the use of increment and decrement
operators

Examine ways to output results using output statements

Learn how to use preprocessor directives and why they are
necessary

Explore how to properly structure a program, including using
comments to document a program

Learn how to write a C++ program

30 | Chapter 2: Basic Elements of C++

In this chapter, you will learn the basics of C++. As your objective is to learn the C++
programming language, two questions naturally arise. First, what is a computer program?
Second, what is programming? A computer program or a program is a sequence of
statements whose objective is to accomplish a task. Programming is a process of
planning and creating a program. These two definitions tell the truth, but not the whole
truth, about programming. It may very well take an entire book to give a good and
satisfactory definition of programming. You might gain a better grasp of the nature of
programming from an analogy, so let us turn to a topic about which almost everyone has
some knowledge—cooking. A recipe is also a program, and everyone with some cooking
experience can agree on the following:

1. It is usually easier to follow a recipe than to create one.
There are good recipes and there are bad recipes.
Some recipes are easy to follow and some are not easy to follow.

Some recipes produce reliable results and some do not.

A

You must have some knowledge of how to use cooking tools to follow
a recipe to completion.

6. To create good new recipes, you must have much knowledge and
understanding of cooking.

These same six points are also true about programming. Let us take the cooking
analogy one step further. Suppose you need to teach someone how to become a
chef. How would you go about it? Would you first introduce the person to good
food, hoping that a taste for good food develops? Would you have the person follow
recipe after recipe in the hope that some of it rubs oft? Or would you first teach the
use of tools and the nature of ingredients, the foods and spices, and explain how they
fit together? Just as there is disagreement about how to teach cooking, there is
disagreement about how to teach programming.

Learning a programming language is like learning to become a chef or learning to
play a musical instrument. All three require direct interaction with the tools. You
cannot become a good chef or even a poor chef just by reading recipes. Similarly,
you cannot become a player by reading books about musical instruments. The same
is true of programming. You must have a fundamental knowledge of the language,
and you must test your programs on the computer to make sure that each program
does what it is supposed to do.

The Basics of a C++ Program

A C++ program is a collection of one or more subprograms, called functions. Roughly
speaking, a subprogram or a function is a collection of statements, and when it is
activated, or executed, it accomplishes something. Some functions, called predefined or
standard functions, are already written and are provided as part of the system. But to
accomplish most tasks, programmers must learn to write their own functions.

The Basics of a C++ Program | 31

Every C++ program has a function called main. Thus, if a C++ program has only one
function, it must be the function main. Until Chapter 6, other than using some of the
predefined functions, you will mainly deal with the function main. By the end of this
chapter, you shall have learned how to write the function main.

The following is an example of a C++ program. At this point, you should not be
concerned with the details of the program.

EXAMPLE 2-1

The following is a sample C++ program.

// This is a C++ program. It prints the sentence:
// Welcome to C++ Programming.

#include <iostream>
using namespace std;
int main ()

{

cout << "Welcome to C++ Programming." << endl;

return 0;

}
If you execute this program, it will print the following line on the screen:

Welcome to C++ Programming.

If you have never seen a program written in a programming language, the C++
program in Example 2-1 may look like a foreign language. To make meaningful sentences
in a foreign language, you must learn its alphabet, words, and grammar. The same is true
of a programming language. To write meaningful programs, you must learn the pro-
gramming language’s special symbols, words, and syntax rules. The syntax rules tell you
which statements (instructions) are legal, or accepted by the programming language,
and which are not. You must also learn semantic rules, which determine the meaning
of the instructions. The programming language’s rules, symbols, and special words enable
you to write programs to solve problems. The syntax rules determine which instructions
are valid.

Programming language: A set of rules, symbols, and special words.

In the remainder of this section, you will learn about some of the special symbols of a
C++ program. Additional special symbols are introduced as other concepts are encoun-
tered in later chapters. Similarly, syntax and semantic rules are introduced and discussed
throughout the book.

32 | Chapter 2: Basic Elements of C++

Comments

The program that you write should be clear not only to you, but also to the reader of
your program. Part of good programming is the inclusion of comments in the program.
Typically, comments can be used to identify the authors of the program, give the date
when the program is written or modified, give a brief explanation of the program, and
explain the meaning of key statements in a program. In the programming examples, for
the programs that we write, we will not include the date when the program is written,
consistent with the standard convention for writing such books.

Comments are for the reader, not for the compiler. So when a compiler compiles a
program to check for the syntax errors, it completely ignores comments. Throughout this
book, comments are shown in green.

The program in Example 2-1, contains the following comments:

// This is a C++ program. It prints the sentence:
// Welcome to C++ Programming.

There are two common types of comments in a C++ program—single line comments
and multiple line comments.

Single line comments begin with // and can be placed anywhere in the line. Everything
encountered in that line after // is ignored by the compiler. For example, consider the following
statement:

cout << "7 + 8 = " << 7 + 8 << endl;

You can put comments at the end of this line as follows:

cout << "7 + 8 = " << 7 + 8 << endl; //prints: 7 + 8 = 15
This comment could be meaningful for a beginning programmer.

Multiple line comments are enclosed between /* and */. The compiler ignores anything
that appears between /* and */. For example, the following is an example of a multiple line
comment:

/*
You can include comments that can
occupy several lines.

*/

Special Symbols

The smallest individual unit of a program written in any language is called a token.
C++’s tokens are divided into special symbols, word symbols, and identifiers.

Following are some of the special symbols:

The Basics of a C++ Program | 33

The first row includes mathematical symbols for addition, subtraction, multiplication, and
division. The second row consists of punctuation marks taken from English grammar.
Note that the comma is also a special symbol. In C++, commas are used to separate items
in a list. Semicolons are used to end a C++ statement. Note that a blank, which is not
shown above, is also a special symbol. You create a blank symbol by pressing the space bar
(only once) on the keyboard. The third row consists of tokens made up of two characters,
but which are regarded as a single symbol. No character can come between the two
characters in the token, not even a blank.

Reserved Words (Keywords)

A second category of tokens is word symbols. Some of the word symbols include the following;:
int, float, double, char, const, void, return

Reserved words are also called keywords. The letters that make up a reserved word are
always lowercase. Like the special symbols, each is considered to be a single symbol.
Furthermore, word symbols cannot be redefined within any program; that is, they cannot
be used for anything other than their intended use. For a complete list of reserved words,
see Appendix A.

NOTE Throughout this book, reserved words are shown in blue.

Identifiers

A third category of tokens is identifiers. Identifiers are names of things that appear in
programs, such as variables, constants, and functions. Some identifiers are predefined,;
others are defined by the user. All identifiers must obey C++’s rules for identifiers.

Identifier: A C++ identifier consists of letters, digits, and the underscore character ()
and must begin with a letter or underscore.

Identifiers can be made of only letters, digits, and the underscore character; no other
symbols are permitted to form an identifier.

NOTE C++ is case sensitive—uppercase and lowercase letters are considered different. Thus,
the identifier NUMBER is not the same as the identifier number. Similarly, the
identifiers X and x are different.

In C++, identifiers can be of any length. Two predefined identifiers that you will
encounter frequently are cout, which is used when generating output, and cin, which
is used to input data. Unlike reserved words, predefined identifiers can be redefined, but
it would not be wise to do so.

34 | Chapter 2: Basic Elements of C++

EXAMPLE 2-2

The following are legal identifiers in C++:

first
conversion
payRate
counterl

Table 2-1 shows some illegal identifiers and explains why they are illegal.

TABLE 2-1 Examples of Illegal Identifiers

employee Salary There can be no space between employee and Salary.
Hello! The exclamation mark cannot be used in an identifier.
one + two The symbol + cannot be used in an identifier.

2nd An identifier cannot begin with a digit.

NOTE Compiler vendors usually begin certain identifiers with an underscore ().
When the linker links the object program with the system resources provided by
the software development kit (SDK), certain errors could occur. Therefore, it
is advisable that you should not begin identifiers in your program with an underscore (_).

Whitespaces

Every C++ program contains whitespaces. Whitespaces include blanks, tabs, and newline
characters. In a Java program, whitespaces are used to separate special symbols, reserved
words, and identifiers. Whitespaces are nonprintable in the sense that when they are
printed on a white sheet of paper, the space between special symbols, reserved words, and
identifiers is white. Proper utilization of whitespaces in a program is important. They can
be used to make the program readable.

Data Types

The objective of a C++ program is to manipulate data. Different programs manipulate
different data. A program designed to calculate an employee’s paycheck will add, subtract,
multiply, and divide numbers, and some of the numbers might represent hours worked and
pay rate. Similarly, a program designed to alphabetize a class list will manipulate names. You
wouldn’t expect a cherry pie recipe to help you bake cookies. Similarly, you wouldn’t use a
program designed to perform arithmetic calculations to manipulate alphabetic characters.

Data Types | 35

Furthermore, you wouldn’t multiply or subtract names. Reflecting these kinds of underlying
differences, C++ categorizes data into different types, and only certain operations can be
performed on particular types of data. Although at first it may seem confusing, by being so
type conscious, C++ has built-in checks to guard against errors.

Data type: A set of values together with a set of operations.

C++ data types fall into the following three categories and are illustrated in Figure 2-1:

1. Simple data type
2. Structured data type

3. Pointers

C++'s Data Types

Simple Structured Pointers

FIGURE 2-1 C++ data types

For the next few chapters, you will be concerned only with simple data types.

Simple Data Types

The simple data type is the fundamental data type in C++ because it becomes a building
block for the structured data type, which you start learning about in Chapter 9. There are
three categories of simple data:

1. Integral, which is a data type that deals with integers, or numbers
without a decimal part
2. Floating-point, which is a data type that deals with decimal numbers

3. Enumeration, which is a user-defined data type

Figure 2-2 illustrates these three data types.

Simple Data Type

Integral Floating-Point Enumeration

FIGURE 2-2 Simple data types

36 | Chapter 2: Basic Elements of C++

NOTE The enumeration type is C++’'s method for allowing programmers to create their own
simple data types. This data type will be discussed in Chapter 8.

Integral data types are further classified into nine categories, as shown in Figure 2-3.

— char
— short
— int
—— long
Integral Data Type bool

— unsigned char
—— unsigned short
—— unsigned int

—— unsigned long

FIGURE 2-3 Integral data types

Why are there so many categories of the same data type? Every data type has a different set
of values associated with it. For example, the char data type is used to represent integers
between —128 and 127. The int data type is used to represent integers between
—2147483648 and 2147483647, and the data type short is used to represent integers
between —32768 and 32767.

Which data type you use depends on how big a number your program needs to deal with.
In the early days of programming, computers and main memory were very expensive.
Only a small amount of memory was available to execute programs and manipulate the
data. As a result, programmers had to optimize the use of memory. Because writing a
program and making it work is already a complicated process, not having to worry about
the size of the memory makes for one less thing to think about. Thus, to effectively use
memory, a programmer can look at the type of data used in a program and figure out which
data type to use.

Newer programming languages have only five categories of simple data types: integer,
real, char, bool, and the enumeration type. The integral data types that are used in
this book are int, bool, and char.

Table 2-2 gives the range of possible values associated with these three data types and the
size of memory allocated to manipulate these values.

Data Types | 37

TABLE 2-2 Values and Memory Allocation for Three Simple Data Types

int -2147483648 t0 2147483647 4
bool true and false 1
char -128t0 127 1

NOTE Use this table only as a guide. Different compilers may allow different ranges of

~ values. Check your compiler’s documentation. To find the exact size of the
integral data types on a particular system, you can run a program given in
Appendix G (Memory Size of a System). Furthermore, to find the maximum and
minimum values of these data types, you can run another program given in
Appendix F (Header File climits).

int DATA TYPE
This section describes the int data type. This discussion also applies to other integral data
types.

Integers in C++, as in mathematics, are numbers such as the following:
-6728, -67, 0, 78, 36782, +763
Note the following two rules from these examples:

1. Positive integers do not need a + sign in front of them.

2. No commas are used within an integer. Recall that in C++, commas
are used to separate items in a list. So 36, 782 would be interpreted as
two integers: 36 and 782.

bool DATA TYPE

The data type bool has only two values: true and false. Also, true and false are called
the logical (Boolean) values. The central purpose of this data type is to manipulate logical
(Boolean) expressions. Logical (Boolean) expressions will be formally defined and discussed
in detail in Chapter 4. In C++, bool, true, and false are reserved words.

char DATA TYPE

The data type char is the smallest integral data type. In addition to dealing with small numbers
(—128 to 127), the char data type is used to represent characters—that is, letters, digits, and
special symbols. Thus, the char data type can represent every key on your keyboard. When

38 | Chapter 2: Basic Elements of C++

using the char data type, you enclose each character represented within single quotation
marks. Examples of values belonging to the char data type include the following;:

lA', 'al’ 'O', l*l, l+', |$" l&l’ Ll]

Note that a blank space is a character and is written as ' ', with a space between the
single quotation marks.

The data type char allows only one symbol to be placed between the single quotation
marks. Thus, the value 'abc' is not of the type char. Furthermore, even though
' I="and similar special symbols are considered to be one symbol, they are not regarded
as possible values of the data type char. All the individual symbols located on
the keyboard that are printable may be considered as possible values of the char data

type.

Several different character data sets are currently in use. The most common are the
American Standard Code for Information Interchange (ASCII) and Extended Binary-
Coded Decimal Interchange Code (EBCDIC). The ASCII character set has 128 values.
The EBCDIC character set has 256 values and was created by IBM. Both character sets
are described in Appendix C.

Each of the 128 values of the ASCII character set represents a different character. For
example, the value 65 represents 'A', and the value 43 represents "+'. Thus, each
character has a predefined ordering, which is called a collating sequence, in the set. The
collating sequence is used when you compare characters. For example, the value repre-
senting "B' is 66, so "A' is smaller than 'B'. Similarly, "+ is smaller than A" because
43 is smaller than 65.

The 14th character in the ASCII character set is called the newline character and is
represented as '\n'. (Note that the position of the newline character in the ASCII
character set is 13 because the position of the first character is 0.) Even though the
newline character is a combination of two characters, it is treated as one character.
Similarly, the horizontal tab character is represented in C++ as '\t' and the null
character is represented as "\ 0" (backslash followed by zero). Furthermore, the first 32
characters in the ASCII character set are nonprintable. (See Appendix C for a description
of these characters.)

Floating-Point Data Types

To deal with decimal numbers, C++ provides the floating-point data type, which we
discuss in this section. To facilitate the discussion, let us review a concept from a high
school or college algebra course.

You may be familiar with scientific notation. For example:

43872918 4.3872918 * 10’ {10 to the power of seven}
.0000265 2.65 * 107° {10 to the power of minus five}
47.9832 = 4.79832 * 10" {10 to the power of one}

Data Types | 39

To represent real numbers, C++ uses a form of scientific notation called floating-point
notation. Table 2-3 shows how C++ might print a set of real numbers using one
machine’s interpretation of floating-point notation. In the C++ floating-point notation,
the letter E stands for the exponent.

TABLE 2-3 Examples of Real Numbers Printed in C++ Floating-Point Notation

75.924 7.592400E1
0.18 1.800000E-1
0.0000453 4.530000E-5
-1.482 -1.482000E0
7800.0 7.800000E3

C++ provides three data types to manipulate decimal numbers: £loat, double, and
long double. As in the case of integral data types, the data types £loat, double, and
long double differ in the set of values. Figure 2-4 defines these data types.

Floating-Point Data Type

float double long double

FIGURE 2-4 Floating-point data types

NOTE On most newer compilers, the data types double and long double are the same.
' Therefore, only the data types £1loat and double are described here.
y

float: The data type float is used in C++ to represent any real number between
-3.4E+38 and 3.4E+38. The memory allocated for a value of the float data type is
four bytes.

double: The data type double is used in C++ to represent any real number between
-1.7E+308 and 1.7E+308. The memory allocated for a value of the double data type
is eight bytes.

40 | Chapter 2: Basic Elements of C++

The maximum and minimum values of the data types float and double are system
dependent. To find these values on a particular system, you can check your compiler’s
documentation or, alternatively, you can run a program given in Appendix F (Header
File cfloat).

Other than the set of values, there is one more difference between the data types £loat
and double. The maximum number of significant digits—that is, the number of decimal
places—in float values is 6 or 7. The maximum number of significant digits in values
belonging to the double type is 15.

NOTE For values of the double type, for better precision, some compilers might give more
than 15 significant digits. Check your compiler's documentation.

The maximum number of significant digits is called the precision. Sometimes £float
values are called single precision, and values of type double are called double
precision. If you are dealing with decimal numbers, for the most part you need only
the £loat type; if you need accuracy to more than six or seven decimal places, you can
use the double type.

NOTE In C++, by default, floating-point numbers are considered of type double.
Therefore, if you use the data type £loat to manipulate floating-point numbers in a
program, certain compilers might give you a warning message, such as ‘“truncation
from double to float”. To avoid such warning messages, you should use the double
data type. For illustration purposes and to avoid such warning messages in program-
ming examples, this book mostly uses the data type double to manipulate floating-
point numbers.

Arithmetic Operators and Operator Precedence

One of the most important uses of a computer is its ability to calculate. You can use the
standard arithmetic operators to manipulate integral and floating-point data types. There
are five arithmetic operators:

e 4+ addition

e - subtraction

e * multiplication
e / division

® % modulus operator

Arithmetic Operators and Operator Precedence | 41

You can use the operators +, —, *, and / with both integral and floating-point data types.
You use % with only the integral data type to find the remainder in ordinary division.
When you use / with the integral data type, it gives the quotient in ordinary division.
That is, integral division truncates any fractional part; there is no rounding.

Since high school, you have been accustomed to working with arithmetic expressions
such as the following:

1. -5

. 8-7

m. 3+4

wv. 2+3*5

v. 5.6+6.2*3
vii x+2*5+6/y

In expression (vi), x and y are unknown numbers. Formally, an arithmetic expression
is constructed by using arithmetic operators and numbers. The numbers appearing in the
expression are called operands. The numbers that are used to evaluate an operator are
called the operands for that operator. In expression (i), the symbol - specifies that the
number 5 is negative. In this expression, — has only one operand. Operators that have only
one operand are called unary operators.

In expression (ii), the symbol — is used to subtract 7 from 8. In this expression, — has two
operands, 8 and 7. Operators that have two operands are called binary operators.
Unary operator: An operator that has only one operand.

Binary operator: An operator that has two operands.

In expression (iii), that is, 3 + 4, 3 and 4 are the operands for the operator +. In this

expression, the operator + has two operands and is a binary operator. Now consider the
following expression:

+27

In this expression, the operator + indicates that the number 27 is positive. Here, + has
only one operand and so acts as a unary operator.

From the preceding discussion, it follows that - and + are both unary and binary
arithmetic operators. However, as arithmetic operators, *, /, and % are binary and so
must have two operands.

The following examples show how arithmetic operators—especially / and $—work with
integral data types. As you can see from these examples, the operator / represents the
quotient in ordinary division when used with integral data types.

42 |

EXAMPLE 2-3

Arithmetic Expression

2 +5
13 + 89
34 - 20
45 - 90
2 %7
5/ 2

w
[T
e
(SN |

oe

Chapter 2: Basic Elements of C++

7
102

14

Result

-45

14

2

Description

In the division 5 / 2, the quotient is 2 and the
remainder is 1. Therefore, 5 / 2 with the integral
operands evaluates to the quotient, which is 2.

In the division 34 / 5, the quotient is 6 and the
remainder is 4. Therefore, 34 % 5 evaluates to the

remainder, which is 4.

In the division 4 / 6, the quotient is 0 and the
remainder is 4. Therefore, 4 % 6 evaluates to the
remainder, which is 4.

The following C++ program evaluates the preceding expressions:

// This program illustrates how integral expressions are
// evaluated.

#include <iostream>

using namespace std;

int main ()

{
cout << "2 + 5 =" <K< 2 + 5 << endl;
cout << "13 + 89 = " << 13 + 89 << endl;
cout << "34 - 20 = " << 34 - 20 << endl;
cout << "45 - 90 = " << 45 - 90 << endl;
cout << "2 ¥ 7 =" K 2 * 7 << endl;
cout << "5 / 2 = " <K 5 / 2 << endl;
cout << "14 / 7 = " << 14 / 7 << endl;
cout << "34 $ 5 =" << 34 % 5 << endl;
cout << "4 $ 6 = " << 4 % 6 << endl;
return 0;

}

Sample Run:

2 +5 =717

13 + 89 = 102

34 - 20 = 14

45 - 90 = =45

2 = 14

* 7
/ 2 =

5

Arithmetic Operators and Operator Precedence | 43

NOTE Youshould be careful, when evaluating the mod operator with negative integer operands. You
might not get the answer you expect. For example, =34 % 5 = —4, because in the division
—34 / 5, the quotient is —6 and the remainder is —4. Similarly, 34 $ -5 = 4, because in
the division =34 / 5, the quotient is —6 and the remainder is 4. Also =34 % -5 = -4,
because in the division =34 / -5, the quotient is 6 and the remainder is —4.

The following example shows how arithmetic operators work with floating-point
numbers.

EXAMPLE 2-4

The following C++ program evaluates various floating-point expressions. (The details, of
how the expressions are evaluated, are left as an exercise for you.)

// This program illustrates how floating-point expressions
// are evaluated.

#include <iostream>
using namespace std;

int main ()

{
cout << "5.0 3.5 =" << 5.0 + 3.5
cout << "3.0 9.4 = " << 3.0 + 9.4 << endl;
cout << "16.3 - 5.2 = " <K 16.3 - 5

cout << "4.2 * 2.5 =" K 4 .
cout << "5.0 / 2.0 = " << 5.0 / 2.0 << endl;
cout << "34.5 / 6.0 = " << 34.5 / 6.0 << endl;
cout << "34.5 / 6.5 = " << 34.5 / 6.5 << endl;
return 0;

}

Sample Run:

5.0 + 3.5 = 8.5

3.0 + 9.4 = 12.4

16.3 - 5.2 = 11.1

4.2 * 2.5 =10.5

5.0 / 2.0 = 2.5

34,5 / 6.0 = 5.75

34.5 / 6.5 = 5.30769

44 | Chapter 2: Basic Elements of C++

Order of Precedence

When more than one arithmetic operator is used in an expression, C++ uses the operator
precedence rules to evaluate the expression. According to the order of precedence rules
for arithmetic operators,

*, /I %
are at a higher level of precedence than:
+, -

Note that the operators *, /, and % have the same level of precedence. Similarly, the
operators + and - have the same level of precedence.

When operators have the same level of precedence, the operations are performed from
left to right. To avoid confusion, you can use parentheses to group arithmetic expressions.
For example, using the order of precedence rules,

3*7-6+2*5/4+6
means the following:

(((3*7) —6) + ((2*5) /4)) +6

= ((21 - 6) + (10 / 4)) + 6 (Evaluate *)

= ((21 - 6) +2) + 6 (Evaluate /. Note that this is an integer division.)
= (15 + 2) + 6 (Evaluate -)

=17 + 6 (Evaluate first +)

= 23 (Evaluate +)

Note that the use of parentheses in the second example clarifies the order of precedence.
You can also use parentheses to override the order of precedence rules (see Example 2-5).

EXAMPLE 2-5

In the expression:

3 +4%*5

* is evaluated before +. Therefore, the result of this expression is 23. On the other hand,
in the expression:

(3 +4) *5

+ is evaluated before * and the result of this expression is 35.

Because arithmetic operators are evaluated from left to right, unless parentheses
are present, the associativity of the arithmetic operators is said to be from left to
right.

Expressions | 45

NOTE (Character Arithmetic) Because the char data type is also an integral data type, C++
allows you to perform arithmetic operations on char data. However, you should use this
ability carefully. There is a difference between the character '8 ' and the integer 8. The
integer value of 8 is 8. The integer value of '8" is 56, which is the ASCII collating
sequence of the character '8"'.

When evaluating arithmetic expressions, 8 + 7 =15; '8" + '7'" = 56 + 55, which
yields 111;and '8' + 7 =56 + 7, which yields 63. Furthermore, because '8" * ' 7'
=56 * 55 = 3080 and the ASCII character set has only 128 values, "8"' * '7" is
undefined in the ASCII character data set.

These examples illustrate that many things can go wrong when you are performing
character arithmetic. If you must employ them, use arithmetic operations on the char
data type with caution.

Expressions

To this point, we have discussed only arithmetic operators. In this section, we now
discuss arithmetic expressions in detail. Arithmetic expressions were introduced in the last
section.

If all operands (that is, numbers) in an expression are integers, the expression is called an
integral expression. If all operands in an expression are floating-point numbers, the
expression is called a floating-point or decimal expression. An integral expression
yields an integral result; a floating-point expression yields a floating-point result.
Looking at some examples will help clarify these definitions.

EXAMPLE 2-6

Consider the following C++ integral expressions:

2 +3*5
3 +x-y /7
X+ 2* (y - z) + 18

In these expressions, %, y, and z represent variables of the integer type; that is, they can
hold integer values. Variables are discussed later in this chapter.

EXAMPLE 2-7

Consider the following C++ floating-point expressions:

12.8 * 17.5 - 34.50
x * 10.5 + y - 16.2

46 | Chapter 2: Basic Elements of C++

Here, x and y represent variables of the floating-point type; that is, they can hold
floating-point values. Variables are discussed later in this chapter.

Evaluating an integral or a floating-point expression is straightforward. As before, when
operators have the same precedence, the expression is evaluated from left to right. You
can always use parentheses to group operands and operators to avoid confusion.

Mixed Expressions

An expression that has operands of different data types is called a mixed expression. A
mixed expression contains both integers and floating-point numbers. The following
expressions are examples of mixed expressions:

+ 3.5
/ 4 + 3.9
4 %2 - 13.6 + 18 / 2

o N

In the first expression, the operand + has one integer operand and one floating-point
operand. In the second expression, both operands for the operator / are integers, the first
operand of + is the result of 6 / 4, and the second operand of + is a floating-point
number. The third example is an even more complicated mix of integers and floating-
point numbers. The obvious question is: How does C++ evaluate mixed expressions?

Two rules apply when evaluating a mixed expression:
1. When evaluating an operator in a mixed expression:

a. If the operator has the same types of operands (that is, either both
integers or both floating-point numbers), the operator is evaluated
according to the type of the operands. Integer operands thus yield an
integer result; floating-point numbers yield a floating-point number.

b. Ifthe operator has both types of operands (that is, one is an integer and
the other is a floating-point number), then during calculation the
integer is changed to a floating-point number with the decimal part of
zero and the operator is evaluated. The resultis a floating-point number.

2. The entire expression is evaluated according to the precedence rules; the
multiplication, division, and modulus operators are evaluated before the
addition and subtraction operators. Operators having the same level of
precedence are evaluated from left to right. Grouping is allowed for clarity.

From these rules, it follows that when evaluating a mixed expression, you concentrate on
one operator at a time, using the rules of precedence. If the operator to be evaluated has
operands of the same data type, evaluate the operator using Rule 1(a). That is, an operator
with integer operands will yield an integer result, and an operator with floating-point
operands will yield a floating-point result. If the operator to be evaluated has one integer
operand and one floating-point operand, before evaluating this operator convert the

Expressions | 47

integer operand to a floating-point number with the decimal part of 0. The following
examples show how to evaluate mixed expressions.

EXAMPLE 2-8

Mixed Expression Evaluation Rule Applied
3/2+5.5 =1+5.5 3/2=1 (integer division; Rule 1(a))
=6.5 (1+5.5
=1.0+5.5 (Rule 1(b))
=6.5)
15.6/2+5 =7.8+5 15.6/2
=15.6/2.0 (Rule 1(b))
=7.8
=12.8 7.8+5
=7.8+5.0 (Rulel(b))
=12.8
4+5/2.0 =4+2.5 5/2.0=5.0/2.0 (Rulel(b))
=2.5
=6.5 442.5=4,0+2.5 (Rulel(b))
=6.5
4*3+7/5-25.5 =12+7/5-25.5 4*3=12; (Rule 1(a))
=12+1-25.5 7/5=1 (integer division; Rule 1(a))
=13-25.5 12+1=13; (Rule 1(a))
=-12.5 13-25.5=13.0-25.5 (Rule 1(b))
=-12.5

The following C++ program evaluates the preceding expressions:

// This program illustrates how mixed expressions are evaluated.

#include <iostream>
using namespace std;

int main ()

{

cout << "3 / 2 4+ 5.5 ="<< 3/ 2+ 5.5 << endl;
cout << "15.6 / 2 + 5 =" << 15.6 / 2 + 5 << endl;
cout << "4 + 5 / 2.0 ="<< 4+ 5/ 2.0 << endl;
cout << "4 * 3 +7 /5 - 25,5 =1"

<< 4 * 3 + 7 /5 - 25.5

<< endl;

return 0;

}

Sample Run:

48 | Chapter 2: Basic Elements of C++

These examples illustrate that an integer is not converted to a floating-point number
unless the operator to be evaluated has one integer and one floating-point operand.

Type Conversion (Casting)

In the previous section, you learned that when evaluating an arithmetic expression if the
operator has mixed operands, the integer value is changed to a floating-point value with
the zero decimal part. When a value of one data type is automatically changed to another
data type, an implicit type coercion is said to have occurred. As the examples in the
preceding section illustrate, if you are not careful about data types, implicit type coercion
can generate unexpected results.

To avoid implicit type coercion, C++ provides for explicit type conversion through the
use of a cast operator. The cast operator, also called type conversion or type casting,
takes the following form:

static cast<dataTypeName> (expression)

First, the expression is evaluated. Its value is then converted to a value of the type
specified by dataTypeName. In C++, static cast is a reserved word.

When converting a floating-point (decimal) number to an integer using the cast operator,
you simply drop the decimal part of the floating-point number. That is, the floating-point
number is truncated. Example 2-9 shows how cast operators work. Be sure you under-
stand why the last two expressions evaluate as they do.

EXAMPLE 2-9

Expression Evaluates to

static cast<int>(7.9) 7

static_cast<int> (3.3) 3

static_cast<double> (25) 25.0

static cast<double> (5+3) =static cast<double>(8) =8.0
static_cast<double> (15) /2 =15.0/2

(because static_cast<double> (15) =15.0)
=15.0/2.0=7.5

static_cast<double> (15/2) =static cast<double> (7) (because 15/2=7)
=7.0

static cast<int> (7.8 +

static cast<double>(15) /2) =static cast<int>(7.8+7.5)
= static_cast<int> (15.3)
= 15

static_cast<int> (7.8 +

static_cast<double> (15 /2)) = static_cast<int> (7.8 + 7.0)
= static_cast<int>(14.8)
= 14

Type Conversion (Casting) | 49

The following C++ program evaluates the preceding expressions:

// This program illustrates how explicit type conversion works.

#include <iostream>
using namespace std;

int main()

{

cout << "static cast<int>(7.9)
<< static cast<int>(7.9)
<< endl;

cout << "static_cast<int>(3.3)
<< static cast<int>(3.3)
<< endl;

cout << "static_cast<double>(25) ="
<< static_cast<double> (25)
<< endl;

cout << "static_cast<double>(5 + 3) ="
<< static_cast<double> (5 + 3)
<< endl;

cout << "static cast<double>(15) / 2
<< static cast<double>(15) / 2
<< endl;

cout << "static_cast<double> (15 / 2)
<< static_cast<double> (15 / 2)
<< endl;

cout << "static cast<int>(7.8 + static_cast<double>(15) / 2)
<< static cast<int> (7.8 + static_cast<double>(15) / 2)
<< endl;

cout << "static_cast<int> (7.8 + static_cast<double> (15 / 2))
<< static_cast<int> (7.8 + static_ cast<double> (15 / 2))
<< endl;

return 0;

Sample Run:

static_cast<int>(7.9) = 7
static_cast<int>(3.3) = 3
static_cast<double> (25) = 25
static_cast<double> (5 + 3) =
static_cast<double> (15) /
static_cast<double> (15 / 2) = 7

static cast<int> (7.8 + static cast<double> (15) / 2) 15
static_cast<int> (7.8 + static_cast<double> (15 / 2)) = 14

Note that the value of the expression static cast<double>(25) is 25.0. However,
it 1s output as 25 rather than 25.0. This is because we have not yet discussed how to
output decimal numbers with 0 decimal parts to show the decimal point and the trailing
zeros. Chapter 3 explains how to output decimal numbers in a desired format. Similarly,

50 | Chapter 2: Basic Elements of C++

the output of other decimal numbers with zero decimal parts is without the decimal point
and the 0 decimal part.

Consider another series of examples. For these examples, x = 15, y = 23, and z = 3.75.
A C++ program, similar to the preceding one, generated the output of the following
expressions. (The Web site accompanying this book contains this program. It is named
Example2 9B.cpp.)

Expression Value
static cast<int> (7.9 + 6.7) 14
static_cast<int>(7.9) + static cast<int>(6.7) 13
static_cast<double>(y / x) + z 4.75
static_cast<double>(y) / x + z 5.28333

NOTE In C++, the cast operator can also take the form dataType (expression). This form
is called C-like casting. For example, double (5) = 5.0 and int (17.6) = 17.
However, static cast is more stable than C-like casting.

You can also use cast operators to explicitly convert char data values into int data
values, and int data values into char data values. To convert char data values into int
data values, you use a collating sequence. For example, in the ASCII character
set, static cast<int>('A') is 65 and static cast<int>('8') is 56.
Similarly, static cast<char>(65) is 'A' and static cast<char>(56) is '8".

Earlier in this chapter, you learned how arithmetic expressions are formed and evaluated
in C++. If you want to use the value of one expression in another expression, first you
must save the value of the expression. There are many reasons to save the value of an
expression. Some expressions are complex and may require a considerable amount of
computer time to evaluate. By calculating the values once and saving them for further
use, you not only save computer time and create a program that executes more quickly,
you also avoid possible typographical errors. In C++, expressions are evaluated and if the
value is not saved, it is lost. That is, unless it is saved, the value of an expression cannot
be used in later calculations. In the next section, you will learn how to save the value of
an expression and use it in subsequent calculations.

Before leaving the discussion of data types, let us discuss one more data type—string.

string Type

The data type string is a programmer-defined data type. It is not directly available
for use in a program like the simple data types discussed earlier. To use this data
type, you need to access program components from the library, which will be
discussed later in this chapter. The data type string is a feature of ANSI/ISO
Standard C++.

Input | 51

NOTE Prior to the ANSI/ISO C++ language standard, the standard C++ library did not provide a
string data type. Compiler vendors often supplied their own programmer-defined
string type, and the syntax and semantics of string operations often varied from vendor
to vendor.

A string is a sequence of zero or more characters. Strings in C++ are enclosed in double
quotation marks. A string containing no characters is called a null or empty string. The
following are examples of strings. Note that "™ is the empty string.

"William Jacob"
"Mickey"

ww
Every character in a string has a relative position in the string. The position of the first

character is 0, the position of the second character is 1, and so on. The length of a string is
the number of characters in it.

EXAMPLE 2-10

String Position of a Character in the String Length of the String

"William Jacob" Position of "W"' is 0. 13
Position of the first '1" is 1.
Position of ' ' (the space) is 7.
Position of 'J"' is 8.
Position of 'b"' is 12.
"Mickey" Position of 'M"' is 0. 6
Position of "i"' is 1.
Position of "¢ is 2.
Position of "k "' is 3.
Position of "e"' is 4.
Position of "y " is 5.

When determining the length of a string, you must also count any spaces in the string.
For example, the length of the following string is 22.

"It is a beautiful day."

Input

As noted earlier, the main objective of a C++ program is to perform calculations and
manipulate data. Recall that data must be loaded into main memory before it can be
manipulated. In this section, you will learn how to put data into the computer’s memory.
Storing data in the computer’s memory is a two-step process:

52 | Chapter 2: Basic Elements of C++

1. Instruct the computer to allocate memory.

2. Include statements in the program to put data into the allocated memory.

Allocating Memory with Constants and Variables

‘When you instruct the computer to allocate memory, you tell it not only what names to use
for each memory location, but also what type of data to store in those memory locations.
Knowing the location of data is essential, because data stored in one memory location might
be needed at several places in the program. As you saw earlier, knowing what data type you
have is crucial for performing accurate calculations. It is also critical to know whether your
data needs to remain fixed throughout program execution or whether it should change.

Some data must stay the same throughout a program. For example, the pay rate is usually
the same for all part-time employees. A conversion formula that converts inches into
centimeters is fixed, because 1 inch is always equal to 2.54 centimeters. When stored in
memory, this type of data needs to be protected from accidental changes during program
execution. In C++, you can use a named constant to instruct a program to mark those
memory locations in which data is fixed throughout program execution.

Named constant: A memory location whose content is not allowed to change during
program execution.

To allocate memory, we use C++’s declaration statements. The syntax to declare a
named constant is:

const dataType identifier = value;

In C++, const is a reserved word.

EXAMPLE 2-11

Consider the following C++ statements:

const double CONVERSION = 2.54;
const int NO_OF_STUDENTS = 20;
const char BLANK = ' ';

const double PAY RATE = 15.75;

The first statement tells the compiler to allocate memory, (eight bytes), to store a
value of type double, call this memory space CONVERSION, and store the value
2.54 in it. Throughout a program that uses this statement, whenever the conversion
formula is needed, the memory space CONVERSION can be accessed. The meaning of
the other statements is similar.

Note that the identifier for a named constant is in uppercase letters. Even though
there are no written rules, C++ programmers typically prefer to use uppercase

Input | 53

letters to name a named constant. Moreover, if the name of a named constant is a
combination of more than one word, called a run-together word, then the words are
separated using an underscore. For example, in the preceding example, PAY RATE
is a run-together word.

NOTE As noted earlier, the default type of floating-point numbers is double. Therefore, if you
declare a named constant of type £1oat, then you must specify that the value is of type
float as follows:

const float PAY RATE = 15.75f;

otherwise, the compiler will generate an error message. Notice that 15.75f says
that it is a £loat value. Recall that the memory size for £loat values is four
bytes; for double values, eight bytes. Because these days memory size is of
little concern, as indicated earlier, we will mostly use the type double to work
with floating-point values.

Using a named constant to store fixed data, rather than using the data value itself, has
one major advantage. If the fixed data changes, you do not need to edit the entire
program and change the old value to the new value wherever the old value is used.
Instead, you can make the change at just one place, recompile the program, and
execute it using the new value throughout. In addition, by storing a value and
referring to that memory location whenever the value is needed, you avoid typing
the same value again and again and prevent accidental typos. If you misspell the name
of the constant value’s location, the computer will warn you through an error
message, but it will not warn you if the value is mistyped.

In some programs, data needs to be modified during program execution. For
example, after each test, the average test score and the number of tests taken changes.
Similarly, after each pay increase, the employee’s salary changes. This type of data
must be stored in those memory cells whose contents can be modified during
program execution. In C++, memory cells whose contents can be modified during
program execution are called variables.

Variable: A memory location whose content may change during program execution.

The syntax for declaring one variable or multiple variables is:

dataType identifier, identifier, . . .;

EXAMPLE 2-12

Consider the following statements:

double amountDue;
int counter;

54 | Chapter 2: Basic Elements of C++

char ch;
int x, y;
string name;

The first statement tells the compiler to allocate enough memory to store a value of
the type double and call it amountDue. The second and third statements have
similar conventions. The fourth statement tells the compiler to allocate two different
memory spaces, each large enough to store a value of the type int; name the first
memory space x; and name the second memory space y. The fifth statement tells the
compiler to allocate memory space to store a string and call it name.

As in the case of naming named constants, there are no written rules for naming variables.
However, C++ programmers typically use lowercase letters to declare variables. If a
variable name is a combination of more than one word, then the first letter of each word,
except the first word, is uppercase. (For example, see the variable amountDue in the
preceding example.)

[13 . ” . .
From now on, when we say “variable,” we mean a variable memory location.

NOTE In C++, you must declare all identifiers before you can use them. If you refer to an
identifier without declaring it, the compiler will generate an error message, (syntax error),
indicating that the identifier is not declared. Therefore, to use either a named constant or
a variable, you must first declare it.

Now that data types, variables, and constants have been defined and discussed, it is
possible to offer a formal definition of simple data types. A data type is called
simple if the variable or named constant of that type can store only one value at a
time. For example, if x is an int variable, at a given time only one value can be
stored in x.

Putting Data into Variables

Now that you know how to declare variables, the next question is: How do you put data
into those variables? In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

Assignment Statement

The assignment statement takes the following form:

variable = expression;

Input | 55

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable (and thus to a memory location) on the left side.

A variable is said to be initialized the first time a value is placed in the variable.

In C++, = is called the assignment operator.

EXAMPLE 2-13

Suppose you have the following variable declarations:

int numl, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

numl = 4;

num2 = 4 * 5 - 11;

sale = 0.02 * 1000;

first = 'D';

str = "It is a sunny day.";

For each of these statements, the computer first evaluates the expression on the right and
then stores that value in a memory location named by the identifier on the left. The first
statement stores the value 4 in numl, the second statement stores 9 in num2, the third
statement stores 20.00 in sale, and the fourth statement stores the character D in
first. The fifth statement stores the string "It is a sunny day." in the variable str.

The following C++ program shows the effect of the preceding statements:

// This program illustrates how data in the variables are
// manipulated.

#include <iostream>
#include <string>

using namespace std;

int main()

{
int numl, num2;
double sale;
char first;
string str;

numl = 4;
cout << "numl = " << numl << endl;

56 | Chapter 2: Basic Elements of C++

num2 = 4 * 5 - 11;
cout << "num2 = " << num2 << endl;

sale = 0.02 * 1000;
cout << "sale = " << sale << endl;

first = 'D';

cout << "first = " << first << endl;
str = "It is a sunny day.";

cout << "str = " << str << endl;

return 0;

}

Sample Run:
numl = 4
num2 = 9
sale = 20
first = D

str = It is a sunny day.

For the most part, the preceding program is straightforward. Let us take a look at the
output statement:

cout << " numl = " << numl << endl;

This output statement consists of the string " numl = ", the operator <<, and the variable
numl. Here first the value of the string "™ numl = " is output, then the value of the
variable numl is output. The meaning of the other output statements is similar.

A C++ statement such as:

num = num + 2;

means “evaluate whatever is in num, add 2 to it, and assign the new value to the memory
location num.” The expression on the right side must be evaluated first; that value is then
assigned to the memory location specified by the variable on the left side. Thus, the
sequence of C++ statements:

num = 6;
num num + 2;

and the statement:
num = 8;

both assign 8 to num. Note that the statement num = num + 2 is meaningless if num has
not been initialized.

Input | 57

The statement num = 5; is read as “num becomes 5” or “num gets 5” or “num is assigned the
value 5.” Reading the statement as “num equals 5” is incorrect, especially for statements such
as num = num + 2; . Each time a new value is assigned to num, the old value is overwritten.

EXAMPLE 2-14

Suppose that numl, num2, and num3 are int variables and the following statements are
executed in sequence.

1. numl =18;
2. numl =numl + 27;
3. num2 = numl;
4. num3 =num2 / 5;
5. num3 = num3 / 4;
The following table shows the values of the variables after the execution of each

statement. (A ? indicates that the value is unknown. The orange color in a box shows
that the value of that variable is changed.)

Values of the Variables Explanation
Before Statement |

numl num2 num3
Afier Staement 1 | I8

numl num?2 num3

After Statement 2 -

numl + 27 = 18 + 27 = 45.
This value is assigned to numl, which

I

numl num2 num3 replaces the old value of numl.
After Statement 3 - Copy the value of numl into num2.
numl num2 num3
num2 / 5 = 45 / 5 = 9. This
After Statement 4 - value is assigned to num3. So num3

numl num?2 num3 = 9.

num3 / 4 = 9 / 4 = 2, This
After Statement 5

value is assigned to num3, which
numl num? num3 replaces the old value of num3.

Thus, after the execution of the statement in Line 5, numl = 45, num2 = 45, and num3 = 2.

Tracing values through a sequence, called a walk-through, is a valuable tool to learn and
practice. Try it in the sequence above. You will learn more about how to walk through a
sequence of C++ statements later in this chapter.

58 | Chapter 2: Basic Elements of C++

NOTE Suppose that %, y, and z are int variables. The following is a legal statement in C++:
X =Yy = 2y

In this statement, first the value of z is assigned to y, and then the new value of y is
assigned to x. Because the assignment operator, =, is evaluated from right to left, the
associativity of the assignment operator is said to be from right to left.

Saving and Using the Value of an Expression

Now that you know how to declare variables and put data into them, you can learn
how to save the value of an expression. You can then use this value in a later
expression without using the expression itself, thereby answering the question raised
earlier in this chapter. To save the value of an expression and use it in a later
expression, do the following:

1. Declare a variable of the appropriate data type. For example, if the
result of the expression is an integer, declare an int variable.

2. Assign the value of the expression to the variable that was declared,
using the assignment statement. This action saves the value of the
expression into the variable.

3. Wherever the value of the expression is needed, use the variable holding
the value. The following example further illustrates this concept.

EXAMPLE 2-15

Suppose that you have the following declaration:

int a, b, ¢, 4d;
int x, y;

Further suppose that you want to evaluate the expressions -b + (b® - 4ac) and
-b - (b? - 4ac), and assign the values of these expressions to x and y, respectively.
Because the expression b® — 4ac appears in both expressions, you can first calculate
the value of this expression and save its value in d. You can then use the value of d
to evaluate the expressions, as shown by the following statements:

d=b*b -4*a*c;

b4 -b + d;
y=-b-d;

Earlier, you learned that if a variable is used in an expression, the expression would
yield a meaningful value only if the variable has first been initialized. You also learned
that after declaring a variable, you can use an assignment statement to initialize it. It is

Input | 59

possible to initialize and declare variables at the same time. Before we discuss how to
use an input (read) statement, we address this important issue.

Declaring and Initializing Variables

When a variable is declared, C++ may not automatically put a meaningful value in it. In
other words, C++ may not automatically initialize variables. For example, the int and
double variables may not be initialized to 0, as happens in some programming languages.
This does not mean, however, that there is no value in a variable after its declaration.
When a variable is declared, memory is allocated for it.

Recall from Chapter 1 that main memory is an ordered sequence of cells, and each cell is
capable of storing a value. Also, recall that the machine language is a sequence of Os and 1s, or
bits. Therefore, data in a memory cell is a sequence of bits. These bits are nothing but electrical
signals, so when the computer is turned on, some of the bits are 1 and some are 0. The state of
these bits depends on how the system functions. However, when you instruct the computer to
store a particular value in a memory cell, the bits are set according to the data being stored.

During data manipulation, the computer takes the value stored in particular cells and
performs a calculation. If you declare a variable and do not store a value in it, the memory
cell still has a value—usually the value of the setting of the bits from their last use—and
you have no way to know what this value is.

If you only declare a variable and do not instruct the computer to put data into the variable,
the value of that variable is garbage. However, the computer does not warn us, regards
whatever values are in memory as legitimate, and performs calculations using those values
in memory. Using a variable in an expression without initializing it produces erroneous
results. To avoid these pitfalls, C++ allows you to initialize variables while they are being
declared. For example, consider the following C++ statements in which variables are first
declared and then initialized:

int first, second;
char ch;
double x;

first = 13;
second = 10;
ch="";
x = 12.6;

You can declare and initialize these variables at the same time using the following C++
statements:

int first = 13, second = 10;
char ch =" ';
double x = 12.6;

The first C++ statement declares two int variables, first and second, and stores 13
in first and 10 in second. The meaning of the other statements is similar.

60 | Chapter 2: Basic Elements of C++

In reality, not all variables are initialized during declaration. It is the nature of the
program or the programmer’s choice that dictates which variables should be initi-
alized during declaration. The key point is that all variables must be initialized before
they are used.

Input (Read) Statement

Previously, you learned how to put data into variables using the assignment statement. In
this section, you will learn how to put data into variables from the standard input device,
using C++’s input (or read) statements.

NOTE In most cases, the standard input device is the keyboard.

When the computer gets the data from the keyboard, the user is said to be acting interactively.

Putting data into variables from the standard input device is accomplished via the use of
cin and the operator >>. The syntax of cin together with >> is:

cin >> variable >> wvariable ...;

This is called an input (read) statement. In C++, >> is called the stream extraction
operator.

NOTE In asyntax, the shading indicates the part of the definition that is optional. Furthermore,
throughout this book, the syntax is enclosed in yellow boxes.

EXAMPLE 2-16

Suppose that miles is a variable of type double. Further suppose that the input is
73.65. Consider the following statements:

cin >> miles;

This statement causes the computer to get the input, which is 73. 65, from the standard
input device, and stores it in the variable miles. That is, after this statement executes, the
value of the variable miles is 73.65.

Input | 61

Example 2-17 further explains how to input numeric data into a program.

EXAMPLE 2-17

Suppose we have the following statements:

int feet;
int inches;

Suppose the input is:

23 17

Next, consider the following statement:
cin >> feet >> inches;

This statement first stores the number 23 into the variable feet and then the number 7
into the variable inches. Notice that when these numbers are entered via the keyboard,
they are separated with a blank. In fact, they can be separated with one or more blanks or
lines or even the tab character.

The following C++ program shows the effect of the preceding input statements:

// This program illustrates how input statements work.
#include <iostream>
using namespace std;

int main()

{
int feet;
int inches;

cout << "Enter two integers separated by spaces: ";
cin >> feet >> inches;
cout << endl;

cout << "Feet = " << feet << endl;
cout << "Inches = " << inches << endl;

return 0;

}
Sample Run: (In this sample run, the user input is shaded.)

Enter two integers separated by spaces: 23 7

Feet = 23
Inches = 7

62 | Chapter 2: Basic Elements of C++

The C++ program in Example 2-18 illustrates how to read strings and numeric data.

EXAMPLE 2-18

// This program illustrates how to read strings and numeric data.

#include <iostream>
#include <string>

using namespace std;

int main()

{

string firstName; //Line 1
string lastName; //Line 2
int age; //Line 3
double weight; //Line 4

cout << "Enter first name, last name, age, "
<< "and weight, separated by spaces.”

<< endl; //Line 5
cin >> firstName >> lastName; //Line 6
cin >> age >> weight; //Line 7
cout << "Name: " << firstName << " "

<< lastName << endl; //Line 8
cout << "Age: " << age << endl; //Line 9
cout << "Weight: " << weight << endl; //Line 10
return 0; //Line 11

Sample Run: In this sample run, the user input is shaded.

Enter first name, last name, age, and weight, separated by spaces.
Sheila Mann 23 120.5

Name: Sheila Mann

Age: 23

Weight: 120.5

The preceding program works as follows: The statements in Lines 1 to 4 declare the
variables firstName and lastName of type string, age of type int, and weight of
type double. The statement in Line 5 is an output statement and tells the user what to
do. (Such output statements are called prompt lines.) As shown in the sample run, the
input to the program is.:

Sheila Mann 23 120.5

Input | 63

The statement in Line 6 first reads and stores the string Sheila into the variable
firstName and then skips the space after Sheila and reads and stores the string
Mann into the variable lastName. Next, the statement in Line 7 first skips the blank
after Mann and reads and stores 23 into the variable age and then skips the blank after
23 and reads and stores 120.5 into the variable weight.

The statements in Lines 8, 9, and 10 produce the third, fourth, and fifth lines of the
sample run.

NOTE During programming execution, if more than one value is entered in a line, these values must
be separated by at least one blank or tab. Alternately, one value per line can be entered.

Variable Initialization

Remember, there are two ways to initialize a variable: by using the assignment statement
and by using a read statement. Consider the following declaration:

int feet;

You can initialize the variable feet to a value of 35 either by using the assignment statement:
feet = 35;

or by executing the following statement and entering 35 during program execution:
cin >> feet;

If you use the assignment statement to initialize feet, then you are stuck with the same
value each time the program runs unless you edit the source code, change the value,
recompile, and run. By using an input statement each time the program runs, you are
prompted to enter a value, and the value entered is stored into feet. Therefore, a read
statement is much more versatile than an assignment statement.

Sometimes it is necessary to initialize a variable by using an assignment statement. This is
especially true if the variable is used only for internal calculation and not for reading and
storing data.

Recall that C++ does not automatically initialize variables when they are declared. Some
variables can be initialized when they are declared, whereas others must be initialized
using either an assignment statement or a read statement.

NOTE When the program is compiled, some of the newer SDKs might give warning messages
if the program uses the value of a variable without first properly initializing that variable.
In this case, if you ignore the warning and execute the program, the program might
terminate abnormally with an error message.

64 | Chapter 2: Basic Elements of C++

NOTE Suppose you want to store a character into a char variable using an input statement.
During program execution, when you enter the character, you do not include the single
quotes. For example, suppose that ch is a char variable. Consider the following input
statement:

cin >> ch;

If you want to store K into ch using this statement, during program execution, you only
enter XK. Similarly, if you want to store a string into a string variable using an input
statement, during program execution, you enter only the string without the double quotes.

EXAMPLE 2-19

This example further illustrates how assignment statements and input statements manip-
ulate variables. Consider the following declarations:

int firstNum, secondNum;
double z;

char ch;

string name;

Also, suppose that the following statements execute in the order given:

[N

firstNum = 4;

secondNum = 2 * firstNum + 6;

z = (firstNum+ 1) / 2.0;

ch="4";

cin >> secondNum;

cin>> z;

firstNum = 2 * secondNum + static cast<int> (z);

cin >> name;

Y o® N o A DN

secondNum = secondNum + 1;

_\
e

cin >> ch;

—_
—_

firstNum = firstNum + static_cast<int>(ch);
12. z=firstNum - z;

In addition, suppose the input is:

8 16.3 Jenny D

This line has four values, 8, 16.3, Jenny, and D, and each value is separated from the
others by a blank.

Input | 65

Let’s now determine the values of the declared variables after the last statement
executes. To explicitly show how a particular statement changes the value of a
variable, the values of the variables after each statement executes are shown. (In
the following figures, a question mark [?] in a box indicates that the value in the box
is unknown.)

Before statement 1 executes, all variables are uninitialized, as shown in Figure 2-5.

firstNum secondNum name

FIGURE 2-5 Variables before statement 1 executes

Next we show the values of the variables after the execution of each statement.

After . .

St Values of the Variables Explanation

1 Al N N EE BN | sor 4o firstnum
firstNum secondNum name

2* firstNum+ 6=2%* 4
2 e --- +6=14.

firstNum secondNum name Store 14 into secondNum.

(firstNum+ 1) / 2.0
3 4 --- = (4+1)/2.0=5/2.0

firstNum secondNum name = 2.5. Store 2.5 into z.

4 - - - Store "A" into ch.

firstNum secondNum name

~

Read a number from the
keyboard (which is 8) and store it
- - - - into secondNum. This statement
firstNum secondNum name replaces the old value of
secondNum with this new
value.

ol
H

Read a number from the
keyboard (which is 16. 3)
and store this number into z.
6 163 This statement replaces the
firstNum secondNum z ch name old value of z with this new
value.

66 |

Chapter 2: Basic Elements of C++

IS&tfter Values of the Variables Explanation
2 * gecondNum +
static_cast<int>(z) =
2 * 8 4+
7 32 static_cast<int> (16.3)
firstNum secondNum 4 ch name =16 + 16 = 32. Store 32
into £irstNum. This statement
replaces the old value of
firstNum with this new value.
Read the next input, Jenny,
8 32 Jenny from the keyboard and stores it
firstNum secondNum z ch name into name.
dNum +1 =8+ 1=09.
firstNum secondNum b4 ch name Store 9 into secondNum.
Read the next input from the
keyboard (which is D) and store it
10 “ b into ch. This statement replaces
firstNum secondNum z ch name the old value of ch with the new
value.
firstNum +
static_cast<int>(ch) =
1 100 “ 32 + static cast<int>
firstNum secondNum b4 ch name ('D") = 32 : 68 = 100.
Store 100 into £irstNum.
firstNum-z=100-16.3=
12 100 [o | 3.7 A 100.0 - 16.3 = 83.7. Store
firstNum secondNum b4 ch name 83.7 into z.
NOTE When something goes wrong in a program and the results it generates are not
what you expected, you should do a walk-through of the statements that assign
values to your variables. Example 2-19 illustrates how to do a walk-through
of your program. This is a very effective debugging technique. The Web site
accompanying this book contains a C++ program that shows the effect of the
12 statements listed at the beginning of Example 2-19. The program is named
Example 2 19.cpp.
NOTE If you assign the value of an expression that evaluates to a floating-point value—without

using the cast operator—to a variable of type int, the fractional part is dropped. In this
case, the compiler most likely will issue a warning message about the implicit
type conversion.

Increment and Decrement Operators | 67

Increment and Decrement Operators

Now that you know how to declare a variable and enter data into a variable, in this
section you will learn about two more operators: the increment and decrement
operators. These operators are used frequently by C++ programmers and are useful
programming tools.

Suppose count is an int variable. The statement:

count = count + 1;

increments the value of count by 1. To execute this assignment statement, the computer
first evaluates the expression on the right, which is count + 1. It then assigns this value to
the variable on the left, which is count.

As you will see in later chapters, such statements are frequently used to keep track of how
many times certain things have happened. To expedite the execution of such statements,
C++ provides the increment operator, ++, which increases the value of a variable by
1, and the decrement operator, ——, which decreases the value of a variable by 1.
Increment and decrement operators each have two forms, pre and post. The syntax of the
increment operator is:

Pre-increment: ++variable
Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: ——variable
Post-decrement: variable——

Let’s look at some examples. The statement:

++count;

or:

count++;

increments the value of count by 1. Similarly, the statement:
——count;

or:

count--;

decrements the value of count by 1.

Because both the increment and decrement operators are built into C++, the value of the
variable is quickly incremented or decremented without having to use the form of an
assignment statement.

68 | Chapter 2: Basic Elements of C++

As you can see from these examples, both the pre- and post-increment operators
increment the value of the variable by 1. Similarly, the pre- and post-decrement operators
decrement the value of the variable by 1. What is the difference between the pre and post
forms of these operators? The difference becomes apparent when the variable using these
operators is employed in an expression.

Suppose that x is an int variable. If +4x is used in an expression, first the value of x is
incremented by 1, and then the new value of x is used to evaluate the expression. On the
other hand, if x++ is used in an expression, first the current value of x is used in the
expression, and then the value of x is incremented by 1. The following example clarifies
the difference between the pre- and post-increment operators.

Suppose that x and y are int variables. Consider the following statements:

x =5;
y = ++x;

The first statement assigns the value 5 to x. To evaluate the second statement, which uses
the pre-increment operator, first the value of x is incremented to 6, and then this value,
6, is assigned to y. After the second statement executes, both x and y have the value 6.

Now consider the following statements:

x =5;
Vv = x++;

As before, the first statement assigns 5 to x. In the second statement, the post-increment
operator is applied to x. To execute the second statement, first the value of x, which is 5,
is used to evaluate the expression, and then the value of x is incremented to 6. Finally, the
value of the expression, which is 5, is stored in y. After the second statement executes,
the value of x is 6, and the value of y is 5.

The following example further illustrates how the pre and post forms of the increment
operator work.

EXAMPLE 2-20

Suppose a and b are int variables and:

a=>5;
b =2+ (++a);

The first statement assigns 5 to a. To execute the second statement, first the expression
2 + (++a) is evaluated. Because the pre-increment operator is applied to a, first the value
of a is incremented to 6. Then 2 is added to 6 to get 8, which is then assigned to b.
Therefore, after the second statement executes, a is 6 and b is 8.

Output | 69

On the other hand, after the execution of the following statements:

a=>5;
b =2+ (at+);

the value of a is 6 while the value of b is 7.

This book will most often use the increment and decrement operators with a variable in a
stand-alone statement. That is, the variable using the increment or decrement operator
will not be part of any expression.

Output

In the preceding sections, you have seen how to put data into the computer’s memory
and how to manipulate that data. We also used certain output statements to show the
results on the standard output device. This section explains in some detail how to further use
output statements to generate the desired results.

NOTE The standard output device is usually the screen.

In C++, output on the standard output device is accomplished via the use of cout and
the operator <<. The general syntax of cout together with << is:

cout << expression or manipulator << expression or manipulator...;

This is called an output statement. In C++, << is called the stream insertion
operator. Generating output with cout follows two rules:

1. The expression is evaluated and its value is printed at the current
insertion point on the output device.

2. A manipulator is used to format the output. The simplest manipulator
is endl (the last character is the letter el), which causes the insertion
point to move to the beginning of the next line.

NOTE On the screen, the insertion point is where the cursor is.
The next example illustrates how an output statement works. In an output statement,

a string or an expression involving only one variable or a single value evaluates to
itself.

70 | Chapter 2: Basic Elements of C++

NOTE

EXAMPLE 2-21

When an output statement outputs char values, it outputs only the character without the
single quotes (unless the single quotes are part of the output statement).

For example, suppose ch is a char variable and ch = "A" ;. The statement:
cout << ch;

or:

cout << 'A';

outputs:

A

Similarly, when an output statement outputs the value of a string, it outputs only the
string without the double quotes (unless you include double quotes as part of the
output).

Consider the following statements. The output is shown to the right of each

statement.
Statement Output
1 cout << 29 / 4 << endl; 7
2 cout << "Hello there." << endl; Hello there.
3 cout << 12 << endl; 12
4 cout << "4 + 7" << endl; 4 + 7
5 cout << 4 + 7 << endl; 11
6 cout << 'A' << endl; A
7 cout << "4 + 7 =" <K< 4 4+ 7 << endl; 4 + 7 =11
8 cout << 2 + 3 * 5 << endl; 17
9 cout << "Hello \nthere." << endl; Hello

there.

Look at the output of statement 9. Recall that in C++, the newline character is "\ n"'; it
causes the insertion point to move to the beginning of the next line before printing there.
Therefore, when \n appears in a string in an output statement, it causes the insertion
point to move to the beginning of the next line on the output device. This fact explains
why Hello and there. are printed on separate lines.

NOTE

In C++, \ is called the escape character and \ n is called newline escape sequence.

Output | 71

Recall that all variables must be properly initialized; otherwise, the value stored in them
may not make much sense. Also recall that C++ does not automatically initialize
variables.

If num is an int variable, then the output of the C++ statement:
cout << num << endl;

is meaningful provided that num has been given a value. For example, the sequence of
C++ statements:

num = 45;
cout << num << endl;

will produce the output 45.

EXAMPLE 2-22

Consider the following C++ program.

// This program illustrates how output statements work.
#include <iostream>
using namespace std;

int main()

{

int a, b;

a = 65; //Line 1

b = 78; //Line 2

cout << 29 / 4 << endl; //Line 3

cout << 3.0 / 2 << endl; //Line 4

cout << "Hello there.\n"; //Line 5

cout << 7 << endl; //Line 6

cout << 3 + 5 << endl; //Line 7

cout << "3 + 5"; //Line 8

cout << endl; //Line 9

cout << 2 + 3 * 6 << endl; //Line 10
cout << "a" << endl; //Line 11
cout << a << endl; //Line 12
cout << b << endl; //Line 13

return 0;

}

In the following output, the column marked “Output of Statement at” and the line
numbers are not part of the output. The line numbers are shown in this column to make
it easy to see which output corresponds to which statement.

72 | Chapter 2: Basic Elements of C++

Output of Statement at

7 Line 3
1.5 Line 4
Hello there. Line 5
7 Line 6
8 Line 7
3+ 5 Line 8
20 Line 10
a Line 11
65 Line 12
78 Line 13

For the most part, the output is straightforward. Look at the output of the statements in
Lines 7, 8, 9, and 10. The statement in Line 7 outputs the result of 3 + 5, which is 8, and
moves the insertion point to the beginning of the next line. The statement in Line 8
outputs the string 3 + 5. Note that the statement in Line 8 consists only of the string 3 + 5.
Therefore, after printing 3 + 5, the insertion point stays positioned after 5; it does not
move to the beginning of the next line.

The output statement in Line 9 contains only the manipulator endl, which moves
the insertion point to the beginning of the next line. Therefore, when the statement
in Line 10 executes, the output starts at the beginning of the line. Note that in
this output, the column “Output of Statement at” does not contain Line 9. This is due
to the fact that the statement in Line 9 does not produce any printable output. It simply
moves the insertion point to the beginning of the next line. Next, the statement in Line
10 outputs the result of the expression 2 + 3* 6, which 1s 20. The manipulator endl then
moves the insertion point to the beginning of the next line.

Outputting or accessing the value of a variable in an expression does not destroy or modify
the contents of the variable.

Let us now take a close look at the newline character, '\ n'. Consider the following
C++ statements:

cout << "Hello there.";
cout << "My name 1is James.";

If these statements are executed in sequence, the output is:
Hello there.My name is James.
Now consider the following C++ statements:

cout << "Hello there.\n";
cout << "My name is James.";

Output | 73

The output of these C++ statements is:

Hello there.
My name is James.

When \n is encountered in the string, the insertion point is positioned at the beginning
of the next line. Note also that \ n may appear anywhere in the string. For example, the
output of the statement:

cout << "Hello \nthere. \nMy name is James.";

1s:

Hello
there.
My name is James.

Also, note that the output of the statement:

cout << "\n';

is the same as the output of the statement:

cout << "\n";

which is equivalent to the output of the statement:
cout << endl;

Thus, the output of the sequence of statements:

cout << "Hello there.\n";
cout << "My name is James.";

is equivalent to the output of the sequence of statements:

cout << "Hello there." << endl;
cout << "My name is James.";

EXAMPLE 2-23

Consider the following C++ statements:

cout << "Hello there.\nMy name is James.";

or:

cout << "Hello there.";
cout << "\nMy name is James.";

or:

cout << "Hello there.";
cout << endl << "My name is James.";

74 | Chapter 2: Basic Elements of C++

In each case, the output of the statements is:

Hello there.
My name is James.

EXAMPLE 2-24

The output of the C++ statements:

cout << "Count...\n....I1\n..... 2\n...... 3";
or:
cout << "Count..." << endl << "....1" << endl
<< "LoLL.. 2" << endl << "...... 3";
is:
Count.
.1
..... 2
...... 3

EXAMPLE 2-25

Suppose that you want to output the following sentence in one line as part of a message:
It is sunny, warm, and not a windy day. We can go golfing.

Obviously, you will use an output statement to produce this output. However, in the
programming code, this statement may not fit in one line as part of the output statement.
Of course, you can use multiple output statements as follows:

cout << "It is sunny, warm, and not a windy day. ";
cout << "We can go golfing." << endl;

Note the semicolon at the end of the first statement and the identifier cout at the
beginning of the second statement. Also, note that there is no manipulator endl at
the end of the first statement. Here two output statements are used to output the
sentence in one line. Equivalently, you can use the following output statement to
output this sentence:

cout << "It is sunny, warm, and not a windy day. "
<< "We can go golfing." << endl;

Output | 75

In this statement, note that there is no semicolon at the end of the first line and the
identifier cout does not appear at the beginning of the second line. Because there is
no semicolon at the end of the first line, this output statement continues at the second
line. Also, note the double quotation marks at the beginning and end of the sentences
on each line. The string is broken into two strings, but both strings are part of the
same output statement.

If a string appearing in an output statement is long and you want to output the string in
one line, you can break the string by using either of the previous two methods. However,
the following statement would be incorrect:

cout << "It is sunny, warm, and not a windy day.
We can go golfing." << endl; //illegal

In other words, the return (or Enter) key on your keyboard cannot be part of the string.
That is, in programming code, a string cannot be broken into more than one line by using
the return (Enter) key on your keyboard.

Recall that the newline character is \n, which causes the insertion point to move to
the beginning of the next line. There are many escape sequences in C++, which
allow you to control the output. Table 2-4 lists some of the commonly used escape
sequences.

TABLE 2-4 Commonly Used Escape Sequences

\n Newline Cursor moves to the beginning of the next line

\t Tab Cursor moves to the next tab stop

\b Backspace Cursor moves one space to the left

\r Return Shu(:sr?éx?ﬂ\:g to the beginning of the current line (not
\\ Backslash Backslash is printed

\'! Single quotation Single quotation mark is printed

\" Double quotation Double quotation mark is printed

76 | Chapter 2: Basic Elements of C++

The following example shows the effect of some of these escape sequences.

EXAMPLE 2-26

The output of the statement:

cout << "The newline escape sequence is \\n" << endl;

1is:

The newline escape sequence is \n

The output of the statement:

cout << "The tab character is represented as \'\\t\'" << endl;
is:

The tab character is represented as '\t'

Note that the single quote can also be printed without using the escape sequence.
Therefore, the preceding statement is equivalent to the following output statement:

cout << "The tab character is represented as '"\\t'" << endl;

The output of the statement:
cout << "The string \"Sunny\" contains five characters.™ << endl;
1s:

The string "Sunny" contains five characters.

NOTE The Web site accompanying this text contains the C++ program that shows
the effect of the statements in Example 2-26. The program is named
Example2 26.cpp.

To use cin and cout in a program, you must include a certain header file. The next
section explains what this header file is, how to include a header file in a program, and
why you need header files in a program. Chapter 3 will provide a full explanation of cin
and cout.

Preprocessor Directives | 77

Preprocessor Directives

Only a small number of operations, such as arithmetic and assignment operations, are
explicitly defined in C++. Many of the functions and symbols needed to run a C++
program are provided as a collection of libraries. Every library has a name and is
referred to by a header file. For example, the descriptions of the functions needed to
perform input/output (I/O) are contained in the header file iostream. Similarly,
the descriptions of some very useful mathematical functions, such as power, absolute,
and sine, are contained in the header file cmath. If you want to use I/O or math
functions, you need to tell the computer where to find the necessary code. You use
preprocessor directives and the names of header files to tell the computer the
locations of the code provided in libraries. Preprocessor directives are processed by
a program called a preprocessor.

Preprocessor directives are commands supplied to the preprocessor that cause the pre-
processor to modify the text of a C++ program before it is compiled. All preprocessor
commands begin with #. There are no semicolons at the end of preprocessor commands
because they are not C++ statements. To use a header file in a C++ program, use the
preprocessor directive include.

The general syntax to include a header file (provided by the SDK) in a C++ program is:

#include <headerFileName>

For example, the following statement includes the header file iostream in a C++
program:

#include <iostream>

Preprocessor directives to include header files are placed as the first line of a program so
that the identifiers declared in those header files can be used throughout the program.
(Recall that in C++, identifiers must be declared before they can be used.)

Certain header files are required to be provided as part of C++. Appendix F describes some
of the commonly used header files. Individual programmers can also create their own header
files, which is discussed in the chapter Classes and Data Abstraction, later in this book.

Note that the preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

From Figure 1-3 (Chapter 1), we can conclude that a C++ system has three basic
components: the program development environment, the C++ language, and the C++
library. All three components are integral parts of the C++ system. The program
development environment consists of the six steps shown in Figure 1-3. As you learn
the C++ language throughout the book, we will discuss components of the C++
library as we need them.

78 | Chapter 2: Basic Elements of C++

namespace and Using cin and cout in a Program

Earlier, you learned that both cin and cout are predefined identifiers. In ANSI/ISO
Standard C++, these identifiers are declared in the header file iostream, but within a
namespace. The name of this namespace is std. (The namespace mechanism will be
formally defined and discussed in detail in Chapter 8. For now, you need to know only how
to use cin and cout, and, in fact, any other identifier from the header file iostream.)

There are several ways you can use an identifier declared in the namespace std. One way to
use cin and cout is to refer to them as std: :cin and std: : cout throughout the program.

Another option is to include the following statement in your program:
using namespace std;

This statement appears after the statement #include <iostream>. You can then refer
to cin and cout without using the prefix std: :. To simplify the use of cin and cout,
this book uses the second form. That is, to use cin and cout in a program, the programs
will contain the following two statements:

#include <iostream>

using namespace std;
In C++, namespace and using are reserved words.

The namespace mechanism is a feature of ANSI/ISO Standard C++. As you learn more
C++ programming, you will become aware of other header files. For example, the
header file cmath contains the specifications of many useful mathematical functions.
Similarly, the header file iomanip contains the specifications of many useful functions
and manipulators that help you format your output in a specific manner. However, just
like the identifiers in the header file iostream, the identifiers in ANSI/ISO Standard
C++ header files are declared within a namespace.

The name of the namespace in each of these header files is std. Therefore, whenever
certain features of a header file in ANSI/ISO Standard C++ are discussed, this book will
refer to the identifiers without the prefix std: :. Moreover, to simplify the accessing of
identifiers in programs, the statement using namespace std; will be included. Also, if
a program uses multiple header files, only one using statement is needed. This using
statement typically appears after all the header files.

Using the string Data Type in a Program

Recall that the string data type is a programmer-defined data type and is not directly
available for use in a program. To use the string data type, you need to access its
definition from the header file string. Therefore, to use the string data type in a
program, you must include the following preprocessor directive:

#include <string>

Creating a C++ Program | 79

Creating a C++ Program

In previous sections, you learned enough C++ concepts to write meaningful programs.
You are now ready to create a complete C++ program.

A C++ program is a collection of functions, one of which is the function main.
Therefore, if a C++ program consists of only one function, then it must be the function
main. Moreover, a function is a set of instructions designed to accomplish a specific task.
Until Chapter 6, you will deal mainly with the function main.

The statements to declare variables, the statements to manipulate data (such as assign-
ments), and the statements to input and output data are placed within the function main.
The statements to declare named constants are usually placed outside of the function
main.

The syntax of the function main used throughout this book has the following form:

int main()
{

statementl

statementn

return 0;

}

In the syntax of the function main, each statement (statementl, ..., statementn) is
usually either a declarative statement or an executable statement. The statement return
0; must be included in the function main and must be the last statement. If the statement
return 0; is misplaced in the body of the function main, the results generated by the
program may not be to your liking. The meaning of the statement return 0; will be
discussed in Chapter 6. In C++, return is a reserved word.

A C++ program might use the resources provided by the SDK, such as the
necessary code to input the data, which would require your program to include
certain header files. You can, therefore, divide a C++ program into two parts:
preprocessor directives and the program. The preprocessor directives tell the com-
piler which header files to include in the program. The program contains statements
that accomplish meaningful results. Taken together, the preprocessor directives and
the program statements constitute the C++ source code. Recall that to be useful,
source code must be saved in a file with the file extension .cpp. For example, if
the source code is saved in the file firstProgram, then the complete name of this
file is firstProgram.cpp. The file containing the source code is called the
source code file or source file.

When the program is compiled, the compiler generates the object code, which is saved in
a file with the file extension .obj. When the object code is linked with the system

80 | Chapter 2: Basic Elements of C++

resources, the executable code is produced and saved in a file with the file extension
.exe. Typically, the name of the file containing the object code and the name of the file
containing the executable code are the same as the name of the file containing the source
code. For example, if the source code is located in a file named firstProg.cpp, the
name of the file containing the object code is firstProg.obj, and the name of the file
containing the executable code is firstProg.exe.

The extensions as given in the preceding paragraph—that is, . cpp, .obj, and .exe—are
system dependent. Moreover, some SDKs maintain programs in the form of projects. The
name of the project and the name of the source file need not be the same. It is possible
that the name of the executable file is the name of the project, with the extension .exe.
To be certain, check your system or SDK documentation. The Web site accompanying
this book illustrates how to use some of the SDKs, such as Microsoft Visual C++ 2005
Express and Microsoft Visual Studio .NET.

Because the programming instructions are placed in the function main, let us elaborate
on this function.

The basic parts of the function main are the heading and the body. The first line of the
function main, that is:

int main()
is called the heading of the function main.

The statements enclosed between the curly braces ({ and }) form the body of the
function main. The body of the function main contains two types of statements:

e Declaration statements

e Executable statements
Declaration statements are used to declare things, such as variables.

In C++, variables or identifiers can be declared anywhere in the program, but they must
be declared before they can be used.

EXAMPLE 2-27

The following statements are examples of variable declarations:

int a, b, c¢;
double x, y;

Executable statements perform calculations, manipulate data, create output, accept
input, and so on.

Some executable statements that you have encountered so far are the assignment, input,
and output statements.

Creating a C++ Program | 81

EXAMPLE 2-28

The following statements are examples of executable statements:

a = 4; //assignment statement
cin >> b; //input statement
cout << a << " " << b << endl; //output statement

In skeleton form, a C++ program looks like the following:

preprocessor directives to include header files
using statement
declare named constants, if necessary

int main ()

{

statementl

statementn

return 0;

The C++ program in Example 2-29 shows where include statements, declaration state-
ments, executable statements, and so on typically appear in the program.

EXAMPLE 2-29

//***
// Author: D.S. Malik

//

// This program shows where the include statements, using

// statement, named constants, variable declarations, assignment

// statements, and input and output statements typically appear.
//***

#include <iostream> //Line 1
using namespace std; //Line 2
const int NUMBER = 12; //Line 3
int main () //Line 4
{ //Line 5

int firstNum; //Line 6

int secondNum; //Line 7

82 | Chapter 2: Basic Elements of C++

firstNum = 18; //Line 8
cout << "Line 9: firstNum = " << firstNum

<< endl; //Line 9
cout << "Line 10: Enter an integer: "; //Line 10
cin >> secondNum; //Line 11
cout << endl; //Line 12
cout << "Line 13: secondNum = " << secondNum

<< endl; //Line 13
firstNum = firstNum + NUMBER + 2 * secondNum; //Line 14

cout << "Line 15: The new value of "

<< "firstNum = " << firstNum << endl; //Line 15
return 0; //Line 16
} //Line 17

Sample Run: In this sample run, the user input is shaded.

Line 9: firstNum = 18
Line 10: Enter an integer: 15

Line 13: secondNum = 15
Line 15: The new value of firstNum = 60

The preceding program works as follows: The statement in Line 1 includes the
header file iostream so that program can perform input/output. The statement in
Line 2 uses the using namespace statement so that identifiers declared in the
header file iostream, such as cin, cout, and endl, can be used without using
the prefix std::. The statement in Line 3 declares the named constant NUMBER and
sets its value to 12. The statement in Line 4 contains the heading of the function
main, and the left brace in Line 5 marks the beginning of the function main. The
statements in Lines 6 and 7 declare the variables firstNum and secondNum.

The statement in Line 8 sets the value of firstNum to 18 and the statement in Line 9
outputs the value of firstNum. Next, the statement in Line 10 prompts the user to
enter an integer. The statement in Line 11 reads and stores the integer into the variable
secondNum, which is 15 in the sample run. The statement in Line 12 positions the
cursor on the screen at the beginning of the next line. The statement in Line 13
outputs the value of secondNum. The statement in Line 14 evaluates the expression:

firstNum + NUMBER + 2 * secondNum

and assigns the value of this expression to the variable £irstNum, which is 60 in the
sample run. The statement in Line 15 outputs the new value of firstNum. The
statement in Line 16 contains the return statement. The right brace in Line 17 marks
the end of the function main.

Program Style and Form | 83

Program Style and Form

In previous sections, you learned enough C++ concepts to write meaningful programs.
Before beginning to write programs, however, you need to learn their proper structure,
among other things. Using the proper structure for a C++ program makes it easier to
understand and subsequently modify the program. There is nothing more frustrating than
trying to follow, and perhaps modify, a program that is syntactically correct but has no
structure.

In addition, every C++ program must satisfy certain rules of the language. A C++
program must contain the function main. It must also follow the syntax rules, which, like
grammar rules, tell what is right and what is wrong, and what is legal and what is illegal in
the language. Other rules serve the purpose of giving precise meaning to the language;
that is, they support the language’s semantics.

The following sections are designed to help you learn how to use the C++ programming
elements you have learned so far to create a functioning program. These sections cover the
syntax; the use of blanks; the use of semicolons, brackets, and commas; semantics; naming
identifiers; prompt lines; documentation, including comments; and form and style.

Syntax

The syntax rules of a language tell what is legal and what is not legal. Errors in syntax are
detected during compilation. For example, consider the following C++ statements:

int x; //Line 1
int y //Line 2
double z; //Line 3
y =w + x; //Line 4

When these statements are compiled, a compilation error will occur at Line 2 because the
semicolon is missing after the declaration of the variable y. A second compilation error
will occur at Line 4 because the identifier w is used but has not been declared.

As discussed in Chapter 1, you enter a program into the computer by using a text editor.
When the program is typed, errors are almost unavoidable. Therefore, when the program is
compiled, you are most likely to see syntax errors. It is quite possible that a syntax error at a
particular place might lead to syntax errors in several subsequent statements. It is very
common for the omission of a single character to cause four or five error messages.
However, when the first syntax error is removed and the program is recompiled, sub-
sequent syntax errors caused by this syntax error may disappear. Therefore, you should
correct syntax errors in the order in which the compiler lists them. As you become more
familiar and experienced with C++, you will learn how to quickly spot and fix syntax
errors. Also, compilers not only discover syntax errors, but also hint and sometimes tell the
user where the syntax errors are and how to fix them.

