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Preface

The tools of mathematical statistics find wide e The concept of the statistical model. Such a

application in climatological research. Indeed,
climatology is, to a large degree, the study of the
statistics of our climate. Mathematical statistics
provides powerful tools which are invaluable for
this pursuit. Applications range from simple uses ®
of sampling distributions to provide estimates
of the uncertainty of a climatological mean to
sophisticated statistical methodologies that form
the basis of diagnostic calculations designed
to reveal the dynamics of the climate system.
However, even the simplest of statistical tools
has limitations and pitfalls that may cause the
climatologist to draw false conclusions from
valid data if the tools are used inappropriately
and without a proper understanding of their
conceptual foundations. The purpose of this
book is to help the climatologist understand
the basic precepts of the statistician's art and
to provide some of the background needed®
to apply statistical methodology correctly and

usefully.

We do not claim that this volume is in any

model is implicit in every statistical analysis
technigue and has substantial implications for
the conclusions drawn from the analysis.

The differences between parametric and non-
parametric approaches to statistical analysis.

The estimation of ‘parameters’ that describe
the properties of the geophysical process
being studied. Examples of these ‘parame-
ters’ include means and variances, temporal
and spatial power spectra, correlation coef-
ficients, empirical orthogonal functions and
Principal Oscillation Patterns. The concept of
parameter estimation includes not only point
estimation (estimation of the specific value
of a parameter) but also interval estimation
which account for uncertainty.

The concepts of hypothesis testing, signifi-
cance, and power.

We donot deal with:

way an exhaustive or comprehensive guide to the® Bayesian statistics, which is philosophically

use of statistics in climatology, nor do we claim
that the methodology described here is a current
reflection of the art of applied statistics as it is
conducted by statisticians. Statistics as itis applied
in climatology is far removed from the cutting
edge of methodological development. This is
partly because statistical research has not come yet
to grips with many of the problems encountered
by climatologists and partly because climatologists
have not yet made very deep excursions into the
world of mathematical statistics. Instead, this book
presents a subjectively chosen discourse on the
tools we have found useful in our own research on

climate diagnostics.

We will discuss a variety of statistical concepts
and tools which are useful for solving problems in

climatological research, including the following.

e The concept of a sample.

quite different from the more common
frequentistapproach to statistics we use in
this book. Bayesians, as they are known,
incorporatea priori beliefs into a statistical
analysis of a sample in a rational manner (see
Epstein [114], Casella [77], or Gelman et al.
[139]).

e Geostatistics, which is widely used in geol-

ogy and related fields. This approach deals
with the analysis of spatial fields sampled at
a relatively small number of locations. The
most prominent technique is callédiging
(see Journel and Huijbregts [207], Journel
[206], or Wackernagel [406]), which is re-
lated to thedata assimilationtechniques used

in atmospheric and oceanic science (see, e.g.,
Daley [98] and Lorenc [258]).

A collection of applications of many statistical
techniques has been compiled by von Storch and

e The notions of exploratory and confirmatoryNavarra [395]; we recommend this collection as

statistics.

complementary reading to this book and refer to



its contributions throughout. This collection does e
not cover the field systematically; instead it offers
examples of the exploitation of statistical methods
in the analysis of climatic data and numerical
experiments.

Cookbook recipes for a variety of standard
statistical situations are not offered by this book
because they are dangerous for anyone who does
not understand the basic concepts of statistics.
Therefore, we offer a course in the concepts
and discuss cases we have encountered in our
work. Some of these examples refer to standard
situations, and others to more exotic cases. Only
the understanding of the principles and concepts
prevents the scientist from falling into the many
pitfalls specific to our field, such as multiplicity
in statistical tests, the serial dependence within
samples, or the enormous size of the climate’s

Thanks for discussion, review, advice and
useful comments: GerdiBger, Bill Burrows,
Ulrich Callies, Susan Chen, Christian Eckert,
Claude Frankignoul, Marco Giorgetta, Sil-
vio Gualdi, Stefan @R, Klaus Hasselmann,
Gabi Hegerl, Patrick Heimbach, Andreas
Hense, Hauke Heyen, Martina Junge, Thomas
Kaminski, Frank Kauker, Dennis Letten-
maier, Bob Livezey, Ute Luksch, Katrin
Maak, Rol Madden, Ernst Maier-Reimer, Pe-
ter Muller, Dorthe Miller-Navarra, Matthias
Munnich, Allan Murphy, Antonio Navarra,
Peter Rayner, Mark Saunders, Reiner Schnur,
Dennis Shea, Achim 8ssel, Sylvia Venegas,
Stefan Venzke, Koos Verbeeck, Jin-Song von
Storch, Hans Wackernagel, Xiaolan Wang,
Chris Wickle, Arne Winguth, Eduardo Zorita.

phase space. If these dangers are not understooq, Thanks for making diagrams available to

then the use of simple recipes will often lead to
erroneous conclusions. Literature describes many
cases, both famous and infamous, in which this has
occurred.

We have tried to use a consistent notation
throughout the book, a summary of which is
offered in Appendix A. Some elements of linear
algebra are available in Appendix B, and some
aspects of Fourier analysis and transform are listed
in Appendix C. Proofs of statements, which we do
not consider essential for the overall understand-
ing, are in Appendix M.

Thanks

We are deeply indebted to a very large number
of people for their generous assistance with this
project. We have tried to acknowledge all who con-
tributed, but we will inevitably have overlooked

some. We apologize sincerely for these oversights.

e Thanks for her excellent editorial assistance:
Robin Taylor.

us: Howard Barker, Anthony Barnston,
Grant Branstator, GerdiBger, Bill Burrows,
Klaus Fraedrich, Claude Frankignoul, Euge-
nia Kalnay, Viacheslaw Kharin, Kees Ko-
revaar, Steve Lambert, Dennis Lettenmaier,
Bob Livezey, Katrin Maak, Allan Murphy,
Hisashi Nakamura, Reiner Schnur, Lucy Vin-
cent, Jin-Song von Storch, Mike Wallace,
Peter Wright, Eduardo Zorita.

Thanks for preparing diagrams: Marion
Grunert, Doris Lewandowski, Katrin Maak,
Norbert Noreiks, and Hinrich Reichardt, who
helped also to create some of the tables in the
Appendices. For help with théTgX-system:
Jorg Wegner. For help with the Hamburg
computer network: Dierk Schriever. For help
with the Canadian Centre for Climate Mod-
elling and Analysis computer network in Vic-
toria: Mike Berkley. For scanning diagrams:
Mike Berkley, Jutta Beriihr, and Marion
Grunert.



1 Introduction

1.1 The Statistical Description and its enormously large phase spdc€hus it is not
Understanding of Climate possible to map the state of the atmosphere, the
ocean, and the other components of the climate
system in full detail. Also, the models are not
Climatology was originally a sub-discipline ofgeterministic in a practical sense: an insignificant
geography, and was therefore mainly descriptivange in a single digit in the model’s initial
(see, e.g., Bickner [70], Hann [155], or Hannconditions causes the model’s trajectory through
and Knoch [156]). Description of the climatghase space to diverge quickly from the original
consisted primarily of estimates of its mean Stagnjectory (this is Lorenz’s [260] famous discovery,
and estimates of its variability about that statgyhich leads to the concept of chaotic systems).
such as its standard deviations and other Simple‘rherefore, in a strict sense, we have a
measures of Var|ab|l|ty Much of Climat0|ogy iSdeterministic' system, but we do not have
still focused on these concerns today. The majre ability to analyse and describe it with
purpose of this description is to define ‘normalsgeterministic’ tools, as in thermodynamics.
and ‘normal deviations,” which are eventuallynstead, we use probabilistic ideas and statistics to
displayed as maps. These maps are then ugrdcribe the ‘climate’ system.
for regionalization (in the sense of identifying Four factors ensure that the climate system is

homogeneous geographical units) and planningmenable to statistical thinking.
The paradigm of climate research evolved from

the purely descriptive approach towards an® The climate is controlled by innumerable
understanding of the dynamics of climate with the ~ factors. Only a small proportion of these
advent of computers and the ability to simulate the ~ factors can be considered, while the rest

climatic state and its variability. Statistics plays an ~ ar¢ necessarily interpreted as background
important role in this new paradigm. noise. The details of the generation of this

‘noise’ are not important, but it is important
to understand that this noise is amernal
source of variation in the climate system
(see also the discussion of ‘stochastic climate
models’ in Section 10.4).

The climate is a dynamical system influenced
not only by immense external factors, such as solar
radiation or the topography of the surface of the
solid Earth, but also by seemingly insignificant
phenomena, such as butterflies flapping their
wings. Its evolution is controlled by more or e The dynamics of climate are nonlinear.
less well-known physical principles, such as the Nonlinear components of thieydrodynamic
conservation of angular momentum. If we knew  part include important advective terms, such
all these factors, and the state of the full climate as ug—g. The thermodynamicpart contains
system (including the atmosphere, the ocean, the various other nonlinear processes, including
land surface, etc.), at a given time in full detail, many that can be represented by step
then there would not be room for statistical functions (such as condensation).
uncertainty, nor a need for this book. Indeed, if we 7 o ,

. . . We use the expression ‘phase space’ rather casually. It
repeata run of a General C”CUIat"?n Model, whic the space spanned by the state variablesf a system
is supposedly anodelof the real climate system,%% = f(x). In the case of the climate system, the state
on the same computer with exactly the same coderiables consist of the collection of all climatic variables at
operating system, and initial conditions, we obtafll 98°graphic locations (latitude, longitude, height/depth). At
. . . any given time, the state of the climate system is represented by
a second realization of the simulated climate th@ﬁe point in this space; its development in time is represented

is identical to the first simulation. by a smooth curve (‘trajectory’).
. . , This concept deviates from the classical mechanical definition
Of course, there is a ‘but’ We do not knoW/vhere the phase space is the space of generalized coordinates.
all factors that control the trajectory of climate irPerhaps it would be better to use the term ‘state space.’

1



2 1: Introduction

e The dynamics include linearly unstablereate their own unpredictability. These models
processes, such as the baroclinic instability lmehave in such a way that a repeated run will
the midlatitude troposphere. diverge quickly from the original run even if only

. . L minimal changes are introduced into the initial
e The dynamics of climate are dissipative. Th@onditions

hydrodynamic processes transport energy
from large spatial scales to small spatial
scales, while molecular diffusion takes placé-1.1 ~ The Paradigms of the Chaotic and
at the smallest spatial scales. Energy wtochastic Model of Climate. In the paradigm
dissipated through friction with the solidof the chaotic model of the climate, and

earth and by means of gravity wave drag &@articularly the atmosphere, a small difference
larger spatial scalé. introduced into the system at sonmtial time

causes the system to diverge from the trajectory it
The nonlinearities and the instabilities makgould otherwise have travelled. This is the famous
the climate systenunpredictablebeyond certain Butterfly Effect in which infinitesimally small
characteristic times. These characteristic tingisturbances may provoke large reactions. In terms
scales are different for different subsystems, sugh climate, however, there is not jusne small
as the ocean, midlatitude troposphere, and tropigaéturbance, but myriads of such disturbances at
troposphere. The nonlinear processes in the systgintimes. In the metaphor of the butterfly: there
amplify minor disturbances, causing them tare millions of butterflies that flap their wings all
evolve irregularly in a way that allows theirthe time. The paradigm of the stochastic climate
interpretation as finite-amplitude noise. model is that this omnipresent noise causes the
In general, the dissipative character of theystem to vary on all time and space scales,
system guarantees its ‘stationarity.” That is, it doggdependently of the degree of nonlinearity of the
not ‘run away’ from the region of phase space thgfimate’s dynamics.
it currently occupies, an effect that can happen in
general nonlinear systems or in linearly unstable ]
systems. The two factors, noise and damping;2 Some Typical Problems and
are the elements required for the interpretation of ~ Concepts
climate as a stationary stochastic system (see also
Section 10.4). 1.2.0 Introduction. The following examples,
Under what circumstances should the outputhich we have subjectively chosen as being
of climate models be considered stochastic? tpical of problems encountered in climate
major difference between the real climate and amgsearch, illustrate the need for statistical analysis
climate model is the size of the phase space. Theatmospheric and climatic research. The order
phase space of a model is much smaller than thaiadfthe examples is somewhat random and it is
the real climate system because the model's phasstainly not a must to read all of them; the purpose
space is truncated in both space and time. Thatdd,this ‘potpourri’ is to offer a flavour of typical
the background noise, due to unknown factors, ggiestions, answers, and errors.
missing. Therefore a model run can be repeated

with identical results, provided that the computing_zl1 The Mean Climate State: Interpretation

environment is unchanged and the same initighd Estimation. From the point of view of
conditions are used. To make the climate modgly ¢jimatologist, the most fundamental statistical

output realistic we need to make the model, ,neter is the mean state. This seemingly trivial
unpredictable. Most Ocean General C|rculat|051mma| in the statistical zoo has considerable

Models are st.rqngly'dissipative and behave aImQ:QtSmplexity in the climatological context.
linearly. Explicit noise must therefore be added First, the computed mean is not entirely reliable

to the syste_m as an epr|C|t fqrcmg term 195 an estimate of the climate system’s true long-
create statistical variations in the simulated syst m mean state. The computed mean will contain

(see, for: instan((:jel[276] or [412])' In dynagni:: rrors caused by taking observations over a limited
atmospheric models (as opposed to energy- aar&%%erving period, at discrete times and a finite

models) the nonlinearities are strong enough IQmber of locations. It may also be affected

2The gravity wave drag maintains an exchange &y the presence of instrumental, recording, and
momentum between the solid earth and the atmosphere, which
is transported by means of vertically propagating gravity waves. 3Inaudil et al. [194] claimed to have identified a Lausanne
See McFarlane et al. [269] for details. butterfly that caused a rainfall in Paris.
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Figure 1.1:The 300 hPa geopotential height fields in the Northern Hemisphere: the mean 1967-8:
January field, the January 1971 field, which is closer to the mean field than most others, and the Janua
1981 field, which deviates significantly from the mean field. Units: 10 m [117].

transmission errors. In addition, reliability is not Some individual January mean fields (e.qg.,
likely to be uniform as a function of location. 1971) are similar to the long-term mean field.
Reliability may be compromised if the data haghere are differences in detail, but they share
been ‘analysed’, that is, interpolated to a reguléfie zonal wavenumber 2 pattérof the mean
grid using techniques that make assumptiofi€ld. The secondary ridges and troughs have
about atmospheric dynamics. The interpolation @fferent intensities and longitudinal phases. Other
performed eithersubjectivelyby someone who Januaries (e.g., 1981) 300 hPa geopotential height
has experience and knowledge of the shape figflds are very different from the mean state. They
dynamical structures typically observed in thare characterized by a zonal wavenumber 3 pattern
atmosphere, or it is performabjectivelyusing a rather than a zonal wavenumber 2 pattern.
combination of atmospheric and statistical models. The long-term mean masks a great deal of
Both kinds of analysis are apt to introduce biasé@sterannual variability. For example, the minimum
not present in the ‘raw’ station data, and erro the long-term mean field is larger than the
at one location in analysed data will likely beminima of all but one of the individual January
correlated with those at another. (See Daley [98]ates. Also, the spatial variability of each of the
or Thiebaux and Pedder [362] for comprehensivedividual monthly means is larger than that of the
treatments of objective analysis.) long-term mean. Thus, the long-term mean field is
Second, the mean state ot a typical state. not a ‘typical’ field, as it is very unlikely to be
To demonstrate this we consider the Janua@pserved as an individual monthly mean. In that
Northern Hemisphere 300 hPa geopotential heigfnse, the long-term mean field is a rare event.
field* (Figure 1.1). The mean January height field, Characterization of the ‘typical’ January re-
obtained by averaging monthly mean analyses fguires more than the long-term mean. Specifically,
each January between 1967 and 1981, has contdtiis necessary to describe the dominant patterns
of equal height which are primarily circular withof spatial variability about the long-term mean and
minor irregularities. Two troughs are situated oveéo say something about the range of patterns one
the eastern coasts of Siberia and North Amerida.likely to see in a ‘typical’ January. This can be
The Siberian trough extends slightly farther southccomplished to a limited extent through the use of
than the North American trough. A secondarg technique calleBEmpirical Orthogonal Function
trough can be identified over eastern Europe aadalysis(Chapter 13).
two minor ridges are located over the northeast Third, a climatological mean should be under-
Pacific and the east Atlantic. stood to be a moving target. Today’s climate is
different from that which prevailed during the
4The geopotential height fieldis a parameter that is Holocene (6000 years before present) or even

frequently used to describe the dynamical state of tl - :
atmosphere. It is the height of the surface of constant pressﬁ%rmg the Little Ice Age a few hundred years ago.

at, e.g., 300 hPa and, being a length, is measured in metres. We
will often simply refer to ‘height’ when we mean ‘geopotential A zonal wavenumber 2 pattern contains two ridges and two
height'. troughs in the zonal, or east—-west, direction.




4 1: Introduction

We therefore need a clear understanding of To demonstrate the point, consider the following
our interpretation of the ‘true’ mean state befor&vo procedures for estimating the long-term mean
interpreting an estimate computed from a set danuary air pressure in Hamburg (Germany). Two
observations. data sets, consisting of 104 observations each, are

To accomplish this, it is necessary to think ofivailable. The first data set is taken at one minute
the ‘January 300 hPa height field’ asrandom intervals, the second is taken at weekly intervals,
field, and we need to determine whether trnd a mean is computed from each. Both means
observed height fields in our 15-year sample agge estimates of the long-term mean air pressure in
representative of the ‘true’ mean state we have ltamburg, and each tells us something about our
mind (presumably that of the ‘current’ climate)parameter.

From a statistical perspective, the answer is aThe reliability of the first estimate is question-
conditional ‘yes,’ provided that: able because air pressure varies on time scales
considerably longer than the 104 minutes spanned

1 the time series of January mean 300 hRy the data set. Nonetheless, the estimate does

height fields is stationary (i.e., their statisticatontain information useful to someone who has
properties do not drift with time), and no prior information about the climate of locations
near sea level: it indicates that the mean air

2 the memory of this time series is short relativeressure in Hamburg is neither 2000 mb nor 20 hPa

to the length of the 15-year sample. but somewhere near 1000 mb.

The second data set provides us with a
Under these conditions, the mean state msuch more reliable estimate of long-term mean
representative of the random sample, in the serse pressure because it contains 104 almost
that it lies in the ‘centre’ of the scatter of th@ndependent observations of air pressure spanning
individual points in the state space. As we notao annual cycles. The first estimate is not
above, however, it is not representative in mariwrong, but it is not very informative; the second
other ways. is not ‘right,’ but it is adequate for many purposes.

The characteristics of the 15-year sample may
not be representative of the properties of January
mean 300 hPa height fields on longer time scal#.2 Correlation. In the statistical lexicon,
when assumption 1 is not satisfied. The uncertairttye word correlation is used to describe a
of the 15-year mean height field as an estimatlmnear statisticalrelationship between two random
of the long-term mean will be almost as greatariables. The phrase ‘linear statistical’ indicates
as the interannual variability of the individuathat the mean of one of the random variables is
January means when assumption 2 is not satisfiédearly dependent upon the random component
We can have confidence in the 15-year mean the other (see Section 8.2). The stronger the
as an estimator of the long-term mean Janudigear relationship, the stronger the correlation.
300 hPa height field when assumptions 1 andA correlation coefficient of+1 (—1) indicates a
hold in the following sense: théaw of large pair of variables that vary together precisely, one
numberddictates that a multi-year mean becomesgriable being related to the other by means of a
an increasingly better estimator of the long-terpositive (negative) scaling factor.
mean as the number of years in the sampleWhile this concept seems to be intuitively
increases. However, there is still a considerabdémple, it does warrant scrutiny. For example,
amount of uncertainty in an estimate based oncansider a satellite instrument that makes radiance
15-year sample. observations in two different frequency bands.

Statements to the effect that a certain estima®eippose that these radiometers have been designed
of the mean is ‘wrong’ or ‘right’ are often madein such a way that instrumental error in one
in discussions of data sets and climatologies. Suchannel is independent of that in the other. This
an assessment indicates that the speakers do metins that knowledge of the noise in one channel
really understand the art of estimation. An estimaprovides no information about that in the other.
is by definition an approximation, or guess, baseadbwever, suppose also that the radiometers drift
on the available data. It is almost certain that thgo out of calibration) together as they age because
exact value will never be determined. Thereforgoth share the same physical environment, share
estimates are never ‘wrong’ or ‘right;’ rather, somthe same power supply and are exposed to the same
estimates will be closer to the truth than others grhysical abuse. Reasonable models for the total
average. error as a function of time in the two radiometer
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Figure 1.2:The monthly mean Southern Oscillation Index, computed as the difference between Darwi
(Australia) and Papeete (Tahiti) monthly mean sea-level pressure (‘Jahr’ is German for ‘year’).
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Figure 1.3:Auto-correlation function of the index shown in Figure 1.2. Units: %.
channels might be: Correlations manifest themselves in several dif-
ferent ways in observed and simulated climates.
et = a1t —to) + e, Several adjectives are used to describe corre-
et = a(t —tg) + eot, lations depending upon whether they describe

_ ) _ relationships in time (serial correlation, lagged
whereto is the launch time of the satellite an¢orrelation), space (spatial correlation, telecon-
a1 anda; are fixed constants describing the rat§fection), or between different climate variables
of drift of the two radiometers. The instrumenta|cross-correlation).
errors,e1; andeyg, are statistically independent of A good example ofserial correlationis the
each other, implying that the correlation betweerﬂonthly Southern Oscillation Index (SC)which
the two, p(et, €2t), is zero. Consequently the
FOtal errors, eyr and ey, are also statistically  6rhe southern Oscillation is the major mode of natural
independent even though they share a comm@imate variability on the interannual time scale. It is frequently
systematic component. However, simple estimate*ﬁd as Sn exalr:mle in this bOOE- i o the |

H It has een nown since the en of the last century
of correlation betweerel,t ,and ,eZt ,that do not Hildebrandson [177]; Walker, 1909-21) that sea-level pressure
account for the q§term|n|stlc drift will suggest th LP) in the Indonesian region is negatively correlated with that
these two quantities are correlated. over the southeast tropical Pacific. A positive SLP anomaly
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is defined as the anomalous monthly meapatially correlated The Southern Oscillation In-
pressure difference between Darwin (Australi@ex (Figure 1.2) is a manifestation of the negative
and Papeete (Tahiti) (Figure 1.2). correlation between surface pressure at Papeete
The time series is basically stationary, althougind that at Darwin. Variables such as pressure,
variability during the first 30 years seems to bkeight, wind, temperature, and specific humidity
somewhat weaker than that of late. Despite tvary smoothly in the free atmosphere and con-
noisy nature of the time series, there is a distinsequently exhibit strong spatial interdependence.
tendency for the SOI to remain positive or negativehis correlation is present in each weather map
for extended periods, some of which are indicaté&igure 1.5, left). Indeed, without this feature,
in Figure 1.2. This persistence in the sign of theutine weather forecasts would be all but impos-
index reflects the serial correlation of the SOI.  sible given the sparseness of the global observing
A quantitative measure of the serial correlationetwork as it exists even today. Variables derived
is the auto-correlation functionpso (t,t + A), from moisture, such as cloud cover, rainfall and
shown in Figure 1.3, which measures the similarisnow amounts, and variables associated with land
of the SOI at any time differenca&. The auto- surface processes tend to have much smaller spa-
correlation is greater than 0.2 for lags up ttal scales (Figure 1.5, right), and also tend not to
about six months and varies smoothly around zelnave normal distributions (Sections 3.1 and 3.2).
with typical magnitudes between 0.05 and 0\While mean sea-level pressure (Figure 1.5, left)
for lags greater than about a year. This tendenayil be more or less constant on spatial scales of
of estimated auto-correlation functions not totens of kilometres, we may often travel in and out
converge to zero at large lags, even though tbé&localized rain showers in just a few kilometres.
real auto-correlation is zero at long lags, is @&his dichotomy is illustrated in Figure 1.5, where
natural consequence of the uncertainty due to finitee see a cold front over Ontario (Canada). The
samples (see Section 11.1). left panel, which displays mean sea-level pressure,
A good example of aross-correlationis the shows the front as a smooth curve. The right panel
relationship that exists between the SOI artisplays a radar image of precipitation occurring
various alternative indices of the Southern O southern Ontario as the front passes through the
cillation [426]. The characteristic low-frequencyegion.
variations in Figure 1.2 are also present in area-
averaged Central Pacific sea-surface temperature
(Figure 1.4)" The correlation between the twol.2.3 Stationarity, Cyclo-stationarity, and Non-
time series displayed in Figure 1.4 is 0.67. stationarity. An important concept in statistical
Pattern analysis techniques, such as Empiginalysis isstationarity. A random variable, or a
cal Orthogonal Function analysis (Chapter 13)andom process, is said to be stationary if all
Canonical Correlation Analysis (Chapter 14) anof its statistical parameters are independent of
Principal Oscillation Patterns (Chapter 15), relifme. Most statistical techniques assume that the
upon the assumption that the fields under study areserved process is stationary.
- — . However, most climate parameters that are
(i.e., a deviation from the long-term mean) over, say, Darwin
(Northern Australia) tends to be associated with a negativ?@mpled more frequemly than one per year are
SLP anomaly over Papeete (Tahiti). This seesaw is callét stationary butyclo-stationary, simply because
the Southern Oscillation (SO). The SO is associated withf the seasonal forcing of the climate system.

large-scale and persistent anomalies of sea-surface tempera _ _
in the central and eastern tropical Pacific (EIfidli and a“%ﬁg term averages of monthly mean sea-level

La Nifia). Hence the phenomenon is often referred to gessure_exhipit a mf_irked annual_ cycle, which is
the ‘El Nifio/Southern Oscillation’ (ENSO). Large zonalalmost sinusoidal (with one maximum and one

displacements of the centres of precipitation are also associqtﬁqqimum) in most locations. However. there are
with ENSO. They reflect anomalies in the location and intensi . . ' .
of the meridionally (i.e., north—south) oriented Hadley cellam}éScatlons (Flgure 1'6) where the annual CyCle IS

of the zonally oriented Walker cell. dominated by asemiannualvariation (with two
The state of the Southern Oscillation may be monitored with tmaaxima and minima), In most applications the
moqthly_SLP dn‘ference bgtween observatlons_ Faken at surfaﬁﬂaan annual cycle is simply subtracted from the
stations in Darwin, Australia and Papeete, Tahiti. It has beco(r)a:et bef th .. i | d
common practice to call this difference the Southern Oscillati ata beiore .e remam@nomg lesare an.a yse :
Index (SOI) although there are also many other ways to defilé1€ process isyclo-stationary in the meaifit is
equ7iva|ent indices [426]. stationary after the annual cycle has been removed.
Other deflnltl_ons, such as West Pacific ra_lnfa_ll, sea-level Other statistical parameters (e.g., the percentiles
pressure at Darwin alone or the surface zonal wind in the centra]J . . .
Pacific, also yield indices that are highly correlated with th@f rainfall) may also exhibit cyclo-stationary
usual SOI. See Wright [427]. behaviour. Figure 1.7 shows the annual cycles
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SO and Tropical Pacific SST Indices
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Figure 1.4:The conventional Southern Oscillation Index (SOI = pressure difference between Darwin
and Tahiti; dashed curve) and a sea-surface temperature (SST) index of the Southern Oscillation (sol
curve) plotted as a function of time. The conventional SOI has been doubled in this figure.
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Figure 1.5:State of the atmosphere over North America on 23 May 1992.

Left: Analysis of the sea-level pressure field (12:00 UTC (Universal Time Coordinated); from
Europaisher Wetterbericht 17, Band 144; with permission of the Deutsher Wetterdienst).

Right: Weather radar image, showing rainfall rates, for southern Ontario (19:30 local time; courtesy
Paul Joe, AES Canada [94].)

Note that the radar image and the weather map refer to different times, namely 12:00 UTC on 23 Ma
and 00:30 UTC on 24 May.

of the 70th, 80th, and 90th percentflesf 24- Vancouver (British Columbia) and Sable Island
hour rainfall amounts for each calendar month é&bff the coast of Nova Scotia) [450].
80r ‘quantiles,’ that is, thresholds selected so that 70%, The Southern Oscillation Index is not SmCtIy

80%, or 90% of all 24-hour rainfall amounts are less than tmq;aﬁonary W_right [427] showed that the "ne_ar
respective threshold [2.6.4]. serial correlation of the SOI depends upon the time
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Figure 1.6:Annual cycle of sea-level pressure at extratropical locations.

a) Northern Hemisphere Ocean Weather Stations: 82N, 33°W; D = 44°N, 41°W, E = 35°N,
48 W; J =52 N,25W; P =5CN, 145 W.

b) Southern Hemisphere.
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Figure 1.7:Monthly 90th, 80th, and 70th per-... Y T o
centiles (from top to bottom) of 24-hour rainfal 80 604020

amounts at Vancouver and Sable Island [450].

of the year. The serial correlation is plotted asE9ure 1.8: Seasonal dependence of the lag
function of time of year and lag in Figure 1_8_(:orrelat|0ns of the SST index of the Southern
Correlations between values of the SOI in Ma?scillation.The correlations are given in hundreds
and values in subsequent months decay sIovﬁ9 that isolines represent lag correlations of 0.8,

with increasing lag, while similar correlations witi-6: 0-4, and 0.2. The row labelled “Jan’ lists
values in April decay quickly. Because of thi§orrelatlons between January values of the index

behaviour, Wright defined an ENSO year thzﬁnd the index observed later ‘lag’ months [427].
begins in May and ends in April.

Regular observations taken over extendé&fianges in the observational record may take
periods at a certain station sometimes exhiitace if the instrument (or the observer) changes,
changes in their statistical properties. These midi#e site is moved, or recording practices are
be abrupt or gradual (such as changes that migianged. Such non-natural or artificial changes are
occur when the exposure of a rain gauge Ch{jlmll_:‘S‘"Karl et al. [213] describe a case in which a precipitation

slowly over time, as a consequence of the growuge recorded significantly different values after being raised
of vegetation or changes in local land use). Abruphe metre from its original position.
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(Figure 1.9, bottom). This temperature trend is
much weaker for the neighbouring Shawinigan,
perhaps due to a weaker urbanization effect at that
site or natural variations of the climate system.
Both temperature trends at Sherbrooke and Shaw-
inigan are real, not observational artifacts. The
strong trend at Sherbrooke must not be mistaken

5 : ; ; h rhadli for an indication ofglobal warming
1900 1915 1930 1945 1960 1975 1990 Trends in the large-scale state of the climate
E system may reflect systematic forcing changes
RSty Sherbrooke airports k -oooy of the climate system (such as variations in the
2 -} Sherbrooke downfowns........p........ ! ot ) . . .
i I NN A Earth’s orbit, or increased COconcentration
0 4 M K A _gl_ a)

oA b PR VT AL A Sy in the atmosphere) or low-frequency internally
=2 Y R MU generated variability of the climate system. The
~4 - : ' ; ; latter may be deceptive because low-frequency
1900 1915 1930 1945 1960 1975 1990 variability, on short time series, may be mistakenly
. ) . - interpreted as trends. However, if the length of
Figure 1.9:Annual mean daily minimum temper- ) T .
. . : : ; .such time series is increased, a metamorphosis
ature time series at two neighbouring sites in . : .
. : T the former ‘trend’ takes place and it becomes
Quebec. Sherbrooke has experienced considerale .
- . . apparent that the trend is a part of the natural
urbanization since the beginning of the century" " " . 0
L 9 variation of the systert{
whereas Shawinigan has maintained more of its
rural character.
Top: The raw records. The abrupt drop of severdl.2.4 Quality of Forecasts. The Old Farmer’s
degrees in the Sherbrooke series in 1963 refledédmanacpublishes regular outlooks for the climate
the move of the instrument from downtown Shdpr the coming year. The method used to prepare
brooke to its suburban airport. The reason fothese outlooks is kept secret, and scientists
the downward dip before 1915 in the Shawinigaguestion the existence of skill in the predictions.
record is unknown. To determine whether these skeptics are right or
Bottom: Corrected time series for Sherbrookerong, measures of the skill of the forecasting
and Shawinigan. The Sherbrooke data from 1988heme are needed. Theskdl scorescan be used
onward are increased b§.2°C. The straight lines to compare forecasting schemes objectively.
are trend lines fitted to the corrected Sherbrooke The Almanac makegategorical forecasts of
data and the 1915-90 Shawinigan record. future temperature and precipitation amount in
Courtesy L. Vincent, AES Canada. two categories, ‘above’ or ‘below’ normal. A
suitable skill score in this case is the number of

correct forecasts. Trivial forecasting schemes such
calledinhomogeneitiesAn example is contained@S Persistence (no change), climatology, or pure
in the temperature records of Sherbrooke aff#@nceé can be used as reference forecasts if no

Shawinigan (Quebec) shown in the upper pan%‘iher forecasting scheme is available. Once we

of Figure 1.9. The Sherbrooke observing si@ave counted the number of correct forecasts made
was moved from a downtown location to é(vith both the tested and the reference schemes, we

suburban airport in 1963—and the recordetf estimate the improvement (or degradation) of

temperature abruptly dropped by more thaiC3 forecast skill by computing the difference in the

The Shawinigan record may also be contaminatEgunts. Relatively simple probabilistic methods
by observational errors made before 1915. can be used to make a judgement about the

Geophysical time series often exhibit a trend.107his is an example of the importance of time scales
Such trends can originate from various sources.climate research, an illustration that our interpretation of
One source is urbanization, that is, the increasiﬁlgfi"e” process depends on the time scales considered. A

. . - short-term trend may be just another swing in a slowly varying
density and height of buildings around an obsefysiem. an example is the Madden-and-Julian Oscillation
vation location and the corresponding changes @Jo, [264]), which is the strongest intra-seasonal mode in the
the properties of the land surface. The tempéfopica| troposphere. It consists of a wavenumber 1 pattern that

ature at Sherbrooke, a location heavily aﬁ‘ecté vels eastward round the globe. The MJO has a mean period
’ 0f 45 days and has significant memory on time scales of weeks;

by development, exhibits a marl_(ed Upwar_d trenfd time scales of months and years, however, the MJO has no
after correction for the systematic change in 196&nporal correlation.
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(e.g., skill may be high during the dry season, and
low during the wet season). The skilfulness of a
™\ forecast also often depends on the low-frequency
state of the atmospheric flow (e.g., blocking
or westerly regime). Thus, in most forecasting
problems there are physical considerations (state
v \\POP model dependence and the memory of the system) that
N \ must be accounted for when using statistical tools
v v/—\ to analyse forecast skill. This is done either
by conducting a statistical analysis of skill that
\| " ARMA (L7 s )
B R incorporates the effects of state dependence and
0 et serial correlation, or by using physical intuition

. \ . o

Persistence \ . . . .

' | hSE P to temper the precise interpretation of a simpler

0.2 e analysis that compromises the assumptions of
0 4 8 12 16 20 stationarity and non-correlation.

010.1x LAG [months] There are various pitfalls in the art of forecast
Figure 1.10:Correlation skill scores for three €valuation. An excellent overview is given by

forecasts of the low-frequency variations withifr’V€Z&Y [255], who presents various examples in
the Southern Oscillation Index (Figure 1.2). Avhich forecast skill is overestimated. Chapter 18
score of 1 indicates a perfect forecast, while a zefd dévoted to the art of forecast evaluation.

indicates a forecast unrelated to the predictand
[432]. 1.2.5 Characteristic Times and Characteristic

Spatial Patterns. What are the temporal char-
acteristics of the Southern Oscillation Index illus-

significanceof the change. We will return to thetrated in Figure 1.2? Visual inspection suggests
Old Farmer’s AlImanadn Section 18.1. that the time series is dominated by at least two

Now consider another forecasting schentéme scales: a high frequency mode that describes
in which quantitative rather than categoricalmonth-to-month variations, and a low-frequency
statements are made. For example, a forecastde associated with year-to-year variations. How
might consist of a statement such aste SOl can one objectively quantify these characteristic
will be x standard deviations above normal neximes and the amount of variance attributed to
winter! One way to evaluate such forecasts is these time scales? The appropriate tool is referred
use a measure called thrrelation skill score to as time series analysis (Chapters 10 and 11).
o (Chapter 18). A score ob = 1 corresponds Indices, such as the SOI, are commonly used
with a perfect forecasting scheme in the sense thyat climate research to monitor the temporal
forecast changes exactly mirror SOI changes evéevelopment of a process. They can be thought
though the dynamic range of the forecast may lo¢ as filters that extract physical signals from a
different from that of the SOI. In other wordsmultivariate environment. In this environment the
the correlation skill score is one when there isignal is masked by both spatial and temporal
an exact linear relationship between forecasts aygkiability unrelated to the signal, that is, by spatial
reality. Forecasts that are (linearly) unrelated to thd temporal noise.
predictand yield zero correlation. The conventional approach used to identify

The correlation skill score for several methodadices is largely subjective. The characteristic pat-
of forecasting the SOI are displayed in Figure 1.1€rns of variation of the process are identified and
Specifically, persistence forecasts (Chapter 18)ssociated with regions or points. Corresponding
POP forecasts (Chapter 15), and forecasts maateal averages or point values are then used to
with a univariate linear time series modeindicate the state of the process.
(Chapters 11 and 12). Forecasts based onAnother approach is to extract characteristic
persistence and the univariate time series mogeltterns from the data by means of analytical
are superior at one and two month lead times. Tkechniques, and subsequently use the coefficients
POP forecast becomes more skilful beyond that these patterns as indices. The advantages
time scale. of this approach are that it is based on

Regretfully, forecasting schemes generally dan objective algorithm and that it yields the
not have the same skill under all circumstancesharacteristic patterns explicitizigentechniques
The skill often exhibits a marked annual cyclesuch as Empirical Orthogonal Function (EOF)
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Figure 1.11: Empirical Orthogonal Functions
(EOFs; Chapter 13) of monthly mean wind stress
over the tropical Pacific [394].

a,b) The first two EOFs. The two patterns are
spatially orthogonal. Figure 1.12:A schematic representation of the
c) Low-frequency filtered coefficient time seriespatial distributions of simultaneous SST and SLP
of the two EOFs shown in a,b). The solid curvgnomalies at Northern Hemisphere midlatitudes in
corresponds to the first EOF, which is displayed iwinter, when the SLP anomaly induces the SST
panel a). The two curves are orthogonal. anomaly (top), and when the SST anomaly excites

the SLP anomaly (bottom).

The large arrows represent the mean atmospheric
analysis and Principal Oscillation Pattern (PORpw. The ‘L’ is an atmospheric low-pressure
analysis are tools that can be used to defiggstem connected with geostrophic flow indicated
patterns and indices objectively (Chapters 13 aig the circular arrow. The hatching represents
15). warm (W) and cool (C) SST anomalies [438].

An example is the EOF analysis of monthly
mean wind stress over the tropical Pacific [394%
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fact, may be associated with the Southern

The first two EOFs, shown in Figure 1.11 o
scillation.

and Figure 1.11b, are primarily confined to th
equator. The two fields are (by construction)
orthogonal to each other. Figure 1.11c shows the2.6 Pairs of Characteristic Patterns. Almost
time coefficients of the two fields. An analysis oéll climate components are interrelated. When one
the coefficient time series, using the techniquesmponent exhibits anomalous conditions, there
of cross-spectral analysis (Section 11.4), showsll likely be characteristic anomalies in other
that they vary coherently on a time scdle ~# components at the same time. The relative shapes
2 to 3 years. One curve leads the other by a tinoé the patterns in related climate components are
lag of approximatelyT /4 years. The temporal lag-often indicative of the processes that dominate the
relationship of the time coefficients together witlsoupling of the components.

the spatial quadrature leads to the interpretationTo illustrate this idea we consider large-scale
that the two patterns and their time coefficientsir—sea interactions on seasonal time scales at
describe an eastward propagating signal thatjdlatitudes in winter [438] [312]. Figure 1.12
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illustrates the two mechanisms that might benomalies off the North American coast. Peng and
involved in air-sea interactions in the Nortliryfe [312] refer to this as the ‘atmosphere driving

Atlantic. The lower panel illustrates how a seahe ocean’ mode. See also Luksch [261].

surface temperature (SST) anomaly pattern mightCanonical Correlation Analysis is explained in

induce a simultaneous sea-level pressure (SLd®tail in Chapter 14 and we return to this example
anomaly pattern. The argument is linear so we [14.3.1-2].

may assume that the SST anomaly is positive. This

ositive SST anomaly enhances the sensible a . . .
P y ag .7 Atmospheric General Circulation Model

Xperimentation: Evaluation of Paired Sensi-
lvity Experiments and Verification of Control

latent heat fluxes into the atmosphere above

downstream of the SST anomaly. Thus SLP

reduced in that area and anomalous cyclonic flg ) . : :
imulation. Atmospheric General Circulation

is induced.
. . Models (AGCMSs) are powerful tools used to sim-
The upper panel of Figure 1.12 illustrates how te the dynamics of the atmospheric circulation.

a SLP anomaly might induce an anomalous S#g
h

pattern. The anomalous SLP distribution alters t ongrt?e?r:e ttr\:ve Osrinn?l:rl]af}gglg:fattr']%nsrg;;:?seagigﬂs'
wind stress across the region by creating stronger ng . P - pastie.g.,
leoclimatic conditions), or future (e.g., climate

zonal winds in the southwest part of the anomalo an tatisti f the atmospheric circulation
cyclonic circulation and weaker zonal winds i o gti)ersiivzl\fss(zhe stud gf ?hees?mzlgtid é)” '
the northeast sector. This configuration induce? . o y .

ate’s sensitivity to the effect of different bound-

anomalous mixing of the ocean’s mixed layer andl conditions (e sea-surface temperature) or
anomalous air-sea fluxes of sensible and latéHY tions {€.g., u peraiu

heat (cf. [3.2.3]). Stronger winds intensify mixin arameterizations ofsub}—gnd scale processes (e.g.,
and enhance the upward heat flux whereas wea éain,nebtarr)]/ bm:jndar)f/ laye ?'_ f -
winds correspond to reduced mixing and weaker h both modes of operation two sets of statistics

vertical fluxes. The result is anomalous coolin _re compared. In the first, the statistics of the

of the sea surface in the southwest sector ai ﬁnulgted c(l;m?te tare compatrgd Wlththﬂt]k?se Off
anomalous heating in the northeast sector of t £ observed climate, or Sometimes wi 0S€ 0

cyclonic circulation. another _S|mulat_ed climate. _In_ the se(_:ond _mode
of experimentation, the statistics obtained in the

One strategy for finding out which of the th | diti d with
two proposed mechanisms dominates air—se4 ' anomaious conditions are comparec wi

interaction is to identify the dominant patterns iHose from the run with theontrol conditions. The

SST and SLP that tend to occur simultaneous mulated atmospheric circulation is turbulent as
This can be accomplished by performing g that of the real atmosphere (see Section 1.1).

Canonical Correlation AnalysiCCA, Chapter rr]\erefor_e ttk)letrl:je signal ((jgguted by the ;Jtregcrltped
14). In the CCA two vector variableX and Y change In boundary conditions, parameterization,

are considered, and sets of orthogonal patter‘rn‘ltg') or the true model error is masked by random

pl and p! are constructed so that the expansio riations, e .
fici X Voo X =i Even when the modifications in the experimen-
coefficientse;® and j in X = 3 of'py and

z . tal run have no effect on the simulated climate,
Y =3 05,}/5\]( are optimally correlated fdr= j the difference field will be nonzero and will show
or uncorrelated for # j. structure reflecting the random variations in the
Zorita, Kharin, and von Storch [438] appliectontrol and experimental runs. Similarly, the mean
CCA to winter (DJF) mean anomalies of Nortlgifference field between an observed distribution
Atlantic SST and SLP and found two pairaind its simulated counterpart will exhibit, possibly
of CCA patterns pLg7 and pd, » that were large scale, features, even if the model is perfect.
associated with physically significant correlations
The pair of patterns with the largest correlation 125ub-grid scale processes take place on spatial scales too
(0.56) is shown in Figure 1.13. The SLP patteff%, 0% esohed by & imeie modsl, Regrdess of e
represents 21% of the total DJF SLP varianGg smaller scales. Despite the small scale of these processes,
whereas the SST pattern explains 19% of the totady influence the large-scale evolution of the climate system
SST variancél Clearly the two patterns Supporpecause of the nonlinear character of the climate system.

the hvoothesis that the anomalous atmos heCIimate modellers therefore attempt to specify the ‘net effect’
yp : u PNEsuch processes as a transfer function of the large-scale state

circulation is responsible for the generation of SSielf. This effect is a forcing term for the resolved scales, and
is usually expressed as an expected value which is conditional

11The proportion of variance represented by the patternstipon the large-scale state. The transfer function is called a
unrelated to the correlation. ‘parameterization.’
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Figure 1.14:The mean SLP difference field be-
tween control and experimental atmospheric GCM
runs. Evaporation over the Iberian Peninsula was
artificially suppressed in the experimental run. The
| ¢  signalis not statistically significant [402].
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/ 80° 0
Figure 1.13:The dominant pair of CCA patterns 1°
that describe the connection between simultaneous Jé’a%/ 495705~ 3 N,gSQ’
winter (DJF) mean anomalies of sea-level pressure (ZERR ow,
(SLP, top) and sea-surface temperature (SST, NS
bottom) in the North Atlantic. The largest features SR
of the SLP field are indicated by shading in th 73 SREEs T )}/E /2-5 )
SST map, and vice versa. See also [14.3.1]. Fropd"™ FHTEN, o0
Zorita et al. [438]. v NG L3
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Therefore, it is necessary to apply statistical tech- A Y% :
nigues to distinguish between the deterministic g??% X
signal (or model error) and the internal noise. <

Appropriate methodologies designed to diag-
nose the presence of a signal include the use
of interval estimation methods (Section 5.4) or
hypothesis testing methods (Chapter 6). Interviigure 1.15:The mean 500 hPa height difference
estimation methods use statistical models to prikeld between a control run and an experimental
duce a range of signal estimates consistent witln in which a positive (EI Nio) SST anomaly
the realizations of control and experimental meamas imposed in the equatorial Central and Eastern
fields obtained from the simulation. HypothesiPacific. The signal is statistically significant. See
testing methods use statistical models to determialo Figures 9.1 and 9.2 [393].
whether information in the realizations is consis-
tent with the null hypothesis that the difference |n the first case, the surface properties of the
fields, such as in Figures 1.14 and 1.15, do niferian peninsula were modified so as to turn it
contain a deterministic signal and thus reflect onlito a desert in the experimental climate. That
the effects of random variation. is, evaporation at the grid points representing

We illustrate the problem with two examples: athe Iberian peninsula was arbitrarily set to zero.
experiment in which there is no significant signalfhe response, in terms of January Northern
and another in which modifications to the modélemisphere sea-level pressure, is shown in
result in a strong change in the atmospheric flowFigure 1.14 [402]. The statistical analysis revealed
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that the signal, which appears to be of very larggatial correlation (e.g., smooth fields such as the
scale, is mainly due to noise and is not statisticaljjeopotential heights displayed in Figure 1.1).
significant. The spatial coherence of these fields has two
In the second case, anomalously warm segensequences for hypothesis testing at grid points.
surface temperatures were prescribed in tAde firstis that the proportion of the field covered
tropical Pacific, in order to simulate the effect opy reject decisions becomes highly variable from
the 1982/83 El Nio event on the atmosphere. Thene realization of the climate experiment to the
resulting anomalous mean January 500 hPa heigiekt. In some problems a rejection rate of 20%
field is shown in Figure 1.15. In this case the signatay still be globally consistent with the null
is statistically distinguishable from the backgrounblypothesis at the 5% significance level. The
noise. second is that the spatial coherence of the studied
Before using statistical tests, we must accoufiglds also leads to fields of decisions that are
for several methodical considerations (see Chagiatially coherent: if the difference between two
ter 6). Straightforward statistical assessments tiagan 500 hPa height fields is large at a particular
compare the mean states of two simulated climate@int, it is also likely to be large at neighbouring
generally use simple statistical tests that are p@@ints because of the spatial continuity of 500 hPa
formed locally at grid points. More compldield height. A decision made at one location is
tests, often calledield significance testin the generally not statistically independent of decisions
climate literature, are used less frequently. made at other locations. This makes regions of
Grid point tests, while popular because of thefignificant change difficult to identify. Methods
simplicity, may have interpretation problems. Thihat can be used to assess the field significance of
result of a set of statistical tests, one conducted&field of reject/retain decisions are discussed in
each grid point, is a field of decisions denotin§€ction 6.8. Local, aunivariate, significance tests
where differences are, and are netatistically are discussed in Sections 6.6 and 6.7.
significant However, statistical tests cannot be Another approach to the comparison of ob-
conducted with absolute certainty. Rather, they afg"ved and simulated mean fields involves the use
conducted in such a way that there is apriori of classicalmultivariate statistical test§Sections
specified risk 1 p of rejecting the null hypothesis:6-6 and 6.7). The worthultivariateis used some-
‘no difference’ when it is trué3 what differently in the statistical lexicon than it
The specified risk(1 — p) x 100% is often is in climatology: it describes tests and other_ in-
referred to as theignificance levebf the test4 ference procedures that operate on vector objects,
A consequence of setting the risk of fals&tf‘UCh as the dn‘ferencg between two mean fields,
rejection to 1— p, 0 < p < 1, is that we rather than scalar objects, such as a difference of

can expect approximatelyl — p) x 100% of means at a grid point. Thus a multivariate test is a

the decisions to beeject decisions when thef'eld significance test; it is used to make a single

null hypothesis is valid. However, many fields 0ilnference about a field of differences between the

interest in climate experiments exhibit substantigpserve_d and S'”.‘“'a.ted ql|mate.
Classical multivariate inference methods can

13The standard, rather mundane statistical nomenclature f?)pt genera”y' be applied dlre'ctly'to difference of
this kind of error isType | error; failure to reject the null means or variance problems in climatology. These

hypothesis when it is false is termedgpe Il error. Specifying methods are usually unable to cope with fields

a smaller risk reduces the chance of making a Type | error hder study, such as seasonal geopotential means
also reduces the sensitivity of the test and hence increases the ! !

likelihood of a Type Il error. More or less standard practice i at are genera”y ‘observed’ at numbers of gr'd
to set the risk of a Type | error tal — ) x 100% = 5% in  points one to three orders of magnitude greater
tests of the mean and td — p) x 100% = 10% in tests of than the number of realizations availabfe.
variability. A higher level of risk is usually felt to be acceptable
in variance tests because they are generally less powerful tha#°A typical climate model validation problem involves the
tests concerning the mean state. The reasons for specifyingébenparison of simulated monthly mean fields obtained from
risk in the form 1— P, wherep is a large probability near 1, will a 5-100 year simulation, with corresponding observed mean
become apparent later. fields from a 20-50 year climatology. Such a problem therefore
14There is some ambiguity in the climate literature aboutses a combined total of = 25 to 150 realizations of mean
how to specify a ‘significance level. Many climatologists usdanuary 500 hPa height, for example. On the other hand, the
the expression ‘significant at the 95% level,” although standahdrizontal resolution of typical present day climate models is
statistical convention is to use the expression ‘significant at teach that these mean fields are represented on global grids with
5% level. With the latter convention, which we use throughoun = 2000 to 8000 points. Except on relatively small regional
this book, rejection at the 1% significance level indicates theeales, the dimension of (or number of points in) the difference
presence of stronger evidence against the null hypothesis tlii@fd is greater than the combined number of realizations from
rejection at the 10% significance level. the simulated and observed climates.
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One solution to this difficulty is to reduce the@nformation about the mean state contained in
dimension of the observed and simulated fields the observed and simulated realizations. Larger
less than the number of realizations before usisgmples have greater information content and
any inference procedure. This can be done usingnsequently result in more powerful tests. Thus,
pattern analysis techniques, such as EOF analysigen thouf a 5 m diference at midlatitudes may
that try to identify the climate’s principal modesot be physically important, it will be found to
of variation empirically. Another solution is tobe significant given large enough simulated and
abandon classical inference techniques and replateserved climatologies. The statistical strength of
them with ad hoc methods, such as the ‘PPP’ tabe signal (or model error) may be quantified by
(Preisendorfer and Barnett [320]). a parameter called thHevel of recurrencewhich

Both grid point and field significance tests aris the probability that the signal’s signature will
plagued with at least two other problems thatot be masked by the noise in another identical
result in interpretation difficulties. The first ofbut statistically independent run with the GCM
these is that the wordignificancedoes not have (Sections 6.9—-6.10).

a specific physical interpretation. The statistical The second problem is that objective statis-
significance of the difference between a simulateital validation techniques are more honest than
and observed climate depends upon both locatiorodellers would like them to be. GCMs and
and sample size. Location is a factor that affecémalysis systems have various biases that ensure
interpretation because variability is not unifornthat objective tests of their differences will reject
in space. A 5 m difference between an observéite null hypothesis of no difference with certainty,
and a simulated mean January 500 hPa heigjien large enough samples. Modellers seem to
field may be statistically very significant in thehave an intuitive grasp of the size and spatial
tropics, but such a difference is not likely testructure of biases and seem to be able to discount
be statistically, or physically, significant at midtheir effects when making climate comparisons. If
latitudes where interannual variability is largethese biases can be quantified, statistical inference
Sample size is a factor because the sensitivipyocedures can be adjusted to account for them
of statistical tests is affected by the amount d¢fee Chapter 6).
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2 Probability Theory

2.1 Introduction are only able to descritmmpouncevents, such as
the outcomes that the daily rainfall is more, or less,
2.1.1 The General Idea. The basic ideas behindihan a threshold of, say, 0.1 inch. While we are
probability theory are as simple as those associatgle to describe these compound events in terms
with making lists—the prospect of computingf some of their characteristics, we do not know
probabilities or thinking in a ‘probabilistic’ enough about the atmosphere’s sample space or
manner should not be intimidating. the processes that produce precipitation to describe
Conceptually, the steps required to compute thgecisely the proportion of the atmosphere’s
chance of any particular event are as follows. sample space that represents one of these two

) . compound events.
e Define anexperimentand construct an ex- P

haustive description of its possible outcomes.
i ) . 2.1.3 Relative Likelihood and Probability. In
e Determine therelative likelihood of each iha coin tossing experiment we use the physical
outcome. characteristics of the coin to determine the relative
« Determine th@robabilityof each outcome by likelihood of each outcome i§. The chance of a
comparing its likelihood with that of everyhead is the same as that ofatfsul on any toss,.|f we
other possible outcome. have no reason to doubt the fairness of the coin, so
each of the eight outcomes is as likely to occur as
We demonstrate these steps with two simpémy other.
examples. In the first we consider three tosses ofThe West Glacier rainfall outcomes are less
an honest coin. The second example deals with t9§vious, as we do not have an explicit character-
rainfall in winter at West Glacier in Washingtorization of the atmosphere’s sample space. Instead,
State (USA). we assume that our rainfall observations stem from
a stationary process, that is, that the likelihood
2.1.2 Simple Events and the Sample Spaceof observing more, or less, than 0.1 inch daily
The sample space, denoted ky, is a list of rainfallis the same for all days within a winter and
possible outcomes of an experiment, where ealdte same for all winters. Observed records tell us
item in the list is asimple eventthat is, an that the daily rainfall is greater than the 0.1 inch
experimental outcome that cannot be decompodégeshold on about 38 out of every 100 days. We
into yet simpler outcomes. thereforeestimatethe relative likelihoods of the
For example, in the case of three consecutit&o compound events ifi.
tosses of a fair coin, the simple events a@e As long as all outcomes are equally likely,
= {HHH, HHT, HTH, THH, TTH, THT, HTT, assigning probabilities can be done by counting
TTT} with H = ‘head’ and T = ‘tail.’ Another the number of outcomes i¥. The sum of all
description of the possible outcomes of the coihe probabilities must be unity because one of the
tossing experiment i§three heads’, ‘two heads’, events inS mustoccur every time the experiment
‘one head’, ‘no head$. However, this is not a list is conducted. Therefore,df containsM items, the
of simple events since some of the outcomes, sugtobability of any simple event is just . We see
as{'two heads’}, can occur in several ways. below that this process of assigning probabilities
It is not possible, though, to list the simpldy counting the number of elementsdrcan often
events that compose the West Glacier rainfdie extended to include simple events that do not
sample space. This is because a reasonable sarhplee the same likelihood of occurrence.
space for the atmosphere is the collection of all Once the probability of each simple event has
possible trajectories through its phase space, la@en determined, it is easy to determine the
uncountably large collection of ‘events.” Here werobability of a compound event. For example, the

19
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event {'Heads on exactly 2 out of 3 tossg¢ds partition it into subsets of simple events according
composed of the three simple evefltHT, HTH, to the number of successes. These compound
THH} and thus occurs with probability/8 on any events are made up of varying numbers of sample
repetition of the experiment. space elements. The smallest events (0 successes
The word repetition is important because itand m successes) contain exactly one element
underscores the basic idea of a probability. If aach. The next smallest events (one success in
experiment is repeateat! infinitum, the proportion trials andm — 1 successes im trials) contain
of the realizations resulting in a particular outcome elements each. In general, the event with

is the probability of that outcome. successes im trials contains
(M) = _om
2.2 Probability n n'(m — n)!

simple events. These compound events do not

2.2.1 Discrete Sample Space.A discrete : :
. contain any common elements, so it follows that
sample space consists of an enumerable collection

of simple events. It can contain either a finite or 2ne1 (y ) = 2™
countably infinite number of elements.

An example of darge finitesample space occurs
when a series of univariate statistical tests (sée2-3 A Sample Space is More Than a
[6.8.1]) is used to validate a GCM. The test makdsollection of Simple Events. A complete
a decision about whether or not the simulatdiobabilistic description of an experiment must be
climate is similar to the observed climate in eachore than just a list of simple events. We also
model grid box (Chervin and Schneider [84]need a rule, say (-), that assigns probabilities
Livezey and Chen [257]; Zwiers and Boer [446])}0 events. In simple situations, such as the coin
If there arem grid boxes fn is usually of order 19 tossing example of Section 2R-) can be based
or larger), then the number of possible outcom&® the numbers of elements in an event.
of the decision making procedure i§2-a large  Different experiments may generate the same
but finite number. We could be exhaustive and li§et of possible outcomes but have different rules
each of the ? possible fields of decisions, but it isfor assigning probabilities to events. For example,
easy and convenient to characterize more compRair and a biased coin, each tossed three times,

events by means of a numerical description and@§nerate the same list of possible outcomes but
count the number of ways each can ockur. each outcome does not occur with the same

An examp|e of an infinite discrete Samp|éke”h00d. We can use the same threshold for

space occurs in the description of a prec|p|tat|(ﬁ‘ﬁ|ly rainfall at every station and will find different
climatology, whereS = {0,1,2,3, ...} lists the likelihoods for the exceedance of that threshold.

waiting times between rain days.

2.2.4 Probability of an Event. The probability

222 Binomial Experiments. Experiments of an event in a discrete sample space is computed
analogous to the coin tossing, rainfall thresholgy summing up the probabilities of the individual
exceedance, and testing problems described abg¥énple space elements that comprise the event.
are particularly important. They are referred to 8% list of the complete sample space is usually
binomial experiments because each replication ghnecessary. However, we do need to be able to
the experiment consists of a numberBérnoulli  enumerate events, that is, count elements in subsets
trials; that is, trials with only two possibleofs.
outcomes (which can be coded ‘S’ and ‘F’ for Some basic rules for probabilities are as follows.
success and failure).

An experiment that consists ofBernoullitrials ~ ® Probabilities are non-negative.
has a corresponding sample space that contdins 2

, : . . When an experiment is conducted, one of the
entries. One way to descrilf conveniently is to ¢ P

simple events i mustoccur, so

lwe have taken some liberties with the idea of a discrete
sample space in this example. In reality, each of the ‘simple PSS =1
events’ in the sample space is a compound event in a very large

(but discrete) space of GCM trajectories. . -
2We have taken additional liberties in this example. The o It may be easier to compute the probability

events are really compound events in the uncountably large ©Of the complement of an evethan that of
space of trajectories of the real atmosphere. the event itself. IfA denotes an event, then
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—A, its complement, is the collection of all2.2.6 Independence. Two eventsA and B are
elements inS that are not contained i\. said to beéndependentf each other if

That is,§ = AU —A. Also, AN —-A = 0.

Therefore, P(ANB) =P(AP(B). (2.3)

It follows from (2.2) that if A and B are
independent, theP (A|IB) = P(A). That is,
restriction of the sample space #® gives no
e It is often useful to divide an event intoadditional information about whether or nawill
smaller, mutually exclusive events. Tw@ccur.
eventsA andB aremutua”y exclusivef they SupposeA represents severe weather aBd
do not contain any common sample spa¢@presents a 24-hour forecast of severe weather.
elements, thatis, iANB = (1. An experiment |f A and B are independent, then the forecasting
can not produce two mutually exclusiveystem does not produce skilful severe weather
outcomes at the same time. ThereforeAif forecasts: a severe weather forecast does not
andB are mutually exclusive, change our perception of the likelihood of severe
weather tomorrow.

P(A) =1-P(-A).

P(AUB) =P (A) +P(B). (2.1)

. .. 2.3 Discrete Random Variables
e In general, the expression for the probability

of observing one of two even&sandBis 5 3 1 Random Variables. We are usually not

really interested in the sample spagetself, but
P(AUB)=P(A) +P(B)-P(ANB). ratherin the events i that are characterized by
functions defined ors. For the three coin tosses
The truth of this is easy to understand. Thi& [2.1.2] the function could be the number of
common part of the two event# N B, is ‘heads.’ Such functions are referred torasdom
included in bothA and B and thus? (AN B) Variables We will usually use a bold face upper
is included in the calculation ¢f (A)+P (B) case character, such Xs to denote the function
twice. and a bold face lower case variabl¢o denote a
particular value taken bX. This value is also often
N - _ referred to as aealizationof X.
2.2.5  Conditional Probability. Consider a  Random variables areariable because their
weather eventA (suc'h' as the occurrence of ) es depend upon which event il takes
severe convective activity) and suppose that t¢,ce when the experiment is conducted. They
cllmatologl_cal probability of this event i® (A). srerandombecause the outcome & and hence
Now consider a 24-hour weather forecast thgie value of the function, can not be predicted in
describes an evenB within the daily weather gqyance.

sample space. If the forecast is skilful, our panqom variables amiscreteif the collection
perception of the likelihood oA will change. That ¢ \/51ues they take is enumerable, ar@htinuous

is, the probability ofA conditionalupon forecast gherwise. Discrete random variables will be
B, which is writtenP (A|B), will not be the same iscssed in this section and continuous random
as the climatological probabiliti (A). variables in Section 2.6.

The conditi(_)nal probabilit)_/ of ever, givenan e probability of observing any particular
eventB for whichP (B) # 0, is value x of a discrete random variablX is
determined by characterizing the evefX =
x} and then calculatingP (X = x). Thus, its
randomnesslepends upon botR (-) and howX
is defined onsS.

P(A|B) = P(AN B)/P(B). (2.2)

The interpretation is that only the part ok
that is contained withinB can take place, and
thus the probability that this restricted version

of A takes place must be scaled IB®(B) to 2.3.2 Probability and Distribution Functions.
account for the change of context. Note that dih general, it is cumbersome to use the sample
conditional probabilities range between 0 and $pace S and the probability ruleP () to
just as ordinary probabilities do. In particulardescribe the random, @tochasticcharacteristics
P(S|B) =P (B|B) = 1. of a random variableX. Instead, the stochastic
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properties o are characterized by thpgobability expected value (X) is the location of the centre
function fx and thedistribution functionFyx. of mass of the collection of particles.

The probability function fx of a discrete The idea of expectation is easily extended to
random variableX associates probabilities withfunctions of random variables. Lej(-) be any
values taken byX. That is function and letX be a random variable. The

expected value af(X) is given by

fx(X) = P(X =x).
E(90)) =Y 900 fx (0.
X

Two properties of the probability function are:

e 0 < fx(x) < 1forall x,and The interpretation of the expected value as the
average value af(X) remains the same.
e > fx(x) = 1, where the notatior) ,  We often use the phrasexpectation operator
indicates that the summation is taken over alh refer to the act of computing an expectation
possible values oX. because we operate on a random variable (or a

. , , function of a random variable) with its probability
Thedistribution functionFyx of a discrete randomfunction to derive one of its properties

variableX is defined as A very useful property of the expectation

Fy(X) = Z fx(y). operator€ is that the e>_(pe_ctat|0n of asumisasum
y=x of expectations. That is, d1(-) andgx(-) are both
functions defined on the random variablethen

Some properties of the distribution function are:
_ E(@X) +020¥)) = £(01(X)) + £(g2(X)).
o Fx(x) = Fx(n)ifx=y, (2.4)
o My —o0 Fx(X) = 0, and Another useful property is that ifj(-) is a
function of X anda andb are constants, then

The phraseprobability distributionis often used £(agX) +b) = a&(g(Xx)) +b. (2.5)

to refer. _to either_ of these functiqns because thg 4 special case, note that the expectation of a
probability function can be derived from thegnstant, sap, is that constant itself. This is, of
distribution function and vice versa. course, quite reasonable. A constant can be viewed
as an example of a degenerate random variable.
2.3.3 The Expectation Operator. A random It has the same valuk after every repetition of
variableX and its probability functiorfx together an experiment. Thus, its average value in repeated
constitute a model for the operation of asampling must also be
experiment: every time it is conducted we obtain A special class of functions of a random variable
a realizationx of X with probability fx(x). A is the collection of powers of the random variable.
natural question is to ask what the average valueTie expectation of th&th power of a random
X will be in repeated operation of the experimenvariable is known as thekth moment of X.
For the coin tossing experiment, wi¥hbeing the Probability distributions can often be identified
number of ‘heads,’ the answer iso% +1x §+ by their moments. Therefore, the determination
2 x g +3x % = % because we expect to observef the moments of a random variable sometimes
X = 0 (no ‘heads’ in three tosses of the coin) 1/Broves useful when deriving the distribution of a
of the time, X = 1 (one ‘head’ and two ‘tails’) 3/8 random variable that is a function of other random
of the time, and so on. Thus, in this example, th&riables.
expectedralue ofX is 1.5.
In general, thexpected valuef X is given by  2.3.4 The Mean and Variance. Inthe preceding
subsection we defined the expected vafiX)
EX) =D xfx(x). of the random variableX as the mean of X
X itself. Frequently the symbql (ux when clarity
The expected value of a random variable is required) is used to represent the mean. The
also sometimes called ifsst momenta term that phrasgpopulation meairs often used to denote the
has its roots in elementary physics. Think of expected value of a random variable; temple
collection of particles distributed so that the masaeanis the mean of a sample of realizations of a
of the particles at location is fx(x). Then the random variable.

o |imx_>+oo FX(X) =1.
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Another important part of the characterizatioa sample space. Such related random variables
of a random variable isdispersion Random are conveniently organized into a random vector,
variables with little dispersion have realizationdefined as follows: _
tightly clustered about the mean, and vice versA. random vector X is a vector of scalar
There are many ways to describe dispersion, buténdom variables that are the result of the same
is usually characterized byariance experiment.

The population variance(or simply the vari- All elements of a random vector are defined on
ance) of a discrete random variabfewith prob- the same sample spaSe Theydo notnecessarily

ability distribution fx is given by all have the same probability distribution, because
) their distributions depend not only on the
Var(X) = £((X — 1x)?) generating experiment but also on the way in
= Z(x — 1x)2 fx(X). which the variables are defined 6h
X We will see in Section 2.8 that random vectors

also have properties analogous to the probability
function, mean, and variance.

The termaunivariateandmultivariateare often
. ) . used in the statistical literature to distinguish
In the coin tossing example above, in whith between problems that involve a random variable

Ihs the ”“mbe;] of hpads n t.hreebtosses with ahd those that involve a random vector. In the
onest coin, the variance Is given by context of climatology or meteorology, univariate

The variance is often denoted by or 2.
The square root of the variance, denotedras
is known as thetandard deviation

) 32 1 32 1 meansa single variable at a single location
o= (0 - 5) Xg™T ( - 5) *3 Anything else, such as a single variable at multiple
3\2 3 332 3 3 locations, or more than one variable at more than
+ (1 - 5) x 8 + ( - E) x 84 one location, is multivariate to the statistician.
It will be useful to note a couple of the propertie .
of the variance. P PrOPE®s 4 Examples of Discrete Random
First, Variables
Var(X) = E((X — nx)?) 2.4.1 Uniform Distribution. A discrete random
= E(X2 = 2Kpux + nd) variableX that takes thé different values in a set
, X X Q = {Xa, ..., Xk} with equal likelihood is called
= 5()( ) —21xEX) + z':(Mx) auniformrandom variable. Its probability function
= £(X?) - u%. is given by
, , : - o _ ) /K ifxeQ
The third step in this derivation, distributing fx(x) = { 0 otherwise

the expectation operator, is accomplished by
app|y|ng properties (24) and (25) The last st te that the SpeCification of this distribution
is achieved by applying the expectation operat§ePends uponK parameters namely the K
and simplifying the third line. different values that can be taken. We use the

Second, if a random variable is shifted by ghorthand notation
constant, its variance does not change. Adding g ~ 7/(Q)
con;tant sh|fts the realizations of to. the I?ft t? indicate thak is uniformly distributed orf2. If
or right, but it does not change the dispersion o .

o .. theK values are given by

those realizations. On the other hand, multiplying
a random variable by a constant does change the — 5 + g(b —a), fork=1,...,K
dispersion of its realizations. Thus,dfandb are K-1

constants, then for somea < b, then the parameters of the uniform
5 distribution are the three numbeaisb, andK. It
Var(aX + b) = a“Var(X). (2.6) is readily shown that the mean and variance of a

discrete uniform random variable are given by
2.3.5 Random Vectors. Until now we have E(U@ b, K)) = (a+b)/2
considered the case in which a single random 5
variable is defined on a sample space. Howevey,ar(u(a’ b.K)) = (b—a)%/12
we are generally interested in situations in whidNote that the mean and variance do not depend on
more than one random variable is defined dof.
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2.4.2 Binomial Distribution. We have already gceur in (H) ways, the probability of observing
discussed thebinomial distributionin the coin

tossing and model validation examples [2.2.2]. this event ig H ) pM(1— p)n-h.
When an experiment consists ofindependent
tosses of a fair coin, the number of heddghat
come up is abinomial random variable. Recall (n)ph(l— PN foro<h<n
that the sample space for this experiment has 2fy (h) = h -

equally likely elements and that there aﬁ'ﬁ) 0 otherwise.
ways to observe the evefil = h}. This random @.7)

variableH has probability function We can readily verify that this is indeed a proper
1\n probability distribution. First, the condition that
fu(h) = (H)<§> . fy > Ois clearly satisfied. Second,

Hence thébinomial distributionis defined by

n n
In _general, the ‘coin’ is not fair. For example, Z fu(h) = Z(H)ph(l —p"h
consider sequences ofi independent daily h—o h—0
observations of West Glacier rainfall [2.1.2] and _ o\

. O _ = (p+1-p) =1
classify each observation into two categories
depending upon whether the rainfall exceeds tA&us, the probabilities sum to 1 as required.

0.1 inch threshold. This natural experiment has The shorthandH ~ B(n, p) is used to
the same number of possible outcomes as the coidicate thatH has a binomial distribution with
tossing experiment (i.e."?, but all outcomes aretwo parameters: the number of triatsand the
not equally likely. probability of succes®. The mean and variance
The coin tossing and West Glacier experiments H are given by
are both examples dfinomial experiments. That
P P EMH) = np (2.8)

is, they are experiments that:
Var(H) = np(1-— p). (2.9)

e consist ofn independent Bernoulli trials, and

e2.4.3 Example: Rainfall Forecast. Consider
z%ain the daily rainfall at West Glacier, Wash-
ington. LetR be the event that the daily rainfall

A binomial random variableis defined as the €xceeds the 0.1 inch threshold and teR be

number of successes obtained in a binomikle complement (i.e., rain does not exceed the
experiment. threshold).
The probability distribution of a binomial Let us now suppose that a forecast scheme has

. . .f _ .
random variableH is derived as follows. Les P€en devised with two outcomeR: = there will

denote a ‘success’ and assume that therenar?® More thard.1inch of precipitationand—R".
trials and thatP(S) = p on any trial. What is The binomial distribution can be used to assess the

the probability of observingi = h? One way to skill of categorical forecasts of this type.
obtain{H = h} is to observe The probability of threshold exceedance at West

Glacier is 0.38 (i.e.P (R) = 0.38). Suppose that

¢ have the same probability of success on ev
trial.

h times the forecasting procedure has been tuned so that
—_——— f\ —
SSS-.SFFF...F. P(R")=P(R). _ _
T h\/—time; Assume first that the forecast has no skill, that is,

that it is statistically independent of nature. &t
Since the trials are independent, we may appfgnote a correct forecast. Using (2.1) and (2.3) we
(2.3) repeatedly to show that see that the probability of a correct forecast when
there is ‘no skill’ is
_ nh1 _ p\n—h

P(SSS--SFFF---F)=p"'A-p" " P(C):P(Rf)XP(R)
Also, because of independence, we get the +P(=R") x P(=R)
same result regardless of the order in which — 032+ 062~ 0.53.
the successes and failures occur. Therefore all
outcomes with exacthi successes have the same The forecasting scheme is allowed to operate
probability of occurrence. SinceH = h} can for 30 days and a total of 19 correct forecasts
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are recorded. The forecasters claim that they hasiace 23 hits are unlikely under the no-skill
some useful skill. One way to substantiate thassumption.
claim is to demonstrate that it is highly unlikely for In summary, a probability model of a forecasting
unskilled forecasters to obtain 19 correct forecastsystem was used to assess objectively a claim
We therefore assume that the forecasters are pétforecasting skill. The model was built on
skilful and compute the probability of obtaining 13wo crucial assumptions: that daily verifications
or more correct forecasts by accident. are independent, and that the likelihood of a
The binomial distribution can be used if weeorrect forecast is constant. The quality of the
make two assumptions. First, the probability gissessment ultimately depends on the fidelity of
a ‘success’ (correct forecast) must be constdhose assumptions to nature.
from day to day. This is likely to be a reasonable

approximation during relatively short periods suc5.4.4 Poisson Distribution. The Poisson dis-

as a month, although on longer time Scal.‘?ﬁbution, an interesting relative of the binomial

seasonal variations might affect the prObabiIItél’istribution arises when we are interested in

gf a h't,; bSe'c%nd, tge touth(t)r:nf on tar:ny don%ounting rare events One application occurs in

ay must be independent of that on other aBﬁl’e‘peaks-over-threshold’ approach to the extreme
an assumption that is approximately correct fQfalue analysis of, for example, wind speed data.
precipitation in midlatitudes. Many other climat ' '

. “The wind speed is observed for a fixed time
system variables change much more slowly th?l’i}ervalt and the number of exceedancssof

precipitation, however, and one would expe%% established large wind speed threshdidis

depende_nce amongst successive daily f0reC""‘Q’t?eogorded. The problem is to derive the distribution
such variables.

of X.

Once the assumptions have been made, thgsirgt jet ) be the rate per unit time at which
30-day forecasting trial can be thought of 8§,ceedances occurtlfs measured in years, then
a sequence oh=30 Bernoulli trials, and the \ iy he expressed in units of exceedances per year.
”“”?ber_ of successeh can be freated 8S 8The |atter is often referred to as timensityof the
realization of a B(30,0.53) random varlablg exceedance process.
H. The expected number of correct ‘no_skill Next, we have to make some assumptions about

forecasts in a.30.—day month &(H). = 15.9. The he operation of the exceedance process so that we
observed 19 hits is greater than this, supporting t £n develop a corresponding stochastiadel

contention that the forecasts are skilful. However, . . .
For simplicity, we assume that is not a

h can vary gubstantla!ly from one realization offunction of time2 We divide the base intervainto
the forecasting experiment to the next. It ma . .
equal length sub-intervals with large enough

be that 19 or more hits can occur randomlgo that the likelihood of two exceedances in any

relatively frequently in a skill Ies; forecastin ne sub-interval is negligible. Then the occurrence
system. Therefore, assuming no skill, we compu ; .
o of an exceedance in any one sub-interval can
the likelihood of an outcome at least as extreme as . S .
€ well approximated as a Bernoulli trial with

observed. This is given by probability At/n of success. Furthermore, we
assume that events in adjacent time sub-intervals

PH>19 = i fri (h) are independent of each otHferThat is, the
- = likelihood of an exceedance in a given sub-
30 interval is not affected by the occurrence or
— Z (?10)0'5?0'47(30_h) non-occurrence of an exceedance in the other
h=19 sub-intervals. Thus, the number of exceedantes
~ 0.22 in the base interval is approximately binomially

distributed. That is,

The conclusion is that 19 or more hits are not t
that unlikely when there is no skill. Therefore theX ~ B‘(n, —).
observed success rate is not strong evidence of :
forecast skill.
On the other hand, suppose 23 correct forecastsa'” reality, the intensity often depends on the annual cycle.

4 . .
were observed. TheR (H > 23) < 0.007 under . In reality there is always dependenge on short enou.gh
time scales. Fortunately, the model described here generalizes

the no-skill assumption. This is st_rong_er eVide_n%ll to account for dependence (see Leadbetter, Lindgren, and
of forecast skill than the scenario with 19 hitsRootzen [246]).
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By taking limits as the number of sub-interval2.4.6  The Multinomial Distribution. The
n — oo, we obtain the Poisson probabilityexample above can be generalized to experiments

distribution: having independent trials withpossible outcomes
(At)* per trial if the probability of a particular
fx(0) = — e forx=0,1,.... (2.10) outcome remains constant from trial to trial. Let
X X1, ..., Xk—1 represent the number of each of the
We use the notation first k — 1 outcomes that occur in independent
trials (we ignore théth variate because it is again
X ~P@©) degenerate).
to indicate thatX has aPoisson distributiorwith The (k — 1)'d'r‘}ef‘s'°”.a' random ve(_:tor
parametes = At. The mean and the variance of = X1..... Xi)' is said to have anulti-
the Poisson distribution are identical: nomial - distribution W'thT parameters n
qnd & = (P, k-1, and we write
E(P(5)) = Var(P(5)) = . X ~ My, 0). The general form of the

multinomial probability function is given by
We return to the Poisson distribution in [2.7.12] n XX
when we discuss the distribution of waiting times ~ _ Cxioxiea P Pk
between events such as threshold exceedances. fx(X) = if i, >0fori =1,....k
0 otherwise

2.4.5 Example: Rainfall Forecast Continued. where
Suppose that forecasts and observations are made ni
in a number of categories (such as ‘no rain’,C)'(‘l ’’’’’ X1 = ﬁ
‘trace’, ‘up to 1 mm’,...) andthat verification XLt X

is made in three categories (‘hit’, ‘near hit’, anénd

‘miss’), with ‘near hit’ indicating that the forecast K—1 K—1
and observations agree to within one category (Seg = n — Z Xi, pk=1- Z Di.
the example in [18.1.6]). Each day can still be i=1 i=1

considered analogous to a binomial trial, eXceptyyuy his notation, the distribution in [2.4.5]

that three outcomes are poss@_le rgther thar_1 _tvy§>M3(30’ (on, px)T). The binomial distribution,

At the end of a month, two verification quantitie (n, p), is equivalent toVla(n, p)

are available: the number of hitsand the number ~ " ™ T

of near hitsN. These quantities can be thought

of as a pair of random variables defined on th&.5 Discrete Multivariate

same sample space. (A third quantity, the number  Distributions

of misses, is a degenerate random variable because

it is completely determined byl andN.) 2.5.0 Introduction. The multinomial distribu-
The joint probability function forH and N tion is an example of a discrete multivariate

gives the likelihood of simultaneously observingistribution. The purpose of this section is to

a particular combination of hits and near-hits. Thetroduce concepts that can be used to understand

concepts introduced in Section 2.2 can be usedthe relationship between random variables in a

show that this function is given by multivariate setting. Marginal distributions [2.5.2]
describe the properties of the individual random
C30ph, pp, pi30-"—" variables that make up a random vector when the
fun(h,n) = forh+n < 30anch.n > 0 influence of the other random variable in the ran-

dom vector is ignored. Conditional distributions

0 otherwise, . . ) >
[2.5.4] describe the properties of some variable in
where a random vector when variation in other parts of
20 the random variable is controlled.
Cin = 30!/(hin!(30 — h — n)!), For example, we might be interested in

bn andpy are the probabilities of a hit and a ne the distribution of rai_nfall_ when_ rair_n‘_all is
hit respectively, and afro.rec_:ast_. If thg foreca_st is skilful, thndmon_al

' distribution will be different from the marginal
(i.e., climatological) distribution of rainfall. When
the forecast is not skilful (i.e., when the forecast
is the probability of a miss. is independent of what actually happens) marginal

pm =1~ pPH — PN)
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X1 In example [2.5.1], the marginal distribution of
X5 strong normal weak | all X1 is given in the row at the lowemargin of
Table 2.1, and that oX> is given in the column
weak 21 11 2| 34 at the right handnargin(hence the nomenclature).
moderate 20 14 74 The marginal distribution oK» is
severe 4 4 6| 14
very severe 0 3 8| 11 0.34, X, = weak
all 45 32 23| 100 0.41, x2 = moderate

fx,(x2) = 0.14, X, = strong

0.11, xp = very strong.
Table 2.1:Estimated probability distribution (in o
%) of X = (X1, X2) = (strength of westerly flow, Note thatfx,(weak), for example, is given by
severity of Baltic Sea ice conditions), obtained]c weak = fy(strong.weak
from 104 years of data. Koslowski and Loewe X2 X 9:
[231]. See [2.5.1]. + fz(normal weak
+ f;(weak weak

and conditional distributions are identical. The = 0.21+0.11+0.02
effect of independence is described in [2.5.7]. = 0.34.

251 Example. We will use the following

example in this section. LeK = (X1, X2)

be a discrete bivariate random vector whete 2.5.4 Conditional Distributions. The concept
takes values(strong, normal, weak)describing Of conditional probability [2.2.5] is extended
the strength of the winter mean westerly flow i# discrete random variables with the following
the Northeast Atlantic area, antp takes values definition.

(weak, moderate, severe, very sevetepcribing Let X1 and X2 be a pair of discrete random
the sea ice conditions in the western Baltji¢ariables. The conditional probability function of
Sea (from Koslowski and Loewe [231]). TheX1, givenXz =Xy, is

probability distribution of the bivariate random
1%, (X1, X2)

variable is completely specified by Table 2.1. Forfy, x,—x,(X1) = (2.11)
example;p(X; = weak flowand X, = very severe fxz (X2)
ice conditions) = 0.08. provided thatfx, (xz) # 0.

Here fx,(x2) is the marginal distribution o>
2.5.2 Marginal Probability Distributions. If which is given by fx,(x2) = Y fx,x,(X1, X2).
X = (X1, ..., Xm) is anm-variate random vector, The sum is taken over all possible realizations of
we might ask what the distribution of an individua{X, X») for which X5 = xo.
random variableX; is if we ignore the presence
of the others. In the nomenclature of probabilit
and statistics, this is thenarginal probability
distribution. It is given by

¥55 Examples. The conditional distributions
for the example presented in Table 2.1 are derived
by dividing row (or column) entries by the
fx, (%) = Z f(X1...%i ... Xm) correspondi_ng row (or column)_sum. For_ (_axample,
X1eresXi— 12X 4150 Xm the probability that the sea ice conditions are

) . severe given that the westerly flow is strong is
where the sum is taken over all posmblaiven by

realizations oX for whichX; = X;.
f5 (strong,severe)

o/ x1=strong(Severe)=

2.5.3 Examples. If X has a multinomial fx, (strong)
distribution, the marginal probability distribution 0.04
of X; is the binomial distribution witi trials and = 0a5=090%

probability p; of success. Consequently,)?a‘ ~

Mm(n, 8), with 6 defined as in [2.4.6], the mean In the rainfall forecast verification example
and variance oK; are given by [2.4.5] the conditional distribution for the number

of hits H given that there ar®l = m near hits is
ui =np and o = np (1 — pp). B(30—m, py/(1— pn)).
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X1 marginal distribution for the strength of the
X5 strong normal weak | all atmospheric flow appears in the lowest row of
Table 2.2. The changing climate is clearly reflected

d""eak gé 1% 3 ii in the marginal distributiorfx,, which is tabulated
moderate 5 3 3 12 in the right hand column. This suggests that weak
Severe and moderate ice conditions will be more frequent
very severe 0 2 4 6

in 2050 than at present, and that the frequency
all 67 23 11 | 101 of severe or very severe ice conditions will be
lowered from 25% to 18%.

