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PREFACE

My earlier book, A First Course in Linear Algebra with Concurrent
Examples (referred to below as the First Course), was an introduction to
the use of vectors and matrices in the solution of sets of simultaneous
linear equations and in the geometry of two and three dimensions. As its
name suggests, that much is only a start. For many readers, such
elementary material may satisfy the need for appropriate mathematical
tools. But, for others, more advanced techniques may be required, or,
indeed, further study of algebra for its own sake may be the objective.

This book is therefore in the literal sense an extension of the First
Course. The first eleven chapters are identical to the earlier book. The
remainder forms a sequel: a continuation into the next stage of the subject.
This aims to provide a practical introduction to perhaps the most
important applicable idea of linear algebra, namely eigenvalues and
eigenvectors of matrices. This requires an introduction to some general
ideas about vector spaces. But this is not a book about vector spaces in
the abstract. The notions of subspace, basis and dimension are all dealt
with in the concrete context of n-dimensional real Euclidean space. Much
attention is paid to the diagonalisation of real symmetric matrices, and
the final two chapters illustrate applications to geometry and to differential
equations.

The organisation and presentation of*the content of the First Course
were unusual. This book has the same features, and for the same reasons.
These reasons were described in the preface to the First Course in the
following four paragraphs, which apply equally to this extended volume.

‘Learning is not easy (not for most people, anyway). It is, of course,
aided by being taught, but it is by no means only a passive exercise. One
who hopes to learn must work at it actively. My intention in writing this
book is not to teach, but rather to provide a stimulus and a medium
through which a reader can learn. There are various sorts of textbook
with widely differing approaches. There is the encyclopaedic sort, which
tends to be unreadable but contains all of the information relevant to its
subject. And at the other extreme there is the work-book, which leads
the reader in a progressive series of exercises. In the field of linear algebra
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there are already enough books of the former kind, so this book is aimed
away from that end of the spectrum. But it is not a work-book, neither
is it comprehensive. It is a book to be worked through, however. It is
intended to be read, not referred to.

‘Of course, in a subject such as this, reading is not enough. Doing is
also necessary. And doing is one of the main emphases of the book. It is
about methods and their application. There are three aspects of this
provided by this book: description, worked examples and exercises. All
three are important, but I would stress that the most important of these
is the exercises. You do not know it until you can do it.

‘The format of the book perhaps requires some explanation. The
worked examples are integrated with the text, and the careful reader will
follow the examples through at the same time as reading the descriptive
material. To facilitate this, the text appears on the right-hand pages only,
and the examples on the left-hand pages. Thus the text and corresponding
examples are visible simultaneously, with neither interrupting the other.
Each chapter concludes with a set of exercises covering specifically the
material of that chapter. At the end of the book there is a set of sample
examination questions covering the material of the whole book.

“The prerequisites required for reading this book are few. It is an
introduction to the subject, and so requires only experience with methods
of arithmetic, simple algebra and basic geometry. It deliberately avoids
mathematical sophistication, but it presents the basis of the subject in a
way which can be built on subsequently, either with a view to applications
or with the development of the abstract ideas as the principal
consideration.’

Last, this book would not have been produced had it not been for the
advice and encouragement of David Tranah of Cambridge University
Press. My thanks go to him, and to his anonymous referees, for many
helpful comments and suggestions.
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Examples

1.1 Simple elimination (two equations).
2x+3y=1 '
x—2y=4
Eliminate x as follows. Multiply the second equation by 2:
2x+3y=1
2x —4y=38.
Now replace the second equation by the equation obtained by subtracting the first
equation from the second:
2x+3y=1
—Ty=1.
Solve the second equation for y, giving y= —1. Substitute this into the first
equation:
2x—3=1,
which yields x=2. Solution: x=2, y= —1.

1.2 Simple elimination (three equations).
x=2y+ z=5
3x+ y— z=0
x+3y+2z=2.
Eliminate z from the first two equations by adding them:
4x —y=>5.
Next eliminate z from the second and third equations by adding twice the second
to the third:
Tx+5y=2.
Now solve the two simultaneous equations:
4x— y=5
Tx+5y=2
as in Example 1.1. One way is to add five times the first to the second, obtaining
27x=21,
so that x= 1. Substitute this into one of the set of two equations above which
involve only x and y, to obtain (say)

4-y=53,
so that y= — 1. Last, substitute x= 1 and y= — 1 into one of the original equations,
obtaining

14+2+z=35,

so that z=2. Solution: x=1, y=—1,z=2.
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Gaussian elimination

We shall describe a standard procedure which can be used to solve sets of
simultaneous linear equations, no matter how many equations. Let us
make sure of what the words mean before we start, however. A linear
equation is an equation involving unknowns called x or y or z, or x; or x,
or x5, or some similar labels, in which the unknowns all occur to the first
degree, which means that no squares or cubes or higher powers, and no
products of two or more unknowns, occur. To solve a set of simultaneous
equations is to find all values or sets of values for the unknowns which
satisfy the equations.

Given two linear equations in unknowns x and y, as in Example 1.1, the
way to proceed is to eliminate one of the unknowns by combining the two
equations in the manner shown.

Given three linear equations in three unknowns, as in Example 1.2, we
must proceed in stages. First eliminate one of the unknowns by combining
two of the equations, then similarly eliminate the same unknown from a
different pair of the equations by combining the third equation with one of
the others. This yields two equations with two unknowns. The second stage
is to solve these two equations. The third stage is to find the value of the
originally eliminated unknown by substituting into one of the original
equations.

This general procedure will extend to deal with n equations in n
unknowns, no matter how large n is. First eliminate one of the unknowns,
obtaining n—1 equations in n—1 unknowns, then eliminate another
unknown from these, giving n —2 equations in n —2 unknowns, and so on
until there is one equation with one unknown. Finally, substitute back to
find the values of the other unknowns.

There is nothing intrinsically difficult about this procedure. It consists of
the application of a small number of simple operations, used repeatedly.
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1.3 The Gaussian elimination process.
2x,— x4+ 3x,= 1 n
4x, +2x,— x3=—8 2)
Ix; 4+ x4+ 2x3=—1 (3)
Stage I x, —ix,+3x;= 4 (H+2
4x,+2x,— x;=—8 )
Ixp+ x4+ 2x3=—1 (3)

Stage 2: x; —$x,+3x;= 4 (1
4x,—Tx3=—10 2)—4x(1)
3= 3x3=—3 (3)=3x(1)

Stage 3: x; —4x,+3x;= 1 (1

X;—3%3=—% (2)+4
$x;—3x3=—3 €)

Stage 4: x, —ix,+3xy= 1 (1)

Xy —3X3=—% 2)
Bxy= 4 (B)-3x(2)

Stage 50 x; —3x,+3x;= % n

X;—3X3=—% @)
. x3= 2. 3)+%

Now we may obtain the solutions. Substitute x; =2 into the second equation.
X;—%=—3, s0x,=1 .-

Finally substitute both into the first equation, obtaining
x;—4+3=%, sox;=-2.

Hence the solution is x; = —2, x,=1, x5;=2.
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These include multiplying an equation through by a number and adding or
subtracting two equations. But, as the number-of unknowns increases, the
length of the procedure and the variety of different possible ways of
proceeding increase dramatically. Not only this, but it may happen that
our set of equations has some special nature which would cause the
procedure as given above to fail: for example, a set of simultaneous
equations may be inconsistent, i.e. have no solution at all, or, at the other
end of the spectrum, it may have many different solutions. It is useful,
therefore, to have a standard routine way of organising the elimination
process which will apply for large sets of equations just as for small, and
which will cope in a more or less automatic way with special situations.
This is necessary, in any case, for the solution of simuitaneous equations
using a computer. Computers can handle very large sets of simultaneous
equations, but they need a routine process which can be applied
automatically. One such process, which will be used throughout this book,
is called Gaussian elimination. The best way to learn how it works is to
follow through examples, so Example 1.3 illustrates the stages described
below, and the descriptions should be read in ¢onjunction with it.

Stage 1 Divide the first equation through by the coefficient of x,. (If this
coefficient happens to be zero then choose another of the
equations and place it first.)

Stage 2 Eliminate x, from the second equation by subtracting a multiple of
the first equation from the second equation. Eliminate x, from the
third equation by subtracting a multiple of the first equation from
the third equation.

Stage 3 Divide the second equation through by the coefficient of x,. (If this
coefficient is zero then interchange the second and third equations.
We shall see later how to proceed if neither of the second and third
equations contains a term in x,.)

Stage 4 Eliminate x, from the third equation by subtracting a multiple of
the second equation.

Stage 5 Divide the third equation through by the coefficient of x;. (We
shall see later how to cope if this coefficient happens to be zero.)

At this point we have completed the elimination process. What we have
done is to find another set of simultaneous equations which have the same
solutions as the given set, and whose solutions can be read off very easily.

What remains to be done is the following.

Read off the value of x;. Substitute this value in the second
equation, giving the value of x,. Substitute both values in the first
equation, to obtain the value of x;.
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14 Using arrays, solve the simultaneous equations:
X +X;— X3= 4 v
2xy —=x34+3x3= 7
4x, +x,+ x3=15.
First start with the array of coefficients:
1 1 -1 4
2 -1 3 7
4 1 1 15

1 I -1 4

0 -3 5 -1 @)=2x (1)
0 -3 5 -1 (3)—4x(l)
1 1 -1 4
0 1 -3 4 2)+ -3
0 -3 5 -1

1 -1 4
0 1t -3 4
0 0 0 0 (3)+3x(2)

See Chapter 2 for discussion of how solutions are obtained from here.

15 Using arrays, solve the simultaneous equations:
3x; = 3x,4+ x3=1
=X+ Xy3+2x3=2
2%, + x5,—3x;=0.

What follows is a full solution.

3 -3 1 1
-1 1 2 2

2 1 =3 0

1 -1 4 (1)+3
-1 1 2 2

2 1 -3 0

to-1 4 4

o o 3 3 2)+(1)

0 3 - 2 3)—-2x (1)

R

0 3 -4 4

37 3 interchange rows
0 0 3 3

\
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Notice that after stage 1 the first equation is not changed, and that after
stage 3 the second equation is not changed. This is a feature of the process,
however many equations there are. We proceed downwards and eventually
each equation is fixed in a new form.

Besides the benefit of standardisation, there is another benefit which can
be derived from this process, and that is brevity. Our working of Example
1.3 includes much that is not essential to the process. In particular the
repeated writing of equations is unnecessary. Our standard process can be
developed so as to avoid this, and all of the examples after Example 1.3
show the different form. The sets of equations are represented by arrays of
coefficients, suppressing the unknowns and the equality signs. The first step
in Example 1.4 shows how this is done. Our operations on equations now
become operations on the rows of the array. These are of the following
kinds:

@ interchange rows,

@ divide (or multiply) one row through by a number,

@ subtract (or add) a multiple of one row from (to) another.
These are called elementary row operations, and they play a large part in our
later work. It is important to notice the form of the array at the end of the
process. It has a triangle of Os in the lower left corner and 1s down the
diagonal from the top left.

Now let us take up two complications mentioned above. In stage S of the
Gaussian elimination process (henceforward called the GE process) the
situation not covered was when the coefficient of x5 in the third equation
(row) was zero. In this cas¢ we divide the third equation (row) by the
number occurring on the right-hand side (in the last column), if this is not
already zero. Example 1.4 illustrates this. The solution of sets of equations
for which this happens will be discussed in the next chapter. What happens
is that either the equations have no solutions or they have infinitely many
solutions.

The other complication can arise in stage 3 of the GE process. Here the
coefficient of x, may be zero. The instruction was to interchange equations
(rows) in the hope of placing a non-zero coefficient in this position. When
working by hand we may choose which row to interchange with so as to
make the calculation easiest (presuming that there is a choice). An obvious
way to do this is to choose a row in which this coefficient is 1. Example 1.5
shows this being done. When the GE process is formalised (say for
computer application), however, we need a more definite rule, and the one
normally adopted is called partial pivoting. Under this rule, when we
interchange rows because of a zero coefficient, we choose to interchange
with the row which has the coefficient which is numerically the largest (that
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-1 5 4
0 1 -4 -2 2)+3
0 0 1 1 3)+3
From here, x;=1, and substituting back we obtain
x;—4=-2 sox,=1
Substituting again:
x;—1+4=%, sox, =1
Hence the solution sought is: x; =1, x,=1, x,=1.
1.6 Using arrays, solve the simultaneous equations:
X+ Xp;=— x3=-—3
2%y +2x,+ x3= 0
5xy+5x,—3x3=—8.
Solution:
1 1 -1 -3
2 2 1 0
5 5 -3 -8
1 1 -1 -3
0 0 3 6 2)—2x(1
0 0 2 7 (3)—5x(1)
1 1 -1 -3
0 0 1 2 2)+3
0 0 2 7
1 1 -1 -3
0 0 1 2
0 0 0 3 3)-2x(2)

Next, and finally, divide the last row by 3. How to obtain solutions from this point is
discussed in Chapter 2. (In fact there are no solutions in this case.)

1.7 Solve the simultaneous equations:
2x —=2x,4+ x3—3x,= 2
Xy — Xp+3x3— x,=-2
—xy—=2x3+ x3+2x,=—6
3Ix;+ x;— x3—2x,= 7.
Convert to an array and proceed:
2 =2 1 -3 2
1 -1 3 -1 =2
-1 =2 1 2 -6
3 1 -1 =2 7
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is, the largest when any negative signs are disregarded). This has two
benefits. First, we (and more particularly, the computer) know precisely
what to do at each stage and, second, following this process actually
produces a more accurate answer when calculations are subject to
rounding errors, as will always be the case with computers. Generally, we
shall not use partial pivoting, since our calculations will all be done by hand
with small-scale examples.

There may be a different problem at stage 3. We may find that there is no
equation (row) which we can choose which has a non-zero coefficient in the
appropriate place. In this case we do nothing, and just move on to
consideration of x5, as shown in Example 1.6. How to solve the equations
in such a case is discussed in the next chapter.

The GE process has been described above in terms which can be
extended to cover larger sets of equations (and correspondingly larger
arrays of coefficients). We should bear in mind always that the form of the
array which we are seeking has rows in which the first non-zero coefficient
(if there is one) is 1, and this 1 is to the right of the first non-zero coefficient
in the preceding row. Such a form for an array is called row-echelon form.

Example 1.7 shows the process applied to a set of four equations in four
unknowns.

Further examples of the GE process applied to arrays are given in the
following exercises. Of course the way to learn this process is to carry it out,
and the reader is recommended not to proceed to the rest of the book before
gaining confidence in applying it.

Summary

The purpose of this chapter is to describe the Gaussian elimination process
which is used in the solution of simultaneous equations, and the
abbreviated way of carrying it out, using elementary row operations on
rectangular arrays.
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Exercises

Using the Gaussian elimination process, solve the following sets of

simultaneous equations.

(i) x—y=2
2x+y=1.

X+ X+ Xx3=2
2x,+ x;—2x3=4
—X; —2x,+3x3=4.
(v) 2x;—4x;+ x3= 2

(iii)

Xy —2x,—2x3=—4

—X;+ X, =-1
(vil) 2x,— x3=-35
Xy — Xp+2x3= 8

X, +2x,+2x3= 5.
(ix) x;— 3x,— x3=0
2x, — 4x;—Tx3=2
Tx, —13x, =8
Xy —2X,4 X3— X4=

(xi)

1

(i1) 3x+2y=0
x— y=5.
(iv) 3x;— x,— x3= 6
X;— X4 x3= 0
=X +2x, +2x3= —2.
(vi) —x, +2x,— x3=—2
4x, — x,—2x3= 2
3x,
X, +5x,— 2x3=0
3%, — x,+10x;=0
—x;—2x,+ Tx3=0.

—4x;=—1.

(viii)

(x) 2x;— x;— X3=-2
3x,—-Tx;= 0

=3x;+ x,—4x3= 3
(xii) x;4+ x;—3x3+ x4=—

—X;— X,+2x34+2x,=-5
2x;+ X+ X3+3x,= 2
Xy +3x,-3x3+3x,= 2.

2x,+2x,+ x3+3x,= 0
Xy +2x,—2x3+2x,= —2
—3x;+4x3— x,= 1.
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Examples

2.1 Find all values of x and y which satisfy the equations:
x+2y=1
3x+6y=3.
GE process:
1

w
[= N S
[FS I

o =

2
0

(=T

@)-3x(1)

Here the second row gives no information. All we have to work with is the single
equation x +2y= 1. Set y=t (say). Then on substitution we obtain x = 1 —2¢. Hence
all values of x and y which satisfy the equations are given by:

x=1=-2t, y=t (teR).

22 Find all solutions to:
Xi+X;— X3= 5
3x, —x,42x,= 2.
The GE process yields:

1 1 -1 5
0 1 -3 ¥
Set x;=t. Substituting then gives
x,—3t=4, sox,=4+3 and

%

X G +30) 1=
Hence the full solution is:

xp=3+4t, x;=Y+3t, x;=t (teR).

, sox =2+4t

23 Solve the equations:
Xy — X;—4x3=0
Ix;+ x;— x3=3
Sxy+3x,4+2x3=6.
The GE process yields:

1 -1 -4 0
o 1 % 3
0 0 0 0

In effect, then, we have only two equations to solve for three unknowns. Set X3=t.
Substituting then gives

x;+4%=2, sox,=2-1l and
x; —(3—%)—4t=0, sox,=3-31.
Hence the full solution is: x; =3 —3t, x,=2 L1t x,=1 (teR).
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Solutions to simultaneous
equations 1 |

Now that we have a routine procedure for the elimination of variables
(Gaussian elimination), we must look more closely at where it can lead, and
at the different possibilities which can arise when we seek solutions to given
simultaneous equations.

Example 2.1 illustrates in a simple way one possible outcome. After the
GE process the second row consists entirely of zeros and is thus of no help
in finding solutions. This has happened because the original second
equation is a multiple of the first equation, so in essence we are given only a
single equation connecting the two variables. In such a situation there are
infinitely many possible solutions. Thisis because we méy specify any value
for one of the unknowns (say y) and then the equation will give the value of
the other unknown. Thus the customary form of the solution to Example
2.1is:

y=t, x=1-2t (teR).

These ideas extend to the situation generally when there are fewer
equations than unknowns. Example 2.2 illustrates the case of two
equations with three unknowns. We may specify any value for one of the
unknowns (here put z=t) and then solve the two equations for the other
two unknowns. This situation may also arise when we are originally given
three equations in three unknowns, as in Example 2.3. See also Example
14.
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24 Find all solutions to the set of equations:

X +X+x3=1

X +x;+x3=4.
This is a nonsensical problem. There are no values of X1, X, and x5 which satisfy
both of these equations simultaneously. What does the GE process give us here?
11
11

1
1

1
0
1
0

The last row, when transformed back into an equation, is
Ox, +0x,+0x;=1.
This is satisfied by no values of x,, x, and x;.

.25 Find all solutions to the set of equations:

11
00

1

00

1
4

1
3

1
1

Xy +2x,+ x3=1
2x,+5x,— x3=4

X1+ Xy+4x3=2.

GE process:
1
2
1

S O

S O

1
0
0

Because of the form of this last row, we can say straight away that there are no
solutions in this case (indeed, the last step was unnecessary: a last row of 0 0 0 3
indicates inconsistency immediately).

2
5
1

2
1

2
1
0
2
1
0

1
-1
4
1
-3
3
1
-3
0
1
-3
0

—

W N =

1
2
1

@-

2)=3

2)-2x(1)
(3)—(1)

3)+(2)

3)+03)

>
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Here, then, is a simple-minded rule: if there are fewer equations than
unknowns then there will be infinitely many solutions (if there are solutions
at all). This rule is more usefully applied after the GE process has been
completed, because the original equations may disguise the real situation,
as in Examples 2.1, 2.3 and 14,

The qualification must be placed on this rule because such sets of
equations may have no solutions at all. Example 2.4 is a case in point. Two
equations, three unknowns, and no solutions. These equations are clearly
inconsistent equations. There are no values of the unknowns which satisfy
both. In such a case it is obvious that they are inconsistent. The equations
in Example 2.5 are also inconsistent, but it is not obvious there. The GE
process automatically tells us when equations are inconsistent. In Example
2.5 the last row turns out to be

00 0 1,
which, if translated back into an equation, gives

0x, +0x,+0x;=1,
ie.

0=1.

When this happens, the conclusion that we can draw is that the given
equations are inconsistent and have no solutions. See also Example 1.6.
This may happen whether there are as many equations as unknowns, more
equations, or fewer equations.
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2.6 Find all solutions to the set of equations:
X+ x,=2
3x,— x,=2
—x; +2x,=3.
GE process:
1 1 2
3 -1 2
-1 2 3
1 1 2
0 -4 -4
0 3 5
1 1 2
0 1 1
0 3 5
1 1 2
0 1 1
0 0 2

@)—3x(1)
3)+1)

2)~—4

(3)-3x(2)

Without performing the last step of the standard process we can see here that the
given equations are inconsistent.

2.7 Find all solutions to the set of equations:
x, —4x,=—1

2x, +2x,= 8

5x,— x,= 14.
GE process:

1 -4 -1

2 2 8

5 -1 14

1 -4 -1

0 10 10

0 19 19

1 —4 -1

0

0 0 0

) -2x(1)
(3)—=5x(1)

2)=10
(after two steps)

Here there is a solution. The third equation is in effect redundant. The second row

yields x, = 1. Substituting in the first gives:

x,—4=—1,

Hence the solution is: x; =3, x,=1.

s0 x,;=3.
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Example 2.6 has three equations with two unknowns. Here there are
more equations than we need to determine the values of the unknowns.We
can think of using the first two equations to find these values and then
trying them in the third. If we are lucky they will work! But the more likely
outcome is that such sets of equations are inconsistent. Too many
equations may well lead to inconsistency. But not always. See Example 2.7.

We can now see that there are three possible outcomes when solving
simultaneous equations:

(i) there is no solution,
(ii) there is a unique solution,
(1ii) there are infinitely many solutions.
One of the most useful features of the GE process is that it tells us
automatically which of these occurs, in advance of finding the solutions.
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28 Iltustration of the various possibilities arising from the GE process and
the nature of the solutions indicated.
) 1 2 1] . uti
0 1 3] unique solution.
. [1 -1 2] . .
(ii) _0 0 IJ inconsistent.
(1 3 3] : .
(1i1) ~0 1 O_J unique solution.
(iv) 1 ! 2] infinitely many solutions
0 0 o ymany '
1 2 1 4]
(v} 0 1 =2 2 unique solution.
L 0 0 1 3
[ 1 0 -1 57
(vi) 0 1 1 -3 inconsistent.
L 0 0 0 1
[ 1 3 0 27
(vii) 0 1 3 -t unique solution.
L 0 0 1 0
[1 -1 1 57
(viii) 0 1 7 2 infinitely many solutions.
L 0 0 0 0
( 1 2 -1 37
(ix) 0 0 1 2 inconsistent.
L 0 0 0 I
( 1 2 2 57
(x) 0 0 1 2 infinitely many solutions.
L O 0 0 0
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Rule .
Given a set of (any number of) simultaneous equations in p unknowns:
(i) there is no solution if after the GE process the last non-zero row

has a 1 at the right-hand end and zeros elsewhere;

(ii) thereis a unique solution if after the GE process there are exactly p
non-zero rows, the last of which has a 1in the position second from
the right-hand end; '

(i1i) there are infinitely many solutions if after the GE process there are
fewer than p non-zero rows and (i) above does not apply.

Example 2.8 gives various arrays resulting from the GE process, to
illustrate the three possibilities above. Note that the number of unknowns
is always one fewer than the number of columns in the array.
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29 Find all values of ¢ for which the equations
X+ y=c
3x—cy=2
have a solution.
GE process:
1 1
3 —c 2
1 c
0 —c-3 2-3¢ 2)-3x(1)
1 1 c
o 1 2= @)+ (—c—3)
—c-3

Now this last step is legitimate only if —c—3 is not zero. Thus, provided that
¢+3#0, we can say

=2—3c and x=c—2_3c.
—c—3 —-c—3
If c+3=0 then c= —3, and the equations are
x+ y=-3
Ix+3y= 2.

These are easily seen to be inconsistent. Thus the given equations have a solution if
and only if ¢# —3.

2.10 Find all values of ¢ for which the following equations have
(a) a unique solution,
(b) no solution,
(c) infinitely many solutions.
X+ X+ X3=c
exy+ x;+2x3=2

Xy tex,+ x3=4.

GE process:
1 1
c 1 2
(4
1 1 c

(=]
o
|
—_
(=]
N
|
o

*
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Finally, Examples 2.9 and 2.10 show how the GE process can be applied
even when the coefficients in the given simultaneous equations involve a
parameter (or parameters) which may be unknown or unspecified. As
naturally expected, the solution values for the unknowns depend on the
parameter(s), but, importantly, the nature of the solution, that is to say,
whether there are no solutions, a unique solution or infinitely many
solutions, also depends on the value(s) of the parameter(s).

Summary

This chapter should enable the reader to apply the GE process to any given
set of simultaneous linear equations to find whether solutions exist, and if
they do to determine whether there is a unique solution or infinitely many
solutions, and to find them.

Exercises

1. Show that the following sets of equations are inconsistent.

i x-2y= 1 (il) 3x+ y=3
2x— y=-8 2x— y=17
—x+ y= 6. S5x+4y=4.
(1ii) X — Xp;—2x3=—1 (iv) 2x;,— x,+4x3=4
=2x;+ X+ x3= 2 X;+2x,—3x3=1
3x; +2x,+9x;= 4. 3x, +3x,=06.

2. Show that the following sets of equations have infinitely many solutions,
and express the solutions in terms of parameters.

(1) x—3y=2 (i) 2x+ 3y=-1
2x —6y=4. 8x+ 12y=—4.
(i) x;+ x4+ x3= 5 (iv) x,; +2x;=1
=X +2x, = Tx3=—2 2%, +x,+3x3=1
2x,+ x,+4x3= 9. 2x; —Xxp+5x3=3.
V) x;— x;+3x;=4 l(vi) X, +2x,+ x3= 2
2%, ~2x,+ x3=13 2x,— x;+Tx3=—6
=X+ X3+ X3=0. —x, + 22—4x3= 4

x; —2x,+5x;=—6.

3. Show that the following sets of equations have unique solutions, and find

them.
(i) 2x—5y=—1 () x—-2y=-1
Ix+ y= 1. 4x+ y= 14
3x—-4y= 1.
(iii) X;— Xp;—2x3= -6 (iv) 3x,+ x3=-3
3x;+ x;—-2x3=—6 X, —=2%x,—2x3= 4

—2x, =2x,+ x3= 2. 2x,+ x,—3x3= 3.
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2—¢c 2-¢? .
0 1 — (provided that c¢# 1)
l-¢ 1-¢
0 0 2-c 4d4—c+2-c? **
1 1 1 ¢
7_ .2
0 ] ¢ 2—c
l-¢ 1-—c
0 o I 3+c¢ (provided that c#2)

Ifc=1then the row marked *is0 0 0 3, showing the equations to be inconsistent. If
c=2 then the row marked ** is 0 0 0 0, and the equations have infinitely many
solutions:x;=t,x,=t,x, = —t (teR). Last,if c# 1 and c#2 then there is a unique
solution, given by the last array above:
x3=3+c,
2—-c* (2-¢)3+0¢)
T1-c l-¢c

X2

>

and
2—¢?2 (2-0)@3

¢, Q=c)3+c)_
l1-c 1—¢

(3+0).

Xy =c—
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Exercises

V) x;+2x,+3x3=3 Vi) —x;+x,+X3+x,=2
2x, +3x, +4x3=3 Xy =Xy +Xx3+x,=4
3x, +4x,+5x;=3 Xy +Xy—X3+x4=6
X+ X3+ x3=0. X;+X,+x3—Xx,=8.

4. Find whether the following sets of equations are inconsistent, have a
unique solution, or have infinitely many solutions.

(i) x;+x,+ x3=1 ' (i)  x;+2x,— x3=2
2x; x5, —3x3=1 2x; +2x,—4x,=0
3x,~ x3=1. —Xx +3x;=2.
(i)  x;— X9+ x3-2x,=—6 (iv) x;+ x;+x3=2
2x,+ x3—3x,=~5 3x; —2x,+x3=3
Ix;— x3—4x;— x,= 9 2x, +x3=3
—xy3—3x;+3x3+2x,= 5. —x;+3x,+x3=3.
(V) x;+ X3+ x3+x,=0
Xy +x,=0
Xy +2x,+Xx; =0.

5. (1) Examine the solutions of
Xy — X+ X3=c
2x, —3x,+4x3=0
3x, —4x,+5x5=1,
when c¢=1 and when c# 1.
(i) Find all values of k for which the equations
Ix,— Tx,;— 4x;= 8
—2x,+ 6x,+ 11x;=21
S5xy =21x,4+ Tx3=10k
X; +23x,+ 13x3;=41
are consistent.
6. In the following sets of equations, determine all values of ¢ for which the
set of equations has (a) no solution, (b) infinitely many solutions, and (c) a
unique solution.

1) x;+ x, —X3=2 () x,+ x, + x3=2
X; +2x, +x3=3 2xy+3x, +2x;3=5
X+ xp+(€?—5)x5=c. 2x; +3x,+ (¢t = Dx;=c+ 1.
(iil) x, + x,=3 (iv) ex; 4+ x;—2x3=0
X+ (2 —8)x,=c. Xy +ex;+3x3=0

2%y +3x,+cx3=0.
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Examples
31 Examples of matrix notations.
e 1 2 31 ay= 1, a;,= 2, ay3=3,
- -2 -1 0 ' a21=—2, a22=—1, a23=0.

5 6 b,y =5, by,=6,
B=17 81]. by =7 b,,=8,
9 10 by =9, bs,=10.
A is a 2x 3 matrix, B is a 3 x 2 matrix.

32 Examples of matrix addition.
(12 3],[3 2 1] [4 4 4
(4 5 6] |2 3 4] [6 810f

(—132 4 1 1 3 4 3
4 0 11+]3 2 —2]: 7 2 —1].

L -2 1 5§ 1 2 -3 -1 3 2

[ 6 1 3 2 3 -1
-1 21 —-11 =-3}|=1]-2 5}.
L 3 4 0 1 3 3

I:an ay, ag3 I:bu bys blS] [au'*'bu a;;+by, a13+b13]
+ = .
ay; Gz 4ap; byy by by ay +byy ay+by; az3tbas

33 Examples of scalar multiples.
5 6 56 10 12 56
7 8|+17 8|=1]|14 16=2}7 8
L9 10 9 10 18 20 9 10

=2}

(1271 76 12
3 4:|=[18 24]'
3 -2 173 -1 4
2 1 —4]{1 1 —2}'

o=

34 More scalar multiples.
-1 1 -1 3 2
LetA=[ 9 4]andB= 4 0 1
-2 15
Then
-2 2 -7 7 4
24= TA= , 14= 2
R R

&
=
[=%
N
o
I
[ o]
o
(]
|
(¥,
=]
il
!
("]
(=4
o
|
w
=
-]
I
AN il =
v~ O v
b= tnfe a0
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Matrices and algebraic
vectors

A matrix is nothing more than a rectangular array of numbers (for us this
means real numbers). In fact the arrays which were part of the shorthand
way of carrying out the Gaussian elimination process are matrices. The
usefulness of matrices originates in precisely that process, but extends far
beyond. We shall see in this chapter how the advantages of brevity gained
through the use of arrays in Chapters 1 and 2 can be developed, and how
out of this development the idea of a matrix begins to stand on its own.

An array of numbers with p rows and g columns is called a p x g matrix
(‘p by ¢ matrix’), and the numbers themselves are called the entries in the
matrix. The number in the ith row and jth column is called the (i, j)-entry.
Sometimes suffixes are used to indicate position, so that a;; (or b;;, etc.) may
be used for the (i, j)-entry. The first suffix denotes the row and the second
suffix the column. See Examples 3.1. A further notation which is sometimes
used is [a;;],.,- This denotes the p x g matrix whose (i, j)-entry is a;;, for
each i and j.

Immediately we can see that there are extremes allowed under this
definition, namely when either p or g is 1. When p is 1 the matrix has only
one row, and is called a row vector, and when g is 1 the matrix has only one
column, and is called a column vector. The case when both p and g are 1 is
rather trivial and need not concern us here. A column vector with p entries
we shall call a p-vector, so a p-vector is a p x 1 matrix.

Addition of matrices (including addition of row or column vectors) is
very straightforward. We just add the corresponding entries. See Examples
3.2. The only point to note is that, in order for the sum of two matrices (or
vectors) to make sense, they must be of the same size. To put this precisely,
they must both be p x g matrices, for the same p and gq. In formal terms, if A
is the p x g matrix whose (i, j)-entry is a;; and B is the p x g matrix whose
(i,j)-entry is b;; then A+ B is the p x g matrix whose (i, j)-entry is a;;+b;;.
Likewise subtraction: A — B is the p x g matrix whose (i,j)-entry is a;; — b;;.

ij>
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35 Multiplication of a matrix with a column vector. Consider the equations:
2x, — X, +4x3=1
X;+3x,;—2x,=0
—2x1+ Xx3—3x3=2.

These may be represented as an equation connecting two column vectors:

2x; — x,+4x; 1
X;+3x,-2x3 | =] 0
—=2x;+ x,—3x; 2

The idea of multiplication of a matrix with a vector is defined so that the left-hand
vector is the result of multiplying the vector of unknowns by the matrix of
coefficients, thus:

2 -1 4 X, 2%, — x,+4x;
1 3 -2 x, | = Xy +3x,—2x,
-2 1 -3 X3 2%, 4+ x;—3x;

In this way the original set of simultaneous equations may be written as a matrix
equation:

2 -1 4 Xy 1
1 3 -2 x, =10
-2 1 -3 X3 2
3.6 Examples of simultaneous equations written as matrix equations.

3x; —2x,= 1 3 =-2x ] | 1
dx, + x,=-2 4 x| | =2[
X, +X,+x3=6 [1 1 I:I il _[6:'
X; —X;—x3=0 i -1 -1 X:Z; 0
3x, =2x,=0 3 -2 0
x;+ x,=5 11 [‘]: 51.
—x, +2x,=4 -1 2]L* 4
37 Multiplication of a column vector by a matrix.
(1 27[x, | [ x:i+2x;
(3 4] x,| [3x+4x, ]
[T 2[5 [ s+12]_[17
3 4]l6] [15+24] [39]
1 2 1] X1 [ X +2%,+ x3:|
x| = .
-1 =3 2 xj —x; —3x,+2x,

111 2 2-1-2 -1
[—1 2 1] [—1 =|-2-2-2[=}]-6|.
31 35 1-2 6-1-6 -1
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In Examples 3.3 we see what happens when we add a matrix to itself.
Each entry is added to itself. In other words, each entry is multiplied by 2.
This obviously extends to the case where we add a matrix to itself three
times or four times or any number of times. It is convenient, therefore, to
introduce the idea of multiplication of a matrix (or a vector) by a number.
Notice that the definition applies for any real number, not just for integers.
To multiply a matrix by a number, just multiply each entry by the number.
In formal terms, if A is the p x g matrix whose (i, j)-entry is a;; and if k is any
number, then kA is the p x g matrix whose (i, j)-entry is ka;;. See Examples
34,

Multiplication of a matrix with a vector or with another matrix is more
complicated. Example 3.5 provides some motivation. The three left-hand
sides are taken as a column vector, and this column vector is the result of
multiplying the 3 x 3 matrix of coefficients with the 3 x 1 matrix (3-vector)
of the unknowns. In general:

a;; ay; Ay Xy Q31X +ay2X;+0a;3X3
az; a3; Qaz; Xy | = | G31% +A33X5+a33X;
as; Qiz; dsz; X3 a3;1X; +a3;X;+0a33X3

Note that the right-hand side is a column vector. Further illustrations are
given in Examples 3.6. This idea can be applied to any set of simultaneous
equations, no matter how many unknowns or how many equations. The
left-hand side can be represented as a product of a matrix with a column
vector. A set of p equations in g unknowns involves a p x g matrix multiplied
to a g-vector.

Now let us abstract the idea. Can we multiply any matrix with any
column vector? Not by the above process. To make that work, there must
be as many columns in the matrix as there are entries in the column vector.
A p x g matrix can be multiplied on the right by a column vector only if it
has g entries. The result of the multiplication is then a column vector with p
entries. We just reverse the above process. See Examples 3.7.



26 Examples

38 Evaluate the product
" 1 2 3111 -1
2 3 4 3 -2].
L4 5 61 L-1 1

The product is a 3 x 2 matrix. The first column of the product is

1 2 31 1 F1+ 6-3 4
2 3 4 31, ie. 2+ 9-41, ie. 7
L4 5 61 L-1 L4+15-6 13
The second column of the product is

1 23 -1 (—1—— 4+3
2 3 4 -2, e —2— 6+4], ie.
4 56 1 L -4—-10+6

Hence the product matrix is
4 =2
7 —-4].
13 -8
39 Evaluation of matrix products.
(i) 1 21 0 -1 140 0+2 —1-2
i =
3 4|0 1 -1 340 0+4 -3-4
BE 2 -3
{3 4 -7y
. 2 1
(1) [1 ——1]l 1=[2—1 1+1]=[1 2].
[1 0 1] [0 0 l] [0+0+1 0+0+0 140

0 1 1 010 0+0+1 04140 0+0
1 10 1 00 04040 0+1+0 140

1 0 1
11 0}.
01 1

(i)

(iv)

— 1
O =
N O

|
e
W =
| '

i
—_

-1z 5

|

-2
—-41 .
-8

+0
o]

+0

0
2} 0+0-1+3 0+0+1-2
1| {0+2+1+9 0+4—1—6
2
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Next we take this further, and say what is meant by the product of two
matrices. The process is illustrated by Example 3.8. The columns of the
product matrix are calculated in turn by finding the products of the left-
hand matrix with, separately, each of the columns of the right-hand matrix.
Let A be a p x ¢ matrix whose (i, j)-entry is a;;, and let B be a g x r matrix
whose (i, j)-entry is b;;. Then the product AB is a p x r matrix whose (i, j)-
entry is Y #_; azb,;, i.e. the sum of all the products of the entries in the ith
row of 4 with the respective entries in the jth column of B.

Rule

A p x g matrix can be multiplied on the right only by a matrix with g rows.
If Ais a px g matrix and B is a g x r matrix, then the product ABisapxr
matrix.

There is a useful mnemonic here. We can think of matrices as dominoes.
A p,q domino can be laid next to a g,r domino, and the resulting ‘free’
numbers are p and r.

Examples 3.9 illustrate the procedures in calculating products. It is
important to notice that given matrices can be multiplied only if they have
appropriate sizes, and that it may be possible to multiply matrices in one
order but not in the reverse order.

The most important case of matrix multiplication is multiplication of a
matrix by a column vector, so before we move on to consider properties of
the general multiplication, let us recap the application to simultaneous
equations. A set of simultaneous equations containing p equations in g
unknowns can always be represented as a matrix equation of the form

Ax=h,
where A is a p x ¢ matrix, x is a g-vector whose entries are the unknowns,
and A is the p-vector whose entries are the right-hand sides of the given
equations.

Rules
() A+B=B+A4
(i) (A+B)+C=A4+(B+C)
(ii) k(A+B)=kA+kB
(iv) (kA)B=k(AB)
(v) (AB)C= A(BC)
(vi) A(B+C)=AB+ AC
(vii) (A+B)C=AC+BC,
where 4, B and C are any matrices whose sizes permit the formation of
these sums and products, and k is any real number.
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3.10 Show that for any p x ¢ matrix 4 and any g x r matrices B and C,
A(B+C)=AB+ AC.

Let a;; denote the (i, j)-entry in A4, for 1<i<pand 1<j<gq, let b; denote the (i, j)-

entryin B,for 1<i<qgand 1<j<r,andlet¢;denote the (i, j)-entry in C,for 1<i<q

and 1<j<r. The (k,j)-entry in B+ C is then b,;+c,;. By the definition, then, the

(i, j)-entry in A(B+C) is )

q

Z aik(bkj+ckj)a

k=1

q q
Z agby i+ Z A Cyj»
k=1 k=1

which is just the sum of the (i, j)-entries in AB and in AC. Hence
A(B+C)=AB+ AC.

KNSl The commutative law fails for matrix multiplication. Let

A_12
13 40

and let

11
B= .
o
Certainly both products AB and BA exist. Their values are different, however, as we
can verify by direct calculation.

o T L
el i H: 4

and
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Rules (i), (ii), (iii) and (iv) are easy to verify. They reflect corresponding
properties of numbers, since the operations involved correspond to simple
operations on the entries of the matrices. Rules (v), (vi) and (vii), while
being convenient and familiar, are by no means obviously true. Proofs of
them are intricate, but require no advanced methods. To illustrate the
ideas, the proof of (vi) is given as Example 3.10.

There is one algebraic rule which is conspicuously absent from the above
list. Multiplication of matrices does not satisfy the commutative law. The
products AB and BA, even if they can both be formed, in general are not the
same. See Example 3.11. This can lead to difficulties unless we are careful,
particularly when multiplying out bracketed expressions. Consider the
following:

(A+B)A+B)=AA+ AB+BA+ BB,
$O
(A+B)*= A2+ AB+BA+B?,
and the result must be left in this form, different from the usual expression
for the square of a sum.

Finally a word about notation. Matrices we denote by upper case letters
A,B,C,...,X,Y, Z,.... Column vectors we denote by bold-face lower
case letters a, b, ¢, ..., x, , z, . . .. Thankfully, this is one situation where
there is a notation which is almost universal.

Summary

Procedures for adding and multiplying vectors and matrices are given,
together with rules for when sums and products can be formed. The
algebraic laws satisfied by these operations are listed. It is shown how to
write a set of simultaneous linear equations as a matrix equation.
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Exercises

Exercises

. In each case below, evaluate the matrices A+ B, Ax, Bx,3A4,1B, where 4,

B and x are as given.
. |1 2 |1 -1 x
R E R R AN
. 30 -2 1 1
o o[ 3] ]
1 =1 2 0 0 -1 X,
(i) 4= 10 1 1{, B= 1 2 2], x=[x2].
2 3 -3 -3 | 0 X5
1
1

-2 -1 1 1 1 2
(iv) A= 0 1 41, B= 1 l], x=[ 1].
6 -2 1 111 -1

. Evaluate all the following products of a matrix with a vector.

1 2 =27T11 [ 2 27 1
(1) [ 3 -1 —1} 2}. (ii) 1 =2 [1]
-2 2 01L3 L 0 BJ
0 [2 2]
A 1 -2
1 -1 . 1
(1it) [2 _2 0 ? } (iv) 0 3 [1]
1 3 0
. 0 0]
ﬂ
1 1 1 11 2 [1 0 O -2
) [1 1 11 1] 3] (vi) 0 1 0][ 1].
1 1111 4 L0 0 1 3
5

' 1 0 2
2 -1
c=|?% 3 0, D=1 2.
0 0 3 3 —a
2 10

Evaluate the products AB, AD, BC, CB and CD. Is there any other
product of two of these matrices which exists? Evaluate any such.
Evaluate the products 4(BC) and (4B)C.

. Evaluate the following matrix products.

2 1
. 3 4
) [—11][ }
3 515 2
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Coo1 o0 oap [220
. 2 3 -1 1 0
@ 1y 1 2 -1 ] X _(3) ! (2)
1 4 3 -3 1\ 1 1 1
o 1]]1 2
(1ii) [1 0][3 4].

o 1 1 1
(iv) [% _i 2] [—2 3 3] [—1].
- 1 2 -1 1
5. Obtain A3—242+ A—1, when

11 2
A=|1 1 11].
211

6. How must the sizes of matrices A and B be related in order for both of the
products AB and BA to exist?
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4.1

42

43

44

The following mat

Examples

Examples

Properties of a zero matrix.

0 07 [a b
o ofc
[0 0fa b]_
oo o]

a
c
fa b0 0
c 4]0 }
a
d

<

b ¢
e

1 07 fa b
10 1jjc d
[fa b1 O
c djjo 1

.

I
Il

L

_0 O

=

F v I
Q@ AN OO~
> T O — Ot

a
=[C
00
[o 0

00
00

a b
¢ d

O = O T o

i)
]
|

Properties of an identity matrix.

|

[ a
ARk
k g
0 a
0]=[d
1 g

Examples of diagonal matrices.

The following matrices are upper triangular.

1
ERE
L O

[ 1

Nk

3 0] 3 0
0 2|” [0 o)
(6 0 0
0o -2 0],
0 0 1
1.0 0 0
0 20 0
0030
Lo 0 0 4

-1 0
0 -1

2 00
0 20
0 0 2

S O 3o O

s

|

TSN e

1 37 [2 1
-2 2, 0 1
0 -1 L0 O
rices are lower triangular.
0 07 [2 0
-2 01, 11
1 -1 L0 1

0
0
0

O -

oo
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Special matrices

Example 4.1 shows the properties of a zero matrix. This form of special
matrix does not raise any problems. A matrix which consists entirely of Os
(a zero matrix) behaves just as we would expect. We normally use 0 (zero)
to denote a zero matrix, and 0 to denote a zero column vector. Of course we
should bear in mind that there are many zero matrices having different
sizes.

From matrices which act like zero we turn to matrices which act like 1. A
square matrix which has 1s down the diagonal from top left to bottom right
(this diagonal is called the main diagonal) and has Os elsewhere is called an
identity matrix. Example 4.2 shows the property which such matrices have,
namely

Al=14=A4,.
where [ is an identity matrix and A is a square matrix of the same size.
Notice that identity matrices are square and that there is one p x p identity
matrix for each number p. We denote it by I, or just I if the size is not
important.

There are other sorts of special matrix which are distinctive because of
their algebraic properties or because of their appearance (or both). We
describe some types here, although their significance will not be clear till
later.

A diagonal matrix is a square matrix which has zero entries at all points
off the main diagonal. One particular sort of diagonal matrix is an identity
matrix. Other examples are given in Examples 4.3. Of course we do not
insist that all the entries on the main diagonal are non-zero. We might even
consider a zero matrix to be a diagonal matrix. The sum and product of two
p x p diagonal matrices are p x p diagonal matrices.

The main diagonal divides a square matrix into two triangles. A square
matrix which has zeros at all positions below the main diagonal is called an
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4.5 Sums and products of triangular matrices.

(i) A sum of upper triangular matrices is upper triangular.

[ 1 1 3 210 3 2 3
0 -2 2]+ 0 1 1]: 0 -1 3].
L0 0 -1 0 0 1 0 0 0

(ii) A product of upper triangular matrices is upper triangular.
( 1 1 37 !’2 1 0] [ 2 2 4]

0 -2 2 01 1]=]0 =2 01.

lo o —1llo o 1] lo o -1l

(ii)) A product of lower triangular matrices is lower triangular.

[ 1 0 07 (2 0 07 [ 2 0 0]
2 =2 0 I 1 0|=]2 -2 0].
L 3 1 IJ 10 1 1 L7 2 1

4.6 Examples of transposed matrices.

[1 2]T_[1 3] [1 2 3]T_[;_ ‘S‘J
34| |2 4 |4 5 6 3 e

1 117
[1 2 3]"= [2] and [2} =[1 2 3],
3 3

301 217 3 1 2
11 —al={1 1 -a
2 -4 -1 2 -4 -1

so this matrix is symmetric.

s

4.7 A sum of symmetric matrices is symmetric. Let A and B be symmetric
matrices with the same size. Then AT=A4 and BT=B.

(A+B)"=A"+B"=A4+B,
and so 4+ B is symmetric. Here is a particular case:

3 1 2 1 2 -1
A=11 1 —4{, B= 2 2 0}.
2 -4 -1 —1 0 3

Then A and B are both symmetric, and -
4 3 1
A+B=1]3 3 —41,
1 -4 2

which is symmetric.
A product of two symmetric matrices is generally not symmetric. With 4 and B as

above,
3 8 3
ABz[ 7 4 —131,

5 —4 -5

which is not symmetric.
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upper triangular matrix. A square matrix which has zeros at all positions
above the main diagonal is called a lower triangular matrix. A matrix of one
or other of these kinds is called a triangular matrix. Such matrices have
convenient properties which make them useful in some applications. But
we can see now, as in Example 4.5, that sums and products of upper (lower)
triangular matrices are upper (lower) triangular. Notice that when the GE
process is applied to a square matrix the result is always an .upper
triangular matrix.

The main diagonal also plays a part in our next kind of special matrix. A
square matrix is symmetric if reflection in the main diagonal leaves the
matrix unchanged. In formal terms, if 4 is any matrix whose (i, j)-entry is
a;;, the transpose of A (denoted by AT") is the matrix whose (i, j)-entry is a;;,
i.e. the matrix obtained by reflecting in the main diagonal. 4 is symmetric if
AT = A. Notice that the rows of AT are the columns of 4, and vice versa. See
Example 4.6. Such matrices figure prominently in more advanced work,
but we can see now (Example 4.7) that sums of symmetric matrices are
symmetric, but products in general are not. There are three important rules
about transposes.




36 Examples

48 Let Aand B be any p x p matrices. Then (AB)T = BTA7. To see this, let the
(i, j)-entries of A4 and B be denoted by a;; and b; respectively. The (i, j)-
entry in (AB)T is the (j,i)-entry in AB, which is

14
Y, apby.
k=1
The (i, j)-entry in BTAT is
4
Y biay,
k=1

where bj, is the (i,k)-entry in BT and aj; is the (k,j)-entry in A™. Now from the
definition of the transpose, we have

bi=b,; and aj;=ay.
Hence the (i, j)-entry in BTAT is

P X p

Y buay, ie. Y apby,

k=1 k=1
which is the same as the (i,j)-entry in (AB)". This proves the result.