84 | Chapter 2: Basic Elements of C++

Use of Blanks

In C++, you use one or more blanks to separate numbers when data is input. Blanks are
also used to separate reserved words and identifiers from each other and from other
symbols. Blanks must never appear within a reserved word or identifier.

Use of Semicolons, Brackets, and Commas

All C++ statements must end with a semicolon. The semicolon is also called a statement
terminator.

Note that brackets, { and }, are not C++ statements in and of themselves, even though
they often appear on a line with no other code. You might regard brackets as delimiters,
because they enclose the body of a function and set it off from other parts of the program.
Brackets have other uses, which will be explained later.

Recall that commas are used to separate items in a list. For example, you use commas
when you declare more than one variable following a data type.

Semantics

The set of rules that gives meaning to a language is called semantics. For example, the
order-of-precedence rules for arithmetic operators are semantic rules.

If a program contains syntax errors, the compiler will warn you. What happens when a
program contains semantic errors? It is quite possible to eradicate all syntax errors in a
program and still not have it run. And if it runs, it may not do what you meant it to do.
For example, the following two lines of code are both syntactically correct expressions,
but they have different meanings:

2 +3*5
and:
(2 + 3) *5

If you substitute one of these lines of code for the other in a program, you will not get the
same results—even though the numbers are the same, the semantics are different. You
will learn about semantics throughout this book.

Naming ldentifiers

Consider the following two sets of statements:

const double A = 2.54; //conversion constant
double x; //variable to hold centimeters
double y; //variable to hold inches

X =y * a;

Program Style and Form | 85

and:

const double CENTIMETERS PER INCH = 2.54;
double centimeters;
double inches;

centimeters = inches * CENTIMETERS_ PER_ INCH;

The identifiers in the second set of statements, such as CENTIMETERS PER_INCH, are
usually called self~-documenting identifiers. As you can see, self~documenting identifiers
can make comments less necessary.

Consider the self-documenting identifier annualsale. This identifier is called a
run-together word. In using self-documenting identifiers, you may inadvertently
include run-together words, which may lessen the clarity of your documentation.
You can make run-together words easier to understand by either capitalizing the
beginning of each new word or by inserting an underscore just before a new word.
For example, you could use either annualSale or annual sale to create an
identifier that is more clear.

Recall that earlier in this chapter we specified the general rules for naming named constants and
variables. For example, an identifier used to name a named constant is all uppercase. If this
identifier is a run-together word, then the words are separated with the underscore character.

Prompt Lines

Part of good documentation is the use of clearly written prompts so that users will know what
to do when they interact with a program. There is nothing more frustrating than sitting in front
of a running program and not having the foggiest notion of whether to enter something or
what to enter. Prompt lines are executable statements that inform the user what to do. For
example, consider the following C++ statements, in which num is an int variable:

cout << "Please enter a number between 1 and 10 and "
<< "press the return key" << endl;
cin >> num;

When these two statements execute in the order given, first the output statement causes
the following line of text to appear on the screen:

Please enter a number between 1 and 10 and press the return key

After seeing this line, users know that they must enter a number and press the return key.
If the program contained only the second statement, users would have no idea that they
must enter a number, and the computer would wait forever for the input. The preceding
output statement is an example of a prompt line.

In a program, whenever input is needed from users, you must include the necessary
prompt lines. Furthermore, these prompt lines should include as much information as
possible about what input is acceptable. For example, the preceding prompt line not

86 | Chapter 2: Basic Elements of C++

only tells the user to input a number, but also informs the user that the number
should be between 1 and 10.

Documentation

The programs that you write should be clear not only to you, but also to anyone else. Therefore,
you must properly document your programs. A well-documented program is easier to
understand and modify, even a long time after you originally wrote it. You use comments to
document programs. Comments should appear in a program to explain the purpose of the
program, identify who wrote it, and explain the purpose of particular statements.

Form and Style

You might be thinking that C++ has too many rules. However, in practice, the rules give
C++ a great degree of freedom. For example, consider the following two ways of
declaring variables:

int feet, inch;
double x, y;

and:
int feet,inches;double x,y;

The computer would have no difficulty understanding either of these formats, but the
first form is easier to read and follow. Of course, the omission of a single comma or
semicolon in either format may lead to all sorts of strange error messages.

What about blank spaces? Where are they significant and where are they meaningless?
Consider the following two statements:

int a,b,c;
and:
int a, b, c;

Both of these declarations mean the same thing. Here the blanks between the identifiers
in the second statement are meaningless. On the other hand, consider the following
statement:

inta, b, c;

This statement contains a syntax error. The lack of a blank between int and the identifier
a changes the reserved word int and the identifier a into a new identifier, inta.

The clarity of the rules of syntax and semantics frees you to adopt formats that are pleasing
to you and easier to understand.

The following example further elaborates on this.

Program Style and Form | 87

EXAMPLE 2-30

Consider the following C++ program:

//An improperly formatted C++ program.

#include <iostream>
#include <string>
using namespace std;

int main()

{

int num; double height;

string name;

cout << "Enter an integer: "; cin >> num; cout << endl;
cout<<"num: "<<num<<endl;

cout<<"Enter the first name: "; cin>>name;
cout<<endl; cout <<"Enter the height: ";

cin>>height; cout<<endl;

cout<<"Name: "<<name<<endl;cout<<"Height: "
<<height; cout <<endl;return 0;

}

This program is syntactically correct; the C++ compiler would have no difficulty reading
and compiling this program. However, this program is very hard to read. The program
that you write should be properly indented and formatted. Note the difference when the
program is reformatted:

//A properly formatted C++ program.

#include <iostream>
#include <string>

using namespace std;

int main()

{
int num;
double height;
string name;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

cout << "num: " << num << endl;
cout << "Enter the first name: ";

cin >> name;
cout << endl;

88 | Chapter 2: Basic Elements of C++

cout << "Enter the height: ";
cin >> height;
cout << endl;

cout << "Name: " << name << endl;
cout << "Height: " << height << endl;

return 0;

}

As you can see, this program is easier to read. Your programs should be properly indented
and formatted. To document the variables, programmers typically declare one variable
per line. Also, always put a space before and after an operator.

More on Assighment Statements

The assignment statements you have seen so far are called simple assighment
statements. In certain cases, you can use special assignment statements called
compound assighment statements to write simple assignment statements in a
more concise notation.

Corresponding to the five arithmetic operators +, —, *, /, and %, C++ provides five
compound operators +=, —=, *=, /=, and %=, respectively. Consider the following simple
assignment statement, where x and y are int variables:

X = x *vy;

Using the compound operator *=, this statement can be written as:

X *= y;

In general, using the compound operator *=, you can rewrite the simple assignment statement:
variable = variable * (expression);

as:

variable *= expression;

The other arithmetic compound operators have similar conventions. For example, using
the compound operator +=, you can rewrite the simple assignment statement:

variable = variable + (expression);
as:
variable += expression;

The compound assignment statement allows you to write simple assignment statements
in a concise fashion by combining an arithmetic operator with the assignment operator.

Programming Example: Convert Length | 89

EXAMPLE 2-31

This example shows several compound assignment statements that are equivalent to
simple assignment statements.

Simple Assignment Statement Compound Assignment Statement
i=1+5; i+=5;

counter = counter + 1; counter += 1;

sum = sum + number; sum += number;

amount = amount * (interest + 1); amount *= interest + 1;
x=x/ (y+ 5); x /=y + 5;

NOTE Anycompound assignment statement can be converted into a simple assignment statement.
However, a simple assignment statement may not be (easily) converted to a compound
assignment statement. For example, consider the following simple assignment statement:

x=x%*y + z - 5;
To write this statement as a compound assignment statement, the variable x must be a
common factor in the right side, which is not the case. Therefore, you cannot immediately

convert this statement into a compound assignment statement. In fact, the equivalent
compound assignment statement is:

X *= y + (z — 5)/x;

which is more complicated than the simple assignment statement. Furthermore, in the
preceding compound statement, x cannot be 0. We recommend avoiding such compound
expressions.

NOTE In programming code, this book typically uses only the compound operator +=. So
statements such as a = a + b; are writtenas a +=b;.

PROGRAMMING EXAMPLE: Convert Length

Write a program that takes as input given lengths expressed in feet and inches. The
program should then convert and output the lengths in centimeters. Assume that the
given lengths in feet and inches are integers.

Input Length in feet and inches.

Output Equivalent length in centimeters.

90 | Chapter 2: Basic Elements of C++

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

Variables

Named
Constants

The lengths are given in feet and inches, and you need to find the equivalent length
in centimeters. One inch is equal to 2.54 centimeters. The first thing the program
needs to do is convert the length given in feet and inches to all inches. Then you can
use the conversion formula, 1 inch = 2. 54 centimeters, to find the equivalent length
in centimeters. To convert the length from feet and inches to inches, you multiply
the number of feet by 12, as 1 foot is equal to 12 inches, and add the given inches.

For example, suppose the input is 5 feet and 7 inches. You then find the total inches
as follows:

totalInches = (12 * feet) + inches
12 * 5 + 7
= 67

You can then apply the conversion formula, 1 inch = 2.54 centimeters, to find the
length in centimeters.

centimeters = totallnches * 2.54
67 * 2.54
= 170.18

Based on this analysis of the problem, you can design an algorithm as follows:

Get the length in feet and inches.

Convert the length into total inches.

o=

Convert total inches into centimeters.

4. Output centimeters.

The input for the program is two numbers: one for feet and one for inches. Thus,
you need two variables: one to store feet and the other to store inches. Because the
program will first convert the given length into inches, you need another variable to
store the total inches. You also need a variable to store the equivalent length in
centimeters. In summary, you need the following variables:

int feet; //variable to hold given feet

int inches; //variable to hold given inches

int totalInches; //variable to hold total inches

double centimeters; //variable to hold length in centimeters

To calculate the equivalent length in centimeters, you need to multiply the total
inches by 2.54. Instead of using the value 2.54 directly in the program, you will
declare this value as a named constant. Similarly, to find the total inches, you need to
multiply the feet by 12 and add the inches. Instead of using 12 directly in the
program, you will also declare this value as a named constant. Using a named
constant makes it easier to modify the program later.

const double CENTIMETERS PER INCH = 2.54;
const int INCHES PER FOOT = 12;

Programming Example: Convert Length | 91

MAIN In the preceding sections, we analyzed the problem and determined the formulas to do

ALGORITHM the calculations. We also determined the necessary variables and named constants. We
can now expand the algorithm given in the section, Problem Analysis and Algorithm
Design, to solve the problem given at the beginning of this programming example.

1. Prompt the user for the input. (Without a prompt line, the user
will be staring at a blank screen and will not know what to do.)

2. Get the data.
Echo the input—that is, output what the program read as input.

(Without this step, after the program has executed, you will not
know what the input was.)

e

Find the length in inches.
Output the length in inches.

Convert the length to centimeters.

ey Bogs

Output the length in centimeters.

Putting It Now that the problem has been analyzed and the algorithm has been designed, the
Together next step is to translate the algorithm into C++ code. Because this is the first
complete C++ program you are writing, let’s review the necessary steps in sequence.

The program will begin with comments that document its purpose and functionality.
As there is both input to this program (the length in feet and inches) and output (the
equivalent length in centimeters), you will be using system resources for input/output.
In other words, the program will use input statements to get data into the program and
output statements to print the results. Because the data will be entered from the
keyboard and the output will be displayed on the screen, the program must include the
header file iostream. Thus, the first statement of the program, after the comments as
described above, will be the preprocessor directive to include this header file.

This program requires two types of memory locations for data manipulation: named
constants and variables. Typically, named constants hold special data, such as
CENTIMETERS PER INCH. Depending on the nature of a named constant, it can be
placed before the function main or within the function main. If a named constant is to be
used throughout the program, then itis typically placed before the function main. We will
comment further on where to put named constants within a program in Chapter 7, when
we discuss user-defined functions in general. Until then, usually, we will place named
constants before the function main so that they can be used throughout the program.

This program has only one function, the function main, which will contain all of the
programming instructions in its body. In addition, the program needs variables to
manipulate data, and these variables will be declared in the body of the function
main. The reasons for declaring variables in the body of the function main are
explained in Chapter 7. The body of the function main will also contain the C++

92 | Chapter 2: Basic Elements of C++

statements that implement the algorithm. Therefore, the body of the function main
has the following form:

int main ()

{

declare variables
statements

return 0;

}
To write the complete length conversion program, follow these steps:

1. Begin the program with comments for documentation.
2. Include header files, if any are used in the program.

3. Declare named constants, if any.
4

Write the definition of the function main.

COMPLETE PROGRAM LISTING

AR e e e T e
// Author: D. S. Malik

//

// Program Convert Measurements: This program converts

// measurements in feet and inches into centimeters using

// the formula that 1 inch is equal to 2.54 centimeters.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const double CENTIMETERS PER INCH = 2.54;
const int INCHES PER FOOT = 12;

int main ()
{
//Declare variables
int feet, inches;
int totalInches;
double centimeter;

//Statements: Step 1 - Step 7
cout << "Enter two integers, one for feet and "

<< "one for inches: "; //Step 1
cin >> feet >> inches; //Step 2

Programming Example: Make Change | 93

cout << endl;
cout << "The numbers you entered are " << feet
<< " for feet and " << inches
<< " for inches. " << endl; //Step 3

totalInches = INCHES PER FOOT * feet + inches; //Step

»

cout << "The total number of inches = "
<< totalInches << endl; //Step 5

centimeter = CENTIMETERS PER INCH * totalInches; //Step 6

cout << "The number of centimeters = "
<< centimeter << endl; //Step

~

return 0;

}

Sample Run: In this sample run, the user input is shaded.

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.
The total number of inches = 187
The number of centimeters = 474.98

PROGRAMMING EXAMPLE: Make Change

Write a program that takes as input any change expressed in cents. It should then
compute the number of half-dollars, quarters, dimes, nickels, and pennies to be
returned, returning as many half-dollars as possible, then quarters, dimes, nickels,
and pennies, in that order. For example, 483 cents should be returned as 9 half-
dollars, 1 quarter, 1 nickel, and 3 pennies.

Input Change in cents.

Output Equivalent change in half-dollars, quarters, dimes, nickels, and pennies.
PROBLEM Suppose the given change is 646 cents. To find the number of half-dollars, you
ANALYSIS divide 646 by 50, the value of a half-dollar, and find the quotient, which is 12, and
AND the remainder, which is 46. The quotient, 12, is the number of half-dollars, and the
ALGORITHM remainder, 46, is the remaining change.

2=l Next, divide the remaining change by 25, to find the number of quarters. Since the

remaining change is 46, division by 25 gives the quotient 1, which is the number of

94 | Chapter 2: Basic Elements of C++

quarters, and a remainder of 21, which is the remaining change. This process
continues for dimes and nickels. To calculate the remainder in an integer division,
you use the mod operator, %.

Applying this discussion to 646 cents yields the following calculations:

1.

ge N ey o I

This discussion translates into the following algorithm:

1.

E g =y @ ogs b I

_
=

Change = 646

Number of half-dollars = 646 / 50 = 12
Remaining change = 646 % 50 = 46
Number of quarters = 46 / 25 =1
Remaining change = 46 % 25 = 21
Number of dimes =21 / 10 = 2
Remaining change =21 $10=1
Number of nickels=1 / 5=0

Number of pennies = remaining change = 1 % 5

Get the change in cents.

Find the number of half-dollars.
Calculate the remaining change.
Find the number of quarters.
Calculate the remaining change.
Find the number of dimes.
Calculate the remaining change.
Find the number of nickels.

Calculate the remaining change.

The remaining change is the number of pennies.

=1

Variables From the previous discussion and algorithm, it appears that the program will need
variables to hold the number of half-dollars, quarters, and so on. However, the
numbers of half-dollars, quarters, and so on are not used in later calculations, so the
program can simply output these values without saving each of them in a variable. The
only thing that keeps changing is the change, so the program actually needs only one

variable:

int change;

Named To calculate the equivalent change, the program performs calculations using the
Constants values of a half-dollar, which is 50; a quarter, which is 25; a dime, which is 10; and a

Programming Example: Make Change | 95

nickel, which is 5. Because these data are special and the program uses these values
more than once, it makes sense to declare them as named constants. Using named
constants also simplifies later modification of the program:

const int HALFDOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

MAIN
ALGORITHM

Prompt the user for input.

Get input.

Echo the input by displaying the entered change on the screen.
Compute and print the number of half-dollars.

Calculate the remaining change.

Compute and print the number of quarters.

Calculate the remaining change.

g N & P& =

Compute and print the number of dimes.

e

Calculate the remaining change.

H
=

Compute and print the number of nickels.

—_
—_

Calculate the remaining change.

—_
=

Print the remaining change.

COMPLETE PROGRAM LISTING

YA T e
// Author: D. S. Malik

//

// Program Make Change: Given any amount of change expressed
// in cents, this program computes the number of half-dollars,
// quarters, dimes, nickels, and pennies to be returned,

// returning as many half-dollars as possible, then quarters,

// dimes, nickels, and pennies in that order.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const int HALFDOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

96 |

int

Chapter 2: Basic Elements of C++

main ()

//Declare variable
int change;

//Statements: Step 1 - Step 12
cout << "Enter change in cents: "; //Step
cin >> change; //Step
cout << endl;

cout << "The change you entered is " << change
<< endl; //Step

cout << "The number of half-dollars to be returned "
<< "is " << change / HALFDOLLAR

<< endl; //Step
change = change % HALFDOLLAR; //Step
cout << "The number of quarters to be returned is "

<< change / QUARTER << endl; //Step
change = change % QUARTER; //Step
cout << "The number of dimes to be returned is "

<< change / DIME << endl; //Step
change = change % DIME; //Step

cout << "The number of nickels to be returned is "

<< change / NICKEL << endl; //Step
change = change % NICKEL; //Step
cout << "The number of pennies to be returned is "

<< change << endl; //Step

return 0;

Sample Run: In this sample run, the user input is shaded.

Enter change in cents: 583

The
The
The
The
The
The

change you entered is 583

number of half-dollars to be returned is 11
number of quarters to be returned is 1
number of dimes to be returned is 0

number of nickels to be returned is 1
number of pennies to be returned is 3

10

11

12

Quick Review

QUICK REVIEW

97

H W N

[3)]

10.
11.

12.

13.

14,

15.

16.

17.
18.
19.
20.
21,
22,
23.

24,
25.

A C++ program is a collection of functions.
Every C++ program has a function called main.
In C++, identifiers are names of things.

A C++ identifier consists of letters, digits, and underscores, and must begin
with a letter or underscore.

Reserved words cannot be used as identifiers in a program.
All reserved words in C++ consist of lowercase letters (see Appendix A).

The most common character sets are ASCII, which has 128 values, and
EBCDIC, which has 256 values.

The collating sequence of a character is its preset number in the character
data set.

The arithmetic operators in C++ are addition (+), subtraction (=), multi-
plication (*), division (/), and modulus (%).

The modulus operator, %, takes only integer operands.

Arithmetic expressions are evaluated using the precedence rules and the
associativity of the arithmetic operators.

All operands in an integral expression, or integer expression, are integers,
and all operands in a floating-point expression are decimal numbers.

A mixed expression is an expression that consists of both integers and
decimal numbers.

When evaluating an operator in an expression, an integer is converted to a
floating-point number, with a decimal part of 0, only if the operator has
mixed operands.

You can use the cast operator to explicitly convert values from one data
type to another.

During program execution, the contents of a named constant cannot be
changed.

A named constant is declared by using the reserved word const.

A named constant is initialized when it is declared.

All variables must be declared before they can be used.

C++ does not automatically initialize variables.

Every variable has a name, a value, a data type, and a size.

When a new value 1s assigned to a variable, the old value is destroyed.

Only an assignment statement or an input (read) statement can change the
value of a variable.

In C++, >> is called the stream extraction operator.

Input from the standard input device is accomplished by using cin and the
stream extraction operator >>.

98

26.

27.
28.

29,

30.

31.

32,
33.

34.
35.

36.

37.

38.

39.

40.
41,
42.
43,
44,
45,

46.

Chapter 2: Basic Elements of C++

When data is input in a program, the data items, such as numbers, are
usually separated by blanks, lines, or tabs.

In C++, << is called the stream insertion operator.

Output of the program to the standard output device is accomplished by
using cout and the stream insertion operator <<.

Outputting or accessing the value of a variable in an expression does not
destroy or modify the contents of the variable.

To use cin and cout, the program must include the header file iostream
and either include the statement using namespace std; or refer to these
identifiers as std: :cin and std: :cout.

The manipulator endl positions the insertion point at the beginning of the
next line on an output device.

The character \ is called the escape character.
The sequence \ n is called the newline escape sequence.
All preprocessor commands start with the symbol #.

The preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

The preprocessor command #include <iostream> instructs the prepro-
cessor to include the header file iostream in the program.

All C++ statements end with a semicolon. The semicolon in C++ is called
the statement terminator.

A C++ system has three components: environment, language, and the
standard libraries.

Standard libraries are not part of the C++ language. They contain functions
to perform operations, such as mathematical operations.

A file containing a C++ program usually ends with the extension . cpp.
A single line comment starts with the pair of symbols //anywhere in the line.
Multiline comments are enclosed between /* and */.

The compiler skips comments.

Prompt lines are executable statements that tell the user what to do.

Corresponding to the five arithmetic operators +, -, *, /, and %,
C++ provides five compound operators +=, —-=, *= /= and %=,
respectively.

Using the compound operator *=, you can rewrite the simple assignment
statement:

variable = variable * (expression);

as:

variable *= expression;

The other arithmetic compound operators have similar conventions.

Exercises

EXERCISES

99

1. Mark the following statements as true or false.

a.

b.

An identifier can be any sequence of digits and letters.

In C++, there is no difference between a reserved word and a pre-
defined identifier.

A C++ identifier can start with a digit.
The operands of the modulus operator must be integers.

If a=4; and b = 3;, then after the statement a = b; the value of b is
still 3.

In the statement cin >> y; y can only be an int or a double variable.
In an output statement, the newline character may be a part of the
string.

The following is a legal C++ program:

int main ()

{

return 0;
}
In a mixed expression, all the operands are converted to floating-point
numbers.

Suppose x = 5. After the statement y = x++; executes, y is 5 and
X 1s 6.
Suppose a = 5. After the statement ++a; executes, the value of a is

still 5 because the value of the expression is not saved in another
variable.

2. Which of the following are valid C++ identifiers?

myFirstProgram
MIX-UP

C++Program2

quiz7
ProgrammingLecture2
l1footEqualsl2Inches
Mike'sFirstAttempt
Update Grade

4th

New_Student

100 | Chapter 2: Basic Elements of C++

3. Which of the following is a reserved word in C++?

a. Const

bh. include

c. Char
d. void
e. 1int

f. Return

4. Evaluate the following expressions.

a. 13/ 4
bh. 2+12/ 4
c. 21%5
d 3-5%7
e. 17.0/4

f. 8-5*2.0
g. 14+5%2-3
h. 15.0+3.0/2.0
5. If x =25 y=26,z=4,and w= 3.5, evaluate each of the following
statements, if possible. If it is not possible, state the reason.
a. (x+1z) %y
h. (x+vy) $w
c. (y+w) $x
d. (x+vy)*w
e. (x%y) %z
f. (yv%z) %$x
g. (x*z) %y
h. ((x*y) *w) *z
6. Given:
int numl, num2, newNum;

double x, y;

Which of the following assignments are valid? If an assignment is not valid, state the
reason. When not given, assume that each variable is declared.

a. numl =15;

b. numZ =numl - 18;

c. numl=>5; num2 =2 + 6; numl = num2 / 3;

d. numl + num2 = newNum;

10.

j-
k.

Exercises

x=12%* numl - 15.3;

numl * 2 = newNum;

X/ y=x*y;

num2 =numl $ 1.0;

newNum = static_cast<int> (x) % 5;
x=x+5;

newNum = numl + static cast<int> (4.6 / 2);

Do a walk-through to find the value assigned to e. Assume that all variables
are properly declared.

® Q00w

= (a % b) * 6;
=c / b;

(a+b+c+d / 4;

Which of the following variable declarations are correct? If a variable
declaration is not correct, give the reason(s) and provide the correct
variable declaration.

n=12; //Line 1
char letter = ; //Line 2
int one = 5, two; //Line 3
double x, y, 2z; //Line 4

Which of the following are valid C++ assignment statements? Assume that

i,

a.
b.
c.

d.

x, and percent are double variables.
i=1i+5;

X+ 2=x;

Xx=2.5*x%;

percent = 10%;

Write C++ statements that accomplish the following.

a.
b.

Declare int variables x and y. Initialize x to 25 and y to 18.
Declare and initializes an int variable temp to 10 and a char variable
chto 'A'.

Updates the value of an int variable x by adding 5 to it.

Declares and initialize a double variable payRate to 12.50.

Copy the value of an int variable firstNum into an int variable
tempNum.

Swap the contents of the int variables x and y. (Declare additional
variables, if necessary.)

Suppose x and y are double variables. Output the contents of x, vy,
and the expression x + 12 / y - 18.

101

102

11.

12.

13.

14.

15.

| Chapter 2: Basic Elements of C++

h. Declares a char variable grade and sets the value of grade to 'A".

i. Declares int variables to store four integers.

ji. Copies the value of a double variable z to the nearest integer into an
int variable x.

Write each of the following as a C++ expression.

a. =10 times a

b. The character that represents 8
c. (b®-4ac) /2a

d. (-b+ (b®-4ac)) / 2a

Suppose x, y, z, and w are int variables. What value is assigned to each of
these variables after the last statement executes?

x =5; z = 3;

y =X - zZ;

z =2*y+ 3;
w=x-2%*y+ z;
Z =W - X;

wt+;

Suppose x, y, and z are int variables and w and t are double
variables. What value is assigned to each of these variables after the last
statement executes?

= 17;

15;

x +y/ 4

x %$ 3 + 4;

17 / 3 + 6.5;

x / 4.0 +15 % 4 - 3.5;

Suppose x, y, and z are int variables and x = 2, y =5, and z = 6. What is
the output of each of the following statements?

s N XK X
I

2. cout<< "x="<<x<<", y="<K<Ky<<", z="<< z<< endl;

h. cout << "x+y="<<x+y<<endl;

c. cout<<"Sumof"<K<x<<"and"<<z<<"is"<KKx+z<<endl;
d. cout<< "z /x="<<z / x<<endl;

e. cout<< "2 times "< X< "="< 2*x<< endl;

What is the output of the following statements? Suppose a and b are int
variables, ¢ is a double variable, and a =13, b=5,and c=17.5.

2. cout << a + b - ¢ << endl;
h, cout << 15 / 2 + ¢ << endl;

c. cout << a / static_cast<double>(b) + 2 * ¢
<< endl;
4. cout << 14 % 3 + 6.3 + b / a << endl;

16.

17.

18.

19.

20.

Exercises

e. cout << static cast<int>(c) % 5 + a - b
<< endl;
f. cout << 13.5 /2 + 4.0 * 3.5 + 18 << endl;

Write C++ statements that accomplish the following.

a. Outputs the newline character.
b. Outputs the tab character.

c. Outputs double quotation mark.
Which of the following are correct C++ statements?

a. cout << "Hello There!" << endl;

h. cout << "Hello";
<< " There!" << endl;

c. cout << "Hello"
<< " There!" << endl;

d. cout << '"Hello There!' << endl;
Give meaningful identifiers for the following variables.

a. A variable to store the first name of a student.

b. A variable to store the discounted price of an item.
c. A variable to store the number of juice bottles.

d. A variable to store the number of miles traveled.

e. A variable to store the highest test score.
Write C++ statements to do the following.

a. Declare int variable numl and num2.

b. Prompt the user to input two numbers.

c. Input the first number in numl and the second number in num2.

d. Output numl, num2, and 2 times numl minus num2. Your output must

identify each number and the expression.

The following two programs have syntax mistakes. Correct them. On each
successive line, assume that any preceding error has been corrected.

a.
#include <iostream>

const int SECRET_NUM = 11,213;
const PAY RATE = 18.35

main ()
{
int one, two;
double first, second;

103

104

21.

22.

| Chapter 2: Basic Elements of C++

one = 18;
two 11;

first = 25;
second first * three;

second = 2 * SECRET_NUM;
SECRET _NUM = SECRET_NUM + 3;
cout << first << " " << second << SECRET_NUM << endl;

paycheck = hoursWorked * PAY RATE

cout << "Wages = " << paycheck << endl;
return 0O;

const char = STAR = ’*/
const int PRIME = 71;

int main

{
int count, sum;
double x;

count = 1;
sum = count + PRIME;
x := 25.67;
newNum = count * ONE + 2;
sum + count = sum;
X = x + sum * COUNT;
cout << " count = " << count << ", sum = " << sum
<< ", PRIME = " << Prime << endl;
}

Write equivalent compound statements if possible.
a. xX=2%*x

h. x=x+y-2;

c. sum= sum + num;

d z

z*x+2%z;

y/ (x+5);

e. y
Write the following compound statements as equivalent simple statements.
a. x+=5-1z;

h. y*=2*x+5-12z2;

c. wH+=2*z+4;

d. x-=z+y-t;

e. sum += num;

23.

24,

25.

Exercises

Suppose a, b, and ¢ are int variables and a = 5 and b = 6. What value is
assigned to each variable after each statement executes? If a variable is
undefined at a particular statement, report UND (undefined).

a b c
a = (bt++) + 3; _ - o
c=2%a+ (++b); L L -
b =2%* (++c) - (at++);

Suppose a, b, and sum are int variables and ¢ is a double variable. What
value is assigned to each variable after each statement executes? Suppose a = 3,
b=5and c=14.1.

a b c sum
sum = a + b + ¢c;
c /= a;
b +=c - a;
a*2*b + c;

What is printed by the following program? Suppose the input is:
20 15

#include <iostream>
using namespace std;

const int NUM = 10;
const double X = 20.5;

int main ()

{
int a, b;
double z;
char grade;

a = 25;
cout << "a = " << a << endl;
cout << "Enter two integers : ";

cin >> a >> b;
cout << endl;

cout << "The numbers you entered are "
<< a << " and " << b << endl;

z =X+ 2%*a - Db;
cout << "z = " << z << endl;

grade = 'A';
cout << "Your grade is " << grade << endl;

105

106

26.

}

Chapter 2: Basic Elements of C++

a=2*NUM + z;
cout << "The value of a = " << a << endl;

return 0;

What is printed by the following program? Suppose the input is:
Miller

34

340

#include <iostream>
#include <string>

using namespace std;

const int PRIME NUM = 11;

int main ()

{

const int SECRET = 17;

string name;
int id;

int num;

int mysteryNum;

cout << "Enter last name: ";
cin >> name;
cout << endl;

cout << "Enter a two digit number: ";

cin >> num;

cout << endl;

id = 100 * num + SECRET;

cout << "Enter a positive integer less than
cin >> num;

cout << endl;

mysteryNum = num * PRIME NUM - 3 * SECRET;

cout << "Name: " << name << endl;
cout << "Id: " << id << endl;
cout << "Mystery number: " << mysteryNum <<

return 0;

1000:

endl;

14

Programming Exercises

27. Rewrite the following program so that it is properly formatted.

#include <iostream>
#include <string>
using namespace std;
const double X = 13.45; const int ¥Y=34;
const char BLANK= ' ';
int main ()
{ string firstName, lastName;int num;
double salary;
cout<<"Enter first name: "; cin>> firstName; cout<<endl;
cout<<"Enter last name: "; cin
>>lastName; cout<<endl;
cout<<"Enter a positive integer less than 70:";
cin>>num; cout<<endl; salary=num*X;
cout<<"Name: "<<firstName<<BLANK<<lastName<<endl;cout
<<"Wages: $"<<salary<<endl; cout<<"X = "<<X<<endl;
cout<<"X+4+Y = " << X+Y << endl; return 0;
}

28. What type of input does the following program require, and in what order
does the input need to be provided?

#include <iostream>
using namespace std;
int main ()
{
int age;
double weight;
string firstName, lastName;

cin >> firstName >> lastName;
cin >> age >> weight;

return 0;

PROGRAMMING EXERCISES

107

1. Write a program that produces the following output:

khkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkkhkhkk

* Programming Assignment 1 *
* Computer Programming I *
* Author: ?7?°? *

* Due Date: Thursday, Jan. 24 *
khkhkkhkhkhkkhkhkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkkhkhkhkkhkkk

In your program, substitute ??? with your own name. If necessary, adjust the
positions and the number of the stars to produce a rectangle.

108 | Chapter 2: Basic Elements of C++

2. Write a program that produces the following output:

cceeeeece ++ ++
cc ++ ++
cc e o I
cc L B o o
cc ++ ++
cceeeeece ++ ++

3. Consider the following program segment

//include statement (s)
//using namespace statement

int main()

{

//variable declaration
//executable statements

//return statement

}

a. Write C++ statements that include the header files iostream.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare the following variables: numl, num2,
num3, and average of type int.

d. Write C++ statements that store 125 into numl, 28 into num2, and -25
into num3.

e. Write a C++ statement that stores the average of numl, num2, and num3,
into average.

. Write C++ statements that output the values of numl, num2, num3, and
average.

g. Compile and run your program.

4. Repeat Exercise 3 by declaring numl, num?2, and num3, and average of type
double. Store 75.35 into numl, -35.56 into num2, and 15. 76 into num3.

5. Consider the following program segment:

//include statement (s)
//using namespace statement

int main()
{
//variable declaration

//executable statements

//return statement

Programming Exercises

Write C++ statements that include the header files iostream and
string.

Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

Write C++ statements that declare the following variables: name of type
string and studyHours of type double.

Write C++ statements that prompts and input a string into name and a
double value into studyHours.

Write a C++ statement that outputs the values of name and studyHours
with the appropriate text. A sample output is: (Suppose that the value of
name is "Donald" and the value of studyHours is 4.5.)

109

Hello, Donald! on Saturday, you need to study 4.5 hours for the exam.

f.

Compile and run your program.

Write a program that prompts the user to input a decimal number and
outputs the number rounded to the nearest integer.

Consider the following program segment:

//include statement(s)
//using namespace statement

int main()

{

//variable declaration
//executable statements

//return statement

Write C++ statements that include the header files iostream and
string.

Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std: :.

Write C++ statements that declare and initialize the following named
constants: SECRET of type int initialized to 11, and RATE of type
double initialized to 12.50.

Write C++ statements that declare the following variables: numl, num?2,
and newNum of type int; name of type string; and hoursWorked and
wages of type double.

Write C++ statements that prompt the user to input two integers and
store the first number in numl and the second number in num?2.

110 | Chapter 2: Basic Elements of C++

. Write a C++ statement(s) that outputs the values of numl and num2,
indicating which is numl and which is num2. For example, if numl is 8
and num?2 is 5, then the output is:

The value of numl = 8 and the value of num2 = 5.

g. Write a C++ statement that multiplies the value of numl by 2, adds the
value of num2 to it, and then stores the result in newNum. Then write a
C++ statement that outputs the value of newNum.

h. Write a C++ statement that updates the value of newNum by adding
the value of the named constant SECRET. Then write a C++
statement that outputs the value of newNum with an appropriate
message.

i. Write C++ statements that prompt the user to enter a person’s last
name and then store the last name into the variable name.

ji. Write C++ statements that prompt the user to enter a decimal
number between 0 and 70 and then store the number entered into
hoursWorked.

k. Write a C++ statement that multiplies the value of the named constant
RATE with the value of hoursWorked, and then stores the result into
the variable wages.

I. Write C++ statements that produce the following output:

Name: //output the value of the variable name
Pay Rate: $ //output the value of the variable rate
Hours Worked: //output the value of the variable

/ /hoursWorked
Salary: $ //output the value of the variable wages

For example, if the value of name is "Rainbow" and hoursWorked is
45.50, then the output is:

Name: Rainbow

Pay Rate: $12.50
Hours Worked: 45.50
Salary: $568.75

m. Write a C++ program that tests each of the C++ statements that you
wrote in parts a through 1. Place the statements at the appropriate place
in the previous C++ program segment. Test run your program (twice)
on the following input data:

a. numl =13, num2 = 28; name = "Jacobson"; hoursWorked =
48.30.

b. numl =32, num2 =15; name = "Crawford"; hoursWorked =58.45.

10.

11.

12.

13.

14,

15.

16.

Programming Exercises

Write a program that prompts the user to input the length and width of a
rectangle and then prints the rectangle’s area and perimeter. (Assume that
the length and the width are decimal numbers.)

Write a program that prompts the user to enter five test scores and then prints
the average test score. (Assume that the test scores are decimal numbers.)

Write a program that prints the following banner:

hhkhkkhkhkhkhkhhkhkhkkhkhkhkhkrhkhhkhkhhkkkk
khkhkkhkhkhkkhkhkhkhkkhkkhkhkhkhkhkhhhkhkhkhhhkhk
*khkkkkkxkkxk WELCOME ******kxk**x

%k k Kk k ok ok ok k ok HOME ***%%*%xkkkk*x
*hkhkhkhkhkkhkhkhkhkhkkhkhkhhkhkdhkhhkhkhkkkhxk
khkhkkhkhkkhkhkkhkhkkkhkhkhkkhhkkhhkkkhk

Write a program that prompts the user to input five decimal numbers. The
program should then add the five decimal numbers, convert the sum to the
nearest integer, and print the result.

Write a program that does the following:

a. Prompts the user to input five decimal numbers.

b. Prints the five decimal numbers.

c. Converts each decimal number to the nearest integer.
d. Adds the five integers.

e. Prints the sum and average of the five integers.

Write a program that prompts the user to input a four-digit positive integer.
The program then outputs the digits of the number, one digit per line. For
example, if the input is 3245, the output is:

3
2
4
5

Write a C++ program that prompts the user to input the elapsed time for
an event in seconds. The program then outputs the elapsed time in hours,
minutes, and seconds. (For example, if the elapsed time is 9630 seconds,
then the outputis 2:40:30.)

Write a C++ program that prompts the user to input the elapsed time for
an event in hours, minutes, and seconds. The program then outputs the
elapsed time in seconds.

To make a profit, a local store marks up the prices of its items by a certain
percentage. Write a C++ program that reads the original price of the item sold,
the percentage of the marked-up price, and the sales tax rate. The program then
outputs the original price of the item, the percentage of the mark-up, the store’s

I 111

112

17.

18.

19.

20.

21.

| Chapter 2: Basic Elements of C++

selling price of the item, the sales tax rate, the sales tax, and the final price of the
item. (The final price of the item is the selling price plus the sales tax.)

Write a program that prompts the user to input a length expressed in cen-
timeters. The program should then convert the length to inches (to the nearest
inch) and output the length expressed in yards, feet, and inches, in that order.
For example, suppose the input for centimeters is 312. To the nearest inch,
312 centimeters is equal to 123 inches. 123 inches would thus be output as:

3 yard(s), 1 feet (foot), and 3 inch(es).
It should not be output as:

2 yard(s) 4 feet (foot) 3 inch(es),

or:

10 feet (foot) 3 inch(es),

or:

10.25 feet (foot).

Write a program to implement and test the algorithm that you designed for
Exercise 15 of Chapter 1. (You may assume that the value of m = 3.141593.
In your program, declare a named constant PI to store this value.)

A milk carton can hold 3.78 liters of milk. Each morning, a dairy farm ships
cartons of milk to a local grocery store. The cost of producing one liter of
milk is $0.38 and the profit of each carton of milk is $0.27. Write a program
that does the following:

a. Prompts the user to enter the total amount of milk produced in the
morning.

b. Outputs the number of milk cartons needed to hold milk. (Round your
answer to the nearest integer.)

c. Outputs the cost of producing milk.
d. Outputs the profit for producing milk.

Redo Programming Exercise 19 so that the user can also input the cost of
producing one liter of milk and the profit on each carton of milk.

You found an exciting summer job for five weeks. It pays, say, $15.50
per hour. Suppose that the total tax you pay on your summer job
income is 14%. After paying the taxes, you spend 10% of your net
income to buy new clothes and other accessories for the next school
year and 1% to buy school supplies. After buying clothes and school
supplies, you use 25% of the remaining money to buy savings bonds.
For each dollar you spend to buy savings bonds, your parents spend
$0.50 to buy additional savings bonds for you. Write a program that
prompts the user to enter the pay rate for an hour and the number

22,

23.

24,

25.

Programming Exercises

of hours you worked each week. The program then outputs the
tollowing:

a. Your income before and after taxes from your summer job.
b. The money you spend on clothes and other accessories.

c. The money you spend on school supplies.

d. The money you spend to buy savings bonds.

e. The money your parents spend to buy additional savings bonds for
you.

A permutation of three objects, a, b, and ¢, is any arrangement of these
objects in a row. For example, some of the permutations of these objects
are abe, bea, and cab. The number of permutations of three objects is 6.
Suppose that these three objects are strings. Write a program that prompts
the user to enter three strings. The program then outputs the six permu-
tations of those strings.

Write a program that prompts the user to input a number of quarters,
dimes, and nickels. The program then outputs the total value of the coins in
cents.

Newton’s law states that the force, F, between two bodies of masses M; and
M, is given by

M,y My

where k is the gravitational constant and d is the distance between the
bodies. The value of k is approximately 6.67x 107 dyn. cm®/g”. Write a
program that prompts the user to input the masses of the bodies and the

distance between the bodies. The program then outputs the force between
the bodies.

One metric ton is approximately 2205 pounds. Write a program that
prompts the user to input the amount of rice, in pounds, in a bag. The
program outputs the number of bags needed to store one metric ton rice.

Yl

)

)
1

INPUT/OUTPUT

IN THIS CHAPTER, YOU WILL:

Learn what a stream is and examine input and output streams
Explore how to read data from the standard input device
Learn how to use predefined functions in a program

Explore how to use the input stream functions get, ignore,
putback, and peek

Become familiar with input failure
Learn how to write data to the standard output device
Discover how to use manipulators in a program to format output

Learn how to perform input and output operations with the
string data type

Become familiar with file input and output

116 | Chapter 3: Input/Output

In Chapter 2, you were introduced to some of C++’s input/output (I/O) instructions,
which get data into a program and print the results on the screen. You used cin and
the extraction operator >> to get data from the keyboard, and cout and the insertion
operator << to send output to the screen. Because I/O operations are fundamental to
any programming language, in this chapter, you will learn about C++’s I/O operations
in more detail. First, you will learn about statements that extract input from the
standard input device and send output to the standard output device. You will then
learn how to format output using manipulators. In addition, you will learn about the
limitations of the I/O operations associated with the standard input/output devices and
learn how to extend these operations to other devices.

/0 Streams and Standard /O Devices

A program performs three basic operations: it gets data, it manipulates the data, and it
outputs the results. In Chapter 2, you learned how to manipulate numeric data using
arithmetic operations. In later chapters, you will learn how to manipulate non numeric
data. Because writing programs for /O is quite complex, C++ ofters extensive support
for 170 operations by providing substantial prewritten I/O operations, some of which
you encountered in Chapter 2. In this chapter, you will learn about various I/O
operations that can greatly enhance the flexibility of your programs.

In C++, I/0O 1is a sequence of bytes, called a stream, from the source to the
destination. The bytes are usually characters, unless the program requires other
types of information, such as a graphic image or digital speech. Therefore, a
stream is a sequence of characters from the source to the destination. There are
two types of streams:

Input stream: A sequence of characters from an input device to the computer.
Output stream: A sequence of characters from the computer to an output device.

Recall that the standard input device is usually the keyboard, and the standard
output device is usually the screen. To receive data from the keyboard and send
output to the screen, every C++ program must use the header file iostream. This
header file contains, among other things, the definitions of two data types,
istream (input stream) and ostream (output stream). The header file also con-
tains two variable declarations, one for cin (pronounced “see-in”), which stands
for common input, and one for cout (pronounced “see-out”), which stands for
common output.

These variable declarations are similar to the following C++ statements:

istream cin;
ostream cout;

To use cin and cout, every C++ program must use the preprocessor directive:

#include <iostream>

|/0 Streams and Standard 1/0 Devices | 117

NOTE From Chapter 2, recall that you have been using the statement using namespace
std; in addition to including the header file iostreamto use cin and cout. Without
the statement using namespace std;, you refer to these identifiers as std: :cin
and std: :cout. In Chapter 8, you will learn about the meaning of the statement
using namespace std; in detail.

Variables of type istream are called input stream variables; variables of type ostream
are called output stream variables. A stream variable is either an input stream
variable or an output stream variable.

Because cin and cout are already defined and have specific meanings, to avoid confu-
sion you should never redefine them in programs.

The variable cin has access to operators and functions that can be used to extract
data from the standard input device. You have briefly used the extraction operator
>> to input data from the standard input device. The next section describes in detail
how the extraction operator >> works. In the following sections, you will learn how
to use the functions get, ignore, peek, and putback to input data in a specific
manner.

cin and the Extraction Operator >>

In Chapter 2, you saw how to input data from the standard input device by using cin
and the extraction operator >>. Suppose payRate is a double variable. Consider the
following C++ statement:

cin >> payRate;

When the computer executes this statement, it inputs the next number typed on
the keyboard and stores this number in payRate. Therefore, if the user types 15.50,
the value stored in payRate is 15.50.

The extraction operator >> is binary and thus takes two operands. The left-side operand
must be an input stream variable, such as cin. Because the purpose of an input statement
is to read and store values in a memory location, and because only variables refer to
memory locations, the right-side operand is a variable.

NOTE The extraction operator >> is defined only for putting data into variables of simple
data types. Therefore, the right-side operand of the extraction operator >> is a variable
of the simple data type. However, C++ allows the programmer to extend the definition
of the extraction operator >> so that data can also be put into other types of variables
by using an input statement. You will learn this mechanism in the chapter entitled
Overloading and Templates, later in this book.

118 | Chapter 3: Input/Output

The syntax of an input statement using cin and the extraction operator >> is:

cin >> variable >> variable...;

As you can see in the preceding syntax, a single input statement can read more than one
data item by using the operator >> several times. Every occurrence of >> extracts the
next data item from the input stream. For example, you can read both payRate and
hoursWorked via a single input statement by using the following code:

cin >> payRate >> hoursWorked;

There is no difference between the preceding input statement and the following two
input statements. Which form you use is a matter of convenience and style:

cin >> payRate;
cin >> hoursWorked;

How does the extraction operator >> work? When scanning for the next input, >>
skips all whitespace characters. Recall that whitespace characters consist of blanks and
certain nonprintable characters, such as tabs and the newline character. Thus,
whether you separate the input data by lines or blanks, the extraction operator >>
simply finds the next input data in the input stream. For example, suppose that
payRate and hoursWorked are double variables. Consider the following input
statement:

cin >> payRate >> hoursWorked;
Whether the input is:

15.50 48.30

or:

15.50 48.30

or:

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of the data type
char, the input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is
stored. If the right-side operand is a variable of the data type int or double, the input
2 1s treated as the number 2.

|/0 Streams and Standard 1/0 Devices | 119

Next, consider the input 25 and the statement:
cin >> a;

where a is a variable of some simple data type. If a is of the data type char, only the single
character 2 is stored in a. If a is of the data type int, 25 is stored in a. If a is of the data type
double, the input 25 is converted to the decimal number 25. 0. Table 3-1 summarizes this
discussion by showing the valid input for a variable of the simple data type.

TABLE 3-1 Valid Input for a Variable of the Simple Data Type

char One printable character except the blank

int An integer, possibly preceded by a + or — sign

A decimal number, possibly preceded by a + or = sign. If the actual
double data input is an integer, the input is converted to a decimal number
with the zero decimal part.

When reading data into a char variable, after skipping any leading whitespace characters,
the extraction operator >> finds and stores only the next character; reading stops after a
single character. To read data into an int or double variable, after skipping all leading
whitespace characters and reading the plus or minus sign (if any), the extraction operator
>> reads the digits of the number, including the decimal point for floating-point variables,
and stops when it finds a whitespace character or a character other than a digit.

EXAMPLE 3-1

Suppose you have the following variable declarations:

int a, b;
double z;
char ch, chl, ch2;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory
cin >> ch; A ch = 'A'
2 c¢in >> ch; AB ch = '"A', 'B' isheld for
later input

3 cin >> a; 48 a = 48

120 | Chapter 3: Input/Output

Statement Input Value Stored in Memory
4 cin >> a; 46.35 a = 46, .35 isheld for
later input
5 c¢in >> z; 74.35 z = 74.35
6 cin >> z; 39 z = 39.0
7 cin >> z >> a; 65.78 38 z = 65.78, a = 38
8 «c¢in >> a >> b; 4 60 a=4, b =260
9 c¢in >> a >> ch >> z; 57 A 26.9 a=>57, ch = 'A',
z = 26.9
10 cin >> a >> ch >> z; 57 A a=>57, ch ="'A'",
26.9 z = 26.9
11 c¢in >> a >> ch >> z; 57 a=>57, ch="'A",
A z = 26.9
26.9
12 cin >> a >> ch >> z; 57A26.9 a=>57, ch = 'A',
z = 26.9
13 c¢cin >> z >> ch >> a; 36.78B34 z = 36.78, ch = 'B',
a = 34
14 cin >> z >> ch >> a; 36.78 z = 36.78, ch = 'B',
B34 a = 34
. . a=11, b = 34,
15 cin >> a >> b >> z; 11 34 computer waits for the next
number
16 cin >> a >> z; 46 32.4 68 a=46, z = 32.4, 68is
held for later input
17 cin >> a >> z; 78.49 a="178, z = 0.49
18 cin >> ch >> a; 256 ch = "'2'", a = 56
19 c¢in >> a >> ch; 256 a = 256, computer waits for
the input value for ch
20 cin >> chl >> ch2; A B chl = "A', ch2 = 'B'

In statement 1, the extraction operator >> extracts the character "A" from the input
stream and stores it in the variable ch. In statement 2, the extraction operator >> extracts
the character 'A' from the input stream and stores it in the variable ch, and the value
'B' is held in the input stream for later input, if necessary.

Similarly, in statement 16, the value 68 is held for later input. In statement 15, 11 is stored
in &, and 34 is stored in b, but the input stream does not have enough input data to fill each
variable. In this case, the computer waits (and waits, and waits. . .) for the next input to be
entered. The computer does not continue to execute until the next value is entered.

In statement 4, the extraction operator >> extracts 46 from the input stream and stores
this value in a. Note that because a is an int variable and the character after 46 is .
(which is non numeric), only 46 is extracted from the input stream; as a result, reading

|/0 Streams and Standard 1/0 Devices | 121

stops at . and .35 is held for later input. In statement 5, the extraction operator >>
extracts 74.35 from the input stream and stores this value in z. In statement 6, z is a
variable of the double data type and the input 39 is an integer. Therefore, 39 is
converted to the decimal number 39.0, and the value stored in z is 39.0.

In statement 7, the first right-side operand of the extraction operator >> is a double
variable and the second right-side operand is an int variable. Therefore, in statement 7,
first the value 65.78 is extracted from the input stream and stored in z. The extraction
operator then skips the blank after 65.78, and the value 38 is extracted and stored in a.
Statement 8 works similarly.

Note that for statements 9 through 12, the input statement is the same; however, the data
is entered differently. For statement 9, data is entered on the same line separated by
blanks. For statement 10, data is entered on two lines; the first two input values are
separated by two blank spaces, and the third input is on the next line. For statement 11, all
three input values are separated by lines and for statement 12, all three input values are on
the same line, but there is no space between them. Note that the second input is a non
numeric character. These statements work as follows.

In statement 9, first the extraction operator >> extracts 57 from the input stream and
stores it in a. The extraction operator >> then skips the blank after 57, and extracts and
stores the character 'A' in ch. Next, the extraction operator >> skips the blank after A"
and extracts and stores the value 26.9 in z from the input stream.

In statement 10, first the extraction operator >> extracts 57 from the input stream and
stores this value in a. The extraction operator >> then skips the two blank spaces after 57,
extracts the character "A' from the input stream, and stores it in ch. Next, the extraction
operator >> skips the newline character "\n' after 'A', extracts 26.9 from the input
stream, and stores it in z.

In statement 11, first the extraction operator >> extracts 57 from the input stream, and
stores it in a. The extraction operator >> then skips the newline character "\ n" after 57,
extracts the character "A' from the input stream, and stores it in ch. Next, the extraction
operator >> skips the newline character "\n' after '"A', extracts 26.9 from the input
stream, and stores it in z.

Statements 9, 10, and 11 illustrate that regardless of whether the input is separated by
blanks or by lines, the extraction operator >> always finds the next input.

In statement 12, first the extraction operator >> extracts 57 from the input stream and
stores it in a. Then the extraction operator >> extracts the character "A'" from the input
stream and stores it in ch. Next, 26.9 is extracted and stored in z.

In statement 13, because the first right-side operand of >> is z, which is a double
variable, 36.78 is extracted from the input stream and the value 36.78 is stored in z.
Next, 'B' is extracted and stored in ch. Finally, 34 is extracted and stored in a.
Statement 14 works similarly.

122 | Chapter 3: Input/Output

In statement 17, the first right-side operand of the extraction operator >> is an int
variable and the input is 78.49. Now for int variables, after inputting the digits of the
number, the reading stops at the first whitespace character or a character other than a
digit. Therefore, the operator >> stores 78 into a. The next right-side operand of >> is
the variable z, which is of type double. Therefore, the operator >> stores the value .49
as 0.49 into z.

In statement 18, the first right-side operand of the extraction operator >> is a char
variable, so the first nonwhitespace character, 2", is extracted from the input stream.
The character '2' is stored in the variable ch. The next right-side operand of the
extraction operator >> is an int variable, so the next input value, 56, is extracted and
stored in a.

In statement 19, the first right-side operator of the extraction operator >> is an int
variable, so the first data item, 256, is extracted from the input stream and stored in a.
Now the computer waits for the next data item for the variable ch.

In statement 20, 'A" is stored into chl. The extraction operator >> then skips the blank,
and "B' is stored in ch2.

Recall that during program execution, when entering character data such as letters, you
do not enter the single quotes around the character.

‘What happens if the input stream has more data items than required by the program?
After the program terminates, any values left in the input stream are discarded. When you
enter data for processing, the data values should correspond to the data types of the
variables in the input statement. Recall that when entering a number for a double
variable, it is not necessary for the input number to have a decimal part. If the input
number is an integer and has no decimal part, it is converted to a decimal value. The
computer, however, does not tolerate any other kind of mismatch. For example, entering
a char value into an int or double variable causes serious errors, called input failure.
Input failure is discussed later in this chapter.

What happens when you try to read a non numeric character into an int variable?
Example 3-6 (given later in this chapter) illustrates this situation.

The extraction operator, when scanning for the next input in the input stream, skips
whitespace such as blanks and the newline character. However, there are situations
when these characters must also be stored and processed. For example, if you are
processing text in a line-by-line fashion, you must know where in the input stream
the newline character is located. Without identifying the position of the newline
character, the program would not know where one line ends and another begins.
The next few sections teach you how to input data into a program using the input
functions, such as get, ignore, putback, and peek. These functions are associated

Using Predefined Functions in a Program | 123

with the data type istream and are called istream member functions. I/O
functions, such as get, are typically called stream member functions or stream
functions.

Before you can learn about the input functions get, ignore, putback, peek, and other
/O tunctions that are used in this chapter, you need to first understand what a function is
and how it works. You will study functions in detail, and learn how to write your own,
in Chapters 6 and 7.

Using Predefined Functions in a Program

As noted in Chapter 2, a function, also called a subprogram, is a set of instructions. When
a function executes, it accomplishes something. The function main, as you saw in
Chapter 2, executes automatically when you run a program. Other functions execute
only when they are activated—that is, called. C++ comes with a wealth of functions,
called predefined functions, that are already written. In this section, you will learn how
to use some predefined functions that are provided as part of the C++ system. Later in
this chapter, you will learn how to use stream functions to perform a specific I/O
operation.

Recall from Chapter 2 that predefined functions are organized as a collection of libraries,
called header files. A particular header file may contain several functions. Therefore, to
use a particular function, you need to know the name of the function and a few other
things, which are described shortly.

A very useful function, pow, called the power function, can be used to calculate x¥ in a program.
That is, pow (x, y) = xY. For example, pow (2, 3) = 2® = 8andpow (4, 0.5) =
4°-° = /4 = 2. The numbers x and y that you use in the function pow are called the
arguments or parameters of the function pow. For example, in pow (2, 3), the parameters
are 2 and 3.

An expression such as pow (2, 3) is called a function call, which causes the code
attached to the predefined function pow to execute and, in this case, computes 2. The
header file cmath contains the specification of the function pow.

To use a predefined function in a program, you need to know the name of the header file
containing the specification of the function and include that header file in the program.
In addition, you need to know the name of the function, the number of parameters
the function takes, and the type of each parameter. You must also be aware of what the
function is going to do. For example, to use the function pow, you must include the
header file cmath. The function pow has two parameters, both of which are numbers.
The function calculates the first parameter to the power of the second parameter.

The program in the following example illustrates how to use predefined functions in a
program. More specifically, we use some math functions, from the header file cmath, and
the string function length, from the header file string. Note that the function
length determines the length of a string.

124 | Chapter 3: Input/Output

EXAMPLE 3-2

// How to use predefined functions.
#include <iostream>

#include <cmath>

#include <string>

using namespace std;

int main()

{
double u, v;
string str;

cout << "Line 1l: 2 to the power of 6 ="

<< pow (2, 6) << endl; //Line 1
u = 12.5; //Line 2
v = 3.0; //Line 3
cout << "Line 4: " << u << " to the power of "

<< v << " = " << pow(u, v) << endl; //Line 4

cout << "Line 5: Square root of 24 ="

<< sqrt(24.0) << endl; //Line 5
u = pow(8.0, 2.5); //Line 6
cout << "Line 7: u = " << u << endl; //Line 7
str = "Programming with C++"; //Line 8

cout << "Line 9: Length of str = "
<< str.length() << endl; //Line 9

return 0;

}

Sample Run:
Line 1: 2 to the power of 6 = 64

Line 4: 12.5 to the power of 3 = 1953.13
Line 5: Square root of 24 = 4.89898
Line 7: u = 181.019

Line 9: Length of str = 20

The preceding program works as follows. The statement in Line 1 uses the function
pow to determine and output 2°. The statement in Line 2 sets u to 12.5 and
the statement in Line 3 sets v to 3.0. The statement in Line 4 determines and
outputs u’. The statement in Line 5 uses the function sqgrt, of the header
file cmath, to determine and output the square root of 24.0. The statement
in Line 6 determines and assigns 8.0%"° to u. The statement in Line 7 outputs
the value of u.

Using Predefined Functions in a Program | 125

The statement in Line 8 stores the string "Programming with C++4" in str. The
statement in Line 9 uses the string function length to determine and output the
length of str. Note how the function length is used. Later in this chapter, we
explain the meaning of expressions such as str.length ().

Note that in the previous program, on some compilers you may need to replace the
expression pow (2, 6), in Line 1, with the expression pow (2.0, 6.0), pow (2.0, 6),
or pow (2, 6.0).

Because 170 is fundamental to any programming language, and because writing
instructions to perform a specific I/O operation is not a job for everyone, every
programming language provides a set of useful functions to perform specific I/O
operations. In the remainder of this chapter, you will learn how to use some of these
functions in a program. As a programmer, you must pay close attention to how these
functions are used so that you can get the most out of them. The first function you
will learn about here is the function get.

cin and the get Function

As you have seen, the extraction operator skips all leading whitespace characters when
scanning for the next input value. Consider the variable declarations:

char chl, ch2;
int num;

and the input:

A 25

Now consider the following statement:
cin >> chl >> ch2 >> num;

When the computer executes this statement, "A" is stored in chl, the blank is skipped by
the extraction operator >>, the character "2" is stored in ch2, and 5 is stored in num.
However, what if you intended to store "A" in chl, the blank in ch2, and 25 in num? It
is clear that you cannot use the extraction operator >> to input this data.

As stated earlier, sometimes you need to process the entire input, including white-
space characters, such as blanks and the newline character. For example, suppose
you want to process the entered data on a line-by-line basis. Because the extrac-
tion operator >> skips the newline character, and unless the program captures the newline
character, the computer does not know where one line ends and the next begins.

The variable cin can access the stream function get, which is used to read character
data. The get function inputs the very next character, including whitespace characters,
from the input stream and stores it in the memory location indicated by its argument. The

126 | Chapter 3: Input/Output

function get comes in many forms. Next, we discuss the one that is used to read a
character.

The syntax of cin, together with the get function to read a character, follows:

cin.get (varChar) ;

In the cin.get statement, varChar is a char variable. varChar, which appears in
parentheses following the function name, is called the argument or parameter of the
function. The effect of the preceding statement would be to store the next input character
in the variable varChar.

Now consider the following input again:
A 25

To store "A' in chl, the blank in ch2, and 25 in num, you can effectively use the get
function as follows:

cin.get (chl);
cin.get (ch2);
cin >> num;

Because this form of the get function has only one argument and reads only one
character, and you need to read two characters from the input stream, you need to call
this function twice. Notice that you cannot use the get function to read data into the
variable num because num is an int variable. The preceding form of the get function
reads values of only the char data type.

The preceding set of cin.get statements is equivalent to the following statements:

cin >> chl;
cin.get (ch2);
cin >> num;

The function get has other forms, one of which you will study in Chapter 9. For the next
few chapters, you need only the form of the function get introduced here.

cin and the ignore Function

When you want to process only partial data (say, within a line), you can use the stream
function ignore to discard a portion of the input. The syntax to use the function ignore is:

cin.ignore (intExp, chExp);
Here intExp is an integer expression yielding an integer value, and chExp is a char

expression yielding a char value. In fact, the value of the expression intExp specifies the
maximum number of characters to be ignored in a line.

Using Predefined Functions in a Program | 127

Suppose intExp yields a value of, say 100. This statement says to ignore the next 100
characters or ignore the input until it encounters the character specified by chExp,
whichever comes first. To be specific, consider the following statement:

cin.ignore (100, '\n');

When this statement executes, it ignores either the next 100 characters or all characters
until the newline character is found, whichever comes first. For example, if the next 120
characters do not contain the newline character, then only the first 100 characters are
discarded and the next input data is the character 101. However, if the 75th character is
the newline character, then the first 75 characters are discarded and the next input data is
the 76th character. Similarly, the execution of the statement:

cin.ignore (100, 'A'");

results in ignoring the first 100 characters or all characters until the character "A' is
found, whichever comes first.

EXAMPLE 3-3

Consider the declaration:

int a, b;
and the input:

25 67 89 43 72
12 78 34

Now consider the following statements:

cin >> a;
cin.ignore (100, '\n');
cin >> b;

The first statement, cin >> a;, stores 25 in a. The second statement,
cin.ignore (100, '\n");, discards all of the remaining numbers in the first line. The
third statement, cin >> b;, stores 12 (from the next line) in b.

EXAMPLE 3-4

Consider the declaration:

char chl, ch2;
and the input:

Hello there. My name is Mickey.

128 | Chapter 3: Input/Output

Now consider the following statements:

cin >> chl;
cin.ignore (100, '.'"):;
cin >> ch2;

The first statement, cin >> chl;, stores 'H' in chl. The second statement,
cin.ignore (100,".");, results in discarding all characters until . (period). The
third statement, cin >> ch2;, stores the character 'M' (from the same line) in ch2.
(Remember that the extraction operator >> skips all leading whitespace characters. Thus,
the extraction operator skips the space after . (period) and stores 'M' in ch2.)

The putback and peek Functions

Suppose you are processing data that is a mixture of numbers and characters. Moreover, the
numbers must be read and processed as numbers. You have also looked at many sets of
sample data and cannot determine whether the next input is a character or a number. You
could read the entire data set character-by-character and check whether a certain character
is a digit. If a digit is found, you could then read the remaining digits of the number and
somehow convert these characters into numbers. This programming code would be
somewhat complex. Fortunately, C++ provides two very useful stream functions that
can be used effectively in these types of situations.

The stream function putback lets you put the last character extracted from the input
stream by the get function back into the input stream. The stream function peek looks
into the input stream and tells you what the next character is without removing it from
the input stream. By using these functions, after determining that the next input is a
number, you can read it as a number. You do not have to read the digits of the number as
characters and then convert these characters to that number.

The syntax to use the function putback is:

istreamVar.putback(ch);

Here istreamVar is an input stream variable, such as cin, and ch is a char variable.

The peek function returns the next character from the input stream but does not remove the
character from that stream. In other words, the function peek looks into the input stream
and checks the identity of the next input character. Moreover, after checking the next input
character in the input stream, it can store this character in a designated memory location
without removing it from the input stream. That is, when you use the peek function, the
next input character stays the same, even though you now know what it is.

The syntax to use the function peek is:

ch = istreamVar.peek();

Using Predefined Functions in a Program | 129

Here istreamVar is an input stream variable, such as cin, and ch is a char
variable.

Notice how the function peek is used. First, the function peek is used in an
assignment statement. It is not a stand-alone statement like get, ignore, and
putback. Second, the function peek has empty parentheses. Until you become
comfortable with using a function and learn how to write one, pay close attention to
how to use a predefined function.

The following example illustrates how to use the peek and putback functions.

EXAMPLE 3-5

//Functions peek and putback

#include <iostream>
using namespace std;

int main ()

{

char ch;
cout << "Line 1: Enter a string: "; //Line 1
cin.get (ch); //Line 2
cout << endl; //Line 3
cout << "Line 4: After first cin.get(ch); "

<< "ch = " << ch << endl; //Line 4
cin.get (ch); //Line 5
cout << "Line 6: After second cin.get(ch); "

<< "ch = " << ch << endl; //Line 6
cin.putback(ch); //Line 7
cin.get (ch); //Line 8
cout << "Line 9: After putback and then "

<< "cin.get(ch); ch = " << ch << endl; //Line 9
ch = cin.peek(); //Line 10
cout << "Line 11: After cin.peek(); ch ="

<< ch << endl; //Line 11
cin.get (ch); //Line 12
cout << "Line 13: After cin.get(ch); ch ="

<< ch << endl; //Line 13

return 0;

130 | Chapter 3: Input/Output

Sample Run: In this sample run, the user input is shaded.

Line 1l: Enter a string: abecd

Line 4: After first cin.get(ch); ch = a

Line 6: After second cin.get(ch); ch = Db

Line 9: After putback and then cin.get(ch); ch = Db
Line 11: After cin.peek(); ch = ¢

Line 13: After cin.get(ch); ch = c

The user input, abcd, allows you to see the effect of the functions get, putback, and
peek in the preceding program. The statement in Line 1 prompts the user to enter a string.
In Line 2, the statement cin.get (ch) ; extracts the first character from the input stream
and stores it in the variable ch. So after Line 2 executes, the value of chis 'a’.

The cout statement in Line 4 outputs the value of ch. The statement cin.get (ch) ; in
Line 5 extracts the next character from the input stream, which is 'b", and stores it in ch.
At this point, the value of chis 'b"'.

The cout statement in Line 6 outputs the value of ch. The cin.putback(ch);
statement in Line 7 puts the previous character extracted by the get function, which is
'b', back into the input stream. Therefore, the next character to be extracted from the
input stream is 'b"'.

The cin.get(ch); statement in Line 8 extracts the next character from the input
stream, which is still "b"', and stores it in ch. Now the value of ch is 'b'. The cout
statement in Line 9 outputs the value of ch as 'b".

In Line 10, the statement ch = cin.peek(); checks the next character in the input
stream, which is "¢, and stores it in ch. The value of ch isnow 'c'. The cout statement
in Line 11 outputs the value of ch. The cin.get (ch) ; statement in Line 12 extracts the
next character from the input stream and stores it in ch. The cout statement in Line 13
outputs the value of ch, which is still 'c'.

Note that the statement ch = cin.peek(); in Line 10 did not remove the character
'c' from the input stream; it only peeked into the input stream. The output of Lines 11
and 13 demonstrate this functionality.

The Dot Notation Between 1/0 Stream Variahles and I/0 Functions:
A Precaution

In the preceding sections, you learned how to manipulate an input stream to get data
into a program. You also learned how to use the functions get, ignore, peek, and
putback. It is important that you use these functions exactly as shown. For example, to
use the get function, you used statements such as the following:

cin.get (ch);

Input Failure | 131

Onmitting the dot—that is, the period between the variable cin and the function name
get—results in a syntax error. For example, in the statement:

cin.get (ch);
cin and get are two separate identifiers separated by a dot. In the statement:
cinget (ch);

cinget becomes a new identifier. If you used cinget (ch) ; in a program, the compiler
would try to resolve an undeclared identifier, which would generate an error. Similarly,
missing parentheses, as in cin.getch;, result in a syntax error. Also, remember that you
must use the input functions together with an input stream variable. If you try to use any
of the input functions alone—that is, without the input stream variable—the compiler
might generate an error message such as “undeclared identifier.” For example, the
statement get (ch) ; could result in a syntax error.

As you can see, several functions are associated with an istream variable, each doing a
specific job. Recall that the functions get, ignore, and so on are members of the data
type istream. Called the dot notation, the dot separates the input stream variable
name from the member, or function, name. In fact, in C++, the dot is an operator called
the member access operator.

NOTE C++ has a special name for the data types istream and ostream. The data types
istream and ostream are called classes. The variables cin and cout also have
special names, called objects. Therefore, cin is called an istream object, and cout is
called an ostream object. In fact, stream variables are called stream objects. You will
learn these concepts in the chapter entitled Inheritance and Composition later in this book.

Input Failure

Many things can go wrong during program execution. A program that is syntactically
correct might produce incorrect results. For example, suppose that a part-time employee’s
paycheck is calculated by using the following formula:

wages = payRate * hoursWorked;

If you accidentally type + in place of *, the calculated wages would be incorrect, even
though the statement containing a + is syntactically correct.

‘What about an attempt to read invalid data? For example, what would happen if you tried to
input a letter into an int variable? If the input data did not match the corresponding variables,
the program would run into problems. For example, trying to read a letter into an int or
double variable would result in an input failure. Consider the following statements:

int a, b, c¢;
double x;

132 | Chapter 3: Input/Output

If the input is:

W 54

then the statement:
cin >> a >> b;

would result in an input failure, because you are trying to input the character 'W' into
the int variable a. If the input were:

35 67.93 48

then the input statement:

cin >> a >> x > >b;

would result in storing 35 in a, 67.93 in x, and 48 in b.

Now consider the following read statement with the previous input (the input with three
values):

cin >> a >> b >> c;

This statement stores 35 in a and 67 in b. The reading stops at . (the decimal point).
Because the next variable c is of the data type int, the computer tries to read . into c,
which is an error. The input stream then enters a state called the fail state.

What actually happens when the input stream enters the fail state? Once an input stream
enters a fail state, all further I/O statements using that stream are ignored. Unfortunately,
the program quietly continues to execute with whatever values are stored in variables and
produces incorrect results. The program in Example 3-6 illustrates an input failure. This
program on your system may produce different results.

EXAMPLE 3-6

//Input Failure program

#include <iostream>
using namespace std;

int main ()

{

int a = 10; //Line 1
int b = 20; //Line 2
int ¢ = 30; //Line 3
int d = 40; //Line 4
cout << "Line 5: Enter four integers: "; //Line 5
cin >> a >> b >> ¢ >> d; //Line 6
cout << endl; //Line 7

Input Failure | 133

cout << "Line 8: The numbers you entered are:"

<< endl; //Line 8
cout << "Line 9: a =" <K a<k ", b="<kDb
<< ", c="<Kk< << ", d="<x<d<< endl; //Line 9

return 0;

}

Sample Runs: In these sample runs, the user input is shaded.
Sample Run 1

Line 5: Enter four integers: 34 K 67 28

Line 8: The numbers you entered are:
Line 9: a = 34, b = 20, ¢ = 30, d = 40

The statements in Lines 1, 2, 3, and 4 declare and initialize the variables a, b, ¢, and
d to 10, 20, 30, and 40, respectively. The statement in Line 5 prompts the user to
enter four integers; the statement in Line 6 inputs these four integers into variables a,
b, ¢, and d.

In this sample run, the second input value is the character "K'. The cin statement tries to
input this character into the variable b. However, because b is an int variable, the input
stream enters the fail state. Note that the values of b, ¢, and d are unchanged, as shown by
the output of the statement in Line 9.

Sample Run 2

Line 5: Enter four integers: 37 653.89 23 76

Line 8: The numbers you entered are:
Line 9: a = 37, b = 653, ¢ = 30, d = 40

In this sample run, the cin statement in Line 6 inputs 37 into a and 653 into b, and then
tries to input the decimal point into ¢. Because c is an int variable, the decimal point is
regarded as a character, so the input stream enters the fail state. In this sample run, the
values of ¢ and d are unchanged, as shown by the output of the statement in Line 9.

The clear Function

‘When an input stream enters the fail state, the system ignores all further I/O using that stream.
You can use the stream function clear to restore the input stream to a working state.

The syntax to use the function clear is:

istreamvVar.clear () ;

Here istreamVar is an input stream variable, such as cin.

134 | Chapter 3: Input/Output

After using the function clear to return the input stream to a working state, you still
need to clear the rest of the garbage from the input stream. This can be accomplished by
using the function ignore. Example 3-7 illustrates this situation.

EXAMPLE 3-7

//Input failure and the clear function

#include <iostream>
using namespace std;

int main()

{
int a = 23; //Line 1
int b 34; //Line 2

cout << "Line 3: Enter a number followed"

<< " by a character: "; //Line 3
cin >> a >> b; //Line 4
cout << endl << "Line 5: a = " << a

<< ", b =" << b << endl; //Line 5
cin.clear(); //Restore input stream; Line 6
cin.ignore (200, '\n'"); //Clear the buffer; Line 7
cout << "Line 8: Enter two numbers: "; //Line 8
cin >> a >> b; //Line 9
cout << endl << "Line 10: a = " << a

<< ", b =" << b << endl; //Line 10

return O;

}

Sample Run: In this sample run, the user input is shaded.

Line 3: Enter a number followed by a character: 78 d

Line 5: a = 78, b = 34
Line 8: Enter two numbers: 65 88

Line 10: a = 65, b = 88

The statements in Lines 1 and 2 declare and initialize the variables a and b to 23 and 34,
respectively. The statement in Line 3 prompts the user to enter a number followed by a
character; the statement in Line 4 inputs this number into the variable a and then tries to
input the character into the variable b. Because b is an int variable, an attempt to input a
character into b causes the input stream to enter the fail state. The value of b is
unchanged, as shown by the output of the statement in Line 5.

Output and Formatting Output | 135

The statement in Line 6 restores the input stream by using the function clear, and the
statement in Line 7 ignores the rest of the input. The statement in Line 8 again prompts
the user to input two numbers; the statement in Line 9 stores these two numbers into a
and b. Next, the statement in Line 10 outputs the values of a and b.

Output and Formatting Output

Other than writing efficient programs, generating the desired output is one of a program-
mer’s highest priorities. Chapter 2 briefly introduced the process involved in generating
output on the standard output device. More precisely, you learned how to use the insertion
operator << and the manipulator endl to display results on the standard output device.

However, there is a lot more to output than just displaying results. Sometimes floating-
point numbers must be output in a specific way. For example, a paycheck must be printed
to two decimal places, whereas the results of a scientific experiment might require the
output of floating-point numbers to six, seven, or perhaps even ten decimal places. Also,
you might like to align the numbers in specific columns or fill the empty space between
strings and numbers with a character other than the blank. For example, in preparing the
table of contents, the space between the section heading and the page number might need
to be filled with dots or dashes. In this section, you will learn about various output
functions and manipulators that allow you to format your output in a desired way.

Recall that the syntax of cout when used together with the insertion operator << is:

cout << expression or manipulator << expression or manipulator...;

Here expression is evaluated, its value is printed, and manipulator is used to format
the output. The simplest manipulator that you have used so far is endl, which is used to
move the insertion point to the beginning of the next line.

Other output manipulators that are of our interest include: setprecision, fixed,
showpoint, and setw. The next few sections describe these manipulators.

setprecision Manipulator

You use the manipulator setprecision to control the output of floating-point num-
bers. The default output of floating-point numbers is scientific notation. Some software
development kits (SDKs) might use a maximum of six decimal places for the default
output of floating-point numbers. However, when an employee’s paycheck is printed,
the desired output is a maximum of two decimal places. To print floating-point output to
two decimal places, you use the setprecision manipulator to set the precision to 2.

The general syntax of the setprecision manipulator is:

setprecision (n)

136 | Chapter 3: Input/Output

where n 1s the number of decimal places.

You use the setprecision manipulator with cout and the insertion operator. For
example, the statement:

cout << setprecision(2);

formats the output of decimal numbers to two decimal places, until a similar subsequent
statement changes the precision. Notice that the number of decimal places, or the
precision value, 1s passed as an argument to setprecision.

To use the manipulator setprecision, the program must include the header file
iomanip. Thus, the following include statement is required:

#include <iomanip>

fixed Manipulator

To further control the output of floating-point numbers, you can use other manipulators.
To output floating-point numbers in a fixed decimal format, you use the manipulator
fixed. The following statement sets the output of floating-point numbers in a fixed
decimal format on the standard output device:

cout << fixed;

After the preceding statement executes, all floating-point numbers are displayed in the fixed
decimal format until the manipulator £ixed is disabled. You can disable the manipulator
fixed by using the stream member function unsetf. For example, to disable the mani-
pulator fixed on the standard output device, you use the following statement:

cout.unsetf (ios::fixed);

After the manipulator fixed is disabled, the output of the floating-point numbers return
to their default settings. The manipulator scientific is used to output floating-point
numbers in scientific format.

showpoint Manipulator

Suppose that the decimal part of a decimal number is zero. In this case, when you instruct the
computer to output the decimal number in a fixed decimal format, the output may not show
the decimal point and the decimal part. To force the output to show the decimal point and
trailing zeros, you use the manipulator showpoint. The following statement sets the output
of decimal numbers with a decimal point and trailing zeros on the standard input device:

cout << showpoint;

Of course, the following statement sets the output of a floating-point number in a fixed
decimal format with the decimal point and trailing zeros on the standard output device:

cout << fixed << showpoint;

Output and Formatting Output | 137

The program in Example 3-8 illustrates how to use the manipulators setprecision,
fixed, and showpoint.

EXAMPLE 3-8

//Example: setprecision, fixed, showpoint

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{
double x, y, z;

x = 15.674; //Line 1
y = 235.73; //Line 2
z = 9525.9864; //Line 3
cout << fixed << showpoint; //Line 4

cout << setprecision(2)

<< "Line 5: setprecision(2)" << endl; //Line 5
cout << "Line 6: x = " << x << endl; //Line 6
cout << "Line 7: y = " << y << endl; //Line 7
cout << "Line 8: z = " << z << endl; //Line 8

cout << setprecision (3)

<< "Line 9: setprecision(3)" << endl; //Line 9
cout << "Line 10: x = " << x << endl; //Line 10
cout << "Line 1l: y = " << y << endl; //Line 11
cout << "Line 12: z = " << z << endl; //Line 12

cout << setprecision(4)

<< "Line 13: setprecision(4)" << endl; //Line 13
cout << "Line 14: x = " << x << endl; //Line 14
cout << "Line 15: y = " << y << endl; //Line 15
cout << "Line 16: z = " << z << endl; //Line 16

cout << "Line 17: "
<< setprecision(3d) <K x << " "
<< setprecision(2) << y << " "
<< sgetprecision(4) << z << endl; //Line 17

return 0;

138 | Chapter 3: Input/Output

Sample Run:

Line 5: setprecision(2)
Line 6: x = 15.67

Line 7: y 235.73

Line 8: z = 9525.99
Line 9: setprecision(3)
Line 10: x = 15.674
Line 11: y 235.730
Line 12: z 9525.986
Line 13: setprecision(4)
Line 14: x = 15.6740
Line 15: y = 235.7300
Line 16: z = 9525.9864
Line 17: 15.674 235.73 9525.9864

The statements in Lines 1, 2, and 3 initialize x, y, and z to 15.674, 235.73, and
9525.9864, respectively. The statement in Line 4 sets the output of floating-point
numbers in a fixed decimal format with a decimal point and trailing zeros. The statement
in Line 5 sets the output of floating-point numbers to two decimal places.

The statements in Lines 6, 7, and 8 output the values of %, y, and z to two decimal places.
Note that the printed value of z in Line 8 is rounded. The statement in Line 9 sets the
output of floating-point numbers to three decimal places; the statements in Lines 10, 11,
and 12 output the values of x, y, and z to three decimal places. Note that the value of y,
in Line 11, is output to three decimal places. Because the number stored in y has only
two decimal places, a 0 is printed as the third decimal place.