Table 2.2:Hypothetical future distribution oK = )
(X1, X2) = (strength of westerly flow, severity of-57 .Independent Randolm Variables. The
ice conditions), if the marginal distribution of thede@ of independence is easily extended to random

westerly flow is changed as indicated in the la¥gfiables because they describe events in the
row, assuming that no other factors control ic§2MPle space upon which they are defined. Two
conditions. (The marginal distributions do not surfindom variables are said to be independent if they
to exactly 100% because of rounding errors.) S@Ways describe independent events in a sample
[2.5.6]. space. More precisely:

Two random variablesX; and X2, are said to be

. ‘independent’ if
2.5.6 Example: Climate Change and Western inaep !

Baltic Sea-ice Conditions. In [2.5.5] we sup- fx, x,(X1, X2) = fx,(X1) fx,(X2) (2.12)
posed that sea-ice conditions depend on atmo-
spheric flow. Here we assume that atmosphefff @l (X1, X2).
flow controls the sea-ice conditions and that feedhat is, two random variables are independent if
back from the sea-ice conditions in the Baltic Setteir joint probability function can be written as
which have small scales relative to that of thée product of their marginal probability functions.
atmospheric flow, may be neglected. Then we canUsing (2.11) and (2.12) we see that indepen-
view the severity of the ice conditionXp, as being dence ofX1 andX; implies
dependent on the atmospheric flogy,. ¢ _ ¢

Table 2.1 seems to suggest that if strongerxl‘XZZXz(Xl) = B ().
westerly flows were to occur in a future climate, Thus, knowledge of the value of, does not
we might expect relatively more frequembderate give us any information about the valueXf.®
and weak sea-ice conditions. The next few A useful result of (2.12) is that, X1 andX; are

subsections examine this possibility. independent random variables, then
We represent present day probabilities with
the symbol f and those of a future climate, £ (X1X2) = EX)E(X2). (2.13)

in say .2.950’ byf. We asstime that conditior_laLI-he reverse is not true: nothing can be said about
probabilities are unchanged in the future, that iSithe independence of; andX, when (2.13) holds
fxoXgmxy (X2) = Fxpxpmxs (X2)- However, if (2.13) does not hol&; and X, are

. . certainlydependent.
Using (2.11) to express the joint present and

future probabilities as products of the condition%l

and marginal distributions, we find .5.8 Examples. The two variables described

in Table 2.1 are not independent of each other
because the table entries are not equal to the
product of the marginal entries. Thus, knowledge
of the value of the westerly flow indeX, tells
%u something useful about the relative likelihood

fx, (x1)
fx, (x1)
Now suppose that the future marginal probabiliti

for the atmospheric flow arefx,(strong) = .t e different values of sea-ice intensity will

0.67, fx,(norma) = 0.22 and fx,(weak = be observed.

0.11. Then the future version of Table 2.1 \yhat would Table 2.1 look like if the strength

is Table 2.2 Note that the prescribed futureys the westerly flow,X;, and the severity of
5These numbers were derived from a ‘doubled ,cothe Western Baltic sea-ice conditionsp, were

experiment’ [96]. Factors other than atmospheric circulatidmdependent? The answer, assuming that there is
probably affect the sea ice significantly, so this example should
not be taken seriously. 6Thus the present definition is consistent with [2.2.6].

f (1, X2) = fg (X1, X2).
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X1 Thus, the mean of the sum of independent
X5 strong normal weak | all identically distributed random variablesngimes
K 15 1 3 34 the mean of the individual random variable.
dwea Likewise, the variance of the sum istimes the
moderate 18 13 9 40 variance ofX.
severe 6 4 3 13
very severe 5 4 4 13 . .
all 1 32 24 | 100 2.6 Continuous Random Variables
2.6.0 Introduction. Up to this point we have
Table 2.3:Distribution of X = (X1.X2) = discussed examples in which, at least conceptually,

. : we can write down all the simple outcomes of an
(strength of westerly flow, severity of ice condi- ) . : . )
; : . -experiment, as in the coin tossing experiment or
tions) assuming that the severity of the sea-iceé
-» in Table 2.1. However, usually the sample space
conditions and the strength of the westerly flow )
. ...~ . —cannot be enumerated; temperature, for example,

are unrelated. See [2.5.8]. (Marginal d|str|but|onVaries continuoust
deviates from that of Table 2.1 because of rounding '

errors.) .
2.6.1 The Climate System’s Phase SpaceWe

have discussed temperature measurements in the

no change in the marginal distributions, is given igontext of a sample space to illustrate the idea of a
Table 2.3. continuous sample space—but the idea that these

The two variables described by the bivariag@€@surements define the sample space, no matter
multinomial distribution [2.4.5] are also depenhowfinethe resolution, is fundamentally incorrect.

dent. One way to show this is to demonstratemperature (and all other physical parameters
that the product of the marginal distributions i§S€d to describe the state of the climate system)
not equal to the joint distribution. Another Wayshoulq really be thought of as functions defined on

to show this is to note that the set of values thii€ climate’sphase space

can be taken by the random variable pat, N) The exact characteristics of phase space are not

is not equivalent to the cross-product of the sets §fowWn. However, we assume that the points in the
values that can be taken by andN individually. phase space that can be visited by the climate are
For example, it is possible to observé — n MOt enumerable, and that all transitions from one

or N = n separately, but one cannot obsen/@rt of phase space to another occur smoothly.
(H, N) = (n, n) because this violates the condition "€ path our climate is taking through phase
that0 < H+N < n. space is conceptually one of innumerable paths.

If we had the ability to reverse time, a small
change, such as a slightly different concentration
2.5.9 Sum of Identically Distributed Inde- Of tropospheric aerosols, would have sent us down

pendent Random Variables. If X is a random & different path through phase space. Thus, it is
variable from whichn independent realizations perfectly valid to consider our climate a realization
are drawn, they = Y_I"_, x; is a realization of the qf a continupus stochastic_process even though the
random variabler = ", X;, where theX;s are time-evolution of any particular path is governed
independent random variables, each distributed s Physical laws. In order to apply this fact to our
X. Using independence, it is easily shown that tifiagnostics of the observed and simulated climate

mean and the variance ¥fare given by we have to assume that the climateeigjodic
That is, we have to assume that every trajectory
E(Y) = nEX) will eventually visit all parts of phase space and

— 2\ _ 2 that sampling in time is equivalent to sampling
Var(Y) = ££Y ) £0) different paths through phase space. Without this
v 2 2 assumption about the operation of our physical
iZlS(X.XJ) e system the study of the climate would be all but
= impossible.

= n&(X?) +n(n — DEX)?

2 5 “In reality, both the instrument used to take the
—n“E(X) measurement and the digital computing system used to store
— n(S(XZ) _ S(X)z) it opergte at finite resqlutlons. However, it is mathematlcally
convenient to approximate the observed discrete random
= nVar(X). variable with a continuous random variable.
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The assumption of ergodicity is well foundedThe conclusion is that our initial assumption, that
at least on shorter time scales, in the atmosphéhere is a poink for whichP (X = x) > 0, is false.
and the ocean. In both media, the laws of physi@$at is,if X is a continuous random variable, then
describe turbulent fluids with limited predictabilityP (X = x) = O for all x.

(i.e., small perturbations grow quickly, so two While counter intuitive, the result is reasonable;
paths through phase space diverge quickly).  the chance of observing a specific value is zero
because innumerable different values can occur.

2.6.2 Continuous Random Variable. We have Finally, a continuous random variable is defined
expanded the concept of the sample spfitethe as follows:
concept of a phase spase We must also expandLet S be a phase space and let(® be a
the concept of the probability rul® (-), used to continuous probability measure o§. Then a
compute the probability of events, by convertingontinuous random variabl&X is a continuous
P (-) into a function that measures the relative siZanction ofS that takes values in an interv&l C
of an event. R, the real line, in such a way that

The way events are measured is not uniform
because measurements must reflect the likelihood: P (X € ®) = Oforall ® c €,
of events. For example, |&trepresent temperature 2 P(X € Q) = 1.
at a northern midlatitude location in January, and

consider eventsA and B, where A = {T € 9 g3 The Probability Density and Distribution
(=5,5°C}andB = {T € (30,40)°C}. Both pynctions. Events described in terms of con-
A and B describe 10C temperature ranges butin,ous random variables are expressed as open
P(A) # P(B), that s, theprobability measure of jntervals on the real lineR, and the probability
these events is not the same. of an event is expressed as the integral of a
Now assume that we are able to obsenygopapility density functior(pdf) taken over the
temperature on a continuous scale (i.e., thakerval that describes the event. In theory, the
the intervening instruments do not discretize thgnsity function is derived from the definition of
observed temperature) and consider the eZeat e random variable and the probability measure
{T = 0.48°C}. This event challenges our intuitionp () |n practice, we will use intuition and simple
becaus# (C) = 0. Why? Consider a sequence gfathematical arguments wherever possible.

events Our working definition of the probability
c T 0.48 1 0.48 1 oc density function will be as follows:
k= { < ( A0 e DAt E) } Let X be a continuous random variable that takes

values in the intervak2. The probability density
function for X is a continuous functionfx(-)
defined orR with the following properties:

Note that limk..o Ck = C and that the event
Ck+1 is a subset ofC, or in mathematical terms
C1D>Cy D ---. Therefore

1 fx(x) > 0forall x € ,

P(C1) >P(C) >
2 [o fx(x)dx=1,
Intuitively, we see that, for larglk, the probability b
of eventCy is proportional tok—2. It follows that 3 P(X € (@ b)) = [ fx(x) dx
P(C)=0. forall (a, b) € Q.
Let us consider another situation. Assume that
the probability measure is continuous and thg;1

there is a poink and are > 0 such that

An equivalent description of the stochastic

aracteristics of a continuous random variable

is given by the distribution function, frequently

P(X =X) = 2. referred to more descriptively as tlemmulative
distribution function(cdf).

Then, because of continuity, there must exist aThe distribution function forX is a non-

8 > 0 such that for aly with [x —y| < § decreasing differentiable functidfx () defined on

R with the following properties:
PX=y) >e.

1 limy_ o0 Fx(X) =0,
Now, if we choosen > 1/¢ pointsxy, .. ., X, such x——o0 Fx()

that|x — xj| < §, we obtain the contradiction that 2 limy_ 1o Fx(X) = 1,

P(X € {X1,...,%Xn}) > 1. 3 LFxx) = fx(x).
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2.6.5 Expectation. The expected valueof a

Q continuous random variablk¢ is given by
O
o
o o EX) _/Qxfx(x)dx.
>
IS If g(-) is a function then the definition of the
s expected value ofg(X) generalizes from the
£ discrete case in the same way, and
F o
3 £(gX) = /Q g(x) fx (%) dx.
0 100 200 300 .
. Results (2.4) and (2.5), about the expectation of a
Julian Day

sum of functions and about linear transformations
of random variables, also apply in the continuous

Figure 2.1:The 10th, 50th, and 90th quantile$aS€:
of daily mean temperature at Potsdam, Germang (g1(X) + g2(X)) = £(91(X)) + £(92(X))

(1983-94). (2.15)
E(ag(X) + b) = a&(g(X)) + b. (2.16)
The last equation tells us that
X 2.6.6 Interpreting Expectation as the Long-
Fx(X) =/ fx(r)dr. (2.14) term Average. The expectation is often also
o0 named ‘the mean’ value, that is, this number is
The cumulative distribution function is oftenidentified with the average of an infinite number
useful for computing probabilities because of realizations of X. We will show this here

with an intuitive limit argument. Another heuristic
argument is presented in [5.2.5].

First, we approximate the continuous random
2.6.4 Median and Quantiles. The medianxos, variableX with a discrete random variab¥; that

P(X € (a,b)) = Fx(b) — Fx(@).

is the solution of takes values in the s¢ks: k = 0, +1, £2, ...}
for some small positive numbe$ and with
Fx (X0.5) = 0.50. probabilities P
It represents theniddle of the distribution in the (k+1/2)8
sense that Pks = / fx(X) dx ~ §fx(ké).
(k—=1/2)8
P(X < Xo5) = P(X > xo5) = 0.5. The expected value of the discrete random variable

Exactly 50% of all realizations will be less than th<>e(‘S 's given by

median, the other 50% will be greater. RS
The median is an example of@quantile the EXs) = Z K pks.

. . k=—00
pointxp on the real line such that By interpreting pks as the frequency with which
P(X € (—o0,Xp)) = p X takes a value in the neighbourhood»of= ks,
P(X € [Xp. oo)) —1-p we see that the expectation of the approximating
discrete random variablX;s is indeed a ‘long-
That is, thep-quantile is the solutionp, of term’ mean. Then, taking the limit &— 0, and
F noting that pxs tends tosfx(ké) asé — 0, we
x(Xp) = p. obtain
An example of the annual cycle of the quantiles,. o (k+1/2)
of daily mean temperature at Potsdam, Germany, jiiT, €(Xs) = Iim > kB/(k—l/Z)a fx (x) dx
displayed in Figure 2.1. Note that the distribution ook:_oo
is approximately symmetric during the transition - / X fx (X) dX,
seasons, but negatively skewed in winter, and —0

slightly positively skewed in summer. The ‘noisethus concluding the argument. A rigorous proof is
evident in these curves is a consequence aftained by demonstrating that the sample mean
estimating the quantiles from a finite sample d§ a consistent estimator of the expectation (see
observations. [5.2.5)).
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2.6.7 The Central Moments: Location, Scale,
and Shape Parameters. The kth momentu ®
of a continuous random variab}is also defined

2: Probability Theory

are generally strongly skewed to the right—
even though small amounts of rainfall occur

as

u

The kth central momentu’(k) of a random

val
by

M/(k) _ /

su
of

parameters are the mean, variamnglewness, and

ku

considerably more often than large amounts.
This occurs because rainfall distributions
have a wide ‘tail’ that extends far to the right.

in the discrete case. Specifically

© =g = [

—0o0

k
X fx (x) dx. On the other hand, geopotential height tends

to be somewhat skewed to the left because
lows tend to have greater amplitude than

riableX is the expectation ofX — w)X, given highs®

= ¥ fx 0 dx.

The kurtosis, a scaled and shifted version of
o0
"

the fourth central moment, is given by

e [ (5

Most characteristics of a distribution can be
mmarized through the use of simple functions
the first four moments. These slightly modified

)4fx(x) dx—3. (2.19)

Kurtosis is a measure of peakedness.
Platykurticdistributions, such as the uniform
distribution, havey, < 0 and are less
‘peaked’ than the normal distribution (see
[2.7.3]). Distributions withy> > 0 are said to
beleptokurtic, and are more ‘peaked’ than the
= M(l). normal distribution. The double exponential
distribution, with densityfx (x) = 3e~X=#I,
is leptokurtic.

rtosis:

e The mean, also known as théocation
parameter, is given by the first moment

e Thevarianceis given by the second central

t
momen The skewness and kurtosis are often referred to
VarX) = £(X — 1?) (2.17) asshape parameters. o
) Shape parameters can be useful aids in the
= E(X?) — (X)) identification of appropriate probability models.
C (M(l))z This seems to be especially truedrtreme value

analysis (Section 2.9) where debate over the
The properties of the variance, discussed f{)r?erits of various distributions_ is often inte_n_se.
the discrete case in [2.3.4], extend to thIé|owever, skewness and kurtosis are often difficult

to estimate well. In practice, it is advisable to use
alternative shape parameters suchLasoments
[2.6.9].

continuous case, in particular

Var(aX + b) = a?var(X). (2.18)

= 2.6.8 The Coefficient of Variation. When

a random variable, such as precipitation, takes
only positive values a scale parameter called the
coefficient of variation,

The standard deviatiornox Var(X) is
also often described assaale parameter.

The skewnesss a scaled version of the third
central moment that is given by

Cx = ox/ux,

ATH

is sometimes used. The standard deviation of such

X —
n={(
R
variables is often proportional to the mean and it

Symmetric distributions (i.e., distributions foiis therefore useful to describe the scale parameter
which fx(u —x) = fx(u+x)) have y = 0. relative to the mean.
Distributions for whichy; < 0 are said to be — o o

tively skewedr skewed to the left. and Holzer [180] shows that this is due to the rectification of
n.eg"’.l ’ y . b nonlinear interactions in the atmosphere’s dynamics (see also
distributions for whichy; > 0 are said to be [3.1.g]).

positively skewedr skewed to the right. 9The concept of skewness and kurtosis is not limited to

. . L . continuous random variables. It carries over to discrete random
Daily rainfall distributions, bounded on _thevariables in the obvious way: by replacing integration with
left by zero and unbounded on the righummation in the definitions given above.

)3fx(x) dx.
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2.6.9 L-Moments. Hosking [183] introduced Xp2 > Xjj2 by definition). The third and fourth

an alternative set of scale and shape statistit®ments are shape parameters. Standardized L-
called L-moments which are based ororder moments are

statistics The L-moments play a role similar o o

to that of conventional moments; in particular, ® thelL-coefficient of variation

any distribution can be completely specified by

either. The difference is that the high¢j > cx =212/, (2.22)

3) L-moments can beestimatedmore reliably

than conventional moments such as skewness and theL-skewness

kurtosis. Robust estimators of higher moments are

needed to identify and fit distributions such as the ¥ = A& /1@, (2.23)
Gumbel, Paretopr Wakebydistributions used in
extreme value analysis (see Section 2.9). e theL-kurtosis

To define the L-moments of a random variable
X we must first define related random variables ~ yy =@ /.?. (2.24)
called order statistics. L& = (X1, ..., Xn)" be a

random vector that is made up ofindependent, Examples of the application of L-moments
identically distributed random variables, eaci climate research include Guttmann [151] and
with the same distribution aX. Supposex = Zwiers and Kharin [448].

(X1,...,%n) " is a realization ofX. Let g(-) be

the function that sorts the elements of an

dimensional vector in increasing order. That is 2.7 Example of Continuous Random

Variables

9&) = (Xan)s -« - X)) "
2.7.1 The Uniform Distribution. The simplest
of all continuous distributions is the uniform
distribution. A random variable that takes values

9xX) = Xy - - Xam) - in an interval (a, b) is said to be uniform if it

R has a probability density function that is constant

Note that the elements @i X) are no longer inde- inside the interval and zero outside. Such a density
pendent or identically distributed; their marginaiunction is given by
distributions (see [2.8.3]) are complicated func-
tions of the distribution oK. The random variables  f, (x) = {
X for j =1,...,nare called order statistics.

L-moments are defined as the expectations gfy the cumulative distribution function is given
linear combinations of these order statistics.

wherexn) is theith smallest element of. The
random vector that correspondsg(x) is

1/(b—a) forall x e (a,b)
0 elsewherge

The first three L-moments are defined as by
M _ g(x 0 forx <a
A= E(Xa) Fx(x) =1 (x—a)/(b—a) forxe (a b
2@ = %5(X(2\2> —Xap) ! forx=b.
1 We use the shorthan¥l ~ /(a, b) to indicate that
A = ZE(X@p — 2X@3 +X@3).  (2.20) X has a uniform distribution.

3
o It is readily shown that the mean, variance,
The generakth L-moment is given by skewness, and kurtosis of &(a,b) random

1 k=t O variable are given by
M= 23 DI D) EK i)
j=0

(U, b) %(a +b)

(2.21)

Thus, the first L-moment is the expected
smallest value in a sample of one. Since thereyl(L{(a, b)
is only one value in such a sample, the first L- yz(U(a, b)
moment is equal to the conventional first moment.

The second L-moment is the expected absoluféus, the uniform distribution is symmetric
difference between any two realizations (note thégkewness = 0) and less peaked than a normal

=0

)
1 2
Var(U(a, b)) = 1—2(b—a)
)
) = —12.
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distribution (kurtosis< 0). The L-moments are ,,
[183]:

0.3

1
A = Z@+b

2
1
2@ — Zp-a o2f
6( )
VlL =0 01
v = 0.

2.7.2 Probability and Likelihood. The uni-

form distribution illustrates very clearly that a

probability densityis not a probability. When the Figure 2.2: Probability density functions for
distribution is defined on an interval of length lesgormal random variables with mean 0 and
than 1, the density is uniformly greater than Jariances 1 and 9 (standard deviatioms= 1 and
throughout the interval, even though probabilities respectively).

are never greater than 1. Only integrated density

functions provide probabilities.

Nevertheless, the density function describes tagout the mean, values near the mean are more
relative chances of observing specific events. fiRely than values elsewhere, and the spread
particular, whenfx (x1) > fx(x2) itis more likely of the distribution depends upon the variance.
that we will observe values of nearx; than near |arger variance is associated with greater spread.
X2. Therefore we call the values of the densitighanges in the mean shift the density to the left or
functionlikelihoods. For the uniform distribution, right on the real line.
all values ofX in the range(a, b), including the  ajso, note that the likelihood of obtaining a

mean, are equally likely. This is not true in th¢yrge realization of a normal random variable
other distributions of continuous random variableg,||s off quickly as the distance from the mean

increases. Observations more than &.%®m the
2.7.3 The Normal Distribution. The distribu- mean occur only 5% of the time, and observations
tion most frequently encountered in meteorologyiore than 2.334rom the mean occur only 1% of
and climatology is the normal distribution. Manythe time.
variables studied in climatology are averages or The mean, variance, skewness, and kurtosis of a

integrated quantities of some type. The law @formal random variabl¥ are:
large numbers, o€entral Limit Theorenj2.7.5],

states (under fairly broad regularity conditions) £(X)

that random variables of this type are nearly N MZ

normally distributed regardless of the distributionvar(x) =9

of the variables that are averaged or integrated. 1 =0
The form of the normal distribution is entirely y2 = 0,

determined by the mean and the variance. Thus,
we write X ~ N (u, o) to indicate thaiX has a gnd the L-moments are:
normal distribution with parametersando 2.

In the climatological literature, the normal B —
distribution is also often referred to as the @
Gaussian distribution, after C.F. Gauss wh
introduced the distribution some 200 years ago. )/1L =0

= o/n

The normal density function is given by V2L — 0.1226.
1 (X7’§)2
fa(x) = e 2° forall xeR. The cumulative distribution function cannot be
V2mo

given explicitly because the analytical form of
I et/2dt does not exist. But the cumulative
The density functions of normal randondistribution function is related in a simple manner
variables with different variances are illustrated ito theerror function, erf, which is available from
Figure 2.2. Note that the distribution is symmetrisubroutine libraries (for example in tiNumerical

(2.25)
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in this book. This function, which is tabulated in
Appendix D, can also be evaluated by numerical
integration or by using simple approximations. For
most purposes, the approximation

Fy(x) ~ (1 + sgn(x)y/ 1 — e~ 2%/ )/2

(2.27)

(where sgiix) = 1if x > 0 and sgix) = —1 if
X < 0) is adequate and eliminates the use of tables.

2.75 The Central Limit Theorem. The

Figure 2.3:Cumulative distribution functions ofCentral Limit Theoremis of fundamental
normal random variables fop = 0 ando = 1 importance for statistics because it establishes the

and 3. dominant role of the normal distribution.
If Xe, kK = 1,2,..., is an infinite series of
. o independent and identically distributed random
Recipe¢322]). Specifically, variables with€(Xx) = p and VarXy) = o2,
1 X (t=p? then the average% Y k_1 Xi is asymptotically
Fy(x) = Nz / e 2° dt normally distributed. That is,
T O J—00
1 [
20 _—t2 1 «n
= — e dt =3 (X —
ﬁ/—oo lim M ~ N(0, 1).
X — n—oo %U
— 05+05 erf(—“). (2.26) o
o ote that the Central Limi eorem holds
V2 Note that the Central Limit Th hold

regardless of the distribution of thé,.

According to the Central Limit Theorem,
the distribution of a sum of independent and
identically distributed random variables converges
2.7.4 The Standard Normal Distribution.  Any towards a normal distribution as the number,
normal distribution can be transformed to thﬁ, of random variables increases. Because the
Standard]ormal distribution, Wh|Ch haS mean Zer%eorem makes aasymptoticstatement nothing
and variance one. In fact, K ~ N'(x, 02), then is known about when the convergence has made
Z=(X-p/o~N(@OD.W substantial progress. Sometimesmust be very

The proof, which is straight forward, illustratesarge before near-normal conditions are reached
the standard approach taken when deriving thg1 4]; other times the convergence is very fast
distribution of a transformed random Variabl%nd the distribution of a sum over a few random
First, suppose thaX ~ (i, o%). Then, for any variables may be approximated by the normal

The cumulative distribution functions for = 0
ando = 1 and 3 are plotted in Figure 2.3.

interval (a, b), we have distribution. Figure 3.2 in [3.1.2] demonstrates
b 2 neatly the practical importance of the Central
1 _y=w) ..
P(X € (a, b)) = / e 202 dy Limit Theorem.
a V2o
_ (b-wy/e 1 21245 2.7.6 The Log-Normal Distribution. A random
- (a-wjo 2 variable X has a log-normal distribution with

) _ ) mediang if In(X) ~ N(n(9), o). The density
by a simple transformation of variable under thgnction is given by

integral sign. However, the second expression )
is P(Z € ((@—w)/o, (b—p)/o)) whereZ ~ 11 (In(x) —In@®))
N, 1). 00 = g oB )

The cumulative distribution function of the . : . .
standard normal distribution is denoted By Examples of this density function for various
values of o are displayed in Figure 2.4. The

10Germans can find a plot of the'(0, 1) probability density Moments are given by
function in their wallets. It appears on the regular German 10 K (ko12/2
DM bank note together with a picture of its inventor. S(Xk) = gKeko)/2,
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Figure 2.5: Probability density functions for
Figure 2.4:Log-normal density functions fer = x2(df) random variables with 1, 2, 10, and 30

$andin®) = 0,31, 1 and1. degrees of freedom.
Therefore The probability density function of g2(k)
1o random variable is given by
EX) = 0e2°
y o2, o2 x(k=2)/2g—x/2 f
Var(X) = 6°€° (¢ —1 ——— ifx>0
) ( ) fx(0)=1 T(k/2)X/2 g (2.28)
yi=yei-1 (e"2 +1). 0 otherwise

The distribution is skewed with a long tail to thevhere I' denotes the Gamma function. The
right. The expectation is larger than the median. derivation of (2.28) can be found in most standard
The log-normal distribution is often usefulmathematical statistics texts [335].
when dealing with positive quantities such as We write X ~ x2(k) to indicate that a random
precipitation. variable X is x? distributed withk degrees of
freedom. Examples of thg2(k) distribution with
k=1, 2, 10, and 30 are shown in Figure 2.5. The
We now move on to the description of thregistributiozns z_;\re_par_tiallytabulated in Appendix E.
important sampling distributions derived from the Th? X d|str|.b_ut|on has a Very |mp0rt;ant
normal distribution: they? distribution, thet additiveproperty: ifX andX are independeny

distribution, and ther distribution. We will see random variables witlky andk; df respectively,

. 2 .
these distributions often in settings where we ne%&en X1+ Xz is ax“(ki + k) random variaple.

: . follows then that ax2(k) random variable can
to know about the uncertainty of an estlmateée thought of as a sum df independenty2(1)

mean or variance, or compare estimates of me ra‘?ﬁ dom variables
or variances. S s

Several characteristics of the distribution can
be naoticed. First, all of the distributions are skewed
2.7.8 They? Distribution.  The x? distribution g the left, but distributions with small numbers of
is defined as that of the sum &f independent gegrees of freedom are more skewed than those
Squared/\f(O, 1) random Variables. |t iS therefoquith |arge numbers Of degrees Of freedom_ |n
defined only on the positive half of the real linegact, they 2(30) distribution is very nearly normal,
The form of this distribution function dependsy accordance with the additive property and the
upon a single parametek, referred to as the central Limit Theorem [2.7.5]. Second, only the
degrees of freedorfulf).'* distributions with one and two degrees of freedom

11The expressiondegrees of freedonis used frequently have theimode(.e., their most likely values) at

in this book. Here it has two equivalent technical interprdh€ origin. Third, the spread of the distributions
tations. Specifically, ifx% ..... Xn are independent, identi- depends strongly upon the number of degrees of
cally distributed A'(1, o) random variables, thex? = freedom.

(}2 Y, X = X)? is distributedx?(n — 1). This sum of
squared deviations can be re-expressed as a sum-ofl interpretation is geometrical. The deviatiors — X can be
squaredV/ (0, 1) random variables. This gives the first interprearranged in am-dimensional random vectgx; —X, .. ., Xn —

tation of degrees of freedom, which is frequently encounterég’. This vector takes values in am — 1)-dimensional

in climate researchy? contains information fronrn — 1 in- subspace since the deviations are constrained to sum to zero.
dependent, identically distributed random variables. The oth®ee also [6.6.1] and Section 6.8.

2.7.7 Some Important Sampling Distributions.
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It may be shown [208] that thgth moments ofl
for j > k donotexist.

Thet(k) distribution is shown in Figure 2.6 for
four values of the degrees of freedom parameter
k. The density functionfr(t;1) for T with
k = 1 degree of freedom does tend to zero
ast — Zoo, but too slowly for the integral
J tfr(t; 1) dt to exist. The convergence is faster
whenk = 2, so that the first moment exists but not
the second moment. The convergence increases
-4 -2 0 2 4 with the increasing numbers of degrees of
freedom. Ultimately, the distribution converges
to the standard normal distribution. The difference

Figure 2.6:Probability density functions fot(k) petween the distributions is small even wheg=
random variables with 1, 2, 10, and 30 degrees Q.b, and it becomes neg||g|b|e fer> 30.

0.0 0.1 0.2 0.3 0.4

freedom. The t(k) distribution is partially tabulated in
Appendix F.
B y2
In general, ifX ~ x*(k), then 2710 TheF Distribution. Another of the
EX) = k sampling distributions closely related to the

normal distribution is thé& distribution. A random
variableF is said to have afr distribution withk
and| degrees of freedom, that iB, ~ F(k, 1), if
the density function oF, fg(f;k,|), is given by
2.7.9 The'F di_stril_)ution. A random variabler (k/D¥2r((k +1)/2)

has thet distribution with k degrees of freedom fr(f;k,I) = T2T0/2)

that is, T ~ t(k), if its probability density function ka2
is given by « f(k—2)/2(1+ IEf) (k+1)/ .

27Ky~ k+1)/2
Mk+1D/2A+1t7k) . This distribution arises in estimation and
vk T'(k/2) testing problems when statistics are developed
T random variables are strongly related to norm#lat can be expresged as a constant times a
and x2 random variables. In particular, 4 andB  ratio of independeny < random variables (hence
are independent random variables such that ~ the connection to the normal distribution—see

Var(X) = 2k.

frt: k) =

[2.7.8]).
A~N(©,1) and B~ x?k), In particular, ifX andY are independent random
then variables such thaX ~ x2(k) andY ~ x2(),
then
A X /k

The t distribution was introduced by W.L.
Gosset under the pseudonym ‘Student'—so is
often called theStudent’s distribution L= E(F) = b

The t distribution is symmetric about zero. | -2

The first two central moments are

WhenT has more than one degree of freedom, the. | _ 5 gnq
first central moment is zero (see e.g., Kalbfleisch 5
[208]), var(F) 2A°k+1-2)
k(I —2)2(1 — 4)
E(M) =0 for k> 2.
_ _ forl > 4. As for thet distribution, not all moments
The first moment does not exist whier= 1. of the F distribution exist (see Kalbfleisch [208]).
Similarly, the second central moment exists for The F(k,1) density function is shown in
k > 3, where Figure 2.7 for three combinations @k, ). The

k distribution is skewed for all values df. For
Var(T) = . — for k> 3. fixed k, the skewness decreases slightly with
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The x? distribution with 2 df is an exponential
df distribution withg = 2.

— (5,5
(5:5) 2.7.12 Example: Waiting Times in a Poisson
"""" (5,20) Process. The exponential distribution also arises
--- (5,100) when studying waiting times in a Poisson process.
We used a Poisson process in [2.4.4] to model the
occurrence of wind speed peaks over a threshold.
et === If the threshold is large, the distribution of waiting
0 1 2 3 4 5 6 times is useful for making inferences about the
frequency with which we might expect damaging
. . . . winds. Here, we will the derive the waiting time
Figure 2.7. Probapmty de’?S'W functions fOrdistribution for a Poisson process with intensity
F(k, 1) random variables withk,|) = (5,5), Let T be the waiting time for the first event
(5,20), and(5, 100) degrees of freedom. in a Poisson procesé.T is obviously a random

variable because events in the Poisson process
increasing. In fact, the distribution converges tooccur randomly. LetFr(-) be the cumulative

00 0.2 04 0.6

a normalizedy 2 distribution ad — oco. distribution function of T. That is, Fr(t) =
The F distribution is partially tabulated inP (T <t) =1—P(T >1t). The evenT > t occurs
Appendix G. when no events take place in the time interval

(0,1). Equation (2.10) can be used to show that

2.7.11 The Exponential Distribution. The
distribution of wind energy, which is proportional
to the square of wind speed, provides a#nd therefore that
interesting application of thex? distribution. _

: Eo 1—e* ift>0
To a first order of approximation, the zonalf;(t) = _
and meridional components of the wind are 0 otherwise.

normally distributed and independent (but S88ence, the waiting time is exponentially dis-
[2.6.6] and also Cook [89] and Holzer [180])yjh teq withe = 1. Consequently, the mean
Thus the wind energy, wher21 properly scalegyaiting time is inversely proportional to the inten-
is approximately distributedy<(2). The latter sity of the Poisson process.

distribution, illustrated in Figure 2.5, is also

an example of arexponential distribution. The

likelihood of observing a particular wind energy2.8 Random Vectors

falls off exponentially with magnitude.

The density function of an exponential randord-8.1 Continuous Random Vectors. A contin-
variableX is given by uous random vectoX is a vector of continuous

random variables.

P(no events in0,1)) = e

—1,—X/0 ) )
fy(X) = { 0~"e if x>0 The climate system has a myriad of examples
0 otherwise, of continuous random vectors. One example is
and the corresponding cumulative distributiof® monthly mean 300 hPa height fie2d either
function is given by as simulated by a climate model, or as analysed
. from observations (Figure 1.1). In both cases,
Fx(X) = { 0 %/ _'fX =0 the random vector contains several hundred or
1-e if x > 0. thousand entries, each representing an observation
The mean and variance are at a different location. Another example is the
) 5 surface temperature field which contains screen
n =06 ando” = 6°. temperatur®® observations over the land and
The L-moments are ocean surfaces. If we want to study relationships
A(l) =0 12Wwe can assume that we start observing the process just
@ after the occurrence of an event, so the waiting time for the
A = 0/2 first event is equivalent to the waiting time between events.
)/L = 1/3 13:screen temperature’ is taken 2 m above the surface. The
1L word ‘screen’ alludes to the enclosures—Stevenson screens—
vy = 1/6. that are used to house land-based thermometers.
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between geopotential and surface temperatuvehere the functiong; and gy select thekth and

then we might form an even larger random vectgth components oX respectively.

by combiningZ andT. Note that (2.30) holds regardless of the
correlation between the componeisandX ;.

2.8.2 Joint Probability Density Function.

The joint probability density function of amm- 2.8.5 Independent Random Variables. The
dimensional random vectdX is a non-negative, definition of independent random variables also
continuous function defined o™ for which extends smoothly from the discrete to the
Jgm fg(X)dX = 1. continuous case.

The cumulative distribution function also €X{ etX be arandom vector and lot; andX  be any
tends to the multivariate case in a natural Wa¥air of elements in the vector. The components of

However, the concept is not as useful as in the UNt- 52 said to bepairwise independerit for every
variate case, and therefore will not be discussed(i j) the joint density function ak; and X; can

be written as the product of the marginal density
2.8.3 Marginal Distributions.  In our discussion functions ofX; andX;.
of discrete multivariate distributions [252], the The components Oi are said to bejointly
marginal distribution of one variable was founghdependenif fe (%) = [Ty Fx; (%0).
by summing the joint probability function over
all combinations of values taken by the remainin . _ . .
variables. Since integration is z]e continuox.%&6 Conditional Density !:-unctlon.s. .F'”?”y’ .
variable analogue to summation, the margin e concept of the conditional distribution is

probability density function for th&th variable in .exFenc.ied. to the continuous case. Hq\(\{ever, here
)z,saka, is defined by it is likelihoods, rather than probabilities, that

are scaled. We saw that in the discrete case

fx, (X) [2.5.4], the act ofconditioning on the outcome
of a variable reduced the number of outcomes
=/f§<(X1’-~-,Xk—1»Xa Xk+1,---» Xm) 0%, that were possible by some finite proportion.
RM-1 Similarly, conditioning in the continuous case
. restricts possible realizations of the random vector
whereXe = (X1, .., Xk-1, Xk+1, -+ Xm)- to a hyper-space of the originah-dimensional

vector space. The conditional probability density
2.8.4 Expectation of a Weighted Sum of function is defined as follows.

the Components of a Random Vector. The Let X be a random vector of the fon(,f(L )*(2)’

expected value of thkth component oX is the \yhereX; and X, are also both random vectors.

mean of the marginal distribution Theconditional probability density functioof X1,

00 given)?g = X, IS

EX0) = f X fc (K05 o
—o0 fg %, (X1, X2)

f5 %=, K1) = .
= [ xfxGoa e fro %2
RM

wherex = (X1, ..., Xm)".

The expected value of a linear combination of o ]
two components oX is 2.8.7 The Multivariate Mean, the Covariance

Matrix, and the Correlation Matrix. ~ The long-
S(axk + bX; +c) term mean value of repeatgd realizations of an
m-dimensional random vectf is given by

(2.31)

for all Xo such thatf;(2(7<2) is nonzero

=f (axc + bxj + ¢) fz (X) dX
RM . . ) o
=a&Xk) +b&(Xj) +c. 2.30) Ax=EX) = A;me;((x)dx,

The same result can be obtained directly fromote that the elements gl are the means of
(2.15) and (2.16) as follows: the corresponding marginal distributions. We will
- - usually refer only tog rather thanjig unless
E(a Q(X)+b 92()9 + C) . clarity requires that specific reference be made to
=a&(gu(X)) +bE(X) +c, the random vector.
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Jointly distributed random variables often have A possible difficulty with covariance as a
a tendency to vary jointl{* This ‘co-variability’ measure of the joint variability of a pair of random
may be quantitatively described by the multivariateariables is that covariance is n&tale invariant.
analogue of variance, namely theovariance As with the transports that covariances often

matrix: represent in climate problems (see Section 8.2), a
S o T change in units has a profound effect on the size
Tgx = E((X =X -@)T) (2.32) of the covariance. If all realizations of andX

are multiplied by constants andc; respectively,
the covariance will increase by a factor Qt;.

) However, the variances &f andX;j also increase
As above, we will drop the reference to the randogy, tactors ofc? andc?
. ] .

vector in the notation for the covariance matrix” cqrelation (or cross-correlation) is a measure
unless a need for clarity dictates otherwise.

The (i, j)th element of ¥ contains the
covariance

= | FZ-D&= T fz (%) dx.

of covariability that is scale invariant.

Thecorrelationbetween two random variable§
andXj is given by

oij = E((X — pi)(Xj — 1)) Cov(Xs. X))
P = e V. (2.33)

://(Xi = ) = 1) B 06 xp) dxdlxg P J/Var(Xi)Var(X;)
Rz

. , _ The correlation coefficient always takes values
between theth and jth elements oK. Note that i, the interval [~1.1]. The absolute value of the

the covariance matr_ix is symmetric: the covariang® eficient is exactly 1 whel; is linearly related
betweenX; and Xj is the same as that betweelfuo X;, that is, when constanis and b exist so

Xj _and Xj. The d_iago_nal elements af are the thatX; = a + bX. Here the correlation is-1
variances of the individual random variables that |, ;g positive and—1 if b is negative. Values

form the fa”fl'om vecto}.(. That 'S_’,Ui% = \(ar(Xi). of the correlation coefficient betweenl and+1
The covariance matrix is positive-definite. g6 an indication of the extent to which there
Covariances describe the tendency of jointl 5 |inear relationship between the two random
distributed random variables to vary in concert. f5riaples. In fact p2 can be interpreted usefully
the deviations oK; andX; from their respective 45 the proportion of the variance of one of the
means tend to be of the same sign, the covarianggiaples that can be represented linearly by the
betweenX; and X; will be positive, and if giher (see also [18.2.7] and Section 8.2).
the d.eviation's tend to .have opposite signs, theaq 4n example, consider the 1933-84 segment
covariance will be negative.  of the Southern Oscillation Index (SOI) (Fig-
As in the discrete variable case, the covariangge 1.4). Superimposed on the graph is Wright's
is zero if Xj and X;j are independent. ThiSSST index of the SO [426]. The SST index carries
occurs because the expectation of a prodyglyghly the same information about the Southern
of independent random variables factors into @gcillation on time scales of a year or more. The
product of expectations. Note, however, that thesimated correlation between the monthly mean
reverse need not be true (see the example gy es of these indices is 0.67. We will examine

[2.8.14]). ) ) .. . this example in more detail in Section 8.2.
The effect of scaling on covariance is similarto o \word of caution about the correlation

that which occurs in the scalar case (see (2.6)).dfefficient: it is not always a measure of the

Ais ak x mmatrix withk < m, then extent to which there is a deterministic relationship
Y o o= ASAT between two random variables. In fact, two
AX,AX ' random variables may well be related through a
14Nearby values in all atmospheric and oceanic fieloqeterml_msuc' nonlinear function and yet have a
are related to one another. In fact, without this proper§orrelation of zero.
initialization of numerical weather prediction models would

require a much denser observing network than exists today. ) ) .
Objective analysis and data assimilation techniques, whi¢h8.8 Mapping the Correlation Matrix: Tele-

are used to initialize forecast models, make extensive usecgynnection Patterns. The various combinations

the covariancestructure of the atmosphere. Climate foreca%f correlations between thigh and jth compo-
systems based on coupled ocean/atmosphere models also make

extensive use of such techniques to initialize the ocearfi\!?'nt_S of e_‘, random vectc)( form the_corrEI?tion
components of these models. matrix. If X represents &eld, a (possibly gridded)
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upper right half shows spatial correlations of the
low-frequency variations while the lower left half
shows the longitudinal correlations at the synoptic
time scale. The diagrams are read as follows. If we
read across from°0Oon the vertical scale and up
from 40° E on the horizontal scale we see that the
(simultaneous) correlation between low-frequency
time scale variations af@nd 40 E is about-0.3.
The banded structure in the lower left reflects
the midlatitude stormtracks. The strongest (nheg-
ative) correlations are found in a band that is
about 30 off the diagonal. When there is a deep
low at a given longitude, it is likely that there
will be a high 30 to the east or west, and vice
versa. The organization of the correlation minima
in bands indicates that the disturbances propagate

LOW-PASS FILTER
VEST EAST
7:?0 I.?'O 120 9.0 &0 3‘0 Q 3{0 60 90 120 150 180

O e

o wes

g

4
AMERICA EUROPE 44

180150 139 do" 6o o 0" 40" 50 do 120 750 140 (the direction of this propagation cannot be read
EH< 05 SEE< 04 STN< 08 £ [T < 02 s [)< 01 sS7 < 0¢ from this diagram).

BAND-PASS FILTER The correlation structure is no longer banded

at time scales of 10 or more days. On these time

Figure 2.8:Correlation matrices for the simulta—scales’ height anomal'ies east Of. the dateline are
neous variations of 500 hPa height along°0 strongly connected with anomalies of opposite

in the synoptic time scale (lower left) and th&'9" OVer North Ame”c?‘ (this reflects the PNA-
low-frequency transpose (upper right) band. On:gattern., [3.1.7]); other links appear over Europe
negative correlations are shown. From Fraedric nd Asia, and over the East Atlantic and Europe.
etal. [127].
2.8.9 Multivariate Normal Distribution.  The
m-dimensional random vectet has anultivariate

set of observations in space, then tjih row normal distributionwith mean and covariance

(or column) of the correlation matrix contains th, v jy s it ts joint probability density function is
correlations between the field at théh location . b
and all other locations. When this row is mappe%lven y
we obtain a spatial pattern of correlations that 1
climatologists call ateleconnection patterror g0 = 2r|z))?
teleconnection mapA map is considered ‘inter-
esting’ if it exhibits large correlations at some A bivariate normal density function is shown
distance from the ‘base point, and if it suggests in Figure 2.9. Like its univariate counterpart, the
physically plausible mechanisms (such as wawstribution is symmetric across all planes which
propagation). pass through the mean. The spread, or dispersion,
Such maps often unveil large-scale ‘teleconnegt the distribution is determined by the covariance
tions’ between a fixed base point and distant areasatrix 3.
We deal with theseéeleconnection map®s some  An important property of the multivariate
detail in 17.4. normal distribution is that linear combinations of
The entire correlation matrix may be plottechormal random variables are again distributed as
when the field is one-dimensional. For example@ormal random variables. In particular, ldtbe a
Fraedrich, Lutz, and Spekat [127] analysed daifyll rank m" x m matrix of constants witm’ <
500 hPa geopotential height along°®@ The m. ThenY = AX defines anm’-dimensional
annual cycle was removed from the data, and theandom vector which is distributed multivariate
two different time filters (see 17.5) were applied toormal with mean vector4;i and covariance
separate the synoptic disturbances (2.5 to 6 daystrix AX AT (Graybill [147]).
from low-frequency atmospheric variability (time An immediate consequence of this result is
scales greater than 10 days). that all marginal distributions of the multivariate
The correlation matrices (onlgegativecorre- normal distribution are also normal. That is,
lations are shown) of these two one-dimensionialdividual elements of a normal random veckor
random vectors are shown in Figure 2.8. Thare normally distributed and subsets of elements of

e G- E X (2 34)
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This can be rewritten as

(i —pui)? m

m
1 2
fa*:||7 29 :llf.-,
) X0 izl“/zoie i=1 e

Thus, if the non-diagonal element® are
zero, the joint density function factors as a
product of marginal density functions and hence
the components ofX are jointly independent.
Furthermore, it can be shown that if some
- non-diagonal elementyij, of X is zero, the

x1 corresponding random variable§ and X; are
pairwise independent.

X2
0

' : 2.8.11 Computing Probabilities. If ® is any

= subset ofR™, then the probability that a random
o " outcome of the random vectot occurs in® is
given as the integral of the density over the area
Q:

015 02

Z

0.05 0.1

AN
eSS
0
ISR
L85 RSN
S5 SN
55 SRS

0

P(X € ©) =/ 5 (%) d%.

<)
Of particular interest are those regio®g chosen
so that®, is the smallest region for which
Figure 2.9:A bivariate normal density function
with variancess? = 02 = 1 and covariances P(X € ©p) = p.
012=o021=0.5. . . .
Top: Contours of constant density; These areas turn out to be the interior regions
Bottom: three-dimensional representation. bounded by contours of constant probability
density. That is, for any givep, there is a constant

- o . kp such tha®, is given by
X are multivariate normal. The reverse is not true

in general. Op = {X: f3(X) = Kp}.
2.8.10 Independence. The covariance matrix For multivariate normal distributions, the region

plays much the same role in the multivariate), is the interior of an ellipsoid (such as those
case as does the variance in the scalar casesHbwn in Figure 2.9).

determines the spread of the distribution and theThe contours of constant density in a multivari-

shape of the region occupied by the main body gfe normal distribution are given by the contours

the distribution. _ ~ oftheMahalanobis distance
Suppose tha = ¢27, whereZ is the identity

matrix. Then the contours of constant density arg,2 gy _ (x — DT - ).
circular.
_ di 2 .S . .

If £ = diag(ef, -, 0f), the contours of the AssymingX ~ A/(fi, ), it can be shown that
scaled random vectdE /%X are circular where D2 ~ y2(m), so that
Y2 = (o7, 058, The scaled random
vector is identical toX except that each element 2.C R .
has been divided by its standard deviation. WithP(D (X) > Kp) _/0 Xm(W) du = p.
such a diagonal covariance matrix, the density

function of X is given by Thus, the problem of calculating probabilities
i)’ reduces to the inversion of thg? distribution.
f- () = 1 o Zim:l# We will return to this concept when introducing
X o m2Tm

T o)™, a ' statistical tests in [6.2.2].
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Suppose now that we wish characterize the
‘normal’ winds at our location by identifying the
95% of possible wind vectors that are closest to
the mean. That is, we wish to exclude from our
characterization the 5% of winds that are most
extreme. The probability of obtaining a realization
of a x2(2) random variable less than or equal to
5.99 is 0.95. Thus, the elliptical regidP?(u, v) <
5.99, bounded by the solid curve in the top
- of Figure 2.10, is expected to contain 95% of
SR all realizations of the vector wind. The points

0 5 1szna|w\nd 15 ) 5 in the diagram represent 1000 realizations of a

normal random vector with the mean and variance
described above (see also [6.1.1]).

10

Meridional Wind
4

10

2.8.13 The Bivariate Normal Distribution. We
describe the two-dimensional normal distribution
in more detail because it comes up frequently.
SupposelJ andV are jointly normal with means
uu and py respectively. Suppose also that the
covariance matrix is

( O’uz ouoy P )
E = 2 s
ouoy P o,

Meridional Wind
4

0 5 10 15 20 2 wherep is the correlation betwedd andV. Using
Zonal Wind (2.34) we see that the joint density function is
given by
Figure 2.10:Top: Example [2.8.12]: Ellipsoidal 1
regions that are expected to contain the vectofuVv (U, v) = 2rouoy/l— p2 (2.35)
wind 95% of the time. Here the correlation 5
is puy = 05 The dots represent 1000 « expl — 1 (U — pu)
realizations of the vector wind simulated from the 20yov (1 — p?) ol
corresponding normal distribution.
: U= )@ —py) (= py)?
Bottom: As above excepty = 0.8. —2p u LA v )
ouoy o2

2.8.12 Example. Suppose that the vector windElliPsoids of constant density, as shown in the top
V = (U, V)T ata particular location has a bivariat@f Figure 2.10, are characterized by the equation
normal distribution with mean and covariancec(1 — 52) — 2 - 2pzz, + 22,

matrix ) )
where the constarttis determined by the chosen

i=124" and ¥ = < 16 4 ) ) density, andz, andz, are standardized deviations

4 4 from the mean, given by
The correlation betweed andV is 2y = U— iy
ouv 4 1 Ou
p:UUUU:\/]__G\/ZZE. ZUZU;UMU'

The quadratic form for the contours of constanty;q equation describes a circle if and V are

density, uncorrelated. Whep > 0 (o < 0) the ellipsoid

D23) = G — )'=1@ - ), tips to the left (right), indicating that positive
values ofU tend to be associated with positive

is distributedy 2(2) and can be reduced to (negative) values of/. The principal axis of the

ellipse is given by
2 u? — 2uv + 4v? — 16u — 8v + 108
DU, v) = 12 : U= pu + sgnp)(ou/op) (v — py)
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and the minor axis is given by [2.8.10]; although bottJ andV are normal, they
are notjointly normal. Independence and zero
U= pu — Sgn(p)(a/oy) (v — iy)- correlation are equivalent only when the random

The ratio of the length of the principal axis to thayariables involved are jointly normal.

of the minor axis in a given ellipsoid of constant

density is 2.8.15 Conditional Distributions. Let )a(qbe

14 |p|\1/2 a norrrlal randﬁom vector of the fornXq, X»)
( ) . where X1 and X, are of dLmensionnl and my

—lpl respectively. The mean of is given by u =

Thus, the closelp| is to 1, the more concentrated i1, uz) where /1 and (> are the means o)f(l

the variation about the principal axis will be. ThandX respectively. The covariance matrixXfis

bottom of Figure 2.10 illustrates this with anothegiven by

hypothetical vector wind distribution, in which

puv is increased to 0.8. > = 11 X12
o1 X22
2.8.14 Example. Letus consider two univariate,,nere %11 is the covanance matrix oXl Top
normal random variables, is the covariance matrix oK, 12, Which is
U, V ~AN(@,1) calleq thecross—.covariance matrix, is tha.1 x My
matrix of covariances of elements ¥f with X»,
related through) = AV, where A is a discrete and ¥o; = ZIZ. The marginal distribution of
random variable such that X1 is N(@1, £11), and that ofX, has a similar
PA=1)=P®A=-1)=1/2. form. From (2.31), we obtain that the conditional

distribution of X1, given X, = Xp, is also
Both random variables have a standard deviationultivariate normal with conditional mean

of 1, so by (2.33) the correlationyy betweenU . - e
andV is equal to the covariance M2 = J1+ X12¥55 (X2 — H2) (2.36)

s and conditional covariance matrix
puUv = / uvfyv (u, v)dudv
Y112= 11— 21222_21212. (2.37)

= Z [/ u* fuy (u) du} axP(A=a)  The proof may be found in [281] or [147].
Itis interesting to note that the conditional mean

|: Z a _:| /uz fu () du of X1 depends upoX> whenX1, # 0 (i.e., when

] X1 andX» are dependent upon each other).

=0.
2.8.16 More on Conditional Distributions—
This should not, however, lead us to the conclusi@fptional.1® The conditional mean (2.36) can be
that they are independent, sind#® = V2 thought of as dinear specificatiorof the value of
Examination of the probability density functionsy, that is based oiX». The specification is linear
adds more satisfying evidence that these variablgscause the conditional mean is a vector of linear

are dependent: combinations of the elements ¥b.
fuv (U, v) The specification skill can be determined by
fuv=v(u) = RYOR computing the cross-covariances between the
. vector of specification errors and random vectors
= { 0 '_f u# v X1 andXz Useful speC|f|cat|ons will have errors
1/2 ifu=zv. with near zero cgvanance W|DK11 and exactly zero

That is, fuy=y # fu. The variables are covariance withXs. The interpretation in the first
dependent, since the joint (bivariate) densi§@se is that the specification accounts for almost
function fyy cannot be represented as the produgll of the variation inX1 because the errors have
of the two marginal distributiondy and fy (see little variation in common withX1. In the second
[2.8.5]). case, the interpretation is that all the information in

Thus, we have found an example in which 15nterested readers may want to return to this subsection
two dependent normal random variables have zefigu reading Chapter 8. This material is presented here because
correlation. However, this does not contradiatflows naturally from the previous subsection.
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X aboutX 1 that is obtainable by linear methods ishe extremes of wind pressure loading which are

contained in the specification.
The specification errors are given by

X12 = X1 — (i1 + £12555 (X2 — ji2)).

likely to occur during the life of the structures.
The roofs of houses built in high latitudes must
be able to withstand extreme snow loads. Insurers
who underwrite the financial risk associated with

The covariance between the specification errdfi€se natural risks must have good estimates of the

and)?z is zero as required:
COV()_{z, )?1|2)
S /o - 1.3 - T
E(Xa(Xa = (ia + $1255 (K2 — i2) ")
0.

The covariance between the specification err
andXi is

COV()zl, )_{1|2)
= 5(;(1(;(1 — (i1 + 12557 X2 — ﬁz)))T>

= Y112,

size and impact of extreme events in order to set
their premiums at a profitable level.

Extreme value analysiss the branch of
probability and statistics that is used to make
inferences about the size and frequency of
extreme events. The basic paradigm used varies
with application but generally has the following

*WBmponents:

o data gathering;

o identification of a suitable family of probabil-
ity distributions, one of which is to be used
to represent the distribution of the observed
extremes;

To determine from this whether the specification
is skilful, one could compute the proportion of the
total variance ofX; that is explained by,. The
total variance of a random vector is simply the sum
of the variances of the individual random variables
that make up the vector. This is equal to the sum of

e estimation of the parameters of the selected

model;

estimation ofreturn valuesfor periods of
fixed length. Return values are thresholds
which are exceeded, on average, once per

the diagonal elements (trace) of the covariance
matrix. Thus, a measure of the skil,is

S = 1—-1tr(Z112)/tr(X11)
(212257 51,)
S
Note thats = 0 if ¥1o = 0 and thats = 1

return period.

We will discuss each of these items briefly in the
following subsections.

2.9.1 Data Gathering. Typically, the objects of
study in extreme value analysis are collections of

whenzy, = zﬂzzzléz_ In fact,s cannot be greaterannual maxima of parameters that are observed

than 1.

2.9 Extreme Value Distributions

2.9.0 Introduction. Many practical problems

daily, such as temperature, precipitation, wind
speed and stream flow. Thus, observations are
required on two time scales.

e Observations are taken on short time scales

encountered in climatology and hydrology require
us to make inferences about tletremesof a
probability distribution. For example, the designs
of emergency measures in river valleys, floodways,
hydro-electric reservoirs, and bridges are all
constrained in one way or another by the largest
stream flow which is expected to occur over the
life of the plan, floodway, reservoir, bridge, etc.
The design of storm sewage systems, roads, and
other structures in a city is constrained by the
largest precipitation event anticipated during a
fixed design period (typically 50 or 100 years). The
design of electrical distribution systems, buildings
and other free-standing structures must account for

over a fixed time interval to obtain a single
extreme value. For example, they might
consist of daily precipitation accumulations
for a year. The maximum of the 365
observations is retained as the extreme daily
precipitation accumulation for the year, while
the rest of the observations serve only to
determine the extreme value.

It is important to understand that the extreme
is a realization of a random variable, namely
theNth order statistic (see[2.6.9]) of a sample
of sizeN. The extreme value in a subsequent
sample of equal size is another realization of
the same random variable.
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e This process is repeated over several tineecumulations match those of a corresponding
intervals in order to obtain the object okample of moving window accumulations.
extreme value analysis: a sample consistirByuce [69] describes how the correction factor
only of each interval’s extreme value. In thés estimated (see also Watt [416], p.76, and
previous example, if the daily precipitatiorHershfield and Wilson [176}°
accumulation is observed over a period of 50

years, then the sample of extreme values g 5 \odel Identification. In extreme value
be analysed is also of size 50, since each yeg{,ysis, the behaviour of the sample of extremes
yields one maximum. is almost always represented by pmrametric
) ) model, a probability distribution selected for its
Extreme value analysis requires some sort ghjivy to indicate the characteristics of the extreme
assumptllon about the sFannarlty and erg'odu.:%uues reasonably welf. Asymptotic arguments
of the climate system, since only one realizatiofy, pe ysed to select the extreme value distribution
of the past climate is available from climatg something is known about the distribution of the
archives. The implicit working assumption in MoSfanqom variable observed on short time scales; an
extreme value analyses is that the samplenofyjiernative approach is to use the extreme values

extremes are realizations of independent and hemselves to identify a suitable model. Both
identically distributed random variables (We Wilh‘lethOdS will be briefly discussed here.

discuss suitable distributions for extreme values

shortly). Sometimes, though, it is clear that the

climate system violates this assumption on certafn®-3 '\f]Odel Identification: The Asympfttotlc
time scales. For example, during an EFilj the ~PProach. Asymptotic arguments are often an

statistical characteristics of precipitation chand > pqrtar_lt part of s_electlng an extrgme _value
on time scales of less than a season istribution. Under fairly general conditions it can
The following are examples of the context ilpe shown that, in samples of sizgthe distribution

which extreme value analyses are conducted. OI iue extrergelv.a:ﬁgs cot;lvlergle;snas» OC; to olne
Structural engineers designing a transmissiQ -I)redeisrtr;i(iju?is.n th:I;ne a?s(g; teagsﬁ(norygsl_l’l)or
tower may require knowledge about the extrem o ' yp
of the five-minute mean wind speed. They woul istribution, and thePearson type lli(or EV-III)

' istribution®

extract daily, monthly or annual maxima o . .
Y y The rate of convergence is largely determined by

five-minute mean wind speed for a particulat o er (sometimes lowen tail of the distribution
location from climatological archives foranearbg‘ upper ( ! wer) p ISTrIbUAC
f the short time scale variable (e.g., daily

observing station. o
Civil engineers designing a floodway around %rempltatlon) that generates the extrerteH.the

city might require knowledge about the extremesiéthe correction factor used to convert fixed window 24-hour
of 24-hour precipitation, and will therefore extracprecipitation accumulations to moving window accumulations
daily monthly and annual maxima of 24-h0ui|n Canada is 1.13 [69]. This factor will vary with location

initation f limatological hi depending upon how and when precipitation is produced. The
precipiiation from climatological archives. factor also depends upon the accumulation period.

A frequently encountered difficulty with 17see Section 4.2 for a discussion of the difference between
archived precipitation data is that the archivasrametric and non-parametric statistics.
genera”y contain the accumulation for a 181 the classical treatment of extreme value analysis (see

. _ . P umbel [149]) it is necessary to assume that the extremes
fixed 24-hour pe”Od (usua”y beglnnlng at Ogomefrom samples that can be represented by independent and

UTC) as opposed to moving window 24-hOUgentically distributed random variables. Leadbetter et al. [246]
accumulations. This is of concern because oftemow that the independence assumption can be substantially
the critical quantity is not, for example, théelte:_xed. Thebsta_meb?symhptottiﬁ rest:lts obtaine(:hin thefclassiclal
. . : etting are obtainable when the extremes are those of samples
maX|mum amount of .ram that fa".S ina 24'houfaken from aweakly stationary, ergodic time series (see
time scale that consistently begins at 00 UTfzo.2.1)).
(i.e., a fixed 24-hour window), but the maximum °when we speak of the ‘convergence’ of a sequence of
amount of rain that falls in a 24-hour periodangOm Vaf_iagl';& sayi. | =_h1’2:---v to a”‘?ths_f f?gd‘?m
starting at any time of the day (i.e., a mOVinéarn om variabl& we mean eitheconvergence in distribution

24-h ind Th f f th convergence in mean squailde sayY; converges t& in
-hour window). erelore a nuance o gistribution, and writeYj —d> Zif P(Yi—Z| >¢) - Oas

‘?nalySis of extreme p_recipitation is tha_t .thf"—> oo for everye > 0. We sayY; converges t& in mean
fixed window accumulations must be multipliedq,are, and writy; ™ 7 if g((Yi ~22) 5 0asi — .

by an empirically derived ConStan_t to €NSUlBonvergence in mean square usually implies convergence in
that the extremes of a sample of fixed windowistribution.
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distribution of the extreme values converges, to sayAnother frequently used method of model

the Gumbel distribution, then we say that the shddentification relies on estimates of the skewness
time scale variable lies ithe domain of attraction and kurtosis of the extreme value distribution that
of the Gumbel distribution. are computed from the sample of extremes. The

The EV-I distribution will be described briefly (skewness, kurtosis) pair is plotted on a chart of
below. Descriptions of the EV-II and Il distribu-kurtosis as a function of skewness for various
tions can be found in Gumbel [149] or Leadbettdamilies of distributions, often calledPearson
et al. [246]. curves(see Elderton and Johnson [112]). A model

Both the exponential distribution and the normas identified by the proximity of the plotted point
distribution lie in the domain of attraction ofto a distribution’s curve (there is a unique Pearson
the EV-I distribution. However, the distributioncurve for every distribution).
of the largest of a sample ofi independent Model identification with Pearson curves is
and identically distributed exponential randordifficult and often not completely successful
variables is closer to the EV-I distribution thamecause the skewness and kurtosis estimates are
the distribution of the largest of a sample ofubject to a great deal of sampling variability.
n independent and identically distributed normatstimates often end up occupying a point in the
random variables. Thus, Cook [89] argues thétkewness, kurtosis) plane that can not be visited
it is better to do extreme value analyses doy adjusting parameters within known families of
wind pressure (which is proportional to windlistributions.
speed squared) than on wind speed because\ better alternative is to use L-moments in com-
the former has a distribution that is closer tbination with L-moment versions of the Pearson
exponential, and therefore closer to EV-I. Zwiersurves [183] for model identification. L-moments
[439] makes use of this argument in his analysége subject to less sampling variation, that is,
of extreme wind speeds at several Canaditmey are more robust than conventional moments
observing stations. and discriminate better between competing models

(see Hosking [183]).
2.9.4 Model Identification: Using the Data.
Unfortunately, the asymptotic EV distributions d@.9.5 Model Fitting. Once a model (i.e., ex-
not always fit the observed extremes well. Thigeme value distribution) has been selected the next
can occur for a variety of reasons, not the leastep in the analysis is to ‘fit' the chosen extreme
of which is the cyclo-stationarity of the climatevalue distribution to the sample of extrem&#-
data under the best of conditions. Consider, fgihg means estimating the unknown parameters of
example, the daily precipitation accumulatiorthe chosen extreme value distribution.
While the annual maximum daily precipitation Several methods may be used for parameter
accumulation is formally the maximum of 36%stimation. These methods may produce quite
observations, the effect of the annual cycle may lggfferent results with the small sample of extremes
such that only a small number of observations hawgat is usually available, even though their results
any chance at all of attaining the status of annugécome asymptotically identical as the number of
maximum. observed extremes becomes large. The theoretical

At Vancouver (British Columbia, Canada), fokuitability of one method over another in repeated
example (see Figure 1.7), the annual maximusampling has often been the subject of literal
is usually generated during winter when there igebate. However, these discussions are of little use
strong on-shore flow from the south-west. It ighen economic decisions strongly depend on the
apparent from Figure 1.7 that only about 60 daygcuracy of the results, as is often tAfe.
of the year have the potential to generate the annuairhe methods most often used for fitting (see
maximum at Vancouver. On the other hand, thgection 5.2) are
annual maximum can occur with approximately
equal likelihood on any day of the year on Sable ® the method of moments,

Island (see Figure 1.7), located on the east coast of. the method of maximum likelihood,
Canada.

Because the asymptotic distribution is not2%ror example, estimates of the largest precipitation event
always obtained, other distributions such a&pected to occur during a 25-year period will strongly
the Generalized Extreme Value (GEV), Weibu"nﬂuence the diameter, slope_ and other parameters of a city's

L. storm sewer system. An estimate of the 25-year event that is
Pareto, and Wakeby distributions are also usedy jarge will result in the building of a sewer system that has
extreme value analysis. larger capacity, and therefore higher cost, than necessary.
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jreturn time 2 10 100 1000 model, will be exceeded on average once every
return period.

Return values are simply the upper quantiles of
the fitted extreme value distribution. For example,
suppose that the random variabYe represents
an annual extreme maximum and thét has
probability density functionfy(y). The 10-year
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0.5

0.4

oal return value forY is the valueY(10) such that
02| \ o
o1r P(Y > Y(lO)) = / fy(y)dy = 1/10.

0 I L L A | . . y(lo)

0 1 2 3 4 5 6 7 8 9 10

In general, theT -year return value for the annual

Figure 2.11: An example of the probability ™3XIMUM: S, is the solution of
density functionfy (y) and cumulative distribution oo
function Fy(y) of an extreme value distribution / fy(y)dy=1/T.

(for annual maxima). This particular distribution Y

is the Gumbel with parameters = In 6 and That s, theT -year return values are simply points
A =1 (see [2.9.8]). The location of 2, 5, 10, 100pn the abscissa such that the area under the right
and 1000 year return values are indicated by thgand tail of the density function is/T. The
vertical bars. Note that the two-year return valugoncept is illustrated in Figure 2.11.

corresponds toFy(y) = 1/2, the 10-year value  Return values for extreme minima are similarly

corresponds td-y (y) = 9/10, etc. Also note thatcomputed using the tail areas under the left hand
the distribution has a much wider right hand taitaj| of a suitable extreme value distribution.
than that of distributions we have become familiar

with.
2.9.7 Example: Daily Maximum Temperature.

N _ As an example, consider the change in the
o the method of probability weighted momentsextremes of the daily maximum temperature at 2 m

and height that might occur as a result of a doubling
h hod of L of the atmospheric C&concentration (see Zwiers
o the method of L-moments. and Kharin [448]). Zwiers and Kharin showed that

Optimality considerations in repeated sampliny® annual extremes of temperature can be well
generally lead to the use of the method depresented by the EV-I distributions in both the

maximum likelihood (see [5.3.8]). On the otheftxCQ2and 2xCQ climates of the 'CCC GCMII
hand, the method of L-moments is mabust, General Circulation Mode¥? Estimates of the 10-

This method is less affected by occasiondfar return values derived from the ‘control run’
observational errors or data transcription errofs<CQz are displayed in Figure 2.12 (top). These
(such as a misplaced decimal point) than oth§plues verify reasonably well in general terms.
fittihg methods. The method of probabilit))"owe"erv values at specific locations should not
weighted moments (see Hosking, Wallis anige compared directly with return values estimated

Wood [184]) is closely related to the method ofrom station data because climate simulations can
L-moments. The ordinary method of moments jaot be considered reliable at length scales shorter

also frequently used because of simplicity arffan @ few grid lengths.

induced in the 10-year return value by a doubling
2.9.6 Return Values. The last stepin an extrem of COp. The globally averaged increase is about

L . .1°C. The corresponding value for the increase
value analysis is usually to compute ‘return values . -
in the 10-year return value of the daily minimum

for preset periods (e.g., 10, 50, 100 years). These . o

P P (eg 2 ) e perature is B°C, indicating that the shape

values are thresholds that, according to the fitte o .
of the temperature distribution might change

21The ordinary method of moments is similar to the methogUbstantially with increasing Gxoncentrations.

of L-moments [2.6.7, 2.6.9]. Instead of matching population

L-moments to estimated L-moments, ordinary population 22The Canadian Climate Centre GCMII (McFarlane et al.

moments (mean, variance, skewness, and kurtosis) are matd2d@]). The CCC 2xCQ experiment is described by Boer,

with corresponding estimates. McFarlane, and Lazare [52].
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In addition to the overall warming causedhe domain of attraction of the EV-I distribution.
by the change in the radiative balance of thEhe essential element that controls convergence is
model climate under C® doubling, there are simply the point at which the right hand tail of the
also a variety of interesting physical effects thatistribution generating the individual observations
contribute to the spatial structure of the changéggins to behave as the right hand tail of the ex-
in the return values. For example, daily maximurponential distribution. Distributions for which the
temperatures are no longer constrained by theaximum of a sample of size converges to the
effect of melting ice at the location of thexCO, Gumbel slowly exhibit exponential behaviour only
sea ice margin. Also, the soil dries and th#r observations that are many standard deviations
albedo of the land surface increases over tfiem the centre of the distribution.

Northern Hemisphere land masses, leading to aThe EV-I distribution is a two-parameter

substantial increase in the extremes of modelldiktribution with a location parametar and a

daily maximum temperature. scale parameter. The density function of an EV-|
random variableY is given by

2.9.8 Gumbel Distribution. To conclude this C(y—
section on extreme values, we provide a simfY (s U ) = expl—[(y —u)/1 + € v,
ple derivation of the Gumbel or EV-I distribu-The mean and the variance 6fare given by

tion [149]. Let X4, ..., X, represenin indepen-

dent, identically distributed, exponential random py = u+yi

variables observed on the short time scale. The%r(Y) — 22728,

random variables might, for example, represent a

sample ofh wind pressure measurements which, agherey is Euler’'s constant. The L-moments are:
we have noted previously, have a distribution that

is close to exponenti&f The distribution function AP =u+ya

for any one of these random variables is 2@ = xIn2
L _
Fx(:A) =P(X <x)=1—e**, yr = 0.1699
. y+ = 0.1504.
Let Y be the maximum of{Xy, ..., Xp}. Then
Y <yifandonlyif Xj <yforeachi =1,...,n. As noted above, return values are obtained
Using independence, we obtain that by inverting the distribution. For example, if the
n Gumbel distribution were fitted to annual maxima,
P(YY <y) = HP(Xi <) then the T-year return value, say/(T), is the
i1 solution of
— L
= F1X(y’ Y 1T = P(Y > Yr))
=(1-e
( —y)/k = 1-Fv(ym:u,n)
~ expl—ne 7. = 1— exp{—e” Ym~W/4), (2.38)

The quality of the approximation improves with_ .
increasingn, that is, if each extreme is obtainedSOIVIng (2.38) yields
from a larger sample of observations collected on
the short time scale. After a bit more manipulation,y(T)
we see that, asn increases indefinitely, the

=u—2Aln(-In1-1/T)).

distribution function ofY takes the form 2.9.9 Other Approaches. Another approach
y—u/a to extreme value analysis that we have not
Fy(y;u,2) =P (Y <y) =exp—e }- discussed is the so-callepeaks-over-threshold

approach. In contrast to analysing annual (or
other period) maxima, the peaks-over-threshold
approach sets a high threshold and then analyses
all exceedances above that threshold. The appeal
23e use exponential random variables in our derivation f@f this approach is that it may be possible to
mathematical convenience. We could use any collection ofextract additional information about the extremes
|ndepend_enF an_d |dent|ca|!y dlStI’IbUt?d random vanab'les’ tr@; a climate parameter by setting the threshold in
have a distribution belonging to the ‘domain of attraction’ o .
the EV-I distribution and obtain identical results by using mor\_§UCh a way that more than one threshold crossing
sophisticated analytical techniques. is observed per year. To apply the approach,

This is the distribution function of th&umbel
or EV-I distribution Convergence to this distribu-
tion is achieved similarly for all distributions in
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Figure 2.12:Estimated 10-year return values of daily maximum temperature at 2 m height estimatec
from the output of model experiments with a General Circulation Model coupled to a mixed-layer oceal
model and a sea-ice model. Unit. From [270].

Top: Return values estimated from a 20-year control run.

Bottom: Change of the return values a derived from above and the output of a 10-year model experime
with doubled atmospheric CQ&oncentrations.

one must be careful about the placement of the precipitation data at a variety of Canadian
threshold and also account for the effects ddcations. This method uses monthly extremes and
cyclo-stationarity. Ross [333] illustrates the peakstandard extreme value distributions, while also
over-threshold approach with an application to theccounting for cyclo-stationarity. References cited
analysis of wind speed data. Zwiers and Ross [490} [439], [333], [450], and [448] will provide

describe an approach that provides more relialitee interested reader with entry points into the
estimates of return values and has been appliadmense collection of extreme value literature.



3 Distributions of Climate Variables

3.0.1 The Components of the Climate System.3.0.2 The Law of Large Numbers and Climate
The climate system is composed of all process&sne Scales. The instantaneous values or daily
that directly or indirectly control the atmospheri@ccumulations of many climate variables have
environment of humans and ecosystems. The makewed distributions. On the other hand, averages
components of the system are the hydro- amd accumulations taken over long periods tend to
thermodynamic states of the atmosphere and the ‘near normal' because of the Central Limit
ocean. Sea ice affects the exchange of he@heorem [2.7.5].
momentum and fresh water between oceans and
atmosphere. On longer time scales, the shelf ice i
and the land ice become relevant since the3@-3 Length and Time Scales. Two terms
components are able to store and release lafRJien used in climate research anme scaleand
quantities of fresh water. The atmosphere, ocedpndth scale. Although these terms are vaguely
and land surface are interconnected by meaf€fined, thinking about the temporal and spatial
of the hydrological cycle on a number of timgesolution needed to describe a phenomenon
scales. Precipitation falls on the land where gccurately will help us to select suitable variables
affects land surface properties such as ame%studyand to f.ind suitable approximations of the
and heat capacity. Some of this precipitatioBPVerning equations (see Pedlosky’s book [310] on
evaporates into the atmosphere, and some flodRoPhysical fluid dynamics).
to the ocean as runoff. Fresh water flux into A length scale is a characteristic length that
the ocean by means of precipitation and runoff representative of the spatial variations relevant
and out of the ocean through evaporation, affed the process under investigation. For instance,
ocean variability, which in turn feeds back ofif this process is an extratropical storm, then its
atmospheric variability. length scale may be taken as its diameter or as
Changes in the chemical composition of thie distance between a pressure minimum and
atmosphere also impact the climate systeffie closest pressure maximum. The length scale
because the concentration of carbon dioxidef @ wind sed may be the distance between a
ozone, or other radiatively active gases affectve crest and a wave valley, or between two
the radiative balance of the atmosphere. Theg@nsecutive crests.
concentrations are controlled by the state of The term ‘time scale’ is defined similarly.
the atmosphere and the ocean, as well as thge scales are representative of the duration
biospheric and anthropogenic sinks and sourcek the phenomenon of interest and the greater
of these chemicals. Clearly the components fivironment. For example, extratropical storms
the climate system cannot be defined exhaustivetijgsipate within a few days of cyclogenesis, so
since it is not a closed system in a strict sense. Suitable time scales range from about an hour
In the following sections we describe severdp perhaps two days. Convective storms (thunder
atmospheric, oceanic, cryospheric (ice and sno@tprms), on the other hand, occur on much shorter
and hydrologic variablel. The choice of the spatial (up to tens of kilometres) and temporal
variables is subjective and biased towards thoseales (minutes to several hours). In both cases, the
that are most easily observed. Shea et al. [348]e scale gives an indication of the ‘memory’ of
list addresses of atmospheric and oceanograpHi€ process. A statistical measure of ‘memory’ is
data centres in the US, and give an overview Hie decorrelation timedescribed in Section 17.1.
easily accessible atmospheric and oceanographite decorrelation time for the mean sea-level
data sets at the National Center for Atmospherfessure (SLP) is typically three to five days in
Research (NCAR).

2The part of the ocean wave field that is in dynamical
1Biospheric variables are beyond the scope of this text. contact with the wind.
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the extratropics, while that for convection is on thBlore examples, for instance of the complicating
order of half a day. effect of observation time on the daily temperature,
We choose variables that describe the variatitine snow cover derived from satellite data, and the
on the length and time scales of interest thaffect of lifting a precipitation gauge from the 1 m
are relevant to a problem. For example, to studigvel to the 2 m level, arelescribed in a review
extratropical cyclones, the divergence should tpaper by Karl, Quayle, and Groisman [213].
chosen rather than the velocity potenfidVhen  jones [201] discusses, in some detail, the

we observe the process, we sample it at spatial gsidblems in long time series of precipitation,
temporal increments that resolve the length afémperature and other atmospheric data, and lists
time scales. many relevant papers.

_ An interesting feature _of the climate SyStéM Gridded data have the advantage that they
is that the length and times scales of climai@, asent the full spatial distribution. However,

variability are often related. Processes with qug data sparse areas, the gridded value may be
length scales have long time scales, and shQih e representative of the forecast models and
time scales are associated with short length Scalﬁ’ﬁerpolation schemes that are used to do the
This fact is illustrated for the atmosphere and th?ojective analysfs than they are of the state of

ocean in Figure 3.1. However, this rule is far frorg,q cjimate system. Unfortunately, when used for
precise. /-\_tmosphenc fudes are an example Of(ﬁagnostic purposes, it is impossible to distinguish
process with large spatial scales and Shorttemp%@tween observed and interpolated, or guessed,

scales. information. Difficulties also arise because most

gridded data are a byproduct of numerical weather
3.1 Atmospheric Variables forecasting and therefore affected by changes in

the forecast and analysis systetrSuch changes
3.1.1 Significant Variables. A myriad of are made almost continually in an effort to
variables can be used to monitor the physicahprove forecast skill by incorporating the latest
state of the atmosphere; so understandably tlesearch and data sources and exploiting the latest
following list of variables commonly used incomputing hardware (see, e.g., Trenberth and
climate research is not at all exhaustive. Olsen [370], or Lambert [240] [241]).

Local climate is often monitored witstation  Finally, we note in passing that climate model
data: temperature (daily minimum and maximungutput is not generally affected by the kinds of
daily mean), precipitation (5 min, 10 min, hourljproblems described above, although it too can
and daily amounts, monthly amount, numbéfave its own idiosyncrasies (see, e.g., Zwiers
of wet days per month), pressure, humidity444]). However, simulations that are constrained
cloudiness, sunshine, and wind (various timgy observations in some way can be affected.
averaging intervals).

.The I_arge_scale climate IS_ generally described 4Objective analysigs used to initialize numerical weather
with gridded data, such as: sea-level pressurgyecasting models. Most weather forecasting centres re-
geopotential height, temperature, the vector winditialize their forecasting models every six hours. Typically,
stream function and velocity potential, VortiCityhe objective analysis system adjusts the latest six-hour forecast

. . P . comparing it with station, upper air, satellite, airline, and
and dlvergenc,e’_relatlve humidity, and OUtgomﬁzip reports gathered during a six-hour window centred on
long-wave radiation. Some of these are based @8 forecast time. The adjusted forecast becomes the initial
observations (e.g., temperature) while others amandition for the next six-hour numerical forecast. Objective
derived quantities (e.g. vorticity). analysis systems are the source of most gridded data used in

Th . bl ith ti ies f tati climate research. See Hfiaux and Pedder [362] or Daley [98]
€ main problem wi Ime series from stauog), comprehensive descriptions of objective analysis.

data is that the data are often not homogeneoussre-analysiprojects (Kalnay et al. [210]) have done much
they exhibit trends or sudden jumps in the mean @rameliorate this problem. These projects re-analysed archived
variance that are caused by changes in the physi%ervational data using a fixed analysis system. Note that

. - Lo . re-analysis data are still affected by changes in, for example, the
environment of the observmg site, in the observi d of observing systems used (e.g., many different satellite

equipment, of the observing procedures and timgsed sensors have been ‘flown’ for various lengths of time) or
and of the responsible personnel (see Figure 1.@} distribution and number of surface stations.
6Examples include ‘AMIP’ (Atmospheric Model Intercom-
3The divergence is approximately the second derivative parison Project; see Gates [137]) and ‘C20C’ (Climate of the
the velocity potential and is sensitive to small scale featureByentieth Century; see Folland and Rowell [123]) simulations.
as in extratropical storms. The velocity potential, on the oth&ea-surface temperature and sea-ice extent are prescribed from
hand, displays planetary scale divergent, as in the large tropio@kervations in both cases, and thus the models are forced with
overturning of the Hadley circulation. data that are affected by observing system changes.




3.1: Atmospheric Variables

(Characteristic length scale [m]

(haracteristic length scale [m]

108 =
R planetary
| waves
106 == 1000 km @
R cloud
—= clusters
104 3 o thunder
= 4%
= $ storms
] N
—=~ 1km N
] © cumulus
] convection
102 =
_: boundary
E layer
B turbulence
100 == 1m
B micro
— turbulence
10'2—;- 1cm
] 1 selcond 1 milnute 1 hour 1day 10 1ylear 110 1(:0 1090
LIRRLLL I RAA A AR AR B R AL N RANIE AN A AL AR
10-2 100 102 104 106 108 1010
(haracteristic time scale [s]
108 E
106 —= 1000 km .M
| geostrophic
3 eddies
4 —]
10 3 inertial
- waves
—= 1 km internal
E gravity
- waves
2 —
10 E sound
] waves boundary
= layer
= turbulence
100 ==1m
_: micro
E turbulence
102z~ 1cm
1 1second 1 minute thour 1day 10 fyear 10 100 1000
L 1L [ ] 1 L L L L
T T T T TTIm | T Ty T T T IO T3y 1T T T3 Ty T Ty T T T
102 100 102 104 106 108 1010

(haracteristic time scale [s]

Figure 3.1:Length and time scales in the atmosphere and ocean. After [390].
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5.00 e The statistics of themount of precipitation
: depend on the accumulation time, as demon-
strated in Figure 3.2. The curves, which
are empirical distribution functions of accu-
mulated precipitation, are plotted so that a
normal distribution appears as a straight line.
For shorter accumulation times, such as days
Anwal e Monthly and weeks, the curves are markedly concave
Setember Dy with medians (at probability 0.5) that are less
than the mean (normalized precipitation = 1),
indicating that these accumulations are not
normally distributed. For the annual accumu-
lation, the probability plot is a perfect straight
line with coinciding mean and median. Thus,

Figure 3.2: Empirical distribution functions of for long accumulation times the distribution
the amount of precipitation, summed over a is normal. Figure 3.2 is a practical demonstra-
day, a week, a month, or a year, at West tion ofthe Central Limit Theorem.

Glacier, Montana, USA. The amounts have been )

normalized by the respective means, and are® 'nhenumber of rainy days per monts often
plotted on a probability scale so that a normal  independent of the amount of precipitation.
distribution appears as a straight line. For further
explanations see [3.1.3]. From Lettenmaier [252]. ®
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The time between any two rainfall events, or
between two rainy days, is thaterarrival
time.

3.1.2 Precipitation. Precipitation, in the form , . o
of rain or snow, is an extremely import‘,ﬂn{_ettenma|er [252] deals with the distribution

climate variable: for the atmosphere, precipitatio"f'fSpeCtS of preC|'p|ta.t|0n and offers many references
indicates the release of latent heat somewhéfer€lévant publications.

in the air column; for the ocean, precipitation

represents a source of fresh water; on lang,1.3 Probability Plots—a Diversion. Dia-
precipitation is the source of the hydrologicajrams such as Figure 3.2 are callebability
cycle; for ecology, precipitation represents aplots, a type of display we discuss in more detail
important external controlling factor. here.

There are two different dynamical processes thatThe diagram is a plot of the empirical
yield precipitation. One is convection, which igjistribution function, rotated so the possible
the means by which the atmosphere deals wighitcomesy lie on the vertical axis, and the
vertically unstable conditions. Thus, convectioBstimated cumulative probabilitigg'y) = ﬁY(y)
depends mostly on the local thermodynamige on the horizontal axié. Alternatively, if
conditions. Convective rain is often connectele considerp the independent variable on the
with short durations and high rain rates. Thgq i, ontal axis, thery — g\—(l(p) is scaled by

other precipitation producing process is larggne vertical axis. For reasons outlined below, the

scale uplift of the air, which is associated Witr\‘/ariablep is re-scaled by = Fxl(p) with some

the large-scale circulation of the troposphergn,sen distribution functioFx. The horizontal
Largg-scale rain takes P'ace over longer per|9g§is is then plotted with a linear scale ¥ The
but is generally less intense than convective | pals (which are given on a nonlinear scale)

rain. Sansom and Thomson [338] and Bel,o etained. Thus, Figure 3.2 shows the function
and Suhasini [40] have proposed mterestln)g_) l’:\il[Fx(X)] If By = Fy, the function is
Y - = Fx,

approaches for the representation of rain-rate . . . . )
distributions, or the duration of rain-events, at € identity and the graph s the straight line x).

a sum of two disuibutions: one represening, T PR 2 X B0G 0 et B e obeerved
the large-scale rain and the other the convectiv

rain random variabler has the postulated distribution

Fx.

