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Introduction

In the early 1970s we were concerned about the relationships between
multivariate and univariate time series models, such as those brilliantly
analyzed by Quenouille (1957) and Box and Jenkins (1970) and mul-
tivariate dynamic structural econometric models that had been and are
widely employed in explanation, prediction and policy-making. Fortu-
nately, we discovered the relationships and reported them in our paper,
Zellner and Palm (1974) that is included in part I of this volume (chapter
1). See also the other general chapters in part I discussing general features
of our approach, the reactions of leading researchers, and many useful
references to the literature.

Having discovered the algebraic relations connecting statistical time
series and structural econometric models, we next considered how this
discovery might be used to produce improved models. In this connec-
tion, we thought it important not only to emphasize a philosophical
preference for sophisticatedly simple models that is discussed in sev-
eral chapters in part I and Zellner, Keuzenkamp, and McAleer (2001),
but also operational techniques that would help researchers actually pro-
duce improved models. As illustrated in the chapters included in this
volume, our approach involves (1) deducing algebraically the implied
marginal processes and transfer functions for individual variables in a
multi-equation model, e.g. a vector autoregression (VAR) or a structural
econometric model (SEM), and (2) comparing these derived equations’
forms and properties with those derived from the data by use of empir-
ical model identification and testing techniques. See Palm and Zellner
(1980), included in part I (chapter 5) for some early estimation and test-
ing procedures that have been improved over the years. If the information
in the data is compatible with the empirically determined, simple time
series models and not with those implied by a VAR or SEM, then we
conclude that the VAR or SEM needs reformulation and improvement.
See, for example our (1975) paper in part II (chapter 6) analyzing mone-
tary models of the US economy and other papers for applications of this
approach to many other problems including Trivedi (1975) on modeling

xiii



Xiv Introduction

inventory behavior (chapter 7), Evans (1978) on the German hyperin-
flation (chapter 8), Plosser (1976) on seasonality (Chapter 9), Webb
(1985) on behavior of speculative prices (chapter 10), Ahking and Miller
(1987) on exchange rate models (chapter 11), and Maravall and Mathis
(1994) on diagnosis of VAR models using French macroeconomic data
(chapter 12). These studies demonstrate well the usefulness of our
SEMTSA approach in analyzing, comparing, and improving models.

Since there is often no satisfactory model available, in part III we illus-
trate how relatively simple forecasting equations have been developed,
studied, and tested in point and turning point forecasting experiments
using modern estimation and forecasting techniques. Here the objective
is to get forecasting equations that work well in point and turning point
forecasting and have reasonable dynamic properties. Then the objective
is to produce reasonable economic models to rationalize the good empiri-
cal performance of these empirical forecasting equations. Thus we do not
in the present instance go from theory to the data but reverse the process
by going from what works well empirically to theory that explains this
unusual empirical finding. As mentioned in several chapters in part III,
the empirical forecasting equations for countries’ annual GDP growth
rates have been rationalized by Hong (1989) in terms of a Hicksian [IS-
LM macroeconomic model, by Min (1992) in terms of a generalized
real business cycle model that he formulated and by Zellner and Anton
(1986) in terms of an aggregate demand and supply model. Thus the
empirical relations studied intensively in the chapters included in part
IIT have some theoretical as well as empirical support. Note, too, that
many methodological tools were developed and tested in the chapters
on empirical forecasting work in part III — namely, Bayesian shrinkage
estimation and prediction, optimal turning point forecasting techniques,
optimal Bayesian model-combining or pooling methods, etc. Also, com-
parisons of forecasting root mean-squared errors (RMSEs) and mean
absolute errors (MAEs) indicate that various simple forecasting equa-
tions’ performance is competitive with that of certain large-scale macroe-
conometric models for many economies. See, for example some compar-
isons reported in Garcia-Ferrer er al. (1987) and Hoogstrate, Palm, and
Pfann (2000) (chapter 13 and 18) for some improved results that utilize
various pooling techniques in analysis and forecasting of panel data for
eighteen countries.

While the studies in part III provide useful, improved macroeconomic
results, it is the case that aggregation of output and other kinds of data,
say over sectors of an economy, can involve a loss of valuable informa-
tion, as has been discussed many times in the past. Thus part IV presents
chapters dealing with disaggregation, forecasting, and modeling. A simple
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experiment, reported in Zellner and Tobias (2000) (chapter 22) shows
empirically how disaggregation can result in improved forecasting pre-
cision in connection with forecasting the annual medians of eighteen
countries’ growth rates. In chapters 20 and 21 by LeSage and Magura
(1990) and LeSage (1990), it is shown how shrinkage point and turn-
ing point forecasting procedures perform using regional data. Then in
Zellner (2000) and in Zellner and Chen (2000) (chapters 23 and 24),
Marshallian sector models of industrial sectors are formulated, building
on the earlier work of Veloce and Zellner (1985), and tested in forecast-
ing experiments using annual data for eleven sectors of the US economy.
The annual output forecasts of the sectors are added to get a forecast
of total GDP and its growth rate year by year. Such forecasts are com-
pared with forecasts derived from models implemented with aggregate
data. In this instance, it was found that it pays to disaggregate. Further
work to improve and expand the Marshallian sector model in line with
the SEMTSA approach is described in these chapters.

In summary, pursuing the SEMTSA approach over the years has been
an exciting experience that has led to new empirical findings, improved
and novel methodological tools, and improved models. We thank all those
who have contributed to these positive developments and hope that future
developments will be even better. Also, thanks to the US National Science
Foundation and the H. G. B. Alexander Endowment Fund, University of
Chicago, for financial support. Ashwin Rattan at Cambridge University
Press, provided much help in arranging for the publication of our book,
for which we are most grateful.

EDITORS NOTE

References cited in this introduction appear in chapters in the text except for
Zellner, H. Keuzenkamp, and McAleer (2001).
Minor editorial intervention has been made to update the text of some chapters.
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Part I

The SEMTSA approach






1 Time series analysis and simultaneous
equation econometric models (1974)

Arnold Zellner and Franz C. Palm

1 Introduction

In this chapter we take up the analysis of dynamic simultaneous equation
models (SEMs) within the context of general linear multiple time series
processes such as studied by Quenouille (1957). As noted by Quenouille,
if a set of variables is generated by a multiple time series process, it
is often possible to solve for the processes generating individual vari-
ables, namely the “final equations” of Tinbergen (1940), and these are
in the autoregressive-moving average (ARMA) form. ARMA processes
have been studied intensively by Box and Jenkins (1970). Further, if a
general multiple time series process is appropriately specialized, we obtain
a usual dynamic SEM in structural form. By algebraic manipulations, the
associated reduced form and transfer function equation systems can be
derived. In what follows, these equation systems are presented and their
properties and uses are indicated.

It will be shown that assumptions about variables being exogenous,
about lags in structural equations of SEMs, and about serial correlation
properties of structural disturbance terms have strong implications for
the properties of transfer functions and final equations that can be tested.
Further, we show how large sample posterior odds and likelihood ratios
can be used to appraise alternative hypotheses. In agreement with Pierce
and Mason (1971), we believe that testing the implications of structural
assumptions for transfer functions and, we add, final equations is an
important element in the process of iterating in on a model that is rea-
sonably in accord with the information in a sample of data. To illustrate
these general points and to provide applications of the above methods,

Research financed in part by NSF Grant GS-2347 and by income from the H.G.B. Alexan-
der Endowment Fund, Graduate School of Business, University of Chicago. Some of the
ideas in this chapter were presented in econometrics lectures and at a session of the Econo-
metric Society’s meeting in 1971 by one of the authors. The second author received financial
support from the Belgian National Science Foundation.

Originally published in the Journal of Econometrics 2 (1974), 17-54.



4 Arnold Zellner and Franz C. Palm

a dynamic version of a SEM due to Haavelmo (1947) is analyzed using
US post-Second World War quarterly data.

The plan of the chapter is as follows. In section 2, a general multiple
time series model is specified, its final equations are obtained, and their
properties set forth. Then the implications of assumptions needed to
specialize the multiple time series model to become a dynamic SEM
for transfer functions and final equations are presented. In section 3,
the algebraic analysis is applied to a small dynamic SEM. Quarterly US
data are employed in sections 4 and 5 to analyze the final and transfer
equations of the dynamic SEM. Section 6 provides a discussion of the
empirical results, their implications for the specification and estimation
of the structural equations of the model, and some concluding remarks.

2 General formulation and analysis of a system of
dynamic equations

As indicated by Quenouille (1957), a linear multiple time series process
can be represented as follows:!

H(L) zz=F(L) ¢, t=1,2,...,T, 2.1

pxppx1 pxp pxl1 ’

where 2, = (2115 2215 ...52p;) is a vector of random variables, €, =
(e1s5€2:5 - . .5 €p) 18 a vector of random errors, and H(L) and F(L) are
each p x p matrices, assumed of full rank, whose elements are finite poly-
nomials in the lag operator L, defined as L"z, = z,_,. Typical elements
of H(L) and F(L) are given by h;; = > ;" h;jyyL' and f;; = 37, fiin L'
Further, we assume that the error process has a zero mean, an identity
covariance matrix and no serial correlation, that is:

Ee, =0, (2.2)
forall zand 7,
Eee, = 5,1, (2.3)

where I is a unit matrix and §,, is the Kronecker delta. The assumption
in (2.3) does not involve a loss of generality since correlation of errors
can be introduced through the matrix F(L).

The model in (2.1) is a multivariate autoregressive-moving average
(ARMA) process. If H(L) = Hj, a matrix of degree zero in L, (2.1) is a

1In (2.1), 2, is assumed to be mean-corrected, that is z; is a deviation from a population
mean vector. Below, we relax this assumption.



Time series analysis 5

moving average (MA) process; if F(L) = Fy, a matrix of degree zero in L,
itis an autoregressive (AR) process. In general, (2.1) can be expressed as:

r q
Y Hil'z=) Flle, 24
=0 =0

where H; and F; are matrices with all elements not depending on L,
r = max,;r;; and ¢ = max;;g;;.

Since H(L) in (2.1) is assumed to have full rank, (2.1) can be solved
for 2, as follows:

z, = H Y (L)F(L)e,, (2.5a)
or
2, = [H"(L)/|H(D)|]F(L)e, (2.5b)

where H*(L) is the adjoint matrix associated with H(L) and |H(L)| is the
determinant which is a scalar, finite polynomial in L. If the process is to
be invertible, the roots of | H(L) |= 0 have to lie outside the unit circle.
Then (2.5) expresses 2, as an infinite MA process that can be equivalently
expressed as the following system of finite order ARMA equations:

|H(L)|z = H'(L)F(L)e,. (2.6)
The ith equation of (2.6) is given by:
|H(L) |z, Za;en i1=1,2,...,p, 2.7

where o is the ith row of H*(L)F(L).
The following points regarding the set of final equations in (2.7) are of
interest:

(1) Each equation is in ARMA form, as pointed out by Quenouille
(1957, p. 20). Thus the ARMA processes for individual variables
are compatible with some, perhaps unknown, joint process for a set
of random variables and are thus not necessarily “naive,” “ad hoc”
alternative models.

(i) The order and parameters of the autoregressive part of each equa-
tion, |H(L)| 2zi,¢ = 1,2, ..., p, will usually be the same.?

(iii) Statistical methods can be employed to investigate the form and
properties of the ARMA equations in (2.7). Given that their forms,
that is the degree of |H(L)| and the order of the moving average

2 In some cases in which |H(L)| contains factors in common with those appearing in all
elements of the vectors o, e.g. when H is triangular, diagonal or block diagonal, some
cancelling will take place. In such cases the statement in (ii) has to be qualified.
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errors, have been determined, they can be estimated and used for
prediction.

(iv) The equations of (2.7) are in the form of a restricted “seemingly
unrelated” autoregressive model with correlated moving average
error processes.’

The general multiple time series model in (2.1) can be specialized
to a usual dynamic simultaneous equation model (SEM) if some prior
information about H and F is available. That is, prior information may
indicate that it is appropriate to regard some of the variables in 2, as
being endogenous and the remaining variables as being exogenous, that
is, generated by an independent process. To represent this situation, we
partition (2.1) as follows:

Hy Hp ) (»\_(F I ey, 2.8)
Hy,, Hyp x; Fy, Fxp ey /)’ '

Ifthe p; x 1 vectory, is endogenous and the p, x 1 vector x;, is exogenous,
this implies the following restrictions on the submatrices of H and F:

1‘121 = O, F21 = 0, and F12 =0. (29)

With the assumptions in (2.9), the elements of e;, do not affect the ele-
ments of x; and the elements of e,, affect the elements of y, only through
the elements of x,. Under the hypotheses in (2.9), (2.8) is in the form
of a dynamic SEM with endogenous variable vector y, and exogenous
variable vector x, generated by an ARMA process. The usual structural
equations, from (2.8) subject to (2.9), are:*

H (L) y, + Hz(L) x, =F(L)ey, (2.10)
p1Xp1 pyx1 p1Xp2 pax1 pixpr p1x1 :

while the process generating the exogenous variables is:

Hy (L) x = Far(L) e s (2.11)
p2xXp2 paxl P2xp2 paxl
with p; + p> = p.
Analogous to (2.4), the system (2.10) can be expressed as:
r r q
Z Hy Ly, + Z HiyL'x, = Z FiyLey, (2.12)
1=0 1=0 1=0
where Hy;, Hi2; and Fjy; are matrices the elements of which are coeffi-
cients of L'. Under the assumption that Hy ¢ is of full rank, the reduced

3 See Nelson (1970) and Akaike (1973) for estimation results for systems similar to (2.7).
4 Hannan (1969, 1971) has analysed the identification problem for systems in the form of
(2.10).
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form equations, which express the current values of endogenous variables
as functions of the lagged endogenous and current and lagged exogenous
variables, are:

r r
¥, =—Y HyoHul'y,— ) H Hyl'x
=1 =0

+Y HtFyLe,. (2.13)

q
1=0
The reduced form system in (2.13) is a system of p; stochastic difference
equations of maximal order r.

The “final form” of (2.13), Theil and Boot (1962), or “set of fun-
damental dynamic equations” associated with (2.13), Kmenta (1971),

which expresses the current values of endogenous variables as functions
of only the exogenous variables, is given by:

v, = —H ' (L)Hi2(L)x, + H (L) Fi1(Dey,. (2.14)

If the process is invertible, i.e. if the roots of |Hy;(L)| = 0 lie outside
the unit circle, (2.14) is an infinite MA process in x, and e;,. Note that
(2.14) is a set of “rational distributed lag” equations, Jorgenson (1966),
or a system of “transfer function” equations, Box and Jenkins (1970).
Also, the system in (2.14) can be brought into the following form:

| Hi(Dly, = —Hj; (L) Hi2(D)x, + Hfy (L) Fii(Dey, (2.15)

where HJ| (L) is the adjoint matrix associated with Hy;(L) and |H;;(L)]
is the determinant of H;;(L). The equation system in (2.15), where each
endogenous variable depends only on its own lagged values and on the
exogenous variables, with or without lags, has been called the “sepa-
rated form,” Marschak (1950), “autoregressive final form,” Dhrymes
(1970), “transfer function form,” Box and Jenkins (1970), or “funda-
mental dynamic equations,” Pierce and Mason (1971).> As in (2.7),
the p; endogenous variables in y, have autoregressive parts with iden-
tical order and parameters, a point emphasized by Pierce and Mason
(1971).

Having presented several equation systems above, it is useful to con-
sider their possible uses and some requirements that must be met for
these uses. As noted above, the final equations in (2.7) can be used to
predict the future values of some or all variables in 2;, given that the forms
of the ARMA processes for these variables have been determined and that

5 If some of the variables in x; are non-stochastic, say time trends, they will appear the final
equations of the system.
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parameters have been estimated. However, these final equations cannot
be used for control and structural analysis. On the other hand, the reduced
form equations (2.13) and transfer equations (2.15) can be employed for
both prediction and control but not generally for structural analysis except
when structural equations are in reduced form (Hy;0 = I in (2.12)) orin
final form [H;; = Iin (2.10)]. Note that use of reduced form and transfer
function equations implies that we have enough prior information to dis-
tinguish endogenous and exogenous variables. Further, if data on some
of the endogenous variables are unavailable, it may be impossible to use
the reduced form equations whereas it will be possible to use the transfer
equations relating to those endogenous variables for which data are avail-
able. When the structural equation system in (2.10) is available, it can be
employed for structural analysis and the associated “restricted” reduced
form or transfer equations can be employed for prediction and control.
Use of the structural system (2.10) implies not only that endogenous and
exogenous variables have been distinguished, but also that prior informa-
tion is available to identify structural parameters and that the dynamic
properties of the structural equations have been determined. Also, struc-
tural analysis of the complete system in (2.10) will usually require that
data be available on all variables.® For the reader’s convenience, some of
these considerations are summarized in table 1.1.

Aside from the differing data requirements for use of the various equa-
tion systems considered in table 1.1, it should be appreciated that before
each of the equation systems can be employed, the form of its equations
must be ascertained. For example, in the case of the structural equation
system (2.10), not only must endogenous and exogenous variables be
distinguished, but also lag distributions, serial correlation properties of
error terms, and identifying restrictions must be specified. Since these are
often difficult requirements, it may be that some of the simpler equation
systems will often be used although their uses are more limited than those
of structural equation systems. Furthermore, even when the objective of
an analysis is to obtain a structural equation system, the other equation
systems, particularly the final equations and transfer equations, will be
found useful. That is, structural assumptions regarding lag structures,
etc. have implications for the forms and properties of final and trans-
fer equations that can be checked with data. Such checks on structural
assumptions can reveal weaknesses in them and possibly suggest alterna-
tive structural assumptions more in accord with the information in the
data. In the following sections we illustrate these points in the analysis of
a small dynamic structural equation system.

6 This requirement will not be as stringent for partial analyses and for fully recursive models.
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Table 1.1 Uses and requirements for various equation systems

Uses of equation systems

Structural Requirements for use of

Equation system Prediction Control analysis equation systems
1. Final equations? (2.7) yes no no Forms of ARMA processes
and parameter estimates
2. Reduced form yes yes no Endogenous—exogenous
equations (2.13) classification of variables,

forms of equations, and
parameter estimates
3. Transfer equations® yes yes no Endogenous-exogenous
(2.15) classification of variables,
forms of equations, and
parameter estimates
4. Final form equations® yes yes no Endogenous—exogenous
(2.14) classification of variables,
forms of equations, and
parameter estimates
5. Structural equations  yes yes yes Endogenous—exogenous
(2.10) variable classification,
identifying information,
forms of equations, and
parameter estimates

d

Notes:

¢ This is Tinbergen’s (1940) term.

b These equations are also referred to as “separated form” or “autoregressive final form”
equations.

¢ As noted in the text, these equations are also referred to as “transfer function,” “funda-
mental dynamic,” and “rational distributed lag” equations.

4 That is, information in the form of restrictions to identify structural parameters.

3 Algebraic analysis of a dynamic version of
Haavelmo’s model

Haavelmo (1947) formulated and analyzed the following static model
with annual data for the United States, 1929-41:

G =ay + B+ us, (3.1a)
re = ple, +x) +v+w, (3.1b)
Ve=cCt+x—1 (3.1¢)

where ¢;, y; and r, are endogenous variables, x, is exogenous, u, and w,
are disturbance terms, and «, 8, u and v are scalar parameters. The
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definitions of the variables, all on a price-deflated, per capita basis, are:
¢; = personal consumption expenditures,

3y, = personal disposable income,

r, = gross business saving, and

x, = gross investment.”

Equation (3.1a) is a consumption relation, (3.1b) a gross business sav-
ing equation, and (3.1c) an accounting identity.

In Chetty’s (1966, 1968) analyzes of the system (3.1) employing
Haavelmo’s annual data, he found the disturbance terms highly auto-
correlated, perhaps indicating that the static nature of the model is not
appropriate. In view of this possibility, (3.1) is made dynamic in the fol-
lowing way:

¢ =a(L)y + B+ u, (3.2a)
re = pu(L)(e: + %) + v+ w; (3.2b)
M=cC+x—r (3.2¢0)

In (3.22), a(L) is a polynomial lag operator that serves to make ¢, a
function of current and lagged values of income. Similarly, « (L) in (3.2b)
is a polynomial lag operator that makes r, depend on current and lagged
values of ¢, + x;, a variable that Haavelmo refers to as “gross disposable
income.” On substituting for r, in (3.2b) from (3.2c), the equations for
¢; and y, are:

¢ =a(L)y, + B +u, (3.3a)
Yo =1 —u)]: +x) —v—w,. (3.3b)

With respect to the disturbance terms in (3.3), we assume:

w \ _ (D) fiz(D) (en (.4)
—W; fa(L)  fa2(L) exn )’ '
where the f;;(L) are polynomials in L, e;, and e,, have zero means, unit
variances, and are contemporaneously and serially uncorrelated.

Letting 2, = (¢;, w15 x;), the general multiple time series model for z,,
in the matrix form (2.1), is:

H(L)z = 0 +F(L e, (3.5)

3x3 3x1 3x3 3x1

7 In Haavelmo’s paper, gross investment, x;, is defined equal to “government expenditures
+ transfers — all taxes + gross private capital formation,” while gross business saving,
1, is defined equal to “depreciation and depletion charges + capital outlay charged to
current expense + income credited to other business reserves — revaluation of business
inventories + corporate savings”.
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where e, = (ey,, e2;, €3,) satisfies (2.2)—(2.3) and 0’ = (0,02, 03) is a vec-
tor of constants. In explicit form, (3.5) is:

hit(L) hia(L) his(L) ¢
hot(L)  hao(L)  hps(L) Vi
h31(L)  hs(L)  hss(L) X

01 JSul)  fiz(L)  fis(D) ey
=|0: |+ | fal) fa2(l) faz(L) e | . (3.6)
0 (L) fz(L)  f3s(L) e3;

To specialize (3.6) to represent the dynamic version of Haavelmo’s
model in (3.3) with x, exogenous, we must have 61 = 8,0, = v,

[SSEEN )

hu(L) =1 hi2(L) = —a(L) hi3(L) =0
ha1 (L) = —[1 — u(L)] ha(L) =1 hys(L) = —[1 — u(L)] (3.72)
h31(L) =0 h32(L) =0 h33(L)
and
S13(L) = f23(L) = f51(L) = f52(L) = 0. (3.7b)
Urtilizing the conditions in (3.7), (3.6) becomes:
1 hlz(L) 0 Ct
ha1 (L) 1 has(L) | | 3
0 0 h33(L) Xy
0 Mm@ fiz(D) 0 ey
=6 |+ | faa(L) far(D) 0 e | . (3.8)
03 0 0 f33(L) e3;

Note that the process on the exogenous variable is 233 (L)x, = f33(L)es, +
05 and the fact that x, is assumed exogenous requires that /3;(L) =
h33(L) = 0 and that F(L) be block diagonal as shown in (3.8).

In what follows, we shall denote the degree of %;;(L) by r;; and the
degree of f;; (L) by g;;.

From (3.8), the final equations for ¢, and y, are given by:

(1 = hizho)hsse, = 0] + (fir — fa1hi2)hszer,
+ (fiz — fa2h12)hszen + fazhizhazes,  (3.9)

and

(1 = hizha) b33y, = 05 + (fo1 — fiihai)hsser,
+ (f22 — fi2ha1)h3zes, — frzhozes, (3.10)
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Table 1.2 Degrees of lag polynomials in final equations

Degrees of MA polynomials for errors?

Degrees of AR

Final equation  polynomials® e1; e, e3;
Maximum of Maximum of Maximum of

3B.9):a 733 and r33 + ¢11 and r33 + ¢12 and r2 + 123 + ¢33
rizg + 121 + 133 133 +ri2 + g2 r33 + 112 + 22

(3.10): y, 733 and r33 + ¢21 and 33 + g22 and 723 + ¢33
riz + 121 + 133 133+ 121+ 4 r33 + 121 + q12

GB.11): x, 33 - - 933

Notes:

¢ r;; is the degree of /;;. Note from (3.7a), h21 = h23 = —[1 — u(L)], and thus rp; = r3.
b gij is the degree of f;;.

with %21 = k3 and 6] and 6] being new constants. Note that the AR parts
of (3.9) and (3.10) have the same order and parameters. The degrees of
the lag polynomials in (3.9) and (3.10) and in the process for x;,

h33x; = fzzes; + 03, (3.11)

are indicated in table 1.2.

As mentioned above, the AR polynomials in the final equations for
¢; and vy, are identical and of maximal degree equal to 15 + 721 + 733,
as shown in table 1.2, where r, = degree of «(L) in the consumption
equation, r,; is the degree of (L) in the business saving equation, and
r33 is the degree of /33, the AR polynomial in the process for x;. Also, if
the disturbance terms «, and w, are serially uncorrelated and if all the g;;
in table 1.2 are zero, the following results hold:

(i) In the final equation for ¢, the degree of the AR part is larger than or
equal to the order of the MA process for the disturbance term; that is
ri2 + 121 + 133 = max(ris +ra3, 733 +r12), with equality holding if
r33 = 0, since ro] = rp3, orifro; =rp3 = 0.

(i1) In the final equation for y,, the degree of the AR polynomial is larger
than or equal to the order of the MA process for the disturbance
term;i.e., 15 + 721 + 733 = 133 + rp1 with equality holding if r1, = 0.
Thus if the process for x; is purely AR and the structural disturbance
terms u, and w, are not serially correlated, (i) and (ii) provide useful
implications for properties of the final equations that can be checked
with data as explained below.

Further, under the assumption that the structural disturbance
terms u, and w, are serially uncorrelated, all g;; other than ¢33 in
table 1.2 will be equal to zero. If the process for x, is analyzed to
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determine the degree of /33, 133, and of f33, ¢33, this information can
be used in conjunction with the following:

(iii) In the final equation for ¢;, the degree of the AR polynomial will be
smaller than or equal to the order of the MA disturbance if ¢33 = r33.
(Note r5; = r23.) If ¢33 < r33, the degree of the AR polynomial will
be greater than the order of the MA disturbance term.

@iv) In the final equation for y,, the degree of the AR polynomial will
be greater than the order of the MA disturbance term given that
r12 +733 > ¢33 and r1, > 0. They will be equal if r1, = 0 and r33 >
g33 or if ri5 + r33 = ¢33. The latter will be greater if 15 + 133 < ¢33.

In what follows, post-Second World War quarterly data for the United

States, 1947-72, are employed to analyze the final equations for ¢, y, and

x; and to check some of the implications mentioned above.

From (3.8), the dynamic structural equations of the dynamized

Haavelmo model are:

1 hiz O o 01 fir fiz\ fen
w| = + ,  (3.12a)
har 1 has) \x ) fo1 f22) \ea
or
1 hp\(ca)_ (0 0 Sir fiz) (e
(hZI 1 ) ( ) \O2 + —h2s ot fa1 f22) \ex)”

(3.12b)

From (3.12b), the transfer equations, the analogue of (2.15) are:
1 h12 Cr\ _ 91/ 1 —hlz 0
har 1 (yz) N (6’&/ + —hy 1 —hys )
1 —hi2\ (S f12) <€1z)
s 3.13
+ <—h21 1 )(fm S22 ) \ex (3.13)

(1 = hyzhar)e; = 0] + hizhasx, + (fi1 — farhiz)er:
+ (f12 — fazhi12)ea, (3.14)

or

and

(1 = hioh21)y, = 65 — hasx, + (fo1 — firhat)er,
+ (f22 — fi2hz21)e2:s (3.15)
where 0] and 6] are constant parameters that are linear functions of 0;
and 0,.

The following properties of the transfer equations, (3.14) and (3.15)
are of interest:
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(a) The AR parts of the two transfer equations are identical. Since %, is
of degree r15 and &, of degree 1,1, the order of the autoregression in
each equation is ry5 + 7.

(b) In (3.14) the degree of the operator 4;5/4,3 hitting x, iS 715 + 723 =
r12 + 721, the same as that for the autoregressive part of the equation,
1 — higho.

(c) In (3.15), the degree of the lag operator, —h53, applied to x; is 723 =
721, which is less than or equal to the degree of 1 — A5/451, the AR
polynomial.

(d) The lag operator acting on x; in the equation for ¢;, 412433, is a mul-
tiple of that acting on x, in the equation for y, and thus the former
has degree larger than or equal to that of the latter.

(e) If the structural disturbance terms are serially uncorrelated, i.e. f;;
has degree zero in L for i, j = 1, 2, the orders of the MA error terms
in (3.14) and (3.15) are r;, = 0 and r,; = 0, respectively. Thus for
both equations, the order of the MA error process is less than or
equal to the order of the AR part of the equation.

By use of appropriate statistical techniques and data, the transfer equa-
tions in (3.14)—(3.15) can be analyzed to determine the degrees of lag
polynomials and to estimate parameter values. With these results in hand,
it is possible to check the points (a)—(e) relating to the transfer equations
associated with Haavelmo’s dynamic model. The results of such calcula-
tions are reported below.

4 Empirical analyzes of final equations (3.9)-(3.11)

4.1 Analyzes utilizing Box—Fenkins techniques

In this subsection, we report the results of applying [Box—Jenkins] (B])
identification and estimation procedures to the final equations of the
dynamized Haavelmo model. Box and Jenkins (1970, p. 175) provide the
following relations between the autocorrelation and partial autocorrela-
tion functions associated with stationary stochastic processes for a single
random variable:®
(1) For a purely AR process of order p, the autocorrelation function tails
off and the partial autocorrelation function® has a cut-off after lag p.
(2) For a purely MA process of order g, the autocorrelation function
has a cut-off after lag ¢ and the partial autocorrelation function tails
off.

8 See Box and Jenkins (1970, pp. 64—5) for a definition of this function.
9 Autocorrelation functions have been formerly used in econometrics, see, e.g., Wold
(1953).
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Figure 1.1 Plots of data for y,, ¢,, and x,, 1949-1970

(3) For a mixed ARMA process, with the order of the AR being p and
that of the MA being ¢, the autocorrelation function is a mixture
of exponential and damped sine waves after the first ¢ — p lags and
the partial autocorrelation function is dominated by a mixture of
exponentials and damped sine waves after the first p — ¢ lags.

Box and Jenkins suggest differencing a series until it is stationary and
then computing estimates of the autocorrelation and partial autocorrela-
tion functions. Using (1)—(3), it may be possible to determine or identify
the nature of the process for the differenced series as well as values of
p and ¢. Once the process or model and p and ¢ have been determined,
the model’s parameters can be estimated, usually by use of a non-linear
estimation procedure.

Plots of the data for the variables of Haavelmo’s model, ¢;, v;, and x;, are
shown in figure 1.1.!° From this figure, it is seen that the variables appar-
ently have trends and thus are non-stationary. First or second differencing

10 The variables have been defined above. The data are seasonally adjusted quarterly, price-
deflated, per capita aggregates, expressed in dollars at an annual rate, for the US economy,
19471-197211, obtained from official sources cited in the appendix.
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Figure 1.2 Plots of data for ¢, — ¢,_1, v, — ¥,_1, and x, — x,_;, 1950—
1970

of the variables may induce stationarity. For the reader’s benefit, plots of
the first differences of the variables are presented in figure 1.2. It is clear
from the plots of the first differences that they are less subject to trend
than are the levels of the variables. However, a slight trend in the magni-
tudes of the first differences may be present if the levels are subject to a
relatively constant proportionate rate of growth. For this reason, we also
performed analyzes based on second differences.

In figure 1.3, we present the estimated autocorrelation function for the
series ¢, — ¢;_1, the first difference of consumption.!! Also indicated in
figure 1.3, is a 26 confidence band for the autocorrelations where & is
a large sample standard error for the sample autocorrelations.!? It is seen
that all estimated autocorrelations lie within the band except for that of
lag 2. This suggests that the underlying process is not purely AR. If the
autocorrelation estimate for lag 2 is regarded as a cut-off, the results

11 The computer program employed was developed by C. R. Nelson and S. Beveridge,
Graduate School of Business, University of Chicago.

12 52 i5 an estimate of the following approximate variance of 7, the kth sample serial corre-
lation, given in Bartlett (1946). With p, = 0 forv > ¢, var (rz) = (1 + 2 Zq=1 pg)/ T, for
k > g. The +26 bounds for r, k= 1,2, ..., 12, are calculated under the assumption,
py = 0,2 > 0. For £ > 12, they are calculated assuming p, = 0, v > 12.
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Figure 1.3 Estimated autocorrelation function and estimated partial
autocorrelation function for ¢, — ¢,_;
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Figure 1.4 Estimated autocorrelation function and estimated partial
autocorrelation function for y, — y,_;

suggest that a second order MA process may be generating the first
differences of ¢,. The estimated partial autocorrelation function, also
shown in figure 1.3, does not appear to contradict this possibility. Estima-
tion of a second order MA model for the first differences of consumption,
led to the following results using the BJ non-linear algorithm:

¢, —¢—1 = e, +0.0211¢,_1 +0.278¢,_, +10.73 s2 =530,
(0.101) (0.101) (2.96) @1

where s? is the residual sum of squares (RSS) divided by the number
of degrees of freedom and the figures in parentheses are large sample
standard errors.

For income, v;, a plot of the first differences is given in figure 1.2. From
the plot of the estimated autocorrelations for the first differences in figure
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Figure 1.5 Vertical areas of figures 1.3-1.5 for x, — x,_;: on the right:
¢3i» on the left: 7,

1.4, it appears that none of the autocorrelations is significantly different
from zero, a finding that leads to the presumption that the underlying
model is not AR. Estimates of the partial autocorrelations for lag 4 and
lag 10 lie close to the limits of the £26 band — see figure 1.4. Other
partial autocorrelations appear not to differ significantly from zero. If all
autocorrelations and partial autocorrelations are deemed not significantly
different from zero, then the conclusion would be that the first differences
of income are generated by a random walk model which was estimated
with the following results:

— = 2
YVe—YV—1=e + 1(803963) s¢ = 842. (4.2)

For the first differences of investment, x, — x,_; — see the plot in
figure 1.2 — the estimated autocorrelation and partial autocorrelation
functions are given in figure 1.5. The autocorrelations alternate in sign
and show some significant values for lags less than or equal to 5 which
suggests an AR model. The partial autocorrelation function has a cut-off
at lag 4, supporting the presumption that the model is AR and indicat-
ing a fourth order AR scheme. Also, the partial autocorrelation function
for the second differences has a cut-off at lag 3 while the autocorrelations
alternate in sign for lags less than 11, findings which support those derived
from analysis of first differences. In view of these findings, a fourth order
AR model has been fitted with the data:

(14 0.263L — 0.0456L% +0.0148L> + 0.376 L*)(x, — x,_1)
(0.0942) (0.0976) (0.0970) (0.0933)

=e, +7.738 s?=930. (4.3)
(3.265)
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In contrast to the processes for the first differences of ¢, and y, in (4.1)
and (4.2), that for the first differences of investment, x;, in (4.3) has an
AR part. Thus the requirement of the structural form that all endogenous
variables have identical AR parts of order equal to or greater than that
for x, — see (3.9)—(3.10) above — is not satisfied given the results in (4.1)—
(4.3). Using the notation of table 1.2 with %;; of degree r;; regarded as
an element of H(L)/(1 — L), the degree of the AR polynomial in (4.31)
is r33 = 4 while that of the error process is ¢33 = 0. In the case where no
cancelling occurs in (4.1)—(4.2), it is clear that the conditions (3.9) and
(3.10) of table 1.2 can not be met. Even if /4,3 in (3.8) satisfies /3 = 0
so that ¢, and y, are generated independently of x,, the conditions on
the final equations are not met by the results for the final equations in
(4.1)—(4.3).!> Thus while (4.1)—(4.3) appear to be consistent with the
information in the data, they are not compatible with the dynamized
Haavelmo model specified in section 3, (3.2a)—(3.2¢).

At this point, the following are considerations that deserve attention:
(1) Although the fits of the models in (4.1)—(4.3) are fairly good, it may

be that schemes somewhat more complicated than (4.1)—(4.3) are
equally well or better supported by the information in the data and
are compatible with the implications of the Haavelmo model. This
possibility is explored below.

(2) To compare and test alternative final equations for each variable, it
would be desirable to have inference methods that are less “judgmen-
tal” and more systematically formal than are the B] methods. In the
next subsection, we indicate how likelihood ratios and posterior odds
ratios can be used for discriminating among alternative final equation
models.

(3) It must be recognized that there are some limitations on the class of
AR models that can be transformed to a stationary process through
differencing. That is, only those AR models whose roots lie on the
boundary or inside the unit circle can be transformed to stationary
models by differencing. Other transformations, say logarithmic, have
to be used for models with roots outside the unit circle.

(4) Differencing series may amplify the effects of measurement errors
present in the original data and seriously affect estimates of the
autocorrelation and partial autocorrelation functions. Of course, this
problem arises not only in the B] approach but also in any analysis of
ARMA processes, particularly those of high order.

3If hy3 =0, then (4.1)-(4.2) imply ri2+7r21 = 1ir12 +¢21,9115 912,712 + 922 < 2
(with at least one equality); and r21 +¢11,921>721 + q12>922 < 0. These condi-
tions imply q11 =q12 =421 =422 =121 =0,r31 =1, and r,; = 2 which cannot hold
simultaneously.
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4.2 Analyzes of final equarions utilizing likelthood ratios and
posterior odds

The purpose of this section is to provide additional procedures for iden-
tifying or determining the forms of final equations. These procedures
involve use of likelihood ratios and Bayesian posterior odds. After show-
ing how to obtain likelihood ratios and posterior odds, some of the results
are applied in the analysis of Haavelmo’s model.

Consider the following ARMA model for a single random variable z,,

d(L)z, =0(L)e,, t=1,2,...,T, (4.4)

where ¢ (L) and 6 (L) are polynomials in L of degree p and g, respectively.
Assume that the ¢,’s are normally and independently distributed, each
with zero mean and common variance, o2. Let u, = 0(L)e,. Then given
the “starting values” for ¢; and z,, €9 and 2¢, the vector u/ = (uy, up' . ...,
u7) has a T-dimensional multivariate normal distribution with zero mean
vector and covariance matrix X, that is:

p(ulp, 0,0% 20, 0) = M) Pexp |2 2 - 1uz U}, (4.5)

where ¢’ = (¢p1, P2, ...,¢,) and 8’ = (61,02, . ..,6,). The matrix Y is a
T x T positive definite symmetric matrix with elements given by:

q
Oti—k = o2 (1 + ZOE) s for k=0,
i=1

q

Oty =0 (—9k + Z 91’—1291‘) , for0<k=g, (4.6)
i=kt1

o,k = 0, for & > q.

Also, the joint probability density function (pdf) for the ¢;s, given by

&=z =151~ —PpZp + 0161 + -+ 084
t=1,2,..., 7, (4.7)

is:

1 T
P(€|¢, 9; 0'2, €0> 20) = (ZHJZ)—T/Z exp !—P ; 8[2} . (48)
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Since the Jacobian of the transformation from the ¢,s to the z,s is equal
to one, the joint pdf for the z;s, the likelihood function, is:

1 T
Pz, 0,07, €0, 20) = (2MT0*) P exp{ ———= > (5 — 171
202 —
— =P+ 0161 + 0262

N (4.9)

In this context, (4.9) is convenient since Marquardt’s non-linear compu-
tational algorithm can be applied to obtain maximum likelihood (ML)
estimates.

If we have an alternative ARMA model,

d)a(L)Zt = Ga(L)Sat) t=12,..., T, (410)

where ¢,(L) is of degree p,, 0,(L) of degree ¢, and the error process &,
is NID(0, 02), then the likelihood ratio, A, for (4.4) and (4.10) is

A = (max (¢, 0, 0|2))/(maxl(P,; 04; 04l2))s

#,0,0 Ga:00>04 (4.11)

where I(¢, 0, 0 |2) denotes (4.9) viewed as a function of its parameters and
similarly for /(¢p,, 8,, 0,|2). The ratio of maximized likelihood functions
in (4.11) reduces to:

r=(62/82)"", (4.12)
where
1 < . . R R
6% == Zl<zz — 1z — = bpaip+ OBy o+ Og8 )’
" (4.13a)
and
1 & . . R
62 = T ;(3): — P1aZ-1 = — OpaZi—p, T Ora€au—1+ -
+0g,afay—g,)’ (4.13b)

are the ML estimates for 02 and o2.

If model (4.10) is nested in model (4.4), i.e. p, < p and/or ¢q, < ¢,
with at least one strict inequality, and under the assumption that (4.10)
is the true model, 2InA is approximately distributed as x2? with r being
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the number of restrictions imposed on (4.4) to obtain (4.10); that is,
r=p+q—(pa+qa.) — see Silvey (1970, pp. 112-13). In choosing a
significance level for this test, it is very important, as usual, to consider
errors of the first and second kind. Rejecting the nested model when it
is “true” appears to us to be a less serious error than failing to reject it
when the broader model is “true”. That is, using the restricted model
when the restrictions are not “true” may lead to serious errors. Use of
the broader model, when the restricted model is “true,” involves carrying
along some extra parameters which may not be as serious a problem
as giving these parameters incorrect values. This argues against using
extremely low significance levels, e.g.« = 0.01 ora = 0.001. Also, these
considerations rationalize somewhat the usual practice of some degree of
over-fitting when the model form is somewhat uncertain. More systematic
analysis and study of this problem would be desirable.

In order to compare (4.4) and (4.10) in a Bayesian context, we have
to specify a prior distribution on the parameter space. In the problem
of comparing nested models, this prior distribution has a mixed form
with weights whose ratio is the prior odds on alternative models — see,
e.g., Jeffreys (1961, p. 250), Zellner (1971, pp. 2971f.), and Palm (1972).
Formally, the posterior odds ratio relating to (4.4) and (4.10) is given by:

n [ p(¢,6,0)(¢,0,0|2)d¢p d0 do
Hy [ (s 0as 0)l(Pys Ous 07412) A, dO, do,’

where K, is the posterior odds ratio, I71/I1, is the prior odds ratio, and
p(p,0,0) and p(pa, 04, 0,) are the prior pdfs for the parameters. Before
(4.14) can be made operational, it is necessary to formulate the prior pdfs
and to evaluate the integrals, either exactly or approximately.'*

We now compute likelihood ratios to compare alternative formulations
of the final equations of Haavelmo’s model. The information in table 1.2
and empirical results in the literature on quarterly consumption relations
suggest higher order AR and MA schemes than those fitted in section
4.1. For example, a fourth order AR model for the second differences of

K, = (4.14)

14 Note however, as pointed out by Lindley (1961), the likelihood functions in the numer-
ator and denominator of (4.14) can be expanded about ML estimates. If just the first
terms of these expansions are retained, namely / ((z;, é, 6|2) and / (d;a, éa, 6,4]2), and if
the prior pdfs are proper, (4.14) is approximated by:

Kio = [[1/1,(I($, 0, 612) [ 1(as as 60121,

i.e. a prior odds ratio, IT/I1,, times the usual likelihood ratio. As Lindley points out,
additional terms in the expansions can be retained and the resulting expression will
involve some prior moments of parameters. Thus on assigning a value to [7/[1,, the
prior odds ratio, the usual likelihood ratio is transformed into an approximate posterior
odds ratio for whatever non-dogmatic, proper prior pdfs employed.
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consumption with third order MA error terms is a scheme tentatively sug-
gested by considerations presented in section 4.1. This scheme has been
fitted with both the consumption and income data with results shown for
¢; and y, in tables 1.3 and 1.4 and those for x, in table 1.5 with figures in
parentheses being large sample standard errors. Also shown in table 1.3
are the results for the simple schemes of section 4.1 and results for several
other specifications. It should be noted that use of the broader schemes
for ¢, and y, results in decreases in the value of the residual sum of squares
divided by degrees of freedom of about 8-12 percent. However, it must
be noted that the large sample standard errors associated with the point
estimates are rather large in a number of instances.