The statement in Line 13 sets the output of floating-point numbers to four decimal
places; the statements in Lines 14, 15, and 16 output the values of x, y, and z to
four decimal places. Note that in Line 14, the printed value of x contains a 0 in the
fourth decimal place. The printed value of y, in Line 15, contains a 0 in the third
and fourth decimal places.

The statement in Line 17 first sets the output of floating-point numbers to three
decimal places and then outputs the value of x to three decimal places. After printing
the value of x, the statement in Line 17 sets the output of floating-point numbers to
two decimal places and then outputs the value of y to two decimal places. Next, it
sets the output of floating-point numbers to four decimal places and then outputs the
value of z to four decimal places.

setw

The manipulator setw is used to output the value of an expression in a specific number
of columns. The value of the expression can be either a string or a number. The
expression setw (n) outputs the value of the next expression in n columns. The output
1s right-justified. Thus, if you specify the number of columns to be 8, for example, and

Output and Formatting Output | 139

the output requires only 4 columns, the first four columns are left blank. Furthermore, if
the number of columns specified is less than the number of columns required by the
output, the output automatically expands to the required number of columns; the output
is not truncated. For example, if x is an int variable, the following statement outputs the
value of % in five columns on the standard output device:

cout << setw(5) << x << endl;

To use the manipulator setw, the program must include the header file iomanip. Thus,
the following include statement is required:

#include <iomanip>

Unlike setprecision, which controls the output of all floating-point numbers until it
is reset, setw controls the output of only the next expression.

EXAMPLE 3-9

//Example: setw

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{

int x = 19; //Line 1
int a = 345; //Line 2
double y = 76.384; //Line 3
cout << fixed << showpoint; //Line 4
cout << "12345678901234567890" << endl; //Line 5
cout << setw(5) << x << endl; //Line 6
cout << setw(5) << a << setw(5) << "Hi"

<< setw(5) << x << endl << endl; //Line 7
cout << setprecision(2); //Line 8
cout << setw(6) << a << setw(6) << y

<< setw(6) << x << endl; //Line 9
cout << setw(6) << X << setw(6) << a

<< setw(6) << y << endl << endl; //Line 10
cout << setw(5) << a << x << endl; //Line 11

cout << setw(2) << a << setw(4) << x << endl; //Line 12

return 0;

140 | Chapter 3: Input/Output

Sample Run:

12345678901234567890
19
345 Hi 19

345 76.38 19
19 345 76.38

34519
345 19

The statements in Lines 1, 2, and 3 declare the variables x, a, and y and initialize these
variables to 19, 345, and 76.384, respectively. The statement in Line 4 sets the output
of floating-point numbers in a fixed decimal format with a decimal point and trailing
zeros. The output of the statement in Line 5 shows the column positions when the
specific values are printed; it is the first line of output.

The statement in Line 6 outputs the value of x in five columns. Because x has only
two digits, only two columns are needed to output its value. Therefore, the first
three columns are left blank in the second line of output. The statement in Line 7
outputs the value of a in the first five columns, the string "Hi" in the next five
columns, and then the value of x in the following five columns. Because the string
"Hi" contains only two characters, and five columns are set to output these two
characters, the first three columns are left blank. See the third line of output. The
fourth line of output is blank because the manipulator endl appears twice in the
statement in Line 7.

The statement in Line 8 sets the output of floating-point numbers to two decimal places.
The statement in Line 9 outputs the values of a in the first six columns, y in the next six
columns, and x in the following six columns, creating the fifth line of output. The output
of the statement in Line 10 (which is the sixth line of output) is similar to the output of
the statement in Line 9. Notice how the numbers are nicely aligned in the outputs of the
statements in Lines 9 and 10. The seventh line of output is blank because the manipulator
endl appears twice in the statement in Line 10.

The statement in Line 11 outputs first the value of a in five columns and then the value of
x. Note that the manipulator setw in the statement in Line 11 controls only the output
of a. Thus, after the value of a is printed, the value of x is printed at the current cursor
position (see the eighth line of output).

In the cout statement in Line 12, only two columns are assigned to output the value of
a. However, the value of a has three digits, so the output is expanded to three columns.
The value of x is then printed in four columns. Because the value of x contains only two
digits, only two columns are required to output the value of x. Therefore, because four
columns are allocated to output the value of x, the first two columns are left blank (see
the ninth line of output).

Additional Output Formatting Tools | 141

Additional Output Formatting Tools

In the previous section, you learned how to use the manipulators setprecision,
fixed, and showpoint to control the output of floating-point numbers, and how to
use the manipulator setw to display the output in specific columns. Even though these
manipulators are adequate to produce an elegant report, in some situations you may want
to do more. In this section, you will learn additional formatting tools that give you more
control over your output.

setfill Manipulator

Recall that in the manipulator setw, if the number of columns specified exceeds the number
of columns required by the expression, the output of the expression is right-justified and the
unused columns to the left are filled with spaces. The output stream variables can use the
manipulator set£1il1 to fill the unused columns with a character other than a space.

The syntax to use the manipulator set£ill is:

ostreamVar << setfill (ch);

where ostreamVar is an output stream variable and ch is a character. For example, the
statement:

cout << setfill('#');
sets the fill character to "#' on the standard output device.
To use the manipulator setfill, the program must include the header file iomanip.

The program in Example 3-10 illustrates the etfect of using setfill in a program.

EXAMPLE 3-10

//Example: setfill

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{

int x = 15; //Line 1
int y = 7634; //Line 2
cout << "12345678901234567890" << endl; //Line 3
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 4

cout << setfill('*'):; //Line 5

142 | Chapter 3: Input/Output

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 6

cout << setw(5) << x << setw(7) << setfill('#'")
<< y << setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << setfill('Q') << x
<< setw(7) << setfill('#'") << y
<< setw(8) << setfill('"') << "Warm"

<< endl; //Line 8
cout << setfill(' '"); //Line 9
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 10

return 0;

}

Sample Run:

12345678901234567890
15 7634 Warm
* % % 15*** 7634****Warm
**x] 5EFH#TO34####Warm
@R@15###7634~"*"Warm
15 7634 Warm

The statements in Lines 1 and 2 declare and initialize the variables x and y to 15 and
7634, respectively. The output of the statement in Line 3—the first line of output—
shows the column position when the subsequent statements output the values of the
variables. The statement in Line 4 outputs the value of x in five columns, the value of y
in seven columns, and the string "Warm" in eight columns. In this statement, the filling
character is the blank character, as shown in the second line of output.

The statement in Line 5 sets the filling character to *. The statement in Line 6 outputs the
value of x in five columns, the value of y in seven columns, and the string "Warm" in
eight columns. Because x is a two-digit number and five columns are assigned to output
its value, the first three columns are unused by x and are, therefore, filled by the filling
character *. To print the value of y, seven columns are assigned; y is a four-digit number,
however, so the filling character fills the first three columns. Similarly, to print the value
of the string "Warm", eight columns are assigned; the string "Warm" has only four
characters, so the filling character fills the first four columns. See the third line of output.

The output of the statement in Line 7—the fourth line of output—is similar to the output
of the statement in Line 6, except that the filling character for y and the string "Warm" is
#. In the output of the statement in Line 8 (the fifth line of output), the filling character
for x is @, the filling character for y is #, and the filling character for the string "Warm" is
~. The manipulator set£ill sets these filling characters.

The statement in Line 9 sets the filling character to blank. The statement in Line 10
outputs the values of x, y, and the string "Warm" using the filling character blank, as
shown in the sixth line of output.

Additional Output Formatting Tools | 143

left and right Manipulators

Recall that if the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the default output is right-justified.
Sometimes you might want the output to be left-justified. To left-justify the output, you
use the manipulator left.

The syntax to set the manipulator left is:

ostreamVar << left;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be left-justified on the standard output device:

cout << left;

You can disable the manipulator 1eft by using the stream function unsetf. The syntax
to disable the manipulator left is:

ostreamVar.unsetf (ios::1left);

where ostreamvar is an output stream variable. Disabling the manipulator 1eft returns
the output to the settings of the default output format. For example, the following
statement disables the manipulator 1left on the standard output device:

cout.unsetf (ios::1left);

The syntax to set the manipulator right is:

ostreamVar << right;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right;

The program in Example 3-11 illustrates the eftect of the manipulators left and right.

EXAMPLE 3-11

//Example: left justification

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{

int x
int y

15; //Line 1
7634; //Line 2

cout << left; //Line 3

144 | Chapter 3: Input/Output

cout << "12345678901234567890" << endl; //Line 4
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 5
cout << setfill('*'); //Line 6

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << x << setw(7) << setfill('#")
<< y << setw(8) << "Warm" << endl; //Line 8

cout << setw(5) << setfill('Q') << x
<< setw(7) << setfill('#'") << y
<< setw(8) << setfill('"'") << "Warm"

<< endl; //Line 9
cout << right; //Line 10
cout << setfill (' '"); //Line 11

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 12

return 0;

}

Sample Run:

12345678901234567890
15 7634 Warm
15*** 7634***Warm****
15%** 7634 % #fWarm####
15@R@7634###Warm™ """
15 7634 Warm

The output of this program is the same as the output of Example 3-11. The only
difference here is that for the statements in Lines 4 through 9, the output is left-justified.
You are encouraged to do a walk-through of this program.

This chapter discusses several stream functions and stream manipulators. To use stream
functions such as get, ignore, £il1, and clear in a program, the program must
include the header file iostream.

There are two types of manipulators: those with parameters and those without parameters.
Manipulators with parameters are called parameterized stream manipulators. For example,
manipulators such as setprecision, setw, and setfill are parameterized. On
the other hand, manipulators such as endl, fixed, scientific, showpoint, and
left do not have parameters.

To use a parameterized stream manipulator in a program, you must include the header file
iomanip. Manipulators without parameters are part of the iostream header file and,
therefore, do not require inclusion of the header file 1iomanip.

Input/Output and the string Type | 145

Input/Output and the string Type

You can use an input stream variable, such as cin, and the extraction operator >> to read
a string into a variable of the data type string. For example, if the input is the string
"Shelly", the following code stores this input into the string variable name:

string name; //variable declaration
cin >> name; //input statement

Recall that the extraction operator skips any leading whitespace characters and that
reading stops at a whitespace character. As a consequence, you cannot use the extraction
operator to read strings that contain blanks. For example, suppose that the variable name
is defined as noted above. If the input is:

Alice Wonderland

then after the statement:

cin >> name;

executes, the value of the variable name is "Alice".

To read a string containing blanks, you can use the function getline.
The syntax to use the function getline is:

getline (istreamVar, strVar);

where istreamVar is an input stream variable and strVar is a string variable. The
reading is delimited by the newline character "\ n"'.

The function getline reads until it reaches the end of the current line. The newline
character is also read but not stored in the string variable.

Consider the following statement:

string myString;

If the input is 29 characters:

bbbbHello there. How are you?

where b represents a blank, after the statement:

getline (cin, myString);

the value of myString is:

myString = " Hello there. How are you?"

All 29 characters, including the first four blanks, are stored into myString.

Similarly, you can use an output stream variable, such as cout, and the insertion operator
<< to output the contents of a variable of the data type string.

146 | Chapter 3: Input/Output

File Input/Output

The previous sections discussed in some detail how to get input from the keyboard
(standard input device) and send output to the screen (standard output device).
However, getting input from the keyboard and sending output to the screen have
several limitations. Inputting data in a program from the keyboard is comfortable as
long as the amount of input is very small. Sending output to the screen works well if
the amount of data is small (no larger than the size of the screen), and you do not
want to distribute the output in a printed format to others.

If the amount of input data is large, however, it is inefficient to type it at the keyboard
each time you run a program. In addition to the inconvenience of typing large
amounts of data, typing can generate errors, and unintentional typos cause erroneous
results. You must have some way to get data into the program from other sources. By
using alternative sources of data, you can prepare the data before running a program,
and the program can access the data each time it runs.

Suppose you want to present the output of a program in a meeting. Distributing printed
copies of the program output is a better approach than showing the output on a screen.
For example, you might give a printed report to each member of a committee before an
important meeting. Furthermore, output must sometimes be saved so that the output
produced by one program can be used as an input to other programs.

This section discusses how to obtain data from other input devices, such as a disk
(that is, secondary storage), and how to save the output to a disk. C++ allows a
program to get data directly from, and save output directly to, secondary storage. A
program can use the file I/O and read data from, or write data to, a file. Formally, a
file is defined as follows:

File: An area in secondary storage used to hold information.

The standard 17O header file, iostream, contains data types and variables that are used
only for input from the standard input device and output to the standard output device.
In addition, C++ provides a header file called £stream, which is used for file I/O.
Among other things, the fstream header file contains the definitions of two data types:
ifstream, which means input file stream and is similar to istream, and ofstream,
which means output file stream and is similar to ostream.

The variables cin and cout are already defined and associated with the standard input/
output devices. In addition, >>, get, ignore, putback, peek, and so on can be used
with cin, while <<, set£fill, and so on can be used with cout. These same operators
and functions are also available for file I/O, but the header file fstream does not declare
variables to use them. You must declare variables called file stream variables, which
include ifstream variables for input and of stream variables for output. You then use
these variables together with >>, <<, or other functions for I/O. Remember that C++
does not automatically initialize user-defined variables. Once you declare the fstream
variables, you must associate these file variables with the input/output sources.

File Input/Output | 147

File I/0 i1s a five-step process:

1. Include the header file £stream in the program.

Declare file stream variables.

Associate the file stream variables with the input/output sources.

Use the file stream variables with >>, <<, or other input/output functions.
Close the files.

AN SR

We will now describe these five steps in detail. A skeleton program then shows how the
steps might appear in a program.

Step 1 requires that the header file £stream be included in the program. The following
statement accomplishes this task:

#include <fstream>
Step 2 requires you to declare file stream variables. Consider the following statements:

ifstream inData;
ofstream outData;

The first statement declares inData to be an input file stream variable. The second
statement declares outData to be an output file stream variable.

Step 3 requires you to associate file stream variables with the input/output sources. This
step is called opening the files. The stream member function open is used to open files.
The syntax for opening a file is:

fileStreamVariable.open (sourceName) ;

Here fileStreamVariable is a file stream variable and sourceName is the name of
the input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the input
data is stored in a file called prog.dat. The following statements associate inData with
prog.dat and outData with prog. out. That s, the file prog.dat is opened for inputting
data and the file prog. out is opened for outputting data.

inData.open("prog.dat"™); //open the input file; Line 1
outData.open ("prog.out"); //open the output file; Line 2

NOTE SDKs such as Visual Studio .Net manages program in the form of projects. That is, first
you create a project and then add source files to the project. The statement in Line 1
assumes that the file prog.dat is in the same directory (subdirectory) as your project.
However, if this is in a different directory (subdirectory), then you must specify the path
where the file is located, along with the name of the file. For example, suppose that the

148 | Chapter 3: Input/Output

file prog.dat is on a storage device in drive A. Then the statement in Line 1 should be
modified as follows:

inData.open ("a:\\prog.dat") ;

Note that there are two \ after a:. Recall from Chapter 2 that in C++ \ is the escape
character. Therefore, to produce a \ within a string you need \\ . (To be absolutely sure
about specifying the source where the input file is stored, such as the drive a:\\, check
your system’s documentation.)

Similar conventions for the statement in Line 2.

Step 4 typically works as follows. You use the file stream variables with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream variables is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream variable names that were declared. For example, the statement:

inData >> payRate;
reads the data from the file prog.dat and stores it in the variable payRate. The statement:
outData << "The paycheck is: $" << pay << endl;

stores the output—The paycheck is: $565.78—in the file prog.out. This statement
assumes that the pay was calculated as 565.78.

Once the 170 is complete, Step 5 requires closing the files. Closing a file means that the
file stream variables are disassociated from the storage area and are freed. Once these
variables are freed, they can be reused for other file I/O. Moreover, closing an output file
ensures that the entire output is sent to the file; that is, the buffer is emptied. You close
files by using the stream function close. For example, assuming the program includes
the declarations listed in Steps 2 and 3, the statements for closing the files are:

inData.close();
outData.close();

On some systems, it is not necessary to close the files. When the program terminates,
the files are closed automatically. Nevertheless, it is a good practice to close the files
yourself. Also, if you want to use the same file stream variable to open another file,
you must close the first file opened with that file stream variable.

In skeleton form, a program that uses file I/O usually takes the following form:

#include <fstream>
//Add additional header files you use

using namespace std;

File Input/Output | 149

int main()
{
//Declare file stream variables such as the following
ifstream inData;
ofstream outData;

//Open the files
inData.open("prog.dat"); //open the input file
outData.open ("prog.out"); //open the output file

//Code for data manipulation

//Close files
inData.close();
outData.close();

return 0;

}

Recall that Step 3 requires the file to be opened for file I/O. Opening a file associates
a file stream variable declared in the program with a physical file at the source, such as
a disk. In the case of an input file, the file must exist before the open statement
executes. If the file does not exist, the open statement fails and the input stream enters
the fail state. An output file does not have to exist before it is opened; if the output file
does not exist, the computer prepares an empty file for output. If the designated
output file already exists, by default the old contents are erased when the file is
opened.

NOTE To add the output at the end of an existing file, you can use the option ios: :app
as follows. Suppose that outData is declared as before and you want to add the
output at the end of the existing file, say, firstProg.out. The statement to
open this file is:

outData.open ("firstProg.out", ios::app):

If the file firstProg.out does not exist, then the system creates an empty file.

NOTE Appendix E discusses binary and random access files.

150 | Chapter 3: Input/Output

PROGRAMMING EXAMPLE:
Movie Ticket Sale and Donation to Charity

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

A movie in a local theater is in great demand. To help a local charity, the theater
owner has decided to donate to the charity a portion of the gross amount generated
from the movie. This example designs and implements a program that prompts the
user to input the movie name, adult ticket price, child ticket price, number of adult
tickets sold, number of child tickets sold, and percentage of the gross amount to be
donated to the charity. The output of the program is as follows.

—k —k k k k k k k ok ok k k ok ok ok k ok k k ok ok k k ok ok k k%

Movie Name:ceveeeeenccacoaans Journey to Mars
Number of Tickets Sold: 2650

Gross AmMOUNE: +.vieeuneennneanesans $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated:ceieerieanennns $ 915.00

Net Sale: ...uiiiieiieneenennennnns $ 8235.00

Note that the strings, such as "Movie Name:" , in the first column are left-justified,
the numbers in the right column are right-justified, and the decimal numbers are
output with two decimal places.

Input The input to the program consists of the movie name, adult ticket price, child
ticket price, number of adult tickets sold, number of child tickets sold, and
percentage of the gross amount to be donated to the charity.

Output The output is as shown above.

To calculate the amount donated to the local charity and the net sale, you first need to
determine the gross amount. To calculate the gross amount, you multiply the number
of adult tickets sold by the price of an adult ticket, multiply the number of child tickets
sold by the price of a child ticket, and then add these two numbers. That is:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

Next, you determine the percentage of the amount donated to the charity, and then
calculate the net sale amount by subtracting the amount donated from the gross
amount. The formulas to calculate the amount donated and the net sale amount are
given below. This analysis leads to the following algorithm:

1. Get the movie name.

2. Get the price of an adult ticket.

3. Get the price of a child ticket.

4. Get the number of adult tickets sold.

Programming Example: Movie Ticket Sale and Donation to Charity | 151

5. Get the number of child tickets sold.
Get the percentage of the gross amount donated to the charity.
7. Calculate the gross amount using the following formula:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

8. Calculate the amount donated to the charity using the following
formula:

amountDonated = grossAmount * percentDonation / 100;

9. Calculate the net sale amount using the following formula:

netSaleAmount = grossAmount — amountDonated;

Variables From the preceding discussion, it follows that you need variables to store the
movie name, adult ticket price, child ticket price, number of adult tickets sold,
number of child tickets sold, percentage of the gross amount donated to the
charity, gross amount, amount donated, and net sale amount. Therefore, the
following variables are needed:

string movieName;

double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;
double grossAmount;
double amountDonated;
double netSaleAmount;

Because movieName is declared as a string variable, you need to include the
header file string. Therefore, the program needs, among others, the following
include statement:

#include <string>

Formatting In the output, the first column is left-justified and the numbers in the second
Output column are right-justified. Therefore, when printing a value in the first column,

the manipulator left is used; before printing a value in the second column, the
manipulator right is used. The empty space between the first and second
columns is filled with dots; the program uses the manipulator setfill to
accomplish this goal. In the lines showing the gross amount, amount donated,
and net sale amount, the space between the $ sign and the number is filled with
blank spaces. Therefore, before printing the dollar sign, the program uses the
manipulator setfill to set the filling character to blank. The following
statements accomplish the desired output:

MAIN
ALGORITHM

152 |

cout

cout

cout

cout

cout

cout

cout

Chapter 3: Input/Output

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

Wk ok ke ke ok ok ke mk k ko k% 1Y

Wk ok —k —k —k —k —k —k —k k% %1 << endl;

setfill('.') << left << setw(35) << "Movie Name: "
right << " " << movieName << endl;

left << setw(35) << "Number of Tickets Sold: "
setfill (' ') << right << setw(10)
noOfAdultTicketsSold + noOfChildTicketsSold

endl;

setfill('.') << left << setw(35) << "Gross Amount: "
setfill (' ') << right << " §"

setw(8) << grossAmount << endl;

setfill('."') << left << setw(35)

"Percentage of Gross Amount Donated: "

setfill (" ') << right

setw(9) << percentDonation << '$' << endl;
setfill('."') << left << setw(35) << "Amount Donated: "
setfill (" ') << right << " §"

setw (8) << amountDonated << endl;

setfill('."') << left << setw(35) << "Net Sale: "
setfill(' ') << right << " §"

setw (8) << netSaleAmount << endl;

In the preceding sections, we analyzed the problem and determined the formulas to
do the calculations. We also determined the necessary variables and named constants.
We can now expand the previous algorithm to solve the problem given at the
beginning of this programming example:

1
1
1
1

go = o i

1.
2.
3.
4.

Declare the variables.

Set the output of the floating-point numbers to two decimal places
in a fixed decimal format with a decimal point and trailing zeros.
Include the header file iomanip.

Prompt the user to enter a movie name.

Input (read) the movie name. Because the name of a movie might
contain more than one word (and, therefore, might contain blanks),
the program uses the function getline to input the movie name.

Prompt the user to enter the price of an adult ticket.

Input (read) the price of an adult ticket.

Prompt the user to enter the price of a child ticket.

Input (read) the price of a child ticket.

Prompt the user to enter the number of adult tickets sold.

Input (read) the number of adult tickets sold.

Prompt the user to enter the number of child tickets sold.

Input (read) the number of child tickets sold.

Prompt the user to enter the percentage of the gross amount donated.

Input (read) the percentage of the gross amount donated.

Programming Example: Movie Ticket Sale and Donation to Charity | 153

15. Calculate the gross amount.
16. Calculate the amount donated.
17. Calculate the net sale amount.

18. Output the results.

COMPLETE PROGRAM LISTING

A2 T T e e Y
// Author: D.S. Malik

//

// Program: Movie Ticket Sale

// This program determines the money to be donated to a

// charity. It prompts the user to input the movie name, adult
// ticket price, child ticket price, number of adult tickets
// sold, number of child tickets sold, and percentage of the

// gross amount to be donated to the charity.
[/ R* Rk A KKk Kk kk ok ok kokkkkkkkk ok ok ok ok ko k ok ok ok ok ok ok ko k ko k ok ko k ok ko k ok ok kkk K

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

int main ()
{
//Step 1

string movieName;
double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;
double grossAmount;
double amountDonated;
double netSaleAmount;

cout << fixed << showpoint << setprecision(2); //Step 2

cout << "Enter the movie name: "; //Step 3
getline (cin, movieName) ; //Step 4
cout << endl;

cout << "Enter the price of an adult ticket: "; //Step
cin >> adultTicketPrice; //Step
cout << endl;

o Un

cout << "Enter the price of a child ticket: "; //Step 7
cin >> childTicketPrice; //Step 8
cout << endl;

154

| Chapter 3: Input/Output

cout << "Enter the number of adult tickets "
<< "sold: ";

cin >> noOfAdultTicketsSold;

cout << endl;

cout << "Enter the number of child tickets "
<< "sold: ";

cin >> noOfChildTicketsSold;

cout << endl;

cout << "Enter the percentage of donation: ";

cin >> percentDonation;
cout << endl << endl;

//Step 15

grossAmount = adultTicketPrice * noOfAdultTicketsSold +

//Step
//Step

//Step
//Step

//Step
//step

childTicketPrice * noOfChildTicketsSold;

//Step 16

amountDonated = grossAmount * percentDonation / 100;

netSaleAmount = grossAmount - amountDonated;

//Step 18: Output results

//Step

"Net Sale:

cout << Wk ok ke ko ko ok ke ke ke ok ke %k 1Y
<<L Wk —k —k -k —k —k —h %k &k %k %k k%1 << endl;
cout << setfill('.'") << left << setw(35) <<
<< right << " " << movieName << endl;
cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill(' ') << right << setw(10)
<< noOfAdultTicketsSold + noOfChildTicketsSold
<< endl;
cout << setfill('.') << left << setw(35)
<< "Gross Amount: "
<< setfill (' ') << right << " §"
<< setw(8) << grossAmount << endl;
cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated:
<< setfill (' ') << right
<< setw(9) << percentDonation << '$%' << endl;
cout << setfill('.'") << left << setw(35)
<< "Amount Donated: "
<< setfill(' ') << right << " §"
<< setw(8) << amountDonated << endl;
cout << setfill('.') << left << setw(35) <<
<< setfill(' ') << right << " §"

<< setw(8) << netSaleAmount << endl;

return 0;

9
10

11
12

13
14

17

"Movie Name:

Programming Example: Student Grade | 155

Sample Run: In this sample run, the user input is shaded.

Enter movie name: Journey to Mars

Enter the price of an adult ticket: 4.50
Enter the price of a child ticket: 3.00
Enter number of adult tickets sold: 800

Enter number of child tickets sold: 1850

Enter the percentage of donation: 10

—k —k k ok ok ko ok —k ok k k k ok ok k k k ok ok ko ok ok k%

Movie NamMe: ...ceeseeeeossoocacsaaacs Journey to Mars
Number of Tickets Sold: 2650

GroSS AMOUNE: . vverveeeonnennonnnns $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated:ceceeann. $ 915.00

Net Sale: ..iiieeennneeannncannnann $ 8235.00

Note that the first six lines of output get the necessary data to generate the last six
lines of the output as required.

PROGRAMMING EXAMPLE: Student Grade

Write a program that reads a student name followed by five test scores. The program
should output the student name, the five test scores, and the average test score.
Output the average test score with two decimal places.

The data to be read is stored in a file called test.txt. The output should be stored
in a file called testavg.out.

Input A file containing the student name and the five test scores. A sample
input is:

Andrew Miller 87.50 89 65.75 37 98.50

Output The student name, the five test scores, and the average of the five test
scores, saved to a file

PROBLEM To find the average of the five test scores, you add the five test scores and
ANALYSIS divide the sum by 5. The input data is in the following form: the student name
AND followed by the five test scores. Therefore, you must read the student name first

ALGORITHM and then read the five test scores. This problem analysis translates into the
DESIGN following algorithm:

Variables

MAIN
ALGORITHM

156 | Chapter 3: Input/Output

Read the student name and the five test scores.
Output the student name and the five test scores.

Calculate the average.

=

Output the average.

You output the average test score in the fixed decimal format with two decimal places.

The program needs to read a student’s first and last name and five test scores. Therefore, you
need two variables to store the student name and five variables to store the five test scores.

To find the average, you must add the five test scores and then divide the sum by 5.
Thus, you need a variable to store the average test score. Furthermore, because the
input data is in a file, you need an ifstream variable to open the input file. Because
the program output will be stored in a file, you need an ofstream variable to open
the output file. The program, therefore, needs at least the following variables:

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double testl, test2, test3, test4d4, testb5; //variables to
//read the five test scores

double average; //variable to store the average test score
string firstName; //variable to store the first name
string lastName; //variable to store the last name

In the preceding sections, we analyzed the problem and determined the formulas to
perform the calculations. We also determined the necessary variables and named
constants. We can now expand the previous algorithm to solve the problem given at
the beginning of this programming example:

1. Declare the variables.

2. Open the input file.
3. Open the output file.
4

To output the floating-point numbers in a fixed decimal format
with a decimal point and trailing zeros, set the manipulators £ixed
and showpoint. Also, to output the floating-point numbers with
two decimal places, set the precision to two decimal places.

Read the student name.
Output the student name.
Read the five test scores.
Output the five test scores.
Find the average test score.

Output the average test score.

(RN
= O 0 © N o wu

Close the input and output files.

Programming Example: Student Grade | 157

Because this program reads data from a file and outputs data to a file, it must include
the header file £stream. Because the program outputs the average test score to two
decimal places, you need to set the precision to two decimal places. Therefore, the
program uses the manipulator setprecision, which requires you to include the
header file iomanip. Because firstName and lastName are string variables,
we must include the header file string. The program also includes the header file
iostream to print a message on the screen so that you will not stare at a blank screen
while the program executes.

COMPLETE PROGRAM LISTING

//*****-k****-k***
// Author: D.S. Malik

//

// Program to calculate the average test score.

// Given a student's name and five test scores, this program
// calculates the average test score. The student's name, the
// five test scores, and the average test score is stored in
// the file testavg.out. The data is input from the file

// test.txt.
//**

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

int main ()
{
//Declare variables; Step 1
ifstream inFile;
ofstream outFile;

double testl, test2, test3, test4, testb5;
double average;

string firstName;
string lastName;

inFile.open ("test.txt"); //Step 2
outFile.open ("testavg.out") ; //Step 3
outFile << fixed << showpoint; //Step 4
outFile << setprecision (2); //Step 4

cout << "Processing data" << endl;

158 | Chapter 3: Input/Output

inFile >> firstName >> lastName; //Step 5
outFile << "Student name: " << firstName
<< " " << lastName << endl; //Step 6

inFile >> testl >> test2 >> test3

>> testd >> testh; //Step 7
outFile << "Test scores: " << setw(6) << testl

<< setw(6) << test2 << setw(6) << test3

<< setw(6) << testd << setw(6) << testh

<< endl; //Step 8
average = (testl + test2 + test3 + test4
+ test5) / 5.0; //Step 9
outFile << "Average test score: " << setw(6)
<< average << endl; //Step 10
inFile.close () ; //Step 11
outFile.close(); //Step 11

return 0;

}

Sample Run

Input File (contents of the file test.txt):
Andrew Miller 87.50 89 65.75 37 98.50
Output File (contents of the file testavg.out):

Student name: Andrew Miller
Test scores: 87.50 89.00 65.75 37.00 98.50
Average test score: 75.55

The preceding program uses five variables—testl, test2, test3, test4,
and test5—to read the five test scores and then find the average test score.
The Web site accompanying this book contains a modified version of this program
that uses only one variable, testScore, to read the test scores and another
variable, sum, to find the sum of the test scores. The program is named

Ch3 AverageTestScoreVersion2.cpp.

QUICK REVIEW

1. A stream in C++ is an infinite sequence of characters from a source to a
destination.

2. An input stream is a stream from a source to a computer.

3. An output stream is a stream from a computer to a destination.

10.

11.
12.

13.

14,

15.

16.

17.

18.

19.

20.

Quick Review

cin, which stands for common input, is an input stream object, typically
initialized to the standard input device, which is the keyboard.

cout, which stands for common output, is an output stream object,
typically initialized to the standard output device, which is the screen.

When the binary operator >> is used with an input stream object, such as
cin, it is called the stream extraction operator. The left-side operand of >>
must be an input stream variable, such as cin; the right-side operand must
be a variable.

When the binary operator << is used with an output stream object, such as
cout, it is called the stream insertion operator. The left-side operand of <<
must be an output stream variable, such as cout; the right-side operand of
<< must be an expression or a manipulator.

When inputting data into a variable, the operator >> skips all leading
whitespace characters.

To use cin and cout, the program must include the header file
iostream.

The function get is used to read data on a character-by-character basis and
does not skip any whitespace characters.

The function ignore is used to skip data in a line.

The function putback puts the last character retrieved by the function
get back into the input stream.

The function peek returns the next character from the input stream but
does not remove the character from the input stream.

Attempting to read invalid data into a variable causes the input stream to
enter the fail state.

Once an input failure has occurred, you use the function clear to restore
the input stream to a working state.

The manipulator setprecision formats the output of floating-point
numbers to a specified number of decimal places.

The manipulator fixed outputs floating-point numbers in the fixed
decimal format.

The manipulator showpoint outputs floating-point numbers with a
decimal point and trailing zeros.

The manipulator setw formats the output of an expression in a specific
number of columns; the default output is right-justified.

If the number of columns specified in the argument of setw is less than the
number of columns needed to print the value of the expression, the output
is not truncated and the output of the expression expands to the required
number of columns.

159

160

21.

22,

23.

24,

25.

26.

27.

| Chapter 3: Input/Output

The manipulator set£il1 is used to fill the unused columns on an output
device with a character other than a space.

If the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the output is right-
justified. To left-justify the output, you use the manipulator left.

To use the stream functions get, ignore, putback, peek, clear, and
unsetf for standard I/0, the program must include the header file
iostream.

To use the manipulators setprecision, setw, and set£ill, the program
must include the header file iomanip.

The header file fstream contains the definitions of ifstream and
ofstream.

For file 170, you must use the statement #include <fstream> to
include the header file £stream in the program. You must also do the
following: declare variables of type ifstream for file input and of type
ofstream for file output; use open statements to open input and output
files; and use <<, >>, get, ignore, peek, putback, or clear with file
stream variables.

To close a file as indicated by the ifstream variable inFile, you use the
statement inFile.close () ;. To close a file as indicated by the ofstream
variable outFile, you use the statement outFile.close () ;.

EXERCISES

Mark the following statements as true or false.

a. The extraction operator >> skips all leading whitespace characters when
searching for the next data in the input stream.

b. In the statement cin >> x;, x must be a variable.

c. The statement cin >> x >> y; requires the input values for x and y to
appear on the same line.

d. Thestatement cin >> num; isequivalent to the statement num >> cin;.

e. You generate the newline character by pressing the Enter (return) key
on the keyboard.

. The function ignore is used to skip certain input in a line.

Suppose x and y are int variables and ch is a char variable. Consider the
following input:

5 28 36

Exercises

What value (if any) is assigned to x, y, and ch after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y >> ch;
h. cin >> ch >> x >> vy;
c. cin >> x >> ch >> y;

d. cin >> x >> y;
cin.get (ch);

Suppose x and y are int variables and z is a double variable. Assume the
following input data:

37 86.56 32

What value (if any) is assigned to x, y, and z after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y >> z;
h. cin >> x >> z >> y;

c. cin >> z >> x >> y;

Suppose x and y are int variables and ch is a char variable. Assume the
following input data:

13 28 D
14 E 98
A B 56

What value (if any) is assigned to x, y, and ch after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y;
cin.ignore (50, "\n');
cin >> ch;

bh. cin >> x;
cin.ignore (50, "\n');
cin >> vy;
cin.ignore (50, "\n');
cin.get (ch):;

c. cin >> y;
cin.ignore (50, '\n'");
cin >> x >> ch;

d. cin.get(ch);
cin.ignore (50, "\n');
cin >> x;
cin.ignore (50, 'E');
cin >> y;

161

162

| Chapter 3: Input/Output

Given the input:
46 A 49

and the C++ code:

int x = 10, y = 18;

char z = '"A';

cin >> x >> y >> z;

cout << x << " " KL y << " oz;

What is the output?

Write a C++ statement that uses the manipulator set£ill to output a line
containing 35 stars, as in the following line:

*hkhkkhkkhkhhkhkhkhkhkhkhhkhhkhrhkhrkhkhkkhkhkhhkhhhhkhkhk

Suppose that age is an int variable and name is a string variable.
What are the values of age and name after the following input statements
execute?

cin >> age;
getline (cin, name);

if the input is:
a. 35 Mickey Balto

h. 35
Mickey Balto

Suppose that age is an int variable, ch is a char variable, and name is a
string variable. What are the values of age and name after the following
input statements execute?

cin >> age;

cin.get (ch);

getline (cin, name);

if the input is:
a. 35 Mickey Balto

bh. 35
Mickey Balto

The following program is supposed to read two numbers from a file named
input.dat, and write the sum of the numbers to a file named
output.dat. However, it fails to do so. Rewrite the program so that
it accomplishes what it is intended to do. (Also, include statements to close

the files.)

#include <iostream>
#include <fstream>
using namespace std;

10.

11.

Programming Exercises

int main()

{

}

int numl, num?2;
ifstream infile;

outfile.open ("output.dat");

infile >> numl >> num2;

outfile << "Sum = " << numl + num2 << endl;
return 0;

What may cause an input stream to enter the fail state? What happens when
an input stream enters the fail state?

A program reads data from a file called inputFile.dat and, after doing
some calculations, writes the results to a file called outFile.dat. Answer
the following questions:

a.

After the program executes, what are the contents of the file
inputFile.dat?

After the program executes, what are the contents of the file
outFile.dat if this file was empty before the program executed?

After the program executes, what are the contents of the file
outFile.dat if this file contained 100 numbers before the pro-
gram executed?

‘What would happen if the file outFile.dat did not exist before the
program executed?

PROGRAMMING EXERCISES

163

1. Consider the following incomplete C++ program:

#include <iostream>

int main ()

{
}

Write a statement that includes the header files f£stream, string, and
iomanip in this program.

Worite statements that declare inFile to be an ifstream variable and
outFile to be an ofstream variable.

The program will read data from the file inData.txt and write output
to the file outData.txt. Write statements to open both these files,
associate inFile with inData.txt, and associate outFile with
outData.txt.

164 | Chapter 3: Input/Output

d. Suppose that the file inData.txt contains the following data:

10.20 5.35
15.6

Randy Gill 31
18500 3.5

A

The numbers in the first line represent the length and width, respectively, of
a rectangle. The number in the second line represents the radius of a circle.
The third line contains the first name, last name, and the age of a person.
The first number in the fourth line is the savings account balance at the
beginning of the month and the second number is the interest rate per year.
(Assume that T = 3.1416.) The fifth line contains an uppercase letter
between A and Y (inclusive). Write statements so that after the program
executes, the contents of the file outData.txt are as shown below. If
necessary, declare additional variables. Your statements should be general
enough so that if the content of the input file changes and the program is run
again (without editing and recompiling), it outputs the appropriate results.

Rectangle:
Length = 10.20, width = 5.35, area = 54.57, parameter = 31.10

Circle:
Radius = 15.60, area = 764.54, circumference

98.02

Name: Randy Gill, age: 31
Beginning balance = $18500.00, interest rate = 3.50
Balance at the end of the month = $18553.96

The character that comes after A in the ASCII set is B
e. Write statements that close the input and output files.
. Write a C++ program that tests the statements in parts a through e.
2. Write a program that prompts the user to enter a decimal number and then
outputs this number rounded to two decimal places.

3. The manager of a football stadium wants you to write a program that
calculates the total ticket sales after each game. There are four types of
tickets—box, sideline, premium, and general admission. After each game,
data is stored in a file in the following form:

ticketPrice numberOfTicketsSold

Sample data are shown below:

250 5750
100 28000
50 35750
25 18750

Programming Exercises | 165

The first line indicates that the ticket price is $250 and that 5750 tickets were
sold at that price. Output the number of tickets sold and the total sale amount.
Format your output with two decimal places.

Worite a program that calculates and prints the monthly paycheck for an
employee. The net pay is calculated after taking the following deductions:

Federal Income Tax: 15%
State Tax: 3.5%

Social Security Tax: 5.75%
Medicare/Medicaid Tax: 2.75%
Pension Plan: 5%

Health Insurance: $75.00

Your program should prompt the user to input the gross amount and the
employee name. The output will be stored in a file. Format your output to
have two decimal places. A sample output follows:

Bill Robinson

Gross AmMOUNt: «eveeeeesons $3575.00
Federal Tax: ...eeeeeeenenn S 536.25
State Tax: v.veeveeeneeans $ 125.13
Social Security Tax: $ 205.56
Medicare/Medicaid Tax: ... $ 98.31
Pension Plan: $ 178.75
Health Insurance: $ 75.00
Net PAy: veveeeeeeeeeeanns $2356.00

Note that the first column is left-justified, and the right column is right-
justified.

Redo Programming Exercise 22, in Chapter 2, so that each string can store a
line of text.

Three employees in a company are up for a special pay increase. You are
given a file, say Ch3 Exé6Data.txt, with the following data:

Miller Andrew 65789.87 5
Green Sheila 75892.56 6
Sethi Amit 74900.50 6.1

Each input line consists of an employee’s last name, first name, current salary,
and percent pay increase. For example, in the first input line, the last name of the
employee isMiller, the first name is Andrew, the current salary is 65789 .87,
and pay increase is 5%. Write a program that reads data from the specified file
and stores the output in the file Ch3 _Ex60utput.dat. For each employee,
the data must be output in the following form: firstName lastName
updatedSalary. Format the output of decimal numbers to two decimal
places.

166

| Chapter 3: Input/Output

Write a program that accepts as input the mass, in grams, and density, in
grams per cubic centimeters, and outputs the volume of the object using the
formula: density = mass / volume. Format your output to two decimal places.

Interest on a credit’s card unpaid balance 1s calculated using the average daily
balance. Suppose that netBalance is the balance shown in the bill, payment is the
payment made, d1 is the number of days in the billing cycle, and d2 is the
number of days payment is made before billing cycle. Then the average daily
balance is:

averageDailyBalance = (netBalance* d1 — payment * d2)/d1

If the interest rate per month is say, 0.0152, then the interest on the
unpaid balance is:

interest = averageDailyBalance * 0.0152
Write a program that accepts as input netBalance, payment, d1, d2, and

interest rate per month. The program outputs the interest. Format your
output to two decimal places.

En—
—
——]
P
i
-

-

)

)
1

CONTROL STRUCTURES |
(SELECTION)

IN THIS CHAPTER, YOU WILL:

Learn about control structures
Examine relational and logical operators
Explore how to form and evaluate logical (Boolean) expressions

Discover how to use the selection control structures if,
if...else, and switch in a program

Learn to use the assert function to terminate a program

168 | Chapter 4: Control Structures | (Selection)

Chapter 2 defined a program as a sequence of statements whose objective is to
accomplish some task. The programs you have examined so far were simple
and straightforward. To process a program, the computer begins at the first exe-
cutable statement and executes the statements in order until it comes to the end.
In this chapter and Chapter 5, you will learn how to tell a computer that it does
not have to follow a simple sequential order of statements; it can also make
decisions and repeat certain statements over and over until certain conditions
are met.

Control Structures

A computer can process a program in one of the following ways: in sequence; selectively,
by making a choice, which is also called a branch; repetitively, by executing a statement
over and over, using a structure called a loop; or by calling a function. Figure 4-1
illustrates the first three types of program flow. (In Chapter 7, we will show how function
calls work.) The programming examples in Chapters 2 and 3 included simple sequential
programs. With such a program, the computer starts at the beginning and follows the
statements in order. No choices are made; there is no repetition. Control structures
provide alternatives to sequential program execution and are used to alter the sequential
flow of execution. The two most common control structures are selection and repetition.
In selection, the program executes particular statements depending on some condition(s).
In repetition, the program repeats particular statements a certain number of times based on
some condition(s).

statementl l
‘ —false —— true —
statement? —true M statement |
[

statement2 statement1 false
\

?
|

!
i

?‘
|
®

a. Sequence b. Selection c. Repetition

FIGURE 4-1 Flow of execution

Relational Operators | 169

Before you can learn about selection and repetition, you must understand the nature
of conditional statements and how to use them. Consider the following three
statements:

1. if (score is greater than or equal to 90)
grade is A

2. if (hours worked are less than or equal to 40)
wages = rate * hours
otherwise
wages = (rate * 40) +1.5 * (rate * (hours — 40))

3. if (temperature is greater than 70 degrees and it is not
raining)
Go golfing!

These statements are examples of conditional statements. You can see that certain
statements are to be executed only if certain conditions are met. A condition is met if
it evaluates to true. For example, in statement 1:

score is greater than or equal to 90

is true if the value of score is greater than or equal to 90; it is false otherwise. For
example, if the value of score is 95, the statement evaluates to true. Similarly, if the
value of score is 86, the statement evaluates to false.

It would be useful if the computer could recognize these types of statements to be true
for appropriate values. Furthermore, in certain situations, the truth or falsity of a
statement could depend on more than one condition. For example, in statement 3, both
temperature is greater than 70 degrees and it is not raining must be true
to recommend golfing.

As you can see, for the computer to make decisions and repeat statements, it must be able
to react to conditions that exist when the program executes. The next few sections discuss
how to represent and evaluate conditional statements in C++.

Relational Operators

To make decisions, you must be able to express conditions and make comparisons. For
example, the interest rate and service charges on a checking account might depend on the
balance at the end of the month. If the balance is less than some minimum balance, not
only is the interest rate lower, but there is also usually a service charge. Therefore, to
determine the interest rate, you must be able to state the minimum balance (a condition)
and compare the account balance with the minimum balance. The premium on an
insurance policy is also determined by stating conditions and making comparisons. For
example, to determine an insurance premium, you must be able to check the smoking
status of the policyholder. Nonsmokers (the condition) receive lower premiums than

170 | Chapter 4: Control Structures | (Selection)

smokers. Both of these examples involve comparing items. Certain items are compared
for equality against a particular condition; others are compared for inequality (greater than
or less than) against a particular condition.

In C++, a condition is represented by a logical (Boolean) expression. An expression that
has a value of either true or false is called a logical (Boolean) expression. More-
over, true and false are logical (Boolean) values. Suppose i and j are integers.
Consider the expression:

1>
If this expression is a logical expression, it will have the value true if the value of
i is greater than the value of j; otherwise, it will have the value false. The

symbol > is called a relational operator. A relational operator allows you to make
comparisons in a program.

C++ includes six relational operators that allow you to state conditions and make
comparisons. Table 4-1 lists the relational operators.

TABLE 4-1 Relational Operators in C++

== equal to

I= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

NOTE In C++, the symbol ==, which consists of two equal signs, is called the equality operator.

Recall that the symbol = is called the assignment operator. Remember that the equality
operator, ==, determines whether two expressions are equal, whereas the assignment

operator, =, assigns the value of an expression to a variable.

Each of the relational operators is a binary operator; that is, it requires two operands.
Because the result of a comparison is true or false, expressions using these operators
evaluate to true or false.

Relational Operators | 171

Relational Operators and Simple Data Types

You can use the relational operators with all three simple data types. For example, the
following expressions use both integers and real numbers:

Expression Meaning Value
8 < 15 8 is less than 15 true
6 !'=6 6 is not equal to 6 false
2.5 > 5.8 2.5 is greater than 5.8 false
5.9 <= 7.5 5.9 is less than or equal to 7.5 true

Comparing Floating-point Numbers for Equality

Comparison of floating-point numbers for equality may not behave as you would expect;
see Example 4-1.

EXAMPLE 4-1

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{
cout << fixed << showpoint << setprecision(17);

cout << "3.0 / 7.0 = " << (3.0 / 7.0) << endl;
cout << "2.0 / 7.0 = " << (2.0 / 7.0) << endl;
cout << "3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 ="
<< (3.0 / 7.0 + 2.0/ 7.0+ 2.0 / 7.0) << endl;

return 0;

}

Sample Run:

3.0 / 7.0 = 0.42857142857142855

2.0 / 7.0 = 0.28571428571428570

3.0/ 7.0+ 2.0/ 7.0+ 2.0/ 7.0 =0.99999999999999989

From the output, it follows that the following equality would evaluate to false.
1.0 =3.0/ 7.0+ 2.0/ 7.0+ 2.0/ 7.0
The preceding program and its output show that you should be careful when comparing

floating-point numbers for equality. One way to check whether two floating-point numbers
are equal 1s to check whether the absolute value of their difference is less than a certain

172 | Chapter 4: Control Structures | (Selection)

tolerance. For example, suppose x and y are floating-point numbers and the tolerance is
0.000001. Then x and y are equal if the absolute value of (x — y) isless than 0.000001. To
find the absolute value, you can use the function fabs of the header file cmath. For example,
the expression fabs (x — y) gives the absolute value of x — y. Therefore, the expression
fabs(x — y) < 0.000001 determines whether the absolute value of (x — y) is less than
0.000001. See the program Example 4-1A. cpp at the Web site accompanying this book.

Comparing Characters

For char values, whether an expression using relational operators evaluates to true or
false depends on a machine’s collating sequence. Table 4-2 shows how expressions
using the ASCII data set are evaluated.

TABLE 4-2 Evaluating Expressions Using Relational Operators and the ASCII Collating

Sequence

The ASCII value of ' ' is 32, and the ASCII value of
'a'is 97.

L} \l 1 \l

S 24 Because 32 < 97 is true, it follows that ' ' <

'a' is true.
The ASCII value of "R"' is 82, and the ASCII value of

'R' > 'T! false b,
Because 82 > 84 is false, it follows that "R"'" >
'T' is false.
The ASCII value of "+"' is 43, and the ASCII value of

THT < TR false N
Because 43 < 42 is false, it follows that "+' <
'* ' js false.
The ASCII value of "6" is 54, and the ASCII value of
L} L

'6'<=">" true > 15 B2,

Because 54 <= 62 is true, it follows that "6"'
<= '>' s true.

Comparing values of different data types may produce unpredictable results. For example,
the following expression compares an integer and a character:

8 < '57

In this expression, on a particular machine, 8 would be compared with the collating
sequence of '5', which is 53. That is, 8 is compared with 53, which makes this
particular expression evaluate to true.

Relational Operators | 173

Expressions such as 4 < 6 and 'R' > 'T"' are examples of logical (Boolean) expres-
sions. When C++ evaluates a logical expression, it returns an integer value of 1 if the
logical expression evaluates to true; it returns an integer value of 0 otherwise. In C++,
any nonzero value is treated as true.

NOTE Chapter 2 introduced the data type bool. Recall that the data type bool has two values,
true and false. In C++, true and £alse are reserved words. The identifier true is set
to 1, and the identifier false is set to 0. For readability, whenever logical expressions are

used, the identifiers true and £alse will be used here as the value of the logical expression.

Relational Operators and the string Type
The relational operators can be applied to variables of type string. Variables of type

string are compared character-by-character, starting with the first character and using
the ASCII collating sequence. The character-by-character comparison continues until
either a mismatch is found or the last characters have been compared and are equal.
Consider the following declarations:

string strl
string str2
string str3
string str4
string str5

"Hello";
llHi";
"Air";
"Bill";
"Big";

Using these variable declarations, Table 4-3 shows how various logical expressions are evaluated.

TABLE 4-3 Evaluating Logical Expressions with string Variables

strl = "Hello" and str2 = "Hi". The
first characters of strl and str2 are the same,

strl < str2 true but the second character 'e' of strl is less

strl >

str3 <

than the second character '1' of str2.
Therefore, strl < str2is true.

strl = "Hello". The first two characters of
strl and "Hen" are the same, but the third

"Hen" false character '1"' of strl is less than the third

character 'n"' of "Hen". Therefore, strl >
"Hen" is false.

str3 = "Air". The first characters of str3
and "An'" are the same, but the second character

"An" true 'i' of "Air" is less than the second character

'n' of "An". Therefore, str3 < "An" is
true.

174 | Chapter 4: Control Structures | (Selection)

TABLE 4-3 Evaluating Logical Expressions with string Variables (continued)

strl = "Hello". The first character 'H' of
strl is less than the first character 'h' of

strl =="hello" false "hello" because the ASCIl value of "H' is 72,
and the ASCII value of "h' is 104. Therefore,
strl == "hello" is false.

str3 = "Air" and str4 = "Bill".
The first character "A" of str3 is less than
the first character 'B' of str4. Therefore,
str3 <= str4 is true.

str3 <= str4 true

str2 = "Hi" and str4 = "Bill". The
first character "H' of str2 is greater than
the first character 'B' of str4. Therefore,
str2 > str4is true.

str2 > stré true

If two strings of different lengths are compared and the character-by-character compar-
ison is equal until it reaches the last character of the shorter string, the shorter string is
evaluated as less than the larger string. For example:

TABLE 4-4 Evaluating Logical Expressions with string Variables

str4 = "Bill". It has four characters and
"Billy" has five characters. Therefore, str4
is the shorter string. All four characters of str4

strd >= "Billy" false are the same as the corresponding first four
characters of "Billy", and "Billy" is the
larger string. Therefore, str4 >= "Billy"
is false.

str5 = "Big". It has three characters and
"Bigger" has six characters. Therefore,
strb5 is the shorter string. All three characters

str5 <= "Bigger" true of str5 are the same as the corresponding first
three characters of "Bigger", and
"Bigger" is the larger string. Therefore,
str5 <= "Bigger" is true.

Logical (Boolean) Operators and Logical Expressions | 175

Logical (Boolean) Operators and Logical Expressions

This section describes how to form and evaluate logical expressions that are combi-
nations of other logical expressions. Logical (Boolean) operators cnable you to
combine logical expressions. C++ has three logical (Boolean) operators, as shown in
Table 4-5.

TABLE 4-5 Logical (Boolean) Operators in C++

1 not

&& and

I or

Logical operators take only logical values as operands and yield only logical values as
results. The operator ! is unary, so it has only one operand. The operators && and | | are
binary operators. Tables 4-6, 4-7, and 4-8 define these operators.

Table 4-6 defines the operator ! (not). When you use the ! operator, ! true is false
and ! false is true. Putting ! in front of a logical expression reverses the value of that
logical expression.

TABLE 4-6 The ! (Not) Operator

true (nonzero) false (0)
false (0) true (1)
EXAMPLE 4-2
Expression Value Explanation
'('A'" > 'B'") true Because "A' > 'B'isfalse,! ('"A' > 'B') 1strue.

(6 <= 17) false Because 6 <= 7 1is true, ! (6 <= 7) 1s false.

176 | Chapter 4: Control Structures | (Selection)

Table 4-7 defines the operator && (and). From this table, it follows that
Expressionl && Expression2 is true if and only if both Expressionl and
Expression2 are true; otherwise, Expressionl && Expression2 evaluates to
false.

TABLE 4-7 The && (And) Operator

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) false (0)

false (0) true (nonzero) false (0)

false (0) false (0) false (0)
Expression Value Explanation
(14 >= 5) && ('A' < 'B') true Because (14 >= 5) is true,

('"A'" < 'B') is true, and true &&
true is true, the expression evaluates
to true.

Because (24 >= 35) is false,

('A' < '"B') is true, and false &&
true is false, the expression evaluates
to false.

(24 >= 35) && ('A' < 'B'") false

Table 4-8 defines the operator || (or). From this table, it follows that
Expressionl || Expression2 is true if and only if at least one of the expressions,
Expressionl or Expression2, is true; otherwise, Expressionl || Expression2
evaluates to false.

TABLE 4-8 The | | (Or) Operator

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) true (1)

Logical (Boolean) Operators and Logical Expressions | 177

TABLE 4-8 The || (Or) Operator (continued)

false (0) true (nonzero) true (1)
false (0) false (0) false (0)
EXAMPLE 4-4
Expression Value Explanation

Because (14 >= 5) is true,

('"A'" > '"B') is false, and true | |
false is true, the expression evaluates
to true.

Because (24 >= 35) is false,

('A'" > 'B') is false, and false ||
false is false, the expression evaluates
to false.

('"A'<="a") || (7!'=7) true Because ('A' <= 'a') is true,

(7 '= 7) is false, and true || false
is true, the expression evaluates to true.

(14>=5) || ("TA'"> 'B") true

(24>=35) || ("A'">'B") false

Order of Precedence
Complex logical expressions can be difficult to evaluate. Consider the following logical
expression:

11 > 5 || 6 < 15 && 7 >= 8

This logical expression yields different results, depending on whether | | or && 1s evaluated
first. If | | is evaluated first, the expression evaluates to false. If && is evaluated first, the
expression evaluates to true.

An expression might contain arithmetic, relational, and logical operators, as in the expression:
5+ 3<=94&&2>3

To work with complex logical expressions, there must be some priority scheme for
evaluating operators. Table 4-9 shows the order of precedence of some C++ operators,
including the arithmetic, relational, and logical operators. (See Appendix B for the
precedence of all C++ operators.)

178 | Chapter 4: Control Structures | (Selection)

TABLE 4-9 Precedence of Operators

!, 4+, = (unary operators) first

ER second
Py = third
<, <=,>=> fourth
==, I= fifth
&& sixth
|| seventh
= (assignment operator) last

NOTE InC++, & and | are also operators. The meaning of these operators is different from the
/ meaning of && and | |. Using & in place of && or | in place of | | —as might result from
a typographical error—would produce very strange results.

Using the precedence rules in an expression, relational and logical operators are evaluated
from left to right. Because relational and logical operators are evaluated from left to right,
the associativity of these operators is said to be from left to right.

Example 4-5 illustrates how logical expressions consisting of variables are evaluated.

EXAMPLE 4-5

Suppose you have the following declarations:

bool found = true;
bool flag = false;
int num = 1;
double x = 5.2;
double y = 3.4;
b =

int a = 8;

Logical (Boolean) Operators and Logical Expressions | 179

Consider the following expressions:

Expression Value Explanation
! found false Because found is true, ! found is false.
x> 4.0 true Because xis 5.2 and 5.2 > 4.0 is true,

the expression x > 4.0 evaluates to true.

!'num false Because num is 1, which is nonzero, num is
true andso !'numis false.

'found && (x >= 0) false In this expression, ! found is false. Also,
because xis 5.2 and 5.2 >= 0 is true,
x >= 0 is true. Therefore, the value of the
expression ! found && (x >= 0) is false
&& true, which evaluates to false.

'(found && (x >= 0)) false In this expression, found && (x >= 0) is
true && true, which evaluates to true.
Therefore, the value of the expression
! (found && (x >= 0)) is !true, which
evaluates to false.

x+y<=20.5 true Becausex + vy = 5.2 + 3.4 = 8.6 and
8.6 <= 20.5, it follows that x + y <=
20.5 evaluates to true.

(n>=0) && (n<=100) true Here n is 20. Because 20 >= 0 is true,
n >= 0is true. Also, because 20 <= 100 is
true, n <= 100 is true. Therefore, the value
of the expression (n >= 0) && (n <= 100)
is true && true, which evaluates to true.

('"A'"<=ch && ch<="72") true In this expression, the value of ch is "B"'.
Because 'A' <= 'B' is true, 'A' <= ch
evaluates to true. Also, because 'B' <= 'Z"'
is true, ch <= 'Z' evaluates to true.

Therefore, the value of the expression
('"A'" <= ch && ch <= '"Z") is true
&& true, which evaluates to true.

(a + 2 <= Db) && !flag true Nowa + 2 =5+ 2 = 7andbis 8.
Because 7 <= 8 is true, the expression
a + 2 <= Db evaluates to true. Also, because
flagis false, ! flag is true. Therefore,
the value of the expression (a + 2 <= Db)
&& !flagis true && true, which
evaluates to true.

You can also write a C++ program to evaluate the logical expressions given in Example
4-5, as shown in Example 4-6.

180 | Chapter 4: Control Structures | (Selection)

EXAMPLE 4-6

The following program evaluates and outputs the values of the logical expressions given in
Example 4-5. Note that if a logical expression evaluates to true, the corresponding output
is 1; if the logical expression evaluates to false, the corresponding output is 0, as shown in
the output at the end of the program. (Recall that if the value of a logical expression is true,
it evaluates to 1, and if the value of the logical expression is false, it evaluates to 0.)

//Chapter 4 Logical operators
#include <iostream>
using namespace std;

int main()
{
bool found = true ;
bool flag = false ;
int num = 1;
double x = 5.2;
double y = 3.4;
int a =5, b =
int n = 2
char ch =

I; 8;
0;
'B’;

cout << "Line 1: !found evaluates to "

<< !found << endl; //Line 1
cout << "Line 2: x > 4.0 evaluates to "

<< (x > 4.0) << endl; //Line 2
cout << "Line 3: !num evaluates to "

<< !num << endl; //Line 3
cout << "Line 4: !found && (x >= 0) evaluates to "

<< (!found && (x >= 0)) << endl; //Line 4
cout << "Line 5: ! (found && (x >= 0)) evaluates to "

<< (! (found && (x >= 0))) << endl; //Line 5
cout << "Line 6: x + y <= 20.5 evaluates to "

<< (x + y <= 20.5) << endl; //Line 6
cout << "Line 7: (n >= 0) && (n <= 100) evaluates to "

<< ((n >= 0) && (n <= 100)) << endl; //Line 7
cout << "Line 8: ('A' <= ch && ch <= '"2'") evaluates to "

<< ('A' <= ch && ch <= 'Z'") << endl; //Line 8
cout << "Line 9: (a + 2 <= D) && !flag evaluates to "

<< ((a + 2 <= Db) && !flag) << endl; //Line 9

return 0;

Sample Run:

Line 1: !found evaluates to 0
Line 2: x > 4.0 evaluates to 1

Logical (Boolean) Operators and Logical Expressions | 181

Line 3: !num evaluates to O

Line 4: !found && (x >= 0) evaluates to 0

Line 5: ! (found && (x >= 0)) evaluates to 0
Line 6: x + y <= 20.5 evaluates to 1

Line 7: (n >= 0) && (n <= 100) evaluates to 1
Line 8: ('A' <= ch && ch <= "Z'") evaluates to 1
Line 9: (a + 2 <= b) && !flag evaluates to 1

You can insert parentheses into an expression to clarify its meaning. You can also use
parentheses to override the precedence of operators. Using the standard order of pre-
cedence, the expression:

11 > 5 || 6 < 15 && 7 >= 8

is equivalent to:

11 > 5 || (6 < 15 && 7 >= 8)

In this expression, 11 > 5 is true, 6 < 15 is true, and 7 >= 8 is false. Substitute these
values in the expression 11> 5 || (6< 15 && 7>=8) to get true || (true && false)
= true || false = true. Therefore, the expression 11 > 5 || (6 < 15 && 7 >= 8)
evaluates to true.

EXAMPLE 4-7

Evaluate the following expression:

(17 < 4 * 3 +5) || (8 * 2==4*4) §& !(3 + 3 == 6)
Now,
(17< 4 * 3 +5) || (8* 2==14*4) g& !'(3 + 3 == 06)
= (17 < 12 + 5) || (16 == 16) && ! (6 == 6)
= (17 < 17) || true ¢&& ! (true)
= false || true && false
= false || false (Because true && false 1is false)
= false

Therefore, the value of the original logical expression is false—that is, 0.

Short-Circuit Evaluation

Logical expressions in C++ are evaluated using a highly efficient algorithm. This algo-
rithm is illustrated with the help of the following statements:

(x> y) Il (x==275) //Line 1
(a == b) && (x >=T7) //Line 2

182 | Chapter 4: Control Structures | (Selection)

In the statement in Line 1, the two operands of the operator | | are the expressions
(x > y) and (x == 5). This expression evaluates to true if either the operand
(x> y) is true or the operand (x == 5) is true. With short-circuit evaluation, the
computer evaluates the logical expression from left to right. As soon as the value of
the entire logical expression is known, the evaluation stops. For example, in state-
ment 1, if the operand (x > y) evaluates to true, then the entire expression
evaluates to true because true || true is true and true || false is true.
Therefore, the value of the operand (x == 5) has no bearing on the final outcome.

Similarly, in the statement in Line 2, the two operands of the operator && are (a == b)
and (x >= 7). If the operand (a == b) evaluates to false, then the entire
expression evaluates to false because false && true is false and false &&
false is false.

Short-circuit evaluation (of a logical expression): A process in which the computer
evaluates a logical expression from left to right and stops as soon as the value of the
expression is known.

EXAMPLE 4-8

Consider the following expressions:

(age >= 21) || (x == 5) //Line 1
(grade == 'A') && (x >= T) //Line 2

For the expression in Line 1, suppose that the value of age is 25. Because (25 >=21) is
true and the logical operator used in the expression is | |, the expression evaluates to
true. Due to short-circuit evaluation, the computer does not evaluate the expression
(x == 5) . Similarly, for the expression in Line 2, suppose that the value of grade is 'B".
Because ('B' == 'A'") is false and the logical operator used in the expression is &&,
the expression evaluates to false. The computer does not evaluate (x >= 7).

In C++, logical (Boolean) expressions can be manipulated or processed in either of two
ways: by using int variables or by using bool variables. The following sections describe
these methods.

int Data Type and Logical (Boolean) Expressions

Earlier versions of C++ did not provide built-in data types that had logical (or
Boolean) values true and false. Because logical expressions evaluate to either
1 or 0, the value of a logical expression was stored in a variable of the data type
int. Therefore, you can use the int data type to manipulate logical (Boolean)
expressions.

Logical (Boolean) Operators and Logical Expressions | 183

Recall that nonzero values are treated as true. Now, consider the declarations:

int legalAge;
int age;

and the assignment statement:
legalAge = 21;

If you regard legalAge as a logical variable, the value of legalAge assigned by this
statement is true.

The assignment statement:
legalAge = (age >= 21);

assigns the value 1 to legalAge if the value of age is greater than or equal to 21. The
statement assigns the value 0 if the value of age is less than 21.

bool Data Type and Logical (Boolean) Expressions

More recent versions of C++ contain a built-in data type, bool, that has the logical
(Boolean) values true and false. Therefore, you can manipulate logical (Boolean)
expressions using the bool data type. Recall that in C++, bool, true, and false are
reserved words. In addition, the identifier true has the value 1, and the identifier false
has the value 0. Now consider the following declaration:

bool legalAge;
int age;

The statement:

legalAge = true;

sets the value of the variable legalAge to true. The statement:
legalAge = (age >= 21);

assigns the value true to legalAge if the value of age is greater than or equal to 21.
This statement assigns the value false to legalAge if the value of age is less than
21. For example, if the value of age is 25, the value assigned to legalAge is true—
that is, 1. Similarly, if the value of age is 16, the value assigned to legalAge is
false—that is, 0.

NOTE You can use either an int variable or a bool variable to store the value of a logical
expression. For the purpose of clarity, this book uses bool variables to store the values of
logical expressions.

Sometimes logical expressions do not behave as you might expect. Suppose, for
example, that num is an int variable. Further suppose that you want to write a logical

184 | Chapter 4: Control Structures | (Selection)

expression that evaluates to true if the value of num is between 0 and 10, including 0
and 10, and that evaluates to false otherwise. The following expression appears to
represent a comparison of 0, num, and 10 that will yield the desired result:

0 <= num <= 10

Although this statement is a legal C++ expression, you will not get the desired result.
Let us evaluate this expression for certain values of num. Suppose that num = 5.
Then:

0 <= num <= 10
0 <=5<=10

(0 <= 5) <= 10 (Because relational operators are evaluated from
left to right)
=1<=10 (Because 0 <= 5 is true, 0 <= 5 evaluates to 1)
=1 (true)

Now suppose that num = 20. Then:

0 <= num <= 10
0 <= 20 <= 10

= (0<=20) <=10 (Because relational operators are evaluated from left to right)
=1<=10 (Because 0 <= 20 is true, 0 <= 20 evaluates to 1)
= 1 (true)

Clearly, this answer is incorrect. Because num is 20, it is not between 0 and 10, and
0 <= 20 <= 10 should not evaluate to true. Note that this expression will always
evaluate to true, no matter what num is. This is due to the fact that the expression
0 <= num evaluates to either 0 or 1, and 0 <= 10 i1s true and 1 <= 10 is true. So what
is wrong with the expression 0 <= num <= 10? It is missing the logical operator &&.
A correct way to write this expression in C++ is:

0 <= num && num <= 10

You must take care when formulating logical expressions. When creating a complex
logical expression, you must use the proper logical operators.

Selection: if and if...else

Although there are only two logical values, true and false, they turn out to be
extremely useful because they permit programs to incorporate decision making
that alters the processing flow. The remainder of this chapter discusses ways to
incorporate decisions into a program. In C++, there are two selections, or branch
control structures: if statements and the switch structure. This section discusses

Selection: 1f and if...else | 185

how if and if...else statements can be used to create one-way selection,
two-way selection, and multiple selections. The switch structure is discussed
later in this chapter.

One-Way Selection

A bank would like to send a notice to a customer if her or his checking account balance
falls below the required minimum balance. That is, if the account balance is below the
required minimum balance, it should send a notice to the customer; otherwise, it should
do nothing. Similarly, if the policyholder of an insurance policy is a nonsmoker, the
company would like to apply a 10% discount to the policy premium. Both of these
examples involve one-way selection. In C++, one-way selections are incorporated using
the if statement. The syntax of one-way selection is:

if (expression)
statement

Note the elements of this syntax. It begins with the reserved word if, followed by
an expression contained within parentheses, followed by a statement. Note that
the parentheses around the expression are part of the syntax. The expression is
sometimes called a decision maker because it decides whether to execute the
statement that follows it. The expression is usually a logical expression. If the
value of the expression is true, the statement executes. If the value is false,
the statement does not execute and the computer goes on to the next statement in
the program. The statement following the expression is sometimes called the
action statement. Figure 4-2 shows the flow of execution of the if statement
(one-way selection).

®
l

expression — true — EENEICINEE

false

l
®

FIGURE 4-2 One-way selection

186 | Chapter 4: Control Structures | (Selection)

EXAMPLE 4-9

if (score >= 60)
grade = 'P';

In this code, if the expression (score >= 60) evaluates to true, the assignment state-
ment, grade = "P';, executes. If the expression evaluates to false, the statements (if
any) following the if structure execute. For example, if the value of score is 65, the
value assigned to the variable grade is "P'.

EXAMPLE 4-10

The following C++ program finds the absolute value of an integer:

//Program: Absolute value of an integer
#include <iostream>

using namespace std;

int main()

{

int number, temp;

cout << "Line 1l: Enter an integer: "; //Line 1
cin >> number; //Line 2
cout << endl; //Line 3
temp = number; //Line 4
if (number < 0) //Line 5

number = -number; //Line 6
cout << "Line 7: The absolute value of "

<< temp << " is " << number << endl; //Line 7

return 0;

}
Sample Run: In this sample run, the user input is shaded.

Line 1: Enter an integer: -6734
Line 7: The absolute value of -6734 is 6734

The statement in Line 1 prompts the user to enter an integer; the statement in Line 2
inputs the number into the variable number. The statement in Line 4 copies the value of
number into temp, and the statement in Line 5 checks whether number is negative. If

Selection: 1f and if...else | 187

number is negative, the statement in Line 6 changes number to a positive number. The
statement in Line 7 outputs the number and its absolute value.

EXAMPLE 4-11

Consider the following statement:

if score >= 60 //syntax error
grade = 'P';

This statement illustrates an incorrect version of an if statement. The parentheses around
the logical expression are missing, which is a syntax error.

Putting a semicolon after the parentheses following the expression in an if statement
(that is, before the statement) is a semantic error. If the semicolon immediately follows
the closing parenthesis, the if statement will operate on the empty statement.

EXAMPLE 4-12

Consider the following C++ statements:

if (score >= 60); //Line 1
grade = 'P'; //Line 2

Because there is a semicolon at the end of the expression (see Line 1), the if statement in
Line 1 terminates. The action of this if statement is null, and the statement in Line 2 is
not part of the if statement in Line 1. Hence, the statement in Line 2 executes regardless
of how the if statement evaluates.

Two-Way Selection

There are many programming situations in which you must choose between two
alternatives. For example, if a part-time employee works overtime, the paycheck is
calculated using the overtime payment formula; otherwise, the paycheck is calculated
using the regular formula. This is an example of two-way selection. To choose between
two alternatives—that 1s, to implement two-way selections—C++ provides the
if...else statement. Two-way selection uses the following syntax:

if (expression)
statementl

else
statement2

188 | Chapter 4: Control Structures | (Selection)

Take a moment to examine this syntax. It begins with the reserved word i£, followed by a
logical expression contained within parentheses, followed by a statement, followed by the
reserved word else, followed by a second statement. Statements 1 and 2 are any valid
C++ statements. In a two-way selection, if the value of the expression is true,
statementl executes. If the value of the expression is false, statement2 executes.
Figure 4-3 shows the flow of execution of the if...else statement (two-way selection).

o
{

r false — true _l

statement2 statement1

-@-
/

FIGURE 4-3 Two-way selection

EXAMPLE 4-13

Consider the following statements:

if (hours > 40.0) //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3
wages = hours * rate; //Line 4

If the value of the variable hours is greater than 40. 0, then the wages include overtime
payment. Suppose that hours is 50. The expression in the if statement, in Line 1,
evaluates to true, so the statement in Line 2 executes. On the other hand, if hours is
30, or any number less than or equal to 40, the expression in the if statement, in Line 1,
evaluates to false. In this case, the program skips the statement in Line 2 and executes the
statement in Line 4—that is, the statement following the reserved word else executes.

In a two-way selection statement, putting a semicolon after the expression and
before statementl creates a syntax error. If the if statement ends with a semicolon,
statementl is no longer part of the if statement, and the else part of the
if...else statement stands all by itself. There is no stand-alone else statement in C++.
That is, it cannot be separated from the if statement.

Selection: 1f and if...else | 189

EXAMPLE 4-14

The following statements show an example of a syntax error:

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3
wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the if statement. That is, else is all
by itself. Because there is no stand-alone else statement in C++, this code generates a
Syntax error.

EXAMPLE 4-15

The following program determines an employee’s weekly wages. If the hours worked
exceed 40, wages include overtime payment:

//Program: Weekly wages

#include <iostream>
#include <iomanip>

using namespace std;
int main ()

{
double wages, rate, hours;

cout << fixed << showpoint << setprecision(2); //Line 1
cout << "Line 2: Enter working hours and rate: "; //Line 2
cin >> hours >> rate; //Line 3
if (hours > 40.0) //Line 4
wages = 40.0 * rate +
1.5 * rate * (hours - 40.0); //Line 5
else //Line 6
wages = hours * rate; //Line 7
cout << endl; //Line 8
cout << "Line 9: The wages are $" << wages
<< endl; //Line 9

return 0;

190 | Chapter 4: Control Structures | (Selection)

Sample Run: In this sample run, the user input is shaded.

Line 2: Enter working hours and rate: 56.45 12.50

Line 9: The wages are $808.44

The statement in Line 1 sets the output of the floating-point numbers in a fixed decimal format,
with a decimal point, trailing zeros, and two decimal places. The statement in Line 2 prompts the
user to input the number of hours worked and the pay rate. The statement in Line 3 inputs these
values into the variables hours and rate, respectively. The statement in Line 4 checks whether
the value of the variable hours is greater than 40. 0. If hours is greater than 40. 0, then the
wages are calculated by the statement in Line 5, which includes overtime payment. Otherwise,
the wages are calculated by the statement in Line 7. The statement in Line 9 outputs the wages.

Let us now consider more examples of if statements and examine some of the semantic
errors that can occur.

EXAMPLE 4-16

Consider the following statements:

if (score >= 60)
grade = 'P';
cout << "The grade is " << grade << endl;

These statements contain a semantic error. The if statement acts on only one state-
ment, which is grade = "P';. The cout statement executes regardless of whether
(score >= 60) is true or false.

Example 4-17 illustrates another common mistake.

EXAMPLE 4-17

Consider the following statements:

if (score >= 60) //Line 1
cout << "Passing" << endl; //Line 2
cout << "Failing" << endl; //Line 3

If the expression (score >= 60) evaluates to false, the output statement in Line 2 does
not execute. So the output would be Failing. That is, this set of statements performs
the same action as an if...else statement. It will execute the output statement in Line 3
rather than the output statement in Line 2. For example, if the value of score is 50,
these statements will output the following line:

Failing

Selection: 1f and if...else | 191

However, if the expression (score >= 60) evaluates to true, the program will execute
both the output statements, giving a very unsatisfactory result. For example, if the value
of score is 70, these statements will output the following lines:

Passing
Failing

The if statement controls the execution of only the statement in Line 2. The statement
in Line 3 always executes.

The correct code to print Passing or Failing, depending on the value of score, is:

if (score >= 60)

cout << "Passing" << endl;
else

cout << "Failing" << endl;

Compound (Block of) Statements

The if and if...else structures control only one statement at a time. Suppose,
however, that you want to execute more than one statement if the expression in an
if or if...else statement evaluates to true. To permit more complex statements,
C++ provides a structure called a compound statement or a block of statements. A
compound statement takes the following form:

{
statementl
statement2

statementn

That is, a compound statement consists of a sequence of statements enclosed in curly
braces, { and}. Inan if or if ...else structure, a compound statement functions as if it
was a single statement. Thus, instead of having a simple two-way selection similar to the
following code:

if (age >= 18)

cout << "Eligible to vote." << endl;
else

cout << "Not eligible to vote." << endl;

you could include compound statements, similar to the following code:

192 | Chapter 4: Control Structures | (Selection)

if (age >= 18)

{
cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

}

else

{
cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

}

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

Multiple Selections: Nested if

In the previous sections, you learned how to implement one-way and two-way selections
in a program. Some problems require the implementation of more than two alternatives.
For example, suppose that if the checking account balance is more than $50,000, the
interest rate is 7%; if the balance is between $25,000 and $49,999.99, the interest rate is
5%; if the balance is between $1,000 and $24,999.99, the interest rate is 3%; otherwise,
the interest rate is 0%. This particular problem has four alternatives—that is, multiple
selection paths. You can include multiple selection paths in a program by using an
if...else structure if the action statement itself is an if or if...else statement. When
one control statement is located within another, it is said to be nested.

Example 4-18 illustrates how to incorporate multiple selections using a nested if...else
structure.

EXAMPLE 4-18

Suppose that balance and interestRate are variables of type double. The following
statements determine the interestRate depending on the value of the balance:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2
else //Line 3
if (balance >= 25000.00) //Line 4
interestRate = 0.05; //Line 5

else //Line 6

if (balance >= 1000.00) //Line 7
interestRate = 0.03; //Line 8

else //Line 9
interestRate = 0.00; //Line 10

A nested if...else structure demands the answer to an important question: How do you
know which else is paired with which i£? Recall that in C++, there is no stand-alone

Selection: 1f and if...else | 193

else statement. Every else must be paired with an i£. The rule to pair an else with an
if is as follows:

Pairing an else with an if: In a nested if statement, C++ associates an else with the
most recent incomplete i f—that is, the most recent i £ that has not been paired with an else.

Using this rule, in Example 4-18, the else in Line 3 is paired with the i £ in Line 1. The else
in Line 6 is paired with the if in Line 4, and the else in Line 9 is paired with the i f in Line 7.

To avoid excessive indentation, the code in Example 4-18 can be rewritten as follows:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2
else if (balance >= 25000.00) //Line 3
interestRate = 0.05; //Line 4
else if (balance >= 1000.00) //Line 5
interestRate = 0.03; //Line 6
else //Line 7
interestRate = 0.00; //Line 8

The following examples will help you to see the various ways in which you can use
nested if structures to implement multiple selection.

EXAMPLE 4-19

Assume that score is a variable of type int. Based on the value of score, the following
code outputs the grade:

if (score >= 90)

cout << "The grade is A." << endl;
else if (score >= 80)

cout << "The grade is B." << endl;
else if (score >= 70)

cout << "The grade is C." << endl;
else if (score >= 60)

cout << "The grade is D." << endl;
else

cout << "The grade is F." << endl;

EXAMPLE 4-20

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 50) //Line 1
if (temperature >= 80) //Line 2
cout << "Good day for swimming." << endl; //Line 3

else //Line 4
cout << "Good day for golfing." << endl; //Line 5

else //Line 6
cout << "Good day to play tennis." << endl; //Line 7

194 | Chapter 4: Control Structures | (Selection)

In this C++ code, the else in Line 4 is paired with the i £ in Line 2, and the else in Line 6
1s paired with the i f in Line 1. Note that the else in Line 4 cannot be paired with the i £ in
Line 1. If you pair the else in Line 4 with the if in Line 1, the i£f in Line 2 becomes the
action statement part of the if in Line 1, leaving the else in Line 6 dangling. Also, the
statements in Lines 2 though 5 form the statement part of the if in Line 1. The indentation

does not determine the pairing, but should be used to communicate the pairing.

EXAMPLE 4-21

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 70) //Line 1
if (temperature >= 80) //Line 2
cout << "Good day for swimming." << endl; //Line 3

else //Line 4
cout << "Good day for golfing." << endl; //Line 5

In this code, the else in Line 4 is paired with the i £ in Line 2. Note that for the else in
Line 4, the most recent incomplete if is in Line 2. In this code, the if in Line 1 has no
else and is a one-way selection. Once again, the indentation does not determine the

pairing, but it communicates the pairing.