There are a number of relevant parameter§(
that characterize the precipitation statistics at a7tne ‘hat notation, as irffy (y), is used throughout this
location. book to identify functions and parameters that are estimated.
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B T00 ey apparently occur over a broad range (caus-
g ing the long negative tail) whereas warm
o .

i extremes are more tightly clustered.

e The distribution has two marked maxima at
35°F and at 75F. This bimodality might
be due to the interference of the annual
cycle: summer and winter conditions are
more stationary than the ‘transient’ spring
and autumn seasons, so the two peaks may
represent the summer and winter modes.
The summer peak is taller than the winter
peak because summer weather is less variable
than winter weather. Also, the peak near the
freezing point of 33F might reflect energy
absorption by melting snow.

-2 10 3 10 20 30 40 50 8D 7O 80 &0 00 110
Maximum Temperature

Figure 3.3: Frequency distribution of daily
maximum temperature ifF at Napoleon (North e Thereis a marked preference for temperatures
Dakota, USA) derived from daily observations €nding with the digits O and 5. Nese

from 1900 to 1986. From Nese [291]. [291] also found that the digits 2 and 8
were overrepresented. This is an example of

When the observed and postulated random psychology interfering with science.

variables both belong to a ‘location-scale’ family . .
e ) Averages of daily mean air temperattiege also
of distributions, such as the normal family, a

straight line is also obtained whéf and X have ;omeumes markedly nqn-normal, as is the case
in Hamburg (Germany) in January and February.

different means and variances. In particular, if Reather in Hamburg is usually controlled by

random variabl&X has zero mean and unit variance . : .
a westerly wind regime, which advects clouds

and maritime air from the Atlantic Ocean. In
y = FYfl(p) =i JrGF)Zl(p) — utox this yveather regime temperatures hoyer near the
median. However, the westerly flow is blocked
The line has the intercept atx = 0 and a slope intermittently when a high pressure ‘blocking’
ofo. regime prevails. In this case, the temperature
When we thinkY has a normal distribution, thejs primarily controlled by the local radiative
reference distributiorFx is the standard normalpalance. The absence of clouds and the frequent
distribution. S-shaped probability plots indicatgresence of snow cover cause the temperatures to
that the data come from a distribution with widegirop significantly due to radiative cooling. Thus,
or narrower tails than the normal diStribUtiOﬂda”y temperatures are sometimes very low, but
Probability plots with curvature all of one signthey usually vary moderately about the mean of
as in Figure 3.2, indicate skewness. Other locatiorp.4°C. Strong positive temperature deviations
scale families include the log-normal, exponentiakom the mean occur rarely. This behaviour is
Gumbel, and Weibull distributions. reflected in the empirical distribution function
of the winter mean anomalies (Figure 3.4): the
3.1.4 Temperature. Generally, temperature isminimum two-month mean temperature in the
approximately normally distributed, particularlyl901-80 record is—8.2°C, the maximum is
if averaged over a significant amount of time ir-3.2°C, while the median ig-0.2°C.
the troposphere. However, daily values of near- The distribution function in Figure 3.4 is not
surface temperature can have more complicategll approximated by a normal distribution. It is
distributions. markedly skewed (with an estimated skewness of
The frequency distribution of daily maximum—1.3 and an estimated third L-moment-eR.86).
temperature at Napoleon (North Dakota) for 1900he degree of convergence towards the normal
to 1986 (Figure 3.3, Nese [291]) provides another
interesting example.

such thatFy (y) = Fx(£), then

8:Daily means’ are supposed to represent diurnal averages.
In practice, they are obtained by averaging a small number of
L . . .. _regularly spaced observations taken over the 24 hours of each
e The distribution is skewed with a W|deday, or, more often, as the mean of the daily maximum and

left hand tail. Cold temperature extremesinimum temperatures.
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Figure 3.5: Frequency distribution of wind
Figure 3.4:Empirical distribution function of the estimates on the Beaufort scale, derived from
January/February mean temperatures in Hambusgbluntary ship reports in the English Channel
(Germany). The step function is the empiricalfter 1949. The solid dots are derived from
distribution function derived from the years 190124 442reports from shipsvithout an anemometer,
80, and the smooth line is the distribution functiowhereas the open dots stem from 981 observations
of the normal distribution fitted to the data. made when an instrument was available. All

24 442+ 981reports are visual assessments of the

distribution that is predicted by the Central Limit€a state. Peterson and Hasse [313].
Theorem [2.7.5], withXx = daily temperature

at day k in one JF seasorandn = 60), is regular merchant vessels, and the weather is
still weak: more than 60 (non-independent) daily reported by the crew. The COADBSdata set
observations are required for the convergence to g composed of all archived VOS reports.

become significant.

FREQUENCY OF OCCURRENCE (%)
o
I
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o
I
T

o

All these products have their problems. An ex-
3.1.5 Wind. Wind statistics are required forample is shown in Figure 3.5, which discriminates
various climate-related purposes. For, examplgtween VOS reports based on visual estimates of
wind statistics are needed to force a variety @bservers who do or do not have an anemometer at
ocean models that simulate regional or globtheir disposal (Peterson and Hasse [313]). Signifi-
circulation, the surface seas state, storm surgesgcantly higher Beaufort winds are reported when an
the flux of energy or momentum through the airinstrument is available (Peterson and Hasse [313]
sea interface. Hasse [164] lists the ‘surface wingejected the null hypothesis of equal distributions
products that are frequently used in ocean-relatatiless than the 1% significance level).
studies: They include data sets derived from: It is generally believed that the Beaufort-
o the surface wind simulated b . ?stimates are more homogeneous than observa-
: y NUMENC; e from shipborne instruments since the latter
weather forecasting models at their Iowes% .
computational levels: are affected by fac_tors such as the height of _the
' instrument, the motion of the ship and deformation
e local wind measurement at 10 m heighgf the flow as it passes over the ship’s superstruc-
(representative only for the immediate neigHure.
bourhood of the measurement); Peterson and Hasse [313] offer the following

i tentative explanation for the discrepancy in
e surface air-pressure maps (used to CompLﬁfbure 35

‘geostrophic winds’);

e satellite microwave backscatter signals,The reason for different Beaufort estimates of ships

which are transformed into wind estimateswith and without an anemometer is not really
with empirically derived algorithms: known. A possible explanation is that anemometer

. . 1 i
e a large fleet ofvoluntary observing ships, '°The Comprehensive Ocean Atmosphere Data Set
COADS) is an important collection of marine observations

(VOS)’ that .pI‘OVId.e either ane.mometeiuch as sea-surface temperature, air temperature, cloudiness

readings or visual wind speed estimates @id wind speed (see Woodruff et al. [425]). All available

the Beaufortscale® These VOS are mostlyship reports have been pooled together inx22° longitude

x latitude bins. The data have not been corrected and they
9The Beaufort scale is a visual measure of wind speed thatffer from temporal inhomogeneities due to changes in

is based on the state. Itis reported as a force on a scale of 1-#h&rumentation and observational practices.
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Figure 3.6:Time series of anomalies of annual

mean wind speeds in the North Pacific, as
derived from two independent data sets. Upper
panel: data from Ocean Weather Station P; lower
panel: data from voluntary observing ships in the
neighbourhood of the weather ship. From Isemer,
unpublished.

30%

outputs ...often use simple dial displays showing 1140 <vic164 2
instantaneous winds. On viewing the instruments one " " "

tends to be more impressed by the gusts instead of
the lulls. The knowledge of gust speed may then
inadvertently influence the estimation of the Beaufort
force.

31%

Another interesting case was investigated by
Isemer (unpublished), who derived annual mean
wind speeds for the area surroundir@@cean {2 165T 3w
Weather Station fn the North Pacific using two 20%
different data sources. One data set contained the

observations made at the weather ship, where the

measurement was done in a fairly homogeneoﬁ@“re 3.7Wind roses for the northern North Sea
bgtween 58-6(N latitude and 0-2E longitude

manner (same position, same height, traing o _
observers). The time series derived from th|3 January stratified by the wind speed. From

data, displayed in the upper panel of Figure 3.50révaar [230]. Reprinted by permission of
is stationary. The second data set consists Kluwer Academic Publishers.

instrumental and visual reports from merchant

vessels located in the neighbourhood of the Oceﬁ%wever, for stronger winds|#] > 6.6 m/s or
Weather Station (OWS). The corresponding timg, _ 4 on the Beaufort scale) the vector wind
series (lower panel of Figure 3.6) exhibits aRjstribytion is decidedly non-isotropic. In this case
upward trend of more than 1 m/s in 20 years. Thife most frequent (amoda) wind direction veers

trend is spurious, and is probably due to varioyg,m southwest to southeast with increasing wind
factors such as the increasing height of ships. velocity.

A convenient way to present the distribution
of the vector wind is by means ofind roses.
The wind roses in Figure 3.7 describe the surfaBel.6 Extratropical 500 hPa Height: Band-
wind in the northern North Sea in January. Apass Filtered Variance. In a classical study,
low wind speeds the vector wind distribution i8lackmon [47] analysed the day-to-day winter
almost isotropic (i.e., independent of direction).(and summer) variability of 10 years of gridded
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Figure 3.8:Standard deviation of time-filtered 500 hPa geopotential height (in m) during winter.
Courtesy V. Kharin.

a) Variability of the original time serieX; (contour interval: 10 m),

b) ‘Slow’ variability of X¢ (longer than about 10 days; contour interval: 10 m),

¢) ‘Baroclinic’ variability of XP (between 2.5 and 6 days; contour interval: 5 m),

d) ‘Fast’ variability of th (between one and two days; contour interval: 2 m).

daily Northern Hemisphere 500 hPa geopotentiil the subtropics. Two centres of action, with
heights. After subtracting the annual cycle atandard deviations of about 175 m, are located
each grid point (by calculating the first fourover the Northeast Pacific, the Northeast Atlantic
harmonics of the annual cycle) he calculated firahd North-Central Asia.

the overall standard deviation, and then separatedn order to determine how much of the
the data into three components, each of whicariability depicted in Figure 3.8a comes from
represents a different time scale. We repeatisiv-frequency?! variability (10 days and longer)
these calculations using 1979-87 analysis from

the European Centre for Medium Range Weather'The term ‘low-frequency’ is not defined in absolute
Forecasts (ECMWF) terms. Instead the meaning depends on the context. In the
) - . present variations on time scales of 10 and more days are

The overall standard deviation shown ir low’ compared to the baroclinic and fast components. Slow

Figure 3.8a is largest at about“30 and smallest variations are defined differently in [3.1.7].
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Figure 3.9:The teleconnection patterns that represent a substantial part of the month-to-montt
variability of 500 hPa height during winter (Wallace and Gutzler [409]). Teleconnection patterns display
correlations between a base point (given by a 1.0 in the maps) and all other points in the Norther!
Hemisphere extratropics. A maximum is marked by an ‘H’ and a minimum by an ‘L’. The patterns are
named (a)Eastern Atlantic Patterr{b) Pacific/North American Patterifc) Eurasian Patterr{d) West
Pacific Patternand (e)West Atlantic PatternSee also [13.5.5].
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or from baroclinic activity on a shorter time
scale, the data aretime filtered. That is,
the original time series, say, is split up

into Xy = X{ + XP + X, with X', Xb,

and XS representingfast, baroclinic, and slow s
components. The ‘fast’ component varies on time ;/ %#.5.5%52
scales between one and two days, the ‘baroclinic.{‘f‘;}

time scale covers the medium range between 25 -
and 6 days, and the ‘slow’ component contains:
all variability longer than about 10 days. The i}
technical details of the separation are explained i %
Section 17.5. |

The three components vary independently, a
a result of the time scale separation. Thus th
variance of the complete time series is distributec
to the variances of the three components:(Xay
~ Var(X{ ) + Var(XP) + Var(x$).

The spatial distributions of the standard d
viations of the three components are shown

Figure 3.8. The largest contribution to the overatlme scales longer than six days was retained

standard deviation in Figure 3.8a originates frorq] .
the low-frequency variations (Figure 3.8b). In threlgosnwe contours are dashed. The stormtracks

North Pacific, the standard deviation due to Iov"?‘/re indicated by the stippling (compare with Fig-

frequency variations is 145 m compared with'® 3.8b). From Nakamura and Wallace [287].
175 m in the unfiltered data, that is, about 70% of

the total variance stems from the slow variation8.1.7 Extratropical 500 hPa Height: Charac-
An important contributor to this pool of variability teristic Low-Frequency Patterns. Wallace and

is the process of ‘blocking,” which often occursGutzler [409] examined the month-to-month vari-
on the west coast of continents and over eastexhility of the 500 hPa height field during winter
oceans. Another characterization of the low fréa the Northern Hemisphere extratropics. They
guency variability 500 hPa height field is given irvalculatedteleconnection patterns, that is, spatial
[3.1.7]. distributions of the correlations at a base point with

The baroclinic component (Figure 3.8c) ishe height field everywhere else. The concept of
considerably less energetic than the slow procesé@lgconnection patterns and their identification is
with maximum standard deviations of about 70 f@xplained in some detail in Section 17.4. Wallace
(representing about another 25% of the totand Gutzler's study is further discussed in [17.4.2]
variance). These variations may be traced backagd [17.4.3].
the baroclinic waves, that is, extratropical storms. Five reproducibl&? patterns were identified
The regions of large variability in Figure 3.8dFigure 3.9). They were named after the regions
over the western and central part of the Pacifibey affect: Eastern Atlantic (EA) PatternPa-
and Atlantic Ocean are called ‘stormtracks.’ (Theific/North American (PNA) PatternEurasian
same stormtracks are displayed by the shadédJ) Pattern,West Pacific (WP) Patterand West
regions in Figure 3.10; there is a large circumpoldtlantic (WA) Pattern Each pattern represents
stormtrack in the Southern Hemisphere.) a fixed structure whose amplitude and sign are

The ‘fast component has small standarﬁon"o"ed by a time varying coefficient. The coef-
deviations, with maxima of the order of On|>jicient time series can be determined by projecting

20 m (which is about 1-2% of the total variancéhe monthly mean height fields onto the patterns.

Figure 3.8d). Blackmon [47] argued that most O'Fhe coefficients for the five patterns are more or
ss statistically independent; that is, variations in

this variance is due to ‘a spurious high-frequené X
component in the final analyses map. Howeve?"® modeare not related to those in another. In
the similarity of the structure of Figure 3.8d tooPace. the patterns have a wave-like appearance

Figure 3.8c, and the comparable results from quReproducibIemeans that essentially the same result is

EOF anglygt_as,_ suggest that at least some of Uﬂ)%ined when another independent data set is analysed with
‘fast’ variability is natural. the same technique.

Figure 3.10:Distribution of the skewnesg; of
ethe low-pass filtered daily Northern Hemisphere
0 hPa geopotential height. All variability on
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Figure 3.11:Frequency distributions of the low-Figure 3.12:Estimated probability density dis-
pass filtered daily 500 hPa geopotential height dtibution fz of the ‘wave-amplitude indica-
a location poleward (solid line) and equatorwardor’ Z. Note the bimodality. From Hansen and
(dotted) of the Pacific stormtrack. From Nakamur&utera [162].

and Wallace [287].

cut off from the family of streamlines that trace out

with sequences of two or more nodes of op-the westerly circumpolar flow, the anomaly is freed
posite signs indicating that a substantial part ofrom the effect of advection and can remain stationary
the month-to-month variability in the extratropical for a long time relative to the time scale of baroclinic
midtropospheric height field could originate fromwaves. Such cut off flow configurations are identified
standing oscillatory modes. The nodes in the patwith blocking anticyclones in high latitudes and cut
terns are sometimes nameehtres of action off lows in lower latitudes....[We] suspect that

Barnston and Livezey [27] extended Wallacethe primary contributions to the observed skewness
and Gutzler's study by analysing data from allcome from these anomalous circulations that occur
seasons. By usingotated EOFs(Section 13.5) relatively infrequently.
they were able to reproduce Wallace and Gutzler’s
results and increase the number of characteristic

midtropospheric patterns. 3.1.9 Bimodality of the Planetary-Scale Cir-
culation. Even though the nonlinearity of the
3.1.8 Extratropical 500 hPa Height: Skewness. dynamics of the planetary-scafe atmospheric
Nakamura and Wallace [287] analysed 30 yeatcgculation was well known, atmospheric scientists
of daily anomalies (i.e., deviations from the meannly began to discuss the possibility of two or more
annual cycle) of Northern Hemisphere 500 hPstable states in the late 1970s. If such multiple
height and derived frequency distributions for alitable states exist and are well separated, it should
grid points and for two different time scales. Thee possible to find bi- or multimodal distributions
‘high-frequency’ variations, ranging from two toin the observed data.
six days, are generally normally distributed; the Hansen and Sutera [162] identified a bimodal
‘low-frequency’ variations, beyond six days, aréistribution in a variable characterizing the energy
not normal (Figure 3.10). North of the Pacifiof the planetary-scale waves in the Northern
and North Atlantic ‘stormtracks, the skewnegs Hemisphere winter (DJF). Daily amplitudes for
(see [2.6.7]) is negative, but equatorward of thbe zonal wavenumbels = 2 to 4 for 500 hPa
stormtracks the skewness is positive (Figure 3.1height were averaged for midlatitudes. These were
Nakamura and Wallace suggest that the dynamiceded to derive a ‘wave-amplitude indicatof
reason for this pattern is by subtracting the annual cycle and filtering out
all variability on time scales shorter than five
...that quantities such as temperature and potentiqjays_ The probability density functioriz was
vorticity exhibit large meridional contrasts across the.
...stormtracks, as if there were two different ‘air 130ften, the spatial scales of the atmospheric circulation

masses’ facing each other. It is conceivable that %re discussed in terms efavenumbek in a zonal Fourier
ecomposition along latitudes. Long waves, for instakce

piece of one air mass could become cut off to formy 4 represerplanetaryscales while shorter waves> 5,
an isolated vortex within the other air mass.Once are calledbaroclinic scales.




62 3: Distributions of Climate Variables

estimated by applying the so-callettaximum
penalty techniquéo 16 winters of daily data. The
resulting fz has two maxima separated by a minor
minimum near zero (Figure 3.1%.

Hansen and Sutera conclude from the bimodal-
ity of their distribution that the nonlinear dynamics
of the atmospheric general circulation yield two
stable regimes. The ‘zonal regime,” with < 0, e
exhibits small amplitudes of the planetary waves.
The ‘wavy regime,’ withZ > 0, is characterized
by enhanced planetary-scale zonal disturbances,
The mean 500 hPa height field for the 62% of
all days when the system is in the ‘zonal’ regime
is indeed almost zonal (Figure 3.13a). The mean
field for the ‘wavy’ regime, derived from the
remaining 38% of all days, exhibits marked zonal
asymmetries (Figure 3.138).

3.1.10 Biological Proxy Data. The effects
of variation in, for example, temperature or
precipitation, are often reflected in biological
variables such as the width of tree rings (a detailed
discussion of this type of data is offered by
Briffa [65]), or the arrival of migrating birds.
Records of plant flowering dates or similar events
constitutephenological data.

An unusual example is the flowering date of
wild snow drops in the rural town of Leck
(northern Germany), which are plotted against the

14There is an interesting story associated with Hansen and
Sutera’s bimodality: .

Hansen and Syutera [162] conducted a ‘Monte Cark;:"gure 3.13: Averages of 500 hPa Northern
experiment to evaluate the likelinood of fitting a bimodaHemisphere height fields in winter (DJF). Contour
sample distributionto the data when therue distribution jnterval: 100 m. From [162]_
is unimodal with the maximum penalty technique. It waﬁ) The ‘zonal’ regimeZ < 0.
erroneously concluded that the probability of such a misfit |S . , . -
small. The error in this conclusion was not at all obvious.b) The ‘wavy’ regimeZ > 0.

Nitsche, Wallace, and Kooperberg [295] did a careful step-

by-step re-analysis of the original data to find that the Monte

Carlo experiments were inconsistent with the analysis of the . . .

observational data. coefficient of the first EOF (Empirical Orthogonal

This is a very educational example, demonstrating unction; see Chapter 13) of Northwest European
frequent pitfall of statistical analysis. Basic inconsistencies ajginter mean temperature in Figure 3.14. The

sometimes hidden in a seemingly unimportant detail wh - . .
sophisticated techniques, like the maximum penalty techniqﬁg(,)wermg date varies between Julian day 16

are used. The error was found only because J. Wallagk6 January) and 80 (21 March). The two
suspected that the finding could not be true. variables, flowering date and the first EOF

Nitsche et al. reproduced the sample distribution Sho‘”ifbefficient, are well correlated as indicated by the

in Figure 3.12, but showed that about 150 years of dail . S . .
data would be required to exclude, with sufficient certain r)’/egressmn line in Figure 3.14. Thus, the ﬂowermg

the possibility that the underlying distribution is unimodaidate of wild snow drops at Leck is a proxy of
Essentially, then, reasonatdstimatesvere made but theest regional scale winter mean temperature.

of the null hypothesis ‘The sample distribution originates from

a unimodal distributionwas performed incorrectly. However, 1here are other proxy data, some of them
even without having rejected the null hypothesis, the possitdkerived from historical archives, such as the yield

implications incorporated in Figure 3.12 indicate that thergf \wine harvests or reports from courts and

couldbe two different stable atmospheric states. .
15Compare with the monthly mean fields shown inmonasn:"rIeS (e.g., Zhang and Crowley [436]), and

Figure 1.1. January 1971 belongs to the zonal regime wher@ifers from tree _rings (Briffa [65]), geological
January 1981 belongs to the wavy regime. data such as sediments (e.g., van Andel [378]),
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or chemical composition data such as the oxygé&igure 3.15:Monthly mean of sea-level observa-

isotope ratio of air trapped in the deep ice dfons at Nezugaseki (Japa38.3°N, 1394°E).

Antarctica and Greenland. The abrupt change in July 1964 is caused by an
Researchers ‘translate’ these proxy data in@grthquake. From Cubasch et al. [97].

standard climate variables by means of (often

nonlinear)regressiorrelationships (see Chapter 8I)' i
that have been developed by relating contempof§gduently on weekends and holidays. Other types

neous proxy and instrumental observations as §hl0SSes, however, are the result of ‘censoring’ by
Figure 3.14. The proxy data are often available fd#€ Process that is being observed. For example,
much longer periods than the instrumental recofg@diosonde data is often missing in the upper
so the proxy data together with the regressidFPpOSphere because strqng Wlnd_s have carried the
relationship may be used to estimate past climat@lloon out of the tracking equipments range,
states. Note that any such reconstruction is subj@@€mometer readings may be missing because

to uncertainty, as demonstrated by the scatter §fONg winds have toppled the tower or generated
Figure 3.14. large ocean waves that interfere with buoys, and so

There are also many other limitations. Th&":
proxy data are typically regional in character.
For example, trees that produce useful tree ri . .
data tend to live in extreme climate zones whe 2 Some Other Climate Variables
their growth is easily affected by relatively sma}r‘

changes in environmental conditions. Also, whil 2.1 Ocean Temperatures. In oceanography,
e sea-surface temperatuSST), and thesub-

proxy data typically yield one value per year, th .
value is often not representative of annual mean.Surface temperaturare often regarded d|ﬁereptly,
even though they are closely related dynamically.
o One reason for this is that the sea-surface
3.1.11 Missing Data. Observed data Sets ars yhe jnterface through which the atmosphere

often incomplete. Records of both station angy cean exchange energy and fresh water

analysed data contain numerous, and Sometim@sa eas sub-surface temperature is internal to the
extended, gap¥ Information is often lost through

) ocean. The other reason is that SST is easily
data handling and management problems (€.gpserved from ships as well as from satellites

paper records are lost, electronic transfers fago that useful estimates of the mean SST. as
tapes are ir_1ao!vertently overwritten, computers flell as its variability in the last 100 years, can
data assimilation systems crash). Most losses |l yerived. Sub-surface temperature observation,
this type are not related to the_ processes the d E‘fng hydrographic sections or buoys, is difficult
describe, but they are sometimes related to g, oy ensive. Therefore, the data on sub-surface
calendar; ‘procedural’ losses seem to occur Moggyherature, as well as all other sub-surface

16Trenberth and Olson’s [371] description of missing}/ar?ab!e_sv is sparse, and little is known about the
National Meteorological Center analyses is typical. variability below the surface of the ocean.




64 3: Distributions of Climate Variables

0
Surface
(9N, 140W)
80 m
140 m
R NI e U A WW*%W N
1994 1995 1996

Year

Figure 3.16Time series taken from daily 1994—-95 observations of the ocean temperadtite, a0 W
in the Equatorial Pacific at the surface, at 80 m depth, and at 140 m depth.

Historical SST data are compiled primarilyof the Earth’s crust associated with the process
from VOS reports (see [3.1.5] and footnote 10hf equilibration after the retreat of the Ice
The observations are scattered irregularly in botkge glaciers. Earthquakes are another factor
space and time. Coverage is heavy along the mékfigure 3.15), causing abrupt changes of 10 cm or
shipping routes and non-existent in areas withontore in the reported sea level. More problems with
shipping. There are systematic inhomogeneitilse ‘sea level’ data are discussed by Emery and
in the observations that are caused by chang&sbrey [113], and Wyrtki [428]. An interesting
in instrumentation and operating proceduresase study, on the reports of sea level in the
For example, before 1945, SST was generalport of Shanghai (China), is given by Chen [81],
measured by hauling a bucket of water ontwho discusses the impact of various nuisance
deck and taking its temperature with a mercutipfluences, such as changes in the discharge of
thermometer. These buckets were often designegers, ground subsidence due to ground water
differently for different countries, and some werextraction, and the ‘Cultural Revolution.’
insulated while others were not. After 1945,

SSTs were generally obtained by measuring the

temperature of the sea water used to cool tfe2-3 Ocean Temperature: An Example. A
ship’s engine (‘engine intake temperature’). ThRUoy placed at 9N, 140’ W was used to monitor
temperature readings were also affected by tHe near-surface atmospheric conditions as well
size and speed of the ships. The homogenizati®f temperature at various levels in the ocean for
of SST is an art that requires not only detailegeveral years. Time series of the temperature at
analysis of historical observational log books b€ surface, at 80 m, and at 140 m are shown in
also laboratory experiments in the wind tunnel arfcgure 3.16. The sea-surface temperature exhibits
careful statistical correction schemes (see FollagdMmarked annual cycle. Small variations with

and Parker [122] and Jones [201]). simil_ar negative and positive anomalies occur
on time scales shorter than one year. These

intra-seasonal variations are almost normally
3.2.2 Sea Level. The elevation of the ocean’sdistributed. The same holds for the temperature
surface relative to some benchmark is fairlgt 140 m and below (not shown), where small
easy to measure. However, the quantity that &omalies prevail.
measured reflects not only the real sea level butAt 80 m, however, the temperature variability
also the movement of the land-based observatiomshibits features similar to the variability of
platform relative to the geoid. Such movementinfall. Minimum temperatures of £ prevail
can be caused by large-scale lifting and sinkingost of the time but are overridden by large



3.2: Some Other Climate Variables 65

0,
%
0 M M J S N J M M J & N J M M J S N

100
a) .o, b) C)
80— "“<15m LU b .
. S| =] Northern North Sea
60 — - i 5 —\9/9/@\ N\, 0
I 1 . : s1.5m". 7] )1
AL NP %ee0, S
40 R *.| \\ <
- @/@\@/ ®
N
’s\gaa‘e /® @
| PPN g
German Bight

F A J AOD F AJAOD F AJAOD

Figure 3.17:a) Annual cycle of the frequency of exceedance for wave height in the German Bight. Th
curve labelled = 4 m’ displays the frequency of observing wave heights of 4 m or more.

b) As above, except for the northern North Sea.

¢) Annual cycle of the frequency of exceedance for wave periods of six seconds or longer in the Germ
Bight and northern North Sea.

From Korevaar [230]. With permission of Kluwer Academic Press.

positive anomalies of up to “®€ during shorter height and wave period for two areas in the North
periods. Negative anomalies, on the other hand, &ea. This is done by plotting the mean frequency
of similar magnitude to those at 140 m. Thus, thef the waves that are lower than 1.5 m, or higher
80 m temperature, in contrast to both the surfatlean 4 m or 6 m. Thé&requency of waves that have
temperature and the 140 m temperature, is stronglyperiod of more tha6 s isalso given.
skewed. Wave heights in winter in the northern North
The explanation lies in the vertical stratificatioisea are less than 1.5 m 40% of the time and
of the ocean. The upper layer of the ocean is wejteater tha 4 m 20% of the time. The waves are
mixed, because of continuous flow of mechanicaluch lower in the German Bight where 80% of
energy from the atmosphere into the ocean, #te waves are lower than 1.5 m. Most waves in
that temperature and salinity are almost constatite German Bight throughout the year and in the
Sometimes, when more mixing energy is availableprthern North Sea in summer have high frequency
the mixed layer is deepened, so water that (s (6 9~1), and 60% of the waves in the northern
usually below the mixed layer has the samiorth Sea in winter have periods longer than 6 s.
temperature as the surface. This deepening of the
mixed layer is reflected by Figure 3.16. 3.2.5 Sea-ice Variables. Relevant variables
describing the sea ice include the ice thickness,

3.2.4 Significant Wave Height and Mean the thickness of the snow layer on top of the
Frequency. The waves on the sea surfac&®@ ice, the ice concentration (the percentage of
modify the mechanical properties (roughness) 8f€@ covered by sea ice), and the age of the ice.
this surface and thus partly control the exchange fB¥rther variables are tifeeeboard(the height by
momentum and energy between the ocean and YWaich the sea ice rises beyond the ocean sutface
atmosphere. Theave heightind thewave period and theice draft (the downward extension of the
[230] are two variables that describe the state of tfg¢-PIus-snow column). Most of these variables are
wave field, anq are part of standard ship reportsi7g.eepoard might be negative if there is substantial snow
Figure 3.17 displays the annual cycles of wauever.
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0 | : I I om of the Antarctic sea ice, which varies primarily
0 50 100 150 200 between zero and 1 m, is close to being normally
12 distributed except for a very wide positive tail
m ICE FREEBOARD that contains extreme values of several metres
1071 (the latter indicating multi-year ice). The snow
81— thickness is usually well below 50 cm and is
strongly skewed. The freeboard is usually less than
671 20 cm and is also skewed with a long positive tail
41 that contains maximum values up to several tenths
ol of a metre.
| | The sea-ice concentration in the Arctic Ocean
0 | | T em (Figure 3.19) is bimodal, with a pronounced max-

-40 -20 0 20 40  imum at very low ice concentrations representing

Figure 3.18: Relative frequency d|str|but|onsthe almost 'C% free ocean a_md_an other maximum
. . - t about 9599 The distribution is almost uniform
for three variables of Antarctic sea ice, afte
etween these two extremes.

\T/\(/)?)O:"i?(?';’i CLke:]r;gses,. and Ackley [407]. Figure 3.20 s_hows the distribution of the ice

Middle: depth of the snow layer on the ice. draft for two Arctlclareas, ”‘f"m?'y t.he Beaufort Sea

Bottom: freeboard. and the Fram Strait. Both distributions are strongly
skewed, with a mode at 2—4 metres and a wide tail
stretching out to 20 and more metres. The latter

difficult to monitor and many must be observegenerally represents heavily ridged multi-year ice.

in situl® although ice concentration may be

inferred from satellited? Here we present SOMe3 5 & Hydrological Variables?! In this subsec-

empirically derived distribution functions of S€8ion we review the distributions of a number of

ice variables. . : . )
e ._hydrological variables. Hydrology is the science
_An example of an Antarctic distribution of IC€of the fresh water cycle, from precipitation to the
thickness, the depth of the snow layer, and t

freeboard is sh - 3 he thick r?e‘?/entual runoff into the oceans. Precipitation, a key
reeboard is shown in Figure 3.18. The thic ne?‘R/drological variable, was discussed in [3.1.2]. We
18As opposed to beingemotelysensed from an aircraft or aconsider thestreamflowof rivers in [3.2.7]. Other
satellite. relevant variables are evaporation, the storage of
19The satellite measures radiation reflected from or
generated by the surface. Ice concentration is indirectly derived®The sea is rarely fully ice covered. Insteleadsopen at
from these readings. The result is referred to pseudo least a small percentage of the surface.
ice concentration. Uncertainty about the transformation of 21The material in [3.2.6] and [3.2.7] was supplied by Dennis
radiation into ice concentration sometimes results in ‘pseudettenmaier from the Department of Civil Engineering of the
ice concentration’ that is below 0% or above 100%. University of Washington in Seattle.
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Figure 3.21:The number of ice-free days on the

River Newa in Saint Petersburg in the eighteenth
Figure 3.20: Frequency distribution of sea-iceand nineteenth centuries. The numbers are given
draft, in metres, for the Beaufort Sea (horizontals five-year mean deviations from the 1816-80
cross-hatching) and the Fram Strait (verticamean. The numbers on the abscissa are the
cross-hatching). After Rothrock [334]. numbers of the first of five years: 1761 represents
the interval 1761-65, 71 represents 1771-80 and
so on. Data taken from Bickner [70].
water in the unsaturated sadldil moisturg and the
storage and transport in the saturated sub-surface
(ground watey and the snow water equivalent. 3.2.7 Streamflow. The streamflow of rivers that
Traditional measures of climate variability?'® regulated and manipulated by man can hardly

related to these hydrological variables includd® regarded as a random variable. Its variation
lake levels, the numbers of ice-free days on ! fime scales of less than a year or so is not
river, and the dates of the break-up of ice Op.rllly stochastic but rgthgr is often influenced by
rivers in the spring. These measures are not 4&liberate human activities.

useful as indicators of climate variability and N the following we consider the 1948-87
change as in the past because they are influenfggerds of streamflow of two unregulated rivers
by managerial activities, such as damming, ré? the USA. There are essentially three processes
routing and dredging of rivers, or the use dhat _cqntr_ol t_he streamflow of unregulated rivers:
ice-breakers to keep water ways open. LonBl€cipitationin the drainage area, storage of water

homogeneous, historical records do exist and wefethe soil, and storage of water in the form of
used extensively in an earlier period of climatf0zen water or snow. If the soil is wet, its storage
research (for instance Bekner [70]). ca_lpacny is low and m_ost of the pre<_:|p|tated water
An example of such a record is displaye&"” be r(_)uted to the river. In dry soil mqst of the
in Figure 3.21 which shows the number opater will be stored and streamfl_ow will not bg
ice-free days on the River Newa during th ffected unless the amount of rain is substantial
eighteenth and nineteenth centuries. The recdif <’ €9 [424]). Water that precipitates as snow or

contains substantial low-frequency ﬂuctuationf§eezes at t_he ground is released to the streamflow
t a later time, and at a more steady rate, when

with amplitudes of 5 to 10 days and also exhibitd" & .
elting occurs (the details depend on temperature,

changes in excess of 30 days between some iV | diati d oth iabl
year periods. net solar radiation and other variables).

The level of lakes with many tributaries may be The Chehalis Riverin Washington drains 113

considered the result of a random process if sguare miles of low-lying coastal hills and flows to

. . . . : (5 e Pacific. Moisture is steadily supplied by frontal
regulation of the various rivers is not coordinated, S
storms primarily between November and May.

The Great Lakes in North America exhibit low- umulative probability functionsfor monthly

frequency variations that do not mirror IOIannemean streamflows in February, June and October
human control but rather reflect the low-frequenc . . : Y R
re given in Figure 3.222 The distributions

climatic variations. Also, for long time scales, sa e displaved on ‘normal probability paper on
tens of years, the effect of human control becom g play P y pap
We?‘k_er than the effect of the uncontrolled climate22rne ynits are ‘cubic feet per second’: 1 cf/s corresponds to
variations. 0.028 n¥/s.
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Figure 3.22:The cumulative probability distri- _ . o
bution of the monthly mean streamflow of thEigure 3.23:The cumulative probability distri-
Chehalis River in Washington (USA) in cubic-fedution of the streamflow of the Verde River in
per second (cf/s). The three distributions descriffizona (USA) in cubic-feet per second. The four
the February, June, and October 1948-87 aveflistributions describe the annual and February

ages. A straight line indicates a normal distribudverages as well as the daily (sampled on the
tion. Courtesy D. Lettenmaier. 1st, 11th, and the 21st) and weekly (first week of

the month) streamflows in February. Courtesy D.
Lettenmaier.

which they would appear as straight lines if the

distributions were normal.

The distribution of the February monthlywinter and spring streamflows most of the time.
averaged streamflow is almost normal. In wintefhis configuration leads to markedly non-normal
the wet soil has little capacity to store water sdistribution functions of annual and February
that almost all rainfall is directly transferred tanean streamflow (Figure 3.23) which indicate
streamflow. In June the occurrence of precipitatidhe presence of two different regimes. Weaker
is much more variable and the dry soil is able tstreamflows occur during the ‘snowmelt’ regime
store a significant amount of water. Thus, minavhereas the very large streamflows, connected
rain events have little influence on the streamflowrith tropical storms, occur relatively infrequently.
As a consequence the distribution is substantially The weekly and daily mean streamflows in
skewed. The mean is about 150 cf/s, the 10Higure 3.23 mirror the non-normality of the rainfall
percentile is about 80 cf/s while the 90th percentilates: The river has almost no water 70% of
is 250 cf/s. There are many Junes with wedke time. At other times the streamflow is quite
streamflow and few with large streamflow. Theariable, with a few very large extreme events
October distribution is intermediate between th@5 000 cf/s).

June and February distributions. The shapes of the probability distributions

The other case is théerde River, a tributary of obtained for different averaging intervals neatly
the Salt River. It drains the White Mountains idemonstrate theCentral Limit Theorem[2.7.5].
central Arizona and flows westward. The moisturEhe distributions deviate from the normal distri-
supply is obtained from extratropical storms ibution most strongly for the daily averages and
the winter season, and from convection and theast strongly for the annual averages. The annual
‘Arizona Monsoon’ in summer. averages of Verde River streamflow are clearly

The latter are responsible for the most extrerm®n-normal, a good illustration of thesymptotic
streamflows, whereas snowmelt controls theture of the Central Limit Theorem.



4 Concepts in Statistical Inference

4.0.1 Overview. Our purpose here is to There are also two major types of statistical
introduce some basic ideas about how informatiatata analysis, namelgxploratory analysisand

is extracted from data. Section 4.1 deals with trenfirmatory analysis[375]. Exploratory data
fundamental concept of “inference.’ The keywordanalysis is the art of extracting from a data set
here, “estimation’ and ‘hypothesis testing,’ arall possible information about the relationships
introduced in a rather intuitive manner. Théetween the variables represented in the data set.
technicalities will be explained in detail inThis information is used to develop hypotheses
Chapters 5 and 6. However, special attenti@bout the workings of the climate system. Then,
is given to the type of knowledge that can b the best of all worlds, carefully designed
gained under certain circumstances. This is doegperiments are conducted to produce data that can
by presenting simple examples and discussibg used t@onfirmindependently the hypotheses.
the logic that is applied. Two other fundamental The opportunities for performing truly confir-
concepts, sampling (i.e., gathering empirical matory analyses are very different when dealing
evidence) andstatistics(i.e., the condensation ofwith the observational recoraather than a model
the raw empirical evidence into a few usefudimulation. We discuss this point in the next two
quantities), are introduced in Sections 4.2 and 4 8ubsections.

4.1 General 4.1.2 Confirmatory Analysis of the Obser-
vational Record. For obvious reasons, experi-
4.1.1 Inference. The wordinferenceis central ments cannot be done with the actual climate sys-
in statistical analysis. A dictionary definitiontem (cf. Navarra [289]). Instead, special observing
of inference [150] rephrases ‘to infer’ as ‘tgprograms (such as the ‘First GARP Global Ex-
conclude by reasoning from something knowperiment' [44]) are sometimes mounted to obtain
or assumed. A broad definition of statisticalhe data required to address a particular scien-
inference could be ‘the procedure that involveific agendal However, even carefully designed
extracting information from data about the proceshserving programs are unable to eliminate the
underlying the observations.’ possibility that the effect the program is designed
There are two central steps in this process. to observe is confounded (or contaminated) with
other non-observed processes in the climate sys-
1 Astatistical model is adopted that supposedfgm.
describes both the stochastic characteristicsany confirmatory analysis of the observational
of the observed process and the properties @cord, that is, climate data observed in the past,
the method of observation. It is important tgs |imited by two factors: thdack of independent
be aware of the models implicit in the chosegata and the inability to separate completely the
statistical method and the constraints thosgynal of interest from other sources of variation.
models necessarily impose on the extraction The presence of signals from various competing
and interpretation of information. processes leads to aapen observed record.

2 The observations are analysed in the conteu?at is, we cannot observe all state and forcing
of the adopted statistical model.

1Such campaigns are often called ‘experiments,’ another
case of bad scientific slang. They are not experiments because

There are two major types of inference, nametye investigators involved in these observing programs are
estimationand hypothesis testingThe latter is a unable to control the factors that affect climate variability.

decision making process that tries to determine tﬁ@ese programs are very useful, however, because the coverage
nd consistency of their observing networks (in space and

truth of stqtements, calletlypotheses, prOposecﬁme and also in terms of the observed variables) are greatly
before seeing the data. enhanced relative to the regular observing network.

69
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variables. Even if we have enough data to establishanother approach to confirmatory analysis that
a statistical link, we can not exclude the possibilitis often satisfying.

that the repeated coincidence of two events is

caused by another non-observed process. Our data

coverage allows us to study only an open sub- , ) )

system of the full system. In contrast, verifiableh-1-3 Confirmatory Analysis of Simulated Data.
‘confirmatory’ statements require closed systemd'® Situation is different when dealing with data
(for a discussion of this fundamental problem, sg§nerated in simulations with GCMs since new

Oreskes, Schrader-Frechette, and Beltz [301]). additional o!ata can be create_d, and experiments
Al observational data reflect the sarmmajec- can be de5|gned to sort out different hypotheses.
tory of the climate system during the past tens OHroly\éeve(;, CI':.]?:PT moSeI? can _n(ﬁ)t t;]e completely
hundreds of years. Certainly, there are many di alidated, whic |sa|1 '9 |rT|1|tat|o .T.fe an\?whers
ferentdata sets, such as air pressure reported frof o by GCMs could simply be zartifact of the
land stations or sea-surface temperature reporte . ) ) )
from ships of opportunity (see Chapter 3). These EXperimentation with GCMs began in the
data sets differ somewhat even if they purpor&960s, when pioneers such as Manabe and
edly represent the same variable—say near-surf&¥an [265] examined the sensitivity of the climate
wind (see [3.1.5])—but these differences are di@ €nhanced greenhouse gas concentrations. The
to different observational, reporting and analysi§andard methodology is to produce a pair of
practices. Theylo notrepresent the kind of inde-Simulations that deviate from each other in
pendent information about the climate system th@fly one aspect (such as different greenhouse
would be obtained by observing the same variabl@gS concentrations or sea-surface temperature
over a period of similar length at another point if€9imes). This type of experiment is well designed
time (e.g., beginning two centuries ago). In othé"d can be used to confirm hypotheses derived

words, such data sets do not offer the option féiom the observational record or other model
confirmatory analysis. experiments. (See Chapter 7 for examples.)

This limitation has a severe consequence: Many
people, probably hundreds or thousands, have

used different techniques to screen our ‘ong'j1 4 Estimation of Parameters. In estimation,
observational record for rare events. Most @f sample of realizations of a random variable is
these ‘unusual’ results are eventually publishggked to try toinfer the value of a parameter that
in articles in scientific journals. Clearly, some ofjescribes some property of the random variable.
these ‘unusual’ facets are due to peculiar and raffiat is, a function of the observations is taken
circumstances that are, nevertheless, ‘usualiy be an educated guess of the true parameter
they are ‘Mexican Hats’ (to use an analogy fromajue. This educated guess, tlestimator, is
Section 6.4) and can not be contested with gither a number (point estimator) or an interval
statistical test. We can identify an ‘unusual’ objeginterval estimator). Ideally, the point estimate is
by comparing it with all others in the observationg}l, the neighbourhood of the true value, and the
record. Thus the statement, or null hypothesigeighbourhood becomes smaller with increasing
‘this object is not unusual’ cannot be contesteshmple size. Similarly, a good interval estimator
with a statistical test since independent data gfiges the sample to select a range of parameter
unavailable. No statistical test, regardless of i{g|ues that is likely to contain the true parameter.
power or elegance, can overcome this problemyis interval is constructed t@over the true

although there are two possible solutions. The firghrameter with a fixed, high probability (typically
is to extend the observational record backwards

by creating new paleo data sétshe second is
to postpone testing the developed theories until 3General Circulation Models atanedto reproduce, to the

nature generates enough independent data. Uﬁ‘fﬁ nt possible, the statlstlc_s of‘the obser_vatlonal record of the
ast'few decades. Success in this regard is not a guarantee that

suitably designed GCM experiments to test @e models can successfully simulate natural climate variability
hypothesis derived from the observational recoed longer time scales. Itis also not a guarantee that the models
will respond correctly to changes in, for example, the chemical
composition or turbidity of the atmosphere. See Oreskes et al.
2paleo dataare data derived from indirect evidence, sucfg01].

as sediments, that are believed to be representative of the skid@ever, GCMs are considered powerful tools for examining
of climatic components before the current short instrumentidile sensitivity of the climate system since they are based, to a
period. large extent, on physically robust concepts.
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95%) in repeated samplifgThus, the length of manner (see [5.2.7]) and the estimates are
the interval decreases with increasing sample sizelbsequently employed in a Canonical Correlation
Various ‘parameters’ are subject to estimatiolnalysis (see Chapter 14). The patterns shown
such as the conventional moments (see [2.6.1}) Figure 1.13 are a best guess rather than
that characterize the probability distribution of thtéhe true canonical correlation patterns. Note that
observed random variable. However, estimationtisese patterns represent simultaneous estimates of
not limited to such elementary parameters; orseveral hundred parameters.
may also want to estimate the entire probability
distribution, or more exotic parameters such as1.6 Interval Estimators: An Example. We
the ‘level of recurrence’ of two random variablegeturn to the example that deals with the
(Sections 6.9-6.10). The ‘random variable’ mighgorrelation between the SOI and the SST based
really be a random field observedratpoints and index of the Southern Oscillation [1.2.6]. In [8.2.3]
we might want to estimate th®? parameters thatwe impose a model on the bivariate random
comprise the field’s covariance matrix. variable, X = (Iso,lssp, and then use it
As discussed in [1.2.1], there are no ‘right’ Ofo construct an interval estimatdp, ., 5y) for
‘wrong’ statements in the realm of estimationbsstsm_ The estimator is designed so that the
rather, statements can only be considered in teriagrval will cover the true value obsstsor 19
of precision and reliability. There are some wellout of 20 times if the ‘experiment’ that resulted
defined concepts that can be used, in principig, the 1933 to 1984 segments of the SO and SST
to obtain estimators with desirable propertiegadices is repeated infinitely often. Note that it
For example, themaximum likelihood methodis the endpoints of the interval that vary from
can be used to construct estimators that ag@e replication of the experiment to the next: the
‘asymptotically optimal’ under broad regularitytrue value ofpsstsor is fixed by the physical
conditions (see [5.3.8]). However, the complexityhechanism that connects SST variations in the
that is often encountered in climatology causes tijuatorial Pacific with the Southern Oscillation.
design of estimators to be closer to art than soupérforming the computation with the observed
craftsmanship. indices yieldsp, = 0.621 andp, = 0.708.
The confidence interval is therefore given by the

4.1.5 Point Estimation: Examples. A simple inequality
example of a point estimation exercise can b goq - psstsol < 0.708. (4.1)
found at the end of [2.8.7] where we report

the estimated correlation between the standdMgt€ that (4.1) does not include a probability
Southern Oscillation Index (SOI) and an gs§tatement about its correctness. In that sense,
index developed by Wright [426]. Here the sampll@e ‘(_:onﬁde,nce interval’ (4.1) really provides no
consists of the 624 realizations of the monthigonfidence. .

mean SOl and the monthly mean SST index None the less, interval estimators are much more

observed between 1933 and 1984. The correlatiBR€ful than point estimators because they give con-
between corresponding random variatles and crete expression to the idea that the estimator is but
| ssTis estimated to be another random variable subject to sampling vari-

ation. Unfortunately, often in practice a confidence

Psstsol = 0.67. interval cannot be constructed. Then, an estimator
is often considered useful if it performs well

A more involved example of an estimation, some controlled laboratory setting, or returns
exercise is found in [1.2.6], where optimallyphysically reasonable’ numbers or distributions.
correlated patterns are identified in a sampjg this context ‘physical significance’ is the catch

of realizations of a paired random vector. ThBhrase that seems to be able to override most
statistical model treats the SLP and SST fields agtistical scepticism.

a paired random variabl@?, \?) with covariance
and cross-covariance matricE, Xy, andXxy. 4 1 7 The Test of a Null Hypothesis. We briefly

These matrices are estimated in the convennoq ched on the subject of statistical hypothesis

4This statement mustot be reduced, or changed, to thdesting in [1.2.7]. Here, we continue to discuss the

misleading statement ‘the interval contains the true parametghncept in an intuitive manner before using a more
with (the selected high) probability” While the latter is,. ;
technically equivalent, it encourages the mistake of regardirﬁlggorous approach in Chapter 6.

the parameter, rather than the endpoints of the interval, as being™ Statistical test is a de_CiSion making pr(_)cedure
random. that attempts to determine whether a given set




72 4: Concepts in Statistical Inference

of observations contains information consistent observed. The actual significance level of the
with a concept that was formulatedpriori. This decision is different from the specified e\l
‘concept’ is known as thewull hypothesisand is if there is a problem with the statistical model.
usually denoted with the symbolH

In general, only two decisions are possible about® The decision rule should be constructed so
Ho: that the chances of rejectingtdre optimized

when Hyis false. That is, the decision rule
e rejectHy (if sufficient evidence is found that should maximize thpowerof the test.
it is false), or
Usually the model and the null hypothesis are
¢ do notrejecHy (if sufficient evidence can notseparate but related entities.
be found that it is false). The statistical model used to represent an
o ) . experiment is expressed in terms of a random
The decision is a random variable because it\iS iable and the way in which it was observed.

a function of the sample. Thus, there will bgq example, if the null hypothesis is that the mean
some sampling variability in the decision. Thes o random variable is zero (i.e.oHu = 0), we

same decision aboutgnay not be made in everyignt yse a model that says that the sample was

replication of the experiment that produced t§awn at random from a normal distribution with
sample. _ _ known variance 2 and unknown meap. That is,
The decision making rule used in hypothesige model describes, in statistical terms, the way
testing is constructed using a statistical modg| \yhich observations were collected (they were
so that effects of the sampling variability on th@awn at random), and the probability distribution

average decision are known, and so that the ”(l?ormal with known variance2) of the random
extracts the strongest possible evidence agaifstiaple which is observed.

Ho from the sample. , o . Note that it is often not necessary, or desirable,
Since there is sampling variability, there ig, prescribe a particular probability distribution.
a chance of rejecting gvhen Hpis true. The oy est of the mean can be conducted almost as
probability, or risk p, of making this incorrect gfficiently if we assume only that the observations

decision is called thesignificance level. The 56 grawn from a symmetric _distribution with

amount of risk can be controlled by the user of the,known mean.

test. The only way to avoid all risk is 10 SBt=" e || hypothesis Hispecifies a value of the

0 so that K is never rejected, which, O_f COUrS€ynknown parameter in the statistical model of

makes the test useless. However, the risk of falgg, experiment. Note that in general the model

rejection. can be set very near zero, at the t.ax.perpﬁgy have many parameters ang iight specify

?fl reducing the chances of rejecting When itis )65 for only a few of them. The parameters that

aise. are not specified are callatlisance parameters
Itis important to remember that the concept ofnq myst e estimated. The testing procedure

significanceis an artifact of the conceptual mode,, st properly account for the uncertainty of any
that we place around our data gathering. T'bearameter estimates.

significance levep is realized only if the statistical

model we are using is correct and only if the

‘experiment’ that generated the data is replicatéyl-8 Example: Number of Hurricanes in a

ad infinitum. In the real world we need to base otfifair of GCM Experiments. As an example, we

decision about Hon a single sample. consider Bengtsson, Botzet, and Esch’s simulation
The decision making mechanism often consid§2, 43| of possible changes of the frequency

of a statisticT and an interval designed so thaf hurricanes due to increasing atmospheric

it contains (1 — p) x 100% of the realizations concentrations of greenhouse gases. They dealt

of T when Hyis true. Then His rejected at the With hurncanes in both.hemlsph(.eres, but we limit

P x 100% significance level if the observed valugurselves in the following to their results for the

of T, sayT =t, falls outside the interval. Northern Hemisphere. o _
The important aspects of a statistical test are asBengtsson et al. conducted a pair of ‘time-slice
follows. experiments’ with a high-resolution Atmospheric

General Circulation Model. One experiment was

e The statistical model correctly reflects th@erformed with present-day seaice and sea-surface
stochastic properties of the observed randommperature distributions, and atmospheric,CO
variables and the way in which they wereoncentration. In the other experiment, doubled



4.1: General 73

CO, concentrations were prescribed together with In Bengtsson et al.’s case, the sample sizes are
anomalous sea ice and SST conditions simulated = ny = 5 since both simulations were run for
in an earlier experiment in which the GCM wasive years. The yearly hurricane frequencies in the
coupled to a low-resolution ocedhe number of simulations are:

hurricanes in a model year is treated as a random year | 1xCO; 2xCOp
variable. 1 49 41
The number of hurricanes in a year in 2 55 42
the 1xCQ and the 2xC@ experiment is 3 63 46
labelled N1 and N2, respectively. The question 4 51 38
of whether the number of storms changes in the 5 63 33
2xCQO, experiment can be expressed as the null
hypothesis: The rank sum for then, = 5 realizations of
N> is 15. Note that all are smaller than any of
Ho: £(N1) = E(N2) the realizations ofN1. When the null hypothesis

or, in words, ‘the expected number of hurricané§ true, the 5% threshold value for the rank sum
in the 1xCOy-model world equals the expectedtf;S 18; that 'SH if ks truel, thel;aqk Silgm wil f
number of hurricanes in theCO,-model world.’ e greater t_an_or equa _to n out 0
We adopt a significance level of 5%, that is, w&"S"Y 20 replications of this experiment, and it
accept a 5% risk of incorrectly rejecting the nul\fvIII he less than_ 18 only once. Since the actual
hypothesis. rank sum of ;5 is smaller than the .5% threshold
To design a test strategy we consider th‘g 18 we reject the null hypothesis at the 5%
number of hurricanes in any model year as beiry ?r;flce]}nce Ieveli. V\f/ethmaég’(\)/lncludled, ?rt] Iteast
statistically independent. We also assume tH € framework of the world, that an

the shape of the distribution of the number Jpcrease of the C®concentration will reduce the
hurricanes is the same in both the@O, and frequency of Northern Hemisphere hurricanes.

2xCOy experiments. That is, we assume that the

mean changes in response to&dubling but that 4.1.9 Testing a Null Hypothesis: Interpretation

the higher moments (see [2.6.7]) do not. of the Result. Given a particular sample, the
Given these assumptions we may then use tflgcision to reject blwith a significance level of

Mann—Whitney tes{6.6.11]. This test operatesP may occur for several reasons.

with the sum of theanksof the samples. Rank 1is ¢ \\e may have incorrectly rejected a true null

given to the smallest number of hurricanes found  pynothesisOccasional errors of this kind are

in all years from both time-slice experiments, | navoidable if we wish to make decisiovife
rank 2 to the second smallest number and SO gaw in the example above that unusual rank
on. Then the sum of the ranks of the yearly  syms can occur even when there is no change
hur_rlcane frequencies in thexZZOz-experlmenF in hurricane frequency.

N> is formed. Very small or large rank sums give

evidence that the null hypothesis is false becauses The statistical model adopted for the observa-
rank sums of this type occur when most of the tions may not be valid. The observations may
yearly hurricane frequencies in one experiment not have been sampled in the way assumed
are greater than those in the other experiment. by the model (e.g., they might not be inde-
Under the null hypothesis we would expect a pendent) or they might not have the assumed
roughly equal number of large frequencies in both ~ distribution (e.g., it might not be symmet-
experiments. Rank sum thresholds for making ric about the mean). The resulting decision
decisions about flat various significance levels ~ making procedure may rejectphinuch more
are listed in Appendix I. frequently than specified by even when
Ho is true.

5Brieﬂy, the rationale for this methodology is as follows:
Hurricanes are not resolved in the low-resolution GCMs. It ©If the null hypothesis is true, the probability that the five
is, however, assumed that the low-resolution model simulatggars representative okZ O, conditions all have fewer storms
the large-scale SST and sea-ice distributions well. It tban those representative of thex@O, conditions is 1/252
also assumed that the atmospheric circulation is, to a fif6t49%).
order approximation, in equilibrium with its lower boundary "We reiterate that the significance level determines the
conditions. These assumptions make it possible to assessfteguency with which we will make this type of error (which
impact of the changed SST and sea-ice distributions asthtisticians call a ‘type I' error). A testing procedure that
the enhanced Cfconcentration on hurricanes in the high-operates at the 5% significance level will make a type | error
resolution GCM. 5% of the time when Rlis true.
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Protection against this type of error can bprobabilities, for example, 99%, are associated
partly obtained by usingobust statistical with statistical significance. This usage is contrary
methods. Robust methods continue to pee the convention used in the statistical literature.
form reasonably well under moderate dedere we follow the statistical convention and
partures from the assumed model (see Satefine the ‘significance level’ as the probability of
tion 6.6 and [8.3.17]). However, in generalincorrectly rejecting the null hypothesis.staller
there is no way to determine positively thasignificance level impliemoreevidence that klis
the model underlying the test is valid. Insteafhlse. If Hyis rejected with a significance level
additional physical arguments are required taf 1%, then there is 1 chance in 100 of obtaining
support the model. Also, other statistical testhe result by accident when the null hypothesis is
can sometimes be used to ensure that the datze.

are not grossly inconsistent with the adopted

model (e.g., one can test the null hypothesjsy 11 source of Confusion: Confidence and
that_the_ observations come from a normz§igniﬁcance. One often reads statements that an
distribution). author is ‘95% confident that the null hypothesis

« We may have correctly rejected a falsg. H is false’ or that ‘the null hypothesis is rejected

at the 95% confidence level.! These statements

Similarly, the decision not to reject gtan interpret rejection of the null hypothesis at the
happen for several reasons. 5% significance level incorrectly. When we reject a

null hypothesis we are simply stating that the value

e Homay Dbe false, but the test may n%f the test statistic is unusual in the context of the

have sufficient evidence to rejectoHThe null hypothesis (i.e., we have observed a value of

probability of this type of error depe_nds UPOle test statistic that occurs less than 5% of the time
the powerof the test. The probability of nc’twhen H is true). Because the value is unusual,

rejecting kb when it is false must also bewe conclude that the null hypothesis is likely

nonzhero' to have a useful decision making,;se Byt we can not express this ‘likelihood" as
mechanism. a probability?

The model adopted for the observations The precise logical statement in the argument is
may not be valid and the decision makingio true=> 1 out of 20 decisions is ‘reject ¢4,
procedure developed from this model rejecihich is not at all related to the statement ‘reject
Ho too infrequently even when s false. Ho = Ho false in 19 out of 20 cases.’

This error in the model results in a test with

very low power. 4.2 Random Samples

Ho may be true and insufficient evidence )
was found to reject bl This is the desired 4.2.1 Sampling. The conceptual model for a
outcome. simple random sample is that a simple, repeatable

experiment is performed that has the effect of

The relevant catch phrase in all of this islrawing elements from a sample space at random
‘statistical significance, which may be markedlyand with replacement.
different from ‘physical significance. The size The amount of imagination required to apply
of departure that is detectable by a statistictilis paradigm depends upon the problem at hand.
test is a function of the amount of informatiorWe will briefly consider three examples.
about the tested parameter available in the sample.

Large samples contain more information than do® Suppose one wanted to estimate the height

small samples, and thus even physically trivial ©Of the average human living today. We
departures from biwill be found to be statistically can literally accomplish this by selecting
significant given a large enough sample. humans at random from the global population

4.1.10 Source of Confusion: The Significance

(about five billion people) and recording their

8 At least not in the “frequentist’ paradigm we use in this

Level. The term significance levelsometimes book. Bayesianstatisticians extend the notion of probability
causes confusion. Some people, particulary include subjective assessments of the likelihood that a

climatologists, interpret the ‘significance leve o
as ‘one minus the probability of rejecting %\,

|parameter has one value as opposed to another. It then becomes
ssible to solve statistical decisions by comparing the odds in
our of one hypothesis with those in favour of another. See

correct null hypothesis.” With this convention larg@&elman et al. [139] for an introduction to Bayesian analysis.
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heights. With care, and a lot of preparation,
it is at least conceptually possible to ensure
that everyone has the same probability of
being selected. Thus, we can be assured that,
if we sample the population 1000 times, the
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process igrgodic (meaning that sampling a
given realization of the process in time yields
information equivalent to randomly sampling
independent realizations of the same pro-
cess).

resulting sample of 1000 heights will be

representativef the entire global population. !t iS cléar, then, that the concept of sampling
a geophysical process is complex, and that very

Here, the concept of a simple random samplgong assumptions are implicit in the analysis of
representative of the population is easy tQimate data.

comprehend because the population from
which the sample is to be drawn is finite. .
The logistics required to obtain the samplé'z'2 Models _for a ;ollectlon of Data.
(i.e., preparing a list of five billion nameSUsuaIIy, thesgmplln'gexermse can be rgpregented
and selecting randomly from those name? a collection oflndgpendent and identically
are easily visualized. istributed random variables, sayX1, ..., Xp}.
When the sample is taken, we end up with

Suppose now that one wanted to estimate set of realizations {X]_, - ,Xn}. Part of the
global mean temperature at 00 UTC ofonceptual baggage we carry is the idea that
a given day: again, an eas”y imagineéhe Sample could be taken again, resulting in
accomplishment. One approach would be g1other set of realizations, sdx;, ..., x} of
select rand0m|y| locations on the g|obe and{Xl, . Xn} The statistical model describes the
to measure the temperature at each locatiE#nge of possible realizations of the sample and the
at precisely 00 UTC. Our thinking in thisrelative likelihood of each realization.

example is necessarily a bit more abstract The phrase independent and identically dis-
than in the previous example. The number dfibuted represents twsempling assumptiortsat
points at which a temperature measuremedfe almost always needed when using classical
can be taken is infinite, and the logistics dhference methods (see Chapters 5-9). The as-
placing a thermometer are more difficult fopumptions are as follows.

some points than for others. None the less,
given the desire and sufficient resources, this
exercise could actually be performgd.

e The observationsxy,...,x, are realiza-
tions of n independent random variables
X_’]_, ceay Xn.

Finally, suppose that one wanted to estimate
the climatological mean temperature at a
location such as Hamburg (Germany), or Vic-

toria (Canada), without consulting historicaHowever, the independence assumption can not be
temperature observations. The concept of thigade when making inferences about time series
simple random sample does not serve s stochastic processes (Chapter 12). Then models
particularly well here. Our observations argre required that account for the dependence
necessarily confined to an interval of tim¢etween observations. One way to do this is to

near the present. Temperatures in the pagisume that the sample comes from a stationary
and in the distant future cannot be samplegd ergodic process. Some types of analysis (e.g.,
only a finite number of observations will beextreme value analysis, see Section 2.9) are able to
taken so temperatures realized after the lasggpe with dependence quite well; others, such as
observation will not be sampled. To treahypothesis testing about the mean of a sample (see
the sample as a random sample, we musgction 6.6), cope with dependence very poorly.

make some assumptions about the proper-|n general, models are eithgrarametric or
ties of the temperature process. In particulaion-parametric

we assume that the processsistionary or
cyclo-stationary(meaning that its statistical
properties are time invariant) and that the

e The random variableXy, ..
cally distributed.

., X are identi-

e Parametric models require distributional
assumptionthat is, the assumption that the

of estimating the sampling error in the global mean temperature
that arises from the density and distribution of the observing
network (including the random network discussed above).

distribution of Xj,i = 1,...,n, belongs to

a certain family of probability distributions
(such asX; is normal). The model is
parametric because it specifies everything

9Shen et al., [349] have given careful thought to the problem
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about the distribution function except fothere is dependence are addressed in Chapters 6, 8,
a few free parameters (for instance, th@, and 10-12.
mean and variance in the case of a normalWe have seen that a random variable is
distribution). Provided that the distributiora function defined on a sample space and
assumption is correct, the parametric modedat it inherits a probability distribution from
leads to very efficient statistical inferencéhe probabilities assigned to the sample space
because it brings a substantial amount efements. In the same way, a statistic is a function
information into the procedure in addition talefined on a sample, and it inherits its probability
that contained in the data. distribution from those of the random variables
that represent the sample. Thus, a statistic is
Non-parametric approaches to statistical ir& random variable. Every time we replicate the
ference are distinguished from parametriexperiment’ that generates the sample, we get a
methods in that the distributional assumptiodifferent set of realizations of the random variables
is replaced by something more general. Foiat constitute the sample, and thus a different
example, instead of assuming that data comealization of the statistic computed from the
from a distribution having a specific form,sample.
such as the normal distribution, it might be We describe here some basic statistics and
assumed that the distribution is unimodaheir probability distributions under thetandard
and symmetric. This includes not only theormal conditions. That is, we assume that the
normal distribution, but many other familiesandom variablegX1, ..., X,} that represent a
of distributions as well. sample are independent and identically distributed

Non-parametric methods are advantageo[]gr.mal random variables with meap and

when it is not possible to make specifié(a”ancegz'
distributional assumptions. Frequently, non-
parametric methods are only slightly less e#.3.1 The Sample Mean. An example of a
ficient than methods that use the correct parsimple statistic is theample mean,
metric model, and generally more efficient
compared with methods that use the incorre 18

: the incorn ‘fi:-in, (4.2)
parametric model. Non-parametric statistica n &
inference is therefore relatively cheap insur-
ance against moderate departures from tegpressed here as a random variable. Once an
distributional assumptions. We will discusexperiment has been conducted and a particular
a few non-parametric inference techniquesample{xi, ..., Xy} has been observed, we write
in Chapter 6. A complete treatment of the

subject can be found in Conover [88]. _ } )

Xi

Xi
While they allow us to relax the distributional =
assumption needed for parametric statistical
inference, these procedures rely more heav
upon the sampling assumptions than do pal
metric procedures. Non-parametric mode
are heavily impacted by departures from the ()-() = u (4.3)
sampling assumptions (see Zwiers [442]), s0 ' _

their use isnot advised when there may be Var(X) = o%/n. (4.4)
dependence within a sample.

represent the corresponding realized valu¥.of
y applying (2.16) we see that the random variable
has mean and variance

Thus, it is apparent that the sample mean can be
regarded as amestimatot? of the true mean and

4.3 Statistics and Sampling that the spread of the distribution of, as well

4.3.0 Introduction. Inthe rest of this chapter we
will make the standard assumptions that a samp
can be represented by a collection of independen

as the uncertainty of the estimator, decreases with
increasing sample size.

The sample mean has a normal distribution
vyhen random variables<; are normally dis-
r?Puted. When observations are not normally

Distributions

and identically distributed (iid) random variables. 10tne concept of an estimator is discussed with more
The effects of dependence and methods used wlpedtision in Chapter 5.
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3 When random variables(; are normally dis-
tributed, it can be shown than — 1)S?/02 ~
x2(n — 1).22 Consequently,

254
n—1’

Var(S?) = 4.7
Equation (4.7) shows that we can think 8t as
an estimator o&2 that has decreasing uncertainty
with increasing sample siza. The uncertainty
goes to zero in the limit as the sample becomes
infinitely large.

It can also be shown th&t is independent oX.

Figure 4.1: The probability density function of
the sample mean when the sample consists .
3.3 Th .
n = 10andn = 40independent and identically40§ 3 et Statistic
distributed random variables. The distribution o&
the individual observations is labelled= 1.

It is natural to interpret

he sample mean as a measure of Itfetion of

he sample. This measure is often expressed as a
distance from some fixed poipty. This distance
should be stated in dimensionless units so that the

I - inf I fth I
disibuted, theCental Limit Theorer [2.7.5) 52 Inference can be made egardiess of the scale

assures us, under quite general conditions, tha%uppose for now, thato = £(X;). When the
[} [ - 1)

the sample mean will have a distribution that_~ 5. . -
N Varianceo < is known, the distance betwe&hand
approaches a normal distribution as the sample . . X o
A 10, in dimensionless units, is
size increases.

The effect of increasing sample size on the X — 1o
distribution of the sample mean is illustrated inZ = /N o
Figure 4.1. The distribution becomes increasing
compact as the sample size increases. Con
quently the true population meam, becomes

better known as sample size increases.

Iég’l_ndom variableZ has mean zero and unit
variance regardless of the scale on which the
observations are made. It is normally distributed
when random variableX; are normal. When this

is not true, the Central Limit Theorem [2.7.5]
states that the distribution & will approach the
4.3.2 The Sample Variance. Another example standard normal distribution as the sample size
of a relatively simple statistic is thesample grows large.

variance which is given by When that variance is not known, we can
estimate it withS? and compute the statisticor,

) as it is also often calle&tudent’s statistic
S

1 & .
m Z(xi - X)2 (4-5)
i=1

1 n T= \/ﬁ X SMO-
= ((Xox?) -nx?).
n—1\{= Again, we have a measure that is independent of
the scale of measurement and it can be shown that
By using (2.16) and (2.17) it can be shown that the asymptotic distribution is normal with unit var-
iance. When samples are finite and consist of in-
dependent, identically distributed normal random
£(S) =02 (4.6) variables with meang, T has thet distribution

lndependence of th&is is not a necessary condition 12The x2(k) distribution is discussed in [2.7.8]. Figure 2.5
for obtaining convergence results such as the Central Linsihows thex?(k) distribution for four different degrees of
Theorem. Similar results can often be obtained when tfikeedomk.

Xjs are dependent on one another, although in this case th&3This is theprinciple of invariance Statistical methods that
asymptotic variance ok will only be proportional rather than are not invariant under transformations of scale should not be
equal toa2/n. The constant of proportionality depends upotrusted because users can manipulate the inferences made with
the nature of the dependence. such methods by using a suitable transform.
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with n — 1 degrees of freedom (see [2.7.9]). Oné.3.4 TheF-ratio. Suppose now that we have

way to show this is to factor as two collections of independent and identically
. distributed random variableXy, ..., X, and
T = A X — uo Y1,...,Yn, representing two random samples of
= vn S size nx and ny respectively. A natural way to
X = wo)/o compare thelispersionof the two samples is to
= 177 compute
[((n—1/02) /n— 1]V )
_ Z F— iz (4.8)
vY/(n—=1) Sy
Here wheresi is the sample variance of thé sample
~ and S$ is the sample variance of thé sample.
X _ . .
Z = Jn 1o ~ N(0.1) Whep both ;ar_nples consist of mdependgnt and
o identically distributed normal random variables,
(n—1)%? ) and the random variables in one sample are
Y = o2 X (n—1), independent of those in the other, the random
variable(oy /ox)?F is independent of both scales
andY is independent of. This exactly character- of observation andc ~ F(nx — 1,ny — 1) (see

izes at distributed random variable (see [2.7.9]). [2.7.10]). This is shown by factoringF so that
has zero mean and varian%g:%. it can be expressed as a ratio of independeht

Figure 2.6 shows that thé¢ distribution is random variables, each divided by its own degrees

slightly wider than the standard normal distribuef freedom. In fact, by (2.29), we have

tion and that it tends towards the normal dis- o, 2

tribution as sample size increases. Indeed, the _ [(nx — DS /ok] /(x = 1)
two are essentially the same for samples of size [(ny = DSZ /0] /(ny — 1)
n > 30. The extra width in the small sample xx/(Nx — 1)

ca
an

se comes about because the distance betfeen

X ; . : y/(ny —1)°
d o is measured in units of estimated rather xv/ )

than known standard deviations. The additionalith xx ~ x2(nx —1) and xy ~ x2(ny — 1).

va

riability induced by this estimate is reflected iSeveral examples of th& distribution are dis-

the slightly wider distribution. played in Figure 2.7.



5 Estimation

5.1 General of the parameters they are estimating, their scatter
decreases with increasing sample size, and their
In Chapter 4 we describe some of the generstatter is related to the scatter within the sample.
concepts of statistical inference, including the For the momentestimatorsare mere functions
basic ideas underlying estimation and hypothesi$ the sample without any qualitative properties.
testing. Our purpose here is to discuss estimatidhe art is to find good estimators that yield
in more detail, while hypothesis testing igstimates in a specified neighbourhood of the true
addressed further in Chapter 6. value with some known likelihood. The objective
of estimation theory is to offer concepts and
measures useful for evaluating the performance of
gstimators.
Because estimators are random variables, they
subject to sampling variability. An estimator
can not be right or wrong, but some estimators
are better than others. Examples of admittedly silly
atimators of the meam and the variance? are

5.1.1 The Art of Estimation. We stated
in Chapter 4 that statistical inference is th
process of extracting information from data about
the processes underlying the observations.

example, suppose we hawve realizations x;

of a random variableX. How can we use
these realizations to make inferences about tfi

distribution ofX? s = X1
The first step is to adopt some kind of statisticaLz — Xy —X )2 5
model that describes how the samptg, ..., x,) °5 — X1~ X27/2.

was obtained. It is often possible to use thQote thatfi hasn times the variance of estimator
‘standard normal setup’ introduced in Section 4.@4_2) and?r‘sz hasn — 1 times the variance of

It represents the sample as a collection rof ogtimator (4.5).
independent and identically distributed normal
random variable$X1, ..., Xn}. Estimators of the
mean (4.2) and the variance (4.5) are derived
this setting.

The standard notation used to differentiate
parameterp from its estimator is to indicate the

$,1.2 Estimation and the ‘iild’ Assumptions.

In Chapter 4 we stressed the importance of the
ad (or sampling) assumptions in the process of
inference. However, these assumptions are often
estimator with a hat, as irp. Confusion can not satisfied in climate research. Even so, many

arise because the notation does not make it cl&Mators will still produce useful parameter

when P represents a random variable and Wheer,?timates. But it is much more difficult (sometimes
it represents a realization of a random variabl&Ye" impossible) to construct confidence intervals

Estimators should be viewed as random variabl85 cher measures of the uncertainty of the point

unless the context makes it clear that a particulg?t'mate'

value has been realized. The language we use also

gives verbal cues that help to distinguish betwe&nl.3 Some ways in which to violate the ‘iid’
the two; we generally think of aestimatoras assumptions. The ‘independence’ assumption is
a function on a sample (and hence as a randatvlated when methods that require independence
variable) and arestimateas a particular value are applied to serially correlated data. A possible
that is realized by an estimator. Just to exerciselution is to sub-sample the data, that is, remove
this notation, the estimators of the mean ardhta from the complete data set until the gaps
variance that are introduced in Section 4.3 aketween the remaining observations are long
o = X, and 62 = S Intuitively, these enough to ensure independence.

estimators behave as we would expect. They takeinformation is generally lost by sub-sampling
values in the neighbourhoods of the true valuesd the quality of the estimator is not improved

79
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(in terms of bias or mean squared error; seetup and the standard normal setup in Chapter 4 is
Section 5.3). The estimate computed from thbat we do not yet assume a specific form fqr.
sub-sampled data is generally less certain than thaHaving now set the stage, we carry on to
computed from all of the data. introduce a number of estimators. Whenever
However, sometimes the use of the entire dag@ssible, we write the estimators in their random
set leads to problems. For example, when seria(father than realized) form to emphasize that they
correlated data are not evenly distributed in tim@fe subject to sampling variability inherited from
the use of all of the data can lead to severe biadgg sampling process.
(systematic errors).

For example, suppose that we want to estima#e2.1  Histograms. The frequency histogram
the expected (i.e., mean) daily summer rainfall & a crude estimator of the true probability
a location affected by the EI N0 phenomenon density function,fy, of X. To obtain a frequency
using a 31-year data set of rainfall observations. Wistogram or arelative frequency distribution,
naive estimate could be constructed by averagitige real line,R (or the complex plane, or the
over all observations without accounting for thenulti-dimensional space), is partitioned into
characteristics of the data set. Suppose that #ghbset®, such that

data set contains 1 year of very good daily data ‘

(obtained during a special observing project) and
30 years of once weekly observations. Further, kL_Jl k=R and (5.1)
suppose that the special observing project too@km O =0 fork#].

place during an El Nio year in which there was

a marked lack of rain. If we average over athe number of observations that fall into ea®h

the available data, then the year of the specigl counted, and the total count is divided by the
observing project has seven times moruence o5 number of observations so we obtain
on the estimate than any of the other years. It

is very likely, then, that the computed averagq g,
underestimatethe true expected (long-term mean)

rainfall. Sub-sampling is an appropriate solution r\?/here|8| denotes the number of elements inSet

{Xk: Xk € O}l
n 9

this prob'lem.' o ~_ H(®y) is an estimator of
The ‘identically distributed’ assumption is

wolgted when the sampled process is nonp(X€®k): fx (X) dX,

stationary. For example, if there are annual or Ok

diurnal cycles in the mean of the sampled process, ) ] ] o
the sampling method affects the way in whickhich in turn is a discretized approximation of
an estimated mean can be interpreted. A d4fi density functiorfy. Consequently, the random

set that contains observations taken at frequeRfeP function

equally spaced intervals over an integral number_ H (©y)
of years or days will provide good estimates of thef x (X) = ——— if X € Ok, (5.2)
annual or daily mean respectively. On the other f@k

hand, if all th me from winter, or from . .
and, if all the data come fro ter, or Iro Is a crude estimator of the true density function.

the early morning, then the estimate will not b?he denominator in (5.2) is the area of subset
representative of the true annual mean value. ’ : .
Ok (or the length of the interval, if the

partitions (5.1) are intervals, as is often true). The

denominator in (5.2) has been introduced to ensure
5.2 Examples of Estimators fo Fx()dx = 1.1t turns out, with suitable

regularity conditions, that this estimator converges
5.2.0 The Setting. We again assume that thdo the true density function as sample size> oo
result of the sampling process can be representtdhe number of elements in each subset tends
by a sample ofn independent and identicallyto infinity as the sample siza — oo, and if
distributed random variablegXy, ..., Xp}. In the number of subse® also goes to infinity as
general, we use&X to represent any of the iidn — oo.
random variables in the sample and assume ma{lKerneItype density estimators produce much better density

Fhe (common) prOb_ab”ity density function & g nction estimates. See, for example, Silverman [350] or Jones,
is fx(-). The only difference between the curremiiarron, and Sheather [200].
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The histogram is also an estimator of probo
abilities. The probability thatX e [a,b] is
conveniently estimated by
—~ b —~~
P(Xe]a, b)) :f f (X)) dx

a
_ 11Xkt Xk e [a b]j|
n

=H([a, b)).

020406081

That is, the probability of obtaining an observatiof
in a given interval or region the next time the
experiment (i.e., sampling exercise) is repeated

-40 -20 0 20 40 60 80

is estimated by the frequency with which SOl
observations fall into that set in the available . o )
sample. Figure 5.1:The empirical distribution function of

Several examples of histograms are shown e monthly mean SO index as computed from
Chapter 3, for example, Figures 3.3, 3.5, 3.7, 3.18933-84 observations.
or 3.20.