49 Examples of skew-symmetric matrices.
() 0 2 r_ 0 -27 02
! 2 0] |2 of |2 0]
0 1 21T 10 -1 -27 0 1 2
(i1) -1 0 -3 =11 0 Jj=-1-1 0 -3
-2 3 0 2 -3 04 -2 3 0
4.10 Examples of orthogonal matrices.
1 1 [’ 1 1
() Let A= 715 715 . Then AT= 715' 715 ,
2 2 V2 2
)
ATA= %+% 1-% = 1.0
=% i+i] [0 1)
and

Wit W= i

12

3 3

2 —1|. ThenB'=
2 2

3 3

b= Wi Wi
[ SRR NN

Then by direct evaluation we verify that BTB=] and BBT=1.
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Rules
(i) (ANHT=4.
(i) (A+B)'=A"+B",
(iii) (AB)"=B"A4".

The last of these is important because of the change of the order of the
multiplication. Remember this! The first two are quite easy to justify. The
third is rather intricate, though not essentially difficult. A proof is given in
Example 4.8.

The transpose of a matrix 4 may be related to 4 in other ways. A skew-
symmetric matrix is a matrix for which 4"= — 4. See Example 4.9. An
orthogonal matrix is a square matrix for which ATA=1I and 44"=1. See
Example 4.10.
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411 Examples of elementary matrices.
{ 0 1 0]
E=11 0 01,
L0 0 1)
obtained by interchanging the first two rows of an identity matrix.
1 0 0]
E,=10 1 0 J ,
L0 0 5
obtained by multiplying the third row of an identity matrix by 5.
[1 3 0]
E;=|0 1 0],
L0 0 1

obtained by adding three times the second row to the first row in an identity matrix.

4.12 Let

1 2 3
A=14 5 6].
7 8 9

Check the effects of premultiplying 4 by E,, E, and E, above.
[0 1 0] [ 1 2 31 14 5 6
EA=]1 0 0 4 5 6f=11 2 3].

o o 11L7 8 9l .789]
(The first two rows are interchanged.)
[1 0 071 2 1 2 37
E,A={0 1 O 4 5 4 5 6].
L0 0 51L7 8 91 135 40 451
(The third row is multiplied by 5.)
r' 1 3 07 [1 2 37 [13 17 217

AN W
I

EsA=|0 1 0| |4 5 6]=]|4 5 6].
o o 1JLl7 8 9] L7 8 o9l

(Three times the second row is added to the first row.)
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Examples 4.11 illustrate the notion of elementary matrix. An elementary
matrix is a square matrix which is obtained from an identity matrix by the
application of a single elementary row operation (see Chapter 1). The
significance of such matrices lies in the following. Let E be obtained from a
p % p identity matrix by application of a single elementary row operation,
and let A be any p x ¢ matrix. Then the product matrix EA is the same as
the matrix obtained from A by applying the same elementary row
operation directly to it. Examples 4.12 illustrate this. Our knowledge of the
GE process enables us to say: given any square matrix A, there exists a
sequence E,, E,, ..., E, of elementary matrices such that the product
E,E,_,...E,E, Aisanupper triangular matrix. These elementary matrices
correspond to the elementary row operations carried out in the course of
the GE process. For an explicit case of this, see Example 4.13.

Another important property of elementary matrices arises from the
preceding discussion. Let E be an elementary matrix, obtained from an
identity matrix by application of a single elementary row operation.
Certainly E can be converted back into the identity matrix by application
of another elementary row operation. Let F be the elementary matrix
corresponding (as above) to this elementary row operation. Then FE=1.
The two row operations cancel each other out, and the two elementary
matrices correspondingly combine to give the identity matrix. It is not hard
to see that EF = I here also. Such matrices are called inverses of each other.
We shall discuss that idea at length later. Examples 4.14 show some
elementary matrices and their inverses. The reader should check that their
products are identity matrices. Also, from the definition of an orthogonal
matrix it is apparent that an orthogonal matrix and its transpose are
inverses of each other.

Summary

Various special kinds of matrices are described: zero matrices, identity,
diagonal, triangular, symmetric, skew-symmetric, orthogonal and
elementary matrices. Some algebraic properties of these are discussed. The
transpose of a square matrix is defined, and rules for transposition of sums
and products are given. The correspondence between elementary matrices
and elementary row operations is pointed out.
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4.13 Find a sequence E,, E,, ..., E, of elementary matrices such that the
product E.E,_, ... E, A is an upper triangular matrix, where

0 1 -3 2
A=|1 2 1 1].
1 1 4 2

We proceed with the standard GE process, noting the elementary matrix which
corresponds to each row operation.

[0 1 -3 27

1 2 1 1

L 1 1 4 2]

[ 1 2 1 17 i terch [0 1 0

inter
0 | _3 9 change rows =l1 0 0]
L1 1 4 2 ] L0 0 1
(1 2 1 17 ( 1 00
0 1 -3 2 E,= 011
L0 -1 3 1l (3)—( L -1 0 1
[ 1 2 1 17 [1 0 07
0 1 -3 2 Ey=10 1 0
L0 0 0 31 (3)+(2) L0 1 1]
[ 1 2 1 17 [1 O 01
0 1 -3 2 E,={0 1 0}.
| 0 0 0 11 (3)=+3 L0 0 4.
Hence
1 2 1 1
E,E;E,E,A=1}0 1 -3 2] .
0 0 0 1
414 Elementary matrices and their inverses.

0 1 0] [0 1 O

1 0 0 has inverse 1 0 0.

L0 0 1 L0 0 1

[1 0 0] [1 0 O

0 1 0 has inverse 01 0

L0 0 51 L0 0 ¢

(1 3 07 [1 -3 0

01 0 has inverse 0 1 o].

L0 0 1. L 0 0 0

The way to see these is to consider the effect of premultiplying by first one and then
the other of each given pair. The second ‘undoes’ the effect of the first.



4. Special matrices 41

Exercises
. Evaluate A%, A%, and A*, where

( 1 1 17

A=10 1 1 }.
L0 0 1

Carry out the same calculations for the matrix
1 0 0 W

B=]1 1 0}4.
L1 1 1]

. Let I be the 3 x 3 identity matrix. Show that A = A4 whenever Aisa 2 x 3
matrix. Does this hold for any p x 3 matrix A, irrespective of the value of
p? Likewise, is it the case that /B= B for every 3 x g matrix B?

. In each case below, evaluate AB, where A and B are as given.

[1 -1 2 0 1 1
(i A=]0 2 1], B=|0 2 -2].
L0 0 -1 0o o 1
[ 1 2 1 x,
(i) A= {0 1 —2], B= xz]
‘ 0o o0 1 X3
[ 1 0o 0 -1 00
(i) A= 2 -1 0|, B= 1 2 0].
L —2 1 3 211

0
(v) A=[1 2 3], B=[1 1
11

. Evaluate the product
1 0 0
[x; x2 x3] |-1 1 0.
3 -2 1
Hence find values of x;, x, and x5 for which the product is equal to
[-1 4 1]
. Let A be any square matrix. Show that 4+ AT is a symmetric matrix.
Show also that the products A¥4 and AAT are symmetric matrices.

. Which of the following matrices are symmetric, and which are skew-
symmetric (and which are neither)?

[1 2 12 0 2 12 I 0
_23’—23’[—20’31’0—1’
[ —1 1 0 1 -2

2]. -1 0 3],

-1 2 -3 0

0
0 2
1
1 2 0 2 3 1
-2 0o -11, 3 0 —1],
1

[ 2
L0 1 1 -1 2
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10.

11.

Exercises

1 01 1 0 -1 1 1 0
[0 1 0], 0 1 O], [1 0 —1].
1 01 1 0 1 0 -1 -1

. Show that the following matrices are orthogonal.

1 2
NCEENVEE B
2 17

J5 Js

wmil sl w
LW kil »

. Show that a product of two orthogonal matrices of the same size is an

orthogonal matrix.

. Describe in words the effect of premultiplying a 4 x 4 matrix by each of the

elementary matrices below. Also in each case write down the elementary
matrix which has the reverse effect.

[1 0 0 0 1 0 2 0
(i) 0010 (i) 0100
0100 0010
L0 0 0 1 L0 0 0 1
- 1 0 0 O [ 1 0 0 0
(i) 0100 (iv) 0 -2 0 0
-3 010 0 0 1 0
. 0 0 0 1 L O 0 0 1

Apply the Gaussian elimination process to the matrix

0 1 3
A=[1 2 —1],
2 3 1

noting at each stage the elementary matrix corresponding to the row
operation applied. Evaluate the product T of these elementary matrices
and check your answer by evaluating the product T4 (which should be
the same as the result of the GE process).

Repeat Exercise 10, with the matrix

I -1 2 1
A= | -1 3 0 1 1.
2 1 1 -1
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Examples

51 Show that the inverse of a matrix (if it exists) is unique.

Let AB=BA =1 (so that B satisfies the requirements for the inverse of 4).
Now suppose that AX=XA=1I. Then

BAX=(BA)X=IX=X.
Also

BAX=B(AX)=BI=B.
Hence X = B. Consequently B is the only matrix with the properties of the inverse
of A.

5.2 An example of a matrix which does not have an inverse is

)

There is no matrix B such that
1 -1
[ o
To see this, let
B=[a b]
c d
1 —1%Ya b a-—c b—d
[—1 I]I:c d:,z[—a+c —b+d:|.
This cannot equal

o)

forifa—c=1then —a+c¢=-1,not 0.

Then

53 Let A be a diagonal matrix, say A=[a;],, With a;;=0 when i#j.
Suppose also that for 1 <i<p we have a;#0 (there are no 0s on the main
diagonal). Then A is invertible.
To see this, we show that Bis the inverse of 4, where B=[b,]],, , is the diagonal
matrix with b; = 1/a,;, for 1 <i<p. Calculate the product 4B. The (i, i)-entry in AB
is

14
Z ayby;,
k=1

which is equal to a;b;;, since for k #i we have a;, = b,;=0. By the choice of b;;, then,
azb;=lforeachi,and so AB=1. Similarly BA =1. We are assuming the result that
a product of diagonal matrices is a diagonal matrix (see Example 4.4).
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Matrix inverses

At the end of Chapter 4 we discovered matrices E and F with the property
that EF =1 and FE=1, and we said that they were inverses of each other.
Generally, if A i1s a square matrix and B is a matrix of the same size with
AB=1T and BA=1, then B is said to be the inverse of A. The inverse of A4 is
denoted by A~*. Example 5.1 is a proof that the inverse of a matrix (if it
exists at all) is unique. Example 5.2 gives a matrix which does not have an
inverse. So we must take care: not every matrix has an inverse. A matrix
which does have an inverse is said to be invertible (or non-singular). Note
that an invertible matrix must be square. A square matrix which is not
invertible is said to be singular.

Following our discussion in Chapter 4 we can say that every elementary
matrix is invertible and every orthogonal matrix is invertible. Example 5.3
shows that every diagonal matrix with no zeros on the main diagonal is
invertible. There is, however, a standard procedure for testing whether a
given matrix is invertible, and, if it is, of finding its inverse. This process is
described in this chapter. It is an extension of the GE process.
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1 1 1
54 Let A=]|1 2 3] .
0 1 1
Find whether 4 is invertible and, if it is, find 4~ !.

First carry out the standard GE process on A, at the same time performing the
same operations on an identity matrix.

1 1t 111 0 0

1 2 3 0 1 0

0 1 1] 0 o 1

1 1 1|1 o o (10 0]
0 1 2 ]-1 1 0 @-() E=|-1 1 o0
o 1 1] 0 o 1 L o o 1l
1 1 1] 1 0 o 10 0]
0 1 2 |-1 1 o0 E,=] 0 1 o0
0 0 - 1 -1 1 3)-0Q) L 0 -1 1
11 1 0 0 1 0 07
0 1 2 |-1 1 o Es=] 0o 1 ol
0 0 1 l-1 1 -1 3)x-1 o 0 —1l

This is where the standard process ends. The matrix A’ referred to in the text is

1 1 1
0 1 2].
0 0 1

The process of finding the inverse continues with further row operations, with the
objective of transforming it into an identity matrix.

1 1 0 2 -1 1 (H)=03) [1 0 -1]
0 1 2 |-1 1 0 E,.=|0 1 o0
0 0 1 |-1 1 =1 Lo o0 1l
t 1 0 2 -1 1 1 0 07
0 1 0 1 -1 2 @-2x(3) Es=|0 1 =2
0 0 1 |[-1 1 -1 [0 0 1
0 0 1 0 -1 (H-Q) (1 -1 0]
0 1 0 1 -1 2 Es=|0 1 0
0 0 1 |[-1 1 =1 0 0 1l

The process has been successful, so A4 is invertible, and

1 0 -1
A= 1 -1 2.
-1 1 -1

Now check (just this once) that this is equal to the product of the elementary
matrices EgEsE E,E,E,. In normal applications of this process there is no need to
keep a note of the elementary matrices used.
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Example 5.4 illustrates the basis of the procedure. Starting with a square
matrix A, the GE process leads to an upper triangular matrix, say A'. In the
example, continue as follows. Subtract a multiple of the third row of A’
from the second row in order to get 0 in the (2, 3)-place. Next, subtract a
multiple of the third row from the first row in order to get 0 in the (1, 3)-
place. Last, subtract a multiple of the second row from the first row in order
to get 0in the (1, 2)-place. By the GE process followed by this procedure we
convert A4 into an identity matrix by elementary row operations. There
exist, therefore, elementary matrices E,, E,, ..., E; such that

I=EE, ,...E,E A
Nowifweset B=EE,_, ...E,E,, then wehave BA=1. We shall show that
AB=1 also. Let F,, F,, ..., F, be the inverses of E;, E,, ..., E;
respectively. Then
F,F,...F,=FF,...Fl
=F,F,...FEE,_,...E;EA
=[A=A,
since F,E,;=1, F,_,E, =1, ..., F,E, =1. Consequently,
AB=F,F,... FEE .. .E;E =1l
Hence B is the inverse of A. Our procedure for finding the inverse of 4 must
therefore calculate for us the product EE__, ... E,E,. This product can be
written as E.E,_, ... E,E,I, and this gives the hint. We convert 4 to I by
certain elementary row operations. The same row operations convert I into
A1 (if it exists). Explicitly,
if I=E,...E,A then A '=E ... El
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1 0 2
55 Find the inverse of the matrix [0 1 2 ] .

1 2 0
1 0 2 1 0 0
0 1 2 0 1 0
1 2 0 0 0 1
1 0 2 1 0 0
0 1 2 0 1 0
0 2 =2 —1 0 1 3)—-(1)
1 0 2 1 0 0
0 1 2 0 1 0
0 0 -6 -1 =2 1 (3)=-2x(2)
1 0 2 1 0 0
0 1 2 0 1 0
0o o0 Lot -t 3)+-6

(At this stage we can be sure that the given matrix is invertible, and that the process
will succeed in finding the inverse.)

1 0 0 i -3 L 1)-2x03)
0 1 0 |-5 3 3 @-2x0)
0o o 1|4 4 -

This is the end of the process, since the left-hand matrix is an identity matrix. We
have shown that

1o 2] 4 -3 3
o1 2| —[-4 4 %
120 5o
1 2 3
5.6 Find (if possible) the inverse of the matrix [ 11 2}‘
0 1 1
1 2 3 1 0 0
1 2 0 1 0
0 1 1 0 0 1
1 2 3 1 0 0
0 -1 -1 |[-1 1 0 -
0 1 1 0 0 1
1 2 3 1 0 0
0 1 11 =1 0 2)+-1
o t 1 ]lo o 1
1 2 3 01 0 0
0 1 1 1 -1 0
0 0 0 -1 1 1 (3)—-(2)
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The practical process for finding inverses is illustrated by Example 5.5.
Apply elementary row operations to the given matrix 4 to convertit to I.
At the same time, apply the same elementary row operations to I, thus
converting it into A~ (provided A~! exists, as it does in this example).
This shows how to find the inverse of a 3 x 3 matrix, but the method extends
to any size of square matrix. Apply elementary row operations to obtain
zeros below the main diagonal, as in the GE process, and, once this is
complete, carry on with the procedure for obtaining zeros above the main
diagonal as well. Remember that there is a simple way to check the answer
when finding the inverse of a given matrix 4. If your answer is B, calculate
the product 4B. It should be I. If it is not, then you have made a mistake.

What happens to our process for finding inverses if the original matrix 4
is not invertible? The method depended on obtaining, during the process,
the matrix A’ which had 1s on the main diagonal and Os below it. As we saw
in Chapter 2, this need not always be possible. It could happen that the last
row (after the GE process) consists entirely of 0s. In such a case the process
for finding the inverse breaks down at this point. There is no way to obtain
Os in the other places in the last column. Example 5.6 illustrates this. It is
precisely in these cases that the original matrix is not invertible. We can see
this quite easily. Suppose that the matrix A’ has last row all 0s. There exist
elementary matrices E,, E, ..., E, such that

A'=E,E,_, ... E,E,A.
Now suppose (by way of contradiction) that A is invertible. Then
AA™'=1.LetF,,F,,... F, betheinversesof E,, E,, ..., E, respectively.
Then

A(A~'F,F,...F)=(EE,_,...E,E,A)A"'F, ... F
=EE,_,...E,E|IF,...F,
=1

’
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Here the matrix A’ is

1 2 3
0 1 1],
0 00

and the process for finding the inverse cannot be continued, because of the zero in
the (3, 3)-place. The conclusion that we draw is that the given matrix is not
invertible.

5.7 Let 4 be a p x p matrix whose pth (last) row consists entirely of 0s, and let
X be any px p matrix. Show the product AX has pth row consisting

entirely of Os.
Let A=[a;],, ,, witha,;=0for 1<j<p. Let X =[x;],, ,. In AX the (p, j)-entry
is Y F_, aux,;. Buta, =0 for all k, so this sum is zero. Hence the pth row of AX

consists entirely of Os.

58 A formula for the inverse of a 2 x 2 matrix.

a b]! 1 d —b
[c d:| =ad—bcli-—c a]’
provided that ad —bc#0.
This is easily verified by multiplying out.

59 Show that if 4 and B are square matrices with AB=1, then A is invertible
and A" !'=B.

Suppose that AB=1I and A is singular. Then, by the discussion in the text, there is
an invertible matrix X such that X 4 has last row consisting of Os. It follows that
X AB has last row- consisting of 0s (see Example 5.7). But XAB= X, since AB=1.
But X cannot have its last row all Os, because it is invertible (think about the process
for finding the inverse). From this contradiction we may deduce that A is invertible.
It remains to show that A™!=B.

We have AB=1, and so

A YAB)=A"'I=A"",
ie. (A"'4)B=A""1,
ie. B=A"'.

Notice that from BA=1I we can conclude by the same argument that B is
invertible and B-'=A. From this it follows that A is invertible and A™'=
(B~H)"1=B.



5. Matrix inverses 51

Example 5.7 shows that such a product 4'X, for any matrix X, haslast row
all 0s,and so A'A~'F, ... F, has last row all 0s. But I does not. Hence the
supposition that A is invertible is false.

Example 5.8 gives a formula for the inverse of a 2 x 2 matrix, if it exists.
Example 5.10 is another calculation of an inverse.

Rule

A square matrix A is invertible if and only if the procedure given above
reaches an intermediate stage with matrix 4’ having ls on the main
diagonal and 0s below it. -

The definition of the matrix inverse required two conditions: B is the
inverse of Aif AB=1I and BA=1.1t can be shown, however, that either one
of these conditions is sufficient. Each condition implies the other. For a
part proof of this, see Example 5.9. In practice it is very useful to use only
one condition rather than two.

Next, a rule for inverses of products. Suppose that A and B are invertible
p % p matrices. Must AB be invertible, and if so what is its inverse? Here is
the trick: '

(AB)B™'A™")=A(BB~')A~! (rule (v) on page 27)
=AIA™!
=AA"1=1,
and
(B~'A™')YAB)=B (A 'A)B
=B !IB=1I.
Thus the matrix B~ !4 ™! has the required properties and, since inverses are
unique if they exist, we have:

Rule
If 4 and B are both invertible p x p matrices, then so is AB, and (4B)™ ! =
B l471L

(Take note of the change in the order of the multiplication.)

This rule extends to products of any number of matrices. The order
reverses. Indeed, we have come across an example of this already. The
elementary matrices E,, E,, ..., E, had inverses F,, F,, ..., F,
respectively, and

(ErEr—l e EZEI)(FIFZ e Fr—lFr)=Ia
and
(FIFZ ‘- ‘Fr—lFr)(ErEr—l T E2E1)=I’
so the inverse of E,E,_, ... E,E, is F,F, ... F,_,F,, and vice versa.
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5.10

Hence

Examples

Find the inverse (if it exists) of the matrix

2 1 1
1 0 —-1].
1 3 2

2 1 1 1 0 0

1 0 -1 0 1 0

1 3 2 0 0

1 4 4 4 0 0 (1)=2

1 0 -1 0 1 0

1 3 2 0 0 1

O 1 0 o0

0 -3 -3 |-+ 1 0 @-O

o 3 3 |-3 o 3)-)
13 4|3 0 0

0 1 3 1 =2 0 (2)+ -3

0 5 3 |-4 o0

1 3 502 0 0

0 1 3 1 =2 0

0 0 -6 |-3 5 I 3)-3x(2)
1+ 514 0 0

0 1 3 1 =2 0

0 0 1 4 -3 -% (3)+-6

(And here we can say that our matrix is invertible.)

Loy 0% & & 0-3x0)

0 1 1 |-3 3 1 @-3x0)

0 0 1|3 -3 -

1o 0|4 d -k ()-ix

0o 1 0 |-4 3 4

0 0 1|4 -§ -

2 1 17t b
too -1 -4 4 4
L3 2 b -3 -4
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Summary

The definitions are given of invertible and singular matrices. A procedure is
given for deciding whether a given matrix is invertible and, if it is, finding
the inverse. The validity of the procedure is established. Also a rule is given
for writing down inverses of products of invertible matrices.

Exercises

1. Find which of the following matrices are invertible and which are singular.
Find the inverses of those which are invertible. Verify your answers.

L2 Tt o0 o =2 -3
) _1 3]. (it) [3 1], (1ii) [ 4 6:|'
12 1 -1 2
i) | o 1 ] v |-1 2 -1}
L0 0 1 -3 1
o1 1 2 -1
wi) | 1o . (vii) [ 2 2 -af.
[ 11 0 -1 0 3
' [ 1 -2 —1 (1 -1 47-
(viii) 0 3 4. ) |2 3 3]
[ 3 1 1 [3 1 8
-2 3 -2 3 111
( 1 0 2 1 W | 2L 0 3
e Xl 3 0 -2 5
- 3 0 0 4 [ 1 -1 -1 -3

2. Find the inverse of the diagonal matrix

a 00
[0 b 0],
0 0 ¢

where a, b and ¢ are non-zero.

3. Let A, B and C be invertible matrices of the same size. Show that the
inverse of the product ABC is C™!B~ 147!,

4. Let x and y be p-vectors. Show that xyT is a p x p matrix and is singular.
Pick some vectors x and y at random and verify that xpT is singular.

5. Show that, for any invertible matrix A,
(A" HTAT=] and ATAYHYT=1.
Deduce that A7 is invertible and that its inverse is the transpose of 47!,
Deduce also that if A is symmetric then A~! is also symmetric.

6. Let X and A be p x p matrices such that X is singular and A is invertible.
Show that the products X4 and AX are both singular. (Hint: suppose

that an inverse matrix exists and derive a contradiction to the fact that X
does not have an inverse.)



54 Examples

Examples

6.1 Illustrations of linear dependence.

o LD LMY
o IR CHCHEHE
o LD = L3006

6.2 A list of two non-zero 2-vectors is LD if and only if each is a multiple of the

TN

ay

ther. Let
other e[b

[a
], bz] be two non-zero 2-vectors.

1] |92
First, suppose that they constitute a LD list. Then there exist numbers x, and x,,

not both zero, such that

(o =lin]lo)

Without loss of generality, say x, #0. Then since [

Zl:laéﬂ, we must have x,#0
1

also. Consequently,

[‘;i]r(xz/x,)[‘;z] and [‘;j=—(xl/x2)[‘;i],

1.e. each is a multiple of the other.
Conversely, suppose that each is a multiple of the other, say

HENERHITN
L e GIED =

6.3 Show that any list of three 2-vectors is LD. To show that

a a a .
2] ) isLD,
b, by | L bs
we seek numbers x,, x, and x,, not all zero, such that
a, a, a; 0
x +Xx +Xx = >
l[bl] ZI:bZ:I 3[b3] I:O]
a;x, +a,x;+ayxy;=0
byx, +byx,+byxy;=0{
In other words, we seek solutions other than x;=x,=x;=0 to this set of
simultaneous equations. These equations are consistent (because x; =x,=x,=0

do satisfy them), so by the rules in Chapter 2 there are infinitely many solutions.
Thus there do exist non-trivial solutions, and so the given list of vectors is LD.

Then
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Linear independence and
rank

Examples 6.1 illustrate what is meant by linear dependence of a list of
vectors. More formally: given a list of vectors vy, . . . , v, of the same size (i.c.
all are p x 1 matrices for the same p), a linear combination of these vectors is
a sum of multiples of them, i.e. x,v, +x,0,+ - + x,0;, where x,, ..., x,
are any numbers. A list of vectors is said to be linearly dependent
(abbreviated to LD) if there is some non-trivial linear combination of them
which is equal to the zero vector. Of course, in a trivial way, we can always
obtain the zero vector by taking all of the coefficients x,, . . ., x,tobe 0. A
non-trivial linear combination is one in which at least one of the coefficients
is non-zero.

A list of vectors of the same size which is not linearly dependent is said to
be linearly independent (abbreviated to LI).

Example 6.2 deals with the case of a list of two 2-vectors. A list of two
non-zero 2-vectors is LD if and only if each is a multiple of the other.
Example 6.3 deals with a list of three 2-vectors. Such a list is alwa ys LD.
Why? Because a certain set of simultaneous equations must have a solution
of a certain kind.
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64 Find whether the list

(HR RN

is LI or LD.
Seek numbers x,, x, and x;, not all zero, such that

1 27 1 0
xg 12 +x; | -2 4+x; 1] = [0} ,

5 4] 4 0
Xy +2x,+ x3=0
2%y —2x,+ x3=0

5x; +4x,+4x,=0
Apply the standard GE process (details omitted):

eI

From this we conclude that the set of equations has infinitely many solutions, and
so the given list of vectors is LD.

6.5 Find whether the list
1 2 1
[ 2 ] ’ 2 , 4 ] )
-1 0 3
is LI or LD.

Following the same procedure as in Example 6.4, we seek a non-trivial solution

to
12 17 [x 0
[2 ) 4”]_ 0]
-1 0 3} 1Lx 0

(here writing the three simultaneous equations as a matrix equation). Apply the
standard GE process:

1 210 1 2 1 0
2 2 4 0|-»1{60 1 -1 0f.
-1 0 3 0 0 0 1 0

From this we conclude that there is a unique solution to the equation, namely x, =
x,=x,=0. Consequently there does not exist a non-trivial linear combination of
the given vectors which is equal to the zero vector. The given list is therefore LI.

6.6 Find whether the list

(2] )G GD

is LI or LD.
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For the moment, however, let us see precisely how linear dependence
and simultaneous equations are connected. Consider three 3-vectors, as in
Example 6.4. Let us seek to show that these vectors constitute a list which is
LD (even though they may not). So we seek coefficients x,, x,, x5 (not all
zero) to make the linear combination equal to the zero vector. Now the
vector equation which x,, x, and x; must satisfy, if we separate out the
corresponding entries on each side, becomes a set of three simultaneous
equations in the unknowns x,, x, and x;. We can use our standard
procedure (the GE process) to solve these equations. But there is a
particular feature of these equations. The right-hand sides are all Os, so, as
we noted eatrlier, there certainly is one solution (at least), namely x; = x,=
x3=0. What we seek is another solution (any other solution), and from our
earlier work we know that if there is to be another solution then there must
be infinitely many solutions, since the only possibilities are: no solutions, a
unique solution, and infinitely many solutions. What is more, we know
what form the result of the GE process must take if there are to be infinitely
many solutions. The last row must consist entirely of Os. In Example 6.4 it
does, so the given vectors are LD. In Example 6.5 it does not, so the given
vectors are LI

Because the right-hand sides of the equations are all Os in calculations of
this kind, we can neglect this column (or omit it, as we customarily shall).
Referring to Chapter 2 we can see:

Rule
Let v, ..., v, be a list of p-vectors. To test whether this set is LD or LI,
form a matrix A with the vectors v, ..., v, as columns (so that Aisa pxq

matrix) and carry out the standard GE process on A. If the resulting matrix
has fewer than g non-zero rows then the given list of vectors is LD.
Otherwise it is LI.

Example 6.6 shows what happens with a list of four 3-vectors. It will
always turn out to be LD. The matrix after the GE process is bound to have
fewer than four non-zero rows. This illustrates a general rule.
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Here we reduce the working to the bare essentials. Apply the GE process to the

matrix
1 1 2 1
-1 2 1 2 1.
5 -1 2 7

We obtain (details omitted) the matrix

1 1 2 1
0 1 1 l].
0 0 1 -4

This matrix has fewer than four non-zero rows, so if we were proceeding as in the
previous examples and seeking solutions to equations we would conclude that there
were infinitely many solutions. Consequently the given list of vectors is LD.

6.7 Itlustrations of calculations of ranks of matrices.
[ 1 2 —-17
(1) 2 2 -4 has rank 2.
| -1 0 3
GE process:
! 2 ~1]7 1 2 -1
2 2 —-4]1-1]0 1 11,
[ -1 0 3] 0 0 0

a matrix with two non-zero rows.

1 2
ii k2.
(i) [_2 1] has ran

GE process:
1 2 1 2
- (two non-zero rows).
-2 1 01
! 1 ] ‘
(i) 2 2 - has rank 3.
L —1 7 2 ]
GE process:
[ 1 1 1 27 1 1 1 2
2 2 -1 1] - 10 1 2 4| (three non-zero rows).
=1 7 5 2] 0 0 1 1
. [1 1 1]
(iv) 1 2 3 has rank 3.
L0 1 11
GE process:
1 1 17 1 1 1
1 2 31-10 1 2 (three non-zero rows).
L0 1 11 0 0 1

1 2 -1
v) 2 4 =21  hasrank .
-1 =2 1
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Rule
Any list of p-vectors which contains more than p distinct vectors is LD.

Following Chapter 5, we have another rule.

Rule

If a matrix is invertible then its columns form a LI list of vectors.
(Recall that a p x p matrix is invertible if and only if the standard GE

process leads to a matrix with p non-zero rows.)

Another important idea is already implicit in the above. The rank of a
matrix is the number of non-zero rows remaining after the standard GE
process. Examples 6.7 show how ranks are calculated. It is obvious that the
rank of a p x g matrix is necessarily less than or equal to p. Itis also less than
or equal to q. To see this, think about the shape of the matrix remaining
after the GE process. It has Os everywhere below the main diagonal, which
starts at the top left. The largest possible number of non-zero rows occurs
when the main diagonal itself contains no 0s, and in that case the first g
rows are non-zero and the remaining rows are all Os. )

Consideration of rank is useful when stating criteria for equations to
have particular sorts of solutions. We shall pursue this in Chapter 8.

In the meantime let us consider a first version of what we shall call the
Equivalence Theorem, which brings together, through the GE process, all
the ideas covered so far.
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GE process:
1 2 -1 1 2 -1
2 4 -2]-10 0 OJ (one non-zero row).
-1 =2 1 0 0 0
6.8 Illustration of the Equivalence Theorem.

1 2 3
0] A=[1 1 2].
1 -1 1

The GE process leads to

1 2 3
0 1 1].
0 0 1

From this we'can tell that the rank of A4 is 3, that the columns of 4 form a LI list,and
that the process for finding the inverse of A will succeed, so A is invertible.

1 110
. 1 101
(i) A=11 0 1 1
0 1 11
The GE process leads to

1 1 1 07
0 1 0 -1
0 0 1 —-1
0 0 0 1

Consequently the rank of 4 is 4, the columns of A forma LIlist,and 4 isinvertible.

1 3 -1]
(iii) A= | -2 1 =5].
4 5 3

The GE process leads to

1 3 -1
0 1 -1].
0 0 0

Consequently the rank of 4 is 2 (not equal to 3), the columns of 4 form a list which is
LD (not LI), and the process for finding the inverse of A will fail, so 4 is not
invertible. Also the equation Ax =0 has infinitely many solutions, so all conditions
of the Equivalence Theorem fail.
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Theorem
Let A be a px p matrix. The following are equivalent.
(i) A is invertible.
(i) The rank of 4 is equal to p.
(ii1) The columns of 4 form a LI list.
(iv) The set of simultaneous equations which can be written Ax=0 has
no solution other than x=0.

The justification for this theorem is that in each of these situations the
GE process leads to a matrix with p non-zero rows. See Examples 6.8.

In Chapter 7 we shall introduce another equivalent condition, involving
determinants.

Summary

The definitions are given of linear dependence and linear independence of
lists of vectors. A method is given for testing linear dependence and
independence. The idea of rank is introduced, and the equivalence of
invertibility with conditions involving rank, linear independence and
solutions to equations is demonstrated, via the GE process.
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Exercises

Exercises

. Find numbers x and y such that

Ll -]

. For each given list of vectors, find whether the third vector is a linear

combination of the first two.

G @ CHEIED
o ([ LMD
o (LD

. Show that each of the following lists is linearly dependent, and in each

case find a linear combination of the given vectors which is equal to the
zero vector.

T - R
o (L)

3
1
6
[' 1
oy (|73 [

. Find, in each case below, whether the given list of vectors is linearly

dependent or independent.

CETD @ (1
([7]’[5]’[(‘3])
o (L) L))
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0 3 -2
LB
-1 1 0
1 3 1
o (BHEM)
: —1 7 5

1 -1 2 0

. 1 0 1 1
(vii) 2 |’ 1P 1] |o
1 —1 -2 0

5. Calculate the rank of each of the matrices given below.
[ 3 6 -1 0 3 2 1 10
-1 =2 L 124 |3 -1 |2 o)
[ -2 1 3 1 -3 2 1 -2 1
1 1 —1] , [5 1 31, 1 1 30,
L 1 4_ 0 9 5 4 1 2 4
[ O
1
1

3 =2 1 2 1 2
s 2] [ =,
1 0 0 2 3 6

1 -1 2 07 1 -1 2 o0 3
10 1 1 1 0 1 1 4
2 1 1 OJ’ 2 1 1 0 2
L1 -1 =2 0 1 -1 =2 0 =2
(—1 2 1 1 2 1 -1 2

0 1 2 -1 1 2 1 2

-1 1 -1t 2013 1 -1 o0
-1 3 3 0 0 2 1 4

6. Let xand y be 3-vectors. Then xy" is a 3 x 3 matrix which is singular (see
Chapter 5, Exercise 4). What is the rank of xp™? Try out some particular
examples to see what happens. Does this result hold for p-vectors, for
every p? ’
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7.1

(i)

(iii)

(iv)

(vi)

Examples

Examples

Evaluation of 2 x 2 determinants.
1 2

= Yrwen iy eVl

N O O = ] O h =
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Determinants

A 2 x 2 determinant is written
a b
c d|
What this means is just the number ad —bc. Examples 7.1 show some
simple 2 x 2 determinants and their values. Determinants are not the same
thing as matrices. A determinant has a numerical (or algebraic) value. A
matrix is an array. However, it makes sense, given any 2 x 2 matrix 4, to
talk of the determinant of A, written det A4.

If A=|:a b:l then det A= a

c d c
The significance and usefulness of determinants will be more apparent
when we deal with 3 x 3 and larger determinants, but the reader will find
this expression ad — bc occurring previously in Example 5.8. Also it may be
instructive (as an exercise) to go through the details of the solution (for x
and y) of the simultaneous equations

ax+by=h

cx +dy=k}'

A 3 x 3 determinant is written

b
4 =ad —bc.

a, a; a;

b, b, byl.

€y C2 C3
What this means is

a,bycs+a,byc, +aszbic,—abse, —azbics—asb,e.

Again, this is a number, calculated from the numbers in the given array. It
makes sense, therefore, to talk of the determinant of A where 4isa 3x3
matrix, with the obvious meaning.
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7.2 (i) Evaluate the determinant

1 2 3
0 1 2f.
1 0 3

Here let us use the first method, with an extended array.

1 2 3 1 2
0\l><2><0/1
1/0><3><1\0

The value is 3+4+0—-3-0-0, i.c. 4.
(ii) Evaluate the determinant

1 -2 -1
I -1 =3
2 -1 9

Array:
1 -2 -1 1 =2
1 \—1><—3>< 1 /—1
K XN
2 -1 9 2 -1

Value is: —94+12+1-2-3—-(—18), ie. 17.

73 Eva]uatidn of determinants using expansion by the first row.
@) i _i _é IR O L I b !
i - -3|= —(- -
2 1 9 -1 9 2 9 2 -1
=(—12)+2(15)—(1)=17.
P Y . P T
ii = —
1 0 3 0 3 1 3 1 0
=3-2(-2)+3(—-1)=4
(iii) I(1) 21 ? 0 ! 1 1+0 2
111 = -
|1 [ ol Lo 0
=0—1(—1)+0=1
(iv) (1) ? é 11 0 20 0+10 1
iv = —
11 0 1 0 10 11

=0-2(0)+ 1(— )= — 1.
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How are we to cope with this imposing formula? There are several ways.
Here is one way. Write down the given array, and then write the first and
second columns again, on the right.

\><></
/><><\

Add together the products of the numbers on the left-to-right arrows, and
subtract the products of the numbers on the right-to-left arrows. A quick
check with the definition above shows that we obtain the correct
expression. Example 7.2 shows this method in operation.

The second method is called expansion by a row or column, and it is the
key to the development of 4 x 4 and larger determinants so, although this
method may seem more complicated, it is important and should be
understood.

a, a, a
bl b, by by by by b,
by, by, b3|=a, —a, +a, .

¢, ¢ ¢ ¢ ¢ ¢
¢, ¢ cCs 2 €3 1 €3 1 G2

Notice the form of the right-hand side. Each entry in the first row is
multiplied with the determinant obtained by deleting the first row and the
column containing that particular entry. To see that this gives the correct
value for the determinant, we just have to multiply out the right-hand side
as
ay(byc3—bsey) —ay(bycs —bsey) +as(byc, —bycy)

and compare with the original definition. When using this method, we must
be careful to remember the negative sign which appears in front of the
middle term. See Example 7.3.

There are similar expressions for a 3 x 3 determinant in which the
coefficients are the entries in any of the rows or columns. We list these
explicitly below.

a, daj a, a, a, a
—b, +b, —by ! (second row).
¢, C3 ¢y €3 ¢ ¢,
a, d, a, as| . fa, a, .
cy —c, +c3 (third row).
b, b, b, b, b, b,
b, b a, a a, a
3 2 .
a,| ? —b, N4l ? (first column).
Cy C3 €y C3 b, by
b, b, a, a a, a
1 3
—a +b —cy ! second column).
2 2 2
¢ €3 € €3 b, b,
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7.4 Evaluation of determinants using expansion by a row or column.
1 1 1
. 1 1 1 1 11
@) 2 4 -1 =1’ '—(—1)’ ’+0[ }
1~ 0 4 -1 2 -1 2 4
=-5-3=-8.
(Expansion by the third row.)
2 1 1
. 11 21 2 1
(i1) 1 0 -1 =(—1)‘ +0 ‘—(—1)‘ ‘
1 3 2 32 1 2 13
=—(-1)+5=6.
(Expansion by the second row.)
3 0 1
-2 1 3 1 31
(i) -2 -1 1 =0‘ ‘+(—1)‘ ‘—2’ '
2 2 4 2 -4 2 -4 -2 1
= —(—14)-2(5)=4.
(Expansion by the second column.)
1 23
1 2 2 3 2 3
(iv) 0 1 2l=1 ‘——Ol |+l’ ‘
10 3 0 3 0 3 1 2
=3+1
=4,
(Expansion by the first column.)
7.5 (i) Show that interchanging rows in a 3 x 3 determinant changes the sign

of the value of the determinant.
We verify this by straight algebraic computation.

a, a, a

I I S T T B

by b, by|=a, —a, +a; ,

¢, ¢ c, ¢ ¢, ¢

cl CZ C3 2 3 1 3 1 2

bi by by b, b |by b3 [b b

a, a, az|=-a, +a, —a, .
¢, ¢ c ¢, ¢

¢ € € 2 3 1 €3 1 2

(The second determinant is evaluated by the second row.)

Similar calculations demonstrate the result for other possible single interchanges
of rows.

(ii) Show that multiplying one row of a 3 x 3 determinant by a number k has the
effect of multiplying the value of the determinant by k.

Again, straight computation gives this result.

dp Ay Gy a, a, a, as a, a,
kb, kb, kby|=—kb, +kb, —kb,
c, ¢
¢ ¢ C3 2 G € G ¢ €
a, 4a; a, ds a; a;
=k —bl +b2 _b3
¢, C3 ¢, C3 ¢ €y
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d; 4
€ € by b,
Again, justification of these is by multiplying out and comparing with the
definition. It is important to notice the pattern of signs. Each entry always
appears (as a coefficient) associated with a positive or negative sign, the
same in each of the above expressions. This pattern is easy to remember
from the array

a a;

) (third column).

+ - 4
Examples 7.4 give some further illustrations of evaluation of 3x3
determinants. Expansion by certain rows or columns can make the
calculation easier in particular cases, especially when some of the entries
are zeros.

Now let us try to connect these ideas with previous ideas. Recall the three
kinds of elementary row operation given in Chapter 1, which form the basis
of the GE process. How are determinants affected by these operations? We
find the answers for 3 x 3 determinants.

Rule
(i) Interchanging two rows in a determinant changes the sign of the
determinant.
(ii) Multiplying one row of a determinant by a number k has the effect
of multiplying the determinant by k.
(ili) Adding a multiple of one row in a determinant to another row does
not change the value of the determinant.

Proofs: (1) and (ii) are quite straightforward. See Examples 7.5. The third
requires a little more discussion. Consider a particular case, as follows.
a; a, a;
- |by+key by+ke, bytke,

<y c, C5
a, a a, a
=—(by+ke))[ 2 l+byt+key) 3
€ C3 1 €3
a,  a,
—(b3+kC3) ! 2
¢ €
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a; a, a,
by b, by
€ € €3 ’

Similar calculations demonstrate the result when a multiplier is applied to
another row.

=k

7.6 Show that a 3 x 3 determinant in which two rows are identical has value
Zero.
Expansion by the other row gives the result:

9 @ 4 a; da; ajg a, a;
a; a; az|=¢ ~C, +cs
¢ ¢y a, das a, 3 a; a;
=¢,(0) —c,(0) + ¢5(0)
=0.
a, a; das
a, a a, a a;, a
by b, b, =—b1a2 a3+b2a1 a3 —b3a1 2
a, a, a, 2 43 1 43 1 42
= —b,(0)+b,(0)—b,(0)
=0.

(And similarly when the second and third rows are identical.)

7.7 Evaluate the 4 x 4 determinant
2 0 1 -1
1 1 -1 0
0 3 1 30
-2 1 -1 1
Expand by the first row, obtaining
1 -1 0 'L —1 0
213 1 3 —OI 0 1 3
1 -1 1 -2 1 1
1 10 1 1 —1|
+1{ 0 3 3{—(-1)y O 3 1
-2 1 1 -2 1 -1
_y 1 3+3 3 N 33 0 3
RS TR | tot (-2 1
1 -1 1 1
(2 2 )

(the determinants being evaluated by the first row, the first row and
the second row respectively)

=2(4+0)+(0—-6)+(—9-3)

= —10.
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a, a, a, a, a, a,
=—b, +b, ~b,
cy C3 ¢, €3 )
a; as a; a3 a, a4
+k[ —¢, +c, —c3
¢y €3 C; €3 ¢y €,
a, a, a
1 72 U3+ k(—cylaes —asc,)
= b1 bz b3
+ca(aic3 —aze ) —esla e, —ayc))
¢, €3 €3
a a, 4a;
= bl bz bi |,
€ € C3

since the expression in brackets is identically zero (work it out!). This
process works in exactly the same way for the other possible cases.
Incidentally, we have come across another result of interest in the course of
the above.

Rule
A determinant in which two rows are the same has value zero.

Proof: Notice that in the previous proof the expression in brackets is in fact
the expansion by the second row of the determinant

a, a, a;
¢, € C3],
€y €3 €3

and this is seen above to equal zero. Other possible cases work similarly.
See Examples 7.6.

We shall not pursue the detailed discussion of larger determinants. A

4 x 4 determinant is defined most easily by means of expansion by the first
row:

a, a, as a,

b2 b3 b4 bl b3 b4
by by by b, =a,lc; ¢3 cu|—azle; ¢y ¢y
¢ €3 €3 ¢
1o T e d, dy d, d, dy d,
d, d, dy d,
by b, b, by b, b,
+azlc, ¢; cy|—agicy ¢y csf.
d, d, d, d, d, d,

See Example 7.7. Expansions by the other rows and by the columns
produce the same value, provided we remember the alternating pattern of
signs
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78 Evaluation of determinants of triangular matrices.
a b ¢ e
@ . {0 d ej=a =adf. (Expanding by the first column.)
00 f S
a;, a, a; a,
.. 0 by, by b, by by b,
(i1) =a, |0 ¢y c¢,4| (by first column)
0 0 ¢ ¢4 0 0 d
0 0 0 d, 4
=a,(b,c3d,) (by part (i)
=a,b,cqd,.

(i) Larger determinants yield corresponding results. The determinant of any
triangular matrix is equal to the product of the entries on the main diagonal. You
should be able to see why this happens. A proper proof would use the Principle of
Mathematical Induction. (We have dealt here with upper triangular matrices.
Similar arguments apply in the case of lower triangular matrices.)

7.9 Evaluation of determinants using the GE process.
1 3 -1

) 2 0 1.
1 1 4

Proceed with the GE process, noting the effect on the determinant of each row
operation performed.

1 3 -1 Leaves the determinant unchanged.
0 -6 3 2)-2x(1)

0 -2 5 (3)-)

1 3 -1 Divides the determinant by —6.

0 I -3 2+-6

0 -2 5

1 3 —1 Leaves the determinant unchanged.
0 1 -4

0 0 4 (3)+2x(2)

This last matrix is upper triangular, and has determinant equal to 4. Hence the
original determinant has value 4 x (—6), i.e. —24.

_ 0111
(ii) 1 o1 1y
110 1
1110
GE process as above:
1 0 1 1| interchange Changes the sign of the determinant.
0 1 1 1 rows
1 1 0 1
1 1 1 0
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+ - + -
-+ - +
+ - + -
-+ - 4+
Larger determinants are defined similarly.

The above rules hold for determinants of all sizes. Indeed, corresponding
results also hold for columns and column operations in all determinants,
but we shall not go into the details of these. (Elementary column operations
are exactly analogous to elementary row operations.)

It is apparent that evaluation of large determinants will be a lengthy
business. The results of this chapter can be used to provide a short cut,
however. If we apply the standard GE process, keeping track of all the row
operations used, we end up with a triangular matrix, whose determinant is
a multiple of the given determinant. Evaluation of determinants of
triangular matrices is a simple matter (see Example 7.8), so here is another
use for our GE process. Some determinants are evaluated by this procedure
in Examples 7.9.

Now recall the Equivalence Theorem from Chapter 6. Four different sets
of circumstances led to the GE process applied to a px p matrix ending
with a matrix with p non-zero rows. The argument above demonstrates
that in such a case the px p matrix concerned must have a non-zero
determinant. The upper triangular matrix resulting from the GE process
applied to a p x p matrix has determinant zero if and only if its last row
consists entirely of Os, in which case it has fewer than p non-zero rows.

Here then is the complete Equivalence Theorem.

Theorem
Let A be a px p matrix. The following are equivalent.
(i) A is invertible.
(i) The rank of A is equal to p.
(i) The columns of A form a LI list.
(iv) The set of simultaneous equations which can be written Ax =0 has
no solution other than x=0.
(v) (This is the new part.) The determinant of A4 is non-zero.

We end this chapter with some new notions, which are developed in
further study of linear algebra (but not in this book).

In the expansion of a determinant by a row or column, each entry of the
chosen row or column is multiplied by a signed determinant of the next
smaller size. This signed determinant is called the cofactor of that particular



1 0 1 1 Determinant unchanged
0 1 1 1

0 1 -1 0 3)—(1)

0 1 0 -1 @-()

1 0 1 1 Determinant unchanged.
0 1 1 1

0 0 -2 -1 (3)—-(Q

0 0 ~1 -2 @-()

1 0 1 1 Divides the determinant by —2.
0 1 1 1

0 0 1 4 3)y+-2

0 0 -1 -2 :

1 0 1 1 Determinant unchanged.
0 1 1 1

0 0 1 4

0 0 0 -3 W+

This last matrix has determinant equal to —3. Hence the original determinant has
value (—3)x (~2),i.e. 3.

7.10 Find adj A, where

2 1 1
A= 1 —1 1 0].
1 -1 1

A, = 1 0'=1’ A= — -1 0=1,
-1 1 11
I PR
/‘122—21 il=1» Azy=— _i=3,
IS Y

R

So

Ay Ay Ay, 1 -2 -1
adjA= | A, A, Ay, =1 1 —1].