EXAMPLE 4-22

Assume that all variables are properly declared, and consider the
statements:

if (GPA >= 2.0) //Line

if (GPA >= 3.9) //Line

cout << "Dean\'s Honor List." << endl; //Line

else //Line
cout << "Current GPA below graduation requirement. "

<< "\nSee your academic advisor.™ << endl; //Line

following

S whR

5

This code is awkward. Following the rule of pairing an else with an if, the else in
Line 4 is paired with the if in Line 2. However, this pairing produces an unsatisfactory
result. Suppose that GPA is 3. 8. The expression in the if in Line 1 evaluates to true,
and the statement part of the i £, which is an if...else structure, executes. Because GPA
is 3.8, the expression in the if in Line 2 evaluates to false, and the else associated

with this if executes, producing the following output:

Current GPA below graduation requirement.
See your academic advisor.

Selection: 1f and if...else | 195

However, a student with a GPA of 3.8 would graduate with some type of honor. In fact,
the code intended to print the message:

Current GPA below graduation requirement.
See your academic advisor.

only if the GPA is less than 2.0, and the message:
Dean's Honor List.

it the GPA is greater than or equal to 3.9. To achieve that result, the else in Line 4
needs to be paired with the if in Line 1. To pair the else in Line 4 with the if in Line
1, you need to use a compound statement as follows:

if (GPA >= 2.0) //Line 1
{
if (GPA >= 3.9) //Line 2
cout << "Dean\'s Honor List." << endl; //Line 3
}
else //Line 4
cout << "Current GPA below graduation requirement. "
<< "\nSee your academic advisor." << endl; //Line 5

In cases such as this one, the general rule is that you cannot look inside a block (that is,
inside the braces) to pair an else with an if. The else in Line 4 cannot be paired with
the if in Line 2 because the if statement in Line 2 is enclosed within braces, and the
else in Line 4 cannot look inside those braces. Therefore, the else in Line 4 is paired
with the if in Line 1.

EXAMPLE 4-23

Assume that all variables are properly declared, and consider the following statements:

if (gender == 'M') //Line 1
if (age < 21) //Line 2
policyRate = 0.05; //Line 3

else //Line 4
policyRate = 0.035; //Line 5

else if (gender == 'F') //Line 6
if (age < 21) //Line 7
policyRate = 0.04; //Line 8

else //Line 9
policyRate = 0.03; //Line 10

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is the if in Line 2. The else in Line 6 is paired
with the if in Line 1. The else in Line 9 is paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it communicates the pairing.

196 | Chapter 4: Control Structures | (Selection)

Comparing if...else Statements with a Series of if Statements

Consider the following C++ program segments, all of which accomplish the same task:

a. if (month == 1) //Line 1
cout << "January" << endl; //Line 2
else if (month == 2) //Line 3
cout << "February" << endl; //Line 4
else if (month == 3) //Line 5
cout << "March" << endl; //Line 6
else if (month == 4) //Line 7
cout << "April" << endl; //Line 8
else if (month == 5) //Line 9
cout << "May" << endl; //Line 10
else if (month == 6) //Line 11
cout << "June" << endl; //Line 12

b. if (month == 1)

cout << "January" << endl;
if (month == 2)

cout << "February" << endl;
if (month == 3)

cout << "March" << endl;
if (month == 4)

cout << "April" << endl;
if (month == 5)

cout << "May" << endl;
if (month == 6)

cout << "June" << endl;

Program segment (a) is written as a sequence of if...else statements; program segment
(b) is written as a series of if statements. Both program segments accomplish the same
thing. If month is 3, then both program segments output March. If month is 1, then in
program segment (a), the expression in the if statement in Line 1 evaluates to true. The
statement (in Line 2) associated with this if then executes; the rest of the structure,
which is the else of this if statement, is skipped; and the remaining if statements are
not evaluated. In program segment (b), the computer has to evaluate the expression in
each if statement because there is no else statement. As a consequence, program
segment (b) executes more slowly than does program segment (a).

Using Pseudocode to Develop, Test, and Debug a Program

There are several ways to develop a program. One method involves using an informal
mixture of C++ and ordinary language, called pseudocode or just pseudo. Sometimes
pseudo provides a useful means to outline and refine a program before putting it into
formal C++ code. When you are constructing programs that involve complex nested
control structures, pseudo can help you quickly develop the correct structure of the
program and avoid making common errors.

One useful program segment determines the larger of two integers. If x and y are
integers, using pseudo you can quickly write the following:

Selection: 1f and if...else | 197

a. if (x > y) then
x is larger

b. if (y > x) then
y is larger

If the statement in (a) is true, then x is larger. If the statement in (b) is true, then y is
larger. However, for this code to work in concert to determine the larger of two integers,
the computer needs to evaluate both expressions:

(x > vy) and (y > x)
even if the first statement 1s true. Evaluating both expressions is a waste of computer time.
Let’s rewrite this pseudo as follows:

if (x > y) then
x is larger
else
y is larger

Here, only one condition needs to be evaluated. This code looks okay, so let’s put it
into C++.

#include <iostream>
using namespace std;

int main ()

{
if (x> vy)

Wait...once you begin translating the pseudo into a C++ program, you should
immediately notice that there is no place to store the value of x or y. The variables
were not declared, which is a very common oversight, especially for new program-
mers. If you examine the pseudo, you will see that the program needs three variables,
and you might as well make them self~documenting. Let’s start the program code
again:

#include <iostream>
using namespace std;

int main ()

{

int numl, num2, larger; //Line 1

if (numl > num2); //Line 2; error
larger = numl; //Line 3

else //Line 4
larger = num2; //Line 5

return 0;

198 | Chapter 4: Control Structures | (Selection)

Compiling this program will result in the identification of a common syntax error
(in Line 2). Recall that a semicolon cannot appear after the expression in the
if...else statement. However, even if you corrected this syntax error, the program
still would not give satisfactory results because it tries to use identifiers that have no
values. The variables have not been initialized, which is another common error. In
addition, because there are no output statements, you would not be able to see the
results of the program.

Because there are so many mistakes in the program, you should try a walk-through to see
whether it works at all. You should always use a wide range of values in a walk-through
to evaluate the program under as many different circumstances as possible. For example,
does this program work if one number is zero, if one number is negative and the other
number is positive, if both numbers are negative, or if both numbers are the same?
Examining the program, you can see that it does not check whether the two numbers are
equal. Taking all of these points into account, you can rewrite the program as follows:

//Program: Compare Numbers
//This program compares two integers and outputs the largest.

#include <iostream>
using namespace std;

int main ()

{

int numl, num2;

cout << "Enter any two integers: ";
cin >> numl >> num2;
cout << endl;

cout << "The two integers entered are " << numl
<< " and " << num2 << endl;

if (numl > num?2)

cout << "The larger number is " << numl << endl;
else if (num2 > numl)

cout << "The larger number is " << num2 << endl;
else

cout << "Both numbers are equal." << endl;

return 0;

Sample Run: In this sample run, the user input is shaded.

Enter any two integers: 78 90
The two integers entered are 78 and 90
The larger number is 90

Selection: 1f and if...else | 199

One thing you can learn from the preceding program is that you must first develop a
program using paper and pencil. Although a program that is first written on a piece of
paper is not guaranteed to run successfully on the first try, this step is still a good starting
point. On paper, it is easier to spot errors and improve the program, especially with large
programs.

Input Failure and the if Statement

In Chapter 3, you saw that an attempt to read invalid data causes the input stream
to enter a fail state. Once an input stream enters a fail state, all subsequ-
ent input statements associated with that input stream are ignored, and the
computer continues to execute the program, which produces erroneous results.
You can use if statements to check the status of an input stream variable and,
if the input stream enters the fail state, include instructions that stop program
execution.

In addition to reading invalid data, other events can cause an input stream to enter the fail
state. Two additional common causes of input failure are the following:

e Attempting to open an input file that does not exist

e Attempting to read beyond the end of an input file

One way to address these causes of input failure is to check the status of the
input stream variable. You can check the status by using the input stream varia-
ble as the logical expression in an if statement. If the last input succeeded,
the input stream variable evaluates to true; if the last input failed, it evaluates
to false.

The statement:

if (cin)
cout << "Input is OK." << endl;

prints:
Input is OK.

if the last input from the standard input device succeeded. Similarly, if infile is an
ifstream variable, the statement:

if (!infile)
cout << "Input failed."™ << endl;

prints:
Input failed.
it the last input associated with the stream variable infile failed.

Suppose an input stream variable tries to open a file for inputting data into a program. If
the input file does not exist, you can use the value of the input stream variable, in
conjunction with the return statement, to terminate the program.

200 | Chapter 4: Control Structures | (Selection)

Recall that the last statement included in the function main is:
return 0;

This statement returns a value of 0 to the operating system when the program terminates.
A value of 0 indicates that the program terminated normally and that no error occurred
during program execution. Values of type int other than 0 can also be returned to the
operating system via the return statement. The return of any value other than 0,
however, indicates that something went wrong during program execution.

The return statement can appear anywhere in the program. Whenever a return
statement executes, it immediately exits the function in which it appears. In the case of
the function main, the program terminates when the return statement executes. You
can use these properties of the return statement to terminate the function main
whenever the input stream fails. This technique is especially useful when a program tries
to open an input file. Consider the following statements:

ifstream infile;
infile.open ("inputdat.dat"); //open inputdat.dat

if (!infile)
{
cout << "Cannot open the input file. "
<< "The program terminates." << endl;
return 1;

}

Suppose that the file inputdat.dat does not exist. The operation to open this file fails,
causing the input stream to enter the fail state. As a logical expression, the file stream
variable infile then evaluates to false. Because infile evaluates to false, the
expression !infile (in the if statement) evaluates to true, and the body of the if
statement executes. The message:

Cannot open the input file. The program terminates.

is printed on the screen, and the return statement terminates the program by returning a
value of 1 to the operating system.

Let’s now use the code that responds to input failure by including these features in the
Programming Example: Student Grade from Chapter 3. Recall that this program calcu-
lates the average test score based on data from an input file and then outputs the results to
another file. The following programming code is the same as the code from Chapter 3,
except that it includes statements to exit the program if the input file does not exist:

//Program to calculate the average test score.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

Selection: if and if...else

using namespace std;

int main()

{

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double testl, test2, test3, test4, test5;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //open the input file

if (!inFile)
{
cout << "Cannot open the input file. "
<< "The program terminates." << endl;
return 1;

}
outFile.open ("testavg.out"); //open the output file

outFile << fixed << showpoint;
outFile << setprecision(2):;

cout << "Processing data" << endl;

inFile >> firstName >> lastName;
outFile << "Student name: " << firstName
<< " " << lastName << endl;

inFile >> testl >> test2 >> test3
>> testd >> test5;

outFile << "Test scores: " << setw(4) << testl
<< setw(4) << test2 << setw(4) << test3
<< setw(4) << testd << setw(4) << testh
<< endl;

average = (testl + test2 + test3 + test4 + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;

201

202 | Chapter 4: Control Structures | (Selection)

Confusion Between the Equality Operator (==) and the
Assignment Operator (=)

Recall that if the decision-making expression in the if statement evaluates to true, the
statement part of the if statement executes. In addition, the expression is usually a
logical expression. However, C++ allows you to use any expression that can be evaluated
to either true or false as an expression in the if statement. Consider the following
statement:

if (x = 5)
cout << "The value is five." << endl;

The expression—that is, the decision maker—in the if statement is x = 5. The
expression x = 5 is called an assignment expression because the operator = appears in
the expression and there is no semicolon at the end.

This expression is evaluated as follows. First, the right side of the operator = is evaluated,
which evaluates to 5. The value 5 is then assigned to x. Moreover, the value 5—that is,
the new value of x—also becomes the value of the expression in the if statement—that
is, the value of the assignment expression. Because 5 is nonzero, the expression in the i £
statement evaluates to true, so the statement part of the if statement outputs: The
value is five.

No matter how experienced a programmer is, almost everyone makes the mistake of
using = in place of == at one time or another. One reason why these two operators are
often confused is that most programming languages use = as an equality operator. Thus,
experience with other programming languages can create confusion. Sometimes the error
is merely typographical, another reason to be careful when typing code.

Despite the fact that an assignment expression can be used as an expression, using the
assignment operator in place of the equality operator can cause serious problems in a
program. For example, suppose that the discount on a car insurance policy is based on the
insured’s driving record. A driving record of 1 means that the driver is accident-free and
receives a 25% discount on the policy. The statement:

if (drivingCode == 1)
cout << "The discount on the policy is 25%." << endl;

outputs:
The discount on the policy is 25%.
only if the value of drivingCode is 1. However, the statement:

if (drivingCode = 1)
cout << "The discount on the policy is 25%." << endl;

always outputs:

The discount on the policy is 25%.

Selection: 1f and if...else | 203

because the right side of the assignment expression evaluates to 1, which is nonzero and
so evaluates to true. Therefore, the expression in the if statement evaluates to true,
outputting the following line of text: The discount on the policy is 25%. Also, the
value 1 is assigned to the variable drivingCode. Suppose that before the if statement
executes, the value of the variable drivingCode is 4. After the if statement executes,
not only is the output wrong, but the new value also replaces the old driving code.

The appearance of = in place of == resembles a silent killer. It is not a syntax error, so the
compiler does not warn you of an error. Rather, it is a logical error.

NOTE Using = in place of == can cause serious problems, especially if it happens in a looping
statement. Chapter 5 discusses looping structures.

The appearance of the equality operator in place of the assignment operator can also cause
errors in a program. For example, suppose x, y, and z are int variables. The statement:

x =y + z;
assigns the value of the expression y + z to x. The statement:
X =y + zZ;

compares the value of the expression y + z with the value of x; the value of x remains the
same, however. If somewhere else in the program you are counting on the value of x
being y + z, a logic error will occur, the program output will be incorrect, and you will
receive no warning of this situation from the compiler. The compiler provides feedback
only about syntax errors, not logic errors. For this reason, you must use extra care when
working with the equality operator and the assignment operator.

Conditional Operator (?:)

NOTE The reader can skip this section without any discontinuation.

Certain if...else statements can be written in a more concise way by using C++’s
conditional operator. The conditional operator, written as ? :, is a ternary operator,
which means that it takes three arguments. The syntax for using the conditional operator is:

expressionl ? expression2 : expression3

This type of statement is called a conditional expression. The conditional expression is
evaluated as follows: If expressionl evaluates to a nonzero integer (that is, to true),
the result of the conditional expression is expression2. Otherwise, the result of the
conditional expression is expression3.

204 | Chapter 4: Control Structures | (Selection)

Consider the following statements:

if (a >= b)
max = aj;
else
max = b;

You can use the conditional operator to simplify the writing of this if...else statement
as follows:

max = (a >= b) ? a : b;

switch Structures

Recall that there are two selection, or branch, structures in C++. The first selection
structure, which is implemented with if and if...else statements, usually requires the
evaluation of a (logical) expression. The second selection structure, which does not require
the evaluation of a logical expression, is called the switch structure. C++’s switch
structure gives the computer the power to choose from among many alternatives.

A general syntax of the switch statement is:

switch (expression)

{

case valuel:
statementsl
break;

case value2:
statements?2
break;

case valuen:
statementsn
break;

default:
statements

In C++, switch, case, break, and default are reserved words. In a switch
structure, first the expression is evaluated. The value of the expression is then used
to perform the actions specified in the statements that follow the reserved word case.
Recall that in a syntax, shading indicates an optional part of the definition.

Although it need not be, the expression is usually an identifier. Whether it is an
identifier or an expression, the value can be only integral. The expression is sometimes
called the selector. Its value determines which statement is selected for execution. A
particular case value should appear only once. One or more statements may follow a
case label, so you do not need to use braces to turn multiple statements into a single

switch Structures | 205

compound statement. The break statement may or may not appear after each statement.
Figure 4-4 shows the flow of execution of the switch statement.

®
!

expression

< - EXInm I -

|
false

¢ KR -

false

<O &

'

o
{

FIGURE 4-4 switch statement

The switch statement executes according to the following rules:

1. When the value of the expression is matched against a case
value (also called a label), the statements execute until either a
break statement is found or the end of the switch structure is
reached.

2. If'the value of the expression does not match any of the case values,
the statements following the default label execute. If the switch
structure has no default label, and if the value of the expression

206 | Chapter 4: Control Structures | (Selection)

does not match any of the case values, the entire switch statement is
skipped.

3. A break statement causes an immediate exit from the switch structure.

EXAMPLE 4-24

Consider the following statements, where grade is a variable of type char:

switch (grade)

{

case 'A':
cout << "The grade is 4.0.";
break;

case 'B':
cout << "The grade is 3.0.";
break;

case 'C':
cout << "The grade is 2.0.";
break;

case 'D':
cout << "The grade is 1.0.";
break;

case 'F':
cout << "The grade is 0.0.";
break;

default:
cout << "The grade is invalid.";

}

In this example, the expression in the switch statement is a variable identifier. The
variable grade is of type char, which is an integral type. The possible values of grade
are 'A', 'B', 'C', 'D', and 'F'. Each case label specifies a different action to take,
depending on the value of grade. If the value of grade is 'A', the output is:

The grade is 4.0.

EXAMPLE 4-25

The following program illustrates the effect of the break statement. It asks the user to
input a number between 0 and 10:

//Program: Effect of break statements in a switch structure
#include <iostream>

using namespace std;

switch Structures | 207

int main()

{

int num;
cout << "Enter an integer between 0 and 7: "; //Line 1
cin >> num; //Line 2
cout << endl; //Line 3
cout << "The number you entered is " << num
<< endl; //Line 4
switch (num) //Line 5
{
case 0: //Line 6
case 1: //Line 7
cout << "Learning to use "; //Line 8
case 2: //Line 9
cout << "C++'s "; //Line 10
case 3: //Line 11
cout << "switch structure." << endl; //Line 12
break; //Line 13
case 4: //Line 14
break; //Line 15
case 5: //Line 16
cout << "This program shows the effect "; //Line 17
case 6: //Line 18
case 7: //Line 19
cout << "of the break statement." << endl; //Line 20
break; //Line 21
default: //Line 22

cout << "The number is out of range." << endl; //Line 23
}

cout << "Out of the switch structure." << endl; //Line 24

return 0; //Line 25

Sample Runs: These outputs were obtained by executing the preceding program several
times. In each of these outputs, the user input is shaded.

Sample Run 1:
Enter an integer between 0 and 7: 0

The number you entered is 0
Learning to use C++'s switch structure.
Out of the switch structure.

208 | Chapter 4: Control Structures | (Selection)

Sample Run 2:
Enter an integer between 0 and 7: 2

The number you entered is 2
C++'s switch structure.
Out of the switch structure.

Sample Run 3:
Enter an integer between 0 and 7: 4

The number you entered is 4
Out of the switch structure.

Sample Run 4:
Enter an integer between 0 and 7: 5

The number you entered is 5
This program shows the effect of the break statement.
Out of the switch structure.

Sample Run 5:
Enter an integer between 0 and 7: 7

The number you entered is 7
of the break statement.
Out of the switch structure.

Sample Run 6:
Enter an integer between 0 and 7: 8

The number you entered is 8
The number is out of range.
Out of the switch structure.

A walk-through of this program, using certain values of the switch expression, num, can
help you understand how the break statement functions. If the value of num is 0, the
value of the switch expression matches the case value 0. All statements following
case 0: execute until a break statement appears.

The first break statement appears in Line 13, just before the case value of 4. Even
though the value of the switch expression does not match any of the case values (that
is, 1, 2, or 3), the statements following these values execute.

When the value of the switch expression matches a case value, all statements execute
until a break is encountered, and the program skips all case labels in between.
Similarly, if the value of num is 3, it matches the case value of 3 and the statements
following this label execute until the break statement is encountered in Line 13. If the
value of num is 4, it matches the case value of 4. In this situation, the action is empty
because only the break statement, in Line 15, follows the case value of 4.

switch Structures | 209

EXAMPLE 4-26

Although a switch structure’s case values (labels) are limited, the switch statement
expression can be as complex as necessary. For example, consider the following
switch statement:

switch (score / 10)
{
case
case
case
case
case
case 5:
grade
break;
case 6:
grade
break;
case 7:
grade = 'C';
break;
case 8:
grade
break;
case 9:
case 10:
grade
break;
default:
cout << "Invalid test score." << endl;

S W NhER O

1
=

I
o

I
w

1
>

}

Assume that score is an int variable with values between 0 and 100. If score is 75,
then score / 10 =75 / 10 = 7 and the grade assigned is "C". If the value of score is
between 0 and 59, then the grade is "F'. If score is between 0 and 59, score / 10 is
0, 1, 2, 3, 4, or 5. Each of these values corresponds to the grade "F'.

Therefore, in this switch structure, the action statements of case 0, case 1,
case 2, case 3, case 4, and case 5 are all the same. Rather than write the
statement grade = 'F'; followed by the break statement for each of the case
values of 0, 1, 2, 3, 4, and 5, you can simplify the programming code by first
specifying all of the case values (as shown in the preceding code) and then
specifying the desired action statement. The case values of 9 and 10 follow similar
conventions.

In addition to being a variable identifier or a complex expression, the switch expression
can evaluate to a logical value. Consider the following statements:

210 | Chapter 4: Control Structures | (Selection)

switch (age >= 18)

{

case 1:
cout << "0Old enough to be drafted." << endl;
cout << "0ld enough to vote." << endl;
break;

case 0:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

If the value of age is 25, the expression age >= 18 evaluates to 1—that is, true. If
the expression evaluates to 1, the statements following the case label 1 execute. If the
value of age is 14, the expression age >= 18 evaluates to 0—that is, false—and the
statements following the case label 0 execute.

You can use true and false, instead of 1 and 0, respectively, in the case labels, and
rewrite the preceding switch statement as follows:

switch (age >= 18)
{

case true:
cout << "0Old enough to be drafted." << endl;
cout << "0Old enough to vote." << endl;
break;

case false:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

As you can see from the preceding examples, the switch statement is an elegant way to
implement multiple selections. You will see the use of a switch statement in the
programming example at the end of this chapter. Even though no fixed rules exist that
can be applied to decide whether to use an if...else structure or a switch structure to
implement multiple selections, the following considerations should be remembered. If
multiple selections involve a range of values, you should use either an if...else
structure or a switch structure, wherein you convert each range to a finite set of values.

For instance, in Example 4-26, the value of grade depends on the value of score. If
score is between 0 and 59, grade is "F'. Because score is an int variable, 60 values
correspond to the grade of 'F'. If you list all 60 values as case values, the switch
statement could be very long. However, dividing by 10 reduces these 60 values to only 6
values: 0, 1, 2, 3, 4, and 5.

If the range of values consists of infinitely many values and you cannot reduce them to a
set containing a finite number of values, you must use the if...else structure. For
example, if score happens to be a double variable, the number of values between 0 and
60 is infinite. However, you can use the expression static_cast<int> (score) / 10
and still reduce this infinite number of values to just six values.

Terminating a Program with the assert Function | 211

Terminating a Program with the assert Function

Certain types of errors that are very difficult to catch can occur in a program. For
example, division by zero can be difficult to catch using any of the programming
techniques you have examined so far. C++ includes a predefined function, assert,
that is useful in stopping program execution when certain elusive errors occur. In the case
of division by zero, you can use the assert function to ensure that a program terminates
with an appropriate error message indicating the type of error and the program location
where the error occurred.

Consider the following statements:

int numerator;
int denominator;
int quotient;
double hours;
double rate;
double wages;
char ch;

1. quotient = numerator / denominator;

2. if (hours > 0 && (0 < rate && rate <= 15.50))
wages = rate * hours;

3. if ('A' <= ch && ch <= '2")

In the first statement, if the denominator is 0, logically you should not perform the
division. During execution, however, the computer would try to perform the division. If
the denominator is 0, the program would terminate with an error message stating that
an illegal operation has occurred.

The second statement is designed to compute wages only if hours is greater than 0 and
rate is positive and less than or equal to 15.50. The third statement is designed to
execute certain statements only if ch is an uppercase letter.

For all of these statements (for that matter, in any situation in which certain conditions
must be met), if conditions are not met, it would be useful to halt program execution
with a message indicating where in the program an error occurred. You could handle
these types of situations by including output and return statements in your program.
However, C++ provides an effective method to halt a program if required conditions are
not met through the assert function.

The syntax to use the assert function is:
assert (expression);
Here expression is any logical expression. If expression evaluates to true, the next

statement executes. If expression evaluates to £alse, the program terminates and indicates
where in the program the error occurred.

212 | Chapter 4: Control Structures | (Selection)

The specification of the assert function is found in the header file cassert.
Therefore, for a program to use the assert function, it must include the following
statement:

#include <cassert>
A statement using the assert function is sometimes called an assert statement.

Returning to the preceding statements, you can rewrite statement 1 (quotient =
numerator / denominator;) using the assert function. Because quotient should
be calculated only if denominator is nonzero, you include an assert statement before
the assignment statement as follows:

assert (denominator) ;
quotient = numerator / denominator;

Now, if denominator is 0, the assert statement halts the execution of the program
with an error message similar to the following:

Assertion failed: denominator, file c:\temp\assert
function\assertfunction.cpp, line 20

This error message indicates that the assertion of denominator failed. The error message
also gives the name of the file containing the source code and the line number where the
assertion failed.

You can also rewrite statement 2 using an assertion statement as follows:

assert (hours > 0 && (0 < rate && rate <= 15.50));
if (hours > 0 && (0 < rate && rate <= 15.50))
wages = rate * hours;

If the expression in the assert statement fails, the program terminates with an error
message similar to the following:

Assertion failed: hours > 0 && (0 < rate && rate <= 15.50), file
c:\temp\assertfunction\assertfunction.cpp, line 26

During program development and testing, the assert statement is very useful for
enforcing programming constraints. As you can see, the assert statement not only
halts the program, but also identifies the expression where the assertion failed, the
name of the file containing the source code, and the line number where the assertion

failed.

Although assert statements are useful during program development, after a pro-
gram has been developed and put into use, if an assert statement fails for some
reason, an end user would have no idea what the error means. Therefore, after you
have developed and tested a program, you might want to remove or disable the
assert statements. In a very large program, it could be tedious, and perhaps
impossible, to remove all of the assert statements you used during development.
In addition, if you plan to modify a program in the future, you might like to keep

Programming Example: Cable Company Billing | 213

the assert statements. Therefore, the logical choice is to keep these statements, but
to disable them. You can disable assert statements by using the following pre-
processor directive:

#define NDEBUG

This preprocessor directive #define NDEBUG must be placed before the directive
#include <cassert>.

PROGRAMMING EXAMPLE: Cable Company Billing

This programming example demonstrates a program that calculates a customer’s bill
for a local cable company. There are two types of customers: residential and
business. There are two rates for calculating a cable bill: one for residential
customers and one for business customers. For residential customers, the following
rates apply:

e Bill processing fee: $4.50
e Basic service fee: $20.50

e Premium channels: $7.50 per channel.
For business customers, the following rates apply:

e Bill processing fee: $15.00

e Basic service fee: $75.00 for first 10 connections, $5.00 for each
additional connection

e Premium channels: $50.00 per channel for any number of
connections

The program should ask the user for an account number (an integer) and a customer
code. Assume that R or r stands for a residential customer, and B or b stands for a
business customer

Input The customer’s account number, customer code, number of premium channels
to which the user subscribes, and, in the case of business customers, number of
basic service connections

Output Customer’s account number and the billing amount
PROBLEM The purpose of this program is to calculate and print the billing amount. To calculate
ANALYSIS the billing amount, you need to know the customer for whom the billing amount is
AND calculated (whether the customer is residential or business) and the number of

ALGORITHM premium channels to which the customer subscribes. In the case of a business
DESIGN customer, you also need to know the number of basic service connections and the

Variables

Named
Constants

214 | Chapter 4: Control Structures | (Selection)

number of premium channels. Other data needed to calculate the bill, such as the bill
processing fees and the cost of a premium channel, are known quantities. The
program should print the billing amount to two decimal places, which is standard
for monetary amounts. This problem analysis translates into the following algorithm:

1. Set the precision to two decimal places.
2. Prompt the user for the account number and customer type.

3. Based on the customer type, determine the number of premium
channels and basic service connections, compute the bill, and print
the bill:

a. If the customer type is R or r,
i. Prompt the user for the number of premium channels.
ii. Compute the bill.
ii. Print the bill.
b. If the customer type is B or b,

1. Prompt the user for the number of basic service connections
and number of premium channels.

1. Compute the bill.
1. Print the bill.

Because the program will ask the user to input the customer account number,
customer code, number of premium channels, and number of basic service
connections, you need variables to store all of this information. Also, because the
program will calculate the billing amount, you need a variable to store the billing
amount. Thus, the program needs at least the following variables to compute and
print the bill:

int accountNumber; //variable to store the customer's
//account number
char customerType; //variable to store the customer code
int numOfPremChannels; //variable to store the number
//of premium channels to which the
//customer subscribes
int numOfBasicServConn; //variable to store the
//number of basic service connections
//to which the customer subscribes
double amountDue; //variable to store the billing amount

As you can see, the bill processing fees, the cost of a basic service connection, and the
cost of a premium channel are fixed, and these values are needed to compute the bill.
Although these values are constants in the program, the cable company can change
them with little warning. To simplify the process of modifying the program later,

Programming Example: Cable Company Billing | 215

instead of using these values directly in the program, you should declare them as
named constants. Based on the problem analysis, you need to declare the following
named constants:

//Named constants - residential customers
const double RES BILL_ PROC_FEES = 4.50;
const double RES BASIC_SERV_COST = 20.50;
const double RES COST PREM CHANNEL = 7.50;

//Named constants — business customers
const double BUS BILL_ PROC_FEES = 15.00;
const double BUS BASIC_SERV_COST = 75.00;
const double BUS BASIC CONN COST = 5.00;
const double BUS_COST_PREM CHANNEL = 50.00;

Formulas The program uses a number of formulas to compute the billing amount. To compute
the residential bill, you need to know only the number of premium channels to
which the user subscribes. The following statement calculates the billing amount for a
residential customer:

amountDue = RES_BILL_PROC_FEES + RES_BASIC_SERV_COST
+ numOfPremChannels * RES_COST_PREM CHANNEL;

To compute the business bill, you need to know the number of basic service
connections and the number of premium channels to which the user subscribes. If
the number of basic service connections is less than or equal to 10, the cost of the
basic service connections is fixed. If the number of basic service connections
exceeds 10, you must add the cost for each connection over 10. The following
statement calculates the business billing amount:

if (numOfBasicServConn <= 10)
amountDue = BUS BILL PROC FEES + BUS BASIC SERV COST
+ numOfPremChannels * BUS_COST_PREM CHANNEL;
else
amountDue = BUS BILL PROC FEES + BUS BASIC_SERV COST
+ (numOfBasicServConn - 10)
* BUS BASIC CONN _COST
+ numOfPremChannels * BUS_COST_PREM_CHANNEL;

MAIN Based on the preceding discussion, you can now write the main algorithm.

ALGORITHM 1. To output floating-point numbers in a fixed decimal format with
a decimal point and trailing zeros, set the manipulators £ixed and
showpoint. Also, to output floating-point numbers with two
decimal places, set the precision to two decimal places. Recall
that to use these manipulators, the program must include the
header file iomanip.

Prompt the user to enter the account number.

3. Get the customer account number.

216 | Chapter 4: Control Structures | (Selection)

Prompt the user to enter the customer code.
5. Get the customer code.
6. If the customer code is r or R,
a. Prompt the user to enter the number of premium channels.
b. Get the number of premium channels.
c. Calculate the billing amount.
d. Print the account number and the billing amount.
7. If the customer code is b or B,
a. Prompt the user to enter the number of basic service connections.
b. Get the number of basic service connections.
c. Prompt the user to enter the number of premium channels.
d. Get the number of premium channels.
e. Calculate the billing amount.
f. Print the account number and the billing amount.
8. Ifthe customer code is something other than r, R, b, or B, output an

CITOr 1message.

For Steps 6 and 7, the program uses a switch statement to calculate the bill for the
desired customer.

COMPLETE PROGRAM LISTING

//***
// Author: D. S. Malik

//

// Program: Cable Company Billing

// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of

// customers: residential and business.
//***

#include <iostream>
#include <iomanip>

using namespace std;

//Named constants - residential customers
const double RES BILL PROC_FEES = 4.50;
const double RES BASIC_SERV_COST = 20.50;
const double RES COST_PREM CHANNEL = 7.50;

Programming Example: Cable Company Billing | 217

//Named constants - business customers
const double BUS BILL PROC FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS BASIC CONN COST = 5.00;
const double BUS COST PREM CHANNEL = 50.00;

int main ()
{
//Variable declaration
int accountNumber;
char customerType;
int numOfPremChannels;
int numOfBasicServConn;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 1

cout << "This program computes a cable "

<< "pbill."™ << endl;
cout << "Enter account number (an integer): "; //Step 2
cin >> accountNumber; //Step 3
cout << endl;

cout << "Enter customer type: "

<< "R or r (Residential), "

<< "B or b (Business): "; //Step 4
cin >> customerType; //Step 5
cout << endl;

switch (customerType)

{

case 'r': //Step 6
case 'R':
cout << "Enter the number"
<< " of premium channels: "; //Step 6a
cin >> numOfPremChannels; //Step 6b

cout << endl;

amountDue = RES BILL PROC_FEES //Step 6c
+ RES_BASIC SERV_COST
+ numOfPremChannels *
RES_COST_ PREM CHANNEL;

cout << "Account number: "

<< accountNumber

<< endl; //Step 6d
cout << "Amount due: $"

<< amountDue

<< endl; //Step 6d
break;

218 | Chapter 4: Control Structures | (Selection)

case 'b':
case 'B':
cout <<

<<

"Enter the number of basic "

"service connections: ";

cin >> numOfBasicServConn;
cout << endl;

cout <<
<<

"Enter the number"
" of premium channels: ";

cin >> numOfPremChannels;

cout <<

endl;

if (numOfBasicServConn<= 10)
amountDue = BUS_BILL PROC_FEES

else

+ BUS_BASIC_SERV_COST
+ numOfPremChannels *
BUS_COST PREM CHANNEL;

amountDue = BUS_BILL_PROC_FEES

cout <<
<<

cout <<
<<

break;

default:
cout <<

+ BUS BASIC SERV_COST

//Step

//Step
//Step

//Step
//Step

//Step

+ (numOfBasicServConn - 10) *

BUS_BASIC_CONN_COST
+ numOfPremChannels *
BUS_COST_PREM CHANNEL;

"Account number: "
accountNumber << endl;
"Amount due: $" << amountDue
endl;

"Invalid customer type." << endl;

} //end switch

return 0;

}

Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number (an integer): 12345

Enter customer type: R or r (Residential),

Enter the number of basic service connections:

Enter the number of premium channels: 8

Account number:

12345

Amount due: $520.00

16

//Step

7

Ta
7b

Tc

7d

Te

43

//Step 7f

//Step

8

B or b (Business):

b

Quick Review

QUICK REVIEW

219

H W N

10.
11.
12.

13.

14.
15.

16.

17.
18.

19.

Control structures alter the normal flow of control.
The two most common control structures are selection and repetition.
Selection structures incorporate decisions in a program.

The relational operators are == (equality), < (less than), <= (less than or equal
to), > (greater than), >= (greater than or equal to), and != (not equal to).

Including a space between the relational operators ==, <=, >=, and ! =
creates a syntax error.

Characters are compared using a machine’s collating sequence.

Logical expressions evaluate to 1 (or a nonzero value) or 0. The logical
value 1 (or any nonzero value) is treated as true; the logical value 0 is
treated as false.

In C++, int variables can be used to store the value of a logical expression.
In C++, bool variables can be used to store the value of a logical expression.
In C++, the logical operators are ! (not), && (and), and || (or).
There are two selection structures in C++.
One-way selection takes the following form:
if (expression)

statement
If expression is true, the statement executes; otherwise, the
computer executes the statement following the if statement.
Two-way selection takes the following form:

if (expression)
statementl

else
statement2

If expression is true, then statementl executes; otherwise,
statement2 executes.
The expression in an if or if...else structure is usually a logical expression.

Including a semicolon before the statement in a one-way selection creates
a semantic error. In this case, the action of the if statement is empty.
Including a semicolon before statement1l in a two-way selection creates a
Syntax error.

There is no stand-alone else statement in C++. Every else hasarelated i f.

An else is paired with the most recent if that has not been paired with
any other else.

A sequence of statements enclosed between curly braces, { and }, is called a
compound statement or block of statements. A compound statement is
treated as a single statement.

220

Chapter 4: Control Structures | (Selection)

20. You can use the input stream variable in an if statement to determine the
state of the input stream.

21. Using the assignment operator in place of the equality operator creates a
semantic error. This can cause serious errors in the program.

22. The switch structure is used to handle multiway selection.

23. The execution of a break statement in a switch statement immediately
exits the switch structure.

24. It certain conditions are not met in a program, the program can be
terminated using the assert function.

EXERCISES

1.

Mark the following statements as true or false.

a.

b.

The result of a logical expression cannot be assigned to an int variable.

In a one-way selection, if a semicolon is placed after the expression
in an if statement, the expression in the if statement is always
true.

Every if statement must have a corresponding else.
The expression in the if statement:
if (score = 30)
grade = 'A';
always evaluates to true.
The expression:
(ch >= "A' && ch <= 'Z2")

evaluates to false if either ch< "A'" or ch>='2".
Suppose the input is 5. The output of the code:
cin >> num;
if (num > 5)
cout << num;
num = 0;
else
cout << "Num is zero" << endl;
is: Num is zero
The expression in a switch statement should evaluate to a value of the
simple data type.

The expression ! (x> 0) is true only if x is a negative number.
In C++, both ! and != are logical operators.

The order in which statements execute in a program is called the flow
of control.

Exercises | 221

2. Circle the best answer.

a. if (6 < 2 * 5)
cout << "Hello";
cout << " There";

outputs the following:

(1) Hello There (11) Hello (111) Hello (iv) There
There
b. if ('a' > 'b' || 66 > static cast<int>('A'"))

cout << "#*#" << endl;

outputs the following:
1) #*# () # () * (iv) none of these
*

#

c. if (7 <= 7)
cout << 6 - 9 * 2 / 6 << endl;

outputs the following:
(1) -1 (1) 3 (1) 3.0 (iv) none of these

d if (7 < 8)
{
cout << "2 4 6 8" << endl;
cout << "1 3 5 7" << endl;

}

outputs the following:
(1)2468 (1) 1357 (i11) none of these
1357

e. if (5 < 3)
cout << "x",

else
if (7 == 8)
cout << "&";
else

cout << "3§";

outputs the following:
@{) * (i) & (i) $ (v) none of these
3. What is the output of the following C++ code?

x = 100;
y = 200;

222

| Chapter 4: Control Structures | (Selection)

if (x > 100 && y <= 200)

cout << x << " "M << y << " " << x + y << endl;
else

cout << X << " "MK y <KL " T 2* x - y< endl;

Write C++ statements that output Male if the gender is 'M', Female if the
gender is 'F', and invalid gender otherwise.

Correct the following code so that it prints the correct message.
if (score >= 60)

cout << "You pass." << endl;
else;

cout << "You fail." << endl;

State whether the following are valid switch statements. If not, explain why.
Assume that n and digit are int variables.

a. switch (n <= 2)

{

case 0:
cout << "Draw." << endl;
break;

case 1:
cout << "Win." << endl;
break;

case 2:
cout << "Lose." << endl;
break;

h. switch (digit / 4)

{

case 0,

case 1:
cout << "low." << endl;
break;

case 1,

case 2:
cout << "middle." << endl;
break;

case 3:
cout << "high." << endl;

}

c. switch (n % 6)
{
case
case
case
case
case 5:

cout << n;
break;

S wWw N

Exercises | 223

case 0:
cout << endl;
break;

d. switch (n % 10)
{
case
case
case
case

@ o DN

cout << "Even";
break;

case 1:

case 3:

case 5:

case 7:
cout << "Odd";
break;

}

Suppose the input is 5. What is the value of alpha after the following C++ code
executes?

cin >> alpha;
switch (alpha)
{
case 1:
case 2:
alpha = alpha + 2;
break;
case 4:
alpha++;
case 5:
alpha = 2 * alpha;
case 6:
alpha = alpha + 5;
break;
default:
alpha--;
}

Suppose the input is 3. What is the value of beta after the following C++ code
executes?

cin >> beta;
switch (beta)
{
case 3:
beta = beta + 3;
case 1:
beta++;
break;

224 | Chapter 4: Control Structures | (Selection)

case 5:

beta = beta + 5;
case 4:

beta = beta + 4;

}

9. Suppose the input is 6. What is the value of a after the following C++ code
executes?

cin >> a;
if (a > 0)
switch (a)
{
case 1:
a=a+ 3;
case 3:
at+;
break;
case 6:
a=a+ 6;
case 8:
a=a* 8;
break;
default:
a--;
}
else
a=a+ 2;

10. In the following code, correct any errors that would prevent the program
from compiling or running:

include <iostream>

main ()
{
int a, b;
bool found;
cout << "Enter two integers: ;
cin >> a >> b;

if a > a*b & & 10 < b
found = 2 * a > b;
else
{
found = 2 * a < b;
if found
a = 3;
c = 15;
if b
{
b = 0;
a=1;

11.

Programming Exercises

The following program contains errors. Correct them so that the program
will run and output w = 21.

#include <iostream>
using namespace std;
const int SECRET = 5
main ()

{

int %, y, w, z;

z = 9;
if z > 10

x =12; y =5, w=x + y + SECRET;
else

x =12; y =4, w=x + y + SECRET;

cout << "w = " << w << endl;

PROGRAMMING EXERCISES

225

Write a program that prompts the user to input a number. The program
should then output the number and a message saying whether the number is
positive, negative, or zero.

Write a program that prompts the user to input three numbers. The program
should then output the numbers in ascending order.

Write a program that prompts the user to input an integer between 0 and 35. If
the number is less than or equal to 9, the program should output the number;
otherwise, it should output A for 10, B for 11, Cfor 12, .. ., and 2 for 35. (Hint:
Use the cast operator, static cast<char> (), for numbers >= 10.)

In a right triangle, the square of the length of one side is equal to the sum of
the squares of the lengths of the other two sides. Write a program that
prompts the user to enter the lengths of three sides of a triangle and then
outputs a message indicating whether the triangle is a right triangle.

A box of cookies can hold 24 cookies and a container can hold 75 boxes of
cookies. Write a program that prompts the user to enter the total number
of cookies, the number of cookies in a box, and the number of cookie
boxes in a container. The program then outputs the number of boxes and
the number of containers to ship the cookies. Note that each box must
contain the specified number of cookies and each container must contain
the specified number of boxes. If the last box of cookies contains less than
the number of specified cookies, you can discard it, and output the number
of leftover cookies. Similarly, if the last container contains less than the

226

10.

| Chapter 4: Control Structures | (Selection)

number of specified boxes, you can discard it, and output the number of
leftover boxes.

The roots of the quadratic equation ax” + bx + ¢ = 0, a # 0 are given by the
following formula:

—b+ Vb? — 4ac
2a

In this formula, the term b® — 4acis called the discriminant. If b* — 4ac = 0,
then the equation has a single (repeated) root. If b —4ac > 0, the
equation has two real roots. If b”—4ac<0, the equation has two
complex roots. Write a program that prompts the user to input the
value of a (the coefficient of x%), b (the coefficient of x), and ¢ (the
constant term), and outputs the type of roots of the equation. Further-
more, if b°—4ac>0, the program should output the roots of the
quadratic equation. (Hint: Use the function pow from the header file
cmath to calculate the square root. Chapter 3 explains how the
function pow is used.)

Write a program that prompts the user to input the x-y coordinate of a
point in a Cartesian plane. The program should then output a message
indicating whether the point is the origin, is located on the x- (or y-) axis, or
appears in a particular quadrant. For example:

(0, 0) is the origin

(4, 0) is on the x—-axis

(0, -3) is on the y-axis

(-2, 3) is in the second quadrant

Write a program that mimics a calculator. The program should take as input
two integers and the operation to be performed. It should then output the
numbers, the operator, and the result. (For division, if the denominator is
zero, output an appropriate message.) Some sample outputs follow:

3+4=17
13 * 5 = 65

Redo Exercise 9 to handle floating-point numbers. (Format your output to
two decimal places.)

Redo Programming Exercise 21 of Chapter 2, taking into account that your
parents buy additional savings bonds for you as follows:

a. If'you do not spend any money to buy savings bonds, then because you
had a summer job, your parents buy savings bonds for you in an
amount equal to 1% of the money you save after paying taxes, buying
clothes and other accessories, and school supplies.

11.

12.

13.

Programming Exercises

b. If you spend up to 25% of your net income to buy savings bonds, your
parents spend $0.25 for each dollar you spend to buy savings bonds,
plus money equal to 1% of the money you save after paying taxes,
buying clothes and other accessories, and school supplies.

c. If you spend more than 25% of your net income to buy savings
bonds, your parents spend $0.40 for each dollar you spend to buy
savings bonds, plus money equal to 2% of the money you save after
paying taxes, buying clothes and other accessories, and school sup-
plies.

A bank in your town updates its customers’ accounts at the end of each
month. The bank ofters two types of accounts: savings and checking. Every
customer must maintain a minimum balance. If a customer’s balance falls
below the minimum balance, there is a service charge of $10.00 for savings
accounts and $25.00 for checking accounts. If the balance at the end of the
month is at least the minimum balance, the account receives interest as
follows:

a. Savings accounts receive 4% interest.

b. Checking accounts with balances of up to $5,000 more than the
minimum balance receive 3% interest; otherwise, the interest is 5%.

Write a program that reads a customer’s account number (int type),
account type (char; s for savings, ¢ for checking), minimum balance that
the account should maintain, and current balance. The program should then
output the account number, account type, current balance, and an appro-
priate message. Test your program by running it five times, using the
following data:

46728 S 1000 2700
87324 C 1500 7689
79873 S 1000 800
89832 C 2000 3000
98322 C 1000 750

Write a program that implements the algorithm given in Example 1-3
(Chapter 1), which determines the monthly wages of a salesperson.

The number of lines that can be printed on a paper depends on the paper
size, the point size of each character in a line, whether lines are double-
spaced or single-spaced, the top and bottom margin, and the left and right
margins of the paper. Assume that all characters are of the same point size,
and all lines are either single-spaced or double-spaced. Note that 1 inch =
72 points. Moreover, assume that the lines are printed along the width of
the paper. For example, if the length of the paper is 11 inches and width is
8.5 inches, then the maximum length of a line is 8.5 inches. Write a

227

228

14.

15.

| Chapter 4: Control Structures | (Selection)

program that calculates the number of characters in a line and the number
of lines that can be printed on a paper based on the following input from
the user:

a. The length and width, in inches, of the paper

b. The top, bottom, left, and right margins

c. The point size of a line

d. If'the lines are double-spaced, then double the point size of each character
Write a program that calculates and prints the bill for a cellular telephone
company. The company offers two types of service: regular and premium.

Its rates vary, depending on the type of service. The rates are computed as
follows:

Regular service: $10.00 plus first 50 minutes are free. Charges for
over 50 minutes are $0.20 per minute.
Premium service: $25.00 plus:

a. For calls made from 6:00 a.m. to 6:00 p.m., the first 75 minutes are free;
charges for over 75 minutes are $0.10 per minute.

b. For calls made from 6:00 p.m. to 6:00 a.m., the first 100 minutes are
free; charges for over 100 minutes are $0.05 per minute.

Your program should prompt the user to enter an account number, a
service code (type char), and the number of minutes the service was used.
A service code of r or R means regular service; a service code of p or P
means premium service. Treat any other character as an error. Your pro-
gram should output the account number, type of service, number of
minutes the telephone service was used, and the amount due from the user.

For the premium service, the customer may be using the service during the
day and the night. Therefore, to calculate the bill, you must ask the user to
input the number of minutes the service was used during the day and the
number of minutes the service was used during the night.

You have several pictures of different sizes that you would like to frame. A
local picture-framing store offers two types of frames—regular and fancy.
The frames are available in white and can be ordered in any color the
customer desires. Suppose that each frame is 1 inch wide. The cost of
coloring the frame is $0.10 per inch. The cost of a regular frame is $0.15
per inch and the cost of a fancy frame is $0.25 per inch. The cost of putting
a cardboard paper behind the picture is $0.02 per square inch, and the cost
of putting glass on top of the picture is $0.07 per square inch. The customer
can also choose to put crowns on the corners, which costs $0.35 per crown.

16.

Programming Exercises

Worite a program that prompts the user to input the following information
and then output the cost of framing the picture:

a. The length and width, in inches, of the picture
b. The type of the frame
c. Customer’s choice of color to color the frame

d. If the user wants to put the crowns, then the number of crowns

Samantha and Vikas are looking to buy a house in a new development.
After looking at various models, the three models they like are colonial,
split-entry, and single-story. The builder gave them the base price and the
finished area in square feet of the three models. They want to know the
model(s) with the least price per square foot. Write a program that accepts as
input the base price and the finished area in square feet of the three models.
The program outputs the model(s) with the least price per square foot.

229

En—
—
——]
P
i
-

-

)

)
1

CONTROL STRUCTURES ||
(REPETITION)

IN THIS CHAPTER, YOU WILL:

Learn about repetition (looping) control structures

Explore how to construct and use counter-controlled,
sentinel-controlled, flag-controlled, and EOF-controlled
repetition structures

Examine break and continue statements

Discover how to form and use nested control structures

232 | Chapter 5: Control Structures Il (Repetition)

In Chapter 4, you saw how decisions are incorporated in programs. In this chapter, you
learn how repetitions are incorporated in programs.

Why |Is Repetition Needed?

Suppose you want to add five numbers to find their average. From what you have learned
so far, you could proceed as follows (assume that all variables are properly declared):

cin >> numl >> num2 >> num3 >> num4 >> num5; //read five numbers
sum = numl + num2 + num3 + num4 + numb5; //add the numbers
average = sum / 5; //£find the average

But suppose you want to add and average 100, or 1000, or more numbers. You would
have to declare that many variables, and list them again in cin statements and, perhaps,
again in the output statements. This takes an exorbitant amount of space and time. Also, if
you want to run this program again with difterent values, or with a different number of
values, you have to rewrite the program.

Suppose you want to add the following numbers:
53794
Consider the following statements, in which sum and num are variables of type int:

1. sum = 0;
2. cin >> num;

3. sum = sum + num;

The first statement initializes sum to 0. Let us execute statements 2 and 3. Statement 2
stores 5 in num; statement 3 updates the value of sum by adding num to it. After statement
3, the value of sum is 5.

Let us repeat statements 2 and 3. After statement 2 (after the programming code reads the
next number):

num = 3
After statement 3:
sum = sum + num = 5 + 3 = 8

At this point, sum contains the sum of the first two numbers. Let us again repeat
statements 2 and 3 (third time). After statement 2 (after the code reads the next number):

num = 7
After statement 3:
sum = sum + num = 8 + 7 = 15

Now sum contains the sum of the first three numbers. If you repeat statements 2 and 3
two more times, sum will contain the sum of all five numbers.

while Looping (Repetition) Structure | 233

If you want to add 10 numbers, you can repeat statements 2 and 3 ten times. And if you want to
add 100 numbers, you can repeat statements 2 and 3 one hundred times. In either case, you do not
have to declare any additional variables, as you did in the first code. You can use this C++ code to
add any set of numbers, whereas the earlier code requires you to drastically change the code.

There are many other situations where it is necessary to repeat a set of statements. For
example, for each student in a class, the formula for determining the course grade is the same.
C++ has three repetition, or looping, structures that let you repeat statements over and over
until certain conditions are met. This chapter introduces all three looping (repetition)
structures. The next section discusses the first repetition structure, called the while loop.

while Looping (Repetition) Structure

In the previous section, you saw that sometimes it is necessary to repeat a set of statements
several times. One way to repeat a set of statements is to type the set of statements in the
program over and over. For example, if you want to repeat a set of statements 100 times,
you type the set of statements 100 times in the program. However, this solution of
repeating a set of statements is impractical, if not impossible. Fortunately, there is a better
way to repeat a set of statements. As noted earlier, C++ has three repetition, or looping,
structures that allow you to repeat a set of statements until certain conditions are met.
This section discusses the first looping structure, called a while loop.

The general form of the while statement is:

while (expression)
statement

In C++, while is a reserved word. Of course, the statement can be either a simple
or compound statement. The expression acts as a decision maker and is usually a
logical expression. The statement is called the body of the loop. Note that the
parentheses around the expression are part of the syntax. Figure 5-1 shows the flow
of execution of a while loop.

®
1 |

RO — true — EREICIE)]

I
false

:

FIGURE 5-1 while loop

234 | Chapter 5: Control Structures Il (Repetition)

The expression provides an entry condition. If it initially evaluates to true, the
statement executes. The loop condition—the expression—is then reevaluated. If it again
evaluates to true, the statement executes again. The statement (body of the loop)
continues to execute until the expression is no longer true. A loop that continues to
execute endlessly is called an infinite loop. To avoid an infinite loop, make sure that the loop’s
body contains statement(s) that assure that the exit condition—the expression in the while
statement—will eventually be false.

EXAMPLE 5-1

Consider the following C++ program segment:

i=0; //Line 1
while (1 <= 20) //Line 2
{
cout << i << " "; //Line 3
i=1i+ 5; //Line 4
}

cout << endl;
Sample Run:
0 510 15 20

In Line 1, the variable 1 is set to 0. The expression in the while statement (in Line
2), 1 <= 20, is evaluated. Because the expression 1 <= 20 evaluates to true, the body of
the while loop executes next. The body of the while loop consists of the statements in
Lines 3 and 4. The statement in Line 3 outputs the value of i, which is 0. The statement
in Line 4 changes the value of 1 to 5. After executing the statements in Lines 3 and 4, the
expression in the while loop (Line 2) is evaluated again. Because 1 is 5, the
expression 1 <= 20 evaluates to true and the body of the while loop executes again.
This process of evaluating the expression and executing the body of the while loop
continues until the expression, i <= 20 (in Line 2), no longer evaluates to true.

The variable 1 (in Line 2, Example 5-1) in the expression is called the loop control variable.
Note the following from Example 5-1:

a. Within the loop i becomes 25, but is not printed because the entry
condition is false.

b. If you omit the statement:
i=1+5;

from the body of the loop, you will have an infinite loop, continually
printing rows of zeros.

while Looping (Repetition) Structure | 235

c. You must initialize the loop control variable 1 before you execute the
loop. If the statement:

i=0;

(in Line 1) is omitted, the loop may not execute at all. (Recall that
variables in C++ are not automatically initialized.)

d. In Example 5-1, if the two statements in the body of the loop are
interchanged, it may drastically alter the result. For example, consider
the following statements:

i=20;

while (i <= 20)
{
i=1+5;
cout << 1 << " ",

}

cout << endl;

Here the output is:

5 10 15 20 25

Typically, this would be a semantic error because you rarely want a
condition to be true for 1 <= 20, and yet produce results for 1 > 20.

e. If you put a semicolon at the end of the while loop, (after the logical
expression), then the action of the while loop is empty or null. For
example, the action of the following while loop is empty.

i=0;

while (i <= 20);
{

i=14+25;

cout << i < " ",
}

cout << endl;

The statements within the braces do not form the body of the while loop.

Designing while loops

As in Example 5-1, the body of a while executes only when the expression, in the
while statement, evaluates to true. Typically, the expression checks whether a
variable(s), called the loop control variable (LCV), satisfies certain conditions. For
example, in Example 5-1, the expression in the while statement checks whether
i <= 20. The LCV must be properly initialized before the while loop and it should

236 | Chapter 5: Control Structures Il (Repetition)

eventually make the expression evaluate to false. We do this by updating or
reinitializing the LCV in the body of the while loop. Therefore, typically, while loops
are written in the following form:

//initialize the loop control variable (s)

while (expression) //expression tests the LCV

{

//update the loop control variable (s)

}

For instance, in Example 5-1, the statement in Line 1 initializes the LCV 1 to 0. The
expression, 1 <= 20, in Line 2, checks whether i is less than or equal to 20, and the
statement in Line 4 updates the value of i.

EXAMPLE 5-2

Consider the following C++ program segment:

i = 20; //Line 1
while (i < 20) //Line 2
{
cout << i << " "; //Line 3
i=1i+ 5; //Line 4
}
cout << endl; //Line 5

It is easy to overlook the difference between this example and Example 5-1. In this example, in
Line 1, i 1s set to 20. Because i is 20, the expression i < 20 in the while statement (Line 2)
evaluates to false. Because initially the loop entry condition, i < 20, is false, the body of
the while loop never executes. Hence, no values are output and the value of i remains 20.

The next few sections describe the various forms of while loops.

Case 1: Counter-Controlled while Loops

Suppose you know exactly how many times certain statements need to be executed. For
example, suppose you know exactly how many pieces of data (or entries) need to be read.
In such cases, the while loop assumes the form of a counter-controlled while loop.
Suppose that a set of statements needs to be executed N times. You can set up a counter

while Looping (Repetition) Structure | 237

(initialized to 0 before the while statement) to track how many items have been read.
Before executing the body of the while statement, the counter is compared with N. If
counter < N, the body of the while statement executes. The body of the loop
continues to execute until the value of counter >= N. Thus, inside the body of the
while statement, the value of counter increments after it reads a new item. In this case,
the while loop might look like the following:

counter = 0; //initialize the loop control variable

while (counter < N) //test the loop control variable
{

counter++; //update the loop control variable

}

If N represents the number of data items in a file, then the value of N can be determined
several ways. The program can prompt you to specify the number of items in the file; an
input statement can read the value; or you can specify the first item in the file as the number
of items in the file, so that you need not remember the number of input values (items). This
is useful if someone other than the programmer enters the data. Consider Example 5-3.

EXAMPLE 5-3

Suppose the input is:
8 923 90 38 56 8238972838

Suppose you want to add these numbers and find their average. Consider the following
program:

//Program: AVGl
#include <iostream>
using namespace std;

int main()

{

int limit; //store the number of data items
int number; //variable to store the number
int sum; //variable to store the sum

int counter; //loop control variable

cout << "Line 1: Enter the number of "

<< "integers in the list: "; //Line 1
cin >> limit; //Line 2
cout << endl; //Line 3

238 | Chapter 5: Control Structures Il (Repetition)

sum = 0; //Line 4
counter = 0; //Line 5

cout << "Line 6: Enter " << limit

<< " integers." << endl; //Line 6
while (counter < limit) //Line 7
{

cin >> number; //Line 8

sum = sum + number; //Line 9

counter++; //Line 10

}

cout << "Line 11: The sum of the " << limit

<< " numbers = " << sum << endl; //Line 11

if (counter != 0) //Line 12
cout << "Line 13: The average = "

<< sum / counter << endl; //Line 13

else //Line 14

cout << "Line 15: No input." << endl; //Line 15

return 0; //Line 16

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter the number of integers in the 1list: 12

Line 6: Enter 12 integers.

8 92 3 90 38 56 8 23897 2838

Line 11: The sum of the 12 numbers = 335
Line 13: The average = 27

This program works as follows. The statement in Line 1 prompts the user to input the
number of data items. The statement in Line 2 reads the next input line and stores it in the
variable Limit. The value of 1imit indicates the number of items in the list. The statements
in Lines 4 and 5 initialize the variables sum and counter to 0. (The variable counter is the
loop control variable.) The statement in Line 6 prompt the user to input numbers. (In this
sample run, the user is prompted to enter 12 integers.) The while statement in Line 7
checks the value of counter to determine how many items have been read. If counter is
less than limit, the while loop proceeds for the next iteration. The statement in Line 8
reads the next number and stores it in the variable number. The statement in Line 9 updates
the value of sum by adding the value of number to the previous value, and the statement in
Line 10 increments the value of counter by 1. The statement in Line 11 outputs the sum of
the numbers; the statements in Lines 12 through 15 output the average.

Note that sumis initialized to 0 in Line 4 in this program. In Line 9, after reading a number at
Line 8, the program adds it to the sum of all the numbers scanned before the current number.
The first number read will be added to zero (because sum is initialized to 0), giving the
correct sum of the first number. To find the average, divide sum by counter. If counter

while Looping (Repetition) Structure | 239

is 0, then dividing by zero will terminate the program and you get an error message.
Therefore, before dividing sum by counter, you must check whether or not counter is 0.

Notice that in this program, the statement in Line 5 initializes the LCV counter to 0.
The expression counter < limit in Line 7 evaluates whether counter is less than
limit. The statement in Line 10 updates the value of counter.

Case 2: Sentinel-Controlled while Loops

You do not always know how many pieces of data (or entries) need to be read, but you
may know that the last entry is a special value, called a sentinel. In this case, you read
the first item before the while statement. If this item does not equal the sentinel, the
body of the while statement executes. The while loop continues to execute as long as
the program has not read the sentinel. Such a while loop is called a sentinel-
controlled while loop. In this case, a while loop might look like the following:

cin >> variable; //initialize the loop control variable
while (variable != sentinel) //test the loop control variable
{
cin >> variable; //update the loop control variable
}

EXAMPLE 5-4

Suppose you want to read some positive integers and average them, but you do not have
a preset number of data items in mind. Suppose the number -999 marks the end of the
data. You can proceed as follows.

//Program: AVG2

#include <iostream>

using namespace std;
const int SENTINEL = -999;

int main()
{
int number; //variable to store the number
int sum = 0; //variable to store the sum
int count = 0; //variable to store the total
//numbers read

240 | Chapter 5: Control Structures Il (Repetition)

cout << "Line 1l: Enter integers ending with "

<< SENTINEL << endl; //Line 1
cin >> number; //Line 2
while (number != SENTINEL) //Line 3
{

sum = sum + number; //Line 4

count++; //Line 5

cin >> number; //Line 6
}
cout << "Line 7: The sum of the " << count

<< " numbers is " << sum << endl; //Line 7
if (count != 0) //Line 8

cout << "Line 9: The average is "

<< sum / count << endl; //Line 9

else //Line 10

cout << "Line 11: No input." << endl; //Line 11

return 0;

}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter integers ending with -999
34 23 9 45 78 0 77 8 3 5 =999

Line 7: The sum of the 10 numbers is 282
Line 9: The average is 28

This program works as follows. The statement in Line 1 prompts the user to enter
numbers ending with -999. The statement in Line 2 reads the first number and stores it
in number. The while statement in Line 3 checks whether number is not equal to
SENTINEL. (The variable number is the loop control variable.) If number is not equal to
SENTINEL, the body of the while loop executes. The statement in Line 4 updates the
value of sum by adding number to it. The statement in Line 5 increments the value of
count by 1; the statement in Line 6 reads and stores the next number into number. The
statements in Lines 4 through 6 repeat until the program reads the SENTINEL. The
statement in Line 7 outputs the sum of the numbers, and the statements in Lines 8
through 10 output the average of the numbers.

Notice that the statement in Line 2 initializes the LCV number. The expression number
!= SENTINEL in Line 3 checks whether the value of number is not equal to SENTINEL.
The statement in Line 6 reinitializes the LCV number.

Next, consider another example of a sentinel-controlled while loop. In this example, the
user is prompted to enter the value to be processed. If the user wants to stop the program,
he or she can enter the sentinel.

while Looping (Repetition) Structure | 241

EXAMPLE 5-5

Telephone Digits

The following program reads the letter codes A to Z and prints the corresponding
telephone digit. This program uses a sentinel-controlled while loop. To stop the
program, the user is prompted for the sentinel, which is #. This is also an example of a
nested control structure, where if...else, switch, and the while loop are nested.

//**
// Program: Telephone Digits

// This is an example of a sentinel-controlled loop. This

// program converts uppercase letters to their corresponding

// telephone digits.
//**

#include <iostream>

using namespace std;

int main()

{
char letter; //Line 1

cout << "Program to convert uppercase "
<< "letters to their corresponding "
<< "telephone digits.™ << endl; //Line 2

cout << "To stop the program enter #."

<< endl; //Line 3
cout << "Enter a letter: "; //Line 4
cin >> letter; //Line 5
cout << endl; //Line 6
while (letter != "#") //Line 7
{
cout << "The letter you entered is: "
<< letter << endl; //Line 8
cout << "The corresponding telephone "
<< "digit is: "; //Line 9
if (letter >= 'A' && letter <= 'Z") //Line 10
switch (letter) //Line 11
{
case 'A':
case 'B':
case 'C':
cout << "2" <<endl; //Line 12

break; //Line 13

| Chapter 5: Control Structures

case
case
case

case
case
case

case
case
case

case
case
case

case
case
case
case

case
case
case

case
case
case
case

}

else

ID':
’EV:
IF':

cout << "3"

break;

IG':
IH':
II':

cout << "4"

break;

IJV:
IK':
IL':

cout << "5"

break;

IM':
’NV:
IO':

cout << "o6"

break;

IP':
IQ':
IR':
ls':

cout << "7V

break;

IT':
IUV:
’VV:

cout << "8"

break;

IW':
IX':
IY':
IZ':

cout << "9"

Il (Repetition)

<<

<<

<<

<<

<<

<<

<<

endl;

endl;

endl;

endl;

endl;

endl;

endl;

cout << "Invalid input.”

cout <<
<<
<<
<<
cout <<
<<
cout <<
cin >> 1
cout <<

}//end while

return 0;

<< endl;

"\nEnter another uppercase "
"letter to find its

"corresponding telephone digit."

endl;

"To stop the program enter #."

endl;

"Enter a letter: ";

etter;
endl;

//Line
//Line

//Line
//Line

//Line
//Line

//Line
//Line

//Line
//Line

//Line
//Line

//Line

//Line
//Line

//Line
//Line
//Line

//Line
//Line

14
15

16
17

18
19

20
21

22
23

24
25

26

27
28

29
30
31

32
33

while Looping (Repetition) Structure | 243

Sample Run: In this sample run, the user input is shaded.

Program to convert uppercase letters to their corresponding telephone
digits.

To stop the program enter #.

Enter a letter: A

The letter you entered is: A

The corresponding telephone digit is: 2

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.

Enter a letter: D

The letter you entered is: D

The corresponding telephone digit is: 3

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.
Enter a letter: #

This program works as follows. The statements in Lines 2 and 3 tell the user what to do. The
statement in Line 4 prompts the user to input a letter; the statement in Line 5 reads and stores
that letter into the variable letter. The while loop in Line 7 checks that the letter is #. If
the letter entered by the user is not #, the body of the while loop executes. The statement in
Line 8 outputs the letter entered by the user. The if statement in Line 10 checks whether
the letter entered by the user is uppercase. The statement part of the if statement is the
switch statement (Line 11). If the letter entered by the user is uppercase, the expression
in the if statement (in Line 10) evaluates to true and the swi tch statement executes; if the
letter entered by the user is not uppercase, the else statement (Line 27) executes. The
statements in Lines 12 through 26 determine the corresponding telephone digit.

Once the current letter is processed, the statements in Lines 29 and 30 again inform
the user what to do next. The statement in Line 31 prompts the user to enter a letter; the
statement in Line 32 reads and stores that letter into the variable letter. (Note that the
statement in Line 29 is similar to the statement in Line 2 and that the statements in Lines 30
through 33 are the same as the statements in Lines 3 through 6.) After the statement in
Line 33 (at the end of the while loop) executes, the control goes back to the top of the while
loop and the same process begins again. When the user enters #, the program terminates.

Notice that in this program, the variable letter is the loop control variable. First, it is
initialized in Line 5 by the input statement, and then updated in Line 32. The expression
in Line 7 checks whether letter is #.

NOTE Inthe program in Example 5-5, you can write the statements between Lines 10 and 28
using a switch structure. (See Programming Exercise 3 at the end of this chapter.)

Case 3: Flag-Controlled while Loops

A flag-controlled while loop uses a bool variable to control the loop. Suppose
found is a bool variable. The flag-controlled while loop takes the following form:

244 | Chapter 5: Control Structures Il (Repetition)

found = false; //initialize the loop control variable
while (!found) //test the loop control variable
{

if (expression)
found = true; //update the loop control variable

}

The variable found, which is used to control the execution of the while loop, is called a
flag variable.

Example 5-6 further illustrates the use of a flag-controlled while loop.

EXAMPLE 5-6

Number Guessing Game

The following program randomly generates an integer greater than or equal to 0 and less
than 100. The program then prompts the user to guess the number. If the user guesses
the number correctly, the program outputs an appropriate message. Otherwise, the
program checks whether the guessed number is less than the random number. If the
guessed number is less than the random number generated by the program, the program
outputs the message “Your guess is lower than the number. Guess again!”; otherwise, the
program outputs the message “Your guess is higher than the number. Guess again!”. The
program then prompts the user to enter another number. The user is prompted to guess
the random number until the user enters the correct number.

The program uses the function rand of the header file cstdlib to generate a random
number. To be specific, the expression:

rand()

returns an int value between 0 and 32767. To convert it to an integer greater than or
equal to 0 and less than 100, we use the following expression:

rand() % 100

It is possible that every time you run your program, the function rand gives the same
random number. In this case, you can use the function time, of the header file ctime, to
include the time. The function time returns time as a long value. The following
expression uses both the functions rand and time to generate a random integer greater
than or equal to 0 and less than 100:

(rand () + time(0)) % 100;

(Note how the function t ime is used. Itis used with an argument, that s, a parameter, whichis 0.)

while Looping (Repetition) Structure | 245

The program uses the bool variable isGuessed to control the loop. The bool variable
isGuessed isinitialized to false. Itis set to true when the user guesses the correct number.

//Flag-controlled while loop.
//Number guessing game.

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int main()
{
//declare the variables
int num; //variable to store the random
//number
int guess; //variable to store the number
//guessed by the user
bool isGuessed; //boolean variable to control
//the loop
num = (rand() + time(0)) % 100; //Line 1
isGuessed = false; //Line 2
while (!isGuessed) //Line 3
{ //Line 4

cout << "Enter an integer greater"
<< " than or equal to 0 and "

<< "less than 100: "; //Line 5
cin >> guess; //Line 6
cout << endl; //Line 7
if (guess == num) //Line 8
{ //Line 9
cout << "You guessed the correct "
<< "number." << endl; //Line 10
isGuessed = true; //Line 11
} //Line 12
else if (guess < num) //Line 13

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; //Line 14
else //Line 15
cout << "Your guess is higher than "
<< "the number.\n Guess again!"
<< endl; //Line 16
} //end while //Line 17

return 0;

246 | Chapter 5: Control Structures Il (Repetition)

Sample Run: In this sample run, the user input is shaded.

Enter an integer greater than or equal to 0 and less than 100:| 25

Your guess is higher than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 5

Your guess is lower than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 10

Your guess is higher than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 8

Your guess is higher than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 6

Your guess is lower than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 7

You guessed the correct number.

The preceding program works as follows: The statement in Line 1 creates an integer
greater than or equal to 0 and less than 100 and stores this number in the variable
num. The statement in Line 2 sets the bool variable isGuessed to false. The
while loop starts at Line 3 and ends at Line 17. The expression in the while loop
at Line 3 evaluates the expression !isGuessed. If isGuessed is false, then
lisGuessed is true and the body of the while loop executes; if isGuessed is
true, then !isGuessed is false, so the while loop terminates.

The statement in Line 5 prompts the user to enter an integer greater than or equal to 0
and less than 100. The statement in Line 6 stores the number entered by the user in
the variable guess. The expression in the if statement in Line 8 determines whether the
value of guess is the same as num; that is, if the user guessed the number correctly. If
the value of guess is the same as num, then the statements in Lines 10 and 11 execute.
The statement in Line 10 outputs the message:

You guessed the correct number.

The statement in Line 11 sets the variable isGuessed to true. The control then goes
back to Line 3. Because isGuessed is true, !isGuessed is false and the while
loop terminates.

If the expression in Line 8 evaluates to false, then the else statement in Line 13
executes. The statement part of this else is an if...else statement, ending at Line 16.
The if statement in Line 13 determines whether the value of guess is less than num. In
this case, the statement in Line 14 outputs the message:

while Looping (Repetition) Structure | 247

Your guess is lower than the number.
Guess again!

If the expression in the if statement in Line 13 evaluates to false, then the statement in
Line 16 executes, which outputs the message:

Your guess is higher than the number.
Guess again!

The program then prompts the user to enter an integer greater than or equal to 0 and less
than 100.

Case 4: EOF-Controlled while Loops

If the data file is frequently altered (for example, if data is frequently added or deleted), it’s
best not to read the data with a sentinel value. Someone might accidentally erase the sentinel
value or add data past the sentinel, especially if the programmer and the data entry person are
different people. Also, the programmer sometimes does not know what the sentinel is. In
such situations, you can use an EOF (End Of File)-controlled while loop.

Until now, we have used an input stream variable, such as cin, and the extraction
operator, >>, to read and store data into variables. However, the input stream variable
can also return a value after reading data, as follows:

1. If the program has reached the end of the input data, the input stream
variable returns the logical value false.

2. [If the program reads any faulty data (such as a char value into an int
variable), the input stream enters the fail state. Once a stream enters the fail
state, any further I/O operations using that stream are considered to be null
operations; that is, they have no effect. Unfortunately, the computer does
not halt the program or give any error messages. It just continues executing
the program, silently ignoring each additional attempt to use that stream. In
this case, the input stream variable returns the value false.

3. In cases other than (1) and (2), the input stream variable returns the
logical value true.

You can use the value returned by the input stream variable to determine whether the
program has reached the end of the input data. Because the input stream variable returns the
logical value true or false, in a while loop, it can be considered a logical expression.

The following is an example of an EOF-controlled while loop:

cin >> variable; //initialize the loop control variable

while (cin) //test the loop control variable

{

248 | Chapter 5: Control Structures Il (Repetition)

cin >> variable; //update the loop control variable

}

Notice that here the variable cin acts as the loop control variable.

eof Function

In addition to checking the value of an input stream variable, such as cin, to determine
whether the end of the file has been reached, C++ provides a function that you can use
with an input stream variable to determine the end-of-file status. This function is called
eof. Like the I/O functions—such as get, ignore, and peek, discussed in Chapter 3—
the function eof is a member of the data type istream.

The syntax to use the function eof is:

istreamvVar.eof ()

where istreamVar is an input stream variable, such as cin.

Suppose you have the declaration:

ifstream infile;

Further suppose that you opened a file using the variable infile. Consider the expression:
infile.eof ()

This 1s a logical (Boolean) expression. The value of this expression is true if the program has
read past the end of the input file, infile; otherwise, the value of this expression is false.

This method of determining the end-of-file status (that is, using the function eof) works
best if the input is text. The earlier method of determining the end-of-file status works
best if the input consists of numeric data.

Suppose you have the declaration:

ifstream infile;
char ch;

infile.open ("inputDat.dat");

The following while loop continues to execute as long as the program has not reached
the end of the file.

infile.get (ch);

while (!infile.eof())
{
cout << ch;
infile.get (ch);

while Looping (Repetition) Structure | 249

As long as the program has not reached the end of the input file, the expression:
infile.eof ()

is false and so the expression:

linfile.eof ()

in the while statement is true. When the program reads past the end of the input file,
the expression:

infile.eof ()

becomes true and so the expression:

linfile.eof ()

in the while statement becomes false and the loop terminates.

The Programming Example Checking Account Balance, in this chapter, further illustrates
how to use an EOF-controlled while loop in a program.

More on Expressions in while Statements

In the examples of the previous sections, the expression in the while statement is
quite simple. In other words, the while loop is controlled by a single variable.
However, there are situations when the expression in the while statement may be
more complex.

For example, the program in Example 5-6 uses a flag-controlled while loop to
implement the Number Guessing Game. However, the program gives as many tries
as the user needs to guess the number. Suppose you want to give the user no more
than five tries to guess the number. If the user does not guess the number correctly
within five tries, then the program outputs the random number generated by the
program as well as a message that you have lost the game. In this case, you can write
the while loop as follows (assume that noOfGuesses is an int variable initialized
to 0):

while ((noOfGuesses < 5) && (!isGuessed))
{
cout << "Enter an integer greater than or equal to 0 and "
<< "less than 100: ";
cin >> guess;
cout << endl;
noOfGuesses++;

250 | Chapter 5: Control Structures Il (Repetition)

if (guess == num)

{

cout << "Winner!. You guessed the correct number."
<< endl;
isGuessed = true;

}
else if (guess < num)
cout << "Your guess is lower than the number.\n"
<< "Guess again!" << endl;
else
cout << "Your guess is higher than the number.\n"
<< "Guess again!" << endl;
}//end while

You also need the following code, to be included after the while loop, in case the user
cannot guess the correct number in five tries.

if (!isGuessed)
cout << "You lose! The correct number is " << num << endl;

Programming Exercise 14 at the end of this chapter asks you to write a complete C++
program to implement the Number Guessing Game in which the user has, at most, five
tries to guess the number.

As you can see from the preceding while loop, the expression in a while statement can
be complex. The main objective of a while loop is to repeat certain statement(s) until
certain conditions are met.

PROGRAMMING EXAMPLE: Checking Account Balance

A local bank in your town is looking for someone to write a program that calculates a
customer’s checking account balance at the end of each month. The data is stored in
a file in the following form:

467343 23750.40
W 250.00

D 1200.00

W 75.00

I 120.74

The first line of data shows the account number followed by the account balance at the
beginning of the month. Thereafter, each line has two entries: the transaction code and
the transaction amount. The transaction code W or w means withdrawal, D or d means
deposit, and I or 1 means interest paid by the bank. The program updates the balance
after each transaction. During the month, if at any time the balance goes below

Programming Example: Checking Account Balance | 251

$1000.00, a $25.00 service fee is charged. The program prints the following informa-
tion: account number, balance at the beginning of the month, balance at the end of the
month, interest paid by the bank, total amount of deposits, number of deposits, total
amount of withdrawals, number of withdrawals, and service charge, if any.

Input A file consisting of data in the above format
Output The output is of the following form:

Account Number: 467343
Beginning Balance: $23750.40
Ending Balance: $24611.49

Interest Paid: $366.24

Amount Deposited: $2230.50
Number of Deposits: 3

Amount Withdrawn: $1735.65
Number of Withdrawals: 6

The output is to be stored in a file.

PROBLEM The first entry in the input file is the account number and the beginning balance, so
ANALYSIS the program first reads the account number and beginning balance. Thereafter, each
AND entry in the file is of the following form:

ALGORITHM

transactionCode transactionAmount
DESIGN

To determine the account balance at the end of the month, you need to process each
entry that contains the transaction code and transaction amount. Begin with the
starting balance and then update the account balance after processing each entry. If
the transaction code is D, d, I, or i, the transaction amount is added to the account
balance. If the transaction code is W or w, the transaction amount is subtracted from
the balance. Because the program also outputs the number of withdrawals and
deposits, you need to keep separate counts of withdrawals and deposits. This discus-
sion translates into the following algorithm:

Declare the variables.

Initialize the variables.

Get the account number and beginning balance.

Get the transaction code and transaction amount.

Analyze the transaction code and update the appropriate variables.

Repeat Steps 4 and 5 until there is no more data.

Noey Bogs e =

Print the result.

252 | Chapter 5: Control Structures Il (Repetition)

Variables The program outputs the account number, beginning balance, balance at the end of
the month, interest paid, amount deposited, number of deposits, amount withdrawn,
number of withdrawals, and service charge, if any. You need variables to store all this
information. So far, you need the following variables:

acctNumber //variable to store the account number
beginningBalance //variable to store the beginning balance
accountBalance //variable to store the account balance at the
//end of the month

amountDeposited //variable to store the total amount deposited
numberOfDeposits //variable to store the number of deposits
amountWithdrawn //variable to store the total amount withdrawn
numberOfWithdrawals //variable to store the number of withdrawals
interestPaid //variable to store the interest paid

Because the program reads the data from a file and the output is stored in a file, the
program needs both input and output stream variables. After the first line, the data in
each line is the transaction code and the transaction amount; the program needs a
variable to store this information.

Whenever the account balance goes below the minimum balance, a service charge
for that month is applied. After each withdrawal, you need to check the account
balance. If the balance goes below the minimum after a withdrawal, a service charge
is applied. You can potentially have several withdrawals in a month; once the account
balance goes below the minimum, a subsequent deposit might bring the balance
above the minimum, and another withdrawal might again reduce it below the
minimum. However, the service charge is applied only once.