To put the comparison of alternative schemes on a more formal basis,
likelihood ratios have been computed and are reported in table 1.6. Using
these ratios as a basis for large sample x? tests, it is found that it is
possible to reject the simpler versions at reasonable significance levels.
The results of the tests indicate that it is reasonable to retain the model
(5, 1, 4) for consumption and income and (4, 1, 0) for investment. Given
that these models are tentatively accepted, it is the case that the AR
and MA polynomials for the consumption and income processes have
identical degrees. However, the point estimates of the AR parameters
of consumption and income processes are not very similar, a finding
that must be tempered by the fact that standard errors associated with
coefficient estimates are rather large, particularly for the AR parameters of
the income process. It would be very desirable to develop joint estimation
techniques for the two equations in order to increase the precision of
estimation and joint test procedures for testing the hypothesis that the
AR parameters are the same for the two processes.

What are the implications of retaining (5, 1, 4) models for ¢; and y, and
a (4, 1, 0) model for x,? As noted above, the empirical finding that first
differencing appears adequate to induce stationarity for all three variables
suggests that the model can be expressed in first difference form. That
is, we rewrite (3.5) as follows:

H(L)A - L)z, = 0 + F(L)e,, (4.15)

where H(L) has elements that are the elements of H(L) divided by 1 — L.
With the polynomials %;;(L) of degree r;; considered elements of H(L)
rather than H(L) and if no cancelling occurs in (4.15), then under the
restrictions imposed on the Haavelmo model in the preceding section
(see table 1.2), we have r33 = 45933 = 05712 +r21 + 133 = 5;

733 + q115733 + 12 + 9215733 + q125 733 + r12 + g22,
ri2+73 + g33 <4
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Table 1.6 Results of large-sample likelihood ratio tests applied to final
equations of Haavelmo’s model

Critical points for x,?

 Z114(X|Hy)

=————= 2InA =0.05 «=0.10 «=0.20
114X\ H) n r oo o o

Models compared®

1. Consumption c,
H, : (0, 1,2) vs. Hy : (4,2, 3)" 573.547 - -
Hy:(0,1,2)vs. H : (5,1,4) 2098.29 15.230 7 14.07 12.02 9.80

Hy:(5,2,2) vs. Hy : (4,2,3)" 15.871 - - - -
Hy:(4,2,3)vs. H : (5,1,4) 3.654 2.592 2 599 4.61 3.22
2. Income y,

H,: (0,1,0) vs. H : (0,1, 4)° 31.697 6.912 1 3.84 2.71 1.64
Hy:(0,1,0) vs. Hy : (4,1,4) 4937.0 x 102 26.219 8 15.51 13.36 11.03
Hy:(0,1,0)vs. H : (5,1,4) 5236.0 x 102 26.337 9 16.92 14.68 12.24
Hy : (0,1,0) vs. Hy : (4,2, 3)" 44.453 - - - - -
Hy:(4,2,3)vs. H : (5,1,4) 117.8 x 10? 18.748 2 5.99 4.61 3.22

3. Investment x,
H,:(4,1,0)vs. H; : (5,2,1)° 5.678 - - - - -

Notes:

¢ H: (p, d, q) denotes an ARMA model for the dth difference of a variable that has AR polynomial
of degree p. and MA error polynomial of degree g.

b These are non-nested hypotheses.

¢ Here there are three restrictions on the parameters of the MA error process.

and

733 + q215133 + 21 + q115 733 + 4225733 + r21 + G125
r23 +g33 < 4,

with at least one equality holding in both cases. These restrictions imply
ri2 +r21 = 1,allg;; = 0andri, =rs = 0, conditions that cannot hold
simultaneously. Also, if we retain a (5, 2, 1) model for investment, we
end up with a contradiction.

If we make the assumption that the joint process for Ac, and Ay, is
independent of Ax;, i.e. 2,3 = 0 in (3.8), an assumption that may appeal
to some Quantity of Money theorists but not to most Keynesians, the
degrees of the polynomials reported in table 1.2 are reduced by r33 and we
have the following restrictions on the degrees of the AR polynomials in the
processes for Ac, and Ay, : 712+ 721 =55¢11912: 712 + G215 712 + g22 S
4; and g21,922,721 +q 115721 + q12 < 4, with at least one equality hold-
ing in both cases. With further assumptions, e.g. r;» = 2 and r,; = 3, it
is possible to determine compatible values for the degrees of the struc-
tural equations’ lag polynomials and error term polynomials. However,
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this compatibility is attained only with the controversial assumption that
the joint process for Ac, and Ay, is independent of the process for
Ax,, Haavelmo’s investment variable.!> A major implication of this last
assumption is that the analysis of the transfer functions should reveal no
dependence of either Ac, or Ay, on Ax;, a point that is checked in the
next section where we analyze the transfer equations (3.14)—(3.15).

An alternative way to achieve compatibility of the results of the final
equation analyzes with structural assumptions is to assume that /2,3 (L) =
h33(L). This assumption implies that the investment variable influences
Ac; and Ay, only through its disturbance term. With this assumption, /33
cancels in (3.9) and (3.10) and the empirical findings, combined with
the results in table 1.2, imply that r33 = 4, r,3 = r33 = 4, by assumption,
g33=0,r12+7r2 =5,

q11>912> 712 + g21> 712 + g2 £ 4

and

42159225721 +q115 721 + q12 = 4,

with at least one equality in each case. Further, the autoregressive parts
of the final equations for ¢, and y, are identical to the autoregressive
parts in their transfer equations. These implications of the assumption,
ha3(L) = h33(L), and of final equation findings for the forms of the trans-
fer equations will be checked in the next section.

5 Empirical analyses of transfer equations (3.14)—(3.15)

We now turn to an analysis of the transfer functions, shown in (3.14)—
(3.15), associated with the dynamized Haavelmo model. These equations
express ¢, and y, as functions of their own lagged values, of current and
lagged values of x;, and of current and lagged error terms. The first step in
the analysis of the transfer functions is the determination or identification
of the degrees of the lag polynomials. In general, a transfer function can
be written as an infinite moving average process in exogenous variables
plus an error term, u,, with zero mean, that is,

e = o(L)x; + ug, 6.

where v(L) = Y 2 v L. Often this infinite process can be well approx-
imated by a finite distributed lag model of order k, that is o(L) =

15 In terms of (3.8), this assumption implies that 4,3(L) = 0. With this assumption,
the structural equations are, from (3.3): Ac, = w(L)Ay;+ B+ u, and Ay, =[1 —
w(L)]Ac; — v — w,. That is, current and lagged values of y, affect consumption and
current and lagged consumption affect income.
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Zf:o v; L'. Solving the Yule-Walker equations for a kth order approxi-
mation, we obtain

Eyix, v = voEx;x o« + 01 Exp 1% ¢ + -+ e Exp pXe o5 (5.2)
1=0,1,2,...,k

Rough estimates of the v;s can be obtained by replacing the expectations
in (5.2) by corresponding sample moments and solving for the v;s. This is
equivalent to regressing y, on current and lagged values of x,. Note, too,
that v(L) can be written as the ratio of two lag polynomials of degrees
sand r, ws(L) and 6,(L), as follows:

o(L) = [ (1)/6, (D)L, (5.3)

with b some non-negative integer. Introduction of b # 0 allows for some
“dead time” in the response pattern of y, to x,. Using (5.3) and the prelim-
inary estimates of the v;s, obtained as described above, preliminary esti-
mates of the parameters w;(L), w;s, j =0,1,2, ...,s, and of 6,(L), 6;s,
i1=1,2, ...,r,can be found. As Box and Jenkins (1970, p. 378) point
out, the vjs, the impulse response weights, consist of:
(1) b zero values, vg, V15 . . .5 Vp_15
(2) afurther s —r + 1 values, vp, ..., Upis_r, following no fixed pattern
(if s < r, no such values occur), and
(3) values vj, with j = b + s — r + 1, following a pattern given by an rth
order difference equation with starting values v . . . Vpgs5—pt1-
Properties (1)—(3) can help to determine the values of b, s, and r from
the preliminary estimates of the vs. Then the residuals @, = y, — 9(L)x,
are analyzed to determine the degrees of the AR and MA parts of the
error process using estimated autocorrelation and partial autocorrelation
functions. Final estimation of the transfer function so determined can
be accomplished in the BJ approach by use of Marquardt’s non-linear
algorithm.

It is important to observe that the results of final equation analyses
can be employed to obtain some information about the degrees of trans-
fer functions’ lag polynomials. In fact, if assumptions regarding struc-
tural equations’ forms are in accord with information in the data, there
should be compatibility between the final equations’ and transfer equa-
tions’ forms that we determine from the data.!® That is, final equation
analysis led us to (5, 1, 4) processes for ¢; and y, and to a (4, 1, 0)
process for x;, namely, ¢4 (L)Ax, = e;, or Ax;, = 45(74% (L)e,. If we differ-
ence the transfer functions in (3.14) and (3.15) and then substitute

16 Here we abstract from the possibility that /53 (L) = 0 since in this case transfer functions
show no dependence on x;, a point that is checked below.
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Ax, = qb@; (L)e;, we obtain the final equations for ¢, and y,. To obtain
compuatibility with the empirically determined (5, 1, 4) final equations for
¢; and y,, the transfer functions must have polynomials hitting Ax, with
degree s < 3 in the numerator and degree r = 0 in the denominator. In
addition, the ratio of lag polynomials operating on the transfer functions’
error terms should have a numerator of degree zero and denominator of
degree one.

Under the assumption %53(L) = h33(L), introduced tentatively in the
previous section, the final equation analyzes yield the following implica-
tions for the transfer functions’ lag structures in (3.14)—(3.15):

(1) The AR parts of both transfer functions are identical with the AR
parts of the final equations and are of degree r15 +r; = 5.

(2) The polynomial, /4,3, hitting Ax; in the transfer function for income,
is identical with the AR part of the final equation for x, and has degree
rp3 =133 = 4.

(3) The polynomial operating on Ax, in the consumption transfer func-
tion has degree of at least 4.

(4) The order of the moving average error process in each transfer equa-
tion is equal to 4.

We shall check points (1)—(4) in the empirical analyzes that follow. In

this connection, it is the case that there is no assurance that the informa-

tion in the data will be in accord with compatible findings for the final

equations and transfer functions of the Haavelmo model since model

specification errors, measurement errors, imperfect seasonal adjustment,

etc. can affect analyzes to produce incompatible results.

To determine the degrees of the lag polynomials in (3.14)—(3.15) and
to get starting values for the s, different values for 2 were employed in
connection with (5.1)—(5.2) that provided preliminary estimates of the vs.
For k& = 8 and the first difference of ¢,, the v;s with i = 0, 1 and 6 appear
to be significantly different from zero and the behavior of the estimated
v;8 1s very irregular. The fact that vy is significantly different from zero
implies that & = 0. With respect to determining values for r and s, the
degrees of the polynomials in (5.3), the results are not very precise. The
values indicated by our final equation analysis are used and starting val-
ues for the w;s are based on the estimates of the v;s for alternative values
of s and r. Further, the analysis of the residuals from an eighth order
distributed lag model for the first difference of ¢, suggests a mixed first
order AR and second order MA error process. However, it is thought that
this determination of the transfer function’s properties is very tentative
and thus it was thought worthwhile to proceed to estimate transfer func-
tions in forms suggested by our final equation analyzes. Some estimation
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results for these forms are shown in (5.4)—(5.5): with s = 3,

Ac, = (—0.129 + 0.188L + 0.0875L* — 0.037L>) Ax,

(0.0689) (0.0704) (0.070) (0.068)
+e,/(1+0.0208L) + 10.41, (5.4)
(0.105) (2.297)

with residual sum of squares (RSS) equal to 41,617, and with s = 2,

Ac, = (—0.149 4+ 0.172L + 0.0830L%) Ax,

(0.0685)  (0.0709) (0.0677)
oo/ (1= 0.00471) +10.05,
0.105) (2.34) (5.5)

with RSS = 43,226.
Under the assumption %33(L) = h33(L), an estimate of the transfer
function form suggested by the final equation analysis is:

0.0349 +0.171L +0.264L2

(0.068)  (0.106) (0.102)
Ac, = — Xt
1+0.575L —0.187L2
(0.289) (0.480)
1—0.550L —0.55912
. (0.388) (0.465) e, +10.55, (5.6)
1 —0.484L —0.695L2 +0.288L3 (8.573)
(0.327) (0.431) (0.200)

with RSS = 30,945.

With respect to the first differences of y,, with £ = 8, implementation
of (5.1)—(5.2) resulted in just vy being significantly different from zero,
suggesting that b = 0. The estimated v;s appear to follow a damped wave-
like pattern. The difference between the values of r and s is thus thought to
be small but this inference is very uncertain. In view of this, the values of
s and r implied by the final equation analysis, s < 3 and r = 0 have been
employed along with a ratio of polynomials for the error process with
numerator of degree 0 and denominator of degree 1. Some estimates
reflecting these considerations follow.

For s = 3,

Ay, = (0.385 + 0.139L + 0.0938 L% — 0.124L%) Ax,
(0.066) (0.0675) (0.067) (0.0658)
e
— _ 4+10.83,
(1 + 0. 055L) (2.15)
(0.105) (5.7
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with RSS = 38,908, and for s = 2,
Ay, = (0.355 + 0.121L + 0.117L?) Ax,

(0.067)  (0.0696) (0.066)
+e,/(14+0.0077L) + 10.01,
(0.103) (2.301) (5.8)

with RSS = 41,547.

Under the assumption that /,3(L) = h33(L), the transfer function for
income suggested by the final equation analyzes has been estimated with
the following results:

0.417 +0.063L +0.068L2
(0.075)  (0.165) (0.163)

Ax,
1—0.0628L —0.111L% +0.389L3
(0.316) (0.325) (0.172)

Ay, =

1+0517L
(0.315) e, +11.02 (5.9)

+
1+0.551L —0.147L% (2.396)°
(0.303) (0.114)

with RSS = 36,462.

The estimates reported in (5.4)—(5.9) are in accord with the implica-
tions of final equation analyzes for the forms of the transfer functions.
Further, we see that for (5.4)—(5.5) and (5.7)—(5.8), the AR polynomials
for Ac, and Ay, are almost identical, a requirement that the transfer func-
tions must satisfy given that the variables are generated by a joint process
with x, exogenous. Further, from (3.14), (a) the AR part of the transfer
function for Ac, should be identical, up to degree 1, to that operating on
Ax, in the same equation if the Haavelmo model is adequate, and (b) the
lag operator acting on Ax;, in the equation for Ac, should be a multiple of
that for Ax, in the income equation. The first of these requirements is not
satisfied by the results in (5.4)—(5.5) since the polynomials acting on Ac;
and Ax, have differing degrees. However, the requirements (a) and (b)
are satisfied, as far as the degrees are concerned, for (5.6) and (5.9).17

Last, as mentioned above, one way to have the empirically determined
final equations compatible with the dynamized Haavelmo model in (3.8)
is to assume /4,3 = 0, i.e. that the process for Ax, is independent of the
joint process for Ac, and Ay,. This implies no dependence of Ac¢, and of
Ay, on Ax, in the transfer equations. The dependence that has been found

17 This suggests that the restriction /21 = /23, originally imposed, is probably not in accord
with the information in the data.
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above might be interpreted as due to specification errors (e.g. x, might not
be exogenous) or to other complicating factors (e.g. measurement errors,
poor seasonal adjustment, etc.). On the other hand, it may be that the
alternative assumption /3 = /33 is more in accord with the information
in the data. Note the substantial reduction in RSS associated with (5.6)
and (5.9) relative to the RSS for other models.

To explore this last point more systematically, some alternative trans-
fer function models, formulated without taking into account results of
final equation analyzes, have been estimated, with results shown in tables
1.7 and 1.8. For comparison, results with models implied by the final
equation analyzes are also presented. A quick look at the residual sum
of squares (RSS) indicates that for consumption, alternative model Ms
yields about a 12 percent reduction in RSS relative to M; while M7 yields
about a 20 percent reduction. For income, M5 yields about a 3 percent
reduction in RSS relative to M; while M; provides the lowest RSS, about
6 percent lower than for M;.

For nested models, a large sample likelihood ratio test procedure has
been employed to compare alternative formulations, with results reported
in table 1.9. For consumption, M, is preferred to M; at the 5 percent
level. However, pairwise comparisons of M, against My, M5 and Mg favor
the latter relative to M,. However, in comparisons with M7, both M, and
M, are rejected. Thus the results of the likelihood ratio tests favor M7,
a model that is compatible with the results of the final equation analysis
under the assumption /,3(L) = h33(L). The results for income transfer
functions, shown in the bottom of table 1.9, indicate that M, is rejected
in favor of M| while M, performs better than M3 or M. Compared with
M7, models M,, My and Mg are rejected at the 5 percent significance
level, it appears that My is not significantly different from Ms. The results
of these comparisons suggest that it is reasonable to accept tentatively,
models M;, M5 or M; as being in accord with the information in the
data. If we retain models M; for consumption and M; for income,!®

18 Other possibilities, e.g. M7 for Ac, and M; for Ay, or M7 for Ac; and Ms for Ay;, lead to
incompatibilities with the requirements that the final and transfer equations must satisfy.
In the first case, M7 for Ac; and M for Ay, the AR parts of the transfer functions are not
identical as required in (3.14)—(3.15) and even possible cancelling will not be sufficient to
satisfy the condition on the polynomials hitting Ax; in (3.14)—(3.15). If we retain M7 for
Ac; and M5 for Ay,, their autoregressive parts have the same order, 1 + r2; = 5, and the
degrees of the polynomials for Ax; are, respectively, 712 + r23 = 5 and r3 = 3, implying
r21 = 2. However, the assumption %31 (L) = hy3(L), implying r2; = r23, is no longer
satisfied. In addition, there is incompatibility with the analysis of the final equations
requiring 33 = 4.
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Table 1.9 Results of large-sample likelihood ratio tests applied to transfer
Sfunctions of Haavelmo’s model

Critical points for x2

Lyl Hy)
Models compared A Lo Hy) 2Inx r aa=0.05 «o=0.10 «=0.20
1. Consumption
(1) Hy : My H;: M, 6.66 379 1 3.84 2.71 1.64
(2) Hy : M; H; : M5 702.27 13.11 5 11.07 9.24 7.29
(3) Hy: M, H :My 678.89 13.04 5 11.07 9.24 7.29
(4) Hy : M H; :Ms 4679.79 16.90 6 12.59 10.64 8.56
(5) Hy : M, H; :Me 992.41 13.80 5 11.07 9.24 7.29
(6) Hp : M3 H; : M5 126.11 9.67 5 11.07 9.24 7.29
(7) Hy : My H; :Ms 6.893 386 5 11.07 9.24 7.29
(8) Hy : M H; : M, 3.5x10° 25.56 5 11.07 9.24 7.29
(9) Hyp : My H; : My 5.02x10%2 1244 1 3.84 2.71 1.64
2. Income
(1) Hy : M H; : M, 26.609 6.563 1 3.84 2.71 1.64
(2) Hy : My H; : M3 1.999 1385 1 3.84 2.71 1.64
(3) Hp : My H; : Mg 2.935 2.153 3 7.81 6.25 4.64
(4) Hy : M, H;:M; 683.83 13.06 5 11.07 9.24 7.29
(5) Hp : My H; : M7 9,065 18.22 5 11.07 9.24 7.29
(6) Hp : Mg H;:M; 3,088 16.07 2 5.99 4.61 3.22
(7) Hy : M5 H; : M, 5.86 3.54 1 3.84 2.71 1.64

we have 15 + r,; = 5 for the order of the AR polynomials acting on Ac,
and Ay,, the degrees of the polynomials operating on Ax, are of degrees,
5 and 4, respectively, and the error processes are each of order 4. Under
the assumption that 4,3(L) = h33(L), these results are in accord with the
requirements that the final equations must satisfy (see table 1.2).

6 Summary of results and implications for structural
equations

In table 1.10, we present the preferred final equation and transfer func-
tion models for the dynamized Haavelmo model. From the information
provided in table 1.10, the following are the implied restrictions on the
lag structures appearing in the structural equations of the model where
the r;;s refer to the degrees of elements of ‘H(L), the matrix H(L) divided
by (1 — L):

L. rip = 13733 =123 =721 = 45911 = ¢12 = 05 and ¢21, g2 = 3, with at

least one equality holding.



Time series analysis 37
Table 1.10 Final equation and transfer function models for dynamized
Haavelmo model®
Systems of Order of Degree of lag Order of MA
equations Model AR part polynomial for Ax,  error process
1. Final equations
Ac, G, LY riptra=5 - q11,912,712 + q215
ri2+qgn <4
(at least one equality
holding)
Ay, G, LAY rip+ra=5 - g21,922>721 + 4115
ra1+q12 4
(at least one equality
holding)
Ax; 4,1,00°% ri3=4 - g33=0
2. Transfer functions
Agy M€ riz+r21=5 riza+traz=>5 q11,912,712 + 4215
ri2+q22 4
(at least one equality)
Ay, My¢ ri2+ra=5 rx3=4 g21,922,911 + 121,
gqi2+r21 <4
(at least one equality)
Notes:

@ Tt is assumed that 433 = h33.
b See tables 1.3-1.5 where estimated models are presented.
¢ See table 1.8 where estimated models are presented.

2. The transfer functions show a dependence of Ac¢, and of Ay, on Ax,.
Under the assumption that %,3; = /33, the final equations and transfer
functions selected by the likelihood ratio tests are compatible insofar
as the degrees of the relevant lag polynomials are considered.

3. Explicitly, a structural representation compatible with the results of
the final equation and transfer function analyses is:

1

4
-
0

01
— |6,
03

_aq® .
4
11 P-1|a-D|»
0 uP-1 X;
(0 )
11 12 0 el
(=3 (=3
T fo 22 (()0) €2
e
0 0o 9 3

6.1)

b

where the superscripts in parentheses denote the degrees of lag polyno-
mials that were determined from the final equation and transfer function
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analyzes. Note that these polynomials are equal to the polynomials of
the matrix H(L) in (3.8) divided by a common factor 1 — L. The factor
1 — L hitting the variables ¢;, y, and x, puts them in first difference form,
a transformation that appears adequate to induce stationarity in all three
variables, a condition required for the correlogram analysis of the vari-
ables. That the same differencing transformation induces stationarity in
all variables is not necessary for all models but is an empirical finding
in the present case. Also, to achieve compatibility, it is necessary that
h11(L) = hyp (L) = 1, a special case of what was assumed in (3.7a). Last,
it should be noted that ,u§4) (L) and ,ugl) (L) are not necessarily identical.

The system in (6.1) can alternatively be expressed in the form of (3.2a)—
(3.2¢) as follows:

Ct

1 0 —a® 0 B "
.
—u® 10 P la-D "=y [+] |,
11 1 -1 o 0 0
Xt
(6.2)

with u, a serially uncorrelated disturbance term and w, following a third
order moving average process. Further, #, and w, will generally be corre-
lated.

Using the identity, Ay, = Ac, + Ax, — Ar,, we can eliminate Ar, from
(6.2) to obtain:

Ac, = g Ay, + a1 Ay, + B+ uy (6.3a)
and

Ay = (1= ") A, + (1= 13”) Axe — v — s

4
= Z Vilc,—i — v + w), (6.3b)
i=0

where o =ay+ oL, 1 — ,u§4) = Z?:o L', and —(1 — ugl))Ax[ =

§§)e3, have been used and w, = —(w, + f;g)e3t). The two-equation sys-
tem in (6.3) is a simultaneous equation model with dynamic lags and
contemporaneously correlated disturbance terms, «, and w;, the former
non-autocorrelated and the latter following a third order MA process.
We can estimate the parameters of (6.3) employing “single equation” or

“joint” estimation techniques as explained briefly below.!°

19 These estimation procedures will be treated more fully in future work. A . . . paper by
Byron (1973) treats some of these problems from the likelihood point of view. Also, it
will be noted that non-unique estimates for certain parameters are available from the
final equation and transfer function analyzes. In certain instances, these latter estimates
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For single-equation estimation of (6.3a), we consider it in conjunction
with the final equation?® for y,, namely a (5, 1, 4) ARMA process that we
write as:

5 4
Ay, = Z(SiAyH' + ¢ + Z)\lialz—i: (6.4)
i=1 i=0

where ay, is a non-autocorrelated error with zero mean and constant finite
variance. The parameters of (6.4) have already been estimated above. We
now substitute for Ay, in (6.3a) from (6.4) to obtain

Ac, =0loA~yz +a14y;: 1 +,3/+7/1w (6.5)

where Zyl = Z?zl 8;Av,_iy B = ¢1(ag + ay) and v, =w, +
oo Z?:o Aiiay—; a fourth order MA process. Given consistent esti-
mates of the §;s in Ay,, we can calculate consistent estimates of ag, a1, 8
and parameters of the MA process for v;,. The results of this approach
are presented and discussed below.

With respect to single-equation estimation of (6.3b), we consider it
in conjunction with the (5, 1, 4) ARMA final equation for ¢, that was
estimated above and is expressed as:

5 4
Ac, =) nildcii+da+ Y haian iy (6.6)
i=1 i=0

where a,, is a non-autocorrelated error with zero mean and constant finite
variance. Then on substituting for Ac, in the second line of (6.3b) from
(6.6), we have:

4
Ay, = yole, + Y yider i+ V' +va, (6.7)
i=1

where Zc[ = Z?zl NiAC,_isV = v+ Yoda, and vy =, +
Y0 Z?:o Moian,_;, a fourth order MA process. Since consistent esti-
mates of the 7, are available from the analysis of (6.6), they can be used
in conjunction with (6.7) to obtain consistent estimates of the ys, v, and
the parameters of the process for vs;.

As regards joint estimation of (6.5) and (6.7), single-equation analysis
yields residuals that can be used to estimate the covariance matrix for the
disturbances, the v;;s and v,,;s. For a two-equation system, this matrix
will be generally a 27 x 27T matrix with four submatrices in the form of

are obtained from estimates of ratios of lag polynomials and thus are probably not very
reliable.

20 Alternatively, the transfer function for Ay, could be employed. However, it is not clear
that use of the transfer function is to be preferred.
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Table 1.11 Single-equation estimates of parameters of consumption equation

(6.5)

1. Using Ay, from final equation for Ay,

Ac, = —0.333 Ay, + 0251 Ay, +10,45+(1 — 0.180L+0. 02212 —0.375L% —0.079LY)ay,
(0.180) (0.128) (0.118) (0.119)

RSS = 40,701 DF = 8

2. Using Ay, from transfer function for Ay,

Ac; = —0.034Ay, + 03004y,1 +7,216+(1 — 02581 +0. 193L2 0.217L2 +0.003L%Ya},
(0.092) 01 (0.119) (0.115)

RSS = 40,646 DF = 8

band matrices characteristic of MA processes. Let this matrix be denoted
£ and an estimate of it, £2. Then with ¢/ = (v, V), where the vector v;
has elements v;, and v, elements v,;, minimization of ¥/£2~'v can be
done to provide joint estimates of the parameters.>!

In table 1.11, we present various single-equation consistent estimates
of the parameters of the consumption equation in (6.3a). In the first line
of the table, the final equation for Ay, was employed to substitute for
Ay, in the consumption function while in the second line the transfer
function for Ay, was employed.?? It is seen that in both cases the point
estimate for «( is negative. However, the standard errors are large so that
a confidence interval at a reasonable level would include positive values.
The estimates of «, the coefficient of Ay, ; in (6.3a), are in the vicinity
of 0.3 with a standard error of about 0.1.?*> That « and «; are not very
precisely estimated is probably due to collinearity of Ay, and Ay, ;. Use
of an informative prior distribution for oy and «; in a Bayesian analysis
could help to improve the precision of inferences. To specify a prior distri-
bution for «p and «; and also to interpret the results in table 1.11, it may
be useful to regard Ac’, the planned change in expenditures, including
durables, to be linked to permanent income change, Ay, and transi-
tory income change, Ay, as follows: Ac’ = kA + ag Ay’ + a1 Ay .
In planning consumption expenditures for the zth period, note that Ay?
is as yet unrealized transitory income whereas Ay;_, is realized transitory
income for period ¢ — 1. We believe that consumer reactions to real-
ized transitory income will be much greater than those to as yet unreal-
ized transitory income, i.e. o1 > ag with ag small. Using Ac, = Acg + u;

21 The new residuals can be employed to re-estimate £2 and thus iteration of the process
on £2 (and also on the parameters in Ac, and Ay;,) is possible.

22 Note that the estimation of the consumption equation using the final equation expression
for Ay, is not linked to the assumption that Ax, is exogenous whereas use of the transfer
function expression for Ay, is.

23 As explained below, o can be viewed as the coefficient of realized transitory income
change and thus an estimate of «; in the vicinity of 0.3 seems reasonable.



Time series analysis 41

and Ay, = Ay” + Ay! in connection with the relation for Ac? above, we
have Ac, = vpAy, + a1 Ay, 1 + B+ u, with g = (k. — ao)Aylp — alAyf_l,
assumed constant.?? Within this framework, given the hypothesis that
reaction to unrealized transitory income change, Ay! is rather small, if
not zero, while reaction to realized transitory income change Ay!_; is
positive, probably an «; between zero and one, the results in table 1.11
appear plausible.

In conclusion, we believe that the techniques presented above can be
very helpful in checking the specifying assumptions of many existing lin-
ear or linearized models and in “iterating in” on models that are suitable
approximations to the information in our data and that may predict well.
Some topics that will receive attention in future work include further
development of estimation techniques for different equation systems,
joint testing procedures for nested and non-nested hypotheses, analy-
ses of the comparative predictive performance of final equation, transfer
function and structural equation systems, Bayesian procedures utilizing
informative prior distributions, and applications. Finally, we cannot resist
remarking that the present work lends support to the notion that so-called
“naive” ARMA time series models are not all that naive after all.

APPENDIX DATA SOURCES

Personal consumption expenditures, disposable personal income, gross
investment data

Series 1946-65:

United States Department of Commerce/Office of Business Economics,
1966, The National Income and Product Accounts of the United
States, 1929-65, Statistical Tables (Washington, DC)

Series 1966—72:

United States Department of Commerce/Office of Business Economics,
Survey of Current Business (Washington, DC)

Consumer price index:

United States Department of Commerce/Office of Business Economics,
Survey of Current Business (Washington, DC)

Population data:

US Bureau of the Census, Current Population Reports: Population esti-
mates, Series P-25 (Washington, DC)

24 Alternatively, we could assume (% — ozo)Ayf - ozlAyf:l = B + &, where ¢, is a non-
autocorrelated random error with zero mean and constant variance.



42 Arnold Zellner and Franz C. Palm

BIBLIOGRAPHY

Akaike, H., 1973, “Maximum likelihood identification of Gaussian
autoregressive-moving average models,” Biometrika 60, 255-65

Bartlett, M. S., 1946, “On the theoretical specification of the sampling properties
of autocorrelated time series,” Journal of the Royal Statistical Society B 8, 27—
41

Box, G. E. P. and G. M. Jenkins, 1970, Time Series Analysis, Forecasting and Control
(San Francisco, Holden-Day).

Byron, R. P., 1973, “The computation of maximum likelihood estimates for linear
simultaneous systems with moving average disturbances,” Department of
Economics, Australian National University, manuscript

Chetty, V. K., 1966, “Bayesian analysis of some simultaneous equation models
and specification errors,” Doctoral dissertation, University of Wisconsin,
Madison, unpublished

1968, “Bayesian analysis of Haavelmo’s models,” Econometrica 36, 582—602

Dhrymes, P. J., 1970, Econometrics, Statistical Foundations and Applications (New
York, Harper & Row)

Haavelmo, T., 1947, “Methods of measuring the marginal propensity to con-
sume,” Journal of the American Statistical Sociery 42, 105-22; reprinted in W.
Hood and TC. Koopmans (eds.), Studies in Econometric Methods (New York,
John Wiley, 1953)

Hannan, E .J., 1969, “The identification of vector mixed auto-regressive-moving
average systems,” Biometrika 57, 233-5

1971, “The identification problem for multiple equation systems with moving
average errors,” Econometrica 39, 715-65

Jeffreys, H., 1961, Theory of Probabiliry (Oxford, Clarendon Press)

Jorgenson, D. W., 1966, “Rational distributed lag functions,” Economerrica 34,
135-49

Kmenta, J., 1971, Elements of Econometrics (New York, Macmillan)

Lindley, D. V., 1961, “The use of prior probability distributions in statistical
inference and decision,” in J. Neyman (ed.), Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, 1, 453-68

Marschak, J., 1950, “Statistical inference in economics, an introduction,” in
T. C. Koopmans (ed.), Statistical Inference in Dynamic Economic Models New
York, John Wiley)

Nelson, C. R., 1970, “Joint estimation of parameters of correlated time series,”
Graduate School of Business, University of Chicago, manuscript

Palm, F. C., 1972, “On mixed prior distributions and their application in dis-
tributed lag models,” CORE Discussion Paper 7222, University of Louvain

Pierce, D. A. and J. M. Mason, 1971, “On estimating the fundamental dynamic
equations of structural econometric models,” Paper presented at the Winter
Meeting of the Econometric Society, New Orleans

Quenouille, M. H., 1957, The Analysis of Multiple Time series (London, C. Griffin
and Co.)

Silvey, S. D., 1970, Statistical Inference (Baltimore, Penguin)

Theil, H. and J. C. D. Boot, 1962, “The final form of econometric equation
systems,” Review of the International Statistical Institute 30, 136-52; reprinted



Time series analysis 43

in A. Zellner (ed.), Readings in Economic Statistics and Econometrics (Boston,
Little Brown, 1968)
Tinbergen, J., 1940, “Econometric business cycle research,” Review of Economic
Studies 7, 73-90
Wold, H., 1953, Demand Analysis: A Study in Econometrics (New York, John Wiley)
Zellner, A., 1959, “Review of ‘The analysis of multiple time-series’ by M. H.
Quenouille,” Journal of Farm Economics 41, 682—4
1971, An introduction to Bayesian Inference in Econometrics (New York, John
Wiley).
After completing this paper, the following Ph.D. Thesis, dealing with related
topics, was brought to our attention by Dennis Aigner:
Haugh, L. D., 1972, “The identification of time series interrelationships with
special reference to dynamic regression models,” Department of Statistics,
University of Wisconsin, Madison



2 Statistical analysis of econometric
models (1979)

Arnold Zellner

1 Introduction

Substantial progress has been made in developing data, concepts, and
techniques for the construction and statistical analysis of econometric
models. Comprehensive data systems, including national income and
product accounts, price, wage and interest rate data, monetary data, and
many other measures, have been developed for almost all countries. In
many cases, annual measurements have been augmented by quarterly
and monthly measurements of a broad array of economic variables. In
recent years, scientifically designed sample surveys have been employed
to expand the data bases of a number of countries. While research contin-
ues to improve data bases, we must recognize that the work that produced
our current, extensive data bases is a major accomplishment in the field
of scientific measurement and enables economic analysts to avoid the
charge of “theory without measurement.”

In reviewing the development of concepts for the statistical analysis of
econometric models, it is very easy to forget that in the opening decades
of [the twentieth] century a major issue was whether a statistical approach
was appropriate for the analysis of economic phenomena. Fortunately, the
recognition of the scientific value of sophisticated statistical methods in
economics and business has buried this issue. To use statistics in a sophis-
ticated way required much research on basic concepts of econometric
modeling that we take for granted today. It was necessary to develop fun-
damental concepts such as complete model, identification, autonomous
structural relationships, exogeneity, dynamic multipliers, and stochastic

Research . . . financed by NSF Grant SOC 7305547 and by income from the H. G. B.
Alexander Endowment Fund, University of Chicago. The author is grateful to David C.
Hoaglin, Stephen E. Fienberg, and two anonymous referees for helpful comments.
An earlier version of this chapter was presented to the American Statistical Association’s
meeting in Chicago, August 1977.

Originally published in the Journal of the American Statistical Association 74 (1979), 628—
51.
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equilibrium, to name a few, that play an important role in linking statis-
tical analyzes and economic theory.

Many statistical estimation, testing, and prediction techniques have
been developed for use in connection with many different kinds of
econometric models, including linear and non-linear interdependent
structural models, models involving qualitative and quantitative vari-
ables, models with time series complications, models for combined time
series and cross-section data, and models with random parameters. This
research on statistical techniques, and computer programs implement-
ing them, a joint product of statisticians and econometricians, has been
extremely important in the development of modern econometric model-
ing techniques.

Given this past record of solid achievement in the areas of measure-
ment, concepts, and statistical techniques, it is relevant to ask how cur-
rent statistical analyzes of econometric models can be improved so as
to yield models with better forecasting and policy-analysis performance.
To answer this question, I shall first try, in section 2, to summarize the
main features of current or traditional econometric modeling techniques.
Traditional econometric analyzes, like many statistical analyzes, tend to
concentrate attention mainly on given models and not on procedures for
discovering and repairing defects of proposed models. Section 3 describes
an approach that emphasizes the latter aspect of econometric model con-
struction and is a blend of traditional econometric techniques and mod-
ern time series techniques. While this approach, called structural econo-
metric modeling time series analysis (SEMTSA), is not a panacea for all
problems, it probably will be helpful in improving the quality of econo-
metric models. A concluding section 4 considers prospects for the future.

2 The traditional econometric modeling approach

In this section, I shall attempt to characterize traditional econometric
modeling techniques, to provide a summary of statistical procedures used
in econometric modeling, and to describe some of the statistical needs of
traditional econometric model builders.

2.1 Ovwverview of the traditional approach

The schematic diagram in figure 2.1 represents, in broad outline, the
activities of many econometric modelers. Whatever the problem, there is
usually a statement of objectives, although, at times, the statement may
not be so clear-cut and specific as could be desired. Sometimes, objectives
are so ambitious that, given our present knowledge, data, and techniques,
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Figure 2.1 Econometric modeling

Note: For further discussion of this approach to modeling, see Hamilton

et al. (1969) and Zellner (1970).

@ It is assumed that this study shows the project to be feasible.

b It is assumed that a modeling approach is selected.

¢ The iterative procedure may disclose problems in the original formu-
lation of goals, feasibility, and methodology so that refining and refor-
mulation of the effort may not be confined solely to the model itself.
Also, it is possible that other feedback loops, not shown in the figure,
may be important in the process of converging on a satisfactory variant

of a model.
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they may be practically unattainable. The next steps in traditional econo-
metric modeling involve a review of the theoretical and empirical litera-
ture bearing on the objectives of a modeling project, preparation of a data
base, and preliminary data analysis. The objective of these activities is the
formulation of an initial variant of an econometric model. Unfortunately,
most econometrics and statistics texts are woefully silent on the basic
methodology of how to formulate an initial variant of a model. General
prescriptions, such as “use relevant economic theory” and “formulate as
simple a model as possible,” are valuable guidelines. Often the relevant
economic theory does not yield precise information regarding functional
forms of relationships, lag structures, and other elements involved in a
stochastic specification of a model. Further, model simplicity has yet to
be defined in a completely satisfactory manner. Still, it is worthwhile to
emphasize the importance of using elements of economic theory, other
outside information, and simplicity in formulating an initial variant of
a model. For example, models that imply unexploited profit opportuni-
ties probably will be unsatisfactory because exploitation of such profit
opportunities will generally upset properties of the proposed model that
contains them.

Once an initial variant of a model, denoted by M, has been formu-
lated, it is traditionally subjected to a number of mathematical, statisti-
cal, computer simulation, and judgmental checks. These include simple
mathematical checks on the number of equations and number of endoge-
nous variables, consistency of variables’ units of measurement, conditions
for parameter identification, and compatibility with results from math-
ematical economic theory. Computer simulation experiments are often
employed to gain information about local and global dynamic and other
properties of M. Statistical checks involve formal hypothesis testing pro-
cedures, forecasting tests, residual analysis, data evaluation, and other
diagnostic checks. In evaluating the adequacy of My, a good deal of judg-
ment or prior information is employed, usually informally. For example,
the algebraic signs and magnitudes of parameter estimates are reviewed to
ascertain whether they are compatible with results provided by economic
theory, by previous studies, and by judgmental information.

If M, is found to be inadequate in certain respects, work is under-
taken to reformulate M, and to produce a new variant of the model, M;.
Then M; is subjected to the battery of checks mentioned previously. This
process of checks and reformulation continues, using as much new data
as possible, until a satisfactory version of the model is obtained, satis-
factory in the senses that it passes diagnostic checks satisfactorily and
accomplishes the objectives of the model-building project.

In connection with realizing the objectives of a model-building project,
it is useful to have formulated as simple a model as possible. If the
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objectives require the model builder to capture much detail, the model
probably will be large, but with care in model building it can still be
sophisticatedly simple. Large and simple models seem preferable to large
and complicated models. In fact, a very disturbing feature of some large,
complicated models in the literature is that it is not known whether they
have a unique solution or many solutions.

In the past, model builders have used some or sometimes all the ele-
ments of the approach described above, but generally have not been vig-
orous enough in applying the various checks. Mathematical analyzes have
often been superficial and incomplete. Simulation experiments have not
been very extensive or well designed in general. Statistical checks on
the quality of data and on specifying assumptions have not been pur-
sued vigorously enough. The relationship of models’ properties to rele-
vant economic theory has not been examined thoroughly in a number of
instances. Finally, many econometric model builders have not stressed
simplicity enough. Some currently operating econometric models are
highly complex systems of a hundred or more non-linear stochastic dif-
ference equations with hundreds of parameters that have to be estim-
ated from highly aggregated time series data. Failure to take account
of Ockham’s Razor, the Jeffreys—Wrinch Simplicity Postulate, and the
Principle of Parsimony in formulating econometric models has had very
serious consequences in much traditional econometric model building.
See Jeffreys (1957, 1967) for evidence of the importance of simplicity in
science.

These criticisms of traditional econometric models have to be tem-
pered, however, because many methodological techniques needed in
a sensible model-building process are not yet available. Good formal
sequential testing procedures for model construction remain to be devel-
oped. Even for a given structural econometric model, exact finite-sample
tests and optimal finite-sample estimates and predictors have not been
available. Good or optimal designs for simulation experiments remain
to be derived. The problems of missing and imperfect data have not
been completely solved. Tried and tested economic theory dealing with
stochastic markets, dynamic reactions, and a number of other important
issues has not been available. Thus econometric model building has been
a mixture of economic and statistical theory and empirical practice. It is
probable that such interaction between theory and practice will produce
improvements in both.

To illustrate elements of recent statistical practice in traditional econo-
metric model building, I next review some estimation, testing, and pre-
diction techniques and provide some indications of current developments
and open problems.
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2.2 Stanistical estimation problems

Learning the values of parameters appearing in structural econometric
models (SEMs) is important in checking the implications of alternative
economic theories and in using SEMs for prediction, forecasting, and
policy-making. Thus, econometric research has placed a heavy emphasis
on statistical estimation problems.

2.2.1  Asymprotically justified estimation procedures Research since the
1940s has resulted in a greatly enhanced understanding of estimation
problems associated with SEMs and a relatively large number of opera-
tional procedures for obtaining consistent, asymptotically normally dis-
tributed, and efficient parameter estimates for some or all parameters
of linear and non-linear, static, and dynamic SEMs with serially uncor-
related or serially correlated errors. These procedures, which are dis-
cussed at length in econometric textbooks and the econometric literature,
include maximum likelihood, two- and three-stage least squares, K-class,
double K-class, instrumental-variable, non-linear maximum likelihood,
non-linear two- and three-stage least squares, and other procedures. Fur-
ther, many of the parameter estimates produced by such procedures
approximate Bayesian posterior means of parameters in large samples.
A most important result of this research, aside from providing asymptot-
ically justified estimation procedures, has been to rule out a number of
proposed inconsistent and/or asymptotically inefficient estimation proce-
dures. For example, it is well known by now that misapplication of the
classical least squares (CLS)! estimation procedure to estimate structural
parameters produces inconsistent estimates except in the very special case
of a fully recursive SEM.