Note that the histogram depends on the details|t is sometimes of interest to know whether a
of the partitioning, and that the partitioning igjiven sample{xy, ..., X} could be realizations
chosen subjectively. of a random variableY, with a particular

type of probability distribution, such as the
5.2.2 Empirical Distribution Function. Com- normal distribution. One approach to this type of
bining the definition of the cumulative distributior@00dness-of-fiquestion compares the empirical
function in (2.14) with the definition of the esti-distribution function Fx with the proposed
mated probability density function in (5.2) givedlistribution functionFy. The differenceFx — Fy

the following natural estimator of the distributiorS @ random variable and it is therefore possible
function to construct goodness-of-fit tests that determine

whether the difference is unlikely to be large

Fy(x) = Xk X = x| under the null hypothesisdd Fx = Fy. Conover
N n [88] provides a good introduction to the subject.
= P(X = x) = H([~00, X]). (5.3) Stephens [356] [357] provides technical details of
~ . . ... avariety of goodness-of-fit tests not discussed by
Fx is often called theempirical distribution Conover.

function. It is a non-decreasing step function with The Kolmogorov—Smirnov tesis a popular

Fx(-00) = 0 and Fx(co) = 1. The value ,q,4ness. of-fit statistic that compares an empirical
of the function increases by a step ofrlat yisyibytion function with a specified distribution
each observation (or it increases by a multiple ﬂﬁnction Fy. The Kolmogorov—Smimov test
1/n if several observations have the same Va'”%)(atistic,

Note thatF x (Xnn)) = 1, and that the estimated

probability of observing a value larger than theDy g = max|F x (x) — Fy(X)|,

largest value Xy, in the sample or a value X

smaller than the smallest valugy ), is zero? measures the distance between the empirical dis-
A slightly different estimator of the distributiontribution function and the specified distribution.
function is described in [5.2.4]. Obviously, a large difference indicates an incon-

The empirical distribution function of thesistency between the data and the statistical model
monthly mean Southern Oscillation Index (seEy.
Figures 1.2 and 1.4, and subsections [1.2.2],There is a large family of related tests, some
[2.8.7], and [8.1.4]) is shown in Figure 5.1. of which feature norms other than thmax-
norm2 The Kolmogorov—Smirnov test becomes

523 Goodness-of-fit Tests—a Diversion.The conservative,’ that is, rejects the null hypothesis

subject of goodness-of-fit tests arises naturally in'sqy,q tests, such as the Anderson-Darling test and

the context of estimating the distribution functionthe Cramer-von Mises test (see [356], [357], [307]) use
statistics that are more difficult to compute, but they are

2a reminder:xj|n) is the jth order statistic of the samplealso more powerful and more sensitive to departures from
{X1, ..., Xn}, that is, thejth largest value in the sample. the hypothesized distribution in the tails of the distribution.
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less frequently than indicated by the significance Figure 5.2 redisplays the empirical distribution
level, whenFy has parameters that are estimatddnction of the SO index ad- x (x), Fj(f(x)) pairs
from the sample. where F]:f(x) is the normal distribution function

This problem often occurs when we want twith mean and variance estimated from the SO
test for normality in a set of data. THelliefors data. These points are expected to more or less lie
test [253], is a variation of the Kolmogorov—on theFx(x) = F-(x) line when the fit is good
Smirnov test that accounts for the uncertainty.e., when kb is true). Note that the placement of
of the estimate of the mean and variance. Tttle thresholds parallel to tHex (x) = F3-(x) line

Lilliefors test statistic is given by is correct only if the iid assumption holds for the
SOl, which is known not to be true. The results of
DL = max|Fx(x) — FA OOl the test can therefore not be taken literally.
X

where Fy, ~ N(jix,ox) is the normal 5.2.4 Probability Plots. Subsection [3.1.3]
distribution in which the mean and standaréiscusses the format of a probability plot that
deviation are replaced with the sample med# similar to Figure 5.2, but more useful for
and standard deviatiol; measures the distancegletermining whethefry = Fx. A probability
between the empirical distribution function an@lot depicts the graph of the functioy —
the normal distribution fitted to the data. Larg&yx [Fv(y)l, where Fy is some prescribed,
realizations of D indicate that K should be possibly hypothesized, distribution at is the
rejected. Conover (see Section 6.1 and Tauléstribution of the data. The graph is plotted
15 in [88]) provides tables with thresholddinearlyiny butthe horizontal axis is labelled with
for rejection as a function of sample sizéhe probabilitiesFy (y) (see Figure 3.2).
and significance level. Stephens [356] offers A probability plot may be derived from a
approximate formulae for the same purpose.  finite sample by plotting pointsFy, *(Fx (xi)), Xi)
whereFx is an estimator of the distribution func-
tion. SinceF x (Xn) = 1 we camotuseFy = Fx.

c Si Otherwise the scatter plot would include the point
-% © (00, Xn). Alternative estimators are
2 o ~ Xi: Xk < X
=g Fx(x)=|{k k < X}|
T © n+1
c < n Fy(x)
8 o =511 X
N n+1
% o
O 8 z and
00 02 04 06 08 1.0 Ev0) = I{Xk: Xk = x}| = 0.5
Empirical distribution (SOI) OnS
= Fx0 - = (5.4)

Figure 5.2: The empirical distribution function ¢q tnat the points to be plotted 6@\(—1( il) Xi)
. . X n+ 9
(5.3) of the SOI plotted against the cumula’uver (FY_l('_O'S),Xi)- Equation (5.4) is used in

distribution function of the standard normaf’ n

random variables. Points are expected to Ii[98'3'13]'

approximately on they = x line if the SOI is o ) ]
normal. The lines parallel ty = x are thresholds 2-2-5 Estimating the First Moment. The first
that, if crossed, indicate thaHp: ‘sample is mom_entu(l)=/_L_ofareal-_valued random variable
normal’ should be rejected at the 5% significanc& With probability density functionfy is the
level (see [4.1.10]). The test may not be reliab@xpected value o, £(X), given by

because the sampling assumptions are not satisfied o0

by the SOI. w= /

Stephens [356] and Pearson and Hartley [307] describe hOVWe identified the sample mean (4.2)
adjust several goodness-of-fit tests, including the Kolmogorov— ’

Smirnov test, when sample sizes are small and when it _ 10N
is necessary to estimate the parameters of the distributioff = X = = Zxk (5.6)
specified in K. n —1

x fx (X) dx. (5.5)

—00
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as a reasonable estimator @fin [4.3.2] because 5.2.6  Estimating the Second and Higher
its expectation isp and its variance goes toMoments. Useful estimators for th¢th moment
zero as the sample size increases. However,u()) = ffooo x! fx(x)dx can be defined, in a
the relationship between (5.5) and (5.6) is nobanner similar to that of the first moment, as
immediately obvious. n

A heuristic argument that links the two/;(\j)zizxi

: ) . ) k-

expressions is as follows. First, &), I = ni=

1,...,n, be the order statistics of sample .
{X1,....Xn} (see [2.6.9]). Then equation (5.5°" the second central moment, the variance, we
can be rewritten as ave
n
Xam+X@2n))/2 =2 _ } — )2
u =/ xFx (x) dx G7) ° =; kzl(xk w* (5.11)
50 =
=l X +X+ram)/2 Note that the estimator (5.11) differs from the
+, /(X' X2 xx (x) dx sample variance (4.5) by a factormf(n — 1). We
=2 TR return to this point in [5.3.7].
+ / X fx (X) dx. The same rules that apply to moments apply to
Xn—1m+Xnm)/2 the estimated moments as well. For example, for

. . . _ 52 as givenin (5.11),
Now, in theith sub-integral, we approximate the

integrandx f ith X¢m f . Thus, theith . — —\2
Integ X fx (X) wi i fx(X) u 2 _ @ _ (M(1)> _

sub-integral, fof = 2, ..., n—1, is approximated 7
as
KX s1m)/2 5.2.7 _ Mean Vector_s, _Covariar_wces, and
X(i|n)/ fx (X) dx (5.8) Correlations. The. univariate estimators of_
Ki—am+X(in)/2 the mean and variance defined above are easily
extended to apply to samples of iid random
= X [Fx (M) vectors {Xy, ..., Xn} distributed as the random
2 vectorX. The mean vector is estimated as
_Fy <X(i—1n>+x<i|n>>]. oo
2 = > o Xi (5.12)

i=1
Similarly, the first sub-integral is approximated as _ )
and, in analogy to the sample variance, the

X E Xan) + X 0 59 covariance matrix (see [2.8.7] and (2.32)) may
(| X 2 - (5-9) pe estimated with thseample covariance matrixs
and thenth sub-integral is approximated as = 1 Ko =g AT
C=—— Xi —w)Xi — . 5.13
) ) n—1;(' WX — i) (5.13)
_ (n-1n) + Xnin) a
X o [1 FX( 2 )} ®10) s with_the variance, we can also define an

. . estimatorX, expressed in terms of the moments
The next step is to approximate the trugfinhe sample, and obtained by dividing the sum of
distribution functionFx with its estimator (5.3). products in (5.13) by rather tham — 1:
Note that each of the cumulative distribution
function differences in (5.8)—(5.10) straddles onesy, 1<~ o = o =7
of the ‘steps’ in (5.3). Thus, each of these™ — HZ(X‘ — WX — )
differences is equal to/h and the th sub-integral =1

in (5.7) is further approximated ;%Q(mn). Finally When we want to clarify that the estimated

we obtain covariance matrix refers to the random vector
n X, we add subscripts to matricés or 3. The
oA Z }X , elements of the estimated covariance maffx
~ (in) .
= n denoted jk, are given by

14 n
==Y X =7 ~ 1 P ~
n ; : Ojk = ﬁ ;(Xm - Mj)(xl;k — 1K), (5-14)
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where X;.; represents thgth component of the 5.3 Properties of Estimators
ith random vectorX;. Similarly jz; is the jth

component of the estimated mean vegior 5.3.1 Estimator Selection Criterion. Chapter 4

.__.mentions that a good estimator will produce
- "Wtimatesa in the neighbourhood of the true

values in some of the sample vectorgy, ..., X. . .
. . o arameter valuexw. A mathematically concise
Then the summationsin (5.12) and (5.14) are takggfinition of ‘in the neighbourhood’ is obtained

only over the non-missing values and the sums gre | .. . e ,
divided not byn but by the number of terms inegy defining a ‘distance’ such as theean squared

the sum. Theoretical results concerning properties
of the estimators may not extend smoothly whe (@; o) = £((@ — a)z), (5.17)
there are gaps in the data.

The correlation between thgth and kth The mean squared error allows us to compare

elements oK is two estimators. In particular, we have the
following definition about the relative efficiency
pii = Oik of estimators:
] — ) R - A .
+/9jOkk Let @ and @ be two competing estimators of a

. ] parameterx. Thene is said to be anore efficient
whereaj is the covariance betweet; andXy, estimator ofw than@ if M(@; a) < M(@; «) for

andojj andok are the corresponding varianceg)| possible values af.
(see [2.8.7] and (2.33)).
This correlation is estimated with threample

. Estimators that have mean squared error less
correlation

than or equal to that of all other estimatorscof
are obviously desirable. However, other properties,
Dk = ———- (5.15) such asunbiasednesgdefined in [5.3.3]) are
also desirable. In [5.3.7] we show that the mean
squared error may be written as the sum of
5.2.8 Estimating L-Moments. Recall that L- the mean squareblias and the variance of the

moments (see [2.6.9] and (2.20)—(2.24)) are tfStimator. Because lack of bias is often very
expected values of linear combinations of ord&esirable, the search for efficient estimators is
statistics of samples that are the same size JiEN restricted to unbiased estimators. Thus,
the order of the L-moment. For example, thgtau.stlmans.often search fcm|n|m.um variance
third L-moment is the expected value of a linedinbiasedestimators. The search is often further
combination of the order statistics of a samplgStricted to estimators that can be expressed as

of size three. The natural way to estimate an jinear combinations of the random variables that

moment [183] is with & statistic(first described M2ake up the sample. _ _

by Hoeffding [178]). Thatis, if the third L-moment W& Will continue to discuss the bias and
is to be estimated, then, at least conceptually, ¥fifiance of a variety of estimators after formally
possible sub-samples of size three are selectiffining bias.

from the full sample, the linear combination is

computed, as for the expected order statistics, frdm3.2 Definition: Bias. Leta be a parameter of
the order statistics of each sub-sample, and théBe distribution of random variablX and leto
linear combinations are averaged. Hosking [18BF an estimator of this parameter. Then iasof
uses combinatorial arguments to show thatjttie estimatora is its expected, or mean, error, which
L-moment can be estimated as is given by

B@) = £@) — a.

j-1 : .
) i1 =1y i+l -1
M = Z%( D Croe ) Positive bias indicates thal overestimatesy,
(5.16) on average, when the experiment that generates

the sample is repeated several times. Similarly,
negative bias indicates th@tunderestimates, on
average. An estimator that has no bias is said to be

13 (D=2 (-1 unbiased. . o

n Z n—DHin—2)-(-D (n)- PAosmve bias does not imply that all realizations
of o are greater thaw, although that could be

where

b =

i=1
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true if B(@) is large compared with the variabilityestimator of2, while 2 (5.11), is a biased
of @. Also, unless we know something about thestimator ofr2. The bias of the latter is given by
distribution ofa&, we can not say what proportion 1
of realizations ofa will be greater thanx. For B(G?2) = Zo2. (5.20)
example, ifa is positively biased and distributed n
symmetrically abou€ (@), then we can say thatThe bias 0fS? anda 2 is derived as follows. First,
more than 50% of all estimates will be larger thanote that
a. However, if the distribution o& is skewed, then |,
we can make this statement only if we know thatZ(xi —7)?
the mediart value of@ is greater thame. Similar =1
comments apply i& is negatively biased. n
It is highly desirable to have estimators with = Z(Xi —u—a+p?
little or no bias, but, as we will see below, it may i?l
be necessary to balance small bias against other 5 ~ 5
desirable properties. - ;(xi TN - W

Then
5.3.3 The Bias of Some Estimators. We now 1
derive the bias of some frequently used estimatorg (5 2) = —S(Z’k‘:l(xk — /’i)z)
The propositions to be proved appear in italics. 2
~ _ n 2 -~ 2
The empirical distribution functiorFx (5.3) has = ﬁg(Zkzl(Xk —w?) — E((r — w?)
zero bias as an estimator of the cumulative 18
distribution functionFx. That is, = = > 0% — Var(i) (5.21)
k=1
B(Fx) =0. (5.18) = o2 = Var(). (5.22)

To prove this, recall thahFx(y) is the number The step that results in (5.21) requires the
of random variablesXy in the sample such ‘identically distributed’ assumption. We will show
that Xx < Y. As usual, all random variablesbelow that Varji) = o2 if the random variables
are assumed to be independent and identicaifythe sample are also independ@rithus, (5.20)
distributed. Since the random variables ai@ proven. The unbiasednessS3ffollows from the
identically distributed,P (Xx <y) = Fx(y). relationships? = (:)52.

Thus, using independence, we see that theSimilar results are obtained for the multivariate
integer-valued random variablenF x(y) has mean and the sample covariance matrix:

the binomial distribution3(n, Fx(y)). Therefore B(?) _0
E(NFx(y)) = nFx(y) for all y. This proves K=
(5.18). BC) =0
PN 1
The sample meaf (5.6) is an unbiased estimator B(X) = HE-
of u. That is,
The uncertainty of the estimator of the mean vector
B(z) = 0. (5.19) Is easily characterized as
= = 1
The proof of (5.19) is straightforward: Cov( i, i) = HE,
.1 1 but the uncertainty of the estimator of the
£ = n Xk:g(xk) - ﬁns(X) =M covariance matrix% is not easily characterized

51t is assumed here that the sample consists of iid random

. . . variables. Both estimators are, in general, biased if the
The sample variance&? (4.5) is an unbiased independence assumption is replaced by the more general
assumption that the sample is obtained from a stationary,

4Themedianof a random variablX is a valuexg 5 such that ergodic stochastic process.

P(X <Xp5) <0.5andP (X > xg5) > 0.5 (see [2.6.4]). If the 6The bias is caused by the Van term in (5.22).
distribution ofX is symmetric about the mean= £(X) (i.e., This term can be considerably greater thefyn when the
fx(x —pn) = fx(x+ p) forall x > 0), thenxgs = u. If Xis independence assumption is replaced by the stationary and
skewed, with a large tail to the rightg 5 < 1, andxgs > wif  ergodic assumption. Then the ‘memory’ within the sample
X is skewed with a large tail on the left. tends to inflate the variance fif(see Section 6.6).
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because it involves all of the fourth moments dfow, using independence, all the expectations in
X. This is possible using the Wishart distributiorthe last expression vanish except those wikere
when X is multivariate normal [2.8.9] (see [197]j. Consequently
[147]). 1 1
~ _ 2_+ 2
- - - Var(/_L)—F;O‘ _HG .
5.3.4 Asymptotically Unbiased Estimators.
We have _shown that the empirical distributio
function Fx, the sample meaji = X, and the
sample varianc&? are all unbiased estimators of\ar(52 1 . 4
Y . ar =—(y* - 5.25
the distribution function, of the mean, and of the @) n(y o) ( )
variance, respectively, when the sample consists of 2 o4 1 s
iid random variables. On the other haad? (5.11) n2 (v 207) + n3 (v 307),
is a biased estimator of the variance. Here the b
disappears as sample size increases. Indeed,

Yhe variance o8 2 (5.11) is given by

Fhere y* = E((X — w?) is the fourth central
moment.The variance o8? is n?/(n — 1) times
nlem BG?2) = 0. the variance of 2.
The proof of this result is lengthy but elementary
Estimators with this property are said to bgsee [325]).

asymptotically unbiased. . -
Many biased estimators are asymptoticall\{yhen the sample consists of iid normal random

unbiased, for example, the estimator of thédriables, the variance of the sample variarge
correlation coefficienp (5.15) or the estimator of 2"d the biased variance estima@f are

the L-moments (5.16). Var(s 2) = 2(n— 1)04 (5.26)

n2 '
5.3.5 Variances of Some Estimators. We Var(s?) = 2 o4 (5.27)
derive here the expression for the variance of n-1

the sample mean used in [5.3.3] as well &or normal random variables, = 0, so (5.26)
some other results. Again we assume that thed (5.27) are a direct consequence of (5.25).
sample consists af independent and identically |t can be shown that the estimator (5.15) of the
distributed random variables. correlation coefficienfp has asymptotic variance

The variance of the empirical distribution functiorfdual to(1 — p{;)/n, meaning that
Fx (5.3) at pointx is given by 1_ Pi?"
nIl_)mOOVar(,oij) =— L.

We describe the uncertainty of this estimator

(5.23) when samples are finite in [8.2.3].

The proof of (5.18) shows thahFx(x) ~ Hosking provides an expression for the asymp-
B(n, Fx(x)). Therefore, using (2.9), we obtairfotic covariance matrix of the L-moment estimator
Var(nfx(x)) = nFx(x) (1 — Fx(x)), proving (5.16), but this expression is difficult to use be-
(5.23). cause it depends upon the form of the distribution
of the elements of the sample.

~ 1
Var(Fx(x)) = ﬁFx(x)(l — Fx(X)).

The variance of the sample meAn(5.6) is given

b
y 5.3.6 Consistency. Another desirable property
Var(ii) = }62. (5.24) of an estimator is that it beonsistent.
: ] ) An estimatoiz is ‘consistent’ if its mean squared
To demonstrate this we first note that error (5.17) goes to zero with increasing sample
Var(ii) size. That s, if
(A5 ) M @) =0
1 & 5 All of the estimators discussed in [5.3.3]-[5.3.5]
2 Z 8(xkxj —H ) can be shown to be consistent using the following
k’Jn=l proposition.
1
== Z 8((Xk — w)(Xj — M))- "The fourth central moment is related to the kurtosis via
n - _ % 4
kj=1 y2 = r*/(c” — 3) (see (2.19)).
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The consequences of bias correction are
interesting even in this limited context, that is,
where a scale correction will make an estimator
unbiased. In particular, the ‘improved may not
always be more efficient than the original If
the scaling factorc(n) > 1, thena is more
efficient thana because both components of the
expected mean square error, the squared bias, and
the variance, have been reduced. On the other
hand, ifc(n) < 1, the bias is reduced but the
variance is enhanced. Thus, it is generally advised
that the ‘improved’ estimator be accepted with
caution.

The scaling factor that turns biaséd into the
unbiaseds? is c(n) = (n — 1)/n < 1. The mean
squared error for the unbiased estima®is

2
. MSEe?) =Var($) = ——o
7’; = n-1
7 while that for the biased estimatér is
. 1 2(n—1)
2. 2y _ 4 4
Figure 5.3:Bias and variance contribute to the M(@%0%) = P + o

n2
expected mean squared error. n-1,
— n2 .
The mean squared error of an estimataris Since
the sum of its squared bias and its variance (se@n — 1 2
Figure 5.3). That is, 2 “n_1
M@; o) = [B@)]? + Var@). (5.28) we see thatthe biased estimagaris slightly more
] efficient than the unbiased estima®t. We will
The proof is easy to demonstrate. see shortly that the biased estimator is also the
M@ o) = E(@— )?) maximum likelihood estimataf o2, _
. e > An empirical approach frequently used to find
= E(@-£@ — (@ —E@))?) bias corrections is called thackknife(see Efron

= 8((&‘—5(&))2) + (a _5(5;))2 [ﬁll] or Que_nouille [32((31])]; Theh idfea}I is th?t
o\ o (o ~ the estimator is computed from the full sample,

~2a — E@)E@ - £@)- then recomputedn times, leaving a different

The cross-product term in the last expressi@bservation out each time. These estimators are

is zero, so (5.28) follows. Therefore, anylenotedo and &g, where the subscripti)

asymptotically unbiased estimator with variancadicates that is computed withX; removed

that is asymptotically zero is consistent. from the sample. Thgackknife bias correction

which is subtracted fror, is then given by

5.3.7 Bias Correction and the Jackknife. We gg = (n— D@ —a,
showed in [5.3.3] that 2 is a biased estimator
of o2 with B@?) = 02 We also showed that"’ where
the sample varlancés2 corrects th|s bias by ~ Z &
multiplying the estimato® 2 by n/(n — O
Many bias corrections are of the above for

that is, a bias correction is often made by scafing
a biased estimator af, by a constant(n) so that
the resulting estimatd¥ = @/c(n) is an unbiased
estimator ofx. Biases and the corresponding bias
corrections come in a variety of forms, however, n

so there is no general rule about the form of thesgz _ 1 Z(Xi —X)2
corrections. nin-—1)

ml'he jackkmfedestlmator,a = o — dap, can often
9 be re- expressed in the forin= a/c(n).

It can be shown, with some algebraic manipu-
lation, that the jackknifed bias correction for?
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Therefore the jackknifed estimator of is Now suppose that we have obser¥ée= h. The
~? A2 a2 5 likelihood of observingh for a particular value of
0“=0“—05=S o Do :

B ) the parametep is given by thdikelihood function

A jackknifing approach can also be used to
estimjate variagcepoec an estimatr Tukey [374] Lu(p) = fu(h: p). (5.31)
suggested that the variancedafsay ¢, could be The likelihood function is identical to the
estimated with probability distribution of our statistiti except
n—1 that it is now viewed as a function of the parameter

n
~2 ~ o~ D2
05 =— i;(am o)t p

The maximum likelihood estimatofMLE) of
Efron [111] explains why this works. Thep is now obtained by determining the value of
jackknife estimator of the variance of the samplearameterp for which the observed valub of

mean is H is most likely. That is, giveH = h, (5.31) is

o, 1, maximized with respect tp.

oF = ES , It is often easier to maximize tHeg-likelihood
o . i function

which is also the estimator obtained when we

replaces2 with S% in (5.24). IH(p) = In(Lu(p)),

which is defined as the natural log of the likelihood

5'3.'8 Ma?qmum L|k§I|hoqd MthOd' The function. For this example the log-likelihood is
estimators introduced in this section have been

arbitrary so far. One systematic approach ?Bven by
obtaining estimators is thBlethod of Maximum N . _
Likelihood, introduced by RA. Fisher [119, 120]'# (P =M (h) +hIn(p) + (= h)In(@ — p).

in the 1920s. (5.32)

The Maximum Likelihood Estimator of the We maximize (5.32) by taking the derivative of
Parameter of the Binomial Distribution. The !H(P) with respect top and solving the equation

idea is most easily conveyed through an eXamp@t_)tained by setting the derivative to zero. In the
For simplicity, suppose that our sample consisesent example there will be only one solution
of n iid Bernoulli random variablegX1, . .., Xn} to this equation. However, there may be many

[2.4.2], which take values 0 or 1 with probabilitie$0lutions in general, and it is necessary to select
1 — p and p, respectively. The problem is tothe solution that produces the overall maximum of

estimatep. | (or, equivalentlyL).
The probability of observing a particular set of 1aking the partial derivative of (5.32) and

rea“zationqxl’ e Xn} is Set“ng itto Zero, we Obtaln

P(X1=X1,...,Xn = Xn) = p"L— p)"" (@ _h_n-h_, (5.33)

(5290 P p 1-p
whereh = Y, x;. Therefore, we see that the! '€ Unique solution of (5.33) ip" = h/n.
useful information aboup is carried not by the The_ correspond_mg MLE op, written in random
individual random variableX; but by their sum  Varable form, isp = H/n. Thus, we have
discovered that here the estimator we would
H— s X intuitively use to estimate is also its maximum
- ; t likelihood estimator.

We come to this conclusion because (5.29) haige Maximum Likelihood Estimator in

the same value regardless of the order in whicheneral. We will continue to assume that our

the contributions tch (i.e., the Os and 1s) weresample consists ofn iid random variables,

observed. Thus our estimator should be based gy, . .., X,}, all distributed as random variable

the statistidH. X. For convenience we will assume that they
The probability distribution oH is the binomial are continuous, and refer to probability density

distribution (2.7) functions rather than probability distributions.

n h However, everything here can be repeated with

fu(h; p) = (p)p"@—p" " (5.30) probability distributions simply by replacing all
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occurrences of density functions with probabilitpifferentiation yields
distributions.

2 n .
Let fx (x: &) be the density function of, where  9Xp..xa (1. &%) ZX' —H (5.36)
@ is a vector containing the parameters of the o - o?
distribution of X. The joint probability density 2 n 2
: . .. Xa (15 09) n X — )
T 1 n _
function for the random ve:tc(b(l, LX) lis T 02 = 252 + ;?.
Fxp X X0 Xni @) = [ | fx(6: @) (5.37)
i=1

We obtain the MLE of the mean by setting

(see (2.12)). Suppose we have observgd = (5.36) to zero, to obtain

Xi, i =1,...,n. Then thdikelihood functionfor

the unknown parametetsis n
P . W= %in. (5.38)
Lx,..x, (@) = H fx(Xi; ), (5.34) =1
i=1 Re-expressing (5.38) in the random variable
and the correspondintpg-likelihood functionis form, we find that the sample megn = X
given by (see [4.3.1], [5.3.3] and [5.3.5]) is the maximum
n likelihood estimator of the mean.
[x,..x, (@) = Z In(fx(Xi; @)). (5.35)  Similarly, setting (5.37) to zero, we obtain

- LS
Themaximum likelihood estimatar of & is found 0% = n Z(Xi — >
by maximizing (5.34) or (5.35) with respectdo i=1

Then, replacinge with its MLE, and rewriting the

The Appeal of Maximum Likelihood regyiting expression in random variable form, we
Estimators. There are several good reasonspiain

to use maximum likelihood estimators. First, N

as we have noted, the method of maximums2 _ }Z(Xi — )2

likelihood provides a systematic way to search for n—

estimators. Second, MLEs tend to have pleasing . o )

asymptotic properties. They can be shown to & _the maximum likelihood estimator of the

consistent and asymptotically normal under fairlj2fiance. Thus, we see that the MLE of the

general conditions (see, e.g., Cox and Hinkldgriance is the biased estimator introduced in

[92], Section 9.2). The asymptotic normality car; 2.6]

in turn, be used to construct asymptotic confidence

regions® 5.3.10 MLEs of Related Estimators. The
following theorem (see, for example, Pugachev

Mean and the Variance of a Normal Random €stimator:

Variable. We derive the MLEs of the mean andconsider a random vectof with two parameters

the variance of a normal distributiaV (i1, %) & and B, related to each other through(a) = f
from a sample oh iid normal random variables gng g—l(g) = &, whereg and g~! are both

using (5.35). The natural log of the normal densi

19-99). Yontinuous. If is an MLE ofa, thenf = g(@)
function is given by =

is an MLE ofﬁ. Similarly, ifﬁ is an MLE of,é,

1 _ 2 > 12 -

202 There are various applications of this theorem.
Consequently, the log-likelihood function is giverror example, suppos€is a normal random vector
by with covariance matrix3. Let {A1,...,An} be
2 n 2 the eigenvalues oE and let{&!,..., 8"} be the
Xy (1, 0%) = ) In@rwo®) corresponding eigenvectors (see Chapter 13). Both
N (xi — p)? the covariance matrix (correspondingdoin the
- Z g2 theorem above) and its eigenvalues and eigenvec-
i=1 o tors (corresponding t@) are parameter vectors

8That is, confidence regions that attain the specifie‘af X-_ Mort_aover, there is a continuous, one-tp-one
coverage, say 95%, as the sample becomes large. relationship between these two representations of
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the covariance structure ¥ Therefore, since the
covariance estimatde in [5.2.7] is the maximum
likelihood estimator ofX, it follows from the

theorem that the eigenvalues and eigenvectors of
3 are MLEs of the eigenvalues and eigenvectq
of 3.

5.4 Interval Estimators

5.4.1 What are Confidence Intervals? So
far we have dealt withpoint estimates, that
is, prescriptions that describe how to use the
information in a sample to estimate a specific
parameter of a random variable. We were
sometimes able to make statements about thigure 5.4:Ten realizations of a 95% confidence
statistical properties of the estimators in repeatésterval for unknown parameter. On average, 19
sampling, such as their mean squared errors, theirt of 20 intervals will cover. In this example,
biases and their variances. « = 0. The curve shows the density function of the
In the following we deal withinterval estima- sampled random variable.
tion, that is, the estimation of intervals or regions
that will cover the unknown, but fixed, parameter
with a given probability. thus, no probabilitist interpretation can be given
Statisticians often use the wocdveragewhen to the interval. Rather, the interval is interpreted
discussing confidence intervals since the locati@§ re€Porting a range of parameter values that
of parametew is fixed on the real line. £x 100% &€ strqng_ly consistent with t_he realized sample
confidence interval fow is constructed from two (I-€:, this is a range of possible parameters for

statisticsi, anday, @, < @y, such that which the likelihood function [5.3.8] is large). The
confidence levehdicates the average behaviour of
P((&‘L,&U) > a) =p. (5.39) the reporting procedure, but it does not, and can

not, give a probabilitist interpretation to any one
We use the symbab to mean that the set on theeglization of the confidence interval.

left covers the point on the right in (5.39). The

confidence levep is chosen to be relatively Iarge5 42  Confidence Interval for a Random
e.g.,p = 0.95). The upper and lower limits of the™" " . . . .
(eg.p ) bp I.°While the discussion to this

confidence interval are random variables; they ayé\_rlable—Optlona S
functions of then random variabley. . ... X point has focused on the probability that a random

that represent the sampling mechanism. Thus, fﬂée_rfl‘l (;‘X'-’ aU),)c(iefmed as al;yn(zjtmn of ra?dom
interval varies in length and location on the re arablesAa, . ..., An, COVETS a fixed parametar
line. The interval is constructed so that it withver " thm!(mg need not b? restrlgted to ,ﬂXed targets.
the fixed pointa on the real linep x 100% of  Consider an experiment in whicn + 1

the time. That isp x 100% of the realizations ofobservations are obtained in suc'h a way that
the confidence interval will lie on top of poit. they can be represented by + 1 iid random

Figure 5.4 illustrates this concept. variables X1, '"I"bX”’ Xn1. hSuppose thhat ffchere
Many authors use the word ‘contain’ in thdS an interval between the time the first

context of confidence intervals, that is, theggservat!onsbare obtalned.i':mbcli th_?_rt:me(ﬂnel).thh b
state that the confidence interval will contain th; servation becomes available. Then we might be

unknown parametep x 100% of the time. We mteresteq in using t.he infprmation in the finst
have found this language to be a great sourceQﬁservat'onS to predict an interval
confusion because it somehow implies that th

. o XL X, ., Xl Xu X, Ll X
parameter is random. Rather, it is the endpomts(E LXa nl- Xu[X1 ]
of the confidence interval that are random; they °This type of interval estimator is suitable when a
vary from one realization of the sample to theegression equation is used to specify the value of an unknown

next. Note that, conditional upon a particula(iiependent variable (see Chapter 8). A typical application
’ ! in climatology and meteorology is a statistical forecast

_sar_nple, everything abO_Ut the confidence imer\’lfﬁ]flprovement procedure in which forecasts from a numerical
is fixed (both the endpoints and parameigBand, weather forecast are enhanced using regression equations.




5.4: Interval Estimators 91

sampling. Depending on the situatiolh,denotes

either a fixed parameter or a random variable.
The definition of®z(X4, ..., Xp) depends on the

assumed statistical model (e.g., the sample can
be represented by iid normal random variables),
the nature of the target (i.e., either a parameter
or a random variable), and the confidence level

P.

For the moment we limit ourselves to univariate
problems (and thus intervals) instead of the more
general multivariate problems (which require the
use of multi-dimensional confidence regions).

2 0 2 Multivariate problems arise in the context of
regression analysis (see Chapter 8), for example.

i o i As with point estimators, there are various ways
Figure 5.5:Ten realizations of a 95% confidencg, gerive interval estimators. The only condition
interval for a random variableX. On average, 19 o mystbe satisfied is (5.40). Other reasonable

out of 20 intervals will cover the next realizatior}equirements are that the s8p(X1, ..., Xn) has
of X. The curve shows the density functioXof  minimum size, on average, and that it is compact.

The latter implies, in the univariate case, that

that will coverXys1 p x 100% of the time. This cOnfidence regions can only be intervals.
is a confidence interval for a random variable (see!f the target is a parameter, the general

Figure 5.5). The random intervals are now Widé)rrocedure is as follows. We start with an efficient

than they were in Figure 5.4 because they need§gtimatora of parameterz. We then derive the

be able to cover a moving, rather than fixed, targ&iStribution of &@. This distribution will depend

Again note that the confidence level refers to tH! @ Somehow. There will generally be a way
average behaviour of the interval to transforma so that the distribution of the

transformed variable no longer dependseori-or
XL[X1, ..., Xnl, Xul[X1, ..., Xn)) example, ifa is alocation parametersuch as a
mean, then the distribution & = @ — « will not
in relation to the unknown random variabf@.1. depend upow. Similarly, if « is ascale parameter
The interval is constructed so that in repeategich as a variance, then the distributiondof=
sampling 0fXy, ..., Xn, Xny1 the probability of /4 will not depend onx. The distribution of the
coverage IS transformed variable is then used to construct the

confidence interval.
POXLIX1, s Xnl < Xni For a location parameter we find critical values

< Xu[Xg,.... XD =p. z. andzy so thatP(zp. <Z) = 1 - p/2 and
Note, that if we condition on the observed valuégs;épilinzg) = 1 - p/2. Therefore, in repeated

X1, ..., Xn Of X1,..., Xp and continue to think
of Xny1 as random, then the coverage of they — p(z <7 < z)
interval is no longer exactlyp. However, in most

practical applications the coverage will be close Pl <a—a<zy)

to p because will be relatively large. Thatis,we = P(—2u <a—& < -2z.)

do not expect the upper and lower bounds ofthe = P(@ —zy <a <a —z). (5.41)
interval to move a great deal due to variation in _ i . ]
X1, ... Xn. Thus, thed x 100% confidence interval for location

parametery has the fornt —zy <o <a — 2.
Note that it is centred on estimatarand that it

5.4.3 lConstrfl'J(;:tmg Confujengef}ntgryﬂ;_ l?l excludes equal proportions of the upper and lower
general, aconfidence regiotis defined indirectly . ot the distribution of.

as aseBp(Xy, ..., Xn) such that For a scale parameter, we find critical values

P(®p(X1, ..., Xn) 3 A) =p. (5.40) YL andWy so thatP (¥ < W) = 1 - p/2 and
P(¥ > Wy) = 1— p/2. Both critical values will
That is, ®5(X1, ..., Xp) is constructed so thatbe positive because we are dealing with a scale

it coversA p x 100% of the time in repeatedparameter. Also, for large values f W will
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be less than 1 andy will be greater than 1. We 5.4.4 Confidence Intervals for the Mean. Let

expect that in repeated sampling X1,...,Xp represent a sample of iid normal
_ random variables with mean and variancer2.
p=PW <V¥<Wy) Then

= P<\I/|_ <g<\llu>
o

1 o 1
P(% === \y_L) has the standard normal distributidi(0, 1) (see

P( Q Q ) [4.3.3]). The quantiles of this distribution are

Z=JynX—-p/o (5.43)

o Y (5.42) tabulated in Appendix D. Using the Appendix, we
find critical values andzy for a given confidence
Thus, thep x 100% confidence iﬂterval for thelevel such thaf

scale parametexr has the formf—u < a <

+-. This will generally be an asymmetric interval p=P@ <Z<2).
about@ because the sampling distributions he shortestp x 100% confidence interval is
scale parameters are usually skewed. None

. ained by choosin so thatP (Z < zy) =
less, the interval has been constructed to exclu & " r)/zyand selechtJingzL _ (_ZTJ UT)hen

equal portions of the lower and upper tails of thgﬁbstituting (5.43) foiZ and manipulating as in

distribution ofa. |
i : (5.41), we find that
If the target is a random variable, a model |g ), we find tha

needed to predict the value of the unknown random o - o
variable from the observed random variable® = - Nokah X+2y ﬁ)

X1, ..., Xp. Often, the model has the foriXy =

a+Ei,i =1,...,n+ 1, wherex is a location Thus, whers2 is known, thed x 100% confidence
parameter and the erroi; are iid with mean interval foru is

zero. The approach is to estimate the location

parameter and then predh 1 asXns1 = @ + (X — L Xtz i). (5.44)
En+1. Because the errors are iid we can only J/n J/n

predictEn+1 = 0. Thus, the prediction error is ) ] _

Apred = Xni1 — @ = (@ — @) + Eny1. The We still express the distance betweérand
next step is to find the distribution of the predictioH! dimensionless units as in (5.43), but we replace
error, and then to find critical valued, and o with the estimatos. The resulting statistic,

Ay such thatP (AL < Apreg) = 1 — p/2 and _

P (Apred < Au) (= 1- 8/2.) We expect that in T = vN(X —1)/S,

repeated sampling

P(Y

has at distributionwith n — 1 degrees of freedom
p = P(A._ < Apred < AU) (see [2.7.9] and [4.3.3]). Proceeding as above, we
— P(AL < Xnp1—@ < Ay) find that, wheno is unknown, thep x 100%

. N confidence interval fon is
= P(a +AL < Xn+l < +AU)

The confidence interval has structure similar to(i_tui, X +ty i) (5.45)
that of o, but is substantially wider because the Vv Vv

critical valuesA| and Ay account for sampling wherety, is the 0.5+ /2 quantile of thea(n — 1)

va'rllzggzIzobn?‘;[(r:it::r?cned)i(nntg\./als may depend u g}]stribution (see Appendix P
y dep P Be aware that the coverage of intervals (5.44)

et more parameters. For example, the limits of a : o
yern pa mp and (5.45) deviates from the nominalx 100%
confidence interval for a location parameter mq% el when one or more of the assumbtions
depend upon the value of a scale parameter. Su N L puor

we have made is violated. For example, serial

arameters are calleduisance parametergsee . e .
P P & correlations within the sample will tend to reduce

I 4.1.7]). The onl lution i im .
aso [. ) e only solution is to estimat he coverage of these intervals (see Chapter 4,
the nuisance parameter and then reformulate the

confidence interval to account for the samplin -1.2] and [6.6.7-9)).

variability of the nuisance parameter est|mator: 10For examplezy — 1.96(1.63)for p = 0.95(0.90).
Examples of confidence intervals for location 11gy examplet, = 2.776 (2.132)for p = 0.95 (0.90)

and scale parameters are described below. whenT has 4 degrees of freedom.
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5.4.5 Confidence Intervals for the Variance. [4.1.7], [5.4.3]). Then we can find a confidence
Again, let X1,..., X, represent a sample ofinterval for « simply by finding the lower and
iid N'(u, 0?) random variables. As described inipper tail critical values (ﬁ()?)—a. The bootstrap
[5.4.3], confidence intervals for scale parametersocedure solves the problem of the missing
such a2, are constructed by first expressing adistribution functionFx(x) by replacing it with
estimator ofc? in dimensionless units. Here wea consistent estimator, the empirical distribution

use function Fx (X) (see [5.2.2]). Then, following the
> 2 same steps outlined above, we arrive at an estimate
¥ =(n-1S/0", of the distribution ofa(X) — « that converges to

e _— the true distribution as the sample size increases.
which isy2(n — 1) distributed (see [2.7.8]). Upper. . R X
and lower tail critical valuesyy and ¥, of the The esﬂmgtedt d|$tﬂkf)}ét|0ﬂ C"’?”t be ulsfe d to obtain
x2 distribution are tabulated in Appendix E. ThesB" approximate contidence interval tpror an

values are chosen so thatv < v ) = 0.5—p/2 estimate of the variance &f(X). .
andP (¥ < Wy) = 0.5 + p/2.12 Following the The steps that produdmotstrappedonfidence

derivation in (5.42), we see that thex 100% intervals or variance estimates can sometimes be

confidence interval fos 2 is performed analytically (see, e.g., Efron [111]). In
general, though, the mathematics are intractable,
n—-1 (n-1S? and Monte Carlo simulation is used instead. The
vy v ’ (5.46) steps are as follows.

This interval contains the point estimatf, but 1 Generate a random sampje, .. ., yn from

unlike the confidence interval for the mean, itis  the population that has distribution function
not located at its centre. As with the mean, the  Fy(x).14 This can be done by using a random
coverage of (5.46) is sensitive to departures from number generator to simulate a sample

the assumptions. Ui, ..., Un from the/(0, 1) distribution and
then solvingFx(yj) = uj for eachj =
1....n

5.5 Bootstrapping

. L 2 Evaluatex for the realized sample.
5.5.1 Concept. The interval estimation methods

of the previous section use a fully parametric
model to express the uncertainty of the corre-
sponding point estimator. That is, all elements _ o N
of the assumed statistical model are required to1he resulting sample of realizations @fcan
derive the confidence interval. However, it is ofteR€ Used to estimate properties of the distribution
not possible to make a distributional assumptioff @ Such as its variance or its quantiles. The
or a distributional assumption can be made bt — P)/2 and(1 + p)/2 quantiles are the lower
derivation of a confidence interval is mathematRNd Upper bounds of the bootstrapgeet 100%
cally intractable. Thebootstrap[111] provides a confidence interval fow. The inferences made

3 Repeat steps 1 and 2 a large number of times.

solution in both instances. with bootstrapping procedures are approximate
Suppose we assume only that the sample canfifgause the distribution of the parameter estimate
represented by iid random variabl¥s, . .., Xq. is derived from an estimated distribution function.

Each has the same distribution functidfy (x), There may also be additional uncertainty if
but its form is not known. If we did know ©nly @ small number of bootstrap samples are
the distribution we could easily write dowrgenerated. Inferences made with the bootstrap are

the joint density function of the random Vectoﬁsymptotlcallyexaciw provided thatFx(x) is a
X = (X1,...,Xn)T, and with luck derive the COnSistent estimator & (x).
distribution of parameter estimatar(X).* To — . _ N
keep the discussion simple, assume thais a " the ordinary bootstrap,Fx (x) is the empirical
. . . stribution function. However, other estimators of the

Iocgtlon parameter and that the distribution (gfistribution function can also be used. For exam[ﬁeg(x)
a(X) — o is free of nuisance parameters (sa®uld be a parametric form in which the unknown parameters
are replaced with efficient estimators. In this case the procedure

12For exampleyy = 128 (11.1) and¥| = 1.24(1.64) for is known as the ‘parametric’ bootstrap.
p = 0.95(0.90) when¥ has 5 degrees of freedom. 15That is, the true convergence of confidence intervals and

13we write@(X) instead of just to emphasize that is a true significance levels of tests will approach the specified
random variable whose distribution is derived from thaXof values when samples become large.
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5.5.2 Ordinary Bootstrap. The bootstrap is an5.5.3 Moving Blocks Bootstrap. As with all the
example of aesampling procedure. WhelRy (X) other estimators discussed in this chapter, boot-
is given by the empirical distribution functionstrapped estimators are vulnerable to the effects of
(5.3), step 1 above is equivalent to taking departures from the sampling assumptions. Zwiers
sample of sizen, with replacement, from the@ [442] illustrates what can happen when serial
observationxy, . .., X,.16 correlation is ignored. The difficulty arises because
To see that this is so, consider again steptBe resampling procedure does not preserve the
above. WherFx is a smooth function, there willtemporal dependence of the observations in the
be a uniquey; for everyuj. However, whenF x sample; the resampling done in the ordinary boot-
is a step function such as the empirical distributicstrap produces samples of independent observa-
function, a range aofi values can produce the saméons regardless of the dependencies that may exist
yj; the resulting sample may therefore contaiithin the original sample.
a giveny; more than once. In particular, the A simple adaptation that accounts for short-term
empirical distribution function has steps of equal dependence is called tlmoving blocks bootstrap
height that completely partition the inten@, 1). (see Kinsch [235], Liu and Singh [254], and
Thus it follows thaty; will be equal tox; for also Leger, Politis, and Romano [248]). Instead
somei, and that every member of the samplef resampling individual observations, blocks of
{X1, ..., Xn} has the same probability of selection, consecutive observations are resampled, thus
that is, random resampling with replacement.  preserving much of the dependent structure in the
Each sample produced by the procedumbservations. In general, the block length should
described above is called lootstrap sample. be related to the ‘memory,” or persistence, of
WhenF x is the empirical distribution function2 the process that has been sampled, with longer
different samples can be generated. Consequentijpck lengths used when the process is more
the bootstrapped estimate of the distributiopersistent. Wilks [423] points out that care is
of @(X) will be quite coarse whenn is required to chooskappropriately. Blocks that are
small. However, the ‘resolution’ of the estimatotoo long will result in confidence intervals with
quickly increases with increasing. Even for coverage greater than the nomirfal and vice
moderate sample sizes, the cost of evaluatimgrsa. Theoretical work [235, 254] also shows that
a(x) for all possible samples becomes prohibitivihe block lengthl should increase with sample
(and is generally not necessary). Satisfactosjzen in such a way that/n tends to zero as
bootstrapped variance estimates can often approaches infinity.
made with as few as 100 bootstrap samples. AWilks [423] describes the use of the moving
somewhat larger number of samples is requirddbck bootstrap when constructing confidence
to produce good confidence intervals since thesgervals for the difference of two means from
require estimates of quantiles in the tails of the data that are serially correlated. He gives simple
distribution. expressions for the block length that can be used
There are some problems for which bootstraphen data come frorauto-regressions of order 1
estimators can be derived analytically. For exr 2 (Chapter 10). Wang and Zwiers [414] applied
ample, the bootstrap estimator ef is 32 = the moving blocks bootstrap to GCM simulated
”%182 (see [5.2.6] and [5.3.3]). precipitation.

16That is, the elements of the sample are obtained one at a
time by drawing an observation at random, noting its value, and
returning it to the pool of observations.
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Overview

In Part Il we address the problem of determining the correctness of a certain statistical matel
light of empirical evidence. To make sure that the assessment is fair, the model must be tested wi
information that is gathered independently of that which is used to formulate the model. The standa
method that is used is called statistibgpothesis testingMe deal with this concept in some length in
Chapter 6 (see also [1.2.7] and [4.1.7-T1Bxamples of applications in climate research are presented
in Chapter 7.

The application of hypothesis testing in climate research is fraught with problems that are not alway
encountered in other fields.

e In climate research it is rarely possible to perform ripalependent experimentsee Navarra
[289]) with the observed climate system. There is usually only one observational record, whicl
is analysed again and again until the processes of building and testing hypotheses are har
separable. Dynamical climate models often provide a way out of this dilemma. Hypotheses thz
are formed by analysing the observed record can frequently be tested by running independe
experiments with GCMs. However, even these experiments are not completely independent
the observed record since GCMs rely heavily on parameterizations that have been tuned with tl
observed record.

Even though fully independent tests are not possible, testing is often useful as an interpretation
aid because it helps quantify unusual aspects of the data. On the other hand, we need to be wary
indiscriminate testing because it sometimes allows unusual quirks to draw our attention away frol
physically significant aspects of our data.

e Almost all data in climate research have spatial and temporal correlations, which is most usefi
since it allows us to infer the space—time state of the atmosphere and the ocean from a limite
number of observations (cf. [1.2.2]). However this correlation causes difficulties in testing problem:
since most standard statistical techniques assume that the data are realizations of independ
random variables.

Because of these difficulties, the use of statistical tests ao@kbookmanner is particularly
dangerous. Tests can become very unreliable when the statistical model implicit in the te:
procedure does not properly account for properties such as spatial or temporal correlation.

The problems caused by the indiscriminate use of recipes are compounded when obscu
sophisticated techniques are used. It is fashionable to surprise the community with miraculot
new techniques, even though the statistical model implicit in the method is often not understood.

Hypothesis testing is carried out by formulating two propositions:nihié hypothesis that is to be
tested, and thalternativehypothesis, which usually encompasses a range of possibilities that may be
true if the null hypothesis is false. The alternative hypothesis indirectly influences the test because
affects the interpretation of the evidence against the null hypothesis. The null hypothesis is rejecte
if the evidence against it is strong enough; it is not rejected when the evidence is weak, but this do
not imply rejection of the alternative. We then continue to entertain the possibility that either of the
hypotheses is true.

Null hypotheses are typically of the typ® = B, and in climate research the alternatike# B
is usually correct. Often, though, the difference betwéeand B is small and physically irrelevant.
Statistical tests can not be used to detect the difference between physically significant and insignifice
differences. The strength of the evidence against the null hypothesis, and thus for the detection
a ‘statistically significant’ difference, depends on the amount of evidence, that is, the number ©
independent samples. As the sample size increases so do the chances of datgcBngVith the very
large sample sizes that can be constructed with GCMs, almost every physically irrelevant difference c:
achieve statistically significant status.

1To be more precise: an attempt is made to determine whether the moidebisect absolutecorrectnesscan not be
determined statistically.

2There are two approaches to statistical decision making. We usietieentistapproach, since it is more common in
climatology than thé8ayesiarapproach (see, e.g., Gelman et al. [139]).
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Obviously, this is not satisfactory. We introdumzurrence analysigsee Sections 6.9—6.10) as an
alternative for assessing the strength of the differedee B. This technique produces estimates of the
degree of separation betwe@randB that are independent of the sample size.



6 The Statistical Test of a Hypothesis

6.0.0 Summary. Inthis chapter we introduce thealtering the way the evidence in the sample is

ideas behind the art of testing statistical hypotheseslged.

(Section 6.1). The general concepts are describedA hypothesis testing process can only have two

terminology is introduced, and several elementaoutcomes: either plis rejected or it is not rejected.

examples are discussed. We also examine somfee former does not imply acceptance of-Hit

philosophical questions about testing and soms@mply means that we have fairly strong evidence

extensions to cases in which it is difficult to buildhat Hy is false. Failure to reject gisimply means

the statistical models needed for testing. that the evidence in the sample is not inconsistent
The significance level, power, bias, efficiencywith Ho.

and robustnessof statistical tests are discussed

in Section 6.2. The application of Monte Carlg 1 5 The Ingredients of a Test. We need two
simulation in problem testing is discussed iBpjects to perform a statistical test: the object
Section 6.3, and in Section 6.4 we examine NoW he examined—a set of observations that, for
hypotheses are formulated and explore some &fnvenience, we collect in a single vecier-and

the limitations of statistical testing. The spatial (je that determines whether to reject the null
correlation structure of the atmosphere Oﬁ%pothesis or not. This rule usually takes the
impacts testi_ng prpblems. Strategies_ for copir}grm ‘reject Hoif SX) > kp, where S'is a
with and using this structure are discussed [f}egetermined function that measures the evidence
Section 6.5. A number of tests of the nul gainst k., and kp is a threshold value folS

hypothesis of equal means and variances &g ond which we are willing to risk making the
discussed in Sections 6.6 and 6.7. Tests designgfhct decision.

to provide _a_global interpreta_tior)_for a field  “the rule is defined in three steps.
of local deC|S|on§, caIIe(_jleId S|gn|f|ca_nce_ tests First, we regard the set of observationis
are _prgsented in Section 68 Uplvanate .ar}g a realization of a random vectdt. The
muInyanaterecurrence analysisire discussed N 5tter represents the ensemble of values fhat
Sections 6.9 and 6.10. is able to take, when ¢is true, under infinite
replication of the ‘experiment’ that produced the
o set of observations. A statistical model is built for
6.1 The Concept of Statistical Tests  the experiment by representing the likelihood of
observing a particular realization in this ensemble
6.1.1 Introduction. Since we should now bewith a probability distributionf ;.
somewhat comfortable with the ideas underlying Second, we specify thsignificance level, the
hypothesis testing (see [1.2.7], [4.1.7-11], and tiobability of rejecting the null hypothesis when
preamble to this part of the book), we only brieflyt is true, at which the test is to be conducted. The
characterize the testing paradigm here. choice of the significance level affects the power,
Statistical hypothesis testing is a formalizedr sensitivity, of the test. Thus the consequences
process that uses the information in a sampé falsely rejecting K should be balanced against
to decide whether or not to rejectoH the the consequences offailing to rejecs When H is
null hypothesis. The evidence is judged in thialse. In Section 6.2 we present this idea in more
context of a statistical model in such a wagoncrete terms.
that the risk of falsely rejecting ¢is known. A Finally, the chosen significance level, the
second proposition, the alternative hypothesis Halternative hypothesis, and the statistical model are
generally describes the range of possibilities thased jointly to derive the decision making criterion
may be true when {lis false. The alternative for the test. This is usually expressed in terms of a
hypothesis affects the decision making process st statisticand a range of values of that statistic,

99
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or non-rejection regior}, that is consistent with the error is 1—power. Thus, reduced significance level
null hypothesis. comes at the cost of decreased power. Ultimately,
the user must choogeto balance the risk of a type

. | error with the costs of a type Il error.
6.2 The Structure and Terminology P

of a Test 6.2.2 The Non-rejection Region When an

6.2.1 Risk and Power. The general mathemat—AItemanve Hypot_he_5|s IS not Specmed._To
onduct a test it is necessary to derive the

ical setup is derived from the three componen(fs

described above. A statistical model is developeng n-rejection region®(p). Intuitively, it should

to describe the stochastic characteristics of tﬁgntaln all events except those that are unusual

observations and the way in which they Werténder the null hypothesiand consistent with the

obtained, provided that s true. This model is alternative hypothesis. We will assume for now

. - .. that Hy = —Hop. In this context the non-rejection
expressed in terms of a random veclorand its region contains all events except those that are
probability distribution. Then a probabilitp < 9 P

[0; 1] and a domair® (p) are chosen so théit x unusual gnder bl . o
o > . o In particular, if the observations are realizations

100% of all realizations oX fall inside ® (p), that . .

is of continuous random variables, then the non-

rejection region will cover all possible realizations
P()? c 8(@) —p. 6.1 x for which the density functionf (X) under the
null hypothesis is larger than some threshejd
The null hypothesis His rejected ifx ¢ ©(p). thatis,
The probability of rejecting lwhen it is actually T I 3
true is 1— p. This probability, therisk of false OP) = {x: 160 = ap). 6.2)
rejection, is called thesignificance levebf the In many applications the derivation @ (p)
statistical test. is facilitated by assuming that the sampling
The probabilityp is chosen to be large, typicallyprocedure and stochastic characteristics of the
95% or 99%, so that th@on-rejection region observations are such thAt ~ AN(i, X). Then
©(p) contains the realizations of most likely to the outer surface o®(p) is given by f (X) = a5,
occur when H is true. Only the(1 — p) x 100% an ellipsoidal surface defined by
of realizations that are unusual, and therefore , _ e Tl
constitute evidence contrary togHare excluded P(X) = X — 1) 37" (X — 1) = «p.
from © (). . o Y .
. o . The domain®(p) = {X : D(X) < «p} is the
is -[:;'g pLOb;bg;tﬁr?; rfejgft'c\?hb:;\'he: Fbols|;al|s'|fe interior of the ellipsoid. Thus the statementg
: pow - while we would (p) is equivalent toD?(X) > «p, and the test
the power to be large, it is sometimes sma;S, tistic isp?
often when the alternative hypothesis describe N : S
yp hen Hyis true, the random variabl®?(X)

probability distribution similar to that described b¥1 o :
Ho. ThenP(Y( ¢ @(Iﬁ)) under H will be close to as ax“ distribution withm degrees of freedom
that under kj [2.7.8], wherem is the dimension oK. Therefore

Two types of decision making errors can occd?t'st;]a asy to detgrtmlngp S.fc.) that thle telst (_)r;r)]erates
in the testing process. First,gldan be rejecteda € appropriale signiicance [evel. € non-

when itis true. This is referred to asype | error. rejection region is sketched in Figure 6.1 for=

. R 1and m= 2.
The probability of a type | error, * P, is equal to L 5 .
thesignificance level. In the univariate caseX = X and the matrix

o . 212 degenerates to the scala?. The surface of

The significance level is chosen by the user ﬂqe ellipsoid(x — 1)TSL(x — 1) = ka is given
the test. However, reducing the likelihood of h P T H 5 5 K= «p Ig
type | error comes at the cost of increasing tHY e eq.uatlor?(x - wjot = h"b- ”Qny two
likelihood of thetype Il error: the failure to reject gomts satisfy this equatlor:, io the ellips@ip)
Ho when it is false. The probability of a type [ld€9ENerates to an interval that has two points as

its ‘surface’ (Figure 6.1a). The null hypothesis is

IThis is admittedly an awkward expression. The terfejected whenever an observatiolies outside the

‘acceptance region’ is sometimes used instead, but thisterval; it is not rejected when an observation
expression is imprecise as it implies that we might be able fa”S inside the interval

actively support the validity of the null hypothesis. Instead we . L .
just do not reject the null hypothesis—so ‘non-rejection’ is the 1h€ isolines of a bivariate normal density

correct word. function f are plotted in Figure 6.1b (withl =
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the assumption that the alternative hypothesis is
the complement of the null hypothesis, that is,
a) Ha= —Hp. This particular choice of alternajive
hypothesis dictates that all ‘unusual’ valuesXof
T represent evidence contrary tg.HHowever, we
often have prior knowledge about the expected
0.2 kind of departure from the null hypothesis. An
example: if we summarize the response of the
—+0.1 climate system to a doubling of GOwith the
global mean (near-surface) temperature and the

| PRk global mean precipitation, then we anticipate an
-3 -2 -1 0 1 2 3 increase in temperature, but we might be uncertain
Filj(gs%)—» about the sign of the change in precipitation.
This prior knowledge, which is expressed as the
alternative hypothesis, results in a non-rejection
region that is constrained in some way.

Consider again the simple examples of the
previous subsection. Figure 6.1 illustrates non-
rejection regions when His the complement of
N Ho. However, suppose that we anticipate, as in the
&% climate change example above, that the mean of
X1 will be greater than zero if §lis false (we
use the subscript ‘1’ to indicate the first element
of X). Then a reasonable non-rejection region that
accounts for His given by® () = {X: f(X) >
ap andxy > 0} N {X: f(0, x2) > ap andxy < 0},
whereqp is chosen to satisfy (6.1). The alternative
hypothesis has modified the ‘rules of evidence’
Figure 6.1:Schematic diagrams illustrating thepy instructing the test not to treat unusually large
domains for which the null hypothesisis drawn negative values of; as evidence inconsistent with
from X’ is accepted. The shaded area represenks. The change in the non-rejection region is
the non-rejection regio®(95%) = {X: f(X) > illustrated in Figure 6.2. This change reduces the
agsy) (@) univariate distribution; (b) bivariate magnitude ofX realizations needed on the right
distribution. The pointx’ andx" are examples of hand side of thex; = 0 plane to reject bi
realizations of the sampling process that providgence the power of the test is increased against
evidence contrary to the null hypothesis, whereagternatives for whicl€ (X1) is positive.
the realizations<” andX” are consistent with the
null hypothesis [396].

6.2.4 Efficiency. A test may not befficienteven
. ] . ] if it operates at the selected significance level, that
diag(1, 2)). The maximum off is located in the j5 the constraint (6.1) is satisfied. For example,
centre of the diagram, and the region bounded Bye might choose the non-rejection reg®) =
the ©(95%)-ellipsoid is shaded. In both cases, thg; . () < ap}. This would lead to the rejection
observationX’ leads to the rejection of the nuIIOf the nuﬁ hypothesis for realizations 5 that

hypothesis Io. whgreas‘i” leads t_o the cqnclusion e close to ‘normal’ and hence nearest the null
that the qbservatlons are consistent with the mﬂ;pothesis. Although this is a test ofgHit is
hypothesis. clearly an absurd one. One could also choose to
ignore the data by tossing a coin that comes up
6.2.3 The Non-rejection Region WhenHy is heads(1 — p) x 100% of the time. Generally
Specified. The choice of the non-rejection regiorspeaking, inefficient low-power tests are avoided if
may be constrained in various ways when ahe non-rejection region satisfies (6.1) and contains
alternative hypothesis is specified. The region mubie outcomesx that are most likely to occur
satisfy (6.1) to ensure that the test operates wtder Hy. Technical details of the construction of
the selected significance level, but it need noptimal tests can be found in standard texts on
necessarily satisfy (6.2), which was derived underathematical statistics such as [335] or [92].
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| ] Figure 6.3:Signal-strength$ = “—£X for which
Ho: uy = uyx is rejected with probability50%
or 90% at the 5% significance level, shown as a
function ofn, the number of realizations of each
X andY. It is assumed thaX ~ A (ux, o) and

Y ~ N(uy, o). [404]

N

Figure 6.2:Same as Figure 6.1 but for a One_sideaealizations of the confidence interval. Thus, even

test. The non-rejection region is described in tHgough the difference betweenx and uy is
text. physically insignificant, we will judge it to be

statistically significant given large enough samples

(i.e., resources).
6.2.5 Statistical and Physical Significance. This is illustrated in Figure 6.3, which shows
Suppose we wish to test the null hypothesig; Hthe minimum strength of the difference of means
uwx = iy, that the means of two random variablesignal ux — wy for which an ordinant test (see
are equal. This can be accomplished by collectifig.6.1]) will reject Hy: wx = wy with probability
a sample from both populations and computing5% or 90%. These power curves are shown as
confidence interval for the difference of means function of sample size under the assumptions
wy — wx, similar to (5.45). The null hypothesisthat both populations have the same varianée
is rejected at the 5% significance level when thend sizen. The figure shows, for example, that if
hypothesized value fqiy — ux, 0, is not covered ux — uy = 0.50, then samples of approximately
by the 95% confidence interval. n = 24 observations are needed to detect the

Zero will lie outside just about every realsignal with a probability of 50%. Eighty-eight

ization of the confidence interval when the tw@bservations are needed in each sample to increase
populations are well separated, regardless of tHee power to 90%. The size of signal that can be
size of the Samp|e’ since there is probab]y d;etected with a given level of rellablllty tends to
large, physically significant difference between thgero aso(1//n).
populations. On the other hand, suppose that theAnother way to illustrate these ideas is shown
true difference of means is small and of littlén Figure 6.4, where we see the density functions
physical consequence, and that the populatiooa control and an experimental random variable
have heavy overlap. Zero will often be inside thésolid and dashed curves labellad = 1)
confidence intervals when the sample size is smalhd corresponding sampling distributions of the
However, the width of the confidence intervaineans for samples of 10 and 40. The population
decreases with increasing sample size. Given langeans differ by one standard deviation. The
enough samples, zero will again lie outside mosto density functions overlap considerably; a
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Figure 6.5:Zonal distribution of the meridionally
averaged 80° N-60° N) eddy component of Jan-
uary mean 500 hPa height in decametres. Shaded:

distribution of the mean of samples of size= o ghserved univariate 95% confidence band at
1,10, and40taken from aV'(—0.5, 1) population. g5c longitude. Curves: 10 individual states simu-
The dashed curves show the same distributions Tﬁfed with a General Circulation Model [397].

the N'(+0.5, 1) population. Note that the overlap
is very large whem = 1, and virtually nonexistent
whenn = 40.

Figure 6.4: The solid curves display the

component of January me&®0 hPaheight and
we letY be the corresponding random vector that

large portion of experimental states can occisrSimm"ﬂeci by the AGCM. The null hypothesis is
ge p b atX andY have the same distributions. In the

under control conditions and vice versa. However .
. : abfsence of prior knowledge about the AGCM'’s
as the sample size increases, the spread /0

) . hiases, we take the alternative hypothesis to be the
the density functions of the sample means S

S complement of the null and use the non-rejection
decreases, and eventually there is virtually ng

; region®(95% = {X: f(X) > aose). We find
overlap. Under_ these circumstances the contrtﬁlgt 6 of the 10 AGCM realizationg lie outside
and the experimental random variables can

e o ) X
distinguished with almost perfect reliability. Thus (95%), so we reject the null hypothesis that the

given a large enough sample, it will be possibl"tl;md‘al simulates the observed climate.
' The 10y curves are displayed in Figure 6.5

to state with confidence that the experimental and . L X
. . together with theunivariate 95% confidence
control random variables cluster around differern) : o ~ . i
band (i.e., the univariate® (p) at each longitude;
means. . . :
Thus the likelihood of reiection of the n IIshaded). Some of the simulated fields are fairly
h ;Jh . dl Id tonl ! tlh ¢ th l;tealistic but most have severe distortions. We
ypothesis depends not only on the Srengtn of tRG, , -, 1 this example in Section 7.1.
signal but also on the amount of available data. We
must therefore be careful to distinguish between
statistical and physicalsignificance. We return t06.2.7 Example: Sign Test. SupposeXy, ...,
this point when we introduceecurrence analysis X, are iid random variables that represent a
in Sections 6.9-6.10. sample from a populatioK, and that we want to
decide whether or nd (X) has a particular value

6.2.6 Example: AGCM Validation. One a. Thatis, we want to test

application of statistical tests occurs in theHp: £(X) = a. (6.3)
validation of the climate simulated by anr
Atmospheric General Circulation Model (AGCM). aee [4.2.2]).

The assessment is performed by compari e
S . - . Assume thaX has asymmetricaldistribution,
individual fieldsy generated by the AGCM WIththat is, that there exists a constamtsuch that

a statistical modeX that is fitted to an ensemble .
of fields obtained from the observed climate. f(b._ x) = T(b+x) for all x. Then (6.3) is
. equivalentto ij: b = a.
In the following example (see [397]) Now consider the test statistic
'Ehe observed random vector of interest is
X = {meridionally averaged30°—-60°N) eddy n(Xg,..., Xm) = number ofX; > a. (6.4)

he following is a simplenon-parametricsolution
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Since we have assumed independence, we ddre analysed observations contain more spatial
think of N = n(X4,...,Xy) as the number of variability than does Model Ain = 5 of nine DJF
heads inm tosses of a coin where the probabilitgeasons. Using (6.5) we find that the probability of
of a head on theth toss isp; = P (X > a). observingn > 5 under H is (126+ 84+ 36+ 9+
When Hyis correct,pj = 0.5 and thusN has 1)(0.5° = 0.5. Thus we cannot conclude that the
the binomial distributionN ~ B(m, 0.5). If niis spatial variability of the DJF climate simulated by
the actual number of observatiors for which Model A is significantly different from that which
Xj > @, then the probability of observing > nis is observed. On the other hamd= 8 for Model B,

given by andP (N > 8) = (9+1)% = 0.0195. Thus the null
| hypothesis can be rejected for Model B at about
P(N > n|Hg) = Z Lo.sm. (6.5) the 2% significance level.
fzn Nf(m —n)! Not all of the assumptions required by the sign

. . ) test are satisfied in this example. The measure

We reject F{bV\{hen N is unusually Iarge in the of spatial variability we used((és00 — (¢500))2)
context of kb, i.e., whenP (N = n[Ho) is small \hare () denotes global average, is not likely to
g, 5% or 1%). . . be exactly symmetrically distributed, although a
We illustrate the sign test with an example frorﬁentral Limit Theorem [2.7.5] type of argument

AMIP, the Atmospheric Model Intercomparison.a, pe ysed to show that its distribution is close to
Project (see Gfe\tes [137D). . the normal distribution. Also, the spatial variability
AMIP established a benchmark 10-year climafg ot likely to be identically distributed in all years
simulation experiment that was performed by &nce it is strongly affected by ENSO (see [1.2.3]).

large number of modelling groups. One featuigqh of these departures from the assumptions

of these experiments is that the monthly megg) have some effect on the significance level and
SSTs and sea-ice extents observed bEtW%‘rﬂNer of the test.

January 1979 and December 1988 were prescribed

as time varying lower boundary conditions.

Therefore, since AMIP simulations experiencé-2-8 Sufficient Statistics. The decisions in
the same ‘forcing’ at the lower boundary as thie previous example [6.2.7] were made on the
real atmosphere, it is natural to compare tH@sis of a statistic that is a function of the
variability in the AMIP simulations with that in Pairs of variance differences, not the variances
observations. themselves. It is obvious that such reductions

In particular, suppose that we want to test tff data are necessary, but how do statisticians
null hypothesis, Iy, that the spatial variability choose the statistic that results in the most effective
of the December, January, February (DJF) melfst? In this example the hypothesis concerns the
500 hPa heightdsoo) that is simulated by modelValue of a parameter of the binomial distribution.
X is the same as that contained in the ughe nine random variables that represent the
National Meteorological Center (NMC) g|0ba|variance differences may be transformed into nine
$s00 analyses. The table below gives measur@ther random variables such that distribution of
of spatial variability computed from the analyse@n€ of the random variables, s&, depends

and AMIP simulations performed with two climaté/Pon the unknown binomial parameter and the
models. remaining eight of the random variables have a

joint distribution that depends only upon the value
Spatial variance of DJF mean ¢s00  of S. If such a transformation exists, théhis
in m? said to be asufficient statisticfor the unknown
NMC parameter because it contains all the information
that can be found in the sample about the unknown
parameter. Sufficient statistics are therefore very

Year | analyses Model A Model B

79/80 | 451 471 205 good test statistics.

80/81 837 209 221

81/82 598 521 373

82/83 979 088 419 6.3 Monte Carlo Simulation

83/84 555 234 334

84/85 713 331 265 6.3.1 General. The analytical procedures men-
85/86 598 217 291 tioned above, as well as other theoretical methods
86/87 448 487 351 used to derive the distributions of test statistics,

87/88 270 448 582 often result in intractable mathematical problems.
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The Monte Carlo method is often used when this® 100
happeng. The idea is to simulate the statistical :: Zz
model on a computer under the assumption thaj, / 0
Ho is true. The computer is used to generate a Ia@e / 60
number of realizations of the test statistic, gy £1° g 50

40
30
20
10

estimate of the distribution & under H. Finally, £ ,|
the estimated distribution is used to determine the:
critical valuexp just as its analytical counterpart © 73 00 TG s & e 21 25 25 27"
would be used if it were available.

The Monte Carlo method is a powerful tool
because it substantially increases the range of
problems that will yield to statistical reasoning. AFigure 6.6: Monte Carlo simulation of the
with all powerful tools, there are also a numbgsrobability function fs(j) of (6.7) withn =
of pitfalls to be avoided. Although the Monte51 cases. The functions are derived from 1000,
Carlo approach can be applied to any statistit) 00Q and 100000 trials. The distribution
heuristically derived statistics may not be efficierftinction Fs(j), estimated fronL00 000trials is
and can result in misleading inferences. Faiso shown.
example, theinvariance principle[4.3.3], which
requires that the same inference be made under all

linear transformations of the data, may be violateff!th the conventionty = Zy_g if k > 8. This
alternative was chosen because it was anticipated

that thezy will vary smoothly withk if Hg is false
6.3.2 Example. The Monte Carlo methodin such a way that phases on one half of the circle
was used to study the relationship between t@ge preferred over those in opposite sectors. A
appearance of tropical storms in the Southweshtural test statistic for this setup is
Pacific and the phase of the tropical Madden-and- _
Julian Oscillation (MJO) [399]. The latter is a [Hs }

Cummulative frequency (%)

which in turn are used to construct an empirical :ﬁ 3

XX 1000 [J10000 W 100000  —=— 100000 cummulative

stochastic oscillation that affects the intensity of> = max > (Fk— Fisa) (6.7)

convection in the tropical West Pacific. Intensified k=]

convection may, in turn, be associated witB is a discrete random variable that takes

increased tropical cyclogenesis and vice versa. values between zero ang the total number of
We therefore consider the null hypothesisp:H storms observed. In this example, 51 storms were

the frequency of tropical storms in the West Pacifhserved in a five year period.

is independent of the phase of the Madden-and-To make an inference about (6.6) we need to

Julian Oscillation’ To test this hypothesis we needietermine the probability distributiofis(j) of S

an objective measure of the phase of the MJ@iven that His true. This was done with the

One such measure is given by the oscillationonte Carlo method by repeatedly:

‘POP index’ [15.2.3]. The observed phases can ] ] o

then be classified into one of eight 4Sectors.  ® 9enerating n independent realizations

Each tropical cyclone is assigned to the sector X1---»Xn from the discrete uniform

corresponding to the phase of the MJO on the distribution on the set of integefd, ..., 8}

day of genesis. Then, Fx, k = 1,...,8, is the [2.4.4],

frequency of storms in sectlrthe null hypothesis computing the frequencids, . .. , fg, and

may be re-expressed as

e finally obtaining a realization ofS by

Ho: ¢k = 1/8, (6.6) substituting the realized frequencies into
where¢ = € (Fy). (6.7).
A reasonable alternative hypothesig id By doing this often, the probabilitid® (S = ) for
j =1,...,ncan be estimated.

H.: max jf( _ ) 0 Estimates based on 1000, 10000, and 100 000
& S ) | = 5 samples are shown in Figure 6.6. The three
- estimates are very similar. The differences

2The ideas discussed here are closely related to tﬁéis_’e from sampling variations:__slightly d_iﬁerent
bootstrapping ideas discussed in Section 5.5. estimates of the true probability function are
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information with which to test this hypothesis we
might

1 randomly select a (large) sample of rock
formations that have not been altered by
humans, and

2 countthe number of rock formations arranged
as the Mexican Hat.

Let us assume that no other Mexican Hat-like
formations are found. Humans have traversed most
of the rocky desert of the world at one time or
another and it would appear that the Mexican
Hat is unique in the collective experience of
these travellers. Therefore, the chances of finding
another Mexican Hat among, say, one million
randomly selected rocks, are nil. Thus we may
reject the null hypothesis at a small significance
level, and give credence to the explanation given
in Figure 6.8.

Obviously we can generalize this example to
include many different null hypotheses of the type
‘rare event is common.

The problem with these null hypotheses is that

Figure 6.7.The Mexican Hat at the border betweert1hey were derived from the same data usgd o
onduct the test. We already know from previous

izona—is thi 5
Utah and Arizona—is this rock naturally formed Exploration that the Mexican Hat is unique, and

=] its rarity leads us to conjecture that it is unnatural.
Unfortunately, statistical methodology can not take

obtained each time the Monte Carlo procedure {§ any farther in this instance unless we are willing
repeated. The estimate obtained from the 100 otsowait a very long time so that tectonic processes
trial sample, of course, has less uncertainty th&An generate a new independent realization of the
that obtained from the 1000 trial sample. surface of the earth.
The observed set of 51 storms is distributed
on the eight classes as followd; s = 6.4.2 More on the Role of Statistical Inference.
3,9,16,6,3,4,2,8, which results ins = 19. The Mexican Hat is a pretty obvious example—
The corresponding critical value is(5%) = 14 but there are many similar examples in climate
(derived from 100000 trials; see the distributioresearch journals. There are even instances
functionFsin Figure 6.6). Hence we reject the nulin  which peer reviewers have requested that
hypothesis that the occurrence of tropical cyclonesithors perform statistical tests as outlined
in the Southwest Pacific is independent of thabove. One example concerns tHeabitzke
phase of the MJO. and van Loon hypothesid238] about the
relationship between the 11-year solar cycle and
o o the atmospheric circulation in the stratosphere and
6.4 On Establishing Statistical the tropospheré. They found, using about 30
Significance years of data, that the North Pole winter mean
30 hPa temperature is only weakly correlated

6.4.1 Independence of the Null Hypothesis. — _ _ S
A rock formation called the Mexican Hat 3The original draft of [238] did not contain statistical infer-

. . ences about the relationship between atmospheric circulation
(Figure 6.7), near the border between Arizona a@ad solar activity. However, reviewers of that article demanded
Utah, consists of a very large boulder perchegstatistical test even though there are really only two ways
precariously on a rocky outcrop. It is instructive té verify the Labitzke and van Loon hypothesis. These are a)

think briefly about whether we can use StatiStngFveIOp a physical hypothesis that can be verified by numerical
experimentation, and b) wait a few decades so that additional

methods tO_ test the null hyp_Ot_heSiS that th|§dependent data can be collected for a confirmatory statistical
rock formation has natural origins. To gathegst of the hypothesis (cf. [4.1.2]).



6.4: On Establishing Statistical Significance 107

TEN THOUSAND YEARS AGO

OW DO Yo
‘;UPP(;OsYE v A PRACTICAL JOKER NAMED
THAT coT . O& NOTICED THAT THIS WAS
uP THERE P C THE ONLY ROCK. AROUND,
: SO HE CHISELED AWAY ASK A SILLY
ALL THE REST OF THE QUESTION .
LANDSCAPE |
\
’/\f\\"' /;"/
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Figure 6.8:Creation of the Mexican Hat: Null hypothesis correctly rejected!

with solar activity. The observed correlation was ., ————
0.14 (Figure 6.9, top). The apparent strength §f
the relationship was much stronger when the |
data were stratified according to the phase %fm
the Quasi-Biennial Oscillation (QBO; Veryard and
Ebdon [382], Dunkerton [106]): A higlpositive
correlation of 0.76 was obtained for the winters ip ., =——————————rt——r—F—
which the QBO was in its west phase (Figure 6.9,
middle), and a negative correlation-60.45 when %
the QBO was in its east phase (Figure 6.9, bottorﬁ)aw
The similarity of the middle and bottom curves |
in Figure 6.9 is certainly as remarkable as the 7o
Mexican Hat.
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6.4.3 What if Confirmatory Analysis is not
Possible? Although it is frequently not possible
to make confirmatory statistical inferences once 7 1.
an exploratory analysis has suggested questio™e, =k T rere rese  1e0 e ea
methods of statistical inference, such as testing,

are valuable. They serve to underline the unusual _ i
guantitatively and thus help us to focus on unusufigure 6.9:Time series of January/February mean

aspects of the data. But the statistical test can r@@¥ar activity (solid curve) and 30 hPa temperature

be viewed as an objective and unbiased judge %;f_the Nor_th Pole (broken curve_)._To_p: all winters.
the null hypothesis under these circumstances. Middle: winters when the QBO is in its west phase.
Bottom: winters when the QBO is in its east phase.

From Labitzke and van Loon [238].

6.4.4 What Constitutes Independent Data?

Confirmatory analysis, as discussed in [6.4.1], re-

quires additional independent data. Independerffeanalyses fields, the two data sets are strongly
is the essential point here; it is generally ndorrelated.

sufficient to have additional data from independent This observation limits angonfirmatorystatis-
sources For example, workers sometimes clairtical analysis with observed (atmospheric or other
that they use independent data when they ugeophysical) data. Truly independent confirmatory
station data talerivea hypothesis and grid pointanalyses can only be performed with observations
data from the same or a similar perioddonfirm in the future because we can only collect the nec-
the hypothesis. While it is certainly valuable t@ssary independent information in the future. One
analyse both data sets to make sure that thkernative is to carefully construct a sensitivity
hypothesis does not come about as a result ekperiment with a GCM to test the question. This
for example, systematic biases in an ensemigeoids waiting, and often gives the experimenter

150
L -70

- -74
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opportunities to control or eliminate extraneou®r example, the anomalous boundary conditions
sources of variability that obscure the effects ar a modified parameterization of a sub-grid
interest in observations. Another alternative is fcale physical process. Statistical tests are often
divide the observations intearning andvalida- used to determine whether the changes affect
tion data sets. The latter is set aside and resertbd distribution of climatic states simulated by
for confirmatory analysis of questions that arishe model. Since distributional changes alter the
from exploratory analysis of the former. moments (such as mean and variance, see [2.6.7]),
a basic problem is to test g4 pcontrol =

. . Hexperiment that is, the null hypothesis that

6.5 Multivariate Problems the pchanges do not affect the mean state of

) , ) the simulated climate. Examples are given in
6.5.0 Overview. The spatial covariance CharaCSection 7.2, where we compare two simulated

teristics of the climate system have a profound €fimates, and Section 7.1, where a simulation is
fect on the analysis of just about any climate q“aEbmpared with the observed climate.

tity that is distributed in space. Subsection 6.5.1

describes a prototypical problem in which W%.S.z The Effect of Spatial Correlation

might want to use a multivariate test or multiple . o .
gnt' . P n Multiple Univariate Tests. The simplest
univariate tests. In both cases it is necessary to be

aware of the relevant spatial covariance structured proach _to comparing the mean states_ of the
) . imates simulated in a pair of GCM experiments
interpret the results correctly. In subsection 6.5,

: ) . : IS to conduct a univariate difference of means test
we discuss the interpretation of multiple unlvanatﬁs‘

tests, conducted, for example, at each grid poi e.s?.;] artoea\i:ehrybger(;(;upsoelrl];c;rIEL:ﬁ %a"%m?;g
of a GCM. Another approach is to conduct bp yp

multivariate test on the entire field [6.5.3]. fested at each grid point. - .
: . There can, however, be difficulty with the global
However, we often have information that can

be used to sharpen the alternative hypothe%rie]%et;pretatlon of the results of a collection of local

and_therefore improve the efﬂm_ency_ of the Assume, for the moment, that theeatment
multivariate test. The impact of ignoring this_ . . .
plied to the experimental simulation has no

. N ) ; a
information is discussed in subsection 6.5.4. m{’f ;

. L . effect on the simulated mean state. Then the local
prior information is expressed as a set of ‘guess

patterns’ [6.5.6] and it is used by projecting thequallty of means hypothesis is true everywhere.

observed fields onto the space spanned by 1 he global null hypothesishat corresponds to the

guess patterns, therefore reducing the dimensi;c:)(ﬁlecnon of local hypotheses is that the mean

of the multivariate testing problem. There ar lds are equal. Now suppose tha_t the_local nul
: : . . pothesis is tested at each wof grid points at
also practical considerations that motivate t o
. . . . . the 5% significance level. Under the global null
dimension reduction [6.5.5]. Even after dimension .

o ; . hypothesis we expect that roughly 5% of the local
reduction, it may be possible to further increase th o ; . L )
sensitivity of the test by searching for a attertnest decisions will be reject decisions. Each test is

y y 9 P n?logous to the toss of a fair 20-sided die that has

in the space spanned by the guess patterns t%& black faces and 1 white face. The white face

optimizes the signal-to-noise ratio [6.5.7]. FinaIIyW.” come up 5% of the time on average, but the
it is sometimes possible to develop a hierarchy of '

L oportion of white faces observed varies between
nested sets of guess patterns, and this mewtalt))Ir P

X . re¥3|ications of amm-roll die-rolling experiment. In
leads to a step-wise testing procedure [6.5.8]. the same way there is variability in the number

of reject decisions that will be made in any one

6.5.1 GCM Experiments. Analyses of GCM replication of the climate simulation experiment.
experiments are usually multivariate in nature If decisions made at adjacent grid points are
simply because such models produce fields, suellependent of each other, then the 20-sided die
as monthly mean 500 hPa height fields, amodel can be used to predict the probability
output. GCM experiments are eitheensitivity distribution of the number of reject decisions under
experiment®r simulationsof the present or a pastthe global null hypothesis. In fact, the probability
climate of Earth or another planet. of making reject decisions & or more grid

A typical sensitivity study will consist of two points is given by the binomial distribution that
climate simulations. One run, labelled tbentrol has cumulative distribution functiofrm(k) =
run is conducted under ‘normal’ conditions, am{jim:k B(m, 5%)(). For example, if the local test is
the other, theexperimental run, is conducted withconducted atm= 768 grid points, the probability
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of obtaining more than 48 local rejections under
the global null hypothesis is 5%. Thus, in
this example with independent grid points, a
reasonablaylobal testis to reject the global null
hypothesis if the local reject decision is made at
the 5%-significance level at 49 or more grid points.

In the real world, decisions made at adjacen
grid points arenot independent because meteo-
rological fields are spatially correlated. Thus th
binomial distribution does not provide the appro-
priate null distribution for the number of local
reject decisions.

This was demonstrated in an experiment
in which seven independent integrations were
conducted with a simplified GCM [384]. Each
integration produced one monthly mean field. The
runs were identical except for small variations in
their initial conditions. Because small-scale errors
quickly cascade to all resolved spatial scales Figure 6.10: The spatial distribution of false
AGCMs, this produced a set of seven independemrjections of local null hypotheses in a Monte
realizations of the same geophysical process. Carlo experiment [384].

The set oK = 7 simulated monthly mean fields
was arbitrarily split up into two sets, the fiisand
the lastk —i. The first set was used to estimate thg find the correct distribution for the number of
statistical parameters of the simulated geophysigalse local rejections under the null hypothesis.
process. Each realization in the second set of fieldgezey and Chen [257] have suggested methods
was tested at each grid point to see if it belongeHat are widely used [6.8.1-3]. Another is to use

to the population represented by the first set. Thgultivariate techniques such as the Hotelling test
local rejection rate was subsequently calculategk a permutation test [6.6.4—7].

?1” average, tTe rﬁject df?ClSilOg was mam@_fﬁf_og The multivariate method induces strategic and
the time, nearly the nominal 5% rate specifie b&échnical problems related to the dimension of the

.the nqll hypothesis. prever, there_ gre 'nStanCSBserved climate fields. We discuss these in the
in which the rate of incorrect decision was aSext two subsections

high as 10%. We would expect reject rates to vary

between 3.4% and 6.6% in the absence of spatial

correlation. Thus it appears that spatial correlation

affects the variability of the proportion of rejec6.5.4 Strategic Problems. The strategic prob-

decisions. lem arises because the signal induced by the
The effect of spatial correlation is illustrated irexperimental ‘treatment’ may not be present in

Figure 6.10 where we see one field of erroneoalf components of the observed field. Often it

rejections. Note that erroneous rejections desides in a low-dimensional subspace spanned

not occur at isolated points. Rather, the spatiay only a few vectors. The totah-dimensional

correlation structure results in pools of rejegpace that contains the climate realizations may be

decisions. On average these pools will occupgpresented as a sum of two spa€ksand Q2

5% of the map. Map to map variation in thevith dimensionsms and my respectively, where

area covered by the pools depends on the average+ my = m. The signal is confined t®s.

size of the pools, which in turn is determined bfpoth Qs andQy contain variations due to random

the spatial correlation structure of the field. Thiuctuations. A multivariate test of the equality of

map to map variation is smallest when the ‘poolsheans hypothesis (i.e., the signal is absent) will be

degenerate to isolated points that are not spatialtyore powerful if is restricted t®s because the

correlated. signal-to-noiseratio in Qg is greater than it is in

the full spaces U Q.

6.5.3 Multivariate Tests of the Mean. There  This is demonstrated in the following example.
are at least two ways to test the global nullet X be anm-dimensional normal random vector
hypothesis of the equality of mean fields. One isith meanji = (0, ..., 0)" and covariance matrix




110 6. The Statistical Test of a Hypothesis

> =T4LetY be anothem-dimensional normal 6.5.6 Guess Patterns. The spatial degrees of
random vector defined by = X + a whered = freedom may be reduced by approximating the full
(2,0,...,0) and lety be a realization ofY. We m-dimensional fieldX as a linear combination of
want to test the null hypothqsisol-thaty belongs a set off patternsp ', as

to the population defined by. The Mahalanobis

. m
test statistic X a2 Z aipl. (6.9)

D2§) = §-)'=HT - i) =
m The coefficientsy; are usually fitted by a least
= Z v (6.8) square approximation (see Chapter 8). Huess
i=1 patternsp' should be specified independently of
the outcome of the experiment.

2 . . . . i .
has ax < distribution withm degrees of freedom  There are various ways to obtain guess patterns.
under H. Its expected value under the alternative

hypothesis, which is true by construction, is 1 Patterns known to yield efficient approxi-
£(D2) = 22 + m. These expected values, and mations of the analysed field$: examples
corresponding 5% significance level values for the are Empirical Orthogonal Functions (EOFs;
test statistic under ] are: see Chapter 13) or, in case of a spherical
geometry, surface spherical harmonics.

m ’ £(D?) under Ha | x5, under Ho

2 Problem-related patterns: patterns that were

1 5 3.8 found as signals in similar but independent
2 6 6.0 GCM experiments or patterns that were
3 7 7.8 diagnosed from similar observations.

4 8 9.5

3 Physically based patterns: patterns that were
derived by means of simplified theory that is
appropriate to the hypothesis the experiment
is designed to test.