To implement this idea, the program uses a bool variable, isServiceCharged,
which is initialized to false and set to true whenever the account balance goes
below the minimum. Before applying a service charge, the program checks the value
of the variable isServiceCharged. If the account balance is less than the
minimum and isServiceCharged is false, a service charge is applied. The
program needs the following variables:

int acctNumber;
double beginningBalance;
double accountBalance;

double amountDeposited;
int numberOfDeposits;
double amountWithdrawn;
int numberOfWithdrawals;

double interestPaid;

char transactionCode;
double transactionAmount;

Programming Example: Checking Account Balance | 253

bool isServiceCharged;

ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

Named Because the minimum account balance and the service charge amount are fixed,
Constants the program uses two named constants to store them:

const double MINIMUM BALANCE = 1000.00;
const double SERVICE CHARGE = 25.00;

PROBLEM Because this program is more complex than previous ones, before writing the main
ANALYSIS algorithm, the seven steps on page 251 are described more fully here.
DD Declare the variables. Declare variables as discussed previously.
ALGORITHM eie 1e . .

2. Initialize the variables. After each deposit, the total amount
orelen deposited is updated and the number of deposits is incremented b
(CONTINUED) eposited is updated a e number of deposits is incremented by

1. Before the first deposit, the total amount deposited is 0, and the
number of deposits is 0. Therefore, the variables amountDeposited
and numberOfDeposits must be initialized to 0. Similarly, the
variables amountWithdrawn, numberOfWithdrawals, and
interestPaid must be initialized to 0. Also, as discussed pre-
viously, the variable isServiceCharged is initialized to false.
Of course, you can initialize these variables when you declare
them.

Before the first deposit, withdrawal, or interest paid, the account
balance is the same as the beginning balance. Therefore, after read-
ing the beginning balance in the variable beginningBalance
from the file, you need to initialize the variable accountBalance
to the value of the variable beginningBalance.

Because the data will be read from a file, you need to open the input
file. If the input file does not exist, output an appropriate message
and terminate the program. Because the output will be stored in a
file, you need to open the output file. Suppose the input data is in the
file Ch5_money . txt. Also suppose that the output will be stored in
the file Ch5_money .out. The following code opens the files:

infile.open ("Ch5 money.txt"); //open the input file

if (!infile)

{
cout << "Cannot open the input file." << endl;
cout << "Program terminates!!!" << endl;
return 1;

254 | Chapter 5: Control Structures Il (Repetition)

outfile.open ("Ch5 money.out"); //open the output file

3. Get the account number and starting balance. This is accom-
plished by the following input statement:

infile >> acctNumber >> beginningBalance;

4. Get the transaction code and transaction amount. This is
accomplished by the following input statement:

infile >> transactionCode >> transactionAmount;

5. Analyze the transaction code and update the appropriate
variables: If the transactionCode is 'D' or 'd', update
accountBalance by adding transactionAmount, update
amountDeposited by adding transactionAmount, and incre-
ment numberOfDeposits. If the transactionCode is "I"' or
'i', update accountBalance by adding transactionAmount
and update interestPaid by adding transactionAmount. If
the transactionCode is 'W' or 'w', update accountBalance
by subtracting transactionAmount, update amountWithdrawn by
adding transactionAmount, increment numberOfWithdrawals,
and—if the account balance is below the minimum and service charges
have not been applied—subtract the service charge from the account
balance and mark the service charges as having been applied. The
following switch statement accomplishes this task.

switch (transactionCode)

{

case 'D':

case 'd':
accountBalance = accountBalance + transactionAmount;
amountDeposited = amountDeposited + transactionAmount;
numberOfDeposits++;
break;

case 'I':

case 'i':
accountBalance = accountBalance + transactionAmount;
interestPaid = interestPaid + transactionAmount;

break;
case 'W':
case 'w':

accountBalance = accountBalance - transactionAmount;
amountWithdrawn = amountWithdrawn + transactionAmount;
numberOfWithdrawals++;

if ((accountBalance < MINIMUM BALANCE)
&& (!isServiceCharged))

Programming Example: Checking Account Balance | 255

{
accountBalance = accountBalance - SERVICE CHARGE;
isServiceCharged = true;
}
break;
default:

cout << "Invalid transaction code." << endl;
} //end switch

6. Repeat Steps 4 and 5 until there is no more data. Because the
number of entries in the input file is not known, the program needs
an EOF-controlled while loop.

7. Print the result. This is accomplished by using output statements.

Main Based on the above discussion, the main algorithm is as follows:

Algorithm Declare and initialize the variables.

Open the input file.

If the input file does not exist, exit the program.
Open the output file.

ol Y=

To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zero, set the manipulators fixed and
showpoint. To output floating-point numbers to two decimal
places, set the precision to two decimal places.

Read accountNumber and beginningBalance.
Set accountBalance to beginningBalance.

Read transactionCode and transactionAmount.

@ g N o

while (not end of input file)
a. If transactionCodeis 'D'

i. Add transactionAmount to accountBalance
ii. Add transactionAmount to amountDeposited

i1i. Increment numberOfDeposits
b. If transactionCode is "I’
i. Add transactionAmount to accountBalance
ii. Add transactionAmount to interestPaid
c. IftransactionCode is 'W'

i. Subtract transactionAmount from accountBalance

ii. Add transactionAmount to amountWithdrawn

256 | Chapter 5: Control Structures Il (Repetition)

1. Increment numberOfWithDrawals

iv. If (accountBalance < MINIMUM_ BALANCE
&& !isServiceCharged)

1. Subtract SERVICE_CHARGE from accountBalance

2. Set isServiceCharged to true

d. IftransactionCode is a letter other than 'D', 'd", "I", 'i'", 'W',
or 'w', output an error message.

10. Output the results.

Because the data will be read from an input file, you must include the header file
fstream. Because you will use the manipulator setprecision, you must also
include the header file iomanip. If the input file does not exist, an appropriate
message on the screen will be displayed, so the header file iostream is also
included.

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik

//

// Program -- Checking Account Balance.

// This program calculates a customer's checking account

// balance at the end of the month.
//***

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

const double MINIMUM BALANCE = 1000.00;
const double SERVICE CHARGE = 25.00;

int main ()
{
//Declare and initialize variables //Step 1
int acctNumber;
double beginningBalance;
double accountBalance;

double amountDeposited = 0.0;
int numberOfDeposits = 0;

Programming Example: Checking Account Balance | 257

double amountWithdrawn = 0.0;
int numberOfWithdrawals = 0;
double interestPaid = 0.0;
char transactionCode;

double transactionAmount;

bool isServiceCharged = false;

ifstream infile;
ofstream outfile;

infile.open ("Ch5 money.txt"); //Step 2
if (linfile) //Step 3
{

cout << "Cannot open the input file." << endl;
cout << "Program terminates!!!" << endl;
return 1;

}

outfile.open ("Ch5 money.out"); //Step 4
outfile << fixed << showpoint; //Step 5
outfile << setprecision(2); //Step 5

cout << "Processing data" << endl;
infile >> acctNumber >> beginningBalance; //Step 6
accountBalance = beginningBalance; //Step 7

infile >> transactionCode >> transactionAmount; //Step 8

while (infile) //Step 9
{
switch (transactionCode)
{
case 'D': //Step 9.a
case 'd':
accountBalance = accountBalance
+ transactionAmount;
amountDeposited = amountDeposited
+ transactionAmount;
numberOfDeposits++;
break;
case 'I': //Step 9.b
case 'i':

accountBalance = accountBalance
+ transactionAmount;
interestPaid = interestPaid
+ transactionAmount;
break;

258 | Chapter 5: Control Structures Il (Repetition)

case 'W': //Step 9.c
case 'w':
accountBalance = accountBalance
- transactionAmount;
amountWithdrawn = amountWithdrawn
+ transactionAmount;
numberOfWithdrawals++;

if ((accountBalance < MINIMUM BALANCE)
&& (!isServiceCharged))

{
accountBalance = accountBalance
- SERVICE_CHARGE;
isServiceCharged = true;
}
break;
default:

cout << "Invalid transaction code" << endl;
} //end switch

infile >> transactionCode >> transactionAmount;
}//end while

//Output Results //Step 10
outfile << "Account Number: " << acctNumber << endl;
outfile << "Beginning Balance: $" << beginningBalance

<< endl;

outfile << "Ending Balance: $" << accountBalance
<< endl << endl;
outfile << "Interest Paid: $" << interestPaid << endl

<< endl;

outfile << "Amount Deposited: $" << amountDeposited
<< endl;

outfile << "Number of Deposits: " << numberOfDeposits

<< endl << endl;

outfile << "Amount Withdrawn: $" << amountWithdrawn
<< endl;

outfile << "Number of Withdrawals: "
<< numberOfWithdrawals << endl << endl;

if (isServiceCharged)
outfile << "Service Charge: $" << SERVICE CHARGE
<< endl;
return 0;

Programming Example: Fibonacci Number | 259

Sample Run: (Contents of the output file Ch5_money.out)

Account Number: 467343
Beginning Balance: $23750.40
Ending Balance: $24490.75

Interest Paid: $245.50

Amount Deposited: $2230.50
Number of Deposits: 3

Amount Withdrawn: $1735.65
Number of Withdrawals: 6

Input File: (Ch5 money.txt)

467343 23750.40
250.00
1200.00
75.00
375.00
580.00
245.50
400.00
600.00
450.50
35.65

SU=ES=ESHUO=S=EU0=

PROGRAMMING EXAMPLE: Fibonacci Number

So far, you have seen several examples of loops. Recall that in C++, while loops are
used when a certain statement(s) must be executed repeatedly until certain conditions
are met. Following is a C++ program that uses a while loop to find a Fibonacci
number.

Consider the following sequence of numbers:
1, 1, 2, 3, 5, 8, 13, 21, 34,

Given the first two numbers of the sequence (say, a; and a,), the nth number a,, n >= 3,
of this sequence is given by:

ay = dy—1 + dy—2

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

Variables

260 | Chapter 5: Control Structures Il (Repetition)

Thus:

aa=a+ag=14+1=2,
a4:a3+a2:2—|—1:3,

and so on.

Such a sequence is called a Fibonacci sequence. In the preceding sequence, a, = 1
and a; = 1. However, given any first two numbers, using this process, you can
determine the nth number, a, n >= 3, of the sequence. The number determined this
way is called the nth Fibonacci number. Suppose a, = 6 and a; = 3.

Then:
a3:a2—|—a1:6—1—3:9;a4:a3—|—a2:9—|—6:15

Next, we write a program that determines the nth Fibonacci number given the first
two numbers.

Input The first two Fibonacci numbers and the desired Fibonacci number

Output The nth Fibonacci number

To find, say, the tenth Fibonacci number of a sequence, you must first find ay and ag,
which requires you to find a; and a4, and so on. Therefore, to find a;4, you must first
find a3, ay, as, ..., ag. This discussion translates into the following algorithm:

1. Get the first two Fibonacci numbers.

2. Get the desired Fibonacci number. That is, get the position, n, of
the Fibonacci number in the sequence.

3. Calculate the next Fibonacci number by adding the previous two
elements of the Fibonacci sequence.

4. Repeat Step 3 until the nth Fibonacci number is found.
5. Output the nth Fibonacci number.

Note that the program assumes that the first number of the Fibonacci sequence is less
than or equal to the second number of the Fibonacci sequence, and both numbers are
non negative. Moreover, the program also assumes that the user enters a valid value
for the position of the desired number in the Fibonacci sequence; that is, it is a
positive integer. (See Programming Exercise 12 at the end of this chapter.)

Because the last two numbers must be known in order to find the current Fibonacci
number, you need the following variables: two variables—say, previousl and
previous2 to hold the previous two numbers of the Fibonacci sequence; and one
variable—say, current—to hold the current Fibonacci number. The number of
times that Step 2 of the algorithm repeats depends on the position of the Fibonacci
number you are calculating. For example, if you want to calculate the tenth

Programming Example: Fibonacci Number | 261

Fibonacci number, you must execute Step 3 eight times. (Remember—the user gives
the first two numbers of the Fibonacci sequence.) Therefore, you need a variable to
store the number of times that Step 3 should execute. You also need a variable to
track the number of times that Step 3 has executed the loop control variable. You
therefore need five variables for the data manipulation:

int previousl; //variable to store the first Fibonacci number
int previous2; //variable to store the second Fibonacci number

int current; //variable to store the current
//Fibonacci number
int counter; //loop control variable

int nthFibonacci; //variable to store the desired
//Fibonacci number

To calculate the third Fibonacci number, add the values of previousl and previous?2
and store the result in current. To calculate the fourth Fibonacci number, add the value
of the second Fibonacci number (that is, previous2) and the value of the third Fibonacci
number (that is, current). Thus, when the fourth Fibonacci number is calculated, you
no longer need the first Fibonacci number. Instead of declaring additional variables, which
could be too many, after calculating a Fibonacci number to determine the next Fibonacci
number, current becomes previous?2 and previous2 becomes previousl.
Therefore, you can again use the variable current to store the next Fibonacci number.
This process is repeated until the desired Fibonacci number is calculated. Initially,
previousl and previous2 are the first two elements of the sequence, supplied by the
user. From the preceding discussion, it follows that you need five variables.

MAIN 1. Prompt the user for the first two numbers—that is, previousl and
ALGORITHM previous?2.

Read (input) the first two numbers into previousl and previous?.
Output the first two Fibonacci numbers. (Echo input.)

Prompt the user for the position of the desired Fibonacci number.

oo N

Read the position of the desired Fibonacci number into
nthFibonacci.
a. if (nthFibonacci ==1)
the desired Fibonacci number is the first Fibonacci number.
Copy the value of previousl into current.
b. else if (nthFibonacci == 2)
the desired Fibonacci number is the second Fibonacci number.
Copy the value of previous2 into current.

e

c. else calculate the desired Fibonacci number as follows:

Because you already know the first two Fibonacci numbers of
the sequence, start by determining the third Fibonacci number.

262 | Chapter 5: Control Structures Il (Repetition)

c.1.

c.2.

c.3.
c.4.
c.5.

Initialize counter to 3, to keep track of the calculated
Fibonacci numbers.

Calculate the next Fibonacci number, as follows:
current = previous2 + previousl;

Assign the value of previous2 to previousl.
Assign the value of current to previous?2.

Increment counter.

Repeat Steps ¢.2 through c.5 until the Fibonacci number you
want is calculated.

The following while loop executes Steps c.2 through c.5 and
determines the nth Fibonacci number.

while (counter <= nthFibonacci)

{

}

current = previous2 + previousl;
previousl = previous2;
previous2 = current;

counter++;

7. Output the nthFibonacci number, which is current.

COMPLETE PROGRAM LISTING

//***
// Authors: D.S. Malik

//

// Program: nth Fibonacci number
// Given the first two numbers of a Fibonacci sequence, this
// program determines and outputs the desired number of the

// Fibonacci sequence.
//***

#include <iostream>

using namespace std;

int main ()

{

//Declare variables
int previousl;
int previous2;
int current;
int counter;
int nthFibonacci;

Programming Example: Fibonacci Number | 263

cout << "Enter the first two Fibonacci "

<< "numbers: "; //Step
cin >> previousl >> previous2; //Step
cout << endl;
cout << "The first two Fibonacci numbers are "

<< previousl << " and " << previous2

N R

<< endl; //Step 3
cout << "Enter the position of the desired "

<< "Fibonacci number: "; //Step 4
cin >> nthFibonacci; //Step 5

cout << endl;

if (nthFibonacci == 1) //Step 6.a
current = previousl;

else if (nthFibonacci == 2) //Step 6.b
current = previous2;

else //Step 6.c

{
counter = 3; //Step 6.c.1

//Steps 6.c.2 - 6.c.5
while (counter <= nthFibonacci)

{
current = previous2 + previousl; //Step 6.c.2
previousl = previous2; //Step 6.c.3
previous2 = current; //Step 6.c.4
counter++; //Step 6.c.5
}//end while
}//end else
cout << "The Fibonacci number at position "
<< nthFibonacci << " is " << current
<< endl; //Step 7

return 0;
}//end main

Sample Runs: In these sample runs, the user input is shaded.
Sample Run 1:
Enter the first two Fibonacci numbers: 12 16

The first two Fibonacci numbers are 12 and 16
Enter the position of the desired Fibonacci number: 10

The Fibonacci number at position 10 is 796

264 | Chapter 5: Control Structures Il (Repetition)

Sample Run 2:

Enter the first two Fibonacci numbers: 1 1

The first two Fibonacci numbers are 1 and 1
Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is 610

for Looping (Repetition) Structure

The while loop discussed in the previous section is general enough to implement
most forms of repetitions. The C++ for looping structure discussed here is a specialized
form of the while loop. Its primary purpose is to simplify the writing of counter-controlled
loops. For this reason, the for loop is typically called a counted or indexed for loop.

The general form of the for statement is:

for (initial statement; loop condition; update statement)
statement

The initial statement, loop condition, and update statement (called for
loop control statements) enclosed within the parentheses control the body (statement)
of the for statement. Figure 5-2 shows the flow of execution of a for loop.

initial
statement
[

: |

loop update
T — true — ENEICEUEl —>

|
false

¢
®
l

FIGURE 5-2 for loop

for Looping (Repetition) Structure | 265

The for loop executes as follows:

The initial statement executes.

2. The loop condition is evaluated. If the 1oop condition evaluates
to true

1. Execute the for loop statement.
ii. Execute the update statement (the third expression in the parentheses).

3. Repeat Step 2 until the loop condition evaluates to false.

The initial statement usually initializes a variable (called the for loop control, or
for indexed, variable).

In C++, for is a reserved word.

NOTE As the name implies, the initial statement in the £ox loop is the first statement to
execute; it executes only once.

EXAMPLE 5-7

The following for loop prints the first 10 non negative integers:

for (1 = 0; 1 < 10; i++)
cout << i << " ",
cout << endl;

The initial statement, i = 0;, initializes the int variable i to 0. Next, the loop
condition, i < 10, is evaluated. Because 0 < 10 is true, the print statement executes and
outputs 0. The update statement, i++, then executes, which sets the value of 1 to 1.
Once again, the 1oop condition is evaluated, which is still true, and so on. When 1
becomes 10, the loop condition evaluates to false, the for loop terminates, and
the statement following the for loop executes.

A for loop can have either a simple or compound statement.

The following examples further illustrate how a for loop executes.

EXAMPLE 5-8

1. The following for loop outputs Hello! and a star (on separate lines)
five times:

for (1 = 1; 1 <= 5; i++)

{
cout << "Hello!" << endl;
cout << ™" << endl;

266 | Chapter 5: Control Structures Il (Repetition)

2. Consider the following for loop:

for (1 = 1; i <= 5; i++)
cout << "Hello!" << endl;
cout << "*" << endl;

This loop outputs Hello! five times and the star only once. Note that
the for loop controls only the first output statement because the two
output statements are not made into a compound statement. Therefore,
the first output statement executes five times because the for loop body
executes five times. After the for loop executes, the second output
statement executes only once. The indentation, which is ignored by the
compiler, is nevertheless misleading.

EXAMPLE 5-9

The following for loop executes five empty statements:

for (i = 0; 1 < 5; i++); //Line 1
cout << ™" << endl; //Line 2

The semicolon at the end of the for statement (before the output statement, Line 1)
terminates the for loop. The action of this for loop is empty, that is, null.

The preceding examples show that care is required in getting a for loop to perform the
desired action.

The following are some comments on for loops:

e I[fthe loop condition isinitially false, the loop body does not execute.

e The update expression, when executed, changes the value of the
loop control variable (initialized by the initial expression), which even-
tually sets the value of the loop condition to false. The for loop
body executes indefinitely if the loop condition is always true.

e C++ allows you to use fractional values for loop control variables of the
double type (or any real data type). Because different computers can
give these loop control variables different results, you should avoid using
such variables.

e A semicolon at the end of the for statement (just before the body of the
loop) is a semantic error. In this case, the action of the for loop is empty.

e In the for statement, if the loop condition is omitted, it is assumed
to be true.

e In a for statement, you can omit all three statements—initial
statement, loop condition, and update statement. The follow-
ing is a legal for loop:

for Looping (Repetition) Structure | 267

for (;7)
cout << "Hello" << endl;

This is an infinite for loop, continuously printing the word Hello.

Following are more examples of for loops.

EXAMPLE 5-10

You can count backward using a for loop if the for loop control expressions are set correctly.

For example, consider the following for loop:
for (i = 10; i >= 1; i--)
cout << " " << i;
cout << endl;
The output is:

10987654321

In this for loop, the variable i is initialized to 10. After each iteration of the loop, i is
decremented by 1. The loop continues to execute as long as 1 >= 1.

EXAMPLE 5-11

You can increment (or decrement) the loop control variable by any fixed number. In the
following for loop, the variable is initialized to 1; at the end of the for loop, i is
incremented by 2. This for loop outputs the first 10 positive odd integers.
for (i = 1; 1 <= 20; i =1 + 2)

cout << " " << i;
cout << endl;

EXAMPLE 5-12

Suppose that 1 is an int variable.

1. Consider the following for loop:

for (1 = 10; i <= 9; i++)
cout < 1 <« " ";
cout << endl;

In this for loop, the initial statement sets i to 10. Because initially the loop
condition (i <= 9) is false, nothing happens.

268 | Chapter 5: Control Structures Il (Repetition)

2. Consider the following for loop:
for (1 = 9; i >= 10; i--)
cout << i< " ";
cout << endl;

In this for loop, the initial statement sets 1 to 9. Because initially the loop condition
(1 >=10) is false, nothing happens.

3. Consider the following for loop:

for (1 = 10; 1 <= 10; i++) //Line 1
cout << 1 << " ", //Line 2
cout << endl; //Line 3

In this for loop, the initial statement sets i to 10. The loop condition
(1 <= 10) evaluates to true, so the output statement in Line 2 executes,
which outputs 10. Next, the update statement increments the value of i by 1,
so the value of 1 becomes 11. Now the loop condition evaluates to false and
the for loop terminates. Note that the output statement in Line 2 executes
only once.

4. Consider the following for loop:

for (1 = 1; i <= 10; i++); //Line 1
cout << 1 << " ", //Line 2
cout << endl; //Line 3

This for loop has no eftect on the output statement in Line 2. The semicolon at the
end of the for statement terminates the for loop; the action of the for loop is thus
empty. The output statement is all by itself and executes only once.

5. Consider the following for loop:
for (i = 1; ; i++)

cout << i << " ",
cout << endl;

In this for loop, because the loop condition is omitted from the for statement,
the loop condition is always true. This is an infinite loop.

EXAMPLE 5-13

In this example, a for loop reads five numbers and finds their sum and average.
Consider the following program code, in which i, newNum, sum, and average are
int variables.

for Looping (Repetition) Structure | 269

sum = 0;

for (i = 1; i <= 5; i++)
{

cin >> newNum;

sum = sum + newNum;

average = sum / 5;
cout << "The sum is " << sum << endl;
cout << "The average is " << average << endl;

In the preceding for loop, after reading a newNum, this value is added to the previously
calculated (partial) sum of all the numbers read before the current number. The variable
sum is initialized to 0 before the for loop. Thus, after the program reads the first number
and adds it to the value of sum, the variable sum holds the correct sum of the first number.

In the following C++ program, we recommend that you walk through each step.

EXAMPLE 5-14

The following C++ program finds the sum of the first n positive integers.

//Program to determine the sum of the first n positive numbers.
#include <iostream>
using namespace std;

int main()

{
int counter; //loop control variable
int sum; //variable to store the sum of numbers
int N; //variable to store the number of

//first positive integers to be added

cout << "Line 1: Enter the number of positive "

<< "integers to be added: "; //Line 1
cin >> N; //Line 2
sum = 0; //Line 3
cout << endl; //Line 4
for (counter = 1; counter <= N; counter++) //Line 5
sum = sum + counter; //Line 6

cout << "Line 7: The sum of the first " << N
<< " positive integers is " << sum
<< endl; //Line 7

return 0;

270 | Chapter 5: Control Structures Il (Repetition)

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter the number of positive integers to be added: 100

Line 7: The sum of the first 100 positive integers is 5050

The statement in Line 1 prompts the user to enter the number of positive integers
to be added. The statement in Line 2 stores the number entered by the user in N,
and the statement in Line 3 initializes sum to 0. The for loop in Line 5 executes N
times. In the for loop, counter is initialized to 1 and is incremented by 1 after
each iteration of the loop. Therefore, counter ranges from 1 to N. Each time
through the loop, the value of counter is added to sum. The variable sum was
initialized to 0, counter ranges from 1 to N, and the current value of counter is
added to the value of sum. Therefore, after the for loop executes, sum contains
the sum of the first N values, which in the sample run is 100 positive integers.

Recall that putting one control structure statement inside another is called nesting. The
following programming example demonstrates a simple instance of nesting. It also nicely
demonstrates counting.

PROGRAMMING EXAMPLE: Classifying Numbers

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

This program reads a given set of integers and then prints the number of odd and
even integers. It also outputs the number of zeros.

The program reads 20 integers, but you can easily modify it to read any set of
numbers. In fact, you can modify the program so that it first prompts the user to
specify how many integers are to be read.

Input 20 integers—positive, negative, or zeros

Output The number of zeros, even numbers, and odd numbers

After reading a number, you need to check whether it is even or odd. Suppose the
value is stored in number. Divide number by 2 and check the remainder. If the
remainder is 0, number is even. Increment the even count and then check whether
number is 0. If it is, increment the zero count. If the remainder is not 0, increment
the odd count.

The program uses a switch statement to decide whether number is odd or even.
Suppose that number is odd. Dividing by 2 gives the remainder 1 if number is
positive and the remainder -1 if it is negative. If number is even, dividing by 2 gives

Variables

MAIN
ALGORITHM

Programming Example: Classifying Numbers | 271

the remainder 0 whether number is positive or negative. You can use the mod
operator, %, to find the remainder. For example:

6 $2=0; -4%52=0; -7%2=-1; 15% 2 =1
Repeat the preceding process of analyzing a number for each number in the list.
This discussion translates into the following algorithm:

1. For each number in the list:

a. Get the number.
b. Analyze the number.

Increment the appropriate count.

2. Print the results.

Because you want to count the number of zeros, even numbers, and odd numbers,
you need three variables of type int—say, zeros, evens, and odds—to track the
counts. You also need a variable—say, number—to read and store the number to be
analyzed and another variable—say, counter—to count the numbers analyzed.
Therefore, you need the following variables in the program:

int counter; //loop control variable

int number; //variable to store the number read
int zeros; //variable to store the zero count
int evens; //variable to store the even count
int odds; //variable to store the odd count

Clearly, you must initialize the variables zeros, evens, and odds to zero. You can
initialize these variables when you declare them.

1. Initialize the variables.
2. Prompt the user to enter 20 numbers.
3. For each number in the list:

a. Read the number.

Output the number (echo input).

c. If the number is even

{

i. Increment the even count.

i1. If the number is zero, increment the zero count.
}
otherwise

Increment the odd count.
4. Print the results.

Before writing the C++ program, let us describe Steps 1—4 in more detail. It will be
much easier for you to then write the instructions in C++.

272 | Chapter 5: Control Structures Il (Repetition)

1. Initialize the variables. You can initialize the variables zeros,
evens, and odds when you declare them.

2. Use an output statement to prompt the user to enter 20 numbers.

3. For Step 3, you can use a for loop to process and analyze the 20
numbers. In pseudocode, this step is written as follows:

for (counter = 1; counter <= 20; counter++)
{

read the number;

output number;

switch (number % 2) // check the remainder
{
case 0:
increment even count;
if (number == 0)
increment zero count;
break;
case 1:
case -1:
increment odd count;
}//end switch
}//end for

4. Print the result. Output the value of the variables zeros, evens,
and odds.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik

//

// Program: Counts zeros, odds, and evens

// This program counts the number of odd and even numbers.

// The program also counts the number of zeros.
AR e e e T e

#include <iostream>
#include <iomanip>

using namespace std;
const int N = 20;

int main ()
{
//Declare variables
int counter; //loop control variable
int number; //variable to store the new number

Programming Example: Classifying Numbers | 273

int zeros = 0; //Step 1
int odds = 0; //Step 1
int evens = 0y //Step 1

cout << "Please enter " << N << " integers, "
<< "positive, negative, or zeros."
<< endl; //Step 2

cout << "The numbers you entered are:" << endl;

for (counter = 1; counter <= N; counter++) //Step 3
{
cin >> number; //Step 3a
cout << number << " "; //Step 3b

//Step 3c
switch (number % 2)
{
case 0:

evens++;

if (number == 0)

zZeros++;
break;
case 1:
case -1:
odds++;
} //end switch
} //end for loop

cout << endl;

//Step 4
cout << "There are " << evens << " evens, "
<< "which includes " << zeros << " zeros."
<< endl;
cout << "The number of odd numbers is: " << odds
<< endl;

return 0;

Sample Run: In this sample run, the user input is shaded.

Please enter 20 integers, positive, negative, or zeros.

The numbers you entered are:
00-2-3-5678030-23-802290 12 67 54

00-2-3-5678030-23-8022920 12 67 54

There are 13 evens, which includes 6 zeros.

The number of odd numbers is: 7

We recommend that you do a walk-through of this program using the above sample
input.

274 | Chapter 5: Control Structures Il (Repetition)

do...while Looping (Repetition) Structure

This section describes the third type of looping or repetition structure, called a do. . .while
loop. The general form of a do.. .while statement is as follows:

do
statement
while (expression);

Of course, statement can be either a simple or compound statement. If it is a
compound statement, enclose it between braces. Figure 5-3 shows the flow of execution
of a do...while loop.

expression — true

false

{
®

l

FIGURE 5-3 do...while loop

In C++, do is a reserved word.

The statement executes first, and then the expression is evaluated. If the
expression evaluates to true, the statement executes again. As long as the
expression in a do...while statement is true, the statement executes. To
avoid an infinite loop, you must, once again, make sure that the loop body contains
a statement that ultimately makes the expression false and assures that it exits

properly.

do...while Looping (Repetition) Structure | 275

EXAMPLE 5-15

i=20;
do
{
cout << 1 << " ",

i=1i+5;
}
while (1 <= 20);

The output of this code is:
0 510 15 20

After 20 is output, the statement:

i=1i+25;

changes the value of i to 25 and so 1 <= 20 becomes false, which halts the loop.

In a while and for loop, the loop condition is evaluated before executing the
body of the loop. Therefore, while and for loops are called pretest loops. On
the other hand, the loop condition in a do...while loop is evaluated after
executing the body of the loop. Therefore, do...while loops are called posttest
loops.

Because the while and for loops both have entry conditions, these loops may never
activate. The do. . .while loop, on the other hand, has an exit condition and therefore
always executes the statement at least once.

EXAMPLE 5-16

Consider the following two loops:

a. i1 = 11;
while (i <= 10)
{

cout << 1 <« " ",
i=1+5;

}

cout << endl;

276 | Chapter 5: Control Structures Il (Repetition)

do

cout < i <<« " ",
i=1i+5;

}

while (i <= 10);

cout << endl;

In (a), the while loop produces nothing. In (b), the do...while loop outputs the
number 11 and also changes the value of 1 to 16.

EXAMPLE 5-17

Divisibility Test by 3 and 9

Suppose that m and n are integers and m is nonzero. Then m is called a divisor of n
if n = mt for some integer f; that is, when m divides n, the remainder is 0.

Let n = apag.1ag.». . .a1ap be an integer. Let s = a + apy + app + -+ +a; + ay be the sum
of the digits of n. It is known that n is divisible by 3 and 9 if s is divisible by 3 and 9. In
other words, an integer is divisible by 3 and 9 if and only if the sum of its digits is divisible
by 3 and 9.

For example, suppose n = 27193257. Thens =2+7+1+9+3+2+5+ 7 = 36.
Because 36 is divisible by both 3 and 9, it follows that 27193257 1s divisible by both 3
and 9.

Next, we write a program that determines whether a positive integer is divisible by 3 and
9 by first finding the sum of its digits and then checking whether the sum is divisible by 3
and 9.

To find the sum of the digits of a positive integer, we need to extract each digit of the
number. Consider the number 951372. Note that 951372 $ 10 = 2, which is the last
digit of 951372. Also note that 951372 / 10 = 95137; that is, when the number is
divided by 10, it removes the last digit. Next, we repeat this process on the number
95137. Of course, we need to add the extracted digits.

Suppose that sum and num are int variables and the positive integer is stored in num. We
thus have the following algorithm to find the sum of the digits:

do...while Looping (Repetition) Structure | 277

sum = 0;
do
{
sum = sum + num % 10; //extract the last digit
//and add it to sum
num = num / 10; //remove the last digit

while (num > 0);

Using this algorithm, we can write the following program that uses a do. . .while loop to
implement the preceding divisibility test algorithm.

//Program: Divisibility test by 3 and 9
#include <iostream>
using namespace std;
int main()
{
int num, temp, sum;
cout << "Enter a positive integer: ";
cin >> num;

cout << endl;

temp = num;

sum = 0;
do
{

sum = sum + num % 10; //extract the last digit

//and add it to sum

num = num / 10; //remove the last digit
}
while (num > 0);
cout << "The sum of the digits = " << sum << endl;
if (sum % 3 == 0)

cout << temp << " is divisible by 3" << endl;
else

cout << temp << " is not divisible by 3" << endl;

if (sum % 9 == 0)

cout << temp << " is divisible by 9" << endl;
else

cout << temp << " is not divisible by 9" << endl;

278 | Chapter 5: Control Structures Il (Repetition)

Sample Run: In these sample runs, the user input is shaded.
Sample Run 1

Enter a positive integer: 27193257

The sum of the digits = 36
27193257 is divisible by 3
27193257 is divisible by 9

Sample Run 2

Enter a positive integer: 609321

The sum of the digits = 21
609321 is divisible by 3
609321 is not divisible by 9

Sample Run 3

Enter a positive integer: 161905102

The sum of the digits = 25
161905102 is not divisible by 3
161905102 is not divisible by 9

Choosing the Right Looping Structure

All three loops have their place in C++. If you know, or the program can determine in
advance, the number of repetitions needed, the for loop is the correct choice. If you do
not know, and the program cannot determine in advance the number of repetitions
needed, and it could be zero, the while loop is the right choice. If you do not know, and
the program cannot determine in advance the number of repetitions needed, and it is at
least one, the do. ..while loop is the right choice.

break and continue Statements

The break statement, when executed in a switch structure, provides an immediate
exit from the switch structure. Similarly, you can use the break statement in
while, for, and do...while loops. When the break statement executes in a
repetition structure, it immediately exits from the structure. The break statement
is typically used for two purposes:

e To exit early from a loop

e To skip the remainder of the switch structure

break and continue Statements | 279

After the break statement executes, the program continues to execute with the first
statement after the structure. The use of a break statement in a loop can eliminate the
use of certain (flag) variables. The following C++ code segment helps illustrate this idea.
(Assume that all variables are properly declared.)

sum = 0;
isNegative = false;

cin >> num;

while (cin && !isNegative)

{
if (num < 0) //if num is negative, terminate the loop
//after this iteration
{
cout << "Negative number found in the data." << endl;
isNegative = true;
}
else
{
sum = sum + num;
cin >> num;
}
}

This while loop is supposed to find the sum of a set of positive numbers. If the data
set contains a negative number, the loop terminates with an appropriate error
message. This while loop uses the flag variable isNegative to accomplish the
desired result. The variable isNegative is initialized to £alse before the while
loop. Before adding num to sum, check whether num is negative. If num is negative,
an error message appears on the screen and isNegative is set to true. In the next
iteration, when the expression in the while statement is evaluated, it evaluates to
false because !isNegative is false. (Note that because isNegative is true,
lisNegative is false.)

The following while loop is written without using the variable isNegative:

sum = 0;
cin >> num;

while (cin)
{
if (num < 0) //if num is negative, terminate the loop
{
cout << "Negative number found in the data."™ << endl;
break;

280 | Chapter 5: Control Structures Il (Repetition)

sum = sum + num;
cin >> num;

}

In this form of the while loop, when a negative number is found, the expression in the
if statement evaluates to true; after printing an appropriate message, the break
statement terminates the loop. (After executing the break statement in a loop, the
remaining statements in the loop are discarded.)

NOTE The break statement is an effective way to avoid extra variables to control a loop
and produce an elegant code. However, break statements must be used very
sparingly within a loop. An excessive use of these statements in a loop will produce
spaghetti-code (loops with many exit conditions) and can be very hard to understand
and manage.

The continue statement is used in while, for, and do...while structures. When
the continue statement is executed in a loop, it skips the remaining statements in the
loop and proceeds with the next iteration of the loop. In a while and do...while
structure, the expression (that is, the loop-continue test) is evaluated immediately
after the continue statement. In a for structure, the update statement is executed
after the continue statement, and then the loop condition (that is, the loop-
continue test) executes.

If the previous program segment encounters a negative number, the while loop termi-
nates. If you want to discard the negative number and read the next number rather than
terminate the loop, replace the break statement with the continue statement, as shown
in the following example:

sum = 0;
cin >> num;

while (cin)

{
if (num < 0)
{
cout << "Negative number found in the data."™ << endl;
cin >> num;
continue;
}

sum = sum + num;
cin >> num;

Nested Control Structures | 281

It was stated earlier that all three loops have their place in C++ and that one loop can
often replace another. The execution of a continue statement, however, is where the
while and do...while structures differ from the for structure. When the continue
statement is executed in a while or a do...while loop, the update statement may not
execute. In a for structure, the update statement always executes.

Nested Control Structures

In this section, we give examples that illustrate how to use nested loops to achieve useful
results and process data.

EXAMPLE 5-18

Suppose you want to create the following pattern:

*

* %

* k%

* %k k%
*k kK k

Clearly, you want to print five lines of stars. In the first line, you want to print one star, in
the second line, two stars, and so on. Because five lines will be printed, start with the
following for statement:

for (i = 1; i <= 5; i++)

The value of i in the first iteration is 1, in the second iteration it is 2, and so on. You
can use the value of i as the limiting condition in another for loop nested within this
loop to control the number of stars in a line. A little more thought produces the
following code:

for (i = 1; 1 <= 5; i++) //Line 1
{ //Line 2
for (J = 1; j <= 1i; j++) //Line 3
cout << M7, //Line 4

cout << endl; //Line 5

} //Line 6

A walk-through of this code shows that the for loop, in Line 1, starts with i = 1.
When i is 1, the inner for loop, in Line 3, outputs one star and the insertion
point moves to the next line. Then i becomes 2, the inner for loop outputs
two stars, and the output statement in Line 5 moves the insertion point to
the next line, and so on. This process continues until i becomes 6 and the loop
Stops.

282 | Chapter 5: Control Structures Il (Repetition)

‘What pattern does this code produce if you replace the for statement, in Line 1, with the
following?

for (i =5; 1 >= 1; i--)

EXAMPLE 5-19

Suppose you want to create the following grid of numbers:

12345
23456
34567
45678
56789

There are five lines in this grid. Therefore, as in Example 5-18, we use a £or statement to
output these lines as follows:
for (i = 1; i <= 5; i++)

//output a line of numbers
In the first line, we want to print the numbers 1 through 5, in the second line we want
to print the numbers 2 through 6, and so on. Notice that the first line starts with 1 and
when this line is printed, 1 is 1. Similarly, the second line starts with 2 and when this
line is printed, the value of 1 is 2, andsoon. If 1 is 1,1 + 41s 5;if11s 2,1 + 4 is 6; and
so on. Therefore, to print a line of numbers we can use the value of 1 as the starting
number and the value of i + 4 as the limiting value. That is, consider the following
for loop:
for (J = 1; j <=1 + 4; j++)

cout << j <" ",
Let us take a look at this for loop. Suppose 1 is 1. Then we are printing the first line of
the grid. Also, j goes from 1 to 5 and so this for loop outputs the numbers 1 through 5,
which is the first line of the grid. Similarly, if 1 is 2, we are printing the second line of the
grid. Also, j goes from 2 to 6, and so this for loop outputs the numbers 2 through 6,
which is the second line of the grid, and so on.

A little more thought produces the following nested loops to output the desired grid:

for (i = 1; 1 <= 5; i++) //Line 1
{ //Line 2
for (j = 1; J <=1 + 4; J+4) //Line 3
cout << j << " ", //Line 4

cout << endl; //Line 5

} //Line 6

Nested Control Structures | 283

EXAMPLE 5-20

Consider the following data:

65 78 65 89 25 98 -999

87 34 89 99 26 78 64 34 -999

23 99 98 97 26 78 100 63 87 23 -999
62 35 78 99 12 93 19 -999

The number -999 at the end of each line acts as a sentinel and therefore is not part
of the data. Our objective is to find the sum of the numbers in each line and output
the sum. Moreover, assume that this data is to be read from a file, say,
Exp_5 20.txt. We assume that the input file has been opened using the input file
stream variable infile.

This particular data set has four lines of input. So we can use a for loop or a counter-
controlled while loop to process each line of data. Let us use a while loop to process
these four lines. It follows that the while loop takes the following form:

counter = 0; //Line 1
while (counter < 4) //Line 2
{ //Line 3

//process the line //Line 4

//output the sum
counter++;

}

Let us now concentrate on processing a line. Each line has a varying number of data
items. For example, the first line has six numbers, the second line has eight numbers, and
so on. Because each line ends with =999, we can use a sentinel-controlled while loop to
find the sum of the numbers in each line. (Remember how a sentinel-controlled loop
works.) Consider the following while loop:

sum = 0; //Line 4
infile >> num; //Line 5
while (num != -999) //Line 6
{ //Line 7
sum = sum + num; //Line 8
infile >> num; //Line 9
} //Line 10

The statement in Line 4 initializes sum to 0, and the statement in Line 5 reads and stores the
first number of the line into num. The Boolean expression, num != =999, in Line 6, checks
whether the number 1s —=999. If num is not =999, the statements in Lines 8 and 9 execute.
The statement in Line 8 updates the value of sum; the statement in Line 9 reads and stores the
next number into num. The loop continues to execute as long as num is not —=999.

It now follows that the nested loop to process the data is as follows. (Assume that all
variables are properly declared.)

284 | Chapter 5: Control Structures Il (Repetition)

counter = 0;
while (counter < 4)

{
sum = 0;
infile >> num;
while (num != -999)
{
sum = sum + num;
infile >> num;
}
cout << "Line " << counter + 1
<< ": Sum = " << sum << endl;
counter++;
}

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line
//Line

RoOwoJdoud wWNE

11
12
13

EXAMPLE 5-21

Suppose that we want to process data similar to the data in Example 5-20, but the input
file is of an unspecified length. That is, each line contains the same data as the data in each
line in Example 5-20, but we do not know the number of input lines.

Because we do not know the number of input lines, we must use an EOF-controlled
while loop to process the data. In this case, the required code is as follows. (Assume that
all variables are properly declared and the input file has been opened using the input file

stream variable infile.)

counter = 0;
infile >> num;
while (infile)

{
sum = 0;
while (num != -999)
{
sum = sum + num;
infile >> num;
}
cout << "Line " << counter + 1
<< ": Sum = " << sum << endl;
counter++;
infile >> num;
}

Notice that we have again used the variable counter. The only reason to do so is
because we want to print the line number with the sum of each line.

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line
//Line
//Line

HOoJdoud WNR

11
12
13
14

Nested Control Structures | 285

EXAMPLE 5-22

Consider the following data:

John 65 78 65 89 25 98 -999

Peter 87 34 89 99 26 78 64 34 -999

Buddy 23 99 98 97 26 78 100 63 87 23 -999
Doctor 62 35 78 99 12 93 19 -999

The number -999 at the end of each line acts as a sentinel and therefore is not part
of the data. The objective is to find the sum of the numbers in each line and output
the sum and average of the numbers. Moreover, assume that this data is to be read
from a file, Exp 5 22.txt, of unknown size. We assume that the input file has
been opened using the input file stream variable infile.

As in Example 5-21, because the input file is of an unspecified length, we use an EOF-
controlled while loop. The first data item in each line is a string, and the remaining data
items are numbers. Therefore, for each line, first we read and store the name in a string
variable, say, name. Then we process the numbers in each line. The necessary while
loop takes the following form:

infile >> name; //Line 1
while (infile) //Line 2
{ //Line 3

//process the numbers in each line //Line 4

//output the name and average
infile >> name; //begin processing the next line

}

In this example, for the numbers in each line, we want to find the average. Therefore, we
must add the numbers as well as count them. The required while loop is:

sum = 0; //Line 4
count = 0; //Line 5
infile >> num; //Line 6; read the first number
while (num != =-999) //Line 7
{ //Line 8

sum = sum + num; //Line 9; update sum

count++; //Line 10; update count

infile >> num; //Line 11; read the next number
} //Line 12

We can now write the following nested loop to process the data as follows:

infile >> name; //Line 1
while (infile) //Line 2
{ //Line 3
sum = 0; //Line 4
count = 0; //Line 5
infile >> num; //Line 6; read the first number

286 | Chapter 5: Control Structures Il (Repetition)

while (num != -999) //Line 7
{ //Line 8
sum = sum + num; //Line 9; update sum
count++; //Line 10; update count
infile >> num; //Line 11; read the next number
}
//£find the average
if (count != 0) //Line 12
average = sum / count; //Line 13
else //Line 14
average = 0; //Line 15

cout << name << " "
<< average << endl; //Line 16

infile >> name; //Line 17; begin processing the next line

EXAMPLE 5-23

Consider the following data:

101

John Smith

65 78 65 89 25 98 -999
102

Peter Gupta

87 34 89 99 26 78 64 34 -999

103

Buddy Friend

23 99 98 97 26 78 100 63 87 23 -999
104

Doctor Miller

62 35 78 99 12 93 19 -999

The number -999 at the end of a line acts as a sentinel and therefore is not part of
the data.

Assume that this is the data of certain candidates seeking the student council’s presidential
seat.

For each candidate, the data is in the following form:

D
Name
Votes

Nested Control Structures | 287

The objective is to find the total number of votes received by the candidate. We
assume that the data is input from the file, Exp 5 23.txt, of unknown size. We
also assume that the input file has been opened using the input file stream variable
infile.

As in Example 5-22, because the input file is of an unspecified length we use an
EOF-controlled while loop. For each candidate, the first data item is the ID of type
int on a line by itself; the second data item is the name, which may consist of more
than one word; and the third line contains the votes received from the various
departments.

To read the ID, we use the extraction operator >>; to read the name, we use the stream
function getline. Notice that after reading the ID, the reading marker is after the ID
and the character after the ID is the newline character. Therefore, after reading the ID,
the reading marker is after the ID and before the newline character (of the line containing
the ID).

The function getline reads until the end of the line. Therefore, if we read the
name immediately after reading the ID, then what is stored in the variable name is
the newline character (after the ID). It follows that to read the name, we must read
and discard the newline character after the ID, which we can accomplish using the
stream function get. Therefore, the statements to read the ID and name are as
follows:

infile >> 1ID; //read the ID
infile.get (ch); //read the newline character after the ID
getline(infile, name); //read the name

(Assume that ch is a variable of type char.) The general loop to process the data is:

infile >> 1ID; //Line 1
while (infile) //Line 2
{ //Line 3
infile.get (ch); //Line 4
getline(infile, name); //Line 5

//process the numbers in each line //Line 6
//output the name and total votes
infile >> ID; //begin processing the next line

}

The code to read and sum up the voting data is the same as in Example 5-21. That is, the
required while loop is:

sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9
sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

} //Line 12

288

| Chapter 5: Control Structures Il (Repetition)

We can now write the following nested loop to process data as follows:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3
infile.get (ch); //Line 4
getline (infile, name); //Line 5
sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9
sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number
}
cout << "Name: " << name
<< ", Votes: " << sum
<< endl; //Line 12
infile >> 1ID; //Line 13; begin processing the next line
}
QUICK REVIEW

1.

10.

C++ has three looping (repetition) structures: while, for, and
do...while.

The syntax of the while statement is:

while (expression)
statement

In C++, while is a reserved word.

In the while statement, the parentheses around the expression (the
decision maker) are important; they mark the beginning and end of the
expression.

The statement is called the body of the loop.

The body of the while loop must contain a statement that eventually sets
the expression to false.

A counter-controlled while loop uses a counter to control the loop.

In a counter-controlled while loop, you must initialize the counter before
the loop, and the body of the loop must contain a statement that changes
the value of the counter variable.

A sentinel is a special value that marks the end of the input data. The
sentinel must be similar to, yet differ from, all the data items.

A sentinel-controlled while loop uses a sentinel to control the while
loop. The while loop continues to execute until the sentinel 1s read.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.

Quick Review

An EOF-controlled while loop continues to execute until the program
detects the end-of-file marker.

In the Windows console environment, the end-of-file marker is entered using
Ctrl+z (hold the Ctrl key and press z). In the UNIX environment, the
end-of-file marker is entered using Ctr1+d (hold the Ctrl key and press d).

A for loop simplifies the writing of a counter-controlled while loop.
In C++, for is a reserved word.

The syntax of the for loop is:

for (initialize statement; loop condition; update statement)

statement

statement is called the body of the for loop.

Putting a semicolon at the end of the for loop (before the body of the for
loop) is a semantic error. In this case, the action of the for loop is empty.

The syntax of the do...while statement is:
do
statement
while (expression);
statement is called the body of the do...while loop.
Both while and for loops are called pretest loops. A do...while loop is
called a posttest loop.

The while and for loops may not execute at all, but the do. . .while loop
always executes at least once.

Executing a break statement in the body of a loop immediately terminates
the loop.

Executing a continue statement in the body of a loop skips the loop’s
remaining statements and proceeds with the next iteration.

When a continue statement executes in a while or do...while loop,
the expression update statement in the body of the loop may not execute.

After a continue statement executes in a for loop, the update statement
is the next statement executed.

289

290 | Chapter 5: Control Structures Il (Repetition)

EXERCISES

1. Mark the following statements as true or false.
a. In a counter-controlled while loop, it is not necessary to initialize the
loop control variable.
b. It is possible that the body of a while loop may not execute at all.

c. Inan infinite while loop, the while expression (the decision maker) is
initially false, but after the first iteration it is always true.

d. The while loop:

j=0;
while (3 <= 10)
i

terminates if § > 10.

e. A sentinel-controlled while loop is an event-controlled while loop
whose termination depends on a special value.

. A loop is a control structure that causes certain statements to execute
over and over.

g. To read data from a file of an unspecified length, an EOF-controlled
loop is a good choice.

h. When a while loop terminates, the control first goes back to the
statement just before the while statement, and then the control goes
to the statement immediately following the while loop.

2. What is the output of the following C++ code?

count = 1;

y = 100;
while (count < 100)
{
y=v-1;
count++;
}
cout << "y = " <K< y << " and count = " << count << endl;

3. What is the output of the following C++ code?

num = 5;
while (num > 5)

num = num + 2;
cout << num << endl;

4. What is the output of the following C++ code?

num = 1;
while (num < 10)
{

cout << num << " ";
num = num + 2;

}

cout << endl;

Exercises

When does the following while loop terminate?
ch = 'D';
while ('A' <= ch && ch <= 'Z2")

ch = static cast<char>(static_cast<int>(ch) + 1);
Suppose that the inputis 38 45 71 4 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

for (§ = 1; j <= 3; j++)

{
cin >> num;
sum = sum + num;
}
cout << "Sum = " << sum << endl;

Suppose that the inputis 38 45 71 4 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

while (num != -1)

{
sum = sum + num;
cin >> num;

}

cout << "Sum = " << sum << endl;

Suppose that the inputis 38 45 71 4 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> num;
sum = num;

while (num != -1)
{
cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

Suppose that the inputis 38 45 71 4 -1. What is the output of the
following code? Assume all variables are properly declared.

sum = 0;
clin >> num;

while (num != -1)
{
sum = sum + num;
cin >> num;
}
cout << "Sum = " << sum << endl;

291

292 | Chapter 5: Control Structures Il (Repetition)

10. Correct the following code so that it finds the sum of 10 numbers.
sum = 0;
while (count < 10)
cin >> num;

sum = sum + num;
count++;

11. What is the output of the following program?

#include <iostream>
using namespace std;

int main ()

{
int x, vy, z;
X = 4; y = 5;
z =y + 6;
while(((z - x) % 4) != 0)
{
cout <K z << " ";
z =z + 7;
}
cout << endl;
return 0;
}

12. Suppose that the input is:
58 23 46 75 98 150 12 176 145 -999

What 1s the output of the following program?
#include <iostream>
using namespace std;
int main ()
{

int num;

cin >> num;

while (num != -999)

{

cout << num % 25 << " ";

cin >> num;

}
cout << endl;

return 0;

13.

14.

15.

16.

Exercises

Given:

for (i = 12; i <= 25; i++)
cout << 1;

a. The seventh integer printed is

b. The statement produces lines of output.

c. If i++ were changed to 1—-, a compilation error would result. True or
false?

Given that the following code is correctly inserted into a program, state its
entire output as to content and form.
num = 0;
for (1 = 1; 1 <= 4; i++)
{
num = num + 10 * (1 - 1);
cout << num << " ";

}
cout << endl;

Given that the following code is correctly inserted into a program, state its
entire output as to content and form.

J=2;
for (1 = 0; i <= 5; i++)
{

cout << j << " ",
j=2%5 + 3;
}
cout << J << " " << endl;
Assume that the following code is correctly inserted into a program:

int s = 0;

for (1 = 0; 1 < 5; i++4)
{
s =2*s + i;
cout <K s <K« " ",

}
cout << endl;

a. What is the final value of s?
(1) 11 (1) 4 (i1) 26 (iv) none of these
b. If a semicolon is inserted after the right parenthesis in the for loop
statement, what is the final value of s?
(10 (1) 1 (111) 2 (iv) 5 (v) none of these
c. If'the 5 is replaced with a 0 in the for loop control expression, what is

the final value of s?
(@10 () 1 (1) 2 (iv) none of these

293

294

17.

18.
19.

| Chapter 5: Control Structures Il (Repetition)

State what output, if any, results from each of the following statements:

a.

for (i =1; 1 <= 1; i++)
cout << "x",
cout << endl;

b.
for (1 = 2; 1 >= 1; i++)
cout << "™xn,
cout << endl;
c.
for (1 = 1; 1 <=1; i--)
cout << ™",
cout << endl;
d.

for (1 = 12; i >= 9; i--)
cout << ™",
cout << endl;

for (1 = 0; 1 <= 5; i++)
cout << ™",
cout << endl;

for (1 = 1; 1 <= 5; i++)
{
cout << ™",
i=14+1;
}

cout << endl;

Write a for statement to add all the multiples of 3 between 1 and 100.
What is the exact output of the following program?

#include <iostream>
using namespace std;

int main ()
{
int counter;
for (counter = 7; counter <= 16; counter++)
switch (counter % 10)

20.

21.

{
case 0:
cout <<
break;
case 1:
cout <<
break;
case 2:
case 8:
cout <<
break;
case 3:
cout <<
break;
case 4:
case 9:
cout <<
break;
case 5:
cout <<
break;
case 6:
cout <<
break;
case 7:
cout <<
break;
default:
cout <<
}

cout << endl;

return 0;

}

Exercises

"OFTEN ";

"IS ";

"NOT " :

"DONE ";

"WELL";

"WHAT " ;

"Bad number. ";

Suppose that the inputis 5 3 8. What is the output of the following code?
Assume all variables are properly declared.

cin >> a >> b >> c;

for (9 = 1; j < a:
{

d=Db + c;

b = c;

c =d;

cout << c <K "
}

cout << endl;

§++)

4

What is the output of the following C++ program segment? Assume all
variables are properly declared.

for (J = 0;
{

J < 8; j++)

cout << j * 25 << " =",

295

296

22,

23.

24,

| Chapter 5: Control Structures Il (Repetition)

if (3 1= 7)
cout << (j + 1) * 25 - 1 << endl;
else

cout << (j + 1) * 25 << endl;
}
The following program has more than five mistakes that prevent it from
compiling and/or running. Correct all such mistakes.

#include <iostream>

using namespace std;
const int N = 2,137;

main ()

{
int a, b, ¢, d:

or (i = 3; i <= N; i++)

cout << setw(5) << 1i;
i=1i+4+ 1;
}

return 0;

}

Which of the following apply to the while loop only? To the do...while
loop only? To both?

a. It is considered a conditional loop.

b. The body of the loop executes at least once.

c. The logical expression controlling the loop is evaluated before the loop
is entered.

d. The body of the loop may not execute at all.

How many times will each of the following loops execute? What is the
output in each case?

a.

x =5; y = 50;
do
x =x + 10;
while (x < y);
cout << x << " " << y << endl;

25.

Exercises | 297

x =5; vy = 80;

X =Xx* 2;
while (x < vy);
cout << x << " " << y << endl;

x =5; y=20;
do
X =X + 2;
while (x >= vy);
cout << x << " " << y << endl;

x =5; y = 35;
while (x < y)
x = x + 10;

cout << x << " " <K< y << endl;
e.
x =5; y = 30;
while (x <= y)
X =x%*2;
cout << x << " " << y << endl;

x =D5; y = 30;
while (x > vy)
X =X + 2;
cout << x << " " << y << endl;

The do...while loop in the following program is supposed to read some
numbers until it reaches a sentinel (in this case, =1). It is supposed to add all
of the numbers except for the sentinel. If the data looks like:

12 5 30 48 -1

the program does not add the numbers correctly. Correct the program so that it adds
the numbers correctly.

#include <iostream>

using namespace std;
int main ()
{
int total = 0,
count 0,
number;

do

cin >> number;

298

26.

217.

28.

| Chapter 5: Control Structures Il (Repetition)

total = total + number;
count++;

}

while (number != -1);

cout << "The number of data read is " << count << endl;
cout << "The sum of the numbers entered is " << total
<< endl;

return 0;

}

Using the same data as in Exercise 25, the following two loops also fail.
Correct them.

a.

cin >> number;

while (number != -1)
total = total + number;
cin >> number;
cout << endl;
cout << total << endl;

b.
cin >> number;
while (number != -1)
{

cin >> number;

total = total + number;
}
cout << endl;
cout << total << endl;

Given the following program segment:

for (number = 1; number <= 10; number++)
cout << setw(3) << number;

write a while loop and a do...while loop that have the same output.

Given the following program segment:

j=2;
for (1 = 1; 1 <= 5; i++);
{

cout << setw(4) << j;
=3+ 5;

}

cout << endl;

write a while loop and a do...while loop that have the same output.

29.

30.

Exercises

What is the output of the following program?

#include <iostream>
using namespace std;

int main ()

{
int x, y, z;
x=4; y=5;
z =y + 6;
do
{
cout <K z K« " ",
z =2z + 7;
}
while (((z - x) % 4) != 0);
cout << endl;
return 0;
}

To learn how nested for loops work, do a walk-through of the following
program segments and determine, in each case, the exact output.
a.

int i, 3J;

for (1 = 1; 1 <= 5; i++)

{
for (J = 1; j <= 5; j++)
cout << setw(3) << i * j;
cout << endl;
}

int i, j;

for (1 = 1; 1 <= 5; i++)

{
for (j = 1; Jj <= 5; j++)
cout << setw(3) << i;
cout << endl;
}

int i, j;
for (1 = 1; 1 <= 5; i++)
for (J = (1 + 1); j <= 5; j++)

cout << setw(5) << j:
cout << endl;

299

300

| Chapter 5: Control Structures Il (Repetition)

int i, j;
for (1 = 1; 1 <= 5; i++4)

{
for (3 = 1; j <= 1i; j++)
cout << setw(3) << j:
cout << endl;
}

const int M = 10;
const int N 10;
int i, jJ;

for (1 = 1; 1 <= M; i++)

{
for (J = 1; j <= N; j++)
cout << setw(3) << M * (i - 1) + j;
cout << endl;
}

for (1 = 1; 1 <= 9; i++)

{
for (3 =1; j <= (9 - i); j++)
cout << " ",
for (3 = 1; j <= i; J++)
cout << setw(l) << j;
for (3 = (1 -1); 3 >=1; j--)
cout << setw(l) << j;
cout << endl;
}

PROGRAMMING EXERCISES

Worite a program that prompts the user to input an integer and then outputs
both the individual digits of the number and the sum of the digits. For
example, it should output the individual digits of 3456 as 3 4 5 6, output
the individual digits of 8030 as 8 0 3 0, output the individual digits of
2345526as2 3 4 5 5 2 6, output the individual digits of 4000 as 4 0 0
0, and output the individual digits of —=2345 as 2 3 4 5.

Write a program that prompts the user to input an integer and then outputs the
number with the digits reversed. For example, if the input is 12345, the output
should be 54321. Your program must also output 5000 as 0005 and 980 as 089.

Rewrite the program of Example 5-5, Telephone Digits. Replace the state-
ments from Line 10 to Line 28 so that it uses only a switch structure to find
the digit that corresponds to an uppercase letter.

Programming Exercises

The program Telephone Digits outputs only telephone digits that corre-
spond to uppercase letters. Rewrite the program so that it processes both
uppercase and lowercase letters and outputs the corresponding telephone
digit. If the input is something other than an uppercase or lowercase letter,
the program must output an appropriate error message.

To make telephone numbers easier to remember, some companies use letters
to show their telephone number. For example, using letters, the telephone
number 438-5626 can be shown as GET LOAN. In some cases, to make a
telephone number meaningful, companies might use more than seven letters.
For example, 225-5466 can be displayed as CALL HOME, which uses eight
letters. Write a program that prompts the user to enter a telephone number
expressed in letters and outputs the corresponding telephone number in digits. It
the user enters more than seven letters, then process only the first seven letters.
Also output the — (hyphen) after the third digit. Allow the user to use both
uppercase and lowercase letters as well as spaces between words. Moreover, your
program should process as many telephone numbers as the user wants.

Write a program that reads a set of integers, and then finds and prints the sum
of the even and odd integers.

Write a program that prompts the user to input a positive integer. It should then
output a message indicating whether the number is a prime number. (Note: An
even number is prime if it is 2. An odd integer is prime if it is not divisible by
any odd integer less than or equal to the square root of the number.)

Let n = apay_1ag.. . .ajap be an integer and t = ap - ay + a, - -+ + (—1)k a,. It
is known that n is divisible by 11 if and only if ¢ is divisible by 11. For
example, suppose that n = 8784204. Thent=4-0+2-4+8-7+8=11.
Because 11 is divisible by 11, it follows that 8784204 is divisible by 11.

If n = 54063297, thent=7-9+2-3+6-0+4-5=2.Because 2 is not
divisible by 11, 54063297 is not divisible by 11.Write a program that
prompts the user to enter a positive integer and then uses this criterion to
determine whether the number is divisible by 11.

Write a program that uses while loops to perform the following steps:

a. Prompt the user to input two integers: £irstNum and secondNum
(firstNum must be less than secondNum).

b. Output all odd numbers between £irstNum and secondNum.

c. Output the sum of all even numbers between firstNum and
secondNum.

d. Output the numbers and their squares between 1 and 10.

e. Output the sum of the square of the odd numbers between £irstNum
and secondNum.

. Output all uppercase letters.

301

302

10.
11.
12.

13.

14.

15.

| Chapter 5: Control Structures Il (Repetition)

Redo Exercise 9 using for loops.
Redo Exercise 9 using do. ..while loops.

The program in the Programming Example Fibonacci Number does not
check whether the first number entered by the user is less than or equal to
the second number and whether both the numbers are non negative. Also,
the program does not check whether the user entered a valid value for the
position of the desired number in the Fibonacci sequence. Rewrite that
program so that it checks for these things.

Suppose that m and n are integers and m is nonzero. Recall that m is called a
divisor of n if n = mt for some integer f; that is, when m divides n, the
remainder is 0. Moreover, m is called a proper divisor of n if m < n and m
divides n. A positive integer is called perfect if it is the sum of its positive
proper divisors. For example, the positive proper divisors of 28 are 1, 2, 4,
7,and 14 and 1 + 2 + 4 + 7 + 14 = 28. Therefore, 28 is perfect. Write a
program that does the following:

a. Outputs the first four perfect integers.

b. Takes as input a positive integer and then outputs whether the integer is
perfect.

The program in Example 5-6 implements the Number Guessing Game.
However, in that program the user is given as many tries as needed to guess
the correct number. Rewrite the program so that the user has no more than
five tries to guess the correct number. Your program should print an
appropriate message, such as “You win!” or “You lose!”.

Example 5-6 implements the Number Guessing Game program. If the
guessed number is not correct, the program outputs a message indicating
whether the guess is low or high. Modify the program as follows: Suppose
that the variables num and guess are as declared in Example 5-6 and diff
is an int variable. Let dif£f = the absolute value of (num — guess). [f diff
is 0, then guess is correct and the program outputs a message indicating
that the user guessed the correct number. Suppose diff is not 0. Then the
program outputs the message as follows:

a. It diff is greater than or equal to 50, the program outputs the message
indicating that the guess is very high (if guess is greater than num) or
very low (if guess is less than num).

b. If diff is greater than or equal to 30 and less than 50, the program
outputs the message indicating that the guess is high (if guess is greater
than num) or low (if guess is less than num).

c. If diff is greater than or equal to 15 and less than 30, the program
outputs the message indicating that the guess is moderately high (if guess
is greater than num) or moderately low (if guess is less than num).

16.

17.

Programming Exercises

d. If diff is greater than O and less than 15, the program outputs the
message indicating that the guess is somewhat high (if guess is greater
than num) or somewhat low (if guess is less than num).

As in Programming Exercise 14, give the user no more than five tries to
guess the number. (To find the absolute value of num — guess, use the
expression abs (num — guess). The function abs is from the header file
cstdlib.

A high school has 1000 students and 1000 lockers, one locker for each
student. On the first day of school, the principal plays the following game:
She asks the first student to go and open all the lockers. She then asks the
second student to go and close all the even-numbered lockers. The third
student is asked to check every third locker. If it is open, the student closes
it; if it 1s closed, the student opens it. The fourth student is asked to check
every fourth locker. If it is open, the student closes it; if it is closed, the
student opens it. The remaining students continue this game. In general, the
nth student checks every nth locker. If the locker is open, the student closes
it; if it 1s closed, the student opens it. After all the students have taken their
turn, some of the lockers are open and some are closed. Write a program
that prompts the user to enter the number of lockers in a school. After the
game 1is over, the program outputs the number of lockers that are opened.
Test run your program for the following inputs: 1000, 5000, 10000. Do
you see any pattern developing?

(Hint: Consider locker number 100. This locker is visited by student
numbers 1, 2, 4, 5, 10, 20, 25, 50, and 100. These are the positive divisors
of 100. Similarly, locker number 30 is visited by student numbers 1, 2, 3, 5,
6, 10, 15, and 30. Notice that if the number of positive divisors of a locker
number is odd, then at the end of the game the locker is opened. If the
number of positive divisors of a locker number is even, then at the end of
the game the locker is closed.)

When you borrow money to buy a house, a car, or for some other purpose,
you repay the loan by making periodic payments over a certain time. Of
course the landing company will charge interest on the loan. Every periodic
payment consists of the interest on the loan and the payment toward the
principal amount. To be specific, suppose that you borrow $1000 at the
interest rate of 7.2% per year and the payments are monthly. Suppose that
your monthly payment is $25. Now the interest is 7.2% per year and the
payments are monthly, so the interest rate per month is 7.2/12 = 0.6%. The
first month’s interest on $1000 is 1000 x 0.006 = 6. Because the payment is
$25 and interest for the first month is $6, the payment towards the principal
amount is 25 — 6 = 19. This means after making the first payment, the loan

303

304

18.

19.
20.
21,
22,
23.
24,
25.

| Chapter 5: Control Structures Il (Repetition)

amount is 1000 — 19 = 981. For the second payment, the interest is
calculated on $981. So the interest for the second month is 981 x 0.006 =
5.886, that is, approximately $5.89. This implies that the payment towards
the principal is 25 — 5.89 = 19.11 and the remaining balance after the second
payment is 981 — 19.11 = 961.89. This process is repeated until the loan is
paid. Write a program that accepts as input the loan amount, the interest
rate per year, and the monthly payment. (Enter the interest rate as a
percentage. For example, if the interest rate is 7.2% per year, then enter
7.2.) The program then outputs the number of months it would take to
repay the loan. (Note that if the monthly payment is less than the first
month’s interest, then after each payment, the loan amount will increase.
In this case, the program must warn the borrower that the monthly
payment is too low and with this monthly payment the loan amount could
not be repaid.)

Enhance your program of Exercise 17, by first telling the user the minimum
monthly payment and then prompting the user to enter the monthly
payment. Your last payment might be more than the remaining loan
amount and interest on it. In this case, output the loan amount before the
last payment and the actual amount of the last payment. Also, output the
total interest paid.

Write a complete program to test the code in Example 5-18.
Write a complete program to test the code in Example 5-19.
Write a complete program to test the code in Example 5-20.
Write a complete program to test the code in Example 5-21.
Write a complete program to test the code in Example 5-22.
Write a complete program to test the code in Example 5-23.

(The conical paper cup problem) You have been given the contract for
making little conical cups that come with bottled water. These cups are to
be made from a circular waxed paper die of 4 inches in radius, by removing
a sector of length x, see Figure 5-4. By closing the remaining part of the
circle, a conical cup is made. Your objective is to remove the sector so that
the cup is of maximum volume.

Programming Exercises

FIGURE 5-4 Conical paper cup

26.

Write a program that prompts the user to enter the radius of the circular
waxed paper. The program should then output the length of the removed
sector so that the resulting cup is of maximum volume. Calculate your
answer to two decimal places.

(Apartment problem) A real estate office handles, say, 50 apartment units.
When the rent is, say, $600 per month, all the units are occupied. However,
for each, say, $40 increase in rent, one unit becomes vacant. Moreover,
each occupied unit requires an average of $27 per month for maintenance.
How many units should be rented to maximize the profit?

Werite a program that prompts the user to enter:

a. The rent to occupy all the units
b. The increase in rent that results in a vacant unit

c. Amount to maintain a rented unit

305

The program then outputs the number of units to be rented to maximize the profit.

Yl

)

)
1

USeErR-DEFINED FUNCTIONS |

IN THIS CHAPTER, YOU WILL:

Learn about standard (predefined) functions and discover how
to use them in a program

Learn about user-defined functions

Examine value-returning functions, including actual and formal
parameters

Explore how to construct and use a value-returning, user-defined
function in a program

308 | Chapter 6: User-Defined Functions |

In Chapter 2, you learned that a C++ program is a collection of functions. One such
function is main. The programs in Chapters 1 through 5 use only the function
main; the programming instructions are packed into one function. This technique,
however, is good only for short programs. For large programs, it is not practical
(although it is possible) to put the entire programming instructions into one function,
as you will soon discover. You must learn to break the problem into manageable
pieces. This chapter first discusses the functions previously defined and then discusses
user-defined functions.

Let us imagine an automobile factory. When an automobile is manufactured, it is not
made from basic raw materials; it is put together from previously manufactured parts.
Some parts are made by the company itself, others by different companies.

Functions are like building blocks. They let you divide complicated programs into
manageable pieces. They have other advantages, too:

e While working on one function, you can focus on just that part of the
program and construct it, debug it, and perfect it.

e Different people can work on different functions simultaneously.

e If a function is needed in more than one place in a program, or in
different programs, you can write it once and use it many times.

e Using functions greatly enhances the program’s readability because it
reduces the complexity of the function main.

Functions are often called modules. They are like miniature programs; you can put
them together to form a larger program. When user-defined functions are discussed,
you will see that this is the case. This ability is less apparent with predefined functions
because their programming code is not available to us. However, because predefined
functions are already written for us, you will learn these first so that you can use them
when needed. To use a predefined function in your programs, you need to know only
how to use it.

Predefined Functions

Before formally discussing predefined functions in C++, let us review a concept from a
college algebra course. In algebra, a function can be considered a rule or correspondence
between values, called the function’s arguments, and the unique value of the function
associated with the arguments. Thus, if £(x) = 2x + 5, then £(1) =7, £(2) = 9, and
£(3) = 11, where 1, 2, and 3 are the arguments of £, and 7, 9, and 11 are the
corresponding values of the function £.

In C++, the concept of a function, either predefined or user-defined, is similar to that of
a function in algebra. For example, every function has a name and, depending on the
values specified by the user, it does some computation. This section discusses various
predefined functions.

Predefined Functions | 309

Some of the predefined mathematical functions are pow(x, y), sqgrt(x), and
floor (x).

The power function, pow(x, y), calculates x¥; that is, the value of pow(x, y)= x.
For example, pow (2, 3)= 2> = 8.0 and pow (2.5, 3)= 2.5 = 15.625. Because
the value of pow (x, y) is of type double, we say that the function pow is of type
double or that the function pow returns a value of type double. Moreover, x and y
are called the parameters (or arguments) of the function pow. Function pow has two
parameters.

The square root function, sgrt (x), calculates the non negative square root of x for
x >=0.0. For example, sgrt (2.25) is 1.5. The function sqgrt is of type double and
has only one parameter.

The floor function, £loor (x), calculates the largest whole number that is less than or
equal to x. For example, floor (48.79) is 48.0. The function floor is of type
double and has only one parameter.

In C++, predefined functions are organized into separate libraries. For example, the
header file iostream contains I/O functions, and the header file cmath contains
math functions. Table 6-1 lists some of the predefined functions, the name of the
header file in which each function’s specification can be found, the data type of the
parameters, and the function type. The function type is the data type of the final
value returned by the function. (For a list of additional predefined functions, see
Appendix F.)

TABLE 6-1 Predefined Functions

, Returns the absolute value . .
abs (x) <cstdlib> of its argument: abs (=7) =7 int int

Returns the smallest whole
ceil (x) <cmath> number that is not less than double double
x: ceil (56.34) = 57.0

Returns the cosine of angle double

x: cos(0.0) = 1.0 (radians) double

cos (x) <cmath>

Returns e*, wheree = 2.718:

exp(1.0) = 2.71828 double double

exp (x) <cmath>

Returns the absolute value
fabs (x) <cmath> of its argument: double double
fabs (-5.67) =5.67

310 | Chapter 6: User-Defined Functions |

TABLE 6-1 Predefined Functions (continued)

Returns the largest whole
floor (x) <cmath> number that is not greater than double double
x:floor (45.67) =45.00

Returns x¥; If x is negative, y
pow (X, V) <cmath> must be a whole number: double double
pow(0.16, 0.5) =0.4

Returns the lowercase value
tolower (x) <cctype> of x if x is uppercase; int int
otherwise, returns x

Returns the uppercase value
toupper (x) <cctype> of x if x is lowercase; int int
otherwise, returns x

To use predefined functions in a program, you must include the header file that contains
the function’s specification via the include statement. For example, to use the function
pow, the program must include:

#include <cmath>

Example 6-1 shows you how to use some of the predefined functions.

EXAMPLE 6-1

//How to use predefined functions.

#include <iostream>
#include <cmath>
#include <cctype>
#include <cstdlib>

using namespace std;

int main ()

{
int X7
double u, v;

User-Defined Functions | 311

cout << "Line 1: Uppercase a is "
<< static_cast<char> (toupper('a'))

<< endl; //Line 1
u=4.2; //Line 2
v = 3.0; //Line 3
cout << "Line 4: " << u << " to the power of "

< v << " =" << pow(u, v) << endl; //Line 4
cout << "Line 5: 5.0 to the power of 4 ="

<< pow (5.0, 4) << endl; //Line 5
u=u+ pow(3.0, 3); //Line 6
cout << "Line 7: u = " << u << endl; //Line 7
x = -15; //Line 8
cout << "Line 9: Absolute value of " << x

<< " =" << abs(x) << endl; //Line 9

return 0;

}
Sample Run:

Line 1: Uppercase a is A

Line 4: 4.2 to the power of 3 = 74.088
Line 5: 5.0 to the power of 4 = 625
Line 7: u = 31.2

Line 9: Absolute value of -15 = 15

This program works as follows. The statement in Line 1 outputs the uppercase letter that
corresponds to 'a', which is A. Note that the function toupper returns an int value.
Therefore, the value of the expression toupper('a') is 65, which is the ASCII value of 'A".
To print A rather than 65, you need to apply the cast operator, as shown in the statement in
Line 1. In the statement in Line 4, the function pow is used to output u”. In C++ terminology,
it is said that the function pow is called with the parameters u and v. In this case, the values of u
and v are passed to the function pow. The other statements have similar meanings.

User-Defined Functions

As Example 6-1 illustrates, using functions in a program greatly enhances the program’s
readability because it reduces the complexity of the function main. Also, once you write
and properly debug a function, you can use it in the program (or different programs)
again and again without having to rewrite the same code repeatedly. For instance, in
Example 6-1, the function pow is used more than once.

Because C++ does not provide every function that you will ever need, and designers
cannot possibly know a user’s specific needs, you must learn to write your own functions.

312 | Chapter 6: User-Defined Functions |

User-defined functions in C++ are classified into two categories:

¢ Value-returning functions—functions that have a return type. These
functions return a value of a specific data type using the return
statement, which we will explain shortly.

e Void functions—functions that do not have a return type. These
functions do not use a return statement to return a value.

The remainder of this chapter discusses value-returning functions. Many of the concepts
discussed in regard to value-returning functions also apply to void functions. Chapter 7
describes void functions.

Value-Returning Functions

The previous section introduced some predefined C++ functions such as pow, abs,
islower, and toupper. These are examples of value-returning functions. To use these
functions in your programs, you must know the name of the header file that contains the
functions’ specification. You need to include this header file in your program using the
include statement and know the following items:

1. The name of the function

2. The number of parameters, if any

3. The data type of each parameter

4. The data type of the value computed (that is, the value returned) by the

function, called the type of the function

Because the value returned by a value-returning function is unique, the natural
thing for you to do is to use the value in one of three ways:

e Save the value for further calculation.

e Use the value in some calculation.

e Print the value.
This suggests that a value-returning function is used:

¢ In an assignment statement.
® In an output statement.

e As a parameter in a function call.

That is, a value-returning function is used (called) in an expression.

Before we look at the syntax of a user-defined, value-returning function, let us consider
the things associated with such functions. In addition to the four properties described
previously, one more thing is associated with functions (both value-returning and void):

5. The code required to accomplish the task

The first four properties form what is called the heading of the function (also called the
function header); the fifth property is called the body of the function. Together, these

Value-Returning Functions | 313

five properties form what is called the definition of the function. For example, for the
function abs, the heading might look like:

int abs (int number)
Similarly, the function abs might have the following definition:

int abs(int number)

{
if (number < 0)
number = -number;
return number;
}

The variable declared in the heading of the function abs is called the formal parameter
of the function abs. Thus, the formal parameter of abs is number.

The program in Example 6-1 contains several statements that use the function pow. That
is, in C++ terminology, the function pow is called several times. Later in this chapter, we
discuss what happens when a function is called.

Suppose that the heading of the function pow is:

double pow(double base, double exponent)

From the heading of the function pow, it follows that the formal parameters of pow are
base and exponent. Consider the following statements:

double u = 2.5;
double v = 3.0;
double x, y, w;

X = pow(u, Vv); //Line 1
y = pow(2.0, 3.2); //Line 2
w = pow(u, 7): //Line 3

In Line 1, the function pow is called with the parameters u and v. In this case, the values of
u and v are passed to the function pow. In fact, the value of u is copied into base and the value
of v is copied into exponent. The variables u and v that appear in the call to the function pow
in Line 1 are called the actual parameters of that call. In Line 2, the function pow is called with
the parameters 2. 0 and 3. 2. In this call, the value 2. 0 is copied into base and 3. 2 is copied
into exponent. Moreover, in this call of the function pow, the actual parameters are 2. 0 and
3.2, respectively. Similarly, in Line 3, the actual parameters of the function pow are u and 7,
the value of u is copied into base, and 7.0 is copied into exponent.

We can now formally present two definitions:
Formal Parameter: A variable declared in the function heading.

Actual Parameter: A variable or expression listed in a call to a function.

314 | Chapter 6: User-Defined Functions |

For predefined functions, you need to be concerned only with the first four properties.
Software companies do not give out the actual source code, which is the body of the
function. Otherwise, software costs would be exorbitant.

Syntax: Value-Returning function

The syntax of a value-returning function is:

functionType functionName (formal parameter list)

{

statements

}

where statements are usually declaration statements and/or executable statements. In this syntax,
functionType is the type of the value that the function returns. The functionType
is also called the data type or the return type of the value-returning function. Moreover,
statements enclosed between curly braces form the body of the function.

Syntax: Formal Parameter List

The syntax of the formal parameter list is:

dataType identifier, dataType identifier, ...

Function Call

The syntax to call a value-returning function 1is:

functionName (actual parameter list)

Syntax: Actual Parameter List

The syntax of the actual parameter list is:

expression or variable, expression or variable, ...
(In this syntax, expression can be a single constant value.) Thus, to call a value-
returning function, you use its name, with the actual parameters (if any) in parentheses.