Choice among alternative asymptotically justified estimates has often
been made on the basis of ease of computation. For example, with systems
linear in the parameters, calculation of two- and three-stage least squares
estimates involves just simple algebraic operations, whereas computation
of maximum likelihood estimates involves more complex numerical pro-
cedures. Some current computer packages compute a number of asymp-
totically justified estimates and leave the difficult choice among them to
the user. Of course, in truly large samples, asymptotically equivalent esti-
mates should not be very far different. If in practice such estimates, based
on a given large sample of data, are radically different, this may be inter-
preted as indicating that the asymptotic properties of different estimates

1 Some use the term ordinary least squares (OLS); I prefer classical least squares (CLS), since
the least squares principle is not ordinary.
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take hold at different sample sizes or, more likely, that specification errors
are present and affect alternative estimates differently. Unfortunately, not
much analysis is available on the sensitivity of alternate asymptotically jus-
tified estimates to various kinds of specification errors; one . . . paper in
this area is Hale, Mariano, and Ramage (1978). More systematic anal-
ysis of this range of problems and production of asymptotically justified
estimates that are relatively robust to specification errors would be wel-
come and would serve as a useful additional guide to users in selecting
estimates when the sample size is truly large. On the other hand, if the
sample size is not truly large, even if a SEM is correctly specified, various
asymptotically justified estimates of the same parameter can assume quite
different values.

Students and others invariably ask for a definition of what constitutes
a truly large sample. An easy answer to this question is hard to give.
The sample size alone is not usually all that is relevant. Values of the
parameters and features of input or exogenous variables also must be
considered. Because parameter values usually are unknown and the object
of estimation, prior information about them is needed before one can say
with any confidence what is a truly large sample in connection with the
estimation of a specific SEM. Needless to say, if the sample size is not
truly large, the asymptotic justifications for estimation and other large-
sample inference procedures become dubious. In a Bayesian context,
one can compute the posterior distribution for a parameter and check
to see that it is approximately normal with posterior mean equal to the
maximum likelihood estimate and posterior variance equal to the relevant
element of the inverse of the estimated Fisher information matrix. If so,
large-sample conditions have been encountered. These considerations do
not give a justification for using the large-sample normal approximation
to the posterior distribution without computing the exact finite-sample
posterior distribution.

2.2.2  Finite-sample problems and procedures  Recognition that large-
sample justifications for estimation procedures do not contain explicit
information on how large a sample must be for them to hold and that prac-
tical workers often must deal with limited data has prompted considerable
research on the finite-sample properties of estimation procedures. A good
deal of research has been concentrated on obtaining analytically the exact
finite-sample distributions of certain asymptotically justified estimators,
for example, maximum likelihood (ML), two-stage least squares (2SLS),
and other estimators for parameters in relatively simple models. This
ingenious and difficult distributional work unfortunately has shown that
the finite-sample distributions of estimators, derived in the main from
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an underlying non-central Wishart distribution, are rather complicated
and involve a number of parameters with unknown values. The latter fact
makes the application of these distributional results to concrete prob-
lems difficult. This research has shown that asymptotically equivalent
estimators have very different finite-sample properties. For example, the
(limited-information) ML estimator does not possess finite moments of
any order, and in certain frequently encountered cases the 2SLS estima-
tor does not possess a mean or higher moments. Also, certain asymptoti-
cally unbiased estimators can have serious finite-sample biases. Further,
and perhaps surprising, under some conditions, the inconsistent CLS or
OLS estimator has a smaller mean squared error (MSE) than consis-
tent estimators that possess a finite-sample second moment. Of course,
if an estimator fails to possess a second moment, it has infinite MSE
and is clearly inadmissible. This is not to say that MSE is the only cri-
terion for judging estimators, but it has received considerable attention
in this area of research. As stated before, these results have been surpris-
ing to many, particularly those who narrowly emphasize unbiasedness,
or minimum MSE, or minimum-variance unbiasedness as criteria for
judging estimators or who uncritically accept asymptotic justifications.
To illustrate that these criteria are inadequate even for the simple case
in which a structural parameter 6 is equal to the reciprocal of a reduced
form regression coefficient, 7, that is, 6 = 1/, the ML and almost all
other asymptotically justified estimation procedures would recommend
estimating 6 by § = 1/#, where 7 is the least squares estimator of the
regression coefficient 7. Because # is normally distributed, 8 is the recip-
rocal of a normally distributed variable and hence does not possess finite
moments of any order. Thus 6 has infinite risk and is inadmissible relative
to quadratic and many other loss functions.

In addition to exact distributional work on the finite-sample properties
of asymptotically justified estimators, research has provided approxima-
tions to the moments of these estimators, surprisingly even sometimes
when moments do not exist. As Anderson (1977) has pointed out, these
moment expressions approximate moments of truncated Taylor or other
series approximations to the estimators and not moments of the estima-
tors. How important this distinction is remains to be seen. Further, very
fruitful work that uses Edgeworth—Charlier series approximations to the
moments and distributions of estimators has been reported by Sargan
(1976).

Monte Carlo studies also have been employed in an effort to determine
the finite-sample properties of alternative estimators (see Sowey 1973).
Generally, these studies have been marred by an inadequate coverage
of the high-dimensional parameter spaces associated with models, even
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simple two-equation supply and demand models that usually contain
about ten or more parameters. Because risk functions of estimators usu-
ally intersect, failure to examine the entire parameter space can yield mis-
leading and confusing results regarding the dominance of one estimator
relative to another in terms of, for example, MSE. Thus, the results of
Monte Carlo experiments that investigate the behavior of estimators over
alimited number of points in the parameter space must be considered very
cautiously. See Thornber (1967) for a valuable illustration of this point.

While much effort has been directed at determining the finite-sample
properties of given, asymptotically justified estimators, relatively little
work has been done on the problem of producing estimates that have
a small-sample justification. Using approximate moment expressions,
Nagar (1959) attempted to define an approximate minimal-MSE esti-
mator for structural coefficients within the K-class. Unfortunately, his
“estimator” depends on parameters with unknown values that have to be
estimated to operationalize his estimator. When these parameters are esti-
mated, it appears that the “optimal” properties of his estimator are vitally
affected. Nagar’s work provides some evidence that use of a value of IC less
than one, the value that produces the 2SLS estimate, is probably better
than the value of one. Analysis by Sawa (1972) provides the approximate
MSE of a K-class estimator for a structural parameter of a simple model
and points in the same direction, namely, that finite-sample MSE usually
is lower, and sometimes much lower, when a value of I < 1 is employed.
Sawa (1972) has also reported properties of estimators that are a linear
combination of the 2SLS and the inconsistent CLS estimators. By appro-
priate choice of the weights, he has obtained approximately unbiased and
approximate minimal-MSE estimators. These results do not appear rel-
evant for cases in which the second moment of the 2SLS estimator does
not exist, and the justification for considering a linear combination of a
consistent and an inconsistent estimator is not apparent.

... Fuller (1977) has presented modified limited-information ML and
modified fixed K-class estimators that have finite moments. Restricting
these modified estimators to have the same, but arbitrary, bias, he shows
that to order T-2, where T is the sample size, the modified ML estimator
dominates in terms of approximate MSE.

In almost all the analytical finite-sample work on the sampling proper-
ties of estimates, problems with time series complications have not been
analyzed, for example, estimates of parameters of models with lagged
endogenous variables and/or serially correlated error terms. Relatively
little effort has been devoted to obtaining good finite-sample estimates of
error terms’ covariance matrices . . . [S]tatistical work by Perlman, Eaton,
and others certainly seems relevant. It is highly probable that all, or almost
all, the asymptotically justified estimators mentioned are inadmissible
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under quadratic loss and other loss functions over a wide range of condi-
tions. This range of “Steinian” issues has received very little attention in
connection with finite-sample work on structural parameter estimators’
properties. The impact of pretesting on the finite-sample properties of
the usual structural-coefficient estimators is relatively unexplored. For
example, I have conjectured that the limited-information ML estimator’s
distribution subject to a favorable outcome of the rank test for identifi-
ability will possess finite moments. In the simple case in which a struc-
tural parameter is the reciprocal of a reduced form regression coefficient,
0 = 1/, it is easy to establish that the ML estimator § = 1/ 7, subject
to the outcome of a z test that rejects w = 0, possesses finite moments,
where 7 is the least squares (ML) estimate of 7. Last and most basic, the
relevance of sampling-theory criteria, such as unbiasedness, admissibil-
ity, and minimal MSE of estimators for the analysis of a given sample of
data, has not been considered adequately in the econometric literature.
Sampling properties of procedures seem relevant before we take the data
in connection with design problems or in characterizing average proper-
ties of estimation procedures. The relevance of these average properties in
analyzing a particular set of data is not clear. Further, as many, including
Tiao and Box (1973), have emphasized, the computed value of an opti-
mal point estimator can be a very bad representation of the information
in a given set of data. Likelihood advocates emphasize the importance of
studying properties of likelihood functions, while Bayesians emphasize
the desirability of studying both likelihood functions and posterior dis-
tributions to understand the information content of a given sample for
possible values of parameters of a model. For both likelihood advocates
and Bayesians, a point estimate is just a summary measure that does not
necessarily convey all or most of the information in a sample regarding
parameters’ probable values.

2.2.3  Bayesian estimation results  [Since the mid-1960s], there has
been a growing amount of research concerned with developing and apply-
ing the Bayesian approach to the problems of estimating values of parame-
ters in SEMs and other econometric models, and elements of the Bayesian
approach have appeared in econometric textbooks. As is well known,
inferences about parameters’ values, for example, elements of a parame-
ter vector 0, are based on the posterior probability density function (pdf)
for 6,

@D, I)=cp@|DEO]| D), 2.1

wherec = [ [ p(6 | DL | D)d6]~! is a normalizing constant, D denotes
the data, I denotes the prior information, p(@ | I) is the prior pdf, and
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£(0 | D) is the likelihood function. The following points are relevant par-

ticularly for analyses of SEMs:

1. The posterior pdf in (2.1) is an exact finite-sample pdf, and, hence,
large-sample approximations, while sometimes convenient and useful,
are, in principle, not needed. This statement applies to the analysis of
all kinds of models, including static and dynamic SEMs.

2. Use of the prior pdf, p(@ | I), enables an investigator to incorporate
prior information in an analysis, as much or as little as he sees fit.
Of course, if no sample information were available, as is the case in
some low-income countries, prior information would be the only kind
of information available. In connection with SEMs, prior information
must be introduced in some form to identify structural parameters. In
sampling-theory approaches, the identifying information has almost
always been introduced as exact restrictions on parameter values (e.g.
setting certain coefficients equal to zero, equivalent to using a degen-
erate or dogmatic prior pdf for these parameters in a Bayesian setting).
Use of prior pdfs enables investigators to represent this required prior
information more flexibly; see Dréze (1975) and Kadane (1975).

3. Use of Bayes’ Theorem provides the complete posterior pdf for param-
eters of interest and not just a summary point estimate. If a point
estimate is desired, however, it usually can be obtained readily. For
example, for quadratic loss functions, it is well known that the mean
of the posterior pdf, if it exists, is an optimal point estimate in the
sense of minimizing posterior expected loss.

4. Generally, Bayesian estimates have very good sampling properties,
because they minimize average risk when average risk is finite and
are admissible.

5. Inlarge samples under general conditions, the posterior pdf, p(8 | D, I),
assumes a normal form with mean vector equal to the ML estimate of
0 and covariance matrix equal to the inverse of the estimated Fisher
information matrix. Thus, in large samples there is a dovetailing of
Bayesian and sampling-theory numerical results; however, their inter-
pretation is quite different.

I now turn from the general features of the Bayesian approach to a brief
review of some Bayesian estimation results for the SEM. A representation
of the linear (in the parameters) SEM is

Y I=XB+U, (2.2)
nxggxg nxkkxg nxg

where Y is an #n x g matrix of observations on g endogenous (or depen-
dent) variables and X is an n x % matrix of observations on % prede-
termined variables, assumed of rank k. Predetermined variables include
both exogenous (independent) and lagged endogenous variables. " is a
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£ X g structural parameter matrix, assumed non-singular, and Bis a k x
g matrix of structural parameters. U is an n X g matrix of disturbance or
error terms. It will be assumed that the rows of U have been independently
drawn from a g-dimensional normal distribution with zero mean vector
and g x g positive definite symmetric (pds) covariance matrix Y. Note
that if I = I, the system in (2.2) is in the form of a multivariate regres-
sion model when X contains no lagged endogenous variables or in the
form of a multivariate autoregressive system with input variables when X
contains both exogenous (or independent) and lagged endogenous vari-
ables. In the special case I" = I,, analysis of (2.2) from the Bayesian point
of view would proceed pretty much along multivariate regression lines if
initial values for the lagged endogenous variables are taken as given (see
Zellner 1971 and the references cited there).

The unrestricted reduced form (URF) system associated with the SEM
in (2.2) is given by postmultiplying both sides of (2.2) by I"~! to yield:

Y=XBr—'+ur-! (2.3)
or

ROF S AN/ e
where

I=Br—' and V=UI"!, (2.5)

with the 2 x g matrix IT being the (URF) coefficient matrix and the n x g
matrix IV the URF disturbance or error matrix. The assumptions about
the rows of U imply that the rows of 7 can be considered independently
drawn from a g-dimensional normal distribution with zero mean vector
and g x g pds covariance matrix 2, = (I""')y X1

Under the assumptions made earlier, the parameters /T and §2, of the
UREF system in (2.4) are identified and can be estimated by using Bayesian
or non-Bayesian techniques whether or not the structural parameters in
I', B, and X are identified. It has long been recognized that, under the
assumptions made above, I, B, and X are not identified and that addi-
tional prior information must be added in order to identify these struc-
tural parameters. Identifying prior information can take various forms.
Here we discuss only the case in which it involves restrictions that subsets
of structural parameters assume zero values. In addition, it is necessary
to adopt a normalization rule for elements of the I" matrix. Here we let
all diagonal elements of I" be equal to 1. We shall write the system in
(2.2) with identifying restrictions and normalization rule imposed as

YI, = XB, + U. (2.6)
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Then the restricted reduced form system is given by

Y=XB I '+ur! (2.7)
=X, + V. (2.8)

Obviously, the fundamental function of the restrictions is to reduce the
number of free structural parameters and, by so doing, to provide a model
in which the remaining free structural parameters in I", and B, are identi-
fied. Explicit statements of the conditions for identification of structural
parameters are given in econometrics textbooks and other works. Since
the free parameters in I",, B,, and X are identified, their number cannot
exceed the number of parameters in the URF system in (2.4), namely,
kg parameters in IT and g(g + 1)/2 distinct parameters in the ¢ x ¢ RF
covariance matrix §2,.

The likelihood function for the restricted structural system in (2.6) is

¢TIy, B,, ¥| D) o {mod |I} |}"| Z|* (2.9)
-exp {—3to (YT, — XB,)' (YT, — XB,)X ™'}

where o denotes proportionality, D denotes the data, and mod |I,|
denotes the absolute value of the Jacobian determinant, |I",|, for the trans-
formation from the # rows of U to the n rows of Yin (2.6). If the system in
(2.6) is autoregressive, (2.9) is the likelihood function conditional upon
initial values (assumed given). Then, from (2.1), the posterior pdf for the
free parameters in I",, B,, and X is given by

p(;, B, Y| D, I) x p(I}, B., ¥ | D¢, By, ¥ | D), (2.10)

where p(I",, B,, X | I) is the prior distribution and the prior information is
denoted by I. Given a prior distribution and the likelihood function, the
technical problems of analyzing properties of the posterior distribution,
that is, obtaining its normalizing constant, its marginal distributions, and
its moments, remain.

In the special case of a fully recursive SEM, I, is in triangular form,
implying that |I",| = 1, and X is assumed to have a diagonal form. These
assumptions simplify the likelihood function in (2.9) considerably and
also simplify the analysis of the posterior pdf in (2.10) (see Zellner 1971
for details). The fully recursive case, however, is a very special case of a
SEM. In the general case, work has concentrated on the analysis of (2.10)
using the likelihood function in (2.9). In several studies, the posterior dis-
tribution in (2.10) has been computed for a few simple models. Dréze and
Morales (1976), Harkema (1971), Morales (1971), and Richard (1973)
have analyzed it by using several different informative prior distributions.
Except for some approximate results provided by Zellner (1971) and
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Zellner and Vandaele (1975), it is necessary to use numerical integra-
tion techniques to analyze features of the posterior distribution. These
approximate results have been used by Mehta and Swamy (1978) to pro-
vide a ridgelike Bayesian estimate. Kloek and van Dijk (1976) have stud-
ied the application of Monte Carlo numerical-integration techniques in
analyzing posterior distributions. Although more experience with applica-
tions, assessing and using various prior distributions, and computational
procedures would be useful, past research has yielded results that will
be valuable in obtaining better analyzes of given SEMs, particularly in
small-sample cases.

Bayesian research also has focused on limited-information analyzes,
that is, estimation of parameters of a single equation or of a subset of
equations of a SEM. Complete posterior distributions for these prob-
lems have been obtained and analyzed by Dréze (1972, 1976), Morales
(1971), Reynolds (1977), Rothenberg (1975), and Zellner (1971). A sin-
gle equation of the system in (2.6), say the first, is given by

i=Y v +X B +u, (2.11)

nx1 nxmymyx1  nxk kx1 nxl

where y; and Y; are components of Y, thatis, Y = (ylf Ylf Yo) with the
variables in Yy not appearing in (2.11), X; is a submatrix of X, X =
(X; : X,) with the variables in X, not appearing in (2.11), and u; is a
subvector of U, U = (u, : Up) and ~; and 3, are parameter vectors to
be estimated. The assumptions introduced about the rows of U imply
that the elements of u; have been independently drawn from a normal
distribution with zero mean and variance o 1;. The URF equations for y;
and Y7, a subset of the equations in (2.4), are

(1 Y0) = X(wy i ) + (vi i ). (2.12)

On postmultiplying both sides of (2.12) by (1: — y/;)/ and comparing
the result with (2.11), we achieve compatibility, given that

m =My, + (@, (2.13)

where the zero vector on the r.h.s. of (2.13) is (¢ — k1) x 1, and u; =
v1 — Viy1. From (2.12) and (2.13), the estimation problem can be
viewed as a restricted multivariate regression problem with the struc-
tural parameters ~v; and (3; involved in the restrictions on the elements
of w1 and I7;. A necessary condition for the identification of ~;, 3;, and
o1 is that & — k; > m;. Note that (2.13) reflects restrictions arising from
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just the first equation (2.11) of a system. The information in restrictions
similar to (2.13) associated with other structural equations is not taken
into account in estimating ~;, 31, and o ; and hence the nomenclature,
limited-information or single-equarion analysis.

Previous research has shown that ML, 2SLS, and 3SLS estimates are
approximate means of posterior pdfs for structural parameters under spe-
cial conditions. Of course, given complete posterior pdfs for parameters,
optimal point estimates can be computed, that is, posterior means for
quadratic loss functions and medians for absolute-error loss functions. A
particularly simple optimal point estimate under a generalized quadratic
loss function can be derived as follows. Upon multiplying both sides of
(2.13) on the left by X = (X, : Xo), we obtain

Xy = Xy, + X18, = 2,161, (2.14)
where Z; = (XI1,:X;) and &', = 1 5,6”1). Take as loss function,

L= (Xm _Zldl),(Xﬂ'l _Zldl)
= (6, —d)'ZZ, (61 — dy), (2.15)

a generalized quadratic loss function. Given a posterior pdf for the
reduced form parameters 7r; and 7, the posterior expectation of L in
the first line of (2.15) can be evaluated yielding EL = En;X'm; — 2d;
EZ/1 Xm +d; EZIZIdl, where E is the posterior expectation operator.
Then the value of d; that minimizes expected loss, d;*, termed a
minimum-expected-loss (MELO) estimate, is given by Zellner (1978):

d\* = (EZ,Z\) 'EZ, X~,. (2.16)

When the system in (2.12) is analyzed under a diffuse prior for the
regression coefficients 71 and IT; and for the error covariance matrix,
the marginal posterior pdf for (7r; : [7;) is in the matrix Student 7 form,
and, hence, the expectations in (2.16) are readily available. In this case,
Zellner (1978) has shown that d;* is in the form of a K-class estimate
with a value of %k that depends on the sample size and is less than one
in finite samples. Also, d;* possesses at least first and second sampling
moments (Zellner and Park 1979). Further, the optimal estimate of ~y; is
a matrix-weighted average of the 2SLS and CLS estimates with the weight
on the CLS estimate going to zero as the sample size increases (Zellner
1976). In small samples, however, the optimal estimate of vv; and 3; can
be very close to or exactly equal to the CLS estimate. Thus, empirical
workers who have persisted in their use of CLS estimates may not be very
far from an optimal estimate in small samples. Further, this averaging of
2SLS and CLS estimates bears some resemblance to the work of Sawa,
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mentioned previously; however, the weights that Sawa uses and those
associated with (2.16) are different. Last, this point-estimation approach
has been applied to yield a MELO estimate of parameters appearing in
all equations of a system, thatis, 6;, 62, . . ., 6, Where §'; = (v/; : B'). Also
see Mehta and Swamy (1978) for some useful Bayesian results for obtain-
ing point estimates of the §;s that are related to ridge-regression results.

Some additional issues regarding the Bayesian approach have been
aptly summarized in the following remarks by Tukey (1976):

It is my impression that rather generally, not just in econometrics, it is considered
decent to use judgment in choosing a functional form, but indecent to use judg-
ment in choosing a coefficient. If judgment about important things is quite all
right, why should it not be used for less important ones as well? Perhaps the real
purpose of Bayesian techniques is to let us do the indecent thing while modestly
concealed behind a formal apparatus. If so, this would not be a precedent. When
Fisher introduced the formalities of the analysis of variance in the early 1920s, its
most important function was to conceal the fact that the data was being adjusted
for block means, an important step forward which if openly visible would have
been considered by too many wiseacres of the time to be “cooking the data.” If
so, let us hope the day will soon come when the role of “decent concealment”
can be freely admitted.

2.3 Hypothesis testing and SEMs

Sampling-theory procedures used for testing hypotheses relating to struc-
tural coefficients’ values have in the main been large-sample procedures,
usually large-sample likelihood ratio tests or large-sample tests based on
the Wald criterion, that is, for testing the rank condition for identifia-
bility, over-identifying restrictions on structural parameters, and general
linear hypotheses regarding structural parameters’ values . . . [R]esearch
(Berndt and Savin 1975; Savin 1976) has emphasized that asymptoti-
cally equivalent testing procedures can produce conflicting results when
used in finite-sample situations with a given nominal significance level.
Analysis of asymptotic power functions by Morgan and Vandaele (1974)
has demonstrated that certain ad hoc testing procedures are dominated
by standard large-sample testing procedures. Also, finite-sample approx-
imations to the sampling distribution of the likelihood-ratio test statistic
have received little, if any, attention in the econometric literature.

In special cases, the exact finite-sample distribution of a test statistic is
available. In one such case the null hypothesis specifies the values of all
coefficients of endogenous variables in an equation, for example, v; = 7!
and B;; = 0iny; = Y171 + X181 + u;. Conditional on v, =+, it is
seen thaty; — Ylfy(l’ = X131 + u; is in the form of a multiple regression



60 Arnold Zellner

given that X; does not contain lagged endogenous variables. In this special
situation, test statistics that have exact ¢ or F distributions are available;
however, the requirement that the null hypothesis specify values for all ele-
ments of 7, is quite restrictive. Also, when the system is dynamic, that is,
when X, contains lagged endogenous variables, only approximate large-
sample test procedures are available. The quality of the approximation
and finite-sample power functions for widely used large-sample approxi-
mate tests are relatively unexplored topics in econometric research.

Another topic that has received very little attention in econometric
research is the effects of pretests on the properties of subsequent tests
and on estimators’ and predictors’ properties. That pretesting can vitally
affect properties of estimators is evident from consideration of simple
cases, for example, vy, = Yv2; + u1, and y,, = w2x, + uz,. The RF equa-
tions for this simple system are v, = w1x; + v1; and y,, = m2x; + v, with
y = m1/m5. The ML estimator for y isy = 71 /7, where 71; = Xx;/ 2 x,2,
1 = 1, 2. y does not possess finite moments; however, the distribution
of 4 subject to the outcome of a pretest that rejects 7, = 0, namely,
|7t2| > ¢sz, > 0, where ¢ is a critical value and s, is the standard error
associated with 7,, does possess finite moments.

Work on Bayesian posterior odds ratios for selected hypotheses relating
to SEMs’ parameters’ values is reported in Reynolds (1977). The poste-
rior odds ratio, Kj,, for two mutually exclusive hypotheses, H; and H>,
is given by

Kiz =012 x /P1(9)€1((9IY)d0//P2(9)€2(9IY)d9, (2.17)

where 01, is the prior odds ratio, and for: = 1, 2, p;(0) is the prior pdf, and
£;(0 | y) is the likelihood function. If H; and H, are mutually exclusive
and exhaustive, and H; is 0 = 0°, while H, is 6 # 6°, a pretest estimate
that is optimal relative to quadratic loss is given by

é = p100 + Pzéz
=0"+ (6, — 0°)/(Ki2 + 1), (2.18)

where K, = p1/p2 = p1/(1 — p1), where p; and p, are the posterior
probabilities on H; and H>, respectively, and 92 is the posterior mean for 6
under H,. The Bayesian pretest estimate, which also can be computed for
other kinds of hypotheses, is a neat solution to the pretesting problem as it
relates to estimation. Similar considerations apply in obtaining combined,
optimal predictions from two or more alternative models.
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2.4 Prediction procedures for SEMs

Several alternative methods for generating predictions from SEMs have
been discussed in the literature. First, it has been recognized that the URF
system Y = XIT + V can be fitted by least squares and used to generate
unrestricted reduced form predictions (URFPs). Such predictions will
not generally be efficient because restrictions on structural coefficients
that imply restrictions on the elements of IT are not reflected in URFPs.
Second, from the restricted SEM, YT, = XBr + U, we can obtain the
restricted reduced form system Y= XB,I",~! + V,, and restricted reduced
form predictions (RRFPS) can be obtained from ¥’ = x B, Fy , where
x'; is a given vector and B, and I, are estimated restrlcted structural-
coefficient estimates. Such predictions will be asymptotically efficient if
B, and I, are asymptotically efficient estimates and if, of course, there are
no specification errors. If B, and I, are estimated by inefficient but consis-
tent methods, it is not always the case that a predictor based on them will
be better in large samples than an URFP (Dhrymes 1973). Last, the par-
tially restricted reduced form (PRRF) equations can be used to generate
predictions, namely, v; = XIT;y; + X;81 + v;,1 = 1,2, ..., g. Estimates
of I1;,v,, and 3; along with given vectors x'rand x';ryield the PRRFPs y; =
fo ¥i + le/Bu 1=1,2,...,¢.Since the PRRFPs use more prior infor-
mation than the URFDPs in over-identified SEMs, they will have higher
precision in large samples than URFPs. On the other hand, they will not
generally be as precise as RRFPs in large samples when no specification
errors are present in the SEM. Approximate expressions for the variance-
covariance matrix of forecast error vectors are available in the literature for
the prediction procedures mentioned previously. Further, it is apparent
that specification errors can vitally affect relative large-sample properties
of these predictors. Then, too, only limited attention has been given to the
problems of predicting future values of the exogenous variables in X.

It has been pointed out in the literature that the RRF predictor,
9/f = x/f B. IAT], will not in general possess finite moments, whereas the
other predictors mentioned will have finite moments in general for the
URF predictor and in most situations for the PRRF predictor (Knight
1977). More thorough analyzes of alternative predictors’ finite-sample
properties would be most valuable; see Schmidt (1977) for Monte Carlo
experimental evidence that led him to conclude that “The first main
conclusion . . . is that inferences about forecasts are not terribly reliable,
unless one’s sample is fairly large” (p. 1004).

From the Bayesian point of view, the predictive probability function for
the URF system, Y = XIT + I/, is available. Its mean vector is an optimal
point prediction relative to a quadratic loss function. Optimal multi-step
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predictions for the URF when it has autoregressive complications have
been obtained by Chow (1973). Richard (1973) has studied predictive
pdfs for the SEM and has applied some of his results that incorporate
restrictions on structural coefficients in the analysis of small models. Fur-
ther work to enlarge the range of prior pdfs used in these analyzes and to
provide computer programs to perform calculations conveniently would
be worthwhile.

Some other issues that arise in use of econometric models for forecast-
ing are (a) procedures for using judgmental information and econometric
models in making forecasts; (b) ways of combining forecasts from alter-
native models (Nelson 1972; Granger and Newbold 1977); (c) criteria for
the evaluation of the accuracy of forecasts (Granger and Newbold 1973,
1977); (d) data quality and forecasting (Zellner 1958); and (e) seasonal
adjustment and forecasting (Plosser 1976a, 1976b). Further, the relative
forecasting performance of univariate auto-regressive-integrated-moving
average (ARIMA) time series and econometric models has been the sub-
ject of much research (LLeuthold er al. 1970; Cooper 1972; Nelson 1972;
Christ 1975; also see section 3).

3 The SEMTSA approach

As mentioned before, much past econometric research has concentrated
on the analysis of given models and yielded relatively little on formal
methods for checking whether formulated models are consistent with
information in sample data and for improving models. In addition, many
time series aspects of econometric modeling have not been adequately
treated. This is not to say that time series considerations were totally
absent from econometric research, but rather that there was no systematic
synthesis of econometric modeling and time series analysis.

Most important in stimulating some econometricians’ interest in time
series techniques was the good forecasting performance of simple, uni-
variate time series models relative to that of large econometric models
in the work of Cooper (1972) and Nelson (1972). Much earlier, Milton
Friedman suggested that econometric models’ forecasts be compared
with those of simple, univariate “naive” models, a suggestion imple-
mented by Christ (1951). The relatively good forecasting performance
of simple univariate autoregressive (AR) or Box—Jenkins’ ARIMA mod-
els surprised econometric model builders. In theory, a properly specified
multi-equation econometric model should yield more precise forecasts
than a univariate time series model, since the former incorporates much
more sample and prior information. The reasonable conclusion, drawn
by many from these forecasting studies, is that the econometric models
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considered in these studies probably contain serious specification errors
(e.g. see Hickman 1972). For example, the econometric models may
contain incorrect functional forms for relations, inappropriate lag struc-
tures, incorrect assumptions about the exogeneity of variables, incorrect
assumptions about error terms’ properties, and so forth. Because the rela-
tionship between econometric models and univariate ARIMA processes
was not clearly understood, many econometricians considered simple
time series models to be ad hoc, mechanical, alternative models. Fur-
ther, it was not apparent how time series analysis could be used to improve
properties of SEMs. These issues were taken up in an article by Zellner
and Palm (1974) and have since been pursued in a number of other works
such as Evans (1975, 1976, 1978); Palm (1976, 1977); Plosser (1976a,
1976b); Prothero and Wallis (1976), Trivedi (1975), Wallis (1976, 1977),
and Zellner and Palm (1975).

This research on the SEMTSA approach has, first, emphasized that
dynamic, linear (in the parameters) SEMs are a special case of multi-
variate or multiple time series processes, such as studied by Quenouille
(1957) and others. Second, it has been shown that assuming variables to
be exogenous places important restrictions on the parameters of a multi-
ple time series process. Third, the transfer function (TF) equation system
associated with a dynamic linear SEM has been derived and shown to be
strongly restricted by structural assumptions. While the TF equation sys-
tem had appeared in the econometric literature earlier under other names,
its role in econometric model building had not been emphasized. Fourth,
in the case of random exogenous variables generated by a multiple time
series process, it is possible to derive the final equations (FEs), associated
with the SEM, and individual FEs are in the form of ARIMA processes of
the type studied by Box and Jenkins (1970) and others. Thus, as empha-
sized in the SEMTSA approach, the Box—Jenkins ARIMA processes are
not ad hoc, alternative (to SEMs), mechanical models but are, in fact,
implied by SEMs (see the studies cited previously for explicit examples).
In addition, assumptions about structural equations’ properties have
strong implications for the forms of FEs and TFs that can be tested.

To make some of these considerations explicit, a multiple time series
process for a p x 1 vector of random variables z, (assumed mean-
corrected for convenience) is represented as follows (Quenouille 1957):

H(L)z, =F(L)e, t=1,2,...,T, (3.1

pxp pxl pxp pxl
where H (L) and F(L) are finite order matrix polynomials (assumed of full
rank) in the lag operator L, and e, is a vector of serially uncorrelated errors
with zero mean vector and identity covariance matrix. If, for example,
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F(L) is of degree zero in L, that is, F(L) = F,, with F, of full rank, then the
error vector in (3.1) is Fye, with zero mean and only a non-zero contem-
poraneous covariance matrix, EFye,e, F) = Fy F;. Other specifications of
F(L) allow for moving average error terms. For stationarity |H(L)| = 0
must have all its roots outside the unit circle, while for invertibility the
roots of | F(L)| = 0 must lie outside the unit circle.

Upon multiplying both sides of (3.1) by the adjoint matrix associated
with H(L), denoted by H*(L), we obtain

|H(LD)|z, = H'(L)F(L)e, (3.2)

a set of FEs for the elements of z,. Each of the FEs in (3.2) is in autore-
gressive moving average (ARMA) form that is, |H(L)|z; = o e;, where
|H(L)| is an autoregressive polynomial, and «;, a 1 x p vector of polyno-
mial operators, is the ith row of H*(L)F(L). That o;e;, a sum of moving
average processes, can be represented as a moving average process in a
single random variable has been proved in the literature. Thus even with
the general multiple time series process in (3.1), processes on individual
variables will be in the Box—Jenkins form.

In structural econometric modeling it is usually assumed that some of
the variables in z, are exogenous. Let 2/, = (y,: X)), where y,, a p1 x1
vector, denotes the vector of endogenous variables and x;, a p, x 1 vector,
denotes the exogenous variables. Then (3.1) can be written as

(| B2 (2 _ (B | Er ) )
H | H ) \x, By | Fn)\ey)’ '

where the partitioning of H(L) = {H;}, F(L) = {F;}, and e, has been
made to conform to that for z’, = (y',:%/;). The assumption that x, is

exogenous places the following restrictions on the matrix lag operators in
(3.3):

H;=0, F,=0, and F,; =0. (3.4)
On inserting (3.4) in (3.3), we have

Huy: + Hi2x, = Friey, (3.5)
and

Hyx, = Fxe,. (3.6)

The equation system in (3.5) is the dynamic structural-equation sys-
tem, while that in (3.6) is the multivariate ARMA process generating the
exogenous variables in Xx,.
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By multiplying both sides of (3.5) on the left by the adjoint matrix
associated with Hi;, denoted by H;;*, we obtain the TF system,

|Hi1 |y, + Hi " Hiox, = Hy " Fiey,. 3.7

Last, the FEs associated with (3.5)—(3.6) are obtained by multiplying
both sides of (3.6) on the left by H,,*, the adjoint matrix associated with
H,,, to obtain

| | X, = Hpo™" Fazey;, (3.8)
and substituting for x, in (3.7) from (3.8) to yield
|Hi| | Hooly, = — Hyy Hio Hy, Frzer, + | Hoo| Hiy Friey,. (3.9)

Equations (3.8) and (3.9) are the FEs for the variables in x, and y,,
respectively. Each variable has an ARMA process, as mentioned before.
Simple modifications of the analysis presented previously to take account
of non-stochastic exogenous variables, such as time trends, and seasonal
or other “dummy” variables, can easily be made.

In structural econometric modeling in the past, workers have concen-
trated attention on the SEM given in (3.5). Economic and other consider-
ations have been employed to justify the classification of variables into the
two categories, endogenous and exogenous. Further special assumptions
regarding the matrices H;1, H;2, and Fj; are required to achieve identifi-
cation (e.g. see Hannan 1971). These assumptions place restrictions on
lag patterns in equations, serial correlation properties of error terms, and
on which variables appear with non-zero coefficients in equations of the
system. If the resultant system is appropriately specified and estimated,
it of course can be used for forecasting, control, and structural analysis,
the traditional objectives of SEMs. It must be recognized, however, that
a large number of specifying assumptions have to be made to implement
the SEM in (3.5), and the probability that errors will be made in specify-
ing an initial variant of (3.5) generally will be high. The solution to this
problem is not to discard the initial variant of (3.5), which may contain
much valuable information, but to pursue complementary analyses that
can help to identify problems in the formulation of the initial variant and
to suggest appropriate reformulation of specifying assumptions. Also, it
is important that these complementary analyses yield useful results along
the way toward obtaining a good SEM.

In the SEMTSA approach, it is suggested that workers use economic
theory and other outside information to formulate an initial, tentative
form for (3.5). The next step involves deducing algebraically the forms
of the TF system in (3.7) and the FEs in (3.9). As is obvious from the
forms of the TF and FE systems, assumptions regarding the SEM in (3.5)
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will result in a number of important restrictions on TFs and FEs that can
be checked empirically. For example, from (3.7), (3.8), and (3.9), it is
seen that the AR parts of the FEs and TFs will be identical when lag
operators do not contain common factors. As pointed out in Zellner and
Palm (1974), systems with special features, that is, fully recursive sys-
tems or systems in which Hj; is block-diagonal, will lead to cancellation,
and thus the AR parts of FEs and TFs will not be identical. Also, other
special assumptions about the forms of Hy; and Hy, in (3.5) will result
in TFs and FEs with different AR lag polynomials (see Zellner and Palm
1975 for an example). Work on examining the implications of specific
SEMs for the forms of FEs and TFs is extremely important in enhancing
understanding of SEMs. For example, the effect of changing a variable’s
classification from exogenous to endogenous on the forms of the TFs
and FEs can be easily determined. Also, structural assumptions about
lag structures, properties of structural error terms, and forms of policy-
makers’ control policies all result in strong restrictions on TFs and FEs.
In addition, Quenouille (1957, ch. 5) has provided valuable analysis of
the effects of incorrect inclusion or exclusion of variables, measurement
errors, parameters varying with time, non-linearities, and so on.

When the forms of TFs and FEs associated with a SEM have been
derived, the next step in the SEMTSA approach is to analyze data to
determine or identify the forms of FEs and TFs to check that the empir-
ically determined FEs and TFs are compatible with those implied by
the tentatively formulated SEM. Of course, this work not only provides
checks on a SEM but also estimates FEs that can be used for prediction
and TFs that can be used for prediction and control. If the analysis of
the FEs and TFs provides results compatible with the implications of the
SEM, the SEMs’ parameters can be estimated, and it can be used for
prediction, control, and structural analysis. If, as is usually the case, the
results of FE and TF analysis do not confirm the implications of an initial
variant of a SEM, the SEM must be reformulated. This reformulation
process is facilitated considerably by knowing the results of TF and FE
analyses. That is, the latter analyses usually indicate specific deficiencies
of the initial variant of a SEM, and many times recognition of these defi-
ciencies is an important first step in finding remedies for them. When the
initial variant of a SEM has been reformulated, its implications for the
forms of FEs and TFs can be checked empirically. Also, the roots of FEs
and TFs can be calculated, estimated, and examined for reasonableness.

The SEMTSA approach provides an operational and useful synthesis
of traditional econometric and time series analysis techniques that can
produce SEMs with fewer specification errors and better forecasting per-
formance. As with traditional SEMs, however, some statistical problems
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associated with the SEMTSA approach require further research. First,
there is the problem of determining the forms of the FEs from sample
data. Box and Jenkins’ well-known suggested techniques based on proper-
ties of estimated autocorrelation and partial autocorrelation functions are
helpful in ruling out a number of forms for FEs; however, these techniques
are rather informal. For nested FE models, large-sample likelihood-ratio
tests can be employed to aid in discriminating among alternative FE mod-
els. For nested and non-nested models, Bayesian posterior odds ratios also
are useful. For example, in discriminating between a white-noise process
and a first order moving average process, Evans (1978) has shown that the
posterior odds ratio is a function not only of the first order sample serial
correlation coefficient, r;, but also of higher order sample serial correla-
tion coefficients, r,, 73, . . . , the latter having weights that decline as the
sample size increases. Because r; is not a sufficient statistic and because
the r;s are highly correlated in small samples, a large-sample test using
just r; does not use all the sample information and can lead to erroneous
inferences. Posterior odds ratios also are useful in situations in which roots
of AR polynomials lie on the unit circle, a situation in which it is known
that usual large-sample likelihood-ratio tests based on x?2 statistics are
invalid. Geisel (1976) has reported work indicating that Bayesian poste-
rior odds ratios performed better than variants of Box—Jenkins procedures
in discriminating among alternative ARIMA schemes. Extensions of this
work and the early work of Whittle (1951) on Bayesian hypothesis testing
in time series analysis would be very valuable. This work also can shed
light on the problem of determining the degree, if any, of differencing
required to induce stationarity. Note that in formulating a posterior odds
ratio, stationarity is not required. Stationarity is required for most uses
of sample autocorrelation and partial autocorrelation functions.
Second, there is the problem of determining the forms of TFs. Impor-
tant work on this problem for simple TFs has been reported by Box and
Jenkins (1970, 1976), Haugh and Box (1977), Haugh (1972), Granger
and Newbold (1977), and others. Also, the econometric work on dis-
tributed lag models is relevant (e.g. see Aigner 1971, Dhrymes 1971,
Griliches 1967, and Nicholls, Pagan, and Terrell 1975) . . . [W]ork of
Sims (1972, 1975), Skoog (1976), Pierce and Haugh (1977), Wu (1978),
and others on tests for special recursive structures, along with procedures
suggested by Box, Jenkins, Haugh, Granger, Newbold, and others, may
be useful in checking the assumptions about input variables’ properties. In
TFs with several input variables, it may be advisable to reduce the number
of free parameters by using some of the assumptions in the distributed-lag
literature regarding coefficients of current and lagged input variables (e.g.
see Shiller 1973). As with determining the forms of FEs, it is probable
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that posterior odds ratios will be found useful in discriminating among
alternative forms for TFs and in obtaining posterior probabilities associ-
ated with alternative variants of TF’s.

Third, there is the problem of obtaining good estimates of parame-
ters in FEs, TFs, and SEMs. Currently, various asymptotically justified
estimates are available, and some of these take account of random ini-
tial conditions and restrictions implied by the assumptions of stationarity
and invertibility. The small-sample properties of these asymptotically jus-
tified estimates require much further investigation, a point also empha-
sized by Newbold (1976), who writes: “As regards estimation, I am not
sure that uncritical use of maximum likelihood estimates is justified in
small samples without some investigation of their sampling properties.”
As pointed out in section 2, ML estimators do not in general possess
good finite-sample properties. These comments imply that more work to
obtain good finite-sample estimates is required. Extensions of the valu-
able work of Box and Jenkins (1970, 1976), Newbold (1973), Tiao and
Hillmer (1976), and others on Bayesian estimation of time series mod-
els seem to be possible and can provide additional good finite-sample
estimation results.

Fourth, the problems associated with seasonality are important in for-
mulating and analyzing SEMs and yet have received relatively little atten-
tion. Because seasonal variation accounts for a large fraction of the vari-
ation of many economic variables, a proper treatment of seasonality is
critical. In much econometric work, seasonally adjusted variables are
used with little or no attention to the procedures employed for seasonal
adjustment and their possible effects on determination of lag structures
and other features of SEMs. In the SEMTSA approach, Plosser (1976a,
1976b) and Wallis (1976) have provided valuable analyzes of seasonality
in SEMs.

Fifth, the problem of measurement errors in economic time series
requires much more attention. It is well known that a number of economic
series are derived wholly or in part from sample surveys. Many statistical
analyses of such data are based on the usually erroneous assumption of
simple random sampling. Analyzes that take proper account of the designs
of sample surveys, their sampling errors, and possible biases would be
most welcome. Further work to consider SEMs subject to measurement
error would also be valuable. For example, (3.5) could be formulated in
terms of the true values of variables, z'; = (y’; : X';). The measured values
of variables z,”" = (y;”',x,”") could be assumed given by z,” = Rz, + £,
where R is a matrix of coefficients reflecting systematic measurement
errors and &, is a vector of random measurement errors. In this form, the
SEM becomes what engineers call a state-variable model. Perhaps use of
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results in the engineering literature would be useful in work with SEMs.
Measurement problems are not insignificant: Initial and subsequently
revised figures for GNP and other important quarterly economic series
differ considerably, in some cases systematically, and provide different
information regarding cyclical turning points (see Zellner 1958). Similar
results have been obtained in current work with preliminary and revised
figures for quarterly nominal GNP. Revisions in the preliminary esti-
mates of quarterly GNP amounting to 5-10 billion dollars are common.
For example, the first and subsequently revised figures (in billion current
dollars) for GNP in the fourth quarter of 1954 are 361.0, 362.0, 367.1,
367.1, 367.7, and 373.4; for the fourth quarter of 1965, the preliminary
and subsequently revised figures are 694.6, 697.2, 704.4, 708.4, 710.0,
and 710.0. These figures illustrate an important measurement problem
confronting econometric model builders and forecasters that has not been
adequately treated in the literature.