Ays Azy Ass 0 3 3
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entry. We illustrate this in the 3 x 3 case, but the following ideas apply to
determinants of any size. In the determinant

a, a, as
bl b2 b3 ’
€ €y C3

the cofactor of a, is
b, bs
€2 €3

the cofactor of a, is
by b
¢ €3

’

and so on. If we change notation to a double suffix and let
ay;; Gy Gq3
A= lay ay ax;l|.,
a3y 43z Qas;
then there is a convenient notation for cofactors. The cofactor of a;; is
denoted by A;;. For example:

) az, 43 ay dz;
A= and A4,,=-—

dyp; dss asy Q33

In this notation, then, we can write

det A=ay; Ay +a12A412+a;334;3,
which is the expansion by the first row, and similarly for expansions by the
other rows and the columns. Note that the negative signs are incorporated
in the cofactors, so the determinant is represented in this way as a sum of
terms.

The adjoint matrix of 4 (written adj A) is defined as follows. The (i, j)-
entry of adj 4 is A;. Note the order of the suffixes. To obtain adj 4 from 4,
replace each entry a;; of 4 by its own cofactor 4;;, and then transpose the
resulting matrix. This yields adj 4. See Example 7.10. This process is
impossibly long in practice, even for matrices as small as 3 x 3, so the
significance of the adjoint matrix is mainly theoretical. We can write down
one (perhaps surprising) result, however.

Theorem
If A is an invertible matrix, then

1 .
A“=detAadJA.
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7.11 Show that if A is an invertible 3 x 3 matrix then
A1 =1/(detA) adj A.
Let A=[a;];, 3. The adjoint of 4 is the transposed matrix of cofactors, so the
(k,j)-entry in adj A is Aj. Hence the (i, j)-entry in the product A(adj A) is

3
Y agAy, 1€ a; Ajy +a;,4; +ad;; (%)
k=1

Now if j=1i then this is equal to
a4y Ay + a4 +a;34;3,
which is the value of det 4 (expanded by the ith row). So every entry of A(adj 4) on
the maip diagonal is det 4. Moreover, if j# i, then the (i, j)-entry in A(adj A) is zero.
This is because the expression (*) then is in effect the expansion of a determinant in
which two rows are identical. For example, if i=2 and j=1:
{92, az; dy;
dy1 dy; 4;;
a3y A3y daj
Hence all entries in A(adj A) which are off the main diagonal are zero. So
detA 0 0 7>
Afadj A)= 0 detAd 0 = (det-A4)I.
0 0 det4d )

a1 Ay +azA1,taz34,3= =0.

It follows that
A(1/(det A)adj A)=1.
(The supposition that A is invertible ensures that det 4#0.)
Consequently (see Example 5.10), we have the required result:
A~ 1= 1/(det A)adj A. "~
The above argument can be extended to deal with the case of a p x p matrix, for )
any value of p.

~
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Proof: See Example 7.11. See also Example 5.8.

Finally, an important property of determinants. We omit the proof,
which is not easy. The interested reader may find a proof in the book by
Kolman. (A list of books for further reading is given on page 146.)

Theorem
If A and B are p x p matrices, then

det(AB) = (det A)(det B).

Summary

Definitions are given of 2 x2 and 3 x 3 determinants, and methods are
described for evaluating such determinants. It is shown how larger
determinants can be defined and evaluated. The effects on determinants of
elementary row operations are shown. The application of the GE process
to evaluating determinants is demonstrated, and it is used to show that a
square matrix is invertible if and only if it has a non-zero determinant.
Cofactors and the adjoint matrix are defined. The theorem on the
determinant of a product of matrices is stated.

Exercises

1. Evaluate the following determinants.

21 =1 =2 B -5 @ -2
‘3 =2/ ’—3 -4 0 11 o 0”
4 2 |-2 -1 3 =2 j0o 1
Is —4f ‘—3 2|’ 2 0 I3 —51'

2. Evaluate the following determinants (by any of the procedures described
in the text for 3 x 3 determinants),

01 1 3 1 3 0 0 1
10 1, |-2 -1 0}, |-2 1 21,
110 1 1 1 1 4 —6
1 23 4 5 1 1 1 -1
4 5 6f, |1 I —1], {4 5 1],
78 9 3 2 2 3 2 2
2 4 -6 3 0 3 2 =2 3
-1 -2 3. |1 1 I, |1 0 4].
1 1 4 -2 0 -2 0 1 1
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Exercises

. Evaluate the following 4 x 4 determinants.

2 0 1 -1 0 3 1 -2
-1 1 0 3 2 2 =2 1

0 2 1 |1 0 1 ol

3 3 1 -1 0 2 -3 3

. Let A be a 3 x 3 skew-symmetric matrix. Prove that det 4=0. Is this true

for all skew-symmetric matrices?

. Using the fact that, for any square matrices A and B of the same size,

det(AB)=(det A)(det B), show that ifeither 4 or Bis singular (or both are)
then AB is singular. Show also that if 4 is invertible then det(4~')=
1/(det A).

. Let A be a 3 x 3 matrix, and let k be any real number. Show that

det(kA) = k(det A).

. Let Abea square matrix such that A*=0. Show that det A=0, so that 4 is

singular. Extend this to show that every square matrix A which satisfies
A"=0, for some n, is singular.

. Evaluate det A and adj A, where

011
A=l1 O 1].
110

Check your answers by evaluating the product A(adj A).
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Examples

8.1 By finding the ranks of appropriate matrices, decide whether the following

set of equations has any solutions.
Xy +3x,+2x3= 3
=X+ x;+2x3=-3
2x, +4x,—2x,= 10.
1 3 2 1 3 2 3
A= -1 1 2|, [dik]=] -1 1 2 -31].
2 4 =2 2 4 -2 10
The'GE process yields (respectively)

1 3 2 1 3 2 3
0 1 1] 0 1 0]
0 0 1 0 0 1 -1

The rank of A is 3, the rank of [A}k] is 3, so there do exist solutions.

—

82 Examples of ranks of augmented matrices.
0 1 2 =3

(i) [Aih]=[ 1 -1 0 —2].
3 -2 2 1

The GE process leads to

1 -1 0 -2
0 1 2 =31,
0 0 0 1

so the rank of 4 is 2 and the rank of [A4}hA] is 3.

(i} (Arising from a set of four equations in three unknowns.)
| 1 4
0 2 2 6
2 3 -1 8

-1 2 0 -1

The GE process leads to

[41K]=

1 -1 1 4
o 1 1 3
o o 1 ¥)

0 0 0 0

so the rank of A4 is 3 and the rank of [Aih] is 3.
(iii) (Arising from a set of four equations in three unknowns.)

1 1 1 1

‘ 3 4 —1 =2
[4ik])= -1 0 2 1
0 2 1 0

The GE process leads to

1 1 1 1
0 1 -4 -5
0 0 1 1
0 0 0 1
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Solutions to simultaneous
equations 2

We have developed ideas since Chapter 2 which are applicable to solving
simultaneous linear equations, so let us reconsider our methods in the light
of these ideas. Recall that a set of p equations in ¢ unknowns can be written
in the form Ax=h, where A is the p x g matrix of coefficients, x is the g-
vector of unknowns and 4 is the p-vector of the right-hand sides of the
equations. Recall also that there can be three possible situations: no
solution, a unique solution or infinitely many solutions.

Example 8.1 illustrates the criterion for deciding whether there are any
solutions. Let [ A} k] denote the augmented matrix obtained by adding  as
an extra column to A4 ([A}hk] is the matrix on which we carry out the GE
process). As we saw in Chapter 2, the equations are inconsistent if and only
if the last non-zerc row (after the GE process) consists entirely of Os except
for the last entry. Consider what this means with regard to the ranks of the
matrices A and [A;k]. The GE process applied to [ 4} k] is identical to the
GE process applied to A, as far as the first ¢ columns are concerned. In the
above situation, then, the rank of 4 is less than the rank of [ 4} k], since the
last non-zero row after the GE process on [ 4} k] corresponds to a row of Os
in the matrix obtained from A by the GE process. We therefore have:

Rule
The equation Ax=h has a solution if and only if the rank of [A}A] is the
same as the rank of 4.

Examples 8.2 provide illustration of the different cases which arise.

Notice the special case of homogeneous simultaneous equations, that is,
the case when A=0. As we observed before, such a set of equations must be
consistent, because a solution is obtained by taking every unknown to be
zero. A moment’s thought should convince the reader that here the rank of
[A;k] is bound to be the same as the rank of A4.
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Here the rank of 4is 3 and the rank of [ 4} A] is 4, so the set of equations would have
been inconsistent.

83 Illustrations of the equation Ax= A, with A singular.

I 0 3 5
(i) [4ik]=|-2 5 -1 o].
-1 4 1 4
The GE process applied to A:

[ 1 0 3 1 03
-2 S —-1]|-101 1 (A is singular).
L —1 4 1 000
The GE process applied to [A}A]:
[ 1 0 3 5 1 035
-2 5 -1 0O|-10 1.1 2].
L —1 4 1 4 0001
In this case there would be no solutions, since the ranks of A and [ A} k] are unequal.

1 -1 3 -4
(ii) [Air]=| 2 3 1 7] .

4 3 5 5
The GE process applied to A:

1 -1 3 1 -1 3
2 3 1| - [0 1 -1 (A is singular).

L4 3 5 0 0 0
The GE process applied to [Ah]:

1 -1 3 -4 1 -1 3 —4
2 3 1 71 - [0 1 -1 31].
L4 3 5 5 0 0 0 0

In this case there would be infinitely many solutions. The ranks of 4 and of [A44]
are the same, but less than 3.

84 Solution involving two parameters.
1 -1 3 -2
[4ik]= 2 =2 6 —-4]1.
-1 1 3 2
The GE process applied to [A}h] leads to

1 -1 3 -2
0 0 0 0f].
0 0 0 0

X, -2
To solve the matrix equation [ X, ] = l:—4 ] we have, in effect, only the single
X3 2
equation
Xy —X;+3x3=—-2.
Introduce parameters x, =t and x; =u, and substitute to obtain x, =t —3u—2 (the
method of Chapter 2).
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Next, given a set of equations which are known to have a solution, what
criterion determines whether there is a unique solution or infinitely many?
Part of the answer is very easy to see.

Rule
If A is an invertible matrix then the equation Ax= A has a unique solution.
(The solution is x=A"'h.)

The other part of the answer is the converse of this, namely:

Rule
If A is a singular matrix then the equation Ax=h (if it has solutions at all)
has infinitely many solutions.

Proof: See Examples 8.3 for illustration. We must consider the GE process
and the process for inverting a matrix. If A is singular, then the GE process
applied to A yields a matrix whose last row consists entirely of 0s. The GE
process applied to [ A} h] may have last row all s or may have last row all Os
except for the last entry. In the latter case there are no solutions, and in the
former case we have to look at the last non-zero row in order to decide
whether there are no solutions, or infinitely many solutions. See the rule
given in Chapter 2.

Example 8.4 shows a particularly trivial way in which there can be
infinitely many solutions. In that case there are two parameters in the
solution. Example 8.5 (in which the matrix is 4 x4) shows that two
parameters can arise in the solution of non-trivial cases also. Can you
suggest a 4 x4 set of equations in which the set of solutions has three
parameters? All these are examples of a general rule.

Rule
If Ais a p x p matrix whose rank is r, and A is a p-vector, then the equation
Ax = hhas solutions provided that the rank of [4; ] is also equal to r, and
in that case the number of parameters needed to specify the solutions is
p—r. (This covers the case when r=p, A is invertible and there is a unique
solution which requires no parameters.)

A proof of this rule is beyond the scope of this book, but the reader
should be able to see intuitively why it happens by visualising the possible
outcomes of the GE process.

Rule

If Aisa p x g matrix with p>q, and Ais a p-vector, then the equation Ax=h
has a unique solution if and only if the rank of 4 and the rank of [A4;A] are
both equal to g, the number of columns of A4.
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8.5 Solution involving two parameters.

1 2 1 0 1

1 -1 =2 3 =2
-2 1 3 -5 3

0 2 2 =2 2
The GE process applied to [A}#] leads to

1 2 1 0 1
0 1 1 -1 1
0 0 0 0 0
0 0 0 0 0

Solving equations in this case would entail solving two cquations in four unknowns:

[A4]=

Xy +2x,+ X3 =1
X, +x3—x,=1
Introduce parameters x;=t, and x, = u, and substitute to obtain x,= 1 —t —u and
x;=—1+t-2u.

8.6 Uniqueness of solutions when A4 is not square. Listed below are four
possible results of applying the GE process (to the augmented matrix)
where A is a 4 x 3 matrix and A is a 4-vector.

1o -1 2 17
. 0 1 3 -3
(i) 0 0 1 -1}

(o0 o o ol

Here the ranks of A and of [A}k] are both 3, and there is a unique solution.

10 1 =37
. 0 1 1 0
(i) 0 0 1 2

Lo 0 o 1.

Here the ranks of A and of [A}k] are different, so there are no solutions.

(11 -2 2]
0 1 1 3
(1) 0o 0 0 1
L 0 0 0 04
Here the ranks of A and of [ A}k] are different, so there are no solutions.
[ 1 0 3 -2 1
(iv) 0 0 1 2
0 0 0 ol
L 0 0 0 0

Here the ranks of A and of [ 4!A] are both 2, so there are infinitely many solutions.
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To see this, consider what must be the result of the GE process if there is
to be a unique solution. The first ¢ rows of the matrix must have 1s in the
(1,1)-, 2,2), ..., (g,9)-places and Os below this diagonal, and all
subsequent rows must consist of Os only. This is just the situation when
both 4 and [A4}k] have rank equal to q. Example 8.6 illustrates this.

Notice that if A is a px ¢ matrix with p<gq, then the equation Ax=#h
cannot have a unique solution.

Summary

Rules are given and discussed regarding the solution of equations of the
form Ax=h. These involve the rank of 4 and the rank of the augmented
matrix [A}A], and whether (in the case where A is a square matrix) A4 is
invertible or singular.

Exercises

By considering the ranks of the matrix of coefficients and the augmented
matrix, decide in each case below whether the given set of equations is
consistent or not and, if it is, whether there is a unique solution.

(i 2x— y=1 (i) 3x—6y=>5
x+3y=11. x=-2y=1.

(i) —4x+3y=0 (iv) x+2y=0

12x -9y=0. 3x—4y=0.

V) x;— x;+42x;= 3 (vi) 2x,4+ x3=0
2xy —3x,— x3=-8 X, —3x,+2x;=0
2x, 4+ x4+ x3= 3. 2x,+ x,— x3=0.

(vii) —x;+2x,—4x;= 1 (viii) Xy +2x,+3x3=0
2%, +3x,+ x3=— Xy — X3—3x3=0

Xy — Xp+3x3= 2. =3x;+ x,—2x;=0.

(ix)  2x;+ x,+5x;=3 (x) x;—2x,— x3=2

—X; +2x, =1 X+ x3=0

Xy +2x,+4x;=3. X, + x3=2

Xy +3x,+4x,=2.

(xi) x,—2x,— x3=0 (xti) X +Xx,—x3= 8
X3+ x,=0 —X;+X,+x3= 2

X, + x3=0 X, —X;+x3= 0

Xy +3x,+4x3=0. X;+x;+x3=10.
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9.1
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(iii)

v

Examples

Examples
I
v Q
[ X
/
Y}
0 X
¢
]
- ;
0 X
vA 9
0 X
e
YA
> Y
0 X
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Vectors in geometry

Linear algebra and geometry are fundamentally related in a way which can
be useful in the study of either topic. Ideas from each can provide helpful
insights in the other.

The basic idea is that a column vector may be used to represent the
position of a point in relation to another point, when coordinate axes are
given. This applies in both two-dimensional geometry and three-
dimensional geometry, but to start with it will be easier to think of the two-
dimensional case. Let P and Q be two (distinct) points, and let 0X and OY
be given coordinate axes. Draw through P a straight line parallel to 0X
and through Q a straight line parallel to OY, and let these lines meet at N, as
shown.

©

b -]

The position of Q relative to P can now be specified by a pair of numbers
determined by the lengths and directions of the lines PN and NQ. The sizes
of the numbers are the lengths of the lines. The signs of the numbers depend
on whether the directions (P to N and N to Q) are the same as or opposite to
the directions of the coordinate axes OX and OY respectively.

We can thus associate with the (ordered) pair of points P,Q a column

vector [Z} where a and b are the two numbers determined by the above
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9.2
[
[N ?/ 03
b
Py Py
Ys
O4
(1] ?
— 2 — 2] — 2 — 2
PQ = » P0,= » P3Qs= » PaQu= -
1 1 1 1
9.3
Q:
\v\ 1
N P+
N, Ny
YA
176)
i X
Let 3
eto, =| |
1 L-1
p—
Then @, is the only point such that PQ, =v,.
Letoy=| >
e vz—L 5|
_)
Then Q, is the only point such that PQ,=wv,.
Letv,=| >
et vy = .
-2

—)
Then Q, is the only point such that PQy=v;.
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process. The notation I—J_é is used for this. Examples 9.1 give several pairs of
points and their associated column vectors, illustrating the way in which
negative numbers can arise. Note the special cases given in Examples
9.1(iv) and (v).

Example 9.2 shows clearly that for any given column vector, many
different pairs of points will be associated with it in this way. The diagram
shows the properties that the lines P,Q,, P,Q,, P;Q5, and P,Q, have
which cause this. They are parallel, they have the same (not opposite)
directions, and they have equal lengths.

A column vector is associated with a direction and a length, as we have
Just seen. Thus, given a (non-zero) column vector v and a point P, there will

always be one and only one point Q such that P_é—_—v. Example 9.3
illustrates this.
To summarise: N
1. Given any points P and Q, there is a unique column vector PQ
which represents the position of Q relative to P.
2. Given any non-zero column vector v, there are infinitely many

. . —)
pairs of points P,Q such that PQ=v.
3. Given any point P and any non-zero column vector v, there is a

__)
unique point Q such that PQ=v.
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9.4

o

N
-
<

»|

YA ——

2

— —
Here we treat only the case when the components of the vectors PQ and QR are all
positive. If any are negative, the diagrams will be different and the argument will
have to be modified slightly. Let

— [a, — [b,
PQ=|: :l and QR=|: J
az b,

Then |PN,|=a,, [N;Q|=a,, |ON,|=b,, [N,R|=b,. So |PN;|=|PN,|+|N,N,|=
|PN,|+|QN,|=a, +b,, and [N3R|=|N3N,|+|N,R|=|N,Q| +|N,R|=a, +b,.

9.5

POQRS is a parallelogram. Hence QR and PS have the same direction and the same
—-’

length. Consequently they are associated with the same column vector, i.e. JR=

PS. By the Triangle Law, PQ + QR = PR, so it follows immediately that PQ + PS=

—_—
PR.
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Where is the advantage in this? It is in the way that addition of column
vectors corresponds with a geometrical operation. Let P, Q and R be three
distinct points, and let

P_é=[al] and Q_I){=I:bl:|.

' a b,

Phe a, +b, =[a1 N b‘]:l?é+Q7){.
a,+b, a, b,

This rule is called the Triangle Law, and is of fundamental importance in
vector geometry. See Example 9.4 for a partial justification for it.

Then

Rule (The Triangle Law)
If POR is a triangle then

— - =
PQ+QR=PR.
The Triangle Law is sometimes expressed in a different form:

Rule (The Parallelogram Law)
If PQRS is a parallelogram then

- = >
PQ +PS=PR.

See Example 9.5 for a justification of this, using the Triangle Law.
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9.6

(i)

(i)

Examples

Position vectors.

A

Y

A(H

1,-2)

AGLD
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This relationship between algebraic vectors and directed lines is
dependent on having some origin and coordinate axes, but it is important
to realise that these laws which we have found are true irrespective of the
choice of coordinate axes. We shall develop ideas and techniques which
likewise are geometrical in character but which use the algebra of vectors in
a convenient way without the necessity to refer to particular coordinate
axes.

Before we proceed, we must take note of an important special case of all
this, namely when the reference point (the first of the pair) is the origin.

A

i
|
|
1
i
0 N X

The construction which yields the components of the column vector 0 A
mvolves thelines ON and N 4. But now it is easy to see that the components

of OA are just the coordinates of 4. See Example 9.6 for pamcular cases,
including cases with negative coordinates. The vector OA is called the

position vector of A. It is customarily denoted by r,. Every point has a
uniquely determined position vector.
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9.7

YA

Produce QP back so that |[PR|=|PQ|. Then the triangles PN,R and PN,Q are
congruent, so PN, and PN, have equal lengths and opposite directions. The
column vector associated with PR is thus the negative of the column vector

- —

associated with PQ. Notice that PQ + PR=0, which can be thought of as an
extension of the Parallelogram Law to an extreme case. (The parallelogram is
flattened.)

98 Multiplication by a scalar.
L !
A
/‘/
[
/b
‘D
— —
Here PR=4 PQ.
R —
) 2—
\\
@
—> —
Here PR=—4{PQ.
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Rules
(i) The zero vector cannot be associated with any pair of distinct
points. Nevertheless we can think of 0 as the position vector of the
origin itself. : N N
(i) If visanon-zero column vector,and PQ =v,then —v= PR, where
R is the point obtained by producing the line QP so that PR and
PQ have the same length. See Example 9.7.
(ii1) If v is any non-zero column vector and k is any positive number,

and ifP_Q) =yp, then kv= P_R), where R is the point such that PQ and
PR have the same airection and the length of PR is k times the
length of PQ. Multiplying a vector by a negative number reverses
the direction (as well as changing the length). See Example 9.8.



96 Examples

9.9 The difference of two vectors. Let PAB be a triangle.

By the Triangle Law,
- - —
PA+ AB=PB.
Hence
- -2 5
AB=PB—PA.
Notice that, in the parallelogram PACB, one diagonal (PC) represents the sum
- — ) - -
PA + PB, and the other diagonal (4 B) represents the difference PB—PA. Of course

the second diagonal may be taken in the opposite direction: BA=PA —PB.

9.10 Tlustrations of the ratio in which a point divides a line segment. In each
case P divides AB in the given ratio.

i) Ratio 1:1. /‘1 ;, 3
(i1) Ratio 3:1. A P 3
(iii) Ratio 2:3. . -
A P B
(iv) Ratio —1:5. P 1 3
(v) Ratio 4:—1. » -
A B P
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Subtraction of vectors also has an important geometrical interpretation.
For a diagram, see Example 9.9. In a triangle PAB,

- o o
AB=PB—PA.

This is a consequence of the Triangle Law. In particular, if A and B are any

two distinct points then (taking the origin O as the point P) we have

- - -
AB=0B—-0A=rz—r,.
We shall use this repeatedly.

As mentioned earlier, all of these ideas apply equally well in three
dimensions, where points have three coordinates and the vectors
associated with directed lines have three components. One of the best
features of this subject is the way in which the algebraic properties of 2-
vectors and 3-vectors (which are substantially the same) can be used in the
substantially different geometrical situations of two and three dimensions.

As an application of algebraic vector methods in geometry we shall
derive the Section Formula. Consider a line segment AB. A point P on AB
(possibly produced) divides AB in the ratio m:n fwith m and n both positive)
if|AP|/|PB|=m/n. Here |AP| and |PB]| denote the lengths of the lines AP and
PB respectively. Extending this idea, we say that P divides AB in the ratio
—m:n (with m and »n both positive) if AP and PB have opposite directions
and |AP|/|PB|=m/n. See Examples 9.10 for illustrations of these.
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9.11 Proof of the Section Formula (the case with m and n positive).
A
P
Fq
B
'p
o

Let P divide AB in the ratio m:n, with m>0 and n>0. Then

—> —
AP =(m/n) PB.
Now
— —
AP=rp—r, and PB=rgz—rp,
o
n(rp—r4)=mlrg—rp).
From this we obtain
nrp—nry—mrg+mrp=0,

(m+nyrp=nr,+mrg,

rp (nr,+mrpg).

T (m+ n)
The cases where m and n have opposite signs require separate proofs, but the
ideas are the same.

9.12 The medians of a triangle are concurrent at the centroid of the triangle.
Let ABC be a triangle, and let L, M and N be the midpoints of the sides
BC, CA and AB, respectively. Let 4, Band C have position vectors @, band ¢. Then

L has position vector 4(b+¢),
M has position vector 4(c+a), and
N has position vector 4(a+b).
The point which divides AL in the ratio 2:1 has position vector
(ZTll) (Ixa+2xi(b+¢), 1e Ya+b+c).
The point which divides BM in the ratio 2:1 has position vector

1
m(l xb+2x4(c+a), ie ia+b+o).

The point which divides CN in the ratio 2:1 has position vector

o l)(1 xc+2x4a+b), ie La+b+c).

Hence the point with position vector 4(a+ b+ c) lies on all three medians. This is the
centroid of the triangle.
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Rule
Let P divide AB in the ratio m:n (with n£0 and m+n+#0). Then

rp= (nr,+mrg).

m-+n

See Example 9.11 for a proof.

An important special case of the Section Formula is when P is the
midpoint of AB. In that case

Fp =%(".4 +rp).

The Section Formula may be used to give a convenient proof of a simple
geometrical theorem: the medians of a triangle are concurrent at a point
which trisects each median. A median of a triangle is a line which joins a
vertex of the triangle to the midpoint of the opposite side. Let ABC be any
triangle, and let a, b and ¢ be position vectors.of 4, B and C relative to
some fixed origin. See Example 9.12. Let L, M and N be the midpoints of
BC, CA and AB respectively. Then

— — —

OL=4(b+c), OM=%Yc+a), ON=%a+b).
The Section Formula may now be used to find the position vectors of the
points which divide AL, BM and CN respectively each in the ratio 2:1. It
turns out to be the same point, which must therefore lie on all three
medians. This point is called the centroid of the triangle ABC. It has
position vector 4(a+ b+ c).

This result has been demonstrated using vectors in a geometrical style.
The link with algebra has not been explicit, except in the algebraic
operations on the vectors. Consequently we worked without reference to
any particular coordinate system and obtained a purely geometrical result.
These ideas can be taken considerably further, but we shall return now to
the link with algebra, via coordinates.
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9.13 Components of a vector in the directions of the coordinate axes.

z
N

P
k
0

M
/ ' -
X L 0

P has coordinates (x,y,z). Construct a rectangular solid figure by drawing
perpendiculars from P to the three coordinate planes, and then to the coordinate
axes from the feet of these perpendiculars. For example, PQ and then QL and O M,
as shown in the diagram. The picture has been simplified by assuming that x, yand z
are all positive. Our arguments work also if any or all of them are negative. You
should try to visualise the various possible configurations.
[OL|=x, |OM|=y, |ON|=z.

So

— — —

OL=xi, OM=yj, ON=:zk.

— —>

Now OL + OX/I) =0Q, by the Parallelogram Law. Also OQPN is a parallelogram (it
i -5 > —

is a rectangle), so 0Q + ON = OP. Hence

- = - -
OP=0L+OM +ON =xi+ yj+zk.

9.14 Examples of unit vectors. 1 ]
. 1 726

(1) Let a= [2] . Then —a= ,
1 la| 718

since |a]=/1+4+1=/6. _%J

2 1
(i) Let b= | 2|. Then — b=
_3 |B]

since |b|=./4+4+1=3.

Lap= Wt Wit

Then |¢|=./F5+0+4%=1.

Thus c¢ is already a unit vector.

(iii) Let ¢=

wlh O wiw
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Consider three dimensions. A point P(x, y, z) has position vector

i

In particular:
the points L(1,0,0), M(0, 1,0) and N(0, 0, 1) have position vectors

IR

respectively.
These three vectors are denoted respectively by i, jand k. Note that they are
represented by directed lines OL, OM and ON in the directions of the
coordinate axes. Notice also that

HRARARY
SRHR

=xi+ yj+zk.
The vectors i, jand k are known as standard basis vectors. Every vector can
be written (uniquely) as a sum of multiples of these, as above. The numbers
x, y and z are called the components of the vector in the directions of the
coordinate axes. See Example 9.13.

It is clear what should be meant by the length of a vector: the length of
any line segment which represents it. Each of , j and k above has length
equal to 1. A unit vector is a vector whose length is equal to 1. The length of
an algebraic vector

|

is (by definition) equal to . /x2 + y* +z2,1i.e. the length of the line OP, where
P is the point with coordinates (x, y, z). Given any non-zero vector a we can
always find a unit vector in the same direction as a. If we denote the length
of a by |a| then (1/|a])a is a unit vector in the direction of a. See Example
9.14.

Summary

The way in which vectors are represented as directed line segments is
explained, and algebraic operations on vectors are interpreted
geometrically. The Section Formula is derived and used. The standard
basis vectors i, j and k are defined. The length of a vector (in three
dimensions) is defined, and the notion of a unit vector is introduced.
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Exercises

Exercises

1. Let ABCDEF be a regular hexagon whose centre is at the origin. Let 4

and B have position vectors a and b. Find the position vectors of C, D, E
and F in terms of a and b.

2. Let ABCD be a parallelogram, and let a, b, ¢ and d be the position vectors

of A, B, C and D respectively. Show that a+c=5b+d.

3. Let L, M and N be the midpoints of BC, CA and AB respectively, and let

O be any fixed origin. Show that

e T e T e
9) 0_/}4+O_B>+0£)=0L+0M+0N, and
() AL+BM+CN=0.

4. Let A, A,, ..., A, be any points in three dimensions. Show that

—_— — —_— —
A Ay + AyAs+ -+ Ay Ay + Ay d, =0.

=
5. In each case below, write down the 3-vector AB, where A and B are points

with the given coordinates.

(i) A(0,0,0), B2, —1,3).
(i) A@, —1,3), B(0,0,0).
(i) AQG,4,1), B(1,2, —1).
(iv) A(0,1,~1), B, —1,0).
v) A(2,2,2), B(3,2,1).

6. In each case below, find the position vector of the point which divides the

line segment 4B in the given ratio.

() A(1,1,3), B(—-1,1,5), ratio 1:1.
(i) A(-2,—1,1), B(3,2,2), ratio 2: — 1.
(i) A(0,0,0), B(11,11,11), ratio 6:5.

(iv) A3, —1,-2), B(10, —8,12), ratio 9:-2.

v) A@2,1,-1), B(-2,—1,1), ratio —2:3.

Also in each case draw a rough diagram to indicate the relative positions
of the three points.

7. Let OABC be a parallelogram as shown, and let D divide OA in the ratio

m:n (where n#0 and m +n#0). Prove by vector methods that DC and OB
intersect at a point P which divides each line in the ratio m:(m+n).
B
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8. Let OAB be a triangle as shown. The midpoint of 04 is M, P is the point
which divides BM in the ratio 3:2, and S is the point where OP produced

meets BA. Prove, using vector methods, that S divides BA in the ratio 3:4.

B

o M A

9. In each case below, find a unit vector in the same direction as the given

vector.
1 2 1 2
0 of. G |2]. Gi) | -2]. Gv)] 2
-1 1 -1 2

10. Let aand b be non-zero vectors. Prove that |a+ b| = |a| + |b| if and only if a
and b have the same (or opposite) directions.

11. Let Aand B be points with position vectors a and b respectively (with a0
and b#0). Show that |a|b and |bla are vectors with the same length, and
deduce that the direction of the internal bisector of the angle AOB is given
by the vector |a|b+|b|a. '



104 Examples

Examples

10.1 Vector equation of a straight line.
(i) Given two points A and B with position vectors a and b respectively,

P

o

rp=a+tb—a) (teR).
(i) Given one point A with position vector a, and a vector v in the direction of
the line.

]

rp=a+tv (teR).



10
Straight lines and planes

In three dimensions a straight line may be specified by either
(i) two distinct points on it, or
(i) a point on it and its direction.
These give rise to the vector form of equation for a line as follows. For
diagrams, see Example 10.1. First, given points A and B, with position
vectors a and b, let P be any point on the straight line. The Triangle Law
ives
g -  —
rp=0A+ AP.
_) . . . . . . . « q
Now AP is in the same direction as (or in the opposite direction to) AB.
- ) — - - —>
Hence AP is a multiple of 4B, say AP=t AB. We know that 0A=a and
_)
AB=b—a, so
ro=a-+tb—a). (1
Second, given a point A with position vector a, and a direction, say the

direction specified by the vector v, let P be any point on the straight line.
Then

—
rp=0A4+ AP, as above,

— . -
but here AP is a multiple of v, say AP=tv. Hence
rp=a+tv. (2)
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10.2 To find parametric equations for given straight lines.
(i) Line through 4(2,3, — 1) and B(3, 1, 3).

- 2 3 1
a= 31, b=][|1]}], so b—a= [—2] .
-1 3 4

An equation for the line is

[0 v

[n terms of coordinates, this becomes
x=2+t, y=3-2t, z=—1+4t (teR).
(i) Line through A(—2,5, 1) in the direction of the vector

[ 1
v= —1].
L 2
An equation for the line is
x 7] -2 1
[y = [ 5] +1t [—1:] (teR).
z ] 1 2

In terms of coordinates, this becomes
x=—=2+4t, y=5-t, z=14+2t (teR).

10.3 Find parametric equations for the straight line through 4(—2, 5, 1) in the
direction of the unit vector

2
L V6 ]

An equation for the line is

1
6
l:x :l [— ; ] 71—
y = S{+t | - (teR).
z 1 76
2
76
This of course is the same line as in Example 10.2 (ii), because the vector u is in the
same direction as the vector v given there. The equations obtained look different,
but as ¢ varies in each case the sets of equations determine the same sets of values for

x, y and z. For example, the point (— 1,4, 3) arises from the equations in Example
10.2 (ii) with t=1, and from the equations above with t=ﬁ.
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Equations (1) and (2) are forms of vector equation for a straight line. The
number ¢ is a parameter: as t varies, the right-hand side gives the position
vectors of the points on the line. The equation (1) is in fact a special case of
(2). We may represent the vector r, by

X

Yy i,
z

where (x, y, z) are the coordinates of P, and then if

Uy
v=|u0,|,
U3
(2) becomes
X a, v,
yli=1{a,|+t| v,
z as vy
(say), or
xX=a, +tv,
y=a,+tv, (teR),
z=az+1v,

which is the coordinate form of parametric equations for a straight line.
Examples 10.2 give specific cases.

The components of a vector such as v above, when used to specify a
direction, are called direction ratios. In this situation any vector in the
particular direction will serve the purpose. It is often convenient, however,
to use a unit vector. See Example 10.3.
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104 To find whether straight lines with given parametric equations intersect.
Linel: x=2-1, y=13t, z=242t (teR).
Line2: x=-3—4u, y=4+u, z=1-3u (ueR).
At a point of intersection we would have a value of t and a value of u satisfying:

2— t=—-3—4u t—4u= 5
3= 44+ uy. le. 3t— u= 4
242t= 1-3u 2t+3u= -1

Here we have three equations in two unknowns. We may expect them to be
inconsistent, in which case the two lines have no point of intersection. Let us find
out, using the GE process.

1 -4 5 1 -4 5 1 -4 5
3 -1 4|-]o0o 1 —11] - [o 1 —1].
2 3 -1 0 11 -11 0 0 0

So the equations are consistent, and there is a unique solution u= —1, t=1.
Substitute either of these into the equations for the appropriate line, to obtain

x=1, y=3, z=4,
the coordinates of the intersection point.

10.5 A proof that for any non-zero vectors a, b,
a-b=|al||b| cos 6.

where 0 is the angle between @ and 5. Let

a, b,
a= [az:l , and b= |:b2:| R
as b,

and let A and B be points with position vectors @ and b respectively.

B(blyb2)b3)

a A(ay,a,,a3)
Then AOB=6, and in triangle OAB the cosine formula gives
|AB{2=|0A]2+|OB[2—2}0A||OB] cos 0
=|a|*+|b|* — 2|a||b| cos 6.
Hence
|a||B| cos 6=4(|a|* + |b]> —|AB|?)
=4a,?+a,>+ay2+ b2 +b,2 +by?
—(b, "al)z —(by—ay)*—(bs "03)2)
=4(2a,b, +2a,b, +2a,b,)
=a,bl +a>2b2 +u3b3
=g-b.
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Two straight lines in three dimensions need not intersect. Example 10.4
shows how, given vector equations for two lines, we can check whether they
intersect and, if they do, how to find the point of intersection. Note that, to
avoid confusion, we use different letters for the parameters in the equations
for the two lines.

There is a way of dealing with angles in three dimensions, using vectors.
This involves the idea of the dot product of two vectors. By the angle

~ —>
between two vectors a and b we mean the angle AOB, where O0A=a and
— R —
OB=b. (Note that this angle is the same as any angle APB where PA=a

B 4
and PB=5.) This angle always lies between 0 and = radians (180°)
inclusive. In algebraic terms, the dot product of two 3-vectors

a, b,
a=| a, and b= | b,
as b,

is defined by
a-b=a,b, +a,b,+asb;.
Notice that the value of a dot product is a number, not a vector. In some

books the dot product is referred to as the scalar product.What has this to
do with angles?

Rule
Let a and b be non-zero vectors and let 6 be the angle between them. Then
a-b=|al|b| cos .
Consequently,
a-b

cos 0=——.
|al[b]

A demonstration of this rule is given as Example 10.5.
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10.6 Calculate the cosine of the angle 6 between the given vectors in each case.

1 -1
(i) a=|:1:|, b=|: 2].
2 1

=6, |b=1/5.
a-b=-14+2+2=3.
Hence

cos =

3 1
NN

-2 1
(ii) a= [ 3], b= [2]
1 2

jal=/14,  |b=3.
ab=-2+6+2=6.
Hence

cos =

6 2
\/EXS \/ﬁ

-1 2
(i) a= [ 1], b= {3]
-4 1

al=/18,  h=\/14.
ab=-2+3-4=-3.
Hence
-3 1

JBx 1 2x ST

(The negative sign indicates an obtuse angle.)

cos =

10.7 Proof that, for any three vectors a, b and ¢,
a-(b+c)=a-b+a-c.
Let
a b, €y
a= [a{l , b= |:b2:| , €= l:cz] .
as b, C3
Then
[b,+cl:l
bte= | by+c, | .
by+cy
So

a-(b+c)y=ay(b; +c,)+ay(b,+c,y)+as(by+cs)
=a,b, +a,c; +a,b, +a,c,+azb;+asc,
=a,b, +a,b,+asby+a ¢, +a,c,+asc;s
=a-b+ta-c
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Using this rule, we are now able to calculate (the cosines of) angles
between given vectors. See Examples 10.6. One of these examples illustrates
a general rule. A dot product a - b may equal zero even though neither a nor
b is itself 0.

Rule
(i) If the angle between two non-zero vectors @ and b is a right angle,
then a-b=0.
(ii) If @ and b are non-zero vectors with a-b=0, the angle between a
and b is a right angle.

Two non-zero vectors are said to be perpendicular (or orthogonal) if the
angle between them is a right angle.

Rules
For dot products:
(i) a-b=>b-a for all vectors a and b.
(ii) a-a=|a|* for all vectors a.
(ii)) a-(b+c)=a-b+a-c for all vectors a, b, c.
(iv) (ka)-b=a-(kb)=k(a-b) for all vectors a, b, ¢, and all keR.
) i-j=j-k=k-i=0.

These are quite straightforward. Part (ii1) is proved in Example 10.7. The
others may be regarded as exercises.
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10.8 A plane through a given point A4, perpendicular to a given vector a.

Let A4 be the point (3, 1,—2), and let n be the vector

N

The point P(x, y, z) lies on the plane if and only if AP is perpendicular to AN, i.e.if
and only if AP -n=0. Now

N x 3 x—3
AP=OP—0A=|:y — ,: 1:|= y—l:,.
z -2 z+2

So AP -n=0 becomes
(x=3(=1)+(y=1)2+(z+2)(=1)=0.

ie. —x+342y-2-2z-2=0.

ie. —-x+2y—z—1=0.

This is an equation for the plane in this case.
a

10.9 Show that the vector n= [b:, is perpendicular to the plane with
c

equation ax+by+cz+d=0.
Let P,(x,,¥,,2,) and P,{x,, y,,2,) be two points lying on the plane. Then
and axy +by, +cz, +d=0 *)
ax,+by,+cz,+d=0.

We show that P, P, is perpendicular to n.

"‘ITPZ' =a(x;—xy)+b(y, —y))+elz; —2)
=ax,—ax, +by, —by, +cz,—cz,
=ax,+by, +cz, —(ax, + by, +cz,)
= —d—(—d) by (*) above
=0.
Hence nis perpendicular to P, P, and, since P, and P, were chosen arbitrarily, nis
perpendicular to the plane.
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A plane in three dimensions may be specified by either
(i) three points on the plane, or
(ii) one point on the plane and a vector in the direction perpendicular
to the plane.
We postpone consideration of (i) until later (see Example 11.9). The
procedure for (ii) is as follows. A diagram is given in Example 10.8.
Let A be the point (a,, a,,a;) and let nbe a vector (which is to specify the

_._)
direction perpendicular to the plane). Let 04 =a, and let N be such that
_)
AN =n. The point P(x, y, z) lies on the plane through A perpendicular to
é
AN if and only if AP is perpendicular to AN, i.e. vector AP is perpendicular

_)
to vector AN,

—)
i.e. AP -n=0,
- -
ie. (OP—-0A4)-n=0,
ie. (rp—a) -n=0.

This last is a vector form of equation for the plane (not a parametric
equation this time; though). The vector n is called a normal to the plane.

The equation which we have just derived can be written in coordinate
form. Let

ny
n=\1n,|.
nj

Then the equation becomes
(x—ay)ny +(y—a)ny +(z—az)n;=0.

Example 10.8 contains a specific case of this.

Rule
Equations of planes have the form

ax+by+cz+d=0.

Example 10.9 shows that, given such an equation, we can read off a
normal vector, namely

g
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10.10  The angle between two planes.

ny

Plane n, has normal vector n,.
Plane n, has normal vector n,.
Here is an ‘edge-on’ view, looking along the line of intersection.

) / e
> n

The angle observed here between the planes is the same (by a simple geometrical
argument) as the angle between the normal vectors.
Let n, and n, have equations respectively

x— y+3z+2=0

1

and
—x+2y+2z-3=0.
The two normal vectors can then be taken as

1 -1
n = |:—1:| and n,= [ 2],
3 2

say. The angle between these vectors is 8, where

oy, —1-246 3
cos =102

NG TN

10.11 Find parametric equations for the line of intersection of the two planes
with equations:
x— y+3z+2=0,
—x+2y+2z—3=0.

Try to solve the equations
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Two planes will normally intersect in a straight line. The angle between
two planes is defined to be the angle between their normal vectors. See
Example 10.10.

Planes which do not intersect are parallel. We can tell immediately from
their equations whether two given planes are parallel, since parallel planes
have normal vectors in the same direction.

3x+ y—2z+1=0
and

6x+2y—4z+5=0
are equations of parallel planes. By inspection we can see that they have
normal vectors

3 6
1 and 2
-2 —4

respectively. These vectors are clearly in the same direction, being multiples
of one another. But we can also see quite easily that the two equations
above are inconsistent. If we tried to solve them simultaneously we would
find that there are no solutions. Of course this is to be expected: any
solutions would yield coordinates for points common to the two planes.

Distinct planes which do intersect have a line in common. Parametric
equations for the line of intersection are given by the standard process for
solving sets of equations. We would expect a set of two equations with three
unknowns (if it had solutions at all) to have infinitely many solutions, these
being specified by expressions involving a single parameter. An example is
given in Example 10.11.

Here is a clear situation where algebra and geometry impinge. And it
becomes clearer when we consider the ways in which three planes might
intersect. A point which is common to three planes has coordinates which
satisfy three linear equations simultaneously. So finding the intersection of
three planes amounts to solving a set of three linear equations in three
unknowns. As we know, there can be three possible outcomes.

(i) The equations may be inconsistent. In this case the planes have no
common point. Either they are all parallel or each is parallel to the
line of intersection of the other two.

{ii) The equations may have a unique solution. This is the general case
from the geometrical point of view. The line of intersection of two
of the planes meets the third plane in a single point, common to all
three planes.

(iii) The equations may have infinitely many solutions, which may be
specified using one parameter or two parameters. In the first case
the planes have a line in common, and in the second case the
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x— y+3z=-2,
—x+2y+2z= 3
simultaneously. The GE process leads to

1 -1 3 =2
0 1 5 1
and hence to a solution

z=t, y=1-5t, x=—-1-8t (teR).
These are in fact just parametric equations for the line of intersection, as required.

10.12  Ways in which three planes can intersect.
(1) Three planes: x+2y+3z=0,
3x+ y— z=5,
x— y+ z=2.
The GE process leads to

1 2 3 0
0 1 2 1.
0 0 0 1

Hence the set of equations is inconsistent. There is no point common to the three
planes. Nevertheless each pair of these planes has a line of intersection. The three
lines of intersection are parallel. What makes this so? If you are not sure, work out
their parametric equations and confirm that they all have the same direction.

(ii) Three planes: x— y— z= 4,
2x—3y+4z=-35,
—x+2y—2z= 3.

The GE process leads to

1 -1 -1 4
0 I -6 13].
0 0 1 -2

Thus there is a unique solution x=3, y= 1, z= —2. These planes have a single point
in common, namely (3, 1, —2). Each pair of planes intersects in a line which meets
the third plane at this point.

(iii) Three planes: x+2y+ z= 6,
—x+ y—4z= 3,
x—3y+6z=-9.

The GE process leads to

1 2 1 6
0 1 -1 3 0.
0 0 0 0

Hence there are infinitely many solutions, which can be specified by parametric
equations

x=-3t, y=3+t, z=t (teR).
The straight line with these parametric equations is common to all three planes.
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planes are all the same plane. Illustrations are provided in
Example 10.12.

There is a convenient formula for finding the perpendicular distance
from a given point to a given plane. Let P be the point with coordinates
(x9, Yo, Zg), and let

ax+by+cz+d=0
be an equation of a plane. Not all of a, b and ¢ can be zero, or else this
equation would not be sensible.

Rule
The perpendicular distance from the point P to the plane given above is

equal to
laxo + by, +czo+d|
This formula can be derived using the methods of this chapter, and this is
done in Example 10.13.

Summary

A vector form of equation for a straight line in three dimensions is derived
and used in geometric deductions. The dot product of two vectors is
defined, and properties of it are derived. A standard form of equation for a
plane is established, and ideas of linear algebra are used in considering the
nature of the intersection of two or three planes. Angles between lines and
between planes are dealt with. A formula is given for the perpendicular
distance from a point to a plane.

Exercises
1. Find parametric equations for the straight line passing through the points
A and B in each case.
(i) A@,1,3), B(1,0,1).
(i) A(1,1,-2), B(1,2,0).
i) A(-1,2,4), B(-1,2,-7).
(iv) A(1,1,1), B(2,2,2).
(v) A(0,0,0), B3, - 1,2).
2. In each case below, write down a vector in the direction of the straight line
with the given parametric equations.
(1) x=3-t, y=—142t, z=4-5t (teR).
(i) x=2t, y=1-—t, z=2+t (teR).
@) x=1-3t, y=2, z=3-1t (teR).
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10.13  Proof that the perpendicular distance from the point P(x,, y,, zo) to the
plane with equation ax+by+cz+d=01is

laxy +byo+czo+d|
Jat+br+c?

The vector

H

is perpendicular to the plane, so the straight line through P perpendicuiar to the
plane has parametric equations

x=Xxo+at, y=y,+bt, z=zo+ct (teR).

This line meets the plane at the point M (say), whose coordinates are given by these

parametric equations with the value of ¢ given by
a(xg+at)+b(ye+bt)+c(zg+ct)+d=0.

Solve for t, obtaining
@+ b2 +cH)t= —axy—by,—czo—d,

so

axog+by,+czo+d
A+ b+t

Now
[PM|?=(xo +at —xo)? + (yo + bt — yo)? + (zo + ct — 2}
=at?+ b2 +c?
=(a?+b+cH)t?
(axo+byo +czo +d)?
(a®+ b +c?)?

=(@®+b%+c?)

Hence
|axo +byo +czo+d|

Jat+b*+c?

|PM|=

as required.
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. In each case below, find whether the two lines with the given parametric
equations intersect and, if they do, find the coordinates of the points of
intersection. '
(i) x=2+2t, y=2+t, z=—t (teR),
x=—-243u, y=-3+6u, z=7-9u (ueR).
(i) x=1+4+t, y=2—t, z=-1-2t (teR),
x=142u, y=-6u, z=1 (ueR).
(i) x=2—t, y=—1-3t, z=242t (teR),
x=u, y=-2+4u, z=1—u (ueR).
(iv) x=2+t, y=—t, z=1+2t (teR),
x=4-2u, y=-242u, z=5-4u (ueR).
. Calculate the cosine of the angle APB in each case, where A, P and B are
the points given.
(1) A1, 1,1), P{0,0,0), B(1,1,0).
(i) A(-2,1,-1), P(0,0,0), B(1,2,1).
(i) A3, —1,2), P(1,2,3), B(0,1, -2).
(iv) A(6,7,8), P©,1,2), B(0,0,1).
5. Find the cosines of the internal angles of the triangle whose vertices are
A(1,3, —1),B(0,2, —1),and C(2, 5, 1), and find the radian measure of the
largest of these angles.

. Find a vector perpendicular to both @ and &, where

2 1
a= | -1 and b= 1
0 -1

. Find the length of the vector 2a + b, whgre a and b are unit vectors and the
angle between them is n/3 (i.e. 60°).
- In each case below, find the length of the perpendicular from the given
point to the straight line with the given parametric equations.
(i) 2,1,-1), x=3-t, y=1+2t, z=t (teR).
(i) (0,1,4), x==5+t, y=3, z=4-2t (teR).
(i) (2,3,1), x=2t, y=3t, z=2-t (teR).
. In each case below, find an equation for the plane through the given point
A, with normal in the direction of the given vector n.
—1
(i) A(3,2,1), n= 11]. (i) A©,1,-1), a=
-2

(i) A(=2,3,5), n= (iv) AL L1, n=

el - V.Y N

W o— O
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10. Find the cosine of the acute angle between the planes with given equations
in each case.
(i) x+ y+ z-3=0,
2x— y— z+1=0.
() 3x+ y +2=0,
x+ y—4z—-3=0.