A function’s formal parameter list can be empty. However, if the formal parameter list is
empty, the parentheses are still needed. The function heading of the value-returning
function thus takes, if the formal parameter list is empty, the following form:

functionType functionName ()

Value-Returning Functions | 315

If the formal parameter list of a value-returning function is empty, in a function call the
actual parameter is also empty. In this case (that is, an empty formal parameter list), in a
function call the empty parentheses are still needed. Thus, a call to a value-returning
function with an empty formal parameter list is:

functionName ()

In a function call, the number of actual parameters, together with their data types, must
match with the formal parameters in the order given. That is, actual and formal para-
meters have a one-to-one correspondence. (Chapter 7 discusses functions with default
parameters.)

As stated previously, a value-returning function is called in an expression. The expression
can be part of either an assignment statement or an output statement, or a parameter in a
function call. A function call in a program causes the body of the called function to
execute.

return Statement

Once a value-returning function computes the value, the function returns this value via
the return statement. In other words, it passes this value outside the function via the
return statement.

Syntax: return Statement

The return statement has the following syntax:

return expr;

where expr is a variable, constant value, or expression. The expr is evaluated and its
value is returned. The data type of the value that expr computes must match the
function type.

In C++, return is a reserved word.

When a return statement executes in a function, the function immediately terminates
and the control goes back to the caller. Moreover, the function call statement is replaced
by the value returned by the return statement. When a return statement executes in
the function main, the program terminates.

To put the ideas in this discussion to work, let us write a function that determines the
larger of two numbers. Because the function compares two numbers, it follows that this
function has two parameters and that both parameters are numbers. Let us assume that the
data type of these numbers is floating-point (decimal)—say, double. Because the larger

316 | Chapter 6: User-Defined Functions |

number is of type double, the function’s data type is also double. Let us name this
function larger. The only thing you need to complete this function is the body of the
function. Thus, following the syntax of a function, you can write this function as follows:

double larger (double x, double y)

{
double max;
if (x >=vy)
max = X;
else
max = y;
return max;
}

You can also write this function as follows:

double larger (double x, double y)

{
if (x >=vy)
return x;
else
return y;
}

Because the execution of a return statement in a function terminates the function, the
preceding function larger can also be written (without the word else) as:

double larger (double x, double y)

{
if (x >=vy)
return x;
return y;
}

The first form of the function larger requires that you use an additional variable max
(called a local declaration, where max is a variable local to the function larger); the
second form does not.

NOTE 1. In the definition of the function Larger, x and y are formal parameters.

2. The return statement can appear anywhere in the function. Recall that once a
return statement executes, all subsequent statements are skipped. Thus, it's
a good idea to return the value as soon as it is computed.

Value-Returning Functions | 317

EXAMPLE 6-2

Now that the function larger is written, the following C++ code illustrates how to use it.

double one = 13;
double two 36;
double maxNum;

Consider the following statements:

cout << "The larger of 5 and 6 is " << larger (5, 6)
<< endl; //Line 1

cout << "The larger of " << one << " and " << two
<< " is " << larger(one, two) << endl; //Line 2

cout << "The larger of "™ << one << " and 29 is "
<< larger (one, 29) << endl; //Line 3

maxNum = larger(38.45, 56.78); //Line 4

e The expression larger (5, 6), in Line 1, is a function call, and 5 and 6
are actual parameters. This statement outputs the larger of 5 and 6.

e The expression larger (one, two), in Line 2, is a function call. Here,
one and two are actual parameters. This statement outputs the larger of
one and two.

e The expression larger (one, 29), in Line 3, is also a function call. Here,
one and 29 are actual parameters.

e The expression larger (38.45, 56.78), in Line 4, is a function call.
In this call, the actual parameters are 38.45 and 56.78. In this state-
ment, the value returned by the function larger is assigned to the
variable maxNum.

NOTE Inafunction call, you specify only the actual parameter, not its data type. For example, in
Example 6-2, the statements in Lines 1, 2, 3, and 4 show how to call the function
larger with the actual parameters. However, the following statements contain incorrect
calls to the function 1arger and would result in syntax errors. (Assume that all variables
are properly declared.)

x = larger (int one, 29); //illegal
y = larger(int one, int 29); //illegal
cout << larger (int one, int two):; //illegal

318 | Chapter 6: User-Defined Functions |

Once a function is written, you can use it anywhere in the program. The function
larger compares two numbers and returns the larger of the two. Let us now write
another function that uses this function to determine the largest of three numbers. We
call this function compareThree.

double compareThree (double x, double y, double z)
{
return larger (x, larger(y, z)):

}

In the function heading, x, y, and z are formal parameters.
Let us take a look at the expression:

larger (x, larger(y, z))

in the definition of the function compareThree. This expression has two calls to the
function larger. The actual parameters to the outer call are x and larger (y, z); the
actual parameters to the inner call are y and z. It follows that first the expression
larger(y, z) is evaluated, that is, the inner call executes first, which gives the larger
of y and z. Suppose that larger (y, z) evaluates to, say, t. (Notice that t is either y or
z.) Next, the outer call determines the larger of x and t. Finally, the return statement
returns the largest number. It thus follows that to execute a function call, the parameters are
evaluated first. For example, the actual parameter larger(y, z) of the outer call
evaluates first.

Function Prototype

Now that you have some idea of how to write and use functions in a program, the next
question relates to the order in which user-defined functions should appear in a
program. For example, do you place the function larger before or after the function
main? Should larger be placed before compareThree or after it? Following the
rule that you must declare an identifier before you can use it, and knowing that the
function main uses the identifier larger, logically you must place larger before
main.

In reality, C++ programmers customarily place the function main before all other user-
defined functions. However, this organization could produce a compilation error because
functions are compiled in the order in which they appear in the program. For example, if
the function main is placed before the function larger, the identifier larger is
undefined when the function main is compiled. To work around this problem of
undeclared identifiers, we place function prototypes before any function definition
(including the definition of main).

Function Prototype: The function heading without the body of the function.

Value-Returning Functions | 319

Syntax: Function Prototype

The general syntax of the function prototype of a value-returning function is:

functionType functionName (parameter list);

(Note that the function prototype ends with a semicolon.)
For the function larger, the prototype is:

double larger (double x, double y);

NOTE When writing the function prototype, you do not have to specify the variable name in the
parameter list. However, you must specify the data type of each parameter.

You can rewrite the function prototype of the function larger as follows:

double larger (double, double);

FINAL PROGRAM

You now know enough to write the entire program, compile it, and run it. The following
program uses the functions larger, compareThree, and main to determine the larger/
largest of two or three numbers.

//Program: Largest of three numbers
#include <iostream>
using namespace std;

double larger (double x, double y);
double compareThree (double x, double y, double z);

int main ()
{

double one, two; //Line 1

cout << "Line 2: The larger of 5 and 10 is "

<< larger(5, 10) << endl; //Line 2
cout << "Line 3: Enter two numbers: "; //Line 3
cin >> one >> two; //Line 4
cout << endl; //Line 5

cout << "Line 6: The larger of " << one
<< " and " << tWO << A\l is "
<< larger (one, two) << endl; //Line 6

320 | Chapter 6: User-Defined Functions |

cout << "Line 7: The largest of 23, 34, and "
<< "12 is " << compareThree (23, 34, 12)
<< endl; //Line 7

return 0;

}
double larger (double x, double y)
{
if (x >=vy)
return x;
else
return y;
}
double compareThree (double x, double y, double z)
{
return larger (x, larger(y, z)):
}

Sample Run: In this sample run, the user input is shaded.

Line 2: The larger of 5 and 10 is 10
Line 3: Enter two numbers: 25 73

Line 6: The larger of 25 and 73 is 73
Line 7: The largest of 23, 34, and 12 is 34

NOTE In the previous program, the function prototypes of the functions largexr and
compareThree appear before their function definitions. Therefore, the definition of
the functions larger and compareThree can appear in any order.

NOTE Avalue-returning function must return a value. Consider the following function, secret,
that takes as a parameter an int value. If the value of the parameter, x, is greater than 5,
it returns twice the value of x; otherwise, the value of x remains unchanged.

int secret (int x)

{
if (x > 5) //Line 1
return 2 * x; //Line 2

}

Because this is a value-returning function of type int, it must return a value of
type int. Suppose the value of x is 10. Then the expression, x > 5, in Line 1,
evaluates to true. So the return statement in Line 2 returns the value 20.
Now suppose that x is 3. The expression, x > 5, in Line 1, now evaluates to
false. The if statement, therefore, fails, and the return statement in Line 2
does not execute. However, there are no more statements to be executed in the
body of the function. In this case, the function returns a strange value. It thus

Value-Returning Functions | 321

follows that if the value of x is less than or equal to 5, the function does not
contain any valid return statements to return the value of x.

The correct definition of the function secret is:

int secret (int x)

{
if (x > 5) //Line 1
return 2 * x; //Line 2
return x; //Line 3

}

Here, if the value of x is less than or equal to 5, the return statement in Line 3 executes,
which returns the value of x. On the other hand, if the value of x is, say, 10, the return
statement in Line 2 executes, which returns the value 20 and also terminates the function.

NOTE Recall that in a value-returning function, the return statement returns the value.
Consider the following return statement:

return x, y; //only the value of y will be returned

This is a legal return statement. You might think that this return statement

is returning the values of x and y. However, this is not the case. Remember, a

return statement returns only one value, even if the return statement contains more
than one expression. If a return statement contains more than one expression, only the
value of the last expression is returned. Therefore, in the case of the above return
statement, the value of y is returned. The following program further illustrates this concept:

//A value returned by a return statement

//This program illustrates that a value-returning function
//returns only one value, even if the return statement
//contains more than one expression.

#include <iostream>
using namespace std;

int funcRetl();
int funcRet2();
int funcRet3();
int funcRet4 (int z);

int main ()
{

int num = 4;

cout << "Line 1: The value returned by funcRetl: "

<< funcRetl () << endl; // Line 1
cout << "Line 2: The value returned by funcRet2: "

<< funcRet2 () << endl; // Line 2

322 | Chapter 6: User-Defined Functions |

cout << "Line 3: The value returned by funcRet3: "

<< funcRet3() << endl; // Line 3
cout << "Line 4: The value returned by funcRet4: "
<< funcRet4 (num) << endl; // Line 4
return 0;
}
int funcRetl ()
{
return 23, 45; //only 45 is returned
}
int funcRet2 ()
{
int x = 5;
int y = 6;
return X, y; //only the value of y is returned
}
int funcRet3 ()
{
int x = 5;
int y = 6;
return 37, y, 2 * x; //only the value of 2 * x is returned
}
int funcRet4 (int z)
{
int a = 2;
int b = 3;
return 2 * a + b, z + b; //only the value of z + b is returned
}

Sample Run:

Line 1: The value returned by funcRetl: 45
Line 2: The value returned by funcRet2: 6
Line 3: The value returned by funcRet3: 10
Line 4: The value returned by funcRetd: 7

EXAMPLE 6-3

In this example, we write the definition of function courseGrade. This function takes as
a parameter an int value specifying the score for a course and returns the grade, a value of
type char, for the course. (We assume that the test score is a value between 0 and 100
inclusive.)

Value-Returning Functions | 323

char courseGrade (int score)
{
switch (score / 10)
{
case
case
case
case
case
case 5:
return 'F';
case 6:
return 'D';
case 7:
return 'C';
case 8:
return 'B';
case 9:
case 10:
return 'A';

s W NhER O

}

You can also write an equivalent definition of the function courseGrade that uses an
if...else structure to determine the course grade.

Following is an example of a function that returns a Boolean value.

EXAMPLE 6-4

Palindrome Number

In this example, a function, isNumPalindrome, is designed that returns true if a non
negative integer is a palindrome and false otherwise. A non negative integer is a
palindrome if it reads forward and backward in the same way. For example, the integers
5, 44, 434, 1881, and 789656987 are all palindromes.

Suppose num is a non negative integer. If num < 10, it is a palindrome and so the function
should return true. Suppose num >= 10. To determine whether num is a palindrome,
first compare the first and the last digits of num. If the first and the last digits of num are
not the same, it is not a palindrome and so the function should return false. If the first
and the last digits of num are the same, remove the first and last digits of num and repeat
this process on the new number, which is obtained from num after removing the first and
last digits of num. Repeat this process as long as the number is >= 10.

For example, suppose that the input is 18281. Because the first and last digits of 18281
are the same, remove the first and last digits to get the number 828. Repeat this process

324 | Chapter 6: User-Defined Functions |

of comparing the first and last digits on 828. Once again, the first and last digits are the
same. After removing the first and last digits of 828, the resulting number is 2, which is
less than 10. Thus, 18281 is a palindrome.

To remove the first and last digits of num, you first need to find the highest
power of 10 that divides num, and call it pwr. The highest power of 10 that divides
18281 is 4, that is, pwr = 4. Now 18281 % 10°"* = 8281, and so the first digit
is removed. Also, because 8281 / 10 = 828, the last digit is removed. Therefore,
to remove the first digit, you can use the mod operator, where the divisor
is 10°"*. To remove the last digit, divide the number by 10. You then decre-
ment pwr by 2 for the next iteration. The following algorithm implements this
discussion:

1. If num < 10, it is a palindrome and so the function should return
true.

2. Suppose num is an integer and num >= 10. To see if num is a palin-
drome:

a. Find the highest power of 10 that divides num and call it pwr.
For example, the highest power of 10 that divides 434 is 2; the
highest power of 10 that divides 789656987 is 8.

b. While num is greater than or equal to 10, compare the first and last
digits of num.

b.1. If the first and last digits of num are not the same, num is not a
palindrome. Return false.

b.2. If the first and the last digits of num are the same:

b.2.1. Remove the first and last digits of num.
b.2.2. Decrement pwr by 2.

c. Return true.
The following function implements this algorithm:

bool isNumPalindrome (int num)

{
int pwr = 0;
if (num < 10) //Step 1
return true;
else //Step 2
{
//Step 2.a

while (num / static cast<int>(pow(10.0, pwr)) >= 10)
pwr++;

Value-Returning Functions | 325

while (num >= 10) //Step 2.b
{
int tenTopwr = static cast<int> (pow(10.0, pwr));
if ((num / tenTopwr) != (num % 10))
return false; //Step 2.b.1
else //Step 2.b.2
{
num = num % tenTopwr; //Step 2.b.2.1
num = num / 10; //Step 2.b.2.1
pwr = pwr - 2; //Step 2.b.2.2
}

}//end while

return true;
}//end else

NOTE In the definition of the function isNumPalindrome, the function pow from the
header file cmath is used to find the highest power of 10 that divides the number.
Therefore, make sure to include the header file cmath in your program.

Flow of Execution

As stated earlier, a C++ program is a collection of functions. Recall that functions
can appear in any order. The only thing that you have to remember is that you must
declare an identifier before you can use it. The program is compiled by the compiler
sequentially from beginning to end. Thus, if the function main appears before any
other user-defined functions, it is compiled first. However, if main appears at the
end (or middle) of the program, all functions whose definitions (not prototypes)
appear before the function main are compiled before the function main, in the
order they are placed.

Function prototypes appear before any function definition, so the compiler translates
these first. The compiler can then correctly translate a function call. However, when the
program executes, the first statement in the function main always executes first, regardless
of where in the program the function main is placed. Other functions execute only when
they are called.

A function call statement transfers control to the first statement in the body of the function.
In general, after the last statement of the called function executes, control is passed back to
the point immediately following the function call. A value-returning function returns a
value. Therefore, after executing the value-returning function, when the control goes back
to the caller, the value that the function returns replaces the function call statement. The
execution continues at the point immediately following the function call.

326 | Chapter 6: User-Defined Functions |

PROGRAMMING EXAMPLE: Largest Number

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

In this programming example, the function larger is used to determine the largest
number from a set of numbers. For the purpose of illustration, this program deter-
mines the largest number from a set of 10 numbers. You can easily enhance this
program to accommodate any set of numbers.

Input A set of 10 numbers
Output The largest of 10 numbers
Suppose that the input data is:

15 20 7 8 28 21 43 12 35 3

Read the first number of the data set. Because this is the only number read to this
point, you may assume that it is the largest number so far and call it max. Read the
second number and call it num. Now compare max and num, and store the larger
number into max. Now max contains the larger of the first two numbers. Read the
third number. Compare it with max and store the larger number into max. At this
point, max contains the largest of the first three numbers. Read the next number,
compare it with max, and store the larger into max. Repeat this process for each
remaining number in the data set. Eventually, max will contain the largest number in
the data set. This discussion translates into the following algorithm:

1. Read the first number. Because this is the only number that you
have read so far, it is the largest number so far. Save it in a variable
called max.

2. For each remaining number in the list:

a. Read the next number. Store it in a variable called num.

Compare num and max. If max < num, then num is the new
largest number and so update the value of max by copying num
into max. If max >= num, discard num; that is, do nothing.

3. Because max now contains the largest number, print it.

To find the larger of two numbers, the program uses the function larger.

COMPLETE PROGRAM LISTING

//**

// Author: D.S. Malik
//
// This program finds the largest number of a set of 10

// numbers.
//**

Programming Example: Cable Company | 327

#include <iostream>

using namespace std;

double larger (double x, double y):;

int main ()

{ double num; //variable to hold the current number
double max; //variable to hold the larger number

int count; //loop control variable

cout << "Enter 10 numbers." << endl;

cin >> num; //Step 1
max = num; //Step 1
for (count = 1; count < 10; count++) //Step 2
{

cin >> num; //Step 2a

max = larger (max, num); //Step 2b
}
cout << "The largest number is " << max

<< endl; //Step 3

return 0;
}//end main

double larger (double x, double y)

{
if (x >=vy)
return x;
else
return y;
}

Sample Run: In this sample run, the user input is shaded.

Enter 10 numbers.
10 56 73 42 22 67 88 26 62 11
The largest number is 88

PROGRAMMING EXAMPLE: Cable Company

Chapter 4 contains a program to calculate the bill for a cable company. In that
program, all of the programming instructions are packed in the function main. Here,
we rewrite the same program using user-defined functions, further illustrating struc-
tured programming. The problem analysis phase shows how to divide a complex

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

Function
residential

Local

Variables
(Function
residential)

328 | Chapter 6: User-Defined Functions |

problem into smaller subproblems. It also shows that while solving a particular
subproblem, you can focus on only that part of the problem.

Input to and output of the program are the same as before.

Because there are two types of customers, residential and business, the program contains
two separate functions: one to calculate the bill for residential customers and one to
calculate the bill for business customers. Both functions calculate the billing amount and
then return the billing amount to the function main. The function main prints the
amount due. Let us call the function that calculates the residential bill residential
and the function that calculates the business bill business. The formulas to calculate
the bills are the same as before.

As in Chapter 4, data such as the residential bill processing fee, the cost of residential
basic service connection, and so on are special. Therefore, these are declared as
named constants.

To compute the residential bill, you need to know the number of premium channels
to which the customer subscribes. Based on the number of premium channels, you
can calculate the billing amount. After calculating the billing amount, the function
returns the billing amount using the return statement. The following four steps
describe this function:

a. Prompt the user for the number of premium channels.
b. Read the number of premium channels.
c. Calculate the bill.

d. Return the amount due.

This function contains a statement to prompt the user to enter the number of premium
channels (Step a) and a statement to read the number of premium channels (Step b). Other
items needed to calculate the billing amount, such as the cost of basic service connection
and bill-processing fees, are defined as named constants (before the definition of the
functionmain). Therefore, to calculate the billing amount, this function does not need to
get any value from the function main. This function, therefore, has no parameters.

From the previous discussion, it follows that the function residential requires
variables to store both the number of premium channels and the billing amount. This
function needs only two local variables to calculate the billing amount:

int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function residential can now be written as follows:

double residential ()

{
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

Programming Example: Cable Company | 329

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;

cout << endl;

bAmount = RES_BILL PROC_FEES +
RES_BASIC SERV COST +
noOfPChannels * RES_COST_PREM CHANNEL;

return bAmount;

}

Function To compute the business bill, you need to know the number of both the basic service
business connections and the premium channels to which the customer subscribes. Then, based
on these numbers, you can calculate the billing amount. The billing amount is then
returned using the return statement. The following six steps describe this function:

a. Prompt the user for the number of basic service connections.
b. Read the number of basic service connections.

c. Prompt the user for the number of premium channels.

d. Read the number of premium channels.

Calculate the bill.

f. Return the amount due.

This function contains the statements to prompt the user to enter the number of basic
service connections and premium channels (Steps a and ¢). The function also contains
statements to input the number of basic service connections and premium channels
(Steps b and d). Other items needed to calculate the billing amount, such as the cost
of basic service connections and bill-processing fees, are defined as named constants
(before the definition of the function main). It follows that to calculate the billing
amount, this function does not need to get any values from the function main.
Therefore, it has no parameters.

Local From the preceding discussion, it follows that the function business requires
Variables variables to store the number of basic service connections and premium channels, as
(Function well as the billing amount. In fact, this function needs only three local variables to

business) calculate the billing amount:

int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function business can now be written as follows:

double business|()

{
int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

330 | Chapter 6: User-Defined Functions |

cout << "Enter the number of basic "

<< "sgervice connections: ";
cin >> noOfBasicServiceConnections;
cout << endl;

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;

cout << endl;

if (noOfBasicServiceConnections <= 10)
bAmount = BUS BILL PROC_FEES + BUS BASIC SERV_COST +
noOfPChannels * BUS_COST_ PREM CHANNEL;
else
bAmount = BUS_BILL_ PROC_FEES + BUS_BASIC_SERV_COST +
(noOfBasicServiceConnections - 10) *
BUS BASIC CONN COST +

noOfPChannels * BUS_COST PREM CHANNEL;

return bAmount;

MAIN 1. To output floating-point numbers in a fixed decimal format with
ALGORITHM the decimal point and trailing zeros, set the manipulators £ixed and
(Function showpoint.

main) 2. To output floating-point numbers to two decimal places, set the

precision to two decimal places.

Prompt the user for the account number.
Get the account number.

Prompt the user to enter the customer type.

Get the customer type.

Noey Bogs

a. If the customer type is R or r,
i. Call the function residential to calculate the bill.

ii. Print the bill.
b. If the customer type is B or b,

i. Call the function business to calculate the bill.
11. Print the bill.

c. If the customer type is other than R, r, B, or b, it is an invalid
customer type.

Programming Example: Cable Company | 331

COMPLETE PROGRAM LISTING
//*'k******************'k**************************************

// Author: D. S. Malik

//

// Program: Cable Company Billing

// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of

// customers: residential and business.
//**'k******

#include <iostream>
#include <iomanip>
using namespace std;

//Named constants - residential customers
const double RES BILL PROC FEES = 4.50;
const double RES BASIC_SERV_COST = 20.50;
const double RES _COST_PREM CHANNEL = 7.50;

//Named constants — business customers
const double BUS BILL PROC FEES = 15.00;
const double BUS BASIC SERV COST = 75.00;
const double BUS BASIC CONN COST = 5.00;
const double BUS_COST_PREM CHANNEL = 50.00;

double residential():; //Function prototype
double business|() ; //Function prototype

int main ()
{
//declare variables
int accountNumber;
char customerType;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 2

cout << "This program computes a cable bill."

<< endl;
cout << "Enter account number: "; //Step 3
cin >> accountNumber; //Step 4
cout << endl;
cout << "Enter customer type: R, r "

<< " (Residential), B, b (Business): "; //Step 5
cin >> customerType; //Step 6

cout << endl;

332 | Chapter 6: User-Defined Functions |

switch (customerType)
{
case 'r':
case 'R':
amountDue = residential () ;
cout << "Account number = "
<< accountNumber << endl;
cout << "Amount due = S$"
<< amountDue << endl;

break;
case 'b':
case 'B':

amountDue = business|():
cout << "Account number = "
<< accountNumber << endl;
cout << "Amount due = S$"
<< amountDue << endl;

break;
default:
cout << "Invalid customer type."
<< endl;

}

return 0;

}

double residential ()

{
int noOfPChannels;
double bAmount;

cout << "Enter the number of premium "

<< "channels used: ";
cin >> noOfPChannels;
cout << endl;

bAmount = RES_BILL_PROC_FEES +
RES_BASIC SERV_COST +

//Step 7

//Step 7a

//Step 7a.
//Step 7a.

//Step 7a.

//Step 7b

//Step 7b.
//Step 7b.

//Step 7b.

//Step 7c

//number of premium channels
//billing amount

noOfPChannels * RES_COST PREM CHANNEL;

return bAmount;

}

double business|()
{
int noOfBasicServiceConnections;
int noOfPChannels;
double bAmount;

//number of premium channels
//billing amount

ii

ii

ii

ii

Quick Review | 333

cout << "Enter the number of basic "
<< "sgervice connections: ";

cin >> noOfBasicServiceConnections;

cout << endl;

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;

cout << endl;

if (noOfBasicServiceConnections <= 10)
bAmount = BUS_BILL PROC_FEES + BUS_BASIC_SERV_COST +
noOfPChannels * BUS COST PREM CHANNEL;
else
bAmount = BUS BILL PROC FEES + BUS BASIC SERV COST +
(noOfBasicServiceConnections - 10) *
BUS BASIC CONN COST +
noOfPChannels * BUS COST PREM CHANNEL;

return bAmount;

}

Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number: 21341

Enter customer type: R, r (Residential), B, b (Business): B
Enter the number of basic service connections: 25
Enter the number of premium channels used: 9

Account number = 21341
Amount due = $615.00

QUICK REVIEW

1. Functions are like miniature programs and are called modules.
Functions enable you to divide a program into manageable tasks.

The C++ system provides the standard (predefined) functions.

H W N

To use a standard function, you must:

i. Know the name of the header file that contains the function’s specification,
i. Include that header file in the program, and

ii. Know the name and type of the function, and number and types of the
parameters (arguments).

334

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21,
22,

| Chapter 6: User-Defined Functions |

There are two types of user-defined functions: value-returning functions
and void functions.

Variables defined in a function heading are called formal parameters.

Expressions, variables, or constant values used in a function call are called
actual parameters.

In a function call, the number of actual parameters and their types must
match with the formal parameters in the order given.

To call a function, use its name together with the actual parameter list.

A value-returning function returns a value. Therefore, a value-returning
function is used (called) in either an expression or an output statement, or as
a parameter in a function call.

The general syntax of a user-defined function is:

functionType functionName (formal parameter list)

{

statements

}

The line functionType functionName (formal parameter list) is
called the function heading (or function header). Statements enclosed
between braces { and } are called the body of the function.

The function heading and the body of the function are called the definition
of the function.

If a function has no parameters, you still need the empty parentheses in
both the function heading and the function call.

A value-returning function returns its value via the return statement.

A function can have more than one return statement. However, when-
ever a return statement executes in a function, the remaining statements
are skipped and the function exits.

A return statement returns only one value.

A function prototype is the function heading without the body of the
function; the function prototype ends with the semicolon.

A function prototype announces the function type, as well as the type and
number of parameters, used in the function.

In a function prototype, the names of the variables in the formal parameter
list are optional.

Function prototypes help the compiler correctly translate each function call.

In a program, function prototypes are placed before every function defini-
tion, including the definition of the function main.

Exercises

335

23. When you use function prototypes, user-defined functions can appear in
any order in the program.
24. When the program executes, the execution always begins with the first
statement in the function main.
25. User-defined functions execute only when they are called.
26. A call to a function transfers control from the caller to the called
function.
27. In a function call statement, you specify only the actual parameters, not
their data type or the function type.
28. When a function exits, the control goes back to the caller.
EXERCISES
1. Mark the following statements as true or false.
a. To use a predefined function in a program, you need to know only the
name of the function and how to use it.
b. A value-returning function returns only one value.
c. Parameters allow you to use different values each time the function is
called.
d. When a return statement executes in a user-defined function, the
function immediately exits.
e. A value-returning function returns only integer values.
2. Which of the following function headings are valid? If they are invalid,
explain why.
a. one (int a, int b)
b. int thisone(char x)
c. char another(int a, b)
d. double yetanother
3. Consider the following statements:

double numl, num2, num3;
int intl, int2, int3;
int value;

336 | Chapter 6: User-Defined Functions |

numl = 5.0; num2 = 6.0; num3 = 3.0;
intl = 4; int2 = 7; int3 = 8;

and the function prototype:

double cube (double a, double b, double c);

Which of the following statements are valid? If they are invalid, explain why.
a. value = cube (numl, 15.0, num3) ;
h. cout << cube(numl, num3, num2) << endl;
c. cout << cube(6.0, 8.0, 10.5) << endl;
d. cout << cube (numl, num3) << endl;
e. value = cube(numl, int2, num3) ;
f. value = cube(7, 8, 9);
g. value = cube(intl, int2, int3);
4. Consider the following functions:

int secret (int x)

{
int i, Jj;
i=2*x;
if (1 > 10)
J=x/2;
else
j=x/ 3;
return j - 1;
}

int another (int a, int Db)
int i, j;
j=0;

for (i = a; 1 <= b; i++)
j=3+ i;

return j;

6.

Exercises

What is the output of each of the following program segments? Assume
that x, v, and k are int variables.

a. x=10;
cout << secret (x) << endl;
h. x=5; y=8;
cout << another (x, y) << endl;
c. x=10; k=secret(x):
cout << x << " "< k<< " " << another(x, k) << endl;
d. x=5; y=8;
cout << another (y, x) << endl;

Consider the following function prototypes:

int test(int, char, double, int);
double two (double, double);
char three(int, int, char, double);

Answer the following questions.

a. How many parameters does the function test have? What is the type
of the function test ?

b. How many parameters does function two have? What is the type of
function two?

c. How many parameters does function three have? What is the type of
function three ?

d. How many actual parameters are needed to call the function test?
What 1s the type of each actual parameter, and in what order should
you use these parameters in a call to the function test?

e. Write a C++ statement that prints the value returned by the function
test with the actual parameters 5, 5, 7.3, and 'z'.

. Write a C++ statement that prints the value returned by function two
with the actual parameters 17.5 and 18. 3, respectively.

g. Write a C++ statement that prints the next character returned by
function three. (Use your own actual parameters.)

Consider the following function:

int mystery(int x, double y, char ch)
{
int u;
if ('A' <= ch && ch <= 'R'")
return(2 * x + static_cast<int>(y));
else
return(static_cast<int> (2 * y) - x);

337

| Chapter 6: User-Defined Functions |

What is the output of the following C++ statements?
a. cout <<mystery (5, 4.3, 'B') << endl;

h. cout << mystery (4, 9.7, 'v') << endl;
c. cout << 2 *mystery (6, 3.9, 'D') << endl;

Consider the following function:

int secret(int one)

{
int i;
int prod = 1;
for (1 = 1; 1 <= 3; i++)
prod = prod * one;
return prod;
}

a. What is the output of the following C++ statements?

i. cout << secret (5) << endl;
ii. cout << 2 * secret(6) << endl;

b. What does the function secret do?

What is the output of the following C++ program? (Recall that the
function sgrt returns the square root of its argument. For example,
sqgrt (16.0) = 4.0. The specification of the function sqgrt is in the
header file cmath.)

#include <iostream>
#include <cmath>

using namespace std;
int main ()
{
int counter;
for (counter = 1; counter <= 100; counter++)
if (pow (floor (sgrt (counter + 0.0)), 2) == counter)
cout << counter << " ";

cout << endl;

return 0;

Exercises | 339

Show the output of the following program:

#include <iostream>
using namespace std;
int mystery(int);
int main ()

{

int n;

for (n = 1; n <= 5; n++)
cout << mystery(n) << endl;

return 0;

}
int mystery(int k)
{

int x, y;

y = k;

for (x =1

; x <= (k - 1); xt+)
y=y* (

k - x);
return y;
}
Show the output of the following program:

#include <iostream>
using namespace std;
bool strange (int);

int main ()

{

int num = 0;

while (num <= 29)
{
if (strange (num))
cout << "True" << endl;

340 | Chapter 6: User-Defined Functions |

else
cout << "False" << endl;

num = num + 4;

}
return 0;
}
bool strange (int n)
{
if (n $2==06&&n % 3 == 0)
return true;
else
return false;
}

PROGRAMMING EXERCISES

1. Write a program that uses the function isNumPalindrome given in Example
6-3 (Palindrome Number). Test your program on the following numbers:
10, 34, 22, 333, 678, 67876, 44444, and 123454321

2. Write a value-returning function, 1sVowel, that returns the value true ifa
given character is a vowel and otherwise returns false.

3. Write a program that prompts the user to input a sequence of characters and
outputs the number of vowels. (Use the function isVowel written in
Programming Exercise 2.)

4. Consider the following program:
#include <iostream>
using namespace std;

int one(int x, int y);
double two(int x, double a);

int main()

{

int num;
double dec;

return 0;

Programming Exercises | 341

int one(int x, int y)

{
}
double two(int x, double a)
{
int first;
double z;
}

a. Worite the definition of function one so that it returns the sum of x and y
if x is greater than y; otherwise, it should return x minus 2 times y.

h. Worite the definition of function two as follows:

i. Read a number and store it in z.

i. Update the value of z by adding the value of a to its previous value.

ii. Assign the variable first the value returned by function one with
parameters 6 and 8.

iv. Update the value of f£irst by adding the value of x to its previous value.

v. If the value of z is more than twice the value of first, return z;
otherwise, return 2 times first minus z.

c. Write a C++ program that tests parts a and b. (Declare additional
variables in the function main, if necessary.)

Write a function, reverseDigit, that takes an integer as a parameter and
returns the number with its digits reversed. For example, the value of
reverseDigit (12345) is 54321; the value of reverseDigit (5600)
is 65; the value of reverseDigit (7008) is 8007; and the value of
reverseDigit (-532) 1s -235.

The following formula gives the distance between two points (xq, y;) and
(x2, y2) in the Cartesian plane:

\/(362 —21)" + (g2 — 1)

Given the center and a point on the circle, you can use this formula to find
the radius of the circle. Write a program that prompts the user to enter the

342

| Chapter 6: User-Defined Functions |

center and a point on the circle. The program should then output the circle’s
radius, diameter, circumference, and area. Your program must have at least
the following functions:

a. distance: This function takes as its parameters four numbers that
represent two points in the plane and returns the distance between them.

b. radius: This function takes as its parameters four numbers that repre-
sent the center and a point on the circle, calls the function distance to
find the radius of the circle, and returns the circle’s radius.

c. circumference: This function takes as its parameter a number that
represents the radius of the circle and returns the circle’s circumference.
(If r is the radius, the circumference is 27r.)

d. area: This function takes as its parameter a number that represents the radius
. . s . . . 2
of the circle and returns the circle’s area. (If r is the radius, the area is 7w7".)

Assume that T = 3.1416.

Rewrite the program in Programming Exercise 14 of Chapter 4 (cell phone
company) so that it uses the following functions to calculate the billing
amount. (In this programming exercise, do not output the number of
minutes during which the service is used.)

a. regularBill: This function calculates and returns the billing amount
for regular service.

b. premiumBill: This function calculates and returns the billing amount
for premium service.

Write a program that takes as input five numbers and outputs the mean
(average) and standard deviation of the numbers. If the numbers are xq, x5,
X3, X4, and xs, then the mean is x = (x; + x5 + x3 + x4 + x5)/5 and the
standard deviation is:

Your program must contain at least the following functions: a function that
calculates and returns the mean and a function that calculates the standard
deviation.

When you borrow money to buy a house, a car, or for some other purposes,
then you typically repay it by making periodic payments. Suppose that the

Programming Exercises | 343

loan amount is L, r is the interest rate per year, m is the number of payments
in a year, and the loan is for f years. Suppose that i = (r / m) and r is in
decimal. Then the periodic payment is:

Iy
R=— "
1—(1+47)

You can also calculate the unpaid loan balance after making certain payments.
For example, the unpaid balance after making k payments is:

L'=R

7

1—(1+ i)‘“’“‘“]

where R is the periodic payment. (Note that if the payments are monthly, then
m=12)

Write a program that prompts the user to input the values of L, r, m, t, and k. The
program then outputs the apropriate values. Your program must contain at least
two functions, with appropriate parameters, to calculate the periodic payments
and the unpaid balance after certain payments. Make the program menu driven
and use a loop so that the user can repeat the program for difterent values.

En—
—
——]
P
i
-

-

)

)
1

User-DEFINED FuNcTIONS |l

IN THIS CHAPTER, YOU WILL:

Learn how to construct and use void functions in a program

Discover the difference between value and reference
parameters

Explore reference parameters and value-returning functions
Learn about the scope of an identifier

Examine the difference between local and global identifiers
Discover static variables

Learn function overloading

Explore functions with default parameters

346 | Chapter 7: User-Defined Functions Il

In Chapter 6, you learned how to use value-returning functions. In this chapter, you will
explore user-defined functions in general and, in particular, those C++ functions that do
not have a data type, called void functions.

Void Functions

Void functions and value-returning functions have similar structures. Both have a heading
and a body. You can place user-defined void functions either before or after the function
main. However, the program execution always begins with the first statement in the
function main. It you place user-defined void functions after the function main, you
should place the function prototype before the function main. A void function does not
have a data type. Therefore, functionType, that is, the return type, in the heading part
and the return statement in the body of the void functions are meaningless. However, in a
void function, you can use the return statement without any value; it is typically used to
exit the function early. Like value-returning functions, void functions may or may not
have formal parameters.

Because void functions do not have a data type, they are not used (called) in an
expression. A call to a void function is a stand-alone statement. Thus, to call a void
function, you use the function name together with the actual parameters (if any) in a
stand-alone statement.

Void Functions without Parameters

This section discusses void functions that do not have formal parameters.
FUNCTION DEFINITION
The general form (syntax) of the void function without formal parameters is as follows:

void functionName ()

{

statements

}

where statements are usually declaration and/or executable statements. In C++, void
is a reserved word.

NOTE Like avariable name, a function name should be descriptive, so be sure to use meaningful
names when naming functions.

FUNCTION CALL

The function call has the following syntax:

functionName () ;

Void Functions | 347

Because these void functions do not have parameters, no value can be passed to them
(unless you use global variables, defined later in this chapter). Such functions are thus
usually good only for displaying information about the program or for printing state-
ments. Consider the following program.

EXAMPLE 7-1

Suppose you want to print the following banner to announce the annual spring sale.
(Programming Exercise 7 in Chapter 2 shows a similar output.)

khkkkhkkhkkhkkkhkkhkkkhkhkkkhkhkkhkhkkkhkhkkkhkkkkkxk
% Kk Je sk Kk ke ke ke ke ke ke ke ke ok ke ok ke ke ke ok ke ke ke ke ke ok ke ok ke ok
* Kk kok ok ok ok ok ok okok Anl’lual *hkkkkhkkkkkhk
kkhkkkkhkhkhkkhkkhkkkhkhkkhkkkhkkkhkkkhkhkkkhkkk
khkkkhkhkkhkhkkkhkhkhkhkhkhhkhkhkhkhkhkhhkkhhkhkkkhk
*kkKkkkkk Sprlng Sale *hkhkkhkhkkkk
dkkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhhkhhkkhkhkhhkhkhkhkhkhkhkhk
khkkhkkhkhkkhkhkhkkhkhkhkhkhkhhkhkhkhkhkkhhkkhhkhkhkkxk

The banner starts with two lines of stars. After printing the line containing the text
Annual, you need to print another two lines of stars. After printing the line containing
the text Spring Sale, you need to print two more lines of stars. You can write a
function that prints two lines of stars and call it whenever you need it. The complete
program looks like this:

#include <iostream>
using namespace std;
void printStars();

int main()

{
printStars(); //Line 1
cout << Mkkkkkkkkkk Annugl Kkkkkkxkkkknm << endl; //Line 2
printStars(): //Line 3
cout << MrxFkxkkEkx gGpring Sale FxFFkkxkAkrk N < endl; //Line 4
printStars () ; //Line 5
return 0;

}

void printStars ()

{

cout << Mhkkdhhkkdhhhkdhhhdhhhhhkdkbhhdhhhhd ! & endl;
cout << MWhkkkkkkkkkkkkkkkdhkhdhkkkrdkhhdhhr " endl;

348 | Chapter 7: User-Defined Functions Il

Sample Run:

% Kk de sk kok ok kok ok ok ok ok ok ok k ok ko ok kk ok ko ke kok ok ok
*khkkkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkhkhhkkhkhkhhkhhk
kkkkkkkkkkx Annugl *FxEkkkkkkkk
khkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhkkhkhkkhhkkkhkhk
khkhkhkhkhkhkhkkhkhdhkhkhkhkhkhkhkhkhkkkhkhkkkkhxkx
* Kk kok ok okok ok Sprlng Sale *¥*kkkkkkkk
kkhkhkhkhkhkhkhkhkhhkhkkhkhkhhkhkhhkhkhhkhkhhkhhhhk
khkkkhkkhkkhkkkhkhkhkkhkhkkkhkhkkhkhkkkhkhkkkhkkkkkxk

In Line 1, the function printStars is called and it outputs the first two lines of the
output. The statement in Line 2 outputs the line of stars containing the text Annual,
which is the third line of the output. In Line 3, the function printStars is called again
and it outputs the next two lines of the output. The statement in Line 4 then outputs the
line of stars containing the text Spring Sale, which is the sixth line of the output. In
Line 5, the function printStars is called again and it outputs the last two lines of the
output.

The statement printStars () ; in the function main is a function call.

In the previous program, you can replace the function printStars with the following
function:

void printStars()

{
int stars, lines;
for (lines = 1; lines <= 2; lines++) //Line 6
{
for (stars = 1; stars <= 30; stars++) //Line 7
cout << ' * '; //Line 8
cout << endl; //Line 9
}
}

In this function definition, the outer for loop (Line 6) has two iterations. For each
iteration of the outer for loop, the body of the inner for loop (Line 7) executes 30
times, each time printing a star. The statement in Line 8 prints each star. The output
statement in Line 9 positions the cursor at the beginning of the next line on the standard
output device. Because the outer for loop has two iterations, this function outputs two
lines of stars with 30 stars in each line.

Void Functions | 349

You would agree that the definition of the function printStars using for loops to
output two lines of stars with 30 stars in each line is much easier to modify than the
definition of printStars given earlier. If you need to output five lines of stars instead of
two lines, for instance, you can replace the number 2 (in the first for loop, Line 6) with
the number 5. Similarly, if you need to output 40 stars instead of 30 stars in each line,
you can replace the number 30 (in the second for loop, Line 7) with the number 40.
Furthermore, as you will soon discover, the definition of the function printStars
using for loops is much easier to modify in order to establish the communication links
with the calling function (such as the function main) and to do different things each time
the function printStars is called.

In the previous program, the function printStars always prints two lines of stars, with
30 stars in each line. Now suppose that you want to print the following pattern (a triangle
of stars):

* *x % %

You could write a function similar to the function printStars. However, if you
need to extend this pattern to 20 lines, the function printStars will have 20 lines.
Every time you call the function printStars, it prints the same number of lines;
the function printStars is inflexible. However, if you can somehow tell the
function printStars how many lines to print, you can enhance its flexibility
considerably. A communication link must exist between the calling function and
the called function.

Void Functions with Parameters

The previous section discussed void functions without parameters and pointed out the
limitations of such functions. In particular, you learned that no information can be passed
in and out of void functions without parameters. The communication link between the
calling function and the called function is established by using parameters. This section
discusses void functions with parameters.

FUNCTION DEFINITION

The function definition of void functions with parameters has the following syntax:

void functionName (formal parameter list)

{

statements

}

where statements are usually declaration and/or executable statements.

350 | Chapter 7: User-Defined Functions Il

FORMAL PARAMETER LIST

The formal parameter list has the following syntax:
dataType& variable, dataTypeI variable, ...
You must specify both the data type and the variable name in the formal parameter list.

The symbol & after dataType has a special meaning; it is used only for certain formal
parameters and is discussed later in this chapter.

FUNCTION CALL

The function call has the following syntax:

functionName (actual parameter list);

ACTUAL PARAMETER LIST

The actual parameter list has the following syntax:

expression or variable,expression or variable, ...

where expression can consist of a single constant value. As with value-returning
functions, in a function call the number of actual parameters together with their data types
must match the formal parameters in the order given. Actual and formal parameters have a
one-to-one correspondence. A function call results in the execution of the body of the
called function. (Functions with default parameters are discussed at the end of this chapter.)

Example 7-2 shows a void function with parameters.

EXAMPLE 7-2

void funexp (int a, double b, char ¢, int x)

{

}

The function funexp has four parameters.

Parameters provide a communication link between the calling function (such as main)
and the called function. They enable functions to manipulate different data each time
they are called. In general, there are two types of formal parameters: value parameters
and reference parameters.

Void Functions | 351

Value parameter: A formal parameter that receives a copy of the content of the
corresponding actual parameter.

Reference parameter: A formal parameter that receives the location (memory address) of
the corresponding actual parameter.

When you attach & after the dataType in the formal parameter list of a function, the
variable following that dataType becomes a reference parameter.

Example 7-3 shows a void function with value and reference parameters.

EXAMPLE 7-3

void expfun(int one, int& two, char three, double& four)

{

}

The function expfun has four parameters: (1) one, a value parameter of type int; (2)
two, a reference parameter of type int; (3) three, a value parameter of type char, and (4)
four, a reference parameter of type double.

EXAMPLE 7-4

We write a program to print a pattern (a triangle of stars) similar to the following:

* * * *

The first line has one star with some blanks before the star, the second line has two stars,
some blanks before the stars, and a blank between the stars, and so on. Let’s write the
method printStars that has two parameters, a parameter to specify the number of
blanks before the stars in a line and the second parameter to specity the number of stars in
a line. To be specific, the definition of the method printStars is:

void printStars(int blanks, int starsInLine)
{
//print the number of blanks before the stars in a line
for (int count = 1; count <= blanks; count++)
cout << ' ';

352 | Chapter 7: User-Defined Functions Il

//print the number of stars with a blanks between stars
for (int count = 1; count <= starsInlLine; count++)
cout << " *";

cout << endl;
} //end printStars

The first parameter, blanks, determines how many blanks to print preceding the star(s);
the second parameter, starsInLine, determines how many stars to print in a line. If
the value of the parameter blanks is 30, for instance, then the first for loop in the
method printStars executes 30 times and prints 30 blanks. Also, because you want to
print a space between the stars, every iteration of the second for loop in the method
printStars prints the string " * " (Line 30)—a blank followed by a star.

Next consider the following statements:

int numberOfLines = 15;
int numberOfBlanks = 30;

for (int counter = 1; counter <= numberOfLines; counter++)
{

printStars (numberOfBlanks, counter);

numberOfBlanks--;

}

The for loop calls the function printStars. Every iteration of this for loop specities the
number of blanks followed by the number of stars to print in a line, using the variables
numberOfBlanks and counter. Every invocation of the function printStars receives
one fewer blank and one more star than the previous call. For example, the first iteration
of the for loop in the method main specifies 30 blanks and 1 star (which are passed as
the parameters, numberOfBlanks and counter, to the function printStars). The
for loop then decrements the number of blanks by 1 by executing the statement,
numberOfBlanks—-;. At the end of the for loop, the number of stars is incremented
by 1 for the next iteration. This is done by executing the update statement, counter++, in
the for statement, which increments the value of the variable counter by 1. In other
words, the second call of the function printStars receives 29 blanks and 2 stars as
parameters. Thus, the previous statements will print a triangle of stars consisting of 15 lines.

//Program: Print a triangle of stars

#include <iostream>

using namespace std;

void printStars(int blanks, int starsInLine);

int main()

! int noOfLines; //variable to store the number of lines

int counter; //for loop control variable
int noOfBlanks; //variable to store the number of blanks

Void Functions | 353

cout << "Enter the number of star lines (1 to 20) "

<< "to be printed: "; //Line 1
cin >> noOflLines; //Line 2
while (noOfLines < 0 || noOfLines > 20) //Line 3
{
cout << "Number of star lines should be "
<< "between 1 and 20" << endl; //Line 4
cout << "Enter the number of star lines "
<< " (1 to 20) to be printed: "; //Line 5
cin >> noOfLines; //Line 6
}
cout << endl << endl; //Line 7
noOfBlanks = 30; //Line 8

for (counter = 1; counter <= noOflines; counter++) //Line 9

{
printStars (noOfBlanks, counter); //Line 10
noOfBlanks—--; //Line 11
}
return 0; //Line 12
}
void printStars(int blanks, int starsInLine)
{
int count;
for (count = 1; count <= blanks; count++) //Line 13
cout << ' '; //Line 14
for (count = 1; count <= starsInlLine; count++) //Line 15
cout << "M Kx M. //Line 16
cout << endl;
}

Sample Run: In this sample run, the user input is shaded.

Enter the number of star lines (1 to 20) to be printed: 15
*

* %
* ok ok
* % % X
* k k% kx %
* * % *x *x %

* x % k kx * %
* Kk Kk k Kk Kk Kk *
* * % *x *x K% * *x %
* k k k k k k *x Kk %

* % % * * Kk * * *x *x %
* k% Kk *k Kk *k k k*k Kk k* * X
* k % Kk k *k Kk *k *k *k * * X
* * *x *x k % *x * % *x * % * *
* k ok k k k kK k k Kk k *k Kk * *

354 | Chapter 7: User-Defined Functions Il

In the function main, the user is first asked to specify how many lines of stars to print
(Line 1). (In this program, the user is restricted to 20 lines because a triangular grid of up
to 20 lines fits nicely on the screen.) Because the program is restricted to only 20 lines, the
while loop at Lines 3 through 6 ensures that the program prints only the triangular grid
of stars if the number of lines is between 1 and 20.

Value Parameters

The previous section defined two types of parameters—value parameters and reference
parameters. Example 7-4 shows a program that uses a function with parameters. Before
considering more examples of void functions with parameters, let us make the following
observation about value and reference parameters. When a function is called, the value of
the actual parameter is copied into the corresponding formal parameter. If the formal
parameter is a value parameter, then after copying the value of the actual parameter, there
is no connection between the formal parameter and actual parameter; that is, the formal
parameter has its own copy of the data. Therefore, during program execution, the formal
parameter manipulates the data stored in its own memory space. The program in Example
7-5 further illustrates how a value parameter works.

EXAMPLE 7-5

The following program shows how a formal parameter of a primitive data type works.

//Example 7-5
//Program illustrating how a value parameter works.

#include <iostream>

using namespace std;

void funcValueParam(int num) ;
int main()

{

int number = 6; //Line 1

cout << "Line 2: Before calling the function "

<< "funcValueParam, number = " << number
<< endl; //Line 2
funcValueParam (number) ; //Line 3

cout << "Line 4: After calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 4

return 0;

Value Parameters | 355

void funcValueParam(int num)

{
cout << "Line 5: In the function funcValueParam, "
<< "before changing, num = " << num
<< endl; //Line 5
num = 15; //Line 6
cout << "Line 7: In the function funcValueParam, "
<< Mafter changing, num = " << num
<< endl; //Line 7
}
Sample Run:
Line 2: Before calling the function funcValueParam, number = 6
Line 5: In the function funcValueParam, before changing, num = 6
Line 7: In the function funcValueParam, after changing, num = 15
Line 4: After calling the function funcValueParam, number = 6

This program works as follows. The execution begins at the function main. The
statement in Line 1 declares and initializes the int variable number. The statement
in Line 2 outputs the value of number before calling the function funcvalueParam;
the statement in Line 3 calls the function funcvValueParam. The value of the variable
number is then passed to the formal parameter num. Control now transfers to the
function funcvValueParam.

The statement in Line 5 outputs the value of num before changing its value. The
statement in Line 6 changes the value of num to 15; the statement in Line 7 outputs
the value of num. After this statement executes, the function funcvalueParam exits and
control goes back to the function main.

The statement in Line 4 outputs the value of number after calling the function
funcvalueParam. The Sample Run shows that the value of number (Lines 2 and 4)
remains the same even though the value of its corresponding formal parameter num was
changed within the function funcvValueParam.

The output shows the sequence in which the statements execute.

After copying data, a value parameter has no connection with the actual parameter, so a
value parameter cannot pass any result back to the calling function. When the function
executes, any changes made to the formal parameters do not in any way affect the actual
parameters. The actual parameters have no knowledge of what is happening to the formal
parameters. Thus, value parameters cannot pass information outside the function. Value
parameters provide only a one-way link between actual parameters and formal para-
meters. Hence, functions with only value parameters have limitations.

7

356 | Chapter 7: User-Defined Functions Il

Reference Variables as Parameters

The program in Example 7-5 illustrates how a value parameter works. On the other hand,
suppose that a formal parameter is a reference parameter. Because a reference parameter
receives the address (memory location) of the actual parameter, reference parameters can
pass one or more values from a function and can change the value of the actual parameter.

Reference parameters are useful in three situations:

e When you want to return more than one value from a function
e When the value of the actual parameter needs to be changed

e When passing the address would save memory space and time relative to
copying a large amount of data

The first two situations are illustrated throughout this book. Chapters 9 and 12 discuss the
third situation, when arrays and classes are introduced.

Recall that when you attach & after the dataType in the formal parameter list of a
function, the variable following that dataType becomes a reference parameter.

NOTE You can declare a reference (formal) parameter as a constant by using the keyword
const. Chapters 11 and 12 discuss constant reference parameters. Until then, the
reference parameters that you use will be nonconstant as defined in this chapter. From
the definition of a reference parameter, it follows that a constant value or an expression
cannot be passed to a nonconstant reference parameter. If a formal parameter is a
nonconstant reference parameter, during a function call its corresponding actual
parameter must be a variable.

EXAMPLE 7-6

Calculate Grade

The following program takes a course score (a value between 0 and 100) and determines
a student’s course grade. This program has three functions: main, getScore, and
printGrade, as follows:

1. main

a. Get the course score.

b. Print the course grade.
2. getScore
a. Prompt the user for the input.

b. Get the input.

c. Print the course score.

Reference Variables as Parameters | 357

3. printCrade

a. Calculate the course grade.

b. Print the course grade.

The complete program is as follows:

//This program reads a course score and prints the
//associated course grade.

#include <iostream>
using namespace std;

void getScore (int& score);
void printGrade (int score);

int main ()

{
int courseScore;
cout << "Line 1: Based on the course score, \n"
<< " this program computes the "
<< "course grade." << endl; //Line 1
getScore (courseScore) ; //Line 2
printGrade (courseScore) ; //Line 3
return 0;
}
void getScore (int& score)
{
cout << "Line 4: Enter course score: "; //Line 4
cin >> score; //Line 5
cout << endl << "Line 6: Course score is "
<< score << endl; //Line 6
}

void printGrade (int cScore)

{

cout << "Line 7: Your grade for the course is "; //Line 7

if (cScore >= 90) //Line 8
cout << "A." << endl;
else if (cScore >= 80)
cout << "B." << endl;
else if (cScore >= 70)
cout << "C." << endl;
else if (cScore >= 60)
cout << "D." << endl;
else
cout << "F." << endl;

358 | Chapter 7: User-Defined Functions Il

Sample Run: In this sample run, the user input is shaded.

Line 1: Based on the course score,
this program computes the course grade.
Line 4: Enter course score: 85

Line 6: Course score is 85
Line 7: Your grade for the course is B.

This program works as follows. The program starts to execute at Line 1, which prints the
first line of the output (see the Sample Run). The statement in Line 2 calls the function
getScore with the actual parameter courseScore (a variable declared in main).
Because the formal parameter score of the function getScore is a reference parameter,
the address (that is, the memory location of the variable courseScore) passes to score.
Thus, both score and courseScore refer to the same memory location, which is
courseScore (see Figure 7-1).

main getScore

FIGURE 7-1 Variable courseScore and the parameter score

Any changes made to score immediately change the value of courseScore.

Control is then transferred to the function getScore, and the statement in Line 4
executes, printing the second line of output. This statement prompts the user to enter
the course score. The statement in Line 5 reads and stores the value entered by
the user (85 in the Sample Run) in score, which is actually courseScore (because
score is a reference parameter). Thus, at this point, the value of the variables score
and courseScore is 85 (see Figure 7-2).

main getScore

D score

FIGURE 7-2 Variable courseScore and the parameter score after the statement in Line 5
executes

Reference Variables as Parameters | 359

Next, the statement in Line 6 outputs the value of score as shown by the third line of the
Sample Run. After Line 6 executes, control goes back to the function main (see Figure 7-3).

main

FIGURE 7-3 Variable courseScore after the statement in Line 6 is executed and control goes
back to main

The statement in Line 3 executes next. It is a function call to the function printGrade
with the actual parameter courseScore. Because the formal parameter cScore of the
function printScore is a value parameter, the parameter cScore receives the value of
the corresponding actual parameter courseScore. Thus, the value of cScore is 85.
After copying the value of courseScore into cScore, no communication exists
between cScore and courseScore (see Figure 7-4).

main printGrade

FIGURE 7-4 Variable courseScore and the parameter cScore

The program then executes the statement in Line 7, which outputs the fourth line. The
if...else statement in Line 8 determines and outputs the grade for the course. Because
the output statement in Line 7 does not contain the newline character or the manipulator
endl, the output of the if...else statement is part of the fourth line of the output.
After the if...else statement executes, control goes back to the function main.
Because the next statement to execute in the function main is the last statement of the
function main, the program terminates.

In this program, the function main first calls the function get Score to obtain the course
score from the user. The function main then calls the function printGrade to calculate
and print the grade based on this course score. The course score is retrieved by the
function getScore; later, this course score is used by the function printGrade.
Because the value retrieved by the getScore function is used later in the program,
the function getScore must pass this value outside. Thus, the formal parameter that
holds this value must be a reference parameter.

360 | Chapter 7: User-Defined Functions Il

Value and Reference Parameters and Memory
Allocation

When a function is called, memory for its formal parameters and variables declared in
the body of the function (called local variables) is allocated in the function data area.
Recall that in the case of a value parameter, the value of the actual parameter is copied
into the memory cell of its corresponding formal parameter. In the case of a reference
parameter, the address of the actual parameter passes to the formal parameter. That is,
the content of the formal parameter is an address. During data manipulation, the
content of the formal parameter directs the computer to manipulate the data of the
memory cell indicated by its content. Thus, in the case of a reference parameter, both
the actual and formal parameters refer to the same memory location. Consequently,
during program execution, changes made by the formal parameter permanently change
the value of the actual parameter.

NOTE Stream variables (for example, 1fstream and ofstream) should be passed by
reference to a function. After opening the input/output file or after reading and/or
outputting data, the state of the input and/or output stream can then be passed outside
the function.

Because parameter passing is fundamental to any programming language, Examples 7-7
and 7-8 further illustrate this concept. Each covers a different scenario.

EXAMPLE 7-7

The following program shows how reference and value parameters work.

//Example 7-7: Reference and value parameters
#include <iostream>
using namespace std;

void funOne(int a, int& b, char v);
void funTwo (int& x, int y, char& w);

int main()

{
int numl, num2;
char ch;
numl = 10; //Line 1
num2 = 15; //Line 2

ch = 'A"; //Line 3

Value and Reference Parameters and Memory Allocation | 361

cout << "Line 4: Inside main: numl = " << numl

<< ", num2 = " << num2 << ", and ch ="

<< ch << endl; //Line 4
funOne (numl, num2, ch); //Line 5
cout << "Line 6: After funOne: numl = " << numl

<< ", num2 = " << num2 << ", and ch ="

<< ch << endl; //Line 6
funTwo (num2, 25, ch):; //Line 7
cout << "Line 8: After funTwo: numl = " << numl

<< ", num2 = " << num2 << ", and ch ="

<< ch << endl; //Line 8

return 0;

}

void funOne (int a, int& b, char v)

{
int one;
one = a; //Line 9
at+; //Line 10
b=b*2; //Line 11
v = 'B'; //Line 12
cout << "Line 13: Inside funOne: a = " << a
<", b="<Kb<w", v="<yv
<< ", and one = " << one << endl; //Line 13
}
void funTwo (int& x, int y, char& w)
{
x++; //Line 14
y=y*2; //Line 15
w="'G"; //Line 16
cout << "Line 17: Inside funTwo: x = " << x
K", y="<K<Ky<< ", andw="<<w
<< endl; //Line 17
}
Sample Run:

Line 4: Inside main: numl = 10, num2 = 15, and ch = A
Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10

Line 6: After funOne: numl = 10, num2 = 30, and ch = A
Line 17: Inside funTwo: x = 31, y = 50, and w = G
Line 8: After funTwo: numl = 10, num2 = 31, and ch = G

362 | Chapter 7: User-Defined Functions Il

Let us walk through this program. The values of the variables are shown before and/or
after each statement executes.

Just before the statement in Line 1 executes, memory is allocated only for the variables of
the function main; this memory is not initialized. After the statement in Line 3 executes,
the variables are as shown in Figure 7-5.

FIGURE 7-5 Values of the variables after the statement in Line 3 executes

The statement in Line 4 produces the following output:
Line 4: Inside main: numl = 10, num2 = 15, and ch = A

The statement in Line 5 is a function call to the function funOne. Now function
funOne has three parameters and one local variable. Memory for the parameters and
the local variable of function funOne is allocated. Because the formal parameter b is a
reference parameter, it receives the address (memory location) of the corresponding actual
parameter, which is num2. The other two formal parameters are value parameters, so they
copy the values of their corresponding actual parameters. Just before the statement in Line
9 executes, the variables are as shown in Figure 7-6.

main funOne

FIGURE 7-6 Values of the variables just before the statement in Line 9 executes

After the statement in Line 9, one = a;, executes, the variables are as shown in
Figure 7-7.

Value and Reference Parameters and Memory Allocation | 363

FIGURE 7-7 Values of the variables after the statement in Line 9 executes

After the statement in Line 10, a++;, executes, the variables are as shown in Figure 7-8.

main funOne

FIGURE 7-8 Values of the variables after the statement in Line 10 executes

After the statement in Line 11, b = b * 2;, executes, the variables are as shown in
Figure 7-9. (Note that the variable b changed the value of num2.)

main funOne

FIGURE 7-9 Values of the variables after the statement in Line 11 executes

364 | Chapter 7: User-Defined Functions Il

After the statement in Line 12, v = "B';, executes, the variables are as shown in
Figure 7-10.

main funOne

FIGURE 7-10 Values of the variables after the statement in Line 12 executes

The statement in Line 13 produces the following output:
Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10

After the statement in Line 13 executes, control goes back to Line 6 and the memory
allocated for the variables of function funOne is deallocated. Figure 7-11 shows the
values of the variables of the function main.

main

FIGURE 7-11 Values of the variables when control goes back to Line 6

Line 6 produces the following output:
Line 6: After funOne: numl = 10, num2 = 30, and ch = A

The statement in Line 7 is a function call to the function funTwo. Now funTwo has
three parameters: x, y, and w. Also, x and w are reference parameters and y is a value
parameter. Thus, x receives the address of its corresponding actual parameter, which is
num?2, and w receives the address of its corresponding actual parameter, which is ch. The
variable y copies the value 25 into its memory cell. Figure 7-12 shows the values before
the statement in Line 14 executes.

Value and Reference Parameters and Memory Allocation | 365

FIGURE 7-12 Values of the variables before the statement in Line 14 executes

After the statement in Line 14, x++;, executes, the variables are as shown in Figure 7-13.
(Note that the variable x changed the value of num2.)

FIGURE 7-13 Values of the variables after the statement in Line 14 executes

After the statement in Line 15, v = y * 2;, executes, the variables are as shown in
Figure 7-14.

FIGURE 7-14 Values of the variables after the statement in Line 15 executes

366 | Chapter 7: User-Defined Functions Il

After the statement in Line 16, w = "G';, executes, the variables are as shown in
Figure 7-15. (Note that the variable w changed the value of ch.)

main funTwo

FIGURE 7-15 Values of the variables after the statement in Line 16 executes

Line 17 produces the following output:
Line 17: Inside funTwo: x = 31, y = 50, and w = G

After the statement in Line 17 executes, control goes to Line 8. The memory allocated
for the variables of function funTwo is deallocated. The values of the variables of the
function main are as shown in Figure 7-16.

main

FIGURE 7-16 Values of the variables when control goes to Line 8

The statement in Line 8 produces the following output:
Line 8: After funTwo: numl = 10, num2 = 31, and ch = G

After the statement in Line 8 executes, the program terminates.

Value and Reference Parameters and Memory Allocation | 367

EXAMPLE 7-8

This example also shows how reference parameters manipulate actual parameters.

//Example 7-8: Reference and value parameters.
//Program: Makes You Think.

#include <iostream>

using namespace std;

void addFirst (int& first, int& second);
void doubleFirst (int one, int two);

void squareFirst(int& ref, int val);

int main ()

{
int num = 5;
cout << "Line 1l: Inside main: num = " << num
<< endl; //Line 1
addFirst (num, num); //Line 2
cout << "Line 3: Inside main after addFirst:"
<< " num = " << num << endl; //Line 3
doubleFirst (num, num); //Line 4
cout << "Line 5: Inside main after "
<< "doubleFirst: num = " << num << endl; //Line 5
squareFirst (num, num) ; //Line 6
cout << "Line 7: Inside main after "
<< "squareFirst: num = " << num << endl; //Line 7
return 0;
}
void addFirst (int& first, ints& second)
{
cout << "Line 8: Inside addFirst: first ="
<< first << ", second = " << second << endl; //Line 8
first = first + 2; //Line 9

cout << "Line 10: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 10

second = second * 2; //Line 11

cout << "Line 12: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 12

368 | Chapter 7: User-Defined Functions |

void doubleFirst (int one, int two)

{
cout << "Line 13: Inside doubleFirst: one ="
<< one << ", two = " << two << endl; //Line 13
one = one * 2; //Line 14
cout << "Line 15: Inside doubleFirst: one ="
<< one << ", two = " << two << endl; //Line 15
two = two + 2; //Line 16
cout << "Line 17: Inside doubleFirst: one ="
<< one << ", two = " << two << endl; //Line 17
}
void squareFirst (int& ref, int val)
{
cout << "Line 18: Inside squareFirst: ref ="
<< ref << ", val = " << val << endl; //Line 18
ref = ref * ref; //Line 19
cout << "Line 20: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 20
val = val + 2; //Line 21
cout << "Line 22: Inside squareFirst: ref ="
<< ref << ", val = " << val << endl; //Line 22
}
Sample Run:

Line 1: Inside main: num = 5

Line 8: Inside addFirst: first = 5, second = 5
Line 10: Inside addFirst: first = 7, second = 7
Line 12: Inside addFirst: first = 14, second = 14
Line 3: Inside main after addFirst: num = 14
Line 13: Inside doubleFirst: one = 14, two = 14
Line 15: Inside doubleFirst: one 28, two = 14
Line 17: Inside doubleFirst: one = 28, two 16
Line 5: Inside main after doubleFirst: num 14
Line 18: Inside squareFirst: ref = 14, val = 14
Line 20: Inside squareFirst: ref = 196, wval 14
Line 22: Inside squareFirst: ref = 196, val 16
Line 7: Inside main after squareFirst: num = 196

Both parameters of the function addFirst are reference parameters, and both para-
meters of the function doubleFirst are value parameters. The statement:

addFirst (num, num);

Value and Reference Parameters and Memory Allocation | 369

in the functionmain (Line 2) passes the reference of num to both formal parameters first
and second of the function addFirst, because the corresponding actual parameters for
both formal parameters are the same. That is, the variables £irst and second refer to the
same memory location, which is num. Figure 7-17 illustrates this situation.

addFirst

[:]first

[:]second

FIGURE 7-17 Parameters of the function addFirst

Any changes that £irst makes to its value immediately change the value of second and
num. Similarly, any changes that second makes to its value immediately change first
and num, because all three variables refer to the same memory location. (Note that num
was initialized to 5.)

The formal parameters of the function doubleFirst are value parameters. So the statement:
doubleFirst (num, num);
in the function main (Line 4) copies the value of num into one and two because the

corresponding actual parameters for both formal parameters are the same. Figure 7-18
illustrates this scenario.

doubleFirst
main

FIGURE 7-18 Parameters of the function doubleFirst

Because both one and two are value parameters, any changes that one makes to its value
do not aftect the values of two and num. Similarly, any changes that two makes to its
value do not affect one and num. (Note that the value of num before the function
doubleFirst executes is 14.)

The formal parameter ref of the function squareFirst is a reference parameter, and
the formal parameter val is a value parameter. The variable ref receives the address of
its corresponding actual parameter, which is num, and the variable val copies the value of

370 | Chapter 7: User-Defined Functions Il

its corresponding actual parameter, which is also num. Thus, both num and ref refer to
the same memory location, which is num. Figure 7-19 illustrates this situation.

squareFirst

FIGURE 7-19 Parameters of the function squareFirst

Any changes that ref makes immediately change num. Any changes made by val do not
affect num. (Note that the value of num before the function squareFirst executesis 14.)

We recommend that you walk through the program in Example 7-8. The output shows
the order in which the statements execute.

Reference Parameters and Value-Returning
Functions

In Chapter 6, in the discussion of value-returning functions, you learned how to use
value parameters only. You can also use reference parameters in a value-returning
function, although this approach is not recommended. By definition, a value-returning
function returns a single value; this value is returned via the return statement. If a function
needs to return more than one value, you should change it to a void function and use the
appropriate reference parameters to return the values.

Scope of an ldentifier

The previous sections and Chapter 6 presented several examples of programs with user-
defined functions. Identifiers are declared in a function heading, within a block, or outside a
block. A question naturally arises: Are you allowed to access any identifier anywhere in the
program? The answer 1s no. Y ou must follow certain rules to access an identifier. The scope
of an identifier refers to where in the program an identifier is accessible (visible). Recall that
an identifier is the name of something in C++, such as a variable or function name.

This section examines the scope of an identifier. First, we define the following two terms:
Local identifier: Identifiers declared within a function (or block).

Local identifiers are not accessible outside of the function (block).

Global identifier: Identifiers declared outside of every function definition.

Also, C++ does not allow the nesting of functions. That is, you cannot include the
definition of one function in the body of another function.

Scope of an Identifier | 371

In general, the following rules apply when an identifier is accessed:
1. Global identifiers (such as variables) are accessible by a function or a block if:

a. The identifier is declared before the function definition (block),
The function name is different from the identifier,

c. All parameters of the function have names different than the name
of the identifier, and

d. All local identifiers (such as local variables) have names different
than the name of the identifier.

2. (Nested Block) An identifier declared within a block is accessible:

a. Only within the block from the point at which it is declared until
the end of the block, and

b. By those blocks that are nested within that block if the nested block
does not have an identifier with the same name as that of the outside

block (the block that encloses the nested block).

3. The scope of a function name is similar to the scope of an identifier
declared outside any block. That is, the scope of a function name is the
same as the scope of a global variable.

Before considering an example to explain these scope rules, first note the scope of the
identifier declared in the for statement. C++ allows the programmer to declare a variable in
the initialization statement of the for statement. For example, the following for statement:

for (int count = 1; count < 10; count++)
cout << count << endl;

declares the variable count and initializes it to 1. The scope of the variable count is
limited to only the body of the for loop.

NOTE This scope rule for the variable declared in a for statement may not apply to Standard
C++. In Standard C++, the scope of the variable declared in the initialize
statement may extend from the point at which it is declared until the end of the block that
immediately surrounds the for statement. (To be absolutely sure, check your compiler’s
documentation.)

The following C++ program helps illustrate the scope rules:
#include <iostream>

using namespace std;

const double rate = 10.50;

int z;
double t;

372 | Chapter 7: User-Defined Functions Il

void one(int x, char y);
void two(int a, int b, char x);
void three(int one, double y, int z);

int main()

{
int num, first;
double x, y, z;
char name, last;
return 0;

}

void one(int x, char y)

{

}

int w;

void two (int a, int b, char Xx)
{

int count;

}

void three(int one, double y, int z)

{
char ch;
int a;

//Block four
{

int x;
char a;

}//end Block four

}

Table 7-1 summarizes the scope (visibility) of the identifiers.

Scope of an Identifier | 373

TABLE 7-1 Scope (Visibility) of the Identifiers

rate (before main)

z (before main)

t (before main)
main

local variables of main
one (function name)

x (one's formal parameter)

w (before function two)
two (function name)
a (two’s formal parameter)

b (two’s formal parameter)

x (two’s formal parameter)

local variables of two

<~ < <X <X <X <X < zZz zZz < zZzZ < < =< <
< Z2 Z2 Z2 2 < <X zZ2 Z2 Z2 Z2 < < zZ2 <
< zZz2 Zz2 Z2 Z2 < <X zZ2 Z2 zZ2 zZ2 < < zZ2 <
< |Z|lZ|lZ2Z2|2|l=|=2|Z]|Z2Z|=|= || |=]|

Y
Y
Y
Y
N
Y
Y
y (one’s formal parameter) Y
N
Y
N
N
N
N
Y

three (function name)

one (three’s formal

parameter) A

=2
—<
—<
=2

y (three's formal
parameter)

z (three’s formal
parameter)

ch (three’s local
variable)

a (three’s local variable) N N Y N N

x (Block four'’s local
variable)

a (Block four'’s local
variable)

374 | Chapter 7: User-Defined Functions Il

Note that function three cannot call function one, because function three has a formal
parameter named one. Similarly, the block marked four in function three cannot use the int
variable a, which is declared in function three, because block four has an identifier named a.

Before closing this section, let us note the following about global variables:

1. Chapter 2 stated that C++ does not automatically initialize variables.
However, some compilers initialize global variables to their default
values. For example, if a global variable is of type int, char, or
double, it is initialized to zero.

2. In C++, :: is called the scope resolution operator. By using the
scope resolution operator, a global variable declared before the definition
of a function (block) can be accessed by the function (or block) even if
the function (or block) has an identifier with the same name as the
variable. In the preceding program, by using the scope resolution
operator, the function main can refer to the global variable z as : :z.
Similarly, suppose that a global variable t is declared before the defini-
tion of the function—say, funExample. Then funExample can access
the variable t using the scope resolution operator even if funExample
has an identifier t. Using the scope resolution operator, funExample
refers to the variable t as : : t. Also, in the preceding program, using the
scope resolution operator, function three can call function one.

3. C++ provides a way to access a global variable declared after the defini-
tion of a function. In this case, the function must not contain any
identifier with the same name as the global variable. In the preceding
program, the global variable w is declared after the definition of function
one. The function one does not contain any identifier named w; there-
fore, w can be accessed by function one only if you declare w as an
external variable inside one. To declare w as an external variable inside
function one, the function one must contain the following statement:

extern int w;

In C++, extern is a reserved word. The word extern in the
above statement announces that w is a global variable declared elsewhere.
Thus, when function one is called, no memory for w, as declared inside
one, is allocated. In C++, external declaration also has another use, but
it is not discussed in this book.

Global Variables, Named Constants, and Side
Effects

A C++ program can contain global variables. Using global variables, however, has side
effects. If more than one function uses the same global variable and something goes wrong,
it is difficult to discover what went wrong and where. Problems caused by global variables
in one area of a program might be misunderstood as problems caused in another area.

Global Variables, Named Constants, and Side Effects | 375

For example, consider the following program:

//Global variable
#include <iostream>
using namespace std;
int t;

void funOne (inté& a);

int main ()

{
t = 15; //Line 1
cout << "Line 2: In main: t = " << t << endl; //Line 2
funOne (t) ; //Line 3
cout << "Line 4: In main after funOne: "
<< "t =" << t << endl; //Line 4
return 0; //Line 5
}
void funOne (inté& a)
{
cout << "Line 6: In funOne: a = " << a
<< " and t = " << t << endl; //Line 6
a=a+ 12; //Line 7
cout << "Line 8: In funOne: a = " << a
<< " and t = " << t << endl; //Line 8
t =t + 13; //Line 9
cout << "Line 10: In funOne: a = " << a
<< " and t = " << t << endl; //Line 10
}

This program has a variable t that is declared before the definition of any function.
Because none of the functions has an identifier t, the variable t is accessible anywhere in
the program. Also, the program consists of a void function with a reference parameter.

In Line 3, the function main calls the function funOne, and the actual parameter passed
to funOne is t. So, a, the formal parameter of funOne, receives the address of t. Any
changes that a makes to its value immediately change t. Because t can be directly
accessed anywhere in the program, in Line 9 the function funOne changes the value of t
by using t itself. Thus, you can manipulate the value of t by using either a reference
parameter or t itself.

376 | Chapter 7: User-Defined Functions Il

In the previous program, if the last value of t is incorrect, it would be difficult to
determine what went wrong and in which part of the program. We strongly recommend
that you do not use global variables; instead, use the appropriate parameters.

In the programs given in this book, we typically placed named constants before the function
main, outside of every function definition. That is, the named constants we used are global
named constants. Unlike global variables, global named constants have no side effects because
during program execution their values cannot be changed. Moreover, placing a named
constant in the beginning of the program can increase readability, even if it is used only in
one function. If you need to later modify the program and change the value of a named
constant, it will be easier to find if it is placed in the beginning of the program.

Static and Automatic Variables

The variables discussed so far have followed two simple rules:

1. Memory for global variables remains allocated as long as the program
executes.

2. Memory for a variable declared within a block is allocated at block entry
and deallocated at block exit. For example, memory for the formal
parameters and local variables of a function is allocated when the func-
tion is called and deallocated when the function exits.

A variable for which memory is allocated at block entry and deallocated at block exit is
called an automatic variable. A variable for which memory remains allocated as long as
the program executes is called a static variable. Global variables are static variables and,
by default, variables declared within a block are automatic variables. You can declare a
static variable within a block by using the reserved word static. The syntax for
declaring a static variable is:

static dataType identifier;

The statement:
static int x;
declares x to be a static variable of type int.

Static variables declared within a block are local to the block, and their scope is the same
as that of any other local identifier of that block.

Most compilers initialize static variables to their default values. For example, static int
variables are initialized to 0. However, it is a good practice to initialize static variables
yourself, especially if the initial value is not the default value. In this case, static variables
are initialized when they are declared. The statement:

static int x = 0;

declares x to be a static variable of type int and initializes x to 0.

Static and Automatic Variables | 377

EXAMPLE 7-9

The following program shows how static and automatic variables behave.

//Program: Static and automatic variables
#include <iostream>

using namespace std;

void test();

int main()

{

int count;

for (count = 1; count <= 5; count++)

test () ;

return 0;
}
void test()
{

static int x = 0;

int y = 10;

X =x + 2;

y=y +1;

cout << "Inside test x = " <K<K x <K<K " andy ="

<< y << endl;

}
Sample Run:
Inside test x = 2 and y = 11
Inside test x = 4 and y = 11
Inside test x = 6 and y = 11
Inside test x = 8 and y = 11
Inside test x = 10 and y = 11

In the function test, x is a static variable initialized to 0, and y is an automatic
variable initialized to 10. The function main calls the function test five times. Memory
for the variable y is allocated every time the function test is called and deallocated when
the function exits. Thus, every time the function test is called, it prints the same value
for y. However, because x is a static variable, memory for x remains allocated as long as
the program executes. The variable x is initialized once to 0. The subsequent calls of the
function test use the current value of x.

378 | Chapter 7: User-Defined Functions Il

Because memory for static variables remains allocated between function calls, static
variables allow you to use the value of a variable from one function call to another
function call. Even though you can use global variables if you want to use certain values
from one function call to another, the local scope of a static variable prevents other
functions from manipulating its value.

Before we look at some programming examples, another concept about functions is
worth mentioning: function overloading.

Function Overloading: An Introduction

In a C++ program, several functions can have the same name. This is called function
overloading or overloading a function name. Before we state the rules to over-
loading a function, let us define the following:

Two functions are said to have different formal parameter lists if both functions have:

e A different number of formal parameters, or

e Ifthe number of formal parameters is the same, then the data type of the formal
parameters, in the order you list them, must differ in at least one position.

For example, consider the following function headings:

void functionOne (int Xx)

void functionTwo (int x, double y)

void functionThree (double y, int Xx)

int functionFour (char ch, int x, double vy)
int functionFive (char ch, int x, string name)

These functions all have diftferent formal parameter lists.
Now consider the following function headings:

void functionSix(int x, double y, char ch)
void functionSeven (int one, double u, char firstCh)

The functions functionSix and functionSeven both have three formal parameters,
and the data type of the corresponding parameters is the same. Therefore, these functions
have the same formal parameter list.

To overload a function name, any two definitions of the function must have different
formal parameter lists.

Function overloading: Creating several functions with the same name.

The signature of a function consists of the function name and its formal parameter list.
Two functions have different signatures if they have either different names or different
formal parameter lists. (Note that the signature of a function does not include the return
type of the function.)

Function Overloading: An Introduction | 379

If a function’s name is overloaded, then all the functions in the set have the same name.
Therefore, all the functions in the set have different signatures if they have difterent
formal parameter lists. Thus, the following function headings correctly overload the
function functionXYZz:

void functionXYZ ()

void functionXYZ (int x, double vy)

void functionXYZ (double one, int y)

void functionXYZ (int x, double y, char ch)

Consider the following function headings to overload the function functionABC:

void functionABC(int x, double vy)
int functionABC (int x, double y)

Both of these function headings have the same name and same formal parameter list.
Therefore, these function headings to overload the function functionABC are incorrect.
In this case, the compiler will generate a syntax error. (Notice that the return types of
these function headings are different.)