Sixth, aggregation problems have received increased attention . . . Arti-
cles by Geweke (1976), Tiao and Wei (1976), Wei (1976), and Rose
(1977) provide valuable results on temporal and other kinds of aggrega-
tion in the context of time series models. In work by Laub (1971, 1972),
Peck (1973, 1974) and Levedahl (1976), attention has been focused on
economic models for individual firms and consumers using panel data
and the implications of these microanalyses for aggregate dividend, invest-
ment, and automobile expenditure functions. At the microlevel, discrete
decisions, such as buy/not buy or change/don’t change the dividend rate,
are extremely important. Yet macroformulations of behavioral relation-
ships that are incorporated in many SEMs do not properly take account
of this discrete microbehavior and as a result are misspecified. Many esti-
mated investment, dividend, and automobile expenditure functions that
are based on partial adjustment models show long response lags that are
spurious and are the result of aggregation over buyers and non-buyers
or corporations that change and those that do not change the dividend
rate in a particular quarter. Levedahl (1976) has shown analytically and
empirically that the adjustment coefficient in a partial adjustment model
for automobile expenditures is related to the proportion of consumers
purchasing a car in a particular period. Because this proportion varies
considerably over time, the adjustment coefficient is an unstable parame-
ter, and models fitted under the assumption that it is stable have obvious
problems in forecasting. These findings relating to defects of widely used
partial adjustment equations have serious implications for SEMs that
incorporate such equations. Further work on formulating macro-SEMs
that takes better account of discrete elements in economic behavior seems
very important in obtaining better models.
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Seventh, forms of policy-makers’ control may change and thus cause
instability in lag parameters and other features of a model, a point empha-
sized by Lucas (1973). Analyzes using subsamples of data may indicate
the empirical importance of this problem.

Last, time series analysts have identified relatively simple, low order
ARIMA processes for economic variables appearing in SEMs. On the
other hand, the ARIMA processes or FEs associated with most SEMs
are usually complicated, high order schemes. To illustrate, Leuthold ez al.
(1970) formulated and estimated a SEM for analysis of hog markets
with daily data. They also identified and fitted ARIMA processes for
the daily price and quantity variables. Their time series model for price
was found to be a simple random walk. As shown in Zellner (1974), the
form of their SEM implies FEs for price and quantity with AR parts
of at least third order, quite at variance with their random walk finding
for the price variable. It seems that they forced a misspecified SEM on
the data, one that involves the implicit assumption of unexploited profit
opportunities in the hog markets. Indeed Muth (1961, p. 327, n. 11), in
his pathbreaking paper on rational expectation models (i.e. models that do
not imply unexploited profit opportunities), writes in connection with a
general supply and demand model: “If the production and consumption
flows are negligible compared with the speculative inventory level, the
process [on price] approaches a random walk. This would apply to daily
or weekly price movements of a commodity whose production lag is a
year.” Thus, economic theory provides some support for the empirical
finding that daily hog prices follow a random walk and that the SEM for
the hog markets is probably misspecified.

Similar considerations apply to the Hendry (1974) model of the UK
analyzed in Prothero and Wallis (1976). The latter workers identified
rather simple ARIMA processes for variables appearing in Hendry’s
SEM. The FEs associated with Hendry’s estimated model have ninth
order AR parts. Prothero and Wallis (1976, p. 483) apparently take this
finding of a ninth order AR part of the FEs of Hendry’s model seri-
ously and attribute the relatively low orders of the empirically identi-
fied FEs to “relatively small coefficients of higher powers of L [the lag
operator], which proved difficult to detect in our univariate analyzes.”
Also, they state that “the size of the available sample [forty-two quarterly
observations] has clearly restricted our ability to detect subtle higher-
order effects.” Whether these subtle higher order effects are real or are
results of specification errors present in the eight-equation Hendry model
is a point that deserves further attention. In addition, the burgeoning lit-
erature on rational expectation economic models has important implica-
tions for the formulation and analysis of SEMs (for some examples, see
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Ranson 1974, Evans 1975, Grossman 1975, Nelson 1975, Sargent and
Wallace 1975, Wickens 1976, McCallum 1977, and Flood and Garber
1978).

4 Conclusions

This review of some of the research on SEMs has emphasized the follow-

ing major points:

1. Substantial progress has been made in research on statistical methods
for constructing, analyzing, and using econometric models.

2. There is a serious need for developing and vigorously applying addi-
tional statistical, mathematical, computer simulation, and economic
diagnostic checks of properties of the SEMs.

3. For given SEMs, more work has to be done to develop and apply
estimation, testing, and prediction procedures that have finite-sample
justifications. In this connection, the present author and others believe
that Bayesian procedures offer good solutions for many finite-sample
problems.

4. More formal procedures for using prior information in the analysis of
given SEMs are required, a problem area that can be approached most
satisfactorily at present by use of the Bayesian approach.

5. Most serious is the need for formal, sequential statistical procedures
for constructing SEMs.

6. The synthesis of traditional econometric model-building techniques
and modern time series analysis techniques, called the SEMTSA
approach previously, will probably lead to improved SEMs, a view
of the present writer, Granger and Newbold (1975), and others.

7. Further use of existing economic theory, such as the theory of efficient
markets (see Fama 1970 for a review of this theory), and rational
expectations theory probably will yield better SEMs. Having SEMs
consistent with elements of sound economic theory has long been
emphasized in the econometric literature, and further attention to this
point in current work with SEMs is critical.

So that this listing of research needs not be construed as misrepre-
senting the quality of current US macro-SEMs that are used to generate
quarterly forecasts of important economic variables, such as GNP, unem-
ployment, prices, and interest rates, it is relevant to consider Christ’s
(1975) thoughtful and relatively favorable review of the forecasting prop-
erties of such models. In the opening sentence of his article, he writes:
“Econometric models of the U.S. economy have been developed to the
point where forecasters who use them can forecast real and nominal GNP
two or three quarters ahead with root mean square errors of less than one
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percent, and six quarters ahead with RMS errors of one to two percent.”
This rather optimistic summary statement fails to take account of the fact
that population RMS errors have been estimated from rather small sam-
ples of forecast errors and hence are not very precise. A confidence inter-
val at a reasonable level for the population RMS error would probably
be rather broad. Also, the implication of a 1-2 percent error for nominal
GNP that now exceeds 1.5 trillion (1,000 billion) dollars, is about a 15 to
30 billion dollar or greater error, which would be considered substantial
by most analysts.

Further with respect to the very same models that yield RMS errors
of 1 or 2 percent, Christ (1975) in the second paragraph of his article
writes: “Though the models forecast well over horizons of four to six
quarters, they disagree so strongly about the effects of important mone-
tary and fiscal policies that they cannot be considered reliable guides to
such policy effects, until it can be determined which of them are wrong in
this respect and which (if any) are right.” This statement clearly indicates
that at least some, or perhaps all, of the models that Christ considered
(Wharton; Data Resources Inc.; Bureau of Economic Analysis; St. Louis;
Fair; Liu-Hwa; Hickman-Coen; and University of Michigan) probably
contain serious specification errors.

Next, Christ (1975, p. 59) writes:

In general, it appears that subjectively adjusted forecasts using ex ante exogenous
values are better than the others. It is no surprise that subjective adjustment
helps. It may surprise some that the use of actual exogenous values does not help,
and sometimes hinders. But there is likely to be some interaction, in the sense
that if a forecaster feels that the preliminary forecast turned out by his model is
unreasonable, he may both adjust the model and change his ex ante forecast of
the exogenous variables, in order to obtain a final forecast that he thinks is more
reasonable (emphasis in the original).

Christ’s conclusion that “subjectively adjusted forecasts . . . are better than
the others” underlines the importance of using prior information care-
fully in preparing forecasts. His statement that use of the actual values,
rather than the anticipated values, of exogenous variables “does not help”
is indeed surprising. In this connection, it should be appreciated that
the subjective adjustments often take the form of adjusting the values
of intercept terms in equations of a model. Because equations often are
formulated in terms of non-stationary variables and may be considered
as local approximations, adjustments to intercept terms and slope coef-
ficients will be needed when values of the variables move away from
sample values. In such situations, thoughtful adjustment of intercept
terms is a partial step in the direction of obtaining better results; but,
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because it is partial, there is no assurance that use of actual rather than
anticipated values of exogenous variables will produce better results in
general.

Last, from the information on models’ forecast errors that Christ has
assembled, it appears that SEMs for both nominal and real GNP outper-
form univariate ARIMA schemes for these variables in terms of estimated
RMS errors. As pointed out before, many have recognized, implicitly or
explicitly, that a correctly specified multi-equation SEM should, in the-
ory, perform better in forecasting than a univariate ARIMA process. For
example, Box and Jenkins (1976, p. 493) comment:

If the question is whether a set of univariate [ARIMA] models of this kind which
takes no account of relationships between the series describes a set of related time
series better than the corresponding multivariate [econometric] model then pre-
dictably the answer must be “No.” Itis a sobering commentary on lack of expertise
in the practical aspects of modeling that instances have occurred where well-built
univariate models have done better than poorly built multivariate “econometric”
ones.

In closing, it must be concluded from what has been presented and
from Christ’s remarks, that, while considerable progress has been made
in work with SEMs, an econometric model as satisfactory as the Ford
Model T has not as yet appeared.
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Comment (1979)
David A. Belsley and Edwin Kuh

Zellner’s [chapter 2] marks a significant step in econometric writings,
for it is one of the first pieces by a major econometrician that recognizes
the full spectrum of the actual practice of econometric model building —
including its trial-and-error (or iterative) aspects that are often viewed
askance by econometric theorists. Implicit in Zellner’s broad-gauged view
is a realization that the classical statistical techniques, in their purist sense,
provide a model-building methodology that is as constricting as it is beau-
tiful. And it has been in an effort to make progress in the highly complex
real world of quantitative economics that econometricians, against this
formal statistical backdrop, have developed an informal, backroom set of
procedures that have proved a necessary part of actual model building:
Econometricians have long been classroom theorists and closet pragma-
tists. It takes courage to recognize openly that econometric model build-
ing is an iterative process. It takes courage because it gives recognition to a
practice that is highly vulnerable to attack — and for good reasons. In par-
ticular, once one admits the legitimacy of modifying an errant hypothesis
in light of its failure to account for the facts or for the investigator’s implicit
prior beliefs, then one must always fear, contrary to the classical philoso-
phy, that the final hypothesis will be determined mainly by the data and
become devoid of a rigorous interpretation. Although we all understand
the rational import of such criticism, most of us, deep down, also realize

Originally published as an Invited paper; Fournal of the American Statistical Association T4
(1979). © Journal of the American Statistical Association.
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that enlightened and clever iteration in model building, combined with
appropriate retesting with new information, can greatly defuse this criti-
cism while helping to speed the process of applied econometric research —
indeed often allowing it to occur at all. The problem comes in discovering
means for making iterative model building enlightened and clever, and it
is in part with such issues that Zellner is concerned.

Realizing that many informal econometric practices, practices that
attain their effective legitimacy in the heat of battle rather than in the
textbooks, are at variance with the various formal procedures, is it not
better to recognize such practices, study them for what value they may
have, and encourage research into means for correctly modifying and
testing such models? We think so, and we feel that Zellner has provided a
possible framework for such evolution. In his approach, we can see that
such a growth in the discipline of econometrics can have its own theoret-
ical foundations. Indeed, Zellner calls attention to many areas of frontier
econometric research, in which theoretical development might provide
the practicing econometrician with a more rigorous framework for iter-
ative model-building techniques. These areas include Bayesian estima-
tion, robust estimation, time-varying parametric structures, sequential
hypothesis testing, and Zellner’s structural econometric modeling time
series analysis (SEMTSA), which joins traditional econometric struc-
tural modeling and the more mechanical application of the Box—Jenkins
type of time series analysis. To this list we would like to add the diag-
nostic analysis of data, an analysis that is capable of assessing the suit-
ability of the data for estimating specific models and for testing specific
hypotheses. Such diagnostics are particularly useful in analyzing the non-
experimental data that typically arise in the social sciences. This is an
important topic that Zellner does not discuss. We have little doubt that
procedures for model building that draw properly on these topics, topics
often considered peripheral to the accepted body of econometrics, could
provide a theoretically sound iterative approach to model building that
is more productive than a practice based solely on currently accepted
theory.

Why does such a large gap exist between what econometricians learn
in the classroom and what they practice? There are several reasons for
this gap that could, in principle, be removed in a straightforward man-
ner, which include a lack of appropriate software and a lack of adequate
training, even in accepted theory, among some practitioners. Other rea-
sons are less easily dealt with. Some modeling techniques, for example,
even if well known and otherwise implementable, are simply considered
too cumbersome or time-consuming. Proper construction of Bayesian
priors affords a good example of this and, at present, constitutes one of
the major practical drawbacks to the implementation of many Bayesian



Comment 81

techniques. Another reason, perhaps the most important one, lies in the
inability of econometrics, based on existing theory, to handle the com-
plexities encountered in analyzing the real world — including the frailty
of the human mind correctly to provide all important prior restrictions
for a given model before “machine touches data.” This last reason vir-
tually ensures that models will, in fact, be built piecemeal. It is time for
the econometrics profession to recognize this simple truth and to place
various iterative procedures under its theoretical umbrella.

The status of econometrics today, as Zellner indicates, offers no
grounds for complacency. It is true that the discipline of econometrics
has come a long way [in the years since 1950] and even provides a body
of knowledge that serves as a model for some other disciplines. Yet one
may at times sense a large and increasing gap between the current ortho-
doxy of econometric theory and the research frontier in econometrics
(and in related disciplines that have much to offer econometrics), a gap
that is manifest in a widespread reluctance to consider novel procedures
seriously. This is readily apparent when one considers the effect that
the mention of terms such as the Stein estimator, Kalman filtering, or even
numerical analysis can have. A similar effect could have been evoked only a
few years ago by the mention of terms such as Bayesian estimation, random
coefficients, or even spectral analysis, an effect that still exists to some extent
today. There are obvious reasons why econometricians might resist the
introduction of new techniques and new methodology. Econometricians
can be justifiably proud of the techniques they have developed. Most have
invested much effort in mastering their knowledge and skill, and it is only
natural to resist new ideas, unless they can be proved to be substantially
better. Also, new techniques often originate in other “seemingly unre-
lated” disciplines, usually with notational differences that are irksome.
This apparently small problem has surely been one of the more impor-
tant reasons why the efforts from various fields of engineering, numerical
analysis, or data analysis, all of which have some useful things to teach
us, have been slow to take hold.

We have little to add to what Zellner says on the potential roles and
importance of the topics he mentions: Bayesian estimation, robust esti-
mation, time-varying parameters, sequential testing, and SEMTSA. We
would, however, like to add to the overall picture a few thoughts on the
importance of the diagnostic analysis of data. Examination of the suit-
ability of a particular data set for a specific econometric analysis has
been widely ignored in actual economic practice. This happens, in part,
because econometricians are effectively stuck with non-experimental data
over which they typically have no control, and they therefore accept them
without further question. In addition, little is known about data problems,
such as errors in variables, collinearity, and outliers. What little is known
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presents such theoretical or practical headaches that an ostrich-like pos-
ture seems somehow justified. In fact, these problems with econometric
data make an analysis of their suitability to a particular application even
more imperative here than in other disciplines, such as in physics and
in some branches of engineering, in which experiments constructed to
be devoid of many problems are possible. Collinearity can clearly render
a specific set of non-experimental data useless for many important tests
of hypotheses based on the estimated coefficients of the collinear vari-
ates. Likewise, anomalous data points, arising perhaps through error or
perhaps from a data structure not relevant to the model at hand, can dom-
inate estimation or hypothesis testing, much to the detriment of correctly
understanding the model being investigated. Therefore, reliable diagnos-
tic techniques are required that allow the econometric practitioner —either
before estimation or as a concomitant part of the estimation procedure —
systematically to assess the suitability of the data for estimating the par-
ticular model or testing specific hypotheses. Initial efforts toward such
diagnostics are given in Mosteller and Tukey (1977) and in Belsley, Kuh,
and Welsch (1979), and, at least in the latter case, these diagnostics have
indeed been presented by the authors as an initial stage in a more general
iterative model-building scheme, such as that advocated by Zellner.
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Comment (1979)
Carl E Christ

Both parts of Zellner’s [chapter 2] are admirable. The first part is on the
current state of the art of structural econometric modeling. The second is
on the relation of that art to time series analysis a la Quenouille and Box—
Jenkins. Zellner himself has made significant contributions to both these
areas. In addition, he offers many thoughtful suggestions for future work.

The chapter’s first main part, section 2, provides an excellent summary
of the preconceptions and procedures involved in structural econometric
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models and their specification, estimation, evaluation, revision, and
use. The discussion is illustrated with the aid of the general linear-in-
parameters additive-disturbances structural econometric model (SEM)
displayed in (2.2) and its reduced form (2.3). The model will be useful
to statisticians seeking an overview of econometrics, to those who seek to
put specialized knowledge of econometrics into perspective, and to those
seeking problems to solve.

An additional comment may be helpful regarding Zellner’s entirely
correct (but, perhaps, misleadingly brief) statement in subsection 2.2.2
that many consistent econometric estimators do not have finite means or
variances and, therefore, have infinitive mean square errors (MSEs) and
are inadmissible relative to quadratic loss functions. The discovery of this
fact can have a traumatic effect on students. In subsections 2.2.2 and 2.3,
Zellner offers one possible way to avoid it. He does not mention another
way suitable for asymptotically normal estimators, which is to adopt a
truncated quadratic loss function, thus: L = (§ — 6)? when |§—6| < &,
and L = k2 otherwise, where L is the loss, 6 and 8 are the parameter and
its estimator, and % is some positive constant. This renders the expected
loss finite and allows it to be approximated for large samples by the MSE
of the limiting normal distribution that is associated with 4. The use of
a bounded loss function is preferable to an unbounded one (such as the
MSE) not only because of the foregoing but also because an unbounded
objective function can lead to grossly unrealistic behavior prescriptions,
as is well shown by the celebrated St. Petersburg Paradox.

The chapter’s second main part, section 3, summarizes the relation-
ship, elucidated in Zellner and Palm (1974), between SEMs and time
series analysis (see (3.1)—(3.9)). Before the nature of this relationship was
realized, it was possible to believe that time series analysis was a mindless
technique for seeking empirical relations among observed variables, quite
divorced from (and indeed the antithesis of) the use of economic theory to
formulate SEMs. Now, however, it becomes clear (as Zellner points out)
that the SEM in (2.2) or (2.6) is a special case of the Quenouille-type
multiple time series model in (3.1) and that the maintained economic
hypothesis specifying that certain variables are exogenous in the SEM
has important testable implications for the parameters of the time series
model. In my view, this is a neat and important discovery. Based on that,
Zellner proposes a synthesis that he calls structural econometric model-
ing time series analysis (SEMTSA). The name is close enough to that of
Senta, the heroine who, by her faithfulness, redeemed Wagner’s Flying
Dutchman from his fate of having to sail the oceans foreover, to inspire
in me the fantasy that SEMSTA will, by its faithful application, redeem
econometrics from its fate of being at sea forever for lack of suitable
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statistical testing. Zellner does not go that far, but he does believe (and I
with him) that SEMSTA is a promising approach.

The final part of the chapter, section 4, . . . contains a summary and also
some references to Christ (1975) concerning the accuracy of forecasts
made with the aid of econometric models of the United States. Zellner
gives a quotation from p. 59 of my article and then expresses surprise that
the use of actual values of the exogenous variables (rather than ex ante
forecasts thereof) does not help. I submit that the unquoted remainder of
the quoted paragraph removes the surprise. Please read the quotation in
Zellner’s section 4, and then read the rest of the paragraph that is quoted
here:

This suggests that when unadjusted models are used, actual exogenous values
should yield better forcasts than ex ante values. The two sets of forecasts from the
Fair model bear this out. It also suggests that if subjecrively adjusted models are
used, ex ante exogenous values should yield better forecasts than actual values. A
comparison of the EAF3 and EPF forecasts from the BEA model bears this out.

Zellner’s chapter has an extensive bibliography. In sum, Zellner’s chap-
ter is excellent. The editors are to be congratulated for inviting him to
contribute it.
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Comment (1979)
Peter M. Robinson

Zellner has treated us [in chapter 2] to an illuminating discussion of
many of the tools available for the statistical analysis of some economet-
ric models. I feel, however, that his remarks on the issue of finite-sample
theory versus asymptotic theory need to be placed in perspective. Zellner
reminds us that asymptotic properties may be inappropriate for use in
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statistical inferences based on the sample sizes often encountered in eco-
nomics. He stresses the importance of examining finite-sample prop-
erties of asymptotically justifiable decision procedures and of develop-
ing procedures with desirable finite-sample properties. In commenting
on the relevance of asymptotic theory and describing the progress that
has been made in finite-sample theory, however, he does not mention
that there often are considerable differences between the assumptions
on which these theories rest. Some exact finite-sample properties (such
as bias and risk) of relatively simple estimators can be obtained under
mild conditions. Unfortunately, it is often difficult to investigate analyt-
ically the properties of more complicated estimators, let alone find their
exact finite-sample distributions, without resorting to precise distribu-
tional assumptions. Moreover, to the extent that such properties can be
obtained at all, the need for mathematical tractability sometimes presents
us with little choice of parent distribution. Much of the finite-sample
work Zellner describes assumes that the disturbances in the economet-
ric model are independent, identically distributed (iid) normal random
variables. Zellner explicitly makes this assumption in his discussion of
the Bayesian analysis of the simultaneous equation model, in subsection
2.2.3, and, previously, takes it for granted when reporting some of the
results in subsection 2.2.2. Therefore, application of the finite-sample
theory might be accompanied by data analysis to assess the suitability of
the normality assumption, and consideration might be also given to use
of normality-inducing transformations.

Which conditions are sufficient for asymptotic properties — consistency,
asymptotic normality, asymptotic efficiency — of various estimators (ML,
2SLS, 3SLS, Bayesian, etc.) for the simultaneous equations system? One
needs some (often uncheckable) assumptions of the existence of certain
limits involving the exogenous varibles, but not a precise description of
the residuals. If these are martingale differences satisfying relatively mild
moment and homogeneity assumptions, the estimators typically are con-
sistent and have the same asymptotic normal distribution as they would
have under the iid normal assumptions. Moreover, one can determine
asymptotic properties under more dramatic departures from the classi-
cal assumptions. It often is possible to establish consistency and asymp-
totic normality (with a consistently estimable covariance matrix) when
the residuals have an unknown serial correlation structure or are het-
eroskedastic. One also can construct estimators that are asymptotically
efficient in these circumstances, using weighted least squares, autoregres-
sive transformation, spectral methods, and so on, although these may
require even larger sample sizes to justify using the asymptotics. Zell-
ner describes . . . developments in finite-sample theory, but he tends to



86 Peter M. Robinson

ignore those in asymptotic theory. I agree, of course, that application of
asymptotics to small samples can produce misleading results and use of
exact finite-sample theory, when appropriate, is desirable. If it is a ques-
tion of deciding whether an asymptotic theory or a finite-sample theory
provides the better approximation, I believe one should consider not only
whether the sample size is “truly large” but also the different assumptions
on the variables and any information on robustness to departures from
these assumptions. My earlier remarks suggest that this choice may not be
clear-cut. Another factor that might be considered is the relative ease of
applying the central limit theorem compared with that of applying many
finite-sample distributions.

For a number of econometric models, one has little or no power
to choose between asymptotic and finite-sample properties or between
asymptotically justified and finite-sample estimators. Zellner emphasizes
closed form estimators of the linear structural system, involving endoge-
nous variables with continuous distributions, and iid disturbances. He
reports some progress in finite-sample work on time series models, but
this seems limited, and the problems to be overcome in developing read-
ily computable finite-sample estimators and properties for the range of
models served by the current asymptotic theory seem great. (Note also
that estimators of many time series models, based on an exact or approx-
imate Gaussian likelihood and certain moment estimators, often have
desirable asymptotic properties, even in the absence of Gaussianity.) For
some econometric models, we have large-sample estimators and prop-
erties (some of which, admittedly, seem to rest on precise distributional
assumptions), but little or nothing is known about finite-sample theory,
such as the many regressions and structural systems that are non-linear in
the parameters, the models containing discrete-valued or limited depen-
dent variables, and the models for markets in disequilibrium. One can
sympathize with Zellner’s call for simplicity in model building without
necessarily wishing to exclude all these latter models from consideration.

Section 3 of the chapter is concerned with Zellner’s structural econo-
metric modeling time series analysis (SEMTSA) method, which may
well help to improve the quality of econometric models and forecasts.
Although SEMTSA has a number of desirable features, I do not believe
that a proposed econometric model should be too readily rejected on
the basis of this type of analysis, because the introduction of the autore-
gressive moving average model (ARMA) representation ((3.6)) of the
exogenous variables might produce misleading results. Of course, this
specification is not involved in the usual estimates of the system Hy,y, +
H\,x, = u, that is being judged. Zellner observes that his analysis also
allows for non-stochastic x,, although it does not generally work if x, is
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stochastic but not ARMA. It cannot always be taken for granted that an
ARMA representation — at least one of manageably low order — will be
sufficiently accurate to justify the ensuing analysis.

Zellner suggests that workers use prior knowledge to choose an initial
specification of the “structural system” (3.5), but does not say how the
remaining component of (3.1), the model (3.6) for x,, will arise. Presum-
ably, univariate or multivariate ARMA identification procedures would
be involved. The accuracy with which (3.6) is specified is clearly impor-
tant in determining the form of the FE (3.8). Small differences in the
ARMA orders of elements of x, can correspond to large differences in
the degrees of polynomials, such as | H;|| H2|. Failure to confirm an ini-
tial transfer function of the form — Hfll H, might be due in part to poor
testing power resulting from deviations from the ARMA specifications
of u, and x;. Zellner mentions that some high order ARMA coefficients
in the FE may be so small as to make rejection of a low order model
difficult. This notion seems plausible, because one can write |H;;||H>2|
= I1;(1 — ;L) and because |9;| < 1 for all j, in a stationary model, the
coefficients of high powers of L might be very small. Even when this is not
the case, some methods for ARMA identification, such as those in which
models are considered in increasing order of complexity, are capable of
producing a model that incorrectly omits high order terms.

Comment (1979)
Thomas J. Rothenberg

Zellner has provided [in chapter 2] a thoughtful survey of some . . .
research and unsolved problems in the statistical analysis of econometric
models. He wisely restricts his attention to a limited class of structural
equation models; to survey all the models used by economists would be
an impossible task. Readers unfamiliar with the work of econometricians,
however, should not think that multi-equation forecasting models exhaust
the economist’s repertoire. Single-equation models describing individ-
ual behavior, models of income and wealth distribution, unobserved-
variable models, contingency-table analysis, Markov transition models,
and so on, also are used widely. (Indeed, Zellner has been a major con-
tributor to numerous areas of econometric theory that are not discussed
in his chapter.) As indicated in Zellner’s introductory comments, the
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material surveyed is illustrative of the research and problems encoun-

tered by economists whenever they try to develop stochastic models of

economic behavior.

In his survey, Zellner makes a number of critical comments on the state
of current econometric modeling techniques and statistical procedures. I
am in substantial agreement with his major points and would simply add
the following remarks:

1. ... [M]ost econometric inference procedures are justified on the basis
of large-sample theory. The exact sampling distributions generally are
very complicated and, hence, are approximated by asymptotic dis-
tributions based on the central limit theorem. Better approximations,
usually based on the Edgeworth expansion, are generally available and
have been developed for special cases in the work surveyed by Zellner.
Additional . . . work by Anderson, Phillips, Sargan, and others treat
more general cases. A large body of literature by mathematical statis-
ticians also is relevant. Improved test statistics, which yield approx-
imately the correct size, have been known since the late 1930s and
are summarized by Bartlett (1954), Box (1949), and Lawley (1956).
General methods for constructing estimators and tests that are optimal
to a second order of approximation have been developed by Pfanzagl
(1973), Ghosh and Subramanyam (1974), Efron (1975), and Pfanzagl
and Wefelmeyer (1978a, 1978b).

This research on improved statistical procedures based on second
order asymptotic approximations has not yet been incorporated into
the econometrics textbooks. Furthermore, the application of general
statistical theorems to the specific models used by econometricians is
still in progress. Improved approximations in time series models, for
example, are still at an early stage of development. Zellner surely is
correct in calling for more work in this area. But the foundations for
a small-sample justification of inference procedures in econometrics
now exist.

In multi-parameter models, the algebra of deriving Bayesian poste-
rior marginal densities and moments often is just as difficult as that of
deriving exact sampling distributions. In practice, Bayesians are forced
to assume unpleasantly simple conjugate prior distributions or to rely
on large-sample approximations in order to obtain tractable poste-
rior distributions. Of course, better approximations to posterior dis-
tributions can be found by using Edgeworth-type expansions. Thus,
it seems that the development of better approximations to distribu-
tion functions will be important for both Bayesian and non-Bayesian
econometricians.

2. Both Bayesians and sampling theorists assume a known likelihood
function, typically one based on normally distributed errors. In
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practice, we do not know the probability distribution for the errors.
A solution, of course, is to embed our model in a larger one contain-
ing more parameters. Unfortunately, our ignorance is often so great
that we are led to models with a large number of parameters, and
the result is very imprecise measurement. The Bayesian approach that
adds parameters with a fairly tight prior distribution is an attractive
compromise. The classical theory of robust estimation is another alter-
native that needs to be extended to structural equation models.

. The art of model building involves much trial and error, as indicated in
Zellner’s overview of the modeling process. It also involves the interac-
tion of many different persons and many overlapping data sets. We base
our models on all the past models we have read about, even if we only
dimly remember them. It is extremely difficult to make this process
formal. Indeed, one sometimes is led in despair to give up all hope of
using formal statistical methods to describe our data-mining practices.
A more optimistic position is taken in the pathbreaking monograph by
Leamer (1978), in which sequential specification searches are modeled
from a Bayesian point of view.

. The synthesis of time series methods and structural equation modeling
is an important . . . development and should prove helpful in improv-
ing our specification of dynamic relations. Of course, not all structural
models involve time in an essential way. Much econometric work anal-
yses cross-section data over a single time interval. Furthermore, if the
major question to be answered involves the long-run effects of pol-
icy changes, it seems unlikely that improved specification of short-run
dynamics will be of much help. But, as a tool for improving short-run
forecasts, the SEMTSA approach holds much promise.

One weakness of the approach should be pointed out. Any structural
specification does indeed lead to an implication about the order of the
autoregressive part of the final equation; however, tests of the order of
an autoregressive process are likely to have very low power. Given any
low order process, there exists a high order process (with very small
coefficients, perhaps) that has approximately the same likelihood. The
inability to reject the null hypothesis that the order is low need not be
convincing evidence that the structural model is false. The specific
numerical values of the final equation’s coefficients implied by a given
structure must be tested against the data.

. With respect to the merits of the Bayesian approach, I have little to
add to what I have said elsewhere (Rothenberg 1975a, 1975b). Unlike
physical constants (like the weight of a coin, the length of a table, or the
number of balls in an urn), the parameters of econometric models are
subjective, hypothetical constructs. Likewise, the error terms in struc-
tural equation models represent a host of poorly understood effects,
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due to various sorts of misspecification. It certainly is not unnatural
to treat both the parameters and the errors symmetrically as random
variables where the probability distributions represent the econome-
trician’s uncertainty. For some purposes, I find it quite reasonable to
treat some parameters and some error terms as having subjective prior
probability distributions. I am not convinced that it is always reason-
able. Ultimately, a Bayesian’s credibility depends on his or her ability
to justify the particular prior distribution used in the analysis. Most
sensible statistical procedures are Bayes (or approximately Bayes) with
respect to some prior distribution and some loss function. In reporting
results of statistical analysis, perhaps the best we can do is to indicate
the range of possible conclusions that arise from a reasonable set of pri-
ors. Again, Leamer (1978) has much of interest to say on this subject.

In addition to these remarks, some more general comments about the
current state of econometrics are perhaps in order. I think it is useful to
distinguish three different levels at which there are unsolved problems in
econometrics. First, there are the very basic questions of methodology:
What are the fundamental principles for modeling complex economic
phenomena? Is traditional statistical theory at all relevant for economet-
ric models? If so, is the Bayesian approach more satisfactory than sam-
pling theory alternatives? Second, there are the technical and mathemat-
ical difficulties of deriving the statistical properties of estimators and test
statistics, of calculating marginal and conditional distributions, and of
constructing numerical algorithms for computing actual estimates and
distributions. Third, there are the questions of art: For a given applied
problem, what are reasonable assumptions to make about data, number
of variables, number of equations, functional form, error distribution,
prior distribution, and so forth?

Although the second class of problems is naturally of interest to statis-
ticians and theoretical econometricians, it is important to emphasize that
the basic methodological questions and the questions of art are critical.
Indeed, one can argue that the technical and mathematical difficulties
in econometrics are trivial when compared with the almost insurmount-
able problems in trying to capture an extraordinarily complex reality in
manageable models. With perseverance and better statistical training,
econometricians will produce the distribution theory and computer algo-
rithms that are needed. There is much more doubt in my mind that in the
near future we shall be able to produce economic models that are widely
accepted. I do not find it surprising that macroeconometric models are
unreliable guides to the effects of government policy. More surprising
is the fact that they forecast as well as they appear to do. Econometrics
is a field with much technique and as yet only modest accomplishment.
Because many different models can explain the available data equally well,
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model formulation must be based on considerable intuition, institutional
knowledge, and economic understanding. Unfortunately, these are very
scarce commodities. We have not yet produced the econometric version
of the Model T, and it is unlikely that better statistical theory alone will
provide the technological breakthrough that is needed.
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Rejoinder (1979)
Arnold Zellner

I thank the discussants for their kind comments on my [chapter 2] and for
the thoughtful points they have raised. I shall respond to the discussants
in reverse alphabetical order, which I prefer for an obvious reason.
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Rothenberg correctly points out that econometricians have analyzed
many different problems by using a broad array of statistical models,
some of which were mentioned briefly at the beginning of my chapter.
Many of the statistical points made in the chapter are relevant for analyses
of more complicated models, for example, non-linear models or models
for discrete random variables, also mentioned by Robinson. With respect
to improved second order asymptotic approximations, Takeuchi (1978)
has reported on his and M. Akahira’s work and on independent work
by Pfanzagl and Wefelmeyer (1978) on the third order asymptotic effi-
ciency of the maximum likelihood and Bayesian estimators with respect
to unbounded loss functions (pace Christ, see below) and smooth prior
distributions in the case of the Bayesian estimator. Takeuchi notes that
the comparison of asymptotic efficiency is made possible only after esti-
mators are adjusted for asymptotic bias or asymptotic median or modal
bias and states (1978 p. 7) that “Before adjustments nothing can be said
about the relative advantages of various estimators in terms of any ‘loss’
such as the mean square error, nor can we always gain in terms of MSE by
adjusting for bias as was proved by Morimune [in the case of the single-
equation LIML estimator].” This statement abstracts from the fact that
Bayesian estimators relative to specific priors and loss functions have well-
known finite-sample optimal sampling properties. Regarding improved
sampling-theory testing procedures, Rothenberg has provided references
relating to my remarks in section 2.3 on finite-sample approximations
to distributions of test statistics. These references do not contribute to
the many delicate and deep issues regarding alternative approaches for
comparing and testing hypotheses. On the algebra of deriving Bayesian
marginal posterior densities and the choice of prior distributions, I agree
that good approximation procedures are useful and can extend the range
of prior distributions that can be employed. Also, advances in numerical
integration techniques have been, and will be, very useful. As Rothenberg
and Robinson remark, everything in the world is not normal. It is thus
fortunate that transformations that may induce normality can and have
been used in econometrics. In addition, some analyses in the financial
economic literature have been based on stable-Paretian, univariate Stu-
dent r and mixture distributions, and analyses of multiple and multivariate
regression models based on multivariate and matrix Student ¢ distribu-
tions, respectively, have appeared (Tong 1976; Zellner 1976; Fraser and
Ng 1978). On the SEMTSA approach, it seems relevant for cross-section
data, because such data relate to time series processes for individuals in
the cross-section. The time series aspect of cross-section data should not
be overlooked and, in fact, is a primary reason for the growing emphasis
on longitudinal or panel data for which time series considerations are
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extremely important. On testing the implications of a SEM, mentioned
by both Rothenberg and Robinson, not only are the implications for the
FEs testable but those for the TFs and structural equations are also obvi-
ously testable. On the ability to discriminate among alternative forms for
the FEs, the hog market example discussed in my chapter is relevant. In
the area of macroeconomics, in Ranson (1974) economic theory is devel-
oped that predicts random-walk or near-random-walk behavior for some
macroeconomic variables, and time series analyses provide some support
for his theory. Thus, in some cases economic theory and empirical anal-
yses point in the direction of low order final equations. This topic needs
much more research, as I suggested in my discussion of the Prothero—
Wallis results. It is always possible to complicate a model by adding more
parameters. The basic issue is whether addition of such parameters is
useful or required in relation to the objectives of an analysis. On long-
run versus short-run models, my experience (see Hamilton ez al. 1969) is
that the role of prior information is very important in long-run modeling
and that the discussion relating to my figure (2.1) is quite relevant. Time
series considerations also are relevant, for example, in deciding whether
trends are stochastic and/or deterministic. On the issues of capturing an
extraordinarily complex reality in manageable models, questions of art
in modeling, physical constants and parameters in econometric models,
and other philosophical issues, much could be said. At present, I shall
just point to the early skeptics who refused to believe that there was any
merit in applying mathematics and statistics in analyses of social science
problems. I believe that subsequent experience has shown them to be
wrong.

Robinson is right in pointing to different assumptions underlying
asymptotic and finite-sample analyses. The critical point, in my opinion,
is well expressed by Robinson, namely, “I agree, of course, that appli-
cation of asymptotics to small samples can produce misleading results,
and use of exact finite-sample theory, when appropriate, is desirable.”
Also, in agreement with Robinson, I emphasized the importance of diag-
nostic checking and robustness of statistical procedures. On the power
to discriminate between the fruitfulness of finite-sample and asymptotic
analyses, mathematical analyses and Monte Carlo experiments can be
most helpful. Of course, in problems for which no finite-sample results
are available, asymptotic approximations will have to be used, and Monte
Carlo experimental results can be employed to check the quality of
the asymptotic approximations. Use of the simplicity criterion in model
building does not preclude, as Robinson apparently suggests, the use of
a wide range of models. It does appear fruitful, however, to choose the
simplest model compatible with achieving the objectives of a modeling
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project. On processes for the stochastic vector X, in (3.3) and (3.6) of my
chapter, these should be carefully identified from the data. If it is found
that they are not ARMA processes, then, of course, one should not use
ARMA processes. In such cases, one can determine the forms of these
processes and use them, or one can go ahead conditionally on given val-
ues for the x,s and analyze the TF and structural equation systems. In
forecasting, however, one has to generate future values of the x, vector
so that the problem of modeling the x, process arises again. In a number
of problems, for example, supply and demand models, an ARMA pro-
cess for x, may not be a bad approximation. On the other hand, when
elements of x, are subject to policy control, close attention must be paid
to the nature of control processes.

Christ raises a very important point regarding the use of unbounded
loss functions. In connection with existence of estimators’ moments and
associated infinite risks, in Zellner (1978, p. 154) I wrote in my conclu-
sions, “ML and perhaps other estimators might perform better relative
to performance criteria that are not sensitive to the existence or nonex-
istence of sampling moments,” in part in response to a comment on my
work made by George Barnard (1975) on the possible use of bounded loss
functions. Use of bounded loss functions will affect the Gauss—Markov
theorem, Stein’s results, and use of posterior means as point estimates
as well as any other estimates that are optimal relative to unbounded
loss functions. Robustness of results to the form of the criterion or loss
function is certainly an issue that deserves more research (see Zellner and
Geisel 1968, Zellner 1973, and Varian 1975 for some work on this topic).
Ideally, the form of the criterion or loss function should reflect serious
subject-matter considerations.

Belsley and Kuh remark that “Proper construction of Bayesian pri-
ors . . . constitutes one of the major practical drawbacks to the imple-
mentation of many Bayesian techniques.” This remark perhaps overlooks
the well-known fact that many non-Bayesian estimation results can be
produced by Bayesian methods based on diffuse priors or as means of
conditional posterior distributions in which nuisance parameters are set
equal to sample estimates. Thus, many non-Bayesian estimates in use
can be given a Bayesian interpretation. Belsley and Kuh are right in say-
ing that construction of operational, informative prior distributions is a
difficult problem, akin to the problem of formulating good models for
observations. Some . . . Bayesian research on formulating informative
priors by Bernardo, Dickey, Kadane, Lindley, Novick, Press, Winkler,
myself, and others may be helpful with respect to this problem. Last, I
agree fully with Belsley and Kuh that “diagnostic analysis of data” is a
crucial topic that deserves more attention in econometrics and elsewhere.
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Clearly, what one gets out of an analysis depends on what one puts into
it, and the data are an important input. In conclusion, I appreciate this
opportunity to express my views on matters that appear to me to be criti-
cal for improving statistical analyses of econometric models. Among other
useful results, improved statistical analyses can help to discover possible
defects of current econometric models and prompt work to correct them.
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3 Structural econometric modeling and time
series analysis: an integrated approach (1983)

Franz C. Palm

1 Introduction

An important and difficult part of econometric modeling is the speci-
fication of the model. Any applied econometrician knows how trouble-
some it can be to obtain a satisfactory specification of the model. While
the problem of specification analysis has received increasing attention in
econometric research in recent years, many of the existing econometric
textbooks provide few guidelines on how to obtain a satisfactory specifi-
cation. This is surprising as the specification of the model is necessary in
order to justify the choice of an estimation or testing procedure among
the large variety of existing procedures, the properties of which are well
established given that the true model is known. The consequences of mis-
specification errors due to the exclusion of relevant explanatory variables
are more extensively discussed in standard textbooks on econometrics.
Misspecification tests such as the Durbin—Watson test belong to the tools
of any empirical econometrician. Among the exceptions to what has been
said about the treatment of specification analysis in textbooks, we should
mention the book by Leamer (1978), in which he distinguishes six types
of specification searches and presents solutions for each of them within a
Bayesian framework. But the present state of econometric modeling leads
us to stress once more Zellner’s (1979, p. 640) conclusion concerning the
research on structural econometric models (SEMs): “Most serious is the
need for formal, sequential statistical procedures for constructing SEMs.”

The computations reported in this chapter were carried out by David A. Kodde, I wish to
thank him for his able assistance and his useful comments. I have benefitted from helpful
discussions with and comments by Carl F. Christ, Jean-Frangois Richard, and especially
Christopher A. Sims and Arnold Zellner, and from useful remarks by the participants of the
ASA-CENSUS-NBER Conference on Applied Time Series Analysis of Economic Data
held in Washington and by members of the Econometrics Seminar at CORE, University of
Louvain.

Originally published in A. Zellner (ed.), Applied Time Series Analysis of Economic Dazta,
Proceedings of the Conference on Applied Time Series Analysis of Economic Data, October
13-15, 1981, Arlington, VA, Economic Research Report ER-5, Washington, DC, Bureau
of the Census, US Department of Commerce, October 1983, 99-233.
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In section 2 of this chapter, we review existing approaches to economet-
ric modeling. We shall first briefly outline the traditional approach and
the time series approach to dynamic econometric model building. Then
we present the structural econometric modeling and time series analy-
sis (SEMTSA, see Zellner 1979), which integrate the best features of
econometric and time series techniques to analyze regression and struc-
tural equations in a framework of sequential testing of hypotheses.