(i) x+ y =0,
y+ z =0

(iv) 3x— y+2z-7=0,
z =0

11. In each case below, determine whether the intersection of the three planes
with given equations is empty, is a single point, or is a straight line.
(i) x-2y—3z=-1, (i) x +3z=~1,

y+2z= 1, 2x~ y+ z= 2

2x+ y+4z= 3. x+2y— z= 5.

(i) x+3y+5z= 0, (iv) x—2y+ z=-6,
x+2y+3z= 1, —2x + z= 8§,

x — z=-1 x+2y+2z= 1

12. In each case below, find the perpendicular distance from the given point P
to the plane with the given equation.

(i) P2,1,2), x—-2y— z+2=0.
@) P(-1,0,1), 3x— y+2z-5=0.
(i) P(1,1,1), x+ y+ z =0
(iv) P(0,0,0), Sx— y—4z+6=0.
(v) P(0,0,0), Sx— y—4z+1=0.
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Examples

11.1 Evaluation of cross products.

1 [2 10-9 1
(i) a= [2] b= 3], axb= 6—5]=[ 1],
3 LS 3-4 -1
2 [—1 2-0 2
(i) a=[1 , b= 3], axb= [0—4]= [_4].
0 L 2 6+1 7
2 [—4 6-6 0
(iii) a= [—1], b= 2], axb= [-12+12] =[o].
3 L—6 4-— 0
-1 2 0-2
(iv) a=[ 3], b=[1], axb=[ 4-0
2 0 ~1-6

Compare (ii) with (iv).

11.2 Use of the determinant mnemonic in evaluating cross products.
Q) a=—i+2j—k, b=3i-j.
i -1 3
2 1 -1 3 -1 3
axb=|j 2 1|=i ‘—jl ’+k‘ i
i -1 ol I-1 0 =10 2 1
=i—3j—Tk.
(i) a=3i—4j+2k, b=j+2k.
, i i (1’ |—4 1l _‘3 0‘”" 3 ol
axb=|j - =i —J
k 2 2 2 20 712 2 -4 1
= —10i—6j+ 3k.
11.3 Proof that for any 3-vectors a and b, a x b is perpendicular to a and to b.
Let

a, b,
a= l:qz] and b= [bz] .
as by

a,b;—asb,
ax b= [aabl —a1b3] ,

a,b,—a,b,

Then

so
a-(axb)=a,(abs—asb,)+ay(ash, —a,bs)+as(a b, —azb,)
=a,a,by—a,asb, +aa;b, —a,a by +aza,b, —asa,b,
=0.
Similarly b-(a x b)=0.
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Cross product

We have dealt with the dot product of two vectors. There is another way of
combining vectors which is useful in geometric applications.

Let
a, b,
a=\ a, and b= | b,
as by

be two 3-vectors. The cross product of a and b is defined by
abs—asb,
axb=1{asb,—aby{.
arby—ayb,
Note that the result is a vector this time. Example 11.1 gives some

calculations. Example 11.2 shows how to apply the following mnemonic
which is useful in calculating cross products. Write

a=a,i+a,j+ask and b=b,i+b,j+bk,
where i, j and k are the standard basis vectors. Then

ax b=(aby—asb,)i+ (asb, —a;b,)j+(ab, —a b, )k.
This is reminiscent of the expansion of a determinant, and we can stretch
the idea of a determinant to write

i a; b,
axb={j a, b,]|.
k a3 b,

Expanding this ‘determinant’ by the first column gives the correct
expression for @ x b. :

The definition above of the cross product involved two 3-vectors
explicitly. It is important to realise that, unlike the dot product, the cross
product applies only to 3-vectors, and its application is of use in three-
dimensional geometry.
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114 Proof that |a x b{=]a||5| sin 8, where a and b are non-zero 3-vectors and §

is the angle between them, for the case when 850 and 85 n.
Suppose that @ and b are 3-vectors, as in Example 11.3.

|ax b|*=(asby —asb,)* +(asb; —a,bs)? +(a b, —a,b,)
=a,%b3> +ay’h,* +as?h, 2 +a,%by* +a,%b,? +a, b,
—2a,bya3b, —2a3b,a,b; —2a,b,a,b,.
Also (|a||b] sin 8)* =|a|?]b|*(1 —cos? 6)
a1 — b al )
ol @B
=(a,> +a;* +a;?) (b, > + b2 +by?)
—(a,b, +azb, +asbs)?
=a,%b 2 +a,;%b,2 +a,%b;2 +a,%b, 2 +a,%b,t +a,%b;?
+a32b, 2 +a3?b,2 +aythst—a b, —ay?h,?
—ay%by2 —2a,b,ash, —2a,basbs —2a,b,a5b,
=|ax bl
Now sin 6 is positive, as are |a|, |5] and |ax 8], so it follows that
lax b|=|a||b| sin 6.

115 Proof that ax (b+c}=(ax b)+ (ax c), for any 3-vectors a, b and c. Let

a; b1 Cy
a= lia{l , b=|by|, c= c{] .
as by C3

ay(by+ci)—asb,+¢,)
ax(b+o)= I:a3(b1 +c¢;)—ay(bs +c3)]
ay(b;+c3)—ay(by +cy)

[a2b3 —azb,+a,c, —a3c2]

Then

ash, —a,b;+asc, —a,c;
aby—a,b, +ac,—asc,
=(axb)+(axc).

11.6 Remember that a x b= — (b x a), for any 3-vectors a and b. See Example

11.1, parts (ii) and (iv).
Here is another illustration. Let

2 5
a= [——3] and b= [—4].
1 1
1 -1
ax b= |:3:| and bxa= [—3] = —(axb).
7 -7

Then
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Let us now explore these geometrical uses. Some properties of the cross
product will emerge as we proceed.

Rule
The product vector a x b is perpendicular to both a and .

To see this we just write down expanded expressions for a-(a x b) and
b-(a x b). Details are in Example 11.3. Both expressions are identically
zero, and the rule is therefore justified, using a result from Chapter 10.

The above rule is in fact the most useful property of the cross product,
and we shall see applications of it shortly. But consider now the length of
ax b. It has a convenient and useful geometrical interpretation.

Rule

If a and b are non-zero vectors then
|a x b|=|al|b| sin 6,

where 0 is the angle between a and b.

Justification of the general case (when 6 is not 0 or =) is given in Example
11.4. The special case is also significant, so let us formulate it into a separate
rule.

Rule
(i) axa=0 for every 3-vector a.
(i) ax (ka)=0 for every 3-vector a and any number k.

Justification of these is straightforward verification, which is left as an
exercise. This rule is perhaps surprising. It suggests that the cross product
behaves in ways which we might not expect. This is indeed so, and we must
be careful when using it.

Rules (Properties of the cross product)
(1) ax (kb)=(ka)x b=k(ax b), for all 3-vectors @ and b, and any
number k.
(ii)) ax b= —(bx a), for all 3-vectors q and .
(1) @ax (b+c)=(ax b)+ (ax ¢), for all 3-vectors a, b and c.
(iv) ixj=k,jx k=i kxi=j.

Demonstration of these is not difficult, using the definition. See Example
11.5 for (iii). Take note of (ii)! See Example 11.6.

Now let us see how these geometrical interpretations can be used. First
we consider areas.
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11.7 Areas of triangles and parallelograms.

pr

— —

Let PAB be a triangle, with PA=q and PB=5.

Then the area of triangle PAB is 4|a x b|.

Let C be such that PACB is a paralielogram. Then the area of PACB is |ax b|.

11.8 Calculation of areas.
(i) Let

2 4 3
a= 0, &= 1:]. Then axb=1]4],
-3 4 2

and |a><b|=,/9+16+4=\/5.

Hence the area of the triangle PAB in the above diagram would be 1, /29 units?.
(ii) Let the three points be P(3, —1,1), A(1,1,0) and B(0, 3, 1). Then

— =2 - =3 - — 4
PA= 2|, PB= 4 and PAXxPB= 41.
-1 0 -2
Hence the area of triangle PAB is equal to 4,/16+ 16 +4, i.e. 3 units?.

119 Find an equation for the plane through the three pdints A5, 3, 1),
B(2, -2,0) and C(3, 1, 1).

o [-31 o -2
AB=|-s|, ac=|-2].
1 2

- = . — -
The vector AB x AC is perpendicular to both AB and AC, so is a normal vector to
the plane of A, B and C.

- — -8
ABx AC= [ 4] .
-4
Any vector in the direction of this vector is a normal vector for the plane. We can
2
choose this one or any multiple of it. Taking [— I:I , as the normal vector, we
1
obtain an equation for the plane:
2{(x=5—-ly—-3)+1(z+ 1)=0,
ie. 2x—y+z—6=0. (See Chapter 10 for the method used.)
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Rule

— — '
Let PA and PB represent 3-vectorsaand b. Then the area of triangle PAB is
equal to 4|ax B|.

This follows from our knowledge that
|@ x b|=|a||b| sin 6,
and the familiar rule that
area of APAB=4|PA||PB|sin APB.
For a diagram see Example 11.7.

Further, if C is such that PACB is a parallelogram, the area of the
parallelogram is equal to |ax b|. Some calculations of areas are given in
Examples 11.8.

Example 11.9 gives an application of another use of cross products. A
plane may be specified by giving the position vectors (or coordinates) of
three points on it, say A(a), B(b) and C(c). We know from Chapter 10 how
to derive an equation for a plane given a point on it and the direction of a
normal vector to it. We obtain a normal vector in the present case by using
the cross product. AB represents the vector b—a and AC represents the
vector ¢ —a. Consequently (b—a) X (¢ —a) is perpendicular to both AB and
AC, and so must be perpendicular to the plane containing 4, B and C. It
will serve as a normal vector, and the method of Chapter 10 can now be
applied.
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11.10  Calculation of volumes of parallelepipeds.
(i} Find the volume of the parallelepiped with one vertex at P(1,2, —1)
and adjacent vertices at 4(3, —1,0), B(2, 1, 1) and C(4,0, -2).

. — — —
The volume is |a. (b x c)|, where a=PA, b=PB and ¢=PC.

— 2 — 1 — 3
PA=|-3]|, PB=]-1]|, PC=}]-21.
1 2 -1

- = 3
PBx PC= [7] .
1
$O
- - —
PA- (PBx PC)=10-21+1=—10.
Hence the volume required is 10 units?.
(ii) Repeat (i) with the points P(0,0,0), A(2,1,0), B(1,2,0) and C(3,3,2).
Here

50 — > =
PA-(PBx PC)=8-2+0=6.
Hence the volume of the parallelepiped is 6 units®.
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Besides areas, volumes can be calculated using the cross product: in
particular, volumes of parailelepipeds. A parallelepiped is a solid figure
with six faces such that opposite faces are congruent parallelograms.

The volume of such a solid is equal to the area of the base multiplied by the
height. Take PBDC as the base, draw a line through P perpendicular to the
base and let K be the foot of the perpendicular from A to this line. Then
|PK|is the height of the parallelepiped. The area of PBDC is equal to |bx |,
and the height |PK| is equal to |PA|cos APK, i.. |a|cos APK. In our
diagram, APK is the angle between a and (b x c), so

a-(bxc)=|al||b x ¢| cos APK =volume of parallelepiped.
It may happen that the direction of b x ¢ is opposite to the direction of PK,
in which case the angle between a and (b x ¢) is n—APK, and

a-(bx c)=la||b x ¢| cos(n— APK)

=|a||b x c|[(—cos APK),

which is the negative of what we obtained above for the other case. A
volume is normally taken as a positive number, so we may combine both
cases in the result

Volume of the parallelepiped =|a- (b x ¢)|.

Notice that a-(b x ¢) is a number, since it is the dot product of two
vectors. This form of product of three vectors is quite important, and it has
aname. It is called the scalar triple product of a, b and c. The appearance of
a- (b x ¢) in the formula for the volume of a parallelepiped enables us to see
an unexpected property. Because the paralielepiped is the same no matter
what order the three vectors are taken, we have

|a-(bx )| =|b-(cxa)|=|c-(axb)|=|a-(cxb)
=|b-(axc)|=|c-(b xa)|.
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11.11 Proof that det A=a-(b x ), where A is the 3 x 3 matrix having the vectors
a, b and c as its columns. Let

"a, b, Cy
a={a, |, b=|b|, e=}fc,|.
as b, C3

Then, expanding det A by the first column, we obtain
by ¢
b, ¢

b, ¢ by ¢

det A=a, b. ¢
3 3

—a 3

by ¢
=ay(byc3 —bsc,)—ay(bycy—bsye;) +az(bicy, —byey)
=a,(byc3 —bscy)+ay(bse, —bycs)+as(bic, —byey)

a, byc3—bse,
= [az] ' [baﬁ _blc3]

as b,c,—bye,
=a-(bxc).

11.12 Find whether the points O, A, B and C are coplanar, where Ais (1, 3,0), B
is(©,1,)and Cis (-2, 1,7).

— - —

They are coplanar if and only if the three vectors OA, OB and OC are coplanar.

We therefore have to test whether these three vectors are linearly dependent. Use
the standard GE process.

i-[o] @-[1]. - 1]
0A=|3}, 0OB=}1], .0C= 1].

0 1 - 7
1 0 -2 1 0 -2 1 0 -2
[3 1 1]—»[0 1 7]—»[0 1 7].
0 1 7 0 1 7 0 0 0

Hence the three vectors form a linearly dependent list (see Chapter 6), and so the
four points are coplanar.

11.13  Find whether the points P(—1,1, —1), A(2,3,0), B(0,1,1) and
C(-2,2,2) are coplanar.
They are coplanar if and only if the vectors

— 3 - 1 — —1
PA=|2|, PB=|0]|, PC=| 1
1 2 3

form a linearly dependent list. The GE process yields

301 -1 1 -1 1
12 0 1]—»[2 1]—»[0
1 2 3 1 3 0
BNt

- 10 -3]l-1]0

0 10 0

Hence the three vectors form a linearly independent list, and so the given points are
not coplanar.

|
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These six products, however, do not all have the same value. Three of them
have one value and the other three have the negative of that value. As an
exercise, find out how they are grouped in this way.

We end with a further link-up between geometry and algebra. Given
three 3-vectors a, b and ¢ we can construct line segments OA4, OB and OC
respectively representing them. We say that the vectors are coplanar if the
three lines OA, OB and OC lie in a single plane.

Rule
Three vectors a, b and ¢ in three dimensions are coplanar if and only if
a-(bxc)=0.

To see this we need consider only the parallelepiped with one vertex at O
and with A, B and C as the vertices adjacent to O. The vectors are coplanar
if and only if the volume of this parallelepiped is zero (i.e. the parallelepiped
is squashed flat).

Recall that three vectors a, b and ¢ form a linearly dependent list if there
exist numbers [, m and n, not all zero, such that

la+mb+nc=0.
Recall also the Equivalence Theorem, part of which stated (in the case of a
3 x 3 matrix A): the columns of A form a linearly independent list if and
only if det A#0. This is logically equivalent to: the columns of 4 form a
linearly dependent list if and only if det A=0. To make the connection
between this and the ideas of coplanarity and scalar triple product,
consider three 3-vectors a,band c. Let A be the matrix with these vectors as
its columns. Then

det A=a-(bxc).
To see this, it is necessary only to evaluate both sides. This is done in
Example 11.11.

We can now see that the conditions

a-(bxc)=0 and detA=0

are the same. We therefore have:

Rule
Three vectors a, b and ¢ in three dimensions are coplanar if and only if they
form a linearly dependent list.

See Examples 11.12 and 11.13 for applications of this.

As a final remark, let us note that the rule a-(bx c¢)=det A can be a
convenient way of evaluating scalar triple products and volumes of
parallelepipeds.
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Summary

The cross product of two 3-vectors is defined, and algebraic and
geometrical properties are derived. The use of cross products in finding
areas and volumes is discussed, leading to the idea of scalar triple product.
The equivalence between coplanarity and linear dependence is established
using the link between the scalar triple product and determinants.

Exercises

1. Evaluate the cross product of each of the following pairs of vectors (in the
order given).

3 ~1 2 '1}
(i) 1], [ 1]. (ii) ol, |3].

2 -1 1] (3]
r o 3 17 [3]
(iii) 1] , [—1] ) ], 1.

) -2 1] L2
- _4 3 (—17 17
v) 4], |:1:| (vi) 219, 11.
[ 4 2 1] L[]

2. Write down the areas of the triangles O AB, where A and B are points with
the pairs of vectors given in Exercise 1 as their position vectors.

3. Find the area of the triangle ABC in each case below, where 4, B and C
have the coordinates given.

i) A,1,3), B(1,1,0), C(0,2,2).
(i) A(-1,2,-2), B(-3,0,1), C(0,1,0).
4. For each of the following pairs of planes, find a vector in the direction of
the line of intersection.
i x —y+3z—-4=0.
2x +y —z+5=0.
(1) 3x +y —-2=0.
x—3y +z+1=0.
S. Find an equation for the plane containing the three points 4, B and C,
where A, B and C have the given coordinates.
i) A@2,1,1), B(4,0, -2), C(1,1,1).
(i) A(0,1,1), B(1,0,1), C(1,1,0).
(i) A(—1,1,2), B(0,0,0), C(3,2, - 1).
6. Find the volume of the parallelepiped which has P(— 1, 1, 2) as one vertex
and A(1,1, —1), B(0,0, 1) and C(1, 2, 0) as the vertices adjacent to P.
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7. Repeat the calculation of Exercise 6, where P is the point (— 1,0, 0),Ais
the point (1,0, —1), B is the point (1,0, 1) and C is the point (0, 1,0).

8. Using the scalar triple product, find whether the given four points are
coplanar.

(i)
(i1)
(iii)
(iv)
v)

0(0,0,0),
0(0,0,0),
0(0,0,0),
P2, -1,0),
P(1,2,3),

A(1,3,5),
A2, 1,1),
A(l, -1, 1),
4(3,2,2),
A(—-1,3,4),

B(1,2,3), C(1,0, —-1).
B(1,1,2), C(—-1,2,7).
B(2,2, —1), C(—-1,13).
B(2,-2,-1), C@4,0,-1).
B(3,4,7), C(4,0,4).
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Examples

12.1 Find all solutions to the simultaneous equations:
X+ X;— X3= 3
2x, — X, +4x;= 3
3x, +4x, —5x;=10.
The Gaussian elimination process yields:
1 1 -1 3
2 -1 4 3

0 -3 6 =3 (@=-2x()
0 1 -2 1 (3)=3x(1)

0 1 =2 1 2)+(-3)

0 0 0 0 3)—(2)

Here set x, =t (say), so that substituting gives
x,=1+2t
x;=3-(1+2)+t=2—t.
There are infinitely many solutions, one for each value of teR.

12.2 Product of a matrix with a column vector.
12 3 x,] [ x4 2x,+3x;
4 5 6| x,(=|4x;+5x;+6x;
7 8 9 x| |7x;+8x;+9x;

X 2x2 3X3

=4x; |+ | 5x, [+]6x3

L 7x, 8x, 9x4
B 2 3

=14 |x;+|5[x2+]|6[xs.
7] (s8] o
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Basic ideas

Part 2 is about the algebra of real n-vectors. Throughout, R" will denote
the set of real n-vectors, i.e. the set of all n x 1 matrices with entries from
the set R of real numbers. We shall develop ideas and techniques which
are applicable for all values of n, however large. Most of our examples,
however, will be restricted (for practical reasons) to the two-, three- and
four-dimensional cases.

The purpose of this chapter is to re-establish some of the basic ideas
about solutions of sets of equations, about matrices, and about linear
dependence, which will be essential for what follows. In this process we
shall also introduce two new notions which will be significant later, namely
the column space of a matrix and the solution space of a set of
homogeneous linear equations.

Let us review some facts about the solution of sets of simultaneous
linear equations. Let A be a p x g matrix and let k be a p-vector. Then
attempting to solve the equation Ax = h will have one of the following
outcomes.

(i) There may be no solution, i.e. the equation is inconsistent.

(ii) There may be a unique solution.

(i) There may be infinitely many solutions. In this case the set of
solutions is generally specified by taking one or more of the
unknowns as parameters and expressing the other unknowns in
terms of these parameters. Example 12.1 provides illustration of
this.

Now let us think of sets of simultaneous equations in a different way.
See Example 12.2. The left-hand side Ax (when multiplied out) is a
p-vector, and its ith entry is

a3 X +\ai2x2 +o o ag X,
where a;; denotes the entry in the ith row and jth column in the matrix

A, and x, ..., x, are the entries in the g-vector x.
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123 Solutions to simultaneous equations.
i) X 4+ X+ x3=2
2x; — 2%, +2x3=4
Xy +2x,+4x3=3
or, alternatively:

1 1 1 2
20x; 4+ =2 |x,+(2|x3=|4].
|1 2 4 3
The GE process leads to
1 1 3 27
01 1 0]
0 0 0 1
In this case the given equations are inconsistent. This may be regarded as a
2
consequence of the fact that the vector |0 | is not a linear combination of the
11 3 1
vectors [Of,{1|and |1].
0f |0 0
(ii) Xy +2x, = 1
2 +3x+x3= 2
—X1+ Xa+X3=—06
or, alternatively:
[ 1 2 0 1
2x; 4|3 X2+ 1|x3=] 2f.
__.1 1 1 —6
The GE process leads to
1 2 0o 1
01 -1 1],
10 0 1 =2
1
and there is a unique solution for x, x, and x5. So| 2 | may be written uniquely
17 2 0 —6
as a linear combination of | 2| |3|and|1]{.
—-1] |1 1
(iii) x;+4x,— x3= 0

Xy +2x,+ 3x3= 2
—X; +2x, —11x3=—6
or, alternatively:
1 4 -1 0
Lx, +{2[x2+ 3 X3=
—1 2 -1 -6

[\
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Thus each entry of Ax is a sum of g terms, so Ax itself can be written

as a sum of vectors:
Ax=a,x; +ax; + - - +a,x,,
.where, for each j (1 <j<q), a; is the jth column of the matrix A.

One way to interpret this is to say: for different values of x (i.e. of
Xy, .., X,), the p-vector Ax will always be a linear combination of the
columns of A. What does this mean in terms of the three possible outcomes
listed above for the solution of the equation Ax = h? See Example 12.3.

(i) No solution. This arises when h cannot be written as a linear
combination of the columns of A.
(ii) Unique solution. This happens when h can be written as a linear
combination of the columns of A4 in only one way.
(iii) Infinitely many solutions. This happens when there are infinitely
many ways of writing h as a linear combination of the columns
of A.
Definition -
Given any p x g matrix A, the set of all p-vectors which can be written
aslinear combinations of the columns of A4 is called the column space of A.

Obviously a sufficient condition for the equation Ax = h to be consistent
(i.e. to have at least one solution) is that h belongs to the column space
of A. A moment’s thought should convince the reader that it is also a
necessary condition.

Let us now recall the notion of rank, defined as follows. The rank of
a matrix A is the number of non-zero rows in the matrix obtained (in
row-echelon form) after applying the Gaussian elimination process to 4.
The following are then equivalent.

(1) Ax = h is consistent.
(ii) The rank of [Alh] (the augmented matrix) is equal to the rank
of A.

(iii) h belongs to the column space of A.

The second of these is dealt with in Chapter 8. See Example 12.4.
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The GE process leads to

1 4 -1 0
01 —2 1],
00 00
0
and there are infinitely many solutions. So 2| may be written as a linear
1] 4 -1 -6
combination of | 1/,|2!and 3| in infinitely many ways.
-1112 —11
124 The rank of the augmented matrix.

In Example 12.3(i),

1 1 3 2
and [AK]=|2 -2 2 4|
1 2 43
The GE process applied to A4 yields
t 13
0 1 1,
000

so the rank of A4 is equal to 2.
The GE process applied to [A]|h] yields

113 2
0 1 1 0f,
0 0 01!

so the rank of [A|h] is equal to 3.

But notice that both ranks may be deduced from the result of the GE process
applied to [A4]|h].

In Example 12.3(ii), the rank of A4 is 3 and the rank of [A]h] is 3 also.

In Example 12.3(iii), the rank of 4 is 2 and the rank of [A]h] is 2 also.

125 Tests for linear dependence or independence.

If1-2 3
i) 21| 4|, -2

511-—-2 7

1 -2 30

Apply the GE process to the matrix |2 4 -2 0| This yields
1 -2 30 5 =2 7 0
0 1 —1 0], so there are solutions other than x, =x,=x3;=0 to the

0 0 0 0
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Next consider homogeneous linear equations, i.e. equations of the form
Ax=0,
where A4 is a p x g matrix, x is a g-vector of unknowns, and 0 is the zero
p-vector. Such equations are obviously consistent, because x =10 is
certainly a solution. Does 0 belong to the column space of A? Yes, in a
trivial way. We may write

0=aq,0+a,0+---4+4,0,

a linear combination of the columns of A. In what circumstances is x =10
the only solution? Only if we cannot write

0= a,x; +azx, +---+ a;x,
with any of the numbers x, . . ., x, different from 0. What this means is
that the columns of 4 (i.c. ay, . . ., a,) form a linearly independent list of

p-vectors. The definition of linear independence was given in Chapter 6, but
we include it here also.

Definition
A list (vy, . . ., v,) of p-vectors (for any p) is linearly dependent if there is
some non-trivial linear combination

X101 + X0, + - -+ X0,
which is equal to the zero p-vector. A list of p-vectors is linearly independent
if it is not linearly dependent.

We shall customarily use the abbreviations LD and LI for these terms.

A routine procedure for testing whether a given list of vectors is LD
or LIis given in Chapter 6. This procedure is illustrated in Examples 12.5.

We have established above that in the case when the columns of A4
form a LI list, the equation Ax =0 has no solution other than x=0. If
the columns of 4 form a LD list, then Ax = 0 does have another solution,
and so must have infinitely many solutions.

In the special case where A is a square matrix, there is an important
theorem connecting several different aspects of linear algebra. This was
discussed in Chapters 6 and 7, and there called the Equivalence Theorem.
We shall refer to this again later, so it is reproduced below.

Theorem
Let A be a p x p matrix. The following are equivalent.

(1) A is invertible.
(i1) The rank of A4 is equal to p.
(ii1) The columns of 4 form a LI list.
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equation
1 -2 3 0
2X1+ 4|x, + —ZX3=0.
E -2 7 0
Thus the given list of vectors is LD.
1] [1] [=2]
(i) -20,{2[.,] 0j].
311 2]
The GE process gives
11 -2 0] 11 =20
-2 2 0 0f-|0 1 —1 04,
L 31 2. 0f (00O 1 0
$0 x; =0, x, =0, x3 =0 is the only solution to the equation
M1 1 -2 0
—20x,+|2x2+f Ofx3=|0].
3 1 2 0

Thus the given list of vectors is LI.

12.6 Find all solutions to the equation Ax =0, where

1 0 2 -1 Xy
31 =2 4 Xy
A= 1 2 —3 3 and x= |
2 1 0 2 X4
The GE process gives
10 2 -1 0 10 2 1 0
31 =2 4 0 01 -8 70
-1 2 -2 30 foo 1 -2 0f
21 0 2 0 00 0 00

Hence there are infinitely many solutions. These may be described by setting x, =t
(say), whence x3=3t, x, = —t and x, = —1t (teR).
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(iv) The equation Ax=0 has no solution other than x=0.
(v) The determinant of 4 is not equal to zero.

The justification for this theorem was that in each of these
circumstances, the Gaussian elimination procedure applied to the matrix
A will yield an (upper triangular) matrix with p non-zero rows, with 1s
down the main diagonal. At this stage the reader should be familiar enough
with the ideas involved here so that this theorem is quite clear. If not,
the later chapters will cause difficulties.

Summary

The possible forms of solution to a set of simultaneous linear equations
are discussed and related to the Gaussian elimination process of
transforming a matrix to row-echelon form. The column space of a matrix
is introduced and the ideas of rank and linear dependence are recalled.
Finally the Equivalence Theorem (from Chapter 7) is re-stated. This relates
the various ideas of the chapter.

Exercises
1. Solve the following sets of simultaneous equations.

i) x-2y+2z=2
3x+ y+ z=38

2x —2y— z=1.
(i) 2x+ y+4z=0
xX+2y—~ z=6

2x+2y+2z=6.
(iii) x+4+2y+3z=2

—3x +3z=0
—3x+ y+5z=1.
@iv) x —3z =_4

y+ z4+2w= 1
T 2x+ 0y +2w= -2
—x+ y+ z— w= 5.
2. Re-write the sets of equations in Exercise 1 above as vector equations
(by regarding the left-hand sides as linear combinations of column
vectors).
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Exercises

. In each case below, find the rank of the given matrix and find whether

the given vector belongs to the column space of the matrix.

-

0 1 t
@lo 1 1], 21.
110 3
(0 —1 3 1
()[4 1 1, 1.
2 3 -1 1
[ 3 2 =2 1
@y 2 -2 124, 0.
-3 4 -22 1
1 0 1 1 -1
-1 1 0 —1 1
W1y 01 -1 -3
L—1 1 0 1 1

. In each case below find whether the columns of the given matrix form

a linearly dependent or independent list. Where possible, find the inverse
of the given matrix.

[ 11 3 21 4
@l o 2 1], @l 2 0 2f
-1 1 =2 -3 1 -1
_ i 1
b-1r 2 -i é g -2
Giy | -1 2 =2{, (v) ,
L a3 1 0 —1 3
L -1 -3 -2 4
2 01 5
112 0
Mo 13 —af
1 30 O
1 0 3 2
vi)| -1 1 1 2/
| 2310







Examples

13.1 Column spaces of matrices.

. 3 2 .
(i) Let A=|:1 1]. The column space of A is the set of vectors

3 2
[I:IXI + [ l]xz for x,, x, € R. For example, taking some values for x, and x,:

3
x;=1, x,=0: 1] itself.
-
x, =0, x,=1: ) itself.
E
X, = 1, X, =% —O:I .
[2
R
L.6
21
(i) Let A=| 1 2. The column space of A is the set of all vectors
-1 3
2 1
1lx, +]2(x, for x;, x,eR.
-1 3
1110
11 01 .
(iii) Let 4= 101 1l The column space of A is the set of all vectors
0111

1 1 1 0

1 1 0 1

1 x1+.0 X, + 1 X3+ 1 X4
1 1 1

for x,, x5, X3, x4 €R.
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Subspaces of R"

We shall latch onto, and generalise from, two ideas which arose in Chapter
12. These are the column space of a matrix and the set of all solutions
to an equation Ax =0. They represent different aspects of the idea of a
subspace of R”.

First, the column space of a matrix is a special case of a space spanned
by a list of vectors. This is a very important notion, and here is the
definition.

Definition
Let X be a finite list of n-vectors. The space spanned by X is the set of
all vectors which can be written as linear combinations of the vectorsin X .

If we take the vectors in the list X as the columns of a matrix A, then
the space spanned by X is the same thing as the column space of 4. Some
simple cases are given in Examples 13.1. An example which is of great
significance is the space spanned by the list

EHIED

of vectors in R3. These vectors are called the standard basis vectors in
R3, and it is easy to see that every 3-vector may be written as a linear
combination of them:

a 1 0 0
bl=al0]+b[1|+c|0].
c 0 0 1

The space spanned by this list of 3-vectors is R? itself. For each n there
1s a list of standard basis vectors in R", namely the list consisting of all
n-vectors having a 1 in one position and Os in the other positions. The
space spanned by this list of vectors in R” is R” itself.
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13.2 The space spanned by a list of vectors.

0 fi—-1]13
Does | 0 | belong to the space spanned by the list [|2],] 3|,{1]]|?
1 3 4/ 12
We seek solutions x,, x,, x5 to the equation
1 ~1 3 0
2)x, 4| 3lx;4+|1]|x3=|0].
3 4 2 1

The GE process gives:

(1 —1 3 0] [t -1 30
2 31 0|-]0 1 10
3 4 2 1 0- 0 0 1

Hence there are no solutions, and the given vector is not in the space spanned
by the given list.

13.3 Lists which span R>.

1 —1 0
)] Does ||2(,| 1],] 3||span R*?
0 1{]-1
a
Let h =|b|. We seek solutions to the equation
¢
1 —1 0 a
20x, +] 1[x,+| 3ixa=|b
0 1 —1 c

The GE process gives:

1 =1 0 a 1 -1 0 a

2 1 3 b|->|0 11 1(b—2a)
0 1 -1 ¢ [0 01 {b-20-4

Hence there do exist solutions to the equation, whatever the values of a, b and
¢. Hence the given list spans R?.

11131 ]|-2
(i1) Does t,i0l,} 4]|span R??
=2| 11 1

The following skeleton of the argument given in (i) above is sufficient.
1 3 =2 1 3 =2

The GE process gives: 1 0 4110 1 —=2|.

-2 1 1 00 1
Even without including the fourth column, it is apparent from this that there
would be solutions in this case, irrespective of the values in the fourth column.
(If the last row had been all zeros then we could not say this.) Hence the given
list spans R? in this case also.
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How can we tell whether a given vector is in the space spanned by a
given list of vectors? Answer: solve equations. See Example 13.2. In fact,
we need not go as far as solving equations: the knowledge that solutions
exist (or do not exist) is sufficient.

We can even tell by means of an elementary process whether the space
spanned by a given list of n-vectors is R” itself. This is done for n=3 in
Example 13.3. The vectors in the given list are taken as the columns of a
matrix A. Then we try to solve the equation Ax=h, where h is an
unspecified 3-vector. Our standard process will tell us whether solutions
exist. Of course this will depend on what value h has. If there are some
vectors h for which no solution x can be found, then the column space
of A is not the whole of R3, so the space spanned by the given list of
vectors is not the whole of R3. If there are solutions x irrespective of the
choice of h, then the space spanned by the given list of vectors is the whole
of R3. Think about this: the space spanned by the given list of 3-vectors
is the whole of R? if and only if the rank of 4 is equal to 3.

Next, let us return to the idea of the set of solutions to an equation
Ax =0. There may be one solution (namely x=10) or infinitely many
solutions. For what follows it is best to bear in mind the second of these
possibilities, although what we do also makes sense for the first.

If x=u is a solution then so is x = ku, for any real number k. This is
not difficult:

if Au=0 then A(ku)=k(Au)=k0=0.
Further, if x = u and x = v are solutions, then so is x = u + v. To see this,
suppose that Au=0 and Av=0. Then

Alu+v)=Au+ Av=0+0=0.
The set of solutions to the equation Ax = 0 contains 0 and is closed under
addition and under multiplication by a scalar.
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134 Let S be the space spanned by a list of vectors (v,, . .., v,) in R". Show
that ' :

(i) O€s,

(i1) for each u, ve S, u+ veSs also, and

(iii) for each ue S and keR, kues.

For (i): 0€S because 0 =0y, + - - - + Op,.

For (ii): Let u=a,v, +--- +a,v,, and
v=bv,+---+b,v,

Then  w+wv=(a;+b)v, +- - +(a,+b,)v,

which belongs to S.

For (iii): Let u=c¢,v, + - - - +¢,1,, and let ke R.

Then ku=kcyv, + - - - + ke,v,,

which belongs to §.

135 To find whether a given set is a subspace of R", for an appropriate value
of n.
X
(i) Let S={y|eR*: x+y=1z}.

z
First, 0€ S because 0 + 0 =0.

Xy X2
Let u=|y,|and v={y, | belong to §,

% 72 X, + X,
so that x; +y, =z, and x, + y, =z,. Then u+v=| y, + y, |. Does u + v belong
to S? zy+ 2,

Test the condition for membership of S:
(3 +x3) + (y1 +y2) = (g + ) + (X2 4+ y2)
=z, +1,,

because x; + y; =z, and x, + y, = z,. So u + v does belong to S.

X kx
Last, let u=|y | belong to S, so that x + y=z, and let ke R. Then ku=|ky|.
z kz

Does ku belong to S? Test the condition for membership of S:
kx + ky=k(x + y) = kz,
because x + y = z. So ku does belong to S. Hence the set § is a subspace of R3.
X
(ii) Let S={ y|eR3: x? +y? =23},
Z
Certainly 0€S.
X1 X3
Let u=|y,|and v=|y,| belong to S,
2y Z3
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Now we make the connection. A space spanned by a list of vectors
has these same properties: contains 0 and is closed under addition and
multiplication by a scalar. See Examples 13.4. These properties
characterise an important notion.

Definition
A subspace of R" is a subset S of R"” with the following properties:

(i) 0esS.
(i1) If ue S then kue S, for all real numbers k.
(i) If ue S and ve S then u+veSs.

We can now say that the following sorts of set are subspaces of R":

(a) any space spanned by a list of vectors in R",
(b) the set of all solutions to an equation Ax=0, where 4isa pxn
matrix, for any number p.

Perhaps it should be made clear that R” itself is classed as a subspace of
R". It satisfies the requirements of the definition, and it falls into the first
category above. Also, in a logically trivial way, the set {0} satisfies the
definition and is a subspace of R".

Subspaces of R" can be specified in other ways. In Examples 13.5 some
subsets of R” (for various values of n) are given. Some of these are shown
to be subspaces of R”, and others are shown not to be.

In the geometry of three dimensions, the notion of subspace nas an
interpretation which it may be useful to bear in mind. Recall that a 3-vector

d

can be thought of as the position vector associated with a point P (relative
to some given coordinate axes). P has coordinates (x, y, z). Addition of
vectors and multiplication of a vector by a scalar have geometrical
interpretations which should be familiar (see Chapter 9). The three
requirements above for a subspace translate into geometrical requirements
for a locus in three dimensions:

(i) The locus contains the origin O.
(ii) If P is on the locus (and P is not 0), then the locus contains all
points on the line OP produced indefinitely in both directions.
(iii) If P and Q (neither of which is 0) lie on the locus, then R lies
on the locus, where R is the point such that OPRQ is a
parallelogram,
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so that x? + y? =z} and x2 + y2 = z%. Does u + v belong to S?
(%2 + (i +y2) =xF+ 2%, + X3+ yi + 20y, + ¥3
=XT+ Y7+ x3+ Y3+ 2%+ 2,9,
=22 4224+ 2x,%, + 2y, V3,
which appears to be different from z% + z% + 2z,z,, which is what we seek. To
confirm that it is different, we must find particular values for x;, x,, y;, y2, 2
and z, such that

xt+yi=2z1  and  xi+yi=23,
but (g + %202 + (yy + y2)* # (24 +2,)%
1 0 1
Takex=1,y=0,z=1,x=0,y=1,z=1.80|0|€S,|1 |eS but the sum | 1 |¢S.
1 1 2

Hence S is not a subspace of R3. Of course finding this counterexample is sufficient,
irrespective of the route by which it is arrived at. The above working shows what
happens if we just proceed normally, but it is strictly not necessary.
(i) Let S be the set
x|
{| y|eR3: x, y and z are even integers} .
zZ

Certainly 0e S, since 0 is an even integer.

-

X4 Xy
Let u=|y,jand v=|y,|belongto S.
LZ1 Zy

Then u + v must belong to S because x, + x,, y; + ¥, and z, + z, must all be even
integers.

X
Let u=|y|belong to S, and let keR.

z

Then ku need not belong to S. In cases where k is an irrational number, for

example, kx, ky and kz will not be even integers.
Hence this set S is not a subspace of R>.

(iv) Let S be the set

{[x]e R2: x =0 or y=0 or both}.
y

Certainly 0€S.
1 0
Without following the routine procedure, we can see that if = [O:l and v= [1],

then e S and veS but u+ v¢S. So this set S is not a subspace of R2
(v) Let S be the set

X

eR* x=zand y=w}.

T N
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A locus satisfying these requirements must be one of the following.

(a) The set consisting of the origin only. Here (ii) and (iii) are trivially
satisfied, since such points P and Q do not exist.

(b) A straight line passing through the origin, extending indefinitely
in both directions. Here (iii) is trivially satisfied.

(d) The whole of three-dimensional space.
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Certainly 0€S.

X1 X2

Let u=|""|and p=| 72 | belong to S.
2 Z3
Wy W,

Then x; =2z, and y, =w,, and x, =z, and y, =w,. Consequently x, +x, =
z; + 2z, and y, + y, =w; + w,, so that u+ v belongs to S.

x
Last, let y = Z belong to S, and let ke R. Then x =z and y = w, so kx = kz and

w
ky = kw. Consequently ku belongs to S.
Hence this set is a subspace of R*.

13.6 Examples of loci in three dimensions.
(i) {0}. The locus consisting of the origin only. This has already been
noted as a subspace.
(ii) A straight line through the origin. This may be represented by equations
x=1t
y=mt (teR),
z=nt

where I, m and n are the components of some vector in the direction of the line.
Varying the parameter ¢ yields the coordinates of the points on the line.
The vector 0 corresponds to a point on the locus (with ¢t = 0).
Ity It,
Let u=|mt, | and v=|mt, | correspond to points on the line.

nt, nt,
Ity +1t,)
Then u+v=|m(t, +t,) |, which certainly corresponds to a point on the line.
n(t, +1t,)

It
Last, let w=|mt | correspond to a point on the line, and let ke R. Then

Ikt nt
ku =| mkt |, which also corresponds to a point on the line.
nkt

Hence the position vectors of all points on the straight line constitute a subspace

of R3.
(iii) A plane through the origin. Such a plane can be shown to have an
equation of the form ax + by + cz=0.

X
Let S={y|eR* ax+by+cz=0}.

z
This may be shown to be a subspace of R® by our standard methods from
Example 13.5.



13. Subspaces of R" 155

Examples 13.6 show that all such loci are in fact subspaces of R3. It
is important to remember that lines and planes which do not contain the
origin are not subspaces of R3, however.
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13.7 Subspaces of R spanned by LI lists of vectors.
1
(i) The space spanned by the list ] 2| is the set of all multiples of this
3
vector. It corresponds with the straight line whose equations are x =1, y =21,
z=73t (teR).

112
(i1) The space spanned by the list [{2],{ 0[] is the set of all vectors
3|1
1 2
2[x; +|0]x, (xy, x, €R).
3 1
1 2
Let P, and P, have position vectors | 2| and |0 | respectively. Because of the
3 1

parallelogram rule, any sum of multiples of these two vectors must be the position
vector of some point in the plane of O, P, and P,. Conversely, the position vector
of any point P in the plane of O, P, and P, is a linear combination of 6_15), and
_0@7”2. To see this, draw straight lines through P parallel to m’: and Wz, thus
constructing a parallelogram.

Now W=W+OW, OM is a multiple of 071, and ON is a multiple of 5?2.

1 2
So OP=|2 x; +[0|x, for some x,, x,€R. We have therefore shown that the
3 1

space spanned by the given list of two vectors corresponds to a plane through
the origin.
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Now we can see that there are geometrical interpretations of the idea
of the space spanned by a list of vectors in R*. The space spanned by a
list containing a single (non-zero) vector in R* corresponds to a straight
line through the origin. The space spanned by a list containing two
non-zero vectors (neither a muitiple of the other) in R* corresponds to a
plane through the origin. The space spanned by a LI list of three vectors
in R? corresponds to the whole of three-dimensional space. See Examples
13.7.

The three requirements of the definition of a subspace are somewhat
unwieldy in practice. The next rule provides a means of easing this burden
somewhat.
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(iii) The space spanned by a LI list of three vectors is the whole of R>.
Form a matri).( A with the three vectors as columns. Then A is invertible, and an
equation Ax = h has a (unique) solution, irrespective of the choice of vector h.
Hence every vector in R? is in the column space of 4, i.e. the columns of 4 form
a spanning list for R3.

13.8 Let S; and S, be subspaces of R". Show that §; n S, is also a subspace
of R".
We use the rule given opposite, rather than the definition of subspace. Certainly
S, n S, isnon-empty, because0e S, and0€S,,500€S, n S,. Nowlet u, veS; N S,
and let k, le R. We show that ku + lve S; N S,.
u,vesS,, S0 ku+lves,,
and u, veSs,, SO ku+ lveS,,
since both S, and §, are subspaces.
Consequently, ku + lveS; N S,.
By the rule, then, S; N~ S, is a subspace of R".
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Rule
A subset S of R" is a subspace of R" if and only if

(a) S is non-empty, and
(b) for every u,veS and k,leR, ku+ lveS.

It is not hard to justify this rule, from the definition above of what is
meant by a subspace. This justification is left as an exercise.

As another example of the application of this rule, we show in Example
13.8 that the intersection of two subspaces of R" is again a subspace of R".

Summary

The space spanned by a finite list of vectors in R" is introduced as a
generalisation of the idea of the column space of a matrix. The definition
is given of a subspace of R". This is discussed fully in the context of R3
and appropriate geometrical ideas of lines and planes are brought in.
Methods are given for determining whether given subsets of R" are
subspaces.

Exercises

1. In each case find whether the given single vector is in the space
spanned by the given list of vectors.

1 1137 o
@14, 20,{0l,11
1 1] [ [2]
0] (0 31 37
(i) {0], 1, 1,12
0] 1] | -1 o]
[ 2 ( 1] [0]
(i) | =11, 20,|1
2 | —1] 1]
(1] 1] (0' 1
.o tl]1| ]t
(lv) 1 2 1 i 1 k 1
0] 1] L1d Lo
1] 0] 2]
1 1] ]1
\APRE 11
[ 1] 2] Lo

NI
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1] ol [=1] 1] [1]
) 2 1 2( o] |1
3| 1l =tfol]|1
4] Lo L ol Ll_ L1
(1] o] [—17] 1] [2]
i) 2 1 2010} |o
3P 1 =1{]o/]3
4] o] L ol Ltd Lid

2. Which of the following lists of vectors span R*?

(i ()]
w () = CHD

3. Which of the following lists of vectors span R??

20 (1)1
@121
1] 1] ]2
[ 1] ]2 o] 5
@ || =tf]trfy=3.—-1
L 0] 1) [—1] 1
17 [2] o] [1]
i) ([ 12111
1] (2] |1 o
][ty [2
vy || =1, {1[,}1
BEIRNRE
4. Show that each of the following sets is a subspace of R>.
o
M {|yleR*x—y=1z}.
z

X
(ii) {{yleR*: x=0}.
zZ

X
(i) {{y|leR3* 2x—y+3z=0}.
z

x
(iv) {|y|eR® y=2x—zand x=y+2z}.
z
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S. Show that each of the following subsets of R? is not a subspace of R>.
o
(i) {{yleR*: x>0}.

(i) {| y|eR>: x, y and z are integers}.
X
(i) {| y|eR3: x2=y*}.
z
X
iv) {|y|eR* y=1}.
z

M {yleR x+y+z=3}."

6. Let A be a n x n matrix and let k be a fixed real number. Show that
the set {xe R": Ax = kx} is a subspace of R".

7. Which of the following sets are subspaces (of R2, R® or R?, as
appropriate)? Justify your answers.

X
@) |y [eR% x <y}
_Z
—x
(i) { i ER* x+y=z+w}.
W

(ii1) { ]eRZ:x2+y2=0}.
x
(iv) {|{y|eR* x=yand y=2z}.
z

=

x
v) { )z] eR* x+y=zory+z=w}.

w

8. For all of the sets in Exercise 4 above, and for all of the sets in Exercise
7 which are subspaces of R, give a geometrical description, i.e. say
whether the subspace is the origin itself, a straight line through the
origin, or a plane through the origin. In each case find also a matrix
A such that the subspace is the set of all vectors x such that Ax = 0.



Examples

14.1 Spanning lists.

[17] [0] [0] 1 [3][-2
(i) 0[,|1{,]0!]spans the whole of R*. So does 11,10[,| 4]}). (See
10] [0] | 1] =211 1
Example 13.3.)
[27] [17 [3] 2] 1
(it) 1],10],] 1| spans the same subspace of R as does || 1,[0]]. This
1] [3] (4] 1|3
is because
31 121 [t
1{=|1[+]0].
4] |1} 3
(i1i) For any two vectors v, v,€R", (v,, v,) spans the same subspace as

(v, + v, v, — v;). To see this:
=1 L
a1v; + a0, = 3(a; + a,)(vy + v2) +3(a; — a3)(vy —vy),
so every linear combination of v, and v, is a linear combination of v; + v, and
v; — v, And, conversely,

bi(vy + v3) + by(vy — v2) = (by + by)u; + (by — by)v,.

14.2 Extending a spanning list.

1 [31-2
The list 1{,{0[,| 4]]is a spanning list for the whole of R*. This means
-2] |1 1

that every vector in R® may be written as a linear combination of these vectors.
For example,

1 1 3 -2
f=-=-3 1|+2|0{+} 4
9 -2 1 1
2
Let us append another vector to the spanning list, say 1].
-5

Now we have a list of four vectors, which is certainly still a spanning list, because
every vector still may be written as a linear combination of the original list in the
same way as before, and all we need do is add another term with a zero coefficient:

1 1 3 -2 2

1|=-3] 1|+2{0(+| 4|+0] 1].

9 -2 1 1 -5
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Spanning lists, bases,
dimension

In the previous chapter we gave various ways in which subspaces of R"
may be described. One of these was as the space spanned by a given
(finite) list of vectors. This idea of a spanning list is indeed a general one.
In this chapter we consider the nature and properties of spanning lists,
and how to find them. These ideas will lead to the notions of basis and
dimension, which are among the most important in the book.

Rule
Let S be a subspace of R". Then there is a finite list X of vectors from S
such that S is the space spanned by X.

We shall not give a justification for this, even though it is a fundamental
result. This is because the rest of the chapter contains ideas and methods
which will assist us in particular cases to construct spanning lists, and
these will be of more significance than the general rule above. This will
be clearer towards the end of the chapter, so we shall wait until then
before giving practical illustration. (See Example 14.12.)