We see that fom = 1 the expected Mahalanobis
distance is larger than the critical value; usually
the null hypothesis will correctly be rejected.
However, as more components that contain only 4 j5 oten more profitable to invest in choices

noise are included, the chances of detecting tEeand 3, which provide patterns with a physical

signal deteriorate. basis, rather than to try to improve the power of
the statistical tests. These choices also provide

6.5.5 Practical Problems. A practical problem confirmation that the physical reasoning that

arises in multivariate difference of means testgads to.the experimental deS'Q” and_ _ch0|ce of
because the covariance matrix is generally nBgtterns is correct. For example, if empirical guess
known. The problem was avoided in the previmﬁattems are derived from observations on the

example becausE was specified. ConsequentlyPasis of physical reasoning (choice 2) and the
we were able to use3(Y) (6.8) as the testnuII hypothesis that their ‘experimental’ treatment

statistic. In most problems, thougl must be does not induce a climate signal is rejected, then

estimated. One implication is that we must baégere is statistical confirmation that the GCM has
the test on the Hotellingr2 statistic, which is reproduced these aspects of the observed climate.

the counterpart td? if 3 is replaced with the If dynamically derived patterns are used (choice

sample covariance matrix. To compitéwe must 3), rejection is an indication that the 3|mp||f|(_ad_
Q‘neory behind the guess patterns operates within

be able to invert the sample covariance matriX, ; ; '
which means that we need to have a sample GCM, at least to a first order of approximation.

n = m+ 1 realizations of the climate representeff*@mples are presented in Sections 6.9, 6.10 and
by X. However, in most climate applications, ther&2Pter 7.
are many more spatial degrees of freedom than
observations (i.e.n « m). Then, reducing the 6.5.7 Optimizing the Signal-to-Noise Ratio.
number of spatial degrees of freedom by restrictitdasselmann [166, 168] suggested the following
the test to a subspace that is thought to contain tiieresting way to construct apptimal guess
signal of interest is also a practical expedient. patterrlﬁ ° from a given guess pattefi.
Let X be a random vector of dimension with
47 denotes then x m identity matrix. covariance matrix: and expectationix. Let Y
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be anothem-dimensional random vector with the An example of an application of this optimiza-
same covariance matrix and expectatigp #* tion procedure (Hegerl et al. [172]) is given in
wx. Next, letp be a guess pattern representing treme detail in Section 7.4. Other applications in-
anticipated form of the true signal = jiy — ix. clude Bell [37, 39], Mikolajewicz, Maier-Reimer,
This pattern will not point in exactly the samend Barnett [277] and Hannositk and Frankig-
direction asA, but we will act as ifp were the noul [161].

true signal. Then the challenge is to findaptimal

guess patterip © that maximizes the likelihood of . )
signal detection. 6.5.8 Hierarchies. When an extended set of

To do so we consider theignal-to-noise ratio  9U€ss patterns is available, step-wise test proce-
dures are also possible within the multivariate

. (p,po)2 (6.10) testing paradigm discussed in this section.
N Var((\? _X ﬁo>>’ ' For example, suppose a set of guess patterns
’ contains a subset of patter@&s = {p': i € |}

where (-, -) denotes the scalar, or dot, product dhat are physically derived (choices 2 and 3 in
two vectors. The numerator in (6.10) is the strengtfi-5.6]). Herel is a collection of indices. We call

of the (anticipated) signal in the direction of théhe low-dimensional spac@z, which is spanned
optimal guess patterfi °. The denominator is thePY E, the ‘signal space.’ The space spanned by the
variance of the nois&/ —X, in the direction ofg ©. full collection of guess patterns is then given by
Whenr is large, the likelihood of rejecting the nulithe full set of patterns that are likely to contain the
hypothesis Ij: uy — ux = 0, and thus detectingSought after signa = Qz U Q% whereQz is the

a nonzero signah in the direction ofp , is also SPace spanned by the guess patterns that are not

large. contained in€. The full response, sa§ =Y — X,
We now specifyp °. Because does not dependis then written a = Zg + Zz. The components
on || p °|| we may constrairp ° so that parallel andperpendicularto the signal spac& z
. oo andZ%, are then tested. The parallel component
(P, po° =1 (6.11) s projected on the problem-specific guess patterns

Thenr may be maximized by minimizing the_contained i_nE and the perpendicular component
denominator of (6.10) is tested using problem-independent guess patterns
' (choice 1 in [6.5.6]) such as EOFs.
Var((\? X, ﬁ0)> =2(p0)T=pe. (6.12) Anexample is given in Section 7.2.
The approach discussed above imposes a simple
The guess pattern that minimizes (6.12) satisfiesordering on a set of guess patterns: the full set
of patterns that are likely to contain the sought
[2(5 OTspo—v ((ﬁ ,pO2%— 1)] = 0, aftersignal and a smaller subset of patterns derived
from problem-specific reasoning. A hierarchical
(6.13) approach to testing would involve conducting

wherev is a Lagrange multiplier used to enforc& test in the space spanned by the problem-

the constraint (6.11). Note that any solution 0§pecific 'patterns, and then, .if a signal is detected,
(6.13) satisfies (see, e.g., Graybill [148]) conducting a second test in the full space. Of
' ' course, this approach is not limited to two levels;

d
dp°

2% P =v(P,PpO)p. (6.14) a hierarchy of nested vector spaces could be
o _ constructed by scaling arguments, for example.
Thus the only solutiorp © of (6.13) is A sequence of tests could then be conducted
1 [22], either in order of increasing or decreasing
po=vE1p, dimension, to isolate the region on the supposed
2
response space (the space spanned by the full set
with v = 2(|3T2‘1|6)—1. of guess patterns) that contains the signal (see

When ¥ = diago?,...,02), that is, ¥ is Section 7.3).
diagonal, theith component ofp © is expressed
in terms of theith component ofp as p® =
pi/oi. That is, the original guess pattern 6.6 Tests of the Mean
rotated towards directions with small valuesopf
directions that have little ‘noise’ relative to the5.6.1 The Difference of Means Test. Thet test,
signal. also known as Studenttstest, is a parametric test
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of the null hypothesis that two univariate randorf2.7.9].” This is fortunate because it means that

variablesX andY have equal means, that is, the reference distribution under the null hypothesis
does not depend upon either the unknown common
Ho: EX) = E(Y) or ux = uy. (6.15) population meanu = wux = wpy or standard

o _ deviationoc = ox = oy. Consequently, only a
The statistical model required to conduct thémall number of reference distributions, indexed
test is built by maklng three assumptions [454by nx + ny — 2, are required_ Critical values

The first is asampling assumption that everyfor this family of distributions are tabulated in
realization of X or Y occurs independently appendix F.

of all other realizations. The second and third

are distributional assumptions: first, that the o )
distribution that generates realizations X%f (or 6-6.2 Components of the Statistic. Itis useful
Y) is the same for each observation in tke(or © take a slight dlverS|o_n to dlssegt ((_5.16_) and
Y) sample and, second, that the distributions ap&tter understand why it has tfedistribution
normaP and have equal variance?. Thet test under the null hypothesis.

is moderately robust against departures from theA random variablel” has thet distribution with
normal distribution, particularly if relatively largem degrees of freedom, writteh ~ t(m) [2.7.9],
samples of both random variables are availabhen

However, the test is not robust against departures

from the sampling assumption (see [454] and = ———, (6.18)
[6.6.6]) or against large departures from the vB/m

assumption that all realizations in a sample con@ere A is a standard normal random variable

from the same distribution. A ~ N(0,1), andB is a x2 random variable
The optimal test statistic, within the constraint§ith m degrees of freedonB ~ x2(m), that is

of the statistical model implied by the thregndependent ofA. Under the null hypothesis of

assumptions, is conceptually different from thaiquality of means we find that

used for the sign te$tThe difference of means is

estimated and then scaled by an estimate of its own A— Ly — iy

standard deviation, making it dimensionless. N 1/ny
The optimal test statistic is given by

~N(0,1),

o o~ Nx +ny — 2
_ xRy B=—"—>—S ~x2(nx +ny — 2),
t= ———— (6.16) o
S/E+ & . -
nx ' Ny and thatA andB are independent. By substituting

these quantities into (6.18) we see that the test
statistic for the difference of means test (6.16) is
T ~t(nx +ny — 2).

whereny andny indicate the size of th¥ andY
samples respectivelyiy and iy are the sample
means offxy, ..., Xny} and{ys, ..., yn,}, andS,
is the pooled estimate of the common standard
deviation 6.6.3 When the Variance is Known. Thet test
Ny 5 ny > discussed above has been derived assuming that
5‘2) _ 22 (0 = )7+ 3 s (Vi — By) . the variance is unknown. When the variance is
nx +ny —2 known, its square root may be substituted directly
(6.17) for Sy in (6.16). The resulting-statistic has the
standard normal distributiosv'(0, 1) under the
Under the null hypothesis (6.16) has ta null hypothesis. Critical values may be obtained
distribution withny + ny — 2 degrees of freedomfrom Appendix D.

5The test is said to bgarametric because it concerns  "The termdegrees of freedorhas geometrical roots. The
parameters (the meamsk and uy) of a specific distribution random variableT, of which t is a realization, is a function
(the normal distribution). A non-parametric version of the tegjf deviationsx; — fix,i = 1,..., nx andyj — oy, =
(see [6.6.11]) would focus on the expected valueX@hdY 1,..., ny. When thesenx + ny random deviations are
and would use less specific information about the distribution efganized into arinx + ny)-dimensional random vector, we
these random variables to construct the statistical model neegigd that the random vector is confined to amy + ny —
to conduct the test. 2)-dimensional vector space. This happens becausexh

5The sign test is an example of a non-parametric testeviations must sum to zero as must the Y deviations. A
The Mann-Whitney test [6.6.11] is another example of derivation of this distribution of (6.16) may be found in, among
non-parametric test. others, [280] or [272].
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6.6.4 Relaxing the Assumptions. The differ- Hypothesis (6.15) is tested by comparing the
ence of means test described above operatest-@slue computed using (6.19) with the critical
expected (e.g., the risk of false rejection is equal ¥@lues of thet distribution with df degrees of
that specified) only if the assumptions are fulfilledreedom, wherel f is computed with (6.20). This

In the following subsections we discuss methodscipe constitutes a test that operates at an actual
that can be used when: significance level close, but not exactly equal, to

e the variances oK andY are unequalyx # the level specified by the user.

oy (see [6.6.5]), . )
v [ ) 6.6.6 The Paired Difference Test. Not all

e the observations are paired in such experimental designs lead to pairs of samples that
manner that pairgx;,yj) are independentare independent of each other. For example, one
realizations of a random vectgX, Y)' that may conduct an experiment consisting of a series
has dependent components (see [6.6.6]), of five-day simulations with an AGCM to study

the effects of a particular cloud parameterization.

Suppose that two parameterizations are chosen,

and that pairs of five-day runs are conducted from

] the same initial conditions. The initial conditions
6.6.5 Unequal Variances. We suppose now thatyre selected randomly from a much longer run of

the sampling and distributional assumptions @fie same AGCM, and the total liquid water content

[6.6.1] continue to hold except that &) # of the atmosphere is computed at the end of each
Var(Y).8 Under these circumstances only some ﬂ(/e—day integration.

the ingredients that lead to thedistribution as  gecause the integrations are short, one can
reference distribution are obtainable. The naturﬁ\']agine that the pairs of liquid water fields

estimator of the true difference of means is stiptained from each set of initial conditions are not
ix — ty. This is a normal r2and0m vzarlable Withngependent of each other. Thus the difference of
/Ny.The  means tests discussed above are not appropriate

e the observations areuto-correlated (see
[6.6.7.,8]).

meanux — wy and variancey /nx +oy
variance is estimated b§% /nx + S{/ny with S} for testing the null hypothesis that the change in

and$Z defined as usual bg2 = T1—1 Yi%,(xi — parameterization has not affected the total liquid

ﬁx)z- Thus the difference of means is expressed\yater content of the atmosphere. The statistical

dimensionless units as model used with these tests relies upon the

By — By independence of all observations.

t= . (6.19)  The solution to this problem is to compute the

S>2</nx + S%/nv difference fields and test the null hypothesis that
yp
The square of the denominator can be shown t%e mean difference is zero using a one santple

- . test. It is reasonable to assume that the observed

be statistically independent of the numerator b .

) C : Ifferences are independent of one another because

it doesnot have a distribution proportional to the, . = . L

2 o - the initial conditions were chosen randomly. The

x < distribution. Therefore the test statistic doesnqt _, ., =~ - : .
o ) Istributional assumptions are that the differences

have at distribution under the null hypothesis.

have a normal distribution and that all the

The accepted solution to this problem, which is. o
. L . ifferences come from the same distribution. The

known in the statistical literature as tBehrens— .
former may not be true, even approximately,

Fisher problemis to approximate the dlstrlbut|onbecause moisture related variables, such as

of this statistic with & distribution whose degreestotal liquid water, often exhibit strongly skewed

of freedom are estimated from the data. Th Lo .
istributions. However, let us continue to assume

fc.)rm'ula'usgd to Qetermlne the a.\pproxm?atmgt at the differences are normally distributed for
distribution is obtained by comparing the first an C .
e purposes of this discussion. The second

2 .
tshe Cogd drn;).rgepts (S_%r/] x + S;{,/ anW'th tlhofse (:rf] distributional assumption, that the differences are
€ x~ distribution. The resufting tformula for eidentically distributed, may not hold if we failed to

approximating number of degrees of freedom is account for other sources of variation, such as the

(S)2</nx + S%/ny)z annual cycle, in our experimental design. To avoid
T (& nx? | (/) (6.20) sych problems, the choice of initial conditions
nx—1 ny—1 should be constrained to one season or calendar

8When the equality of the two variances is uncertainr,nonth’ and one time of day'

one might resort to arF test for the equality of variances Letd; _represent theth realization of the_change
(Section 6.7). in total liquid waterD. The null hypothesis to be
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testedis J: up = 0. The optimal test statistic forlead to at test in which the denominator of
this problem is the t statistic is inflated by a factor related to
the time scales at which the time series varies.

= _Ho , (6.21) The resulting statistic, detailed below, is compared
So/vn with critical values from & distribution with an

wheren is the size of the sample of differencessstimated number of degrees of freedom. This

Ip = Yi-,di/n is the mean difference, andapproach, while not exact, has the advantages

S3 = Yii(di — &p)?/(n — 1) is the sample that it is easy to use, easy to understand, and
variance of the observed differences. This statisésymptoticallyoptimal (i.e., it becomes optimal as

has at distribution with n — 1 degrees of the sample size becomes infinitely large). It can
freedom under the null hypothesisThus the be used safely when samples are relatively large,
paired difference test is conducted by computirgs defined below. When samples are not large the
the differences, then computing (6.21) with th&able-Look-Up’ test [6.6.9] should be employed.

sample moments, obtaining the appropriate critical The large sample difference of means test is
value from Appendix F and finally comparirg developed heuristically as follows. We assume

with the critical value to make a decision. that the memory of the observed time series
The paired difference test is an example of ig finite so that the full samplegX, v Xy}
one-samplé test. One-sample tests are used to tegid {Y, ..., Yn,} contain subsets of indepen-
hypotheses of the form ¢4 ;ux = c wherec is dent observations. For example, suppose that
a constant that is chqsenprlorl. These tests are{xy, ..., x100} is a time series of 100 daily surface
performed by computing temperature anomalies. Consecutive observations
Iix —C are certainly highly correlated, but any two obser-
X .
=< = (6.22) vations separated by 10 days or more are nearly
Sx/ﬁ . .
_ _ - independent. Thus the sample contains a subset
and comparing with critical values fom — 1).  of at least 11 roughly independent observations.

However, we do not throw away the other 89

6.6.7 Auto-Correlation. As noted in [6.6.1], the observations. Instead, we attempt to estimate the
t test is not robust against departures from ttigformation content of the entire sample by deriv-
independence assumption. In particular, meteoliag anequivalent sample size.
logical time seriesare generallyauto-correlated  The measure of information used in the differ-
if the time increment between observations is nehce of means problem is one over the variance of
too large. Under these circumstancestest such the sample mean. Thus the smaller the variance of
as that based on (6.16) beconidral, that is, the sample mean, the more information the sample
it rejects the null hypothesis when it is true moreontains about the unknown population mean.
frequently than indicated by the significance leveThe equivalent sample sizg, is defined as the

Intuitively, observations taken in an autonumber of independent random variables that are
correlated sequence vary less quickly than oheeded to provide the same amount of information
servations obtained completely at random. Asbout ux as the sample of dependent random
auto-correlated series therefore contains less ariables{X, ..., Xn,}. Equivalent sample size
formation about the population mean than a com, is defined analogousfy. We anticipate that
pletely random sequence of the same lengt, < nx andn{ < ny when observations are
Consequently, the standard error @ — iy is auto-correlated?!

larger for auto-correlated data than for indepen- Thjs paradigm leads us to estimatassandfy,
dent observations. However, the denominators @hich replaceny andn, in the ordinary difference

t statistics, such as (6.16), estimate the standgjidmeans tests with equal (see [6.6.1]) or unequal
deviation of iy — @y under the independence

assumption. Therefore the denominator in (6.16)Note that the definition of the equivalent sample size
underestimates the variability @ify — 7ty with the depends upon the parameter that is being tested and the way

consequence that the absolute valug ténds to is which infor_mation is ‘measured. The equivalent samp_le sizes
for an equality of variance test, for example, are different

be too large. from those for the equality of means tests. The measure of
Resolution of this problem is non-trivial [454].information used here, the inverse of the variance of the sample

Heuristic arguments, such as that given aboveean, is calledisher's information(see [92]).

Strictly speaking, this happens when time series are
9There aren — 1 degrees of freedom because the deviatiompersistent, that is, when adjacent anomalies have the same sign.

di —p are elements of am-dimensional random vector thatislt is possible to havaﬂ’X > ny and ng( > ny when adjacent

constrained to vary within agn — 1)-dimensional vector space.anomalies tend to have opposite sign.
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(see [6.6.5]) variances. When the samples are large
enough,t statistics computed in this way with

(6.16) as 15
t = M (6.23) .
33 AL + 1 .
Ay ny |
or with (6.19) as |
G S 6.24) ']
=+ 3 ]

Ny ny Nne estimated

can be compared with critical values from the
t(Ay + Ay — 2) or t(df) distribution respectively
where, in the latter caself is computed with = —
(6.20) by substituting the equivalent sample size | Nn. known
estimates for the sample sizes themselves. “
There are two problems left:

e estimating the equivalent sample size (seg, , ‘ : ,
[6.6.8]), and o] 90 180

Sample Size n
o determining whether th& in (6.23) or (6.24)
is distributed as a Studentsandom variable
under the null hypothesis. Whery, andn{,
are small gy 4+ n{, < 30 if t’ is computed
with (6.23); ny < 30 andn{ < 30 if t/

Figure 6.11:The reject rate percentage of the
one-samplé test when the observations are auto-
correlated (see text). The ‘equivalent sample size’

is computed with (6.24)), the distribution of .S 91Ven by (6.26) (thin curve) and is estimated

t’ deviates markedly fronanyt distribution with (6.26) (thick curve).
[363]. Thus thet test can not be used with

small equivalent sample sizes. An alternative \ne conducted a Monte Carlo experiment (cf.
is described in [6.6.9]. [6.3.1]) with a one-sampld test to examine

While the discussion above has focused on th@w well it works when the equivalent sample
difference of means test, the same consideratichge N’ is determined by (6.26)Time seriesof

apply to one-sample tests such as the pairedéngthn = 15 30,60... were generated by an
difference test (cf. [6.6.6]). auto-regressive process of first ordeith o =

0.6 (see Chapter 10). Such processes have auto-
correlation functions of the form (k) = o/¥. If

6.6.8 The Definition and Estimation of the ) ) g .
Equivalent Sample Size. Let us assume that theWe insert the equivalent sample size, as defined

data are given with constant time stépsuch that by (6.26), into (6.22) and use a significance level
theith samplex; is taken at time = i5. Then the of 5%, we observe fewer rejections of the true

; : null hypothesis ‘H: u =0’ (Figure 6.11) than
variance of the sample mean is expected. The deviation from the nominal 5%
Var(X) = o?/n, (6.25) level is considerable whem s less than 30. This
happens because the distributiontofs not well
approximated by the distribution bfn’) under H.
= —7 ” , (6.26)  Estimates ofn’ can be obtained either from

1+ (1— m) px (K) physical reasoning or by means of a statistical
estimator. Estimates based on physical reasoning
should state lower bounds fofbecause optimistic
estimates will result i’-values that are frequently

px(K) = iZCO\,(xi , Xi k) too large and, consequently, cause more frequent
o rejection of the null hypothesis when it is true than

(see Section 11.1). We will drop the subscripndicated by the significance level.

‘X’ for notational convenience in the rest of this Statistical estimators af’ use estimates of the

subsection. auto-correlation functiop (k) in combination with

where

n’ nX
X

(see Section 17.1) angx(k) is the auto-
correlationfunction
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(6.26). Various reasonable estimatorsnof{363, whereX andy are sample means ai¥ is the
454] result int tests that tend to rejectgHnore pooled sample variance (6.17). Compute the
frequently than specified by the significance level. pooled sample lag-1 correlation coeffici@nt
Estimation is discussed further in [17.1.3]. using

The Monte Carlo experiment described above
was repeated using this best estimatoin place R S e AP A 6.30
of the known equivalent sample sizé (6.26). o= (x + Ny -2 ., (6.30)

Figure 6.11 shows that the test now rejects the true
null hypothesis more frequently than specified by
the significance level of 5%. We therefore suggest
that thet testnot be used withequivalent sample
sizes smaller than 3Qnstead, we advise the use
of ‘Table-Look-Up test,” described next, in such
predicaments.

wherex; = xi — iix andy; = vy — ily.
Use Appendix H to determine the critical
value oft that is appropriate for a sample of
sizenx + ny, which has a lag-1 correlation
coefficienta.

6.6.9 The ‘Table-Look-Up Test. The ‘Table- 6:6-10 The HotellingT? test. The multivariate

Look-Up test’ [454] is a small sample alternative/©rsion of thet test, which is used to test the null

to the conventional test that avoids the difficultiesYPOthesis

of estimating an equivalent sample size while, . - -

remaining as efficient as the optimal asymptoti‘(al:_'o' Hx =Ky, (6.31)

test when equivalent sample sizes are ldfge. s called the HotellingT2 test. The assumptions
The Table-Look-Up test procedure is as followsmplicit in this parametric test are identical to

e The paired difference (or one sample) case:ttBOSIe required for ;hq tr?St exclept tha}. th_ey
test 'Ho: 1 = uo' Using a sample of sizay PP to vector, rather than scalar, realizations

of an experiment. It is necessary to make the

compute . . o
P sampling assumption that the realizations of the
(X — o) (6.27) m-dimensional random vector¥ and Y occur
BN : independently of each other. It is also necessary

to make similar distributional assumptions: that
all observations in a sample come from the
same distribution and that those distributions are
. multivariate normal. In addition, we also assume
Compute the sample lag-1 correlation Coe'cf{hat bothX andY have the same covariance matrix

whereX is the sample mean anﬁ)z< is the
sample variance.

cientay using %, so thatX ~ N (jiix, ) andY ~ N (jiy, ).
an Wy The covariance matriZ = (0ij) is generally _
ax = L"El (6.28) not known and must be estimated from the data in
(nx — 1S a manner analogous to (6.17):
where X = xi — jix. Use Appendix H _ K XX+ 20 Vi 6.30
to determine the critical value far that is 9ii = Ny + Ny — 2 ’ (6.32)
appropriate for a sample of sizewith lag-1
correlation coefficien@x . wherexj, = Xjk — [ixj andyj, = Yjk — ityj.

_ The optimal test statistic is given by
e The two sample case (assumiag = oy

and that lag-1 correlationx = ay): to test 2 Nx+ny—m-—1 i i
‘Ho: my = ux’ using X andY samples of " mnx+ny—2) \nx ny
sizenx andny respectively, compute PN A 1ol A PN

X (ix —iy) 5 (ix — ily). (6.33)

t= &, (6.29) This statistic measures the distancenmspace

Soy/ & + % between the sample mean vect@rg and iy in
dimensionless units. Note the similarity to the

12The Table-Look-Up test assumes that the sample(s) comgtistic (6.16). In fact, whem = 1, T2 = t2,

from auto-regressive  processes Of. order 1 (_Chapter 1%)nsuring that both the HOtelliI’fg2 test and the
Departures from this assumption will compromise the test.

Wilks [423] suggests an alternative approach for situatioﬁgSt_ will make the _Same decision. AISO_ noj[e that
when the assumption does not hold. T2is a scaled version of the Mahalanobis distance
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(6.8) that is computed with an estimate of th¢ = 1,...,ny. Combinatorial arguments show

covariance matrix. that the combined sample can be partitioned into
T2 has theF distribution with(m, nx + ny — two groups of sizenx andny in %&ﬂ)' ways.

m—1) degrees of freedom [280] whenlis truel® Thus the probability of observing ?Ully' separated

Thus the Hotelling test is conducted by comparirgamples under gisuch that all observations in the
T2 with critical values from this distribution. X sample are greater than all observations infthe

Critical F values may be found in Appendix G. sample is(r:‘;(jr%")! . Similarly the probability that
When the covariance matriX is known, the xx > yj forall j and all buton&k = 1, ..., nx is

Hotelling test reduces to the? test (see [6.7.2]). ny/%m_

The test statistic is then given by These examples indicate that it makes sense
, Nx+4Ny = = 1oq= = to define a test statistic based on the ordering of

Ce = W(Mx —iy) X7 (x — fy), the combined sample. To do so we introduce the

XY (6.34) concept ofranksin the joint sample
and is compared with the critical values of thd  Z= (XL, ..., Xne, Y1 .-, Yny)' (6.35)

distribution withm degrees of freedort: Again,

note the scalar case analogy. When= 1, c2 Now let Ry be the rank ofxs in Z, that is, if X1
reduces taZ? with Z ~ A(0, 1). Also note that iS theith smallest observation ig, then we set

C2is a scaled version of the Mahalanobis distand& = i. Define Ry, ..., Ra,4n, similarly.!®> The
D? (6.8). Critical x2 values may be found intest statistic is then defined to be the rank sum of
Appendix E. all X observations,
Nx
6.6.11 The Mann-Whitney Test. Sometimes S— Z R. (6.36)
it is not possible to make all the assumptions =1

required for a parametric test, so it may be

desirable to use a non-parametric test that can bel he distribution ofS, under H, is obtained

applied under a less restrictive set of assumptiorfgrough combinatorial arguments [88]. Critical
The Mann—-Whitney test (cf. [4.1.8]) is an exVvaluesk;_p are tabulated in Appendix I. For large

ample of a non-parametric test ohHux = uy. samples sizes, approximate critical values for tests

The same sampling assumption is required &the(l—p) x 100% significance level are given

in the t test and it is also necessary to assun [88]as

that all observations in a sample come from the
nx(nyx +ny + 1)

same distribution, but the distributional assumpgp = ————————— (6.37)
tion itself is relaxed. Rather than specifying a 2

particular functional form (e.g., the normal distri- B Z~\/nxnv(nx +ny +1)

bution), the Mann—-Whitney test requires that the P 12 ’

density functions oX — £(X) andY — £(Y) be ) )
identical. where Z; is thep-quantile of the standard normal
With these assumptions, the distribution dfistribution (Appendix D). A two-sided test ofg
any function of thenx + ny observations Kx = Ky VErsus R ux # iy is performed at
X1 ... Xng. Y1, - ... Yny IS independent of the the (1 — p) x 100% significance level by rejecting
ordering of the samples underoHThe Mann— HoWhenS < k@2 OF' S > Smax — ka-p)/2;
Whitney test exploits this fact by examining th&/h€réSmax = Nx(nx + 2ny + 1)/2 is the largest
positions of theX observations when the combine®©Ssible value tha can take. A one-sided test of

sample is sorted in increasing order. Ho: jix = juy versus H: jux < juy is performed by
The samples are fully separated whep > reiecting whenS < iq_p.
Yj, or vice versa, for alk = 1,...,nx and The added flexibility of the Mann—Whitney

test compared with its conventional parametric
13The derivation of the distribution of 2 follows that of counterpart, thet test, comes at the cost of
t closely. The statistic can be written as the ratio of tW%IightIy reduced efficiency when the observations

independent quadratic forms that each haveythelistribution s . .
under the K. It follows that T2 has anF distribution because are normally distributed. Thasymptotic relative

the latter is characterized as a ratioxﬁ random variables
[2.7.10]. 150f course, the ranks can be defined equally well in

14Note the analogy withT 2. Here the statistic consists of aascending order so that the largest value receives the rank 1,
single quadratic form. etc.
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efficiency® of the Mann-Whitney test is 0.955origin, and consequentl{sZ) should lie at the
when the data are normally distributed. That meaastremes of the collection &z, ) valuest’

that, asymptotically, thetest is able to achieve the A test is therefore constructed by comparing
same power as the Mann—Whitney test using on§Z) with the ensemble of values obtained by
95.5% of the observations needed by the lattevaluating S(Z,) for all permutationsw. If
However, this disadvantage disappears for sorie collection of permutations is very large,
distributions other than the normal distributionthe distribution of S(Z,) may be estimated by
The asymptotic relative efficiency is 1.0 whemandomly selecting a subset of permutations.
the data come from the uniform distribution an&or most applications a subset containing 1000
it is 1.5 if the data have the double exponentiglermutations will do.

distribution, indicating that thé test requires 1.5 To express the test mathematically, It be

times as many observations. the set of all permutations. Then compute (or
estimate iff1 is large)
6.6.12 A Permutation Test. The following C o3 5
eIl: S(z Z
test of Hy: ux = uy, first proposed by Pitman H = 1 Zr) > )}|, (6.38)

[314, 315, 316], can be applied to univariate as I

well as multivariate problems. It also allows usvhere|A| denotes the number of entries in a set

to relax the distributional assumption somewha&. Since H is an estimate of the probability of

further than the Mann-Whitney test allows. Webserving a more extreme value of the test statistic

will need the standard sampling assumption (i.einder the null hypothesis, we may rejecs iff H

independence), the assumption that observatiaggess than the specified significance level.

are identically distributed within samples, and The permutation test approach is easily ex-

a third assumption that distributions differ onlyended to multivariate problems [397]. One ap-

with respect to their expectations, if they differ gbroach is to define a multivariate test statisién

all. Note that the sampling assumption is crucialerms of univariate test statisti&, j = 1, ..., m,

In particular, the permutation test performs vergs

poorly when observations are serially correlated m

[442]. S=) IS (6.39)
Let us first consider the univariate case. i=1

As in the Mann-Whitney test, leé be the ) )
vector of all X and Y observations:3 = The same procedure as outlined above is then

(X1, -+ Xnys Y1 - --» Yny)T. Under the null hy- applied to S instead ofS. One should exercise

pothesis, the distributions of andY are identical SOMe caution with this expedient. For example,
and thus any statisti§ of Z has a distribution that (€ multivariate test that is obtained is not always
is independent of the ordering of the Componenlgva_rlant[é}ss] L_mder linear transformation of the
of Z. That is, if = is a random permutation of™-dimensional field. . . .
{1,...,nx + ny}, thenS(Z) has the same distri- One drawback of the permutation test is that it

bution asS(Z,). Consequently, any arrangemeﬂ? not supported by a rich statistical theory_. We do
3. of the observed is as likely under the null Know that permutation tests are asymptotically as
hypothesis as any other. Hence the probability tH&ifiCient as their parametric counterparts [274], but
the observed test statist&?) takes a value in the W& Must rely on Monte Carlo methods to obtain
upper fifth percentile of values that can be taken 52format'|on about the small sample properties of
S(Z,) is exactly 5% under the null hypothesis. the testin specific situations.

In contrast, ordering becomes important under
the alternative hypothesis, where possible valugs7 Test of VVariances
of S(Z;) obtained via permutation are not equally
likely. The unpermuted vector precisely divide§.7.1 Overview. Until now our focus has been
the observations according to their population @i tests about the first moments (i.e., means) of

- . _scalar and vector random variables. We briefl
16The efficiency of two tests is measured by comparing th y

sample sizes needed to achieve the same power at the s&eCribe a few ways in which to test hypotheses
significance level against the same alternative. The sample stfaout the second central moments (i.e., variances)
ratio often becomes independent of power, significance Iev@jf scalar random variables in this section. Tests
and the particular alternative as one of the sample sizes tends

to infinity. When this happens, the limiting sample size ratio 17At least, this should be true i efficiently estimates

is called theasymptotic relative efficienARE). See Conover a monotone function of the difference between the two
[88] for more details. populations.
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about the second central moments of randoagual variances. For example, this is needed when
vectors (i.e., covariance matrices) are beyond tkelecting a test for the equality of means (see

scope of this book® [6.6.1] and [6.6.5]). There are also a myriad of
climate analysis problems in which we want to
6.7.2 The x2 Test. SupposeXi,...,X, are compare variances. For example, we may want

iid random variables that represent a sample pmpare the variability of two simulated climates
sizen from the normal distribution. The@2 — ©ON some time scale, the variability of the observed

(n— 1)53(/02 has thex2(n — 1) distribution (cf. climate with that of a simulated climate, or the
[2.7.8]). X variability under different climatic regimes (e.g.,

The null hypothesis b G)z( = o2 can then be warm versus cold ENSO events). N
tested at thél—p) significance level by computing 1 N€ standard procedure for testing:Hry =

C2 = (n — 1) /g2 and making decisions as’y is the F test It can be applied when
follows. we have two independent sampl¥s, ..., Xny

and Yy, ..., Yn,, each consisting of iid normal

e Hal 02 < o2 reject Hywhen C? is less random variables. Then

than the(1 — p)-quantile of thex?(n — 1) 2

distribution. They? distribution is partially F = =

tabulated in Appendix E. For example, when

n = 10, we would reject blat the 5% has theF(nx — 1, ny — 1) distribution under the

significance level whe€? is less than 3.33. null hypothesis [2.7.10]. Critical values of tie

The non-rejection region is {3, co). distribution are tabulated in Appendix G. The test
is performed at thél — p) x 100% significance
level as follows.

(6.40)

o Hal 02 # o2 reject Hywhen C? is less
than the((1—p)/2)-quantile of thex2(n — 1)
distribution, or greater than it§1 + p)/2)- e Ha: 02 > oZ: reject Hywhenf is greater
guantile. Whenn = 10, the non-rejection than thep-quantile of theF (nx — 1, ny — 1)
region for the 5% significance level test is  distribution. For example, whemx = 9 and

[2.70,19.0]. ny = 10, the non-rejection region for a test
conducted at the 10% significance level is
o Hai 0 > o2 reject Hywhen C? is [0, 2.47].
greater than th@-quantile of thex?(n — 1) ) b _
distribution. Whenn = 10, the non- ©® Ha' ok # oy reject Fhwhen f is
rejection region for the 5% significance level ~ 1€ss than the(l — p)/2-quantile of the
is [0, 16.9]. F(nx — 1, ny — 1) distribution, or greater

than its (1 + p)/2)-quantile. Note that

The x? test ismoresensitive to departures from most tables do not list the lower tall
the normal distribution assumption than the tests quantiles of the F distribution, because
of the mean discussed in the previous section. whenF ~ F(nx —1,ny —1), then% ~
This sensitivity arises becaug®? is a sum of F(ny —1,nx —1). Thus the((1 — p)/2)-
squared deviations. Data that are not completely quantile of F(nx — 1, ny — 1) is 1 over the
normal tend to have at least some deviations from ((1 + p)/2)-quantile of F(ny — 1, nx — 1).
the sample mean that are larger than would be Whennx = 9andny = 10, the non-rejection
observed in a completely normal sample. Because region for a 10% significance level test is
these deviations are squared, they have a very [0.295 3.23].
large effect on the value of?2. Inferences are

2 - .
consequently unreliable. Just as for thex< test, theF test is sensitive

to departures from the normal distribution. Also,
it is not robust against outlying observations
6.7.3 The F Test. The one samplex” test caused by, for example, observational or data
of the previous subsection has relatively limiteghanagement errors. It is therefore useful to have
applications. On the other hand, there are magynon-parametric alternative even if the relative
problems in which it is necessary to decidgfficiency of the test is low when data are normal.
whether two samples came from populations With non-parametric test is discussed in the next

18|nterested readers can find entry points to literature on thslsu bsection.

subject in, for example, Graybill [147], Johnson and Wichern 1he F teSt_aISO does not perfo_rm as expected
[197], Morrison [281], or Seber [342]. when there is dependence within the samples.




120 6. The Statistical Test of a Hypothesis

If the samples are time series, spectral analysisms (6.41). It is clear that this test can never be
methods (see Section 12.3) can be used to descrilsgpowerful as the Mann—Whitney test because the
the variability in the samples as functions dfiwo samples of absolute deviations can never be
time scale.F tests can then be used to compaempletely separated. Regardless of the variance,
variability within the samples at various timeboth samples are likely to have some small

scales. deviations near zero.

Finally, the F test is not particularly powerful. One way to improve the power of this test is
For example, to reject greliably Whena>2< = to focus more attention on the largest absolute
203, say with power 95% in a 5% significanceleviations. The second test, the squared-ranks test,
level test, requires samples of sizex = does this by using
ny ~ 100. Since power can always be increased nx
somewhat at the cost of greater risk of falser — Z R? (6.42)
rejection, F tests are often performed at the i=1

10% significance level Whergasxg_s,ts are usually as the test statistic instead of (6.41). Decisions are
performed at the 5% or 1% significance levels. made at theé1 — p) x 100% significance level by

using the critical values in Appendix J as follows.
6.7.4 A Non-parametric Test of Dispersion. 5 o .
There are several simple non-parametric tests of® Ho: o < oy reject whenT is unusually
equality of variancé® We will describe two of small, that is, wherT is less than thel —
them here. In both cases, the standard sampling P)-quantile ofT. Whennyx = 7, ny = 8,
assumptions are required. That is, it must be (1 —P) = 0.05, we would reject whefl <
possible to represent the samples by iid random 426.
variables, and the samples must be independent of
each other. _It is also necessary to assume that the ((1 - P)/2)-quantile ofT, or greater than the
two populations h_ave the same d_lstrlbutlon when ((1+ p)/2)-quantile. Whemy = 7, ny = 8,
they are standardized by suptrgctlng the mean and and (L — p) = 0.05, reject whem < 384 or
dividing by the standard deviation. T - 935.

The first test is performed by converting
both samples into absolute deviations from the e Ha: 0f > oi2: reject whenT is greater than
respective sample means: the p-quantile of T. Whennx = 7,ny = 8
and(1 — p) = 0.05, reject whem > 896.

Ho: 0 # o2: reject whenT is less than the

u = |x—X|, i=1,...,nx and
Vi = lyi—Vl, j=1,....nv. When nx or ny is greater than 10, thél —
’ . ' Y p)-quantile ofT can be approximated by

The combined samples of absolute deviations ny(N + 1)2N + 1)

ug, ..., Uny, V1, ..., Vn, are then assigned ranks,T(l_ﬁ) = (6.43)
as in the Mann—Whitney test [6.6.11]. The sum of 6
the ranks . \/nan(N +1@N+1)@BN +1)
nx P 180 ’
S= Z R (6.41) whereN = nx + ny and Zp is the p-quantile
i=1

of the standard normal distribution (Appendix D).
is used as the test statistic. Critical values aMpte that, as with the first non-parametric test of
the same as for the Mann—-Whitney test (sdbe variance, this test is also an approximate test
Appendix 1). This is an approximate test whewhen samples are small.
samples are small because ranked entities, thd&even with the improved power, the squared-
absolute deviations, are not quite independent r@nks test is inefficient when the data are really
one anothef? normal. Conover [88] notes that the test has

The idea behind this simple test is that thasymptotic relative efficiency 0.76 in this case (i.e.,
deviations in one sample will tend to be smallghe F test with samples of size 760 will be as
than deviations in the other whengh$ false, efficient as the squared-ranks test is with samples
resulting in either unusually small or large rankf size 1000). On the other hand, when the data

Toer , _ _ are actually distributed as the double exponential

Strictly speaking, these are testdigpersiorbecause they

are designed to look for differences in the spread of the samplgé.smbunon (a wide-tailed asymmetric distribution

20The deviations within a sample are dependent because thB@t _peaks_ _sharpl_y at the mean), the asymptotic
sum to zero. relative efficiency is 1.08.
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6.8 Field Significance Tests all decisions and leb* be the vector of decisions
at the subset of points. The relative frequency of
6.8.1 Constructing Field Significance Tests rejections of local null hypotheses will, on average,
from Local Tests. We discussed the use obe aboutthe same ID and inD*. That is,
a field of local test decisions for making a - =, . =12
global decision about a global null hypothesis inD~ D”/m" ~ D D/m.
[6.5.2]. We reconsider this problem here in MOIR dependence ensures that
generality. ~
Theglobal null hypothesigs HS: “all localnull ~ D*TD*/m* ~ B(m*, p).

hypotheses are correct” We assume that all local , .
tests are conducted at th@ — p) significance Thus the challenge is to seleti* in such a way

. . . —’T—’ . .
level. The alternative hypothesis is that ‘at leadpat the distribution oD'D/m is approximately

BT %/ m*
one local null hypothesis is incorrect.” Note thafrat of D™ DY/m".

we must specify two significance levelg — p), ~ One way to determinen” is to use physical

the significance level of the local test; afid— p), reasoning. Usually this approach will lead to only

the significance level of the global test. We will segfgue estimates, but often this approach does

thatf) can be chosen independentlyfofHowever, Zlerlr? llfgir]e“TA?iir%Tjrznﬁ*Afgfthiricahppgi?nIzéo
the power of the global test is not independent oP, P - o ]
the power of the local tests. rejected at the¢l — p) significance level. Clearly, if

Let D be anm-dimensional random vector ofm* > m, the global null hypothess?—lcannot be

binary random variableB; that take values O or rejected. See [6.8.4].
1. Each of these random variables represents the
result of a local test. These binary random vari§-8.3 Livezey and Chen’s Example. Livezey
bles are identically distributed with (D; = 1) = and Chen [257] describe an analysis of the
1— pandP(D; =0) = p under the global null relationship between the Southern Oscillation, as
hypothesis. represented by an SO index, and the Northern
Now let test statisticS be the number of local Hemisphere extratropical circulation, given by
rejections, or formallys = DTD. Under the global 9ridded 700 hPa height fields poleward of’ 20
null hypothesis,S ~ B(m, 1 — p) if local test Qorrelatlons between the winter (DJF) mean'SO
decisions are made independently of one anotfgf€x and corresponding winter mean height
[6.5.2]; unfortunately, this usually doesn’t happer@nomalies were estimated at = 936 grid
Livezey and Chen [257] suggested severBPints. The local null hypothesis(’)Hhat the true
solutions to this problem. One approach is tgPrrelation at grid poin{ is zero was tested at the
reduce the number of degrees of freedom [6.8.8} — P) = 5% level at each of the 936 grid points
(similar to the modification of the test when USingamethod that accounts for serial correlation.
the data are serially correlated [6.6.3]). Anotheihe local null hypothesis was rejected at 11.4%
is to use a series of Monte Carlo experiments & 9rid points—that is,d'd/m = 0.114. This
simulate the statistical properties of the randoi Substantially larger than the 5% frequency that

variables that enter the local decisions [6.8.3]. Would be expected if all local null hypotheses were
correct.

Figure 6.12a illustrates the rejection frequency
6.8.2 Reduced Number of Spatial Degreesy, — d'd/m required to reject the global null
of Freedom. In many applications the localhypothesis at a global 5% significance level as
decisions are made on a regular grid so that eaghfunction of the number of independent spatial

point has approximately the same number of poingegrees of freedomn*. The rejection frequenay
in its immediate neighbourhood. The observations given by

used to test a local hypothesis at a grid point

are often strongly correlated with those used at . N . =

nearby neighbours and roughly independent o[i’?,)n, Z Bm*.1-p() = 1-p.

those at distant grid points. Then it may be I=¢-m*

possible to select a subset of grid points so thle see that a local rejection rate of= 11.4%

the observations at these grid points are mutualiypports rejection of the global null hypothesis in

independent. fields that haven® = 52 or more spatial degrees of
Suppose there ara grid points in total and that freedom. However, seasonal mean 700 hPa height

the size of the subset is*. Let D be the vector of is a very smooth field with very large spatial

m*
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Tww L upon the observed sequence of height fields.
@ ] The process of simulating the SO index and
f computing the test statisti® was repeated 200

times. The resulting distribution function is shown
in Figure 6.12b. Note that 5% of all randomly

generatecs statistics are greater than 12.5%. Thus
j40.12.5 ] we again find that the global null hypothesis can

CDIE[938LAG o)

NEZRONT e not be rejected at the 5% level.

.
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— 1 6.9 Univariate Recurrence Analysis
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DOF 6.9.0 Motivation. Thet test was introduced in
Section 6.6 to test the null hypothesisg:Hix =

‘b')' T EEer e wy, that a pair of univariate random variablxs
38+ . andY have equal means. The power of the test
depends upon two factors. It increases when the
‘signal’ uy — wx increases, and when the sample
sizesny and ny increase. This is illustrated in
Figure 6.3, where we displayed the signéls=
(ux — my)/o for which a test conducted at the
5% significance level has power 50% and 90%
given sample sizesx = ny = n. Note that the
probability of rejecting H is 90% whens = 0.5
andn = 100, but that it is less than 50% when
n = 20.

More generally we find, for all significance
. levels (1 — p) and all signalss§ # 0, that the
F|gure.6.12: ) robability of rejecting K convergesto 1 as —
a) Estimated per_centage O_f rejected local nu . Thus, paradoxically, poor scientists are less
hypotheses required to reject the global null ey 1o detect physically insignificant differences
hypothesis (that all Iocql null hypotheses are valld[)1an frich scientists (see [6.2.5]).
atthe 5% level. From Livezey and Chen [257]. One solution to this problem is to use scientific

b) Livezey and Chen's example [257]. I\/lomﬁnowledge to identify the size of signal that is not

Carlo estimgte ,(200 trials) of the rat@ of physically significant and then to derive a test that
erroneous rejections of _Ioc_:al null hypothesis wh jects H only when there is evidence of a larger
the global null hypothesis is true. The hatched aregy | Thjs is the idea behindcurrence analysis

marks the 10 largest rando®statistics so that the We introduce the univariate concept [404] in this

critical vaIue_/cf, is 12.5%. The value to be tesuadsection, and the multivariate generalization [452]
S=11.4%, is marked by thag-Oarrow. in Section 6.10

Applications of the recurrence analysis include
EL41, 175, 223, 404, 452].

covariance structures, so it is unlikely that this fiel
contains as many as 52 spatial degrees of freedom. o )
Hence there is insufficient evidence to reject tf29-1 Definition. Two random variableX and

global null hypothesis. Y are said to b&q, p)-recurrent if

Livezey and Chen [257] also describg anp(y> Xq): P, (6.44)
attempt to use Monte Carlo methods to estimate
the distribution of S = D'D/m under the where Xq is the gth quantile of the random

global null hypothesis. The authors conductedriableX.

the Monte Carlo experiment by replacing the In many climate modelling applicatiorn$ rep-
SO index time series with a random (‘whitgesents thecontrol climateand Y represents a
noise’) time series. This ensured that all localimate disturbed by anomalous boundary condi-
correlations were zero. The authors did ndions or modified parameterizations of sub-grid
simulate the 700 hPa height fields. Thus, ttszale processes. The waeturrencerefers to the
reference distribution they obtained is conditiongirobability p of observingY > Xg. The strength
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which populationz was actually drawn from.
Furthermore we want to know the probability of
making an incorrect decision.

\ Area p .. . .
x\v The decision algorithm is:
N

\ e ‘zis drawn fromX'if z < Xq
e ‘zis drawn fromY'if z > Xq
EXPERIMENTAL
\ If zis really drawn fromX thenP (z < Xq) = q
so that the probability of a correct decisiongjisn
- \

PROBABILITY DENSITY

this case. On the other hand,zfis really drawn
from Y, then by (6.44)P (z > Xq) = p so that
the probability of a correct decision ip. The
probabilities of incorrect decisions are-1q and

1 — p, respectively.

Figure 6.13:Definition of (g, p)-recurrence: the

‘control’ represents the random variabl® and 6.9.4 The Murray Valley Encephalitis Ex-
the ‘experimental’ the random variabl¥. The ample. Before we discuss mathematical aspects
size of the area hatched to the leftds so that of recurrence, we present a concrete example of a
P (X < Xq) = q. The size of the area the hatchegecurrence analysis.

to the rightisp, and P(Y > Xq) = p [404]. Between 1915 and 1984 there were seven
outbreaks ofMurray Valley encephalitigMVE)

_. in the Murray Valley in southeast Australia.
of the effect of the anomalous boundary conditiong, o prevalence of MVE virus depends on the

or modified parameterizations is measured againgf,ndance of mosquitos, which in turn depends
the reference valug. on climate. Nicholls [292] studied the relationship
In- many applicationsy = 50% so that the pepyeen the appearance of MVE and the state of
reference level is the mean #f. In that case we he Southern Oscillation (see [1.2.2]), and found
simply speak ofp-recurrence. that annual mean sea-level pressure at Darwin was
unusually low in all seven MVE years.
6.9.2 lllustration. The idea of the(q, p)- The frequency histograms of annually averaged
recurrence is illustrated in Figure 6.13, whetg Darwin pressure in MVE and non-MVE years are
represents a point on the right hand tail 6f. plotted in Figure 6.14. The random variabl¥s
By definition, the proportion oX realizations that (Darwin pressure conditional on the presence of
are less tharXq is g. This point also representsMVE), and Y (Darwin pressure conditional on
a point on the left hand tail ofy and, according the absence of MVE) are highly recurrent, with
to (6.44), the proportion of realizations that are p = 95% andq = 86%. Clearly, the estimates of
greater tharXq is p. Thus the definition states thatp andg might change drastically when the sample
two random variableX andY are(q, p)-recurrent size increases, but the main conclusions, that the
if there is a point betweerfx and fy such that two distributions are very well separated and that
proportionq of all X realizations lie to the left of the probability of misclassification is small, are not
Xq and proportionp of all Y realizations lie to likely to change?!
the right of this point. Ifp andq are close to 1,
then the two random variables are aImo;t perfgctéyg_g, Non-uniqueness of the Numberg and g.
separated. Qn the other hand, if the distributioRg,o point of separatiorXq in Figure 6.13 may
are symmetrical ang = g = 0.5, then the meansye gpified; thus(q, p)-recurrence is equivalent
are equal. to (¢, p')-recurrence for an infinite number of
pairs (', p). In particular, there is always one
6.9.3 Classification. Another way to understandnumberp” so that(q, p)-recurrence is equivalent
the idea of (g, p)-recurrence is to think of ato (p”, p”)-recurrence.
classificatiqn problem. Let IUS assume that we INote, however, that the relationship between the SO and
have a pair of random variable$ and Y that MVE out’breaks ha’s changed since the discovery of the link

are (q, p)-rec_urrent, and a realization that IS because precautionary measures are now taken to control
drawn from eithetX or Y. We want to determine outbreaks when the SO index is low.

Xq
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A reasonable estimator gd-recurrence can be
obtained from (6.45) by replacingx, ny, ando
with the corresponding estimatok§ Y, and Sp,
wheresf) is the pooled sample variance (6.17).
Then

35%

30% RPN

25% T
not MVE

=z
o<
m

Y — X
ol p= FN(?) (6.47)
6.9.7 Testing for @, p)-recurrence. To test
that the response to experimental conditions is at
----- S least (g, p)-recurrent, we assume that we have
ny realizationsxy, ..., Xn, Of the control state
: X, ny realizationsy, ..., yn, of the experimental
/ state Y, and that all realizations are mutually
P ; + statistically independent. The null hypothesis is
1009 10101011 1012 that X andY arelessthan (g, p)-recurrent, that
is
Figure 6.14:Frequency distribution of annually
averaged (March to February) Darwin sea-levelHo: P(Y > Xq) <P (6.48)
oo e M), Vol Tuo clsses o tests re suggested i (404
Bne is aparametric tesbased on the assumption
when no cases of MVE were reported. The tw : . .
distributions are estimated to be86%. 95%)- 0 normqhty and the other is aon—param.etnc .
’ permutation test. We present the parametric test in

recurrent. :
the next subsection.
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If random variablesX and Y have identical 8-9-8 A Parametric Test. To construct a
parametric test we adopt a statistical model for

symmetrical distributions except for their means, .

then (g, p)-recurrence is equivalent top, q)- the random.vanablex andy, nam<_e|y .that both

recurrence. random variables are normally distributed with
identical variances 2. Using (6.46), we formulate
the null hypothesis bithat the response is less than

6.9.6 p-recurrence. Recall that p-recurrence P-récurrentas

is synonymous with0.5, p)-rgcurrence. Suppose by — X

now that both random variableX and Y are Ho:———— < Zp. (6.49)

normally distributed with meangx and uy and o ]

a common standard deviatien If X andY are If the null hypothesis is valid, the standard
t-statistic (6.15) has aon-centralt distribution

-recurrent (withp > 0.50 so tha < ,
P ( P = bx wy) (see Pearson and Hartley [307]) witR + ny — 2

then
degrees of freedom andchan-centrality parameter
p =P > ux A such that
Z
KX = 1Y A<—F (6.50)
=1-Fyv(—/—— 1 1
(=) =
HY — X
= FN(T>’ (6.45) Therefore, to test Hiwe compute the usuai-
statistic (6.16)
where Fys is the distribution function of the v _%

standard normal distributiov'(0,1). Thus the t— — =
difference betweeX andY is p-recurrent when S /% + %

ASL (6.46) If 1 — p is the acceptable risk of erroneously
P ' rejecting the null hypothesis, this-value is

compared with thed percentile,ty, 1ny—2 A p, Of

whereZ, = Fgfl(p) (see Appendix D). the non-central distribution with(nx + ny — 2)
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except that the non-centrality parametar in
(6.50) is replaced by

27,
1+1

nx T ny

T TrTT

A= (6.53)

T

T

6.9.10 A Univariate Analysis: The Effect of
Cold Equatorial Pacific SSTs on the Zonally
Averaged Atmospheric Circulation. In June
1988, cold surface waters were observed in the
Eastern and Central Equatorial Pacific. This event
L attracted interest in the scientific community
because of its timing (northern summer) and
90N strength (these were the coldest June conditions
in the last 60 years). A numerical experiment

Figure 6.15:The cross-section of monthly meaas performed to quantify the effect of such
zonally averaged vertical ‘velocityw] in a paired anomalous lower boundary conditions on the
AGCM experiment on the effect of the anomalo@émospheric circulation. Two 11-month perpetual
SST conditions in June 1988. The contours lindyly simulations were performed: once with
show the 11-sample difference between the ‘Jupi@ndard sea-surface temperatures and once with
1988 SST anomaly’ run and the ‘control’ rurfhe€ anomalous June 1988 SST distribution
[398]. superimposed (von Storch et al. [398]).

Top: The points for which the null hypothesis of Monthly mean cross-sections of the zonally
equal means can be rejected with a standardaveraged vertical ‘velocity’ §] obtained in the
test [6.6.1] at the5% (light shading) or1% (dark two simulations were compared with univariate
shading) significance level. recurrence analysis. The difference between the
Bottom: Points at which the univariate estimatgl€an ] cross-sections is shown in Figure 6.15.

of (0.5, p)-recurrence (6.47) is less than 20% oShading in the upper panel shows where the
greater than 80% are shaded. difference of means is significantly different from

zero at the 5% (light) and 1% (dark) levels.
Clearly there is very strong evidence of change

) in the mean Hadley circulation. On the other
degrees of freedom and non-centrality parameigsng, the lower panel in Figure 6.15 shows that

A (6.50). These percentiles are given in [30%yo [4] distributions overlap substantially, even
and also in some statistical software librari§s the tropics. Regions are shaded where the
(e.9., IMSL [193]). For large sample sizes, thgssponse is more than 80%-recurrent or less than

T 1T TTay

30°N 60°N

percentiles can be approximated by 20%-recurrent. There were no locations at which
the response to the anomalous SSTs was more
thytny—24p= A+ Zp. (6.51) than 95%-recurrent or less than 5%-recurrent,

indicating that the anomalous SST does not excite
a response strong enough to eliminate the overlap
between the two density functions.
. The physical message of the lower panel of
6'9',9 (p p)-recurrence. The multivariate 'gen- Figure 6.15 is that the inclusion of the anomalous
e;rahzaﬂon of t_he concept of recurrence in Se?r'opical SST markedly modifies theadley cell
tion 6.10 requires(p, p)-recurrence. Under they  yhat the atmospheric circulation poleward of,

conditions of [6.9.6], that is, both distributions argay, 20 latitude is not affected by the anomalous
normal with the same variancép, p)-recurrence forcing.

is equivalent to In this case the upper panel gives roughly

the same message; there is not much difference

Y = HX 5y (6.52) bgtween locations where .there are significant
o =t differences (upper panel, Figure 6.15) and where
there is substantial recurrence. However, when

To test the null hypothesis that and X are less samples are larger, the estimated recurrence
than (p, p)-recurrent, we proceed as in [6.9.8fenerally gives a clearer indication of physically



126 6. The Statistical Test of a Hypothesis

significant responses than the local significance.
test, since the rate of rejection in the latter is
sensitive to sample size.

6.10 Multivariate Recurrence
Analysis

6.10.1 Motivation. We described univariate
recurrence analysis as a classification problem in
[6.9.3]. Specifically, if a realizatiorz is drawn 5
randomly fromX or Y, then the probability of
incorrectly determining the origin af is 1 — p
whenX andY are(p, p)-recurrent.

Figure 6.16 illustrates two bivariate normal
distributions X and Y with overlapping density
functions. We want to quantify this overlap in the
multivariate recurrence analysiso we divide the
full two-dimensional plane into two disjoint sets
®x and®y so that

[N}

(=]

PXe®y)=P(YeOx)=1-p

P(X € Ox) = P(Y € ©y) = p. (6:54)

|
N

IR IV VR U S OSSN T N Y N S |

The probability of a misclassification is ther-Ip.

Thgsets(ax and @y are easily found wheX A L S A AL
and Y are multivariate normal [2.8.9] and have
the same covariance matriX. The solution in
our bivariate example is sketched in Figure 6.1f68gure 6.16: The density functionsy agd fy gf
(bottom); ®x lies above the straight line ar@ly two bivariate normal random variableX andY
below. In this examplep = 87.6%. In general, that differ only in their mean values.
whenX andY are of dimensiom, ©®x and®y are Top:  Three-dimensional  representation  of
separated by am — 1)-dimensional hyper-plane.max(fx, fy).

We now sketch the basic ideas of multivariat8ottom: Contour lines of constant densities
recurrence analysis. A more involved discussionax(fx, fy) in the two-dimensional plane.
of this approach can be found in Zwiers andhe straight line separates the full spaces into
von Storch [452]. An application can be found ithe two subset®x and ©y so probability of
Hense et al. [175]. misclassification id — p = 12.4%.

From Zwiers and von Storch [452].

6.10.2 The Discrimination Function and the
Probability of Misclassification. The line (or  The discriminating function is used to identify
more generally, hyper-plane) in Figure 6.1éhe sourceﬁoﬁ when it is drawn randomly from
(bottom) that defines the sefsx and®y is given eitherX or Y. Whgn W(Z) > 0, Z is classified as
by Z = W1(0) whereW(.) is thediscrimination being drawn fromX and vice versa wheW(z) is
functiort? negative. The probability of correctly classifyiig

5 5Ty -1, = IS
W(2) 2377 (ux — My) (6.55) P(? c @Y) _ P()—z c @X) —p

1. - Te-1,- -
— S lix = ) BT (X — fiy). wherep is given by

The set®x and®y are then given by p=Fyxn(D/2), (6.57)
Ox = W1([0, +00)) andD is the Mahalanobis distance [6.5.4],
Oy = W ((-00,0)). (6.56) D* = (jix — fiy) = (iix — fiy). (6.58)

22The discrimination function is used imultiple discrimi- 2 1S & dimensionless measure of the distance
nant analysigsee Anderson [12], for example). between the means #fandy.
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6.10.3  Definition of Multivariate (p, p)- m-1 ( (nx —3ny)(nx +ny —2) D2)>
Recurrence. LetX andY be independent multi- 4Ds nxnNy s))
variate random vectors with identical covariance : . , -
matricesXy = Sy = X and mean vectorsWhereDS is the ‘shrunken’ Mahalanobis distance
ux and iy that are separated by Mahalanobis nx +ny —m-—23

distanceD (6.58). Then the difference betwe¥n Ds = Thx+ny—2 b (6.60)
and Y is said to be(p, p)-recurrentwhenp = Dy — ¥ X TSX - V). (6.61)

Far(D/2) (6.57).
In contrast with the univariate definition, théyng f,, is the standard normal density function.

definition above is restricted to multivariate normal

distributions with identical covariance matrices, )

The concept is not easily extended to other mdf:10-> Testing for(p, p)-recurrence. A para-

tivariate settings because, in general, derivation r&etng test of P, p)-recurrence can b,e constructe.d

the surface that separatés; from ®y becomes following the ideas of the parametric test of uni-

intractible. For the same reasam, p)-recurrence Vaniate recurrence in [6.9.9]. The null hypothe-
with p  q is also not defined. sis Hyis again X and Y are less than(p, p)-
recurrent.” Hycan be tested with Hotelling 2

6.10.4 Estimation of the Level of (p, p)- statistic [6.6.10]:

recurrence. Zwiers and von Storch [452] con- _, nx +ny —m— lDA (6.62)
sidered several estimators of the level(qf p)- T minx+ny —2) % '
recurrence and found that an estimator originally

proposed by Okamoto [299, 300] worked wellnder H T2 has a non-centrdt distribution (see,
Hense et al. [175] suggested the following mode.g., [307]) withm andnx + ny — m — 1 degrees

fied form of this estimator fop: of freedom and non-centrality parameter

5 Ds Nx Ny

p=1—erfl — (6.59) A= D 6.63
( 2 ) e (6.63)

) whereD = 2F,/(p) (6.57).

fa(=Ds/2) (Ds ((nx +ny—1)2-1
nx +ny —2\ 16 Nx Ny
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7 Analysis of Atmospheric Circulation
Problems

7.0.0 Summary. In this chapter we present In the following example the state vector is
examples of hypothesis tests in the contexts ofily a single variable: the zonal distribution of
confirming, or validating, Atmospheric Generagjeopotential height at 500 hPa in the Northern
Circulation Models (AGCMs) (Section 7.1, seélemisphere extratropics. The comparison is often
also [1.2.7]) and the analysis of paired sensitivifgerformed with a statistical test of the null
experiments (Section 7.2, see also [1.2.7]). Similaypothesis that the observed and simulated vectors
applications in the literature include [105, 132%have the same distributidnThus, as we noted
134, 135, 161, 393]. See also Frankignoul's revieiw [6.9.1], given large enough samples we will
of the topic [130], and theecurrence analysis eventually discover that the simulated climate
examples presented in Sections 6.9 and 6.10. &n ‘significantly? different from that which is
application of the Hotelling test is described imbserved because no model is perfect.
Section 7.3 and an example of the anthropogenicThat is, a fully satisfactory ‘verification’ or
CO; signal is discussed in Section 7.4. ‘validation’ is impossible with the hypothesis
testing paradigm. Are there more satisfying ways
to prove the ‘correctness’ of a model? Oreskes
o ) ) et al. [301] argue that a positive answer can
7.1 Validating a General Circulation  pe given only if the model describes a closed
Model sub-system of the full system, that is, a sub-system
with completely known ‘external’ forcings. The

7.1.1 The Problem. Climate models in gen- atmosphere and the climate system, as a whole,
eral, and AGCMs specifically, are mathematic&re not closed systems but open to various external
representations of the climate that are built frofgctors, such as variations in solar radiation,
first principles. On short time scales they simulaiolcanic eruptions, or the Milankovicz cycle. Even
the day-to-day variations in the weather, ideall&ﬁ these external factors were known in detail,
in such a way that the statistics of the observd@e part of the climate system represented by an
climate are reproduced when the model is r/NSCM cannot be viewed as a closed sub-system
for a long period of time. A careful strategy idecause the atmosphere loses energy and moisture
needed to determine, even partly, whether a modio other parts of the system.

has achieved this goal. The problem is complex Sometimes, a possible alternative to the ‘hy-
because, in principle, we would need to compagsthesis testing’ strategy is to use the mod-
the statistics of a state vector that characterizels as forecasting instruments, then assess their
all aspects of the thermo- and hydrodynamics ebility to predict atmospheric variations (see
the atmosphere. The statistics should include tirk@apter 18) correctly. Unfortunately, this ap-
averaged fields of various variables at varioygoach is applicable only in cases when there
levels, and temporal and spatial cross-covariances

of different variables on different scales. 1The test may concentrate on a specific aspect of the

. . . distributions, such as the means (Section 6.6) or variances
It would be difficult, but not impossible, to(Section 6.7), or it may be concerned with the whole

characterize the simulated climate in this way. Qfstribution ([5.2.3], [5.3.3] and Sections 6.9 and 6.10)

the other hand, it simply cannot be done for the 2Statistically, not necessarily physically, significant.

observed climate because our observations are fafOne of the unavoidable errors is due to space-time

from Complete In reality, model validation effort runcation that determines the modelled sub-space. The part of
g ! he phase space that is disregarded by the truncation affects the

must be restricted to an incomplete state vector thad system also in the resolved part of its phase space, but has

represents only a few variables of interest. no impact on the model's phase space.

129
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2 ’ ' ‘ ’ ' T 7.1.2 Example: Extratropical Geopotential
- 1 Height at 500 hPa. We return to an example

104 - first described in [6.2.6], which dealt with January
| | mean 500 hPa heights, meridionally averaged
between 30N and 60N. In [6.2.6] we asked

whether the individual zonal distributions of
1 height, X, simulated by a GCM were distributed
-104 - similarly to those observed. Here we use the
same model output to test the null hypothesis
‘ ‘ , ‘ that the means and variances of the simulated
1206 180 120W  6OW o 60 zonal distribution are equal to those of the
observations [397].
g 0T — T ‘ . , The permutation test [6.6.12] is used with
N 4 statistic (6.36) to test the null hypothesis that the
means of the simulated and observed climates
are equal. The assumptions needed in this case
" M-% are (i) the observed and simulated samples
: jzérw : eoﬁv - pa ‘ ES_E = can be_represented by iid ) random vectors
X1,...., Xny and Yq, ..., Yn,, (i) the samples

re mutually independent, and (iii) the variances
f the simulated meridional means are equal to
those of the observed means. Assumption (i)
ay be violated for the observations since low
equency interactions between the ocean and the
atmosphere, such as the Southern Oscillation, may
result in weak dependence between consecutive
January meridional means. This should not
is predictive Skl”, as in case of short-term forecause major prob|ems with the test procedure_
casts or in case of externally induced anomgepartures from the third assumption are more
lies (as the injection of volcanic aerosols). Alseybvious, but fortunately Monte Carlo experiments
it is often impractical because we lack indenaye shown that this violation does not lead to
pendent observed data on the time scales difong biases in the risk of incorrectly rejecting the
interest. null hypothesis.

Regardless of the validation strategy used, The result of the testis that the equality of means
it is always possible that the model verifiebypothesis can be rejected at a significance level of
correctly for the wrong reasons. For exampléess than 5%. This isn't at all surprising since we
Zwiers and Hamilton [447] showed that CCGaw in [6.2.6] that six out of ten simulated monthly
GCMI* simulates the semi-diurnal thermal tideneans were not likely to have been observed in the
very realistically. However, the tide in the observerkal climate. The observed and simulated sample
atmosphere is excited primarily by solar heating ofieans are shown in the upper panel of Figure 7.1.
the stratosphere at levels well above the model'sThe permutation test can also be used to test the
10 hPa ‘lid.” The lid apparently allows standinghull hypothesis of equal standard deviations, but
oscillations to develop from the weak solar heatingie data must first be centred. That is, observations
that takes place below 10 hPa. X andy; are replaced with the corresponding

In summary, there are strong limitations tdeviationsX; — X andy; — y. Figure 7.1 (lower
statistical model validation. Neither the testinganel) shows the model underestimates the natural
nor prediction approaches are fully satisfactoryariability of the considered parameter.

When we do satisfy ourselves that some aspect ofThe major conclusions of this study [397] were
the distribution of the simulated climate matchehat the GCM suffered from systematic errors in
that which is observed, it then becomes necessag mean distribution of 500 hPa height in the
to confirm that the same physical mechanisnetratropics and that thiaterannualvariability of

operate in both. monthly means was significantly underestimated.

12|0'E léO’
Figure 7.1: Sample mean (top) and standar
deviation (bottom) of th&0° N-60° N meridional

average of 500 hPa height simulated in a GC
(light lines), and derived from observations (heavf¥
lines) (cf. Figure 6.5) [397].

5This is a malady shared by many models. See, for example,
4The first GCM of the Canadian Climate Centre [53]. Zwiers et al. [449]
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Figure 7.2:The DJF 1982/83 mean SST anomaly relative to the 1948-94 DJF mean in the tropica
Pacific. The SSTs are from the Hadley Centre GISST data set. Parker et al. [302]. Courtesy V. Kharin.

7.2 Analysis of a GCM Sensitivity 7.22  Example: The Effect of ENSO

Experiment Sea-surface Temperature Anomalies on
the  Extratropical  Atmospheric  Flow.
The El Nifo/Southern Oscillation (ENSO)

7.2.1 Experimental Set-up. GCMs are very . .
. ) L . henomenon is considered to be the strongest
important ‘lab tools’ in climate research because. L :

imate variation on time scales of a few years

C
or further details refer to the short description in

they can be used to perform controlled expery;
ments that determine the atmospheric respons f?ﬁ.Z]). A significant feature of this phenomenon
s the appearance of anomalous sea-surface

variations in one external factor (say factor X
while all other external factors are held fixed. TW(t') . . )
emperatures on large spatial scales in the tropics,

sets of experiments are usually performed: one.. ; ; o r
: o which affects the overlying convective activity in
set with unalteredhormal, or control, conditions,

and another set witthnomalousconditions, in the atmosphere. The DJF mean SST anomaly for

: o : the 1982/83 ENSO event is shown in Figure 7.2.
which a specific external factor is changed, such" . ; ;

. g is not immediately obvious how anomalous
as the sea-surface temperature in a certain area,

he
atmospheric load of aerosol, or the formulation Q

temperatures at the lower boundary might affect
a parameterization of the cloud-radiation intera%—e overall circulation of the atmosphere. A large

: . : . ody of literature has been published on this
tion. More complicated experimental designs can, : o
. ) suybject, describing approaches that range from
be constructed to examine the combined effects ; : . .
variations in more than one external factor (Seteeoretlcal considerations [185] to numerical
periments [48, 51, 95, 146, 221, 244, 288].

: X
Chapter 9; examples include Gough and welcR k . .
[145] and Chapman et al. [79]). The experiment was conducted by integrating

) _ an atmospheric GCM twice under conditions that
The evaluation of such experiments mayere identical apart from the sea-surface temper-
be done by formulating and testing the nulbyre distribution in the equatorial Pacific. One
hypothesis: ‘the change in factor X has no effect QRiegration, the ‘control’ run, used climatological
the state of the (modelled) atmosphere.” Again, WesT | the other integration, an exaggerated El
need to keep the limitation of the testing paradigfjino sST anomaly was superimposed onto the
in mind. Rejection implies that the response i§imatological SST. The anomaly has a maximum
statisticallysignificant; physical insight is requiredys gpout £C and is centred in the equatorial
to ascertain that it isphysically significant as central and Eastern Pacific. Both integrations were

well. Non-rejection may indicate that the Changﬁerformed in the perpetual January mddeith a
has no effect, or simply that the experiment is

too small® and therefore that the signal remains 7The expressions ‘perpetual’ and ‘permanent January
hidden in the noise. The remainder of this sectigppde’ refer to GCM experiments in which the solar radiation

presents details of one of these paired sensitivﬁgd the lower boundary conditions, such as SST, are
pt constant to fixed January conditions—a design that

experiments [386]. saves computer timand produces many iid samples. This
experimental set-up introduces some systematic errors, mostly
related to hydrological processes such as the accumulation of

6That is, the simulated sample contains too few independesmtow, when compared with runs done with a regular annual
realizations. cycle (see Zwiers and Boer [446]).
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Figure 7.3:GCM experiment on the extratropical
atmospheric response to tropical El idi sea-
surface temperature anomalies. The variable
shown is the 500 hPa height ‘full signal, that is,
the ‘El Nifilo minus control’ difference field derived

from all samples. Units: dkm. From von Storch 2

[386].

spin-up period of 200 days and a sampling period
of 1200 day$

Here, we consider the effect of the anomalous
boundary conditions on the tropospheric state
in the extratropical Northern Hemisphere, in
particular the monthly mean 500 hPa height. The
random variableX is the January mean of this
field for the control run andY is that for the
experimental run. The null hypothesis&{)?) =
E(Y). The 1200 day sampling period is subdivided
as follows: the time series is broken into adjacent
40 day intervals; the first 10 days of each sub-
interval are disregarded and the remaining 30 days
are retained for analysis. The result is a collection
of 30 roughly independent Januaries for both the
control and experimental conditions. Note that a
10-day gap is sometimes not enough to ensure
independence.

The ‘full’ signal, that is, the overall 500 hPa
height ‘El Niflo minus control’ difference field,
is shown in Figure 7.3. The equality of means
hypothesis was tested with the permutation test
[6.6.12] after projecting the data onto a set of guess
patterns [6.5.6].

Three different sets of guess patterns were used.

7: Analysis of Atmospheric Circulation Problems

1 EOFs as Guess Patterns

First, the eddy componer* of the 30 N—
60°N 500 hPa height meridional average
was considered To reduce the number of
spatial degrees of freedom, the first five
Empirical Orthogonal Functions (EOFs, see
Chapter 13) of the control experiment were
used as guess patterns. Tiz&-field of
each individual month was projected onto
these guess patterns, and the Hotellif§
statistic (6.33) was used in combination with
the permutation test to determine whether
the means of the first five EOF coefficients
changed significantly when the El o SST
anomaly was imposed. The result was that
it is highly unlikely (< 1% chance) that the
simulated differences between ti&-fields

in the control and experimental runs were
caused only by random variations. Therefore
the null hypothesis was rejected.

Splitting the GCM data to Obtain a Guess
Pattern

A more detailed analysis was performed
on specific aspects of the full Northern
Hemisphere 500 hPa height field. The
experiments were integrated over a fairly
long time in order to obtain a large number
of samples. It is therefore possible to split
the control and experimental samples into
two sub-samples of equal size. The first
sub-sample from each simulation was used
to estimate the signal. The second pair of
sub-samples was used to test the equality of
means hypothesis using the estimated signal
from the first pair of sub-samples as guess
patterns. Since only one guess pattern is used,
the number of spatial degrees of freedom is
reduced to one, and a univariate difference of
means test (6.29) may be used.

The difference was found to be significant
at much less than the 1% significance level.
The estimated signal, obtained by multiplying
the guess patterns by the change in the
mean coefficient (not shown) is very similar
to the full signal (Figure 7.3). A test was
also performed to see if there was a signal
orthogonal to the guess pattern (see [6.5.4]).
This was done using the EOF method
described above. The null hypothesis that a

8A ‘spin-up period’ is the time needed for a model to

. o " 1 1D it
travel through its phase space from the initial conditions to - Theeddy componerdf a random fieldZ is the deviation
quasi-equilibrium; that is, the time needed by the model fom the zonal mearZ,” = Z —[Z], where [] denotes the zonal

‘forget’ the initial conditions.

averaging opgrator;HerﬁI = ZTi/m, wherem s the number

9For example, when there is ‘blocking,’ the memory of thef elements irZ and1 is them-dimensional vector of units. See

atmosphere might be a few weeks.

also [7.2.1].
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component of the signal lies in a direction
orthogonal to the guess pattern was not
rejected.

3 Observed Fields as Guess Patterns
The GCM experiment was conducted to sim-
ulate the atmospheric response to anoma-
lous SST conditions in the tropical Pacific.
Therefore, the January mean 500 hPa height
anomaly fields observed during three ERNI
events (1973, 1977, and 1983) were used as
guess patterns. A separate univariate test was
performed with each guess pattern.

The January 1973 guess pattern successfully
extracted part of the signal, although the
change in pattern coefficient was negative
rather than positive, as in the previous item.
The estimated signal, obtained by multiplying
the guess pattern with the change in its
coefficient (Figure 7.4, top), had about half of
the strength of the signal obtained by splitting
the GCM data. The most variance was
contained in a sector covering the Atlantic
and Eurasia. The part of the full signal that
appeared in the direction of the guess patterns
was actually weaker than the components that
were orthogonal to the guess pattern.

The January 1977 guess pattern successfully
captured a large fraction of the GCM

signal. There was strong evidence against
the null hypothesis, and the strength of the
projection was about 75% of the value founfigure 7.4:GCM experiment on the extratropical
through splitting the GCM data. The paralleftmospheric response to tropical El idi SST

component (Figure 7.4, bottom) was Vergnomalies. Statistically significant projections of
similar to the full signal (Figure 7.3). Thethe full 500 hPa height signal (Figure 7.3) on the

orthogonal part of the full signal (not shownyanuary 1973 guess pattern (top: note that the
was still significantly nonzero. signal is almost zero in the Pacific sector, where the

El Nifio related signal is expected to be strongest)

The last guess pattern, January 1983, "€PHd on the January 1977 guess pattern (bottom).
sented the observed atmospheric responseLFo

the most intense ENSO event on record upmts' dkm. From von Storch [386]

to 1997. Analysis of observational data has

shown that the January 1983 Northern Hemgirculation anomaly from January 1977, but
sphere extratropical 500 hPa height field wasrgely orthogonal to the observed January 1973
substantially different from ‘normal’ Januaryand 1983 anomalies.

mean height fields [385]. None the less, this
field failed to capture the simulated ENS e . .
signal when it was used as a guess pattern. n3 Identification of a Signal in
fact, the GCM output was almost orthogonal Observed Data

to the January 1983 500 hPa height anomal¥.3 1

General. Dramatic events sometimes
The major conclusion drawn from this statisticabke place in the global environment, such as
analysis [386] was that the El Rt SST anomaliesthe appearance of large-scale ENSO sea-surface
excite a statistically significant response in themperature anomalies of 1982/83 (Figure 7.2)
extratropical atmospheric circulation. The modelr the injection of large amounts of aerosols
simulated a response similar to the observéato the stratosphere by an erupting volcano such
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as the Pinatubo in 1992 (see, e.g., McCormicjven month of the year are independent, that the
Thomason, and Trepte [268] or Pudykiewicz angalizations during the 1967—81 period all come
Dastoor [324]). The large events can be viewed &®m random vectors with the same distribution,
natural sensitivity experiments, so it is of interesthd that the covariance structure during the
to know whether the state of the atmosphef®82/83 ENSO was the same as that during the
during, and after, the event is different fronpreceding 15 years. Clearly these assumptions are
that of the undisturbed, ‘normal’ climate. Thenot all satisfied. None the less, the analysis based
observations that represent the normal climab@ this model is useful, even if it is not fully
are regarded as independent realizations ofpeecise.
‘control’ climate state vectoX. The observation  The data were available on a 576 point grid. The
taken during the event of interest is |abe||eguess patterns used in this study are sheface
y1, and the null hypothesis:y; is drawn spherical harmonics, written aP™(¢) cos(m)
from X' is examined. If the null hypothesis isgng P™(¢) sin(mx), where ¢ is Iatltude A is
rejected,y; — X is regarded as an '”format'velongltude PM is the correspondlngassomated
but ulrlmertam estimate of the effect of thﬁegendre polynomial, forj = 0,1,...,
event. andm = 0,...,]j [15]. The surface spherical
harmonics are orthonorm&lfunctions. The index
7.3.2 The 1982/83 El Nio and its Impact on | specifies the spatial scale, that is, any two
the Extratropical Circulation. In Section 7.2 surface spherical harmonics with the same index
we described an analysis of a simulated responsd t§hare the same spatial scale whereas a lgrger
a prescribed tropical Pacific SST anomaly. In thigdicates a smaller scale. Only functions with odd
subsection we describe the analysis of observé§o-dimensional wavenumbersi+ j are needed
response. to represent a hemispherical field. There is only
Hense [174] examined monthly anomalies ¢fne function for eachim, j) combination when
Northern Hemisphere stream function for th& = O, but there are two functions, one displaced
period January 1982 to September 1983, a perig@nally 5i; radians relative to the other, whemis
containing the largest ENSO event on record (unfiPhzero. The cosine form of th@, 1) and (1, 2)
1997). The monthly anomalies used in the stugpherical harmonics are shown in Figure 7.5.
were obtained by subtracting the 1967-81 meanA hierarchy [6.5.8] was chosen as shown in
appropriate to the month from each monthly medrigure 7.6: the hierarchy witi = 1 element
in the 21-month study period. The covarianceontains only the functiorP1°(¢); the hierarchy
structure varies with the time of year, so thwith K = 3 contains that and the functions
statistical analysis is done separately for eacEI}l(cﬁ) cos(/\)anszl(qﬁ) sin(A) as well, and so on.
calendar month. The hierarchy does not contain an element with
As in [6.1.3], the null hypothesis for each oK = 2 guess patterns.
the 21 months from January 1982 to SeptemberThe projection of the full signaj — X onto a
1983 is that the respective monthly anomaly subset ofK guess patterns represents a truncated
is drawn from the random variabl®, where signal. Theoptimal signalis identified as the
X represents the ‘normal’ monthly mean streamuncated signal that goes with thefor which the
function distribution appropriate to the montfevidence against the equality of means hypothesis
in which y is observed. TheX sample for a is the strongest. Barnett et al. [22] call this
given month of the year is taken to be the 1&election rule C.
monthly mean stream function fields observed for The following results were obtained:
that month between 1967 and 1981. The null

hypothesis is tested with Hotelling? [6.6.10], Results for November 198ge shown in the
which means that a number of assumptions are pottom panel of Figure 7.6. The statistic that

made implicitly. Specifically, it is assumed that g gisplayed for each levéd of the hierarchy
the monthly mean 500 hPa stream function is g g scaled version of Hotelling? (6.33) that

multivariate normal, that the realizations for a

11if more than one event is examined, the observations fromlzorthqnormal means that the scalar product of any
the events are regarded as samples of another random vari non-identical surface spherical harmonics is zero, and
Y and the null hypothe5|s is ¢ £(X) _ £(Y) If Hois that of a spherical harmonic with itself is one. In fact,
rejected, the differencg — X is understood to be an estlmatej f 0 ij(¢)(COS(m~) + isin(my) R (¢)(cos(m) —
of the mean response of the climate system to the extermaln(m))dcﬁdx = dmndjk, wheresj| is one ifi = | and zero
events. otherwise.
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Figure 7.5:Two surface spherical harmonics. The
upper panel represents a larger spatial scale than
the lower panel.

Top: PL(¢) cosn). Bottom: P} (¢) cos(r).

is given by
~2 . = K(nx +ny —2)
Dy-% =
nx +ny —K -1
1 1\t
Ga)
nx Ny
where nx = 15 andny = 1. The

critical values are those of th€? statistic,
that is, they are upper tail quantiles of the
F(K,nx +ny — K — 1) distribution, also
scaled by the same factor.

The null hypothesis can be rejected at t
5% significance level forK 3,...,8.
The evidence against Hs strongest for
K 3. The first conclusion is that
there is a significant signal in the data:
The second conclusion is that the projec-
tion of the full signal on the three first
guess patterns,P2(¢), P3(¢) cosr), and
P21(¢) sin(1), yields the optimal model in the
hierarchy.

Results for All MonthsThe hierarchal testing

procedure was repeated in each of the 21
months from January 1982 to September
1983. The null hypothesis was rejected at
the 5% significance level or less for at least
one member of the hierarchy in every month
from July 1982 until September 1983. The
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Figure 7.6: Analysis of extratropical 500 hPa
eight during the 1982/83 EI Ro event [174].

op: Hierarchy in the set of surface spherical
harmonics functions, used as guess patterns in
Section 7.3.
Bottom: Results for November 1982.

optimal signal was often found in thi€ =

3 hierarchy. The strongest signals, in terms
of significance, were found from September
1982 to June 1983.