If a function is overloaded, then in a call to that function the signature—that is, the formal
parameter list of the function—determines which function to execute.

NOTE Some authors define the signature of a function as the formal parameter list and some
consider the entire heading of the function as its signature. However, in this book, the
signature of a function consists of the function’s heading and its formal parameter list. If
the function’s names are different, then, of course, the compiler would have no problem
in identifying which function is called and it will correctly translate the code. However, if
a function’s name is overloaded, then, as noted, the function’s formal parameter list
determines which function’s body executes.

Suppose you need to write a function that determines the larger of two items. Both items
can be integers, floating-point numbers, characters, or strings. You could write several
functions as follows:

int largerInt (int x, int y);

char largerChar (char first, char second);

double largerDouble (double u, double v);

string largerString(string first, string second);

The function largerInt determines the larger of two integers; the function largerChar
determines the larger of two characters, and so on. All of these functions perform similar
operations. Instead of giving different names to these functions, you can use the same
name—say, larger—for each function; that is, you can overload the function larger.
Thus, you can write the previous function prototypes simply as:

int larger (int x, int y);
char larger (char first, char second);

380 | Chapter 7: User-Defined Functions Il

double larger (double u, double Vv);
string larger(string first, string second):;

If the call is larger (5, 3), for example, the first function is executed. If the call is
larger ('A', '9"), the second function is executed, and so on.

Function overloading is used when you have the same action for different sets of data. Of
course, for function overloading to work, you must give the definition of each function.

Functions with Default Parameters

NOTE This section is not needed until Chapter 12.

This section discusses functions with default parameters. Recall that when a function is
called, the number of actual and formal parameters must be the same. C++ relaxes this
condition for functions with default parameters. You specify the value of a default
parameter when the function name appears for the first time, such as in the prototype.
In general, the following rules apply for functions with default parameters:

e Ifyou do not specify the value of a default parameter, the default value is
used for that parameter.
e All of the default parameters must be the far-right parameters of the function.

e Suppose a function has more than one default parameter. In a function
call, if'a value to a default parameter is not specified, then you must omit
all of the arguments to its right.

e Default values can be constants, global variables, or function calls.

e The caller has the option of specifying a value other than the default for
any default parameter.

® You cannot assign a constant value as a default value to a reference parameter.
Consider the following function prototype:

void funcExp(int x, int y, double t, char z = 'A', int u = 67,
char v = 'G', double w = 78.34);

The function funcExp has seven parameters. The parameters z, u, v, and w are default
parameters. If no values are specified for z, u, v, and w in a call to the function funcExp,
their default values are used.

Suppose you have the following statements:
int a, b;

char ch;
double d;

Functions with Default Parameters | 381

The following function calls are legal:

1. funcExp(a, b, 4d);

2. funckExp(a, 15, 34.6, 'B', 87, ch);

3. funciExp(b, a, 14.56, 'D");
In statement 1, the default values of z, u, v, and w are used. In statement 2, the default
value of z 1s replaced by 'B"', the default value of u is replaced by 87, the default value of

v is replaced by the value of ch, and the default value of w is used. In statement 3, the
default value of z is replaced by 'D', and the default values of u, v, and w are used.

The following function calls are illegal:

1. funcExp(a, 15, 34.6, 46.7);
2. funcExp (b, 25, 48.76, 'D', 4567, 78.34);

In statement 1, because the value of z is omitted, all other default values must be omitted.
In statement 2, because the value of v is omitted, the value of w should be omitted, too.

The following are illegal function prototypes with default parameters:

1. void funcOne(int x, double z = 23.45, char ch, int u=45);

2. int funcTwo(int length = 1, int width, int height =1);

3. wvoid funcThree(int x, int&y = 16, double z = 34) ;
In statement 1, because the second parameter z is a default parameter, all other parameters
after z must be default parameters. In statement 2, because the first parameter is a default

parameter, all parameters must be the default parameters. In statement 3, a constant value
cannot be assigned to y because y is a reference parameter.

Example 7-10 further illustrates functions with default parameters.

EXAMPLE 7-10

#include <iostream>
#include <iomanip>

using namespace std;

int volume(int 1 = 1, int w

=1, int h = 1);
void funcOne (int& x, double y =

12.34, char z = 'B');

int main ()

{
int a = 23;
double b = 48.78;
char ch = "™M';

cout << fixed << showpoint;
cout << setprecision(2):;

382 | Chapter 7: User-Defined Functions |

cout << "Line 1l: a="<<K a<k ", b="
<< b << ", ch =" << ch << endl; //Line 1
cout << "Line 2: Volume = " << volume ()
<< endl; //Line 2
cout << "Line 3: Volume = " << volume (5, 4)
<< endl; //Line 3
cout << "Line 4: Volume = " << volume (34)
<< endl; //Line 4
cout << "Line 5: Volume = "
<< volume (6, 4, 5) << endl; //Line 5
funcOne (a) ; //Line 6
funcOne (a, 42.68); //Line 7
funcOne (a, 34.65, 'Q'); //Line 8
cout << "Line 9: a =" << a<K ", b="
<< b << ", ch =" << ch << endl; //Line 9
return 0;
}
int volume (int 1, int w, int h)
{
return 1 * w * h; //Line 10
}
void funcOne (int& x, double y, char z)
{
X =2 * x; //Line 11
cout << "Line 12: x = " K x KK ", y="
<K y<< ", z =" << z << endl; //Line 12
}

Sample Run:

Line 1: a = 23, b = 48.78, ch = M
Line 2: Volume = 1

Line 3: Volume = 20

Line 4: Volume = 34

Line 5: Volume = 120

Line 12: x = 46, y = 12.34, z = B
Line 12: x = 92, y = 42.68, z = B

Line 12: x = 184, y = 34.65, z = Q
Line 9: a = 184, b = 48.78, ch M

NOTE Inprograms in this book, the definition of the function main is placed before the definition
of any user-defined functions. You must, therefore, specify the default value for a parameter
in the function prototype, and in the function prototype only, not in the function definition.

Programming Example: Classify Numbers | 383

PROGRAMMING EXAMPLE: Classify Numbers

In this example, we use functions to rewrite the program that determines the number
of odds and evens from a given list of integers. This program was first written in
Chapter 5.

The main algorithm remains the same:

1. Initialize the variables, zeros, odds, and evens to 0.
2. Read a number.

3. If the number is even, increment the even count, and if the number is
also zero, increment the zero count; else increment the odd count.

4. Repeat Steps 2 and 3 for each number in the list.
The main parts of the program are: initialize the variables, read and classify the

numbers, and then output the results. To simplify the function main and further
illustrate parameter passing, the program includes:

e A function, initialize, to initialize the variables, such as zeros,
odds, and evens.
e A function, getNumber, to get the number.

e A function, classifyNumber, to determine whether the number
is odd or even (and whether it is also zero). This function also
increments the appropriate count.

e A function, printResults, to print the results.
Let us now describe each of these functions.

initialize The function initialize initializes variables to their initial values. The variables
that we need to initialize are zeros, odds, and evens. As before, their initial
values are all zero. Clearly, this function has three parameters. Because the values
of the formal parameters initializing these variables must be passed outside the
function, these formal parameters must be reference parameters. Essentially this
function is:

void initialize (int& zeroCount, int& oddCount, int& evenCount)

{
zeroCount = 0;
oddCount = 0;
evenCount = 0;
}

getNumber The function getNumber reads a number and then passes this number to the
function main. Because you need to pass only one number, this function has
only one parameter. The formal parameter of this function must be a reference

classifyNumber

printResults

384 |

Chapter 7: User-Defined Functions Il

parameter because the number read is passed outside the function. Essentially, this
function is:

void getNumber (int& num)
{

cin >> num;

}

You can also write the function getNumber as a value-returning function. See the
note at the end of this programming example.

The function classifyNumber determines whether the number is odd or even,
and, if the number is even, it also checks whether the number is zero. It also
updates the values of some of the variables, zeros, odds, and evens. This
function needs to know the number to be analyzed; therefore, the number must be
passed as a parameter. Because this function also increments the appropriate count,
the variables (that is, zeros, odds, and evens declared in main) holding the
counts must be passed as parameters to this function. Thus, this function has four
parameters.

Because the number will only be analyzed, you need to pass only its value. Thus,
the formal parameter corresponding to this variable is a value parameter. After
analyzing the number, this function increments the values of some of the variables,
zeros, odds, and evens. Therefore, the formal parameters corresponding to
these variables must be reference parameters. The algorithm to analyze the number
and increment the appropriate count is the same as before. The definition of this
function is:

void classifyNumber (int num, int& zeroCount, int& oddCount,
int& evenCount)
{
switch (num % 2)
{
case 0:
evenCount++;
if (num == 0)
zeroCount++;
break;
case 1:
case -1:
oddCount++;
} //end switch
} //end classifyNumber

The function printResults prints the final results. To print the results (that is, the
number of zeros, odds, and evens), this function must have access to the values of the
variables, zeros, odds, and evens, declared in the function main. Therefore, this

Programming Example: Classify Numbers | 385

function has three parameters. Because this function prints only the values of the
variables, the formal parameters are value parameters. The definition of this function is:

void printResults (int zeroCount, int oddCount, int evenCount)
{
cout << "There are " << evenCount << " evens, "
<< "which includes " << zeroCount << " zeros"
<< endl;

cout << "The number of odd numbers is: " << oddCount
<< endl;
} //end printResults

We now give the main algorithm and show how the function main calls these

functions.
MAIN 1. Call the function initialize to initialize the variables.
ALGORITHM 2. Prompt the user to enter 20 numbers.

3. For each number in the list,

a. Call the function getNumber to read a number.
b. Output the number.

c. Call the function classifyNumber to classify the number and
increment the appropriate count.

4. Call the function printResults to print the final results.

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik

//

// Program: Classify Numbers

// This program reads 20 numbers and outputs the number of

// zeros, odd, and even numbers.
//***

#include <iostream>
#include <iomanip>

using namespace std;
const int N = 20;
//Function prototypes

void initialize (int& zeroCount, int& oddCount, int& evenCount) ;
void getNumber (int& num) ;

386 | Chapter 7: User-Defined Functions |

void classifyNumber (int num, int& zeroCount, int& oddCount,
int& evenCount) ;
void printResults (int zeroCount, int oddCount, int evenCount);

int main ()
{
//Variable declaration
int counter; //loop control variable
int number; //variable to store the new number

int zeros; //variable to store the number of zeros

int odds; //variable to store the number of odd integers
int evens; //variable to store the number of even integers
initialize(zeros, odds, evens); //Step 1

cout << "Please enter " << N << " integers."

<< endl; //Step 2
cout << "The numbers you entered are: "

<< endl;
for (counter = 1; counter <= N; counter++) //Step 3
{

getNumber (number) ; //Step 3a

cout << number << " "; //Step 3b

classifyNumber (number, zeros, odds, evens); //Step 3c
} // end for loop

cout << endl;
printResults (zeros, odds, evens); //Step 4

return 0;

}

void initialize (int& zeroCount, int& oddCount, int& evenCount)
{

zeroCount = 0;

oddCount = 0;

evenCount = 0;

}
void getNumber (int& num)
{
clin >> num;
}

void classifyNumber (int num, int& zeroCount, int& oddCount,
int& evenCount)
{
switch (num % 2)
{
case 0:
evenCount++;

Programming Example: Classify Numbers | 387

if (num == 0)
zeroCount++;

break;

case 1:

case -1:
oddCount++;

} //end switch

} //end classifyNumber

void printResults (int zeroCount, int oddCount, int evenCount)
{
cout << "There are " << evenCount << " evens, "
<< "which includes " << zeroCount << " zeros"
<< endl;

cout << "The number of odd numbers is: " << oddCount
<< endl;
} //end printResults

Sample Run: In this sample run, the user input is shaded.

Please enter 20 integers.

The numbers you entered are:

0012 23 457 -2 -8 -3 -9 4010 -7 23 -2400 12
0012 23 457 -2 -8 -3 -9 4 01 0 -7 23 -24 00 12
There are 12 evens, which includes 6 zeros

The number of odd numbers is: 8

In the previous program, because the data is assumed to be input from the standard
input device (the keyboard) and the function getNumber returns only one value, you
can also write the function getNumber as a value-returning function. If written as a
value-returning function, the definition of the function getNumber is:

int getNumber ()

{
int num;
cin >> num;
return num;
}

In this case, the statement (function call):

getNumber (number) ;

in the function main should be replaced by the statement:
number = getNumber () ;

Of course, you also need to change the function prototype.

388 | Chapter 7: User-Defined Functions Il

PROGRAMMING EXAMPLE: Data CompaI’ISOI’l
This programming example illustrates:

®* How to read data from more than one file in the same program.
e How to send output to a file.
e How to generate bar graphs.

e With the help of functions and parameter passing, how to use the
same program segment on different (but similar) sets of data.

e How to use structured design to solve a problem and how to perform
parameter passing.

This program is broken into two parts. First, you learn how to read data from more
than one file. Second, you learn how to generate bar graphs.

Two groups of students at a local university are enrolled in certain special courses
during the summer semester. The courses are offered for the first time and are taught
by different teachers. At the end of the semester, both groups are given the same tests
for the same courses and their scores are recorded in separate files. The data in each
file is in the following form:

courseNo scorel, score2, ..., scoreN -999
courseNo scorel, score2, ..., scoreM —-999

Let us write a program that finds the average course score for each course for each
group. The output is of the following form:

Course No Group No Course Average
CSC 1 83.71
2 80.82
ENG 1 82.00
2 78.20

Avg for group 1l: 82.04
Avg for group 2: 82.01

Input Because the data for the two groups are recorded in separate files, the input
data appears in two separate files.

Output As shown above

Programming Example: Data Comparison | 389

PROBLEM Reading input data from both files is straightforward. Suppose the data is stored in the
ANALYSIS file groupl . txt for group 1 and file group2 . txt for group 2. After processing the
AND data for one group, we can process the data for the second group for the same course,

ALGORITHM and continue until we run out of data. Processing data for each course is similar and is
DESIGN a two-step process:

1. a. Sum the scores for the course.
Count the number of students in the course.

c. Divide the total score by the number of students to find the
course average.

2. Output the results.

We are comparing only the averages of the corresponding courses in each group, and
the data in each file is ordered according to course ID. To ensure that only the
averages of the corresponding courses are compared, we compare the course IDs for
each group. If the corresponding course IDs are not the same, we output an error
message and terminate the program.

This discussion suggests that we should write a function, calculateAverage, to
find the course average. We should also write another function, printResult, to
output the data in the form given. By passing the appropriate parameters, we can use
the same functions, calculateAverage and printResult, to process each
course’s data for both groups. (In the second part of the program, we modify the
function printResult.)

The preceding discussion translates into the following algorithm:

Initialize the variables.

Get the course IDs for group 1 and group 2.

If the course IDs are different, print an error message and exit the program.
Calculate the course averages for group 1 and group 2.

Print the results in the form given above.

Repeat Steps 2 through 5 for each course.

A

Print the final results.

Variables The preceding discussion suggests that the program needs the following variables for
(Function data manipulation in the function main:

main)

string courseIdl; //course ID for group 1

string courseId2; //course ID for group 2

int numberOfCourses;

double avgl; //average for a course in group 1

double avg2; //average for a course in group 2

calculate

Average

Local
Variables
(Function

calculate
Average)

390 | Chapter 7: User-Defined Functions Il

double avgGroupl; //average group 1

double avgGroup2; //average group 2

ifstream groupl; //input stream variable for group 1
ifstream group2; //input stream variable for group 2
ofstream outfile; //output stream variable

Next, we discuss the functions calculateAverage and printResult. Then we
will put the function main together.

This function calculates the average for a course. Because the input is stored in a file
and the input file is opened in the function main, we must pass the ifstream
variable associated with the input file to this function. Furthermore, after calculating
the course average, this function must pass the course average to the function main.
Therefore, this function has two parameters, and both parameters must be reference
parameters.

To find the course average, we must first find the sum of all scores for the course and
the number of students who took the course, and then divide the sum by the number
of students. Thus, we need a variable to find the sum of the scores, a variable to count
the number of students, and a variable to read and store a score. Of course, we must
initialize the variable to find the sum and the variable to count the number of students
to zero.

In the previous discussion of data manipulation, we identified three variables for the
function calculateAverage:

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

The above discussion translates into the following algorithm for the function
calculateAverage:

1. Declare and initialize variables.

2. Get the (next) course score, score.

3. while the score is not -999

a. Update totalScore by adding the course score.
b. Increment numberOfStudents by 1.

c. Get the (next) course score, score.

4. courseAvg = totalScore / numberOfStudents;

Programming Example: Data Comparison | 391

We are now ready to write the definition of the function calculateAverage.

void calculateAverage (ifstream& inp, double& courseAvg)
{

double totalScore = 0.0;

int numberOfStudents = 0;

int score;

inp >> score;

while (score != -999)

{
totalScore = totalScore + score;
numberOfStudents++;
inp >> score;

} //end while

courseAvg = totalScore / numberOfStudents;
} //end calculate Average

printResult The function printResult prints the group’s course ID, group number, and

course average. The output is stored in a file. So we must pass four parameters to
this function: the ofstream variable associated with the output file, the group
number, the course ID, and the course average for the group. The ofstream
variable must be passed by reference. Because the function uses only the values of
the other variables, the remaining three parameters should be value parameters.
Also, from the output, it is clear that we print the course ID only before the group
number.

1. In pseudocode, the algorithm is:
if (group number == 1)
print course ID

else
print a blank

print group number and course average
The definition of the function printResult follows:

void printResult (ofstreamé& outp, string courseID, int groupNo,

double avq)
{
if (groupNo == 1)
outp << " " << courselID << " Wo
else
outp << " We

outp << setw(8) << groupNo << setw(l7) << avg << endl;
} //end printResult

392 | Chapter 7: User-Defined Functions Il

Now that we have designed and defined the functions calculateAverage and
printResult, we can describe the algorithm for the function main. Before outlining
the algorithm, however, we note the following: It is quite possible that in both input files
the data 1s ordered according to the course IDs, but one file might have fewer courses
than the other. We do not discover this error until after we have processed both files and
discover that one file has unprocessed data. Make sure to check for this error before
printing the final answer—that is, the averages for group 1 and group 2.

MAIN 1. Declare the variables (local declaration).
ALGORITHM:
Function main 3

=

Open the input files.

Print a message if you are unable to open a file and terminate the
program.

Open the output file.

5. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeros, set the manipulators fixed
and showpoint. Also, to output floating-point numbers to two
decimal places, set the precision to two decimal places.

Initialize the course average for group 1 to 0.0.

Initialize the course average for group 2 to 0.0.

g = &

Initialize the number of courses to 0.

9. Print the heading.
10. Get the course ID, courseIdl, for group 1.
11. Get the course ID, courseId2, for group 2.

12. For each course in group 1 and group 2,

a. if (courselIdl != courseld2)
{
cout << "Data error: Course IDs do not match.\n";
return 1;

}
b. else
{

i. Calculate the course average for group 1 (call the func-
tion calculateAverage and pass the appropriate
parameters).

ii. Calculate the course average for group 2 (call the func-
tion calculateAverage and pass the appropriate
parameters).

iii. Print the results for group 1 (call the function
printResult and pass the appropriate parameters).

Programming Example: Data Comparison | 393

iv. Print the results for group 2 (call the function
printResult and pass the appropriate parameters).

v. Update the average for group 1.
vi. Update the average for group 2.
vii. Increment the number of courses.
}
c. Get the course ID, courseIdl, for group 1.
d. Get the course ID, courseId2, for group 2.

13. a. if not_end_of_file on group 1 and end_of_file on group 2
print “Ran out of data for group 2 before group 1”

b. else if end_of file on group 1 and not_end_of file on group 2
print “Ran out of data for group 1 before group 2”

c. else print the average of group 1 and group 2.

14. Close the input and output files.

COMPLETE PROGRAM LISTING
//**
// Author: D.S. Malik

//

// Program: Comparison of Class Averages

// This program computes and compares the class averages of

// two groups of students.
//**

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
using namespace std;

//Function prototypes
void calculateAverage (ifstream& inp, double& courseAvq) ;
void printResult (ofstreamé& outp, string courseld,
int groupNo, double avg);

int main ()

{
//Step 1
string courseIdl; //course ID for group 1
string courseld2; //course ID for group 2
int numberOfCourses;
double avgl; //average for a course in group 1
double avg2; //average for a course in group 2
double avgGroupl; //average group 1

double avgGroup2; //average group 2

394

Chapter 7: User-Defined Functions Il

ifstream groupl; //input stream variable for group 1
ifstream group2; //input stream variable for group 2
ofstream outfile; //output stream variable

groupl .open ("groupl.txt") ; //Step 2
group?2.open ("group2.txt") ; //Step 2

if (!groupl || !group2) //Step 3

{

cout << "Unable to open files." << endl;
cout << "Program terminates." << endl;
return 1;

}
outfile.open ("student.out™) ; //Step
outfile << fixed << showpoint; //Step
outfile << setprecision(2); //Step
avgGroupl = 0.0; //Step
avgGroup2 = 0.0; //Step
numberOfCourses = 0; //Step
outfile << "Course No Group No "
<< "Course Average" << endl; //Step
groupl >> courseIdl; //Step
group2 >> courselId2; //Step
while (groupl && group2) //Step
{
if (courseIdl != courseId2) //Step
{
cout << "Data error: Course IDs "
<< "do not match." << endl;
cout << "Program terminates." << endl;
return 1;
}
else //Step
{
calculateAverage (groupl, avgl); //Step
calculateAverage (group2, avg2); //Step
printResult (outfile, courselIdl,

1, avgl); //Step
printResult (outfile, courseld2,

2, avg2); //Step
avgGroupl = avgGroupl + avgl; //Step
avgGroup2 = avgGroup2 + avg2; //Step
outfile << endl;
numberOfCourses++; //Step

10
11
12

12a

12b

12b.1i
12b.ii

12b.iii
12b.iv
12b.v
12b.vi

12b.vii

Programming Example: Data Comparison | 395

groupl >> courselIdl; //Step 12c
group2 >> courseld2; //Step 12d
} //end while

if (groupl && !group2) //Step 13a
cout << "Ran out of data for group 2 "
<< "before group 1." << endl;
else if (!groupl && group2) //Step 13b
cout << "Ran out of data for group 1 "
<< "before group 2." << endl;
else //Step 13c
{
outfile << "Avg for group 1l: "
<< avgGroupl / numberOfCourses
<< endl;
outfile << "Avg for group 2: "
<< avgGroup2 / numberOfCourses

<< endl;
}
groupl.close () ; //Step 14
group2.close() ; //Step 14
outfile.close(); //Step 14

return 0;

}

void calculateAverage (ifstream& inp, double& courseAvg)
{

double totalScore = 0.0;

int numberOfStudents = 0;

int score;

inp >> score;

while (score != -999)

{
totalScore = totalScore + score;
numberOfStudents++;
inp >> score;

}//end while

courseAvg = totalScore / numberOfStudents;
} //end calculate Average

void printResult (ofstreamé& outp, string courseID, int groupNo,

double avg)
{
if (groupNo == 1)
outp << " " << courselID << " We
else
outp << " We

outp << setw(8) << groupNo << setw(l7) << avg << endl;
} //end printResult

BAR
GRAPH

396 | Chapter 7: User-Defined Functions Il

Sample Run:
Course No Group No Course Average
CsC 1 83.71
2 80.82
ENG 1 82.00
2 78.20
HIS 1 77.69
2 84.15
MTH 1 83.57
2 84.29
PHY 1 83.22
2 82.60

Avg for group 1l: 82.04
Avg for group 2: 82.01

Input Data Group 1

CsSC 80 100 70 80 72 90 89 100 83 70 90 73 85 90 -999
ENG 80 90 80 94 90 74 78 63 83 80 90 -999

HIS 90 70 80 70 90 50 89 83 90 68 90 60 80 -999

MTH 74 80 75 89 90 73 90 82 74 90 84 100 90 79 -999
PHY 100 83 93 80 63 78 88 89 75 -999

Input Data Group 2

CSC 90 75 90 75 80 89 100 60 80 70 80 -999

ENG 80 80 70 68 70 78 80 90 90 76 -999

HIS 100 80 80 70 90 76 88 90 90 75 90 85 80 -999
MTH 80 85 85 92 90 90 74 90 83 65 72 90 84 100 -999
PHY 90 93 73 85 68 75 67 100 87 88 -999

In the business world, company executives often like to see results in some visual
form, such as bar graphs. Many currently available software packages can analyze data
in several forms and then display the results in a visual form, such as bar graphs or pie
charts. The second part of this program aims to display the results found earlier in the
form of bar graphs, as shown below:

Course
ID

CEC

ENG

Course Average
0 10 20 30 40 50 60 70 80

%k %k %k %k ke ke ke ke %k ke %k %k k% ok ke ke vk ok ke ok ok ok ok ke ok ke ok ke ke ok ok ke ke ke ke ke ke

S EEAEEH AR AR AR R

*hkhkhkkhkkkhkkhkkkhkhkkkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkkhkhkkhhkkhkkkkhxk

s E e EE L LRSS EEEEEE LA TS

90 100
locool

Programming Example: Data Comparison | 397

Group 1 -— ***x*
Group 2 -- ####

Avg for group 1l: 82.04
Avg for group 2: 82.01

Each symbol (* or #) in the bar graph represents two points. If a course average is less
than 2, no symbol is printed.

Because the output is in the form of a bar graph, we need to modity the function
printResult.

Print Bars The function printResult prints the course ID and the bar graph representing the
average for a course. The output is stored in a file. So we must pass four parameters to
this function: the ofstream variable associated with the output file, the group
number (to print * or #), the course ID, and the course average for the department.
To print the bar graph, we can use a loop to print a symbol for each two points. If the
average is 78 .45, for example, we must print 39 symbols to represent this average.
To find the number of symbols to print, we can use integer division as follows:

numberOfSymbols = static cast<int> (average) / 2;

For example, static_cast<int>(78.45) / 2 = 78 / 2 = 39.
Following this discussion, the definition of the function printResult is:

void printResult (ofstreamé& outp, string courseID,
int groupNo, double avg)
{
int noOfSymbols;
int count;

if (groupNo == 1)

outp << setw(4) << courselID << " Mg
else

outp << " We

noOfSymbols = static_cast<int> (avg)/2;

if (groupNo == 1)
for (count = 1; count <= noOfSymbols; count++)
outp << '*';
else
for (count = 1; count <= noOfSymbols; count++)
outp << '#';
outp << endl;
}//end printResults

398 | Chapter 7: User-Defined Functions Il

We also include a function, printHeading, to print the first two lines of the
output. The definition of this function is:

void printHeading (ofstreamé& outp)

{
outp << "Course Course Average" << endl;
outp << " 1ID 0 10 20 30 40 50 60 70"
<< " 80 90 100" << endl;
outp << " locoolloooolloocollcooollocooloooollcoool™®
<< " [eeeeleee|™ << endl;

}//end printHeading

If you replace the function printResult in the preceding program, include the
function printHeading, include the statements to output — Group 1 -- ****
and Group 2 -- #### — , and rerun the program. The output for the previous data
is as follows:

Sample Run:

Course Course Average
ID 0 10 20 30 40 50 60 70 80 90 100

CSC *hkhkkhkkhkhkkhkkhkhkhkhkhkrhkhhkhkhhkhkhhkhkrhkhrkhkhhkhkhhkhkhhhhhkhk

i EEEEE LIRSS EEELELLEE LT LT

ENG Fhkhkhkkhkkhkhkhkhkhkhkhkhkhkkhkhhkhkhhkhkkhhkkhkhhkkhhkhkkhkhkkkkk

HhEHEF SRR R R

HIS % %k %k %k %k %k ke k Sk ke ke ok ke ke ok Sk ke vk ok ke ke ok ok ok ke ok ke ke ok ok ke bk ke ke ke ke

#hEHAEFAEE S E AR AR R A R

MTH *hkhkhkkhkhkhkhkhkhkhhkhkhhkhkhkhkkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhhhkhkhk

S o

PHY *hkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdhhkhkhkhkhkhkhkhhkkhhkkk

i EEE s EEEEEEEET SIS LS L

Group 1 —- ****
Group 2 -- ####
Avg for group 1l: 82.04
Avg for group 2: 82.01

Compare both outputs. Which one do you think is better?

QUICK REVIEW

1. A function that does not have a data type is called a void function.

2. A return statement without any value can be used in a void function. If a return
statement is used in a void function, it is typically used to exit the function early.

N o o b~ oW

11.

12,
13.

14,

15.

16.

17.

18.
19.

20.

21,
22,
23.

24,

25.
26.

Quick Review

The heading of a void function starts with the word void.
In C++, void is a reserved word.

A void function may or may not have parameters.

A call to a void function is a stand-alone statement.

To call a void function, you use the function name together with the actual
parameters in a stand-alone statement.

There are two types of formal parameters: value parameters and reference
parameters.

A value parameter receives a copy of its corresponding actual parameter.

A reference parameter receives the address (memory location) of its corres-
ponding actual parameter.

The corresponding actual parameter of a value parameter is an expression, a
variable, or a constant value.

A constant value cannot be passed to a reference parameter.

The corresponding actual parameter of a reference parameter must be a
variable.

When you include & after the data type of a formal parameter, the formal
parameter becomes a reference parameter.

The stream variables should be passed by reference to a function.

If a formal parameter needs to change the value of an actual parameter, in
the function heading you must declare this formal parameter as a reference
parameter.

The scope of an identifier refers to those parts of the program where it is
accessible.

Variables declared within a function (or block) are called local variables.

Variables declared outside of every function definition (and block) are
called global variables.

The scope of a function name is the same as the scope of an identifier
declared outside of any block.

See the scope rules in this chapter (section, Scope of an Identifier).
C++ does not allow the nesting of function definitions.

An automatic variable is a variable for which memory is allocated on
function (or block) entry and deallocated on function (or block) exit.

A static variable is a variable for which memory remains allocated through-
out the execution of the program.

By default, global variables are static variables.

In C++, a function can be overloaded.

399

400

| Chapter 7: User-Defined Functions Il

27. Two functions are said to have different formal parameter lists if both

functions have:

e A different number of formal parameters, or

e [f the number of formal parameters is the same, then the data type of the
formal parameters, in the order you list them, must differ in at least one
position.

28. The signature of a function consists of the function name and its formal
parameter list. Two functions have different signatures if they have either
different names or different formal parameter lists.

29. Ifa function is overloaded, then in a call to that function, the signature, that is,
the formal parameter list of the function, determines which function to execute.

30. C++ allows functions to have default parameters.

31. If you do not specify the value of a default parameter, the default value is
used for that parameter.

32. All of the default parameters must be the far-right parameters of the
function.

33. Suppose a function has more than one default parameter. In a function call,
if a value to a default parameter is not specified, then you must omit all
arguments to its right.

34. Default values can be constants, global variables, or function calls.

35. The calling function has the option of specifying a value other than the
default for any default parameter.

36. You cannot assign a constant value as a default value to a reference parameter.

EXERCISES

1.

Mark the following statements as true or false.

a. A function that changes the value of a reference parameter also changes
the value of the actual parameter.

b. A variable name cannot be passed to a value parameter.

c. If a C++ function does not use parameters, parentheses around the
empty parameter list are still required.

d. In C++, the names of the corresponding formal and actual parameters
must be the same.

e. Whenever the value of a reference parameter changes, the value of the
actual parameter changes.

f. In C++, function definitions can be nested; that is, the definition of
one function can be enclosed in the body of another function.

Exercises

g. Using global variables in a program is a better programming style than
using local variables, because extra variables can be avoided.

h. In a program, global constants are as dangerous as global variables.

i. The memory for a static variable remains allocated between function
calls.

2. ldentify the following items in the programming code shown below:
a. Function prototype, function heading, function body, and function
definitions
b. Function call statements, formal parameters, and actual parameters
c. Value parameters and reference parameters

d. Local variables and global variables

#include <iostream> //Line 1
using namespace std; //Line 2
int one; //Line 3
void hello(int&, double, char); //Line 4
int main () //Line 5
{ //Line 6
int x; //Line 7
double y; //Line 8
char z; //Line 9
hello(x, vy, 2); //Line 10
hello(x, y - 3.5, 'S'); //Line 11
} //Line 12
void hello(int& first, double second, char ch) //Line 13
{ //Line 14
int num; //Line 15
double y; //Line 16
int u ; //Line 17

} . //Line 18

401

402 | Chapter 7: User-Defined Functions Il

3. a. Explain the difference between an actual and a formal parameter.
h. Explain the difference between a value and a reference parameter.

c. Explain the difference between a local and a global variable.

4. What is the output of the following program?

#include <iostream>
#include <iomanip>

using namespace std;

void test(int first, int& second);

int main ()

{
int num;
num = 5;

test (24, num);
cout << num << endl;

test (num, num);
cout << num << endl;

test (num * num, num);
cout << num << endl;

test (num + num, num);
cout << num << endl;

return 0;

}

void test (int first, int& second)

{
int third;
third = first + second * second + 2;
first = second - first;
second = 2 * second;
cout << first << " " << second << " "

<< third << endl;
}
5. Assume the following input values:
7 3 6 4

2635

Exercises | 403

Show the output of the following program:

#include <iostream>
using namespace std;
void goofy(int&, int&, int, int&);

int main()

{
int first, second, third, fourth;
first = 3; second = 4; third = 20; fourth = 78;
cout << first << " " << second << " " << third <« " "
<< fourth << endl;
goofy(first, second, third, fourth):;
cout << first << " " << second << " " << third<x« " "
<< fourth << endl;
fourth = first * second + third - fourth;
goofy(fourth, third, first, second):;
cout << first << " " << second << " " << thirdx«< " "
<< fourth << endl;
return 0;
}

void goofy(int& a, int& b, int ¢, int& d)
{
cin >> a >> b >> ¢ >> d;
c=a*b+d-c;
c=2%*c;
}
What is the output of the following program?

#include <iostream>
using namespace std;

int x;

void mickey(int&, int);
void minnie (int, inté&);

int main ()

{
int first;
int second = 5;
X = 6;

404 | Chapter 7: User-Defined Functions |

mickey(first, second):;
cout << first << "™ " << second << " " << x << endl;

minnie (first, second);
cout << first << "™ " << second << " " << x << endl;
return 0;

}
void mickey(int& a, int b)
{
int first;
first = b + 12;
a=2%*Db;
b = first + 4;
}
void minnie (int u, int& v)
{
int second;
second = X;
v = second + 4;
X =u + v;
}

7. In the following program, number the marked statements to show the order
in which they will execute (the logical order of execution).

#include <iostream>
using namespace std;
void func(int vall, int wval2);

int main ()

{
int numl, num2;
____ cout << "Please enter two integers.”" << endl;
- cin >> numl >> num2;
_ func (numl, num2);
cout << " The two integers are " << numl
T << ", " << num2 << endl;
. return 0;
}
void func(int wvall, int wval2)
{

int val3, vali4;

val3 = vall + val2;

vald = vall * val2;

cout << "The sum and product are " << val3
<< " and " << val4d << endl;

Exercises | 405

What is the output of the following code fragment? (Nofe: alpha and
beta are int variables.)

alpha = 5;
beta = 10;

if (beta >= 10)

{

int alpha = 10;

beta = beta + alpha;

cout << alpha << ' ' << beta << endl;
}
cout << alpha << ' ' << beta << endl;

Show the output of the program in Example 7-9 if you replace Line 5 with
the following line:

funOne (t, numl);

Show the values of the variables after each statement executes.

Consider the following program. What is its exact output? Show the values
of the variables after each line executes, as in Example 7-7.

#include <iostream>
using namespace std;

void funOne (int& a);

int main ()

{
int numl, num2;
numl = 10; //Line 1
num2 = 20; //Line 2
cout << "Line 3: In main: numl = " << numl
<< ", num2 = " << num2 << endl; //Line 3
funOne (numl) ; //Line 4
cout << "Line 5: In main after funOne: numl = "
<< numl << ", num2 = " << num2 << endl; //Line 5
return 0; //Line 6
}

void funOne (inté& a)

{
int x = 12;
int z;

406

11.

12.

| Chapter 7: User-Defined Functions Il

z = a + x; //Line
cout << "Line 8: In funOne: a = " << a
<< ", x ="< x
<< ", and z = " << z << endl; //Line
Xx =x + 5; //Line
cout << "Line 10: In funOne: a = " << a
<< ", x ="<< x
<< ", and z = " << z << endl; //Line
a=a+ 8; //Line
cout << "Line 12: In funOne: a = " << a
<< ", x ="< x
<< ", and z = " << z << endl; //Line
}
Consider the following function prototype:
void testDefaultParam(int a, int b = 7, char z = '*");

Which of the following function calls is correct?

a. testDefaultParam(5);

bh. testDefaultParam(5, 8);

c. testDefaultParam(6, "#');

d. testDefaultParam(0, 0, "*");

Consider the following function definition:

void defaultParam(int u, int v = 5, double z = 3.2)

{
int a;
u =u + static cast<int>(2 * v + z);
a=u+v?*z;
cout << "a = " << a << endl;
}

What is the output of the following function calls?
a. defaultParam(6) ;

h. defaultParam(3, 4);
c. defaultParam(3, 0, 2.8);

7

9

10

11

12

Programming Exercises

PROGRAMMING EXERCISES

407

1.

Consider the definition of the function main:

int main()

{

}

int x, y;

char z;

double rate, hours;
double amount;

The variables x, y, z, rate, and hours referred to in items a through
below are the variables of the function main. Each of the functions described
must have the appropriate parameters to access these variables. Write the
following definitions:

a.

g
The function printGrade in Example 7-6 is written as a void function
to compute and output the course grade. The course score is passed as
a parameter to the function printGrade. Rewrite the function

Write the definition of the function initialize that initializes x and y
to 0, and z to the blank character.

Worite the definition of the function getHoursRate that prompts the
user to input the hours worked and rate per hour to initialize the
variables hours and rate of the function main.

Write the definition of the value-returning function payCheck that
calculates and returns the amount to be paid to an employee based on
the hours worked and rate per hour. The hours worked and rate per
hour are stored in the variables hours and rate, respectively, of the
function main. The formula for calculating the amount to be paid is as
follows: For the first 40 hours, the rate 1s the given rate; for hours over
40, the rate is 1.5 times the given rate.

Write the definition of the function printCheck that prints the hours
worked, rate per hour, and the amount due.

Write the definition of the function funcOne that prompts the user to
input a number. The function then changes the value of x by assigning
the value of the expression 2 times the (old) value of x plus the value of
y minus the value entered by the user.

Write the definition of the function nextChar that sets the value of z to
the next character stored in z.

Write the definition of a function main that tests each of these functions.

408

| Chapter 7: User-Defined Functions Il

printGrade as a value-returning function so that it computes and returns
the course grade. (The course grade must be output in the function main.)
Also, change the name of the function to calculateGrade.

In this exercise, you are to modify the Classifty Numbers programming
example in this chapter. As written, the program inputs the data from the
standard input device (keyboard) and outputs the results on the standard
output device (screen). The program can process only 20 numbers. Rewrite
the program to incorporate the following requirements:

a. Data to the program is input from a file of an unspecified length; that is,
the program does not know in advance how many numbers are in the file.

h. Save the output of the program in a file.

c. Modify the function getNumber so that it reads a number from the
input file (opened in the function main), outputs the number to the
output file (opened in the function main), and sends the number read to
the function main. Print only 10 numbers per line.

d. Have the program find the sum and average of the numbers.

e. Modify the function printResult so that it outputs the final results to
the output file (opened in the function main). Other than outputting the
appropriate counts, this new definition of the function printResult
should also output the sum and average of the numbers.

For research purposes and to better help students, the admissions office of
your local university wants to know how well female and male students
perform in certain courses. You receive a file that contains female and male
student GPAs for certain courses. Due to confidentiality, the letter code f'is
used for female students and m for male students. Every file entry consists of
a letter code followed by a GPA. Each line has one entry. The number of
entries in the file is unknown. Write a program that computes and outputs
the average GPA for both female and male students. Format your results to
two decimal places. Your program should use the following functions:

a. Function openFiles: This function opens the input and output files,
and sets the output of the floating-point numbers to two decimal places
in a fixed decimal format with a decimal point and trailing zeros.

b. Function initialize: This function initializes variables such as
countFemale, countMale, sumFemaleGPA, and sumMaleGPA.

c. Function sumGrades: This function finds the sum of the female and
male students’” GPAs.

d. Function averageGrade: This function finds the average GPA for
female and male students.

Programming Exercises

e. Function printResults: This function outputs the relevant results.

. There can be no global variables. Use the appropriate parameters to pass
information in and out of functions.

Write a program that prints the day number of the year, given the date in the
form month-day-year. For example, if the input is 1-1-2006, the day
number is 1; if the input is 12-25-2000, the day number is 359. The program
should check for a leap year. A year is a leap year if it is divisible by 4 but not
divisible by 100. For example, 1992 and 2008 are divisible by 4, but not
by 100. A year that is divisible by 100 is a leap year it it is also divisible by
400. For example, 1600 and 2000 are divisible by 400. However, 1800 is not
a leap year because 1800 is not divisible by 400.

Write a progam that reads a string and outputs the number of times each
lowercase vowel appears in it. Your program must contain a function with
one of its parameters a string, and return the number of times each lowercase
vowel appears in it. Also write a program to test your function. (Note that if
str is a variable of type string, then str.at (i) returns the character at
the ith position. The position of the first character is 0. Also
str.lenght () returns the length of the str, that is, the number of
characters in str.)

Redo programming exercise 6 as follows. Write a progam that reads a string
and outputs the number of times each lowercase vowel appears in it. Your
program must contain a function with one of its parameters a character, and
if the character is a vowel, it increments that vowel’s count.

Worite a function that takes as a parameter an integer (as a long value) and
returns the number of odd, even, and zero digits. Also write a program to
test your function.

Worite a program that reads a student’s name together with his or her test
scores. The program should then compute the average test score for each
student and assign the appropriate grade. The grade scale is as follows:
90-100, A; 80-89, B; 70-79, C; 60-69, D; 0-59, F.Your program
must use the following functions:

a. A void function, calculateAverage, to determine the average of the
five test scores for each student. Use a loop to read and sum the five test
scores. (This function does not output the average test score. That task
must be done in the function main.)

b. A value-returning function, calculateGrade, to determine and
return each student’s grade. (This function does not output the grade.
That task must be done in the function main.)

409

410

| Chapter 7: User-Defined Functions Il

Test your program on the following data. Read the data from a file and
send the output to a file. Do not use any global variables. Use the
appropriate parameters to pass values in and out of functions.

Johnson 85 83 77 91 76
Aniston 80 90 95 93 48
Cooper 78 81 11 90 73
Gupta 92 83 30 69 87
Blair 23 45 96 38 59
Clark 60 85 45 39 67
Kennedy 77 31 52 74 83
Bronson 93 94 89 77 97
Sunny 79 85 28 93 82
Smith 85 72 49 75 63

Sample Output:
The output should be of the following form: (Fill the last two columns and the
last line showing the class average.)

10.

Student Testl Test2 Test3 Test4 Test5 Average Grade

Johnson 85 83 77 91 76
Aniston 80 90 95 93 48
Cooper 78 81 11 90 73
Gupta 92 83 30 69 87
Blair 23 45 96 38 59
Clark 60 85 45 39 67
Kennedy 77 31 52 74 83
Bronson 93 94 89 77 97
sSunny 79 85 28 93 82
Smith 85 72 49 75 63

Class Average =

Write a program to process text files. The program should read a text file
and output the data in the file as is. The program should also output the
number of words, number of lines, and number of paragraphs. (When you
create the input file, insert a blank line between paragraphs; see part d.)

You must write and use the following functions:

a. initialize: This function initializes all the variables of the function
main.

b. processBlank: This function reads and writes blanks. Whenever it hits
a nonblank (except whitespace characters), it increments the number of
words in a line. The number of words in a line is set back to zero in the
function updateCount. The function exits after processing the blanks.

11.

Programming Exercises

c. copyText: This function reads and writes the nonblank characters.
Whenever it hits a blank, it exits.

d. updateCount: This function takes place at the end of each line. It
updates the total word count, increments the number of lines, and sets
the number of words on a line back to zero. If there are no words in a
line, it increments the number of paragraphs. One blank line (between
paragraphs) is used to distinguish paragraphs and should not be counted
with the number of lines.

e. printTotal: This function outputs the number of words, number of
lines, and number of paragraphs.

Your program should read data from a file and send output to a file. Do
not use any global variables. Use the appropriate parameters to pass values
in and out of the functions described above. Test your program using the
function main as shown below.

int main ()

{
variables declaration
open files

read a character
while (not end of file)

{
while (not end of line)
{
processBlank (parameters) ;
copyText (parameters) ;
}
updateCount (parameters) ;
read a character;
}

printTotal (parameters) ;
close files;

return 0;

(The box problem) You have been given a flat cardboard of area, say, 70
square inches, to make an open box by cutting a square from each corner
and folding the sides (see Figure 7-20). Your objective is to determine the
dimension, that is, the length and width, and the side of the square to be cut
from the corners so that the resulting box is of maximum length.

411

412

| Chapter 7: User-Defined Functions Il

FIGURE 7-20 Cardboard box

12.

Write a program that prompts the user to enter the area of the flat card-
board. The program then outputs the length and width of the cardboard
and the length of the side of the square to be cut from the corner so that the
resulting box is of maximum volume. Calculate your answer to three
decimal places. Your program must contain a function that takes as input
the length and width of the cardboard and returns the side of the square that
should be cut to maximize the volume. The function also returns the
maximum volume.

(The Power Station Problem) A power station is on one side of a river
that is one-half mile wide, and a factory is eight miles downstream on the
other side of the river (see Figure 7-21). It costs $7 per foot to run power
lines overland and $9 per foot to run them under water. Your objective is to
determine the most economical path to lay the power line. That is, determine
how long the power line should run under water and how long should it run
over land, to achieve the minimum total cost of laying the power line.

Programming Exercises | 413

1/2 mile ymiles

F———— xmiles

i 8 miles

FIGURE 7-21 Power station, river, and factory

Write a program that prompts the user to enter:

a. The width of the river

b. The distance of the factory downstream on the other side of the river

c. The cost of laying the power line under water

d. The cost of laying the power line over land

The program then outputs the length of the power line that should run
under water and the length that should run over land, so the cost of
constructing the power line is at the minimum. The program should
also output the total cost of constructing the power line.

13. (Pipe Problem, requires trigonometry) A pipe is to be carried
around the right-angled corner of two intersecting corridors. Suppose
that the widths of the two intersecting corridors are 5 feet and 8 feet
(see Figure 7-22). Your objective is to find the length of the longest
pipe, rounded to the nearest foot, that can be carried level around the
right-angled corner.

414 | Chapter 7: User-Defined Functions Il

G
7y
5
/ v
B
0
A
< >
8

FIGURE 7-22 Pipe problem

Write a program that prompts the user to input the widths of both the hallways.
The program then outputs the length of the longest pipe, rounded to the
nearest foot, that can be carried level around the right-angled corner. (Note
that the length of the pipe is given by [= AB+ BC =8 /sin 0 + 5/ cos 0,
where 0 < 0 < 1/2))

En—
—
——]
P
i
-

-

)

)
1

USerR-DEFINED SIMPLE DATA
TYPES, NAMESPACES, AND THE
string TYPE

IN THIS CHAPTER, YOU WILL:

Learn how to create and manipulate your own simple data
type—called the enumeration type

Become familiar with the typedef statement

Learn about the namespace mechanism

Explore the string data type, and learn how to use the various
string functions to manipulate strings

416 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

In Chapter 2, you learned that C++’s simple data type is divided into three categories:
integral, floating-point, and enum. In subsequent chapters, you worked mainly with
integral and floating-point data types. In this chapter, you will learn about the enum
type. Moreover, the statement using namespace std; (discussed in Chapter 2) is used
in every C++ program that uses ANSI/ISO Standard C++ style header files. The second
half of this chapter examines the purpose of this statement. In fact, you will learn what the
namespace mechanism is. You will also learn about the string type and many useful
functions that you can use to effectively manipulate strings.

Enumeration Type

NOTE This section may be skipped without any loss of continuity.

Chapter 2 defined a data type as a set of values together with a set of operations on them.
For example, the int data type consists of integers from -2,147,483,648 to
2,147,483,647 and the set of operations on these numbers—namely, the arithmetic
operations (+, -, *, /, and %). Because the main objective of a program is to manipulate
data, the concept of a data type becomes fundamental to any programming language. By
providing data types, you specify what values are legal and tell the user what kinds of
operations are allowed on those values. The system thus provides you with built-in
checks against errors.

The data types that you have worked with until now were mostly int, bool, char, and
double. Even though these data types are sufficient to solve just about any problem,
situations occur when these data types are not adequate to solve a particular problem.
C++ provides a mechanism for users to create their own data types, which greatly
enhances the flexibility of the programming language.

In this section, you will learn how to create your own simple data types, known as the
enumeration types. In ensuing chapters, you will learn more advanced techniques to
create complex data types.

To define an enumeration type, you need the following items:

e A name for the data type
e A set of values for the data type

e A set of operations on the values

C++ lets you define a new simple data type wherein you specify its name and values, but
not the operations. Preventing users from creating their own operations avoids potential
system failures.

The values that you specify for the data type must be identifiers.

Enumeration Type | 417

The syntax for enumeration type is:

enum typeName {valuel, value2, ...};

where valuel, value2, . . . are identifiers called enumerators. In C++, enum is a
reserved word.

By listing all of the values between the braces, you also specify an ordering between
the values. That is, valuel < value2 < value3 <. ... Thus, the enumeration
type is an ordered set of values. Moreover, the default value assigned to these
enumerators starts at 0. That is, the default value assigned to valuel is 0,
the default value assigned to value2 is 1, and so on. (You can assign different
values—other than the default values—for the enumerators when you define the
enumeration type.) Also notice that the enumerators valuel, value2, ... are
not variables.

EXAMPLE 8-1

The statement:

enum colors {BROWN, BLUE, RED, GREEN, YELLOW};

defines a new data type, called colors, and the values belonging to this data type are
BROWN, BLUE, RED, GREEN, and YELLOW.

EXAMPLE 8-2

The statement:

enum standing {FRESHMAN, SOPHOMORE, JUNIOR, SENIOR};

defines standing to be an enumeration type. The values belonging to standing are
FRESHMAN, SOPHOMORE, JUNTIOR, and SENIOR.

EXAMPLE 8-3

Consider the following statements:

enum grades {'A', 'B', 'C', 'D', 'F'}; //illegal enumeration type
enum places {1ST, 2ND, 3RD, 4TH}; //illegal enumeration type

418 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

These are illegal enumeration types because none of the values is an identifier. The
tollowing, however, are legal enumeration types:

enum grades {A, B, C, D, F};
enum places {FIRST, SECOND, THIRD, FOURTH};

If a value has already been used in one enumeration type, it cannot be used by any other
enumeration type in the same block. The same rules apply to enumeration types declared
outside of any blocks. Example 8-4 illustrates this concept.

EXAMPLE 8-4

Consider the following statements:

enum mathStudent {JOHN, BILL, CINDY, LISA, RON};
enum compStudent {SUSAN, CATHY, JOHN, WILLIAM}; //illegal

Suppose that these statements are in the same program in the same block. The second
enumeration type, compStudent, is not allowed because the value JOHN was used in the
previous enumeration type mathStudent.

Declaring Variables

Once a data type is defined, you can declare variables of that type. The syntax for
declaring variables of an enum type is the same as before:

dataType identifier, identifier,...;

The statement:

enum sports {BASKETBALL, FOOTBALL, HOCKEY, BASEBALL, SOCCER,
VOLLEYBALL};

defines an enumeration type, called sports. The statement:
sports popularSport, mySport;

declares popularSport and mySport to be variables of type sports.

Assignment

Once a variable is declared, you can store values in it. Assuming the previous declaration,
the statement:

popularSport = FOOTBALL;

Enumeration Type | 419

stores FOOTBALL in popularSport. The statement:
mySport = popularSport;

copies the value of popularSport into mySport.

Operations on Enumeration Types

No arithmetic operations are allowed on the enumeration type. So the following state-
ments are illegal:

mySport = popularSport + 2; //illegal
popularSport = FOOTBALL + SOCCER; //illegal
popularSport = popularSport * 2; //illegal

Also, the increment and decrement operations are not allowed on enumeration types. So
the following statements are illegal:

popularSport++; //illegal
popularSport——; //illegal

Suppose you want to increment the value of popularSport by 1. You can use the cast
operator as follows:

popularSport = static cast<sports> (popularSport + 1);

When the type name is used, the compiler assumes that the user understands what he or
she is doing. Thus, the preceding statement is compiled, and during execution it advances
the value of popularSport to the next value in the list. Consider the following
statements:

popularSport FOOTBALL;
popularSport = static cast<sports> (popularSport + 1);

After the second statement, the value of popularSport is HOCKEY. Similarly, the
statements:

popularSport = FOOTBALL;
popularSport = static cast<sports> (popularSport - 1);

result in storing BASKETBALL in popularSport.

Relational Operators

Because an enumeration is an ordered set of values, the relational operators can be used
with the enumeration type. Once again, suppose you have the enumeration type sports
and the variables popularSport and mySport as defined earlier. Then,

FOOTBALL <= SOCCER is true
HOCKEY > BASKETBALL i1s true
BASEBALL < FOOTBALL is false

420 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Suppose that:

popularSport = SOCCER;
mySport = VOLLEYBALL;

Then,

popularSport < mySport is true

ENUMERATION TYPES AND LOOPS

Recall that the enumeration type is an integral type and that, using the cast operator (that
is, type name), you can increment, decrement, and compare the values of the enumera-
tion type. Therefore, you can use these enumeration types in loops. Suppose mySport is
a variable as declared earlier. Consider the following for loop:

for (mySport = BASKETBALL; mySport <= SOCCER;
mySport = static cast<sports> (mySport + 1))

This for loop has 5 iterations.

Using enumeration types in loops increases the readability of the program.

Input/Output of Enumeration Types

Because input and output are defined only for built-in data types such as int, char,
double, and so on, the enumeration type can be neither input nor output (directly).
However, you can input and output enumeration indirectly. Example 8-5 illustrates this
concept.

EXAMPLE 8-5

Suppose you have the following statements:

enum courses {ALGEBRA, BASIC, PASCAL, CPP, PHILOSOPHY, ANALYSIS,
CHEMISTRY, HISTORY};
courses registered;

The first statement defines an enumeration type, courses; the second declares a variable
registered of type courses. You can read (that is, input) the enumeration type with
the help of the char data type. Note that you can distinguish between some of the values
in the enumeration type courses just by reading the first character and others by reading
the first two characters. For example, you can distinguish between ALGEBRA and BASIC
just by reading the first character; you can distinguish between ALGEBRA and ANALYSIS
by reading the first two characters. To read these values from, say, the keyboard, you read
two characters and then use a selection structure to assign the value to the variable
registered. Thus, you need to declare two variables of type char.

Enumeration Type | 421

char chl, ch2;
cin >> chl >> ch2; //Read two characters

The following swi tch statement assigns the appropriate value to the variable registered:

switch (chl)

{
case 'a':
case 'A':
if (ch2 == '"1" || ch2 == 'L")
registered = ALGEBRA;
else
registered = ANALYSIS;
break;
case 'b':
case 'B':
registered = BASIC;
break;
case 'c':
case 'C':
if (ch2 == 'h' || ch2 == 'H'")
registered = CHEMISTRY;
else
registered = CPP;
break;
case 'h':
case 'H':
registered = HISTORY;
break;
case 'p':
case 'P':
if (ch2 == 'a' || ch2 == 'A")
registered = PASCAL;
else
registered = PHILOSOPHY;
break;
default:
cout << "Illegal input." << endl;
}

Similarly, you can output the enumeration type indirectly:

switch (registered)

{

case ALGEBRA:
cout << "Algebra";
break;

case ANALYSIS:
cout << "Analysis";
break;

case BASIC:
cout << "Basic";
break;

422 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

case CHEMISTRY:
cout << "Chemistry";
break;

case CPP:
cout << "CPP";
break;

case HISTORY:
cout << "History";
break;

case PASCAL:
cout << "Pascal";
break;

case PHILOSOPHY:
cout << "Philosophy";

}

If you try to output the value of an enumerator directly, the computer will output the value
assigned to the enumerator. For example, suppose that registered = ALGEBRA;.

The following statement will output the value 0 because the (default) value assigned to
ALGEBRA is 0:

cout << registered << endl;
Similarly, the following statement will output 4:

cout << PHILOSOPHY << endl;

Functions and Enumeration Types

You can pass the enumeration type as a parameter to functions just like any other simple
data type—that is, by either value or reference. Also, just like any other simple data type,
a function can return a value of the enumeration type. Using this facility, you can use
functions to input and output enumeration types.

The following function inputs data from the keyboard and returns a value of the
enumeration type. Assume that the enumeration type courses is defined as before:

courses readCourses ()

{
courses registered;
char chl, ch2;

cout << "Enter the first two letters of the course: "
<< endl;
cin >> chl >> ch2;

Enumeration Type | 423

switch (chl)

{
case 'a':
case 'A':
if (ch2 == '"1'" || ch2 == 'L")
registered = ALGEBRA;
else
registered = ANALYSIS;
break;
case 'b':
case 'B':
registered = BASIC;
break;
case 'c':
case 'C':
if (ch2 == 'h' || ch2 == 'H")
registered = CHEMISTRY;
else
registered = CPP;
break;
case 'h':
case 'H':
registered = HISTORY;
break;
case 'p':
case 'P':
if (ch2 == 'a' || ch2 == 'A")
registered = PASCAL;
else
registered = PHILOSOPHY;
break;
default:

cout << "Illegal input.”™ << endl;
}
return registered;
} //end readCourse

The following function outputs an enumeration type value:

void printEnum(courses registered)
{
switch (registered)
{
case ALGEBRA:
cout << "Algebra";
break;
case ANALYSIS:
cout << "Analysis";
break;
case BASIC:
cout << "Basic";
break;

424 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

case CHEMISTRY:
cout << "Chemistry";
break;

case CPP:
cout << "CPP";
break;

case HISTORY:
cout << "History";
break;

case PASCAL:
cout << "Pascal";
break;

case PHILOSOPHY:
cout << "Philosophy";

}//end switch

}//end printEnum

Declaring Variables When Defining the Enumeration Type

In previous sections, you first defined an enumeration type and then declared variables of that
type. C++ allows you to combine these two steps into one. That is, you can declare variables
of an enumeration type when you define an enumeration type. For example, the statement:

enum grades {A, B, C, D, F} courseGrade;

defines an enumeration type, grades, and declares a variable courseGrade of type
grades.

Similarly, the statement:
enum coins {PENNY, NICKEL, DIME, HALFDOLLAR, DOLLAR} change, usCoins;

defines an enumeration type, coins, and declares two variables, change and usCoins,
of type coins.

Anonymous Data Types

A data type wherein you directly specify values in the variable declaration with no type
name is called an anonymous type. The following statement creates an anonymous type:

enum {BASKETBALL, FOOTBALL, BASEBALL, HOCKEY} mySport;

This statement specifies the values and declares a variable my Sport, but no name is given
to the data type.

Creating an anonymous type, however, has drawbacks. First, because there is no name for
the type, you cannot pass an anonymous type as a parameter to a function and a function
cannot return an anonymous type value. Second, values used in one anonymous type can
be used in another anonymous type, but variables of those types are treated differently.
Consider the following statements:

Enumeration Type | 425

enum {ENGLISH, FRENCH, SPANISH, GERMAN, RUSSIAN} languages;
enum {ENGLISH, FRENCH, SPANISH, GERMAN, RUSSIAN} foreignLanguages;

Even though the variables languages and foreignLanguages have the same values,
the compiler treats them as variables of different types. The following statement is,
therefore, illegal:

languages = foreignLanguages; //illegal

Even though these facilities are available, use them with care. To avoid confusion, first
define an enumeration type and then declare the variables.

We now describe the typedef statement in C++.

typedef Statement

In C++, you can create synonyms or aliases to a previously defined data type by using the
typedef statement. The general syntax of the typedef statement is:

typedef existingTypeName newTypeName;

In C++, typedef is a reserved word. Note that the typede£ statement does not create
any new data type; it creates only an alias to an existing data type.

EXAMPLE 8-6

The statement:

typedef int integer;

creates an alias, integer, for the data type int. Similarly, the statement:
typedef double real;

creates an alias, real, for the data type double. The statement:
typedef double decimal;

creates an alias, decimal, for the data type double.

Using the typedef statement, you can create your own Boolean data type, as shown in
Example 8-7.

EXAMPLE 8-7

From Chapter 4, recall that logical (Boolean) expressions in C++ evaluate to 1 or 0,
which are, in fact, int values. As a logical value, 1 represents true and 0 represents
false. Consider the following statements:

426 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

typedef int Boolean; //Line 1
const Boolean TRUE = 1; //Line 2
const Boolean FALSE = 0; //Line 3
Boolean flag; //Line 4

The statement at Line 1 creates an alias, Boolean, for the data type int. The
statements at Lines 2 and 3 declare the named constants TRUE and FALSE and initialize
them to 1 and 0, respectively. The statement at Line 4 declares £1ag to be a variable of
type Boolean. Because £lag is a variable of type Boolean, the following statement is
legal:

flag = TRUE;

PROGRAMMING EXAMPLE: The Game of Rock, Paper, and Scissors

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

Children often play the game of rock, paper, and scissors. This game has two players,
each of whom chooses one of the three objects: rock, paper, or scissors. If player 1
chooses rock and player 2 chooses paper, player 2 wins the game because paper
covers the rock. The game is played according to the following rules:

e If both players choose the same object, this play is a tie.

e If one player chooses rock and the other chooses scissors, the player
choosing the rock wins this play because the rock breaks the scissors.

e If one player chooses rock and the other chooses paper, the player
choosing the paper wins this play because the paper covers the rock.

e If one player chooses scissors and the other chooses paper, the player
choosing the scissors wins this play because the scissors cut the paper.

Write an interactive program that allows two people to play this game.
Input This program has two types of input:

® The users’ responses when asked to play the game

® The players’ choices

Output The players’ choices and the winner of each play. After the game is over, the
total number of plays and the number of times that each player won should be
output as well.

Two players play this game. Players enter their choices via the keyboard. Each
player enters R or r for Rock, P or p for Paper, or S or s for Scissors. While the
first player enters a choice, the second player looks elsewhere. Once both entries
are in, if the entries are valid, the program outputs the players’ choices and declares
the winner of the play. The game continues until one of the players decides to quit

Programming Example: The Game of Rock, Paper, and Scissors | 427

the game. After the game ends, the program outputs the total number of plays and
the number of times that each player won. This discussion translates into the
following algorithm:

Provide a brief explanation of the game and how it is played.

Ask the users if they want to play the game.

Get plays for both players.

If the plays are valid, output the plays and the winner.

Update the total game count and winner count.

Repeat Steps 2 through 5, while the users agree to play the game.

A

Output the number of plays and times that each player won.
We will use the enumeration type to describe the objects.

enum objectType {ROCK, PAPER, SCISSORS};

Variables It is clear that you need the following variables in the function main:

(Function main)

int gameCount; //variable to store the number of
//games played

int winCountl; //variable to store the number of games
//won by player 1

int winCount2; //variable to store the number of games
//won by player 2

int gamewinner;

char response; //variable to get the user's response to
//play the game

char selectionl;

char selection2;

objectType playl; //playerl's selection

objectType play2; //player2's selection

This program is divided into the following functions, which the ensuing sections
describe in detail.

e displayRules: This function displays some brief information about the game
and its rules.

e validSelection: This function checks whether a player’s selection is valid.
The only valid selections are R, r, P, p, S, and s.

e retrievePlay: Because enumeration types cannot be read directly, this func-
tion converts the entered choice (R, r, P, p, S, or s) and returns the
appropriate object type.

e gameResult: This function outputs the players’ choices and the winner of
the game.

428 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

e convertEnum: This function is called by the function gameResult to
output the enumeration type values.

e winningObject: This function determines and returns the winning
object.

e displayResults: After the game is over, this function displays the final
results.

Function This function has no parameters. It consists only of output statements to explain the
displayRules game and rules of play. Essentially, this function’s definition is:

void displayRules ()

{
cout << " TWelcome to the game of Rock, Paper, "
<< "and Scissors." << endl;
cout << " This is a game for two players. For each "
<< "game, each" << endl;
cout << " player selects one of the objects, Rock, "
<< "Paper or Scissors." << endl;
cout << " The rules for winning the game are: " << endl;
cout << "1. If both players select the same object, it "
<< "is a tie." << endl;
cout << "2. Rock breaks Scissors: So player who selects "
<< "Rock wins." << endl;
cout << "3. Paper covers Rock: So player who selects "
<< "Paper wins." << endl;
cout << "4, Scissors cuts Paper: So player who selects "
<< "Scissors wins." << endl << endl;
cout << "Enter R or r to select Rock, P or p to select "
<< "Paper, and S or s to select Scissors." << endl;
}

Function This function checks whether a player’s selection is valid.
validSelection
if selection is 'R' or 'r' or 'S' or 's' or 'P' or 'p', then
it is a valid selection;
otherwise the selection is invalid.

Let’s use a switch statement to check for the valid selection. The definition of this
function is:

bool validSelection (char selection)

{
switch (selection)
{
case 'R':
case 'r':
case 'P':
case 'p':

case 'S':

Programming Example: The Game of Rock, Paper, and Scissors | 429

case 's':

return true;
default:

return false;

}

Function Because the enumeration type cannot be read directly, this function converts the entered

retrievePlay

Function
gameResult

choice (R, r, P, p, S, or s) and returns the appropriate object type. This function thus has
one parameter, of type char. It is a value-returning function, and it returns a value of
type objectType. In pseudocode, the algorithm of this function is:

if selection is 'R' or 'r'
return ROCK;

if selection is 'P' or 'p'
return PAPER;

if selection is 'S' or 's'
return SCISSORS;

The definition of the function retrievePlay is:

objectType retrievePlay(char selection)

{
objectType object;
switch (selection)
{
case 'R':
case 'r':
object = ROCK;
break;
case 'P':
case 'p':
object = PAPER;
break;
case 'S':
case 's':
object = SCISSORS;
}
return object;
}

This function decides whether a game is a tie or which player is the winner. It
outputs the players’ selections and the winner of the game. Clearly, this function has
three parameters: player 1’s choice, player 2’s choice, and a parameter to return the
winner. In pseudocode, this function is:

a. if playerl and player2 have the same selection, then
this is a tie game.

430 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

b. else
{
1. Determine the winning object. (Call function winningObject)
2. Output each player's choice.
3. Determine the winning player.
4. Return the winning player via a reference parameter to the

function main so that the function main can update the
winning player's win count.

}

The definition of this function is:

void gameResult (objectType playl, objectType play2,
int& winner)
{
objectType winnerObject;

if (playl == play2)
{
winner = 0;
cout << "Both players selected ";
convertEnum(playl) ;
cout << ". This game is a tie." << endl;
}
else
{
winnerObject = winningObject (playl, play2):;

//Output each player's choice
cout << "Player 1 selected ";
convertEnum(playl) ;
cout << " and player 2 selected ";
convertEnum(play?2) ;
cout << ". ";

//Decide the winner

if (playl == winnerObject)
winner = 1;

else if (play2 == winnerObject)
winner = 2;

//Output the winner
cout << "Player " << winner << " wins this game."
<< endl;

}

Function Because enumeration types cannot be output directly, let’s write the function

convertinum convertEnum to output objects of the enum type objectType. This function

has one parameter, of type objectType. It outputs the string that corresponds to the
objectType. In pseudocode, this function is:

Function
winningObject

Function
displayResults

Programming Example: The Game of Rock, Paper, and Scissors | 431

if object is ROCK
output "Rock"

if object is PAPER
output "Paper"

if object is SCISSORS
output "Scissors"

The definition of the function convertNum is:

void convertEnum (objectType object)

{
switch (object)
{
case ROCK:
cout << "Rock";
break;
case PAPER:
cout << "Paper";
break;
case SCISSORS:
cout << "Scissors";
}
}

To decide the winner of the game, you look at the players’ selections and then at the
rules of the game. For example, if one player chooses ROCK and another chooses
PAPER, the player who chose PAPER wins. In other words, the winning object is
PAPER. The function winningObject, given two objects, decides and returns the
winning object. Clearly, this function has two parameters of type objectType, and
the value returned by this function is also of type objectType. The definition of
this function is:

objectType winningObject (objectType playl, objectType play2)
{
if ((playl == ROCK && play2 == SCISSORS)
|| (play2 == ROCK && playl == SCISSORS))
return ROCK;
else if ((playl == ROCK && play2 == PAPER)
|| (play2 == ROCK && playl == PAPER))
return PAPER;
else
return SCISSORS;
}

After the game is over, this function outputs the final results—that is, the total
number of plays and the number of plays won by each player. The total number of
plays is stored in the variable gameCount, the number of plays won by player 1 is
stored in the variable winCount1, and the number of plays won by player 2 is stored

MAIN
ALGORITHM

432 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

in the variable winCount2. This function has three parameters corresponding to
these three variables. Essentially, the definition of this function is:

void displayResults(int gCount, int wCountl, int wCount2)
{
cout << "The total number of plays: " << gCount
<< endl;
cout << "The number of plays won by player 1: "
<< wCountl << endl;
cout << "The number of plays won by player 2: "
<< wCount2 << endl;

We are now ready to write the algorithm for the function main.

Declare the variables.

Initialize the variables.

Display the rules.

Prompt the users to play the game.

Get the users’ responses to play the game.

S o

while (response is yes)

{
a. Prompt player 1 to make a selection.

b. Get the play for player 1.

T

Prompt player 2 to make a selection.
Get the play for player 2.
e. If both plays are legal

{

1. Increment the total game count.
i1. Declare the winner of the game.

iii. Increment the winner’s game win count by 1.

}
f. Prompt the users to determine whether they want to play again.
g. Get the players’ responses.

}
7. Output the game results.

Programming Example: The Game of Rock, Paper, and Scissors | 433

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik
// Program: Rock, Paper, and Scissors

// This program plays the game of rock, paper, and scissors.
//***

#include <iostream>
using namespace std;
enum objectType {ROCK, PAPER, SCISSORS};

//Function prototypes
void displayRules () ;
objectType retrievePlay(char selection);
bool validSelection (char selection);
void convertEnum(objectType object);
objectType winningObject (objectType playl, objectType play2);
void gameResult (objectType playl, objectType play2, int& winner);
void displayResults (int gCount, int wCountl, int wCount2);

int main ()
{
//Step 1
int gameCount; //variable to store the number of
//games played
int winCountl; //variable to store the number of games
//won by player 1
int winCount2; //variable to store the number of games
//won by player 2
int gamewinner;
char response; //variable to get the user's response to
//play the game
char selectionl;
char selection2;
objectType playl; //playerl's selection
objectType play2; //player2's selection

//Initialize variables; Step 2
gameCount = 0;

winCountl = 0;
winCount2 = 0;
displayRules () ; //Step 3
cout << "Enter Y/y to play the game: "; //Step 4
cin >> response; //Step 5

cout << endl;

434 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

while (response == 'Y' || response == 'y') //Step 6
{
cout << "Player 1 enter your choice: "; //Step 6a
cin >> selectionl; //Step 6b
cout << endl;

cout << "Player 2 enter your choice: "; //Step 6¢c
cin >> selection2; //Step 6d
cout << endl;

//Step 6e
if (validSelection (selectionl)
&& validSelection (selection2))

{
playl = retrievePlay(selectionl);
play2 = retrievePlay(selection2);
gameCount++; //Step 6e.i
gameResult (playl, play2, gamewinner); //Step 6e.ii
if (gamewinner == 1) //Step 6e.iii
winCountl++;
else if (gamewinner == 2)
winCount2++;
}//end if

cout << "Enter Y/y to play the game: "; //Step 6f
cin >> response; //Step 6g
cout << endl;

}//end while

displayResults (gameCount, winCountl,

winCount2) ; //Step 7

return 0;
}//end main
void displayRules ()
{

cout << " Welcome to the game of Rock, Paper, "

<< "and Scissors." << endl;
cout << " This is a game for two players. For each "

<< "game, each" << endl;
cout << " player selects one of the objects, Rock, "
<< "Paper or Scissors." << endl;
cout << " The rules for winning the game are: " << endl;
cout << "1. If both players select the same object, it "
<< "is a tie." << endl;
cout << "2. Rock breaks Scissors: So player who selects "
<< "Rock wins." << endl;
cout << "3. Paper covers Rock: So player who selects "
<< "Paper wins." << endl;

Programming Example: The Game of Rock, Paper, and Scissors | 435

cout << "4. Scissors cuts Paper: So player who selects "
<< "Scissors wins." << endl << endl;

cout << "Enter R or r to select Rock, P or p to select "
<< "Paper, and S or s to select Scissors." << endl;

}

bool validSelection (char selection)
{
switch (selection)
{
case 'R':
case 'r':
case 'P':
case 'p':
case 'S':
case 's':
return true;
default:
return false;
}
}

objectType retrievePlay(char selection)
objectType object;

switch (selection)

{

case 'R':
case 'r':
object = ROCK;
break;
case 'P':
case 'p':
object = PAPER;
break;
case 'S':
case 's':
object = SCISSORS;
}
return object;
}
void convertEnum (objectType object)
{
switch (object)
{
case ROCK:

cout << "Rock";
break;

436 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

case PAPER:
cout << "Paper";
break;
case SCISSORS:
cout << "Scissors";
}
}

objectType winningObject (objectType playl, objectType play2)
{
if ((playl == ROCK && play2 == SCISSORS)
|| (play2 == ROCK && playl == SCISSORS))
return ROCK;
else if ((playl == ROCK && play2 == PAPER)
|| (play2 == ROCK && playl == PAPER))
return PAPER;
else
return SCISSORS;
}

void gameResult (objectType playl, objectType play2,
int& winner)
{
objectType winnerObject;

if (playl == play2)
{
winner = 0;
cout << "Both players selected ";
convertEnum (playl) ;
cout << ". This game is a tie." << endl;
}
else
{
winnerObject = winningObject (playl, play2):;

//Output each player's choice
cout << "Player 1 selected ";
convertEnum(playl) ;
cout << " and player 2 selected ";
convertEnum(play?2) ;
cout << ", ";

//Decide the winner

if (playl == winnerObject)
winner = 1;
else if (play2 == winnerObject)

winner = 2;

Namespaces | 437

//Output the winner
cout << "Player " << winner << " wins this game."
<< endl;

}

void displayResults (int gCount, int wCountl, int wCount2)
{
cout << "The total number of plays: " << gCount
<< endl;
cout << "The number of plays won by player 1: "
<< wCountl << endl;
cout << "The number of plays won by player 2: "
<< wCount2 << endl;

Namespaces

In July 1998, ANSI/ISO Standard C++ was officially approved. Most recent compilers
are also compatible with ANSI/ISO Standard C++. (To be absolutely sure, check your
compiler’s documentation.) The two standards, Standard C++ and ANSI/ISO Standard
C++, are virtually the same. The ANSI/ISO Standard C++ language has some features
that are not available in Standard C++, which the remainder of this chapter addresses. In
subsequent chapters, unless specified otherwise, the C++ syntax applies to both standards.
First, we discuss the namespace mechanism of the ANSI/ISO Standard C++, which
was introduced in Chapter 2.

When a header file, such as 1ostream, is included in a program, the global identifiers in the
header file also become the global identifiers in the program. Therefore, if a global identifier
in a program has the same name as one of the global identifiers in the header file, the
compiler generates a syntax error (such as “identifier redefined”). The same problem can
occur if a program uses third-party libraries. To overcome this problem, third-party vendors
begin their global identifiers with a special symbol. In Chapter 2, you learned that because
compiler vendors begin their global identifier names with an underscore (_), to avoid linking
errors you should not begin identifier names in your program with an underscore ().

ANSI/ISO Standard C++ tries to solve this problem of overlapping global identifier
names with the namespace mechanism.

The general syntax of the statement namespace is:

namespace namespace_name

{

members

}

438 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

where a member is usually a named constant, variable declaration, function, or another
namespace. Note that namespace_name is a C++ identifier.

In C++, namespace is a reserved word.

EXAMPLE 8-8

The statement:

namespace globalType

{
const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult();
}

defines globalType to be a namespace with four members: named constants N and
RATE, the variable count, and the function printResult.

The scope of a namespace member is local to the namespace. You can usually
access a namespace member outside the namespace in one of two ways, as described
below.

The general syntax for accessing a namespace member is:

namespace name::identifier

Recall that in C++, :: is called the scope resolution operator.

To access the member RATE of the namespace globalType, the following statement is
required:

globalType: :RATE

To access the member printResult (which is a function), the following statement is
required:

globalType: :printResult () ;

Thus, to access a member of a namespace, you use the namespace_name, followed by
the scope resolution operator, followed by the member name.

To simplify the accessing of a namespace member, ANSI/ISO Standard C++ provides
the use of the statement using. The syntax to use the statement using is as follows:

a. To simplify the accessing of all namespace members:

using namespace namespace_nhame;

Namespaces | 439

b. To simplify the accessing of a specific namespace member:

using namespace name::identifier;

For example, the using statement:

using namespace globalType;

simplifies the accessing of all members of the namespace globalType. The statement:
using globalType: :RATE;

simplifies the accessing of the member RATE of the namespace globalType.

In C++, using is a reserved word.

You typically put the using statement after the namespace declaration. For the
namespace globalType, for example, you usually write the code as follows:

namespace globalType

{
const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult ();
}

using namespace globalType;

After the using statement, to access a namespace member you do not have to put the
namespace_name and the scope resolution operator before the namespace member.
However, if a namespace member and a global identifier in a program have the same
name, to access this namespace member in the program, the namespace_name and
the scope resolution operator must precede the namespace member. Similarly, if a
namespace member and an identifier in a block have the same name, to access this
namespace member in the block, the namespace_name and the scope resolution
operator must precede the namespace member.

Examples 8-9 through 8-12 help clarify the use of the namespace mechanism.

EXAMPLE 8-9

Consider the following C++ code:

#include <iostream>

using namespace std;

int main()

440 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

In this example, you can refer to the global identifiers of the header file iostream, such
as cin, cout, and endl, without using the prefix std:: before the identifier name.
The obvious restriction is that the block (or function) that refers to the global identifier
(of the header file iostream) must not contain any identifier with the same name as this
global identifier.

EXAMPLE 8-10

Consider the following C++ code:

#include <cmath>

int main()

{
double x = 15.3;
double y;
y = std::pow(x, 2);
}

This example accesses the function pow of the header file cmath.

EXAMPLE 8-11

Consider the following C++ code:

#include <iostream>

int main()

Namespaces | 441

using namespace std;

In this example, the function main can refer to the global identifiers of the header file
iostream without using the prefix std:: before the identifier name. The using
statement appears inside the function main. Therefore, other functions (if any) should
use the prefix std:: before the name of the global identifier of the header file
iostream unless the function has a similar using statement.

EXAMPLE 8-12

Consider the following C++ code:

#include <iostream>

using namespace std; //Line 1
int t; //Line 2
double u; //Line 3
namespace expN
{
int x; //Line 4
char t; //Line 5
double u; //Line 6
void printResult (); //Line 7
}

using namespace expN;

int main()

{
int one; //Line 8
double t; //Line 9
double three; //Line 10

442 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

void expN::printResult() //Definition of the function printResult
{

}
In this C++ program:

1. To refer to the variable t at Line 2 in main, use the scope resolution
operator, which is :: (that is, refer to t as ::t), because the function
main has a variable named t (declared at Line 9). For example, to copy
the value of x into t, you can use the statement ::t = x;.

2. To refer to the member t (declared at Line 5) of the namespace expN
in main, use the prefix expN: : with t (that is, refer to t as expN: : t)
because there is a global variable named t (declared at Line 2) and a
variable named t in main.

3. To refer to the member u (declared at Line 6) of the namespace expN
in main, use the prefix expN: : with u (that is, refer to u as expN: : u)
because there is a global variable named u (declared at Line 3).

4. You can reference the member x (declared at Line 4) of the namespace
expN in main as either x or expN::x because there is no global
identifier named x and the function main does not contain any identi-
fier named x.