Before going any further, we should note that a subspace S may have
many different spanning lists. This is illustrated by Example 14.1. Indeed
there are some general rules about this, for example the following. Let B
be a finite list of vectors in R”, and let S be the subspace spanned by B.
Now extend B by appending some other vector from S. Then the extended
list is still a spanning list for S. This is justified in Example 14.2. Notice
that the extended list is LD, and that this must be so. Extending a spanning
list will not be a useful procedure, however. What will be useful is reducing
a given spanning list. This is harder, and we must be rather careful about
it, but shortly we shall describe an algorithm which may be used to do this.
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21 -2 3
14.3 LetU=||1],| 2||,andletx=|2|. Then U is LI and (as can be easily
3 0 5
verified) the list obtained by appending x on to U is LD. In fact we have
2] [-2 3] [o
10| 1|+ 2{—6|2|=|0].
3 o] {5] |o
This equation may be rearranged, to give
3 2] [-2]
6|2|=1011{+| 2|,
5 3 0]
3 2 -2
so that |271=(10/6)[ 1|+ (1/6)) 2.
5 3 0

This shows that x may be written as a linear combination of the vectors in U,
or, in other words, that x belongs to the subspace spanned by U. This argument
works in the same way whatever x is chosen, so long as the original list is LT and
the extended list is LD.

144 Find a LI list which spans the same subspace of R?* as the list

L2013 -1
—1,2,1,—3

2 2
Take v, to be —1 . Next consider | 2 |. We choose v, to be 2 because .12
1 1
1 3 2
is LI. Next, {| —1], 2 , 1 is LD, so ignore | 1|. Last, || —1],|2], )
21113 3 2 1
1] 172
LD, so ignore | —3|. This leaves || —11,|2|] as a LI spanning list.
1 2| |1

Last, let us follow the argument opposite which shows that this list actually is a
spanning list. Here we have two rejected elements of the original list.

111213
—1,(2,]11}]]is LD,
2] 11 (3
and we can write
3 1 2
1=|—-1]+(2
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Before that, we require to make an observation about LI lists. We do
this in general terms here, and Example 14.3 provides the details of a
particular case. Let U (= (uy, . . ., u,)) be a LI list of vectors in R", and
let x be some vector in R” such that the list (u,, ..., u,, x) is LD. Then
x may be written as a linear combination of the elements of U. Here is
why. We must have

au;+---+au+bx=0, (*)
say, where not all of the coefficients are zero. Now b cannot be zero
because, if it were, the equation (*) would be

au; +---+au=0,
which would contradict the fact that U is L1. Hence the equation (*) may
be rearranged, to give

x=(—a,/bu,+---+(—a,/b)u,,
as required.

We can now describe a procedure for reducing a spanning list. Of
course there will certainly be a limit to the number of elements we can
remove from a list and still leave a list which spans the same subspace.
As the following rule suggests, this limit is achieved when the list is LI.
The justification of the rule is given below, and is illustrated by Example
14.4. The process described is a useful one in practice.

Rule
Let S be the subspace of R” spanned by the list (u, . .., ). Then there
is a LI sublist of (u,, ..., u,) which also spans S.

Denote (u,, . . ., u,) by U. Instead of removing elements from U, we build
up a sublist. Consider each element of U in turn. We choose or reject
each one according to the following procedure. First choose u, to belong
to the sublist. Say let v, = u,. Next, if (v,, u,) is LI then we choose v, to
be u,. Otherwise we reject u, and move on to consider uy in the same
way. Continue thus, at each stage asking whether the next element of U,
when appended to the list of vectors already chosen, would yield a LI
list. If so, we include this element of U in the list of chosen vectors, and
if not we reject it. The process is complete when the last element of U
has been considered. Denote the list of chosen vectors by V. Then V is
certainly a LI sublist of U, because of the way that it has been constructed.
It remains, therefore, to show that V spans S, i.e. that every vector in S
may be written as a linear combination of the vectors in V. The first step
in doing this is to show that all of the rejected elements of U may be so
written. Suppose that u; is one of the rejected elements of U. It was rejected
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Similarly we can write

-1 1 2
—3|=|-1|-]2].
1 2 1
Now take any vector in the space spanned by the original list, say
[ 1] [2] [3 -1
2 =1 |+ [2]—|1]|+2] —3].
L 2] |1} |3 1
This is equal to
[ 1] [2] 1 [2 1] [2
2| =t |+|2|=f] =t |+|2[{+2]| -1{-|2
L 2] |1 2 1 2 1
“and so {(collecting terms together) equal to
(1] 2 \
3 —1]-22].
L 2] 1
14.5 Find a LI list which spans the column space of the matrix
3 6 1 2 1
A=| 1 2 0 1 1.
-1 -2 1 =21
3 6111 211
Let X= 1,| 21,0 1|1},
—1{[=-2]11]1-2][1

the list of the columns of A, and let S be the column space of 4, i.e. the subspace
of R3 spanned by X.

3
Pick v, =| 1]. Pick v, to be the next element of X such that (v,, v,) is LI.
-1
6 1
This is not 21|, but [O].
-2 1
Pick v, to be the next element of X such that (v, v,, v3) is LI. The standard
3111 2 2
process shows that the list 1[,|0l,] 1]}isLD,so| 1]isignored. However,
-1}t -2 -2
31 [1] [t 1
11,]04,11j}is LI, so take vy =11].
—1f{]1| |1 1
The list X is now exhausted, and the list
31 (1] |1
11,[0],}1
—1] 1] |1

is a LI spanning list for S.
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because (say) (vy,...,v;, ;) was LD. But (v, ..., ;) is LI so, by the
discussion earlier in this chapter, u; may be written as a linear combination
of (vy,...,v;),ie. of vectors in V. Finally we can now show that V spans
S. Let xe S. Because U spans S, we may write
x=cu +---+cu,.

Now replace each of the vectors u; which does not belong to V by its
expression as a linear combination of the elements of V. Collecting terms
together on the right-hand side then gives x as a linear combination of
the vectors in V.

The column space of a matrix is an example of a space spanned by a
list of vectors. Example 14.5 shows the process above applied to the
columns of a matrix.

We have gone to considerable trouble over all this. LI spanning lists
are so important, however, that it is essential to know not only that they
must exist, but also how to construct them. The remainder of this chapter
is devoted to discussion of those properties of LI spanning lists which are
the reason for their significance.
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14.6 Bases for R3.
1] [o] o
(1) The standard basis: [|0{,|1{,[0
0] 0] |1
1] [3][-2
(ii) (See Example 14.1) 1,10/, 4
-2 1] 1
(This is a LI list which spans the whole of R3.)
of 1] |1
(iii) Show that [{1{,{0],[1]]is a basis for R®. First show that this list is
1{[1]]0

L1, by the usual process (the GE process).
Next show that this list spans the whole of R3. Try to solve

0 1 1 a
1lx; +[0fx, +]1[x3=]|b],
i 1 1 0 c

where a, b and c are arbitrary real numbers. As we saw in Example 13.3 we may
suppress the right-hand side and apply the GE process to the array

(0 1 1]

1 0 1},

1 1 0]
leading to

(1 0 1]

01 14,

0 0 1]

there is a solution for x,, x, and x,, irrespective of the values
atively, we may argue that a solution exists because the matrix

and we deduce that
ofa,bandc. (Altern

0 1 1
1 01
1 1 0]

is invertible.)

14.7 Find a basis for the subspace of R* spanned by the list
1] 2 1 0
0] |1 1 -1
1Pfofpt -1/ 2
0] L1 1 -1
1 2
0 1 .
Let v, = .t Let v, = 0 (so that (v,, v,) is LI).
0 L1
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Definition
Let S be a subspace of R” (for some n). A list X is a basis for § if X is
LI and S is the subspace spanned by X.

The two rules of this chapter so far, taken together, amount to the
assertion that every subspace of R has a basis. As a first example, consider
R" itself. The standard basis for R" is the list of n-vectors which have one
entry equal to 1 and all the other entries equal to 0, normally taken in
order so that the ith member of the list has the 1 in the ith position. It
is not difficult to see that this is a basis for R" as defined above (verification
is left as an exercise). Example 14.6 gives other bases for R>.

The method described above and used in Examples 14.4 and 14.5 will
find a basis for a given subspace, provided that we have a spanning list
to start with. Example 14.7 is an application of this process.

The most important property of a basis is the following. Given a
subspace S of R" and a basis X for S, every vector in S may be written
as a linear combination of the vectors in X, because X is a spanning list,
but we can say more. '
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1 2 1 1

. 0 1 1]]. . . 1
Find whether ol =1 is LI It is not, so ignore b and go on to

0 1 1 1

0 0

find whether is L1. It is not, so ignore -1 . Conclusion:

2
-1 —1

O = O =
— O = N
S

1|2
o111y, . .
1llol]ise basis as required.
04 L1
14.8 Proof that if S is a subspace of R", (v;,...,v,) (=X) is a basis
for S, and ueS, then u may be expressed uniquely as
u=a.v; +---+a.u,.
Let ueS. Then u may be written in the given form, since the basis X spans S.
Suppose that
u=bv,+---+bu,
also. Subtracting-then gives
0=(a;, —by)v;+---+(a,—b,)v,.
But (v,,...,v,)is LI, so
a,—by=0,...,a,—b,=0,
ie. a;=b,...,a,=b,.

Thus u=av, +---+a,v, uniquely.

149 Proof that if S is a subspace of R” and (v, ..., v,) (= X) is a basis for
S then every list of vectors from S which contains more than r vectors
is LD.

Let Y= (uy,...,u) be alist of vectors from S, where s >r. Since X is a basis for

S, each element of Y may be expressed as a linear combination thus:

w,=a;v,+- - +a,v,, for 1 <i<s.
Seek numbers x,, . . ., x,, not all zero, such that

Xouy + o+ xu,=0,
ie. Xi(@g 00+ -+ ay,0)+ -+ x5a0, + - +a,0,)=0,
i.e. (collecting terms in v,, v,, etc.)

(x1a1; + - -+ xa)0, + - -+ (xya,,+ -+ xa,)0,=0.
But (v,,...,v,)is LI, so we must have

X184+ + X0 =0

X181, + -+ x,a,=0

X0y, + -+ xa,=0.
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Rule
Let S be a subspace of R" (for some n), let (v, ..., v,) be a basis for §,
and let geS. Then u may be written uniquely as

u=a,v +a2v2+ st +a,v,.

Example 14.8 contains a demonstration of this.

We know that R" has a basis consisting of n vectors (namely the
standard basis), and we have seen other bases in the case of R?, each
containing three vectors. There is a general rule about bases here.

Rule
Let S be a subspace of R" (for some n). Every basis for S has the same
number of elements.

Our justification for this rule depends on the result derived in Example
14.9: if S has a basis consisting of r vectors, then any list of vectors
containing more than r vectors is LD. To demonstrate the rule, let
X=(@,...,v,) and Y= (w,...,w) be bases for S. If /> k then, by
Example 14.9, Y is LD. But Y is LI, since it is a basis. Thus we cannot
have [ > k. Similarly we cannot have k > I. Hence k = [, and all bases have
the same number of elements.

This last rule is precisely what is needed to ensure that the next definition
is sensible.

Definition
Let S be a subspace of R", for some n. The dimension of S is the number
of elements in a basis for S.
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This is a set of r equations in the s unknowns Xy, ..., X Since s> r there are
more unknowns than equations. They are consistent, since Xy=---=x,=0
satisfies them. By consideration of rank (see Chapter 8) this solution cannot be
unique, so there do exist numbers Xy, ..., X not all zero, such that

X+ -+ x,u,=0,
and the list Y is LD, as required.

14.10  Subspaces in geometry (sece Examples 13.6 and 13.7).
@) The origin. {0} is a subspace of R® with dimension zero (by convention).
It has no basis.
» )
(i) A straight line through the origin in the direction of the vector | m |. Here

) It
m [ is a basis, since every element of the subspace has the form | mt |, for some
n nt
teR.
(iii) A plane through the origin. Take any two points P, and P, in the plane
so that O, P, and P, do not all lie on a straight line. Then 071 and m’; together
constitute a basis. Thus the dimension is 2.

1] (0 0
(tv) The whole of R*. The standard basis vectors | 0|, {1 |and |0 represent,
0] |0 1

geometrically, unit vectors in the directions of the coordinate axes.

14.11 Proof that if § is a subspace of R" with dimension k then every LI list
containing k vectors from S is a basis for S.

Let S be a subspace of R" with dimension k, and let X be a LI list of k vectors

from S, say X = (uy, ..., u;). We need to show that X spans S, so that X is a

basis. Let ve S, with v¢ X. Then (uy, ..., u, v) contains k + 1 elements, and so

is LD, by the result of Example 14.9 above. So

au + - taut+a0=0,

for some ay, ..., a,.,€R, not all zero. Now a,., , #0, for otherwise X would be
LD. Hence
v=—(ay/q Uy — - — (/. g,

so v is in the subspace of R" spanned by X. This depended on the assumption
that v did not belong to X, but certainly all elements of X are also in the subspace
spanned by X. Thus X spans S. :
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Now we can say that the dimension of R” itself (under this algebraic
definition) is n. We can also talk of the dimension of a subspace. This fits
with geometrical ideas, in the case of subspaces of R*. We have seen that
a subspace of R® may correspond generally to one of:

(i) the set consisting of the origin itself,
(ii) a straight line through the origin,
(iii) a plane through the origin, or
(iv) the whole of R3.

Such subspaces have (respectively) dimensions O, 1, 2 and 3, in both
geometric and algebraic senses. See Examples 14.10.

To find the dimension of a subspace we normally have to find a basis
for the subspace. We already have a routine for doing this (as used in
Example 14.7). Conversely, if the dimension is known, then it is possible
to shorten the task of finding a basis.

Rule
Let S be a subspace of R" with dimension k. Then every LI list of vectors
from S which consists of k vectors is a basis for S.

See Example 14.11 for a justification of this. Notice that it contains an
argument similar to one used earlier in this chapter to show that a vector
may be expressed as a linear combination of a given LI list of vectors.

This leads us on to a useful rule about subspaces. The term ‘proper
subspace’ is used for a subspace of R” other than R" itself. As might be
expected, a proper subspace of R* has dimension less than n.

Rule

Every subspace of R", other than R" itself, has dimension strictly less than
n. Equivalently, if S is known to be a subspace of R", and the dimension
of S is equal to n, then S must be R" itself.

It is easier to show the second form of the rule. Let S be a subspace of
R", with dimension n. Then S has a basis, B say, which is a L1 list containing
n vectors. But every LI list of n vectors in R" is a basis for R”. Hence B
is also a basis for R”. It follows that R" is the space spanned by B, and
therefore that R" is the same space as S.
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1412  Find a LI list which spans the subspace S of R*, where

X1
§={ ;cz eR*: x; —2x, + x5 + 5x, =0} .
3
X4
(The fact that S is a subspace of R* we shall suppose to have been demonstrated.)
2
. 1 .
Pick out any v, €S other than 0, say v, = ol Next pick out v,€S such that
0
1
. 1
(vy, v,) 1s L1. Take v, = L | sy We can ensure that (v;, v,) is LI by having
0
more non-zero entries in p, than in v,. Next pick out v; €S such that (v, v,, v3)

2

-1 . .

1|52y Here choqsmg a vector whose fourth entry is non-zero
-1

ensures that (v;, vy, v3) is LL

It is not possible to continue this process. There is no vector v, in S such that

(v, b3, 13, v4) is LI. We can see this as follows. First we are working in R*, whose

dimension is 4. Second, S is a proper subspace of R*. (This is easy to justify: all

we need to do is find a vector in R* which is not in S.) Consequently, S will have

dimension less than 4, and so we cannot have a LI list in § which contains four

vectors. The list

is LI. Take v; =

2111 2
1 1 -1
orf{ty 1
04 LOJ L-1

will therefore serve as an answer. Of course we could have made different choices
and arrived at a different list: as we have seen, there will always be many different
bases for any subspace.
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Finally let us return to consider the first rule of this chapter, which
says that every subspace of R” has a finite spanning list. Now that we
know about bases and dimension, the problem of finding a spanning list
for a given subspace can be thought of rather differently than at the start
of this chapter. For one thing, a basis is a spanning list, so finding a basis
will do, and our rules about bases can provide assistance. Here are some
ideas. They are illustrated in Example 14.12.

The method of Example 14.4 can be generalised so that it works without
a given spanning list. Instead, after making an arbitrary first choice, at
each stage we attempt to extend the list of chosen vectors by finding any
vector in the subspace such that the extended list of chosen vectors is LI.
If we do this, it will eventually become impossiblie to find any more vectors
with which to extend the LI list of chosen vectors. At that point we shall
have a LI spanning list. Otherwise there would be some vector x in the
subspace which was not a linear combination of the chosen vectors, in
which case x could be used to extend the chosen list. The main difficulty
with this process is knowing when to stop. How can we tell that a search
for another vector to include in the chosen list will fail? Ideas concerning
dimension can help here. The list being constructed will be a LI spanning
list, 1.e. a basis for the subspace. The number of elements it contains will
be equal to the dimension of the subspace. Depending on how the subspace
is presented, we may be able to estimate its dimension. At worst, we
always know that a subspace of R" necessarily has dimension <n.

Summary

Different lists of vectors may be spanning lists for the same subspace. For
every subspace there is a linearly independent list which spans the
subspace. An algorithm for finding such a spanning list is given. Various
results are given concerning spanning lists and linear dependence, leading
to the ideas of basis and dimension. Some properties of bases are derived
and illustrated.
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Exercises

1. In each case show that the given pairs of lists span the same
subspace of R>.

1] o 1 1
(1) 0 s 1 s 1 B _1
0] [0] 0] [ O
M1 1] [—1 0] 3 1
@) [lo},|tl,| 2|l 1, =51,] -1
3] 5] 1 2] -1 1
1] [o] o 27 =17 [1
@iy {{ol,[1],]0]], 1], 1[,|3
o] [of [1 0 2( (3
11
2. The list || —11,]3|)is LI.
-1/ |1

Which of the following vectors may be taken along with these two to
form a LI list of three vectors? Express each of the other. vectors as a
linear combination of these two vectors.

0] [1 1] [3 5

1,11],] =312, 3]

0] {0] [—2] [1] -1

3. For each of the following lists of vectors, find a LI list which spans

the same subspace of R?, R® or R*, as appropriate.

o (L)

NRARMARE
) <[1 ’ u [3]) '
271 =171
ai) [t 2, [1]}
5] L o] [3
310 [ o]f 1
@) {111, =31, s|| 2
o] | 2f[-3]L[-1
(1] 1] [o] [1]
w H1llol,17,]2
o] [1] |1] [3]

4. Show that the following lists of vectors are bases for the spaces indicated.

o) =
TR



14. Spanning lists, bases, dimension 177

o|[—-1]]1
i) {|1],| =21/.| 1], for R3.
2] | 1] [
(17121 [3
@v) |121,131,{ L}, for R®
13 (1] [2
of |1 1 1
1| ]ob|1] |1 .
) PlLiblo bl for R*.
1 1 1 0

. In each case below, find a basis for the subspace (of R%, R® or R*, as
appropriate) spanned by the given list.

o (ML)

[ 21 (=37 1]f{o
i) || =2(,1 31.|=1[,]01].
L2011 3] 21t
o]l [-1][-21T 1
(iv) t,l tl,l sl 2
|-1] [ 0] |-3]|-1

1] o 21 [=31[=1

-1 (1] -3 5 0

WA 20 1] 3] -4 1

3 L-dL 3 1

. The following lists are all bases for R3. For each of them, express the

1
vector | 0 | as a linear combination of the basis vectors.
0
(0] [17 1
@ 11l,10[,|1
1111

(if)

(1ii)

(iv)

T T T
T 1
|
—_ NN
L )
T 1
!
p—
| e ] SN R — |
|
[ bt
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7. Show that the following pairs of subspaces have the same dimension.

[*]

(i) {{y|eR* x=0},
x

{lyleR x—y+2z=0}.
z

X
(i) {|y[eR*: x=y=12},
z

X
{|yleR*: 4x=yand y+2z=0}.

x
y ..
(i) { . eR*: x=y},

eR*: z=w}.

8. Find LI lists of vectors which span the following subspaces of R3. (All
of these have previously been shown to be subspaces.)

(i) {|y|leR*: x—y=2z}.
x
(i) {| y|eR® x=0}.
z
x
(iii) {{ y|eR® 2x~y +32=0}.
z

x
(iv) {|{y|eR* y=2x—zand x=y+2z}.
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15.1 Algebraic operations in R,.

la, a, -+ ad=[b; by --- b,]
if and only if a, =by,...,a,=b,.
[al a; - an] + [bl bZ e bn]
=[la;+b, ay+b, --- a,+b,].
kfa, a, --- a,J=[ka, ka, --- ka,], for keR.

Associative and commutative laws hold for these operations just as they do for
matrices in general and for column vectors.

15.2 Representation of simultaneous equations by a matrix equation involving
vectors in R,.

(i) The equations
ax +by=h,
cx+dy=h,

may be represented as

[ax +by cx+dy]l="[h, h,],
or [ax ex]+[by dyl=[h h,],
or [a cIx+[b dly=[h, h,].
These may also be represented as

[x y][z Z]=[”‘ h,].

Notice that the matrix of coefficients on the left-hand side appears transposed.
This complication is one reason for preferring to use column vectors.

(ii) The equations
X;—2x+ x3= 4
3x, — X, = 1

—X;+ X3—3x3=-2
may be written as
[1 3 —1x;+4[-2 =1 1Jx;+[1 0 -3]x;=[4 1 -=-2],

1 3 -1

or [x: x; x3]] -2 -1 1|=[4 1 -2].
1 0 -3

15.3 The space spanned by a list of vectors in Rj.

Letv;=[1 2 3],v,=[4 5 6]andwvys=[7 8 9]. Then the subspace of R,
spanned by (v, v, v5) consists of all vectors v which can be written as

a;v, +a,v, + asv;, with a,, a, and a; R,
ie. a[l 2 3]+a,J4 5 6]+as[7 8 9],
ie. [a, +4a,+ Tay 2a,+ 5a,+8a; 3a; + 6a, +9a;].



15
Rank

Now that we have the idea of dimension we can consider the idea of rank
in a slightly different way. Recall that the rank of a matrix has been defined
as the number of non-zero rows remaining after the standard Gaussian
elimination process has been applied. Since rows are involved here we
shall introduce the idea of a row vector, and show that row vectors can
be treated in very much the same way that column vectors have been
treated in earlier chapters. '

Let R, stand for the set of all 1 x n matrices with real entries, i.e. the
set of all row vectors with n components. Then R, has substantially the
same properties as R”. This is illustrated in Example 15.1. Linear
dependence and independence have the same definitions. We can define
subspaces, bases and dimension in exactly the same way. R, and its
algebraic operations can even be given the same geometrical interpretation
as R". The actual working of examples is rather different for R,, because
it is not as clear intuitively how to represent a linear combination of
vectors in R, as a product of a matrix with a vector of coefficients. See
Example 15.2.

What concerns us here is the idea of the space spanned by a list of
vectors in R,, i.e. the set of all row vectors which may be written as linear
combinations of the given list of row vectors. This is illustrated in Example
15.3. An example of this is the row space of a matrix, which is defined as
follows.
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154 The row space of a matrix.
Let A=[a;)sxs.
Then [x y z]4
=[xay; +ya +2a3; Xxaj;+yaz, +2a3, Xa;3+ ya; + zas;]
=xla;;, a2 aizl+yle ay; apl+zlay, as ajs].
Thus the set of all products x4, with xe R, is the set of all linear combinations
of the rows of A, i.e. the row space of A.

15.5 Proof that if 4 is a 3 x 3 matrix and T is a product of 3 x 3 elementary
matrices, then 4 and TA have the same row space.

Let A have rows v,, v, and v;. Pre-multiplying A by a single elementary matrix

has one of three effects, none of which affect the row space. Take each in turn.

(a) Interchanging two rows. This cannot affect the set of all vectors

expressible as linear combinations of the rows.

(b) Adding a multiple of one row to another. This gives (say) rows v,

v, + av; and v;. Any linear combination of these is certainly a linear combination

of v,, v, and v;. Conversely, any linear combination of v,, v, and v; is a linear

combination of the new rows thus:

blvl + bzvz + b3l73 = (bl - abz)vl + bz(vz + avl) + b3v3.

(c) Multiplying one row by a non-zero scalar. This gives rows (say) vy, v,
and av,. It is a straightforward exercise to show that the row space is unchanged
by this.

The matrix TA is the result of applying a finite sequence of these row operations
to A. Hence TA has the same row space as A.
The same argument can be generalised to apply to matrices of any size.
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Definition
Given any p x g matrix A, the row space of A4 is the space spanned by the
list of rows of A. The row space of A is a subspace of R,.

Though it is not quite so convenient to write down, the row space of
a matrix A, like the column space, can be thought of as a set of products.
If xis a 1 x p matrix (an element of R,) and 4 is a p x ¢ matrix, then the
product xA4 is a 1 x g matrix (an element of R,). In fact we have

row space of A ={xA4: xeR,}.

For more detail of this see Example 15.4.

The row space and the column space of a p x g matrix 4 are apparently
unrelated (the former being a subspace of R,, the latter a subspace of RP).
But there is a surprising connection. They both have the same dimension,
and this dimension is the same as the rank of 4. We can state this as a rule.

Rule
Let 4 be a p x q matrix. The rank of A, the dimension of the row space
of 4, and the dimension of the column space of A are all equal.

This rule is not easy to justify. We proceed in two stages, considering in
turn the row space and the column space. First recall that the Gaussian
elimination procedure amounts to the successive premultiplication of the
given matrix by a sequence of elementary matrices (one corresponding to
each elementary row operation). It follows that the result of applying the
GE process to a p x g matrix 4 is a matrix TA which is in row-echelon
form. Moreover, the matrix T, which is a product of p x p elementary
matrices, is an invertible matrix. We are never normally concerned about
what the matrix T actually is, but for our present argument we need to
know that it exists. Example 15.5 shows that the matrices A and TA have
the same row space. The non-zero rows of TA form a LI list of vectors
in R, (demonstration of this is left as an exercise), so the number of
non-zero rows of T4 is the dimension of the row space of TA. This means
that the rank of 4 is equal to the dimension of the row space of TA,
which in turn is equal to the dimension of the row space of 4. So we have
demonstrated the part of the rule concerning the row space.
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15.6 Proof that if 4 is a p x ¢ matrix and T is a product of elementary p x p
matrices, then the column spaces of A and T A have the same dimension.

The column space of Ais {Ax: xe R%}, and the column space of TAis {TAx: x€ R%}.

Let (v,,...,v,) be a basis for the column space of A. We show that the list

(Tvy, . - ., Tv,) is a basis for the column space of TA.

First, let ue {TAx: xe R},

say u=TAy (yeRY).

Then Ay belongs to the column space of A4, so

Ay=a,v, +---+a,v,, for some a,,...,a,€R.
Hence TAy=a,Tv,+---+a,Ty,
so u belongs to the space spanned by (Tv,, ..., Tv,), and we have shown that
(Tv,, ..., Tv,) spans the column space of TA.
Second, we show that (Tvy, ..., Ty,) is LI. Suppose that

b,Tv, +---+b,Ty,=0.
Then Ty, +---+bv)=0.
But T is invertible, being a product of elementary matrices, and so
biv;+--+bv,=T"10=0.
Now (vy,...,v)is LI, sob;=---=b,=0.
Hence (Tv,, ..., Tv,) is LI, and so forms a basis for the column space of TA.
We have now shown that the column spaces of 4 and TA have bases with the
same number of elements, so they have the same dimension.

15.7 A basis for the column space of a matrix in row-echelon form.
1 231150
01 4 2 011
00 0 1 1 21
000 0O T1T 3
000 O0O0O0TO

is in row-echelon form. The columns whose last non-zero entry is a 1 which is
itself the first non-zero entry in its own row are the first, second, fourth and sixth
columns. A basis for the column space is

o
=)
vi—i
-—vw»-‘u.

0 0 0 0

You should convince yourself that all of the columns can in fact be written as
linear combinations of these.
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Next we turn to column spaces. Let A and TA be as above, so that
TA is in row-echelon form. Example 15.6 shows that the column spaces
of A and of T4, though not necessarily the same, have the same dimension.
Now what is the dimension of the column space of TA? It happens to be
the number of non-zero rows in TA (which we know to be equal to the
rank of 4), because T4 is in row-echelon form. One basis for the column
space consists of those columns of TA whose last non-zero entry is a 1
which is itself the first non-zero entry in its own row. This sounds
complicated, but see Example 15.7 for an illustration. We have therefore
shown that the rank of A is equal to the dimension of the column space
of TA, which as above is equal to the dimension of the column space of
A. This yields the result promised.

The rank of a matrix is in many books defined as the dimension of the
row space or column space. In such books the notions of row space,
column space and dimension must be introduced before that of rank,
whereas our definition allows rank to be defined at an earlier stage, in
terms of more elementary notions.

Attention is drawn again to the Equivalence Theorem, given in Chapter
12. It may be valuable to give it again here, in a slightly different form.

Theorem (Equivalence Theorem, second version)
Let 4 be a p x p matrix. The following are equivalent.

(i) A is singular.
(ii) The rank of A4 is less than p.
(iii) The columns of 4 form a LD list in R”.
(iiia) The rows of A form a LD list in R,.
(iv) The equation Ax =0 has non-trivial solutions.
(v) The determinant of A is equal to zero.

Summary

The set R, of row vectors is described and discussed. The idea of the
subspace of R, spanned by a finite list of vectors is introduced and the
example of the row space of a matrix is used in a demonstration that the
row space and the column space of a matrix have the same dimension,
equal to the rank of the matrix.
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Exercises

Exercises

. In each case below, rewrite the given set of equations first as an
equation connecting vectors in R, and then as an equation of the
form xA = h, with x, heR,.

(i) 3x+ y=2 (ii) x—y=1
x—2y=1 x+y=3
(iil) 2x =1
x+3y=2.

. Repeat Exercise 1, but with the following sets of equations and with
vectors in R;.

i) x— y+ z= 1 () 2x+ y— z=0
x+2y— z= 4 X —2z=1
—Xx— y—2z=-2 2y+ z=3.

. Find whether the following lists of vectors in R; are LI or LD.

Gq 1 21,[=t 2 1Lt 0 —1]).
Gy 1 —11,[ 2 1 1L,[2 2 o).
Gi) (1 -1 1L,[ 2 1 1L[1 -4 2.
vy 2 11,[ 2 1 2,[2 4 —1]).

. For each of the following matrices, find (by separate calculations) the

dimensions of the row space and the column space. (They should of
course be the same.)

0 23 1 1 -2 1 —1
13 1 3 =1 . 6 13 5
Do 2 3 1 @i 5 o1 s
L4 2 5 —1 L—1 11 1
fii (1 0 1 2
(iii) ) ivi|2 1 1 —1].
o 2 3 1.0 1
| -2 -1 -1 S
13 12 o0 1 0 0 1
W{-1 0 —4 1 3] (iylo 1 0 2
12 21 -1 0 0 13
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(1)

(i)

v)

Examples

Matrices representing functions.

0 00

0 0 O] represents the function f: R®> - R>, where
000

0

0.

0

7

N o X
1

1 0
0 1 O] represents the function f: R® — R3, where
00

X -X
Ml yil=|y]|
z -Z

represents a function f: R? - R, where

—_ L N

1
—1
4

X 1 2 X x+2y
G 5]
y 4 1| 4x+ y

31 1
[1 ) 3:| represents a function f: R® — R2, where

X, Xy
NARE I:l :I X2
X3 X3
3+ x,— x3:|
[ Xy +2x5 —3x;
1 2 0
0 2 1|represents a function f: R* - R3, where
1 -1 3
x, 1 2 0fx,
MBS )=[0 2 1|x,
X3 1 =1 3| x;
X +2x,
= 2x,+ X3 .
[ — X, +3x,
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Linear transformations

Now that we know about subspaces we can take note of an important
application of the simple idea of muitiplying a column vector by a matrix.
Let A be some fixed p x g matrix. Then for any g-vector x, the product
Ax is a p-vector, i.e. for any xe R, AxeRP. In other words, this matrix
A determines a function from R? to R”. Every matrix can be thought of
in this way. Some matrices determine simple functions in an obvious way,
for example a zero matrix or an identity matrix. See Examples 16.1. For
most matrices, however, the nature of the corresponding function will not
be as clear. This is what we shall investigate in this chapter.

The first thing to notice is that functions which are determined in this
way have some convenient algebraic properties, which are consequences
of properties of matrix multiplication. Let A be a p x ¢ matrix and let x
and y be g-vectors. Then x + y is also a g-vector, and

A(x+y)=Ax + Ay.

Putting it another way, if we denote by f,, the function which is determined
as above by the matrix A4, then

Jalx+y) = fa(x)+ Saly).
Similarly, for any ke R, '

Jatkx) = kfy(x).
Not all functions have such properties. Functions which do have them
are significant mathematically. They are in a sense ‘compatible’ with the
algebraic operations in R% These two properties, then, are the essence of
the following definition.
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16.2 Proof that every linear transformation can be represented by a matrix.

Let f: R? — R” be a linear transformation. Denote the standard basis for R? by
(ey,...,e,). Then for any p x q matrix H, He; is a p-vector, and in fact is the ith
column of H. In order for a matrix A to have the property

fi{x)=Ax for every xe RY,
it will certainly be necessary to have, for each i,
[{e;) = Ae; = the ith column of 4.
We therefore take the columns of 4 to be the vectors f(ey), ..., f(e,).
Of course we must now check that f(x)= Ax for every xe R%. Let xe R?, and
suppose that
x=a,e,+--+a,e,.
Then .[(x)=alf(el)+"‘+aqf(eq),
using the fact that f is a linear transformation.

a a,
Also x=|: and Ax=A| :
aq aq
=a,fle))+ - +a,fle),
since the columns of A4 are the vectors f(e,), ..., f(e,).

Conclusion: f is represented by the matrix A whose columns are the vectors

f(el)’ Tt f(eq)~

16.3 Let f be the linear transformation from R? to R for which
1 2
1 0
f< 11| and f([ D: 0.
0 1 / 1 1
/ -

Verify that
1 2
flx)=|1 0lx, for each xe R
1 -1

X
Let xeR?, say x=[ l:l.
X2

1 0
Then x=x1|:0]+lei1]=xlel+xzez'

And  f(x)=f(x,e; + x3¢;)
= f(x(e;) + f(x;€3)
=x, fle))+x3f(ey)

1 2 Xy + 2x,
=x,[1|+x3] O]=|[x,
1 —1 X, — X,

1 2
Xy
Also 1 0 |:
X3

X;+2x,

X;— X,
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Definition
Let f be a function from R? to R?. Then f is a linear transformation if f
has the properties

(i) fx+y)=f(x)+ f(y) for all x, ye R
(il) f(kx)=kf(x) for all xeR? and all keR.

A function which is represented by a matrix as above has the properties
required for a linear transformation. Can every linear transformation be
represented by a matrix? Conveniently, the answer is ‘yes’. A
demonstration is given as Example 16.2, and an illustration is given as
Example 16.3. It is worth noting here what form the matrix takes. Let f
be a linear transformation from R? to R?, and let (e, . . ., e,) denote the
standard basis for R? (¢; has 1 in the jth position and Os elsewhere). Then
f is represented by the p x ¢ matrix A whose columns are the vectors

fley), ..., fle,).
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164 Specification of linear transformations.
(i) Show that f: R®* — R! is a linear transformation, where
]
Sl x2(]1=3x% + x5 — x5 (x1, x5, x3€R).
X3

We have to verify the requirements of the definition of linear transformation.

Xy Y1 -xl + ¥
Sl x|+ y2{|= St x2+ 72
| X3] Vs X3+ Y3

=3(x; + y) + (2 4+ y2) — (x3 + y3)
3xp+x, —x3+ 3y, +y2— Y3

—xl Y1
= fl1 x| )+ 1] vz

L X3 Vi3,
Xy ax,
Also fla| x; [|=f||ax,
X3 ax;

= 3(ax,) + (ax;) — (ax3)
=a(3x, + X, — X3)
X, ]
=af||x,
X3 |
(ii) Let f: R® > R? be given by

1 2 1
f(x)z[] | Jx, for each xeR>.

It is a consequence of the discussion in the text on page 191 that f defined in this
way is a linear transformation.

(iii) Let f: R* > R3 be a linear transformation such that
1 0 0 1 0 2
rlotl=11l,  lill=12]. *rsllol|=|3]
0 1 0 1 1 1
Then for all xeR3,
01 2
fix)=|1 2 3|x.
1 11

Notice that specifying the values of f on the basis vectors is sufficient to determine
the value of f on every vector in R* (given, of course, that f is presumed to be
a linear transformation).
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How can a linear transformation be specified? Here are some ways.

(a) A rule for calculating its values can be given. It must be such
that properties- (i) and (ii) hold.

(b) It can be specified as the linear transformation represented by a
given matrix.

(c) The images of the standard basis vectors ey, . . . , ¢, may be given.

These are all illustrated in Examples 16.4.
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16.5 Some geometrical transformations on R2.
[x ] x o .
— | ]: reflection in the x-axis.
Lyl L-Yy
[x] [—-x
— J: reflection in the y-axis.
:y: — Y
X
— y]: reflection in the line y = x.
y4 Lx
< [x+ay shear parallel to thf: X-axis ‘(each point is shifted
— : parallel to the x-axis by a distance

Lyl Loy proportional to y).
x x
| — } shear parallel to the y-axis.
Lyl Ly+ax
[x] [x o .
— 0]: projection on to the x-axis.
Y
x| 0 L .
— : projection on to the y-axis.
Lyl Ly

These are represented, respectively, by the matrices
[ 1 oJf—-1 ojf0 1]]1 a1l O][1 O]f0 O
10 —1L o 1)1 oJ]|o 1]la 1|0 oo 1]

16.6 Rotations about the coordinate axes in R>.

(1) Rotation through an angle o about the x-axis is the linear transformation
represented by the matrix
10 0
0 cosa —sinaj.
|0 sina COS o |
(i) A rotation about the y-axis is represented by a matrix
fcosa 0 —sina|
0 1 0
|sina 0 oS |
(ii1) A rotation about the z-axis is represented by a matrix
[cosa  —sina 0]
sin o cosa Of.
L o 0 1]
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In two and three dimensions, some linear transformations have simple
geometrical effects. For example, in two dimensions, the linear
transformation from R? to R? which takes

Gl e o) (eels L))

where a is a non-zero constant, can be thought of as a dilatation of the
plane. Each point (x, y) is taken to the point (ax, ay). Other illustrations
are given in Examples 16.5.

Y

(ax, ay)

(x.y)

X
o

One important geometrical operation is rotation (in two or three
dimensions) about an axis through the origin. Algebraically, such an
operation is a linear transformation. In two dimensions, rotation through
an angle a takes a point (x, y) to the point (x’, y’), where

X' =Xxcosa—ysinu« and Yy =ysina+xcos«.
Y
" y")
(x,)
[0 4
X
(0]

In algebraic terms, the image of [x:l is A[x:l, where

y y
cosa —sina
A=| " .
sin a cOS o
In three dimensions a matrix which represents a rotation is normally
rather more complicated, but we give in Example 16.6 the matrices which

represent rotations about the three coordinate axes. There is further
discussion of rotations in Chapter 18.
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16.7 One-to-one linear transformations.
(1) The linear transformation from R?® to R represented by the matrix
1 -1 2
A=i0 1 -1
2 1 1

is not one-to-one.
As shown opposite,

0 3

All|[=A4|0]|=] —1].
2 1 3
Hence the function represented by A is not one-to-one. Notice that the difference
0 1 -1
11—(0}, namely 1
2 1 1

is a solution to the equation Ax = 0. What is the rank of this matrix A? A standard
calculation shows it to be 2.

(i) The linear transformation from R? to R represented by the matrix
2 1
B=|1 0
1 -1

is one-to-one.

The rank of B is 2 (standard calculation), so it follows, by the argument in the
text, that whenever y # z in R2, By # Bz in R3, so B represents a one-to-one
function.

110
(i) Let C=[1 0 1}.
011

This 3 x 3 matrix has rank 3, so it represents a linear transformation from R3 to
R which is one-to-one. There do not exist distinct vectors y and z in R for which
Cy=Cz.

-1 2 1
(iv) LetD=| 2 -4 2|
1 -2 -1

This 3 x 3 matrix has rank 1, so it represents a linear transformation which is not
one-to-one. A convenient way to find distinct vectors which are taken to the same
vector is to solve the equation Dx =0, to obtain x different from 0. Then x and
0 are distinct vectors which are both taken to 0 by multiplication by D. The usual
process of solving equations yields such an x, say
2

x=|1].

0
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When we consider the linear transformation represented by a matrix
A, we may note the possibility that vectors which are different may be
taken to the same vector. For example

1T —1 2707 [ 3

0 1 —1|1|=]| -1

12 1 112 L 3]
and

1 -1 2717 | 37

0 1 —1(0)=|—1].

12 1 1t] [ 3]

On the other hand, it may happen that different vectors are always taken
to different vectors by the process of multiplying by a particular matrix.
Let us pursue this a little, because it is important, and it links in with
previous work.

Let A4 be a p x g matrix and let y and z be two p-vectors which are
different, but for which

Ay= Az
(as in the example above). Then it follows that
A(y—z)=0.

Since y — z # 0, it follows that the equation Ax =0 has a solution other
than x=0. Using a rule from Chapter 8, this must mean that the rank
of A4 is less than g. Examples 16.7 illustrate this, and the converse case
also, which we now describe.

Suppose that 4 is a p x g matrix such that whenever y # z (in R?), we
have Ay # Az. Then it follows as a particular case of this that if x # 0 then

Ax # A0,
le. Ax#0.

Thus the equation Ax = 0 has a unique solution x = 0. Again from Chapter
8, it follows that the rank of 4 must be equal to q.

In this chapter we are dealing with functions (linear transformations)
represented by matrices. What has been figuring in the above discussion
is an important property that functions in general may have. This is the
property of being one-to-one.

Definition
A function f from a set S to a set T is one-to-one if, whenever x and y
are different elements of S, then f(x)and f(y) are different elements of T
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16.8 Image and column space.
3 -1 1

Let A=|0 2 1.
1 -1 1

The column space of A4 is the set of all 3-vectors which are linear combinations
of the columns of A4, i.e. all vectors

3 -1 1
Ofx;+| 2(x,+]|1]x5,
1 -1 1

where x,, x, and x5 are real numbers.
The image of the linear transformation represented by A is the set of all 3-vectors
Ax, for all possible values of x. This is the set of all products

3 —1 1]x,
0 2 1fx,],
1 —1 1]x,

where x;, x, and x5 are real numbers. This is the same set as described above.
Both sets may be written
3%, — Xp+ X3
{ 2x5 4+ X315 Xy, X5, X3 R} .
Xy — Xo+ X3

16.9 Diagrammatic representation of a linear transformation from R? to R?.
ker(f) = {xeR% f(x)=0}.
im(f)={yeR?: y= f(x) for some xeR?}.

im (f)




16. Linear transformations 199

The conclusion which can be reached from the arguments above is that
a p x q matrix A represents a function f from R? to R? which is one-to-one
if and only if the rank of A is equal to g.

The term ‘one-to-one’ is indicative of the property it describes. A
function which is one-to-one provides a correspondence between
elements of two sets: each x corresponds with f(x), and each value f(x)
corresponds with x only. If f is a linear transformation from R? to R?,
the image of f (denoted by im(f)) is the set of all values of the function
1, i.e. the set

{yeRP: y= f(x) for some xeR?}.

If f is one-to-one, then the elements of R? and the elements of im( f) can
be matched off in pairs, and in a sense, im(f) is a ‘copy’ of R%. We can
make this more concrete by considering matrices. If f is represented by
the matrix A4, the image of f is a set we already know about, namely the
column space of A. This was implicit in Chapter 12, but is made explicit
in Example 16.8. From Chapter 13 we know that the column space of a
p x q matrix is a subspace of R”. We also know (from the definition of
rank) that the column space of such a matrix has dimension equal to the
rank of the matrix. Putting all this together, the image of a linear
transformation from R? to R? is a subspace of R?, whose dimension is
equal to the rank of a matrix which represents the linear transformation.

Next we consider another subspace which can be associated with a
linear transformation f. This is the kernel of f. Again, matrices will help
to give a clear idea. We know that if the equation Ax = 0 has any solution
other than x =0, then it has infinitely many solutions. Indeed we already
know (see Chapter 13) that the set

{xeR?: Ax =0}
is a subspace of R?. If we think of A as representing a linear transformation

S then this set is the set of all vectors which are taken to the zero vector
by the linear transformation. This set is the kernel of f.

Definition
Let f be a linear transformation from R? to R®. The kernel of f, denoted
by ker{f), is the set

{xeR": f(x)=0}.

This is represented diagrammatically in Example 16.9. The diagram also
gives an indication of the image of f.



200 Examples

16.10  Kernels and images of linear transformations. In each case let f be the
linear transformation represented by the given matrix.

1 0
) A=|2 1|. Here f is from R? to R3.

1 -1
The rank of A is equal to 2, the number of columns of A4, so here f is one-to-one. It
follows that ker(f) = {0}, and so dim(ker(f)) = 0. Consequently, dim(im(/)) = 2.
Notice that it is not possible for a linear transformation from R? to R” to have
image with dimension greater than g.

1 3
(i) A=|2 6/|. Here f is from R? to R3.
1 3

In this case, f is not one-to-one. The image of f is the column space of 4, and
it is easy to see that this has dimension 1 (the columns are multiples of each
other). Hence

dim(ker(f))=1 and dim(im(f))=1.
1 2 0
(ii) A=10 —1 1/, sothat fis from R? to R>.
1 01

The rank of A is equal to 3 (check this). Hence the column space of 4 has dimension
3, so dim(im(f)) = 3. Consequently, dim(ker(f))=0 (f is one-to-one).

(1 -2 4
(iv) A=|1 1 14}, so that f is from R3 to R3.
2 31

Here the rank of 4 is equal to 2, so
dim(im(f))=2 and dim(ker(f))=1.

(1 2 3
(v) A=|2 4 6|, so that fis from R3 to R
3 6 9

Here the rank of 4 is equal to 1, so

dim(im(f))=1 and dim(ker(f))=2.
If these examples are not clear, then it would be a useful exercise to find the kernel
in each case explicitly by solving the equation Ax =0 in the standard way.
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Although the kernel of a linear transformation is familiar as the solution
space of an equation of the form Ax = 0, our previous work has not given
us a convenient way of finding the dimension of such a solution space.
There is a simple and important relationship between the dimensions of
the kernel and image of a linear transformation, which we state here
without proof.

Rule
Let f be a linear transformation from R? to R”. Then the sum of the
dimensions of the kernel of f and the image of f is equal to q.

Examples 16.10 give some specific matrices which represent linear
transformations, with the dimensions of the corresponding kernels and
images. Notice the particular case of a one-to-one linear transformation.
The kernel of such a linear transformation is the subspace {0}, which
has dimension 0.

Linear transformations from R” to R” are an important special case.
As noted in Chapter 14, a subspace of R? which has dimension equal to
p must necessarily be the whole of R?. The image of a one-to-one linear
transformation from R? to R is such a subspace, because its kernel has
dimension 0, and the sum of the dimensions of the kernel and image is
equal to p. So in this situation a one-to-one linear transformation f
provides a pairing of elements of R?. Each x is paired with f(x), and each
yeR? is actually equal to f(x) for one particular x.

Let us end this chapter by drawing together all the strands we have
considered into a rule.

Rule
Let f be a linear transformation from R” to RP, represented by the p x p
matrix 4. The following are equivalent.

(i) f is one-to-one.
(ii) ker(f)={0}.
(iii) im(f)= RP.
(iv) A is invertible.
(v) The rank of 4 is equal to p.

This is very similar to the Equivalence Theorem from Chapter 12,
especially if we note that (ii) may be re-written as: the equation Ax=10
has no solution other than x = 0. Thus partial justification for the rule is
contained in the body of this chapter. Details of the proof are omitted.
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Summary

The idea of a linear transformation is introduced by noting some properties
held by functions represented by matrices. It is shown that any linear
transformation is represented by the matrix whose columns are the images
of the standard basis vectors. Some geometrical examples are given. A
criterion is found, involving the notion of rank, for deciding whether a
given linear transformation is one-to-one. Kernels and images of linear
transformations are introduced and the relationship between their
dimensions is stated as a rule.

Exercises

1. (i) Let f be a linear transformation from R? to R> such that

7 = D]

Show that for each vector [X] in R?,
y

<

(SN

(ii) Let g be a linear transformation from R3 to R? such that

1 2 0 1 0 0
g0=], gi|1]{=|0 and gi{0f]1=12}.
0 0 2 1 1

2 1
1 0
0 2
(iii) Let h be a linear transformation from R? to R? such that
1

1 —
—1
(D A o)
1 il 1 3
Calculate h<[ :|> and h<|: ]>, and hence find a matrix A such that

for each vector xe R2, h(x) = Ax.

Show that for each vector |iy in R3,
0
2
1

X
yi.
z

Q
N = X



16. Linear transformations 203

2. Let f be a function from R* to R?® given by

x+y+z
f = y+z+w|.
z
Z+w+x
w,

Show that f is a linear transformation, and find a matrix A which
represents it.
3. Let f be the linear transformation from R* to R? for which

B 2 0 0 0 2
fl1ofl=11(, flit{l=[-3 and  f[{0]]={0]-
L0 1 0 3 1 2
Show that
[ 4 -2
f 3lf=f 1
-2 5

Is f one-to-one? Is the image of f equal to R®?
4. In each case below determine whether the linear transformation
represented by the given matrix is one-to-one.