A total of 21 tests were conducted and the
null hypothesis was rejected in 15. We would
expect only one or two rejections to occur at
the 5% significance level if flwas correct

throughout the 21-month period, and if the
21 decisions are statistically independent of
one another (which they are not). Assuming
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that we have made the equivalent of sevesf institutions, appear to agree broadly with
independent decisions, the probability ofbserved climate change and also agree broadly

making the reject decision undergH5 or on the size and distribution of future climate
more times in the 21 tests is well below 1%hange. None the less, these simulations are only
[6.8.2]. plausible scenarios for the future since many
aspects of the simulated system, such as the

The major conclusion of this study [174] is thafow-frequency variability of the oceans and the

the Northern Hemisphere eXtratrOpical Cil’CUlatiOfb|e of clouds in regu'ating C“mate, are still p00r|y
during the 1982-83 El Nio was substantially ynderstood.

different from the circulation during the preceding

15 years. . . . .
y 7.4.2 Methodological Considerations. As in

the preceding section, where we dealt with the
7.4 Detecting the ‘CQ Signal’ ‘signal’ excited during an episode with large trop-
ical sea-surface temperature anomalies, the statis-

7.4.1 A Perspective on Global Warming. The tical ‘climate change detection’ problem consists
prospect of man changing the world’s climatef evaluating one event, say the latest record of
by modifying the chemical composition of thghe global distribution of near-surface temperature,
atmosphere was first discussed by Arrhenius [18] the context of the natural variability of near-
in 1896. He argued that a change in theurface temperature. The problem is to determine
atmospheric concentration of radiatively activethether the recent warming is consistent with the
gases, such as a carbon dioxide, will causevariations of temperature due to internal, and thus
change in the physical state of the atmospheuwsdisturbed, dynamics.
in general and the near-surface temperature offThe main methodological obstacle is the lack
the globe in particular. Arrhenius’s result wasf observations that sample the ‘control’ regime.
mostly of academic interest for many decades, bMiost of the available instrumental record consists
since the late 1970s it has become one of tlké surface observations taken during the last
top environmental topics. The scientific challengeentury or so. This record may be contaminated by
was, and is, to determine whether the changitige greenhouse gas signal but, more importantly, it
composition of the atmosphere will result ins not large enough to provide us with a reliable
physicallyor socially significantlimate changes. estimate of the natural variability of the climate

Early climate model experiments indicate@n the time scales on which the climate change
large effects, which were not matched by thie expected to occur. In the next subsection we
observational record. These were ‘equilibriunBummarize the approach to this problem developed
experiments designed to estimate the effect by Hegerl et al. [17218
doubling the atmosphere’s GOconcentration;
they were typically performed with AGCMs that; 4 3 A Detection Strategy. The first problem
were coupled to thermodynamic models of sea ige geveloping a ‘detection strategy’ that aims to
and thesupper (i.e., mixed layer) part of the globghentify the ‘greenhouse signal’ is to choose which
oceans. variable to exploit (such as sea-level pressure,

‘More recent simulatiorf’ré have usedcoupled near-surface temperature, the vertical distribution
climate system modetsat incorporate an AGCM, of moisture in the atmosphere, etc.). Whatever the
a dynamical ocean model, sometimes a dynamicglriaple, it should satisfy the following criteria.
sea-ice component, and the effects of tropospheric
aerosols® The greenhouse gas and tropospherice There should be a long historical record of
aerosol concentration in these experiments is the variable, containing observations with
changed gradually in time to reflect the effects \jde spatial coverage that are made in
of human activities on the environment. These 3 consistent manner throughout the year.

sophisticated simulations, performed at a number The only data in the instrumental record

13An equilibrium climate change experiment is described by 16There is an extensive literature on climate change

Boer et al. [52]. detection. Some additional important entry points to the recent
14see Gates et al. [138] and Kattenberg et al. [215] for anerature include Barnett and Schlesinger [23], Bell [38, 39],
overview. Hasselmann [168], Hegerl et al. [172], Karoly et al. [214],

155uch as S@, which reflects sunlight and therefore coolditchell et al. [279], North, Kim, and Shen [297], Parker et
the climate, and black carbon, which absorbs sunlight amdl [303], Santer et al. [339] and Stevens and North [359]. Santer
therefore warms the climate. et al. [340] provide an extensive overview.
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that satisfy this criterion are rainfall, sea-
level pressure, near-surface temperature, aswed
sea-level observations taken during the last, |
hundred years or so. For example, Folland,
Karl, and Vinnikov [121] use drozen grid s |
analysis to show that global annual mean.s
near-surface temperature can be reliably
estimated from about 1860 onwartlsProxy oo
data [3.1.10] hold promise for climate
change detection because they cover muchs |
longer periods than the instrumental record.qs
However, proxy data are difficult to use
because the information they contain is ofteng, |
specific to a particular region and time of year
(e.g., the growing season). 05 |

Global IPCC 95

e The observational record should be homoge- ~ 8% 188 1%0 1920 1840 1360 1360

neous, and free of biases caused by changes

in the observing network configuration, th:jq e 7 7:Estimated annual mean near-surface
instruments and their immediate physicqbmperature expressed as anomalies relative to

environment (see Figure 1.9), and obseryqe 1950-79 mean. From Nicholls et al. [294].
ing practices. The three atmospheric da@ourtesy P. Jones.

records mentioned above have been made
somewhat homogeneous by means of labo-
rious ‘homogenization’ techniques (see, e.gdata set for 1855 onwards. The coverage increases
Jones [201], or Vincent [383]). Rainfall iswith time as more stations become available.
the least reliable variable in this respect. The ‘detection question’ is formulated as a
Sea-level data are contaminated by land ristatistical testing problem. The null hypothesis
ing and sinking, among other processes (sRgthat the ‘trend’ (Figure 7.7) found in the ob-
[3.2.2]). servational record stems from natural variability.
) ) _ Physical reasoning, as well as results obtained
e The 'signal-to-noise’ ratio should  befom recent ‘transient’ climate simulations [7.4.1],
large. For example, GCM experimentfygicate that rejection of this hypothesis will be
indicate  that sea-level pressure hagngistent with greenhouse gas induced climate
a much weaker signal-to-noise ratiqvarmmg_
than screen temperature. See Bametl,The methodical problems connected with this
Schlesinger, and Jiang [24] for mOrgagt gre as follows.
details.
) _ 1 The state variable is a high-dimensional
o The variable should be well simulated  \ector. Before performing a test, the spatial
by climate models, for reasons explained degrees of freedom have to be reduced
below. It is felt that current models do by projecting the raw data onto a guess
not yet simulate precipitation or sea level pattern [6.5.6]. Hegerl et al. [172] used data
well. from a climate model, which was forced
with increasing concentrations of greenhouse
Hegerl et al. therefore used the instrumental gases to build a simple guess pattern:
near-surface temperature record as the basis for the simulated 100-year change in the near-
their detection strategy. Jones et al. [202] [203] g face temperature.
have carefully compiled a widely used gridded (5 , i ,
longitude x 5° latitude) near-surface temperature W€ introduced an algorithm in [6.5.7] to
increase the power of a test by ‘rotating’
17Folland et al. [121] compare global mean temperatures  the guess pattern towards the anticipated
time series computed from a number of observing networks  signal in such a way that the signal-to-

representing the distribution of observing stations at a number ; [P . : ;
of points in time. Shen, North, and Kim [349] and Zwiers and hoise ratio Is optlmlzed. To achieve this

Shen [451] use more rigorous arguments to come to the same we mUSt_ project the guesg patte_:rn, and the
conclusion. observations, onto a low-dimensional vector
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Figure 7.8: Optimized guess pattern used by Hegerl et al. [172] to ‘detect’ the impact of ar
anthropogenic greenhouse gas effect on recent 20-year near-surface temperature trends. The pa
is taken from a ‘scenario’ run with a climate model that was forced with continuously increasing
greenhouse gas concentrations.

space that captures most of the climate’s
natural variability on decadal and longer time
scales. We also need an accurate estimate
of the covariance matrix of the natural
variability in this subspace. Hegerl et al.
chose to use the subspace spanned by the first
10 EOFs (see Chapter 13) of the ‘transient’
climate simulated by the model used to
produce the guess pattefhThe covariance
matrix ¥ needed for the optimization was
also estimated from this simulatidf. If

p is the raw guess pattern in the 10-
dimensional subspace, then the optimized
guess patternp® is given by Z71p.
Furthermore, if'T't represents the detection
variable at timet (i.e., observed near-
surface temperature projected onto the four-
dimensional subspace), then the optimized
detection variable is given by
ao(Ty) = (B0 Ty). (7.1)
Hegerl et al. [172] performed the analysis
with both the raw guess pattern and the
optimized guess pattef. We limit our

18The first 10 EOFs of the transient simulation were used
because they capture the guess pattern much more effectively grid boxes that contain dafd. Simulation

than the EOFs of the control simulation.

report here to the improved results that were
obtained with the optimized pattern.

2 The observed data are not complete. Data

is missing sporadically in some °5x

5° boxes, and other boxes have extended
intervals of missing data. This means that
the scalar product cannot be used to project
the observed temperatures onto the guess
pattern. Instead, the projection is determined
by solving a least squares problem. Let
t = (t(1,1),...,t(10,t))" be the realized
projection attime, letty(i, j, t) representthe
near-surface temperature observed at tiine
the (i, j)th 5° x 5° box, and letu(i, j), for

k =1,...,10 represent the 10 EOFs. Also,
let A(i, j) be the area of th@, j)th box. Then

t; is found by minimizing

33 (toli j. 1) — ol . 1)7AGL )),

where
10

foli, J, 1) = Y _tk, (i, ),
k=1

and where the double sum is taken over those

19 treats: as known since it was estimated from a very 21For a more detailed representation of the problem of

long simulation.
20Also sometimes called a ‘fingerprint.

[13.2

determining EOF coefficients in case of gappy data, refer to

8].
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experiments have shown that changes in da
density may cause inhomogeneitiesigtt).

To limit this effect, Hegerl et al. used only
those grid boxes for which the record fromg 6
1949 onwards was complete. Therefore thé 021
entire southern and northern polar regions andzg.‘z1 .
the Southern Ocean are disregarded. '
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Figure 7.8 shows the optimized guess pattern g " 100 190 | 190 | 2000 200 |
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The natural variability of the optimizedFigure 7.9:Time evolution of 20-year trends of the

detection variable cannot be estimated frogptimized detection variableo(t) = (p°,t) for

the observations. The observed record ffear-surface temperature. Labels on the abscissa
contaminated by the presumed signal and thgentify the last year (1879 until 1994) of each

data are correlated in time so that only @0-year period.

few independent realizations of the ‘naturallyhe solid line is derived from observed data

varying’ state variable are available. since 1860. The dotted line, labelled ‘EIN’, is

There are, in principle, two ways to deal witrflerived from 150 years of climate model output.
this problem. The first approach is to removéhe climate model was forced with anomalous
the expected climate signal from the observdgdiative forcing corresponding to the observed
record by constructing a linear model of thd935-85 greenhouse gas concentrations during

form the first 50 years of the simulation. A scenario

(IPCC scenario A) was to prescribe greenhouse

Tf =Ty — Tfoz (7.2) 9as concentrations frqm ‘1985’ onwards. Twenty-

o Clt— A) year trends from the simulation (dashed curve) are

TtCOZ = / S(A) |n<W) dA. shown to compare the observed evolution with that
0

anticipated by a climate model.

he narrow shaded band, labelled ‘GFDL’, is an
] . ) stimate of the natural variability of the 20-year
is an estimate of the CGOinduced (onq derived from a 1000-year control simulation
temperature signal, andy is the residual. (\janape and Stouffer [266]). It should contain
The variability of T{ is assumed to be theihe trend coefficient 95% of the time if there
same as that of the undisturbed climatg ., trend. The wider band, labelled ‘obs’, is
system. The functiof(t) is the atmospheric yeriyed from observations after an estimate of the

COp-concentration at timet, and S() IS greenhouse gas (GHG) is removed. From Hegerl et
a transfer function. The variability of they [172].

detection variable is then derived frofi*
instead ofT .22

Here T, is the observed temperature recor
T2

is not stationary since the concentration of
airborne pollutants increases substantially in
the latter part of the observed record.

One problem with this approach is that it does
not eliminate the effects of serial correlation;
even without the signal it is difficult to
estimate the natural variability of the climate
on decadal and longer time scales from the
observed record.

To cope with this problem, the null hypothesis
should be reformulated to state that observed
variations are consistent with natural variabil-
ity originating from natural external proces-
ses as well as internal dynamical processes.
The anthropogenic aerosol effect probably

Another problem with this approach, apart
from adopting the model (7.2), is that the

remaining variability also includes contri-
butions from other external factors such as
aerosol forcing caused by human pollution
and volcanos. While volcanos may be consid-
ered stationary in time, the effect of pollution

22gpsection 17.5.7 also deals with the problem of removing
a suspected signal from a time series.

causes a cooling that counteracts the expected
greenhouse warming; the presence of this ef-
fect in the observed data inflates the estimate
of the variability and dampens the signal,
diminishing the overall power of the test.

The second approach is to consider the
output of ‘control’ climate model runs
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without any external forcing so that all then performed with the fitted auto-regressive
variability originates from internal dynamical models to estimate the natural variability of
processes. This approach has the advantage 20-year trends in the optimized detection
that, at least in principle, very long samples  variable?* The test is eventually performed
can be created without inhomogeneities in by comparing recent 20-year trends with the
accuracy or varying spatial coverage. Amajor  estimated 95% confidence intervals.
disadvantage, though, is that the models
may not simulate the natural low-frequenc
variability correctly.

The result of the exercise is summarized in
}éigure 7.9, which shows the time evolution of
20-year trends of the optimal detection variable
Hegerl et al. used both approaches. Hogether with the 95% confidence intervals derived
two steps, 95% confidence intervals fofrom several sources. The latest trends do indeed
the natural variability of 20-year trendsxceed the upper confidence limit, so we may
in the optimized detection variable wereonclude that the prevailing trend is not likely to
constructed from both observed anomalid®e due to internal processes. This conclusion, of
(7.2) and climate model output. In bottcourse, depends crucially on the validity of the
cases an auto-regressive process of ordetural variability estimates. For further reading on
1 was fitted to the optimal detectiorclimate change detection and attribution see Santer
variable?® Monte Carlo simulations wereet al. [340] and Zwiers [445].

23An auto-regressive process of order 1 (an AR(1) process)
is written formally asX; = aXt4+1 + Nt, whereN¢ is a series
of independent random variables (sometimes called ‘white

noise’
detail.

). Chapters 10 and 11 explain AB}(processes in some 24This procedure is closely related to the bootstrap
(Section 5.5).
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Overview

In this part of the book we introduce two classical, fully develdpeethods of inference: ‘regression’
and ‘analysis of variance’ (ANOVA). We do not expect that there will be significant changes in the
overall formulation of these techniques, but new applications and improved approaches for special cas
may emerge.

Both regression and ANOVA are methods for the estimatigneodmetricmodels of the relationship
between related random variables, or between a random variable and one or more non-random exte!
factors. While regression techniques have been used almost from the beginning of quantitative clime
research in different degrees of complexity (see, e.gicBrer [70]), ANOVA has only recently been
applied to climatic problems [441, 444].

The regression technique is introduced in detail and illustrated with several examples in CHapter 8
Regression is used to describe relationships that involve variables and factors measured on a continu
scale. Examples of regression problems include modelling the trend in a time series by means of
polynomial function of time (which would be a non-random external factor), or the description of the
link between two concurrent events, such as the width of a tree ring and the temperature, with tt
purpose of constructing ‘best guesses’ of temperature in ancient times when no instrumental data «
available. Also, time-lagged events are linked through regression, such as the wind force in the Germ
Bight and the water level in Hamburg several hours later. The derived model is then used for storm sur
forecasts.

The reader may notice that climatologists often use the spetifywhen they refer to regressed
values, as opposed to the tefiarecastcommonly used by statisticians. Neither word is perfect.
‘Forecast’ implies that there will be error in the estimated value, but sometimes has irrelevant tim:
connotations. ‘Specify’ eliminates the confusion about time but suggests that the estimate is high
accurate. However, despite its inadequacies, we use ‘specify, except when discussing projectio
forward in time, in which case we refer to forecasts.

The analysis of variancavas designed by R.A. Fisher for problems arising in agriculture. In his
words, ANOVA deals with ‘the separation of the variance ascribable to one group of causes from th
variance ascribable to other groups.’ Separation of variance is also often required in climate diagnosti
A typical problem is to discriminate between the effect of internal and external processes on the glob
mean temperature. In that case, an internal process might be the formation and decay of storms
midlatitudes, while an external factor might be the stratospheric loading of volcanic aerosols. Anothe
typical application treats sea-surface variability on monthly and longer time scales as an extern
process. In this case several independent climate simulations might be performed such that the same t
series of sea-surface temperatures is prescribed in each simulation. ANOVA methods are then usec
identify the simulated atmospheric variability that results from the prescribed sea-surface temperature
The ANOVA technique is explained in detail in Chapter 9 and its merits are demonstrated with example

1By ‘fully developed’ we mean that for each parameter involved there is at least an asymptotic distribution theory so hypothes
tests and confidence intervals can be readily constructed.

2|n fact, regression techniques appear throughout the book, as in Sections 14.3 and 14.4, which deal with Canonical Correlat
Analysis and Redundancy Analysis, respectively.
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8 Regression

8.1 Introduction the characteristics of the stochastic component,
typically that this component behaves as normally
8.1.1 Outline. We start by describing methodsdistributed white noise. Other less restrictive
used to estimate and make inferences abaigsumptions are possible, but they may require the
correlation coefficients. Then, we describe somge of more sophisticated inference methods than
of the ideas that underly regression analysigose described in this chapter.
methods in which the mean of @sponse(or  After introducing simple linear models, our
dependent) variable is described in terms of discussion of regression goes on to consider
simple function of one or moreredictors (or multivariate linear models and methods for model
independent variables). The models we considsglection. We close the chapter with two short
are said to bdinear because they are linear insections on model selection and some other related
their unknown parameters. We describe a variefypics, including nonlinear regression models. It
of inferential methods and model diagnostics, ang worth repeating that statisticians distinguish
consider the robustness of the estimators of thetween linear and nonlinear models on the
model parameters. basis of the model's parameters, not on how the
A simple example is a naive model of climat@redictors enter the model.
change in which global annual mean temperatureAn example of a simple nonlinear model, which
increases, on average, logarithmically with £Omay be better suited than (8.1) to the example
concentration: above, is

Td%e — ap + a1 In(cco,) + €year (81) T = by + by IN(Ccopyear + b2) + €year

We know that global annual mean temperatuféote that this model is nonlinear .

is subject to fluctuation induced by a variety

of physical processes whose collective effect L ,

results in apparently stochastic behaviour. C§11'2 The Statistical Setting. Most of the

the other hand, C@® concentration appears t0d|scu55|on in this chapter takes place in the

have only a minor stochastic component, at led ntext of normal random variables, not because
er types of data are uncommon, but because

on interannual time scales, and can therefofe’ i X )
is relatively easy to introduce concepts in

be considered to be deterministic to a fird} .
approximation. The model proposes that globHl'S framework. Nevertheless, note that departures

lobe .. fromassumptions can affect the reliability of some
annual mean temperature, denot@g?ear , IS . . .
; . o ' .~ statistical analyses quite drastically.
trending upwards approximately logarithmically

as the CQ concentration, denotexto,, increases.

It also proposes thafl'ygég?e has a stochastic8.1.3 Example: ENSO Indices. This example
component, which is represented by the noiseas considered briefly in [1.2.2] and [2.8.8].
procesSeyear}. There are two free parameteas, Wright [426] described a tropical Pacific sea-
andaj, that must be estimated from the data. Thsurface temperature index that captures informa-
is something that is often (although not alwayson about ENSO that is very similar to the
best) done using the method of least squares. Harformation captured by the classical Southern
least squares estimation of the parameters is simfllscillation Index (SOI) based on the difference
because the model is linear in its parameters.ldétween mean sea-level pressure at Darwin and
inferences are to be made about the paramet@aditi. Wright's index is based on SSTs observed
(e.g., tests of hypothesis or construction afast of the date line and roughly betweeriN5
confidence intervals), then it is required thand 10S. A scatter plot of the monthly mean
(8.1) also include some sort of assumption abowalues of these indices for 1933-84 inclusive is
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SO and Tropical Pacific SST Indices parameterizations used in GCMs can estinate
and A, the fraction of the grid box that is cloud
covered, but they are not able to estimate
However, it turns out that the mean log cloud
optical depthinzt is closely related tax,. Thus
the radiative transfer calculation can be performed
once estimates of andInt are available. The
latter can be obtained fromand A; by means of

a simple regression model.

We use satellite data described by Barker,
Wielicki, and Parker [18] in Section 8.4 to
examine the observed relationship betwden
200 100 ST ndex 001G 200 and correspondin¢r, Ac) pairs. The data consists

of 45 estimates oflnt, T, Ac) that were derived
6rom 45 ocean images taken by the Landsat
Satellite. Each image covers an area of about
400 kn?. Figure 8.2 shows three of these images,
and Figure 8.3 shows the derived data. Note that
the relationship between andIn z is curvilinear

shown in Figure 8.1, and their corresponding ti&igure 8.3, left). Also, note that, even though there
evolutions are shown in Figure 1.4. Both diagran®@© & substantial number of scenes that are fully
show the strong tendency for the two indices tePvered (i.e.,Ac = 1), this does not preclude
co-vary; when the SOI is large and positive, th¥ariability ofInz.

tropical Pacific SSTs east of the date line also tend

to be Iqrge and positive. We return to this examplg 2 correlation

in Sections 8.2 and 8.3.

60

SO Index (0.1 mb)

Figure 8.1Scatter plot of monthly values of the S
index versus the SST index for 1933—-84 inclusi
Units: 0.1 mb (SOI)0.01°C (SST Index).

8.2.1 Covariance. The covariance between two

o random variableX andY is defined as
8.1.4 Example: Radiative Transfer Parame-

terization in a GCM. AGCMs useparame- Cov(X,Y)=E(X — ux)(Y — uvy)), (8.2)
terizationsto describe the effect of unresolved
sub-grid scale processes in terms of larger resolwferexx anduy are the mean values ¥fandY
scale quantities [6.6.6]. One such process is tHspectively. (See also Section 2.8.)
transmission of short wave radiation (i.e., light) Climatologists often interpret covariances in-
through the atmosphere to the land surface, whaf@ving winds as transports [311]. For example,
this energy is either reflected or converted intoigure 8.4 displays the meridiontensient eddy
other forms (such as latent and sensible heat). Ti@nsportof zonally averaged zonal momentum, as
propagation of light through the atmosphere atsmulated by a GCM in the December, January,
specific location is strongly affected by factor§ebruary (DJF) season. The ‘eddy component’
such as the three-dimensional structure of tigé any variable, here the wind, is the deviation
cloud field and the distribution of other material§tfom the spatial mean, here the zonal mean. A
such as aerosols that may reflect, refract, or abséignificant part of the variability in this component
light. stems from cyclones or ‘eddies.” The ‘transient’
AGCMs need to know the grid box average dpart of the wind statistic is the variability around
light energy incident upon the ground (or passirij€ time mean (the ‘stationary’ component). The
though an atmospheric layer). Radiation transfé@nsient eddy transport is the zonally averaged
codes used in AGCMs estimate these averagéd/ariance between the space-time variable part
from other grid scale parameters that are simulatef for instance, the zonal and meridional wind.
by the model. The following notation is often used by
Barker [17] describes a radiative transfeflimatologists. The eddy and transient components
parameterization that requires the meai 4nd Of a field are indicated by superscripts ** and
standard deviation {¥ of cloud optical depthe ' respectively. The time mean (equivalent to the

within the grid box as input.In contrast, the cloud Sample mean in this context) is denoted by an over-
bar, and square brackets denote the zonal average.

1optical depth is a measure of opacity. With this notation the meridional transient eddy
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Figure 8.2:Optical depth inferred from thre8.83 um Landsat images. The brightest pixels in these
images correspond to an optical depth of about 20. From Barker et al. [18].

Left: Scene A3. Overcast stratocumuldg,= 1.000and7T = 11.868

Middle: Scene B2. Broken stratocumulég, = 0.644andt = 3.438

Right: Scene C14. Scattered cumulg,= 0.291andT = 3.741

ey
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Figure 8.31eft: Mean cloud optical deptit] versus mean log cloud optical depth £) for 45 Landsat
scenes.

Right: Fractional cloud coverA.) versus mean log cloud optical depth ¢) for the same scenes. Data
courtesy of H. Barker.

transport of zonal momentum is formally given byransport of zonal momentum. Poleward transport

[W] whereu and v represent the zonal and®f zonal momentum in the Southern Hemisphere

.- . is indicated by negative covariances. Figure 8.4

meridional wind components. illustrates that the transient eddies are a powerful
When [U*’v*’] > 0 in the Northern agent for exporting zonal momentum from the

Hemisphere, as in Figure 8.4, then easteuly tropical and subtropical latitudes polewards in both

anomalies (u*" > 0) are usually connectedhemispheres.

with northerly v anomalies (v* > 0), and

westerly anomaliesu* < 0) with southerly 8.2.2 The Correlation Coefficient. The corre-

anomalies (v¥ < 0). The distribution in |ation coefficient is given by

Figure 8.4 represents a northward (poleward) B — )Y — )

PXY
2The complete decomposition of thetal transport is Ooxoy
[uv] = [u*"v*'] 4+ [G*5*] + [u]’[v]’ + [GB]. The first two terms _ INETTavaY ; 3
represent the transport by transient and stationary eddies, g\r/]f(]ere ox = Var(X) and oy is defined

the last two terms the transports by the transient and station@tjalogously. Note thapxy takes values in the
cells. For maps and further details, see Peixoto and Oort [3118nge 1, 1].
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RUN WNNDJF. DAYS WINT. TRANSIENT E00Y TRansporT (ueverr. unts wz/seee. WHEN USING the monthly mean SST anomaly to
specify the SOI, or the root mean square error is
76% of the standard deviation. This is in general
agreement with the level of scatter displayed in
Figure 8.1.

Note that the mean squared error is zero when
pxy = 1, thatis,Y = puy + 21X — ux)
with probability 1 whenpxy = 1. Also, note
that zero correlation is generally not the same as
independence (except wh&nandY are normally
distributed, thenX andY are independent if and
only if pxy = O; see [2.8.14]).
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8.2.3 Making Inferences about Correlations.
_ _ When the samplg(X;,Y)" : i = 1,...,n}
Figure 8.4:Zonally averaged covariance betweegonsists of independent, identically distributed

the ‘transient’ eddy components of the zonal andndom vectors of length two, a good estimator of
meridional wind = ‘meridional transient eddyine correlation coefficientxy is

transport of zonally averaged zonal momentum’ . .
during DJF simulated by a GCM. Unitsn?/s?. 5 YiLXi =X (Yi =)

Xy = — —.
VI X = R2ET (Y — V)2

As noted in Section 2.8, the correlation his is the maximum likelihood estimator [5.3.8]
coefficient measures the tendencyXofandY to When (X, Y) is bivariate normally distributed.
co-vary (see Example [2.8.12] and Figure 2.10furthermore, (8.4) is asymptotically normally
the greater|p|, the greater the ability oX to distributed with meanoxy and variance(l —
specifyY. pfw)z/n. However, becausgyy converges slowly

Suppose thaX andY are bivariate normally to its asymptotic distribution, this result is
distributed with meang.x and uy, variancesg)f generally not used to make inferences about
anda?, and correlation coefficientxy. Their joint pxv- Instead, inferences are based on Fisher's
density function is given by (2.35). Suppose alsgtransform,
that only X is observable and we want to find a 1 <1+ ﬁxv)

(8.4)

function, sayg(X), that specifies the value of z= - In (8.5)

as accurately as possible on average. A reasonable
measure of accuracy is the mean squared ernahich converges quickly to the normal distribution

given by N (% log (ifﬁg) , rlg) when pxy is nonzero. It
EWY —gX))?). (8.3) Iis then easily demonstrated that an approximate
P x 100% confidence interval fgrxy is given by

(tanh@,), tanhey)), (8.6)

where

1—Dpxy

It can be shown that
oy
g(X) =y + &PXY(X — Kx)

minimizes (8.3) wheryg is linear in X and that

the mean squared errord@(1 — p%,). Toreduce 2L = Z— Zq+p)2/vn—3

the. mean sqga.red error to less than 50% of thg, — 74+ Z(1+;3)/2/\/m,

variance ofY, it is necessary thapxy| > 1/v/2.

That is, X representsat least 50% of the varianceand Z )2 is the (1 + p)/2-quantile of the

of Y when|pxy| > 1/+/2. To reduce the root meanstandard normal distribution (see Appendix D).

squared error to less than 50% of the standdr®vid [100] (see also Pearson and Hartley [308])

deviation ofY itis necessary thapxy| > v/3/2 ~ gives tables for exact confidence intervals fq¥ .

0.87. In the SOl exampl@sstso = 0.667 and thus
Using the estimated correlatiop = 0.667 z = 0.805. For(1 + p/2) = 0.05, Z(14p)2 =

between Wright's [426] monthly SST index and..96, so thatZ, = 0.805— 1.96/v/621 =

the monthly SOI [8.1.4] we estimate that the meah 727, assuming that each of the 5212 months

square error of the SO index is 58% of its variande the index series are independent. This latter
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assumption is, of course, invalid, but it servedistribution. Critical values for one-sided tests are
our pedagogical purposes at this point. Similarlpbtained analogously.
Zy = 0.884. Finally, from (8.6) we obtain In contrast to tests of the mean (see Section 6.6),
(0.621, 0.708 as the 95% confidence interval foinference about the correlation coefficient seems to
pssTsol. This interval is almost symmetric aboube relatively weakly affected by serial correlation,
PssTsol because the sample size is large; it wilit least when correlations are small [442]. A
be less symmetric for smaller samples. Note alsesampling scheme that further reduces the impact
that this confidence interval is probably too narroef serial correlation on inferences made about the
because it does not account for dependence withiorrelation coefficient is described by [110].
the data.

An approximate test of jl pxy = 0 can be

; 8.2.4 More Interpretations of Correlation.
performed by computing

The correlation coefficient can also be interpreted
— as a measure of the proportion of the variance of
T =pxyl = (8.7) one variable, sayr, that can be represented by
1-0p%y constructing a linear model of the dependence of
the mean ofY upon X. Assume thatX, Y) are

and comparindr with critical values from the bivariate normally distributed with joint density

distribution withn — 2 degrees of freedom (seg : .
. ) unction fxy(X,y) given by (2.35). We factor
Appendix F). The type of test, one sided or tw xy (X, y) into the product of the density function

sided, is determined by the form of the alternativgf Y conditional uponX — x and the marginal

hypothesis. . . .
fi X 2. 2.
Confidence interval (8.6) and test (8.7) botggnsny unction oiX (see Sections 2.5 and 2.8) to

require the normal assumption. A non-parametric

tain

approach based on ranks can be used when ﬂ}e (YIX=x) = fxy (X, y)
observations are thought not to be normal. The X=X yiA=x= fx (X)
sample{(Xj, Yi):i =1,...,n}is replaced by the exp(—(y _ IJ«Y\X:X)Z/ZO‘YZ(]- _ piy))

corresponding sample of rankRx;, Ry,): i = =

1,...,n} whereRy; is the rank ofX; amongst the V2ref(L— p%y)

Xs andRy; is defined similarly The dependence
betweenX and Y is then estimated with the

Spearman rank correlation coefficieng, where
%
n HY|X=x = iy — pxy—(1x — X).
—~ i—1Rx;Ry — N
\/<Zin_1R§<,-— N)(zi”:lR%_ N) Tge vari?nce ofY conditional'uponx = X is
oy (1— pxy), the same factor discovered in [8.2.2]
where when we considereX as a predictor ofY. The
conditional variance does not depend upon the
N — n(n + 1)2 specific realized value of. The mean off varies
2 linearly with the realized value oK when pxy

This is just the ordinary sample correlatior® nonzero. Note that the mean of one of the
coefficienf (8.4) of the ranks. Note that1 < Pair of variables is completely determined by the

7S, < 1,thatps, = +1 when the rank orders'e@lized value of the other. The squared correlation

of the two random variables are equal, and th§pefficient only tells us the proportion of the
ﬁ% — _1 when the two rank orders are th&ariance ofY that is attributable to knowledge of

reverse of each other. Small sample critical valul€ conditional mean. . S
for testing H: pxy = O with ﬁ)%Y are given Yet another way tq view the relationship
in Appendix K. Approximate large sample (i.e.PetweenY andX is to write'Y in the form
n > 30) critical values for testing flagainst H:
pxy 5 0 at the(1 — p) x 100% significance level ' = 20+ a&X +E, (8.9)
are given by+Z 5 2v/n — 1 whereZ 1452 1S \herek is independent oX. In geometrical terms,
the ((1 + p)/2)-quantile of the standard normala realization of the paitX, ag + a;X) randomly
3|f there are ties, the tied observations are assigned tﬁgle,Cts a'poir?t on one of the ‘T"Xes of the eIIipse
corresponding average rank. depicted in Figure 2.10, and is subsequently
4Also known asPearson’s r determined by deviating vertically from the chosen
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point. By computing means and variances weollowing on from the discussion in Section 8.2,

obtain the random variable€; must be independent
2 2 2 normal random variables with mean zero and
% = (1= 0% variance
a o
1 = PXY —
ox of = af(1— pky). (8.11)
oy . . .
a = Uy — PXY _UX- The corresponding representation for the realized
ox value ofYj is

The purpose of regression analysis, discussed
in the next section, is to diagnose relationship¥i = @ + aiXi + &,
such as (8.9) between a response (or dependmrea represents the realized value Bf. If
var?able and one or more _factors (or independe% have estimate, and a; of the unknown
variables. As the denvatlor_] "?‘bo"e showed, f %efficientsao and a;, estimates of the realized
language used in many statistics textbooks can Sors (which are generally callegsiduals) are
misleading. If the factors that affect the mean %{ by
the response variable are determined externallyto
the studied system, either by an experimenter (& =vy; — a9 — a1X;. (8.12)
in a doubled CQ@ experiment conducted with a

GCM) or by nature (e.g., by altering the climate’é reasonable strategy for estimatiag and a

external forcing through the effects of volcanosf to minimize some measure of the size of the

then words such adependentand independent esti:jnatre]d errorﬁf_ While (rjnany mnetric\:zs .carL be
or responseand factor can be used to describg/S€d, the sum of square errdgrs_, §° is the

relationships between variables. However, often fRost common. The resulting gstlmatorsa@fanc_i
a1 are calledleast squaresestimators. We will

climatology bothX andY are responses of the .
climate system to some other unobserved factSFe later that least squares estimators have some
R{ential pitfalls that may not always make them

Then regression analysis can be used to documﬁ1 best choice. H th inent i
the relationship between the means>ofand Y, € best choice. However, they are prominent in
e normal setup because of the tractability of their

but it would be inappropriate to use language th S e ; .
pprop guag Istributional derivation, ease of interpretation,

implies causality. and optimality within this particular restricted
o ) ) ) parametric framework.
8.3 Fitting and Diagnosing Simple The least squares estimators af and a; are
Regression Models obtained as follows. The sum of squared errors is

Our pgrpose _here is to dgsc_ribe t_he gngtom);sg: Xn:()’i —ﬁo—ﬁlxi)z. (8.13)
of a simple linear regressionin which it is =

postulated that the conditional mean of a response, . ) o ,

variableY depends linearly upon a random facto-Fakmg partial de”\fﬂ'\’es Aw'th respe_zct to the
X (the arguments in the next few subsectiorf’known parametergo anda, and setting these
work equally well if this factor is deterministic). ©© Z€r0 yields the normal equations

Suppose that we hava pairs of observations n

{(Xi,yi): i = 1,...,n}, each representing the Z(yi —ag—awx) =0 (8.14)
realizations of a corresponding random variable =1

pair (Xi,Yi), all pairs being independent and g

identically bivariate normally distributed. ;(yi —a—ax)x = 0. (8.15)
8.3.1 Least Squares Estimate of a Simple 1henormal equations have solutions
Linear Re?r%j,sion. Assume that the conditional 3y — y 3% (8.16)
means satis n o
N XY —nX
a = Li=1 XY y (8.17)

WY X=x; = 80+ a1Xi ShxZ—nx?

so that conditional upoX; = X;, theith response As will be shown in [8.3.20], an unbiased estimate
can be represented as a random varidhlesuch of UEZ (8.11) is given by
that

~ SS§E

Yi = a0+ axi +Ei. (8.10) GE= b (8.18)
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Returning to our SO example [8.1.3], thé ' ;@ + a1xi — ¥)2. The least squares fitting
parameter estimates obtained using (8.16)—(8.18bcess thus provides a partition of the total
aredp = —0.09,3; = 0.15, andog = 12.2. The variability into a component that is attributed to the
fitted line is shown as the upwards sloping line théitted line (SSR) and a component that is due to
passes through the cloud of points in Figure 8.departures from that lineSS¢E). That is,
andog is an estimate of the standard deviation

of the vertical scatter about the fitted line. NoteSST =SSR +SSE. (8.19)

that the eye is not always a good judge of whejg the SOI example, this partitioning of the total
the least squares line should be placed; our initighm of squares is
impression of Figure 8.1 is that the slope of the

fitted line is not steep enough. Source Sum of squares
Regression (SSR) 744632
8.3.2 Partitioning Variance. The slope esti- Error (8S€) 927381
mate (8.17) is often written Total (SST) 167 2013
3= X
1T 5 8.3.3 Coefficient of Multiple Determination.
Where An immediately available diagnostic of the ability

of the fitted line to explain variation in the data is
the coefficient of multiple determinatipaenoted
R?, given by

R? = SSR/SST. (8.20)

n
Sxy = Y (X —X)(i —)
i=1

n

= D XV — Xy
i=1 The use of the phraseoefficient of determination

to describe this number seems natural enough

and because it is a measure of the extent to which
n X determinesy. The adjectivemultiple is added

Sxx = Z(xi —%)? because in multiple regression (Section 8.4) this
i=1 number is a measure of the extent to which all

noL, variables on the right hand side of the regression
= in — nx-. equation determin&. While a useful diagnostic,
i=1 it is just one of several tools which should be used
to assess the utility and goodness-of-fit of a model.
The sum of squared errors can be expressg@ is discussed further in [8.3.12]. Additional
similarly as diagnostic tools are discussed in [8.3.13,14,16,18]

_ ~ and [8.4.11].
SEE =Sy —aSu, In our SOI exampleR? = 0.445, meaning that
where somewhat less then one-half of the total variability
n in the SO index is represented by the SST index.
Sy = Z(yi —y)? This is clearly in agreement with Figure 8.1 where
i=1 we see quite a bit of scatter about the fitted line.
_ o , .
= _X;yi —ny-. 8.3.4 The Relationship Between Least Squares
1=

and Maximum Likelihood Estimators. When
. the random variable&; (8.10) are independent
Svy is often called theotal sum of squareand gng jdentically normally distributed, it is easy

denotedSST. Be aware of the potential confusion, gemonstrate that the least squares estimators

here between the common climatological practicge 4150 maximum likelihood estimators. Under
of referring to sea-surface temperature as SST gidqe conditions, the log-likelihood function

the equally common statistical practice of referringao ailxi,yi), fori = 1,..., n, is given by
to the total sum of squares &§7 . The quantity ’ ’ ' ,
. —2(ag, a1]Xi, Yi) = nlog(2ra¥)
SSR = a1Sy tha. . AAG
i i + =5 Y (i — a0 —ax)®
is often called thaum of squares due to regression UEZ - ' !
1=

and denotedSR. Itis easily verified thabSR =
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The likelihood estimators are chosen to ma®8.3.8 Tests of the Slope Parameter. The null
imize the likelihood, or equivalently the log-hypothesis thag; has a particular value, saj,
likelihood, of the estimated erroys — ap — a1X;. can be tested by comparing
Maximizing the log-likelihood with respect tag
anda; results in precisely the least squares estima- ap—aj
tors. Thls means that !east squares estlmat'ors have= 5 /Y5
the optimality properties of maximum likelihood

estimators (Section 5.3) when the normal distribygainst critical values from thiedistribution with

tional assumption is satisfied. n — 2 degrees of freedom. It is often of interest to
know whether or not; is significantly different

8.3.5 Properties. While the estimators (8.16),from zero, that is, whether or not there is a

(8.17), and (8.18) have been written in theifegression relationship betweXrandy.

realized forms, they can also be considered asTo test Hy: a; = 0 against H: a1 # 0 in our

random variables whose distribution is condition&o| example, we compute

on the realized values of. We will briefly state

the distributional properties of these estimators. a1

The derivation of these properties is discussed ih N

8.3.20]. ) 015 i
1 @, @1, andG 2 are unbiased estimators af, 12.2///3.320x 10° o

a1, ando? respectively.
This realized value ofT is compared with

2 EEZ is independent ddip andas. critical values fromt(622) and is found to be
significant at much less than the 0.1% level. The

a2/ 2 20
3 (n—=2)og/og ~ x“(n = 2). effect of dependence between observations is,

48 ~ N, (62/Sx0?). generally, to increase the frequency with which
E the null hypothesis is rejected when it is true,
5 @ ~ N(ag, (02 Y (1 X2/ (NSx))?). that is, to decrease the apparent significance

level. Here it is certain that s false, but
8.3.6 Inferential Methods. The distributional often when the evidence is more equivocal, it is
properties stated above provide a number BRportant to consider the effects of dependence
inferential results that are useful for interpretin{see Section 6.6).
a fitted regression model. Bear in mind, however, Another approach to testing whether or not
that inferences made in the following way mag regression relationship exists is based on the
be compromised if the assumptions embeddedahservation that, whea = 0, the regression sum
the procedures are violated. See [8.3.17] for moo# squaresSSR is an unbiased estimator of the
discussion about this. error variance which is distributeg?(1) and is

independent ot?EZ. (These results can be proved

8.3.7 A Confidence Interval for the Slope USing rEeZthozd_s similar to thzat in [8.3.20].) Since
Parameter. A p x 100% confidence interval for (N — 2)o¢¢/o¢ is distributedy “(n — 2), we obtain
the slope of the regression lin, is given by that

. layppoe t<1+r3>/25E> SSR
a; — , a1+ s — ~ _
( NE= VS F=7%z ~F&n-2

wheret(1p)/2 is the (1 + p)/2)-quantile of the
t distribution withn — 2 degrees of freedom (sedinder the null hypothesis. Thus the test can be
Appendix F). conducted by comparing with critical values

In our SOI examplen — 2 = 622, Sx = from Appendix G.
3.320x 1P andGg = 12.2. Therefore, assuming Because we have fitted a linear model that
that there is no dependence between observatialepends upon only one factor, theand F tests
(an assumption we know to be false), the 95%re equivalent. In facE = T2, and the square of
confidence interval for the slope of the fitted lina t random variable witm — 2 df is distributed
is (0.137,0.163). However, dependence betweeas F (1, n — 2). Thus identical decisions are made
observations causes the actual 95% confiderm®vided that the test is conducted as a two-sided
interval fora; to be wider. test.
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8.3.9 Inferences About the Intercept. A p x SO and Tropical Pacific SST Indices
100% confidence interval for the intercept of the
regression lineag, has bounds given by

-~ 2
. tarp)/20Ey 2i1 X
0 .
v Sx

The null hypothesis that the intercept has @,
particular value, sayaj, can be tested by3
comparing

=3
@

40

o
3

X (0.1 mb)

-20

40

ap—aj

~ [/ n
OE Zi:l Xiz/nS(X 200 -100 0 100 200

SST Index (0.01 C)

T=

also against critical values from thedistribution
with n — 2 degrees of freedom (see Appendix F).,

Settingaj = 0 determines whether or not the fitte igure 8.5:A simple linear regression fitted by
line passes through the origin ordinary least squares to 1933-84 monthly mean

A test of the intercept is only of pedagogica?o and_ SST indices (see [8'1'3.])' '_I'he_ paur of
interest in the SOI example because both the rved lines closest to the regression line indicate,

and SST indices are expressed as departures fl%tm?.ZCh pol;nt X, q thfe l:ﬁper and flot\;]ver 95%
arbitrarily selected base period means. None tﬁgﬂ;b?ence Ouncc?n dc:triongl ngrr:xo (i(r(essepeonse
less, to test it ag = 0 against H: 0 Hyix=x © X - :
ess, to test bt a against |: a 7 0 we [8.3.10]). The pair of more widely curved lines

compute P .
pu indicates, at each poink, the upper and lower
- ap 95% confidence bound for the response variable
T Y conditional uponX = x (see [8.3.11]).
G /Zi":lxiz/n&x p (see| )
—0.09
= T B the variance of the resulting expression. A
12-2\/ 824x 3.320<10° corresponding estimate is obtained by substituting
~2 2

og for of. Now note that the estimate is
proportional to ax2(n — 2) random variable and
hatitis independent @iy x_x, Which is normally
istributed. Taking care to scale the normally
distributed and x? components correctly, we
finally obtain that

When this value ofT is compared with critical
values oft(622) we see that it is not significantly
different from zero. Accounting for dependenc
further reduces the amplitude ofand therefore
does not affect our inference ab@gt

8.3.10 A Confidence Interval for the Mean of _Hy|xX=x — HY|X=x
the Response Variable. The conditional mean =~ /1 X—%)2
wy|x=x of the response variablefor a realization PEYn T Vs
x of X is estimated from the fitted regressiog, distributedt(n — 2). Thus gx 100% confidence
equation as interval for the conditional mean athas bounds
Iiy|x=x = 8o + a1X. 1 x_x?

My x=x T tasp) /206, — , 8.23
By substituting fofdp with (8.16) we obtain I Ix=x a2 08 [ e o 8.23)
Hy|x=x =Y +a1(x —X). (8.21) where t4p2 is the (1 + p)/2)-quantile of

t(n — 2) (Appendix F).
An example of a fitted regression line and
) ol (x— )2 the confidence bound curves defined by (8.23) is
O fvxex = OF (ﬁ + 5 ) (8.22) illustrated in Figure 8.5. The pair of curves closest
X to the regression line illustrates sseparate95%
This can be derived by first substituting (8.17¢onfidence interval at eash The curves bound the
for @; in (8.21), then substituting the modeliertical interval at each that covers the regression
(8.10) wherevely; appears, and finally computindgine 95% of the time on average. As mentioned

Computing variances, we see that
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Y =1 + 0.1%X*X + noise SO index) in our SOI example. Again, the exact
interpretation here hinges upon the independence
of observations. However, dependence has a
relatively minor effect on this particular inference
because the regression line itself is well estimated;
only the sampling variability of the regression line
is affected by dependence. Note also that in this
case the curvedo notbound the region that will
simultaneously cover 95% of all possible values of
the response variable.

1.10

8.3.12 Diagnostics:R?. The inferential meth-

ods described above are based on the assumptions
that the conditional mean of givenX = x is a
linear function ofx and that the errorg; in model
Figure 8.6: This diagram illustrates the least(8.10) are iid normal.

squares fit of a straight line to a sample of 100 We have already seen one diagnostic (8.20)
observations generated from the modtek= 1 + )

0.12 + E whereE ~ A/(0,0.008). Even though R®=SSR/SST

R? = 0.92, the model fits the data poorly.

associated with a fited model. Howevé?, the
proportion of variance in the response variable
previously, accounting for dependence wouldhat is explained by the fitted model, should not

increase the distance between the confiderie@ confused with the modelgoodness-of-fit. The
bound curves. correct interpretation oR? is that it is an estimate

of the model’s ability to specify unrealized values

8.3.11 A Confidence Interval for the Response ©f the response variabl. - _
Variable. While confidence interval (8.23) ac- A large R® does not indicate that the model fits

counts for uncertainty in our estimate of th¥vell in a statistical sense (i.e., that inferences made

conditional mean, it does not indicate the range ¥fth the methods above are reliable). Figure 8.6
values of the response variable that is likely for ijustrates the least squares fit of a linear regression
given valuex of X. To solve this problem we needmOdeg0 data that closely approximate a quadratic.
to interpret the fitted regression equation, whet'e R for this fit is large R” = 0.92) but it

evaluated ak, as an estimate of rather than as Would notbe correct to say that the fitis a good one
an estimate of the conditional mean|x—x. The because the deviations from the fitted line display

estimation (or specification) error in this context iSyStématic behaviour. In this case the assumption
that the errors are iid normal is not satisfied and

wy x=x + E — ly|x=x- thus inferences are not likely to be reliable.
Neither does a smalR? indicate that the model

fits poorly. Figure 8.7 illustrates a least squares

fit of a linear regression model to simulated data
) 1 (x—x)?2 from a linear model. TheR? for this fit is only

og <1+ - + Sox ) moderately largeR%2 = 0.51) but the deviations

from the fitted line do not show any kind of
Then, replacingaEz with the estimator&é we systerr_]atic_ behaviOL_Jr. It is I_ikely that inferences
obtain the confidence interval fot with bounds made in this case will be reliable even though the
model’s ability to specifyY from given values
R R 1 (x—%2 of X is low. Despite the relatively lowR?, the
Iy x=x £ ta+p)/20E/ 1+ 0 + S fitted regression lingly|x_yx = 1.0047+4 0.0972x
X estimates the true conditional meay|x—x =
where ti1452 is the (1 + p)/2)-quantile of 1+ 0.1xvery well.
t(n — 2) (Appendix F). While R? summarizes well the extent to which
The wider pair of curves in Figure 8.5 (theythe fitted line specifies the realized valugs
really are very shallow hyperbolas) illustrates thef Y given the corresponding values; of
confidence bounds for the response variable (tke for i = 1,...,n, it is well recognized

SinceE is independent ofiy|x_x, We see using
(8.22) that the variance of the estimation error is
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Y =1 + 0.1*X + noise Linear fitto Y = 1 + 0.1*X*X + noise

1.15

Standardized Residual

0.98 1.00 1.02 1.04 1.06 1.08
Fitted Line
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Fitted Line

0.0 0.2 0.4 0.6 0.8 1.0

Absolute Standardized Residual
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Figure 8.7: This diagram illustrates the leastFigure 8.8:In the upper panel the standardized

squares fit of a straight line to a sample of 10@esiduals (departures from the fitted line divided

observations generated from the model= 1 + by o) are plotted as a function of the estimated

0.1x + E whereE ~ N (0, 0.025). Even though conditional mearjiy x—x for the fit displayed in

R? = 519% the model fits the data well. Figure 8.6. The absolute values of the residuals are
plotted in the lower panel.

that R? is an optimistic indicator of model
specification performance for unrealized valu
of X (see, e.g., Davis [101]). Climatologists an
meteorologists call this phenomenaartificial

Sppears to increase untd = 0.5 and then
ecrease again beyord= 0.5. Heteroscedasticity

. o . . ..._is generally easier to detect in scatter plots of
skill. The artificial skill arises becau_sg the fltteﬂie absolute residuals. Heteroscedastic errors can
model, as a consequence of the fitting proces;

has adapted itself to the data. Cross-validation (Sg%n;etllarggs; e bf?ttiﬂ(geag \:\gtghr egzi Otrrlarrlns(l;c(;rerrlr[lg 6t2]e

Section 18.5) provides a more reliable means ther times it may be necessary to wseighted

predicting future model performance. regression techniques in which the influence of a
squared error in determining the fit is inversely
8.3.13 Diagnostics: Using Scatter Plots. Some Proportional to its variance (see Section 8.6 and
fundamental tools in model diagnostics includg04]).
scatter plots of the standardized residi@l&e  Finally, Figure 8.10 results from a simulated
(see (8.18)) against the corresponding estimalgfear regression with two inserted errant obser-
of the conditional mean (8.21), and scatter plo{gtions. Attempts to detect these observations are
of the absolute standardized residuals against #gde by looking fooutliers that is, residuals that
estimates of the conditional mean. are greater in absolute value than the rest. As a
Figure 8.6 illustrates a violation the assumptiogeneral rule, residuals more than three standard
that the conditional mean varies linearly with deviations from the fitted line should be examined
This is revealed through systematic behaviour for errors in the corresponding observations of
standardized residuals, as displayed in Figure 8tBe response and factor variables. Outliers are
This type of behaviour is generally easier to detegenerally easier to detect using the plot of the
in displays of the standardized residuals (uppebsolute residuals. However, they may not always
panel of Figure 8.8) than in displays of the absolutse easy to detect, especially when more than one
standardized residuals (lower panel of Figure 8.&utlier is present in a sample. In this example,
Other kinds of departures from the fitted modehe data were generated using the model=
are easier to detect in displays of the absoluter0.1x+E, whereE is normally distributed noise
standardized residuals. with mean zero and standard deviation 0.05, and
Figure 8.9 illustrates an example in whick varies between 0 and 1. The errorxat= 0.5
the assumption that the errorgj all have was setto be 0.15 (3 standard deviations) and the
common variance is violated. This is knowrmrror atx = 0.95 was set to be-0.15. The outlier
as heteroscedasticityln this case error varianceatx = 0.5 is detected in our residual display, but
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Y =1+ 0.1*X + X*(1-X)*noise Y =1.0 + 0.1*X + noise + outliers

1.00 1.04 1.08
0.90 1.00 1.10 1.20

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Linear fitto Y = 1 + 0.1*X + X*(1-X)*noise Linear fitto Y = 1.0 + 0.1*X + noise + outliers
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0.0051.0152025
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Fitted Line Fitted Line

Absolute Standardized Residual
Absolute Standardized Residual

Figure 8.9: A pair of scatter plots illustrating Figure 8.10: A scatter plot illustrating data
heteroscedasticity. The data were generated fragenerated fronY = 1 + 0.1x+ E whereE ~

Y = 1+ 0.1x+x(1—Xx)E, whereE ~ A/(0,0.1%). AN (0,0.0%). Two outliershave been inserted by
The upper panel shows 100 simulated data poirdstting the realizations dt at x = 0.5andx =
and the line fitted by least squares. The lower pan@95to 0.15 and-0.15respectively.

displays the absolute standardized residuals as a

function of the fitted line.

regression model are invalid. None the less, once it
has been determined that the model fits the data
|I%asonably well, it is still useful to examine the

. . __residuals to see if there are gross departures from
S_,tudentlzed residuals, ra_ther_ than sFandard| i normal distribution assu?nption, v€hich might
re5|dua!s, are qﬁen gsed n d'agnOSt'C_ plots. @bmpromise the inferences. A useful diagnostic for
s_tqdenhzed reS|dugl IS obtameq at poitby g purpose is aormal probability plo? of the
fitting the regression model without the dat?ordered) standardized residugign, /o against

pair (xi,yi), computing the difference betweeny,q i _ 5)/n)-quantiles of the standard normal
yi and the estimate obtained from the fit, angist(ri(butioﬁ.)/ )-d

finally dividing this deviation by the estimate of ) i

the standard error obtained from the fit. Outliers 2 discussed in [3'1'_3] and [4'_2'2]' such plots

hidden in ordinary residual plots often becom@r® constructed by plotting the points

apparent in plots of studentized residuals because

they do not affect the fit of the model used to _1/i =05\ B _

estimate the studentized residual. Unfortunatel)(':/\f (—> = ) fori=1,....n

studentized residuals fail to identify the hidden .

outlier in Figure 8.10. . . . )
Diagnostic scatter plots of the residuals from t Ehe pom'ts will lie on an approximately straight

fitted regression of the SO index on Wright's SS € sloping upwards at a 45angle v_vhen Fhe

index are displayed in Figure 8.11. No evidendﬁzs'duals are approximately normal with variance

of heteroscedasticity or systematic departure frofi -

the fitted line is apparent. However, three outliers The probability plot for our SOI example is

can be observed, all of which are positiveshown in Figure 8.12. We see that the central

Only one deviation (occurring in February 1983)yody of the distribution is very close to normal.

corresponds to a known El b warm event. The diagram shows that the left hand tail of
the distribution is slightly narrower than that of

. . . .. a normal distribution and the right hand tail is
8'3'1.4 D|agnpst|cs: Probability Plots. As W'I.I slightly wider. The three outlierg we identified
be discussed in [8.3.15], skewness of the resflduaﬁ viously can be seen at the upper right hand
(e.g., a tendency for there to be more residuals
of one sign than another) should not immediately
lead to the conclusion that all inferences about the 5Sometimes also calleghy plots, or quantile—quantile plots.

that atx = 0.95 is hidden, for reasons discussed
[8.3.18].

n
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Linear fit of SOl = a + b SST + noise Fit of SOl = a + b SST + noise

. :"." 3 3 oo .
. PRFELE - Bl .
ol TEAMIRRGRIINE
-20 0 20 40
Fitted Line

2

Absolute Standardized Residual
2

0

Standardized Residuals

AL R
3 > k% TR 1
S e S T T :
1940 1950 1960 1970 1980 -3 -2 -1 0 1 2 3
Date Ouantiles of Standard Normal

Absolute Standardized Residual
2

Figure 8.11:Scatter plots illustrating the fit of the Figure 8.12:A probability plot of the standardized
regression of the SO index on the SST index. Thigantiles of the residuals from the regression of the
example is introduced in [8.1.3]. Three outliersSO index on the SST index, against the quantiles of
occurring in March 1961, February 1978 andhe standard normal distribution.

February 1983 can be identified. In the upper

panel the absolute standardized residuals are

plotted against the estimated conditional mean. ® When the errorg; are elements of a station-

They are plotted against time in the lower panel. ~ary time series, the least squares estimators
are still, under relatively broad conditions,

asymptotically the best (i.e., minimum vari-

ance) linear unbiased estimators of the regres-
corner of the graph. In general, these residuals are sion parameters (see [323, pp. 588-595]).
acceptably close to being normally distributed.

However, be aware that even minor departures
8.3.15 Why Use Least Squares?While we from the normal distribution assumption can have

have, on occasion, warmned that inferences ma%éjetrlmental effect on inferences made about the

with least squares estimators may not be robu§f'°" vanance.
their widespread use is justified for more reasons

than just computational ease and the tractabiligys 16 Diagnostics: Serial Correlation. While
of inference when errors are independent apge |ast item above reassures us that least squares
normally distributed. estimators can be consistent when errors are
dependent, it says nothing about the reliability
e As a consequence of the Gauss—Markaf inferences under dependence. Unfortunately,
Theorem (see [147, p. 219], or [197, pthe inference procedures outlined above are very
301]), least squares estimators of lineafensitive to departures from independence (see
model parameters have minimum varianc®ection 6.6; [62, p. 375]; and also [363], [442],
amongst all unbiased linear estimators §454]).
long as the errors are independent andThe Durbin-Watson statistic (see [104], [107],
identically distributed with zero mean ang108], and [109]), computed as
constant finite variance. This is a relatively
strong reason to use least squares estimators, Z'n—_ll 8.11—8)2
despite the insistence that the estimators bé = == SSE , (8.24)
linear (i.e., that they be expressible as linear
combinations of the response variabMg, is commonly used to detect serial correlation.
because our ability to construct nonlineaWhen errors have positive serial correlation, the
estimators is limited. This property of leastlifferences@ ;1 —& )2 tend to be small compared
squares estimators does not persist if errorgth those when errors are independent. Therefore
do not have constant variance (see, e.gmall values ofd (near zero) indicate positive
Section 8.6, and [62, pp. 352—-353]). serial correlation. When errors are independent,
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we see from (8.24) that is positive serial correlation) or more frequently
- R (negative serial correlation) than would be ex-
d = Yici@41— 8)? pected in a sequence of independent errors. The
N SSE test statistic used in the runs test, dendfieds the
Zinz—ll(él%rl +'§|2 —28.18) number of sign changes plus 1. Draper and Smith
= SSE [104, pp. 160-161] give tabulated critical values
SSE+8SE—0 when the number of residuals of both signs is small
¥ T sse 2. (<10). A normal approximation can be used when

samples are large. It can be shown that the mean
Hence values ofd near 2 are consistent withand variance o) under H, are
independent errors. If the alternative hypothesis

is that the errors are negatively (rather than 2nny
positively) correlated, then the test statistic shouldtV = N+ N2
be 4—d.

2nn2(2nnz — Ny — Ny)
N1+ N2 +np—1)

Computation of the significance of the observedCYU2 =
d under the null hypothesis of independence is
somewhat involved. Durbin and Watson give a
range of critical values for samples of sime< .

" . .where n; and n, are the number of positive
100. The tabulated critical values consist of pairs . . ] .
d, anddy such that K can always be rejected ifand negative residuals. ThengHno serial

L U Y Je correlation can be tested against,H positive
max(d, 4—d) < d_ and K should not be rejected __ . . -

L L serial correlation by comparing(U — puy +

if min(d, 4 — d) > dy. Between these limits, the; . P
o o 5)/ou against the lower tail critical values of the

determination of whether or nat is significantly o .

. o standard normal distribution (Appendix D). Here
different from 2 depends on the specific values o . o .
% fori — 1 0 taken by the inde enden'eNe are approximating a discrete distribution with
v|a7riable Burb,iﬁ. é’noi Watson )[/108 109]pdescriba continuous distribution; so the half that is added

o e 5 acontinuity correctiorthat accounts for this. For
an approximation to the distribution af based
o .our SOl example, we havg = 295 anch, = 329
on the beta distribution that can be used wn%
. soéha’wu = 312.17 andry = 12.44. We observe
moderate to large sample sizes when the test base . L :
g . U = 307, a value that is not significantly different
on the tabulated values is inconclusive or when tI?e
: rom uy .
sample is large.

A ‘rough-and-ready’ approach that can be used
when the samples are large is based on the _
observation thatl = 2(1 — p; (1)), wherep;, (1) 8.3.17 Are Least Squares Estlmators Robust?
is the estimated lag-1 correlation coefficient of thEo understand the influence outliers have on least
residuals. An approximate test can therefore Isguares estimates, think about the sample mean. A
performed by comparing;; (1)//n with critical positive outlier will increase the sample mean in
values from the standard normal distributioflirect proportion to the size of the outlier. In fact,
(Appendix D). If the null hypothesis can not béhere is no upper limit on the effect thgt can be
rejected with this test, then it will also not bdnduced on the sample mean by an outlier. On the
rejected withd. On the other hand, if iis rejected other hand, the effect of an outlier on the sample
with this test, Durbin and Watson’s approximatiofnedian is bounded; once the outlier becomes the
[108, 109] should be used to confirm that thikirgest observation in the sample it has no further
decision will stand when the details of thénfluence on the median. Thus the sample median
independent variable (i.e., the valug$} are taken and mean are examples of estimators that are
into account. robust and not robust, respectively.

The value of the Durbin—Watson statistic in our Least squares estimators are not robust to the
SOl example is 2.057, which means tiggg (1) = effects of outlying observations. Other fitting
—0.0285. This value is not significantly differenimethods (see [8.3.18]), such as robust M-
from zero. estimation (see, e.g., [154]) can be used, but at

Another approach to testing for serial correghe expense of computer time (perhaps not such
lation in the residuals is to perform rns test an issue these days), some loss of the rich body
(see, e.g., Draper and Smith [104] or Lehmarof inferential methods available for least squares
and D’'Abrera [249]) to determine whether thestimators, and some loss of efficiency when errors

residuals change sign less frequently (i.e., theaee actually iid normally distributed.
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8.3.18 Influence and Leverage: the Effects of solving equations of the form
Outliers. In regression analysis, the effect of an

outlying realization ofY is also influenced by the Z U@E) = 0

value ofX. One can think of the regression line as
a bar balanced on a pivot point@t y). An outlier
directly above (or below) the pivot point pulls the; U@)x = 0,
bar up (or down) and has a relatively small effect=1

on the fitted conditional mean. An outlier near theh W) is a function that the si f
end of the bar has a very large influence on tgere (-) Is & function that preserves the sign o

its argument but limits its magnitude. For example,

i=1

fied fine. . _ . Huber [190] uses
Suppose an outlying pointx, y) is located

above the fitted line and that the line passes —-c, t<c

through (x,¥). Then a physical analogy for the W(t) = t, |tj<c

outlier’s effect is that it exerts an upwards force of c, t>c

(y — ¥)2 units on the line at a distanee— X units

from the pivot point of the bar. The farther fromg 3 19 Matrix-vector Formulation of Least
the pivot point, the greater the ability of the OUt"eéquares Estimators. We have formulated the
to affect the fit, that is, the greater its ability to usg,z5¢ squares estimators for simple linear regres-
the line as dever. Hence the terrfeverage sion by basic brute force, but it is easier to form
We can now understand why the relatively smadistimators and derive distributional results for
outlier in Figure 8.10 ak = 0.5 is easy to detect multiple linear regression problems when matrix-
while the relatively large outlier at = 0.95 is not. vector notation is used.
The outlier aix = 0.5 exerts little influence onthe Let Y denote then-dimensional random vector
fitted line. Thus the line has little opportunity towhosei th element isy;. Let X’ be then x 2 matrix
‘adapt’ to this outlier, leaving the outlier plainlythat has units in the first column amng as theith
visible above the fitted line. The large outlier atlement of the second column. That is,
x = 0.95 has much greater influence on the fitted

line, which ‘adapts’ well to this outlier, hiding its 1 xa
presence. ¥ 1 x

Statisticians have devised a number of sophisti- Do
cated techniques for estimating the influence of an 1 Xp

individual observation. Without going into detalil, .
the idea behind these methods is that the influerid@trix X is called thedesign matrix Let E
of an individual observation can be estimated bienote ther-dimensional random vector whoité
fitting the model with, and without, that obserelement isE;, and leta be the two-dimensional
vation. The change in the fit, measured in sonvector whose elements agg and a;. Then the
objective manner, determines the influence of thaxatrix-vector representation of (8.10) is

observation. See [41], [78], and [90] for details and. L=
methods. Y = Xa+ E. (825)

Bounded influence regressiofM-estimation, The least squares estimates are obtained by
see [154])—of whichmedian absolute deviationchoosinga so that the squared length Bf given
regression is a special case—has become gy
popular way to protect against the effects of L . .
influential outliers. Such techniques are nowSSE = ETE= (Y —x3)T(Y — x3), (8.26)
generally available in statistical packages and = = . ) o ) .
subroutine libraries. Two kinds of action are takef§ Minimized. Differentiating with respect ta
to control the effects of outliers. First, the error&€€: €.9., [148, pp. 350-360]), we obtain the
8 (8.12) are weighted (see Section 8.6) so thaprmal equations
observations corresponding to outlying values of, .1 g a2
the factorX receive less weight. Second, rather5X (Y-8 =0,

than substituting the weighted errors into normgjhereg is a two-dimensional vector of zeros. The

equations (8.14) and (8.15) to obtain parametgg|utions of the normal equations are given by
estimatorshounded errorsre substituted into the _

equations. That s, the M-estimates are obtained &= (X¥Tx)~1xTY. (8.27)
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Some simple algebra reveals that estimator (8.2¥hereX’] is a nonzero Z 2 matrix andX’; is the
is identical to estimators (8.16) and (8.17) derivegh — 2) x 2 matrix of zeros. Therefor6S¢€ is of
previously. the form
The sums of squares appearing in (8.19) argsg _
also easily re-expressed in matrix-vector form. -
Substituting (8.27) into (8.26) we obtain Whegeil consists of the first two elements &f
SSE = QT(I . X(XTX)—lXT)?, (8.28) andZ», C_or_lsi_sts _of the remainingn — 2) elements.
Upon minimization we see that

(21— X18) (Z1 — X18) + 2325,

whereZ denotes then x n identity matrix. By

n
noting that SSE = 2;22 _ Zzi'
1/n i=3
o7 n Now from the matrix-vector form of the regression
y=Y : model we see that the elements & are

independent and have common variamée(the

. covariance matrix of both' and KY is aEZI).
we obtain that the sum of squares due fhereforesse /o is x2(n — 2) distributed. Note
regression, given by i_; (iyjx=x; — ¥)* canbe na4n _ 5 is the dimension of the sub-spanet
expressed as spanned by the columns of the design matrix.
SSR =YT(x(xX™)aT —uy, (8.29) Moreover, becaus&SE depends only upoiZ,
anda depends only upoi 1, we see thaSS¢ is
independent oé.

1)n

wherel{ is ann x n matrix with each entry equal
to 1/n. The total sum of squares is given by

SST =YT@-uy. (8:30) 8.4 Multiple Regression

8.3.20 Distributional Results. Here we briefly The simple linear regression model we have
demonstrate how Properties 1-5 stated in [8.3&}amined up to this point, while enormously useful
are obtained and provide a geometrical intein climatology and meteorology, has severely
pretation of the concept of degrees of freedortimited flexibility. Many methods, such as the
These ideas generalize easily to include regressi®S (model output statistics) anderfect prog
models that contain more than one factor. statistical forecast improvement procedures (see,
Now suppose again that the errdgs are iid for example, Klein and Glahn [226], Klein [224],

normally distributed with mean zero. Thehhas Klein and Bloom [225], Brunet, Verret, and
a multivariate normal distribution with meakia Yacowar [71]), require the use of regression
and covariance matrix;EZI . It follows thata is models with more than one explanatory factor.
normally distributed with meaa and covariance The working example we develop as we
matrix o2(X1X)~1 (see Section 2.8). progress through the section is the cloud param-

Next we demonstrate thiStSE/crE2 is indepen- eterization example introduced in [8.1.4].
dent ofa and distributegg?(n — 2). Letk; andk>
be orthonormal vectors spanning the column spa@8&.1  The Multiple Regression Model. A
of the design matrix’. ChooseKs, . .., kn so that multiple linear regression model expresses a
r<1, I22, . ..,En form a complete orthonormal basisesponse variable as an error term plus a mean
for R". Let Z = K'Y where K is then x n that is conditional upon several factors. Suppose
matrix that hasﬁi as itsith column. Then, since we observe a response variabfeand k factors
KTK = KK =Z,Y = KZ. Now substituting for denoted by X1, ..., Xy that are thought to
Y in expression (8.26), we have affect the expected value of. These random
SSE — (\? —Xé)T(\? _ X3 yariables are all observed times. The result

- SR . is a sample ofn (k + 1)-tuples represented

= (KZ - xa) (KZ — X&) by random variableY;, Xy, ..., Xki) Whose
= (Z-K'x3)"(Z - KTx3). actual observed, or realized, values are represented
by (yi,X1j,...,Xki), fori = 1,...,n The
multivariate version of (8.10) is given by

k

*
KTX:<X1 ) Yi=ao+ ) axi +Ei. (8:31)
x5 =1

Because the first two columns &€ span the
columns ofY, we have thatCT X is of the form
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where theE;, fori = 1,...,n, are iid random 0.233. The coefficient of multiple determination,

variables with mean zero. We usually assume th&g, is equal to 0.938, indicating that and Ac

these errors are normally distributed. jointly represent about 94% of the variability in
This model states that the mean of, Inrt inthe data set. The total variability in the 45

conditional upon the realized values of the factofs t values of the Landsat data set is partitioned by

Xj, can be expressed as a linear combination of tthe fitted model as follows:

factors. Thus the model is linear in its parameters.

However, the factors themselves can be nonlinear Source Sumof Sq.  df

functions of other variables. For example, the R - 24,705 5

model specifies a polynomial of ord&rin X if egression :

Xii = (Xi)'. Error 2.287 42
The model we will fit to the Landsat data (cf. Total 36.992 44

[8.1.4]) has the form

(8.32) The methods of [8.3.20] can be used to prove the
following properties, which form the basis of the

The InT) term is used to account for thenference procedures used in multiple regression:

curvilinear relationship betweenandInt that is N

apparent in Figure 8.3 (left). See also [8.6.2]. 1 ais an unbiased estimate af

Int =ag+ a1 In(@) + axAc + E.

2 52 = £7E is an unbiased estimate @,

8.4.2 Matrix-vector Representation of the Mul-
tiple Linear Regression Model. The develop-
ment of least squares estimators and inferentialg 3 a~N@ o? 2(xTx) 1y,
methods for multiple regression parallels that for
the simple linear regression model once the model
has been expressed in matrix-vector form.

Asin [8.3.19], letY represent tha-dimensional
random vector whosith element isY;. DefineE 5 SSE/o¢ ~ x*(dfe).
similarly. Let the design matriX’ be then x (k+1)
matrix given by

4 Ais independent of S€E.

8.4.3 Multiple Regression Model Without an

1 X11 ... Xk1 Intercept. Sometimes it may be desirable to
1 X12 ... X2 force the fitted regression surface to pass through
X=1. . N the origin. In this case coefficieag in (8.31) is set

to zero and the column of 1s in the design matrix
is deleted. The least squares estimator is computed
Leta be the(k + 1)-dimensional vector consistingds before by substituting the modified design
of model parametersg, a, ...,ac. With this matrix into (8.27). The variance components are
notation, the matrix-vector representation of (8.3€pmputed using
is identical to that of the simple linear regression R R
case given in (8.25), where we ha¥e= XYa+ E. SSR = Y (X(XTx)txNY

The least squares estimatorgdnd the variance  SSE€ = YT (Z — X (XTx) 1aT)y
componentsSS7, SSR, andSSE are computed  go7 — VTV
asin (8.27)—(8.30).

The degrees of freedom for the variance

1 X]_,n N Xk’n

components are as follows: The corresponding degrees of freedom are
Source Sum of Sq. df Source Sum of Sq. df
Regression SSR dfr = k Regression SSR dfr = k
Error SSE dfe = n—-k—-1 Error SSE dfe = n—-k
Total SST dff = n-1 Total SST dff = n

When model (8.32) is fitted to the Landsat data particular, notice that there is one additional
described in [8.1.4], we obtain parameter estimatdsgree of freedom for error because it was not
Ao = —0.747,3; = 0.794,3, = 1.039 andog = necessary to fit the intercept parameter.
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8.4.4 A Confidence Interval for the Mean of Parameter | 95% Confidence Interval
the Respo_nse Variable. LetX represent tThek+ a0 (—0.936, —0.557)
1)-dimensional vectoX = (1, X4, ..., Xx)'. The a (0.661, 0.927)

rows of the design matrix can be thought of as a
collection ofn realizations ofX. From (8.31) we
see that the expected valueYfconditional upon We see that the estimated valuesefis somewhat

X =X is given by less certain than that ofg and a;. However,

we can safely infer that all three parameters are
significantly different from zero. We should add
the caveat that these inferences are valid only if
our assumptions about the errors (i.e., that they are

ap (0.735, 1.343)

Ay 5z = XT3, iid normal) hold.
B The parameter estimatog are seldom inde-
Property 3 of [8.4.2] tells us that pendent becauseY'X)~1 is seldom a diagonal

matrix. Therefore multiplgp x 100% confidence
intervals for, saym different parametersio not
Using properties 4 and 5 of [8.4.2] we obtain thaonstitute a joinp™ x 100% confidence region for
them parameters taken as a group (see [8.£.7]).
T_ ~ t(dfe) Pr_opert)éS of [8.4.2] t_eIIs us thgt the cTovariance
Fe/XT (XTI : matrix of & can be estimated witF 2 (X Tx) L.
The estimates for our example are:

Thus ap x 100% confidence interval for the

ypgex ~ N XT3, 2XT (X)) 71%).

_ Hyix=x T My ix=x

conditional mean at has bounds Correlation | @ EN a

R R \/ﬁ EN 1.000 -0.532 -0.135

119 5=x £ ta+p) /20y X (X)X, (8.33) a —0.532  1.000 —0.731
a -0.135 -0.731 1.000

wheret 5,2 is the appropriate quantile of the
distribution withd fz degrees of freedom obtained
from Appendix F. As for simple linear regression3.4.7 Joint Confidence Regions for More Than
the true response surface (a plane) will be cover&he Parameter. A joint p x 100% confidence
by the range of hyper-surfaces described by thisgion for p parametersa,,...,q, can be
expressiorp x 100% of the time. obtained as follows.

First, leti/ be the(k + 1) x p matrix that has

8.4.5 A Confidence Interval for the Response &;. Where&; is given by (8.34), in colum, for
Variable. As with simple linear regressionfax j = 1..... p. Then the vectod® = ¢/Ta contains
100% confidence interval for the response variagige p parameters of interest and is estimated by
Y atX = X is obtained by adding 1 to the quantit@® = UTa. Using Property 3 of [8.4.2] we see that
under the radical sign in (8.33). the estimator has a normal distribution given by
35 T3 27T yTay-1

8.4.6 A Confidence Interval for Parametera. &~ NUE U X X))
Let§ be the(k + 1)-dimensional vector (see [2.8.9]). Now let

8 =05001-...8K" (8.34) vy T xTx) L2

wheregj = 1if | = j andé; = O otherwise. The gq thatyTy — LT (xXTx)~U]~L, and definé to
p x 100% confidence interval f@ is obtained by pq thep-dimensional normal random vector
substitutingg for X in (8.33).

The matrix(X Tx’)~* for the Landsat data fitted Z = V(@S — &°).
with model (8.32) is

6This type of rectangular region in parameter space is also
0.1714 —-0.0649 -0.0371 not a good way to construct a joint confidence region when
—0.0649 0.0842 —0.1409 (8 35) estimators are independent. Construction of a confidence region
’ ) . ’ ) should use the principle that any point in parameter space
—0.0371 —0.1409 0.4416 outside the confidence region should be less likely given the
. . data than points inside the confidence region. For iid normal
Therefore, the 95% confidence intervals for thfata this means that the boundaries of confidence regions

estimated parameters are should be ellipsoids. See [6.2.2] and Figure 6.16.
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Then T w ‘ ;
L 0 N
Z ~ N(0, o7), = e
g o (\
whereZ is the p x p identity matrix (see [2.8.9]). O
Therefore © [Tt oooATTTRmoooooooes
b 3 0
~ . s L o
@ -a)"Vva -a) ~ x2p. ©
O'E >
SRS
Q o

We now have the ingredients needed | |
construct a simultaneous confidence region for 0.0 _ 0.5 1'0_ _ L5
parametersa,, ..., a,. By Properties 4 and 5 Optical Depth Coefficient

of [8.4.2], the x%(p) random variable above

IS |r‘1stzlse€pendent of the®(dfe) random variable Figure 8.13:The joint 95% confidence region for
dfe =7 Therefore, from (2.29), we see that e In(7) and A, coefficients of model (8.32).
The estimated coefficients are indicated by the
@S-8 )VTV@ES - &) dot. The dashed lines indicate the individual 95%

gEz ~ F(p.dfe). confidence intervals computed as in (8.33).

Thus thed x 100% confidence region, an ellipsoid, ) _ )
is composed of all points in th&-+1)-dimensional 8-4.8 Is There a Regression Relationship?

parameter space that satisfy the inequality This question is answered by testing the null
hypothesis Ij: a3 = ... = ax = 0. We could

@S —aTVTV@Es - 8 proceed as we did above when constructing the

aEz <Fp (8.36) joint confidence region by constructing a suitable

kernel matrix VTV and then developing a test
where Fp is the p-quantile of theF distribution statistic of the form
with (p, d fz) df obtained from Appendix G. - ~
- - avTva
Let us consider the problem of constructingr — £~ "<
a joint p confidence region for a subset of two 3,52
parameters,(a;, az), in our Landsat example.
Proceeding as above, we have

(8.37)

which is distributed F(dfr,dfg) under H,.
However, in this case there is an easier way. It can
0 0 ):| -1 be shown that (8.37) is also given by

01 0) Tyt
@1 o0
{(o 01 (0 1

_( 2547 813
o 8.13 486 /- which is easily computed as a byproduct of the
) _ ~least squares fitting procedure. Large values of
Expanding (8.36), we find that the points in the are evidence contrary to g so the test is
joint p confidence region fofay, ay) satisfy conducted at thél — p) x 100% significance level
R R R by rejectin whenf > F, the p-quantile of
254781 — a7)2 + 2 x 8.13(8a — ay) (@ — av) Fy(d fé de)g_ ko p NEP4
+4.86(@2 — 2)° < Fﬁaé We findf = 3186 in our Landsat example, a

. o . lue that is significant at h less than the 0.1%
whereF; is thep-quantile ofF (2, 42). ?’::/gf atis sighimicant at much less than the 0

The 95% confidence region computed in this
way is displayed in Figure 8.13. The tilt of the
ellipse reflects the correlation betwegnanda,. 8.4.9 Are all Parameters in a Subset Zero? We
The point estimate is shown in the middle ofould answer this question as well by constructing
the ellipse. The dashed lines indicate the 958 suitable kernelV™V and computingF as
confidence intervals foa; anda, computed with in (8.37). Again, there is an easier and more
(8.33). Note that the rectangular region defined liytuitively appealing answer.
their intersection is substantially larger than the Consider the following possible approach for
region enclosed by the ellipse. testinghy:a, =---=4a,=0.

vy

_ SSR/df

F — e £
SSE/d e
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e Fit the full regression model including theevidence of outliers, heteroscedasticity, and lack-
p factorsX|,, ..., Xj,. Denote the resulting of-fit. For multiple regression, residuals should
regression and sum of squared errors e plotted against the estimated conditional mean
SSRe and SSE&k, respectively, where the(i.e., the fitted model)and against the values
subscript F indicates that these variancef individual factors. Bear in mind that outliers
components were obtained by fitting the ful{see [8.3.13]) will be more difficult to detect
model. than in the case of simple linear regression.

Use objective methods for detecting influential

o Fit the restrictedregression model specifiedypservations (see [8.3.18)) if at all possible. Use
by the null hypothesis by excluding factorgrobability plots (see [8.3.14]) to detect departures
Xiys ..., X1, from the design matrix. Denotefrom the assumption of a normal distribution. The
the resulting regression sum of squares ggneral considerations of [8.3.15] apply, so we
SSRR. can proceed cautiously if the normal distribution

. . . sumption is in doubt. When appropriate, use

e The increase in the regression sum (faﬂse Durbin—Watson statistic (8.24) or runs test

squares that is obtained by adding factogy .pocy for dependence amongst the errors (see
Xy, - -, X, to the restricted model is g|ven[8_3_16])_

2.3:9‘75‘387)%/';2] ES%(R')U;:deir;ibr; d[ésgr:EZn; of We now briefly examine the fit of model (8.32)
R)/OE] ~ X"(P P to the Landsat data set described in [8.1.4].

885'.:' Thus, using property 5 of [8.4.2], WeFigure 8.14 shows studentized residuals plotted
obtain a test statistic —=
againstn z (right). The left hand panel shows one

(SSRE — SSRR)/P outlier with undue influence on the fit. One effect

F= SSEF /d e, of this outlier, the extreme point in the lower left
(SSRE — SSRR)/P corner of the right hand panel, is to shift the other

= 5 guantiles in the probability plot upwards, thereby

%e giving the impression that the upper tail of the

o error distribution may be narrower than that of the
that is distributed (p, d fe. ) under H. Here normal distribution.

dfg. is the degrees of freedom of the sum of

. Figure 8.15 shows the same diagnostics for
squared errors for the full regression.

the fit that is obtained after removing the outlier
The test is conducted at the — p) x 100% from the data se_t. The left hand panel shpws
significance level by rejecting ¢whenf > Fp, that there may S'tI|| pe one or twp observatlons
the p-quantile ofF (p, d fe). fcha_t need investigation. Ot_her dlagnostlcs_also
indicate that these observations, corresponding to

) ) ] .. the two largest remaining studentized residuals,

8.4.10 Diagnostics. We have two things in mind 4re somewhat more influential than we might like.
when we think about the fit of the model. The,q right hand panel shows improvement in the

first is, how well does the model specify valuegistriputional characteristics of the residuals after
of Y from the factorsX;? The coefficient of .o moval of the outlier.

multiple determinatiorR? = ‘;‘2—772 (see [8.3.12])
gives a quick but somewhat optimistic answey,
Use cross-validation (see Section 18.5) if it ié

|mp(§)r|tant fto obtain 1a8 gozod estimate of futur%O is —0.0748), but there are substantial changes
modet per ormance[_ -5.2]. . in the coefficients oft (87 = 0.866) and A¢
The second worry is whether or not mferencE2 — 0.866). Also,5¢ is reduced to 0.208 and

are made reliably. Implicit in the discussion 1G:2 e ases slightly to 95.2%, a further indication
this point are the assumptions that the errors R

(8.25) are iid normally distributed and that the

full mOdfeI adr?quaf‘tely Leprde_sents t.he Cond(;[lo”dl "The outlying observation comes from a Landsat image
mean o Y. _T erefore the diagnostic proceduregeniitied as scen€4 by Barker et al. (see [18, Table 2]).
discussed in Section 8.3 should be applied t@e image contains scattered cumulus clouds and appears to
confirm that the distributional assumptions are &gve large mean optical depth relative to its fractional cloud

; f o ; erage. However, the image was taken when the solar zenith
close to bemg satisfied as pOSSIb|e and that tglcr%le was 68. Optical depth is difficult to estimate accurately

inferences can be p_roperly qualified. Scatt_er PIgFSthis scene because of the oblique trajectory of light incident
(see [8.3.13]) of residuals should be examined foti the clouds.

Removing the single outlier results in fairly
rge changes to the fitted model. There is little
hange in the estimated intercept (the new value of

at the fit is improved.
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Figure 8.141 eft: Absolute studentized residuals plotted agalﬁtfor the fit of the model (8.32) to the
Landsat data described in [8.1.4]. -

Right: A probability plot of the ordinary residuals z — Int.

C_U ]
_S ™
g ° ° ﬂ
[} . i
N . Sl 3
E — * ® *% {o [ad
) o o LIPS M
ie] . )
E o e ® © o o o * M
n o °
0 1 2 -2 -1 0 1 2
Estimated Log Optical Depth Ouantiles of Standard Normal

Figure 8.15:As Figure 8.14, except these diagrams illustrate the fit that is obtained when the large
outlier is removed.

Left: Absolute studentized residuals.

Right: Probability plot of ordinary residuals.

8.4.11 Multicolinearity. We have, by now, The sensitivity of the model is estimated from the
learned to think of the factors in a multiplecondition numberc (X) of the design matrixX,
regression as columns in the design matriwhich is defined as the ratio between the largest
Two or more factors aremulticolinear when and smallest singular values af (see Appendix
the corresponding columns in the design matrE). A good introduction to the use af(X) for
point in similar directions inR", that is, when detecting multicolinearity and strategies for coping
they are strongly correlated. Therefore, oneith estimator sensitivity are contained in [78,
way to look for multicolinearity is simply to pp. 138-144] (see also [104]). Some statistical
study the correlation matrix of the non-constamackages, such as SPlus [36], are able to produce
factors. Large correlations indicate potentiaensitivity estimates.

multicolinearity problems.