In section 3, the SEMTSA will be applied to a multivariate dynamic
model for seven Dutch quarterly macroeconomic variables for the period
1952-79. The initial model is an unrestricted vector autoregressive (VAR)
model, which is assumed to be sufficiently general to include the data-
generating process. Next, in a top-to-bottom approach, theoretically
meaningful restrictions on the parameters of the VAR model are formu-
lated and confronted with the information in the data. The dynamic prop-
erties of the restricted model are compared with those of the unrestricted
model. Also, the postsample forecasting performance of the unrestricted
and the restricted models is investigated. In this way, we try to iterate into
a model that is a good parsimoniously parametrized approximation for
the data-generating process.

In section 4, we shall draw some tentative conclusions concerning the
application of the SEMTSA in general and the empirical results of our
study in particular. We shall point to problems that remain to be solved.

The estimation and testing procedures used throughout this chapter are
chosen on the basis of their large sample properties. Their finite sample
properties are known for special models only.

2 Approaches to econometric model building

2.1 The traditional approach to econometric modeling

The methodology of traditional econometric modeling will be briefly out-
lined in this section. For a more detailed description and a schematic rep-
resentation of model-building activities, the reader is referred to Zellner
(1979).

Formally, one assumes that the model is given. The observations are
used to estimate the parameters of the model. In practice, however,
econometricians derive the model at least in part from the data. When
specifying an initial model, the investigator makes use of economic theory,
knowledge about institutional arrangements, and other subject-matter
considerations. Sometimes a heavily — perhaps too strongly — restricted
model is chosen as an initial model because the estimation of its param-
eters is straightforward.
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The initial model is estimated using an estimation technique which
is appropriate according to criteria such as unbiasedness, consistency,
efficiency, . . . , provided the initial model is the true model. The esti-
mation results of the model are judged on the basis of the algebraic
t-values, the plausibility of the parameter estimates and their expected
sign, the stability over time of the estimates, the serial correlation prop-
erties of the residuals, and the fit of the equations. When the initial
model is not satisfactory as judged by one or more of these criteria,
it is respecified and re-estimated. For instance, a significant Durbin—
Watson test statistic has often led to fitting a regression model with first
order autoregressive disturbances. Similarly, the finding that two-stage
least squares [2SLS]estimates differ slightly from ordinary least squares
[OLS]estimates is used as argument to ignore the simultaneity aspect.
Certainly, in many situations the correct remedy has been applied to
cure the model. However, as long as there is no systematic way to analyze
the sample evidence, the diagnostic checking and reformulation of the
initial model may be done quite differently by two independent inves-
tigators. That different final model specifications have been reported in
the economic literature for similar data sets and observation periods is
evidence for this statement.

The traditional approach to econometric modeling has certainly
yielded very valuable results. These lines should not be interpreted as
generally convicting econometricians of bad practice. Instead, we want
to emphasize the need for a more systematic, formal approach to econo-
metric modeling, in which the best elements of the traditional approach
ought to be incorporated.

2.2 Time series identification of dynamic econometric models

Besides the progress made in modeling univariate time series during the
[1970s], many contributions to formal modeling of regression equations,
bivariate and multivariate models have been made by time series analyzes.
(See Box and Jenkins 1970, chs. 10, 11: Granger and Newbold 1977:
Haugh and Box 1977; and Jenkins and Alavi 1981 among many others.)

Similar to univariate ARIMA modeling, modern time series model
building of vector processes consists of three stages: Identification, esti-
mation and diagnostic checking. In contrast to the econometric approach,
time series analysts explicitly rely on data to determine the model spec-
ification (or identification). More specifically, the time series analysis is
directed towards finding a transformation of the data into a vector of
innovations that are orthogonal to the lagged variables included in the
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model. Thereby, the aim of many time series analysts using a time domain

approach is to find a parsimonious representation of the data-generating

process.

Usually, the series to be modeled are made stationary and prewhitened.
The cross-correlation function between the prewhitened series is used to
check for the presence of feedback. When there is unidirectional Wiener—
Granger “causality” (see Granger 1969) present, say from x to y only, the
bivariate process for y and x can be modeled as a dynamic regression
equation for y given x and a univariate (ARMA) model for the input x.
The cross-correlation function for the prewhitened series €, and €, is used
to determine the degree of distributed lag polynomials in the regression
equation.

In vector time series models with feedback present, the autocorrelation
and partial autocorrelation matrices are used to achieve a parsimonious
parametrization of the model (see Jenkins and Alavi 1981, Tiao and Box
1981).

At this point, we shall make several comments on the time series
approach to econometric model building:

(1) Usually the approach is applied to low dimensional vector processes.
As most data in econometrics are non-experimental, dynamic econo-
metric modeling has to account for the effects of the explanatory
variables, which vary over the sample period. Therefore, there will
usually be more than one explanatory variable included in an econo-
metric equation, so that the specification of the lag structure using
estimated cross-correlation functions becomes difficult, if not impos-
sible in practice.

(2) The assumption that all the variables in the model are generated
by a vector ARIMA process may be unrealistic. For instance, struc-
tural changes, which occur frequently in econometric models, can be
modeled by expanding the set of explanatory variables, using dummy
variables or products of explanatory variables and dummy variables.
A structural change in the parameters of the ARMA process of x does
not hamper the analysis of the regression function of y on x as long
as the marginal process for x is of no direct interest in the analysis.
Nevertheless, if one wants to transform the process of x into a white
noise, the presence of a structural change in the process for x will
complicate matters substantially. Special cases such as the effect of
interventions on a given response variable in the form of changes in
levels have been studied by Box and Tiao (1975).

(3) Mostly, the forms and the parameter values of the linear filters which
prewhiten the variables are not known but have to be determined
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empirically. Owing to the small samples available in many econo-
metric studies, the estimates of the univariate ARIMA models are
often not very precise and their use may crucially affect the results of
the subsequent analysis.

(4) In tests on the cross-correlations of prewhitened series, the favorite
null hypothesis is that of independence of the series. Under this
hypothesis, the population correlation coefficients of the prewhitened
series are zero and the asymptotic distribution of the sample cross-
correlations is known. They are independently normally distributed
with mean zero and variance equal to (n — k) !, with n being the sam-
ple size and % being the order of the cross-correlations. An asymptotic
test of the null hypothesis of independent series is easily constructed.
However, in economic applications, where economic theory indicates
that there is a relationship between endogenous and exogenous vari-
ables, the hypothesis of independence of the series is not the most nat-
ural null hypothesis (see Hernandez-Iglesias and Hernandez-Iglesias
1980). Rather, econometricians often would like to find out what the
shape of the lag distribution between vy and x looks like, given that
there exists a relationship between the series.

(5) Finally, for the use of autocorrelations and cross-correlations, sta-
tionary series are needed. In regression analysis, one can dispense
with this requirement. In fact, the mean of the endogenous vari-
able is assumed to vary with the explanatory variables. Also, the
non-stationarity of the regressor variables may sometimes help to
increase the precision of the regression coefficients estimates and
forecasts.

Although the time series approach is not always appropriate in econo-
metric applications, it can be very valuable when a bivariate or a low
dimensional vector time series model constitutes the appropriate frame-
work of analysis. For instance, when the aim of an application is to fore-
cast an economic series, y, the use of a leading indicator, x, may increase
forecasting precision. Similarly, when y has to be controlled through x,
knowledge of the regression function for y can be useful if not requisite.
Sometimes, economic theory implies testable restrictions on the parame-
ters of a joint time series process, such as the absence of Wiener—Granger
“causality” in one or both directions. Here, too, the usefulness of vector
time series models has been demonstrated. From the discussion in this
section, we conclude that in empirical work one has to combine the best
features of the time series approach with existing econometric techniques.
In the next subsection, we shall present the SEMTSA, which is a blend
of econometric and time series methods.
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2.3 Structural econometric modeling and time series analysis

Continuing research efforts during the 1970s . . . led to a combination of
econometric and time series methods and their joint application in econo-
metric modeling. Under the influence of modern time series analysis, the
role of the data for the choice of a specification has become very impor-
tant. Besides a large number of theoretical contributions, many empirical
studies have been done. A more detailed survey can be found in Palm
(1981).

In this subsection, we shall discuss the predominant features of the
SEMTSA of regression models and behavioral equations.

2.3.1 Testing restrictions Inthe SEMTSA, economic theory and other
subject-matter considerations such as institutional knowledge, relation-
ships established empirically for similar data are used to specify a model
and to formulate restrictions on the model. The restrictions and the
assumptions underlying the model are formally confronted with the infor-
mation in the data. Restrictions that are not contradicted by the sample
information are incorporated in the model. Hypotheses regarding lag
length, parameter stability, and exogeneity are tested.

Examples of restrictions originating from theoretical considerations
are:

* A partial adjustment model, adaptive or rational expectations schemes

* Exclusion restrictions as a result of some causal mechanism

* The requirement of homogeneity of degree zero or 1 with respect to
some or all explanatory variables, such as, for example implied by mod-
ern demand theory

* An “error correction” mechanism, such as introduced by Davidson
et al. (1978), an “integral correction” term proposed and applied by

Hendry and Von Ungern-Sternberg (1980).

The index models introduced by Sargent and Sims (1977) also include
theoretically plausible restrictions. Dynamic econometric models based
on more sophisticated optimizing behavior such as presented by Sargent
(1981) obviously have an economic interpretation.

Among the restrictions that are easily imposed on the model without
having necessarily an economic interpretation, we mention the Almon
lag polynomials, which are equivalent to linear restrictions on distributed
lag coefficients and the common factor restrictions leading to a regres-
sion model or a structural equation with autoregressive disturbances (e.g.
Sargan 1964). However, testing the non-linear restrictions implied by the
presence of common factors can create problems (see Sargan 1980).
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2.3.2  From general to specific considerations Inseveral. .. contributions
to econometric modeling, the authors advocate — for very different rea-
sons — starting the specification analysis with a fairly general model, that
is, a model with a sufficient number of explanatory variables and lags for
the true model to be nested within the initial model. For instance, Sims
(1980a) argues that we generally do not have strong a priori knowledge
(restrictions) to impose on the model. As an alternative to the tradi-
tional SEM, Sims uses multivariate autoregressive models that have a
large number of unrestricted parameters.

In order to formulate an initial model, that includes the data-generating
process, Zellner and Palm (1974) expand the small Haavelmo model
by specifying finite-lag polynomials for the disturbances and for those
variables, for which the dynamics were very uncertain. Their analysis is
an example of a “bottom-up” or “specific-to-general” approach. (For a
discussion of the advantages of a “bottom-up” approach compared with
a “top-down” approach, see Zellner 1980.) A general initial model in a
specification analysis can be obtained from a simple model by expanding
the dynamics of those equations, for which the lag structure is a prior:
indeterminate.

Mizon (1977) and Mizon and Hendry (1980), among others, propose
to start with a general model, specifying a uniquely ordered sequence of
nested hypotheses and compare them using formal statistical tests.

Although starting with a loosely parametrized model implies a loss of
degrees of freedom and possibly the presence of high multicollinearity
between the regressors, it reduces the danger of analyzing models that
are overly restricted. In agreement with Zellner and Palm (1974), reject-
ing the nested model, when it is true, will be a less serious error than using
a restricted model, when the restrictions are not true. Similar considera-
tions are sometimes put forward as an argument in favor of a specification
analysis starting with a general model.

The general initial model can be used as a maintained hypothesis
throughout the specification analysis, which aims at searching for the
true model inside the initial model. As long as the true model is nested
in the restricted model under the null hypothesis, H,, the distribution of
the test statistic under H, is correct and the data can guide us towards the
true model. Ideally, the investigator will formulate a sequence of nested
hypotheses on the parameters of the initial model and test whether more
restricted versions of the model are compatible with the data. Restrictions
such as discussed in subsection 2.3.1 will be included in the sequence of
hypotheses. Tests of specification in the form of a uniquely ordered nested
sequence have desirable asymptotic properties. They are uniformly most
powerful (see Anderson 1971, p. 263) in the class of unbiased tests. In
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practice, however, selecting a uniquely ordered sequence of hypotheses

will be quite difficult, as several alternative sequences might be a pri-

ori reasonable. Therefore, the investigator will often carry along several
alternative model specifications. In general, when a hypothesis in the

sequence is not rejected by the data, it is imposed on the model. As a

safeguard against misspecification, the serial correlation properties of the

residuals of the restricted model should be checked. The sequence of
tests stops when one hypothesis is rejected or when the last hypothesis
cannot be rejected while the residuals of the most restricted model do
not indicate any misspecification. Starting the specification analysis with

a general model with serially uncorrelated disturbances has the following

advantages:

(1) All the dynamics are incorporated in the systematic (explained) part
of the equation instead of being left in the disturbance term. This
enables the investigator to interpret the parameters more easily in
terms of economic behavior.

(2) The conditions for the identification of the structural parameters
in dynamic models with (vector) white-noise errors can be checked
more easily in practice than those for models with serially correlated
disturbances (see Hannan 1971).

(3) Many of the structural estimation methods and testing procedures
designed for the static SEM can be applied to the dynamic SEM with
white-noise disturbances. If the disturbances of an initial regression
model are uncorrelated and homoskedastic, OLS has well-known
optimal properties besides its obvious computational advantages,
which can be important in a sequential testing setup. In a regres-
sion model with autocorrelated disturbances, but no lagged endoge-
nous variables present, the OLS estimator is unbiased and consistent,
but it is not efficient and the formula for the standard errors for
OLS is no longer appropriate. Similarly, the F- and z-tests for linear
and exclusion restrictions are no longer valid as such (see Kiviet
1979).

Notice that an initial finite order dynamic model with autoregressive
disturbances can be transformed into a higher order finite distributed lag
model with white-noise errors.

If the disturbances of the initial model are generated by a moving aver-
age process, the transformed model has infinite distributed lags and a
finite order starting model can at best be considered as an approximation
to the data-generating process. To limit the size of the approximation
error, the number of lags included in the model will usually have to be
large, which can lead to a substantial loss of degrees of freedom. Finally,
although modeling the moving average process for the disturbances jointly
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with the regression or structural coefficients can be computationally cum-
bersome, it is necessary to achieve efficient estimation.

2.3.3  Model diagnostic checking Under the constant emphasis in the
time series literature on residual correlation analysis and other diagnostic
checks, econometricians have shifted their attention from the analysis of
low order autoregressive and moving average processes to more general
auto-correlation and cross-correlation schemes. Tests, such as the Box—
Pierce (1970) test, have been very useful and have led to the development
of many new tests for the presence of correlation in time series.

Diagnostic checking is synonymous with misspecification analysis.
Given a model, one investigates whether more general models are more
appropriate according to some criterion. It is going from specific to gen-
eral, to use the terminology of Mizon and Hendry (1980) (see also Mizon
1977). Silvey’s (1959) Lagrange multiplier and Rao’s (1973) efficient
score testing principle are well suited for misspecification analysis and
many of the . . . tests developed [in the 1970s] are applications of these
principles. (See Newbold 1981 for a survey of model checking tests.)
Misspecification analysis is and has to be part of thorough econometric
modeling. In the SEMTSA approach, the initial and the most restricted
version of the model will have to be subjected to misspecification
analysis.

2.3.4  Checking the overall consistency of the model ~Checking the overall
consistency of the model is an important part of econometric modeling.
An econometric model should be consistent with a priori knowledge and
with the information in the data. Granger (1981) provides several exam-
ples of inconsistent models. Points, such as raised in his paper, should
be taken into consideration when formulating a model. In addition, one
should analyze the dynamic properties of the model, check the impli-
cations of the joint data-generating process for the associated marginal
processes, and check the forecasting performance of the model.

One of the first questions asked by model builders is whether the dif-
ferent equations specified separately fit together. Common practice is to
solve the complete model, either analytically, if the model is linear, or
numerically, if the model is non-linear. Implausible values for the multi-
pliers and for the solution of the model may lead to a reformulation of
the model.

Subsequently, the implications of the restricted structural form for the
properties of the transfer functions and the final equations ought to be
checked along the lines proposed by Zellner and Palm (1974, 1975). The
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set of transfer functions associated with the structural form of a dynamic
simultaneous equation model with vector moving average errors is the
solution of the system which expresses each endogenous variable as a
function of its own lagged values, of the current and lagged values of the
exogenous variables, and of an error term which can be represented as a
moving average in one variable. The lag length and the parameter values
for the individual transfer function equations can be determined empiri-
cally and compared with those derived from the structural model. Under
the additional assumption that the exogenous variables are generated by
a multivariate ARMA model, the set of final equations for the endoge-
nous (and exogenous) variables can be obtained after substitution for the
exogenous variables. In the system of final equations, the endogenous
variables are expressed as a set of restricted seemingly unrelated ARMA
equations. The individual final equations can be analyzed, for example,
along the lines proposed by Box and Jenkins (1970).

Any incompatibility between the results of the empirical analysis of
the individual transfer functions and final equations and those derived
from the tested structural form is an indication of a misspecification in at
least one of these forms of the model and can be used to reformulate the
model.

The role of the empirical analysis of the final equation and the transfer
function forms for the structural form and for the properties of a simulta-
neous equation model has been discussed and illustrated by Zellner and
Palm (1974, 1975). They also show how the model can be respecified
when an incompatibility has been detected. The analysis of the final equa-
tions as a means for checking the dynamics of a simultaneous equation
model has been pursued by Trivedi (1975), Prothero and Wallis (1976),
and Wallis (1977), among others.

When the implications of the structural form of the model are in agree-
ment with the results of the empirical analysis of the transfer functions
and final equations, the model can be used to predict postsample obser-
vations. (See Christ 1975 on this point.)

If postsample data are available, the predictive performance of the
structural form ought to be compared with that of the transfer func-
tions and/or the final equations. If it predicts less well than the transfer
functions or the final equations, there are good reasons for believing that
the structural model is misspecified. If all three forms predict badly, the
model is either misspecified or it has been subject to a structural change
during the postsample period.

The predictive performance of the model can be formally checked using
a test based on the distribution of the forecast errors — either assuming



106 Franz C. Palm

that the parameters of the model are known (see Hendry 1980) or that
they have been estimated (see Dhrymes er al. 1972).

2.3.5  Some general remarks on SEMTSA The procedure outlined in
the preceding subsections ought to be considered as a guideline for mod-
eling systems of dynamic equations. Zellner (1979) discusses some of the
statistical problems associated with the SEMTSA approach that require
further research.

On many occasions, the data will not contain sufficient information to
validate or reject all the assumptions underlying a simultaneous equation
model, so that the tests will be inconclusive or the investigator has to rely
on untested assumptions.

Also, before starting with the specification analysis, one has to decide
whether a full information analysis of the complete initial model is feasi-
ble and desirable or whether one has to opt for an analysis under limited
information (not necessarily through limited information maximum like-
lihood). Owing to the size of many simultaneous equation models used
in practice, a full information analysis will hardly be feasible for most
instances — except perhaps for models constructed for a small-scale pur-
pose. In addition, one might expect an analysis under limited information
to be robust against errors of misspecification in the remaining equations.
With respect to the single-equation methods applied to a simultaneous
equation model with autoregressive errors, Hendry (1974, p. 576) con-
cludes that they pointed up the existence of misspecification and pro-
vided clues to its solution. About the disadvantages of testing subgroups
of larger hypotheses, as will happen with a specification analysis under
limited information, Darroch and Silvey (1963, p. 557) write: “Separate
tests of /2; and %, may induce a poor test of z; N s, because it is possible
that for some @ with high probability, L(%;) and L(%,) are both “near 1”
while L(k; N &y) is small.” For this reason, Byron (1974) suggests testing
the restrictions on single structural equations first and, on the acceptance
of all these tests, to test jointly for all over-identifying restrictions on the
reduced form.

The computational intractability of an analysis under full information
due to the size of the model has been put forward by Dréze (1976) as
an argument in favor of limited information analysis in a Bayesian con-
text . . . Malinvaud (1981) stressed this argument in a call for more
research into estimation and testing procedures under limited informa-
tion. However, limited information estimates and tests are usually not
independent so that full information considerations are needed. In our
application, we opt for an analysis under limited information and formu-
late the restrictions on the parameters of each equation separately.
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3 An application of SEMTSA

3.1 Specification of an initial model

Given that a specification analysis starts with a fairly general model with
possibly white-noise disturbances, we consider the following pth order
VAR model

z =4z, +... 4z ,+ B s, + 8+ +uw, @Gl

mx1 mxm mx1 mx33x1  mx1 ] mxl

where z, is a vector of observed random variables, 4,7 = 1,. .. p, and
B are matrices of constant parameters, s, is a vector of seasonal dummy
variables denoted by s;,, 7 = 1, 2, 3, and being equal to 1 in the ¢th quarter
and zero otherwise, § and y are vectors of parameters and u, is a vector
of random disturbances assumed to be normally distributed, with mean
zero and covariance matrices E w,u;, = 6,4 X, where §,, is the Kronecker
delta.

In this section, we report the results of an empirical analysis of a
vector autoregressive (VAR) model specified for seven quarterly season-
ally unadjusted macroeconomic variables for the Netherlands. The VAR
model serves as an initial model to which we subsequently apply a spec-
ification analysis, check for possible misspecification and investigate the
overall consistency of the finally retained version of the model.

The sample covers the period 1952-79. Among the chosen variables,
there are the major macroeconomic indicators: Aggregated gross national
expenditures in constant prices (Y) and their price index (P), the unem-
ployment rate (U) and a wage variable (W), nominal money balances
(M) as measured by M, and a long-term interest rate (R) on govern-
ment bonds, and an index of import prices (PI). Domestic variables are
included in pairs of a real or a nominal variable and the associated price
index. The index of import prices is introduced in order to take account
of some of the effects of changes abroad on the open economy of the
Netherlands. The choice of the variables is quite similar to that made by
Sims (1980a). All the variables, except the interest rate, are expressed in
natural logarithms. Quite obviously this multivariate AR process is not a
complete model for the Dutch economy. If we assume a complete macroe-
conomic model for the Netherlands to be approximately log-linear with
exogenous variables generated by a multivariate ARMA process with lin-
ear trend, the marginal process for the seven variables considered above
will also be a multivariate ARMA model with linear trend. A VAR model
is then an approximation for the marginal ARMA process, from which
all other variables appearing in a complete model for the Dutch economy
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have been eliminated by integration. Although the marginal process is
compatible with a larger model for the Dutch economy, one should keep
in mind that its parameters may not be stable with respect to policy inter-
ventions, other than those in the form of a pure innovation. As will be
seen below, after applying a fourth order VAR filter to the data, little cor-
relation is left in the series. The VAR model is simple in the sense that
its implications for the properties of the data-generating process are well
understood. For instance, it implies that the long-run solution of the
model does not depend on the time path of the variables. Nevertheless,
when using an unrestricted VAR model, one usually violates the Principle
of Parsimony. Our ultimate objective is to arrive at a more parsimoniously
parametrized model that takes account of the correlation in the data and
that can be interpreted in terms of economic behavior.

To detect possible structural changes, the empirical analysis has first
been done for the subperiod 1952—-73. Obviously, the choice of the year
1973 is not arbitrary. Two major developments are thought to have
induced a structural change in the Dutch economy; the increase of the
price of oil in 1973 and the change from a regime of fixed exchange rates
to a system with partly flexible rates.

We first fit an unrestricted fourth order VAR model to the seven vari-
ables described above. The variables have been arranged in the following
order: M, W, U, Y, P, R, PI. As expected, the estimates of the unrestricted
reduced form parameters are not very precise. They do not exhibit any
regular pattern. Many coefficients are not significantly different from zero.
The estimates are not reproduced here. Notice also that by fitting a fourth
order VAR model, we estimate the matrix of fourth order partial auto-
correlations. Partial autocorrelations and stepwise vector autoregressions
often play an important role in multiple time series modeling (see Tiao
and Box 1981).

To investigate whether a four-period lag structure is sufficiently general,
the residual correlation matrices for the unrestricted VAR model have
been computed. The overall picture is that the estimated correlations are
quite small. If weuse 27~ 12 (twice the approximate large sample standard
error), with 7 being the sample size, as a yardstick for the precision of
the estimates, very few residual correlations are significantly different
from zero. We conclude that the fourth order VAR model is acceptable
as a starting point for the specification analysis. Of course, the visual
inspection of the residual correlations is not a perfect substitute for formal
testing of the appropriateness of the starting model with respect to the
lag length. A formal test such as implemented by Sims (1980a) requires
that we extend the set of explanatory variables and is expensive in terms
of degrees of freedom.
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For the period 1952-73, none of the coefficients of the variables M,
W, P, R and PI lagged four periods was significantly different from zero
at conventional significance levels. This result led to the formulation of
the null hypothesis of the coefficients of the five variables listed above.
Using a large sample likelihood ratio test, we get x2(35) = 47.630, which
indicates that the fourth order lags on the nominal variables are not sig-
nificantly different from zero at a 5 percent level ()(gl95 (35) =49.57). It
is plausible that the lags for nominal variables are shorter than those for
real variables.

A similar picture arises for the fourth order VAR model for the period
1952-79. In order to take account of possible structural changes, a
dummy variable, denoted D74 and with value 1 in 1974-9 and zero
elsewhere, has been included in the VAR model.

For the complete sample period, too, it was decided to use a VAR model
excluding the fourth lag of the five nominal variables. The likelihood ratio
test x2(35) = 55.08 is significant at the 5 percent level. If we correct it for
the loss of degrees of freedom, it will become insignificantly different from
zero. The estimated residual correlations of these VAR models, which
we will call the unrestricted models, are given in tables 3.8 and 3.10
(pp. 124, 128). Keeping the maximal lag for a given variable the same in
all the equations of the model has the advantage that OLS estimates of
the unrestricted reduced form equations separately will also be maximum
likelihood estimates given initial conditions.

After the determination of the lag length, we next formulate restrictions
on the parameters of the reduced form of the VAR model. Quite naturally
one is interested in the exogeneity of P, which implies block triangular
reduced form matrices 4,7 =1, ... 4, in (3.1). (See Geweke 1978 for
a discussion of exogeneity in systems of equations.) For a small country
under a regime of fixed exchange rates, import prices are often assumed
to be exogenous. With pegged exchange rates, policy-makers attempt-
ing to stabilize the exchange rate might generate the exogeneity of the
exchange rate with respect to the policy instruments (see Sims 1977).
These restrictions are easily incorporated and tested.

A large sample Wald test that is equivalent to a likelihood ratio test
yields a x2(20) = 95.95 for 1952-1973 and a x2(20) = 115.10 for 1952—
79, which are significant at the level 0.005. For the hypothesis of the block
exogeneity of PI, R, P, Y, and U, the test statistics x2(30) = 193.69 for
1952-73 and x2(30) = 141.44 are significant at the level 0.005 too.

In the monetary approach to the balance of payments under a regime
of fixed exchange rates, the variables PI, R, P, Y (and U) are some-
times assumed to be jointly exogenous with respect to the reserves flow,
which forms a component of the money supply. The exogeneity of the five
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variables with respect to M is stronger than what is needed in the mon-
etary approach to the balance of payments. Rather surprisingly, there
is little evidence in our data set pointing towards some block triangular
structure of the VAR process. This also holds true for the joint exogeneity
of the real sector with respect to the monetary sector.

3.2 A limited information analysis of the initial model

3.2.1 Imtroduction As the hypotheses of exogeneity formulated above
do not seem to be supported by the data, we decide to use the unre-
stricted VAR model as a maintained hypothesis and to analyze it equation
by equation. Our aim is to formulate restrictions that are meaningful in
terms of economic behavior and that are not contradicted by the infor-
mation in the data. For computational purposes, there is little need to
restrict the number of parameters in the fourth order VAR model for
seven variables, although the unrestricted VAR model seems to be highly
over-parametrized. Regularities in and similarities between the VAR mod-
els for different countries and/or different sample periods show up in the
moving average representation (MAR) of these models. Also, many eco-
nomic series seem to follow a random-walk process or some other low
degree univariate ARIMA model. For some series, in particular for finan-
cial data, these empirical findings have been explained and justified by
economic theory (see Samuelson 1965). The regularities in the dynamics
for many economic series point towards the existence of some common
underlying structure. Therefore, testing restrictions on the parameters
of the VAR model may be very useful for exploring, interpreting, and
possibly understanding the dynamics of these models.

A limited information single-equation approach is clearly a second
best strategy in terms of the power or the efficiency of the statistical
procedures. However it is tractable and computationally less demanding
compared with handling the complete model, possibly with non-linear
restrictions. Given the size of our model, we could jointly analyze the
complete model. By using an equation-by-equation approach, we also
hope to get more insight into the performance of a limited information
single-equation analysis, which will often be applied in larger models.

When modeling the equations separately we take the unrestricted VAR
model as a maintained framework in which the alternative specifications
for the single equations will be nested. In this way, the maximum lag
length is determined and the list of predetermined variables needed for
two-stage least squares (2SLS) is given. The following specifications were
chosen using theoretical considerations and the information from the
estimated unrestricted reduced form. Here, the inclusion of a variable
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in differenced form in a specification is equivalent to imposing a linear
restriction on the coefficients of the lag polynomials. As we assume that all
the dynamics are incorporated in the “systematic” part of the model, the
equations can be consistently estimated by OLS or, when more than one
current endogenous variable is present in an equation, by 2SLS. There
is some evidence that 2SLS estimates are not “optimal” in finite samples
(see Zellner and Park 1979). However, the method is easy to implement
and it is also consistent when the structural equation to be estimated is
actually a recursive form equation.

The specification of behavioral (or structural form) equations is a
means of formulating over-identifying restrictions on the reduced form
of the model. Historically, the structural form of the standard economet-
ric model originates from the deterministic models used in economics,
to which a disturbance term has been added. The structural coefficients
usually have economic interpretations and they are assumed to be stable
with respect to policy interventions. Statistically, the structural form cor-
responds to an over-parametrization of the model in order to subse-
quently reduce the number of parameters by means of identifying and
over-identifying restrictions. Given that there are many predetermined
variables in our unrestricted model, it is not difficult to identify the param-
eters in a behavioral equation and more importantly to generate restric-
tions on the reduced form parameters by imposing exclusion and other
restrictions on a behavioral equation. Of course, one can argue that eco-
nomic theory tells us which variables are of importance for the behavior
of an economic agent and that theory is rather silent about the exclusion
of other variables from a behavorial equation. To the extent that over-
identifying restrictions generated in this way are tested and confronted
with the information in the data, the danger of using false restrictions
may be limited.

For the variables M, W, and P, it is possible in the framework of our
VAR model to formulate relationships that have a behavioral interpreta-
tion. The equations for Y and R include the current endogenous variable
P, but the restrictions imposed on the equations for these variables are
basically data-instigated. Finally, for U and PI, we directly impose restric-
tions on the reduced form equations. These restrictions are suggested by
patterns in the parameter estimates of the unrestricted reduced form
equations. One can look at the restricted model as a system consisting
of a set of behavioral equations analyzed under limited information to
which one adds (restricted) reduced form equations to make the model
complete. Any incompatibility with the data-generating process of the set
of restrictions formulated in an equation-by-equation approach should
show up in a joint test of all restrictions considered.
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Table 3.1 Nominal money balances (2SLS)

AM
1952-1973¢ 1952-1979°
AM_; 0.214 0.408
(2.025) (4.741)
-V —0.055 —0.045
(4.195) (3.281)
AP_, —0.214 —0.059
(1.875) (0.523)
ARy —-0.012 0.003
(1.222) (0.401)
Yo—Y_, 0.071 0.069
(1.046) (0.990)
S1 0.027 0.037
(3.501) (4.669)
Ss 0.040 0.044
(6.564) (6.952)
S3 0.025 0.019
(5.154) (3.878)
C —-0.315 —0.264
(4.284) (3.443)

Notes:
2 SER = 0.013; DW = 1.888; GP = 0.075.
b SER = 0.015; DW = 1.879; GP = 0.609.

The results of the single equation analysis are reported in tables 3.1-
3.7. The symbols A and C are used to denote the first difference operator
and a constant term, respectively. The symbol D74 represents a dummy
variable which is equal to 1 in the period 1974-9 and zero otherwise. A
subscript indicates the number of lags. The variable I denotes the veloc-
ity of money, i.e. V' = P + Y — M. Figures in parentheses are z-values (in
absolute value). SER and 2SLS denote standard error of regression and
two-stage least squares, respectively. DW denotes the Durbin—Watson
statistic. GP denotes Godfrey’s (1976) m-statistic for testing for first order
disturbance serial correlation in an equation from a dynamic simultane-
ous equation system. This statistic has an approximate standard normal
distribution. The data and the choice of the specifications for the indi-
vidual equations deserve a short explanation.

The data are quarterly seasonally unadjusted observations on:

M, = total domestic money balances as measured by M, in the hands
of the public averaged over the quarter (in million guilders)

W, = index of weekly wages, according to regulations, private and
public sector, vacations, and other additional pay included, all
adult employees: 1975 = 100

U, = quarterly average of unemployed males in percentage of total
male employees
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Y, = gross national expenditures in quarter z, in million guilders per
year, expressed in constant prices

P, = price index of gross national expenditures; 1975 = 100

R, = average of the interest rates on the three most recently issued

long-term government bonds
PI, = price index of all import goods; 1975 = 100.

3.2.2  Nomunal money balances (M) The specification for nominal
money balances can be interpreted as a demand for money function.
The variables that are usually included in an empirical demand func-
tion for money appear as explanatory variables in the equation for M
which has been retained after an extensive investigation into the shape of
a demand for money function for the Netherlands (see Blommestein and
Palm 1980). The relative change of nominal money balances is explained
by the relative change of real total expenditures averaged over two quarters
and of its price index, the change in the interest rate, and by the inverse of
the velocity of money as perceived in period z — 1. This last explanatory
variable — also called error correction term (see Davidson ez al. 1978) —
takes account of the effect on the change in money balances of a dise-
quilibrium in money holdings compared with total nominal expenditures
in period z — 1. As such, the specification describes the serial correlation
properties of monetary balances very well. The steady state solution of
the model implies a constant velocity of circulation. The value of the
velocity depends on the rates of change prevailing in a given steady state.
Alternative specifications, in which the interest rate level is included and
which imply that the steady velocity of circulation also depends on the
interest rate level, do not yield satisfactory results. The coefficient of
the level of the interest rate was usually insignificant and had a “wrong”
sign.

The amount of nominal balances is determined by the demand side.
The main policy instruments of the Dutch Central Bank are the discount
rate, credit regulations, which actually take the form of a penalty for
excessive lending by private banks, and interventions in foreign currency
markets to stabilize the exchange rate. To the extent that the determinants
of the demand for money are included in the model, it is not necessary to
include a behavioral equation for the Central Bank in order to complete
the model.

The specification for the demand for money is not entirely stable over
time. Some estimated coefficients change when the sample period is
extended. In particular, the effect of a change in interest rates on the
growth of money balances becomes positive although it is small and
insignificant. In the 1970s, nominal balances measured by M, have
been affected by heavy variations of short-term interest rates such as the
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interest rate on three-month interbank deposits, which induced substitu-
tion between time deposits and assets not included in M, (see den Butter
and Fase 1979). Furthermore, the change in the exchange rates system
has had its impact on the behavior of economic agents. Also the com-
position of A, has changed during the period of observation. The ratio
of currency stock to demand and time deposits decreased in the 1960s
and 1970s. An analysis of the effect of these changes requires a more
disaggregated approach and naturally leads to an extension of the model
or the use of more satisfactory monetary aggregates (see Barnett 1980),
a line that will not be pursued in the present chapter. As the effect of
AR is small, we retain the specification for both sample periods. Finally,
we notice that when the lagged growth rate of money is left out of the
specification, all parameter estimates have the expected sign. However,
then there is much correlation left in the residuals, in particular for the
complete sample period.

3.2.3  The wage equation (W) The wage equation is a Phillips-curve
type specification in which the relative change in nominal wages is
explained by the unemployment rate and the expected rate of inflation
P* — P,_;, denoted as A P;. We assume that expectations are rational, i.e.
P* = E(P, | 9;,_1), where the expectations are taken, given the model and
the set of variables up to the period z — 1, @,_;. Following McCallum’s
(1976) proposal, the equation has been estimated by 2SLS after substi-
tution of AP, for AP}. In this way, consistent estimates of the parameters
of the wage equation are obtained. If we assume the “natural” rate of
unemployment to be constant, the empirical finding that the coefficient
of AP} is not significantly different from one suggests that there is little
or no long-run trade-off between inflation and unemployment. The con-
stant term can be interpreted as being composed of the “natural” rate of
unemployment and some “autonomous” wage rate change such as due
to an increase of the productivity, the contributions to social security, and
tax rates during the sample period. Notice also that there is some sea-
sonality present in the equation. Phillips-curve type equations are used
in macroeconomic models for the Netherlands (see Driehuis 1972). It
should also be noted that in the reduced form of the restricted model,
wages depend on P,_; and P,_, with coefficients summing to 0.9, which
implies almost complete compensation for increases in the price index of
total expenditures (table 3.2).

The specifications of the wage equation in macroeconomic models in
which the wage sum per worker in enterprises is usually explained are,
in general, more sophisticated than the specification retained here. Our
choice of explanatory variables is limited through the size of the initial
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Table 3.2 Nominal wages (2SLS)

AW
1952-1973¢ 1952-1979°%
U_, —0.0028 —0.0048
(0.694) (1.801)
APF 0.874 0.713
(4.630) (4.050)
S1 0.017 0.020
(2.694) (3.786)
S» 0.0028 0.0047
0.472) (1.008)
S3 0.0058 0.009
(1.162) (2.071)
C 0.0063 0.0073
(1.543) (1.944)

Notes:
¢ SER = 0.016; DW = 2.47; GP = —2.354.
b SER = 0.016; DW = 2.24; GP = —1.265.

VAR model. Single-equation modeling in the framework of a multivariate
model naturally leads to an extension of the dimension of the model.

3.2.4  Unemployment (U) The specification for the unemployment
rate ought to be interpreted as a restricted reduced form equation. The
variables finally included in the specification have been selected because
their coefficients were significant in the unrestricted reduced form. The
numerical values of the unrestricted reduced form parameter estimates
pointed towards restrictions that could easily be imposed on the parame-
ters. The plausibility of the results in terms of the sign of the parameters,
of the presence of some variables, also played a role in the formulation of
the restrictions. For instance, the restricted equation is homogeneous of
degree zero in all nominal variables.

However, when using a formal large sample chi-square test, the restric-
tions imposed on the unemployment equations reported in table 3.3 are
significantly different from zero at conventional levels of significance.
Presently, we retain the restricted version of the equation. In the analy-
sis of the complete restricted model, we shall pay more attention to the
specification of the unemployment equation.

3.2.5  Toral expenditures (Y) For the aggregate expenditures in con-
stant prices, an initial fairly general structural equation has been formu-
lated, identified through exclusion restrictions and estimated by 2SLS.
Next, variables for which the coefficients were not significantly different
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Table 3.3 Unemployment (OLS)

U
1952-1973¢ 1952-1979°

(M- P)_,; —1.522 —1.361
(3.192) (3.572)

(W—-P)_; 1.149 1.032
(2.814) (3.083)

AY_» —0.680 —1.531
(1.461) (3.906)

(P—-PI)_3 0.085 0.097
(0.285) (0.432)

A2PI —1.628 —1.127
(3.576) (3.109)

U_, 1.409 1.392
(13.60) (16.46)

U_, —0.826 —1.130
(4.665) (8.535)

U_; 0.513 0.980
(2.958) (7.415)

U_4 —0.095 —0.266
(0.894) (2.925)

S1 0.008 0.215
(0.073) (2.973)

Ss —-0.617 —-0.279
(5.937) (4.163)

S3 —0.002 0.091
(0.017) (1.050)

C 10.08 8.903
(3.273) (3.605)

D 74 0.173

(2.739)

Notes:
2 SER = 0.103; R2 = 0.966; In L = 79.046; DW = 2.065.
b SER = 0.109; R2 = 0.97; In L = 93.224; DW = 2.092.

from zero and for which the parameter estimates were implausible have
been excluded. This procedure led to the finally retained specifications
in table 3.4. It seems to be difficult to give the specifications in table
3.4 a behavioral interpretation, given that the variable Y is the total of
the expenditures of all agents in the economy. In the restricted equation,
total expenditures are explained by real money balances, the change in the
unemployment rate, the domestic inflation rate, the foreign price level,
and lagged expenditures.

The specifications in table 3.4 are not homogeneous in the nominal
variables. Several alternative specifications, which were homogeneous of
degree zero in nominal magnitudes or in which the effect of the level
of the interest rate and of the unexpected component of the inflation
rate were introduced, did not yield satisfactory empirical results. That
a priort meaningful restrictions are apparently not supported by the
sample information is possibly explained by the highly aggregate nature
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Table 3.4 Total expenditures (2SLS)

Y
1952-1973¢ 1952-1979%
(M- P)_, 0.169 0.163
(2.304) (2.573)
AU_y —0.028 —0.006
(1.116) (0.380)
Py—P_, —0.087 —0.055
(0.451) (0.296)
PI_, —0.165 —0.099
(2.830) (4.055)
Y, 0.406 0.431
(3.368) (4.208)
Y, 0.524 0.487
(3.945) (4.400)
Y_3 —0.302 —-0.305
(2.296) (2.858)
Y_4 0.229 0.152
(1.876) (1.507)
S1 —0.057 —-0.075
(2.737) (4.871)
AY) 0.014 0.005
(0.747) (0.304)
S3 0.027 0.036
(1.246) (2.152)
C 1.311 2.115
(1.511) (2.467)
t 0.0006 0.002
(0.626) (1.903)

Notes:
¢ SER = 0.022; DW = 2.002; GP = —0.609
b SER = 0.023; DW = 1.986; GP = —0.428.

of the variable Y. Again, quite naturally one is led to expand the model
through disaggregation of Y into consumption, investment and govern-
ment expenditures, variations in inventory holdings, and other expendi-
ture categories.

3.2.6  The price index of aggregate expenditures (P)  The rate of change
of the total expenditures deflator is explained by the relative change in the
wages, the import price, and total expenditures in constant prices. The
rate of change in total expenditures has a negative impact on the rate of
inflation. As the constant term was very small and insignificant, we opted
for a homogeneous specification for the price in the period 1952-73. For
the complete sample period, we include the dummy variable D74, defined
above.

In the specification for the domestic price variable, variations in prices
are explained by changes in the major cost components, wages, and
imports, corrected for the variations in total expenditures. As such, the
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Table 3.5 The price equation (2SLS)

AP
1952-1973¢ 1952-1979%
AW 0.452 0.461
(9.375) (9.026)
AW_ 0.133 0.116
(2.883) (2.636)
AY —0.036 —0.035
(1.984) (1.914)
API 4 0.104 0.048
(1.848) (1.300)
D 74 0.006

(2.615)

Notes:
@ SER = 0.010; DW = 1.919; GP = —0.803.
b SER = 0.010; DW = 2.042; GP = —1.668.

equation is a generalized version of the full cost pricing. (For more details
on the theoretical justification of aggregate price equations, see Driehuis
1972 and Nieuwenhuis 1980.) As the first price equation in table 3.5 is
homogeneous, it has a static equilibrium solution. With the inclusion of a
constant term, that could be interpreted as the effect of cost components
which are not explicitly taken account of, the price equation would not
have a static equilibrium solution. The coefficient estimates are actually
not affected by the introduction of a constant term. Therefore, the solu-
tion of the homogeneous part of the complete model is insensitive too
in this respect. As we shall see in subsection 3.4.3, the predictions for P;
could probably be improved by the inclusion of a constant term in the
price equation. For the period 1974-9, it is consistent with a steady state
solution of 8 percent per annum.

3.2.7  The interest rate (R)  Several specifications have been fitted to
the interest rate. The closed economy version of the Fisher equation stat-
ing that nominal interest rates equal the anticipated real rate of interest
plus the expected rate of inflation is not very useful in this context. Fur-
thermore, it requires a model for the ex ante real rate of interest which has
apparently not been constant in the Netherlands during the period 1952—
79. For our data, the closed economy version of the Fisher equation com-
bined with alternative simple models for the ex ante real rate of interest did
not yield standard errors of regression smaller than 2 percentage points.