NS J1r =10
0 [ 1 1} (i) 1 1 1]
R*>RY) (R > R?)
12 3 2 1
(i) {2 1 )1 1 -1
L1 1 11 0 3
(RZ—?R3) (R3—‘>R3)
[0 1 —1 M2
2 1 |3 4
Ml 3 3 ™M) 1s 6
2 1 5 L7 8
(R3—>R4) (R2—>R4)
r21 13 12 -3 3
(i) 1 2 =1 3 (viii) [=1 1 =3 0
-1 1 =21 L 31 1 4
(R* - R%) (R* - R?)

5. Verify that the rotations whose matrices are given in Example 16.6 are
one-to-one functions.

6. Find the kernels and images of all of the linear transformations whose
matrices are listed in Exercise 4 above.
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17.1

i)

X

1
1

Components with respect to bases other than the standard basis.

1 1
:H: 1]) is a basis for R2. Let v=[3]. Then v=[(l):l+3l:

in terms of the standard basis. Also

1
1

|

basis B.
1
(ii) B=|1
0
1
Then v=|0
0
1
Also v=2{1
0

80 v may be represented by the 3-vector | —1 | of components with respect to the

basis B.
1 0 2
(iif) B=[]2],| 1] 1
21 (=1 |-2
v=| 7| with respect to B. To do this we require to:solve the equation
—4
1 0 2 3
2ixy 4+ lixa+| lixs={ 7/
2 ~1 -2 —4
The GE process gives
1 0o 2 3] [t 0o 23
2 1 1 7/—-10 1 =3 1,
2 -1 -2 —4] [0 0 11

yielding the (unique) solution x,

3
Hence
-4

I

so v may be represented by the 2-vector l:

+5

1
2 0 ’
1

0
1

0

1
0
1

—1

1

J

0
1
1

+2

+3

)

1
is a basis for R3. Let p=|5|.
2

0

1]
o]
i

1]

0f.

1

7| has components | 4

1

2

3

is a basis for R Find the components of

=1,x,=4,x,=1.

with respect to the basis B.

2
1:| of components with respect to the
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Change of basis

The elements of R” are n x 1 matrices, and we have seen how the entries
in such a matrix can be regarded as components of a vector. When we
express a given n-vector as a linear combination of the standard basis
vectors, the coefficients which appear are the components of the vector,
and they are in fact just the entries in the original n X 1 matrix.

There are, of course, other bases for R” besides the standard basis, and
a property which every basis has is that every vector in R" may be expressed
(uniquely) as a linear combination of the basis vectors. Let B= (v, ..., v,)
be a basis for R" and let vye R". Then we may write

v=a,0;+---+a,u,
where the coefficients ay, ..., a, are uniquely determined. See Chapter
14. These coefficients are called the components of v with respect to the
a
basis B. Indeed v may be represented as the n-vector | . | with respect to

B. Examples 17.1 give some particular cases of this.
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17.2 Components with respect to a basis in a subspace of R>.
x
Let S={y|leR* 2x—y—32z=0}.
z
S may be shown to be a subspace of R by the methods of Chapter 13. Also by
1 1
our earlier methods it can be shown that the list B={|2]|,| —1(] is a basis for
0 1
S (so S has dimension 2). Every vector in S may be represented uniquely as a
linear combination of these vectors. For example,

7 7 1 1
—1]€es, and —1|=2(2|+5{-1]{.
5 5 0 L 1

This expression is found by solving equations, as in Example 17.1(iii) above.

7 -
2
Thus| — 1 |may be represented by the 2-vector [5 with respect to the basis B for S.

5
173 Geometrical representation for a change of basis in R?.
Y
v
v
U
u
X
o

OU and OV are new axes. In geometry they would perhaps normally be chosen
to be perpendicular, but for our algebraic purposes they need not be (they must
of course not be in the same or opposite directions). Let u and
v be vectors in the directions of QU and OV. These may be, but need not be, unit
vectors. Then (u, v) is LI, and so is a basis for R2. Suppose that

u=|:u‘:| and v=|:vl:|, and let x=[x].
Uy Uy y

How can we find the components of x with respect to the basis (u, v)? Just solve
the equation

x=au+by
for a and b. This equation may be written
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This is a very general notion which applies not just to the spaces R"
and their various bases, but also to subspaces of R". If S is a subspace of
R" and B is a basis for S, then every vector in S has components with
respect to B and may be represented by a column vector of components.
The number of components, of course, is the number of vectors in the
basis, i.e. the dimension of S. See Example 17.2.

It is important to remember that a basis is a list of vectors, rather than
a set. The elements of a basis are to be taken in a particular order, and
consequently the components of any vector with respect to a given basis
will be in the corresponding order.

It may be helpful to bring in some geometrical ideas. Points in
three-dimensional space may be represented by ordered triples of
coordinates with respect to fixed coordinate axes. The connection between
algebra and geometry is made by associating a point P(x, y, z) with its

X
position vector 0B = y|. The standard basis vectors in R* are usually
z
denoted by i, j and k respectively in the directions of the x-axis, the y-axis
and the z-axis. The coordinates x, y and z of the point P are the components
of the vector OP with respect to the standard basis. It is quite a common
geometrical operation to change the axes, i.e. to consider a different set
of axes (for simplicity here we assume that the origin remains fixed), and
to try to find formulas which relate coordinates of any given point with
respect to the different sets of axes. This can be done using geometrical
methods, but it is much better dealt with algebraically. Example 17.3
shows the procedures involved in R2.
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x=au, +bv,,
y=au, + bv,

which in turn may be written
[X] = P[a} where P = " vl:l.
y b u; v
P is invertible because its columns form a LI list, so we may write
a:, _p|*
b vyl

which yields the components a and b which we seek. As an illustration, consider
the case where

o R I B

1 1 1 1
vl a] e LD
72 b -7 2y
ie. = x+1iy,
and b= —3x+1y.
174 Change of coordinates in three dimensions.
1 1 0
Let u=|14, v=|0{, w=|1
0 1 1

Then (u, v, w) is a basis for R. We show how to find the components of any
given vector in terms of this basis.

X
Let x=|yl, and let x = au + bv + cw. Then (from the text opposite)
V4
a x 1 10
bl=P ! y|, where P=|1 0 1
c z 01 1

By computing P! in the normal way, we may derive
a= ix+iy-1z
b= ix—Jy+iz,
c=—ix+3y+1iz.

These are the equations which yield the new components. In Example 17.1(ii) we

X 1
dealt with the single case of | y [=| 5|. We now have general equations which we
z 2

could use to obtain new components without solving equations every time (but
of course the work of inverting a matrix remains). Let us check the answer obtained
in Example 17.1:

a= 3+3-3= 2
b= L-3+2=—1
c=—-4+34+2= 3,
which agrees with the previous result.
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Let us here deal with R3. See Example 17.4.

Let OU, OV and OW be new coordinate axes in three dimensions. It
may be helpful to imagine that they are rectangular and right-handed, as
they would normally be in a geometrical situation, but from the point of
view of the algebra they need not be (and in Example 17.4 they are not).
All we require is that OU, OV and OW are not coplanar, so the vectors
in these directions are linearly independent. We shall find a way of
converting between coordinates with respect to OU, OV and OW, and
coordinates with respect to the standard axes OX, OY and OZ. Let u, v
and w be vectors in the directions of OU, OV and OW respectively. Then
the list (u, v, w) is a basis for R® (being a LI list in R* with three members).
Suppose that

Uy Uy Wy
u=\u,|, v=|1,]|, w=|w,|.
Us U3 W3

X

Let x be any vector in R3, say x=|y|. Then x is the position vector of
z

the point which has coordinates (x, y, z) with respect to the axes 0X, OY

and OZ. But we may write

x=au-+ bv+ cw,

where a, b and c are the components of x with respect to the basis (u, v, w).
This equation may be written

X =au; +bv; + cw,,

y=au, +bv, + cw,,

z =auy + bvy + cw,,

and hence as a matrix equation

X a W vy w
y|=P|b|, where P=u, v, w,|.
Z 4 Us U3 Wy

X
This matrix equation is what we are seeking. It relates the vector | y | of
z
a
components with respect to the standard basis with the vector |b| of
L
components with respect to the new basis. The columns of the matrix P
are the vectors u, v and w, so they form a LI list. Consequently (by the
Equivalence Theorem, Chapter 12), P is invertible and we can write also

i
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17.5 Change of basis when neither basis is the standard basis.
1| |0 3
Let X=||-1].|1], 1
2] [t]] -1
o1} |1
and Y=[{2],]|21,]1
1{1]0] [1
X and Y are both bases for R*. We find a matrix Q such that for any vector xe R3,
a l
if x has components | b | with respect to X and | m | with respect to Y, then
c n
1 [a
mi=0Q|b]|.
n L
[x
Suppose that x =| y | with respect to the standard basis. Then
Lz
[x] [a 10 3
yIi=P|bj, where Py =| —1 1].
7] | ¢ -2 1 =1
x| ! 0 1 1
Also yi=P,m|, where P,=2 2 1{.
z] J 1 0 1
Consequently
i X al .
m|=P;'y|=P;'P|b]|.
L n z c

The required matrix Q representing the change of basis from X to Y is just P; 'P,.
Standard calculation gives

-1 2 -6
0=4-4 -1 6
7 1 3

in this example.
Note that the change of basis in the opposite direction is given by the matrix
P 'P,, which of course is the inverse of P; !P,.
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This form is more apparently useful, as it gives the new components in
terms of the old.

The above is an algebraic process which may be generalised. The same
argument may be carried through without the geometrical thread, for
vectors in R", for any value of n. The result is a general rule.

Rule
Let B be any basis for R”, and let x e R". If the column vector of components
of x with respect to the basis B is denoted by x’, then

x=Px and X =P !x,
where P is the n x n matrix whose columns consist of the vectors in the
basis B in order.

It is important to remember here again that components form an
ordered list, and that the order of the components, the order of the basis
vectors and the order of the columns in the matrix P must all be consistent.

The above procedure can be further generalised to cover a change from
components with respect to any basis to components with respect to any
other basis. The columns of the matrix in that case are just the components
of the new basis vectors with respect to the old basis. There is a more
convenient way, however. We may proceed in two stages. First convert
to components with respect to the standard basis, and then convert from
there to components with respect to the desired basis, each time using
the process detailed above. Example 17.5 illustrates this. It deals with a
change from one basis to another in R?, when neither basis is the standard
basis.

Summary

An element of a subspace of R” may be represented uniquely by a column
vector of its components with respect to a given basis. In the case of R”
itself, it is shown how such a column of components is related to the
components with respect to the standard basis, via a matrix equation.
Change of axes in R? and R? are given as examples.
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Exercises

1. In each case below, a basis for R? or R® is given, together with
a vector from the same space. Find the components of the vector with

respect to the basis.
1
s|

(D

““(21 L) [

(iif) i{
|

1
2|,
1

@iv) 1
° 1

2. Let u= and v= 2 . Find a matrix P such that P! x] =|:a],
2 1 y b

x
for every I: ]ERZ, where a and b are the components of the vector
y

’

1]
1
2]
0]
1
—1]

[x:l with respect to the basis (u, v).
y

3. As in Exercise 2 above, find the matrix representing the change of basis
in R3, where the new basis is

(17 27 17
2[,15],11
L1 (0] [4]
4. Repeat Exercise 3, but with the new basis
(17 17 [O]
1,12],11
0] L1] 10
5. Repeat Exercise 3, but with the new basis
F17 27 [37
of,|11],]2
1] 0] [3]
a
6. Let X be a basis for R® such that components | b | with respect to X
c

X
are related to components | y| with respect to the standard basis
z
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according to the equation

a 1 3 —1x
bi=|—-1 =2 2
c 2 4 -3z

Find such a basis X.
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18.1 Given that the matrix

A=

W= IR W

W W= W
W W L=

represents a rotation about an axis through the origin, find the direction of this axis.
Suppose that p is in the direction of the axis of rotation. Then

Av=v.
Hence Av—v=0,
ie. (A—-Ip=0.
-3 -3 4 x
Now A—-I=| %2 —-%2 —%| Letv=|y]|
L 2 1
3 3 T3 z

The GE process can be used to solve (A DHv=

s

W= WS Gl

2 1
3 3
_2 _2
-3 —37
2 _1
3 3

so the solutionis z=¢, y

1

0| then Av = v and, furthermore, there are no other such vectors. It follows that
1

t,y=0,x=t (te IR) In other words, if v is any multiple of

1
the axis of rotation is in the direction of the vector |0 |.
1
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Eigenvalues and
eigenvectors

Recall (from Chapter 16) that a rotation in three dimensions about an
axis through the origin may be represented algebraically as a linear
transformation from R* to R?, and that a linear transformation may be
represented by multiplication by a matrix. This situation will serve to
illustrate the procedures which are to be discussed in this chapter. Example
18.1 gives the details of the following. Suppose that we are told that the
linear transformation f from R* to R® represents a rotation about an axis
through the origin and that f is represented by the 3 x 3 matrix 4. How
can we find the direction of the axis of rotation? We can use the fact that
any vector in the direction of this axis (and only such vectors) will be left
unchanged by the rotation, so if v is such a vector we must have

Av=v.
Elementary methods will serve to find such vectors v, in the following
way. Rewrite the equation as

Av—v=0,thenas (A —1v=0,
where [ is the 3 x 3 identity matrix. Now solve in the normal way, using
the Gaussian elimination process. Of course we are interested only in
non-trivial solutions (i.e. other than v=0), and we know that such
solutions will exist if and only if the matrix A — I is singular. This is bound
to happen if A represents a rotation as above, for there must be an axis
of rotation, so there must be such a vector ». And of course there will be
infinitely many solutions, all multiples of each other, all solutions being
in the direction of the axis of rotation.

There is a more general idea in the background, here, though, and it
turns out to be a remarkably useful one which crops up wherever linear
algebra is applied. Given any n x n matrix A, there may be some n-vectors
x for which Ax and x are multiples of each other (which in geometrical
terms means having the same or opposite directions). Such vectors are
called eigenvectors, and the property above is made precise in the definition
below.
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18.2 Examples of eigenvalues and eigenvectors.

() A=B ;]
sl
B HENEH!

1 1
So [ 1] and [2] are eigenvectors of A, with corresponding eigenvalues 1 and

4 respectively.

NNNN
—

110
(ii) 1 01
011
1 2 1 1 1 —1
Here All|=|2], 0l=| O and Al =2[=]| 2},
1 2 -1 —1 1 -1
1
sO 1 ,| 0]and —2 are eigenvectors of A with corresponding eigenvalues 2,
1 -1 1

1 and —1 respectively.

(i) A=[_; _2]
Here A|: 1]:[ 7:|, and A[3]=|:O],
-2 —14 1 0

1 3
SO [ 2:] and [1] are eigenvectors of 4 with corresponding cigenvalues 7 and 0

respectively.
In all of the above cases the matrix has other eigenvectors also. Can you find some?
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Definition
Let 4 be a n x n matrix. A non-zero n-vector x for which Ax is a multiple
of x is called an eigenvector of A.

Notice that we exclude the zero vector from consideration. A0 is always
a multiple of 0 in a trivial way. We are interested in non-trivial ways in
which Ax is a multiple of x.

The numbers which may appear as multipliers in this context have a
special significance. They are called eigenvalues of the matrix A. Each
eigenvector has a corresponding eigenvalue.

Definition
Let A be a n x n matrix and let x be an eigenvector of A. If Ax = kx then
k is said to be the eigenvalue of A corresponding to x.

Some examples of eigenvalues and eigenvectors are given in Examples
18.2. Notice that in the case of a matrix 4 representing a rotation, we
have Av=wv when v is in the direction of the axis of rotation, so such
vectors p are eigenvectors of this A4, and 1 is the corresponding eigenvalue
for each of them.

Among Exampies 18.2 there is one matrix for which 0 is an eigenvalue.
This is an important special case. 0 is an eigenvalue of A4 if there is a
non-zero vector x for which

Ax=0x, ie. Ax=0.

Of course this is equivalent to saying that A is singular.

Rule
A square matrix A has 0 as an eigenvalue if and only if 4 is singular.
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18.3 Finding eigenvalues and eigenvectors.

. 2 1
(1) Let A —[2 3].

Seek values of k for which (4 — kI)x = 0 has non-trivial solutions. So seek values
of k for which det(4 — kI)=0.
2—k 1
23— k‘

=Q2—-k)3—-k)-2

=4—5k+k®

=4 —k)(1—k).
Hence the values we seek are 4 and 1. These are the only eigenvalues of A. To
find corresponding eigenvectors, take each eigenvalue in turn, and solve the
equation (A —kI)x=0.

[ OPH)

ot
The solution is y =¢, x = it (te R). So all vectors |:2t:| (teR, t#0) are

det(4 — ki) =)

eigenvectors of A corresponding to k =4. Note that they all lie in the

1
same direction. One such vector is [2] (see Example 18.2(i)).

T R

The solution is y=t, x = —t (teR). So all vectors |:

t
] (teR, t#0)
are eigenvectors of 4 corresponding to k = 1. One such vector is the one

1
discovered in Example 18.2(i), namely [ 1].
110
(ii) A=|1 0 1].
01 1

Solve the equation

det(A — kIy=0,
1—k 1 0
ie. 1 —k 1 (=0
0 11—k
ie. (A=K —k(1—k)—1]—1(1—k=0)=0
ie. A=k —k—1)—(1—k)=0
ie. (1 —k)(k?—k—2)=0
ie. (1 —k)(k —2)(k +1)=0.

This is satisfied by k=1, k=2 and k= —1. These are the eigenvalues of 4. To
find the eigenvectors, take each eigenvalue in turn.
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There is a routine process for finding eigenvalues and eigenvectors. It
is as follows (illustrated by Example 18.3). Given a square matrix A, we
seek numbers k and non-zero vectors x which satisfy the equation

Ax=kx.

The first thing is to find all numbers k for which corresponding non-zero
vectors can exist (i.e. all eigenvalues of the matrix). Write the equation as
Ax—kx=0, then as (4 —kl})x =0,
where I is an appropriately sized identity matrix. This equation has
non-trivial solutions for x if and only if 4 — kI is a singular matrix, i.e.
if and only if
det(4 — kI)=0.
So we seek values of k which satisfy this equation. If 4 is a n x n matrix
then this equation will turn out (when the determinant is evaluated) to
be a polynomial equation in k of degree n. We may therefore expect n
values for k as roots of the equation, some of which may be complex
numbers, of course, and some of which may be repeated roots. In any
event there will be finitely many real eigenvalues k (possibly none).

Definition
The equation det(4 — kI) =0 is called the characteristic equation of A.
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0 1

0 1 0fx 0
k=1 Solve|l —1 1jy|=|0].
0f z 0

The solution is 0

=t,

z y
(-1 1 0 x:l [0
k=2: Solve 1 =2 1{yl=|0j.
| O 1 1)z 0
t

The solutionis z=¢t, y=t, x =t (teR).
2 1 ofx| [0
k=—1:Solve[1 1 1|yl={0].
01 2|z 0

L
The solution is z=t, y= —2t, x =1 {teR).
Thus all eigenvalues and eigenvectors are:

—t

<

k=1 with eigenvectors (teR, t#0),

k=2 with eigenvectors |t (teR,t#0),

k=-1 with eigenvectors | —2t| (teR,t#0).

184 What is the eigenspace of 4 corresponding to the eigenvalue 2, where
A is the matrix
110
10 1/?
011
The work has been done in Example 18.3(ii). The eigenvalue 2 corresponds to
the set

Py
~

cteR, t #0}
t

of eigenvectors. The eigenspace is just

t

{

-~

(teR}.
t

Notice that the eigenspace contains the zero vector, which is not an eigenvector.
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Once we have found an eigenvalue of A, the problem of finding
corresponding eigenvectors is just a matter of solving equations. This was
done in Example 18.1, where the eigenvalue concerned was 1, and it was
done in Example 18.3 for each of the eigenvalues separately. The
eigenvectors are solutions x (other than 0) of the equation

(A—kD)x=0,

where k is the eigenvalue in question. Of course we know that there must
be infinitely many solutions to this equation, so to each eigenvalue there
always corresponds an infinite set of eigenvectors. Indeed it is not hard
to see that this set, when taken together with 0, constitutes a subspace of
R". See Exercise 6 in Chapter 13. It is called the eigenspace of A
corresponding to the eigenvalue k. See Example 18.4.
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185 Given that —3 is an eigenvalue of the matrix
[—2 2 2
2 1 4,
2 41
find the eigenspace corresponding to it.
Solve the equation (4 + 3I)x =0,
(1 2 2T x] [o
ie. 2 4 4iy|=|0].
12 4 4]z 0

Obtain, by the standard process, the solution

z=t, y=u, x=—2t—2u (t,ueR).
—2t—2u
Hence { u (tueR}
t
is the required eigenspace. Geometrically, this is the plane with equation
x+2y+2z=0.

1
18.6 Let A =|: l:l. Find all eigenvalues and eigenvectors of A.

Solve the characteristic equation det(4 — kI) =0,

1-k 1
ie. =0
| -1 1-—k
ie. 1—-k?+1=0
ie. k?—2k+2=0.

This equation has no real roots. Consequently this matrix A, as a real matrix,
has no eigenvalues and no eigenvectors. However, we can regard 4 as a complex
matrix, since real numbers can be regarded as complex numbers with no imaginary
part. The characteristic equation above does have complex roots, namely k=141
and k=1—1i, and these are complex eigenvalues of A. We can go on to find
complex eigenvectors, by the standard method.
k=1+i:Solve —ix+ y=0,

—x—iy=0

obtaining the solution y =t, x = —it (te C). So all vectors [ ! ] (teC,
t

t #0) are complex eigenvectors of A corresponding to the eigenvalue
1+
k=1—i:Solve ix+ y=0,
—x+iy=0
it
obtaining the solution y = ¢, x = it (te C). So all vectors [l ] (teC,t#0)
t

are complex eigenvectors of A corresponding to the eigenvalue 1 —i.
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Example 18.5 shows a case where an eigenspace has dimension 2. In
most of the situations we shall come across, eigenspaces will have
dimension 1. :

Eigenvalues which are complex numbers have no significance in relation
to the algebra of R". But the ideas extend — the process of finding
eigenvectors can be carried out — if we treat complex eigenvalues in just
the same way as real ones. We may then expect to find complex
eigenvectors. These will of course not be vectors in R”, but instead will
belong to C", the set of all n x 1 matrices with complex numbers as entries.
We shall not pursue this, but in what follows we shall need to be aware
of these possibilities. A simple case is given in Example 18.6.

For some matrices, all of the eigenvalues are real. We have seen some
examples like this already. But there is a class of matrices for which we
can be sure in advance that all eigenvalues are real. This is given in the
next rule.

Rule
A real symmetric matrix always has only real eigenvalues.

We give a demonstration of this here, but it is quite difficult, and it may
be skipped without loss of subsequent understanding. Let k be an
eigenvalue of the real symmetric matrix 4, and suppose only that keC.
We show that k = k (its complex conjugate) so that k is real. Let x be an
eigenvector corresponding to k (with entries which may be complex), so
that

Ax=kx.
Transposing both sides, we obtain
xTAT _ kxT,
ie. x"A=kx", since A is symmetric.

Now take complex conjugates of both sides:

xTA =kxT,
ie. xTA=kx", since A has only real entries.
Consider the matrix product xTAx.
First, x"Ax=(x"A)x=kx"x, from above.
Second, xTAx = xT(Ax) = ¥Tkx = kx"x.
Hence kx'x=kx"x.

It follows that k = k, as required, because x"x cannot be equal to 0. To
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12 1
18.7 Properties of eigenvalues. Let A = [2 1] Then I:l] Is an eigenvector

of A corresponding to the eigenvalue 3, because

B HRHEH

2
(i) Let aeR. Then a4 =[ a4 a:l.
2a a

1 a 2afl 3a 1
Now (aA) = = =3a ,
1 2a all 3a 1
1
sO |:1:| is an eigenvector of aA, with corresponding eigenvalue 3a.
' 5 4
it Ar= .
(i) M
4 1
42 1 _ 5 1 _ 9 —9 ’
1 4 541 9 1
1
SO [1] is an eigenvector of A%, with corresponding eigenvalue 9.
— 2
(ii) Al = [ j} .
-3
e 1 |- 1 _ _ 1 ’
1 -5t 1 -
1
S0 [1] is an eigenvector of A, with corresponding eigenvalue 3.
. 1 ¢
(iv) Let ceR. Then c[ }=[ ],
1 c
and p c]z 12 c]= c+2c:|=3 c]
c 2 1]lec 2c+ ¢ c

W W
Wi WIN
[

Wi W=
W= W=



18. Eigenvalues and eigenvectors 225

Xy
see this, let x={ : |. Then x" ={x,,...,%,], and
xn
X'x=%Xx,+ -+ %,x,
=pef ek
This last is a sum of non-negative real numbers. This sum can be zero
only if each of the terms is zero, i.e. only if x = 0. But x # 0, since x is an
eigenvector. This completes the demonstration that a real symmetric
matrix has only real eigenvalues.
We end this chapter with some properties of eigenvalues. These are all
illustrated in Examples 18.7. Let A be a square matrix, and let x be an
eigenvector of 4, with corresponding eigenvalue k.

(a) For any beR, x is an eigenvector of bA, with corresponding

eigenvalue bk.
~ (b) For any natural number r, x is an eigenvector of A", with

corresponding eigenvalue k"

(c) If A is invertible, then x is an eigenvector of A~', with
corresponding eigenvalue k1.

(d) For any ceR, cx is an eigenvector of A, with corresponding
eigenvalue k.

These can be easily demonstrated as follows.
For (a) (bA)x =b(Ax)=b(kx)= (bk)x.
For (b) (A)x=(A""Y)Ax=A""Y(kx) = k(A" *x) = k(A" ?)Ax
=k(A""2)kx =k*(A" " 2x)=---=k'x.
For (c) Ax=kx = A 'Ax=A"'(kx)
= x=kA x
= (1/k)x=A""x.
(Think about why k cannot be 0.)
For (d) A(cx) = c(Ax) = c(kx) = k{cx).

Summary

The idea of an eigenvector of a matrix and its corresponding eigenvalue
are introduced and defined. A routine process for finding eigenvalues and
eigenvectors, involving solution of the characteristic equation, is described.
It is shown that a real symmetric matrix always has only real eigenvalues.
Some properties of eigenvalues and eigenvectors are listed and illustrated.
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Exercises
Exercises
. Find all eigenvalues and corresponding eigenvectors of the following
matrices.
1 4 11
i . ii .
(i) K 1] (ii) K 1}
i) 1 —1 ) M 4
. iv )
2 4 1 -2
(1 -1 —1 [0 -2 2]
v) |0 3 21 vi){2 -1 0]
10 2 0 12 -2 1]
3 1 0 [—1 0 0]
(vil) |0 =3 1]. (vii) | 2 1 0}.
10 0 1 L 1 2 3]

. Each of the following matrices has a repeated eigenvalue (i.e. one which

is a repeated root of the characteristic equation). In each case find this
eigenvalue and find its corresponding eigenspace.

10 0 (0 2 3
@ 3 3 =1/ i) |2 3 6.
-1 2 0 3 6 8
o 2] ‘ —2 2 2
(itt) . (iv) 2 1 4.
L2 3 2 41

1 -2 1 -1
1 0 -1 1
-1 2 3 -1
L —2 —4 2 0

V)

. Find all real eigenvalues and corresponding eigenvectors of the

following matrices.

0 —1 1 2 -2 1
Ml o 1 0|l d)yl2 1 -2
-1 00 1 2 2

(iii) -1 0} (iv)|: ! 3]
L 0 —1] -2t

. For each of the matrices in Exercise 3 above, find all complex

eigenvalues, and corresponding complex eigenvectors.

. Find an inequality which must be satisfied by the numbers a, b, ¢ and

d if the matrix

o]

" is to have only real eigenvalues.
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6. Show that the matrix

L il

has no real eigenvalues and eigenvectors. Give a geometrical
interpretation for this. (Hint: see Chapter 16.)
7. (i) A square matrix A is said to be nilpotent if A" =0 for some natural

number r. Show that a nilpotent matrix can have no eigenvalues
other than 0.

(ii) Let A be a n x n matrix and let P be an invertible n x n matrix.
Show that if x is an eigenvector of A with corresponding eigenvalue
k, then P~ !x is an eigenvector of the matrix P™'AP, also with
corresponding eigenvalue k. Show further that A and P~'AP have
the same eigenvalues.



Examples

19.1 LI lists of eigenvectors.
1 10

(i) Let A=[1 0 1].
01 1

See Example 18.3(ii). There are three distinct eigenvalues: 1, 2 and —1. Pick one
eigenvector corresponding to each, say
-1 (1 1
01,]1],| —2 ] respectively.
11 1
These form a LI list.

-2 2 2
(i) Let A=y 2 1 4/}. See Example 18.5. There is an eigenvalue -3,
2 4 1
with corresponding set of eigenvectors
[—2t—2u
{ u :t,ueR, t, u not both 0} .

t

There is also another eigenvalue 6, with corresponding set of eigenvectors

i

{| t|:teR, t£0}.
L !
-6 |1
Pick one eigenvector corresponding to each eigenvalue,say| 1],|2 jrespectively.
2012
These form a LI list, irrespective of the choice made.
2 23
(ii1) Let A=]1 2 1y
2 =21

Solving the characteristic equation det(4 —kI)=0 gives eigenvalues —1,2,4.
Note that this involves solving a cubic equation. The best way of doing this (in
all of the examples in this book, at least) is by factorisation. If there are no obvious
factors, then try to spot a solution by testing small integer values. When one
solution is known, a factorisation can be produced. Here the characteristic
equation is (when simplified)

k®— 5k +2k +8=0.
Trial and error shows k= —1 to be a solution, and so (k + 1) must be a factor
of the left-hand side. Hence the equation becomes

(k + 1)(k* — 6k +8)=0,
ie. (k+ 1)k —2)(k—4)=0.
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Diagonalisation 1

Our ideas concerning linear dependence and independence are relevant
in the context of eigenvalues and eigenvectors. In a way which is made
precise in the rule below, a list of eigenvectors of a matrix can be expected
to be linearly independent.

Rule

Let 4 be a square matrix, let k, ...,k be eigenvalues of A which are
all different, and let x;,...,x, (respectively) be corresponding
eigenvectors. Then the list (x,, ..., x,) is linearly independent.

Examples 19.1 give some matrices and some LI lists of eigenvectors, to
illustrate this. The rule can be demonstrated by the following argument.
Suppose that (x,,...,x,) is LD. Then let / be the smallest number
(<r) such that (x,, ..., x;) is LD. It is then the case that (x;,..., x,_,)
is LI, and that
X=ax; -+ 01Xy,
for some real numbers a,, ..., a,_,, not all of which are 0. But then
Axy=Alax, + -+ 1% )
=A(a;x,)+ -+ Ala-1x,-1)
=@ Ax; + - +aAx_,y
=aikyxy + -+ agkiogx- g
SO k,x1=a1k1x1+"'+a,_1k,_1x,_1.
But klx,=k,(alx1+"'+a,_1x,_1)
=ajkx; + -+ a kx .
Subtracting then gives us
O=a,(ki—k)x;+---+a(k—k-)x-.

But none of the numbers k; — k; is zero, because the chosen eigenvalues
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Now find eigenvectors.

—t
k=—-1:1 0 (teR, t+#0).
|t
[ —t
k=2: —3 (teR, t #0).
L ¢t
[4¢
k=4: 3t (teR, t0).
t
2 4118
Pick one corresponding to each eigenvalue, say 0f,|] 61,]51.
=2(]1—-4]12
These form a LI list.
19.2 In each case below a matrix P is formed by taking a LI list of eigenvectors

for the given matrix A as columns. The product P~ ' AP is given also,
showing that the entries on the main diagonal are just the eigenvalues of A4.

1) See Example 18.2(i).

1
Let A= 2 and P= 11 .
23 -1 2

Then P‘IAP=[1 O].

0 4
(i) See Example 18.2(ii).
110 -1 1 1
Let A=|1 0 1 and P=| 0 1 -=2].
0 1 1 11 1
10 0
Then P 'AP=|0 2 0.
0 0 -1

(iii) See Example 18.2(iii).

1 -3 1 3
Let A= and P= .
-2 6 -2 1

7 0
Then P“APz[ ]

00
(iv) See Example 19.1.
2 2 3 2 4 8
Let A=|1 2 1 and P=| 0 6 5
2 =2 1 -2 -4 2

-1
Then P 'AP=| 0
0

OO
OO
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are all different. Also, notall of a, . . ., g, are zero. The above equation
therefore contradicts the fact that (x;,...,x,_;) is LI. Thus the
demonstration of the rule is complete.

We know that a n x n matrix may have as many as »n distinct eigenvalues
(they are the roots of a polynomial equation of degree n). In that situation
there must be a LI list consisting of n eigenvectors. When this happens,
for a particular matrix A4, there is an interesting and important
consequence. This is illustrated in Examples 19.2. Given a n x n matrix
A, if we can find a LI list of n eigenvectors, we may take these eigenvectors
as the columns of a n x n matrix, say P. Because its columns form a LI
list, this matrix P is invertible, so we may calculate the product matrix
P~'AP. The result of this process will always be a diagonal matrix, as
happens in Examples 19.2. Furthermore, the entries on the main diagonal
of this diagonal matrix are precisely the eigenvalues of the original matrix
A. The remainder of this chapter is devoted to why and how this comes
about, because it is a very important aspect of linear algebra.
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19.3 Find an invertible matrix P such that P~ ' 4P is a diagonal matrix, where
110
A=|1 0 1].
0 11

The way to proceed is as follows. Find all eigenvalues of A (done in Example
18.2(ii)). These are 1,2 and .— 1. Next find eigenvectors x;, x, and x; corresponding
to these. This was done also in Example 18.2(ii), but here we need just any three
particular eigenvectors, say

—1 1 1
x,=| 0], x;=|11, x;=| 2.
1 1 —1

Other choices would be equally appropriate. Now form the matrix P with these
vectors as columns

-1 1 1
P=| 0 1 2.
11 -1

Then P~ 1 AP is a diagonal matrix. To see this in detail, first note that P is invertible
because its columns form a LI list. Next, observe that for i=1,2,3,

x; = Pe,,
where (e;, e;, e,) is the standard basis for R3. Consequently
e;=P 'x; foreachi.
Hence P~ 'APe;=P 'Ax;
=P Yk x;
=k, P 'x;
=k;e;,

for each i, where k; is the eigenvalue (1, 2 or —1) corresponding to x;. This tells
us what the columns of P~ AP are:

first column is kyey, ie. ey,
second column is k,e,, ie. 2e,,
and third column is kies, ie. —e;.
10 0
So P'aP=|0 2 0]

00 -1
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The following is a general argument which explains this phenomenon.
Example 19.3 illustrates its application in a particular case.

Let A be a n x n matrix, let (x;,...,x,) be a LI list consisting of
eigenvectors of A, and let k,,...,k, (respectively) be corresponding
eigenvalues. (These may be all different, but, as we shall see in Chapter
22, this requirement is not necessary.) For 1 <i<n, let ¢; denote the
n-vector which has 1 in the ith position and Os elsewhere. Construct a

n x n matrix P having the vectors x,,...,x, as columns. Then P is
invertible, since its columns form a LI list. We have, for 1 <i<n,
Pe,;=x; and  e=P 'x.

Multiplying P by e; just picks out the ith column. Indeed, the ith column
of any matrix T may be obtained by evaluating the product Te;. In
particular, the ith column of P~ 1AP is obtained thus:
P 'APe;=P 'Ax;
=P~ (k;x;)
=k, P 'x;
=k;e;.
Hence the ith column of P~ AP has k; in the ith position and Os elsewhere.
P~ 1 AP is therefore a diagonal matrix, with the numbers k, N k, down
the main diagonal.
This leads us to an important result, which we shall give as the next
rule, but we need a definition first, to collect together the ideas involved.

Definition ,
A square matrix A is diagonalisable if there is an invertible matrix P such
that the matrix P"'AP is a diagonal matrix.

In the event that A4 is diagonalisable, it will necessarily be the case that
the columns of the matrix P will be eigenvectors of 4, and the matrix
P~1AP will have the eigenvalues of A as its diagonal entries (think about
it!).

Rule
Let A be a n x n matrix. If there is a LI list of n eigenvectors of A then
A is diagonalisable.
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1
194 Let A= 0
-1

—— O
[\ I

Show that A is not diagonalisable.
The characteristic equation of A is
(1-kyP2-k)=0,
so the eigenvalues of A are 1 and 2. The set of eigenvectors of 4 corresponding
to the eigenvalue 2 is
t
{lt|:teR, t #0}.
t
This is found in the usual way. Now consider the eigenvalue 1 in the usual way,
i.e. try to solve the equation (4 —I)x=0.
0 0 1|x 0
0 0 1fy[=]|0].
-1 1 1}:z 0
The solution is z=0, y=t, x=t (teR), and so the set of eigenvectors
corresponding to the eigenvalue 1 is
1A
{|t] teR, t0}.
0
It is now apparent that there is no LI list of three eigenvectors of A. In any list
of three eigenvectors, at least two would have to correspond to the same eigenvalue,
and so in this case would be multiples of one another.

19.5 Matrices A and B for which there is an invertible matrix P such that
B =P~ 'AP are said to be similar. Show that

(i) similar matrices have the same determinant,

(ii) similar matrices have the same rank,

(iii) similar matrices have the same eigenvalues.

1) det(P~'AP)=det(P ') det(A4) det(P)

=det(A) det(P~ ") det(P)

=det(A) det(P~'P)

=det(A) det(])

= det(4).
(i) Suppose that B= P 'AP. P is invertible, so P may be written as a
product of elementary matrices (see Chapter 5). Likewise P~'. By the method of
Example 15.5, then, A and P~ !4 have the same row space, and so have the same
rank.
By a similar argument relating to columns rather than rows, the matrices P~ !4
and P™'AP have the same column space, and so have the same rank. Thus A
and P~'AP have the same rank.
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The justification of this is contained in the preceding discussion. In fact,
the converse of this result is also true. The existence of such a list of
eigenvectors is a necessary condition for the matrix to be diagonalisable
(but we shall not prove this). Consequently, the non-existence of such a
list of eigenvectors demonstrates that a matrix is not diagonalisable. See
Example 19.4.

The practical process of diagonalisation involves nothing new. The
matrix P is made up from eigenvectors, and the diagonal matrix is
determined by the eigenvalues. Of course, the order of the eigenvectors
as columns of P corresponds to the order in which the eigenvalues occur
in the diagonal matrix. Notice also that because any LI list of n vectors
in R" is a basis for R", the columns of the matrix P will necessarily
constitute a basis for R".

Diagonalisation is very useful in applications of linear algebra. This is
because diagonal matrices are very simple. If, for a given matrix A4, we
can find a matrix P such that P~ ' AP is a diagonal matrix, then properties
or uses of the matrix 4 may be simplified by consideration of this diagonal
matrix. Some illustration of this is given by Example 19.5. Other examples,
showing practical uses, will be given in later chapters.

The rule above describes certain circumstances in which a matrix is
diagonalisable. The rule is not easy to apply directly. We have seen some
matrices for which there is a LI list of n eigenvectors, but in general it
will be a substantial task to find out whether such a list exists or not. But
it turns out that there is a whole class of matrices which we can show in
general to have this property, and which are consequently diagonalisable.
This is expressed in our next rule.

Rule

Let A be a real symmetric matrix with distinct eigenvalues (i.e. the
characteristic equation of A has no repeated roots). Then A is
diagonalisable.

This result is an immediate consequence of our earlier rules.

Take care not to fall into the trap of believing that the requirements
of this rule are necessary for a matrix to be diagonalisable. We have
already seen some diagonalisable matrices which are not symmetric, and
we shall see more in later chapters. Indeed, in Chapter 22 we shall develop
methods for diagonalising some matrices which do not satisfy these
requirements.
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(iit) det(P™'AP —kI)=det(P~*AP — kP~ 'P)

=det(P™ (A —kI)P)

=det(4 — kI), by (i) above.
This shows that the characteristic equation of P"!AP is the same as the
characteristic equation of 4, so P"'4P and A have the same eigenvalues, where
A is any square matrix and P is any invertible matrix of the same size.
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Summary

It is shown that eigenvectors corresponding to distinct eigenvalues
constitute a linearly independent list. A routine procedure is described for
finding, given a n x n matrix A which has a linearly independent list of n
eigenvectors, an invertible matrix P such that P~ 1 AP is a diagonal matrix.
It is noted that this is always possible if A is symmetric.

Exercises

1. For each matrix A4 given in Exercise 1 of Chapter 18, write
down an invertible matrix P such that P~ ' AP is a diagonal matrix. Verify
by explicit calculation that the diagonal entries in P~ 'AP are the
eigenvalues of 4.

2. Which of the following matrices are diagonalisable? For those which
are, find an invertible matrix P as in Exercise 1.

2 —1 [ 3 4
1 . 11 .
()_1 o] ()__1 2}
. 3 6 1o
11 . 1v .
()__1 _2] ()11]
(1 0 0 0 2 -1
™|t 1 0] vid| 11 1].
111 -1 1 1
(1 0 1 (—1 2 2
(viiy| 2 —1 1|. ()| 2 1 0].
-1 21 | 2 01
1 0 0 M 1 =2
ix){1 2 0f. (x)14 0 4.
1 23 1 -1 4
[ 4 2 3
(xi) | 2 1 2].
-1 -2 0

3. Let 4 be a square matrix, and suppose that P is a matrix such that
P 'AP is a diagonal matrix. Show that for any real number c,
P Y(cA)P is a diagonal matrix. Show further that, for any natural
number r, P~1(A")P is a diagonal matrix.
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Then

(i)

Then

(iii)

Then

(iv)

Then
20.2

Let

(it)

Proof:

(iii)

Proof:

Examples

Examples of calculation of dot products.

1 -~
In R?, let x= , y= 2 .
3 4

xy=2+12=14,

M1 . (2
InR3let x=|2], y=|3]|.

In R*, let X=

[ 2 [ 1]

-1 1
In R4, 1 = = .
n R, let X ol y 3

[ 1 L—1]
xy=2—-1+0-1=0.

Properties of the dot product.

: : belong to R".
x'l y'l Z’l
x(y+z)=x-y+x-z.
x(y+z)=xy(yy +z)+ -+ X0(ya +2,)
=Xy Y1+ XgZ T+ Xy Yot X2,
=X Y1t XY+ X120+ + X2,
=xy+x-z.
Let aeR. Then (ax)-y = a(x-y).
(ax)-y = (ax,)y; + - - - + (@x,)y,
=a(x ¥+ + X, V)
=a(x-y).

Similarly,

x-(ay)=a(x-y).
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The dot product

Chapter 10 dealt with the dot product of vectors in R, and discussed
how use can be made of this notion in geometry. We shall now extend
those ideas and methods to the context of R" for arbitrary n. In doing so
we shall make use of geometrical intuition and geometrical terminology,
even though they are not strictly applicable. It is certainly convenient to
do so, and we shall find that there are general algebraic notions which
correspond quite closely with geometric ones.

Definition
Let x, ye R". The dot product of x and y is defined by
xy=x"y.
X1 yl
More explicitly, if x=| : |and y=| : |, then
X, Yn

X=Xyt +XyYn-
Here we do not distinguish between the 1 x 1 matrix x"y and the number
. which is its single entry. So remember to note that x-y is always a scalar
(that is to say, a number), not a vector. Some examples are given in
Example 20.1.
Listed below are some properties of the dot product. Justifications
where necessary are given in Examples 20.2.

() x-y=yx

(i) x-(y+z)=xy+x-z

(111) (ax)-y= x.(ay) —_ a(X‘y)
X

(iv) Ifx:[ 1:| then x-x=x%+...+x'2'
X,

(v) x-x=0,

n

where x, y, ze R", and aeR.
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20.3 Proof of the Cauchy—Schwarz inequality:

|x-yl<lxlly]  forall x, yeR".
The result is obvious if x or y is 0. So suppose that x # 0 and y # 0. By property
(iv) of the dot product,

((1/]x)x = (1/]p) )+ ((1/}xpx = (1/]3])p) > 0.
Hence  (1/]x)*(x-x) + (1/]y)*(y- ) — /(x| y))(x- y) > 0,
ie. L+ 1=2(x-p)/(|x]| ) > 0.
So (x-y)/(|x||y|) <1,
giving  x-y <|x|lyl.
Of course, x- y may be negative, so we need a lower bound also in order to bound
the absolute value |x-y|. Apply a similar procedure to

(/1) x + (/D y)- ((1/xDx + (1/]y) y) > 0
obtaining (details omitted)
(x-y)/(x|y) = -1,
o xy>—|ally-
Putting these together yields
SN
as required.

20.4 Find the length of the given vector in.each case.

0] In R2?, x_ 1 , |x2=1+4=5.
1

(ii) In R?, =|2], |x?=1+4+9=14
3

= —2 yP=1+4+4=9.

1
2
(iii) In R, e |x?=1+4+9+16=30.
4
0
-2 2
= 4| |y?P=0+4+1+9=14.
3

lzP=2+1+0+9=12.
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Geometrical notions such as lengths and angles clearly have no meaning
in R" for n> 3. Nevertheless they have formal counterparts, as follows.

Definition .
If xe R then the length of x is (x-x)*. It is denoted by |x|. I x, ye R” and
x and y are non-zero, then we say that the angle between x and y is 6, where
cos 8= x¥
| [l

The definition of the angle between two vectors will make sense only
if we know that the expression given for cos 8 always has a value which
lies in the interval [—1, 1]. In fact it always does, by virtue of what is
known as the Cauchy—Schwarz inequality:

x| <y
A proof of this is given as Example 20.3. It can be omitted without
prejudice to what follows.

Sample calculations of lengths and angles are given in Examples 20.4
and 20.5.

R for all x, ye R".
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20.5 Find the cosine of the angle between given vectors.
1 4
i In R?, let x= , = .
v U Y [1]
442
Then cosG:—;=6/,/85.
J1+4. /16 +1
1 -1
(i1) In R3, let x=|1], y=| 1}.
3 1
—1+1+3
Then cosf= Tt =3/./33.
JIT+1+9 /14141
2 —1
(iii) In R3, let x=|—1], y=|-1/[.
2 —1
Then cosf=— % \/_\/_ “—1/\/—
(The negative sign indicates an obtuse angle.)
2 0
3
(iv) InR*, let x= _i Y=
2 1
0+3-1+2
Then  cosf= to- 1t —4//110.
VA+1+1+4 0+9+1+1
20.6 Illustrations of orthogonal pairs of vectors.
1 1
i) IR, x= 1], y= 1], x-y=0,
r_1 ) :1
x= , = , x-y=0.
! 3] ¢ ] Y
1 : [ 1]
(i) In R?, x=|2], y=| 14, xy=0.
3 1)
[ 2 [ 5]
x=| 3], y=|-3|, x-y=0
-1 L 1]
F o
-1
(iii) In R, x= _f »y=| s xy=0
[ 1 L 0]
. F o]
2 1
x= 1l y= e x.y_O
L1 | —1]
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An important special case of the angle between two vectors is a right
angle.

Definition

Two non-zero vectors in R” are said to be orthogonal to each other if the
angle between them is a right angle (equivalently, if their-dot product is
Ze10).

‘Orthogonal’ is the word normally used in the context of R" to extend
the notion of perpendicularity which strictly speaking applies only in the
real world of geometry.

The vectors in the standard basis for R” are orthogonal to each other.
This is easy to check. Some other illustrations are given in Examples 20.6.

We shall say that a set or list of non-zero vectors is an orthogonal set
(or list) if every vector in the set (or list) is orthogonal to every other
vector in the set (or list). There is an important connection between
orthogonality and linear independence.

Rule
Any orthogonal list of (non-zero) vectors in R" is linearly independent.

This rule is justified as follows. Let (x4, . .., x,) be an orthogonal list of
vectors in R", and suppose that

a; X +--- +asxs=0.
Then, for each i (1 <i<s),

xi-(ax; +-+ax)=0,
) as(xpoxy)+ - +alxox)+ - - +alxx)=0,
giving a|x|* =0,
since  x;-x;=0 for every j #i.
It follows that, for each i (1 <i<s), a;=0, since x; is a non-zero vector.
Thus all of the coefficients a; must be 0, and so the list (x4, . . . , x,)is LI

In the geometry of three dimensions, we may visualise the following

situation. Given any non-zero vector v in R, the set of all vectors which
are perpendicular to v can be thought of as representing the plane (through
the origin) which has v as its normal vector. This was dealt with in
Chapter 10, and we have seen earlier (in Chapter 13) that such a plane

is a subspace of R3. So we have a special case of a notion of a ‘subspace
orthogonal to a vector’. The general situation is given by the next rule.
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20.7 Proof that if xe R" (x # 0) then the set
{yeR" y.x=10}
is a subspace of R".
Denote this set by S. We apply the rule given in Chapter 13.

First, 0€S, so S is not empty.
Second, let u, veS, and let k, Ie R.
Then we know that y-x=v-x =0, and
(ku+ Iv)- x = (ku)-x + (lv)-x
=k(u-x)+Il(v-x)
=0+0=0.

Hence ku + Ive S, and it follows that S is a subspace.

20.8 Orthogonal eigenvectors.

210
Let A=|1 3 1.
01 2
By the usual process, we find eigenvalues and eigenvectors of A:
. o
k=1: Eigenvectors —t (teR, t #£0),
L !
F S
k=2: Eigenvectors 0 (teR, t#£0),
L t..
F
k=4: Figenvectors 2tJ (teR, t#0).
t

Now pick any three eigenvectors, one for each eigenvalue,

a [—b ¢
say x;=|—al, x,=| 0], x3=|2c|{.
a b c

Each pair of these vectors is an orthogonal pair, irrespective of the choice of a,
b and ¢ (non-zero, of course). This is easily verified:

X x;=—ab+0+ab=0,
X' x3=—bc+0+bc=0,

X3°x; =ac—2ac+ac =0.