5. The definition of a function that is a member of a namespace, such
as printResult, is usually written outside the namespace as in
the preceding program. To write the definition of the function
printResult, the name of the function in the function heading
can be either printResult or expN: :printResult (because no
other global identifier is named printResult).

NOTE The identifiers in the system-provided header files, such as iostream, cmath, and
iomanip, are defined in the namespace std. For this reason, to simplify the
accessing of identifiers from these header files, we have been using the following state-
ment in the programs that we write:

using namespace std;

string Type

In Chapter 2, you were introduced to the data type string. Recall that prior to the
ANSI/ISO C++ language standard, the Standard C++ library did not provide a string
data type. Compiler vendors often supplied their own programmer-defined string

string Type | 443

type, and the syntax and semantics of string operations often varied from vendor to
vendor.

The data type string is a programmer-defined type and is not part of the C++
language; the C++ standard library supplies it. Before using the data type string, the
program must include the header file string, as follows:

#include <string>

Recall that in C++, a string is a sequence of zero or more characters, and strings are
enclosed in double quotation marks.

The statement:
string name = "William Jacob";

declares name to be a string variable and initializes name to "William Jacob".
The position of the first character, W, in name is 0; the position of the second character,
i, 1s 1; and so on. That is, the position of the first character in a string variable starts
with 0, not 1.

The variable name can store (just about) any size string.

Chapter 3 discussed 1/0 operations on the string type; Chapter 4 explained relational
operations on the string type. We recommend that you revisit Chapters 3 and 4 and
review the I/0O and relational operations on the string type.

Other operators, such as the binary operator + (to allow the string concatenation
operation) and the array index (subscript) operator [], have also been defined for the
data type string. Let’s see how these operators work on the string data type.

Suppose you have the following declarations:

string strl, str2, str3;

The statement:

strl = "Hello There";

stores the string "Hello There" in strl. The statement:
str2 = stril;

copies the value of strl into str2.

if strl = "Sunny", the statement:

str2 = strl + " Day";

stores the string "Sunny Day" into str2.

Suppose strl = "Hello" and str2 = "There". The statement:

str3 = strl + " " 4+ str2;

444 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

stores "Hello There" into str3. This statement is equivalent to the statement:
str3 = strl + ' ' + str2;

Also, the statement:

strl = strl + " Mickey";

updates the value of strl by appending the string " Mickey" to its old value. Therefore,
the new value of strl is "Hello Mickey".

NOTE For the operator + to work with the st ring data type, one of the operands of + must be
a string variable. For example, the following statements will not work:

strl = "Hello " + "there!"; //illegal
str2 = "Sunny Day" + '!'; //illegal
If strl = "Hello there", the statement:
strl[6] = 'T';

replaces the character t with the character T. Recall that the position of the first character
in a string variable is 0. Therefore, because t is the seventh character in stril, its
position is 6.

In C++, [] is called the array subscript operator.

As illustrated previously, using the array subscript operator together with the position of
the character, you can access an individual character within a string.

EXAMPLE 8-13

The following program shows the effect of the preceding statements.

//Example string operations

#include <iostream>
#include <string>

using namespace std;

int main()

{
string name = "William Jacob"; //Line 1
string strl, str2, str3, str4; //Line 2
cout << "Line 3: Name = " << name << endl; //Line 3
strl = "Hello There"; //Line 4

cout << "Line 5: strl = " << strl << endl; //Line 5

string Type | 445

str2 = strl; //Line 6
cout << "Line 7: str2 = " << str2 << endl; //Line 7
strl = "Sunny"; //Line 8
str2 = strl + " Day"; //Line 9
cout << "Line 10: str2 = " << str2 << endl; //Line 10
strl = "Hello"; //Line 11
str2 = "There"; //Line 12
str3 = strl + " " + str2; //Line 13
cout << "Line 14: str3 = " << str3 << endl; //Line 14
str3 = strl + ' ' + str2; //Line 15
cout << "Line 16: str3 = " << str3 << endl; //Line 16
strl = strl + " Mickey"; //Line 17
cout << "Line 18: strl = " << strl << endl; //Line 18
strl = "Hello there"; //Line 19
cout << "Line 20: strl[6] = " << strl[6]

<< endl; //Line 20
strl[6] = 'T'; //Line 21
cout << "Line 22: strl = " << strl << endl; //Line 22

//String input operations
cout << "Line 23: Enter a string with "

<< "no blanks: "; //Line 23
cin >> strl; //Line 24
char ch; //Line 25
cin.get (ch); //Read the newline character; Line 26
cout << endl; //Line 27
cout << "Line 28: The string you entered = "

<< strl << endl; //Line 28
cout << "Line 29: Enter a sentence: "; //Line 29
getline (cin, str2); //Line 30
cout << endl; //Line 31
cout << "Line 32: The sentence is: " << str2

<< endl; //Line 32

return 0;

}
Sample Run: In the following sample run, the user input is shaded.

Line 3: Name = William Jacob
Line 5: strl Hello There
Line 7: str2 Hello There
Line 10: str2 = Sunny Day

446 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Line 14: str3 Hello There

Line 16: str3 = Hello There

Line 18: strl = Hello Mickey

Line 20: strl[6] = t

Line 22: strl = Hello There

Line 23: Enter a string with no blanks: Programming

Line 28: The string you entered = Programming
Line 29: Enter a sentence: Testing string operations

Line 32: The sentence is: Testing string operations

The preceding output is self-explanatory, and its unraveling is left as an exercise for you.

Additional st ring Operations

The data type string contains several other functions for string manipulation. The five
in which we are interested—1length, size, £ind, substr, and swap—are described
in the next five sections.

The data type string has a data type, string: :size_type, and a named constant,
string: :npos, associated with it.

string::size type An unsigned integer (data) type

string: :npos The maximum value of the (data) type string: :size type,
a number such as 4294967295 on many machines

length Function
The length function returns the number of characters currently in the string. The value

returned is an unsigned integer. The syntax to call the length function is:

strVar.length ()

where strvar is a variable of type string. The length function has no arguments.

Be careful with the syntax of the length function. The dot (period) between the strVar and
length is crucial; it separates the name of the string variable and the word length. Moreover,
because length is a function with no arguments, you still need the empty parentheses. Also,
because length is a value-returning function, the function call should appear in an expression.

Consider the following statements:

string firstName;
string name;
string str;

string Type | 447

firstName = "Elizabeth";

name = firstName + " Jones";

str = "It is sunny.";

Statement Effect
cout << firstName.length() << endl; Outputs 9
cout << name.length() << endl; Outputs 15
cout << str.length() << endl; Outputs 12

Because the function length returns an unsigned integer, the value returned can be
stored in an integer variable. Also, because the data type string has the data type
string::size_type associated with it, the variable to hold the value returned by the
length function is usually of this type. This prevents you from guessing whether the
value returned is of type unsigned int or unsigned long.

Suppose you have the previous declaration and the statement:

string::size_type len;

Statement Effect

len = firstName.length(); The value of len is 9
len = name.length():; The value of len is 15
len =str.length(); The value of len is 12

EXAMPLE 8-14

The following program illustrates the use of the length function:

//Example length function

#include <iostream>
#include <string>

using namespace std;

int main ()

{
string name, firstName; //Line 1
string str; //Line 2
string::size type len; //Line 3
firstName = "Elizabeth"; //Line 4
name = firstName + " Jones"; //Line 5
str = "It is sunny and warm."; //Line 6

448

| Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

cout << "Line 7: Length of \"" <<
<< static_cast<unsigned int>
<< endl;

cout << "Line 8: Length of \"" <<
<< static_cast<unsigned int>
<< endl;

cout << "Line 9: Length of \"" <<
<< static_cast<unsigned int>
<< endl;

len = firstName.length();

cout << "Line 11l: len ="
<< static_cast<unsigned int>
<< endl;

len = name.length();
cout << "Line 13: len ="
<< static_cast<unsigned int>

len = str.length();
cout << "Line 15: len ="

<< static_cast<unsigned int>

return 0;

firstName << "\" ="
(firstName.length())

name << "\" ="
(name. length())

str << "\ n o —_n
(str.length())

(len)

(len) << endl;

(len) << endl;

}

Sample Run:

Line 7: Length of "Elizabeth" = 9

Line 8: Length of "Elizabeth Jones" = 15

Line 9: Length of "It is sunny and warm." = 21
Line 11: len = 9

Line 13: len = 15

Line 15: len = 21

The output of this program is self-explanatory. The details are left as an exercise for you.
Notice that this program uses the static cast operator to output the value returned by the
function length. This is because the function length returns a value of type
string::size_type. Without the cast operator, some compilers might give the

following warning message:

//Line

//Line

//Line

//Line

//Line
//Line
//Line
//Line

//Line

7

8

9

10

11

12

13

14

15

conversion from 'size t' to 'unsigned int', possible loss of data

size Function

Some people prefer to use the word size instead of the word length. Thus, to
accommodate both terms, the string type provides a function named size that
returns the same value as does the function length. The syntax to call the function

size is:

string Type | 449

strVar.size()

where strVar is a variable of type string. Like the function length, the function
size has no arguments.

find Function

The £ind function searches a string to find the first occurrence of a particular substring
and returns an unsigned integer value (of type string: :size_type), giving the result
of the search. The syntax to call the function £ind is:

strVar.find (strExp)

or:

strVar.find (strExp, pos)

where strVar is a string variable and st rExp is a string expression evaluating to a string.
The string expression, strExp, can also be a character. If the search is successful, the
function £ind returns the position in strVar where the match begins. For the search to
be successful, the match must be exact. If the search is unsuccessful, the function returns
the special value string: :npos (“not a position within the string”). (This value is
suitable for “not a valid position” because the string operations do not let any string
become this long.) Because the function £ind returns an unsigned integer, the returned
value can be stored in an integer variable (usually of type string: :size_type). In the
second form of the function £ind, pos specifies the position in the string where to begin
the search.

Suppose strl and str2 are of type string. The following are valid calls to the
function £ind:

strl.find(str2)
strl.find ("the")
strl.find('a")
strl.find(str2 + "xyz")
strl.find(str2 + 'b'")

Consider the following statements:

string sentence;
string str;
string::size type position;

sentence = "Outside it is cloudy and warm.";
str = "cloudy";

450 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Statement Effect

cout << sentence.find("is") << endl; Outputs 11

cout << sentence.find("and") << endl; Outputs 21

cout << sentence.find('s') << endl; Outputs 3

cout << sentence.find('o') << endl; Outputs 16

cout << sentence.find(str) << endl; Qutputs 14

cout << sentence.find("the") << endl; Outputs the value of string: :npos
cout << sentence.find('i', 6) << endl; Qutputs 8

position = sentence.find("warm") ; Assigns 25 to position

Note that the search is case sensitive. Therefore, the position of o (lowercase o) in the
string sentence is 16.

EXAMPLE 8-15

The following program illustrates how to use the string function find.

//Example find function

#include <iostream>
#include <string>

using namespace std;

int main()

{
string sentence, str; //Line 1
string::size type position; //Line 2
sentence = "Outside it is cloudy and warm."; //Line 3
str = "cloudy"; //Line 4

cout << "Line 5: sentence = \"" << sentence
<< "M\"" << endl; //Line 5

cout << "Line 6: The position of \"is\" in sentence = "
<< static_cast<unsigned int> (sentence.find("is"))
<< endl; //Line 6

cout << "Line 7: The position of \"and\" in sentence = "
<< static_cast<unsigned int> (sentence.find("and"))
<< endl; //Line 7

cout << "Line 8: The position of 's' in sentence ="
<< static_cast<unsigned int> (sentence.find('s'))
<< endl; //Line 8

string Type | 451

cout << "Line 9: The position of 'o' in sentence = "
<< static cast<unsigned int> (sentence.find('o'))
<< endl; //Line 9

cout << "Line 10: The position of \"" << str
<< ™\" in sentence = "
<< static_cast<unsigned int> (sentence.find(str))
<< endl; //Line 10

cout << "Line 11l: The position of \"the\" in sentence = "
<< static_cast<unsigned int> (sentence.find("the"))

<< endl; //Line 11
cout << "Line 12: The first occurrence of \'i\' in "

<< "sentence \n after position 6 = "

<< static_cast<unsigned int> (sentence.find('i', 6))

<< endl; //Line 12
position = sentence.find ("warm") ; //Line 13
cout << "Line 14: " << "Position ="

<< static cast<unsigned int> (position)

<< endl; //Line 14

return 0;

}
Sample Run:
Line 5: sentence = "Outside it is cloudy and warm."

Line 6: The position of "is"™ in sentence = 11
Line 7: The position of "and" in sentence = 21
Line 8: The position of 's' in sentence = 3
Line 9: The position of 'o' in sentence = 16
Line 10: The position of "cloudy" in sentence = 14
Line 11: The position of "the" in sentence = 4294967295
Line 12: The first occurrence of 'i' in sentence
after position 6 = 8
Line 14: Position = 25

The output of this program is self-explanatory. The details are left as an exercise for you.
Notice that this program uses the static cast operator to output the value returned by the
function f£ind. This is because the function find returns a value of the type
string::size_type. Without the cast operator, some compilers might give the
following warning message:

conversion from 'size_ t' to 'unsigned int', possible loss of data

452 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

substr Function

The substr function returns a particular substring of a string. The syntax to call the
function substr is:

strVar.substr (exprl, expr2)

where exprl and expr2 are expressions evaluating to unsigned integers. The expres-
sion exprl specifies a position within the string (the starting position of the substring);
the expression expr2 specifies the length of the substring to be returned. If, starting at
exprl, the number of characters (that is, the length of the substring) specified by
expr2 exceeds the length of the string, characters until the end of the string are
returned. (For example, see the fourth output statement, below, in which sentence is
a string of length 22, and starting at position 17 we try to extract a substring of length
10. However, starting at position 17, sentence has only five characters and so only
warm. is output.)

Consider the following statements:

string sentence;
string str;

sentence = "It is cloudy and warm.";

Statement Effect

cout << sentence.substr (0, 5) << endl; QOutputs: It is

cout << sentence.substr (6, 6) << endl; Outputs: cloudy

cout << sentence.substr (6, 16) << endl; Outputs: cloudy and warm.
cout << sentence.substr (17, 10) << endl; Outputs: warm.

cout << sentence.substr (3, 6) << endl; Outputs: is clo

str = sentence.substr (0, 8); str = "It is cl1"

str = sentence.substr (2, 10); str = " is cloudy"”

EXAMPLE 8-16

The following program illustrates how to use the string function substr:

//Example substr function

#include <iostream>
#include <string>

using namespace std;

string Type | 453

int main()

{
string sentence; //Line 1
string str; //Line 2
sentence = "It is cloudy and warm."; //Line 3
cout << "Line 4: substr (0, 5) in \""
<< sentence << ™\" = \""
<< sentence.substr (0, 5) << "\""
<< endl; //Line 4
cout << "Line 5: substr(6, 6) in \""
<< sentence << ™\" = \""
<< sentence.substr(6, 6) << "\""
<< endl; //Line 5
cout << "Line 6: substr(6, 16) in \""
<< sentence << "\" = " << endl
<< " \"" << sentence.substr (6, 16)
<< "M\"" << endl; //Line 6
cout << "Line 7: substr (17, 10) in \""
<< sentence << "™\" = \""
<< sentence.substr (17, 10) << ™\""
<< endl; //Line 7
cout << "Line 8: substr(3, 6) in \""
<< sentence << "™\" = \""
<< sentence.substr(3, 6) << "\""
<< endl; //Line 8
str = sentence.substr (0, 8); //Line 9
cout << "Line 10: " << "str = \"" << str
<< "M\"" << endl; //Line 10
str = sentence.substr(2, 10); //Line 11
cout << "Line 12: " << "str = \"" << str
<< M\"" << endl; //Line 12
return 0;
}
Sample Run:
Line 4: substr(0, 5) in "It is cloudy and warm." = "It is"
Line 5: substr(6, 6) in "It is cloudy and warm." = "cloudy"

Line 6: substr(6, 16) in "It is cloudy and warm." =

"cloudy and warm."
Line substr (17, 10) in "It is cloudy and warm." = "warm."
Line 8: substr(3, 6) in "It is cloudy and warm." = "is clo"

~

454 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Line 10: str = "It is cl"
Line 12: str " is cloudy"

The output of this program is self-explanatory. The details are left as an exercise for you.

swap Function

The swap function is used to swap—that is, interchange—the contents of two string
variables. The syntax to use the swap function is:

strVarl.swap (strVar2) ;

where strVarl and strVar2 are string variables. After this statement executes, the
contents of strVarl and strVar2 are swapped.

Suppose you have the following statements:

string strl = "Warm";
string str2 = "Cold";

After the following statement executes, the value of strl is "Cold" and the value of
str2is "Warm".

strl.swap(str2);

Additional string functions, such as empty, clear, erase, insert, and replace,
are provided in Appendix F (Header File string).

PROGRAMMING EXAMPLE: Pig Latin Strings

In this programming example, we write a program that prompts the user to input a
string and then outputs the string in the pig Latin form. The rules for converting a
string into pig Latin form are as follows:

1. If the string begins with a vowel, add the string "-way" at the end
of the string. For example, the pig Latin form of the string "eye" is
"eye-way".

2. If the string does not begin with a vowel, first add "-" at the end of
the string. Then rotate the string one character at a time; that is,
move the first character of the string to the end of the string until the
first character of the string becomes a vowel. Then add the string
"ay" at the end. For example, the pig Latin form of the string
"There" is "ere-Thay".

3. Strings such as "by" contain no vowels. In cases like this, the letter
y can be considered a vowel. So, for this program the vowels are a,

Programming Example: Pig Latin Strings | 455

e, 1,0,u,y, A, E I, 0, U, and Y. Therefore, the pig Latin form of
"by" is "y—bay".

4. Strings such as "1234" contain no vowels. The pig Latin form
of the string "1234" is "1234-way". That is, the pig Latin form
of a string that has no vowels in it is the string followed by the
string "-way".

Input Input to the program is a string.

Output Output of the program is the string in the pig Latin form.
PROBLEM Suppose that str denotes a string. To convert str into pig Latin, check the first
ANALYSIS character, str[0], of str. If str[0] is a vowel, add "-way" at the end of str—
AND that is, str = str + "-way".
SEE?GR,\IJTH v Suppose that the first character of str, str [0], is not a vowel. First add "-" at the end

of the string. Then remove the first character of str from str and put it at end of str.
Now the second character of str becomes the first character of str. This process of
checking the first character of str and moving it to the end of str if the first character
of str is not a vowel is repeated until either the first character of str is a vowel or all the
characters of str are processed, in which case str does not contain any vowels.

In this program, we write a function isVowel, to determine whether a character is a
vowel; a function rotate, to move the first character of str to the end of str; and
a function pigLatinString, to find the pig Latin form of str. The previous
discussion translates into the following algorithm:

1. Get str.
2. Find the pig Latin form of str by using the function pigLatinString.

3. Output the pig Latin form of str.
Before writing the main algorithm, each of these functions is described in detail.

Function This function takes a character as a parameter and returns true if the character is a
isVowel vowel, and false otherwise. The definition of the function isVowel is:

bool isVowel (char ch)

{

switch (ch)
{

case 'A':
case 'E':
case 'I':
case '0':
case 'U':
case 'Y':
case 'a':
case 'e':

case 'i':

456 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Function
rotate

Function

pigLatinString

case 'o':
case 'u':
case 'y':
return true;
default:
return false;

}
}

This function takes a string as a parameter, removes the first character of the string,
and places it at the end of the string. This is done by extracting the substring starting
at position 1 (which is the second character) until the end of the string, and then
adding the first character of the string. The new string is returned as the value of this
function. Essentially, the definition of the function rotate is:

string rotate(string pStr)

! string::size_type len = pStr.length();
string rStr;
rStr = pStr.substr(l, len - 1) + pStr[0];
return rStr;

}

This function takes a string, pStr, as a parameter and returns the pig Latin form of
pStr. Suppose pStr denotes the string to be converted to its pig Latin form. There
are three possible cases: pStr[0] is a vowel; pStr contains a vowel and the first
character of pStr is not a vowel; or pStr contains no vowels. Suppose that
pStr[0] is not a vowel. Move the first character of pStr to the end of pStr. This
process is repeated until either the first character of pStr has become a vowel or all
the characters of pStr are checked, in which case pStr does not contain any vowels.
This discussion translates into the following algorithm:

1. IfpStr[0] is a vowel, add "-way" at the end of pStr.
Suppose pStr[0] is not a vowel.

3. Move the first character of pStr to the end of pStr. The second
character of pStr becomes the first character of pStr. Now pStr
may or may not contain a vowel. We use a bool variable, foundvo-
wel, which is set to true if pStr contains a vowel and false
otherwise.

a. Suppose that 1en denotes the length of pStr.

b. Initialize foundvowel to false.

c. IfpStr[0] is nota vowel, move pStr[0] to the end of pStr
by calling the function rotate.

Programming Example: Pig Latin Strings

d. Repeat Step b until either the first character of pStr becomes a
vowel or all the characters of pStr have been checked.

4. Convert pStr into the pig Latin form.
5. Return pStr.

The definition of the function pigLatinString is:

string piglLatinString(string pStr)

{
string::size type len;
bool foundVowel;
string::size_type counter;
if (isVowel (pStr[0])) //Step 1
pStr = pStr + "-way";
else //Step 2
{
pStr = pStr + '-';
pStr = rotate(pStr):; //Step 3
len = pStr.length(); //Step 3.a
foundvVowel = false; //Step 3.b
for (counter = 1; counter < len - 1;
counter++) //Step 3.d
if (isVowel (pStr[0]))
{
foundvVowel = true;
break;
}
else //Step 3.c
pStr = rotate (pStr);
if (!foundVowel) //Step 4
pStr = pStr.substr(l, len) + "-way";
else
pStr = pStr + "ay";
}
return pStr; //Step 5
}
MAIN 1. Get the string.
ALGORITHM 2. Call the function pigLatinString to find the pig Latin form of
the string.

3. Output the pig Latin form of the string.

457

458 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik

//

// Program: Pig Latin Strings

// This program reads a string and outputs the pig Latin form

// of the string.
[/ **Rr KRk k ke kkkkkk ok kk ko kkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkk*

#include <iostream>
#include <string>

using namespace std;

bool isVowel (char ch);
string rotate(string pStr):;
string piglLatinString(string pStr);

int main ()

{

string str;

cout << "Enter a string: ";
cin >> str;
cout << endl;

cout << "The pig Latin form of " << str << " is: "
<< piglatinString(str) << endl;

return 0;

}

bool isVowel (char ch)
{

switch (ch)

{

case 'A':

case 'E':

case 'I':

case '0':

case 'U':

case 'Y':

case 'a':

case 'e':

case 'i':

case 'o':

case 'u':

case 'y':

return true;
default:

Programming Example: Pig Latin Strings | 459

return false;

}

}

string rotate(string pStr)

! string::size type len = pStr.length();
string rStr;
rStr = pStr.substr(l, len - 1) + pStr[0];
return rStr;

}

string piglLatinString(string pStr)
{

string::size type len;

bool foundVowel;

string::size_ type counter;

if (isVowel (pStr[0])) //Step 1
pStr = pStr + "-way";
else //Step 2
{
pStr = pStr + '-';
pStr = rotate (pStr); //Step 3
len = pStr.length(); //Step 3.a
foundvowel = false; //Step 3.b
for (counter = 1; counter < len - 1;
counter++) //Step 3.d
if (isVowel (pStr[01]))
{
foundVowel = true;
break;
}
else //Step 3.c
pStr = rotate (pStr);
if (!foundVowel) //Step 4
pStr = pStr.substr(l, len) + "-way";
else
pStr = pStr + "ay";
}
return pStr; //Step 5

460

| Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter a string: eye

The pig Latin form of eye is: eye-way

Sample Run 2:

Enter a string: There

The pig Latin form of There is: ere-Thay

Sample Run 3:

Enter a string: why

The pig Latin form of why is: y-whay

Sample Run 4:

Enter a string: 123456

The pig Latin form of 123456 is: 123456-way

QUICK REVIEW

N o0 o b

An enumeration type is a set of ordered values.
C++’s reserved word enum is used to create an enumeration type.
The syntax of enum is:

enum typeName {valuel, value2,...};

where valuel, value2,... are identifiers, and valuel < value2 <
No arithmetic operations are allowed on the enumeration type.
Relational operators can be used with enum values.

Enumeration type values cannot be input or output directly.

Enumeration types can be passed as parameters to functions either by value
or by reference.

A function can return a value of the enumeration type.

An anonymous type is one where a variable’s values are specified without
any type name.

10.

11.
12.
13.

14,

15.

16.
17.

18.
19.
20.
21.

22,

23.
24,
25.

26.

27.

28.

29.

30.
31.

Quick Review

C++’s reserved word typedef is used to create synonyms or aliases to
previously defined data types.

Anonymous types cannot be passed as parameters to functions.
The namespace mechanism is a feature of ANSI/ISO Standard C++.

A namespace member is usually a named constant, variable, function, or
another namespace.

The scope of a namespace member is local to the namespace.

One way to access a namespace member outside the namespace is to
precede the namespace member name with the namespace name and
scope resolution operator.

In C++, namespace is a reserved word.

To use the namespace mechanism, the program must include the ANSI/
ISO Standard C++ header files—that 1s, the header files without the
extension h.

The using statement simplifies the accessing of namespace members.
In C++, using is a reserved word.
The keyword namespace must appear in the using statement.

When accessing a namespace member without the using statement, the
namespace name and the scope resolution operator must precede the
name of the namespace member.

To use an identifier declared in the standard header files without the
namespace name, after including all the necessary header files, the follow-
ing statement must appear in the program:

using namespace std;
A string is a sequence of zero or more characters.
Strings in C++ are enclosed in double quotation marks.

To use the type string, the program must include the header file
string. The other header files used in the program should be ANSI/
ISO Standard C++ style header files.

The assignment operator can be used with the string type.

The operator + can be used to concatenate two values of the type string.
For the operator + to work with the string data type, one of the
operands of + must be a string variable.

Relational operators, discussed in Chapter 4, can be applied to the string
type.

In a string, the position of the first character is 0, the position of the second
character is 1, and so on.

The length of a string is the number of characters in the string.

In C++, [] is called the array subscript operator.

461

462 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

32. To access an individual character within a string, use the array subscript
operator together with the position of the character.

33. The function length returns the number of characters currently in the
string. The syntax to call the function length is:

strVar.length()

where strVar is a variable of the type string.

34. The function size returns the number of characters currently in the string.
The syntax to call the function size is:
strVar.size()
where strVar is a variable of the type string. The function size works
in the same way as the length function does.

35. The function find searches a string to locate the first occurrence of a
particular substring and returns an unsigned integer value (of the type
string::size_type) giving the result of the search. The syntax to call
the function £ind is:

strVar.find (strExp)

or:
strVar.find (strExp, pos)
where strVar is a string variable and strExp is a string expression

evaluating to a string. In the second form of the function find, pos
specifies the position in the string where the search should begin.

36. The argument of the function find (that is, strExp) can also be a
character.

37. If the search is successful, the function find returns the position in
strVar where the match begins. If the search is unsuccessful, the function
find returns the npos value.

38. The function substr returns a particular substring of a string. The syntax
to call the function substr is:
strVar.substr (exprl, expr2)
where exprl and expr2 are expressions evaluating to unsigned integers.
The expression exprl specifies a position within the string (the starting
position of the substring). The expression expr2 specifies the length of the
substring to be returned.

39. The function swap is used to swap the contents of two string variables. The
syntax to use the function swap is:

strVarl.swap (strVar2);

where strVarl and strVar2 are string variables. This statement swaps
the values of strvarl and strvar2.

Exercises | 463

EXERCISES

1. Mark the following statements as true or false.

a. The following is a valid C++ enumeration type:
enum romanNumerals {I, V, X, L, C, D, M};
b. Given the declaration:

enum cars {FORD, GM, TOYOTA, HONDA};
cars domesticCars = FORD;

the statement:

domesticCars = domesticCars + 1;

sets the value of domesticCars to GM.
c. A function can return a value of an enumeration type.

d. You can input the value of an enumeration type directly from a standard
input device.

e. The only arithmetic operations allowed on the enumeration type are
increment and decrement.

. The values in the domain of an enumeration type are called enumerators.
g. The following are legal C++ statements in the same block of a C++
program:

enum mathStudent {BILL, JOHN, LISA, RON, CINDY, SHELLY};
enum historyStudent {AMANDA, BOB, JACK, TOM, SUSAN};

h. The following statement creates an anonymous type:
enum {A, B, C, D, F} studentGrade;

i. You can use the namespace mechanism with header files with the
extension h.

ji. Suppose str = "ABCD" ;. After the statement str[1] = "a';, the value
of str is "aBCD".

k. Suppose str = "abcd". After the statement:
str = str + "ABCD";

the value of str is "ABCD".
2. Write C++ statements that do the following:
a. Define an enum type, bookType, with the values MATH, CSC,
ENGLISH, HISTORY, PHYSICS, and PHILOSOPHY.
b. Declare a variable book of type bookType.
c. Assign MATH to the variable book.
d. Advance book to the next value in the list.

e. Output the value of the variable book.

464 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

3. Given:
enum currencyType {DOLLAR, POUND, FRANK, LIRA, MARK};
currencyType currency;

which of the following statements are valid?

a. currency = DOLLAR;
b. cin >> currency;
c. currency = static cast<currencyType> (currency + 1) ;
d. for (currency = DOLLAR; currency <= MARK; currency++)
cout << Wk "’.
4. Given:
enum cropType {WHEAT, CORN, RYE, BARLEY, OATS}:;
cropType crop;
circle the correct answer.
a. static cast<int> (WHEAT) is 0
(1) true (1) false

b. static cast<cropType>(static cast<int>(WHEAT) -1) is
WHEAT
(1) true (i) false

c. Rye > WHEAT
(1) true (1) false

d. for (crop = wheat; crop <= oats; ++crop)

cout << "*";
cout << endl;

outputs: **x*x*
(1) true (i) false

5. What 1s wrong with the following program?

#include <iostream> //Line 1
int main () //Line 2
{ cout << "Hello World! " << endl; //Line 3

return 0; //Line 4

}
6. What is wrong with the following program?

#include <iostream.h> //Line 1

using namespace std; //Line 2

Exercises | 465

int main () //Line 3
{
int x = 0; //Line 4
cout << "x = " << x << endl; //Line 5
return 0; //Line 6
}
What is wrong with the following program?
#include <iostream> //Line 1
namespace aaa //Line 2
{
const int X = 0; //Line 3
double y; //Line 4
}
using namespace std; //Line 5
int main () //Line 6
{
y = 34.50; //Line 7
cout << "X = " <K<K X <K ", y ="Ky
<< endl; //Line 8
return 0; //Line 9
}

What is wrong with the following program?
#include <iostream> //Line 1

#include <cmath> //Line 2
using std; //Line 3
int main () //Line 4
{ return 0; //Line 5
}

What is the output of the following program?

#include <iostream>
#include <string>

using namespace std;

int main ()

{
string strl = "Amusement Park";
string str2 = "Going to";
string str3 = "the";

string str;

466

| Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

cout << str2 + ' '+ str3 + ' ' + strl << endl;
cout << strl.length() << endl;

cout << strl.find('P') << endl;

cout << strl.substr(l, 5) << endl;

str = "ABCDEFGHIJK";
cout << str << endl;
cout << str.length() << endl;

str[0] = 'a';
str[2] = 'd’';

cout << str << endl;

return 0;

PROGRAMMING EXERCISES

a. Define an enumeration type, triangleType, that has the values
scalene, isosceles, equilateral, and noTriangle.

b. Worite a function, triangleShape, that takes as parameters three num-
bers, each of which represents the length of a side of the triangle. The
function should return the shape of the triangle. (Nofe: In a triangle, the sum
of the lengths of any two sides is greater than the length of the third side.)

c. Write a program that prompts the user to input the length of the sides of
a triangle and outputs the shape of the triangle.

Redo Programming Exercise 14 of Chapter 4 (cell phone company) so that
all of the named constants are defined in a namespace.

The Programming Example: Pig Latin Strings converts a string into the pig
Latin form, but it processes only one word. Rewrite the program so that it
can be used to process a text of an unspecified length. If a word ends with a
punctuation mark, in the pig Latin form put the punctuation at the end of
the string. For example, the pig Latin form of Hello! is ello-Hay!.
Assume that the text contains the following punctuation marks: , (comma),
. (period), ? (question mark), ; (semicolon), and : (colon). (Your program
may store the output in a file.)

Write a program that prompts the user to input a string. The program then
uses the function substr to remove all the vowels from the string. For
example, if str = "There", then after removing all the vowels, str = "Thr".
After removing all the vowels, output the string. Your program must contain a
function to remove all the vowels and a function to determine whether a
character is a vowel.

Programming Exercises

Write a program that can be used to calculate the federal tax. The tax is
calculated as follows: For single people, the standard exemption is $4,000; for
married people, the standard exemption is $7,000. A person can also put up
to 6% of his or her gross income in a pension plan. The tax rates are as
follows: If the taxable income is:

e Between $0 and $15,000, the tax rate is 15%

e Between $15,001 and $40,000, the tax is $2,250 plus 25% of the taxable
income over $15,000

e Over $40,000, the tax is $8,460 plus 35% of the taxable income over
$40,000

Prompt the user to enter the following information:
e Marital status

e If the martial status is “married,” ask for the number of children under
the age of 14

e Gross salary (If the marital status is “married” and both spouses have
income, enter the combined salary.)

e Percentage of gross income contributed to a pension fund
Your program must consist of at least the following functions:

a. Function getData: This function asks the user to enter the relevant data.

bh. Function taxAmount: This function computes and returns the tax owed.

To calculate the taxable income, subtract the sum of the standard exemption,
the amount contributed to a pension plan, and the personal exemption,
which is $1,500 per person. (Note that if a married couple has two children
under the age of 14, then the personal exemption is $1500 * 4 = §6000.)

A set of integers a, b, and ¢ is called a Pythagorean triple if a> + b° = . For
example, the integers 3, 4, and 5 form a Pythagorean triple because 3% + 4% =
5°. To find Pythagorean triples, use the following formula. Let m and n be
integers. If a = m> — n>, b = 2mn, and ¢ = m> + >, then a, b, and c are a
Pythagorean triple. Write a program that prompts the user to enter values for
m and n and then outputs the Pythagorean triple corresponding to m and n.

(Fraction Calculator) Write a program that lets the user perform arithmetic
operations on fractions. Fractions are of the form a/b, where a and b are
integers and b # 0. Your program must be menu driven, allowing the user to
select the operation (+, -, *, or /) and input the numerator and denominator
of each fraction. Furthermore, your program must consist of at least the
following functions:

a. Function menu: This function informs the user about the program’s
purpose, explains how to enter data, and allows the user to select the
operation.

467

468

Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Function addFractions: This function takes as input four integers
representing the numerators and denominators of two fractions, adds the
fractions, and returns the numerator and denominator of the result.
(Notice that this function has a total of six parameters.)

Function subtractFractions: This function takes as input four
integers representing the numerators and denominators of two fractions,
subtracts the fractions, and returns the numerator and denominator of
the result. (Notice that this function has a total of six parameters.)

Function multiplyFractions: This function takes as input four
integers representing the numerators and denominators of two fractions,
multiplies the fractions, and returns the numerators and denominators of
the result. (Notice that this function has a total of six parameters.)

Function divideFractions: This function takes as input four integers
representing the numerators and denominators of two fractions, divides
the fractions, and returns the numerator and denominator of the result.
(Notice that this function has a total of six parameters.)

Some sample outputs are:

23 / 20
6 / 15

Your answer need not be in the lowest terms.

En—
—
——]
P
i
-

-

)

)
1

ARRAYS AND STRINGS

IN THIS CHAPTER, YOU WILL:

Learn about arrays

Explore how to declare and manipulate data into arrays
Understand the meaning of “array index out of bounds”
Become familiar with the restrictions on array processing
Discover how to pass an array as a parameter to a function
Learn about c-strings

Examine the use of string functions to process c-strings
Discover how to input data into—and output data from—a
C-string

Learn about parallel arrays

Discover how to manipulate data in a two-dimensional array
Learn about multidimensional arrays

470 | Chapter 9: Arrays and Strings

In previous chapters, you worked with simple data types. In Chapter 2, you learned that
C++ data types fall into three categories. One of these categories is the structured data
type. This chapter and the next few chapters focus on structured data types.

Recall that a data type is called simple if variables of that type can store only one value at
a time. In contrast, in a structured data type, each data item is a collection of other data
items. Simple data types are building blocks of structured data types. The first structured
data type that we will discuss is an array. In Chapters 11 and 12, we will discuss other
structured data types.

Before formally defining an array, let us consider the following problem. We want to
write a C++ program that reads five numbers, finds their sum, and prints the numbers in
reverse order.

In Chapter 5, you learned how to read numbers, print them, and find the sum. The
difference here is that we want to print the numbers in reverse order. This means we
cannot print the first four numbers until we have printed the fifth, and so on. To do this,
we need to store all the numbers before we start printing them in reverse order. From
what we have learned so far, the following program accomplishes this task.

//Program to read five numbers, find their sum, and print the
//numbers in reverse order.

#include <iostream>
using namespace std;

int main ()

{
int itemO, iteml, item2, item3, item4;
int sum;
cout << "Enter five integers: ";
cin >> item0 >> iteml >> item2 >> item3 >> item4;
cout << endl;
sum = item0 + iteml + item2 + item3 + item4;
cout << "The sum of the numbers = " << sum << endl;
cout << "The numbers in the reverse order are: ";
cout << itemd << " " << item3 << " " << item2 << " "
<< diteml << " " << item0 << endl;
return 0;
}

This program works fine. However, if you need to read 100 (or more) numbers and
print them in reverse order, you would have to declare 100 variables and write many
cin and cout statements. Thus, for large amounts of data, this type of program is not
desirable.

Arrays | 471

Note the following in the previous program:

1. Five variables must be declared because the numbers are to be printed in
reverse order.

2. All variables are of type int—that is, of the same data type.

3. The way in which these variables are declared indicates that the variables
to store these numbers all have the same name—except the last char-
acter, which is a number.

Statement 1 tells you that you have to declare five variables. Statement 3 tells you
that it would be convenient if you could somehow put the last character, which is a
number, into a counter variable and use one for loop to count from 0 to 4 for
reading and another for loop to count from 4 to 0 for printing. Finally, because all
variables are of the same type, you should be able to specify how many variables
must be declared—and their data type—with a simpler statement than the one we
used earlier.

The data structure that lets you do all of these things in C++ is called an array.

Arrays

An array is a collection of a fixed number of components all of the same data type. A
one-dimensional array is an array in which the components are arranged in a list form.
This section discusses only one-dimensional arrays. Arrays of two dimensions or more are
discussed later in this chapter.

The general form for declaring a one-dimensional array is:

dataType arrayName[intExp];

where intExp is any constant expression that evaluates to a positive integer. Also,
intExp specifies the number of components in the array.

EXAMPLE 9-1

The statement:

int num[5];

declares an array num of five components. Each component is of type int. The compo-
nents are num[0], num([1], num([2], num[3], and num[4]. Figure 9-1 illustrates the
array num.

472 | Chapter 9: Arrays and Strings

num[0]
num([1]
num([2]

num(3]

num([4]

FIGURE 9-1 Array num

Accessing Array Components

The general form (syntax) used for accessing an array component is:
arrayName[indexExp]

where indexExp, called the index, is any expression whose value is a non negative
integer. The index value specifies the position of the component in the array.

In C++, [] is an operator, called the array subscripting operator. Moreover, in C++,
the array index starts at 0.

Consider the following statement:
int 1ist[101];

This statement declares an array list of 10 components. The components are
list[0], list[1], ..., 1list[9]. In other words, we have declared 10 variables
(see Figure 9-2).

Arrays | 473

list[0]
list[1]
list[2]
list[3]
list[4]
list[5]
list[6]
list[7]
list[8]
list[9]

FIGURE 9-2 Array 1ist

The assignment statement:
list[5]1 = 34;

stores 34 in 1ist [5], which is the sixth component of the array 1ist (see Figure 9-3).

list[0]
list[1]
list[2]
list[3]
list[4]
list[5]
list[6]
list[7]
list[8]
list[9]

FIGURE 9-3 Array 1ist after execution of the statement 1ist[5]= 34;

474 | Chapter 9: Arrays and Strings

Suppose 1 is an int variable. Then the assignment statement:
list[3] = 63;
is equivalent to the assignment statements:

i = 3;
list[i] = 63;

If i is 4, then the assignment statement:
list[2 * i - 3] = 58;

stores 58 in 1ist [5] because 2 * 1 - 3 evaluates to 5. The index expression is evaluated
first, giving the position of the component in the array.

Next, consider the following statements:

list[3] = 10;
list[6] 35;
1ist[5] = 1ist[3] + list[6]:

The first statement stores 10 in 1ist [3], the second statement stores 35 in 1ist[6],
and the third statement adds the contents of 1ist [3] and 1ist [6] and stores the result
in 1ist [5] (see Figure 9-4).

list[0]
list[1]
list[2]
list[3]
list[4]
list[5]
list[6]
list[7]
list[8]
list[9]

FIGURE 9-4 Array 1ist after execution of the statements 1ist[3]=10;, 1ist[6]= 35;, and
list[5] = 1ist[3] + 1list[6];

Arrays | 475

EXAMPLE 9-2

You can also declare arrays as follows:

const int ARRAY SIZE = 10;
int list[ARRAY SIZE];

That is, you can first declare a named constant and then use the value of the named
constant to declare an array and specify its size.

NOTE When you declare an array, its size must be known. For example, you cannot do the

following:

int arraySize; //Line 1

cout << "Enter the size of the array: "; //Line 2

cin >> arraySize; //Line 3

cout << endl; //Line 4

int list[arraySize]; //Line 5; not allowed

The statement in Line 2 asks the user to enter the size of the array when the program
executes. The statement in Line 3 inputs the size of the array into arraySize. When
the compiler compiles Line 1, the value of the variable arraySize is unknown. Thus,
when the compiler compiles Line 5, the size of the array is unknown and the compiler will
not know how much memory space to allocate for the array. In Chapter 14, you will learn
how to specify the size of an array during program execution and then declare an array of
that size using pointers. Arrays that are created by using pointers during program execu-
tion are called dynamic arrays. For now, whenever you declare an array, its size must be
known.

Processing One-Dimensional Arrays

Some of the basic operations performed on a one-dimensional array are initializing,
inputting data, outputting data stored in an array, and finding the largest and/or
smallest element. Moreover, if the data is numeric, some other basic operations are
finding the sum and average of the elements of the array. Each of these operations
requires the ability to step through the elements of the array. This is easily
accomplished using a loop. For example, suppose that we have the following
statements:

int 1ist[100]; //1list is an array of size 100
int 1i;

476 | Chapter 9: Arrays and Strings

The following for loop steps through each element of the array 1ist, starting at the first
element of 1ist:

for (i = 0; 1 < 100; i++) //Line 1
//process list[i] //Line 2

If processing the list requires inputting data into list, the statement in Line 2 takes
the form of an input statement, such as the cin statement. For example, the
following statements read 100 numbers from the keyboard and store the numbers
in list:
for (i = 0; 1 < 100; i++) //Line 1

cin >> list[i]; //Line 2

Similarly, if processing 1ist requires outputting the data, then the statement in Line 2
takes the form of an output statement. Example 9-3 further illustrates how to process
one-dimensional arrays.

EXAMPLE 9-3

This example shows how loops are used to process arrays. The following declaration is
used throughout this example:

double sales[10];
int index;
double largestSale, sum, average;

The first statement declares an array sales of 10 components, with each component
being of type double. The meaning of the other statements is clear.

a. Initializing an array: The following loop initializes every compo-
nent of the array sales to 0.0.

for (index = 0; index < 10; index++)
sales[index] = 0.0;
b. Reading data into an array: The following loop inputs the data
into the array sales. For simplicity, we assume that the data is
entered at the keyboard.

for (index = 0; index < 10; index++)
cin >> sales[index];
c. Printing an array: The following loop outputs the array sales.
For simplicity, we assume that the output goes to the screen.

for (index = 0; index < 10; index++)
cout << sales[index] << " ";
d. Finding the sum and average of an array: Because the array
sales, as its name implies, represents certain sales data, it is natural
to find the total sale and average sale amounts. The following C++

Arrays | 477

code finds the sum of the elements of the array sales and the
average sale amount:

sum = 0;
for (index = 0; index < 10; index++)
sum = sum + sales[index];

average = sum / 10;

e. Largest element in the array: We now discuss the algorithm to
find the first occurrence of the largest element in an array—that is,
the first array component with the largest value. However,
in general, the user is more interested in determining the location
of the largest element in the array. Of course, if you know the
location (that is, the index of the largest element in the array), you
can easily determine the value of the largest element in the array.
So let us describe the algorithm to determine the index of the first
occurrence of the largest element in an array—in particular, the
index of the largest sale amount in the array sales. We will use
the index of the first occurrence of the largest element in the array
to find the largest sale.

We assume that maxIndex will contain the index of the first
occurence of the largest element in the array sales. The
general algorithm is straightforward. Initially, we assume that
the first element in the list is the largest element and so
maxIndex is initialized to 0. We then compare the element
pointed to by maxIndex with every subsequent element in the
list. Whenever we find an element in the array larger than the
element pointed to by maxIndex, we update maxIndex so
that it points to the new larger element. The algorithm is as
follows:

maxIndex = 0;
for (index = 1; index < 10; index++)
if (sales[maxIndex] < sales[index])
maxIndex = index;
largestSale = sales[maxIndex];

Let us demonstrate how this algorithm works with an example. Suppose the array sales
is as given in Figure 9-5.

[0] (1] [2] [3] [4] [5] [6] [7] 8] [9]

sales

FIGURE 9-5 Array sales

478 | Chapter 9: Arrays and Strings

Here we determine the largest element in the array sales. Before the for loop begins,
maxIndex is initialized to 0 and the for loop initializes index to 1. In the following,
we show the values of maxIndex, index, and certain array elements during each
iteration of the for loop:

sales sales sales[maxIndex] <
index maxIndex [maxIndex] [index] sales[index]
1 0 12.50 8.35 12.50 < 8.35is false
2 0 12.50 19.60 12.50< 19.60 is true;
maxIndex = 2
3 2 19.60 25.00 19.60< 25.00 is true;
maxIndex = 3
4 3 25.00 14.00 25.00< 14.00is false
5 3 25.00 39.43 25.00< 39.43 is true;
maxIndex = 5
6 5 39.43 35.90 39.43<35.90is false
7 5 39.43 98.23 39.43<98.23is true;
maxIndex = 7
8 7 98.23 66.65 98.23< 66.65is false
9 7 98.23 35.64 98.23<35.64 is false

After the for loop executes, maxIndex = 7, giving the index of the largest element in
the array sales. Thus, largestSale = sales[maxIndex] = 98.23.

NOTE You can write an algorithm to find the smallest element in the array that is similar to the
algorithm for finding the largest element in an array. (See Programming Exercise 2 at the
end of this chapter.)

Now that we know how to declare and process arrays, let us rewrite the program that we
discussed in the beginning of this chapter. Recall that this program reads five numbers,
finds the sum, and prints the numbers in reverse order.

EXAMPLE 9-4

//Program to read five numbers, find their sum, and
//print the numbers in reverse order.

#include <iostream>
using namespace std;

int main()

{
int item[5]; //Declare an array item of five components
int sum;
int counter;

Arrays | 479

cout << "Enter five numbers: ";
sum = 0;
for (counter = 0; counter < 5; counter++)
{
cin >> item[counter];

sum = sum + item[counter];

}
cout << endl;

cout << "The sum of the numbers is: " << sum << endl;
cout << "The numbers in reverse order are: ";

//Print the numbers in reverse order.
for (counter = 4; counter >= 0; counter--)
cout << item[counter] << " ";

cout << endl;

return 0;

}

Sample Run: In this sample run, the user input is shaded.
Enter five numbers: 12 76 34 52 89

The sum of the numbers is: 263
The numbers in reverse order are: 89 52 34 76 12

Array Index Out of Bounds

Consider the following declaration:

double num[10];

int 1i;

The component num[i] is valid, that is, 1 is a valid index if 1 = 0, 1, 2, 3, 4, 5, 6, 7,
8, or 9.

The index—say, index—of an array is in bounds if index >= 0 and index <=
ARRAY_SIZE — 1. If either index < 0 or index > ARRAY_SIZE — 1, then we say
that the index is out of bounds.

Unfortunately, in C++, there is no guard against out-of-bound indices. Thus, C++
does not check whether the index value is within range—that is, between 0 and
ARRAY_SIZE — 1. If the index goes out of bounds and the program tries to access

480 | Chapter 9: Arrays and Strings

the component specified by the index, then whatever memory location is indicated by
the index is accessed. This situation can result in altering or accessing the data of a
memory location that you never intended. Consequently, if during execution the index
goes out of bounds, several strange things can happen. It is solely the programmer’s
responsibility to make sure that the index is within bounds.

A loop such as the following can set the index out of bounds:
for (i = 0; 1 <= 10; i++)

list[i] = 0;
Here we assume that 1ist is an array of 10 components. When i becomes 10, the loop
test condition 1 <= 10 evaluates to true and the body of the loop executes, which
results in storing 0 in 11st[10]. Logically, 1ist[10] does not exist.

NOTE On some new compilers, if an array index goes out of bounds in a progam, it is possible
that the program terminates with an error message. For example, see the programs
Example_ArrayIndexOutOfBoundsA. cpp and
Example_ArrayIndexOutOfBoundsB.cpp at the Web site accompanying
this book.

Array Initialization During Declaration

Like any other simple variable, an array can also be initialized while it is being declared.
For example, the following C++ statement declares an array, sales, of five components
and initializes these components:

double sales[5] = {12.25, 32.50, 16.90, 23, 45.68};

The values are placed between curly braces and separated by commas—here
sales[0] =12.25, sales[1] = 32.50, sales[2] =16.90, sales[3] =23.00,
and sales[4] = 45.68.

When initializing arrays as they are declared, it is not necessary to specify the size of the
array. The size is determined by the number of initial values in the braces. However, you
must include the brackets following the array name. The previous statement is, therefore,
equivalent to:

double sales[] = {12.25, 32.50, 16.90, 23, 45.68};

Although it is not necessary to specify the size of the array if it is initialized during
declaration, it is a good practice to do so.

Partial Initialization of Arrays During Declaration

When you declare and initialize an array simultaneously, you do not need to initialize all
components of the array. This procedure is called partial initialization of an array
during declaration. However, if you partially initialize an array during declaration, you

Arrays | 481

must exercise some caution. The following examples help explain what happens when
you declare and partially initialize an array.

The statement:

int 1list[10] = {0};

declares 1ist to be an array of 10 components and initializes all the components to 0.
The statement:

int 1list[10] = {8, 5, 12};

declares 1ist to be an array of 10 components, initializes 11st [0] to 8, 1ist[1] to 5,
list[2] to 12, and all other components to 0. Thus, if all the values are not specified in
the initialization statement, the array components for which the values are not specified

are initialized to 0. Note that here the size of the array in the declaration statement does
matter. For example, the statement:

int list[] = {5, 6, 3};

declares 1ist to be an array of three components and initializes 1ist [0] to 5,
list[1] to 6, and 1ist[2] to 3. In contrast, the statement:

int list[25] = {4, 7};

declares 1ist to be an array of 25 components. The first two components are initialized
to 4 and 7, respectively, and all other components are initialized to 0.

Some Restrictions on Array Processing

Consider the following statements:

int myList[5] = {0, 4, 8, 12, 16}; //Line 1
int yourList[5]; //Line 2

The statement in Line 1 declares and initializes the array myList and the statement in
Line 2 declares the array yourList. Note that these arrays are of the same type and have
the same number of components. Suppose that you want to copy the elements of
myList into the corresponding elements of yourList. The following statement is
illegal:

yourList = myList; //illegal

In fact, this statement will generate a syntax error. C++ does not allow aggregate
operations on an array. An aggregate operation on an array is any operation that
manipulates the entire array as a single unit.

To copy one array into another array, you must copy it component-wise—that is, one
component at a time. This can be done using a loop, such as the following:

for (int index = 0; index < 5; index ++)
yourList[index] = myList[index];

482 | Chapter 9: Arrays and Strings

Next, suppose that you want to read data into the array yourList. The following
statement is illegal and, in fact, would generate a syntax error.

cin >> yourList; //illegal

To read data into yourList, you must read one component at a time, using a loop such
as the following:

for (int index = 0; index < 5; index ++)
cin >> yourList[index];

Similarly, determining whether two arrays have the same elements and printing the
contents of an array must be done component-wise. Note that the following statements
are illegal in the sense that they do not generate a syntax error; however, they do not give
the desired results.

cout << yourList;

if (myList <= yourList)

We will comment on these statements in the section, Base Address of an Array and Array
in Computer Memory, later in this chapter.

Arrays as Parameters to Functions

Now that you have seen how to work with arrays, a question naturally arises: How are
arrays passed as parameters to functions?

By reference only: In C++, arrays are passed by reference only.

Because arrays are passed by reference only, you do not use the symbol & when declaring
an array as a formal parameter.

When declaring a one-dimensional array as a formal parameter, the size of the array is
usually omitted. If you specify the size of a one-dimensional array when it is declared as a
formal parameter, the size is ignored by the compiler.

EXAMPLE 9-5

Consider the following function:

void funcArrayAsParam(int listOne[], double listTwo[])

{

Arrays | 483

The function funcArrayAsParam has two formal parameters: (1) 1istOne, a one-
dimensional array of type int (that is, the component type is int); (2) listTwo, a
one-dimensional array of type double. In this declaration, the size of both arrays is
unspecified.

Sometimes, the number of elements in the array might be less than the size of the
array. For example, the number of elements in an array storing student data might
increase or decrease as students drop or add courses. In such situations, we want to
process only the components of the array that hold actual data. To write a function to
process such arrays, in addition to declaring an array as a formal parameter, we declare
another formal parameter specitying the number of elements in the array, as in the
following function:

void jinitialize(int list[], int listSize)

{
int count;
for (count = 0; count < listSize; count++)
list[count] = 0;
}

The first parameter of the function initialize is an int array of any size. When the
function initialize is called, the size of the actual array is passed as the second
parameter of the function initialize.

Constant Arrays as Formal Parameters

Recall that when a formal parameter is a reference parameter, then whenever the formal
parameter changes, the actual parameter changes as well. However, even though an array
is always passed by reference, you can still prevent the function from changing the actual
parameter. You do so by using the reserved word const in the declaration of the formal
parameter. Consider the following function:

void example(int x[], const int y[], int sizeX, int sizeY)

{

}

Here the function example can modify the array x, but not the array y. Any attempt to
change y results in a compile-time error. It is a good programming practice to declare an
array to be constant as a formal parameter if you do not want the function to modify the
array.

484 | Chapter 9: Arrays and Strings

EXAMPLE 9-6

This example shows how to write functions for array processing and declare an array as a
formal parameter.

//Function to initialize an int array to O.
//The array to be initialized and its size are passed
//as parameters. The parameter listSize specifies the
//number of elements to be initialized.

void initializeArray(int list[], int listSize)

{
int index;
for (index = 0; index < listSize; index++)
list[index] = 0;
}

//Function to read and store the data into an int array.
//The array to store the data and its size are passed as
//parameters. The parameter listSize specifies the number
//of elements to be read.

void fillArray(int list[], int listSize)

{
int index;
for (index = 0; index < listSize; index++)
cin >> list[index];
}

//Function to print the elements of an int array.

//The array to be printed and the number of elements

//are passed as parameters. The parameter listSize

//specifies the number of elements to be printed.
void printArray(const int list[], int listSize)

{
int index;
for (index = 0; index < listSize; index++)
cout << list[index] << " ";
}

//Function to find and return the sum of the

//elements of an int array. The parameter listSize

//specifies the number of elements to be added.
int sumArray(const int list[], int listSize)

int index;
int sum = 0;

for (index = 0; index < listSize; index++)
sum = sum + list[index];

Arrays | 485

return sum;

//Function to find and return the index of the first
//largest element in an int array. The parameter listSize
//specifies the number of elements in the array.

int indexLargestElement (const int list[], int listSize)

int index;
int maxIndex = 0; //assume the first element is the largest

for (index = 1; index < listSize; index++)
if (list[maxIndex] < list[index])
maxIndex = index;

return maxIndex;

//Function to copy one array into another array.
//The elements of listOne are copied into listTwo.
//The array listTwo must be at least as large as the
//number of elements to be copied. The parameter
//1listOneSize specifies the number of elements of
//listOne to be copied into listTwo.

void copyArray(const int 1listOne[], int listTwol[],

int listOneSize)

{
int index;
for (index = 0; index < listOneSize; index++)
listTwo[index] = listOne[index];
}

Note that for the function copyArray to work correctly, the array 11istTwo must be at
least as large as the array 1istOne.

Base Address of an Array and Array in Computer Memory

The base address of an array is the address (that is, memory location) of the first array
component. For example, if 1ist is a one-dimensional array, then the base address of
list is the address of the component 1ist [0].

Consider the following statements

int myList[5]; //Line 1

This statement declares myList to be an array of five components of type int. The
components are myList [0], myList[1], myList[2],myList[3], andmyList[4].

486 | Chapter 9: Arrays and Strings

The computer allocates five memory spaces, each large enough to store an int value, for
these components. Moreover, the five memory spaces are contiguous.

The base address of the array myList is the address of the component
myList[0]. Suppose that the base address of the array myList is 1000. Then
the address of the component myList[0] is 1000. Typically, the memory allo-
cated for an int variable is four bytes. Recall from Chapter 1 that main memory is
an ordered sequence of cells and each cell has a unique address. Typically, each cell
is one byte. Therefore, to store a value into myList [0], starting at the address
1000 the next four bytes are allocated for myList [0]. It follows that the starting
address of myList [1] is 1004, the starting address of myList[2] is 1008, and so
on (see Figure 9-6).

Memory
addresses
: - / Address of
1000 -4————— .
myList [0] EEEEEE 1000 mylist [0]
T 1002
[1003 Address of
myList [1] T 1004 4——— .
I 1005 myList [1]
T 1006
[1007 Address of
myList[2] B0 1008 €——— .
B 1009 myList [2]
1010
11 Address of
myList [3] T 1012 --——— .
[1013 myList [3]
1014
[1015 Wliess o
myList [4] EETT 1016 4——— .
[1017 myList [4]
T 1018
[1019

FIGURE 9-6 Array myList and the addresses of its components

Now myList is the name of an array. There is also a memory space associated with the
identifier myList, and the base address of the array is stored in that memory space.
Consider the following statement:

cout << myList << endl; //Line 2

Arrays | 487

Earlier, we said that this statement won’t give the desired result. That is, this statement
will not output the values of the components of myList. In fact, the statement outputs the
value of myList, which is the base address of the array. This is why the statement will
not generate a syntax error.

Suppose that you also have the following statement:

int yourList[5];

Then, in the statement:

if (myList <= yourList) //Line 3

the expression myList <= yourList evaluates to true if the base address of the array
myList is less than the base address of the array yourList; and evaluates to false
otherwise. It does not determine whether the elements of myList are less than or equal to
the corresponding elements of yourList.

NOTE The Web site accompanying this book contains the program
BaseAddressOfAnArray .cpp, that clarifies statements such as those in Lines
2 and 3.

You might be wondering why the base address of an array is so important. The reason is
that when you declare an array, the only things about the array that the computer
remembers are the name of the array, its base address, the data type of each component,
and (possibly) the number of components. Using the base address of the array and the index
of an array component, the computer determines the address of a particular component.
For example, suppose you want to access the value of myList [3]. Now, the base address
of myList is 1000. Each component of myList is of type int, so it uses four bytes to
store a value, and the index is 3. To access the value of myList [3], the computer
calculates the address 1000 + 4 * 3 = 1000 + 12 = 1012. That s, this is the starting
address of myList [3]. So starting at 1012, the computer accesses the next four bytes.

When you pass an array as a parameter, the base address of the actual array is passed to the
formal parameter. For example, suppose that you have the following function:

void arrayAsParameter (int list[], int size)

{

list[2] = 28; //Line 4

488 | Chapter 9: Arrays and Strings

Also, suppose that you have the following call to this function:

arrayAsParameter (myList, 5); //Line 5

In this statement, the base address of myList is passed to the formal parameter 1ist.
Therefore, the base address of 1ist is 1000. The definition of the function contains
the statement 1list[2] = 28;. This statement stores 28 into list[2]. To access
list[2], the computer calculates the address as follows: 1000 + 4 * 2 = 1008. So
starting at the address 1008, the computer accesses the next four bytes and stores 28.
Note that, in fact, 1008 is the address of myList [2] (see Figure 9-6). It follows that
during the execution of the statement in Line 5, the statement in Line 4 stores the value
28 into myList[2]. It also follows that during the execution of the function call
statement in Line 5, 1ist[index] and myList[index] refer to the same memory
space, where 0 <= index and index < 5.

NOTE If you allow arrays to be passed by value, the computer has to allocate memory for the
components of the formal parameter and copy the contents of the actual array into the
corresponding formal parameter. If the array size is large, this process wastes memory as
well as computer time in copying the data.

Functions Cannot Return a Value of the Type Array

C++ does not allow functions to return a value of the type array. Note that the
functions sumArray and indexLargestElement described earlier return values of
type int.

EXAMPLE 9-7

The following program illustrates how arrays are passed as actual parameters in a function

call.

//Arrays as parameters to functions
#include <iostream>

using namespace std;

const int ARRAY SIZE = 10;

void initializeArray(int x[],int sizeX);

void fillArray(int x[],int sizeX);

void printArray(const int x[],int sizeX);

int sumArray(const int x[],int sizeX):;

int indexLargestElement (const int x[],int sizeX);
void copyArray(const int x[], int y[], int length);

Arrays | 489

int main()
{
int 1istA[ARRAY SIZE] = {0}; //Declare the array listA
//of 10 components and
//initialize each component
//to 0.
int 1istB[ARRAY SIZE]; //Declare the array listB
//of 10 components.

cout << "Line 1: listA elements: "; //Line 1

//Output the elements of listA using

//the function printArray
printArray(listA, ARRAY SIZE); //Line
cout << endl; //Line

wN

//Initialize listB using the function

//initializeArray
initializeArray(listB, ARRAY SIZE); //Line 4
cout << "Line 5: listB elements: "; //Line 5

//Output the elements of listB
printArray(listB, ARRAY SIZE); //Line
cout << endl << endl; //Line 7

o)

cout << "Line 8: Enter " << ARRAY SIZE
<< " integers: "; //Line 8

//Input data into listA using the

//function fillArray
fillArray(listA, ARRAY SIZE); //Line 9
cout << endl; //Line 10

cout << "Line 11: After filling listA, "
<< "the elements are:" << endl; //Line 11

//Output the elements of listA
printArray(listA, ARRAY SIZE); //Line 12
cout << endl << endl; //Line 13

//Find and output the sum of the elements
//of listA
cout << "Line 14: The sum of the elements of "
<< "listA dis: "
<< sumArray(listA, ARRAY SIZE) << endl
<< endl; //Line 14

//Find and output the position of the largest
//element in listA

cout << "Line 15: The position of the largest "
<< "element in listA is: "

490 | Chapter 9: Arrays and Strings

<< indexLargestElement (1listA, ARRAY SIZE)
<< endl; //Line 15

//Find and output the largest element
//in listA
cout << "Line 16: The largest element in "
<< "listA is: "
<< listA[indexLargestElement (1istA, ARRAY SIZE)]
<< endl << endl; //Line 16

//Copy the elements of listA into listB using the
//function copyArray
copyArray (listA, listB, ARRAY SIZE); //Line 17

cout << "Line 18: After copying the elements "
<< "of listA into 1listB," << endl
<< " listB elements are: "; //Line 18

//Output the elements of listB
printArray(listB, ARRAY SIZE); //Line 19
cout << endl; //Line 20

return 0;

}

//Place the definitions of the functions initializeArray,
//£fillArray, and so on here. Example 9-6 gives the definitions
//of these functions.

Sample Run: In this sample run, the user input is shaded.

Line 1: listA elements:

00000D00O0O0DOD
Line 5: ListB elements: 0 0 0O 0 0 0O 0 0 0 O

Line 8: Enter 10 integers: 33 77 25 63 56 48 98 39 5 12

Line 11: After filling listA, the elements are:
33 77 25 63 56 48 98 39 5 12

Line 14: The sum of the elements of listA is: 456

Line 15: The position of the largest element in listA is: 6
Line 16: The largest element in listA is: 98

Line 18: After copying the elements of listA into 1listB,
listB elements are: 33 77 25 63 56 48 98 39 5 12

The output of this program is straightforward. First, we declare the array 1istA of 10
components and initialize each component of 1istA to 0. Then we declare the array
1istB of 10 components. The statement in Line 2 calls the function printArray and
outputs the values stored in 1istA. The statement in Line 9 calls the function £111Array

Arrays | 491

to input the data into 1istA. The statement in Line 14 calls the function sumArray and
outputs the sum of all the elements of 1istA. Similarly, the statement in Line 16 outputs
the value of the largest element in 1istA.

Integral Data Type and Array Indices

NOTE The sections “Enumeration Type” and “typedef Statement” in Chapter 8 are required
to understand this section.

Other than integers, C++ allows any integral type to be used as an array index. This
flexibility can greatly enhance a program’s readability. Consider the following statements:

enum paintType {GREEN, RED, BLUE, BROWN, WHITE, ORANGE, YELLOW};
double paintSale[7];

paintType paint;

The following loop initializes each component of the array paintSale to 0:

for (paint = GREEN; paint <= YELIOW;
paint = static cast<paintType> (paint + 1))
paintSale[paint] = 0.0;

The following statement updates the sale amount of RED paint:
paintSale[RED] = paintSale[RED] + 75.69;
As you can see, the above code is much easier to follow than the code that used integers

for the index. For this reason, you should use the enumeration type for the array index or
other integral data types wherever possible.

Other Ways to Declare Arrays

Suppose that a class has 20 students and you need to keep track of their scores. Because
the number of students can change from semester to semester, instead of specifying the
size of the array while declaring it, you can declare the array as follows:

const int NO_OF STUDENTS = 20;
int testScores[NO_OF_STUDENTS];

Other forms used to declare arrays are:

const int SIZE = 50; //Line 1
typedef double list[SIZE]; //Line 2
list yourList; //Line 3
list myList; //Line 4

The statement in Line 2 defines a data type 1ist, which is an array of 50 components of
type double. The statements in Lines 3 and 4 declare two variables, yourList and

492 | Chapter 9: Arrays and Strings

myList. Both are arrays of 50 components of type double. Of course, these statements
are equivalent to:

double yourList[50];
double myList[50];

c-strings (Character Arrays)

Until now, we have avoided discussing character arrays for a simple reason: Character
arrays are of special interest, and you process them differently than you process other
arrays. C++ provides many (predefined) functions that you can use with character arrays.

Character array: An array whose components are of type char.

Recall that the most widely used character sets are ASCII and EBCDIC. The first character
in the ASCII character set is the null character, which is nonprintable. Also, recall that in
C++, the null character is represented as "\0"', a backslash followed by a zero.

The statement:

ch = "\0';
stores the null character in ch, where ch is a char variable.

As you will see, the null character plays an important role in processing character arrays.
Because the collating sequence of the null character is 0, the null character is less than any
other character in the char data set.

The most commonly used term for character arrays is C-strings. However, there is a
subtle difference between character arrays and C-strings. Recall that a string is a sequence
of zero or more characters, and strings are enclosed in double quotation marks. In C++,
C-strings are null terminated; that is, the last character in a C-string is always the null
character. A character array might not contain the null character, but the last character in
a C-string is always the null character. As you will see, the null character should not
appear anywhere in the C-string except the last position. Also, C-strings are stored in
(one-dimensional) character arrays.

The following are examples of C-strings:

"John L. Johnson"
"Hello there."

From the definition of C-strings, it is clear that there is a difference between 'A' and
"A". The first one is character A; the second is C-string A. Because C-strings are null
terminated, "A" represents two characters: 'A' and '\0'. Similarly, the C-string
"Hello" represents six characters: 'H', 'e', '1', '1', 'o’', and '\0"'. To store
'A', we need only one memory cell of type char; to store "A", we need two memory
cells of type char—one for 'A' and one for '"\0'. Similarly, to store the C-string
"Hello" in computer memory, we need six memory cells of type char.

c-strings (Character Arrays) | 493

Consider the following statement:

char name[16];

This statement declares an array name of 16 components of type char. Because C-strings
are null terminated and name has 16 components, the largest string that can be stored in
name is of length 15. If you store a C-string of length 10 in name, the first 11
components of name are used and the last £ive are left unused.

The statement:
char name[l16] = {'J', 'o', 'h', 'n', '"\0'}:

declares an array name containing 16 components of type char and stores the C-string
"John" in it. During char array variable declaration, C++ allows the C-string
notation to be used in the initialization statement. The above statement is, therefore,
equivalent to:

char name[l16] = "John"; //Line A

Recall that the size of an array can be omitted if the array is initialized during the
declaration.

The statement:
char name[] = "John"; //Line B

declares a C-string variable name of a length large enough—in this case, 5—and stores
"John" in it. There is a difference between the last two statements: Both statements store
"John" in name, but the size of name in the statement in Line A is 16, and the size of
name in the statement in Line B is 5.

Most rules that apply to other arrays also apply to character arrays. Consider the following
statement:

char studentName[26];

Suppose you want to store "Lisa L. Johnson" in studentName. Because aggregate
operations, such as assignment and comparison, are not allowed on arrays, the following
statement is not legal:

studentName = "Lisa L. Johnson"; //illegal

C++ provides a set of functions that can be used for C-string manipulation. The header
file cstring describes these functions. We often use three of these functions: strcpy
(string copy, to copy a C-string into a C-string variable—that is, assignment); strcmp
(string comparison, to compare C-strings); and strlen (string length, to find the length
of a C-string). Table 9-1 summarizes these functions.

494 | Chapter 9: Arrays and Strings

TABLE 9-1 strcpy, strcmp, and strlen functions

Function Effect

Copies the string s2 into the string variable s1
strcpy(sl, s2)
The length of s1 should be at least as large as s2

Returns a value < 0 if s1 is less than s2
strcmp (sl, s2) Returns 0 if s1 and s2 are the same

Returns a value > 0 if s1 is greater than s2

Returns the length of the string s, excluding the null

strlen(s) character

To use these functions, the program must include the header file cstring via the
include statement. That is, the following statement must be included in the program:

#include <cstring>

String Comparison

In C++, C-strings are compared character-by-character using the system’s collating
sequence. Let us assume that you use the ASCII character set.

1. The C-string "Air" is less than the C-string "Boat™ because the first
character of "Air" is less than the first character of "Boat".

2. The C-string "Air" is less than the C-string "An" because the first
character of both strings are the same, but the second character "1" of
"Air" is less than the second character 'n' of "An".

3. The C-string "Bi11"™ is less than the C-string "Bi11y" because the first
four characters of "Bill"™ and "Billy" are the same, but the fifth
character of "B111", which is "\0" (the null character), is less than the
fifth character of "Billy", whichis 'y". (Recall that C-strings in C++
are null terminated.)

4. The C-string "Hello" is less than "hello" because the first character
"H' of the C-string "Hello" is less than the first character 'h' of the
C-string "hello".

As you can see, the function strcmp compares its first C-string argument with its second
C-string argument character-by-character.

c-strings (Character Arrays) | 495

EXAMPLE 9-8

Suppose you have the following statements:

char studentName[21];
char myname[16];
char yourname[16];

The following statements show how string functions work:

Statement Effect
strcpy (myname, "John Robinson") ; Myname = "John Robinson"
strlen ("John Robinson"):; Returns 13, the length of the string

"John Robinson"

int len;

len = strlen("Sunny Day"); Stores 9 into 1len

strcpy (yourname, "Lisa Miller"); yourname = "Lisa Miller"
strcpy (studentName, yourname) ; studentName ="LisaMiller"
stremp ("Bill", "Lisa"); Returns a value< 0

strcpy (yourname, "Kathy Brown"); yourname = "Kathy Brown"
strcpy (myname, "Mark G. Clark"); myname = "Mark G. Clark"
strcmp (myname, yourname) ; Returns a value > 0

NOTE In this chapter, we defined a C-string to be a sequence of zero or more characters.
C-strings are enclosed in double quotation marks. We also said that C-strings are null
terminated, so the C-string "Hel1lo" has six characters even though only five are
enclosed in double quotation marks. Therefore, to store the C-string "Hello" in
computer memory, you must use a character array of size 6. The length of a C-string is
the number of actual characters enclosed in double quotation marks; for example, the
length of the C-string "Hello" is 5. Thus, in a logical sense, a C-string is a sequence
of zero or more characters, but in the physical sense (that is, to store the C-string in
computer memory), a C-string has at least one character. Because the length of the
C-string is the actual number of characters enclosed in double quotation marks, we
defined a C-string to be a sequence of zero or more characters. However, you must
remember that the null character stored in computer memory at the end of the C-string
plays a key role when we compare C-strings, especially C-strings such as "Bil1l" and
"Billy™".

496 | Chapter 9: Arrays and Strings

Reading and Writing Strings

As mentioned earlier, most rules that apply to arrays apply to C-strings as well. Aggregate
operations, such as assignment and comparison, are not allowed on arrays. Even the input/
output of arrays is done component-wise. However, the one place where C++ allows
aggregate operations on arrays is the input and output of C-strings (that is, character arrays).

We will use the following declaration for our discussion:

char name[31];

String Input
Because aggregate operations are allowed for C-string input, the statement:

cin >> name;

stores the next input C-string into name. The length of the input C-string must be less
than or equal to 30. If the length of the input string is 4, the computer stores the four
characters that are input and the null character '\0'. If the length of the input C-string is
more than 30, then because there is no check on the array index bounds, the computer
continues storing the string in whatever memory cells follow name. This process can
cause serious problems, because data in the adjacent memory cells will be corrupted.

When you input a C-string using an input device, such as the keyboard, you do not include
the double quotes around it, unless the double quotes are part of the string. For example,
the C-string "Hello" is entered as Hello.

Recall that the extraction operator, >>, skips all leading whitespace characters and stops
reading data into the current variable as soon as it finds the first whitespace character or
invalid data. As a result, C-strings that contain blanks cannot be read using the extraction
operator, >>. For example, if a first name and last name are separated by blanks, they
cannot be read into name.

How do you input C-strings with blanks into a character array? Once again, the function get
comes to our rescue. Recall that the function get is used to read character data. Until now,
the form of the function get that you have used (Chapter 3) read only a single character.
However, the function get can also be used to read strings. To read C-strings, you use the
form of the function get that has two parameters. The first parameter is a C-string variable;
the second parameter specifies how many characters to read into the string variable.

To read C-strings, the general form (syntax) of the get function, together with an input
stream variable such as cin, is:

cin.get(str, m + 1);
This statement stores the next m characters, or all characters until the newline character

"\n' is found, into str. The newline character is not stored in str. If the input C-string
has fewer than m characters, then the reading stops at the newline character.

c-strings (Character Arrays) | 497

Consider the following statements:

char str[31];
cin.get (str, 31):;

If the input is:

William T. Johnson

then "William T. Johnson" is stored in str. Suppose that the input is:

Hello there. My name is Mickey Blair.

Then, because str can store at most 30 characters, the C-string "Hello there. My
name is Mickey" is stored in str.

Now suppose that we have the statements:

char strl[26];
char str2[26];
char discard;

and the two lines of input:

Summer is warm.
Winter will be cold.

Further suppose that we want to store the first C-string in strl and the second C-string
in str2. Both strl and str2 can store C-strings that are up to 25 characters in length.
Because the number of characters in the first line is 15, the reading stops at '\n"'. You
must read and discard the newline character at the end of the first line to store the second
line into str2. The following sequence of statements stores the first line into strl and
the second line into str2:

cin.get (strl, 26);
cin.get (discard);
cin.get (str2, 26);

String Output

The output of C-strings is another place where aggregate operations on arrays are allowed.
You can output C-strings by using an output stream variable, such as cout, together with
the insertion operator, <<. For example, the statement:

cout << name;

outputs the contents of name on the screen. The insertion operator, <<, continues to
write the contents of name until it finds the null character. Thus, if the length of name is
4, the above statement outputs only four characters. If name does not contain the null
character, then you will see strange output because the insertion operator continues to
output data from memory adjacent to name until "\0" is found.

498 | Chapter 9: Arrays and Strings

Specifying Input/Output Files at Execution Time

In Chapter 3, you learned how to read data from a file. In subsequent chapters, the name of
the input file was included in the open statement. By doing so, the program always received
data from the same input file. In real-world applications, the data may actually be collected at
several locations and stored in separate files. Also, for comparison purposes, someone might
want to process each file separately and then store the output in separate files. To accomplish
this task efficiently, the user would prefer to specify the name of the input and/or output file
at execution time rather than in the programming code. C++ allows the user to do so.

Consider the following statements:

ifstream infile;
ofstream outfile;

char fileName[51]; //assume that the file name is at most
//50 characters long

The following statements prompt and allow the user to specify the input and output files
at execution time:

cout << "Enter the input file name: ";
cin >> fileName;

infile.open (fileName) ; //open the input file

cout << "Enter the output file name: ";
cin >> fileName;

outfile.open(fileName); //open the output file

Programming Example: Code Detection further illustrates how to specify the names of
input and output files during program execution.

string Type and Input/Output Files

In Chapter 8, we discussed the data type string. We now want to point out that values (that
1s, strings) of type string are not null terminated. Variables of type string can also be used
to read and store the names of input/output files. However, the argument to the function
open must be a null-terminated string—that is, a C-string. Therefore, if we use a variable of
type string to read the name of an input/output file and then use this variable to open a file,
the value of the variable must (first) be converted to a C-string (that is, a null-terminated string).
The header file string contains the function ¢_str, which converts a value of type string
to a null-terminated character array (that is, C-string). The syntax to use the function c_str is:

strvVar.c_str()

where strVar is a variable of type string.

Parallel Arrays | 499

The following statements illustrate how to use variables of type string to read the
names of the input/output files during program execution and to open those files:

ifstream infile;
string fileName;

cout << "Enter the input file name: ";
cin >> fileName;

infile.open(fileName.c_str()); //open the input file

Of course, you must also include the header file string in the program. The output file
has similar conventions.

Parallel Arrays

Two (or more) arrays are called parallel if their corresponding components hold related
information.

Suppose you need to keep track of students’ course grades, together with their ID numbers, so
that their grades can be posted at the end of the semester. Further suppose that there is a
maximum of 50 students in a class and their IDs are £ive digits long. Because there may be 50
students, you need 50 variables to store the students’ IDs and 50 variables to store their grades.
You can declare two arrays: studentId of type int and courseGrade of type char. Each
array has 50 components. Furthermore, studentId[0] and courseGrade[0] will store
the ID and course grade of the first student, studentId[1] and courseGrade[1] will
store the ID and course grade of the second student, and so on.

The statements:

int studentId[50];
char courseGrade[50];

declare these two arrays.

Suppose you need to input data into these arrays, and the data is provided in a file in the
following form:

studentId courseGrade

For example, a sample data set is:

23456 A
86723 B
22356 C
92733 B

D

11892

Suppose that the input file is opened using the i fstream variable infile. Because the
size of each array is 50, a maximum of 50 elements can be stored into each array.
Moreover, it is possible that there may be fewer than 50 students in the class. Therefore,

500 | Chapter 9: Arrays and Strings

while reading the data, we also count the number of students and ensure that the array
indices do not go out of bounds. The following loop reads the data into the parallel arrays
studentId and courseGrade:

int noOfStudents = 0;
infile >> studentId[noOfStudents] >> courseGrade[noOfStudents];

while (infile && noOfStudents < 50)

{
noOfStudents++;
infile >> studentId[noOfStudents]
>> courseGrade[noOfStudents];
}

Two- and Multidimensional Arrays

The remainder of this chapter discusses two-dimensional arrays and ways to work with
multidimensional arrays.

In the previous section, you learned how to use one-dimensional arrays to manipulate
data. If the data is provided in a list form, you can use one-dimensional arrays. However,
sometimes data is provided in a table form. For example, suppose that you want to track
the number of cars in a particular color that are in stock at a local dealership. The
dealership sells six types of cars in five different colors. Figure 9-7 shows sample data.

inStock ~ [RED] [BROWN] [BLACK] [WHITE] [GRAY]
[GM] 10 1 1

[FORD] 18
[TOYOTA] 12
[(BMW] 16
[NISSAN] 10

[V