An open economy version of the Fisher equation requires a two-regime
model. For the period of fixed exchange rates, one ought to expect the
domestic interest rates of a small economy to be closely linked to the
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Table 3.6 The interest rate (2SLS)

R
1952-1973¢ 1952-1979%
R 0.954 0.928
(34.72) (41.63)
-V —-0.359 —-0.953
(1.012) (2.847)
PI_ | — PI 3 2.426 2.080
(2.604) (2.644)
AU_, —0.240 —0.424
(1.425) (2.309)
Py—P_, 3.039 0.819
(1.984) (0.363)
S1 —0.043 0.053
(0.416) (0.450)
Ss 0.130 0.372
(0.769) (2.187)
S3 0.164 0.368
(1.106) (2.460)
C 1.845 —5.103
0.977) (2.810)

Notes:
2 SER = 0.197; DW = 1.621; GP = 1.579.
b SER = 0.289; DW = 1.665; GP = 1.649.

interest rates on international money markets. In a regime of flexible
exchange rates, foreign interest rates and the spot and forward exchange
rates are the major determinants of the domestic interest rates. For both
regimes, the set of variables in the model has to be extended in order to
get a theoretically satisfactory relation for the interest rate.

In this chapter we do not follow this line, but try to specify a parsi-
moniously parametrized equation for the nominal interest rate on gov-
ernment bonds. This is done along the lines of the approach that we
applied to the total expenditures in constant prices. In table 3.6, the
nominal interest rate is explained by the liquidity ratio, the rate of infla-
tion of imports, the domestic inflation rate averaged over two quarters,
the change in the unemployment rate, and the lagged nominal interest
rate. The presence of a slight seasonal pattern shows up in the specifi-
cation. The explanatory variables included in the equations of table 3.6
also appear in the interest rate equation of some macroeconomic models
for the Netherlands. Notice that the rates of change are not expressed as
percentage points but as fractions. The estimate of the coefficient of the
domestic price change, which is also a consistent estimate of the coeffi-
cient of the expected inflation rate, differs from the value that it ought
to take according to the Fisher equation. Finally, the results in table 3.6
suggest that the coefficient of R_; is insignificantly different from 1, so



120 Franz C. Palm

Table 3.7 The price of imports (OLS)

PI
1952-1973¢ 1952-1979°
AM_, 0.354 0.245
(2.635) (2.077)
(P—W)_» 0.206 0.176
(3.483) (3.080)
AP_, 0.391 0.360
(2.952) (2.459)
Y., 0.161 0.080
(3.548) (1.706)
PI_, 0.899 0.987
(24.63) (61.608)
S1 0.018 0.017
(3.610) (3.153)
Ss 0.015 0.018
(2.290) (2.713)
S3 0.011 0.008
(1.720) (1.271)
C —1.607 —1.049
(3.078) (1.799)
t 0.0003 0.0010
(0.410) (1.426)
T 89 0.167
(8.563)
Notes:

@ SER = 0.016; R2 = 0.94; In L = 236.047; DW = 1.37.
b SER = 0.018; RZ = 0.99; In L = 281.72; DW = 1.38.

that a specification in which the change in the interest rate is explained is
in line with our empirical findings.

3.2.8  The import price (PI) One would have expected that this vari-
able passed the exogeneity test for the period of fixed exchange rates, as
the import price is the product of the exchange rate times the price of
import goods expressed in foreign currency, which could be assumed to
be exogenous. Given that we had to reject the exogeneity of the import
prices, we decided to adopt a strategy of restricting the reduced form
equation for the import price. The results of our analysis are reported
in table 3.7, where the price of imports is explained by the change in
money balances and domestic prices, the level of total expenditures, real
wages, and lagged import prices. The estimated coefficient of the lagged
import price is very close to 1, suggesting that the data support a speci-
fication in which the rate of change of import prices is the variable to be
explained. A dummy variable, 789, has been included for the first quar-
ter of 1974, when the shock of the oil price increase worked through in
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import prices. Notice that the variable 789 has not been included in the
unrestricted initial model. As the import price series includes prices of
primary, intermediate, and final import products, it is again difficult to
give an interpretation in terms of economic behavior of the specification
finally chosen. The signs of the estimated coefficients are in line with what
one expects. For instance, an increase in the domestic rate of inflation
may be expected to lead to an increase of the price of the competitive
import commodities and/or to an increase in the rate of exchange.

To summarize, whenever possible, we fitted a specification with theo-
retically meaningful restrictions. Thereby, we limited ourselves to linear
relationships among the seven variables listed above and with maximum
lag equal to 4. When it was too difficult to formulate a behavioral rela-
tionship owing to the limited number of variables included in the model,
we restricted the single structural or reduced form equations using the
information in the data.

The model consisting of the equations reported in tables 3.1-3.7 will be
called the “restricted model.” It implies a plausible block recursive (Wold)
structure for the systematic part (the disturbance covariance matrix is not
block diagonal) of the model for the observable variables:

W—-P—-R—->M
Past - | U N e (3.2)
PI Y

The variables for the labor market and the import price are explained
by predetermined variables only, whereas the remaining variables are
jointly determined as indicated in the graph (figure 3.2, p. 135). It is not
surprising that wages are not simultaneously determined with prices, as
the correction of wages for price inflation usually takes place two times a
year, i.e. with a delay of one quarter on average. Similarly, the nominal
variables R and M are instantaneously affected by changes in aggregate
expenditures or the price index of aggregate expenditures, whereas they
influence the labor and commodity market variables with a lag of one
quarter. One has to be careful when interpreting the restricted model.
Only the equations for M, W, and P have a behavioral interpretation.
For the variables R and Y, the structural form equations were purely
instrumental in generating restrictions on the reduced form equations
for the remaining variables in the system. The reduced form equations
for these variables have been added to the behavioral equations of M, W,
and P to obtain a complete system representing the marginal process for
the seven variables considered in this chapter.

The number of parameters in the initial model (196 for 1952-73, 203
for 1952-79) has been reduced by more than two-thirds (64 for 1952-73,
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67 for 1952—79) among which there are 18 seasonal parameters. Three
additional parameters have been included to take account of the struc-
tural changes that occurred after 1973. Given that the restricted model
is a low dimensional marginal process, from which variables (e.g. policy
instruments) that could lead to a structural change in the parameters
have been eliminated by integration, its parameters seem to be fairly sta-
ble over the sample period. Although 11 out of 40 coefficients other than
constant terms, seasonal, and trend coefficients change by a factor more
than two, only the estimates of the coefficient of U_3 in the unemploy-
ment equation, of the constant term in the interest rate equation, and
the coefficient of PI_; in the import equation change by more than two
coefficient standard errors for 1952—73. A fully satisfactory treatment of
the parameter instability requires an extension of the model. We have
achieved a substantial reduction of the number of parameters, although
we claim neither that our model is the most parsimonious parametriza-
tion of the VAR model nor that we have not imposed any false restriction.
With exception of the dummy variable 789 in the import price equation
for the complete sample period, the restricted model is nested in our
starting model.

The estimates of the restricted model are not fully efficient as they
are single-equation (limited-information) estimates. Owing to the non-
linearity of the restrictions implied by the rational expectations assump-
tion and the still fairly large number of parameters in the restricted model,
it is difficult to obtain fully efficient parameter estimates for testing all
restrictions jointly, as suggested by Byron (1974). A likelihood ratio test is
based on the quotient of the determinants of efficiently estimated reduced
form disturbance covariance matrices for the unrestricted and restricted
models, respectively. When comparing the determinant of the 2SLS resid-
ual covariance matrix with that of the estimated unrestricted VAR model,
one obtains an upper bound for the likelihood ratio, i.e. a test statistic
that is biased towards rejection of the restricted model. These bounds
are 336 for the period 1952-73 and 324 for the period 1952-79 (or 224
and 242.6, respectively, if we correct for the loss of degrees of freedom
as Sims 1980a suggests). Three-stage least squares (3SLS) estimates are
not fully efficient asymptotically, as the non-linear restrictions implied
by the rational expectations hypothesis are ignored. A joint test based
on 3SLS estimates under the null hypothesis yields approximate likeli-
hood ratio statistics of 133.3 for 1952-73 and 286.5 for 1952—79 (or 90.7
and 201.6, respectively, when we correct for the loss of degrees of free-
dom), which are asymptotically chi-square distributed with 133 and 137
degrees of freedom, respectively. When estimating the model jointly by
3SLS, we imposed the additional restriction that the coefficient of AP*
equals 1. For the period 1952-73, the restricted model is not rejected at
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conventional significance levels, whereas for the complete period we have
to reject the restricted model, although one should keep in mind that a
test based on 3SLS estimates (which are not exact maximum likelihood
estimates) is still biased towards rejection of the null hypothesis. Also,
when using Akaike’s information criterion, the restricted model would be
rejected at the margin only for the complete period. These results should
be interpreted with care. Little is known about the power of these tests
in small samples and on how to adjust the significance level when sample
size increases. Schwarz’s (1978) large sample approximation 1n Ky =
—1/5[x2 — q1nT] for the posterior odds ratio Ky, of two alternative
nested hypotheses, where x qz is the likelihood ratio statistic, ¢ is the num-
ber of restrictions implied by the null hypothesis, and 7 is the sample size,
strongly supports the restricted model for both sample periods. Notice
that the posterior odds explicitly take account of the sample size.

Restricting the coefficient of AP* to 1 yields a Phillips-curve with no
trade-off present in the long run between unemployment and inflation.
Interestingly, this restriction implies that the reduced form equations for
AW and AP are identical, except for the coefficients of U_; and the sea-
sonal dummies, the constant term, and the error variance. Interpreted
in this way, the restriction does not seem to be implausible. Also, with
this restriction imposed, the 3SLS estimates of the parameters and distur-
bance correlations are very reasonable. Without the additional restriction,
the 3SLS estimates seem to be somewhat ill-conditioned. This is not sur-
prising, given that the number of parameters to be estimated is large.
To conclude, the restrictions imposed on the VAR model are in accord
with the information in the data for 1952-73. For the complete period,
the restrictions are not entirely compatible with the sample evidence — at
least, when 3SLS estimates are used as subsititutes for the exact likeli-
hood estimates. This is probably due to a structural change induced by
the oil price increase in 1973.

3.3 Diagnostic checking

To check the adequacy of the restricted model, we computed the residual
correlation matrices. They are given in tables 3.8-3.11 for the two sample
periods respectively. As the residuals of an equation do not necessarily
sum to zero, the residuals have been taken in deviation from their sample
mean.

The i-jth element of matrix 0 in tables 3.8-3.11 is the sample correla-
tion between ;9 and ;. If we use 272 as a yardstick for the signif-
icance of the individual residual correlations, 21 and 27 among the 392
residual correlations are significantly different from zero in the periods
1952-73 and 1952-79, respectively. Among them, there are two and eight
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Table 3.8 Residual correlation matrices for the unrestricted reduced form,
1952-1979

0=0
1.00 —0.01 —16 —0.05 0.04 0.03 0.11
—0.01 1.00 0.03 0.13 0.53 0.21 0.08
0.16 0.03 1.00 —0.30 0.08 —0.01 —0.06
—0.05 0.13 -0.30 1.00 —0.19 0.03 0.11
0.04 0.53 0.08 —0.19 1.00 0.14 0.19
0.03 0.21 —0.01 0.03 0.14 1.00 0.39
0.11 0.08 —0.06 0.11 0.19 0.39 1.00
0=1
0.02 -0.01 0.02 —0.04 0.08 —-0.02 0.08
0.08 0.00 0.04 —0.00 0.03 0.03 0.11
0.04 0.05 0.05 0.02 —0.02 0.06 0.08
0.05 —0.00 —0.03 0.03 —0.03 —0.04 —0.07
0.03 0.02 0.00 —0.02 0.18 0.03 0.22
0.01 0.06 0.01 —0.07 0.03 0.04 0.14
0.01 0.06 0.03 —0.04 0.07 0.11 0.37
0=2
—0.07 0.01 0.10 —0.06 0.05 —0.03 0.13
0.13 0.03 0.13 0.01 0.11 0.04 0.22
0.00 0.03 0.15 0.04 —0.01 0.01 0.12
0.09 —0.04 0.05 —0.06 —0.02 —0.00 —0.03
0.07 0.08 0.04 —0.03 0.16 0.09 0.26
0.06 0.09 —0.09 0.00 0.16 0.10 0.24
0.06 0.05 —0.03 —0.03 —0.09 0.05 0.09
0=3
—0.04 —0.08 —0.06 -0.10 —0.00 0.03 0.24
—0.00 0.01 0.01 0.02 0.12 —-0.02 0.11
—0.01 0.07 —0.02 -0.13 0.03 0.17 0.14
—0.02 -0.13 0.04 0.08 —-0.01 0.01 —0.08
0.08 —0.06 0.02 —0.01 —0.07 —0.00 0.20
—-0.12 -0.11 —-0.05 0.03 —-0.09 0.10 0.08
—0.05 —0.07 —0.06 0.04 -0.19 0.03 —0.02
0=4
—-0.00 0.20 0.15 —-0.17 0.10 —0.05 0.12
0.04 —0.11 0.13 —0.02 0.11 —0.00 0.13
0.01 -0.03 —-0.07 —0.01 —-0.15 —0.08 0.12
—0.03 —0.17 0.06 —0.03 —0.02 0.01 0.00
—0.06 0.08 0.05 —0.06 0.11 0.06 0.18
—0.08 —0.07 —0.09 —-0.12 —0.04 -0.13 -0.10

—0.08 —0.09 0.07 —0.13 0.01 —0.10 —0.12
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Table 3.8 (cont.)

=5
—0.06 —0.07 —0.26 0.12 —0.03 0.05 0.02
0.08 —0.04 —0.07 —0.03 —0.04 —0.03 0.11
—0.15 0.01 —0.20 0.15 0.03 0.08 0.11
—0.03 —0.10 0.05 —0.09 —0.05 0.00 —0.11
0.13 0.10 0.04 0.01 —0.14 —0.02 0.15
0.01 —0.01 ~0.03 0.08 —0.13 —0.12 —0.12
0.01 —0.12 0.07 —0.01 —0.14 —0.12 —0.15
0=6
0.13 0.00 —0.04 0.12 —0.02 0.08 —0.04
0.17 —0.08 0.05 —0.02 —0.08 0.03 0.17
0.05 —0.12 -0.13 0.01 —0.14 —0.05 —0.12
—0.05 0.12 —0.05 0.16 0.07 0.07 0.10
0.23 —0.10 0.23 —0.16 —0.15 —0.12 0.01
0.02 0.01 0.02 0.09 0.02 —0.07 0.02
0.14 0.01 0.17 0.02 —0.04 —0.12 —0.10
0=1
—0.04 0.08 —0.00 ~0.18 0.11 —0.12 —0.11
—0.00 0.08 —0.09 —0.08 —0.04 —0.04 —0.04
0.04 —0.02 —0.19 0.06 —0.09 0.01 0.03
0.02 —0.05 -0.13 —0.08 0.01 0.00 —0.01
—0.02 —0.06 0.09 —0.06 —0.12 ~0.15 —0.10
0.04 —0.08 0.07 0.05 —0.11 —0.26 —0.04
0.01 —0.11 0.10 —0.08 —0.17 —0.08 —0.16
0=8
—0.02 —0.22 0.12 —0.08 —0.04 —0.16 —0.07
0.08 0.08 0.10 —0.03 0.06 0.04 —0.00
0.03 —0.08 0.10 0.03 —0.13 0.14 —0.09
—0.00 0.21 —0.06 —0.12 0.08 —0.01 —0.04
—0.07 0.03 0.15 —0.05 0.08 0.06 —0.02
0.24 0.12 0.15 0.18 —0.03 —0.04 —0.14
—0.04 —0.02 0.05 —0.05 —0.00 —0.02 —0.02

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 27 1/2, T = 108.
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Table 3.9 Residual correlation matrices for the restricted reduced form,
1952-1979

0=0
1.00 —0.10 0.14 —0.10 0.02 0.01 0.09
—0.10 1.00 0.01 0.12 —0.19 0.13 0.05
0.14 0.01 1.00 -0.25 0.02 —0.09 —0.02
—0.10 0.12 —0.25 1.00 —0.18 0.03 0.28
0.02 —0.19 0.02 -0.18 1.00 —0.10 0.07
0.01 0.13 —0.09 0.03 —0.10 1.00 0.25
0.09 0.05 —0.02 0.28 0.07 0.25 1.00
=1
0.05 0.04 —0.19 —0.07 —0.04 0.11 —0.10
0.08 —0.12 0.05 0.04 0.12 —0.15 —0.05
—0.04 0.09 —0.05 0.07 0.08 —0.13 —0.13
0.17 —0.18 ~0.16 0.01 0.13 0.11 0.12
0.09 —0.07 0.14 0.11 —0.06 0.05 0.21
—0.11 0.08 0.06 —0.15 0.08 0.16 0.03
0.07 —0.03 —0.11 0.02 0.29 0.19 0.28
0=2
0.00 0.17 0.13 —0.08 —0.19 0.16 0.07
0.08 0.00 0.10 —0.00 0.05 0.01 0.12
0.02 —0.10 0.18 0.17 —0.07 —0.13 —0.02
—0.14 0.11 —0.03 —0.09 0.06 0.07 0.05
—0.10 0.07 —0.27 0.16 —0.02 0.08 0.01
0.07 —0.10 0.02 0.05 0.15 —0.04 —0.03
0.13 —0.07 —0.15 —0.06 0.00 0.17 0.01
0=3
—0.07 0.05 0.11 —0.07 0.06 0.07 0.10
—0.08 0.04 —0.13 —0.12 0.08 —0.01 —0.05
—0.14 0.07 —0.06 0.03 0.06 0.25 0.04
—0.13 0.00 —0.09 0.12 0.09 0.06 —0.01
0.14 —0.16 0.11 —0.00 —0.14 0.02 —0.04
—0.03 —0.17 —0.07 0.04 0.01 —0.02 —0.07
—0.12 0.09 —0.22 —0.04 —0.04 0.29 —0.01
0 =4
0.18 0.20 0.33 -0.15 —0.04 —0.13 0.08
0.06 0.03 0.07 -0.01 0.14 0.08 —0.01
—0.05 —0.03 0.14 0.00 —0.02 0.03 0.19
—0.04 —0.12 —0.03 0.06 0.15 —0.02 0.09
—0.10 0.15 —0.02 -0.15 0.12 —0.00 —0.14
—0.03 0.01 —0.07 —0.09 —0.07 —0.16 —0.30

—0.04 0.00 0.11 —0.20 0.09 —0.05 —0.02
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Table 3.9 (cont.)

9=5
-0.13 0.04 -0.17 0.17 0.09 —0.05 —0.18
0.05 ~0.05 —0.02 -0.03 0.03 0.03 0.14
-0.15 0.06 —0.07 0.21 0.28 0.07 0.06
0.06 —0.09 0.02 —0.08 —0.02 —0.08 —0.00
0.01 0.20 0.04 0.09 —0.20 —0.09 0.02
—0.03 ~0.04 0.10 0.05 —0.15 —0.07 —0.20
0.09 —0.05 0.06 0.01 0.06 —0.14 —0.03
0="6
0.06 ~0.01 0.11 —0.04 ~0.06 0.06 ~0.07
0.16 —0.00 0.05 —0.02 —0.04 0.03 0.04
0.03 ~0.17 ~0.05 0.07 0.06 0.00 0.06
0.03 0.04 —0.19 0.22 —0.07 —0.01 0.02
~0.02 ~0.04 0.05 ~0.01 0.05 ~0.11 ~0.15
—0.06 0.11 0.13 0.00 —0.02 —0.12 —0.03
0.16 0.10 ~0.04 0.06 ~0.06 ~0.08 ~0.04
0="1
-0.15 0.15 0.06 —0.11 0.05 —0.05 0.05
—0.02 —0.00 —0.13 —0.07 —0.06 —0.08 ~0.18
—0.11 —0.00 -0.16 0.08 0.08 0.10 0.10
0.13 —0.04 —0.05 -0.13 0.00 0.03 —0.07
—0.07 ~0.10 0.07 0.04 —0.07 0.02 0.06
—0.00 —0.03 0.10 —0.06 0.12 —0.30 -0.16
0.01 0.06 0.01 -0.13 -0.15 —0.05 —0.25
0=8
0.09 —0.11 0.22 -0.13 0.17 -0.15 0.07
0.00 0.21 0.13 0.02 0.00 0.07 ~0.01
0.09 —0.04 0.19 0.10 —0.02 0.08 0.03
0.00 0.23 ~0.06 ~0.17 ~0.05 ~0.04 0.07
-0.15 0.14 0.06 —0.01 0.20 0.03 —0.02
0.10 0.09 0.16 0.22 ~0.13 0.02 0.00
—0.04 —0.02 0.13 -0.11 —0.10 0.04 —0.07

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 27~ 1/2, T=108.
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Table 3.10 Residual correlation matrices for the unrestricted reduced form,
1952-1973

0=0
1.00 —0.14 0.15 —0.04 —0.07 —0.09 0.24
—0.14 1.00 —0.14 0.17 0.42 0.22 0.11
0.15 —0.14 1.00 —0.28 0.06 0.07 —0.09
—0.04 0.17 —0.28 1.00 —0.13 0.01 0.27
-0.07 0.42 0.06 -0.13 1.00 0.14 0.08
-0.09 0.22 0.07 0.01 0.14 1.00 0.31
0.24 0.11 —0.09 0.27 0.08 0.31 1.00
0=1
0.01 0.01 0.01 -0.07 0.14 —-0.06 0.14
0.08 —0.07 0.05 —0.06 0.03 0.03 0.10
0.02 0.01 0.00 -0.03 0.10 —-0.02 0.09
0.15 0.02 —0.01 0.02 —0.04 0.00 0.01
—-0.04 —0.03 —0.01 0.01 0.17 —-0.04 0.17
0.04 0.04 0.03 —0.03 0.14 —-0.07 0.12
0.05 —-0.01 0.03 0.05 0.09 —0.02 0.16
=2
-0.17 0.03 0.14 —0.02 0.00 0.04 0.06
0.11 0.01 0.05 0.06 0.13 —0.08 0.11
—0.06 0.04 —0.06 0.04 0.13 —0.01 0.09
0.02 —0.15 0.03 —0.08 —0.06 —0.05 0.05
0.11 0.14 —0.02 0.08 0.17 0.08 0.23
—0.07 0.09 —0.09 0.16 0.03 0.03 0.04
—0.05 —0.07 —0.02 —0.01 —0.21 —0.05 —0.05
0=3
0.09 0.06 0.07 —0.06 —0.01 —0.02 0.14
—0.06 —0.08 —-0.07 0.06 0.06 0.08 0.04
—0.01 0.04 —-0.05 -0.13 0.13 0.19 0.16
-0.03 —-0.15 0.08 0.04 0.00 -0.15 -0.13
0.05 —0.11 —0.04 0.07 -0.22 0.12 0.18
0.04 —-0.12 —-0.05 —-0.03 -0.07 0.18 -0.19
0.12 -0.07 0.09 0.04 —0.27 0.05 —0.07
0=4
0.07 0.17 0.20 —0.18 0.05 —-0.07 0.01
0.07 —0.16 0.18 0.05 0.01 —0.01 0.13
0.01 0.10 —0.11 —-0.03 -0.10 —0.06 0.09
0.05 -0.10 0.20 —0.09 —0.04 0.00 —0.01
0.01 0.08 —0.01 0.16 —0.09 0.06 0.14
0.10 —-0.12 —0.05 —0.12 —0.06 —0.21 —0.03

—0.02 —0.14 0.13 —0.08 —0.04 0.02 —0.04
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Table 3.10 (cont.)

0=5
-0.19 —0.16 —0.05 0.07 —0.06 -0.07 0.01
0.02 0.03 0.00 0.09 -0.14 0.10 0.20
—0.26 0.05 -0.12 0.11 0.01 —0.06 —0.02
0.13 —0.06 0.14 -0.16 0.02 0.10 0.04
0.11 0.10 —0.05 0.14 —0.28 0.16 0.18
—0.02 0.14 —0.02 0.20 —-0.02 0.06 0.08
—0.12 —0.08 0.04 —0.04 -0.10 0.09 0.01
0=6
0.16 —0.05 0.07 0.18 —0.16 0.13 0.06
0.05 —0.04 0.00 0.14 —0.11 —0.01 0.14
0.08 —0.17 —0.02 —0.05 —0.25 —0.06 —0.22
—0.02 0.14 —0.03 0.03 0.12 —0.06 0.18
0.17 —0.07 0.16 —0.03 —0.10 —0.12 —0.05
0.04 —0.01 —0.12 0.10 0.06 —0.14 0.07
0.01 —0.06 0.04 —0.00 —0.02 —0.01 0.02
0=17
—0.11 0.11 -0.11 -0.10 0.10 0.15 0.11
—0.04 —0.01 -0.12 0.02 -0.20 —0.11 —0.16
0.15 —0.06 -0.17 0.03 —-0.16 —-0.03 0.10
0.01 0.13 —0.05 0.00 0.04 0.11 -0.07
—0.08 —0.24 0.09 —0.04 —-0.20 —0.16 —0.15
0.06 0.03 0.01 0.11 —0.14 -0.13 0.05
—-0.07 —-0.05 0.02 -0.15 -0.18 -0.15 —0.29
0=38
—0.18 -0.17 0.13 -0.10 —0.03 —0.16 -0.10
0.09 —0.09 0.07 —0.06 —-0.18 —0.00 —-0.13
—0.03 -0.13 0.16 —0.01 -0.17 0.12 0.00
—-0.01 0.27 0.05 —-0.20 0.07 0.10 0.05
—0.04 —-0.07 0.18 -0.10 0.07 —0.06 -0.17
0.10 0.09 0.00 0.17 0.00 —0.08 —0.05
—0.23 0.10 —0.12 0.04 0.04 —0.01 —0.08

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 2712, T = 84.
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Table 3.11 Residual correlation matrices for the restricted reduced form,
1952-1973

0=0
1.00 —0.06 0.12 —0.08 —0.01 0.14 0.19
—0.06 1.00 —0.09 0.19 —0.16 0.12 0.11
0.12 —0.09 1.00 —0.25 0.13 —0.08 0.00
—0.08 0.19 —0.25 1.00 —0.15 —0.10 0.23
—0.01 —0.16 0.13 -0.15 1.00 —0.14 0.11
0.14 0.12 —0.08 —0.10 —0.14 1.00 0.19
0.19 0.11 0.00 0.23 0.11 0.19 1.00
=1
0.02 0.01 —0.02 —0.02 —0.01 0.01 —0.08
0.01 —0.26 —0.03 0.09 0.18 —0.13 —0.13
—0.11 0.22 —0.03 0.15 —0.00 —0.07 0.03
0.14 —0.23 —0.05 —0.01 0.09 —0.02 0.07
0.10 0.01 0.14 0.01 —0.01 0.09 0.09
—0.07 0.13 —0.11 0.12 0.03 0.19 0.05
0.04 0.00 0.00 0.16 0.29 —0.09 0.27
0=2
0.10 0.14 0.11 —0.03 —0.17 0.02 0.01
0.00 —0.04 0.15 0.05 —0.02 0.15 0.20
—0.16 —0.08 0.04 0.12 —0.05 —0.13 0.02
—0.19 0.21 —0.01 —0.08 0.04 0.18 0.08
—0.09 0.01 —0.20 0.15 —0.02 —0.12 -0.01
0.26 —0.18 —0.06 0.12 0.09 0.12 0.06
0.11 —0.05 —0.10 —0.03 —0.01 0.02 —0.00
0=3
—0.02 —0.04 0.04 —0.01 0.05 —0.07 —0.06
—0.15 0.05 —0.10 —0.12 0.11 0.04 —0.16
—0.06 —0.06 0.09 —0.04 0.07 0.14 0.16
—0.10 0.04 —0.10 0.09 0.11 —0.03 —0.07
0.22 ~0.18 0.08 0.02 —0.16 —0.04 0.02
0.09 —0.10 —0.16 —0.08 0.10 0.15 —0.20
0.01 0.05 —0.23 —0.04 —0.02 0.20 —0.03
0=4
0.17 0.23 0.25 —0.07 —0.05 —0.04 0.03
0.09 —0.08 0.07 —0.01 0.12 —0.13 ~0.05
—0.09 0.00 0.11 —0.11 0.02 0.04 0.11
0.09 —0.14 0.04 0.06 0.14 0.00 0.13
—0.07 0.10 0.03 —0.16 0.06 0.05 —0.09
0.15 —0.08 —0.16 —0.09 —0.10 —0.12 —0.29

0.13 0.01 0.02 —-0.17 0.10 0.13 —0.01
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Table 3.11 (cont.)

0=5
—0.16 —0.04 0.05 0.25 0.13 —0.12 -0.10
—0.02 —0.06 —0.02 -0.03 —0.04 0.04 0.07
—0.24 0.09 —0.02 —0.18 0.22 —0.08 0.03
0.13 -0.07 0.04 —-0.08 —0.02 0.21 0.04
0.06 0.31 —0.04 0.12 -0.20 —0.02 0.02
0.07 -0.14 0.04 0.11 -0.12 —-0.12 -0.17
0.09 —0.05 0.18 —0.04 0.08 —0.00 0.02
0=6
0.06 —0.10 0.19 0.09 —0.04 0.08 0.00
0.10 0.02 0.02 0.02 —0.09 —0.03 0.00
0.05 —0.15 —0.01 —0.01 —0.01 0.08 —0.01
0.03 0.06 —0.16 0.12 0.03 —0.13 —0.02
—0.01 —0.07 0.04 0.07 0.05 —0.17 —-0.13
0.04 0.11 0.01 0.03 0.01 —0.09 0.00
0.26 0.16 0.07 0.02 0.05 —0.11 —0.08
0="7
—0.22 0.16 —0.02 0.01 0.02 0.01 0.07
—-0.14 —0.05 —-0.02 —0.03 -0.15 -0.17 —0.24
0.10 —0.08 —0.10 —0.06 0.10 0.06 0.15
0.07 -0.07 —0.00 —0.08 —0.03 0.03 —0.04
—0.02 -0.16 0.07 —-0.05 —0.01 0.08 0.04
—0.03 0.15 0.05 0.15 —0.01 —0.18 —0.06
0.09 -0.01 0.01 —-0.05 -0.13 —-0.18 —0.30
0=38
—0.08 —0.05 0.18 —0.07 0.15 —0.18 —0.01
0.06 0.17 0.05 —-0.07 0.02 0.02 —0.02
0.09 0.02 0.20 0.06 —0.00 0.00 0.01
0.00 0.27 —0.04 —0.18 —0.06 0.04 0.11
-0.17 0.16 0.03 —0.02 0.27 —0.02 0.02
0.04 0.11 0.02 0.24 —0.10 —0.07 —0.02
—0.03 —0.04 0.07 —0.07 —0.07 —0.06 —0.04

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 2712, T = 84.
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significant autocorrelations, respectively. Notice that many correlations
are only marginally significant. Although we did not jointly test the vector
white noise assumption of the disturbances, we conclude from the resid-
ual analysis that the restricted model performs fairly well in this respect.
(Compare tables 3.8 and 3.10 with 3.9 and 3.11, respectively.) Few exist-
ing econometric models have been checked for the cross-equation resid-
ual correlations.

3.4 Dynamic properties and forecasting performance of the model

3.4.1  Solving the model After choosing a restricted specification, we
now look into the dynamic properties of the model. Instead of solving
the characteristic equation, which is a polynomial of degree 28, we apply
the simulation approach used by Sims (1980a) to the unrestricted and
the restricted versions of the model. In order to take account of all the
correlation properties of the model while having orthogonal system inno-
vations, we write the model in recursive form. The structural form of a
pth-order VAR model with expectations variables, denoted by 2}, can be
written as

Co z = C; z +Ciz,
MXM pyx 1 mxmmx 1
+ -+ Cpz,
+ D£t+ +ﬂt+7]t> (33)

mx33x1 N mx

where C;,1 =0, ... p,Cj, D, and f are matrices and vectors of coef-
ficients respectively, 2,, s,, and ¢ are defined in (3.1), and 7, is a vector
of normally distributed disturbances with En, = 0, EQ,Q;, = 8,42, with
8 being the Kronecker delta. When zf = E(zl|z-6,0= 1, 2, .. .),
the matrices and vectors of the reduced form for the observable variables
given in (3.1), satisfy the following relationships

A = FCi,i=1,...p, with
F=C)'[Ci[Co—Ci17 + 1)

B=FD, $=Fa, y = Fp, u,= Cy'n, and

X =Cy'eci!. (3.4)

The covariance matrix ¥ can be decomposed as ¥ = G AG’, where
G is a lower triangular matrix, with diagonal elements equal to 1, A is a
diagonal matrix. Premultiplying (3.1) by G~! yields one recursive form
of the model.
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We write the model in recursive form with the variables arranged in the
following order M, W, U, Y, P, R, and PI, with the recursive and reduced
form equations for PI being identical. The equation for M includes the
current values of the remaining six variables in the model, the equation
for Wincludes all current endogenous variables except M, etc. Given the
openness of the Dutch economy, we expect that the variables PI, R, and
P are strongly and quickly influenced by changes in the world economy,
while the four remaining variables are also more strongly determined by
changes in domestic economic conditions.

The solution of the model (excluding the seasonals and trend term)
for the effect of a shock in the initial period equal to one standard error
of regression is given in figures 3.1-3.7. This solution is the MAR of a
VAR. It is given by the coefficients of the infinite matrix lag polynomial
[I->7 | AL17'GA'Y>, with L being the lag operator. We solved the
model for 120 quarters, but we report the response pattern for the first 60
quarters only. The solution of the homogeneous part of the model seems
to be fairly stable. The inclusion of a time trend term in the reduced
form equations takes up most of the instability owing to the sustained
economic growth during almost the entire sample period. The value of
the shock in the initial period is inferable from the figures. For instance,
in figure 3.1, the shock of the restricted model for the period 1952-73
equals 0.012. (See the response of M to shock of M.)

With the exception of the response of M, W, P, and PI to shocks of R
and the response of P to shocks of Y, the MAR of the unrestricted model
is not very sensitive to the choice of the sample period. The empirical
results indicate some instability over time of the impact of shocks of R on
other nominal variables in the unrestricted VAR model. In general, the
unrestricted and the restricted models exhibit a different dynamic behav-
ior. The length of the period and the amplitude of the dominant cycle
increase and the shape of the solution becomes much smoother when
restrictions are imposed. This empirical finding clearly shows that the
dynamic (interim) multipliers of a model can be very sensitive to impos-
ing restrictions on the parameters of the model. Usually, the short-run
response patterns of a variable to its own innovation are similar for the
unrestricted and the restricted model. This result is not surprising given
that the own lags are generously specified in most restricted equations.
The response to own innovations seems to be slightly over-estimated
in the restricted model. Differences between the restricted and unre-
stricted models show up in the cross-effects for some variables. In par-
ticular, the responses of the nominal variables W, P, and R to shocks
of U are reversed when restricting the model, a finding that is a useful
hint on how to improve the dynamic specification of the restricted model.
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Finally, the estimated step response function obtained by summation of
the impact and interim multipliers is usually more robust with respect to
imposing restrictions than the impulse response. This finding is important
for the use of restricted dynamic models for medium- and long-term
policy evaluation.

Similar to the results obtained by Sims (1980a) for the United States,
money innovations have persistent effects on the nominal variables in
the unrestricted model. For the restricted model, the reactions to money
innovations are cyclical. Monetary shocks have some effects on real vari-
ables in the unrestricted model.

The response of U in the restricted model has the same shape for all
seven innovations, whereas the phase of the cycles in the response is dif-
ferent. The unemployment innovation is followed by an accommodating
monetary policy, a decrease in Y first and an increase in Y later on. The
reactions of wages and import prices to an unemployment innovation (in
the restricted model) are similar to those for the US data. They differ
from the pattern obtained by Sims (1980a) for Germany.

The impact of wage shocks on real variables (U, Y) is small in the unre-
stricted model. It takes much longer than for German data, before the
wage innovation has a negative effect on Y. The impact of a wage increase
on unemployment becomes really perceptible after two-and-a half years.
Prices and wages have similar reactions to shocks in all the variables.
Their response to nominal variables is greater than that to real variables.
An expenditure innovation is followed by wage and price increases, by
a reduction in unemployment first and an increase after a lag of two—
seven quarters. Its impact on interest rates is substantial, whereas that on
import prices is negligible. The shape of the reaction of Y, W, and PI to
an impulse in Y is the same for the Netherlands and for Germany. The
impact of an initial price shock on nominal money balances is different for
the two periods (unrestricted model). In the first period, a price impulse
leads to an expansion of money balances, while for the complete period,
the money supply finally reacts negatively to an initial price increase. Real
variables are not too sensitive to a price shock. However, they are affected
by an increase in the interest rates. The reaction of W, P, and PI to P has
a similar shape for the Netherlands and the United States whereas the
responses of M, Y, W, P, and PI to a price increase have similar patterns
for Germany and the Netherlands. In the reaction of interest rates to a
monetary impulse, the Keynesian liquidity effect lasts for two or three
quarters in the period 1952—73. It lasts much longer in the period 1952—
79. The Fisher effect, that increased liquidities lead to more (expected)
inflation and therefore to higher nominal interest rates, is absent from the
unrestricted model for 1952-79. It is interesting to note that for long-term
US interest rates for the period 1952-71, the liquidity effect disappears
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after three—four quarters. (See Taylor 1972.) When money balances are
measured by M, no liquidity effect shows up for US short-term interest
rates in an unrestricted twelfth order VAR model for monthly postwar
(1948-78) data. (See Sims 1980b.) Finally, import prices have a nega-
tive effect on unemployment, followed by a positive effect, and a reverse
effect on expenditures. The shape of the reaction of PI to its own impulse
in the unrestricted model is similar to that for the United States and for
Germany.

If we assume that the money supply, the nominal wages, and the inter-
est rates are the instruments for economic policy, controlling the money
supply or the interest rates seems to be more effective than wage con-
trols in reducing unemployment in the short run — at least according to
the unrestricted model. When using the restricted model, monetary and
wage policies seem to be more effective in fighting unemployment than
an interest rate policy. They are equally effective in stabilizing the price
level in the short run. Compared with the results for the United States
and Germany given by Sims (1980a), the pattern of the response func-
tions is much more erratic. This is probably due to the use of seasonally
unadjusted data in our study. Notice finally that there is no indication
in the simulation results of absence of Wiener—Granger “causality” (or
of strong exogeneity, which is more stringent; see Engle, Hendry, and
Richard 1980) for any variable in the system as each variable is affected
by shocks in any of the seven variables in the model.

In conclusion, given that imposing restrictions on the parameters can
substantially affect the dynamic behavior of a model, one should carefully
investigate the consequences of these restrictions for the dynamics of
the model. The MAR is a very useful means for verifying the stability
over time of dynamic relationships, checking the dynamic properties of a
model, comparing them with the dynamics of more general models, and
investigating the exogeneity of a variable or a set of variables. Although
the MAR is sometimes very sensitive to the choice of the variables in
the model, there appear similarities in the MAR of models for different
periods, countries, and data sets. These similarities point towards the
existence of some common underlying structure that has to be disclosed
and explained.

3.4.2  The final equation form  Next, we check the properties of the
final equations or the univariate ARIMA models associated with the VAR
processes considered in this study. Premultiplying the system (3.1) by the
adjoint matrix of the polynomial matrix operator

V4
AL =[I-) 4L, AL,
=1
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we obtain the set of final equations associated with (3.1)
|A(D)|z, = A*(D)[Bs, + § + yt] + A*(Du,, (3.5)

where |A(L)| is the determinant of A(L). As there are no exogenous
variables in these VAR processes, the analysis of the transfer functions
outlined in subsection 2.3.4 cannot be done. From the results of the
model simulations, we can conclude that the homogeneous part of our
VAR model is stable. Taking annual changes. I — L*, where L is the lag
operator, eliminates a linear trend and seasonal dummy variables. This
transformation of the endogenous variables is expected to yield stationary
seasonally adjusted series, provided the assumptions on the VAR process
hold true.

The empirical analysis of the single series confirmed our findings for
the multivariate model. Very simple schemes are sufficient to model the
seasonals in the series. (See Zellner 1978 for modeling seasonality.) In
table 3.12, we report the estimated autocorrelation functions (ACF) and
partial autocorrelation functions (PACF) of the differenced series, and
in table 3.13, we give the estimated univariate ARIMA models! for the
period 1952-73. Parsimoniously parametrized specifications have been
chosen after an analysis of the estimated autocorrelation functions. One
root of the characteristic equation associated with the univariate models
for M and for Pis slightly smaller than 1. All other roots are substantially
smaller than 1. First differencing apparently induced stationarity, which
confirms the results for the vector processes. We should mention that we
computed the ACFs and PACFs for the complete sample period. The
estimated ACFs and PACFs for W and for P are insensitive to the choice
of the sample period. For Y, the ACFs and PACFs point towards a slight
parameter instability, whereas for M, R, and PI, a structural change in
19749 clearly shows up in the ACFs and PACFs. As we had to use sea-
sonal lag polynomials instead of dummy variables in the univariate mod-
els, it becomes difficult to check further implications of the unrestricted
and restricted VAR models for the properties of the lag polynomials of
the final equations. Still, as stated above, the univariate ARIMA models
can be used as a standard of comparison for the forecasting properties of
the VAR models.

3.4.3  The predictive performance of the models Next we compare the
postsample forecasting properties of the unrestricted VAR, the restricted
VAR, and the univariate ARIMA models. Each model has been esti-
mated from the data up to 1973. The multi-step-ahead predictions, we

1 The computations were performed using a computer program for non-linear least squares
estimation developed by C. R. Nelson, University of Washington, Seattle.
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M
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Figure 3.8 Nominal money balances (M), 1952—-1980

compute, are minimum mean-square error forecasts of the (logarithms
of the) series given the model, observations up to the original date and
parameter estimates.

In figures 3.8-3.14, the observations (in natural logarithms, except R)
for the period 1952-79 are plotted. We have also plotted the predictions
generated in 1973 for the period 1974-9 using the univariate ARIMA
processes, and the unrestricted and restricted VAR models. Except for Y
and PI, the forecasts of the series using the unrestricted VAR model are
above the realized values, those for the restricted model are below the true
series. The forecasts for the univariate ARIMA models are usually close
to the observed values. The medium-term forecasts of the unemployment
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Figure 3.9 Wages (W), 1952-1980

rate using the restricted VAR model are rather inaccurate. The medium-
term forecasts for U are very sensitive to the effect of the variable
(M — P)_; (its coefficient has been rounded off to 1.5) in the restricted
equation (see table 3.3), indicating once more that the specification of the
restricted unemployment equation is not entirely satisfactory. Note that
by choosing the year 1973 with the large increase of the oil price and
the change in the exchange rate regime for the Netherlands to generate
forecasts up to twenty-four quarters ahead, we investigate the predictive
performance of the models under rather severe conditions.

To assess the forecast performance of the alternative models for var-
ious forecast horizons, we computed the ratio of the root mean-square
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Figure 3.10 Unemployment (U), 1952-1980

prediction error to the root mean square of the realizations for the period
1974-9. These inequality coefficients denoted by

T 1/2
> Wirre — 3 (012
U = | = :
> yizz—lz
=iy

where ;.4 , is the realization of (the logarithm of) variable 7 at time z + ¢
and y;(¢) is the £-step-ahead forecast of variable : made at time ¢, are
basically descriptive measures of the forecasting precision, although one
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Figure 3.11 Total gross expenditures in constant prices (Y), 1952-1980

could design a decision problem that would require minimization of U;(¢)
computed for a single variable. In table 3.14, we report the inequality
coefficients for ¢-step-ahead predictions, £ = 1, ... 16. The models
have been estimated for the period 1952-73 and re-estimated for the
period 1952-75. For each model, we generate (25 — ¢) {-step-ahead
predictions, £ = 1, ... 16, for the period 1974-9 and compute the
inequality coefficients. The bias of the forecasts appearing in figures 3.8—
3.14 for almost all models and variables disappears when the model is
re-estimated using data beyond 1973, or when a different origin date is
chosen. Although in practice a forecaster will probably re-estimate his
models as soon as new observations become available, we have only once
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Figure 3.12 The price index of total gross expenditures (/?), 1952—-1980

re-estimated our models for the period 1952-75 in order to limit the
computations.