20. The dot product 245

plane
perpendicular
to v

Rule
Let xeR", with x#0. Then the set which consists of all vectors in R”
which are orthogonal to x, together with 0, constitutes a subspace of R”.

A demonstration of this is given in Example 20.7.

Orthogonality of vectors crops up also in the context of eigenvectors.
Example 20.8 gives a 3 x 3 matrix, its eigenvalues and its eigenvectors. It
happens that the eigenvectors form an orthogonal set, as is verified in the
example. There is a general result lying behind this.

Rule

Let A be a real symmetric matrix, and let k, and k, be distinct eigenvalues
of A, with corresponding eigenvectors x, and x,. Then x; and x, are
orthogonal to each other.

To prove this, suppose that
Ax =k x; and Ax, =kyx,.
Consider the product x]Ax,.
First, x]Ax,=xTk,x,=k,xTx,.
Second, xJAx, = (xTAT)x,  (since A is symmetric)
= (Ax,)"x,
= (kyx)"x;
=k, x{x,.
Hence ki x{x,=k,x]x,,
so (k; —ky)xix,=0.
But k, # k,, so we must have
xIx, =0, e x,-x,=0,
so x; and x, are orthogonal. (Neither vector can be 0 because both are
eigenvectors.)
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209 Eigenvalues of a matrix which is not symmetric.
2 2 3

Let A=|1 2 1.
2 =2 1

By the usual process (see Example 19.1(iii)), we find eigenvalues —1, 2 and 4 and
corresponding eigenvectors:

—t
k=1: Eigenvectors 0 (teR, t #0),
L t
[ —t
k=2: Eigenvectors -3 (teR, t #0),
L t
[4¢
k=4: Eigenvectors 3t (teR, t #£0).
t

Pick three eigenvectors, one for each eigenvalue, say

—a -b 4c
3 s

X; = 01, x;=|—3b|, X3 =|2¢|-
a b c

No pair of these is orthogonal, for any values of a, b and ¢ (non-zero, of course).
Again, this is easily verified:

Xi*x;=ab+0+ab =2ab,

Xy X3 = —4bc — b + bc = —4lbe,

X3°X; = —4ac+0+ac = —3ac.
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Be sure to note the requirement in this rule that A be symmetric. See
Example 20.9. We shall return to these ideas in Chapter 22 when we
reconsider diagonalisation.

Summary

The dot product in R” is introduced and compared with the dot product
in R?. Geometrical ideas of lengths and angles are extended to R". In
particular, orthogonality of vectors in R" is discussed, including the
relationship between orthogonality and linear independence and including
the orthogonality of eigenvectors corresponding to distinct eigenvalues of
a matrix.

Exercises

1. In each case below, evaluate the dot product of the two given
vectors.

r s L1 -1
© _1]’_—1]' ) 0][ 4]'
o 1r-4 o [=17T0
(ii1) _Z:I’ I 2] (iv) I 2],[0].
(—17[3 (17 1
™1 2. (vi) {ol,]0].
L IJ 1 _0 0
(1 1 [0 3
(vii) [2[,12]. (vii) | 1|,| —4].
13] 13 -3 1
17 [ 3 6 2
o] -2 -2
(ix) 5 2| (x) | _; .
_2J 0 | 4

2. Find the length of each of the following vectors.

)

—
£
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Exercises

. Show that if x is an eigenvector of the matrix A corresponding to the

eigenvalue k, then the unit vector x/]xl is also an eigenvector of A
corresponding to the eigenvalue k. Find three eigenvectors which have
unit length for the matrix

1 10
1 0 1.
010

(See Examples 18.2(ii} and 19.3.)

. In each case below, find the cosine of the angle between the given

vectors.
=171 NFARE
O 2”2]' W 3][2]
1 2 (-3 1
i) |o|,] 1]. i) | 21, 2|
L‘ =11 L UL
1] [2 ol [ 2
—1]1]0 . 1 0
(90 B b PR R B B e B
—1] 0] L 3JL-1
T 2] [1] ‘T !
Ao 1 1
(vii) , (viii) | 1], 1
-1l .
L1 L 1] L1

. Which pairs of vectors from the following list are orthogonal?

'q [ o] o 21 4] [-1
1 b _1 > 1 ) 1 E 1 b 1 H
L L 2) -1 L-3] (2 1

0 51[=31[-3 1] [3
ol,| =1[,| of,|-3| 1tl],|3}
o] | 2] 6 6l =21

. Let S be a subspace of R". Show that the set {yeR": y-x =0 for every

xS} is a subspace of R" (the orthogonal complement of S).

. Find a linearly independent list of three eigenvectors of the (symmetric)

matrix

—_ O N
S N O

1
0].
2

Verify that the list obtained is an orthogonal list.
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. Find a linearly independent list of three eigenvectors of the
(non-symmetric) matrix

123
0 1 0}
2.1 2

Is the list an orthogonal list? Can you choose other eigenvectors so as
to form an orthogonal list?

. Consider whether a n x n matrix which has an orthogonal set of n
eigenvectors must necessarily be symmetric. (This will be easier to
answer using ideas in Chapters 21 and 22.)



Examples

21.1 Orthogonal bases.
1 -2 4
(1) Let v,={ 3, v,=| 1], v;={1}.
-1 1 7

Then (v,, v,, v;) is an orthogonal basis for R*. To demonstrate this, the following
is sufficient.

vv,=—-24+3-1=0,

v,rv3=—-84+1+7=0,

v3ev,= 4+3-7=0.
Thus (v,, v,, v3) is an orthogonal list. Hence (v,, v,, 1) is LI (see Chapter 20).
In R3, any LI list containing three vectors is a basis (see Chapter 14), s0 (v,, v3, v3)
is an orthogonal basis for R>.

2 -
(i) Let v, = f s v, = _(1)
W L 0]

- e

-1 2

BEL ] BT g

L O L —3]

Then (v,, v,, 03, v4) is an orthogonal basis for R*. Demonstration is just as above,

by first verifying that all possible pairs of these vectors are orthogonal pairs, i.e. that
D0 =Dy 03 =0,°04=0,

and Dy 03 =030, =030, =0,

and then using rules from Chapters 20 and 14, as in part (i) above.

21.2 Find an orthogonal basis for the subspace of R* spanned by the list
(v, v,), where
1 0
v =|—1 and v,=| 3.
2 —1
Notice of course that (v,, v,) is a basis for this subspace, because it is a LI list.
Is it an orthogonal basis? The answer to this is negative, because v, v, = —35,

which is non-zero. The orthogonal basis which we seek will have the form
(vy, avy + bvy),
where a and b are chosen so that v, (av, + bv,) =0.

a
av, + bv,=| —a+3b|,
2a— b

Here



21
Orthogonality

In three-dimensional geometry it is customary to choose coordinate axes
which are mutually perpendicular. Coordinate geometry is still possible,
however, with axes which are not perpendicular, but it is not very
convenient, and many of the usual processes become quite complicated.
The analogy between coordinate axes in geometry and bases in algebra
has already been drawn (see Chapter 17), and of course the vectors which
constitute a basis for R" or for a subspace of R" need not form an
orthogonal list. Some originally geometrical ideas relating to rectangular
coordinate systems apply also in R” and subspaces of R", for any n. First
let us consider bases.

Definition

Let S be a subspace of R". A basis B for S is an orthogonal basis if it is
an orthogonal list, i.e. if every vector in B is orthogonal to every other
vector in B.

The standard basis for R” is an orthogonal basis. Other examples are
given in Example 21.1.

There are some general rules which can guide us here. We know
{Chapter 20) that an orthogonal list is linearly independent. We also know
(Chapter 14) that, in a space of dimension k, any LI list of k vectors is a
basis. This rule from Chapter 14 can therefore be modified as follows.

Rule .
Let S be a subspace of R" with dimension k. Then any orthogonal list of
k vectors from § is a basis for S.

One situation where this arises is the case of a n x n real symmetric
matrix which has n distinct eigenvalues. A list of corresponding
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so vy (av; + bv,)=a—(—a+3b)+2Q2a—b)

=6a—5b.
Consequently, if we choose a and b so that 6a — 5b = 0, then the two vectors will
be orthogonal. So choose a= 5 and b = 6.

5
Then  av, + bv, =|13].
| 4
Last, then, because it is a LI list of two vectors in a space of dimension 2,
1] [ 5]
—11,113
2 4

J
is a basis, and so an orthogonal basis as required.

21.3 Examples of orthonormal bases.
37 [—4
o G
5 5
4T AT 3
(ii) 201 =301 2|), for R3.
2 201
L 3 3 3
I3 | -1//2] [1W/6
(iii) _1/f , o | 2/\/8 , for R3.
N RN TNAARSING
-0 40 47
1]t 1 1
(iv) HAEH for R*.
2 2| —2 2
L 3 L L3
v) We know (Example 21.1(ii)) that
1 1 ][ 1
2 —1 2
1P| -1f 1) 1
| 2 oJL oJL-3

is an orthogonal basis for R*. The lengths of these vectors are respectively /10,

\/5, /3 and /15, so it is certainly not an orthonormal basis. To obtain an
-orthonormal basis, divide each vector by its length.

yall y 2|l sl u/is
2//10 o ||-w/3|| /15
W'l 2| Bl WS
2/,/10 0 o dL-3/15

is an orthonormal basis for R*.
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eigenvectors is an orthogonal list (see Chapter 20), so is a basis for R",
by the above rule.

Given a basis, how can we find an orthogonal basis for the same space?
Example 21.2 shows one way of proceeding in the simple case of two
dimensions. For the first member of our orthogonal basis choose either
one of the given basis vectors. For the second, find a linear combination
of the two given basis vectors which is orthogonal to the chosen one. This
process will always work: there will always be an orthogonal basis which
will be found this way. There is another way (the Gram-Schmidt process),
which we shall describe shortly, which works better when we come to
deal with more than two dimensions. But first we define a new notion.

Definition
Let S be a subspace of R”. A basis B for § is called an orthonormal basis if

(i) B is an orthogonal basis, and
(ii) every vector in B has length 1.

Again, the standard basis for R" is an orthonormal basis. Other
examples are given in Examples 21.3. There is an easy way to convert an
orthogonal basis into an orthonormal basis for the same space: just ‘divide’

each vector in the basis by its length. If (v, . . ., v,) is an orthogonal basis
v v\ . .

for a space S, then (ﬁ,,l | is an orthonormal basis for S.
Uy vr

Verification of this is left as an exercise. This process is known as
normalisation.
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214 Application of the Gram—Schmidt process for finding an orthonormal
basis.
1 —1 -1
Let v =|(1], v,=| Of, vy=| 2].
1 -1 3

Then (v;, v5, v;) spans B> (and is LI). We find an orthonormal basis for R* by
applying the Gram-Schmidt process to this list.

1
Let  w = t=(1//3)|1].
|o| 1

Let W = v, — (022 wq)w,
2 ——T T 1.
[, — (v; - wi)wy]

Now  wvy-w =—1./3+0-1//3=-2//3,

-y 0 res
s0 v, — @Wrw)w =| O+ QAU =]| 3|
L —1 1] |-
Then  |v,— (vp-wi)wi|= /5 +5+5=1/6/3.
-4 | -6
Hence w,=(3/1/6) 3|=| 2./86|-
_%_ —1/\/6

v3 — (v3-w2)wy — (03 wy)w,

Next w; = .
' |vs—(U3‘W2)W2‘(va'W1)W1l

Now  ovy-wy= 1/./6+4//6—3//6=2//6

and  vyew = —1./3+2./3+3//3=4//3,

80 vs—(va‘wz)wz_(vs'wlzm

(1 —-1/./6 1//3
= 2|-@ 0| 21 /6|- @3 1/3
L 3 L—1-/6 11/3

[—1+4-4] [-2
=l 2-%2-%|=| Of.
L 3+3-% | 2

Then |v3—(v3-w2)w2—(v3-w1)w1|=./4+0+4=\/§,
—2] [ —1/4/2
and so w3=(1/\/§) 0= 0o |-
2 1//2

Thus the list

3| | -14/6] | —14/2
14/3:] 26| o
/30 L= /6l L o112

is an orthonormal basis as required.
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Now we come to the process for constructing orthonormal bases. It is
given below as the justification for the following rule.

Rule
Every subspace of R" has an orthonormal basis.

The process here described converts a given (arbitrary) basis for a subspace
S of R” into an orthonormal basis. This is the Gram-Schmidt process,
referred to above. By the results of Chapter 14, there must always be a
basis, so let B=(v,, ..., v,) be a basis for S. Construct a list (w, ..., w,)
as follows. (See Example 21.4.)

U
|”1].

Then the vector v, — (v,-w;)w, is orthogonal to w; (check it).

Let w,

Solet w =—v2—(v2.w1)wl
2 oy — 0y wy)wy

The vector v; — (v3-w,)w, — (v w,)w, is orthogonal to both w, and to
w, (check these).

V3 — (U3 Wy )W, — (V3 W)W
So let Ws = 3 (3 2) 2 (3 1)1

‘1’3 —(v3-wy)w, — (03'W1)W1| '
Similarly form w, by dividing the vector
Vs — (V4 w3)ws — (Vg W) wy — (v wi)w;

by itslength, and so on, until the list (w,, . . . , w,) has been constructed.

Our next task is to integrate the idea of an orthogonal matrix into this
context. Recall that a square matrix A4 is orthogonal if ATA=AA4T=1,
and that if 4 is an orthogonal matrix then A is invertible, with 471 = AT,
It may help to return to the notion from Chapter 16 of a matrix
representing a linear transformation, and to the particular case of three
dimensions. If 4 is a 3 x 3 matrix then A4 represents the function (linear
transformation) which takes each 3-vector x to the 3-vector Ax. The
images of the standard basis vectors e, e,, e; are the vectors Ae,, Ae,
and Ae,, which as we have noted before are just the columns of 4. If A
is an invertible matrix then these three vectors will form a basis for R3.
What has to be true about A if the images of e,, e, and e; are to form
an orthonormal basis for R3? Precisely this: A must be an orthogonal
matrix. In Example 21.5 we show that a 3 x 3 matrix A4 is orthogonal if
and only if its columns form an orthonormal basis for R3. The methods
used there extend to the case of R" in general.
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215 Proof that a 3 x 3 matrix is orthogonal if and only if its columns form
an orthonormal basis for R3.
a b ¢
Let A=la;, by, c,].
a; by ¢,

Denote the columns of A by a, b and ¢ respectively.
a, a, azla, b, ¢,
Then ATA=|b, b, bslla, b, c,|.
¢y €3 c3fay by o
The (1, 1)-entry in ATA is a? + a3 +a}, ie. |a].
The (2, 2)-entry in ATA is b7 + b3 + b3, i.e. [B]>.
The (3, 3)-entry in ATA is ¢} + ¢ + ¢}, ie. |*
The (1,2)-entry in ATA is a,b, +a,b, +azb,, ie. a-b. Similarly the other
off-diagonal elements of ATA are equal to b-¢ or to ¢-a or to a- b. In fact
la)* a-b a-c
ATA=|b-a [b* b-c|.
ca cb |
Suppose that A is orthogonal. Then ATA =1, so
|al* =[b]* = [c]* = 1,
and a-b=b-c=c-a=0,
and consequently (a, b, ¢) is an orthonormal basis for R>.
Conversely, suppose that (a, b, ¢) is an orthonormal basis for R*. Then, by the
above, we must have ATA = I. This is sufficient for A to be orthogonal (if ATA =1
then A~' = A", so AAT =1 also: see Chapter 5).

21.6 Orthogonal transformations.

(i) In R2, a rotation about the origin is an orthogonal transformation. (See
Chapter 16.)
A rotation through angle « is represented by the matrix

cosa —sina
4zl ]
sin o cos o
T coso sinoa || cosa —sina
A A= . .
—sina  coso || sina coS o

cos? o+ sin? 0
0 cos? o+ sin? a

1,

. . . . cos a —sin o .
so this matrix A is an orthogonal matrix. Indeed ) ) 1s an
sin o cos o

orthonormal basis for R?, whatever value « takes.
(Note: a rotation clearly preserves lengths and angles.)
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Rule
A nxn matrix A is orthogonal if and only if its columns form an
orthonormal basis for R".

An orthogonal matrix represents a linear transformation which takes
the standard basis to an orthonormal basis. What this means geometrically
in three dimensions is that an orthogonal matrix will transform unit vectors
in the directions of the coordinate axes into unit vectors which are
themselves mutually perpendicular, and so may be taken as the directions
of new coordinate axes. See Exercise 8 at the end of this chapter. A linear
transformation which is represented by an orthogonal matrix is called an
orthogonal transformation. An orthogonal transformation preserves
lengths and angles, in a way made precise in the following rule.

Rule
Let A be a n x n orthogonal matrix, and let x, y be non-zero vectors in
R”. Then

@) |x| =|Ax|-
(ii) The angle between Ax and Ay is equal to the angle between x
and y.

Demonstrations of these properties are useful exercises.
(i) |Ax> = (4x)"Ax
=xTATAx
=xTx=|x%
(ii) Let the angle between Ax and Ay be 6. Then

. T
cos = Ax-Ay =_(Ax) (Ay)
x|yl [xdly]
_ xTATAy
ey
_ Xy _xy
Iyl Ixllyl”
which is (by definition) the cosine of the angle between x and y.
Examples 21.6 provide illustration of orthogonal matrices and
transformations.
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WIN W Ll

ol Lt il

(ii) Let A=

[N R RTINY

This matrix represents the linear transformation which takes each point (x, y, z)
to its reflection in the plane with equation x + y + z=0. It is easy to verify that
A is orthogonal, and that

[N)

N Wt

2
3
2
3
1

|
|
0o L= Ll

—3 3

is an orthonormal basis for R*. These are the images of the standard basis vectors.
Notice that this is an example of an orthogonal transformation which is not a
rotation.

It is a worthwhile exercise to find the eigenvalues and eigenvectors of this matrix
A and to put the results in a geometrical context.
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Summary

It is shown how to find an orthogonal basis for a given subspace of R".
The idea of an orthonormal basis is introduced and the Gram—Schmidt
process for converting a given basis into an orthonormal basis is described
and used. The relationship between orthogonal matrices and orthonormal
bases for R" is shown. Finally, there is a brief description of the properties
of orthogonal transformations.

1.

. Let X =(vy, .-

Exercises

(i) Write down three different orthogonal bases for R2.
(i) Write down three different orthogonal bases for R’
(iii) Write down an orthogonal basis for R* (other than the standard
basis).
(iv) Is any of the bases you have chosen above an orthonormal basis?
By the normalisation process convert any which are not
orthonormal bases into orthonormal bases.

.,v,) be an orthonormal basis for a subspace § of R”
{for some n). We know that any vector x in S may be represented
uniquely as

x=a.v;+--+au.

Prove that a;=x-v, for 1 <igr.

. The following are pairs of unit vectors which are orthogonal. In each

case find a third unit vector so that with the given two vectors an
orthonormal basis for R? is formed.

[0 1/3 (1 0
0 [1/2],| 23] i [ol,| 1//2].
_1\/5 -2/3 . L0 _1/\/§
[1/2 —1/2 /6] [ -2/
@iy |1/2 =12 | | 24/6) 11/5]
[14/2 1/4/2 L —1/./6 0

In each case below, apply the Gram-Schmidt process to the

given basis of R* to obtain an orthonormal basis.

(1] [ol 1 11 1] fo
@ |t],|1l (1] @) [1,]0],11].
1] [1] |0 10} [1] [1]
r—27 1 3 [1] ’4} (2]
@iy | ol [ty,] =1 @) {3[,]11,[3].
Lo [t 1] [4] [0]
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Exercises

. Find an orthonormal basis for R® which contains the vector

1/3 0
2/3|. Do the same for | 3/5].
2/3 4/5
. Find an orthonormal basis for the subspace of R* spanned by
the list
[27[1] [o
0][3]|]4
o136
| 0 0 1
. Repeat Exercise 6 with the list
1 1 1
—1}1]12¢11]0
1’121
| —-1] L0J Lo

23 2/3 —1/3

CLetA=| 2/3 —1/3  2/3].

—-1/3 2/3 2/3
Show that 4 is an orthogonal matrix. Let f be the linear transformation
from R to R* given by f(x)= Ax. Write down the images under f of
the standard basis vectors. Evaluate Ax and. Ay, where
1 —1
x=|1 and y=| 1].
1 1
Verify that |x|=|A4x| and |y| =|Ay|. Verify also that the cosine of the
angle between Ax and Ay is equal to the cosine of the angle between
xand y.

. (See Example 21.6(ii).) Find the eigenvalues and corresponding

eigenvectors of the matrix
/3 —=2/3 -=2/3
—2/3 1/3 -2/3
—2/3 =2/3 1/3

(which is an orthogonal matrix). Interpret your answers geometrically.
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221 Find an orthogonal matrix P and a diagonal matrix D such that
PTAP =D, where

1 -3 1
-3 1 1.

1 1

First find eigenvalues.

A=

-3 1
1—-k 1
1 1 -3—k
=(1—k[(1—k(—-3—-k)—1]+3[-3(-3-k)—-1]
+[-3-(1-k)]

=(1—k)(—4+2k+k*)+(8+3k)+(—4+k)
=16+ 16k — k? — k*
= (1 +k)(16 — k?) (by observing that k = —1 gives value 0)
=(1+k)4+k)4—k).

Hence the eigenvalues are — 1, —4, 4.

Next find corresponding eigenvectors.

det(4 — kI) =

2 =3 1 x] [o]
k= —1: Solve [ -3 2 1 ={0].
1 1 =2}z| |0]
obtaining x=t, y=t and z=t (teR).
(-3 -3 1 x] [0]
k= —4: Solve} -3 -3 1fy[=]|0],
1 1 =7]z] [O]
obtaining x = —t, y=t and z=0 (teR).
s -3 1]x] [o
k=4: Solve| —3 5 1fy|=|04,
1 1 1tz 0

obtaining x = —3t, y= —%tand z=1 (teR).

Hence corresponding eigenvectors are respectively

~

L t

(teR, t #£0),

(teR, t#0),

(teR, t #0).

Last, form the matrix P by taking as columns a list of eigenvectors which forms
an orthonormal basis for R3. Pick any eigenvector for each eigenvalue, say
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Diagonalisation 2

In Chapter 19 we saw how to find, given a n x n matrix A4, an invertible
matrix P and a diagonal matrix D such that D= P~ 14P. We saw that
this is possible when there exists a LI list of n eigenvectors of 4, and that
the columns of the matrix P are the vectors in such a list. In fact the
matrix P may be taken to be an orthogonal matrix. This is expressed
precisely in the next rule, for which justification is given below, and
illustration is given in Example 22.1.

Rule

Let A be a n x n real symmetric matrix which has n distinct eigenvalues.
Then there is an orthogonal matrix P and a diagonal matrix D such that
D = PTAP. (Recall that for an orthogonal matrix P, P~1=PT)

The matrix P has eigenvectors of A as columns. In order for P to be
orthogonal, its columns must form an orthogonal list, and each column
must have unit length. In Chapter 20 we saw that eigenvectors
corresponding to distinct eigenvalues are orthogonal, so the columns of
P must form an orthogonal list. Also, we know from Chapter 20 (Exercise
3) that when choosing eigenvectors we are free to choose them to have
unit length. The matrix D remains as before: the diagonal entries are the
eigenvalues of 4. Remember that it is because the matrix 4 is symmetric
that we can be sure that the eigenvectors are orthogonal. From Chapter
21 we know that the columns of a n x n orthogonal matrix form an
orthonormal basis for R”, so this gives another aspect to the argument
above — the matrix A4 has alist of n eigenvectors which form an orthonormal
basis for R", and these eigenvectors form the orthogonal matrix P.
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BIRESIRES!
1,1 1f,[=1l.
1 0 2

These form an orthogonal (and therefore LI) list (see Chapter 20). Next obtain
eigenvectors as we require by dividing each of these by its length, thus:

11/3] [-1/2] [ -14/6
V3L 12| =16
L1//3 0 2/,/6

Finally, let
/3 —1//2 —-1./6
P=11//3 12 —11/6|
1//3 0 2//6

Then (this requires no verification)

—1 00
PTAP=| 0 -4 0.
0 0 4

This last matrix is the required matrix D, the order in which the eigenvalues occur
in D being determined by the order of the corresponding eigenvectors as columns
of P. Notice that the matrices

—1I6 —12 13 4 0 0
P=|-1/6 1,2 11/3], D=|0 -4 0
2/\/5 0 \1/\/5 0 0 -1

also satisfy PTAP = D, and similarly with other ways of ordering the columns of
the two matrices.

22.2 Diagonalisation when the characteristic equation has a repeated root.
Find an orthogonal matrix P and a diagonal matrix D such that
PTAP =D, where

4 1 -1
A= 1 4 -—1|.
-1 -1 4

The characteristic equation turns out to be
54 — 45k + 12k* — k3 =0,

ie. (3—k)(18 -9k +k*) =0,
ie. B—-k)3—k){6—k)=0.
Consequently there are only two eigenvalues, 3 and 6. The eigenvalue 3 is a
‘repeated’ eigenvalue. Find eigenvectors as usual.

-2 1 —1fx 0
k=6: Solve 1 =2 —~1jyl[=]|0].

-1 -1 =2: 0
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The above rule in fact holds for all real symmetric matrices, even in
cases where the requirement about distinct eigenvalues is not met. A proof
of this in general is beyond the scope of this book, but we show how the
matrices P and D may be obtained in such cases. In Example 22.2, 4 is
a 3 x 3 real symmetric matrix which has two distinct eigenvalues, one of
them a repeated root of the characteristic equation of 4. In order to
construct P, we need a LI list of three eigenvectors of 4, which can be
converted into an orthonormal basis for R* as required for the columns
of P. The repeated eigenvalue leads to a solution of the equation
(A —kI)x =0 in which two parameters appear. By assigning values to
these parameters we obtain two eigenvectors, not multiples of each other,
both corresponding to the same eigenvalue. Moreover, both of these
eigenvectors are orthogonal to any eigenvector corresponding to the other
eigenvalue (see Chapter 20).

More briefly, what we do is to find, for a repeated eigenvalue k, a basis
for the eigenspace corresponding to k. It turns out (although we shall not
prove it) that, when A is symmetric, this basis will contain as many vectors
as the multiplicity of k. The multiplicity of an eigenvalue k, is the power
to which (ko — k) occurs in the characteristic equation once its left-hand
side has been fully factorised. For example, if the characteristic equation
of a given 6 x 6 matrix is

(B3—k)?(1+k)}Q2—-k)=0,
then 3 is an eigenvalue with multiplicity 2, and —1 is an eigenvalue with
multiplicity 3 (and 2 is a ‘normal’ eigenvalue). When we have found a
basis for the eigenspace corresponding to k, we use the techniques of
Chapter 21 to find an orthonormal basis for the eigenspace. This may
include use of the Gram-Schmidt process, but usually only if the
eigenspace has dimension 3 or more. This procedure is easier to carry out
than to describe, so the reader should gain facility by working the exercises.
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Obtain x = —t, y= —r and z=1¢ (teR), so all vectors
—t
—t (teR, t#0)
t
are eigenvectors.
1 1 —-1]x 0
k=3: Solve 1 1 —1fyl=]0
-1 -1 1]z 0
Obtain x=u—t, y=wu and z=t (t, ueR). All vectors
u—t|
u (t, ue R, not both zero)
t

are eigenvectors corresponding to the eigenvalue 3. (The eigenspace has
dimension 2.)

To form the matrix P we must pick one eigenvector corresponding to k =6 and
two eigenvectors corresponding to k = 3, so as to obtain an orthonormal list which

—1 —1/\/5

spans R3. First pick (say)| — 1 |, which gives| —1 /\/5 when divided by its length.

1 1 \/5
Next, for k=3, we need to pick two eigenvectors which are orthogonal to each
1
other. Pick any one, say |11, and find values of ¢t and u for another which is
0
orthogonal to this one. Thus we shall require
u—t+u=0, ie t=2u.
-1
So take, say, t =2 and u =1, giving the eigenvector | 1|. Now divide each by
2
its length, giving

/2] |~ 1/6
/21 14/6]
0 2/,/6
U3 12 —1/6
Let  P=|-1//3 1/2 1./6]
/3 0 2./6

0 0
Then PTAP = 3 0|=D.
0 3

OO
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223 Examples of finding an orthonormal basis for an eigenspace.
2 -1 2

i) Let A=| —1 2 =21
2 =2 5

The characteristic equation is (1 —k)%(7—k)=0. So 1 is an eigenvalue with
multiplicity 2. The eigenspace corresponding to k = 1 is the set of solutions to the
equation

1 -1 21 x 0
-1 1 =2|y|=0].
2 =2 4| z 0
This set is
u—2t

{{ u |tueR}.
t
To find an orthogonal basis for this eigenspace, first pick any eigenvector, say
(taking u=1 and t =1),
—1

u—2t
Next find values of ¢ and u such that | u | is orthogonal to this first vector.
t
So we must satisfy

—(u—2t)+u+t=0, ie 3t=0

Take, therefore, u=1 (say) and ¢ =0, obtaining the eigenvector | 1 |, which is
0

orthogonal to | 1|. Now divide each of these vectors by its length, to obtain

/2] [ =1,/3
/2| /3
0 14/3

an orthonormal basis for the eigenspace corresponding to the eigenvalue 1.

3 -1 21
; 2 0 42
(i) A=l 1 1 41l

-1 1 -2 1

Given that 2 is an eigenvalue of 4 with multiplicity 3, ﬁnd an orthonormal basis
for the eigenspace of A corresponding to 2.
1 -1 2 1 x, 0
. 2 =2 4 2| x, 0
Solving 1 —1 2 tlx|=lo
-1 1 -2 —1fx, 0
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Examples 22.3 give further illustration. Notice that in the matrix D the
repeated eigenvalue occurs more than once, in the positions determined
by the order of the columns of P.

Itisimportant to realise that these methods do not work for all matrices.
We have a rule above which says that they will work at least for all
symmetric matrices. For matrices which are not symmetric, however, we
cannot be certain of the outcome. The matrix

A=

—_— =
— e (O
[\

has characteristic equation
(1—k?@2-k=0,

but, when we seek eigenvectors corresponding to the repeated eigenvalue
k =1, we find an eigenspace of dimension only 1. The details of this appear
in Example 19.4, where it is shown that A4 is not diagonalisable. Matrices
which are not symmetric may be diagonalisable, or they may not.
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gives the eigenspace
X1
X2

{

eR*: x, —x, 4+ 2x3 +x,=0}.
X3

Xa

Pick a LI list of three vectors in this subspace, to constitute a basis, say

1 T 0
1 -1 1

v = ol U, = L U3 = ol
0 0 1

Now apply the Gram-Schmidt process, to obtain an orthonormal basis

(wl’ Wi, W3).

(112
w =| 142
0

- 0
1//3
T 1 /\/5 ' (Notice th.at v, a.nd v, are.already orthogonal, so
1/ \/§ this stage is particularly simple here.)
. 0

_1/\/5
| 102
3= 2/\/&—2
L 6/\/42

22.4 Diagonalisation of a linear transformation.
Let [ be the linear transformation from R® to R® represented (with
respect to the standard basis) by the matrix

1 10
A=|1 0 1}.(See Example 19.2(ii).)
0 1 1
-1 1 1
Let P={ 0 1 =2,
L 11 1

whose columns are a LI list of eigenvectors of A, and consider the change of
coordinates given by

x=Pu, u=P 'x.
u,

Let u=|u, | be the component vector of some element x of R* with respect to
us

the basis B consisting of the columns of P. Find the component vector with respect
to B of the element f(x).
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What is the purpose of diagonalisation? We shall see uses of it in
geometry and in differential equations in the next two chapters. But there
is perhaps a more fundamental reason for its usefulness, concerning linear
transformations.

A linear transformation f may be represented by a matrix A4, so that
f(x)= Ax. Suppose that we wished to refer vectors in R” to a basis B
other than the standard basis (see Chapter 17). A vector x in R" would
then have a column vector u of components with respect to B, with

x=Pu and u=P 'x,

where P is the matrix whose columns are the vectors in the basis B. Can
the component vector u (of x) and the component vector of f(x) with
respect to B be conveniently related by a matrix equation? The answer
is ‘yes’, and we show how. See Example 22.4 for a particular case. Start
with a vector u of components with respect to B (of some vector xe R").
Then x = Pu. The linear transformation f, applied to x, yields Ax, i.e.
APu. Now obtain the vector of components of this with respect to B, i.e.
P~ 1(APu). With respect to B, then, f has the effect

u— P 'APu.

We know that for certain matrices A4 it is possible to choose a matrix
P so that P™'AP is a diagonal matrix. In such cases, P~ '4Pu is a very
simple expression indeed. If the ith entry of u is u; (for 1 <i<n) and if
P~!'AP is a diagonal matrix whose (i, i)-entry is k; (for 1 <i<n), then
kyuy
piapu=| k2%
k,u

n—n
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First, x is represented by Pu with respect to the standard basis, and
—U;+u,+ u;
Pu= uy, —2usz .
U +uy+ us
The image of this under f is APu,
(1 1 Of —u, +uy+ uy
1 01 Uy — 2uy
|0 11 Uy + Uy + Uy
[~ +2u;, — uy
ie. 2u; 4+ 2u, |,
U, +2u, — uy

with respect to the standard basis.
Last, with respect to B, this vector is represented by the component vector
P~ Y(APu),

-1 1 U7 —uy +2u; — uy
ie. 01 -2 2uy + 2uy
11 1 uy +2uy; — Uy
(=3 0 3T —uy+2u,— uy
ie. 2 22 2u; + 2u,
1 -2 1 Ui +2uy; — Uy
[ 6u, u,
ie. e 12uy], which is equal to | 2u,|.
| —6u, — U

This last vector is equal to

1 0 0 u,
0 2 0 u,|,
0 0 —1ju,

in which the multiplying matrix is a diagonal matrix, namely the matrix obtained
in Example 19.2(i) by the standard diagonalisation process.

225 Diagonalisation of a linear transformation.
For xe R?, let f(x)= Ax, where
1 -3 1
A=|-3 1 1.
1 1 -3
Find a basis B for R® with respect to which f is represented by a diagonal matrix
Uy
D, i.e. so that, with respect to B, the image of the vector with components |u,
U3
kyuy
has components | k,u, |, for some numbers k,, k, and k,.
ksus

The required labour has been carried out in Example 22.1. An answer is
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This process is known as diagonalisation of a linear transformation. It
provides a simple expression for the function values, by referring
everything to an appropriate basis. Example 22.5 provides illustration.
Be warned, however. The diagonalisation process works only for certain
matrices (as seen in Chapter 19), so it may be expected to work only for
certain linear transformations.

Summary

An extension of the earlier diagonalisation process is described whereby,
for certain matrices A, an orthogonal matrix P may be found such that
PTAP is a diagonal matrix. In particular, this may be done when 4 is a
real symmetric matrix. The situation in which there is a repeated eigenvalue
is dealt with. There is a brief discussion of the idea of diagonalisation of
a linear transformation, via an appropriate change of basis.

Exercises

1. For each of the following matrices, find a list of eigenvectors
which constitutes an orthonormal basis for R>.

[—1 2 2 (2 0 1
@] 2 1 0} @ (o 2 of.
2 01 1 0 2
1 3 4 7 =2 0
(i) {3 1 Of. wy|-2 6 =2/
4 0 1 0 -2 5

2. For each of the matrices A given in Exercise 1, write down an orthogonal
matrix P and a diagonal matrix D such that PTAP =D.

3. Each of the following matrices has a repeated eigenvalue. Find in each
case a list of eigenvectors which constitutes an orthonormal basis for R>.

2 -1 2 -2 2 2 02 3
@-1 2 -2, G| 2 1 4| Gi)|2 3 6
2 -2 5 2 41 3 68

4. For each of the matrices A given in Exercise 3, write down an orthogonal
matrix P and a diagonal matrix D such that PTAP=D.

5. Find an orthogonal (4 x 4) matrix P and a diagonal matrix D such
that PTAP = D, where A is the matrix

1 3 3 -3

3 1 -3 3

3 -3 1 31
-3 3 3 1
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W3] [ =14/2) | -1/6
B=||1//3|| 1/2]:| -1//6]]-
/3 0 2/,/6

These vectors are the columns of the matrix P found in Example 22.1 such that

-1 00
PTAP=D=| 0 -4 0]|.
0 0 4

In this case (because A is symmetric) a basis B can be found which is orthonormal.
The numbers k,, k, and k, required are the eigenvalues —1, —4 and
4.
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. Repeat Exercise 5 with the matrix

1 40 0
4 10 0
0 0 3 41
0 0 4 -3

. Let f be the linear transformation from R® to R* given by f(x) = Ax,
where

11 2
A=|0 1 Of.
013

Find a basis X for R® such that, when vectors in R* are represented
as column vectors of components with respect to X, f is given by
f(u) = Du, where D is a diagonal matrix.

. Repeat Exercise 7 with the linear transformation g given by g(x) = Bx,
where

2 -1 2
B=| -1 2 =2
2 =2 5

Notice that the basis obtained here is an orthogonal list, whereas that
obtained in Exercise 7 was not.
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231 Simplify the equation
x*+4xy+y*+3=0
by means of the change of variables

1 1
X=—u+—7v, y

= ——1— u -+ L V.
V22 V22
Substituting, we obtain
W tuw+50? - 2u+ 204+ —w + 302 +3=0
ie. —u? 43’ +3=0

ul

ie. ——pr=1.

3

This is now recognisable as in the standard form for an equation of a hyperbola.
In effect the new equation is a consequence of the change of basis

R B

This change of-basis is, in geometrical terms, a change of coordinate axes. The

new axes are OU and~OJ; along the directions of the eigenvectors of the matrix
1 2 . . . .

[2 1]. This matrix is obtained from the quadratic form x2+4xy+ y* as

described in the text.
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Geometry

In the coordinate geometry of two dimensions, a second degree equation
in x and y generally represents a conic. We shall not be concerned with
the geometrical background, but we shall need to be familiar with some
standard forms of equation:

~N

2

x2+yt=r*  circle, 23 + z—z =1 ellipse,

2 2 2 x?
x_z - % =1 hyperbola, % - x_2 =1 hyperbola.
a

Each of these figures has centre at the origin. Of course there is another
sort of conic, the parabola, but the methods developed here do not apply
in that case. Ellipses and hyperbolas have a symmetry which makes our
algebraic methods appropriate. This symmetry is reflected in the form of
the equations above, in the sense that x and y occur only in terms involving
x? and y?. But ellipses and hyperbolas with centre at the origin can have
equations which have a rather different form. For example,
x2+y?+4xy+3=0
is an equation for a hyperbola with centre at the origin, and
5x2+2y? +4xy—6=0
is an equation for an ellipse with centre at the origin.

Our familiar diagonalisation process provides a routine by which we
can simplify such equations and decide which sort of conic they represent.
And it can be used in three dimensions for an analogous procedure involving
quadric surfaces and their equations. The process is equivalent to changing
to new coordinate axes to simplify the equation. But the diagonalisation
process is what tells us which new coordinate axes to choose. Example
23.1 shows how an equation can be simplified into one of the four standard

forms above by an appropriate change of coordinates. Before we can see
how the new axes are chosen, we must discuss a new notion.
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23.2 Examples of quadratic forms.
2x% — y? +4xy
3x2 —4xy
4x% —3y?
x% —4y? + 22 + 16yz — 6zx + 16xy
3y —4xz + 6xy
X2+y +22+xz
15y + 22 — 8xy.

233 Matrix expression for a quadratic form.

2
Let A=[1 ] and x=[x:|.
3 4 y
1 2
Then xTAx=[x y]|- :I x:l
3 4]y
x4+ 2y
=[x
[x A |:3x + 4y:|
= [x(x+2y)+ y(3x + 4y)].
The single entry in this 1 x 1 matrix is equal to

x2 + 2xy + 3xy + 4)*
ie. x% 4+ 5xy + 4y
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Definition
A quadratic form in two variables x and y is an expression of the form

ax? + by + cxy,
where a, b and ¢ are real numbers. A quadratic form in n variables

Xy, ...,X,1s a sum of terms each of which is of the second degree, i.c. is
of the form ax? or hx;x;.

We shall deal with only two or three variables. Some examples are
given in Example 23.2.

Now we make the link with matrices and diagonalisation. See Example
23.3 for illustration of the following. Let 4 be the 2 x 2 matrix

I:a” 012]’ and let x=|:x:|.
az; dz; y

Then xTAx is a 1 x 1 matrix, which we can evaluate as follows.

xTAx=[x y]|:a“ a12:||:x:|
azy Az ALYy

—[x y][‘h 1X+ ‘112)’:|

az1X +azy
=a,x% + a3, Xy + a;,xy + a5, )°
=0y, X% 4 (a1 + a31)Xy + a3, 9.
Here we do not distinguish between a 1 x 1 matrix and the number which
is its sole entry. The important thing is that xTAx is a quadratic form in
x and y.

We can do this also with any square matrix 4 and any appropriately
sized vector x. If A is a 3 x 3 matrix with (i, j)-entry g;; and x is a 3-vector
with entries x, y and z, then (details omitted)

x"Ax=a;;x* + a5,y + a332> + (ay3 + a3,)yz
+ (a3; + ay3)2x + (@15 + a1) xy.

This process can be reversed. Given a quadratic form, we can write
down a matrix A4 such that xTAx is equal to the given quadratic form.
For example

1
ax?®+ by? 4+ cxy =[x y]lila ZC][X] .
2¢ by

But note also that

ax?+by* +cexy=[x ] |:a c:":x] ,
0 by

so the matrix A is not uniquely determined. The coefficient ¢ has to be
‘shared out’ between the (1, 2)-entry and the (2, 1)-entry.
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234 Matrices representing quadratic forms.
(1) Find matrices A such that the quadratic form
2x% — 6xy — y?

is given by the product x"Ax.
Take A =1[a;;15x,, say, where
a,, =2, a,,=—1 and a;,+a, =—6.

The following (among infinitely many possible matrices) will do:

2 0 2 =2 2 2 2 -3
[—6 —1]’ [-4 —1]’ [—8 —1]’[—3 —1]’
The last is significant, being the only symmetric matrix A with the required
property.
(i1) Find matrices A4 such that the quadraﬁc form
x2 —3y? 4+ 722 — 3yz + 2zx + 8xy
is given by the product x"Ax.
Take A =[a;;]5 x5, say, where
ap=1, a;,= -3, as3=1T1, aj;+a;; =8,
a3+ az;,= -3, az, +a;3=2.
The following are among the possible answers:
1 1 2 1 -2 111 4 1
7 =3 —1{,[10 =3 —4|,[4 -3 =3}
o -2 7/t 1 7|l =3 7
The last one of these is the symmetric matrix which has the required property.
(i) Find a symmetric matrix 4 such that the quadratic form
ax? + by? +cz® + dyz + ezx + fxy
is given by the product x"Ax.

a if Le
Answer: A=|3f b id|.
le id ¢

It is easily verified that this matrix has the required property.
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An example of finding a matrix for a quadratic form in three variables
is given in Example 23.4.

It will be particularly convenient, in view of the rule in Chapter 22
about when a matrix is diagonalisable, to choose our matrix to be
symmetric. This can always be done, as is shown for two variables above,
and for three variables in Example 23.4.

Observe that quadratic forms in which there are no cross-terms, i.e. in
which only squares of the variables occur, give rise to diagonal matrices,
and vice-versa. For example,

0
I

1 0 Ox
x2—3y?+422=[x y z]|0 —% Ofy{.
0 0 4|:

Also notice that the left-hand sides of our standard forms of equation for
conics are such quadratic forms. What we seek to do, therefore, is to
convert a quadratic form x"Ax, by an appropriate change of basis (i.e.
change of axes), to a quadratic form u"Du, where D is a diagonal matrix.
This is now easy for us, at least for symmetric matrices A.
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235 Diagonalisation of quadratic forms.
(i) Find a matrix P such that the change of variables given by

X u
b=
y v
will simplify the quadratic form
6x? —4xy + 3y?
into a quadratic form which has no cross-term.

First find a symmetric matrix 4 such that xTAx yields the given quadratic form.
As in earlier examples,

1)

By the standard methods, find eigenvalues and eigenvectors of 4, and an
orthogonal matrix P such that PTAP is a diagonal matrix. We obtain

PTAP=|:7 0], withP:[*z/ﬁ l/ﬁ].
0 2 /5 215

This matrix P is the one with the required property (no need to verify this), and
the simplified quadratic form is

Tu? + 202
(it) Repeat part (i), but with the quadratic form
x2 +4xy + y2.

1 2 .
Here A = [2 1j|. Find the eigenvalues and eigenvectors, and a matrix P such

that PTAP is a diagonal matrix. By the usual methods we obtain

PTAP=[—1 0], withP=[ 113/2 1/‘/5].
0 3 ~1/2 14/2
The eigenvalues are —1 and 3, and the vectors
Al = [
~1,/2 1V/2

are corresponding eigenvectors, respectively.
Notice that the usual process could lead to a slightly different matrix P. For
example, P might have been chosen as

[

This makes no difference. Also, P might have been chosen as

L il

with the columns in the other order. This would have the effect of making

3 0
PTAP = [O 1], and of interchanging the new coordinates u and v.
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We have a method for finding an orthogonal matrix P such that PTAP
is a diagonal matrix. Therefore if we specify a change of basis by

x=Pu (so that xT=u"PT"),
then  xTAx= (u"P")A(Pu)=u"(PTAP)u.

Let us write this out as a rule. See Example 23.5.

Rule
Let xTAx be a quadratic form, where A is a symmetric n x n matrix and
x is a n-vector with entries x,, ..., x,. Then the change of basis x = Pu,

where P is an orthogonal matrix whose columns are eigenvectors of A
leads to the simplification

xTAx=u"Du=ku? +- -+ k,u?,
where k,, . . ., k, are the eigenvalues of A (possibly including repetitions)

and uy,...,u, are the new coordinates. The new basis consists of the
columns of the matrix P.

In our two-dimensional situation, what this amounts to is choosing
new axes in the directions of the eigenvectors. It is the eigenvectors which
determine the change of coordinates which will simplify the quadratic
form. And notice that the eigenvalues appear as the coefficients in the
simplified form.

Example 23.5(ii) is a re-working of Example 23.1 using these ideas. It
turns out that the new coordinate axes (in the directions of the
eigenvectors) are the axes of symmetry of the conic, sometimes called the
principal axes.

In three dimensions, an equation of the form

ax? + by? 4+ cz* + 2fyz + 2gzx + 2hxy +d =0

generally represents a surface called a quadric surface. There are standard
types, represented by standard forms of equation, for example

x* oyt oz .

—+ X + 2 =1 ellipsoid,

.)C2 2 2

=+ y_z ~Z hyperboloid of one sheet,
a b ¢

x2 y2 22

e | hyperboloid of two sheets.
c

There are obviously other possible combinations of positive and negative
signs. (A sphere is a special case of an ellipsoid, when a, b and c are all
equal.)
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23.6 Diagonalisation of a quadratic form in three variables.
Find a matrix P such that the change of variables given by

x u
yi=Plv
z w

will simplify the quadratic form
x? + y? — 322 + 2yz + 2zx — 6xy
into a quadratic form which has no cross-terms.
This quadratic form may be represented as xTAx, with

1 -3 1
A=|-3 1 1}.
1 1 -3

We have already done the work required, in Example 22.1. The matrix P which
we found in Example 22.1 is the one needed here. Without specific verification
we know that the change of variables

3 —1/2 —1,/6]u
=13 2 16

30 2 /6l
will convert the given quadratic form into

—u? —4p? + 4w?,

N X

The coefficients in this quadratic form are the eigenvalues of the matrix A.

—1 00
PTAP=D=| 0 -4 0|,
0 0 4

and uw'Du=[—u?—4? + 4w?].
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Without going into the geometry, we can apply our methods to a given
equation such as the general one above, to simplify it into one of the
standard forms, and thereby to recognise the type of quadric surface and
to find some of its simple properties. This is done in Example 23.6. The
eigenvectors again turn out to determine axes of symmetry (i.e. the
principal axes) and the eigenvalues become the coefficients in the simplified
form. One general rule, therefore, is: we obtain an ellipsoid when and
only when all three eigenvalues are positive (presuming that the equation
is given in the form xTAx =c, with ¢>0).

Summary

Standard forms of equation are given for circles, ellipses and hyperbolas.
In general, a locus of one of these kinds has an equation which involves
a quadratic form. It is shown how to transform a quadratic form into a
sum of square terms, using the diagonalisation process from the preceding
chapter, and hence to convert a given equation into one of the standard
forms. This procedure is extended to the three-dimensional situation,
where the methods are applied to equations for quadric surfaces.

Exercises

1. For each of the quadratic forms listed below, find a symmetric
matrix A such that the quadratic form may be expressed as xTAx, where

X
L X . . .
x is either [ ] or | y |, depending on the situation.
z

(i) 2x* — y? + 4xy.
(ii) 3x? —4xy.
(iti) 4x2 —3y%
(iv) x2—4y? + 22 + 16yz — 6zx + 16xy.
(v) 3y? —dxz + 6xy.
(vi) x2 +y* + 2% + xz.
(vii) 15y% + 2% — 8xy.
(These are the quadratic forms listed in Example 23.2.)

2. For each of the quadratic forms given in Exercise 1, find an orthogonal
matrix P which determines a change of coordinates x = Pu which
transforms the given quadratic form into a sum of squares.