The effsct of muIticoI.ineari_ty Is to mgke t,h98.4.12 Ridge Regression. One way to cope with
matrix XX nearly uninvertible, resulting in , icolinearity is to remove redundant factors
highly variable parameter estimators (see Propefym the model. However, this is not always

3 of [8.4.2]) and making it difficult to diagnose the, sqihje or desirable for either aesthetic or visual
factors that are mostimportant in specifyMg  yoa50ns. In this casedge regression(see, e.g.,

Parameter estimates are sensitive to small vgii04] or [420]) is an alternative. The idea is to
ations in the data when there is multicolinearitgive up the unbiased property of least squares
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estimation in exchange for reduced estimatf8.4.9]. However, in problems with a large number
uncertainty. of factors that are each potentially important for

In ridge regression, constraints are implicitlyepresenting the conditional mean of the response
placed on the model parameters and the leastiable, an automated procedure is needed.
squares problem is then solved subject to those
constraints. These constraints result in a modifieglg 1 Stepwise Regression: Introduction.
less variable, least squares estimator. First, n&gspwise regression is the iterative application of
that the ordinary least squares estimator (8.27) cgfiward selection and backward elimination steps.
be written We first describe these procedures and then return
= T 1T to the subject of stepwise regression. However, we
a=P AT PXY, . " .

need to introduce some additional notation before

where the columns ofP are the normalized delving into detail.
eigenvectors oft "X and A is the corresponding We use SSRy, .|, to represent the sum

diagonal matrix of eigenvalues. That ¥, x = Of squares due to regression when the
PAP. One form of ageneralized ridge regressionfactorsXj,, ..., X, are included in the multiple
estimator, which conveys the genera| idea and tf@l’ESSiOﬂ model. Similar notation is used for the
source of the term ‘ridge, is given by sum of squared errors. We USSR,y ,....1p

N to denote the increase in the regression sum of
aridge = PT(A +D)1PXTY squares that comes about by adding fadtgr,

: . . ” to the model. That is
whereD is a diagonal matrix of positive constants.

The effect of inflating the eigenvalues in this waySSRupH)“ll,”,Jp

is to downplay the importance of the off-diagonal = SSR
elements ofXTX when this matrix is inverted. !
The constants, are, of course not known. Ridge

regression algorithms use a variety of procedures

to choose appropriate constants for a given desigr-2 Forward Selection. Before any fitting is
matrix X' one, a decision should be made about whether

or not to include an intercept in the model. If an
) intercept is to be included, it should be included at
8.5 Model Selection all steps of the forward selection procedure. The

) ] steps are as follows.
None of the inference methods described in

Sections 8.3 and 8.4 performs reliably if factors 1 Simple linear regression is performed with
are missing from the model. On the other hand, each factor. The factoX|, for which SSR,
if the model contains unnecessary factors it will  is greatest is selected as tihéial factor.
be unnecessarily complex and will specify more
poorly than it could otherwise. We therefore
briefly discuss methods helpful for developing
parsimoniousnodels. The main goal here is not so
much to specify accurately or estimate a complete
model, as it is to perform screening to discover
which factors contribute significantly to variation
in the response.

The primary screening principle we use is that 3 Test the hypothesis that inclusion o,
a variable should not be included in a model if  gignificantly reduces the regression sum of
it does not significantly increase the regression  squares by computing
sum of squaresSSR. A careful and systematic
approach is needed because a test of an individual SSRi, 1
parameter, which asks whether a specific factor F= (SSE(y1,) /(0 — L+ |{11}]))
makes a significant contribution after accounting
for all other factors, may hide the importance of wheren’ = n or n — 1 depending upon
that factor within a group of factors. whether or not the intercept is included, and

When the number of factors in a problem is  {l1} denotes the list of previously selected
small it is usually possible to choose a suitable factors.F is compared with the critical values
model, as in the example above, using the tools of of F(1,n" — (1 + [{I1}])).

2 Search for factoiX,, 12 ¢ {I1}, for which
the incremental regression sum of squares
SSRi,q,) is greatest. The notatior{l1}
denotes the list of previously selected factors
andly ¢ {l1} denotes any factor not ifi1}.
This list contains only the initial factor after
step 1 has been completed.
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4 Stop at the previous iteration ¥, does not The idea here is to choose the model that
significantly increase the regression sum afinimizes the AIC criterion given by
squares. Otherwise, includg, in the model

and repeat steps 2 and 3. AIC = —2I@1,...,?a]p)+2p
= nlog(275¢) + 5580 sl +2
8.5.3 Backward Elimination. The backward - g E G2 P

elimination procedure operates similarly to the . o )
forward selection procedure. wherel@,, ..., a,)is the log-likelihood function
(see [8.3.4]). That is, minimizingAIC is
1 Fit the full model. equivalent to maximizing likelihood, but penalized
for the number of parameters in the model. As with

2 Search for the factor that reduces th we use the best available estimate of the error
regression sum of squares by the smallesP’

amount when it is removed from the model.vazr'ance. when computingIC, the es'Flmator of
og obtained from the least squares fit of the full

3 Conduct anF test to determine whethermodel. Note the similarity betwee®, andAlC.
this factor explains a significant amount of

variance in the presence of all other factog5 6 Numerical Forecast Improvement. One
remaining in the model at this point. Removeneteorological application for screening regres-
the variable from the model if it does nokjon techniques is in the development of statistical
contribute significant variance. procedures for improving numerical weather fore-
4 Repeat steps 2 and 3 until no variable can 833@ Improv_emelnt IS reqwrlefd because gl(}bag,
removed from the model. and even regional, numerical forecast models do
not accurately represent sub-grid scale processes.
Statistical procedures attempt to exploit systematic

. d bi ¢ d sel t_relationships between the large-scale flow of the
regression procedure combines forward selecligi, atmosphere, which is both well observed and

with backward elimination. As forward selectioqlveII represented by numerical forecast models
progresses, factors selected early on may beco & local phenomena. '
redundant when related fa_lctors are_selected du_rinqvIOS procedures (see Glahn and Lowry [140]
later steps. _There_fore_, In stepwise regressioll. kjein and Glahn [226]) rely upon ‘specification

backward eI|m|.nat|on is performed after ever}gquations’ that describe statistical relationships
forward selection step to remove redunda tween numerical forecasts of atmospheric

variables from the model. Forward regression and . ditions in the troposphere (i.e., model output)

backward elimination steps are repeated until Whd observed variables at specific points on the
further change can be made to the model.

surface, such as precipitation and temperature. The
primary tool used is multiple linear regression.
8.5.5 All Subsets Regression. Another screen- The advantage of MOS over perfect prog is that
ing approach that has become feasible with if-inherently corrects for forecast model biases in
creased computing power is all subsets regressiggih the mean and variance. A disadvantage of
As the name suggests, the procedure fits 8ll 105 is that the specification equations need to
possible subsets of factors to the response variallgapt constantly to the changing characteristics of

8.5.4  Stepwise Regression.The stepwise

The screening statistiCp the numerical forecast model and its associated
SSE(L....15) data assimilation systems.
Cpul ((((( ) = =2 (n—2p) Perfect prog procedures (See Klein, Lewis, and
%E Enger [227], Brunet et al. [71]) are similar to MOS

is computed for every model and a plot of pointgrocedures except that the specification equations
(P, Cpy,....p)) is produced. Note that the errodescribe simultaneous relationships between the
variance estimate is generally obtained from thanalysed (as opposed to forecast) free atmosphere
full model. A model that fits well will have a and observed variables at specific points on the
computedC,, that lies close to th€, = p line. surface. The resulting specification equations are
This is therefore used as a guide for selectingore stable than the MOS equations because the
models that require more careful examination (seeg . .
[104] or [420] for details). Many c_)the_r t_echnlques, sgch as cluster analy;_ls [;63, 115],
. I . L multiple discriminant analysis [267] and classification and

Alternatively, Akaike's 'nformat'on_ CITLerioN regression trees [63] are also used. See, for example, Yacowar

(AIC) [6] could be used as the screening statistip3s].
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data used to fit the equations are less affected &#ynon-diagonal covariance matrix. If there are
periodic model changes. However, perfect pratepartures from the constant variance assumption
specification equations do not account for foreca$teteroscedasticity; see [8.3.13]), then although
model biases. Statistical downscaling procedurgs: may be diagonal, the elements on the diagonal
(see [97, 152, 252, 403]) that link regional andre not constant. In general, ordinary least squares
local aspects of simulated climate change areeatimates are less than optimal (they are no longer
variation of perfect prog. maximum likelihood estimates) whenevBr: #
Screening regression is strongly affected by théI .
artificial skill phenomenon discussed in [8.3.12] WhenX; is known, the optimality properties of
and also [18.4.7] (see, e.g., Ross [332] or Ungerdinary least squares estimators are restored by
[377]) because these methods select a model frawmlving thegeneralized normal equations. Instead
a set of possible models that adapts most closelydbminimizing (Y — X3)T (Y — X'a), we choosé
the data. Ross [332] citing Copas [91] and Milleto minimize
278] points out that using the same sample to_ o Tal,S -
[sele(]:tpthe model and estigr]nate its coefficie?nts isY ~ Xa)Tzél(Y —Aa. (8.38)
‘overfitting’ and can lead to models that perfornthe generalized least squares estimatosse
very poorly on independent data. It may therefoi@erefore given by
be wise to use three data sets in conjunction with Tt o] Tl
screening techniques; one with which to identify@ = (X" 3z"&) " & 37,
the model,one_with which to estimate coefficients, Weighted regression is the special case in
and one for validation. | which £ is diagonal. Then quadratic form (8.38)
Small data sets often make this strategyqyces to
impossible to use. An alternative method for
. . . . n k 2
estimating the skill of the model is cross- 'Z(Yi _ Zam)
validation, but Unger [377] demonstrates that— = ’
cross-validation does not provide reliable skill . ) .
estimates because of the way in which it interacfd1ere weightui is proportional to 1/ . _
with the screening methods. He proposes theWeighted regression is an option to consider
use of a method callebi-directional retroactive When errors are heteroscedastic, and transforma-
real-time (BRRT) validation instead. The idea igion of the response variable [8.6.2] d_oes r_10t result
that a substantial subset of recent data is withhelfl, @ Model with a reasonable physical interpre-
A screening technique is used to fit a model fgtion- Note that in order to perform weighted
the earlier data (called the base data set). THRQression it is only necessary to know the rglatlve
model is used to forecast the first observation f#€S of the error variances, not the variances

the withheld set. It is then added to the base d4REmselves. Very good prior information about the

set and the process is repeated, thereby collectlG{ptive variances may be available from sampling

a set of verification statistics of the same size 8 Physical considerations.

the withheld data set. More verification data are

collected by running the same process in rever8é.2 Transformations. Transformation of var-
(hence the term ‘bi-directional’). Unger finds thai@bles can be used in several ways in regression
BRRT gives reliable estimates of skill ‘when th@nalysis. First, many models that appear to be

number of candidate predictors is low. nonlinear in their parameters can easily be made
linear.

8.6 Some Other Topics e Multiplicative models, such as

| | | Y = andEGE,

8.6.1 Weighted Regression. The working

assumption to this point has been that the errors can be made linear by taking logarithms to
Ei are normally distributed, independent, and obtain

identically distributed. That is, the vector of

errorsE is jointly distributed A'(0, 62Z), where InY = ay+a1lnxy +azlnx

Z denotes then x n identity matrix. We noted +aglnxs + E.

in [8.3.16] that departures from the independence

assumption lead to difficulties. If the errors are  Fitting can now proceed provided appropriate
not independentE ~ N(0,Xg), whereXz is assumptions can be made abBUt= InE.
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e Reciprocal models, such as wherer y is relative humidity(e is the large-scale
condensate (cloud water plus ice) mixing ratio, and
1
V= ap+aixy + E’ a=ao((L—ry)g*) 7, (8.40)

. . . where q* is the water vapour mixing ratio.
can be made linear by inverting the dependee
onstantsp, «g, and y are scalar parameters

variable to obtain that are estimated by fitting model (8.39, 8.40) to
the output from a high resolutiotioud ensemble

v~ ap +a1xa + E. model(CEM); see, for example, Xu and Krueger
[433]. CEMs are used in the development of cloud
e Bilinear models, such as parameterizations because detailed observational
data on cloud fields are scarce.
. apX1 A second reason for using transformations in
T apt+axXs+E’ regression is to change the model so that it

_ o better satisfies the assumptions necessary to make
can be made linear by cross-multiplying tinferences about the estimated parameters and

obtain about unobserved values of the dependent variable.
X1 & a For example, the heteroscedasticity displayed in
=4 x4 F, Figure 8.8 can be removed by fitting the model
Y a &

or by inversion to obtain x1_x) _otag E
1 a1l axe FE instead of
Y axi axi xi’ Y = ap+ arx + E.

whereE’ = E/ag. Least squares estimatorSuitable variance stabilizing transforms are found

can then be obtained for the rati@g/ag by physical reasoning and by plotting residuals

andag/ag. The particular form that is choseragainst the independent variables.

depends upon whether or not can become

zero, and whetheE/x, better satisfies theg 6.3 Nonlinear Regression. Many of the ideas

distributional assumptions needed to makfiscussed in this chapter can be extended to

statistical inferences about the model tHan the fitting and analysis of intrinsically nonlinear

itself. models such as (8.39, 8.40) provided it is possible
.to assume that errors are iid and normally

* Ma!"y models can be made Imegr ' istributed. Then a reasonable nonlinear regression
their parameters through a combination

. odel for the conditional mean of the response
transformations. For example, a model of ”\‘?ariable has the form

form
1 Yi =h(Xayi,...,Xilay, ..., ap) + Ej.
- 1+aoxi‘1E That is, the conditional mean of the response
variable is a functiorh(-|-) of k factors that is
can be re-expressed as known up to the value op coefficients. Function

h is nonlinear in at least some of the unknown
1 , , coefficients. Parameters are estimated by using
In (7 - 1) =ay+alnx +E. function minimization techniques (such as the
method of steepest descent, see [322]) to minimize
Some models are intrinsically nonlinear and cghe sum of squared errors
not be re-expressed in a way that is linear in the n
parameters. For exgmple, Xu an(_j Randall [434kss — Z(yi —h(Xyi. ... Xkilag. ..., ap)2.
propose the following parameterization for the )
fraction Cg of the sky in a GCM grid box that is

covered by stratiform clouds: Approximate inferences are possible by linearizing

h abouta. See Bates and Watts [35] or Draper and
Cs= rlﬁl’ (a— e %), (8.39) Smith [104] for more details.
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9 Analysis of Variance

9.1 Introduction tion, at least some of the treatment combinations
are applied more than once.
In this chapter we describe some methods that
can be used to diagnose qualitative relationshigs; 5 Experimental Designs in Climatology.
between a quantitative response variable, that {§,¢ experimental units are simulations in designed
a variable measured on a continuous scale, eriments conducted with General Circulation
one or more factors that are classified, perhagg,qeis. Treatments applied to the simulations
according to level, or perhaps only according 1,4 be various combinations of parameteriza-
their presence or absence. tions of sub-grid scale processes, parameter values
Our purpose is to introduce only some ofyr g given set of parameterizations (as in Gough
the concepts oéxperimental desigandanalysis 544 Welch [145]), conditions imposed at the top
of variance (ANOVA). We illustrate the generaps the atmosphere (e.g., a rigid lid as opposed
patterns of_ analysis and thought with thesg 4 sponge layer) or at the lower boundary
methods using a couple of examples from the 4 to examine the model’s systematic response
climate literature. Our coverage of the subject {g imposed sea-surface temperature anomaly
necessarily far from complete. A more completg,ch as the standard Rasmusson and Carpenter
treatment of the topic can be found in Box, Hunteg|_Njifo anomaly [330], as in Boer [51]), vertical
and Hunter [59]. Cochran and Cox [87] providgasoutions for a model, and so on.
a classical treatment. Anderson and McLean [13] Unfortunately, developers of GCMs have not
provide a good description of ANOVA for non-generally relied upon designed experiments to
specialists. differentiate objectively between treatments be-
cause GCM experimentation is quite expensive.
9.1.1 Terminology and Purpose of Experimen- However, developers of models that are cheaper to
tal Design. The classical setting for ANOVA andrun (such as basin scale ocean models and sea-ice
experimental design methods is agricultural expeRodels) have started to study their models objec-
iments, so much of the associated terminology ht¢ely through the use of designed experiments.
its roots in agriculture. Gough and Welch [145], Chapman et al. [79], and
For example, a typical agricultural experimerffowWman, Sacks, and Chang [58] are examples.
might be designed to determine the effect dine Gough and Welch example is discussed in
two factors, say, fertilizer (applied at one ofection9.5.
three different levels) and tillage (the land is
either tilled, or not tilled before seeding) 0r9.1.3 Isolating External Sources of Variability.
crop yield. The experiment might be conducted deficiency of the completely randomized design
as afactorial experimenin which each possible is that variation in the response variable is induced
treatment combination is applied to a separate pladth by the treatments and by variations between
of land according to an experimental design.  experimental units. In agricultural experiments,
The simplest experimental design iscam- variations might occur because the fertility is
pletely randomizeddesign in which treatmentnot uniform from one plot to the next. In GCM
combinations are randomly assigned to plots ekperiments, simulations might be conducted
land (or more generallyexperimental units: any-with different computers, which, owing to the
thing to which treatments are applied). In experpeculiarities of a particular machine, leads to small
ments withoutreplication, each treatment combi-differences amongst simulated climates. In the
nation is applied exactly once. Thus in the simplanguage of statisticians, the treatment effects are
agricultural example introduced here, six plots afonfoundedvith the plot effects in the completely
land would be used. In experiments with replicaandomized design.

171
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The ability to detect treatment effects can be eANOVA are regressions in which the factors on
hanced if experimental designs are constructed tlla¢ right hand side of the equation are indicator
reduce or eliminate external sources of variatiomariables. The choice of model is not very flexible
One such design is thandomized complete blockbecause the indicator variables are used to identify
design. In our pedagogical agricultural exampléhe specific treatment and block combination
we could split each plot into six sub-plots, thethat resulted in each realization of the response
randomly assign treatments to sub-plots with thariable. Some terms in ANOVA models may be of
constraint that every treatment combination afittle direct interest to the analyst because they are
pears once within every plot. Presumably fertibnly present to account for the variation, such as
ity is relatively uniform within each plot, so allbetween block variation, that the experiment was
responses within a plot are subject to the sardesigned to isolate from the effects of interest.
variations induced by differences in plot fertility. ~ Perhaps because of the limited flexibility in

An extra factor, theblock (or plot) effect, is the choice of model, the estimated values of
effectively introduced into the experiment. Whemodel coefficients are generally of less interest
the results of the experiment are subsequentlyan the partitioning of variability according to its
analysed using the methods of ANOVA, we will b&ource and determining which sources contribute
able to isolate variation in the data induced by theignificantly to the variation in the data obtained
blocks from variation induced by the treatment$rom the experiment. The examples discussed
and therefore make better inferences about the this chapter show that this is also largely
effect of the treatments. true in climatological applications of ANOVA
methodology. The model coefficients or, at least,
9.1.4 Randomized Complete Block Climate the relaj[ionships betv_veen model coeﬁici_ents, are

. . . . only of interest after it has been determined that
Experiments. Designed climate experiments factor has a sianificant effect on the response
because of their huge cost, might have to be rl?n ac gnr respon

variable. The specific value of the coefficient is
on several computers, perhaps not all of the same .
iffelevant in many problems because the factor

type. Different types Of. machines have d|ffe_re {vel may not have been measured quantitatively.
schemes for representing real numbers, sligh

) . . S . en when the levels are known, values of the
different implementations of intrinsic functions . ) .

: : . .~ “Yesponse variable might only be available for a
different numerical precisions, etc., resulting

i 7 o :

. . . > few levels of a factor, making it inappropriate

simulated cllmates that are slightly, but sometlm?g attempt to diagnose syste?natic rglgtiopnships

detectably, different, : between the factor and the mean of the response
However, complete block experiments ma

not be feasible as there may not be suﬁicie\r\f?nable'

computing resources available on a given machine

to replicate every treatment combination. b16 Applications to Climatology. In the past,
may therefore be necessary to use anotheyas relatively uncommon to apply ANOVA to
design, such as #actional factorial design(see jimatological and meteorological problems. This
Box et al. [59]) in which only some fractionjs narly hecause our observational data do not
of treatment combinations is applied t0 thgng themselves well to analysis using methods
simulations conducted on each computer. The, qqriate for designed experiments, and partly
effects of some treatment comblnatlons W|II bBecause the cost of properly designed climate
confounded with the block effect in a fractional,,qe| experiments was prohibitively high in the
design. The art of designing a fractional facton%ast, although this situation is now changing.
experiment depends primarily on making informed We will describe applications of ANOVA
choices about the effects that are likely to be sm%1 the analysis of interannual variability in

enough to be safely confounded with the bloc experiment consisting of multiple AMP
effect.

1The AMIP (Atmospheric Model Intercomparison Project)
. ... encompasses most of the world’s climate modelling groups
9-_1-5 What is AN(_)VA and _HOW IS It (see Gates [137] for a description of the project and its
Different from Regression Analysis? There iS goals). All participants ran a standard 10-year atmospheric
a very strong connection between the experimengéhulation imposing observed 1979-88 monthly mean sea-
design and the subsequent analysis of Varia%}‘ace temperatures and sea-ice extents at the lower boundary.

everal groups, such as the Canadian Centre for Climate
used to analyse the data generated by t delling and Analysis, ran multiple AMIP simulations from

experiment. Formally, the models fitted usingandomly selected initial conditions.
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simulations conducted with the CCC GCMII We complete this section by briefly introducing
(see McFarlane et al. [270] for a descriptiothe CCCma multiple AMIP simulations.

of CCC GCMII; and see Zwiers [444, 449]

and Wang and Zwiers [414] for analysis of th ) . . .
AMIP experiments§ We will also describe an%'l'S Example: Multiple AMIP Simulations.

o — i AMIP is a Level 2 model intercomparison as
application of so-calledpace filling experlmgntgl Hefined by the WGNE (Working Group on Numer-

'(f'?l Experimentation). The more primitive Level
i intercomparisons apply common diagnostics to
climate simulations as available. At Level 2, sim-
ulations are conducted under standard conditions,

. mmon diagnosti r m nd validation
9.1.7 Outline. The models and methods usedo o dag ostics are computed, and validatio
; . . . . IS made against a common data set. Level 3 encom-
in one way analysis of variancare described in .

passes Level 2 and also requires that models use a

Section 9.2. These are methods suitable for usé . .
common resolution and common subroutines.

in simple experiments that intercompare the meanAn AMIP simulation (see Gates [137]) is a

responses to a number of different treatmen . . . :
or levels of one treatment. One way ANOVAth year simulation conducted with an atmospheric

: L climate model in which the monthly mean sea-
methods are also appropriate when it is necessar . .
. surface temperatures and sea-ice boundaries are
to intercompare the means of two or more samples. :
. prescribed to follow the January 1979 to December
Both fixed and random effects models are

discussed in Section 9.2. Axed effectsnodel 1988 observations. . .
- The CCCma AMIP simulations were conducted
describes the effect of a treatment as a chan

in the mean of the response variable. This is\%haspectral model ([270] and [52]) that operates

S ‘T32’ horizontal resolution (approximately
deterministic response to a treatment that can S o 375°), has 10 layers in the vertical
replicated from one realization of the experimerznjlt'nOI a Zo-ﬁindte time ste y The first simulatio,n
to the next. Arandom effectenodel describes the - ’

effect of the treatment with a random variable gonducted on a Cray XMP, was initiated from
oy January 1979 FGGE (First GARP Global

form of response that can not be replicated froE'xperiment [44]) conditions. Five additional
one experiment to the next. Methods of inferenc IP simulations performed. on a NEC SX/3

are discussed for both types of one way mOd(?‘/v‘ere started from previously simulated 1 January

The relationship between ANOVA and regression L
. . ) model states. These initial states were selected
is described at the end of Section 9.2.

) from the control run at two-year intervals. Analysis
The models and methods used two way Y v

. ) . _ . of the AMIP simulations begins in June of the first
analysis of variancare described in Section 9.3 g

Th del dt | . ; simulated year. That is, the first five months of
€S€ MOCEIS are used 1o analyse Expenments CRllay, jmylation is regarded as a ‘spin-up’ period

ducted with randomized complete block deSngﬁJring which the model forgets about its initial

or completely randomized designs in which tweonditions, and slow (primarily land surface)

different kinds of treatment have been applied. T B ocesses equilibrate with the imposed lower
discussion in this section is limited to fixed effect

oundary conditions. Because the atmosphere
models.

. ) ) forgets its initial state very quickly, the effect of
The Canadian Centre for Climate Modelling andgecting different initial conditions is basically to

Analysis (CCCma) AMIP experiment is used aSg|act independent realizations of the simulated
a working example throughout Sections 9.2 angmaie's path through its phase space. For all
9.3. This experiment is analysed in more detail igsonts and purposes, these six simulations can be

Section 9.4 with a two way model containing @qarded as having been initiated from randomly
mixture of fixed and random effects. An add't'onaéelected initial states.

example is discussed in Section 9.5, where we

describe Gough and Welch's [145] use of space

filling designs to study the sensitivity of a basi®.2 One Way Analysis of Variance
scale ocean GCM to its parameter settings.

in a basin scale ocean model (Gough and Wel
[145]).

9.2.1 The One Way ANOVA Model. Suppose
23everal other analyses ehsemblesf climate variability that an experiment has been conducted that results

have recently appeared in the climate literature, includi ;
Rowell [336], Rowell and Zwiers [337], Kumar et al. [232]?91 J samples of sizen represented by random

Folland and Rowell [123], Stern and Miyakoda [358], anyariablesYi; ; fo_r i_ = l_’ ceea D andj =1,...,J.
Anderson and Stern [11]. The subscriptj identifies the sample, and the
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subscripti identifies the element of the sampleresult of a different treatment (the specified sea-
Assume that the sampling is done in such a wawurface temperature and sea-ice regime) applied
that all random variables are independent, norm#d, a different experimental unit (a year in a
and have the same variance. Also assume that iiimulation). Because the AMIP simulations are
means are constant within samples. That is, aonducted with an atmospheric model, it seems

samplej reasonable to assume that consecutive mean DJF
states simulated by the model are approximately
S(Yii) = K independent of each other. Thus a simulation can

be thought of as the outcome of a completely

foralli =1,....n, orequivalently that randomized experiment in which each of the=

E(Yij) = 1+ a; 9 treatments is applied once. Each simulation in an
ensemble of AMIP simulations can be considered

foralli = 1,...,n, whereu is the overall mean a replication of the nine treatment experiment.

given by Because the AMIP simulations in the six member
3 CCCma ensemble were started from randomly

= 1 Z wi. selected initial conditions, the replications can also
Ji= be assumed to be independent of one another.
Thus it appears that seasonal mean data from the

anda; is the difference CCCma AMIP experiment can be analysed using

a one way ANOVA appropriate for data obtained

aj = pHj—H from a replicated completely randomized design

between the expectation of;; and the overall With J = 9 treatments and = 6 replicates.
mean. The coefficientsaj are often called

treatment effects. 9.2.3 Partitioning Variance into Treatment
An appropriate statistical model for this type oénd Error Components. In regression analysis
datais (see Chapter 8) we started with a model such
as (9.1), developed parameter estimators, and
Yij = pn+aj + Eij, (91) slowly proceeded towards an analysis of variance

are iid zero mean normalthat pa.rtitioned the total sum of squares into
regression and sum of squared errors. That
approach is also useful in analysis of variance
because it provides a direct means of obtaining
distributional properties for confidence intervals
and test statistics. However, here we use a more
9.2.2 Where Do the Data Come From? Data of jntuitive approach to the analysis of variance that
this sort might be a result of a planned experimeBkgins with the partitioning of variability.
that examined the effects od treatments by  Before beginning, let us introduce a little
applying each treatment to experimental units. notation. Let
The experimenter would have made sure that the
experimental units(e.g., people, rats, plots of _ 1 &<
land, climate simulations, etc.) were representativgoo ~nJ Z Z Yij
of the population from which they were drawn
and that the treatments were applied to th@ the mean of all the observations and let
experimental units in random order.

However, data of this sort might also haveV_ }XH:Y

n &~ !

where the errorsEj;
random variables with varianer2 (e, Ej ~
N, aEz)) and the coefficients; are constrained
to sum to zero.

i=1j=1

been obtained with somewhat less attention®’ —

to experimental design. Suppose, for example,

that we wish to use an ensemble of AMIPe the mean of all the observations that were
simulations to determine whether the specifighie result of thejth treatment. The ‘o’ notation
sea-surface temperatures and sea-ice boundaitiglicates averaging over the missing subscript. By
have an effect on the interannual variability o$ubstituting the model (9.1) into these expressions
the simulated December, January, February (DJ®)d taking expectations, it is easily shown thfat
climate. The 10-year AMIP period (January 1978 an unbiased estimator of and thatY,; is an

to December 1988) includes nine complete DIFbiased estimator of + a;. ThereforeY,; — Yo,
seasons. Each DJF season can be thought of asishen unbiased estimator af.
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The total sum of square$ST, given by Source Sum of Squares df
Treatment SSA J-1
SST = X:X:(Y.J ~Y..)3, Error SS€ Jin—1)
i=1j= Total SST Jn—1

can be partitioned as follows. First, subtract and
addY,j inside the squared difference to obtain 9.2.4 Testing for a Treatment Effect. The
0 effect of the jth treatment is represented by
2 A T 1)\2 coefficientaj in model (9.1). Thus the no treatment
SST = Yii — Yoi Yoi — Yoo)) - 17
2> (i i (Yol ) effect hypothesis can be expressed as

i—1j=1
Then square and sum the individual terms to obtaitlo: &1 = --- = a3 =0, (9.3)
J o _ or, equivalently, as
SST =n) (Yoj = Yoo)?
=1 L2
n J B HO. Zaj == 0
+ZZ(Yij —Y.j)? =1
i=1j=1 We wish to test ljagainst the alternative
n J._ _ _ hypothesis that at least some of the coefficienpts
—2) ) (Yoj = Yoo (Yij — Vo). are different from zero. That is, we tesg Hgainst
i=1j=1

J
The sum of the cross-products is zero becausg, . Za_Z -~ 0.
Y1 (Yij — Yoj) = 0 for eachj. Thus we have .

SST = SSA+ SS€E, We have already noted thaf.j — Y., is
where an unbiased estimator a&j, so it would seem
reasonable that a test ofgldhould be based on

J . o .
_ v v \2 SS A, since itis proportional to the sum of squared
S&A=n Z:l(Y"J Yoo)% (9.2) coefficient estimates. Therefore let us examine the
1= treatment sum of squareSS.A, given in (9.2),
and more closely.
n o3 Substituting the model (9.1) into (9.2) we obtain
SE = ZZ(Yij -Y.p2 3
I=1]=t SSA =nY (n+aj+Eoj — (n+Eo))?
SSA is often referred to as thgeatment sum j=1
of squaresor the between blocks sum of squares J ) J —
SS¢ is referred to as theum of squared errors = nzaj + HZ(on —E)”. (94)

or within blocks sum of square$he latter names

are particularly descriptive of the calculations thq\t]ow note that the second term in (9.4) estimates

werﬁ performed. f is tak J - 1)UE. We can show this by means of (4.6)
The treatment sum of squares is taken o{reraﬁer noting the following.

deviations that sum to zero, thus it hds— 1
degrees of freedom (df). The sum of squared errors1 E,j is the average o iid errors that have
is taken ovemJ deviations such that deviations varianceoEZ. Therefore, using (4.4), we see
within a particularblock (or sample) must sum to that the variance dE.j is o2/n.

zero. That is, the sum of squared errors is taken

over deviations that are subject foconstraints. 2 All errors Ej; are independent. Therefore
ConsequentlySSE has(n— 1) J df. The total sum the within block mean erroron are also
of squares is summed over] deviations which independent.

are subject to only one constraint (i.e., that they

sum to zero) and therefore the total sum of squaﬂéio”ows that the expected value 61S.A is

haven J—1 df. In summary, we have the following

partition of the total sum of squares and degrees g (S5s 4) = n Z a2+ (J — Do (9.5)
freedom. —
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F_RATIO -~ YEAR EFFECT FOR DJF TEMP IN 1-WAY ANGVA mean 850 hPa temperature conducted with the six
= = member ensemble of CCCma AMIP simulations
are shown in Figure 9.1. In this case the variance
components andF-ratio were computed at every
point on the model’s grid. The F-ratio (9.6)
is plotted on a log scale in such a way that a
one contour increment indicates a factor of two
increase irf. The no treatment effect hypothesis is
rejected at the 10% significance level over 65.7%
of the globe. Experience with fields that have
spatial covariance structure similar to that of 850
Figure 9.1:The natural log of theF-ratios for hPatemperature indicates that this rejection rate is

the year effect obtained from a one way analys¢grtainly field significant (see Section 6.8).

of variance of DJF mean 850 hPa temperature Note that very largeF-ratios (i.e.,f > 8 or
simulated in the six member ensemble of CCCidf) > 2.77) cover the entire tropical Pacific
AMIP simulations. The shading indicates ratiognd Indian Oceans. Significantly largeratios are

that are significantly greater than 1 at the 109&Iso found over the North Pacific, the midlatitude
significance level. North and South Atlantic, and the southern Indian
Oceans.

Equation (9.5) shows thatSSA/(J — 1)
estimateerz when H is true, and that it estimate
a number larger thanvE2 when H is false. It may
therefore be possible to construct a test @fiH
another statistic can be found that estimates o
o2 regardless of whether or notolis true. An 2 SSA/SST 9.7)
argument similar to the one we just completed

shows thatSSE/((n—1)J) has this property. that diagnoses the proportion of the response

9.2.6 The Proportion R? of Variance Due to
Treatments. As in regression analysis (Chap-
ter 8) it is possible to compute eoefficient of
rn’nyultiple determination

Hence variable variance that is explained by the fitted
SSA/(J —1) model. As with regression, this is a somewhat
= Cec i 11 (9.6) optimistic estimate of the ability of the model to
SSE/(I(n—1)) . .
_ o _ specify the response given the treatment.
may be a suitable statistic for testing.H An adjustment that attempts to reduce the

In order to useF in a test we must find its tendency forR? to be optimistic is derived as
distribution under the null hypothesis. Methodgliows. The expected value of the total sum of
like those of [8.3.20] can be used to demonstraiguares is
that

J
o SSA/oZ ~ x?(J — 1), under K, ESST)=n) a+ NI -1
i—1
o SS8&/02 ~ x2((n - 1)J), and .
o Therefore the proportion of the expected total sum
e SSAisindependent o§S€E. of squares that is due to the treatments is

Therefore, using [2.7.10], we find that
anJ:l af

under H. Thus we finally obtain the result tha
Ho can be tested at thd — p) significance level tHowever, (9.5) shows that the numerator of (9.7)

. : is a biased estimator of the numerator of (9.8). We
F f . h . . .
qufg:tﬁgngﬁ: (3oinguzﬁcj_ rlt;r;) (gb?;iigzlr}?(t)r; Gherefore adjusfSAin (9.7) so that it becomes an

Appendlx G. 30ften, a pattern analysis approach (see Chapters 13-16)
provides richer and more insightful results. A pattern analysis

fati ; technique is used to obtain patterns representing the dominant
9.2.5 Appllcatlon of a One Way Fixed Effects modes of variation. The fields are then projected onto these

Model to the CCCma AMIP Experime_nt. The patterns. Théoadings, or pattern coefficients, are subsequently
results of the one way analysis of variance of DJnalysed in an ANOVA.

(9.8)
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variability to the response variable rather than
changing its mean. Their effect is modelled using
therandom effectsersion of (9.1), which is given

by
Yij = u+Aj +Eij,

where the errors are it/ (0, aEz) and the ‘random
effects’Aj are iid (0, 02). Random variablea |

are assumed to be independent of the errors. With
these assumptions we see that

Figure 9.2: The adjusted proportionR2 of Yij ~ N(O, UA2+UEZ)~

the total (i.e., interannual plus intersimulation) ]

variance of DJF mean 850 hPa temperature that Rather than testing that the treatment changes
is explained by the imposed lower boundail® mean of the response variable, we are now
conditions in the six member CCCma ensemblelBferested in testing the null hypothesis that
AMIP simulations. Shading indicates valuesRjf the treatments do not induce between block (or

greater than 0.2. between sample) variability, that is,

Ho: 02 = 0. (9.9)
unbiased estimator of the numerator in (9.8). Thne statistic (9.6), used to test (9.3) in the fixed
resulting adjustedr? is effects case, is also used to test (9.9) in the

(-1 random effects case. The statistic also has the same
R§= SSA - J(n—1) SSE distribution under the null hypothesis.
SST ' The differences between the fixed and random

Note that sampling variability occasionally causddfects cases lie only in the interpretation of
R2 to be negative the model and the treatment sum of squares.
4 .

The model tells us only that the treatments may
increase interblock (or intersample) variability.
The treatment sum of squares is an estimator of
this variability. In fact,

9.2.7 AMIP Example: Adjusted R2. The
spatial distribution oﬂ?g for our AMIP example
is illustrated in Figure 9.2. Notice th&? is large
primarily over the tropical oceans. Note also tha€(SSA/(J — 1)) = no? + of. (9.10)
there is a one-to-one correspondence betwegn

andF. In fact, we may write 9.2.9 R? for Random Effects Models. When
I-1) o2 random effects are assumed, we see from (9.10)
__F-1 e = that the variance of the random treatment effect

F 20D 1-R2 can be estimated as [336]

Thus both statistics convey the same informatiorg 2 = SSA/Q —1) - SSE/(J(n — 1)).

and critical values ofF are easily expressed as n

critical values ong. None the less, the messageBhe proportion of variance of the response variable
conveyed by Figures 9.1 and 9.2 are not the santigat is caused by the treatment effects is therefore
The latter gives a much clearer picture of thestimated as

physical relevance of the response to the forcing ~2

o
imposed by the bottom boundary conditions. R% = AziAAz
oA+ OE
J-1
9.2.8 A One Way Random Effects Model. The _ SSA - J((n—l))ssg
one way model given by (9.1) and discussed above ~  SS7T — SSE/J

regards the treatment effeat, for j = 1,..., J, léote again that sampling variability may result in
asfixed(non-random) effects that can be replicate . . 2 2
Negative estimates afz, and henceR’. Also,

from one experiment to the next. However, it '%h . . . ;
) . . ) ere is again a one-to-one relationship between
easy to conceive of experiments in which the .
andF. In this case

response to the treatments is random and therefote
can not be replicated from one experiment to_, F-1 14+ (n—-1R?

the next. Treatments that have this property add® =~ F(n_ 1) andF = a— R?2
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While the form of R? is similar to that of Consequently, th& test conducted by compar-
the adjusted coefficient of determinatioR2, ing
the _|r_1ter_pret_at|pn is _qunfa different because SSA/J -1
specification is impossible in the random effectgg — ==/~ —/
setup. R2 simply estimates the proportion of SSE/(N = J)
variance that is induced by the ‘treatmen'g’against critical values fromF(J —1,N — J)
variations. is approximate rather than exact; the exact
significance level of the test will be somewhat
9.2.10 Unequal Sample Sizes.Although exper- different from the specified significance level.
iments may be planned so that all treatments akaother consequence of unequal sample sizes
replicated the same number of times, an expeis- that the power of the test (recall [6.2.1]) is
ment often yields samples of unequal size. Alsdetermined primarily by the size of the smallest
we must often adapt analysis of variance teckample. Thus, even when the same total number
nigues to data that were not originally gathered fof experimental units are used, experiments
ANOVA purposes. We therefore briefly considewith unequal sample sizes are generally less
one way models with unequal sample sizes: efficient than experiments with equal sample sizes.
However, if variations in sample size are not
Yij = pu+aj +Eij enormous and all other assumptions implicit in
fori=1,...,n;, andj =1,...,J. the analysis are satisfied, the loss of power and

As usual, we assume that errol; are iid precision usually do not pose a serious problem.
, i

N(O, aEz). The treatment effects can be either fixed

or random. The number of replicates subjected $2.11 Relationships Between Treatments. We

treatmentj is denotech; . now return to the fixed effects model of (9.1).
The total sum of squares can still be partitionebhe only inferential consideration so far has been

into treatment and error components as in [9.2.3yhether the treatment effectg are jointly zero.

We have However, once this hypothesis has been rejected
3N one would like to extract additional information

SST — ZZ(Y” ~Y..)>? from the data. Tgols that can be used for this
=i purpose are callelihear contrasts.
J

SSA = an(VOj —Y..)? 9.2.12 Linear Contrasts. Linear contrasts are
j=1 used to test hypotheses about specific relationships
J N between treatment means that may have arisen

SSE = Z (Yij —VOJ-)Z. from physical considerations. For example, the

Il
i
Il
i

AMIP period included the strongest El fi\d event
on record (1982/83) and a relatively weak EFRNI

As in the equal sample size caskS.4 andSSE  event (1986/87). Thus we might ask, within the

are statistically independent, and confines of our one way setup, whether the mean
) ) anomalous response to 1982/83 lower boundary
SSE/og ~ x“(N - J), conditions is similar to the response to the 1986/87

lower boundary conditions.
These kinds of questions can be asked using
J linear contrasts. Tests of simple contrasts, which
N = Z nj.
j=1

where

compare only two treatments or samples, are
similar to the tests employed @omposite analysis
A difficulty, however, is thatSS A/O'Ez is not (see Section 17.3). However, the tests of contrasts
distributed x2(J — 1) under the null hypothesisMay be more powerful than tests of composite
that there is no treatment effect, either fixed dlifferences because the test of the contrast uses
random. This violation of the usual distributionainre information about within sample variability.
theory occurs becaustS.A can not be rewritten as A linear contrastis any linear combination of
a sum of(J — 1) squared normal random variablef€ treatment (or sample) means
that all have the same variance. In this case the J
block mean errorg, are independent, zero mean,;, . — Z Ci L]
normal random variables with varianeg/n;. =1
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for which Y°7_; ¢; = 0. Questions such as that
discussed above are expressed as null hypoth
about linear contrasts: S

J
Ho: Y cjuj =0. (9.11) ==
j=1

In the AMIP example we might satj = O for
all j except 1982/83, for which we might choosg "> ___|=&57" 2 < = =
Cszs3 = 1, and 1986/87, for which we might — = — -
choosecgg/g7 = —1. This contrast would satisfy

the requirement that the coefficients sum to zergigyre 9.3: The natural log of the F-ratios

and the null hypothesis would read ‘the meagy the contrast comparing 1982/83 DJF 850

response in 1982/83 is equal to that in 1986/87."\py temperature with 1986/87 DJF 850 hPa
temperature in the CCCma six run ensemble of

9.2.13 Testing Linear Contrasts. The test of AMIP simulations. The shading indicates ratios

the linear contrast is constructed in the nowhat are significantly greater than 1 at the 10%

familiar fashion. First, we construct an estimataignificance level.

of the contrast

J . . .
~ v then the resulting tests are statistically indepen-
We = JZ;CJYOJ_ (9.12) dent.

Finally note thatJ — 1 orthonormal contrasts
We substitute the model (9.1) into (9.12), andould be used to partition the treatment sum of

compute the expectation af2. We learn that squares int@J —1) independent components, each
with one degree of freedom, and each independent
£(02) - (ic-a)Z L2 Z c_J2 of the sum of squared erro&S¢€.
c — 19 E —~ nj :

This suggests that a suitable test of (9.11) is bastg%g tﬁi 1;2; /SZeSEplor’llsﬁe(z) Oljsitrr:s 'fr:]gCMStﬁ(';/gl

on of Linear Contrasts. The F-ratios comparing
@02 the mean response to the 1982/83 and 1986/87
F= m boundary conditions are shown in Figure 9B3.
N—J Zj:l ny is significantly greater than 1 over 34.9% of the

globe. The diagram shows that there are substantial
differences in the atmospheric response to the two
warm events in the tropical Pacific, the North
Pacific, and the South Atlantic. On the other hand,

. ! %e response to the two warm events is similar
random variables. Also, the mean abe is over Africa and the Indian Ocean during DJF.
zero under the null hypothesis, and therefoi_earger differences evolve in subsequent seasons

the numerator ofF, when properly scaled, is - - ; ;
reflecting the difference in the phasing of these two
distributedx2(1) under H. Finally, we conclude events"[ 9 I I phasing

that F ~ F(1, N — J) under H. Thus the test

is conducted at thél — p) significance level by

comparing the computetlwith the p-quantile of 9.2.15 Diagnostics. We have not concerned

F(1, N — J) (see Appendix G). ourselves much, to this point, with diagnostics of
Note that the test of the linear contrast adaptie fitted model. Many of the diagnostics discussed

itself correctly to account for unequal samplié connection with regression models (see [8.3.13]

sizes, but the test for the treatment effect does nafd [8.3.14]) are useful here as well. In particular,
Note also that if two contrasts, sayandd;, for ~scatter plots of the residuals as a function of

j =1,...,J, areorthogonal meaning that the treatment are useful for detecting outliers

and that K} should be rejected whéis unusually
large. Next we show thatv, and SSE are
independent. Then we argue that is normal
because it is a linear combination of norm

J dej 4The five-month running mean SO index reached a
Z —— =0, minimum in January of 1983 and again in March or April of
iz N 1987.
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and changes in error variance between treatmergt2.17 Equivalent Representation of a One Way
Changes in variability from one treatment to thANOVA Model as a Regression Model. It may
next can also be conveniently tested vithrtlett's be useful at this point to make the connection
test. between ANOVA and regression models. We
can write modelYj; = u + a; + Ejj from
(9.1) in matrix vector form as follows. Le¥

be theN-dimensional random vector constructed
By concatenating theJ nj-dimensional vectors
Y1 J,YZJ,.. . Ynj, J) and defineE similarly.

9.2.16 Bartlett's Test. Suppose we havel

samples (or treatments) of possibly unequal siz
ni, ..., Ny and we wish to test the null hypothesi
that aII errors, either in the fixed or random effect
models, have the same variance. The alternative-f&l A be the (k + 1)- dT|menS|onaI vector of
that at least one sample or treatment has avariaRiametersiu, &, ..., ay) " Then, (9.1) can be

that is different. That is, we wish to test expressed as
Y = XA + E,
L2 2 o
Hoog; = og forallj=1.....J whereX is theN x (J + 1) design matrixgiven
b
against the alternative that the variances are ngt
all equal. Here we useE to denote the variance 110 0
of the random varlables that represent sample or Soos : Ny rows
treatment;j. Let 2, ..., S be the corresponding 110 ...0
sample variances of the errors; that is, 101 ...0
n Ny rows
, i o P o :
S :Z(Yij —Y.)?/(nj = D), 101 ...0
i=1 ol :
) , . 100 1
and letS; be the pooled estimate of the variances
given by oo : Nk rows
1 0 0 ... 1
J _ 2
- 2z —DS  sse The normal equations that provide the least
N N—J CN-=-J squares estimators &f are given by
XTYA = xY. (9.13)

whereN = ZJ 1Nnj.
With this notation, Bartlett’s statistic is given byThese equations have solutions given by
= XT) ATy,
%, Where(XTX)‘ denotes thgeneralizednverse of
XTX (see Graybill [148]). The generalized inverse

where is required becaus& .Y is a non-invertible matrix
(the first column ofY is the sum of the remaining

B =

) J ) J columns). In fact, solution (9.13) defines a
Q=(N-3In(S) — Z(nj = DIn(sp), one-dimensional subspace of the parameter space
=1 RUHD such that every point in the subspace

minimizes the sum of squared errors. We select
the solution of interest by imposing the constraint
Zleﬁj = 0. These solutions are given by

1 L1 1
. ( _ ) e
30-1) ;(”j—D (N-J) =l
aj = Yoj_Yoov fOrJ:l,,\]

and

StatisticB is approximately distributeg?(J — 1) It is easily shown that the regression sum
under H. Large values ofB are interpreted asof squares is equal to the treatment sum of
evidence that Rlis false. Therefore the test issquares derived above, and that the test of the
conducted at thgl — p) significance level by null hypothesis that there is not a regression
comparing the realized value @ against the relationship [8.4.8] is equivalent to the test that
p-quantiles ofy?(J — 1) (see Appendix E). there is not a treatment effect [9.2.4].
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9.3 Two Way Analysis of Variance we again assume to be independent and normally
distributed.
We now extend the model discussed in Section 9.2A fixed effectstwo way model with interaction

so that it is possible to account for the effects of given by
two treatments (if a completely randomized design
has been used) or the effects of a treatment antijl = 1 + & +bj + ¢j + Eiji. (9.15)
a block (if a randomized block design has be
used).

The example we wish to keep in mind is I J
the CCCma AMIP experiment. Recall that we Y & = » bj =0, and
have nine DJF seasons in each simulation, each i=1 j=1

the parameters are subject to the constraints

of which is subjected to a different ‘treatment’ J I _ _
(i.e., the sea-surface temperature and sea-ice Y _Gj = » Gj =0forall i andj,
regime). The experiment is replicated six times j=1 i=1

in six different simulations started from randomly
chosen initial conditions. We can think of the si
simulations as blocks.

nd the errors are assumed to beNid0, oEz).

In both experiments with and without replica-
tion, it is possible to construct models with some
or all of the effects treated as random effects. As

931 The Two Way ANOVA Model— i, 95 g the test statistics used to test for block
Introduction. ~ Suppose an  experiment WaS.q treatment effects are identical to the fixed

conducted that resulted in one outcome Pgfects case, but the interpretation of the tests is
treatment or treatment/block combination. (Trliﬁ

uite different. There are also differences in the
language we use refers to treatments and blokS ,|ation of variance proportions.

because that coincides most closely with our\ye 4o not discuss random effects models in this
example.) Suppose that different treatments gocfign, put a two way model with a combination
were used, and that these were applied in randQfftiyeq and random effects is discussed in detail in

order to | experimental units inJ blocks. gection 9.4 in the context of this chapter's working
We represent the resultindJ outcomes of example.

the experiment with random variables;, for
i=1...,1,andj =1,..., J, which we assume . .
J 9.3.2 Two Way Model Without Interaction.

to be independent and normally distributed. n th £(9.14). th I ¢
A fixed effectsnodel for data of this sort is the.n the setup of (9.14), the total sum of squares

two way model without interactiagiven by is partitioned into treatment, block, and sum of
squared errors as
Yij = n+a +bj +Ejj. (9.14)

The parameters are subject to the constraints

SST =SSA+S8SB+ SS¢,

I J
a=0 and ) bj=0. L _
= ; ‘ SST =" (Yij — Yeo)2,
The errors are assumed to be Nd(0, UEZ).
An important, and limiting, aspect of this model e o
is that the treatment and block effects are assumé%fSA = _X;(Y'O = Yoo)?,
|=

to beadditive This assumption may not be correct,

but we can not determine this with the limited J
number of data that are available. SSB =1 Z(Voj —Yoo)?, (9.16)
To test the additivity assumption it is necessary j=1

to have data from a replicated experiment. If o

a completely randomized design is used, ever — — _

treatm(gnt cgmbination must bg used more tha%&f = ZZ(YU = Yio = Yoj +Yeo)?

once. If a blocked design is used, each treatment i=1j=1

must be used within each block more than once. Using methods similar to those in [9.2.4], the
The outcome of a replicated experiment iﬁ)llowing can be shown.

represented by random variabl¥g;, for i =

1L..,1,j=1...,J,andl =1,...,nj,which 1E&WSSA)=IY1_a%+ (I -1
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2 If Hp: a1 = --- = a = 0 is true, then estimates a humber greater thﬁe?t The effect is
SS.A/UEZ ~ x2(1 —1). to reduce the power of the tests described above.
s 5 The linear contrast methodology described in
3 E(SSB) =13 10+ — Deg. [9.2.12] and [9.2.13] naturally extends to the
41 Hg by = - = by = O is true, then two way case and is not detailed here. Both

the treatment and block sums of squares can

2. ,207_
S8B/og ~ x*(J = 1. be partitioned into independent components if

5 £(SSE) = (I — 1[I — 1)2. needed.
Diagnostic opportunities for the two way model
6 SSE/a2 ~ x2((1 = 1H(J - 1)). without interaction are relatively limited because

q ind q of the relatively large number of fitted parameters
7 SSA, SSB, andSSE are independent. compared with the number of degrees of freedom

It follows from items 1, 2, and 5-7 that the nulfvailable for error. None the less, scatter plots of

hypothesis of no treatment effect, that is, estimated errors, plotted by treatment and block,
can be useful for identifying observations with
Hoiag =---=a =0, large influence.

can be tested against the alternative hypothesis that
there is a treatment effect by comparing 9.3.3 Two Way ANOVA of the CCCma Multiple

AMIP Experiment. We now use the two way
_ SSA/(I —1) model with | = 9 treatments and] = 6
SSE/((1 — 1) —1)) blocks. Because there is only one replication per
with F(1 — 1, (I — 1)(J — 1)) critical values (see treatment/block combination, there d@te-1)(J —

Appendix G). Similarly, items 3—7 are used to }) = 40 dffor error.

The F-ratios for the boundary forced effect
Isshow that the no block effect null hypothesis, that 850 hPa DJF temperature (not shown) are

very similar to those computed using the one
Ho:by=---=b;j=0 (9.17) way model. The small reduction in the number

of degrees of freedom available for error results
can be tested against the alternative hypothesis thaty test that is slightly less powerful than in

there is a block effect by comparing the one way case. However, the estimate of error
SSB/(J — 1) variability is not contaminated by the confounding
= SSEN( — D@ —1)) block effect. The result is that the test for the

sea-surface temperature effect on 850 hPa DJF
with F(J — 1, (I — 1)(J — 1)) critical values (see temperature rejects the null hypothesis at the 10%
Appendix G). significance level over a slightly larger area (66.1%

One possible reason for testing for a block effeef the globe).
is to determine whether or not the block sum of TheF-ratios for the block effect on 850 hPa DJF
squares can be pooled with the sum of squargshperature are shown in Figure 9.4. Theatio
errors. If this can be done, that is, if (9.17) is nadxceeds the 10% critical value f&¥(5, 40) over
rejected, then the between blocks variation can BBout 13.1% of the globe. Previous experience
used to improve the estimate of error variance angth field significance tests (see Section 6.8)
hence increase the power of the test for treatmejginducted with fields with comparable spatial
effects. In this case we compute covariance structure suggests that this rate is not

SSA/(I —1) significar(tjtly grgate_rhthggolor:/;. HB\SvlSver, the sarttel
= test conducted wit a geopotentia
(SSB+556)/(1(J - 1) (not shown) resulted in a rejection rate of 23%,
and compare with critical values fromwhich is likely field significant. Therefore, while
F(I—1,1(J—1)). It is easily shown thata block, orrun, effect is difficult to detect in
this test is equivalent to the test for treatmembwer tropospheric temperature, it appears to be
effects in the one way model with fixed effectsletectable in the integrated temperature of the
[9.2.4]. lower half of the atmosphere.

The interaction terms in (9.15) are confounded The CCCma experiments were actually con-
with error when the experiment is not replicatedlucted on two computers. One 10-year simula-
Then the mean sum of squared errd&#§£/((1 — tion was conducted on a Cray-XMP while the
1)(J — 1)), is inflated by the interaction terms; iremaining five were conducted on a NEC SX/3.
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and comparingF with critical values from
FJO-2,(1 —1)(J—121). The null hypothesis
that there is additional inter-run variation not
explained by the computer change is rejected at the
10% significance level over 9.4% of the globe.

The run effect is observed much more strongly
in June, July, August (JJA) 500 hPa geopotential
for which (9.18) is rejected over 52% of the globe
(primarily in the tropics).

The differences between the Cray and NEC
simulations were not primarily due to the
Figure 9.4:The natural log of theF-ratios for differences between machines (see Zwiers [429]).
the block orrun effect in the CCCma AMIP It turns out, however, that the change in machine
experiment. Each contour indicates a doubling ¢§pe coincided with a change in the source
the F-ratio. The shading indicates ratios that areof initialization data. CCCma’s initialization
significantly greater than 1 at the 10% significancprocedure diagnoses the atmospheric mass from
level. the initialization data. The model subsequently
conserves that mass for the duration of the

We label the Cray ‘block’ as block number 1. Th simulation. The resulting atmospheric mass for the

. ray simulation is equivalent to a global mean
hypothesis that the block effect for the Cray was
equal to that for the NEC was tested with tﬁ‘sun‘ace pressure of 985.01 hPa. In contrast, the
contrastc = (1, -0.2, -0.2, —0.2, —0.2, —0.2).

Specifically, the null hypothesis

Masses diagnosed from the initial conditions used
for the NEC simulations varied between 984.55
and 984.58 hPa. This difference between the Cray
J and NEC simulations, approximately 0.44 hPa,
Ho: Zci bj =0 (9.18) corresp_onds to a .change in 500 hPa geopotential
j=1 height in the tropics of about 3.5 m. The large,

. . nd unex lock eff ri ve i
was tested against the alternative that the contrgstd unexpected, block effect described above is

is nonzero. The contrast was estimated kg)nmarily the result of the change in the source
' of initialization data. This example illustrates that

computing it is difficult to design an experiment so that
J_ it excludes unwanted external variability, since

e =Y ¢jYo;. such variability often arrives from unanticipated
j=1 sources.

Under (9.18), the squared contrast has expectation , .
9.3.4 Two Way Model with Interaction. We

J 2 2 I now briefly consider the two way fixed effects
E(wd) = (Zc,b,-) ~|—|—EZCJZ. model with interaction given by (9.15) in the

j=1 j=1 case in which each treatment or treatment/block
combination is replicated times. The calculation

Therefore (9.18) can be tested by comparing of the variance components is easily extended

2 to the case in which each combination is
F=—35z T 2 not replicated equally. However, the tests for
rT-HJ-0 Zizl Ci treatment, block, and interaction are then only

with critical values from F (L, (I — 1)(J — 1)). approximate (see [9.2.10]) if the corresponding

We obtained a rejection rate of 18.1% when (9.18y'M Of squares has more than one df. _
was tested in DJF 850 hPa temperature at the 1094 the setup of (9.15) the total sum of squares is
significance level (not shown). partitioned into four independent components for

We can test whether there is significant inter-rufeatment, block, interaction, and error, as follows:

variation that is orthogonal to contrast (9.18) bySS7 = SSA + SSB + SSZ + SSE, (9.19)
computing

Spifferences in the way in which the two machines
SSBIW/ Y I_, @ represented floating pqint numbers di_d lead to s_urface elevation
TOF el &=l changes at three locations on the latitude row just north of the
F= J—2 equator, but these were not judged to be the cause of large-scale

% effects in the tropical climate.
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where of o that hasnlJ — (I + J — 1) df instead of
I J n (n —1)1J df is given by
SST = ZZZ(YIH - V000)27 (920) SSI+ SSS

a2
i=1j=1i=1 ET - +d-1)

The effect of pooling interaction and sum of

|
SSA=n3Y " Yico — Yeuo)?, (9-21) squared errors (when it can be done) is particularly
i=1 dramatic if the number of replicates is small.
J
SSB=n1)_(Yojo = Yooo)?, (9.22) 9.4 Two Way ANOVA with Mixed
=t Effects of the CCCma AMIP
Experiment

I3
SST=ny ¥ (Vijo = Yico = Yejo + Yeo)®,  We continue the analysis of [9.3.3] by introducing
i=1j=1 a two way model with interaction terms and a
(9-23) mixture of fixed and random effects.
L3 on The data V\]/ce u;e are Lnon'f]hly means c&fESS hPa
o 2 temperature for December, January, and Februar
S8E = ZZZ(Y”' = Yijo)™ (9.24) fromp which the annual cycle c0¥nmon to all ’
six simulations has been removed (see Zwiers

Assuming fixed effects and i’ (0, o2) errors, [444] for details of the procedure used). For each

i=1j=1i=1

the following can be shown. DJF season we regard the three monthly means

obtained for the season as three replicates of the

o £(SSA) = nJZi':1 ai2 +( - 1)0,52. treatment (i.e., sea-surface temperature) and block
(i.e., simulation) combination that corresponds to

e If Hotay = --- = a = 0 is true, then that season. Although these replicates are not quite
SSA/of ~ x2(1 - 1). independent of one another, we operate, for now,

; as if they were.
o £(88B) =nl1Yi_;bf+ (I —1)og.

e lf Hy: by = --- = by = 0 is true, then 94.1 The Model. The model we use to
SSB/aZ ~ x?(J - 1). represent this data is a two way model with
interaction in which some effects are fixed and
. 5(3231) = nZi'lejJZl Cﬁ + (1 —1)(J — others are random. The model is given by
Dog. Yij = n+a +Bj 4+ Cjj + Ejjl, (9.25)
e IfHp:C11 = --- = ¢g = 0is true, then

5 5 wherei = 1979, ..., 1987 indicates the year of
SS8T/of ~ x“((I =1 - 1)).

the December month in each DJF seaspns=

1,..., 6 indicates the member of the ensemble of
_ 12 e
o £(858) == Deg. simulations,| = 1,2,3 indicates the ‘replicate’
. SSS/JEZ ~ x2(13(n — 1)). (i.e., December, January or February).

We treat the year effects; as fixed effects
o SSA,SSB, SST,andSSE are independent. because every simulation was forced with the
same sea-surface temperature and sea-ice record as

Tests for treatment, block, and interaction effectfictated by the AMIP protocol (see Gates [137]).
as well as tests of linear contrasts among fixed mean response to a given sea-surface
treatments, blocks, and interactions follow in theemperature and sea-ice regime is anticipated
usual way. in each simulation. This is not to say that

As in [9.3.2], the power of the test for treatmen¢ach simulation is identical, since low-frequency
effects can be enhanced if the block and/eariations from internal sources ensures that the
interaction sums of squares can be pooled witimulations are different. However, the fixed
the sum of squared errors. For example, if treea-surface temperature and sea-ice signal are
null hypothesis that there is no block/treatmemissumed to induce the same amount of interannual
interaction is accepted, then an improved estimataariability in each simulation.
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The block effectB; are treated as random ef- There are certainly problems with this last
fects and assumed to be independently distributaslsumption that should make us cautious about the
N(bj, 02) where the fixed parts of the blocksubsequent inferences we make. For example, our
effects,bj, are constrained to sum to zero. Thassumptions imply that the amount of variability
is, we represent the block effect Bg = b +B’]!‘ at high frequencies is not affected by either

where theB*s are iid\(0, o). The idea is that thethe imposed sea-surface temperature and sea-
fixed part of the block effect represents variation i§€ regime or by the state of slowly varying
the simulation configuration (such as the source #ternal processes. Also note that we were careful
initialization data) and the random part represerfi®t to make the assumption that the errors are
excess intersimulation variability caused by thgdependent, because they are actually weakly
particular choice of initial conditions. Variationscorrelated within seasons. We therefore assume
in initial conditions might cause CCC GCMII toonly that error<Ej; andE; - are independent for
produce simulations that occupy distinctly differ¢i. 1) # (i, j"). ErrorsEij andE;j- for| 1" are

ent parts of the model’s phase space if the mod¥Qt assumed to be independent.

has more than one stable regime. Rejection gf H

og = 0 might be evidence of this. However, excef@.4.2 Partition of the Total Sum of Squares.

for the possibilities of this sort of chaotic bewith all these assumptions, we are able to partition
haviour and computing glitches, we do not expetiie total sum of squares into treatment, block,
block effects to contribute significantly to totainteraction, and error components as in [9.3.4] (see
variability. We will see below that it is possible t0(9.19)—(9.24)). Because model (9.25) has mixed
separate the fixed and random components of éfects and some dependence amongst errors,
block effects in model (9.25) provided additionathe interpretation of the variance components is
assumptions are made about the structure of #®@mewhat different from that in [9.3.4]. By taking
fixed components. expectations and making arguments such as those

The interaction effect€;; are treated as purem [9.2.4] and [9.2.6] we obtain the following.
random effec;ts and are assumed to be\lieD, crcz) 1 £SSA) =nl Zi|=1 aiz +n(l — 1)(GAZB +
random variables that are independent of the 2
block effects. The interaction effects represent Eijo"
interannual variations that are not common to all
runs. That is, this term in (9.25) represents the
effects of slow processes in the climate system that SSA
do not evolve the same way in every simulation. m
For example, CCC GCMIl contains a simple C ' UEij.
land surface processes model (see McFarlane et
al. [270]). The evolution of the soil moisture 3 £(SSB) = nl Zle bj2 +nlJ - Dog +
field in this land surface model will certainly n(J — V(g + 02 ).
be affected by the prescribed evolution of sea- Eijo
surface temperature and sea ice, but it will , If Ho: by = - -
not be completely determined by these forcings.

Therefore about 30% of the lower boundary of SSB
the simulated climate evolves differently from
one simulation to the next. The effects of these
variations in the lower boundary over land, and
other slow variations generated internally by the 5 £(SS7) = n(I — 1)(J — 1)(o25 + UEZ-- ).
GCM, are not common to all simulations and will e
therefore be reflected in the interaction term. 6 If Ho: o2 = O'is true, then

2 IfHg:a1 =-.- =a = 0istrue, then

~ x2(l = 1.

- =by = 02 = Ois true, then

2
——— -~ x -1
neg +oZ )

The noise termsEjj represent the effects
of intra-seasonal variations caused by processes SST ~x2((1 = I = 1)
(such as daily weather) that operate on shorter  n(og + o2 ) ’
than interannual time scales (see Zwiers [444] e
and the discussion of potential predictability in - SSA, SSB, SST, andSSE are independent.
Section 17.2). We assume that the errors are
identically distributed\'(0, o¢) and that they are Here o indicates the variance of the seasonal
independent of the block and interaction effects. mean efror.
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9.4.3 Variance of the Seasonal Mean Error. Squaring and summing, we obtain
In our specific application, in which = 3, the |

|
variance of the seasonal mean error is SSA = nJ Z a?+nd Z(Eio —C..)2
2 Eiji+Eij2+Eijs3 i1 i=1
E,. = Var 3

|
= = 2
=Tp UEZ/3, +nJ ;(EIOO Ecco)

+ cross-terms.

WhereoEz/3 is the variance of the mean of thregvhen taking expectations, we see that the
iid errors andTp is a factor that reflects hOWexpected values of the cross-terms in this
the dependence between the errors inflates &ression are zero (some cross-terms are products
variance.Typ is called thedecorrelation time(see of independent, zero mean random variables;
Sections 17.1 and 17.2 for a detailed discussion@ghers are products between constants and zero
the decorrelation time and its estimation). In thigyean random variables). Therefore, the expected

case it is easily shown that value of SS.A reduces to
2 |
To=1+ 22+ p2), (926)  g(554) = nJ Z a?
where p; is the correlation between errors in =1 L
adjacent months, that is, + nJE(Zilzl(Cio - Coo)2>
p1= Cor(Ei j 1, Ei j 2) = Cor(Ei j 2. Ei j.3), +n3E(TlyEis - B2).

and p» is the correlation between errors separated
by a month, that is,

p2 = Cor(E; j 1, Ei j3).

|
We will analyse the effect of the correlated errors€ (SSA) = nJY_a? +nJ(l — 1e?
shortly. i=1

Therefore, using (4.5) and (4.6), we see that

+nd( — 1)0500

9.4.4 Distribution of the Variance Components.
However, we first illustrate how items 1-7 in )
[9.4.2] are obtained by considering items 1 andf2nally, we note thatfgzioo = UEZ”D/J' Assertion 1
in detail. follows.

Recall from (9.21) that

| 9.4.5 Testing the Year Effect: Potential Pre-
SSA=n Z(Vioo —Yooo)?. dictability from External Sources. Items 1-7
i=1 in [9.4.2] provide us with sufficient information to
The x2 assertion (item 2) is verified by usin onstruct tests about year and block effects. As in

arguments similar to those in [8.3.20] to show th ¢-2-5] and [9.3.3], a test of
(9.21) can be rewritten as a sumlof- 1 squared Hp:ayj=---=a =0 (9.27)

independent normal random variables with mea

zero. HenceSS.A, when scaled by the Variancénatermines whether there is a detectable signal

of these normal random variables, is distribute%tmbmablf3 to the external bgundary forcing. If
X2(I — 1), so, the climate may be predictable on seasonal

atgne scales because we believe the lower boundary
conditions (i.e., sea-surface temperature and sea-
. I . ice extent) to be predictable on these time scales
Yico = #+8 +Bo+Cio + Eico due to the much large thermal inertia of the upper
Yooo = tt 4 Bo+ Coo + Eooo ocean and cryosphere.

From items 1, 2, and 5-7 in [9.4.2] we see that
hypothesis (9.27) is tested against the alternative
that some of the year effects are nonzero by
comparing
(Yioo - Yooo) =g + (Cio - COO) SSA/(' — 1)

+ (Eico — Eoco)- ~ SST/(1 — 1) — 1))

The scaling variance (item 1) is obtained
follows. Using model (9.25) we see that

where the over-bar and notation have the usual
meaning, given in [9.2.3]. Taking differences, w
see that

(9.28)
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with critical values of F(l — 1, (I — 1)(J — 1)). J 1 .. \2
Note that this F-ratio was also used to test SSBr = nl Z(ono - mZono) :
this hypothesis in the two way model without 1=2 =2
interaction that was applied to the seasonal means
in [9.3.2] and [9.3.3]. The numerical values ofSBx is proportional to the squared difference
the ratios are also identical because only seasofgfween the mean state simulated in the Cray
means are used in the calculation of (9.28). and the mean state simulated in the five NEC
As reported in [9.3.3], there is a significansimulations, andSSBx can be recognized as a
sea-surface temperature effect. These effects g¢@led estimate of the intersimulation variance
potentially predictablgsee Section 17.2 and alsdhat is computed from those simulations that are
[9.4.7-11]). Hindcast experiments (see Zwie@ssumed to have the same configuration effects.
[444]) demonstrate that in this case potential Taking expectations, we can show that
redictability isactual predictability.
P d P Y E(SSBr) =n(J —2) (|a§+ag+oéjo)
9.4.6 Testing the Block Effect. Using items
3—7 in [9.4.2] we can construct a test of the nuﬁl
hypothesis that there is not a block effect

nd, using now familiar arguments, we can
emonstrate that ¢l aé = 0 can be tested by
comparing

Hoby=---=by=02=0 (9.29) SSBr/(J —2)

against the alternative hypothesis that there is  SSZ/((I —1)(J — 1))

a block effect. This particular form of the nu”with F(J—2. (I —1)(J — 1)) critical values. No

hypothesis comes about because we assumedgiyence was found to suggest tb’ét ~ 0in the

[9.4.1], that the block (i.e., simulation) effect hag:~cma ensemble of AMIP simulations.

both afixed and a randomzcon"_lponent. Thatis, We pgain, taking expectations, it can be shown that

assumed thaB; ~ N (bj, o) with the constraint

that Y7_;b; = 0. The fixed and random 1 &2
j=1%] _ .

components are confounded in our experimentﬁ(ssgf) - n<| (bl T I1-1 Z bJ)

design, so it is not possible to construct separate I=2

o wi i J-1
tests abouty and theb;js without making further + <|082 + o2 +0,§. ))
assumptions about the fixed parts of the block ijo
effect.

Thus, if Hy: aBZ = 0 has not been rejected, the null
hypothesis that there is not a configuration effect
. SSB/(J —1) (Ho: by = bfg“%t”) can be tested by comparing

~ SST/((1 =D~ 1)

Hypothesis (9.29) is tested by comparing

. - F JSSBE/(J —1)
agalinstF(J -1, (! - 1)(\].— 1)) critical values. SST/(I —1)(J - 1))
Again, the test is identical to that for block
effects reported in [9.3.3]. Figure 9.4 showed weakith critical values fromF (1, (I — 1)(J — 1)).
evidence for a block effect, which appears to B&hen there is evidence thaiZ > 0, the no
associated with a change in computing hardwagenfiguration effect hypothesis should be tested by
part way through the experiment. comparing
. Further dissection of the block effect is possible ISSBF/(3 —1)
if we assume that only the computer type and- = SSBo/J—2)
source of initial data affect the fixed part of the R/( )
block effect (i.e., if we assumé, = --- = with critical values fromF (1, J — 2). As noted
bj).Then, using linear contrastsSSB (9.24) previously, there were significant configuration
can be partitioned into statistically independentffects in the CCCma AMIP ensemble.
components as:

SSB = SSBF + SSBr 9.4.7 Testing the Interaction Effect: Potential
Predictability from Internal Sources. The in-
where teraction effects in this experiment are particularly
3.1 interesting because they represent slow, and hence

SSBr = nl

J
(\7100 - —1 Z\?j%)z potentially predictable, processes in the simulated
J-17 climate of CCC GCMII that are internal to the
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climate system. An earlier investigation with thagainst F((I — 1)(J —1),1J) critical values.
predecessor model to CCC GCMII (see Zwiendote that (9.27) and (9.29) can still be tested with
[440]) found evidence for such variations in a sinthe full data set.
ulated climate when the sea-surface temperatureg\pplication of the ‘rough and ready’ method
and sea-ice boundaries follow a fixed annual cycl® 850 hPa temperature from the six simulation
It will be necessary to account for the effect€CCma AMIP experiment demonstrates weak evi-
of dependence within seasons to test the nudkénce for interaction effects (the null hypothesis is
hypothesis rejected over 14% of the globe). What makes the
) result interesting is that most of these rejections
Ho: o¢ =0 (9.30) occur over land. They are apparently related to
that there are no interaction effects. It is easilgnd surface processes that evolve differently from
shown that the expected value of the sum gimulation to simulation. We return to the interac-
squared errors in our application is given by tion effects in this experiment in [9.4.11].

E(8SE) = 133 - To)oi,
L L 9.4.9 A More Refined Test for Interaction
where Ty is given by (9.26). This is smaller thanEffects. The ‘rough and ready test is not

the expected value afSE when errors are fully opively satisfactory for a couple of reasons. An

!ndependent and not a cpnvenlenF q‘%a”“ty 10 UgBsthetic objection is that the problem of within
in a test of (9.30). ltem 5 in [9.4.2] indicates that @550 dependence has been avoided rather than
suitable test statistic should be of the form solved. More troubling is the loss of one-third of
F_ o5/ -DHU-1) the data available for estimating error variability.
no2 We therefore embark on a path that results in full
e use of the data.
Whereﬁ&éijo is an estimator OlflGEZi_o = Toog. Our goal is to find factor€ andn* such that
The distribution ofF under (9.30) is most easily
found if fio2  is also independent a$SZ and

A.CxSSE/(n*1J) is an approximately unbiased

Eijo estimator ofToo2,
distributed as &? random variable becausewill o ] o
then beF distributed under i B. CxS8S8E/(Toog) is approximately distributed

x2(n*1J), and

9.4.8 A Rough and Ready Interaction Test. ¢ ¢ x SS&/(n*1J) is independent of variance
Two solutions are available to the problem of componentsSSA, SSB, andSS7.

testing for interaction effects in the presence of
within season dependence. As with Tp, factors C and n* are implicitly

A rough and ready solution is based on thinctions of the within season dependence.
argument that the correlation within seasons is Once these results are obtained, it is possible to
small, and that it is negligible if monthly meangest (9.30) by comparing
are separated by at. least a mqnth. We could SST/((I —1)Jd — 1))
therefore drop the middle month in each seasoh = CSSE/ 13 (9.31)
when computingSSE and adjust the degrees of
freedom for error accordingly. That is, we comput#ith F((I — 1)(J — 1),n*1J) critical values.

L3 2 Ouir first step in developing a test like (9.30) is
SSEF — ZZ (Yi 1— Yiji+ YIsJ»3> to note that, in our applicatiod§SE containslJ
” 2 statistically independent terms of the form

i=1j=1
Yijai+VYijs)? 3 }
+(Yi,j,3—f : Sj =Y _(Eiji — Eijo)?.
=1

Each of thelJ terms in _th|_s sum consists of theilvda find an approximating distribution for each

sum of two squared deviations that are constralnle dividual Sj . We then use this result together with

to add to zero. Thus each term contributes onlyiﬁde endenjc.e arquments to obtain itg! ~in

df for a total of1J df. The effect of within season P 9

. er to test (9.30) using (9.31).
dependence can then be |gno'red and a test of (9.@ wiers [444], using a method similar to that
can be conducted by comparing

outlined in [8.3.20], shows th&;j can be written
_SSZ/((-1)[Q - 1))

SSE¥/(13) Sj =2%+75,

F
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where Z1 and Z, are independent zero meartquating means and variances and solvingdor

normal random variables with variancg$i; and andn* yields

UEZ)LZ, respectively. Parametekg and A, which 5 2
. ] A+ 13

characterize the within season dependence, are the — of

nonzero eigenvalues of the mattik' R.A where A+ A2

Rij = pji—j, and nt — (A1 + A2)?
= T2, .2 ¢
L 2 -1 -1 MH A2
A== -1 2 -1]. which, after substitution fok; anda, yields
-1 -1 2 5 2
_ 9—12p1 +8p7 — 6p2 — 4p102 + 5p;
Herepg = 1, p1 is the correlation betweef; j | ¢ = 9— 6p1 — 3p2
andE; j 41 forl = 1,2, andp; is the correlation (9.32)
betweenE; ; 1 and E; j 3. The eigenvalues are
given by ij.1 ij.3 g o 2(3—2,01—;02)2
9 — 12p1 + 8pZ — 6p2 — 4p1p2 + 503
M=1—p (9.33)
4 1
2 =1- 3”1 + 3P2 We can check our work by testing these

expressions when within season errors are iid; that
BecauseZ1 andZ, do not generally have equaIiS’ whenp; = pp = 0. We see we get the right
variances, the exact distribution §f; is difficult 5nswersc = 1 andn* = 2 by substituting

to find. In fact, the exact distribution can ngithe 1 = p» = 0into (9.32) and (9.33). When &
be expressed analytically nor tabulated ef'hmentlx.l > p» > 0, we see that < 1 (as expected

We therefore need to find an approximatingecayse; < 1 andi, < 1) andn* < 2.

distribution. Because the component§ of SSE are

It is reasonable to select the® distribution j,gependent, (9.32) and (9.33) provide us with the
as the approximating distribution becal8¢ ~ | agyit that

x2(2) whenZy andZ, have equal variances (i.e.,

wheni; = i = 1) andSj ~ x2(1) when SSE/c~ x?(n*1J).

one of the eigenvalues is zetd 2 distribution . .

with a fractional number of degrees of freedoﬁhe\rlzf?sre if/hei (l:)onstarﬁl required by items#\-C
somewhere between these two extremes shou%0 9 y

therefore work well. Thus we need to find a ToUEZ
constantc and equivalent degrees of freedarh = "¢
such thaty ?(n*) approximates the distribution of 3+ 4p1 + 202) (3 — 2p1 — p2)

Sj . We do this by matching the mean and variance

= o_ 2 _ — 2
of §j with that of acx?(n*) random variable. 9= 1201 + 8py — 602 — 4p102 + 5p;

If Z is a cx2(n*) random variable, then the (9.34)
mean and variance & are given by In summary, we account for within sea-
I son dependence in our test ofg(9.30) by
EE) = c¢n ! . ;
o o2k computing F as in (9.31), and comparing
Var(g) = 2¢n”. with F((I — 1)(J — 1), n*1J) critical values. The
The mean and variance 8 are given by ‘shrinkage factorC is given by (9.34). The_‘equiv-
alent degrees of freedom’ for the denominator are
£(Sj) = 21+ 12) n*1J, wheren* is given by (9.33).
2 1
_ 5 2
= 20e(1 = 5p1— 302) 9.4.10 Estimating Within Season Dependence.
Var(sj) = 264002 + 22 We need to know the within season correlaﬁiems
4 8 5 andps to perform the test derived above. Since we
= 4gé‘(1 ——p1+ _pf ——p2 do not know them, they must be estimated, and we
3 9 3 must be careful to do this in such a way that items

_4 > 2y A-C are not seriously compromised.
p1p2 + = p3). .
9 9 Unfortunately,p; and p» can not be estimated
SRecall that if Zy,...,Zn are iid A(0,02), then directly from the monthly data because, in this
(X122 /02 ~ x2(n). context, the usual estimator has extremely large
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bias and variability. Insteagy andp, are obtained
by fitting a parametric time seriesnodel (see
Chapter 10) to the daily data after they have be&g i
adjusted for the annual cycle, and then inferring €
andp» from the fitted model. —=
Because the parameters of the fitted time seri =
model are estimated from a very large numbﬁ-
of days of data (4860 in case of the CCCma un
AMIP experiment), they have very little sampling <
variability. Consequently,_ the denvgd estlr.‘naq.as of 00 02 04 06 08 10
p1 andp also have very little sampling variability, )
and therefore item#\—C will not be seriously Lag-1 day correlation
compromised provided that the fitted time series

model fits the daily data well (see Zwiers [444] for . ] ival q ¢ freedom
discussion). Figure 9.5: Equivalent degrees of freedo

The particular time series model used is th(gsplayed as a function of the lag-1 day correlation
auto-regressive model of order(10.3). With this when within season variations behave as red noise.

model it is assumed that day-to-day variations
within a season behave e noise(see Sections
10.3 and 17.2). If we lefW;j; : t = 1,...,90}
represent the daily weather within seasorof
simulation j after removal of the annual cycle,
then the red noise assumption states that

Cor(Wi.j . Wi ji) = o271, (9.35)

ale
g

wherep is the correlation between, say, 850 hP.
temperature on adjacent days.

The monthly means, which are the object of our
study, are given by 00 02 04 06 08 10

Lag-1 day correlation

Sfirinkage Factor
0.2 040608 1.0

130
Yij = Z Wijt /30. (9.36)

t=(-130+1 Figure 9.6:Shrinkage factor for the unadjusted

Using (9.35) and (9.36) we obtain, after somEg-ratio for interaction effects.
simplification, that
O-\%V 29 T
Var(Yiji) = %(1 +2) (1- 3_O)Pr) (9:37)  we substituted the exact expressions (9.37) and
e=1 (9.38) into (9.33) and evaluated' as a function

and of p (see Figure 9.5). We see that > 1.95 for
52 5300 1) p < 0.9. This was expected becausé = 2

Cov(Yi i1, Yij.a+k) = p in the absence of terms affected ly, which
R 30 becomes important only whep is very large.

30 interaction effects need only be adjusted if day-to-

29
30 T TN 30\ ¢ Hence, the degrees of freedom of the test for
X (p jLZl(‘?,OJF<1 )p )'O )
' day dependence is very strong.