In table 3.14, we also give the inequality coefficients for predictions
obtained when smoothness restrictions are imposed on the reduced form
parameters of the unrestricted VAR model. Litterman (1980) successfully
used smoothness restrictions in forecasting US macroeconomic series.
These restrictions can be interpreted as a shrinkage technique or as prior
information in a Bayesian framework. We write the ith reduced form
equation as
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Figure 3.13 Interest rates on long-term government bonds (R), 1952—
1980

7 4 3
2 = Zl ;aiﬂzjt—z + ; birsp + 8 + yit + uyy. (3.6)
s -

Briefly, in line with Litterman’s approach (for more details, refer to Lit-
terman 1980), because a random walk model fits and predicts many eco-
nomic series rather well, it is used to center the coefficient of z;,_; at one,
i.e. E(a;1) = 1, and all remaining coefficients at zero. All parameters,
except the disturbance variance aiz, b;r, and §;, have an informative (nor-
mal) prior distribution. The prior standard deviations (SD) are assumed
to decrease with £:

SD(a;je) = A/t i=j, SD(y;) =4 (3.7a)
= 013;/06,, i# ], (3.7b)

where A and 0 are parameters to be specified and &; is the standard
error of regression j. The correlation between «;; and y; is assumed to
be —0.7, whereas the remaining coefficients are assumed to be uncorre-
lated with each other. These restrictions can be summarized in a set of
stochastic linear restrictions on the regression coefficients and lead to a
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Figure 3.14 The price index of all import goods (I), 1952—-1980

“mixed estimator” that has been used to generate the forecasts for the
period 1974-9. The parameter A, which measures the precision of the
smoothness restrictions, takes the values 0.5 and 0.1. When # = 1, own
and cross-variables dynamics have equal prior weights. For 86 = 0.2,
the variance of cross-variables effects is reduced (own weight) by a fac-
tor 25. Formulating smoothness restrictions as proposed by Litterman
(1980) can be interpreted as going from specific to general; that is, the
starting point is a random walk model for which one allows for some
cross-variables interaction. Alternatively, as the smoothness restrictions
force the coefficients of the (finite) AR representation to die out, they ful-
fill a role similar to that of an MA part, which implies that the higher order
coefficients of the (infinite) autoregressive representation of an ARMA
model follow a mixture of exponentials and damped sine waves. Restric-
tions originating from economic theory can also be implemented in a soft
way (“soft theory”) through smoothness restrictions. For a given reduced
form equation, the explanatory variables are subdivided into variables
that are judged important for explaining the endogenous variable, and
the remaining predetermined variables. For the first group of explanatory
variables, the coefficient standard deviation is given in (3.7a), whereas
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that for the second category of variables is given in (3.7b). The lagged
values of the endogenous variable and the price variable P are assumed
to be relevant in all equations. In addition, for M, the first group consists
of Y and R; for W, the relevant variable is U, for U, the relevant variables
are M, W, Y, and PI; for Y, these are M, U, and PI; for P, these are W,
Y, and PI for R, these are M, U, Y, and PI; and finally for PI, these are
M, W, and PI. Inequality coefficients for models using “soft theory” are
also given in table 3.14.

The results in table 3.14 are very interesting. Despite the fact that
we re-estimated our models only once and that we analyzed the forecast
performance for the period after the oil price increase, the forecasting
performance is very reasonable, with the exception of the accuracy of the
medium-term forecasts for the unemployment variable. The restricted
VAR model predicts (the logarithms of) M and P better than any alter-
native model. For W, the restricted VAR model predicts as well as the
univariate ARIMA model and it predicts better than the remaining mod-
els. Notice that we have been able to formulate behavioral equations for
these three variables taking the unrestricted VAR model as a maintained
hypothesis. As might be expected from the results in figure 3.10, the
unemployment rate is rather inaccurately predicted over a horizon longer
than four quarters when we use the restricted VAR model. Beyond a
horizon of ten quarters, the predictions are worse than zero-level extrap-
olations. This also happens for 15- and 16-step-ahead forecasts of U using
“soft theory” stochastic restrictions with A = 0.1. For y, the short-run
forecast performance of all the models is almost identical. Over a hori-
zon of sixteen quarters, it is quite similar, whereas over a longer horizon,
the equal weight prior with A = 0.1 performs better than other models.
Finally, for the import prices, the univariate ARIMA model and the model
with equal weight prior restrictions and A = 0.1 predict better than the
other models. Contrary to the conclusion from the exogeneity test of PI,
the results in table 3.14 seem to indicate an absence of Wiener—Granger
“causality” from domestic variables to PI.

To conclude, the restricted VAR model seems to predict most of the
variables better than the unrestricted VAR model does. Also, models with
smoothness restrictions imposed generally forecast rather well. However,
there is not a single set of parameter values A and 6 for which the forecast-
ing precision is uniformly better over the different variables and horizons.

Of course, the results in table 3.14 should be interpreted with care.
As we do not have the probability distribution of the inequality coef-
ficients, we cannot use them to formally test the predictive properties.
Approximate forecast intervals can be straightforwardly computed using
the MAR of the model. Also, one could average the inequality coefficients,
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weighting them by a factor inversely related to the length of the forecast
horizon, thereby ignoring the dependence between forecast errors for
successive periods. More work on the forecasting performance of models
analyzed here is in progress.

To see how smoothness restrictions affect the dynamics of the model,
we computed the MAR for the models, when the smoothness restrictions
are imposed on the reduced form parameter estimates for 1952-73. As
an illustration, the graphs of the MAR for M and U are represented in
figures 3.15 and 3.16. With equal weight or “soft theoretical” restrictions
imposed, the MAR for all variables usually has the same shape as that of
the unrestricted VAR model. Own weight restrictions sometimes heavily
distort the shape of the MAR. The conclusion that models with “soft
theoretical” restrictions seem to predict fairly well and have dynamics
similar to those of the unrestricted VAR model is very interesting and
indicates a sensible way of restricting densely parametrized models. The
possible implications of this result for modeling have to be more exten-
sively explored.

To summarize this section, we investigated the lag length and the struc-
tural stability of a VAR model for seven macroeconomic variables for the
Netherlands. Next we tested for the exogeneity of PI and for that of
PI, R, P, Y, and U jointly. Upon acceptance, these restrictions com-
bined with the absence of instantaneous Wiener—-Granger “causality”
would imply a block recursive model, for which the transformation of
the structural form into the reduced form would not affect the maximal
lag length within a block. But, given that the exogeneity restrictions had
to be rejected, we restricted the individual equations in the model using
a limited information approach along the lines of traditional econometric
modeling. Thereby, we used the unrestricted VAR model as a frame-
work in which the true model is assumed to be nested. The outcome
of the test of all restrictions jointly is not unambiguous, suggesting that
some of the restrictions might not be correct. We did not find much
evidence in the residual correlations that points towards a misspecifica-
tion of the restricted and unrestricted models. The dynamic properties
of the unrestricted VAR model were found to be different from those of
the restricted one. The accuracy of the forecasts from the unrestricted
and the restricted VAR models and from the univariate ARIMA schemes
is different too. The use of restrictions, either exact or stochastic, often
improves the forecast performance. Both VAR models were found to be
consistent on a number of points with the properties of the univariate
ARIMA schemes.

Finally, although the restricted VAR model can be improved in many
ways, in particular the cross-variables interaction in some equations,
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it does not seem to be very inferior to the unrestricted model, despite the
substantial reduction of the number of parameters. Also, “soft” restric-
tions may be a useful alternative to dogmatic restrictions in econometric
modeling.

4 Some tentative conclusions

In this chapter, we first presented the traditional approach to economet-
ric modeling and several procedures proposed and applied in the time
series literature on modeling bivariate and multivariate processes. Then
we outlined the main features of the SEMTSA, which is an attempt to
integrate econometric specification analysis and time series modeling that
should be complements to rather than substitutes for each other. In the
second part, we applied the SEMTSA to a VAR model for some of the
main macroeconomic variables for the Netherlands. The restricted model
obtained through SEMTSA has different dynamic properties than the
unrestricted one, but it does not seem to be inferior to the unrestricted
VAR model in terms of the results of diagnostic checking and forecast-
ing properties. Certainly, the specification of the restricted model can be
improved. A comparison of the MAR of the restricted and unrestricted
model indicates where the cross-variables dynamics are affected by the
restrictions. One should, of course, allow for sampling errors in the MAR
estimates. For this purpose, it would be useful to compute approximate
confidence intervals for the MAR parameters.

As already indicated earlier, the formulation of behavioral and theo-
retically meaningful restricted relationships often requires the introduc-
tion of additional variables in the model. For instance, the restricted
reduced form equation for unemployment predicts rather badly. How-
ever, there is more information available on the medium-term develop-
ment of the labor market than we used in our model. The change of
the total labor force, the hiring for the public sector can be predicted
fairly well over a horizon of two—three years. However, it is not pos-
sible to model this kind of detail in small dimensional VAR models.
High dimensional VAR models with a rich lag structure still are com-
putationally intractable. When modeling a larger number of economic
variables using a top-to-bottom approach, the general initial model will
have to be obtained from a restricted model by expanding the dynam-
ics of those equations for which the lag structure is very uncertain. The
alternative “bottom-up” approach, which consists of formulating a sim-
ple, parsimoniously parametrized model, usually does not suffer from
a computational intractability owing to a large number of parameters.
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However, it should be noted that a “bottom-up” approach often has
elements in common with a “top-down” approach. For instance, the
“bottom-up” approach proposed by Box and Jenkins (1970) (for mul-
tiple time series, see Tiao and Box 1981) starts with an analysis of the
autocorrelations and partial autocorrelations, i.e. an analysis of a very
dense parametrization of a second order stationary process. For the gas
furnace data, Tiao and Box (1981, p. 813) show that the correct model
structure could not be detected if only very low order vector autoregres-
sive processes were considered as is sometimes done in a “bottom-up”
approach.

Clearly, a better understanding of the interaction of economic variables
in time is needed. We fully agree with the statement by Nerlove (1972,
p. 277): “Without strong theoretical justification for a particular form
of lag distribution, and perhaps even strong prior belief about the quan-
titative properties of that distribution and the factors on which those
properties depend, it is generally impossible to isolate the lag distribu-
tion in any very definitive way from the sort of data generally available.”
However, we want to add that a theoretically justified dynamic model only
lacks a confrontation with “hard facts,” i.e. the empirical validation of the
model.

Finally, a number of questions arise with the formal procedures for
econometric modeling in general. The statistical properties of the proce-
dures presented and applied in SEMTSA are only partially known. Quite
often, one has to reject a set of restrictions tested at once or sequen-
tially when the overall size is fixed at conventional levels (e.g. using the
Bonferroni inequality or the Scheffé procedure). This happens for the
large sample chi-square test even if one corrects it for the loss of degrees
of freedom as Sims (1980a) does. More research into the finite sample
properties such as the power of the sequential tests used in specification
analysis is needed and it is expected to be very rewarding. The contribu-
tions to the field of pretest estimators may be very valuable, too, although
some areas of application of pretesting which are relevant for SEMTSA
are still relatively unexplored.

Instead of looking for the statistical properties of the modeling pro-
cedure as a whole, one can interpret it as a pursuit of consistency of
the accepted model in its different forms with the information available
such as a priori information on structural parameters and on multipliers,
the conformity of the autocorrelations of the endogenous and exogenous
variables and the residuals of the different forms with the properties of the
autocorrelation functions implied by the finally accepted model. Many
econometricians consider this as a minimum requirement.
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APPENDIX DATA SOURCES

The series M, U, Y, P, and R have been collected at De Nederlandsche
Bank NV, and were kindly provided to us by Professor Dr. M. M. G.
Fase. The series W and PI are published in Maandschrift van het C.B.S.
(Den Haag, Centraal Bureau voor de Statistiek).
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Comment (1983)
Carl E Christ

In science, two opposite approaches are useful. One is to begin with a
theory and test it against data. The other is to begin with data, look for
regularities, and seek to build a theory to account for them.

Structural econometric modeling (SEM), in principle, begins with a
theory and tests it against data. I agree with Professor Palm that the spec-
ification chosen for the theory is of crucial importance. Unfortunately,
there is no systematic method for discovering a good theoretical specifi-
cation. I agree also that it is desirable to begin with a model that is general
enough to include the correct model as a special case, and then appeal to
data to narrow the general model down to a more specific model. Unfor-
tunately again, it’s hard to begin that way, because models that are simple
enough to be tractable are not necessarily general enough to include the
correct model.

Time series analysis (TSA) seeks to discover empirical regularities that
connect current and past observations of variables and that have purely
random error terms. When I first encountered TSA, it struck me as a
mindless method of data-mining, using no knowledge or theories about
the subject matter being studied. However, SEM regards certain variables
as exogenous, and supposes no knowledge of the processes that determine
them. Hence, the proposal by Zellner and Palm (1974) to combine SEM
for a set of variables designated as endogenous with TSA for a set of
variables designated as exogenous appears promising.

The ARIMA equations obtained from TSA for exogenous variables
need to be tested against future data, just as do the econometric equa-
tions obtained from SEM for endogenous variables given the exogenous
variables. Do the equations and parameter values fitted to past data con-
tinue to fit future data as expected? If not, they are suspect. If so, we may
have tentative confidence in them.
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Palm tells us that if all methods predict the endogenous variables
poorly, then either the model is misspecified or it has been subjected to a
structural change. I suggest that an apparent structural change is a case of
misspecification, in this sense: If we can explain the structural change, we
can then specify a more general model that will give a unified explanation
of events both before and after the apparent structural change.

Palm begins with brief descriptions of SEM and TSA. Then, he
describes and recommends techniques that can be used to combine them,
once an initial model has been chosen that is general enough to include
the correct model as a special case nested within the general model.

In the remainder of [chapter 5], Palm illustrates the use of these tech-
niques by means of a model of the Dutch economy. It is useful to distin-
guish several steps in his procedure.

First, he introduces us to his initial “unrestricted” seven-equation quar-
terly autoregressive dynamic model of the Dutch economy. We learn that
the model is linear in seven endogenous variables and four exogenous
variables. The seven endogenous variables are the interest rate R and
the logarithms of the money stock, the wage rate, the unemployment
rate, real income, the price level, and the import price level. (These logs
are denoted by M, W, U, Y, P, and PI respectively.) The four exogenous
variables include no economic variables: They are a linear time trend and
three seasonal dummies. The unrestricted model contains current values
and four lagged values of each endogenous variable. It has no identifying
restrictions, and hence is unidentified. (Palm wisely does not attempt to
estimate it.) Formally, its structural form can be represented by Palm’s
(3.3).

Second, consider the reduced form of this unrestricted model. It is
represented by (3.1). Palm estimates it by ordinary least squares[OLS],
for 1952-73 and for 1952-79. He doesn’t show the estimates, but he
tells us about them, and shows the residual correlation matrices in tables
3.8 and 3.10 . He concludes that this model “is acceptable as a starting
point.” As noted below, I am not ready to accept this conclusion.

Third, Palm examines the z-ratios of the reduced form coefficients,
and drops the fourth lag of all variables except U and Y on grounds of
insignificance. He tests and rejects the hypotheses that (a) import prices
are exogenous to a subset of six equations, and (b) that the five variables
PI, R, P, Y, and U are exogenous to a subset of two equations. He does
this by testing for block triangularity of the reduced form matrices.

Fourth, Palm specifies a restricted structural model, nested within
the original unrestricted model (except that he now includes two more
dummy variables). He is frank to say that most of the equations of
this restricted model do not have a clear behavioral derivation or
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interpretation. These equations are given in tables 3.1-3.7, along with
2SLS estimates for the same two sample periods. There is very little
simultaneity in the coefficient matrix of these restricted equations. Three
of them are, in effect, single-equation models, each determining the cur-
rent value of a single variable, based on past data. These are the equa-
tions for unemployment (3.3), import prices (3.7), and the wage rate
(3.2). (The latter contains price expectations, but these are assumed to
be based on past data.) The only simultaneity in the matrix occurs next
in the causal chain: Current income and prices are simultaneously deter-
mined by (3.4) and (3.5), based on the previously determined wage rate
and past data. Then, (3.6) determines the current interest rate, based on
the price level and past data. And, finally, (3.1) determines the money
stock, based on income and the interest rate and past data. But Palm notes
that the system is not block-recursive, because the covariance matrix of
disturbances is not block-diagonal. I might add that when the equilib-
rium system is considered (obtained by setting all lagged variables equal
to current values), the system’s coefficient matrix is fully simultaneous,
as determined by the neat method of McElroy (1978). It is a curious sys-
tem from the economic point of view. All seven variables are determined
without reference to any policy variables, or indeed any exogenous eco-
nomic variables. The model ignores taxes, government expenditures, and
Central Bank policy variables.

Fifth, Palm compares the structural estimates for the two periods, and
reports that the parameters of the restricted model seem to be fairly stable
over the sample period. He says this even though, of the 40 parameters
other than constant terms and seasonal dummy coefficients, 11 change by
more than a factor of 2 when the years 1974-9 are added to the sample.
He also performs several tests of the restricted model, some of which
reject it for the longer sample period (1952-79).

Sixth, Palm estimates the reduced form of the restricted model. Again
the estimates are not presented, but the residual correlation matrices are
shown in tables 3.9 and 3.11.

Seventh, for forecasting purposes, he forms a recursive system from
the reduced form (3.1) by premultiplying it by the matrix G~!, which
diagonalizes the covariance matrix of disturbances. (See (3.4) and the
paragraph following it.) The recursive system is used to obtain dynamic
multipliers, plotted in figures 3.1-3.7 for both sample periods and for
both the unrestricted and restricted models. The two models yield very
different dynamic multipliers, as Palm notes. This means that it’s very
important to know which of the models (if either) is close to reality.
Changing the sample period makes a substantial difference to the unre-
stricted model multipliers in about half of the 49 cases.
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Eighth, Palm obtains the univariate ARIMA equations (the final equa-
tion forms), and exhibits them in table 3.13 . The autoregressive process
order never exceeds 4, and in six of seven cases is 0 or 1 or 2. The mov-
ing average process order never exceeds 4, and in four of seven cases is
ZEero.

Ninth, Palm presents and summarizes forecasts (table 3.14 and fig-
ures 3.8-3.14) made by the two recursive forms (of the unrestricted and
restricted models) and the univariate ARIMA models. There are some
very bad forecasting errors, especially for unemployment via the recursive
forms (errors of 38 percent—150 percent for forecasts two to four years
ahead). Four years ahead, the ARIMA forecasts are either best or second
best among the three for every one of the seven variables. That doesn’t
speak very well for either of the structural models.

The imposition of smoothness restrictions on the reduced form of the
unrestricted model makes a modest improvement in its forecasting ability
for income and the interest rate. (See table 3.14.)

Let us reconsider the unrestricted seven-equation model described
above, from which Palm’s analysis began. He tells us that it “is assumed to
be sufficiently general to include the data-generating process.” I regard
this model as a useful vehicle for illustrating the techniques he has in
mind. But surely the “data-generating process” for the Dutch economy
is not captured by such a simple linear quarterly difference equation
model of seven endogenous variables with four lags. Where is monetary
policy represented in this model? Fiscal policy? Foreign exchange policy?
International trade and investment? The stock of productive resources?
Productivity?

Palm concedes that “quite obviously” his fourth order multivariate
autoregressive reduced form (3.1) is not a complete model of the Dutch
economy. He claims, however, that it can be considered as an approxi-
mation to the reduced form of a complete model of the Dutch economy,
from which all but his seven variables have been eliminated by integra-
tion. (This claim is weaker than the assumption that the seven-equation
model is “sufficiently general to include the data-generating process.”)
The claim may be correct. It has testable implications about the behavior
of variables that belong in a complete model of the Dutch economy but
do not appear in Palm’s seven-equation model. It would be desirable to
test these implications empirically before accepting Palm’s claim.

In conclusion, the statistical testing methods illustrated here are inter-
esting and promising. Structural econometric model builders will do well
to learn more about them. But the method of obtaining the unrestricted
and restricted models, and the seven equation models so obtained, are
seriously flawed, in my judgment.
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Comment (1983)
Christopher A. Sims

There are very few examples in the econometric literature of economy-
wide models estimated with serious attention to their properties as multi-
variate stochastic processes. The model Palm estimates in his [chapter 3]
is one of these examples, and it deserves imitation and extension. I believe
that what Palm is doing here is important, and I have only small disagree-
ments with the way he specifies, estimates, and presents his model.

Since there is so much work underlying the chapter, I cannot mention
every aspect of it that merits special commendation or criticism. Let me
begin by drawing attention to Palm’s extensive use of plots of the mul-
tivariate moving average representations of models with different speci-
fications as ways of comparing them. Like the autocovariance function,
the spectral density, and the autoregressive representation, the moving
average representation is a complete summary of the second order prop-
erties of the model. All these ways of summarizing a model’s properties
are also connected to the model’s forecast accuracy in a natural way —if a
sequence of models has forecast error variances converging to the forecast
error variance of the true model, it must also have moving average rep-
resentations (and autocorrelation functions, and spectral densities, and
autoregressive representations) converging at least pointwise to their true
values. In this, these summaries differ from some other apparently natural
ones. Lag lengths, parameter values, and characteristic equation roots in
a sequence of ARIMA models can stay arbitrarily far away from those of
the true model while forecast errors converge to those of the true model.
Thus, models that appear to be very different in terms of their ARIMA
parameterizations may have similar second order properties. It is worth-
while, therefore, to compare their moving average representations to see
whether and how they differ.

As compared to the other summaries which connect naturally to fore-
cast error, the moving average representation has the advantage that it
can be interpreted as a set of simulations of responses to typical “shocks.”
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These shocks, in turn, often invite behavioral economic interpretation.
(Some would even argue that they make such interpretation misleadingly
natural.) It appears to be more difficult to interpret the other summaries
in most circumstances. The spectral density is valuable for intepreting
models of seasonal data, despite the appearance of imaginary numbers
in its multivariate form. The Fourier transform of the moving average
representation might combine some advantages of the spectral density
and the moving average representation; John Geweke of the University
of Wisconsin has . . . [made] use of functions of the Fourier transform of
the moving-average representation in interpreting multivariate economic
time series models. The coefficients of the autoregressive representation,
when treated as real valued functions of the lag, will have highest power
(largest absolute values of their Fourier transforms) at precisely those
frequencies where the spectral density is smallest. This means that for
smooth economic time series, the coefficients of the autoregressive rep-
resentation are likely to be oscillatory and erratic, making them difficult
to interpret directly.

I wish Palm had gone a bit further (of course this is unfair, consider-
ing how much work he has already done) in using the differences in the
moving average representations (MARs) and other diagnostic devices he
employs to determine what it is about his restricted model that gives it
such a strong predictive advantage over all the other models for M and
P and over all the other multivariate models for W. Correspondingly,
he might have gone further to discover why all the multivariate models
do so much worse than the univariate model for U. He suggests that,
since the restricted model does nearly worst of all the models at predict-
ing U, the restrictions on that equation deserve special scrutiny. But it
is not necessarily true that the restrictions on the U equation are pri-
marily responsible for the model’s poor performance in predicting U. It
could even be that the same restrictions which help predict M are mak-
ing the U forecasts deteriorate. That it is not mainly the U equation
restrictions which are to blame is borne out by the fact that all the mul-
tivariate models are more similar to each other in their poor forecasts of
U than they are to the much better univariate model forecasts for this
variable.

Palm formally follows the standard textbook prescription for generating
linear restrictions on his simultaneous equations model from economic
theory. Some of the equations are explicitly acknowledged to be reduced
form equations, and we are given no explanation for how a prior: theory
leads to restrictions on these equations, though restrictions are imposed.
Two more, those for R and Y, are equations containing more than one
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current endogenous variable, but are explicitly labeled as not having any
behavioral intepretation. For these equations also there is no explanation
of how a priori theory leads to restrictions. The M equation is claimed
to be a demand for money equation, and theory clearly is behind at least
one of the restrictions on it — particularly the omission of level effects
of the interest rate because they proved to be of the wrong sign. But
since the interest rate equation has no behavioral interpretation, how is it
meant to be distinguished from the demand for money equation? Would
it not have been simpler to treat this equation, as well as the Y equation,
as straightforward reduced forms? Perhaps there is a case to be made for
introducing simultaneity into the part of the model that has been specified
on a purely empirical basis, but the case is not made in the chapter. The
W and P equations are claimed to be behavioral, but the claims are weak
in my opinion.

On the whole, Palm’s procedure for introducing restrictions seems to
me reasonable, but in fact nearly entirely an empirical simplification of
the model rather than an imposition of any a priori known information. It
is hard to see in what application the restricted model might be hoped to
be structural in the sense of invariant under a policy intervention, when
the unrestricted model was not.

As I have already mentioned, it is appealing to make certain “natural”
identifications of the disturbances of multivariate time series models and
to use these to interpret the moving average representation. Particularly
attractive, and no doubt often reasonable, is the practice of treating inno-
vations in policy variables as being generated by policy choice, so that
the moving average coefficients on these innovations represent responses
to policy-induced changes in the policy variables. One must always bear
in mind, however, the possibility that policy variables may have moved
historically in response to non-policy influences, so that the response
to innovations in these variables is not appropriately interpreted as a
response to a policy-induced change in the variable. For money, wages,
and interest rates, it is certainly possible that some of the historical varia-
tion was generated by the private sector, not by policy. Palm’s conclusions
about the effectiveness of various policies from examination of the MARs
should, therefore, probably have been put forth more cautiously.

My own research interests and philosophy run so close to those dis-
played in this chapter that I could continue at some further length with
discussion of technical fine points. This seems a good point to close these
formal comments, however, with the hope that the profession will be
seeing more empirical work along these lines and displaying these high
standards of thoroughness and integrity.
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Response to the discussants (1983)
Franz C. Palm

I would like to thank the discussants for the thoughtfulness of their com-
ments. They have raised several interesting issues. In my response, I shall
consider three themes.

1 Marginalization, exogenous variables, and
parameter stability

One of the points raised by Professor Christ is concerned with the absence
from the model of (exogenous) economic variables such as taxes, gov-
ernment expenditures, international trade, and investment. On many
occasions (for instance, in the presence of a closed loop policy), policy
variables can be treated as partly endogenous and stochastic. Similarly,
exogenous variables are often stochastic. These variables can then be
eliminated from the model by integration (or substitution). However, the
parameters of the marginal, multivariate or univariate, model are func-
tions of the parameters in the broader model. They remain stable as
long as the parameters of the latter model are stable. It is legitimate to
restrict the analysis to the marginal process provided its parameters are
approximately stable. One can think of three reasons why a multivariate
marginal model could be flawed: (a) A log-linear dynamic specification
is too simple to be a reasonable approximation for the data-generating
process; (b) some exogenous variables are non-stochastic and should,
therefore, appear in the model; (c) the parameters have changed over the
sample period. In my opinion, a log-linear specification for the model and
the assumption of stochastic exogenous variables are reasonable working
hypotheses in the present context. Concerning the last point, I hope that
I have carefully analyzed the parameter stability and, in particular, the
implications for the period 1974-9 of a model that has been specified
and estimated from data up to 1973, a year for which a structural change
in the economy of the Netherlands is very likely. Also, I hope that I have
been sufficiently cautious in my conclusions about the presence of struc-
tural changes in the sample period.

Finally, from my own experience and in line with a remark by Profes-
sor Sims, the estimates of the (restricted) autoregressive representation
are less stable than those of the moving average representation (MAR).
Therefore, the MAR is better suited for an analysis of the structural sta-
bility than the autoregressive representation. As stated in the chapter, it
is the response of several variables in the model to shocks in the interest
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rate that seems to be most strongly affected by parameter instability and
for which the specification could be improved accordingly.

2 Simultaneity and economic interpretation

The restricted multivariate model can be interpreted as a set of structural
equations that has been completed by adding reduced form equations.
The model is statistically complete, but it is not a complete behavioral
model (think, for instance, of limited-information maximum likelihood).
The remark that “It is a curious system from an economic point of view”
comprises an interpretation which the model can and should not be given.

The question of whether the interest rate equation is actually a demand
for money equation can be answered by stating what the determinants of
the demand for money are. I explain money balances by income, prices,
and interest rates only (besides the seasonal dummies). These variables
have been selected on the basis of a prior: considerations, although the
dynamics of the equation have been at least in part derived from the
observations. Exclusion of other variables from the equation implies the
identification of the parameters of the demand function.

Whether it would have been simpler to directly specify reduced form
equations for Y and R, as Professor Sims suggests, is not obvious. The
reader should realize that specifying a relationship with more than one
current endogenous variable is a straightforward way of incorporating
restrictions in the reduced form. For instance, the following relationship

Vi + BYo + Y X1, = uss with Eu;, = 0,

implies that the expectations of yy,, v2;, and x;, lie in a hyperplane or
alternatively that the reduced form equation of y;, is proportional to that
of v,,;, except for the coefficient of x;,. The specifications for Y and R
should be interpreted in this way.

3 Forecasting

First, I would like to emphasize that the forecasts have been computed
from the reduced form and not from the recursive form, as Professor
Christ states.

When comparing the forecasting performance of the vector models
with that of the univariate ARIMA models, one should keep in mind
that differencing of the series not only eliminates the linear trend and
the seasonal dummy variables but also transforms the stochastic struc-
ture of the disturbances of the univariate ARIMA models. If the distur-
bances in the univariate models for the original series are non-stationary
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and generated by a random walk, differencing will induce a white-noise
disturbance term. Assuming that the factors that affect the unemploy-
ment rate are (especially after 1973) non-stationary could possibly imply
non-stationary disturbances in the univariate model for U. It may also
explain why the forecasting performance of the univariate model for
(1 — L*U is superior to that of the vector models.

Finally, I am glad to see that the discussants do not have major objec-
tions against the approach proposed in my chapter and that they are
sympathetic to the statistical methods that I used.



4 Time series analysis, forecasting, and
econometric modeling: the structural
econometric modeling, time series analysis
(SEMTSA) approach (1994)

Arnold Zellner

In this chapter an account of our experiences in modeling and
forecasting the annual output growth rates of 18 industrialized
countries is presented. A structural econometric modeling, zime-series
analysis (SEMTSA) approach is described and contrasted with other
approaches. Theoretical and applied results relating to variable and
model selection and point and turning-point forecasting are discussed.
A summary of results and directions for future research concludes the
chapter.

1 Introduction

In this chapter we shall provide an account of some of our experiences
in modeling, forecasting, and interpreting time series data. Since the
literature on these topics is so extensive, a comprehensive survey would
require one or probably more volumes. Thus, we have decided to describe
our approach, the experience that we have had with it, and its relation to
a part of the statistical and econometric time series literature.
Obtaining good macroeconomic and microeconomic and other time
series models is important since they are useful in explanation, prediction,
and policy-making or control. The basic issue that is addressed in this
chapter is how to produce such good time series models. Our SEMTSA
approach (see, e.g., Zellner and Palm 1974, 1975; Plosser 1976, 1978;
Zellner 1979, 1984, 1991; Palm 1983; Wallis 1983; Webb 1985; Manas-
Anton 1986; Hong 1989; Min 1991) will be briefly compared to sev-
eral other approaches that have emerged in the literature. Rather than
just present theoretical procedures that may be useful in producing good

This research was financed by income from the H. G. B. Alexander Endowment Fund,
Graduate School of Business, University of Chicago, and by a grant from the National
Science Foundation.

Originally published in the Journal of Forecasting 13 (1994), 215-33. CCC 0277-
6693/94/020215-19. © 1994 John Wiley & Sons.
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models, an account will be given of both theoretical and applied results in
what follows. Obviously, the issue of how well procedures work in serious
applications is of first order importance.

The plan of the chapter is as follows. In section 2, a description of the
SEMTSA approach and some brief comparisons with other approaches
are provided. Also, our experience in applying it in the analysis of
macroeconomic time series data is described. In section 3 theoretical and
applied results on variable and model selection procedures are presented.
Section 4 takes up some aggregation issues in model formulation as they
relate to forecasting performance treated . . . by Espasa and Matea (1990)
and others. The final section [5] contains a summary of results and some
conclusions about future work.

2 Background on the SEMTSA approach and
its applications

In the SEMTSA approach the first step involves a description of main
objectives, as emphasized in Zellner (1979). In our present modeling
work, our objectives are to produce models which (1) forecast well, (2)
are useful in explanation, and (3) serve policy-makers’ needs adequately.
As will be seen, in our work we do not attempt to achieve all three
goals at once, as is the case in some structural econometric modeling
approaches (see, for example, Hickman 1972; Fair 1991). Rather, we
proceed sequentially by approaching the forecasting goal first, then the
explanatory goal, and finally the policy or control goal using many sets
of data, in our case data for many countries.

As regards the forecasting goal, we indicate the variable or variables
which are of major concern. It is recognized that these variables can be
modeled in a multiple or multivariate time series model, including vector
autoregressions (VARSs) as a special case, or in a multi-equation struc-
tural econometric model. However, as recognized by Keynes, Friedman,
Christ, Box, Tiao, Sims, this author, and many others, in such multi-
variate models, there are many parameters, which usually makes tests of
model specification not very powerful and estimates and predictions not
very precise. Further, there is a high probability that errors may occur
in formulating equations of such models which can lead to models with
unusual properties (see, e.g., the results of simulation experiments with
large-scale econometric models reported in Adelman and Adelman 1959;
Hickman 1972; Zellner and Peck 1973). Further, . . . these multiple
equation models are [often] non-linear in variables and parameters, a
fact which makes understanding them somewhat difficult even with the
results of simulation experiments available. For example, it is difficult
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to establish whether such large, non-linear models have unique or many
solutions, what their global dynamic properties are, and what are the
finite sample properties of estimation, testing, and prediction techniques,
particularly when there is considerable use of the data in pretesting to
determine forms of models. Add to this the problems of systematic and
random measurement errors in the variables employed and one begins
to understand the serious problems that arise in attempting to model a
set of time series variables in a “one-shot” attempt to get a satisfactory
multivariate time series or structural econometric model.

In the SEMTSA approach, we formulate the components of a model,
using as much sound background information as possible, and then estab-
lish that the components work well in forecasting a good deal of out-of-
sample data. Then, using relevant subject-matter theory and background
information, we attempt to put the components together to form a sen-
sible explanatory model. The explanatory model so formulated can then
be tested further using as much new data as possible, that is, data for
additional time periods going forward or backward in time and for addi-
tional economic entities (say, countries). As will be seen, the formula-
tion of the component forecasting relations, usually transfer functions,
is conditioned by certain information relating to properties of an overall
multivariate model for the set of variables. Finally, adapting the model to
make it useful not only for explanation and prediction but also for policy
making will take additional work.

To make some of the above points explicit, suppose that we initially
tentatively entertain a linear multiple time series model as put forward
many years ago by Quenouille (1957) and now often referred to as a
multivariate autoregressive, moving average (MVARMA) process:

H(L)z = F(L)e,, (2.1)

where 2, and ¢; are m x | vectors of random variables, the former observ-
able and mean-corrected and the latter a white-noise error vector. H(L)
and F(L) are m x m matrix lag operators with L being the lag or backshift
operator. If F(L) is of zero degree, the system is a VAR. Note that if m and
the degree of H(L) are large, this VAR will contain a very large number
of parameters which, as pointed out above, will present problems. Now,
if H(L) is invertible, thatis, H'(L) = H(L)*/|H(L)|, where H(L)* is the
adjoint matrix associated with H(L), we can write (2.1) as follows:

|H(LD)|z: = H(L)"F(L)e, (2.2a)
or

|H(L)|zi, = al/‘eza (2.2b)
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where z;, is the ith element of 2; and a; denotes the ith row of H*(L)F(L).
Equation (2.2b) indicates that individual elements of z, have processes in
the univariate ARMA form. If H(L) is large in dimension, that is, if 7 is
large, and of high degree, the autoregressive polynomial [H(L)| in (2.2)
will be of high degree unless there are some common roots on both sides
of (2.2) which cancel. Given a tentatively restricted form for (2.1), it is
possible to derive the implied ARMA processes for individual variables, as
shown in (2.2) and check their forms against forms determined from the
data (see references cited above for examples illustrating this procedure).
Note, however, that in order to get fixed parameter, stationary processes
in (2.2), a number of rather strong assumptions must be made about
the process in (2.1) which may not be satisfied in practice. For example,
some of the variables in 2, may not be covariance stationary and/or some
of the elements of H(L) and F(L) may be time-varying.

Further, in connection with (2.1), if we are willing to assume, as many
model builders do, that a subvector x, of 2, = (3, x) is exogenous, then
we can write system (2.1) as follows:

H, H, F; 0
< 11 12) (%) — ( 11 > <€1z> (2.32)
0 Hy, Xz 0 ) €2

Hyy, = —Hjox;, + Frey,
Hyx; = Faens (2.3b)

or

where H(L) and F(L) have been partitioned in conformity with the par-
titioning of 2z, and for convenience, the submatrices’ dependence on L is
not explicitly shown. The assumption that x, is exogenous implies that the
following submatrices of H(L) and F(L) are identically zero, namely H,;,
F15, and F,;. The first line of (2.3b) is in the form of a linear dynamic
econometric model while the second provides a tentative multiple time
series process for the exogenous variables in x;.

From (2.3b), given that H;; is invertible, the transfer function (TF)
system is given by:

|Hi1|y: = —H]| Hizx, + Hf| Fiiens, (2.4a)
and a single TF equation (say, the 7th) is
| Hy1|yi = b;xz + C:'elta (2.4b)

where H is the adjoint matrix associated with Hyi, b; is the ¢th row of
—H{, Hy,, and ¢; is the ith row of Hf, Fy;. It is seen from (2.4b), that
the polynomial operator hitting each element of y, is the same, barring
the cancellation of common roots in particular equations of (2.4a). Also,
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the use of (2.4) does not necessarily imply that the input or exogenous
variables are covariance stationary. Further, if we are willing to put some
restrictions on the parameters of the structural equations given in (2.3b),
these will imply restrictions on the TF system in (2.4a), which can be
tested (see Zellner and Palm 1975, for explicit examples with applica-
tions to checking the properties of a small structural model of the US
economy using monthly data). Here we started with a restricted ver-
sion of (2.3b), the structural equations and assumptions regarding x;, as
many other model builders have done. Unfortunately, several variants
of the structural equation system, with adaptive or rational expectations
assumptions, were found not to be completely supported by the informa-
tion in the data. This is an example of an attempt to obtain a multivari-
ate model in a “one-shot” approach. For a description of other failures
of this approach, see the evaluation by McNees (1986) of a number of
structural econometric models. Also, as shown by Litterman (1980) and
McNees (1986), attempts to use unrestricted VARs to model quarterly
macroeconomic variables for the US economy have not been success-
ful. Use of prior distributions on autoregressive parameters, as in Litter-
man (1980, 1986), Highfield (1986), and others’ work which center pro-
cesses for individual variables at random walks with drift, tend to improve
on unrestricted VARs’ performance in forecasting but were not entirely
satisfactory in forecasting financial variables and recent turning points.
Perhaps centering processes for individual variables at random walks is
inappropriate since random-walk models do not always perform well in
forecasting (see below for further discussion and empirical results bear-
ing on this issue). Further, as pointed out above, a VAR usually implies
marginal ARMA processes for individual variables which have very high
order AR and MA parts (see (2.2)). Finally, for ten or so macroeconomic
variables and data sets generally available, an unrestricted multiple time
series approach based on (2.1) does not seem fruitful in view of the large
number of parameters and model uncertainty present.

In view of the failures of “one-shot” approaches to modeling macroe-
conomic variables, including our own, the problem is how to proceed
in order to obtain reliable models. In research for the paper (Garcia-
Ferrer er al. 1987) we argued as follows. First, since many had tried
one-shot approaches and failed, we decided to take a component-by-
component or a variable-by-variable approach. We selected an impor-
tant, key variable, the real total output of an economy as measured by
real gross national or domestic product (data available for many coun-
tries in the IMF computerized database at the University of Chicago).
Most “one-shot” attempts to model this variable along with many oth-
ers have failed. As shown by Christ (1951), Cooper (1972), and Nelson
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(1972), many large-scale models’ forecasts were not as good as those of
very simple univariate naive models (e.g. random walks, low order AR
models, or simple ARMA models). Also, in the exchange rate area, Meese
and Rogoff (1983) showed that random-walk models performed better
in forecasting than did three structural exchange rate models (see also
Wolff 1985, 1987, who improved the structural exchange rate models’
performance by use of time-varying parameter state-space versions but
not to an extent that they entirely dominated random-walk models’ pre-
dictive performance). In interpreting such results, years ago Friedman
(1951), who was influential in having such forecasting tests performed,
suggested that if a large model could not perform better in forecasting
than a univariate naive model then it was probably faulty and needed
reformulation.

The above considerations, along with Jeffreys’ (1967) advice to con-
sider all variation random unless shown otherwise and his “simplicity
postulate” which suggests that simpler models will probably work bet-
ter than complicated models, led us in Garcia-Ferrer et al. (1987) to
start with a relatively simple autoregressive model of order three for the
rate of growth of real annual GNP (RGNP) for a country. That is, with
v;; = InRGNP;, — In RGNP;,_, the growth rate of the :th country in the
rth year, we entertained the following autoregressive model of order three,
denoted by AR(3):

Vi = Boi + BriViu—1 + B2idii—2 + B3iVip—3 +uy 1=1,2,..., N
t=1,2,...,T, (25)

where u;, was assumed to be a scalar white-noise error term. Now it may
be asked, why did we first difference and choose an AR(3)? We first dif-
ferenced the log of RGNP to obtain the rate of growth because there is a
great interest in this variable. Also, first differencing is helpful in reducing
the effects of certain types of constant or time-varying systematic mea-
surement biases, and it is, of course, a procedure for possibly inducing
stationarity, although we were not too sanguine on this point. Further,
by using an AR(3) process, we allowed for the possibility of having com-
plex conjugate roots giving rise to an oscillatory component and a real
root producing a local trend. Indeed, in subsequent analyses by Geweke
(1988) and Hong (1989), it was shown empirically using data for many
countries that in each case there are two complex roots and one real root,
giving rise to damped cycles and non-explosive local trends. Note that
the Nelson—Plosser (1982) (0, 1, 1) ARIMA process for US RGNP does
not admit the possibility of complex roots and associated cyclical com-
ponents. In this regard, see also Harvey and Todd (1983), who favored
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(2,1, 1) or (2, 1, 2) models. Finally, Cooper (1972) showed that a simple
AR process performed as well or better in forecasting than did compli-
cated multi-equation models.