3. Each of the following equations represents a conic (an ellipse or a
hyperbola) with centre at the origin. Find the directions of the principal

axes in each case, write down an equation for the conic with respect
to the principal axes, and say which sort of conic it is.
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Exercises

(i) x2+ y*—4xy=3.

(ii) 3x2+3y* +2xy=1.
(i) 1 +4xy—x*—3y?=0.
(iv) 3x? +4xy+4=0.

. Each of the following equations represents a quadric surface. Find the

directions of the principal axes in each case, write down an equation
for the surface with respect to the principal axes, and say what sort of
surface it is.

(i) =x?4+ 2 +22+4xy+4xz=13.

(i) x2+y*+ 22+ xz=1.

(iit) x? 4+ y? — 322 + 2yz + 2zx — 6xy = 4.
(iv) 2x2 +2y? + 522 —dyz + dzx — 2xy ="T.

Is any of these surfaces a surface of revolution?






Examples

24.1 Ilustration of simultaneous differential equations.
dx

M =

) s
dy . .
e X. These equations are satisfied by
4

x=é, y=e¢,

and by x=e7", y=—e "

dx
ii —= x+2
(i) yr y

d
d_y =2x+y. These equations are satisfied by
t

x=e¥+e!, y=el—e,
and by x=2e*, y =2e3.
dx
(iii) —=y+z
dt Y
d
D x +z
dt
dz . .
o =x+y. These equations are satisfied by
x=2e7", y=—e z=—e .

Indeed they are satisfied by any three functions x, y and z of the form
x =2ae”" + be”,
y= —ae '+ be*,
z=—ae” '+ be¥,

where a and b are arbitrary real numbers.

24.2 Solve the simultaneous differential equations
dx
—=6x—2
dt Y
dy
— =2x+3y.
dt Y

Try I:x} _ [QI]ekr’
y q2

d d
so that — — q,ke* and v_ qke®.
dt dt

Substituting into the original equations, we obtain

2]
q, 2x + 3y
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Differential equations

Functions x and y of an independent variable t may have their derivatives
given as linear functions of x and y themselves:

dx
— =ax+ by,
dt Y
dy
~L=cx+dy.
dt Y
These may be written as a matrix equation
d
X Ax,
dt

where A= [a b] and X = [x] .
¢ d y

Example 24.1 gives an illustration of such equations and the sort of
functions x and y which satisfy them.
There is a formal similarify between the matrix form of differential
equation above and the simple differential equation
dx
dt

Its solution is

ax.

x = ae” (o an arbitrary constant).

The similarity does not end here. We may obtain the general solution to
the matrix equation by trying out

x=qe",

ie. x=gq,e" and y = q,e",
dx d

so that — = g, ke® and 2= q.ke™.
dt dt
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42 2 3y 2 3ll4q,
Sl b o P
q2 2 3149,
o . 6 -2 41
Thus k must be an eigenvalue of the matrix ) 3 b and must

92
be a corresponding eigenvector.

The standard process shows that 7 and 2 are the eigenvalues of this
matrix, with corresponding eigenvectors

) 1
[ ”] (@eR, u#0) and [2"] weR, u#0).
u u
Consequently,

- [

are solutions to the original equations, for any choice of the numbers a
and b.

24.3 Find solutions to the differential equations
dx
—=x-2
dt Y
dy
—=x+4y.
dt y

We can abbreviate the process of Example 24.2. Find eigenvalues and eigenvectors

1 -2
of the matrix l:l 4]. The characteristic equation is

-k -2

‘1 4—k‘=0
ie.  4—Sk+k*+2=0
ie. 6—Sk+k>=0
ie. (3 — k)2 — k) =0.

So the eigenvalues are 3 and 2. Now find the eigenvectors.

-1 =2~ -2
k=2: Solve 1= 0:' , giving [ " (ueR, u#0).
1 2 Ly 0 u
-2 - —
k=3: Solve ': 2:”:x:| = ':O:I , giving [ u} (ueR, u#0).
1 1y 0 u

Consequently

S NERE

are solutions, for any real numbers a and b. These may be written
x = —2ae¥ and x = —be¥,
y=  ae* and y= be.
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Substituting these, we obtqin

gke* = Aqe", :
giving gk = Aq,
ie. Aq=kq.
Thus x = ge** is a solution to our matrix differential equation just when
k is an eigenvalue of the matrix A and ¢ is a corresponding eigenvector
(or of course when g =0, which yields the trivial solution x=0). See
Example 24.2.

Example 24.3 shows this technique in practice. Find the eigenvalues

k, and k,, and corresponding eigenvectors g, and q,. Then
x=gq;e4 and  x=q,e

are solutions to the differential equations. We know from our previous
work that the eigenvectors ¢, and q, have an element of arbitrariness
about them. For any eigenvalue k, if g is an eigenvector corresponding
to k, then any multiple of ¢ is also an eigenvector corresponding to k.
Thus arbitrary constants arise, as they customarily do in the process of
solving differential equations, in the solutions found by this process.
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244 Illustrations of the general solution to a set of differential equations.
i) The general solution in Example 24.2 is
*l=a -2 e +b : e
y 1 1
or x = —2ae” + ibe?,
y= ae”"+ be”.
(i1) The general solution in Example 24.3 is
—2 .T—1
x] =a e +b e¥,
y 1 1
or x = —2ae* — be*,
y=  ae* +be*.
245 Find the general solution to the set of simultaneous differential equations
dx

—=2x+2y+3z
dt

Q= x+2y+ z
dt
%=2x—2y+ z.
The answer is
x
y|=aq,"" + bg,e** + cqze,
z

where a, b and c are arbitrary constants, k,, k, and k; are the three eigenvalues
and q,, g, and g, are corresponding eigenvectors of the matrix

2 23
A=]1 2 1.
2 =21

These are fou/nd by the usual process. The work has been done in Example 19.1.
Take

ky=—1, ky=2, ky=4,
2 4 8
and q.=| 0], q.=| 6], q:=1{5].
-2 —4 2
The required general solution may then be written
X 2 4 8

y|l=a|l Ofe™'+b] 6|e*+c|51e*.
z -2 —4 2
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It is not hard to show (an exercise for the reader) that if we have any
. . dx .
two solutions x; and x, to the equation X = Ax, then their sum x,; + x,
t

is also a solution. In fact it can be shown (beyond the scope of this book)
that the most general form of solution is given by a sum of solutions as
found above. This may be stated as a rule for writing down the general
solution.

Rule

Let 4 be a 2 x 2 real matrix with distinct real eigenvalues k, and k,. Let
q; and g, be any chosen eigenvectors corresponding to k; and k,
respectively. Then the general solution to the differential equation

— = Ax
dt
is x =aq,e" + bq,e*,

where a and b are arbitrary real constants.

See Examples 24 .4.
These ideas apply also where there are more than two functions and
X
equations. For example, we may have x=|y| and A may be a 3 x3
[
matrix. Then the equation

dt
represents a set of three linear differential equations. If k,, k, and k; are
distinct eigenvalues of A, with corresponding eigenvectors ¢,, g, and ¢,
then the general solution is

x = aq,e"" + bq,e* + cq;e,
where a, b and ¢ are arbitrary real constants. This process generalises to
work for larger sets of equations, provided that the number of equations
is the same as the number of unknown functions, so that the matrix of
coefficients is square.

A calculation in the 3 x 3 case is given in Example 24.5.
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d
246  Solve sz = 2x— y+2
t

dy
—=—x+4+2y—2z
dt Y

d

2 ax—2y+5s.
dt

The matrix of coefficients in this case is

2 -1 2

-1 2 =2

| 2 -2 5

In Example 22.3(i) we saw that the eigenvalues of this matrix are 1 (with multiplicity
2) and 7, and that corresponding eigenvectors are

(u— 20
u {u, ve R, not both 0)
| v
T u
and —u (ueR, u#0).
| 2u
These lead to solutions to the differential equations
(x] [a—2b X c
yi=| a |¢ and yl=| =cle™
z b z 2c

The general solution (the sum of these) may be written

X 1 -2 1
y|=a|lle+b| Ole'+c|—1]e".
z 0 1 2
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There are complications in this: the same sort of complications which
were mentioned in relation to the diagonalisation process itself in Chapter
19. There may not be enough eigenvalues, or there may be repeated
eigenvalues, or there may be complex eigenvalues. We can cope, however,
with repeated eigenvalues, provided that there are enough linearly
independent eigenvectors to make the matrix diagonalisable. Example
24.6 provides illustration. Each e** occurs in the general solution
multiplied by an eigenvector of the most general form possible, i.e. a linear
combination of some basis for the eigenspace corresponding to the k;.
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24.7 A case whefc the eigenvalues and eigenvectors are complex numbers.
See Example 18.6. Find the general solution to the system of differential
equations
d_x = Xx+vy
dt
dy
i —x+y.

The eigenvalues of the matrix of coefficients are 1 + i and 1 — i, with corresponding

eigenvectors (say) I:_ll] and

i . .
1] respectively. The general solution is then

|:ij =2 Re((a + ib) __i]e“ “")
y Lt
=2 Re<(a + ib) Iile’e")
=2¢' Re<(a + ib)[:i:l (cost+isin t)>

—icost+sint
=2¢' Rel (a + ib) .
cost+isint
. —aicost+asint+bcost+bisint
=2¢'Re . .
acost+aisint+bicost—bsint

| asint+bcost
= 2¢ . ,
acost—bsint
ie. x=2é'(asint+ bcost)
y=2eé'(acost—bsint).
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We can even cope with complex eigenvalues. We illustrate this with a
2 x 2 case. See Example 24.7. Notice that in that example, the eigenvalues
are complex conjugates of each other. This reflects the fact that complex
solutions to polynomial equations always come in conjugate pairs. The
eigenvalues of a matrix are the roots of the characteristic equation, so
complex eigenvalues will always come in conjugate pairs. The method
given here will apply to such a pair of eigenvalues irrespective of the size
of the matrix.

d .
Consider d—x= Ax, where A is a 2 x 2 matrix, and suppose that the
t

eigenvalues of 4 are complex, say

ki=u+iv and k,=u—iv (u, veR).
We saw in Chapter 18 that we can find complex eigenvectors
corresponding to these eigenvalues by following the usual process. Indeed

they will be complex conjugates of each other. Let g, correspond with
k,. Then q, is an eigenvector corresponding to k,.

x=¢q,¢"" and x=g,e
are (at least in formal terms) solutions. Indeed the general complex solution
is

x= que(u+iu)r + que(u—iu)t’
where, this time, we can think of G and H as arbitrary complex numbers.

What we seek, of course, are real solutions. If we choose H to be the
complex conjugate of G, then

que(u+iv)z and que(u—iv)t
will be complex conjugates of each other, and their sum will be real:

x =2 Re(Gq,e™*™).
It is not very helpful to try to simplify this formula in its general form.
In any particular situation, the appropriate values can be inserted for ¢,
u and v, and G can be taken to be a +ib (where a and b are real numbers),
and then to carry out a simplification process starting from here, to find

the real part, which turns out to be expressible in terms of trigonometric
functions. This is done in Example 24.7.
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24.8 Find the general solution to the system of differential equations

X 2yt
—=2x— z
dt Y

d
—}—)=2x+ y—2
dt

dz-
—= x+2y+2z.
dt

By the usual process we find the eigenvalues and corresponding eigenvectors of
the matrix of coefficients.

1
k=3: Eigenvectors are multiples of | 0.
R
[ —1
k=1+ 2\/5 i: Eigenvectors are multiples of \/E il
L1
[ -1
k=1-2/2i: Eigenvectors are multiples of | — /2i{.
1

From the two complex eigenvalues we can obtain a real solution as in
Example 24.7.

x -1
y|=2Re|(a+ib)] /2 e +2/2
z] 1
-1
-=2¢'Re| (a+ ib)| /2 i|(cos(2/2 t) +isin(2,/2 1))
1

—acos(2./2t)+b sin(2\/§ t)
=2¢| —a,/2sin(2/2 1) — by/2 cos(2,/21) |-
_ L acos(2/2t)—bsin(2/21) ]
The complete general solution is then .
x —acos2/21)+bsin2/21) | [1

y|=2¢"| —a/2sin(2/2 1) — by/2 cos(2,/2 1) | + ¢| O |e*,
z L acos(2/21)—bsin2/2t) | U

where ‘a, b and ¢ are arbitrary real constants. This may be written in a different
form, which might be easier to comprehend:

x = —2ae cos(2\/§ t) + 2be' sin(Zﬁ 1)+ ce,
y=—2a./2 ¢ sin(2/2 1) = 2b./2 ¢ cos(2/2 1),
z =2ae' cos(2,/2 t) — 2be' sin(2,/2 t) + ce™.
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Example 24.8 shows how this method is

Summary

A routine procedure is described and illustrated for finding the general
solution to a system of simultaneous linear first-order differential
eigenvector. The case where

equations. It uses the ideas of eigenvalue and

carried out in a 3 x 3 case
where there are two complex eigenvalues and one real eigenvalue.

eigenvalues are complex numbers is discussed.

Exercises

1. Find the general solution to each of the following

simultaneous differential equations.

. dx odx
i) —= x- i) —
(1) o y (i) T
d d
v 2x +4y &
dt
... dx Codx
u) —= X+ V) —
(ii1) 7 y (iv) 7
d d
_y= x+ y _y
dt dt
dx dx
V) — = X — — z Vi) —
v) T y (vi) -
d d
& 3y+ 2z td
dt dt
dz__ dz
dt Y dt
dx dx
vil) — = + y— 2 i) —
(vii) o x+ y z (viii) "
d )
Do ax  + 4 dy
dt dt
dz dz
—= x— y+ 4z —
dt : dt
dx dx
ix) —=./3x + z X) —
(1) dt \/ ) dt
dy dy
—_ = \Y —
dt . dt

dz
i —x +\/3z dz

' dt

= x+4y

= x-=2y
=—x

= 2x—2y+3z
= 3y—-2z
= —y+2z
= 2x— y+2z
=—-x+2y-2z
= 2x—2y+5z
= —y+ =
= y

= —X + 2z



ANSWERS TO EXERCISES

~

e

Chapter 1
) x=1,y=~1 (i) x=2, y= —-3.
(i) x, =3, x,=—=2, x;3=1.(iv) x;, =2, x,=1, x;=— 1.
V) x;=2,x,=1,x3=2.(vi) x, =1, x,=0, x5=1.
(vil) x, =1, x,=—1, x3=3. (viii) x, =0, x,=0, x;=0.
(ix) x; =3, x,=1, x3=0. (x) x, = — 1, x,=0, x;=0.
(xi) x;, =2, x,=1,x3=0, x,= - 1.

(xii) x, =2, x,=2, x3=1, x,= —3.

Chapter 2

1) x=2+3t, y=t (teR).

(i) x=—1-3t, y=t (teR).

(i) x, =4-3¢, x,=14+2t, x;=t (teR).
(iv) x;,=1-2t, x,=—1+1,x3=t (teR).
V) x;=14¢, x,=t, x3=1 (teR).

Vi) x,=—2-3t,x,=24+t, x3=t (teR).

(i) x=2,y=1. (i) x=3, y=2.
(i) x, = —1, x,=1, x3=2.
() x, =2, x,=—1, x3=0.
W) x;=—-2,x,=1x3=1.
vi) x, =4, x,=3, x3=2, x,=1.

(i) Unique solution. (ii) Infinitely many solutions.
(iii) Inconsistent. (iv) Inconsistent.
(v) Infinitely many solutions.
(1) ¢=1: infinitely many solutions. ¢ # 1: inconsistent.
(i1) Consistent only for k=6. '
(i) c= —2: no solution. ¢=2: infinitely many solutions. Otherwise:
unique solution.

(ii) ¢c= +./3: no solution. Otherwise: unique solution.
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(iil) ¢= —3: no solution. ¢=3: infinitely many solutions. Otherwise:
unique solution.

(iv) ¢=0, c=\/6, c= _\/(—3; infinitely many solutions. Otherwise:
unique solution.

Chapter 3

—1 4 B
2. (i) [—2]. Gi) |- ] . (iii)[ ;] (iv)
2 3 -

15 Yor-21
v) [15]. (vi) 11.
15 . 3

3 AB= 9 -1 6 13 D= 21 -7
"7 16 -8 -8 6f 113 =16

S W W = D

[0 3 7
Bc=|8 -4 6|, cB=|% "8 -4 S}
o 3 3 5 0 =39
4 0 4 2
r8 -5
ol 8]
19 -6
L5 0
DA also exists. A(BC) of course should be the same as (AB)C.
oo (2
4. (i) 2. =2]. @)
19 16 7 4 3
- - 8 4

8
3 2
(ii) [1 ;] (iv) [_ 6].

8§ 8 13
5. 8 5 8].
138 8

6. A must be px q and B must be g x p, for some numbers p and g.

Chapter 4

1 2 3 1 3 6
1. A2=[0 1 2|, A*=|0 1 3],
0 0 1 0 0 1
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1 4 10 1 0 0
A*=]l0 1t 4], B*=|2 1 0:| s
0 0 1 3 2 1
1 0 O 1 0 O
B*={3 1 0|, B*=| 4 1 0].
6 3 1 10 4 1

0 -1 5 Xy +2x,4+ X3
3. 1|0 4 =3|. (i) X, —=2x3 | -
0 0 -1 X5

-1 0 0

(iii) [—3 -2 0]. (ivy[6 5 3].
9 5 3

4. x;=2,x,=6,x3=1.

6. Symmetric:
[1 2] [1 o] F (3) i]
2 3 0 -1 1 -1 2
1 0 1 1 1 0
01 0]}, 1 0 —-1]7.
1 0 1 0 -1 -1

Skew-symmetric:

BHEEE
-2 0 2 -3 0

9. (i) Interchange rows 2 and 3.
(i) Add twice row 3 to row 1.
(iii) Subtract three times row 1 from row 3.
(iv) Multiply row 2 by —2.

10 071 0 0 1 0 0770
10.7=[0 1 of|o 1 0 010
oo tllo 1 1JL-2o0 uJlo

and

—

1 0 0 1 0 0 1 00
11. T= [0 1 0] [0 1 0] [0 10
0 0 -i 0 -3 1 0 0 1
1 00 1 0 O
X [ 0 1 0] [1 1 0]
-2 0 1 0 0 1
and
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Chapter 5

. Invertible: (i), (ii), (iv), (v), (vi), (viii), (xi).

lla 0 O
[0 b 0 ] .
0 0 1/

Chapter 6

cx=—1,y=2.

2. (i) Yes. (ii) No. (iii) Yes. (iv) No.

Pl

. In each case we give the coefficients in a linear combination which is equal

to 0 (the vectors taken in the order given).
(i) 2, —1. (i) 6, —7,2. (iii) 4, —1, 3.
(iv) —11,7,16. (v) 5, —4, 3. (vi) 1, —13, 5.

. LD: (i), (i), (vi).

LI: (i), (iv), (v), (vii).

. 1,2,2,1,2,2,3,3,2,1,1,2,1,2,3,4,4,2,3.
. Rank of xyT is 1. This holds for any p.

Chapter 7

. =7,-2,30, -28, -7,7, -3.
. 27 _4’ '_9’ Oy -‘10, 10, 0, 0, —3

—16, —35.

. No, only for p x p skew-symmetric matrices with odd p.

-1 1 1
. detA=2. adjA= 1 -1 1].

1 1 -1

Chapter 8

(i) Ranks 2, 2; unique solution.
(i) Ranks 1, 2; inconsistent.
(i11) Ranks 1, 1; infinitely many solutions.
(iv) Ranks 2, 2; unique solution.
(v) Ranks 3, 3; unique solution,
(vi) Ranks 3, 3; unique solution.

(vii) Ranks 2, 3; inconsistent.

(viii) Ranks 2, 2; infinitely many solutions.
(ix) Ranks 2, 2; infinitely many solutions.
(x) Ranks 2, 2; infinitely many solutions.
(xi) Ranks 2, 2; infinitely many solutions.

(xii) Ranks 3, 3; unique solution.
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. (i)

Answers to exercises

Chapter 9

.C:b—a,D: —a,E: —b,F:a-b.

2 -2 -2 0
. (i) [—1]. (ii) [ 1]. (iii) [—2]. (iv) [4],
3 -3 -2 1

1
(v) [ 0] .
-1

0 8 6 12
- (1) [1] (ii) [5] (iii) [6]. (iv) [_10],
4 3 6 16

10
(v) [ 5].
=5
1 1] 1
2 . 2 78 75
ol 2], @y |[-2 | vy | L
_1 % el |y
V2 | V6 | V3.

Chapt_er 10
(i) x=t,y=1-t,z=3-2t (teR).

(i) x=1,y=141,z=—2+2t (teR).

(i) x=—1, y=2,z=4—11t (teR).
(V) x=14+t, y=1+t,z=14+t (teR).
(v) x=3t, y=—t,z=2t (teR).

-1 2 -3
. (i) [ 2] . (i) [—1] . (i) [ 0] .
-5 1 -1

(i) Intersect at (0, 1, 1).
(11) Intersect at (0, 3, 1).
(iif) Do not intersect.
(iv) These two sets of equations represent the same line.

. () % (i) —é. (i) —\/24—3. (iv) _%,
cos A= ——— cos l§——5— cos C=i
' V2 /3 S

The largest angle is 4, which is 37/4 radiazs.




7. 7 units.
8. (i) \/2. (ii) \/24. (iii) O (the point lies on the line).
9. (i) x—y+2z—3=0. (ii) 4x+5y+ 62+ 1=0.
(i) y+32z—18=0. (iv) x+ y+z—3=0.
10. (i) O (the planes are perpendicular).
.. 4 (i 1 (_ 2
(ii) \/ﬁ 1) 5 v) \/1_4
11. (i) Straight line. (ii)‘Single point.
(iii) Empty. (iv) Single point.
. .. 6 . 6 1
12. () 0. (i) T (iii) /3. (iv) NG v) NG
Chapter 11
-3 3 —4
1. () [ 1] . (i) [—7] R (1)) [—6] .
4 6 -3
[ 3 12 3
(iv) —1] . (v) [ —4] . (i) [ 0] .
—4 —16 -3
2. () 4/26. (i) 1./94. (i) 4./61.
(iv) $/26. (V) 1,/416. (vi) 3./18.
3. () 4/35. (i) 3./66.
-2 1
4. (i) [ 7] . (i) l: —3] .
3 -10
5. (i) 3y—z—2=0. (ii) x+y+2z—2=0.
(i) x —y+2z=0.
6. 3 units>.
7. 4 units.
8. (1), (1) and (iv) are coplanar. The others are not.

Answers to exercises

. For example,

Hi
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Answers to exercises
Chapter 12
1. () 2,1, 1. (ii) No solution. (iii) ¢, 1 —2¢,¢. (iv) —1,2,1, —1.
3. (i) 3, yes. (ii) 3, yes. (iii) 2, no. (iv) 3, yes.
4. (i) LD. (i) LD. (iii) LI. (iv) LI. (v) LD. (vi) LD.
Chapter 13
1. (i) Yes. (ii) Yes. (iti) No. (iv) No. (v) Yes. (vi) Yes. (vii) No.
2. (1), (ii).
3. (i), (i), (ii).
7. (ii), (iv).
1 -1 =1 1 00
8. (i) Plane, |0 0 0|. (i) Plane, [0 0 0.
L0 0 0 0 00
[2 —1 3 2 —1 -1
(ii1) Plane, | 0 0 O (iv)Line, |t -1 -=2].
K 0 0 0 0 0
Chapter 14
0] [3]1[ 5]
201,211 3.
0j{1] | —1]
For the other two the coefficients are 1, 1 and 3, —3.
27 1] 1 2] [ -1
3. () ([ ,|: ) (ii) <[ :D @) {1y, 2]
1] (1] 1 E 0
3 1 17 [1] [0]
@) {1, =3]- »[|1],[0}f2¢]
o] 2 o] 1] |1
21 1-3
<o) eI w [
3112 1 -1 ) 3 2
IEIEWEERIE
@l Ll Ll 2@l AL
-1 0f -1 2 1 !
L 1 3 1
6. Coefficients: (1) —4, 4, L. (i) 3, —%, 2. (i) £, 2, -4 (iv) 4, -5, 0
(0] [0 1] fo
8. ( @y [l 1of). af|2f,|3(1]. @Gv)
L0] L1 0l |1




.

10
L) A= 1 1]
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Chapter 15

. (i) LL (ii) LD. (iii) LD. (iv) LI
. () 2. (i) 3. (i) 2. (iv) 3. (v) 2. (vi) 3.

Chapter 16

-1 2

1110
X 01 1t 1]
-1 0 11

. f is not one-to-one. im f is not equal to R>.
. (i) Yes. (ii) No. (iii) Yes. (iv) No. (v) No. (vi) Yes. (vii) No. (viii) No.

Chapter 17

. ()3, —1. (i) —2,3. (i) —2,3,1. (iv) 2, =1, 1.

[ 1 2]
o

8]

1
—
—

© = = o o=

-0 = O

—

|
[\ IS
[ Ry R T SR - VR

| —— |
|
SN W
| I |
| —
| |
W N =
| S |

Chapter 18
@) 3,[2t]; —1,[_%]‘ (ii) 0,[ !

t t t

(iii) 3, [_ﬂ; 2, [_i] (iv) 2, [4i ;

AT
i (U
G
M 1 =
| —3
- ~ .
—
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] [ ] [-¢ 2t 0
W) L,[10]; —1,| —=2¢|;4, 2t|. (vi) L,|2t}; —1,]| t§;
0 2 I 3t t
0

L-J

[ ¢] S T 0 4
(vii) 3,]101{; —3,| =6t |; 1, —2t{. (viii) 3,}0[; 1,} ¢t|; —1,| —4t{.
0 0 8t t —t t

o] —2t —3u T
2, (i) I,L (@) —1, t L (i) 1, t]'

i u L
2% — 2u 2t+tu—v
(iv) —3, :4 .(v) 2, "
v
—t t ,
3. () 1,] 2t (i) 3,]0]. (i) —l,[ :I (iv) None.
t t u
. . —t —t
L 0 i’[_li]; —i [li] (i) 1 +2i\/§,|:i 2:}; 1 ~2iﬁ,[_,~ 2zj|.
t t
3t 3t
iv) i, /6, ; —i/6, .
() i/8 [z\/g z:I W [—i 6t]

5. (a+d)? > 4(bc — ad)?.

Chapter 19
2 =2 11 1 -1 4 -1
@) | 1 1] (")[—1 1] ("1)[—2 1] w) [1 1]
(1 1 —1] 2 0 1 1 1 1
™10 -2 2|.@w{2 t 2| (vi)|o —6 —2
0o 4 1] 31 =2 0 0 8
[0 0 4]
(vii) [0 1 —4|.
1 -1 1]

s 11 2 01 2
2. (iii)|: ].(vii) 11 s|wig] 11 —1].
11 11 -4 11 —t
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Chapter 20
1. (i)5. Gi) — 1. (iii) 0. (iv) 0. (v) 0. (vi) 1. (vii) 14. (viii) — 7. (ix) — 1. (x) 3.
2. /2, /10, 5, /3, /14,5, /6,9, 2, /10, /15, . /43.
U3 [ 2] e
L1/3) 0 bi-24/6)
/3 L-120 L 14/6
4. () 2. (i) 6/3/13. (i) 1/3/12. (iv) —1/o/14. (V) 1/3/2. (vi) —5//99.
(vii) 0. (viii) .
[ 17 o] [1]
7.1 ol,|t].|o]
| —1] [o] [1]
[0 3] 1]
8.|11[,] 0],/0}, no, no.
0] [ -2 [1]
Chapter 21 ,
4/\/18 0 112 1 /14
3.6) | —1//18 |- ) | 13/2 |- D) | —17,/2|- GV | 2/,/14).
1/,/18 1//2 0 3/ /14
[1//3] [-211/6 0 2 [ /e [-1/3
4. 0|1 /3L 1 /6)| 2| G| y2) | —16] 143
RN R RN R RSTNE 0 21 /61 L 113
(21 /5] [~ /6] [ 13/1a
G| o || 1/6]|-3/14]
L sl L oa/el L 2 /1a
i) [ awz) | l/f
(iv) | 3//11 |» —2/f ,
L1/y/11 3/f —1/f
B 3 3 0] [1
505 3b|-3) % —35L10].
3 _—% UL 3L
S 0
10 1/f 1//3
1oV w2l -3
L0 L o 1/./3
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. Hint: observe that

Answers to exercises

— O = O
— b DD =

1
0
1|
0

—t—u
. 1,[ t ] (eigenspace is plane of reflection).

u

t
-1, lt} (eigenspace is line normal to the plane).
t

Chapter 22

~—~

[ 0] [-1v2 | [1v2 }
(iii) §H 3//50 } [3/\/’56}.(iv)[§},{

| NSOV |
r 1
= N W
—_ )

LN W= it

L—3 4/./50] 14//50 3
—143] [1n2] | 16 —4/\/18
- @] 14/3] 1/\[} {—1/\/8].(11){ 1/4/2 { 1/,/18
REVVEL B R B TN B S VA3 R VAT
(21 /5| [ 3W/10] [1/14
i) | 1/5]| 64/70)|2//14].
L o JL-sn/70] 13//14
1/2 0 4+ -4{M300 o
0 1,2 4 %[lo3 0 o
o -1/2 4 4|00 3 o
L-1/2 0 4 -4l L0008
[1//2 0 0 V2 5 0 o o
1/,/2 0 o -—1,/2[{o 5 o0 o
0 2/\/5 1/\/_ o [']0O 0 -5 o
00 0 -3

L o 145 —24/5 0

[ 01
. 2 0l
0 —1 1

1 —1 1
, 1 =1/
| 1 2

O == OO ==

spans the same space.

[0 i3] e 11/2
L
-2 Lin/3) L-14/6 -1/f 1/4/2

il

Lt Wil W

l_._.._.__.l
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Chapter 23
1 -8 -3
.(i)[2 2:|.(ii)[ 3 _2].(iii)[4 O].(iv) -8 —4 8|
2 -1 -2 0 0 -3 D

0 1 100 0 -4 0
V) ol.vi)lo 1 of (ii)|—4 15 o
10 1 00 1 0 01

[21\/5 —1/\/] )[ ING l/f] [ }
Li/5 21/5 —1/5 2//5
T-14/3  14/6 1//}.“)[ 1//2 o 1/\[}

O =
—

i

~

v)| 1./3 2,/6 0 0
R VNS VNI VNG) -1/2 0 11/2

1 00 0 —1//17 4/ /17
(vi)}o 1 ovii)lo  4,/17 1 /17]
0 0 1 1 0 0

2

1 1
(i) Directions ofI: 1], [1]; u? —%: 1; hyperbola.

1 1
(ii) 1], [I:I; 2u? + 4v? = 1; ellipse.

(iif) u:\zf] [ +2f] @+ /S)u? — (/5 — 2)v> = 1; hyperbola.

2 —1 2
(iv) ] u— U— =1; hyperbola.

(1ii)

1
(@iv) 1]
0
(Only (i

(

~—

1 {} { } —+v? —w? =1; hyperboloid of one sheet.

2 WZ
0 ; + —+ 7= = 1; ellipsoid.

1 2
[ :l l:l ut—v —WT— 1; hyperboloid of two sheets.

1]

1 1 2
[ 1] [ (say); + 7 +w = 1; ellipsoid.
1

v}is a surface of revolution.)

(ii

-
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Chapter 24

1. @()x= ab_ i]eﬂ + b[_ﬂesa
() x=a _ﬂez‘ + b[_ i]e‘i“.
s=d o] ]en
(iv) x=|:z:|e".

a 1
(V) x=| ble4+c| —2|e*

—b 1
1 1 7
(vi) x=a|1|e'+b|0|e® +c| —4|e¥.
1 0 2
-1 0 1
(vii) x=a| 3|+b[2[e*+c| O0fe.
1 1 -1

a—2b 1
(viii) x=| a l|e+c|—1|e".

b 2
beost+asint 0
(ix) x = 2ev3* 0 +ecfl]é.
acost—bsint 0
(a+b)cost+(a—b)sint 1
(x) x =2¢ 0 +c|1|ée.

acost—bsint 1



SAMPLE TEST PAPERS FOR PART 1

Paper 1

1
(i) Let X be a 3 x 4 matrix. What size must the matrix Y be if the product XY X is to
exist? For such a matrix Y, what is the size of the matrix XY X?

Calculate AB or BA (or both, if both exist), where

-1 2 0o 2 3
A= 0 1 and B= ol
3 -1 =1

(11) Find the values of ¢ for which the following equations have (a) a unique solution,
and (b) infinitely many solutions.
tx+4y=0
(t—Dx+ty=0.
(iii) Let X and Y be p x p symmetric matrices. Is the matrix XY — Y X symmetric? Is
it skew-symmetric? If P and Q are skew-symmetric matrices, what can be said about
the symmetry or skew-symmetry of the matrix PQ —QP?

2
Show that the list

(HR RIS

is linearly independent if and only if a=1 or a= —4. For each of these values of a,
find a non-trivial linear combination of these vectors which is equal to the zero
vector.

What is the rank of the matrix

1 1 1
A= ]2 4 —1 .
1 —1 a*+3a

when a=1or a= —4?
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Find the inverse of 4 when a=0, and hence or otherwise solve the equation

~[]

in the case when a=0.

3

(i) Show that the determinant of a 3 x 3 skew-symmetric matrix is equal to zero. Do
all skew-symmetric matrices have determinant equal to zero? Justify your answer.
(i) Explain what is meant by an elementary matrix. Give examples of the three
different kinds of elementary matrix, and explain their connection with the
Gaussian elimination process.

(iii) Let A, Band C be the points (1,0, 0),(0,2,0)and (0, 0, 2) respectively. Using the
cross product of vectors, or otherwise, find the surface area of the tetrahedron
OABC.

4
Let A(2,1, —4), B0, — 1, —6), C(3,0, —1) and D(—3, —4, —3) be four points in
space. Find parametric equations for the straight lines AB and CD. Hence show
that these two lines do not intersect. Let P and @ be points on AB and CD
respectively such that PQ is perpendicular to both AB and CD. Calculate the length
of PQ.

Find an equation for the locus of all midpoints of line segments joining a point on
AB to a point on CD. Deduce that the locus is a plane.
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Paper 2
1
(i) Let
11
2 1 1 -1 0 2 0
= . B= C=
4 [o 1] [2 2 1] and -1 -1
2 3

Calculate all possible products of two of these matrices. Is it possible to multiply
them all together? If so, in what order? Calculate any such product of all three.
(i) Let

1 2 -1
X= 2 3 0].
-1 0 -2

Find whether X is invertible. If it is, find its inverse.
(iii) Define a skew-symmetric matrix. Explain why the entries on the main diagonal
of a skew-symmetric matrix must all be zero. Let H be the matrix

01
[-1 o]
Show that H?+41=0, that H is invertible, and that H™'=HT,
2
(i) Let A be a p x q matrix and let b be a p-vector. In the matrix equation Ax=2b,
what condition must be satisfied by the rank of A and the rank of the augmented
matrix [ 4}] if the equation is to have no solutions? Prove that the following set of
equations has no solutions.
x+2y+3z=1
x+ y+ z=2
S5x+T7y+9z=6.
(ii) Find whether the list

(REIE)

is linearly dependent or linearly independent.
(iii) Find all values of ¢ for which the equations
(c+ x+ 2y=0
3x+{c—1)y=0
have a solution other than x=y=0.
3
(1) Evaluate the determinant

2 1 3 -1
-2 0 1 1
1 0 2 2
3 0 -1 1



316 Sample test papers

(ii) Explain what is meant by the adjoint (adj A) of a square matrix 4. Show that, for
any 3 x 3 matrix A,

Aladj A)=(det A)I,
where I is the 3 x 3 identity matrix.
(iii) Find an equation for the plane containing the three points A(2, 1, 1), B(— 1, 5,9)
and C(4,5, —-1).
4
Define the dot product a-b of two non-zero vectors a and b.
(i) Let OABC be a tetrahedron, O being the origin. Suppose that OC is
perpendicular to AB and that OB is perpendicular to AB. Prove that 04 is
perpendicular to BC.
(ii) Let P and Q be the points (1,0, —1) and (0, 1, 1) respectively. Find all unit

— —
vectors u which are perpendicular to OP and which make angle n/3 (60°) with 0Q.
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Paper 3
1
(i) Let
; _? 11 0 -1 10 1
A= , B=1]-1 0 2 0 and C= .
0 2 -1 10
1 3 0 0 1 1

Evaluate the product CB. Evaluate every other product of A or C with B. There are
exactly three orders in which it is possible to multiply A, B and C all together. Write
these down but do not evaluate the products. State the sizes of the three product
matrices.

(ii) Define the rank of a matrix. Calculate the rank of the matrix

1 -3 47
[2 -1 7].
2 4 6

Use your answer in determining (without actually solving them) whether the
following equations are consistent.

x—3y+4z=0
2x— y+7z=4
2x+4y+62z=8.

(iii) Show that the product of two upper triangular 3 x 3 matrices is upper
triangular.

2
Solve the system of equations

x+2y— z= 4
2x— y+ z=-3 *)
—x+ y+4z=-17.
Show that the inverse of an invertible symmetric matrix is symmetric, and verify this
by finding the inverse of

110
P=[l 2 1}.
010

Let A be a 3 x 3 matrix and let b be a 3-vector. Show that if ¢ is a solution to the
equation Ax=bthen P~ !cis a solution to the equation (4P)x = b. Use your earlier
results to find a solution to

4
(AP)x= [—3] s
-7

where A is the matrix of coefficients on the left-hand sides of equations (*) above.
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3
(i) Let

1 t 0
A= | 141+ 1 51, whereteR.

0 -t t
Evaluate det A4 and hence find all values of ¢ for which A4 is singular.
(if) Let X be a 3 x | matrix and let Y be a 1 x 3 matrix. Show that XY is a singular
3 x 3 matrix.
(ii1) Let A, B, C and P be points with coordinates (2, 1, 1),{—4, —2,1),(1,2, 3)and
(-1, —1,2) respectively. Find which of the angles BPC, CPA and APB is the
smallest.

4
Give the definition of the cross product a x b of two non-zero vectors a and b.

Find an equation for the plane n through the points A(l1, 1,4), B(3, —2,4) and
C3, -1,1).

What is the perpendicular distance of the point X (1, — 3, 5) from the plane n?
Find the volume of the parallelepiped which has X as one vertex and 4, Band C as
the vertices adjacent to X. Find the coordinates of the vertex of this parallelepiped
which is farthest from X.
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Paper 4
1
(i) Show that the set
o
{|yleR* x=0}
z

is a subspace of R>. Find a basis for this subspace, justifying your answer. Show
that the set

{|yleR* x=1}
z

is not a subspace of R>,
(i) Show that the list

1112 1
14,111, 3
—11{0]|—6
1
is a basis for R3. Express the vector | 0| as a linear combination of these basis
0
vectors.
2

(i) Suppose that we are told that a certain linear transformation f from R* to
R? has the properties:

1 2
1 2
Al -] s : -]

Is it possible to deduce the value of f 4117
-3
If so, find it. If not, explain why. not.
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(ii) Find the kernel and the image of the linear transformation from R* to R3
represented by the matrix

1 2 0 3
11 -1 2.
-1 2 4 1

What is the rank of this matrix?

3
(i) Give the definition of orthogonal matrix. Show that the determinant of an
orthogonal matrix is equal to either 1 or — 1. Show also that the product of two
orthogonal matrices is an orthogonal matrix.
1
(ii) Find two vectors (not multiples of one another) which are orthogonal to | 2 .
2

Hence find an orthonormal basis for R* which contains the vector

W WIS Wi

4

(i) Find a diagonal matrix D and an invertible matrix P such that P"'4P =D,
where

0 -2 2
A=12 -1 0}.
2 =21

(1i) What can be said in general about the eigenvalues of
(a) a diagonal matrix,

(b) an upper triangular matrix?

Justify your-answers.



Sample test papers , 321

Paper 5
1
(i) Find a basis for the subspace S of R* spanned by the list of vectors
1110 -1 1
-1 1 2111
201001 -111}3

2] Lt 0] L5
A 4 x 4 matrix A is such that 4x = 0 for every vector x belonging to this subspace
S. What must be the rank of A? Find such a matrix A.
(ii) Show that the set
X
{|lyleR:x+y=2z}
z

is a subspace of R3.

.
21 |1 1

Let X ={{1/,10],| —1[|. This list is a basis for R* (do not verify this). Find a
113 2

matrix P which transforms a column vector of components with respect to the
basis X into a column vector of components with respect to the standard basis
for R3. Now let

1 |-1 1
Y={|-1{,| 2},|—-3
21 1-1 1

This list is also a basis for R (do not verify this). Find (and evaluate fully) a
matrix which transforms components with respect to the basis X into components
with respect to Y.

3
Find an orthogonal matrix P such that the matrix PTAP is a diagonal matrix, where
3 -2 0
A=|-2 5 2.
0 2 3

Describe a change of coordinate axes which will transform the equation

3x% 4 5y? + 322 +4yz —dxy =21
into a standard form. Find such a standard form, and deduce the nature of the
surface which has this equation.
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4

(i) Using the Gram-Schmidt process, or otherwise, find an orthonormal basis for
the subspace of R* spanned by the list

1 1]]0
011 1
111]]1
0J LoJ L1
(i) Find the general solution to the simultaneous differential equations

dx
e =3x—
dt Xy
dy

—=2x+y.
dt y
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Paper 6
1
(i) Let S be the subspace of R* spanned by the list
[—2 3] [-1
t,| 1] 3
2| -1 3

Find a basis for S.
Let T be the subspace for R* spanned by the list

1] [1][5
21,|7].|5
1] 5] [0

Show that S=T.
(it) Show that the set
x
{|yleR x+y+z=0}
z

is a subspace of R>.

2

(i) Let A=[ 12 l/ﬁ], B=[ 0 1].
—1 \/5 1 \/5 -1 0

With the aid of diagrams, explain in geometrical terms the effects of the linear
transformations from R? to R? which are represented by 4 and B. Show by means
of an algebraic argument that the result of applying one of these transformations
and then the other is always the same, irrespective of which one is applied first.
(ii) Show that the linear transformation from R* to R* which is represented by
the matrix

3 0
1 =2
1 1
1 2

is one-to-one. Describe its kernel and its image.

—_ O -

3
Let u and v be eigenvectors of the matrix 4 corresponding to the eigenvalue k.
Show that every non-zero linear combination of u and v is also an eigenvector of
A corresponding to k.

Explain what is meant by saying that two non-zero vectors in R" are orthogonal.
Show that if # and v are orthogonal to x in R” then every non-zero vector in the
subspace spanned by (u, v) is orthogonal to x.

2 1 2
Let u=|-2{, v=|—2 and x=i1].
-1 0 2
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Verify that u and v are orthogonal to x, and find a linear combination of u and
v which is orthogonal to u.

Suppose that a certain 3 x 3 matrix 4 has x (as above) as an eigenvector
corresponding to the eigenvalue 2, and has u and v (as above) as eigenvectors
both corresponding to the eigenvalue 1. Write down an orthogonal list of
eigenvectors of A. Find an orthogonal matrix P such that

2 00
PTAP=|0 1 0].
0 01
Hence find A.

4
(i) The equation
9x? +3y> +8xy—11=0
represents a conic. Find vectors in the directions of the principal axes of this conic,
and decide whether it is an ellipse or a hyperbola.
(ii) Find the general solution to the simultaneous differential equations

dx
—= 8x+5
dt Y
dy
= —4x—4y.
dt T

Use this to find particular functions x(t) and y(t) satisfying these equations, and
also satisfying the conditions x(0) =0, y(0) = 3.



FURTHER READING

There is a very large number of books available on the subject of linear
algebra. This book is intended to be different from most of them, in the
manner described in the Preface, so reading other books simultaneously
could serve to confuse rather than enlighten. But this book is not
comprehensive: it does not cover more advanced or abstract parts of the
subject, nor does it pursue applications. And of course further examples
and exercises are always valuable. Here, then, is a selection of books
which might be useful.

The first two are books of worked examples:

F. Ayres, Matrices. Schaum’s Outline Series, McGraw-Hill, 1968.
J. H. Kindle, Plane and Solid Analytic Geometry. Schaum’s
Outline Series, McGraw-Hill, 1950.

Next, four books with subject matter similar to that of this book, but
with different approaches:

H. Anton, Elementary Linear Algebra, 4th edition. John Wiley,
1984.

D. T. Finkbeiner, Elements of Linear Algebra, 3rd edition.
Freeman, 1978.

B. Kolman, Elementary Linear Algebra, 4th edition. Collier
Macmillan, 1986.

I. Reiner, Introduction to Linear Algebra and Matrix Theory. Holt,
Rinehart & Winston, 1971.

Now some books which provide either a more abstract approach, or cover
more advanced topics:
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E. D. Nering, Linear Algebra and Matrix Theory, 2nd edition.
John Wiley, 1970.

H. Samelson, An Introduction to Linear Algebra. Wiley-
Interscience, 1974.

G. Strang, Linear Algebra and its Applications, 2nd edition.
Van Nostrand Reinhold, 1980.

As a reference for the geometrical aspects of the subject:

P. J. Kelly & E. G. Straus, Elements of Analytical Geometry.
Scott Foresman, 1970.

Last, here are some books which concentrate more on applications:

T. J. Fletcher, Linear Algebra through its Applications.
Van Nostrand Reinhold, 1972.

F. A. Graybill, Introduction to Matrices with Applications in
Statistics. Wadsworth, 1969.

C. Rorres & H. Anton, Applications of Linear Algebra,
3rd edition. John Wiley, 1984.



INDEX

addition of matrices 23

adjoint matrix 75

algebra of matrices (rules) 27

angle between two planes 115

angle between two vectors 109, 125, 241
area of a triangle 127

augmented matrix 81

basis 169

Cauchy-Schwarz inequality 241

centroid of a triangle 99

changes of axes 207, 277

change of basis 205ff., 283

characteristic equation 219

cofactor 73fI.

column space of a matrix 139, 147, 167,
183, 199

column vector 23

commutative law (failure) 29

complex eigenvalues 223, 295ff.

components of a vector 101, 205ff., 211

conic 277

consistent 139

coordinate axes 207, 227

coplanar vectors 131

cross product 123ff.

determinant 63ff., 73, 131
determinant of a product 77
diagonal matrix 33, 231
diagonalisable 233
diagonalisability of a symmetric
matrix 235, 263
diagonalisation 229fT., 263f.
diagonalisation of a linear
transformation 273
differential equations 289ff.
dimension 171ff., 201
direction ratios 107

distance from a point to a plane 117
distinct eigenvalues 235
dot product 109, 2391f.

eigenspace 221

eigenvalue 217ff.

eigenvalues of a symmetric matrix 223
eigenvector 217ff.

eigenvectors of a symmetric matrix 245
elementary matrix 39, 45

elementary row operation 4, 39, 47, 69
elimination 1

ellipse 277

ellipsoid 283

entry in a matrix 23

equation of a conic 277

equation of a plane 113

equation of a quadric surface 283
equations with parameters 19
Equivalence Theorem 61, 73, 141, 185
expansion by row or column 67

Gaussian elimination 3ff.

GE process 5

geometrical transformation 194
Gram-Schmidt process 255

homogeneous simultaneous equations 81,

141
hyperbola 277
hyperboloid 283

identity matrix 33, 39

image of a linear transformation 199
inconsistent equations 3, 13, 137
inverse of a matrix 45ff.

inverse of a product 51

invertible matrix 45, 51, 59, 61, 73, 141

kernel of a linear transformation 199
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LD 55, 141

length of a vector 101, 241

LI 55, 141

LI list of eigenvectors 229ff., 233

LI spanning list 167ff.

linear combination 55

linear equation 1

linear transformation 189ff., 271ff.

linearly dependent list 55, 131, 141

linearly independent list 55, 61, 73, 131,
141

lower triangular matrix 35

main diagonal 33
matrix 23
median of a triangle 99
multiplication
of a matrix by a number 25
of a matrix by a vector 25
of matrices 27
multiplicity of an eigenvalue 265

nilpotent matrix 227
non-singular matrix 45
non-trivial linear combination 55
normal vector to a plane 113
normalisation 253

one-to-one 197

orthogonal basis 251

orthogonal complement 248

orthogonal list 243

orthogonal matrix 37, 39, 45, 255f1., 263
orthogonal transformation 257
orthogonal vectors 111, 243
orthonormal basis 253

parallelepiped 129

parallel planes 115

Parallelogram Law 91

parameters in solutions to simultaneous
equations 11, 83, 115

parametric equations for a straight
line 107

partial pivoting 5

perpendicular vectors 111

perpendicular distance from a point to a
plane 117

plane 113, 153
position vector 93
principal axes 283
proper subspace 173

quadratic form 279
quadric surface 283

rank of a matrix 59, 61, 73, 81ff, 139,
1811T.

real eigenvalues 224ff.

rotation 195, 215, 256

row-echelon form 7

row space of a matrix 183

row vector 23, 181fT.

scalar triple product 129

Section Formula 97

similar matrices 234

simultaneous equations 11ff., 81ff,, 137

singular matrix 45, 217

skew-symmetric matrix 37

solution of simultaneous equations 11ff.,
137

solution space 151, 201

space spanned by a list of vectors 147, 163

spanning list 163ff., 175

standard basis for R 169

standard basis vectors 101, 147, 207, 255

straight line 105ff,, 153

subspace of 151, 159

symmetric matrix 35, 223, 235, 245, 263,
281

transpose of a matrix 35
transpose of a product 37
Triangle Law 91
triangular matrix 35, 73

unit vector 101
upper triangular matrix 35, 39, 47

vector 23, 87ff.
vectors in geometry 87ff.
volume of a parallelepiped 129

zero matrix 33