(9:38) We also substituted the exact expressions (9.37)
Further simplification yields that, for < 0.9, and (9.38) into (9.34). The fraction €, used
P to shrink the unadjustedF-ratio for interaction
pL = m effects, is illustrated in Figure 9.6. The shrinkage
21 factor decreases slowly with increasipgvhen p
02 A __r is small, and drops very quickly asapproaches
30%(1 - p)? 1. Whenp = 0.9, it is necessary to shrink the

Itis reasonable to assume that= 0, except when unadjustedF-ratio for interaction effects by a
pis large (o >0.9). factor of approximately 32%.
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Figure 9.7:Lag-1 day correlation for 850 hPa Figure 9.8:The natural log of theF-ratios for

DJF temperature in thg CCCma six membepe jyeraction effect for 850 hPa temperature in
AMIP ensemble. Correlations greater than 0.4 arg. . ~~cma AMIP experiment using the variance

shaded. component adjustment method. Each contour
indicates a doubling of thé&-ratio. The shading

9.4.11 Results for the CCCma AMIP indicates ratios which are significantly greater
Experiment. Estimates of lag-1 day correlatiorthan 1 at the 10% significance level.
p for DJF 850 hPa temperature computed from the

CCCma AMIP simulations using (9.37) and (9.38 _ . o _
no interaction effect hypothesis is rejected at

are shown in Figure 9.7. We see that the simulat: o i S
lower tropospheric temperature is generally mofte 10% significance level over only 12.4% of

persistent on a day-to-day time scale where thdft¢ 9/0be in DJF and there does not appear to
is subsidence, and least persistent in the tropfe§ @ Preferred location for the significantly large

and in the extratropical storm tracks. Estimatel"atios.

lag-1 day correlations range betwegn= 0.0765

and p = 0.891. Corresponding values fdt

(9.34) range betweend05 and 1409, and those 9.5 Tuning a Basin Scale Ocean
for n* range betweem* = 2 andn* = 1.96. Model

The varying amounts of dependence result in

substantial spatial variation in the adjustment {§g 1 Tuning an Ocean Model. We now briefly
the F-ratio but almost no spatial variation in thgjescribe a designed experiment of a different
degrees of freedom of thE test for interaction gqrt. As discussed previously, geophysical models
effects. use parameterizations to describe sub-grid scale
The adjustedF-ratios (9.31) required to testyrocesses (see [6.6.6]). The sensitivity of such
Ho (9.30) are displayed in Figure 9.8. The nuly model to a small number of parameters
hypothesis of the absence of the interacticthyn pe explored systematically with designed
effect is rejected over 17.5% of the globe afxperiments provided individual runs of the model
the 10% significance level. Experience suggesisin be made at reasonable computational cost.
that this rate of rejection is field significantgyen today, this constraint places fairly tight
The structure of this field ofF-ratios is very pounds on the complexity of models that can
similar to that obtained with the ‘rough-and-readyphe studied in this way and ingenuity is required
test, but the rate of rejection is higher becaugg develop experimental designs that adequately
all of the data are used, rather than only tWQsxplore parameter space.
thirds. Gough and Welch [145] describe a study
Figure 9.8 illustrates that the interaction effecigs g isopycnal mixing parameterization in an
are confined primarily to locations over landgcean general circulation mode{(OGCM) that
As noted in [9.4.9], this suggests that lanfas seven adjustable parameters (diapycnal and

surface properties do not evolve identically ifsopycnal diffusivity, vertical and horizontal eddy

each AMIP simulation. The effects of slow

variations in soil moisture and surface albedo are 7Isopycnal parameterizations represent mixing processes

apparently detectable in the temperature of tlee surfaces of constant density (isopycnals) and their

lower troposphere. These effects do not appearp&;pendiculars (diapycnals). Conventional parameterizations
. ) (as in Bryan [72] and Cox [93]) represent these processes

be detectable in the mean flow of the atmosphere@ssyraces of constant height (horizontal levels) and their

represented by 500 hPa geopotential. In this cagerpendiculars.
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viscosity, horizontal background eddy diffusivitycoverage of the parameter space. One indicator
maximum allowable isopycnal slope, and peadf success in this regard is low correlation
wind stress). Had they used a standard factortzdtween the selected values of pairs of OGCM
design (see [9.1.1]) with, say, three differemtarameters. The objective is not always achieved
values of each parameter, it would have beevith the randomization procedure because large
necessary to integrate the model 3= 2187 correlations can occur by chance. Iman and
times. Instead, they used a design calledradlom Conover [192] describe a method for transforming
Latin hypercubgMcKay, Conover, and Beckmana given random Latin hypercube into one with
[271]) that enabled them to adequately explore thetter correlation properties. Gough and Welch
model’s parameter space with just 51 r@nall used this method iteratively to improve their
runs were 1500 years long and were started wigixperimental design.
the ocean at rest. A difficulty encountered by Gough and Welch
The design employed by Gough and Welcis that the parameter space for which the
exploits the fact that OGCMs are fully determinOGCM converges to a steady state is not a
istic and converge to a steady state at long timdgjpercube (i.e., a seven-dimensional rectangle).
given a particular set of parameter values and ho fact, four of the 26 runs displayed explosive
random forcing. Thus the experimental outcomérehaviour, and one evolved to an ‘unconverged’
do not contain random noise in the conventionakcillatory solution. The regression-like analysis
sense. This means that stochastic variation canrbethods alluded to above were applied to the
introduced into the response by means of the pat successful runs to estimate the relationship
rameter settings, and subsequently that statistibatween the parameters and the response, but the
methods similar to multivariate regression analysisformation that the experiment yielded was not
(see Section 8.4) can be used to relate modensidered sufficient to ensure accuracy. Twenty-
response to the settings (see Gough and Weldre additional simulations were thus performed
[145, p. 782]). using parameter settings selected to be distant from
The initial experiment performed by Gough anthe original 26 settings and also distant from one
Welch consisted of 26 simulations with parametamnother; 15 of these converged to a steady state.
settings selected as follows. A range of values The final collection of 36 simulations success-
was identified for each parameter, which wdslly captured most of the dependence between
divided into 25 equal length intervals. The 28he model's steady state circulation and the seven
values that delineate the boundaries of the intervaldjustable parameters. The resulting systematic
were recorded. The first combination of parametdescription of the dependence between model
settings was obtained by randomly selecting omeitputs and parameter settings makes it easier to
value from each of the seven sets of 26 valugsine the model to reproduce an observed circula-
The second combination of parameter settingstien feature. Gough and Welch were also able to
obtained by randomly selecting a value from eactudy the interaction between pairs of parameters.
of the 25 remaining values, and so on. The resllor example, they found that diapycnal eddy
is a random Latin hypercube design with sevafiffusivity modifies the effect that the maximum
treatments and 26 levels (values) of each treatmegitpwable isopycnal slope has on the number of
combined at random in such a way that evelgcean points at which convection occurs. They
level of every treatment occurs once in the 2us demonstrated that this is a highly effective
combinations of parameter settings. The objectiveeans of systematically exploring an unknown
is to obtain uniform (but necessarily sparsg)arameter space.

8Similar studies have been performed with an ice model
[79] and a simplified atmospheric model [58].
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Overview

In this part we deal witlime series analysjghat is, the statistical description of stochastic processes
and the use of sample time series for the identification of properties and the estimation of paramete
The motivation for our non-conventional development of the subject is explained in Section 10.1.

We introduce the concept of a stochastic process and its realizations, called time series, in Chapter
Special emphasis is placed upon auto-regressive processes since they may be interpreted as discre
linear differential equations with random forcing. At this stage we do not concern ourselves with the
tools needed to characterize such processes, hamely the covariance function and the spectrum. Ins
we use a non-conventional non-parametric characterization, based on the frequency distrilbution of
length that is, the duration of excursions above or below the mean. It allows us to intuitively examine
characteristic properties of stochastic processes, such as memory or quasi-oscillatory behaviour, with
using more complex mathematical tools such as the Fourier transform. Also, we differentiate betwee
the variability caused by the internal dynamics of the process and that caused by the driving noise.

The conventional parametric characterization of a stochastic process, in terms of the auto-
cross-covariance function and the spectrum, is introduced in Chapter 11. While the concept of tt
covariance function poses no special problems, that of the spectrum is more difficult. The spectru
is often taken literally as the decomposition of a stochastic process into oscillations at a set of fixe
frequencies. This interpretation is only appropriate in certain limited circumstances when there al
good physical reasons to believe that the time series contains only a finite number of regular oscillato
signals. In general, though, the process will also contain noise, in which case the spectrum can r
be interpreted as glibly. For example, the white noise process does not contain regular or oscillato
features; thus the interpretation of its spectrum as the decomposition of the white noise into equal
importantoscillatorycomponents is misleading.

This part of the book is completed with Chapter 12, in which we describe techniques for inferring
information about the true covariance function and spectrum.
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10 Time Series and Stochastic Processes

10.1 General Discussion

10.1.1 The Role of Noise. This part of the
book deals with stochastic processes and thej
realizations, time series. We begin with a gener
discussion of some of the basic ideas an
pitfalls. The language and terminology we use is
necessarily vague; more precise definitions wil
follow later in this chapter and in Chapters 11 and
12.

A time seriesX; often consists of two compo-
nents, a dynamically determined compon&ht
and a stochastic componé¥, such that

Xt = D¢ + Ng.

Sometimes the time evolution &% is independent
of the presence of the stochastic comporiéntin
such cases the evolution @ is deterministict
Examples are externally forced oscillations such D, *N,
as the tides or the annual cycle. At other times
the dynamically determined part depends on
the random component. Such processes become
deterministic when the stochastic component kgure 10.1A realization of a procesX; = D +
absent. When the stochastic componenin@se) Nt in which the dynamical componei) is not
is present, typical features, such as dampaffected by the stochastic componbsint
oscillations, are masked and therefore not clearfpp: A dynamical componer; made up of two
detectable. One goal of time series analysiscillations.
is to detect and describe the characteristics Mfiddle: A ‘white noise’ componem;.
the dynamical component when the stochasti®ottom: The sum of both components.
component is present.

Figures 10.1 and 10.2 illustrate these concepts.
Figure 10.1 displays a purely deterministioegative. The distribution of the length of these
oscillation D;, a realization of a white noiseexcursions is a characteristic of such processes.
process, and the sunb;+ny. The addition of the When the dynamical component generates cyclical
noise introduces some uncertainty, but it does nigatures in the absence of noise, pieces of such
modify the period or phase of the oscillations. Igyclical features will also be present when the
contrast, Figure 10.2 illustrates a damped systeroise is turned on. However, the ‘period’ will
in which Dy = ax;—1. Without noise(N; = 0), fluctuate, often around the periodBf when noise
any nonzero value decays to zero in a characteriggcabsent, and the phase will vary unpredictably.
time. The addition of noise transforms this decaye refer to this aguasi-oscillatory behaviour.

into a stationary sequence of episodes ("@1s)  The two types of stochastic processes differ
during which Dy is continuously positive orith respect to theirpredictability. Here, we

1we depart slightly from our standard notation by usihg say a system is predictable at lead timeif

the dynamical component, to represent both the determinisme .Conditional distribution 0_f>.<t+r giyeq Dt_
and stochastic forms. is different from the unconditional distribution

197
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timests, ..., tn. This is generally not practical.
Instead, the most important aspects of this
probabilistic structure are described with either
X,= 0.7 X the auto-covariance functioor, equivalently, the

! t spectrum. Both descriptions require that we make
a stationarity assumption of some sort about the
stochastic process, that is, we need to assume that
the statistical properties of the process are not time
dependent.

The spectrum is the Fourier transform (see Ap-
pendix C) of the auto-covariance function. While
both functions contain the same information, the
spectrum is often more useful than the auto-
covariance function for inferring the nature of the
dynamical part of the process. In particular, the
presence of multiple quasi-oscillatory components
in a process causgeaksin the spectrum. The
frequency at which a peak occurs often corre-
sponds to that of a periodicity in the deterministic
component of the process, and the width of the
peak is representative of the damping rate.

The truth of this is difficult to deduce when

Figure 10.2:A realization of a procesxX; = the spectrum is defined as the Fourier transform
D: + Nt for which the dynamical componebt = of the auto-covariance function. Therefore con-
0.7X;_1 is affected by the stochastic componentntional approaches for introducing the spec-
N;. trum use another avenue. They often start with

Top: Evolution of the dynamical componefit = a representation of a stochastic process as the
Dt from an arbitrary initial value when noise isinverse Fourier transform of a random complex
absent. valued function (ormeasure) that is defined in
Middle: A ‘white noise’ componem. the frequency domain rather than the time domain
Bottom: Evolution from an arbitrary initial value (i.e., the so-called Wiener spectral representation
when noise is present. The noise is the same as tbh stochastic process [229, 422]). The spectrum
used in Figure 10.1. is then defined as the expectation of the squared
modulus of the random spectral measure and,
finally, the auto-covariance function is shown to be
fhe inverse Fourier transform of the spectrum.

A difficulty with the conventional approach,

owever, is that the dynamical aspects of the
Sudied process are obscured. Hence, here we use
. a non-conventional time domain characterization
than the mean temperature in summer of that Ye&F stochastic processes. We return to more

However, the s_yste_zm IS mherentlmpredlcta_ble conventional approaches in Chapters 11 and 12.
beyond a certain time lag when the(ﬂevoluhon of Another difficulty with the conventional ap-
the dynamical part depends on the naise. proach concerns the way in which the spectrum
o ) is estimated from a time series. Suppose that
Series. We consider, for the moment, processgs 1. . T and, for convenience, that is even.

in which the dynamical state is determined byost spectral estimators use the Fourier expansion
the history of the noise. To fully describe the

of Xi+¢. In that sense, the case in which th
dynamical componenD; evolves independently
of the stochastic component exhibits unlimite
predictability. For example, the mean temperatu
in Hamburg in the winter of 3130 will be lower

stochastic, or probabilistic, structure of such a T2 ikt
process it is necessary to specify joint densityt = Z ae
functions f (X, Xt,, ..., Xty) for an arbitrary k=—T/2

number N of observing times and arbitraryy, represent the observed time series. When this

. . . . . 2
2Note that this statement is not related to ideas concernifg?Proximation Is lnverte_d, bne _SpeCtrum|ak| '
chaos or nonlinear dynamics in general. for k = 0,41,...,T/2 is obtained that can be
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interpreted as a raw estimator of the spectrum,

This raw estimator is not generally very useful, | : : W

as is easily demonstrated by calculating it for: NKK yir. s ((“ “;:;ﬂ :
A M\ ] | "ﬂ

a white noise time series. The true spectrum ‘j ] , |
is flat (‘white’) but the raw estimate exhibits °;ﬂ Wﬁq‘\;'r "‘w H\
many large peaks, which are not manifestation§ TR ]
of the ‘dynamics’ of the white noise process. In ‘ ¥
fact, when the calculation is repeated for anothetft*——"———— L
realization of the white noise process, peaks ‘ "
appear at entirely different frequenci®s.

The mathematical inconsistency is that theigure 10.3:A two-dimensional representation of
trigonometric expansion is defined only for finitéhe MJO for 1986 [388].
time series and periodic infinite time series, but
?_tr?lj;:,a?gg pésgzizﬁjsnaaeogglt:g,[ fg]c;;evggepear;o?"ﬁ;ection 1Q.5 we deal with two concepts of lesser
length of the time series increases. Note also thlg}portanc_e in climate research, namely the_large
a line spectrum is a discrete object, defined 61253 of linear processes calleaﬂjto-regresswe
frequencies O1/T.2/T.....1/2. The spectrum moving average processeand a special class

of the sampled stochastic process, on the oth%cr nonlinear processes callaggime-dependent

hand, is continuous on the interval [y 2]. aulto-regressive processes
However, this approach can still be used to
construct consistent estimates of the spectrud(.2 Basic Definitions and Examples
provided it is done carefully. These are powerful
methods when proper|y app”ed, but m|5|ead|ng)21 Introduction: Characteristic Times. A
conclusions about the spectrum are frequentine series is a finite sequence of real or complex
obtained when they are used naively. numbers or vectors that are ordered by an index
t and understood to be a realization of part of a
. . _stochastic process. The index usually represents
10.1.3  Overview. In this chapter we first ime pyt could also represent some other non-
introduce the concepts ofharacteristic times giochastic variable that imposes order on the

and stochastic processegSection 10.2).Auto- rocess, such as distance along a transect or depth
regressiveprocesses are the most widely used typg an ice core. Figure 10.3 shows a pair of real

of stochastic process in climate research, singfe series that jointly form a (bivariate) index

they may be seen as approximations of ordinggy the so-called Madden-and-Julian Oscillation
linear differential equations subject to stochastig,;o- [388], see [1.2.3], [15.2.4]). Both time

forcing (Section 10.3). As such they represeQgyies exhibit the typical features of a process in

an important - special case of Hassglmanr\,’%ich the dynamical component is affected by
Stochastic Climate Models’ (Section 10.4; [165])nise. In particular, the time series lack any strict

3This observation, and the realization that the spectrra?gmamy’ unlike time series of, for example, tidal

analysis of a stochastic time series can not be done by sim§i§@ level, Pred|0t|0n at long lead times appears to
extending the time series periodically, are relatively recelte impossible.

developments. Indeed, at the turn of the twentieth century Despite the absence of strict periodicities, the

there was a frenzy of efforts to detect periodicities in all kindgN : . o i
of data, particular weather-related data, at almost all possi eo time series do exhibit some regularities.

frequencies. Various climate forecast schemes were built 597 €xample, the series exhibit ‘memory’ in
this futile approach, some of which can still be found in ththe sense that, if a series is positive, it will

literature. _ tend to stay positive for some time. That is,
The search for regular weather cycles resulted in a 19

monograph that contained a four and half page list, entitlc,féia(xt‘H > 01X > 0)_ > 0.5 for small value_s of
‘Empirical periods derived from the examination of long serie§. However, for sufficiently large ‘lags’, we find
of observations by arithmetic manipulation or by inspectionthat knowledge of the sign of; does not inform
describing supposed periodicities varying from 1 to 260 Yeafis about the sign d{t+r- Thus,

in length (Shaw [347], pp. 320-325). In the light of our present

understanding of the climate system, this search seems rath _

absurd, but modesty is advised. Modern workers also oftenpr(xt”/ > 01X > O) =05, (10.1)

use allegedly ‘powerful,” poorly understood techniques in ordcfpr all 7/ greater than some limit. The smallest
to obtain ‘interesting’ results. Future climate researchers wil ’

probably find some of our present activities just as absurd aﬁosatiSfying (10.1), |abe”_edMa is aChE_lraCteriSti_C
amusing as the search for periodicities. timethat represents the time after which there is no
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forecast skill# Ty is a measure of the ‘memory’ ofRandom variableX; and Xs are usually depen-

the stochastic process. Inspection of Figure 10d&nt. This does not prevent the estimation of

indicates thatry is at least 10—20 days for bothprocess parameters, but it does compromise the

time series. various interval estimation approaches discussed
There are various other ways to defin#® Section 5.4 because the dependence violates the

characteristic times, and [10.3.7] shows thgt fundamental ‘iid’ assumption. Similarly, most hy-

is not particularly useful in many applicationspothesis testing procedures described in Chapter 6

Another time scale is the average waiting timeo longer operate as specified when the data are

between successive local minima or maxima. Bsgrially correlatedor otherwise dependent.

this measure, it would appear that both time

series in Figure 10.3 exhibguasi-periodicityof 145 3 Example: White Noise. White noise, an
about 40 days. Note that, even though the quagifinite sequence of zero mean iid normal random
periodicities occur on a similar time scale, theyaiaples, is the simplest example of a stochastic
are shifted relat|ve_ to each oth_er. In th_e Wordﬁrocess. Such processes contain no memory by
of spectral analysis, the two time series var¥onsiryction, that is, for every, elementX; is
coherentlyand are approximately 9@ut-of-phase jqependent of every other element in the process.

on the time scale of the quasi-periodicity. A realization of a white noise process is shown in
Two important goals of time series analysis aligigyre 10.1.

to identify characteristic time scales in stochastic The characteristic timey = 1, since for any
processes, and to determine whether two tim@n-eror (10.2)
series share common information.

In the following we consider exclusively time P (Xt+: > 0|X; > 0) =
series samples in discrete time. Also, for the sake 00 00
of brevity, the time step between two consecutive Jo_Jo frs(x, y) dxdy _
data is arbitrarily set to 1. Jo© fr(x)dx
Joo fAro dx x fo° far(x) dx

= 0.5.

10.2.2 Stochastic ProcessesWe have, so far, 5 1 q
used the expression ‘time series’ rather informally. Jo tvtydy

Time series may be seen as randomly selectefe probability of observing aun (i.e., a sequence
finite sections of infinitely long sequences off consecutivexss of the same sign) of length
random numbers. In that sense, a time series i@yinning at an arbitrary tintsis obtained from an
random samplef astochastic process, an ordere¢hdependence argument. Runs are observed when

set of random variables; indexed with aninteger _x, _;, X, ..., X¢+._1 and =X, all have the

t (which usually represents time). same sign. Therefore, since two signs are possible,
In general, the statX; of the process at any

specific timet depends on the state of the proces® (L = L) = 2x 2~ -2 = 2=t+b  (10.3)

atall other ‘times’s. In particular, for any pair of
‘imes’ (t, s), there is a bivariate density functiorlNOt€ that

fts such that PL=0=1—-P(L >0 =1/2.

P(Xt € [a, bg a:dXs €lc.d) (10.2) That is, there is probability 1/2 that a run does
:// fra(x. y) dx dy: not begin at time. The probability of observing
. ) sl : a run of lengthL = L, given that a run begins

i _ i ) at timet, is 2-L. Thus the probability that a run
The marginal density functions derived froffgs beginning at a given time will become exactly

(see [2.8.3)]) are, of course, the density functiori_s — 3 time units in length is 22 = 0.125. The
of Xy andXs, given by probability that the run will last at least three time
00 steps isY {327 = 0.25. The corresponding

/ fis(x, y) dy probabilities forL = 10 are only 0.01 and 0.02.

fr(x)

—00

o0
fs(y) / fis(X, y) dx. 10.2.4 Definition: Stationary Processes. A
T stochastic procesgX;:teZ} is said to be

4Note that the direction of the inequalities in (10.1) does néttationaryif all stochastic properties are indepen-
affect the definition oty dent of indext.
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It follows that if {X;} is stationary, then: 0 PP
1 Xt has the same distribution functidna for CO , concentration at Mauno Loa
all t, and 1958-77

2 for all t ands, the parameters of the joint 8¢

distribution function ofX; and Xs depend

onlyon|t —s|. 300

10.2.5 Weakly Stationary Processes. For most i
purposes, the assumption of strict stationarity2s 2 110 ]
can usually be replaced with the less stringent )
assumption that the processvigakly stationary oy bl
in which case 20 i ‘

e the mean of the proces&(X;), is indepen-
dent of time, that is, the mean is constant, and, 5 |

e the second momeng(XsX;) are a function

only of the time differencét — s|. 1960 65 70 75
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A consequence of the last condition is that the Year

variance of the process, \(&), does not change

with time. Figure 10.41958-77 time series of monthly mean

The two conditions required for weak stationzyospheric C@ concentration measured at the
arity are less restrictive than the conditions eN1auna Loa Observatory in Hawaii

merated in [10.2.4], and are often sufficient for
the methods used in climate research. Even so, the

weaker assumptions are often difficult to verifype refer to processes with such properties as
Provided there are not contradictory dynamicgjeakly cyclo-stationary processésfollows from
arguments, it is generally assumed that the procegg second condition that the variance is also
is weakly stationary. a function of the time within the externally
determined cycle. Cyclo-stationary behaviour can
10.2.6 Weakly Cyclo-stationary Processes.be seen in Figures 1.7, 1.8, and 10.4. Huang and
The assumption that a process is stationary, North [189] and Huang, Cho, and North [188]
weakly stationary, is clearly too restrictive to repdescribe cyclo-stationary processes and cyclo-
resent many climatological processes accuratedyationary spectral analysis in detail.
Often we know that stochastic properties are linked The conditions for weak cyclo-stationarity
to an externally enforced deterministic cycle, sugbarallel those for ordinary weak stationarity,
as the annual cycle, the diurnal cycle, or the Mixcept that the parameters of interest are indexed
lankovitch cycles. When we deal with variationgy the phase of the external cycle. Statistical
on time scales of months and years, the annual @ference problems that can be solved for weakly
cle is important. For time scales of hours and dagsationary processes can generally also be solved
the diurnal cycle is important. For variations ofior weakly cyclo-stationary processes. However,
time scales of thousands to hundreds of thousangg utility of these models is strongly constrained
of years, the Milankovitch cycle will affect the datayy the very large demands they place on the
significantly. We therefore consider processes witfata sets used for parameter estimation. Cyclo-
the following properties. stationary models generally have many more
1 The mean is a function of the time within théarameters than their stationary cc_)unterparts and
external cycle, that is€(X;) = yuy,,, where all qf these parameters must be estimated from the
tjm = tmodL andL is the length of the available data.
external cycle measured in units of observing
intervals.

10.2.7 Examples. SupposeX; is a stationary

2 8((Xt — Wt Ks — ,lL5|m)), the central sec- process. If a lineatrend is added, the resulting
ond moment, is a function only of the timeprocessY; = X; + «t is no longer stationary:
difference|t — s| and the phase|y of the its distribution function,Fy,(y) = fx(y — at),
external cycle. depends on.
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is a non-stationary process. The first momerX of
) Tz, is independent of time, but the variance increases
with time. In fact,

t
e =€(X}L2)) =) £@z) =0,

=1

and

var(Xy) = g((ztjzlz j)2)
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This stochastic process, @andom walk, is
stationary with respect to the mean, but non-
stationary with respect to the variance.

) ) . This process describes the path of a particle
Figure 10.5:Scatter diagram of the bivariatey, s oyneriences random displacements. If a large
MJO index, in units of s_tandard. dey|at|ons. '%umber of such particles are considered, the centre
Sl_Jb—segment of the full time series is shown H}gravity will not move, that is€ (X;) = 0, but the
Figure 10.3 [388]. scatter increases continuously. Thus the random
walk is sometimes a usefgtochastic modefor
describing the transport of atmospheric or oceanic
Yacers.

The movement of a particle, perhaps emitted
from a smoke stack, is determined by the deter-
Py (y). - FXW‘ COS((‘I))', _ ministic flow U and many small unp);edictable

A time series that exhibits both a trend anfighjacements. If the particle is locatedrt) at
a cyclo-stationary component is the famousZCQyme ¢ then its location at time + 1 is given by
conceptration curve meas_ured _at Mauna Loa_ I-*Q(t +1) = R(t) + U + 7, whereZ, represents
Hawaii. A segment of this series is shown ifyite noise, and its location at tinter | is given
Figure 10.4. Note that the trend is not stnctI}S Rt +1) = R(t) + U + Zt—tlt—lzs_ If many
linear; both the rate of change and the amplitude Bgrticles are ‘emitted’ and tr;ﬁsported this way,
the annual cycle increase with time. The maximuifla time evolution of the concentration may be
CO, concentrations occur during northern Wintef’nodelled in three dimensions.
and the minima during northern summer. The result of such a simulation is shown in

The time series displayed in Figure 10.3 argjgyre 10.6. The left hand panel displays a 24-hour
approximately stationary with means near zekgrecast of the 1000 hPa height field over Western
and nearly equal variances. $catter diagram gyrope. Note the cyclonic around the low over the
illustrating the joint variation of the two timegast of Norway. A pollutant, S© was injected
series in units of standard deviations is plottggto the simulated atmosphere at a constant rate
in Figure 10.5. The time series appear to kgom a point source in east England. The right hand
jointly normal. In particular, note that the pointgnel displays the simulated $@istribution at
are scattered symmetrically about the origin wifﬁhe end of the 24-hour period. Evidence of both
maximum density near the origin. deterministic advection processes and random
diffusive processes can be seen.

If an oscillation is added to stationary proce
Xt, the resulting proces¥; = X; + cos(at)
is cyclo-stationaryand has distribution function

10.2.8 Example: A Random Walk and the
Long-range Transport of Pollutants. If Z; is
white noise, therXt, given by

10.2.9 Ergodicity. Unfortunately, stationarity,

or weak stationarity, alone is not enough to

ensure that the moments of a process can be

¢ estimated from a single time series. Koopmans

Xy = sz’ (10.4) [229] elegantly illustrates this with the following
=1 example.
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1000 hPa height 24 hours after initialization Concentration after 24 hours of emissions

Figure 10.6Example of a simulation of long-range transport of air pollutants.

Left: Simulated 1000 hPa height field 24 hours after model initialization.

Right: Distribution of pollutant continuously emitted in east England after 24 hours.
From Lehmhaus et al. [250].

Consider a stochastic proceégsuch that each obtained by extending the time sere<learly
realization is constant in time. That is, suppogbis does not happen in Koopmans's example.
Xt = & Wherea is a realization of an ordinaryHowever, ergodicity is not generally a problem in
random variablé\. Every realization oK; is thus climate research.

a line parallel to the time-axis. It is easily shown

that the procesX; is weakly stationary; the mean .

and variance of the process, which are equal 19-3 Auto-regressive Processes

E(A) and VarA), respectively, are independent

of time and all covariances C¥;, Xs) are also 10.3.0 General. We will explore the properties
equal to VafA) and hence independent of time®f aqto—regressive pr.ocess'mssome detail iq this
However, the usual estimator of the process me&§ction. The' collection of all weakly stationary
Iy X¢= 23" A=A, does not convergedUto-regressive models forms a general purpose
to the process meai(A), as the length of the class of parametric stochastic process models.
averaging interval increases. Since the individu&Dis class is not complete but, given any weakly
realizations of the process do not contain arfjationary ergodic procespX}, it is possible
variability, a single realization of this proces§0 find an auto-regressive proceq¥y} that
does not provide sufficient information abou@PProximatesX:} arbitrarily closely.

the process to construct consistent estimators ofAuto-regressive processes are popular in cli-
process parameters. mate research, mainly because they represent dis-

_ _ cretized versions of ordinary differential equa-
Stochastic processes must egyodic as well tions [10.3.1]. Conventional auto-regressive pro-
as stationary in order to ensure that individuglsses operate with constant coefficients and gen-
realizations of the process contain sufficieRiiate weakly stationary time series. By allowing

information to produce consistent parametehe coefficients to vary periodically, the result-

estimates. A technical description of ergodici%g time series become weakly cyclo-stationary.
is beyond the scope of this book (see, e.g.,

Brockwell and Davis [68], Koopmans [229] Sanotherway of describing an ergodic process is to say that

or Hannan [157]). However, in loose termgt does not have excessively_ long memory. Th_us the ergodic
roperty is often expressed in terms of a ‘mixing condition’

ergOdICIty ensur.es .that the. time ;erles Van%]at involves the rate of decay of the auto-covariance function
qw_ckly enO_UQh in time that Increasing amountg;y, increasing lag. A typical mixing condition specifies that
of information about process parameters can be auto-covariance function should be absolutely summable.
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Such processes are callgehsonal auto-regressive An auto-regressive process of ordpy or an
processes[10.3.8]. The name ‘auto-regressiveAR(p) process, is generally defined as follows:

indicates that the process evolves by regressing: ¢ ¢ 7} is an auto-regressive process of order
past values towards the mean and then addiBgf there exist real constant, k = 0,...,p,

noise. . _ . withap # 0and a white noise proce¢g;: t € Z}
The plan for the remainder of the section is ag,ch that

follows. An ordinary auto-regressive (AR) process

is defined in [10.3.1] and its mean and variance are p

derived in [10.3.2]. Some specific AR processegt = @0 + Zo‘kxt—k + 2t (10.6)

are examined in [10.3.3,4], and the conditions k=1

uhder Which an AR process is stationary are The most frequently encountered AR processes
discussed in [10.3.5]. As noted above, ARye of first or second order; an AR(0) process is
processes can be thought of as discretiz@ghite noise. Note thaX; is independent of the part

differential equations. We show, in [10.3.6], thgf (7} that is in the future, but that it is dependent

effect that the ‘dynamics’ of these processggon the parts of the noise process that are in the
have on their time evolution. Next, we introduc@resent and the past.

the notion in [10.3.7] that these processes have
a ‘memory’ that can be described in general .
terms by a characteristic time. We generalize t#€-3.2 Mean and Variance of an ARp) Process.
AR processes so that seasonal behaviour is alking expectations on both sides of (10.6) we see
accounted for in [10.3.8,9], and the concept {§at
extended to multivariate processes in [10.3.10]. o
Looking ahead, we will take a short excursion€ (Xt) = =5 o (10.7)
into stochastic climate modelling in Section 10.4, k=1
but will t.hen return to the. subject of parametrig:f we sety, = £(Xy), then (10.6) may be rewritten
stochastic models in Section 10.5 where we wijg
see that the class of AR models is one of three
more or less equivalent classes of models. P
Xt—u=) ok Xtk —p) +Zt. (10.8)
k=1
10.3.1 Definition: Auto-regressive Processes.

The dynamics of many physical processes can Bhe variance oK; is obtained by multiplying both
approximated by first- or second-order ordinargides of (10.8) withX; — u, and again taking
linear differential equations, for example, expectations on both sides of the equation. We see

2 that
d=x(t) ax(t)

Rz T tax® =2z, p
_ _ _VarXe) = Y ekE((Xt — 1) Kek — 1)
where z is some external forcing function. k=1
Standard time discretization yields + E(Xt — ) Zy)
p
0% + X2 = 24-1) = ) arpVar(Xy) + Var(Zy),
+ a1 (Xt — Xt—1) + aoXt = z, k=1
or where
Xt = a1X-1+aX-2+ 7. (10.5) ) E((K—k — 1) Xt — )
k= .
where var(Xy)
a; + 2a Thus,
U wrata
Var(Z
v = var(X;) = % (10.9)
ao+ a1+ a 1= ko1 kK
zZ = L The functionpy, k = 0,41, ... is known as the

—— 7.

8+ a1 +a auto-correlation functior{see Chapter 11).

If z is a white noise process, then (10.5) defines aWe assume in the following, for convenience,
second-order auto-regressiveARR(2) process.  thatog = 0 so that £X¢) = u = 0.
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Figure 10.8:The frequency distribution of the
run lengthL as derived froml00 000time step
random realizations of three AR(1) process&s
with different process parametess.
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The horizontal axis indicates the run lendth

@
T

o

'
@
T

- and thus, using (10.9),

2

[0
Figure 10.7:240 time step realizations of AR(1) Var(Xt) = 1 _Zaz- (10.10)
processes witlk; = 0.3 (top) and0.9 (bottom). !
Both processes are forced by unit varianc€hus, the variance of the process is a linear
normally distributed white noise. function of the variance,? of the ‘input’ noiseZ;
and a nonlinear function of the memory parameter
a1. For processes with small memory, thatis,~
10.3.3 AR(1) Processes.AR(1) processes may(Q, the variance oX; is aimost equal to the variance
be understood as discretized first-order differentig z,. Whenay > 0, VanX;) > Var(Z;), and
equations. Such systems have only one degkgBenq; is almost 1, the variance of; becomes
of freedom and are unable to oscillate when thgry large. The variance of (10.9) is not defined
damping coefficient is positive. A nonzero valughena; = 1. Figure 10.7 neatly demonstrates that
Xt at timet tends to be damped with an averagge variance of an AR(1) process increases with the
damping rate ofx; per time stef. Obviously process parametet;.
the system can only be stationarydf < 1.  Now recall the run length random variable
Figure 10.7 shows realizations of AR(1) process@gscussed in [10.2.3]. We were able to derive the
with @1 = 0.3 and 09. The upper time series isdistribution ofL analytically for white noise (i.e.,
very noisy and usually changes sign within just@, = 0). The derivation can not be repeated when
few time steps; the lower one has markedly longgy, -« 0 because then elements of the process
‘memory’ and tends to keep the same sign for I4}e serially correlated. We therefore estimated the
and more consecutive time steps. distribution of L with a Monte Carlo experiment
What is the variance of an AR(1) process@ee Section 6.3). The experiment was conducted
Because of the independence X{_1 and the by generating a time series of length 100 000 from

driving noiseZ; we find that an AR(1) process. The runs of lendth= L were
counted for eaclh. > 0. The result of this exercise
1= EXi1Xy) - is shown in Figure 10.8.
Var(Xt) Whena1 = 0, the Monte Carlo result agrees

5 — . well with the analytical result (10.3) fdr < 10.
Specifically,€ (Xt4¢ Xt = Xt) = ajXt. . .
7 T . For larger run lengths, the relative uncertainty of
The realizations of Xt} grow explosively whenr; > 1, -
and the process withy; = 1 behaves as a random walk (seéhe estimate becomes Iarge because so few runs
[10.2.8]). are observed. The frequency of short runs (e.g.,
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Figure 10.10:The frequency distribution of the
run lengthL as derived from100 000time step
random realizations of two AR(2) processk¥s
with different process parametefas, az). There
were 35 684 intervals for (a1, @2) = (0.3,0.3),
and 33 326runs for (a1, @2) = (0.9,—0.8). The
horizontal axis indicates the run length

When we repeated the Monte Carlo experiment
described above for th®.9, —0.8) AR(2) process,
we observed 33355 runs in a 100000 time unit
Figure 10.9240 time step realizations of an AR(2§imulation. The relative frequency distribution of
process withw; = 0.9 anda, = —0.8 and with L thatwas obtained is shown in Figure 10.10. Note
a1 = ap =0.3. that theL = 1 category is not the most frequent.

Instead, runs of length = 3, comprising 44%
of all runs, are most common. This is consistent
L = 1) decreases with increasirg, while the with our perception that this process has a quasi-

frequency of longer runs increases. For instangssriodicity of about six time units in length.
in the white noise case we expect one run in 1000t e (0.9,-0.8) AR(2) process s truly quasi-

will be of length 10. In contrast, whesy = 0.3,
about four runs in 1000 are of length 10, and wh
o1 = 0.9, this number increases to 20.

oscillatory with a period of approximately six time
&feps, we should expect to frequently observe runs
of approximately three time units in length. We
therefore counted the number of times that a run
10.3.4 AR(2) Processes.AR(2) processes, Of length, say,L> adjoined a run of length ;.
which represent discretized second-order linehpe results are given in Table 10.1. Note that
differential equations (see [10.3.1]), have twBVvO consecutive runs tend to have joint length
degrees of freedom and can oscillate with oret + L2 = 6 more often than would be expected
preferred frequency (see also [1118]) F|n|@y chance. On the other hand, pairs of intervals
segments of realizations of two AR(2) process¥§th L1 + L2 = 4,5 or more than 7 are under-
are shown in Figure 10.9. The time series witfgpresented. Any two neighbouring intervals must
(@1,02) = (0.9,—0.8) exhibits clear quasi- have different signs, by the definition bf so that
periodic behaviour with a period of about sithe (L1, L2) = (2,4) and (3,3) combinations
time steps. The other time series, with, «p) = represent ‘quasi-oscillatory’ events in the time
(0.3,0.3), has behaviour comparable to that of aeries.

AR(1) process with large memory. The diagram The time series generated with the parameter
hints that there may be a longer quasi-periodicitgpmbination (a1, 2) = (0.3,0.3) exhibits a
say of the order of 150 or more time stepstrange pattern of extended intervals with con-
However, we will see later that th€0.3,0.3) tinuous sign reversals and prolonged persistence.
process does not generate periodicities of amyre reason for this pattern will become clear in
kind. [10.3.6].
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Lo L1 a,
1 1 2 3 4 5 ©.1)
1 | 571 1248 1523 917 334
351 23 -875 -31 108

2 1428 6418 3304 741 FMA(0.571,0)

_282 —280 650 109 T
3 7341 5048 1081 MJJ(1.032,-0368) ASO(1.436,-0.471)
783 —144 -—-153
4 846 418 (2-1) @1
-182 -70
5 59
0

Figure 10.11:The triangle identifies the range
of parameters for which an AR(2) process
Table 10.1:Absolute frequency with which a runis stationary. The four points represent the
of lengthL1 is preceded or followed by a run ofparameters of a seasonal AR(2) process used to
length L, in a 100000time unit simulation of represent the SO index (see [10.3.7]). Processes
an AR(2) process withiag, a2) = (0.9, —0.8). with parameters below the curve definedolnyr
The entries in italics display the deviation fromla, = 0 have quasi-oscillatory behaviour (see
the expected cell frequency computed under tfd.3.6]).

assumption that consecutive run lengths are

independent.
P An AR(p) process with AR coefficientg, for k =

1, ..., p,isstationary if and only if all roots of the

. . characteristic polynomial
10.3.5 Stationarity of AR Processes. The con- poly

ditions under which the AR processes of definition p K

[10.3.1] are stationary are not immediately obviP(¥) =1— Z“ky (10.11)
ous. Clearly, AR processes can be non-stationary. k=1

An AR(1) process withey = 2 andu = O lie outside the circlgy| = 1.

initiated from a random variabléq that has finite Note that (10.11) hap rootsy;, some of which are
variance is stationary with respect to the mean bigal and others of which may appear in complex
non-stationary with respect to variance. In this cagenjugate pairs.

we note that, fot > 0, Thus the stationarity condition for an AR(1)
process is simply
t
; 1. 10.12
Xi = 2'Xo + ZZH Zi iy loal < ( )
i=1 Stationarity conditions are somewhat more in-
volved for an AR(2) process, where it is necessary
and therefore that that
. artar < 1
EXy) = 2'EXg) =0 ?nd ay—ag < 1 (10.13)
Var(X;) = 4'Var(Xo) + Y 4'~'Var(2) laz| < 1.
N =1 The region of admissible process parameters
_4 (1 _ i) defined by (10.13) consists of poiritg,, «7) in the
3 4 two-dimensional plane that also lie in the triangle

depicted in Figure 10.11.
Thus the variance of this process grows at an
exponential rate. 10.3.6  More about the Characteristic
The stationarity of an AR{) process dependsPolynomial. Equation (10.11) has interesting
entirely on the dynamical AR coefficiendg, k # implications. Lety;, for j = 1,..., p, be the
0. In fact, roots of the characteristic polynomialyp. Given
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afixed j, setXpxj = ylfork = 1,....p.
Substitute these values into (10.6), disregard the
noise term, and recall that we have assumed g
that 9 = 0. Then, using (10.11), we se&’ \
that Xy = y? = 18 That is, each rooty; ©
identifies a set of ‘typical initial conditions’m / \ g o &
ICj = (Xt—1,j,.--» Xt—p,j) thatlead toX; = 1 S /D X / “-o

when the noiseZ; is disregarded. Since these'
‘initial conditions’ are linearly independent, anyn
set of stategX;_1, ..., Xt_p) can be representedy | o
as a linear combinatioh "_, g;ZC; of the initial

states. In the absence of noise, the future evolution

of these states will be Lag

Figure 10.12:Initial conditions at timesX;_»
and Xi—1 which lead an AR(2) process, with
Note that some of thiX; ;s may be complex andparameters0.9 and —0.8, to X; = 1, and their

therefore will appear in conjugate complex pairgyture developmerX. . in the absence of noise.
When this is true, the corresponding coefficients

Bj will also appear as complex conjugate pairs.

When X; is an AR(1) process and the noise is The roots of the characteristic polynomial of an
absentX;_1 = 1/a1 is the only initial condition AR(2) process are complex whes < —4ay, and
that leads toX; = 1 in one time step. can therefore be written in the form

In the case of an AR(2) process, the roots of th i ;

o . i=r-exp—(—1)i¢), j=1,2. 10.15
characteristic polynomial (10.11) are ?/J A=CD'ie), | ( )

p
Xivr =) By} " (10.14)
j=1

It is easily shown that = 1.11 and¢ = 3%

—a1— (=D} /a2 +dar when (a1, 2) = (0.9,—0.8). Since the process

yj = 207 =12 parameters are real, (10.11) may be rewritten as

The roots are either both real or they are compleR = 1 — («1Re(y) + azRe(yz))
conjugates. = 1— (a1r cos(¢)+ aor 2 cos(2¢))
Both roots arereal when a% > —4ap. The
AR(2) process witha, az) = (0.3,0.3) belongs and
to this category. Its characteristic polyn9m|gl ha% — a1lm(y) + aalm(y?)
rootsy; = 1.39 andy, = —2.39, and ‘typical , 5 .
= «a1r SiN(¢) + aor < sin(2¢)

initial conditions,” which lead toX; = 1, are
IC1 = (Xi-2,1, Xi-1,1) = (1.93,1.39) and g that the two sets of ‘typical initial conditions’
ICo = (Xt-2,2, Xi-1,2) = (5.71,-2.39). that evolve intoX; = 1 are

The first ‘mode, which is initiated b§C1, has a

damping rate of;_11/X; 2.1 = Xe1/Xi-1.1 = 2Cj = (Xi-2,j, Xt-1.j)

1/y1 = 0.72. The time development initiated b)(Ni

such an initial state is that of an exponential decay .

with constant sign. Xt—2,j = r2(cos(2¢)— (—1)! sin(2¢))
The second mode has a damping ratgyd =

0.42 and a clear tendency for perpetual sig"j?'f]d

reversals. Xt-1,j = (Cos(¢)— (=1)’ sin(¢)).
These two modes underlie the ‘strange pattern’ )

of variation seen in Figure 10.9. There are somig'us (10.14) determines the future states as

periods when the process undergoes contlnu.al sg@tﬂl — 7 (cos(t¢)+ sin(z¢))

reversals, and others when the system retains the

same sign. Change between the two regimesasd

instigated by the noisg;. _ .
gated by Xiir.2 =17 (COS(x)— Sin(z¢)).
8Note that now we are neither dealing with the stochas

processX¢ nor with a random realizatior,. We therefore use u]che two sets of initial cqnditions (labelled ‘1_’ and
the notationXt. ‘2") and the future evolution of the process without
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the noiseZ; are plotted in Figure 10.12. We 2 there is a sequence of independent, zero mean
see that the process generates damped oscillations random variables{Z;, : t € Z,t =
with a period ofZ = 6 time steps for arbitrary 1,..., N} that have varianceozzr which
nonzero initial conditions. The initial conditions depends only om and such that the sequence
serve only to determine the phase and amplitude {Z;/oz;:te€Z, t=1,..., N} behavesas
of the oscillation. white noise, and

The region of admissible process parameters
(10.13) for a stationary AR(2) process (see 3 Xi. satisfies the difference equation
Figure 10.11) can be split into two sub-regions. An
upper area, delimited btyf + 4o > 0, indexes p
AR(2) processes whose characteristic polynomials ~ Xt,r = @0,r + Z ke Xt,r—k + Ztr (10.17)
have two real solutions and thus consist of two k=1
non-oscillatory damped modes. The rest of the
parameter space, delimited by (10.13) and the forall (t, 7).

constrainta? 4+ 4a, < 0, indexes processes .
L 2 P ch processes are able to exhibit cycles of

with characteristic polynomials that have a pa u h'N of th h ’ 4 th
of conjugate roots, and thus one quasi-oscillatof§"9"! of the mean, the variance, and the
auto-covariance function.

mode. L
Suppose, now, that a process satisfying (10.17)
o ) ) is weakly cyclo-stationary. This means that the
10.3.7  Characteristic Time. What is the r4cess parameters are constrained in such a way
characteristic time (10.1) of an ARR) process? ihat a)l means, variances, and covariances exist.
According to (10.1), we must find a lags such s constraint, together with (10.17), is sufficient
that auto-correlationgx, x,,, vanish forlags > 15 ensure that the mean and variance are only a
M- In the case of an AR(1) process with= 0 nction ofr and that the auto-covariance function

we find is only a function of the absolute time difference
EXiXtt7) and the location in the external cycle. With these
) assumptions it is possible to derive the ‘seasonal
T cycle’ of mean, variance and auto-covariance.
o] E(XiXt) _ : )
= v To illustrate, consider the calculation of the
Var(Xt)

annual cycle of the mean. We apply the expectation

_ T
=a #0, (10.16) operator€ (-) to (10.17) for allz to obtain

for all lags z. Thusyy = oo for an AR(1) p
process. This statement holds for all AR processes, _ 4, . + Zaktﬂr—k- (10.18)
Thus definition (10.1) is not useful for such R

processes. We suggest an alternative definition in

Section 17.1. This is a closed linear system since bath

and ok, are periodic int with period N. It can

: herefor re-expr in matrix-v r form

10.3.8 Seasonal AR ProcessesThe ‘station- therefore be re-exp essed _at ector fo
and solved using standard techniques.

22/5“ ARérﬁzarzlriggzstseeiif(I)rr];%r?:y cl(gigtig:;r be Calculation of the seasonal cycle of the variance
Y9 Y y is more complicated. First, the past staXqs._1,

[10.2.5] AR(p) processes. However, before givin : s
a definition we need to establish some notatio%(.t’f‘z’ -+ In (10.18) are replaced with linear

: : cqmbinations of previous states by recursive
First, we assume that there exists an externg;\ lication of (10.17). This recursion yields
deterministic ‘cycle’ that is indexed by time = pplicat . R . y

an infinite series (an ‘infinite moving average

1,..., N. This index may count months within a ..

year or hours in a day. We then express an arbitraorg/Ocess see[10.5.2])

time as a paift, t), wheret counts repetitions of 00

the external cycle, sothat, t + N) = (t + 1, 7).  Xi; = Bor + Z,Bjtzt,t_jﬂ. (10.19)
Then,{Xi;:t € Z, r =1,...,N}is said to be a i=1

cyclo-stationary ARg) processf .
The Bs are functions of the seasonal AR(

1 there are constanig., k =0, 1, ..., psuch parameters and the cyclo-stationarity conditions
thatay N = ak, for all  andop, # 0 for alluded to above ensure that this sum converges
somer, in a suitable manner. The noise contributions
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Zi; have zero expectation and are mutually s
independent so that

ol

EXte) = Po.c (10.20)
o) .
Var(Xee) = Y proy L o
i=1

10.3.9 Example: A Seasonal Model of the SST _,|
Index of the Southern Oscillation. A seasonal

AR(2) process can be used to model the SST Index?; 5 ¢ o = w 1w 21 24 27 30 33 96 39 42 45y:rs
of the Southern Oscillation [453]. A segment of

the full monthly time series is shown in Figure 1.4 o
(dashed curve). The model was fitted to seasora@ure 10.13:A 50-year random realization of

means so that one ‘seasonal cycle’ compries the seasonal AR(2) process which models the SST
4 time steps, namely FMA, MJJ, ASO and NDJ. index of the SO. Compare with Figure 1.4.

The estimated process paramet@gs and the
standard deviation of the driving noige., which
fit the data best, are:

with the largest SST anomalies (NDJ); weakest
variability occurs in northern summer (MJJ). Note
that the NDJ variance is 2.7 times greater than the
Seasont | @Wo: O1: G2 | 0z MJJvariance.

FMA 0.39 0.571 0 0.332 A simulated 200 time step realization of the
MJJ —-0.17 1.032 -0.368| 0.374 fitted process is displayed in Figure 10.13. The
ASO 255 1.436 -0.471| 0.362 character of the time series is similar to that of
NDJ 3.56 1.172 0 0.271 the original displayed in Figure 1.4. It resembles

the output of an ordinary AR(2) process with

When we examine the four sub-models for I:MAfrequent occurrences of positive (or negative)

MJJ, A.SO’ and NDJ separat.ely using (1(.)'13) _tgnomalies extending over four and more seasons.
determine whether they satisfy the stationari

. ) t'?’he preference for maxima to occur in NDJ

condition of an AR(2) process, we fm_d thaﬁistinguishes the fitted process from an ordinary
the dFMA‘ bM‘J‘]’h andh ASO processesllsansfy Fh R(2) process. A non-seasonal process does not
condition but that the NDJ process lies outsi ave a preferred season for generating extremes.

the gdm|53|ble triangle_of F'gl.JreAlo'll' Thel'his preference is indeed a characteristic feature
transition from NDJ to FMA, witha1 pma = of the SO

0.571, is connected with substantial damping. On

the other hand, the step from ASO to NDJ, with

@1.npy = 1.172, is associated with amplificationt0.3.10 Bivariate and Multivariate AR Proces-

of the process. Despite this, the full process &s. The ‘univariate’ definition (10.6) or (10.8)

cyclo-stationary. of an AR process can be easily generalized to a
The estimated annual cycle of the megig,, Multivariate setting. A sequence &fdimensional

and standard deviations;x., derived from the random vector§X; : t € Z} is said to be a

fitted model are displayed in the following taifle: multivariate ARp) processf X; satisfies a vector

R difference equation of the form
Season r | iix, (°C) ox: (°C)

FMA 0.058 0.621 - P -

MJJ 0.033 0.554 Xi=Ao+ ) AXik+Zi (10.21)
ASO 0.046 0.743 k=1

NDJ 0091 0911 for a” t Where

The overall mean value, as well as the expectedl Ag is an¢-dimensional vector of constants,
values for the four seasons, are slightly positive.

The standard deviation varies strongly with the 2 4, fork = 1,..., p, are¢ x ¢ matrices of
season. Maximum variability occurs in the season  ¢gnstants such thatp # 0, and

9The estimated means are different from zero because the 5 . . "
seasonal AR process was fitted to anomalies computed relative?’ {Zt_- te _Z} IS a sequence of iid zero mean
to a reference period that was shorter than the full record. ¢-dimensional random vectors.
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Bivariate AR(p) processes that describe th&hus (10.22) may be reformulated as
joint evolution of two processes and multivariate
AR(1) processes are of particular interest. ForY =V*(y) + f*. (10.23)
example, a multivariate AR(1) process (id;, = dt
0 fori > 2) is fitted in Principal Oscillation The modified operatov* includes the effect of av-
Patternanalysis (see Chapter 15). eraging and, in particular, the constant contribution
from the ‘fast’ component. The modified forcing

. . f* represents the slow component of the forcing.

10.4  Stochastic Climate Models Equation (10.23) is a ‘dynamical’ model

. . because the dynamics are explicitly accounted
10.4.1  Historic Excursion. What are the for by the function V*. It is also called

physical processes that excite slow climale .gutistical model because the averaging
variations such as the Ice Ages, the Medievgheoaor has embedded the moments of the
Warm T_|me_,_ or the Little Ic_e_ Age? Thenoisy componenix into function V*. However,
early scientific mainstream opinion was thahq ‘homenclature is somewhat misleading since
such variability stems exclusively from extemngly g 53y qoes not contain random components, but
forcings, such as variations in the Earth's orbitaliher gescribes the deterministic evolution of the
parameters. It was argued that the weathglononts of a random variable. Equation (10.23)
fluctuations were irrelevant because their mfluen%efu"y deterministic and may, at least in principle
would diminish through the process of timgyg gqyyeq if adequate initial conditions and forcing
integration [see 10.4.2]. That is, short-tery,ons are available. Consequently, the study of
statistical forcing was not believed to affect thejinate variability is reduced to the analysis of
dynamics of systems that respond slowly to SuGRe gty cture of the forcing functions. The system

forcing. Hasselmann ([165]; see [10.4.3]) wag ( »3) can generate many complicated modes of
apparently the first to recognize the inconsistengy iation if it is nonlinear. To understand such

of this concept. He demonstrated that lows gyqtem it is necessary to identify a subspace

frequency variability in systems like the climatgy e 1yl phase space that contains the relevant
could simply be the integrated response of fbnlinear dynamic&?

linear (or nonlinear) system forced by short-term

variations, such as those of the macroturbulent hastic Cli del ither th
atmospheric flow at midlatitudes. The succe 4.3 Stochastic Climate Models. Neither the

of this proposal is demonstrated in [10.4.3] anggarch for external forcing functions nor the search

possible generalizations are briefly mentioned [T Nonlinear sub-systems has been convincingly
[10.4.4] successful in explaining the observed variability in

the climate system. Hasselmann [165] suggested
a third mechanism for generating low-frequency
10.4.2  Statistical Dynamical Models. The variations in the system described by (10.22). This
purpose ofStatistical Dynamical Model§SDM)  concept, Stochastic Climate Modellingis now
is to describe the behaviour of a ‘climate variableised widely.
¥t that varies on time scales and has dynamics  Suppose the forcing in (10.22) is zero and
that are described by a differential equation of thgbnsider the evolution of the system from an initial

form value.
dy Early on, for 0 < t < 7y, one may assume
Fri V(y, x)+ f. (10.22) thatV (i, 1) =~ V (Yo, %) so thatV acts only in

response to random variabXq. During this time
Herex; is another climate variable that varies on period
much shorter time scaleg. Generally,V is some
nonlinear function ofy; andx;, and f represents =t V (Yo, Xt) (10.24)
external forcing. dt

Now let A; be an operator that averages behaves as a stochastic process, Zay Since
climate variable over the time scate Because X varies on time scalesx « ty, the derived
Tx K Ty, there is a time scale* such that

10This is easier said than done. One possibility is to fit
Principal Interaction Patterngsee [15.1.6] and Hasselmann
Ar+(x) ~ constant [167]) to observed or simulated data. Regardless of the method
dA+(y) dy used, the investigator must have a clear understanding of the
dt ~ a dynamics of the studied process.
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proces«Z; also varies on short time scales. After

discretization Of (10 24) we f|nd 1000 FRESHWATERFLUX SOUTHERN OCEAN [10°m?® /s]

Yipr =aYy +2Z¢ (10.25)  s00

with & = 1. Equation (10.25) describes arandom o broi (v oo e g1

walk whenZ; is a white noise process [10.2.6]. 1000 2000 3000 e yeard

Thus, the system gains energy and the excursions MASSTRANSPORT DRAKE PASSAGE [Sv

grow, even if, in an ensemble sense, the mean |

solution is constant. 100
Later, whert > 7y, the operatoV does depend

on Y;. Since the trajectories of the system are o p it L il

bounded, aegative feedbaakechanism must be 1000 2000 300

invoked. An approximation of the form

o

|

o

0
TIME (year)

VY, Xp)  —BYt+Z 10.26) _.
(Y. X0) PYL+ 2t ( ) Figure 10.14: Result of an extended Ocean

is often suitable. This leaves (10.25) unchangégeneral Circulation Model experiment forced with
except thate = 1 — B. Equation (10.25) white noise freshwater fluxes.
now describes an AR(1) process. The stationaritpp: Net freshwater flux into the Southern Ocean.
conditiona < 1 is obtained for sufficiently small Bottom: Mass transport through the Drake
time steps. Passage.

We now return to (10.22) withf = 0, From Mikolajewicz and Maier-Reimer [276].
except we consider a system that varies around

an equilibrium state. If we assume that the

disturbances are small, then the nonlinear operat0|M'kf)I""JQV\"CZ a”?' Ma|er-Re|mer [?76] pro"'o,'e
V can be linearized as a particularly convincing example without explic-

itly fitting a simple stochastic climate model. They
V(X,y) = vxX + vyy (10.27) ran an Ocean General Circulation Model with up-
) ) per boundary forcing consisting of constant wind
so that we again arrive at (10.25) with = vxXt.  stress, and heat and freshwater fluxes. Additional
In both of these cases, the full nonlinear systefpashwater flux anomalies with characteristic time
can be approximated by a stationary AR Process . 1 were also added (Figure 10.14, top).
as long as there is negative feedback. Section 1Ef;l$ese additional anomalies were white in time
shows that such systems possess substanfigd aimost white in space. The ‘response,’ char-
low-frequency variations that are not related tgcterized by the mass transport through the Drake
(deterministic) internal nonlinear dynamics or t‘P’assage, is dominated by low-frequency variations
(also deterministic) external forcing. Instead, thg;ip, typical timeszy > 100 years (Figure 10.14,
system is fully random: it. is entirely driven by theoottom).ll Subsequent research has shown that
short-term fluctuating nois¥. this result is at least partly an artifact of the model
and its boundary conditions. None the less, this ex-
10.4.4 Examples. Frankignoul, in two reviews ample effectively demonstrates that the dynamics
[129, 131], summarizes a number of applicatiorisf a physical system can turn short-term stochastic
in which dynamical systems have been modellédrcing into low-frequency climate variability.
explicitly as stochastic climate models. Such Stochastic Climate Models can not be used to
systems include the sea-surface temperaturer@troduce a physical system in detail. Neverthe-
midlatitudes, and Arctic and Antarctic sea ice andss, they are instrumental in the understanding
soil moisture. of the dynamics that prevail in complex general
For the midlatitude sea-surface temperatuetrculation models or observations.
(SST) the variabley is the SST and the variables

x that vary on short time scales are the air-S§@ 4 5 Generalizations. The main purpose of

heat flux and the wind stress (Frankignoul a’lﬂe stochastic climate model is to explain fun-

Hasselmann [133]). The characteristic times afRmental dynamics from a zero-order approxi-
tssT &~ 6 months>»> 1, ~ 8 days. Similarly,

mation. Examples from various aspects of the

for Arctic sea ice extent (Lemke [251]), the IOW'climate system support the general concept that

frequency variable is the sea-ice extent and the
short time scale variable represemesather noise.  11see also Weaver and Hughes [418].
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short-term variations are a significant source d0.5.3 Infinite Moving Averages and Auto-
low-frequency variability, although, of course, th&®egressions. It is useful, for technical reasons,
dynamics may be more complicated. The operatior be able to discuss infinite moving averages. A
V may have preferred time scales, nonlinearitieggrocessX; is said to be ainfinite moving average
complex feedbacks and resonances, requiring gpecessf

proximations other than (10.26) or (10.27). How-
ever, the principle will still be valid. Also, mul-
tivariate systems may be considered—we presen !
various examples of multivariate systems that are
successfully represented by multivariate AR(Myhere
processes when we introduce tRencipal Oscil-

o0
= ux+2Zi+ ) AZi (10.29)
=1

lation Patternsin Chapter 15. 1 jx is the mean of the process,
. 2{B; : j = 1,2,..} is a sequence of
10.5 Moving Average Processes and coefiicients such thaf." , |;| < oo, and

Regime-dependent AR Processes

3 {Z;: t € Z} is a white noise process.
10.5.1 Overview. This section deals with some

topics that, up to now, have been only marginally Infinite auto-regressions are defined similarly. A
relevant to climate research applications. SonpeocessX; is said to be arnfinite auto-regressive
readers might find it convenient to skip directly t@rocessf

Chapter 11.

Auto-regressive processes are part of a larg
class of processes known amuto-regressive
moving average processes ARMA processes
These models, first made popular by Box anshere
Jenkins [60], are widely used in some parts of
geophysical science. We discuss them here forl fax : k = 0,1,...} is a sequence of
completeness. We also briefly discussjime- coefficients such thgt, 2 |ax| < oo, and
dependent auto-regressive processakich are , , )
nonlinear generalizations of the seasonal AR?Z {Zt:t € Z}isawhite noise process.
processes.

We begin by defining a moving average procesgg 5.4 Examples. Figure 10.15 shows finite
samples of two MA{) processes withg = 2

10.5.2 Definition: Moving Average Processes.and 10, respectivelyux = 0, and VafZ;) =
Moving average processes are a special cldssWe have set all coefficient§ = 1 so that
of stochastic processes that have finite mematese MA) processes are running sums of length
™. Such models represent physical systems thipd 1 of a white noise process. The variance of the
integrate the effects of only the lastencounters MA(q) process ig| + 1. The longer the summing
with a random forcing mechanism. A proce&sis interval for the ‘forcing’ procesg, the longer the
said to be anoving average process order ¢, or memory and the longer the typical excursions of

o0
K=o+ Y X +Z¢ (10.30)
k=1

equivalently, an MAQ) process, if the ‘responding’ process; from the mean.
q What are the characteristic timeg (10.1) for
Xy = ux +Zt + Zf,q Zi_| (10.28) the MA(q) processes in Figure 10.15? Note that
=1
q
where EXiXitr) = Z BiBmE (Zt4iZt1r+j)
1 nx is the mean of the process, "m=3
_ > LoBBVar(2) |r] <q
2 i1, ..., Bg are constants such thag # O, = {O 7| > q.

and
Therefore, since we have implicitly assumed that
Zi (and henceX;) is normally distributed, it
A moving average process is stationary witfollows that P (X4, > O|x{ > 0) = 0.5 for all
meanux and variance VaX;) = Var(Z;)(1 + t > g + 1. Hence the characteristic time (10.1)
S BD. of an MA(q) process igy = q + 1.

3 {Z¢: t € Z} is a white noise process.
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any weakly stationary ergodic process can be
approximated arbitrarily closely by any of the
three types of models. However, the ARMA
models can approximate the behaviour of a given
weakly stationary ergodic process to a specified
level of accuracy with fewer parameters that can
a pure AR or MA model. That is, they are more
parsimonioughan their AR or MA counterparts.
The parsimony of the ARMA models is of some
practical significance when fitting models to a
finite data set because fewer parameters need to be
estimated from a limited data resource. However,
this comes at the cost of developing dynamical
models that are forced by stochastic processes

0 with memory. This may be desirable if specific
i lN\f\ L ﬂ 1 /\/\M mﬂ knowledge that can be used to choose the memory

° \\IV L ’ 'W' AR W of the forcing (i.e., order of the moving average)
appropriately is at hand. However, in the absence

10

-10

10

of such knowledge, the analyst risks obscuring the
true dynamical nature of the process under study
by resorting to the more parsimonious statistical
model.

-10

40 80 120 160 200 240

Figure 1015T0p A 240 time Step realization 0f1056 Invertible Linear Processes. All of the
an MA(Q) process withg = 2, ux = 0, and Models described in this section can be represented

g =1,forl =1,...,q. formally in terms of abackward shift operator
Bottom: As top, excepf = 10. B that acts on the time index of the stochastic
process. The operat® is defined so that

10.5.5 Auto-regressive  Moving Average B[Xt] = Xt-1. (10.32)

Processes. An auto-regressive mqvin'g averagar MA, and ARMA processes can all formally
(ARMA,) process of order g, q) [60] is simply an pe \yritten in terms of the back shift operator.

auto-regressive process of ordpr(10.6) that is gpecifically, we define the auto-regressive operator
forced by a zero mean moving average processap(fB) as the polynomial
orderq (10.28) instead of by white noise. .
An ARMA( p, q) process is formally defined as i
follows: X; is said to be amuto-regressive moving ¢(B) =0 - Z“i B (10.33)
average process of ordep(q) if =t
and we define the moving average opera&ds)

P X
as the polynomial
Xt = ) = D i X polynomi

i=1 q )
q 6(B)=1+) p;Bl. (10.34)
=Zt+ ) BiZi| (10.31) =1
=1 AR, MA, and ARMA processes are then formally
where stochastic processes that satisfy equations of the
form
1 ux is the mean of the process,
d o ¢ (B)Xt = Z4 (AR) (10.35)
2 ay,...,apandpy, ..., Bq are constants suc _
thatap # 0 andBq # 0, and Xo = 0B)Ze (MA) (10.36)
¢(B)Xi = 6(B)Zt (ARMA), (10.37)

3 {Z¢: t € Z} is a white noise process. . . .
where{Z;: t € Z} is a white noise process.

There is substantial overlap between the classed his formality is introduced to provide the tools
of moving average, auto-regressive, and ARMAeeded to briefly explore the connections between
models. In particular, it can be shown thaAR and MA models.
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Consider an MA process represented with theell approximated by a high order AR process.
polynomial backshift operatat(B) as in (10.36). Also, it is obvious that stationary and invertible
Suppose now that there exists a power series ARMA processes can be closely approximated by

o either a high order AR or a high order MA process
0~ 1(B)=1-— Zﬂi/ Bi simply by inverting and truncating the appropriate
i1 backshift operator.

such that the power seriesB)o—1(B) converges

to 1 for B in some region in the complex plane that0-5.7  Regime-dependent Auto-regressive
contains the unit circle. That is, all roots of the MAProcesses. Regime-dependent  auto-regressive
backshift operatof (B) must lie outside the unit Processesor ‘RAMs,’ are nonlinear AR processes
circle. Then, the MA process can be ‘inverted’ t§itroduced into climate research by Zwiers and

produce an infinite auto-regressive process ~ von Storch [453].
. ) The idea is that the dynamics of a stochastic
07 (B)Xy = Z¢ (10-38) processx; are controlled by an external process

or, equivalently Y. The RAM has the form

p

o0

Xp— D BXii =Zt. (10.39) Xt =aok+ X;“ikxt—j + Zik. (10.40)
i=1 i=

Given that the invertibility condition is satisfiedwherek = 1,..., K identifies one oK regimes.

the process defined by (10.39) is stochasticaMyithin each regime the process behaves as an
indistinguishable from the process that satisfi®dR process of some order no greater thpn
(10.36). Such a process is callediamertible MA The dynamics in each regime are forced by their
process own white noise process. The choice of regime
Note that the invertibility condition for MA pro- k at any given timet depends on the external
cesses is analogous to the stationarity condition fetate variabley (t). The regimek is set tol when
AR processes; both conditions can be expressedvitt) € [Ti_1, T|]. The ‘thresholds’ are chosen
terms of the roots of the corresponding backshiis part of the model fitting process. In principle,
operator. As we have just argued, when the Mather nonlinear dependenciesadnY (t) could be
backshift operator is invertible, the process capecified, but the above formulation is piecewise
be represented as an infinite AR process. On tlgear, which makes the estimation easier.
other hand, when the AR operator has all its roots A RAM was used to model the SST index of the
outside the unit circle, the process is stationary agduthern Oscillation [453]. Two external factors
the AR operator can be inverted so that the processere analysed, hamely the intensity of the Indian
can be represented as an infinite moving averageonsoon, withK = 2, and the strength of the
A stationary AR process can therefore be agouthwest Pacific circulation, witk = 3. It was
proximated with arbitrary precision by truncatingound that the probability of a warm or cold event
its infinite MA representation at some suitablef the Southern Oscillation did indeed seem to
point. Similarly, an invertible MA process can belepend on the state of the external variab{e).
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11 Parameters of Univariate and Bivariate
Time Series

Time series analysis deals with the estimatiail.1.2 Auto-correlation and Persistence Fore-
of the characteristic properties and times afast. The auto-correlation function can be inter-
stochastic processes. This can be achieved eithegted as an indication of the skilfulness of the
in the time domain by studying the auto- persistence forecastf X;,. that is constructed
covariance function, or in the frequency domaiwhen an observatiorx; is ‘persisted’ t time
by studying thespectrum. This chapter introducesteps into the future. In this context(r) is the
both approaches. correlation between the forecast made at tirand

the verifying realization that is obtained lagime

steps later. The proportion of variance ‘explained’
11.1 The Auto-covariance Function by the persistence forecastdd(r).

As we saw in Chapter 10, a slowly varying time

11.1.0 Complex and Real Time Series.Note series, that is, one with relatively long memory,
that, even though the auto-covariance and autends to retain anomalies of the same sign for
correlation functions of both real and complexseveral time steps. Persistence forecasts made for
valued time series are defined below, in thisuch a process are likely to be more successful
chapter we generally limit ourselves to real timthan those made for a process with short memory.
series. Thus we anticipate, and are soon able to show, that

the auto-correlation function of a long memory

o process decays to zero more slowly than that of
11.1.1 Definition. LetX; be a real or complex- 5 short memory process.

valued stationary process with meanThen

g((xt — ) Kgr — M)*) 11.1.3 Examples. T_he guto-correlatipn fgnction
Cov(X¢, Xts1) pf the Southe'rn OSC|IIat.|on Indgx, which is shown
in Figure 1.3 in [1.2.2], is positive for lags shorter
than 12 months and oscillates irregularly around
zero at longer lags. We will see later that these
irregular variations at large lags are typical of auto-
(1) correlation function estimates. They are probably
p(t) = v (0) the result of sampling variability and the true
auto-correlation function is likely to be zero at
is called theauto-correlation functiomf X;. The large lags. Only the first part of the curve, in
argumentr is called thelag. Note that the auto- Which the correlation function estimates lie beyond
correlation and auto-covariance functions have tfeose levels that can be induced solely by sampling
same Shape but that they differ in their unité/’ariation, is of interest. Figure 1.3 shows us that
the covariancey (z) is expressed in the units ofonce & positive (or negative) SOI anomaly has
X2 while the correlationp(r) is expressed in developed it will, on average, persist for up to 12
dimensionless units. When required for claritynonths.
we will identify the auto-covariance and auto- The interpretation is similar K is a complex-
correlation functions of proces§ asyyx andpyxy, Valued process. For convenience, assume Xhat
respectively. has mean zero. Note that we may express the
auto-covariance function in polar coordinates as

1we recommend [60, 49, 68], and [195] for further reading .
about the technical aspects of this subject. y(t) = S(XtX{"H) =r(7)e?®

y(T)

is called theauto-covariance functionf X;, and
the normalized function,

217
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where the amplitude (r) and phasep(r) are

functions of the lagr. Thus the produck:x{, .

of two realizationst time steps apart, averagel

over many timest, will equal r (t)é?®. This

tells us that, on average, a real is followed

T time steps later by a complex.. centred

onr(t) (cos(¢(t))% — i sin(¢(t))x). That is the

persistent part oK; follows a damped rotation in

the complex plane. -0 05
This behaviour is often seen in climate dat: '

An example is the estimated auto-correlatic

function of the bivariate MJO index (Figure 10.3

that is shown in Figure 11.1. Since ®¢ér1))

is approximately zero at about lag-10 days, w

estimate that this bivariate index will rotate“9@

the right in about 10 days on average. Similarl

it will rotate about 180 in 22 days, and 270in

37 days. The estimated auto-correlation function ..

certainly contaminated by sampling variation after
about day 20 (see Section 12.1). Figure 11.1: The auto-correlation function of

a complex index of the Madden-and-Julian
Oscillation. The dots represent the estimated auto-
fporrelation function. The continuous line displays
the theoretical auto-correlation function of a fitted
complex AR(1) process. The real part of the auto-
p(t) = p(=1), correlation function is represented by the vertical

and that it does not take values outside the inter\l?:affis' and tge imﬁtginéaré partkt)yfthe h308ri820ntal axis.
[-1,1] (if X is real) or outside the unit circle (Kt fom von Storch and Baumhefner [388].
is complex). That is,

11.1.4  Properties of the Auto-correlation
Function. We note that the auto-correlatio
function is symmetric about the origin,

lp(@)| = 1. atlagst = 1, ..., p to the process parameters

] ] . ap = (al,az,...,ap)T
11.1.5 The Auto-correlation Function of White

Noise. Because the elements of white noise apnd the auto-covarianceg(r) at lagst =
independent, it immediately follows that the autdd, ..., p — 1 through thep x p matrix
correlation function is

_ y(0) y@ ... y(p-1)
pry= L =0 y@  y©@  ...oy(P-2)
0 otherwise. Yp= . . . .
11.1.6 The Yule-Walker Equations for an rep=1 y(p-2 ... yO
AR(p) Process. If we multiply a zero mean  Thijs system of equations has two applications.
AR(p) processX; (10.6) by Xi—, for = = First, if y(0),...,y(p) are known (or have
1....p been estimated from a time series), the parameters

p of the AR(p) process can be determined (or
XXtz = Zai Xi—iXi—r + ZtXi—¢, (11.1) estimated) by solving (11.2) fo&,. Once the

i=1 parameters have been estimated, both the auto-
and take expectations, we obtain a system @pvariance function for lags > p [11.1.7]
equations and the spectrum (Section 11.2) of the unknown
. . process can be estimated by the corresponding
Xipap = Vp (11.2) characterizations of the fitted AR) process.

that are known as theule—Walker equations. The S€cond, if ap is known, then (11.2) can
equation relates the auto-covariances be recast as a linear equation with unknowns

y(1), ..., y(p), given the variance of the process
Yp= (y(l), y(2),..., y(p))T y(0). Thus the Yule—Walker equations can be used
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to derive the firsp+1 elements 1p (1), ..., p(p)
of the auto-correlation function. The full auto-
covariance or auto-correlation function can now be

Using the first two equations, we obtain

o1 + opa3

derived by recursively extending equations (11.2). p) = 1 2
L . . — o2 — o103 — o3
This is done by evaluating equation (11.1) for 1
p and taking expectations to obtain 0(2) = (@1 +ag)or + (1 — @g)az.

P
y(@ = aky(k—1)
k=1
and

p
p() =Y akpk—1). (11.3)
k=1

11.1.7 Auto-covariance and Auto-correlation
Functions of Some Low-order AR(p) Processes.

1—0:2—0110:3—01%

Recursion relationship (11.3) can again be
used to exteng (7) to longer lags.

e p>4:
The calculations required at higher orders
become increasingly laborious, but no more
complex.

Note that the auto-covariance function can

o« p=1: be obtained by using (10.9) to compute the
The Yule—Walker equation (11.2) for anvariance VaeXy)and then applying

AR(1) process is
y(r) = Var(Xy) p (7).

a1y (0) = y (D).

11.1.8 Examples. We will now discuss the
auto-correlation functions of the processes that
were used as examples in [10.3.2]. Recall that
there are two AR(1) processes with = 0.3

Hence p(1) o1.
recursively we see that

Applying (11.3)

7|

p(T) =ay . (11.4) and 0.9, and two AR(2) processes with , ap) =
(0.9, —0.8) and (0.3, 0.3). Sample realizations of
e p=2 these processes are shown in Figures 10.7 and

The Yule-Walker equations (11.2) for angg

AR(2) process are The auto-correlation functions of the AR(1)

processes (Figure 11.2a) decrease monotonically.
The value of the auto-correlation function for
the a1 = 0.3 process is less than 0.5 for all
nonzero lags; thus the persistence forecast is able
to forecast less than 25% of process variance at any
lag. Whena1 = 0.9, it takes five time steps for
the skill to fall below 25%; this process is much
more persistent than the = 0.3 process. This is
Recursion (11.3) can be used to extend tlfé): fﬁ?g:];\ﬂ] it:([algn; g]SIS of the distributions of
auto-correlation function to higher lags. For The auto-correlati;)r; f;mctions of the AR(2)
example, the auto-correlation at lag-2 is B .

processes are shown in Figure 11.2b. The first
two auto-correlations of théx1, ap) = (0.3, 0.3)

Y
y(2).

a1y (0) + a2y (1)
a1y (D) + a2y (0)

Using the first equation, we see that

o1

. 115
T (11.5)

p(1) =

2_ 2

p(2) = -t process are (1) = p(2) = 0.43, and those for
1-a the (a1, @p) = (0.9, —0.8) process arep(l) =

. p=3: 0.5, p(2) = -0.35. In the (0.3,0.3) case

. the auto-correlation function is always positive
Xrll?e(s;(glri;\é\gger; equations (11.2) for a%nd has a pattern similar to that of an AR(1)
process. Thg0.9, —0.8) case reveals considerably
more structure. The main feature is a damped
‘periodicity’ of about six time steps in length. This
result is also consistent with the run length analysis

in [10.3.3].

a1y (0) + a2y (D) + a3y (2) = y(D)
a1y (D) + a2y (0) + a3y (D) = y(2)
a1y (2) + a2y (D) +azy(0) = y(3).
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exponentially. Similarly, each pair of complex
{a) AR(1) processes conjugate roots contributes an exponentially
08 damped oscillation.

We now consider some specific cases.

06/ First, suppose&; is a weakly stationary AR(1)
process. The characteristic polynomiabiéB) =

047 1—a1Bandtheonlyrootiy; = (1)~ L. Note that
ly1] > 1 since|a1| < 1. Thus the auto-correlation
function (11.6) consists of a single terp(r) =
ai(a1)" that decays exponentially. The constant

012345 10 15 20 al:l

029

: Now supposeX; is an AR(2) process. We saw
(b) AR(2) processes

in [10.3.6] there are two types of AR(2) processes;
one has a pair of decaying modes, the other has a
single damped oscillatory mode. The first occurs
when ¢? + 4a, > 0, in which case (10.11)
has real rooty; andy,, and the auto-correlation
function (11.6) is the sum of two terms that decay
exponentially.

The (0.3,0.3) process (see [10.3.5]) belongs to
this class. The roots of its characteristic polyno-
mial arey; = 1.39 andy, = —2.39. They;-mode
has a monotonically decaying auto-correlation
Figure 11.2:Auto-correlation functions of auto-function ai(y; Hitt = a0.72f7. The yo-
regressive processes. mode has auto-correlation functi@a(y, )"l =
a) Two AR(1) processes withh = 0.3 (hatched ax(—0.42)!, which decays even more quickly but
bars) and 0.9 (solid bars). has alternating sign.

b) Two AR(2) processes with1, a2) = (0.3, 0.3) The constantsa; and ap can be calculated
(hatched bars) and0.9, —0.8) (solid bars). from (11.5) and (11.6). Since

pO0) =l=a+a
o1 -1 -1
)= ——=a a ,
o) 1— oy 1Y, +azy,

11.1.9 The General Form of the Auto-
correlation Function of an AR(p) Process.
The auto-correlation function of a weakly station fo|lows that

ary AR(p) process can be expressed as _ _
AC e VS R O

P _ q=—F—"5, ="Fg—7. (11.7)
p(0) = aky " (11.6) Yim Y2 Y17~ Yo
k=1 In this examplea; = 0.74 anda, = 0.26.
for all 7, where y, k = 1,...,p, are the When ozf + 4ap < 0, equation (10.11) has

roots of the characteristic polynomial (10.11)a pair of complex conjugate rooty; = y; =
¢(B) = 1-— Zlf:lakBk (see, e.g., [195, 60]).y. Consequently, for positive, equation (11.6)
Since the characteristic polynomial can be factoredduces to

as a product of linear and quadratic functions, _r . T
the rootsyk are either real or come in complexp(T) =ay " +al)

conjugate pairs. The constardg can be derived wherea; = a5 = a. If we write y = re'?, this
from the process parametets,. When yx is may be rewritten as

real, the corresponding coefficieat is also real, 2 Re(a) cos(t¢)— 2 Im(a) sin(t¢)
and wheny, and y; are complex conjugates, p(7) = = .
the corresponding coefficientg anda are also (11.8)

complex conjugates.
Regardless of whether the roots are redab determine the complex constaatwe first

or complex, the weak stationarity assumptiogvaluate (11.8) at = 0 and obtain Re() = 1/2.

ensures thatyx| > 1 for all k (see [10.3.5]). We then evaluate (11.8) at= 1 and obtain

Thus each real root contributes a component to cos(¢)— 2 Im(a) sin($)

the auto-correlation function (11.6) that decays(1) =

r
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so that 11.1.11 The Partial Auto-correlation Function.
When X; is a normal processg, . is called

Im(@) = M (11.9) the partial auto-correlation coefficienbetween
2 sin(¢) X¢ and X¢_, (see [60]). A useful property of

where p(1) is given by (11.5). Finally, we Seethe partial auto-correlation functions that o, .

that the auto-correlation function (11.8) may bBecomes zero for > p whenX; is an AR()
rewritten as process. Thus an estimate ®f ; is often plotted

as a diagnostic to help identify the order of an AR

V1+4Im(@)? process.
r‘[

p(1) = costo + V)

11.1.12 What is the Partial Auto-correla-
tion Coefficient? Details. In technical terms,
the partial auto-correlation coefficientp p is

: . the correlation betweenX; and Xi_p when
In general, the auto-correlation function of a t t-p

AR(p) process is the sum of decaying exponentialg > * > Xt—pi1 are held fixed. WherXt is a
. Stationary normal process,

(one for every real root of the characteristic

polynomial) and damped oscillations (one for COV(Xt,Xt_plét =§lt)

every pair of complex conjugate roots of theup p =

with tan(¥) = 2Im(a). Note thatr = 1.12 and
¢ ~ =/3 in the (0.9, —0.8) example, so that
a=05+i0.032 andyy ~ —x/50.

characteristic polynomial). Thus, the general auto- afob
correlation function has the form where
- co 2 Aoz
p() =Z% - Zakw. (11.10) of = Var(X¢|Gi=Gg)
i : k k sz = Var(Xt,p|Gt ZQt),

We use this property in [11.2.7] when we discuss

the general form and interpretation of the spectrufiid Where, for notational conveniencg is
of an AR(p) process. the (p — 1)-dimensional random vectoB; =

(Xt-1, .- ., Xt—p+1)". The value of this correla-
tion does not depend upon the specific realization
11.1.10 Uniqueness of the ARY) Approxima- x;_1,..., Xt—pt+1 Of Xe—1, ..., Xt—p+l-2

tion to an Arbitrary Stationary Process. The The easiest way to understand the partial
following theorem is useful when fitting an AR  correlation coefficient is by means of an example.
process to an observed time series. Therefore suppos¥; is a zero mean normal AR(1)
Let X; be a stationary process with auto process with parametes . For an arbitrary time,

correlation functionp. For eachp > 0 there a 1€t Y1 = Xt+1, Y2 = Xy andYs = X¢_1. These
unique ARp) processA p; with auto-correlation random variables have variance-covariance matrix

functionpp such that 1 2

) a1 ap
Y123=0 a1 1 o
pp(t) = p(r) forall z] < p. (11.11) ’ X a% v 1
The parametersip = (ap1,...,app) Of the \yhich has inverse
approximating process of ordgr are recursively
related to those of the approximating process of 1 1 1 —o1 0
order p — 1 by Yio3= —a1 1+0? —ag

0')2((1—0112_) 0 —oq 1

Apk = O(p—1).k — %p, pl(p—1),(p—k (11.12) o ) o )
P (b= PPE(R=L. (P70 Substituting into (2.34), we obtain the joint density

k=1...p-1 function for these three random variables:
where ¢ ( )
1,23(Y1, ¥2, Y3) = ——S—=5
p—1 (2710>2()3/2
P(P) = > 1 p-1.kp(P —K) R 2
op,p = -1 .(11.13) Vi +ad) y3+y3—2e1y1y,—2e1Yays3
1= ke1%p-1).(p-kP (P~ K) e 20-ad)0%
The recursion is started by SettiagJ = p(D). 2In general, when the process is not normal, the value of

A proof can be found in Appendix M. ap, p does depend upon the specific realization.



222

To understand they > partial correlation coeffi- with X¢_1, ...,

11: Parameters of Univariate and Bivariate Time Series

Xt—z+1 and the error of a one-step

cient, we now derive the joint density functiorback forecast oK;_, made with the same random
of Y1 and Y3 conditional uponY,. Recall from variables. WhenX; is AR(p) and normal, these

[2.8.6] that

f Vo,
f1,32(y1. y3ly2) = f1.2.30y1, y2. ¥3)

fa(y2)
But
1
f2(y2) = ——— —y2/2crx
(271(7)2()1/2
therefore
f1.32(y1, y3ly2) =
3l 2n0)2<
Y24 (4o y3+y3—2a1y1y2—201yays—(1—a?) yZ
« e 2(1-o)o
1 —os ozlyz) (3 a1y2)?
— 5 e ZUX(l ozl)
2moy
1 _(Yl*al)’Z)Z
— 203 (1—a%)
(2ro2)l/2
1 _ (Ya—o1¥p)?

o 202(1-a?)
(2ro2)1/2

= f12(y1ly2) f32(y3ly2).

Thus Y1 and Y3 are conditionally independent
[2.8.5], since the joint conditional density function
can be factored as the product of marginal con-

(11.14)

errors become independent for lags- p.

11.1.13 Auto-covariance Functions of Filtered
Series. An operator that replaces a process
with the process

o0
Yy = Z Xk,
k=—00

where >22  _lak] < oo, is called alinear
filter. Filters are used to remove, or isolate,
variation on certain time scales from a process (see
Section 17.5). The auto-covariance function of the
filtered process is

o0

ry(M = Y adyxx(® +k—1).

k,