In view of the above considerations, we decided to begin our analy-
zes with an AR(3) model for the growth rate of real annual output as
shown in (2.5) and annual data for eight European countries and the
United States, 1951-73 for fitting and 1974-81 for out-of-sample one-
step-ahead forecasting. The results of these forecasting experiments pro-
duced what Thomas Huxley has called an “ugly fact,” namely a fact that
destroyed the a priori arguments mentioned in the previous paragraph.
Our AR(3) models for the nine countries did not forecast any better than
various naive random walk models (see reported RMSEs in Garcia-Ferrer
et al. 1987). Given the simplicity of the AR(3) model, it was not difficult
to determine the reason for poor forecasting performance. The model was
missing badly in forecasting downturns and upturns, generally showing
over-shooting and under-shooting. With the nature of the problem clear,
it was not too hard to remember Burns’ and Mitchell’s (1946) fundamen-
tal work on business cycles using pre-Second World War data relating to
several economies. They found that stock prices and money generally
led aggregate economic activity in business fluctuations. Also, Moore,
Zarnowitz, and others had emphasized the value of using such leading
indicator variables in forecasting even though many were skeptical. Stock
prices reflect quickly all kinds of news events, policy changes, etc. affect-
ing an economy while the real economy usually responds to such events
with a lag. Also, money supply changes can operate to affect consumer
and producer demands as well as reflect information that policy-makers
may have that is not available to the general public. Further, since world
events probably affect individual economies, we decided to introduce a
“common world effect” into each country’s equation. Thus (2.5) was
embellished to incorporate these considerations to produce the following
third order autoregressive-leading indicator (AR(3)LI) model:

Vi = Poi + BriYi—1 + P2iVi—2 + B3iVi—3 + Pai SRy_1
+ BsiSRy—2 + Bei GMjy—1 + Bri WSR,_1 + u; (2.6)

/
=X, B + ui,

where SR;, and GM,, are the rates of change of real stock prices and real
money, respectively, and WSR; is the world stock return, the median of
the SR,s in year r. Specifically, SR;, = (1 — L) In(SP,/P;) and GM,;, =
(1 — L)In(M;,/ P;), where SP;, is a stock price index, P;, is a price index,
and M;, is nominal money (M;) holdings at the end of year ¢.
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With respect to the trend-stationary (TS) versus difference-stationary
(DS) issue, we note that it has been considered in the literature in terms of
models, AR(1)s, etc. which have not been shown to perform well in fore-
casting. Thus results based on these models may not be dependable. In
(2.6), the output variable, y;, is clearly affected by the input leading indi-
cator variables which may be generated by non-stationary processes and
can induce varied cyclical and trend components in the output variable,
;. As indicated below, the AR(3)LI model in (2.6) performs reasonably
well in point and turning point forecasting.

When (2.6) was implemented by simply using least squares estimation
with annual data 1951-73 for nine countries! and one-year-ahead fore-
casts were made for the years 1974-81, it was found that there was a
decided improvement in forecasting performance wvis-a-vis use of AR(3)
models and several random-walk models. Further, an interesting fea-
ture of the error terms was noted when we employed the common effect
variable, lagged world stock returns, WSR,_, namely the contemporane-
ous error terms for individual countries were not very highly correlated.
Also, there was little indication that the error terms are autocorrelated
(see Zellner, Hong, and Gulati 1990 for the fitted relations and measures
of autocorrelation). Also, in Garcia-Ferrer et al. (1987) there are some
comparisons of the forecasting performance of (2.6) to that of large-scale
OECD models combined with judgmental adjustments.

Further, in Garcia-Ferrer er al. (1987) additional computations were
performed to check the effects of using two types of Stein-like shrinkage
techniques in forecasting which generally produced better overall results.
These calculations exploited the fact that the coefficient vectors for dif-
ferent countries are not too different in value. Using vector and matrix
notation, we can write (2.5) for the ith country as follows: y; = X;8; +
u, 1 =1, 2, ..., N. Then, assuming along with Swamy (1971), Lind-
ley and Smith (1972), and others, 8; = 6 + v;, where 6 is the common
mean of the §8;s and ; is an error vector, it is not difficult to combine the
information in the data with the information in the distribution of the
B;s to obtain estimates of the 8;s. As we specified the system, the esti-
mate of B; is an average of the least squares estimate ﬁ,- =(X ;X,-)‘1 Xy
and an estimate of 6, the mean of the 8;5. On using such an estimate
for each country, the nine annual, one-step-ahead forecasts, 1974-81,
were generally improved relative to using just the least squares or dif-
fuse prior Bayes’ forecasts, with RMSE used as a criterion of forecasting
performance.

1 All data are taken from the IMF IFS data bases.
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Also, we analyzed the data using a time-varying parameter model,
namely, v; = x,Bi + i, and B = Biy—1 + €4, a vector random walk.
Parameters were assumed time varying to reflect possible effects of wars,
policy changes, aggregation, and so on. On implementing the above time-
varying parameter model there were improvements relative to use of fixed-
parameter models for many countries. Recall that the period 1951-81
includes at least two wars, the Korean and Vietnamese, two oil crises,
changes from fixed exchange rates to floating exchange rates in the early
1970s for many countries, etc. In performing our estimation and fore-
casting calculations, no points were omitted nor were any dummy or
intervention variables employed. It appears that the leading indicator
variables alone or coupled with shrinkage or time-varying parameters
produced reasonably good forecasting results for the nine countries.

Since there is a possibility that in some sense the sample of nine
countries and/or the period employed were “special” it was considered
extremely important to check previously obtained results with an expan-
ded sample of countries and a longer time period. Thus in Hong (1989)
and Zellner and Hong (1989), data for eighteen countries, European
countries including Spain, as well as for the United States, Canada,
Japan, and Australia, 1951-84 were employed. This expanded data-base
included data for the sharp 1982 recession which were notincluded in ear-
lier analyzes. Generally, the one-year-ahead forecasting results for 1974—
84 were similar to those found earlier; results reported in Zellner and
Hong (1989). Further improvements were made by including a second
general effect variable in each country’s equation, namely the median of
the countries’ growth rates for year 7, denoted by w;. That is, the equation
for each country shown in (2.6) was modified as follows:

Vir = a;w, + x;, i + i, (2.7a)
and the following equation was assumed for z;,:

W, = 80 + S1w;1 + S22 + B30, 3 + S4MSR, |
+8sMGM;_1 + v;, (2.7b)

an AR(3)LI with the following leading indicator variables, MGM, and
MSR,, the medians of the eighteen countries’ real money and real stock
price growth rates (see figure 4.1 for plots of these data). We denote the
model in (2.7) an ARLI/WI model. Use of it along with complete shrink-
age led to improved forecasting results for most countries (see Zellner
and Hong 1989). Also, Hong (1989) showed that the AR(3)LI models
performed better in one-year-ahead forecasting, 1974-84, for eighteen
countries than the Nelson—Plosser (1982) (0, 1, 1) ARIMA model and
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Figure 4.1 Boxplots of data for eighteen countries, 1954-1984. For
each year the horizontal line in the box is the median growth rate and
the height of the box is the interquartile range of the eighteen countries’
growth rates. The end points of the lines extending from each box indi-
cate the highest and lowest growth rates in the given year. Shown are
annual growth rates of (a) real output, (b) real money, and (c) real stock
prices
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a version of the Barro (1978) “money surprise” model. Further, Hong
(1989) computed the roots of the ARLI process for each country and
showed that in each instance there was a high posterior probability that
there are two complex roots and one real root with amplitudes less than
one. Plots of the posterior distributions of the periods indicated cycli-
cal periods of roughly four—six years’ duration. Finally, Otter (1990)
re-analyzed some of the Zellner—-Hong (1989) data using a canonical
correlation approach and Hankel matrix identification procedures which
require strong stationarity assumptions. While he claimed to get better
forecasting results, he did not make comparisons with the Zellner—-Hong
shrinkage forecasting results which are better than his and the results that
he did report in his confused table 4.1, when unscrambled reveal no fore-
casting improvement as measured by median RMSE of forecast, 2.41 for
the AR(3)LI model, and 2.94 and 2.44 for two variants of his canonical
correlation approach.?

To check further the forecasting properties of the ARLI and ARLI/WI
models, a Bayesian decision theoretic methodology for forecasting turn-
ing points in the rates of growth of real GNP was developed building on
earlier work of Wecker (1979) and Kling (1987). In Zellner and Hong
(1989), Zellner ez al. (1990), and Zellner, Hong, and Min (1991) this
methodology was developed and applied to forecast turning points in
eighteen countries’ growth rates. In the last reference, using a variety
of models including fixed- and time-varying parameter models with and
without pooling, approximately 70 percent or more of 158 turning points,
1974-87, were correctly forecasted. The procedures employed involved
a definition of a turning point and use of a predictive density to compute
the probability of a downturn or of an upturn. Having these probabilities
calculated and a 2 x 2 loss structure, it is possible to choose a forecast
that minimizes expected loss. For example, if the 2 x 2 loss structure is
symmetric, then one forecasts downturn when the probability of a down-
turn is greater than 1/2 and no-downturn otherwise. In figure 4.2 and
table 4.1 are shown the results of these probability calculations for eigh-
teen countries year by year. The turning point forecasts, based on these
computed probabilities, were compared with those of some naive models
using Breier scores and were found to be much superior to all naive mod-
els used. That the models performed so well in forecasting turning points
(approximately 70 percent of 158 turning points correctly forecasted)
was indeed a pleasant surprise.

2 Further, Otter (1990) excluded data for several countries, made some incorrect compar-
isons, and did not employ exactly the same data as employed in our work.
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Figure 4.2 Percentages of correct forecasts, 1974-1986.
See Zellner, Hong, and Gulati (1990) for additional information regard-
ing methods and models



‘pasojduwrs sanbruyoal pue S[PPOW INOGE UONBULIOJUL PUE S1[NSII [BUOLIPPE
103 (1661) UI Pue ‘SUol “1ou[[o7 39S "ITLA < LA > T4 ‘T—LA ‘st 18] “paryl 9Yl MO[oq Y1INOJ Y1 PUB PIIYL B MO[oq SIIBI YIMOIS 2ATINOISUOD
OM1 ST UINIUMOP B JO UONIUYSP Y], ‘10U PIP UINIUMOP B 1BY] SAIBIIPUL (—) YSBP B I[IYM PILINOO0 UINIUMOP B 1B $31BIIPUIL () YSLIAISE UY

S9I0N
960  —Th0 +CS°0 +68°0 £98°0 311G palu)
A0 FS0 —T€0 £1€°0 +68°0 «66°0  wWopSuny pan
«LLO  —LE0 F60  —%LO «L¥°0 PUE[I2ZIIMS
080 —LEO 080 —CTI'0 +89°0 udspamg
-L€0 —I1€0 —¥H0 «16°0 uredg
990 —8S0 +8L°0 +66°0 +86°0 KemIoN
850  —¢T0 «0L°0 80 +88°0 SPUBLIYIIN
«L9°0 £6S°0 —¢8°0 uedef
+99°0 «18°0 +L8°0 «18°0 Are1y
£09°0 +26°0 L0 pueI[
F9°0 —LTO +58°0 +26°0 «L8°0 Auewron
-16°0 F70 +88°0 dUeIL]
+69°0 €60  —¢I0 puequLy
9€0  —€€0 +59°0 «08°0 +66°0 yrewus g
880 —LEO «16°0 F6°0 epeue))
&S0 +68°0 «06°0 +28°0 umispg
£9€°0 «LT0 +56°0 «LL°0 eLIsny
6°0 +£8°0 +89°0 erensny
9861 6861 ¥861 €861  TS86T 1861 0861 6L61  8L61 LL6T  9L6T  SL61  ¥L6I Anuno)

Jedx

986 1—+/61 “wiopout I/ ITIV /AL P?100d ay1 wiodf Kuunos pup vak £q suiniumop fo sauyiqnqoid painduiory 1§ 9[qe],



188 Arnold Zellner

Table 4.2 RMSE: for pooled and unpooled ARLI/WI models’ forecasts, by
country, 1974—1987¢

RMSE (%) Countries Freq. Prop.
(a) Pooled TVPM
1.00-1.49 FRN GER NET SPN 4 0.22
1.50-1.99 AUR BEL CAN FIN ITY NOR SWD UKM USA 9 0.50
2.00-2.49 AUL DEN JAP SWZ 4 0.22
2.50-2.99 IRE 1 0.06
3.00-3.49 - 0 0.00
Median = 1.74 Minimum = 1.17 Maximum = 2.53 18 1.00

(b) Unpooled TVPM
1.00-1.49 UKM 1 0.06
1.50-1.99 BEL FRN GER NET SPN SWD 6 0.33
2.00-2.49 AUR USA 2 0.11
2.50-2.99 CAN DEN ITY NOR 4 0.22
3.00-3.49 AUL FIN IRE JAP SWZ 5 0.28
8

Median = 2.37 Minimum = 1.39 Maximum = 3.32 1 1.00
(c) Pooled FPM

1.00-1.49 NOR SPN 2 0.11
1.50-1.99 AUR BEL CAN FIN FRN GER NET SWD UKM 9 0.50
2.00-2.49 AUL DEN IRE ITY JAP SWZ USA 7 0.39
2.50-2.99 - 0 0.00
3.00-3.49 - 0 0.00

Median = 1.86 Minimum = 1.21  Maximum = 2.48 18 1.00

(d) Unpooled FPM
1.00-1.49 - 0 0.00
1.50-1.99 BEL NET NOR UKM USA 5 0.28
2.00-2.49 FRN SPN SWD 3 0.17
2.50-2.99 AUR CAN GER IRE 4 0.22
3.00-3.49 AUL DEN FIN JAP SWZ 5 0.28
3.50-3.99 ITY 1 0.06
8

Median = 2.60 Minimum = 1.50 Maximum = 3.68 1 1.01

Note:
@ See Min and Zellner (1990) for explicit specification of the models employed in these
calculations, namely variants of the model in (2.7) of the chapter.

In table 4.2, taken from Min and Zellner (1993), there is a signifi-
cant demonstration of the effects of pooling on forecasting performance
for two models. Note that pooling results in eighteen countries’ forecast
RMSEs being highly concentrated around a low value whereas without
pooling there is much more dispersion in countries’ forecast RMSEs and
their median value is higher than in the pooled case. That pooling has
such a significant effect on the precision of forecasts is indeed remarkable.
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Having provided an overview of selected aspects and results of the
SEMTSA approach, in the next section results provided by use of
Bayesian model and variable selection techniques will be presented.

3 Model and variable selection procedures and results

Here selected Bayesian model and variable selection procedures will be
described and applied. As explained above, the issue of whether fixed-
parameter (FP) models or time-varying parameter (TVP) models are
more appropriate for modeling economic time series is a central one.
If parameter values change because of Lucas effects, aggregation, wars,
strikes, and other causes, FP models may not be adequate for modeling
and forecasting. To approach this problem, in Garcia-Ferrer et al. (1987)
both FP and TVP models were estimated and used in forecasting. The
results favored somewhat the TVP models, the AR(3)LI model in (2.6)
with the parameter vector assumed generated by a vector random walk. In
Min and Zellner (1993), posterior odds for FP versus TVP models were
derived and evaluated year by year for the period 1974-87 for eighteen
countries. The prior densities used in forming the posterior odds for 1974
were the posterior densities based on annual data, 1954-73, with initial
priors rather diffuse. In tables 4.3(a) and 4.3(b) some of these posterior
odds are presented. It is seen that for a number of countries the odds
favour TVP models. Also, in table 4.4 it is seen that when odds favor
TVP models, the TVP models tend to have lower RMSEs of forecast
than do FP models and vice versa. Thus the posterior odds appear to be
useful in screening models for forecasting purposes. Further, they can be
used in a decision theoretic framework to choose between or among alter-
native forecasts or to combine forecasts of alternative models (see Min
and Zellner 1993; Palm and Zellner 1992, for theoretical and empirical
analyses illustrating these points). Important in this context is the issue of
whether or not to combine models when the models considered do or do
not constitute an exhaustive set (see also Diebold 1989). That Bayesian
posterior odds are useful in these problems is indeed fortunate.

As regards variable selection, the approach described in Zellner and
Siow (1980) and Zellner (1984, ch. 3.7) will be used here to determine
what variables to include in a FP ARLI model. This approach to selecting
or testing alternative leading indicator and other variables to include in
a model has also been employed in several studies reported in Poirier
(1991) and is different from the approach employed by Stock and Watson
(1991). Here we are interested in comparing the AR(3)LI model in (2.6)
with some narrower and some broader models. Thus we consider a broad
model containing a constant term, ¢, and eight input variables, namely
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Table 4.3(a) Posterior odds for fixed versus time-varying parameter
models computed from annual data, 1973—1987¢

Models
Unpooled Pooled
Country ARLI? ARLI/WI¢ ARLI? ARLI/WI¢
Australia 0.16 0.34 1.01 0.94
Austria 0.01 0.07 0.21 1.02
Belgium 1.64 0.45 0.40 1.57
Canada 0.41 2.21 0.57 1.72
Denmark 0.01 0.39 0.05 0.99
Finland 0.78 1.68 0.36 0.76
France 0.01 1.30 0.47 1.42
Germany 0.00 0.01 0.16 1.43
Ireland 6.18 3.04 1.87 1.50
Italy 0.01 0.06 0.32 1.21
Japan 0.45 0.48 6.81 0.91
Netherlands 0.41 2.32 0.10 1.92
Norway 6.60 4.95 1.36 1.09
Spain 0.27 0.75 0.57 1.35
Sweden 0.25 0.34 0.04 0.58
Switzerland 0.71 4.25 0.21 0.91
United Kingdom 0.22 8.67 0.13 0.82
United States 9.18 17.31 0.24 0.81

Notes:

@ Posterior distributions for models’ parameters, computed using annual
data 1954-72, were used to form Bayes factors for the period 1973-87. Prior
odds were set 1:1 in all cases. The entries in the table are odds in favor of fixed
parameter (FP) models. See Min and Zellner (1993) for derivations and other
results.

b Unpooled FP/ARLI versus unpooled TVP/ARLI.

¢ Unpooled FP/ARLI/WI versus unpooled TVP/ARLI/WI.

4 Pooled FP/ARLI versus pooled TVP/ARLI.

¢ Pooled FP/ARLI/WI versus pooled TVP/ARLI/WI.

three lagged values of the output growth rate, denoted here by y;, y,, and
3 as well as rates of growth of real stock prices and of real money, lagged
one or two years and denoted by S and S, and M, and M,, respectively,
and the lagged median growth rate of real stock prices, denoted by W.
With all models containing a constant term, ¢, there is just one model with
all eight input variables, eight models containing any seven variables,
28 models containing any six variables, 56 models containing any five
variables, 70 models containing any four variables, and so on with a total
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Table 4.3(b) Number of countries, by values of posterior odds, fixed
versus time-varying parameter models, annual data, 1973—-1987°

Models
Unpooled Pooled

Posterior odds, ARLI ARLI/WI ARLI ARLI/WI
FP versus TVP ARLI ARLI/WI ARLI ARLI/WI
0-0.49 12 8 12 0
0.5-0.99 2 1 2 8
1.00-1.99 1 2 3 10

> 2.00 3 7 1 0

Notes:

@ See Min and Zellner (1993) for derivation of posterior odds based on 1:1 prior
odds.

Table 4.4 Number of countries by posterior odds and root mean-squared error
(RMSE) of forecast, by rype of model, annual outpur growth rates,
1974-1987°

ARLI ARLI/WI
Lower RMSE for: Lower RMSE for:

Posterior odds favour FPM TVPM Tot. FPM TVPM  Tot.
(a) Unpooled models

FPM 3 1 4 5 4 9

TVPM 3 11 14 1 8 9

Tot. 6 12 18 6 12 18
(b) Pooled models

FPM 4 0 4 3 6 9

TVPM 0 14 14 1 8 9

Tot. 4 14 18 4 14 18

Note:
¢ Taken from Min and Zellner (1993).

of 256 possible models. Thus the AR(3)LI is just one of 256 possible
linear models involving the eight input variables and a constant. Testing
it against 255 alternatives raises the issue of “selection” effects. That is, it
may be that with so many alternative models, one may fit the data just by
chance or due to over-fitting. This issue will be discussed further below.
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Table 4.5 Model selection using posterior odds, mean-squared error and
out-of-sample forecast RMSEs

1954-1973 1954-1987 Out-of-sample,
1974-1987,
Model® Odds® MSE¢ Odds® MSE‘ RMSE of forecast?
1. AR(3)LI 2.80 1.79 6.19  2.70 2.31
V1238182 M1 Wi
2. eysMi Mo W,y 17.42  1.57 2.74  3.46 2.74
3. cy3SIM M, W, 15.67 153 1429  2.88 2.44
4. cy3SIM; W, 8.61 1.81 26.34  2.87 2.30
5. cy3S1 S, M Wy 12.88  1.59 59.92  2.56 2.22
6. cS1SaMi My Wi¢ 2.18 227 1.68  3.44 2.59
7. ey SIMy W7 2.11  2.39 2.55  3.48 2.54
8. AR(3) cyiv2v3 0.04 5.41 0.01 5.76 2.69
9. Random walk for 0.06 4.89 0.02 5.75 2.68
In GNP with drift, ¢
10. General model 1.00 1.81 1.00 2.80 2.47
cy1323381S2a M1 Mo Wy
Notes:

¢ The general model in line 10 is given by y; = ¢ + B1y—1 + B2yi—2 + B33:—3 + BaSR_1 +
B5SR—2 + BeGM—1 + B1GM,—> + Bs W1 + &, and denoted by ¢y1y2y3S1SaM i Mo Wy.
Other models are particular cases of the general model.

b Posterior odds are computed for each specific model versus the general model in line 9
with prior odds in each case taken 1:1. See Zellner (1984, ch. 3.7) for expressions for odds.
¢ Within-sample mean-squared error = Zfil élz /v, where v = degrees of freedom, or num-
ber of observations minus number of estimated parameters.

4 QOne-step-ahead forecast errors, A; were employed to compute RMSEs given by

14
RMSE = | ) 47/14
1

¢ Thisis the model selected by Mittnik (1990), based on data 1953-73 for the United States.
f This is the model selected by Otter (1990), based on data 1954-73 for the United States.

Here we shall just note that variable selection will initially be performed
using the data for 195473 and the preferred models will be evaluated
further in out-of-sample forecasting using data for 1974-87, fourteen
annual one-step-ahead forecasts. Then the odds are recalculated using
all the data, 1954-87. The results of these calculations are presented in
table 4.5.

It is seen from table 4.5, based on data for the United States, that
the posterior odds on the basic AR(3)LI model in (2.6) versus the gen-
eral model containing a constant ¢ and eight input variables, shown in
line 9, is 2.80:1.00. This posterior odds is based on prior odds of 1:1,
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data 1954-73, and the procedures in Zellner (1984, ch. 3.7). Also, the
within-sample MSE = "2, 82/9, where v = degrees of freedom, is 1.79
for the AR(3)LI model in line 1 and 1.81 for the general model in line
9. Further, the RMSEs of forecast for out-of-sample forecasts, 1974-87
(fourteen forecasts) are 2.31 and 2.47 percentage points, respectively.
Finally, the recomputed odds for the entire period 1954-87 is 6.19:1.00
for the AR(3)LI model versus the general model. Thus in this compari-
son, the ARLI(3)LI model fares well.

In lines 8 and 9 of table 4.5 are shown results for a random walk
with drift and an AR(3) model. The posterior odds, MSEs, and forecast
RMSEs overwhelmingly favor the AR(3)LI relative to these models, as in
previous work. For example, the RMSEs of forecast are 2.31, 2.69, and
2.68 respectively, for these three models.

With respect to the period 1954-73, the models in lines 2-5 are the
ones most favored by the posterior odds and/or the MSE criteria after
examining all 256 models. The posterior odds reported in table 4.5 are all
based on equal prior probabilities on all 256 models. There is a question
as to whether this is appropriate given that we selected models from a
large number, 256. If p, is the probability associated with the AR(3)LI
model and pg is the probability associated with the other 255 models and
each of them is given an equal probability, the prior odds for any pair
of models is pa/(pB/255) = 255. pa/pp will usually not be equal to
one. For example, if po = 1/16 and pg = 15/16, then the prior odds =
255/15 = 17, that is, 17:1 on the AR(3)LI model versus any other of
the 255 alternative models. In this calculation, we have assumed the 256
models are exhaustive, that is, py + pg = 1. Of course, this is usually not
the case. We could take pp = 1/16 and pg = 5/16, in which case the
odds would be equal to 255/5 = 51. These and other assumptions (e.g.
see Jeffreys 1967, p. 254) indicate that when we are considering a single
model, here an AR(3)LI model versus a large number of alternatives,
to avoid “selection effects” it is not wise to use 1:1 prior odds but odds
which favor the basic or null model, here an AR(3)LI model.

With the above proviso regarding prior odds, we see that with a cor-
rection for selection, the odds on the models in lines 2-5 vis-a-vis the
AR(3)LI model in line 1 are not high. For example, with a conservative
factor of 10 to guard against selection effects, the odds on the AR(3)LI
model versus that in line 2 is (10)(2.80)/(17.42) = 1.6 in favor of the
AR(3)LI model. Note that the forecast RMSE:s for these models are 2.31
for the AR(3)LI model versus 2.74 for the model in line 2. Similar com-
parisons can be made with the models in lines 3-5. Finally, we note that
only y; (that is, y,_3) appears in these models but not y; and y, (that is,
¥;—1 and y,_,). It is the case that y, + By,_3 = 0, with 0 < 8 < 1 yields
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a damped oscillatory solution with period equal to six years. Thus inclu-
sion of only y,_3 is a parsimonious way of including a six-year cyclical
component in a model.

The model in line 6 of table 4.5 is the one identified for the United
States using Hankel matrix identification procedures in Mittnik (1990).
As can be seen, it is not favored by the odds or by a MSE comparison
vis-a-vis the AR(3)LI model. Also, its RMSE of forecast 2.59 is somewhat
larger than that of the AR(3)LI model, namely 2.31. Similar conclusions
relate to the Otter (1990) model in line 7 versus the AR(3)LI model in
line 1. Of course, it would be desirable to extend these comparisons using
data for other countries as Mittnik (1990) did in his careful study.

4 Aggregation and non-linearity

In this section a brief discussion of and some preliminary empirical results
relating to aggregation and non-linearity will be presented.

With respect to aggregation, one main concern is whether an aggregate
variable is better modeled and forecasted using a model for it or whether
it is better to model its components, forecast them, and use their sum
as the forecast of the aggregate variable. Of course, if there is interest
in forecasting the components, they will have to be modeled. However,
there is still the issue, raised in personal conversation with Espasa in 1990,
whether to add the component forecasts to forecast the aggregate or to
forecast it directly, an issue treated in Espasa and Matea (1990).

In terms of the vector y, in (2.4a), an aggregate can be defined as Y4 =
Zfil Vi = Uy, where!/ = (11...1), avector with all elements equal to 1.
Thus from (2.4a)

|Hi|Y = = Hy\ Hipx, + U HY Frpey,
= ¢'(L)x; +6'(L) ey, (4.1)

where ¢'(L) = —/H}; H» and 6'(L) = ¢'H}, Fje;,. It is seen that the
polynomial hitting Y;A, the aggregate variable, is the same one hitting
each component of y,, as shown in (2.4), given no cancellation of com-
mon roots. This point is being checked empirically in our current work
with the components of real GNP.

Also, note that in (2.4), each y;, can depend on specific subsets of
the elements of x;, leading indicator variables specific to individual com-
ponents of real GNP. On the other hand, in (2.4), the relation for the
aggregate, probably all the elements of x, appear, which makes it hard
to implement. However, aggregate leading indicator variables may be
used as an approximation. Preliminary theoretical analyzes indicate that
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forecasting components using specific input variables for each and adding
forecasts of them to forecast an aggregate is the preferred approach under
many conditions.

As regards non-linearities, non-linear effects can enter the AR(3)LI
model in (2.6) through the leading indicator variables. That is, for exam-
ple, erratic, chaotic movements in the money supply variable will induce
such movements in the output variable. Also, with TVP models, parame-
ter values can move to produce non-linear effects. While these and other
statistical models (for example, threshold autoregressions, etc.) can pro-
duce non-linear effects, it would be desirable to have an explicit subject-
matter justification for non-linearities, as, for example, in the asymmet-
ric cost of adjustment literature. In addition, we have considered certain
generalized production functions which have variable returns to scale and
associated U-shaped average cost functions put forward by Zellner and
Revankar (1969). One such function is log Y; + 0Y; = x/8, where Y, =
output or RGNP, 6 is a positive parameter, and x, is a row vector of input
variables. On first differencing this relation we obtain

1 /
y=logY/Y_ = mﬂxﬂg + Uy, (4.2)

where u, is an additive white-noise error term and the approximation log
Y,/ Y,_1 = (Y, — Y,_1)/Y,_; has been employed. On tentatively relating
Ax; to lagged values of y,, leading indicator variables, and a constant, we
obtain

1
= — _ _ _ SR,_
Vi 130, [Bo + B1yvi—1 + Boyi—2 + B3yi—3 + PaSR,_;

+ B85S 2+ B GM ;1 + B W_1] + uss (4.3)

a non-linear version of our ARLI model. Note that with 6 > 0, when
Y,_1 is near full employment, the coefficients on the input variables are
smaller in absolute value than they are when Y, ; has a lower value.

When (4.3) was estimated using annual data for the United States and
used to produce one-year-ahead forecasts, the results shown in table 4.6
were obtained. It is seen that using a value of 6 different from zero has
produced somewhat lower RMSEs of forecast. Also, it should be noted
that with the use of generalized production functions, demand functions
for labor and capital assume simple non-linear forms, somewhat similar
in form to (4.2). Taking account of such non-linearities as well as those
associated with asymmetric costs of adjustment may well indeed improve
the explanatory and forecasting performance of our models.
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Table 4.6 Forecasting errors of real output growth rates for the United States,
1974-1990°

Forecast errors (Forecasts — actual values)
Value of 6

Real output growth rates 0 (ARLI) 0.001 0.005 0.01

1974 —0.54 0.94 0.85 0.86 0.87
1975 —-1.27 1.02 1.30 1.45 1.48
1976 4.77 —3.52 —3.93 —4.03 —4.04
1977 4.56 0.81 —0.19 —0.45 —0.50
1978 5.16 —0.84 -1.19 —1.31 —1.34
1979 2.44 —0.07 —0.50 —0.60 —0.62
1980 —0.16 —0.51 —0.81 —0.82 —0.82
1981 1.92 —2.13 —2.88 —2.99 —3.01
1982 —2.58 3.93 3.85 3.83 3.82
1983 3.51 3.25 1.63 1.25 1.19
1984 6.43 —2.50 —3.07 —3.26 —3.29
1985 3.43 1.10 0.19 —0.03 —0.06
1986 2.81 3.64 1.77 1.35 1.28
1987 3.31 2.64 1.45 1.14 1.08
1988 4.32 —2.60 —3.60 —3.79 —3.82
1989 2.48 0.41 —0.60 —0.81 —0.84
1990 0.96 1.56 0.05 —0.25 —0.29
RMSE (74-87) 2.30 2.08 2.09 2.09
RMSE (74-90) 2.22 2.09 2.11 2.12

Note:
@ Updated data (August 1991) were used. The forecasting model for the output growth
rate, y;, is:

M {Bo+B1Yi—1+B2Y 2+ B3Y 3+ BaSR,—1 + B5SR; 2

1
C(1+0Y_1)
+B6GM;_1 + BrMSR; 1} + u;

where y; = In(Y;/Y;_1) with Y; = real GNP in year z.

5 Summary and conclusions

Selected theoretical and empirical results have been presented illustrat-
ing the SEMTSA approach to model building. As can be seen from
what has been presented, it is an operational approach that has already
yielded useful results. Fixed-parameter and time-varying parameter mod-
els which forecast growth rates of real output for eighteen countries
have been formulated and tested in out-of-sample forecasting tests, with
encouraging results. Bayesian shrinkage forecasting techniques have been
shown to be effective in reducing RMSEs of forecast. Bayesian decision
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theoretic procedures for forecasting turning points have been formulated
and applied with considerable success, with about 70 percent of 158 turn-
ing points for eighteen countries correctly forecasted. Model and variable
selection procedures have been formulated and successfully applied. Pre-
liminary results on procedures for forecasting components of aggregates
and adding them up to obtain a forecast of an aggregate have been briefly
mentioned and are under study. Also, selected results for a class of non-
linear models have been presented which are encouraging. Works that
link these results to economic theory have been cited.

To conclude, in the present problem area the SEMTSA approach
has already provided a number of sound, tested reliable procedures and
results. Future work to extend them and to integrate them with and to
improve economic theory will lead to even more such results and, hope-
fully, models that are dependable in explanation, prediction, and control.
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5 Large-sample estimation and testing
procedures for dynamic equation
systems (1980)

Franz C. Palm and Arnold Zellner

1 Introduction

In this chapter we consider large-sample estimation and testing proce-
dures for parameters of dynamic equation systems with moving average
error terms that are frequently encountered in econometric work (see,
e.g., Quenouille 1957 and Zellner and Palm 1974). As pointed out in
Zellner and Palm (1974), three-equation systems that are particularly rel-
evant in econometric model building are (1) the final equations (FEs), (2)
the transfer functions (TFs), and (3) the structural equations (SEs). In the
present work, we specify these equation systems and develop large-sample
“joint” or “system” estimation and testing procedures for each system of
equations. These “joint” or “system” estimation procedures are itera-
tive. They provide asymptotically efficient estimates of the parameters at
the second step of iteration. The maximum likelihood (ML) estimator
is obtained by iterating until convergence. The “joint” estimation meth-
ods provide parameter estimates that are more precise in large samples
than those provided by single-equation procedures and the “joint” test-
ing procedures are more powerful in large samples than those based on
single-equation methods.

The aim of the chapter is to present a unified approach for estimating
and testing FE, TF, and dynamic SE systems. In the chapter we use the
results of previous work on the asymptotic properties of the ML estimator
of the parameters of a dynamic model. We extend the recent work on effi-
cient two-step estimation of dynamic models (e.g. Dhrymes and Taylor
1976, Hatanaka 1976, Reinsel 1976, 1977, Palm 1977a). It is interesting
to note that the development of estimation methods for dynamic models is

Research financed by National Science Foundation Grants GS 40033 and SOC 7305547,
income from the H. G. B. Alexander Endowment Fund, Graduate School of Business,
University of Chicago, and the Belgian National Science Foundation. Some of the results
in this chapter [were] presented in an earlier draft completed in 1974.

Originally published in the Journal of Econometrics 12 (1980), 251-83.
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very similar to that for static models where iterative estimation procedures
such as ML estimation under limited and full information developed at
the Cowles Commission were also followed by asymptotically equivalent
but computationally simpler methods such as the two-stage least squares
[2SLS], three-stage least squares [3SLS], and linearized ML methods,
respectively.

Previous work related to the present work includes that of Hannan
(1969, 1971), Deistler (1975, 1976), and Hatanaka (1975), who have
considered the identification problem for dynamic SE systems with mov-
ing average error terms. Maximum likelihood estimation of dynamic
SEMs with moving average errors has been considered by Byron (1973),
Phillips (1966) and Wall (1976) in the time domain, and for dynamic
SEMs with stationary errors by Espasa (1977) in the frequency domain.
Spectral estimation methods for static SEMs with stationary errors have
been proposed by Hannan and Terrell (1973) and by Espasa (1977).
Among many other workers, Durbin (1959), Box and Jenkins (1970),
Maddala (1971), Pierce (1972), Akaike (1973), Pesaran (1973), Wilson
(1973), Anderson (1975), Hannan (1975), Kang (1975), Nelson (1976),
Nicholls (1976), Osborn (1976), and Reinsel (1976) have considered
estimation of parameters of single-equation or multi-equation ARMA
and transfer function (TF) models. The problem of TF estimation in a
single-equation context has been extensively studied in the “distributed-
lag” area. Closely related to our approach for FEs is the work of Nelson
(1976) who considered joint estimation of a special FE system with diag-
onal MA matrices.

For a system of TFs, Wilson (1973) proposes an iterative procedure
leading to a ML estimator. With respect to ML methods for TFs (e.g.
Wilson 1973) and dynamic SEMs (e.g. Byron 1973, Phillips 1966, and
Wall 1976), our approach is computationally more convenient to imple-
ment while having similar asymptotic properties. Many of the spectral
methods apply to more general models, in the sense that the authors
assume a stationary error process. In the light of Espasa’s conclusion that
treating the errors simply as a stationary process when they are generated
by an AR or an MA model can lead, in the presence of lagged endogenous
variables, to a loss of statistical efficiency, we parameterize the errors as
a multivariate MA process. For an extensive review of the literature, the
reader is referred to Aigner (1971), Nicholls, Pagan, and Terrell (1975),
and Astrém and Bohlin (1966). Finally, estimation methods for dynamic
models with autoregressive errors, which have a long tradition in econo-
metrics, are reviewed by Hendry (1976).

In what follows we shall specify the FE system that we consider in
section 2 and then go on to develop estimation and testing procedures
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for parameters of the FE system. In section 3, a TF system is specified
and inference procedures for it are developed, while in section 4 the SE
system is presented and procedures for analyzing it are developed. Section
5 is devoted to a summary and discussion of the results with particular
emphasis on relating them to the structure of econometric estimation
procedures and on pointing to problems that remain to be analyzed.

2 Specification of and estimation and testing procedures
for final equations

Let 2] = (211 221 - - - » &) be a vector of p observable random variables
generated by the following multivariate autoregressive moving average
(ARMA) process such as studied by Quenouille (1957):

H(l) zz = ¢ +FL)e, t=1,2,...,T, 2.1)
pxp px1  px1 pxp px1
where ¢is a p x 1 vector of constants, L is a lag operator such that L"z, =
2y H(L) = {h;(L)} and F(L) = {f;(L)} are p x p matrix lag operators
with typical elements being finite degree polynomials in L, namely %;;(L)
and f;(L), respectively, and e; is a p x 1 random error vector. We assume
that e, is normally distributed with

Ee, =0 and Eeé€, =68,1,, (2.2)

for all ¢ and ¢/, where 8, is the Kronecker delta. Contemporaneous and
serial correlation as well as different variances for the error process in
(2.2) can be introduced through appropriate specification of F(L). We
further assume that the inverse of H(L), H ' (L) = H*(L)/|H(L)|, exists,
where H*(L) is the adjoint matrix associated with H(L) and |H(L)| is the
determinant of H(L) that is a scalar polynomial of finite degree in L with
roots lying outside the unit circle.

The “final equations” (FEs) associated with (2.1), obtained by multi-
plying both sides of (2.1) on the left by H*(L) and normalizing the system,
are given by

0(L)z, = c+ A(L)e,, (2.3)
where

0(L) =d '|H(L)| = (1 =6, L—---—6,L")
is a scalar polynomial in L, d is a normalizing constant,

c=d 'H*(L)é
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is a vector of constants, and
A(L) = d'H*(L)F(L)

is a matrix lag operator of degree m.

In order to identify the system (2.3), we assume among other things
that the roots of |A(L)| are outside the unit circle, and that both sides
of (2.3) do not have common factors. As pointed out in previous work,
Zellner and Palm (1974, 1975), the AR polynomial 6 (L) operates on each
element of z,. Unless there is canceling, the AR parts of the equations in
(2.3) should be of identical order and have the same parameters. Since it
is often of interest to test that the AR parameters are the same in different
equations and also for greater generality, we shall take up the problem of
estimating parameters of the following system:

0;(L)zy =c¢i+uy, 1=1,2,...,p, (2.4)
where

0:(L) =1 =01 L— 0L — - — 6, L™,
with n; given, i = 1, 2, . . ., p, and u;, is the ith element of the vector
u;, = A(L)e;.

In connection with convenient estimation of the parameters in (2.4),
we express the error vector u, as

w, = Ave; + Are_1 + -+ Aner_in
=0+ Gl'vzfl +---+ vatfma (25)

where G; = A,Agl, 1=1,2, ...,m, Ay is assumed to be non-singular,
and v, = Aype; is normally distributed with Ev, = 0, and

Evv, = A)Ay =2, and Evv, =0, t#1¢. (2.6)

A typical element of u,, say u;;, may be represented as a moving average
in one random variable (see, e.g., Ansley, Spivey and Wroblenski 1977,
Palm 1977b, or Granger and Morris 1976),

Uiy = Vg + Ai1Vi—1 + - + Aimis—ms (2.7
where the A;s are such that they reproduce the autocorrelation structure

of u;, i.e.,

m—j m—j
, :
w;; E Aihyjhin = E Q. i@ ]=0,1,...,m,
=0 e

with A;o = 1, w;; being the 7 x ¢ element of 2, as defined in (2.6), and
a;, being the ith row of A in (2.5). The disturbances v;; on the r.h.s. of
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(2.7) are normally and independently distributed, each with zero mean

and common variance w;;.

Each FE may be estimated separately using a single-equation non-
linear least squares or single-equation ML procedure. Joint estimation
of the parameters in the system shown in (2.4) and (2.5) will now be
considered. In doing so, we ignore possible restrictions implied by the
underlying structural model (2.1). For an example of joint ML estimation
of a set of FEs, the reader is referred to Wallis (1977). We write the system

of FEs as
(L) 0 ... O 21
0 6L : 221
. L (L) " eto 4
: .0 .
0 .0 6, Zpt
or alternatively as
z=c+ W,0+uw,
with
-1 212 -+ 2—m O
0 el e 0 221—1 B2t—2 . B2t—n,
I"Vlt =
pxk

/
10k = (011501250135 - - .5 0105 0215 - . .5 O2py5 + - .
X

»
k= m
=1

and for a sample of T observations

z Wo ¢ + WM 6 + u |,
Tpx1  (Tpxp) (Px1)  (Tpxk) (kx1)  (Tpx1)
where
Z =222,
W{, = Ups Ipy...5 Ip),
W/1 = (W//ns Wllz:"w WIIT)’
U =, 1d, ..., 0ly).

m

h=1

Gro,_p,  (2.8)

(2.9)

(2.10)

Assuming initial conditions to be zero, the vector # may be expressed in

terms of v,

u= Mo,
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where
L, 0 ... .. .. .. 07
G I ’ '
G G b o
M= : |
Gn Gup 0
0 Gy,
B Gu ... I,]
and

v = (V), V..., V).

The assumption of zero initial values is basically made for the purpose
of simplicity. One can also “backforecast” the values of the initial condi-
tions for a set of FEs,! as Box and Jenkins (1970) do for single-equation
ARMA models, or treat the initial conditions as unknown parameters
(e.g. Phillips 1966). Whether backforecasting improves the properties of
estimators under all conditions is not known. The treatment of the ini-
tial conditions generally does not affect the asymptotic properties of the
estimators presented in this chapter, but may be very important in small-
sample situations — see, e.g., Kang (1975) and Osborn (1976). Under
zero initial conditions, the likelihood function is

L8, &, M, 2, 2) o |2,|7 77 exp (S, (2.11)
where
S=—1(z— Whe— WO M '(Ir ® 2, )M ' (z— Wyc — W;0).
The first order conditions for a maximum of the log-likelihood function
(see, e.g., Palm 1977a) are
-1 -1 —1
39S/08 =W M '(Ir® 2; YM 'u= 0, (2.12)
ﬁ/ = (C/) 0/3 7/)5
v =vec [G, G;...G,],

! For example for a vector MA (1) model x; = ¢, — Ae,_1, the backward version is given
by x; = e; — Be, 1, where €, and e, are both white noise with covariance matrix §2. From
the autocovariance function of x;, we have 2 + AR2A4' = 2 + B.QB’A and _A:QA:A_‘QB/ .
Given consistent parameter estimates of the forward version Aand 2, B= Q2 A’ 'isa

consistent estimate of B, that can be used to backforecast x; using the backward version
of the model.
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with “vec” denoting the operation of vectorizing a matrix, stacking col-
umn after column,

with W, being a T), x p*m matrix of disturbances,

W,=[d;], i=1,...,p, I=1,...,my j=1,...,p,

Y

and with typical row

4, = [0,0,...,0 0...0%10...0 0...020...0 0...0%70...0}

Ip times p elements

ith position

For given £2,, the set of equations in (2.12) is non-linear in the param-
eters of M. The solution of (2.12) requires an iterative procedure.

An alternative to the exact ML solution of (2.12) is provided by approx-
imating the first order condition (2.12). Using a lemma given by Dhrymes
and Taylor (1976),2 a two-step estimator of 3 with the same asymptotic
properties as the ML estimator is given by

R A0S 4
B=pB- F“(ﬂ)ﬁ(ﬂ), (2.13)

where I” (,@) is non-singular matrix such that

o1 . .1 9%S
1;22 TF(B) = 1;13;1 T0300 (Bo)s

B, is the true parameter value and 3 is a consistent estimator of B, such
that T2 (ﬁ — [3,) has some limiting distribution. The matrix I" and the
vector 0S/93 in (2.13) also depend on the unknown parameters of §2,,.

The lemma given by Dhrymes and Taylor (1976) applies to all the
parameters in the likelihood function (i.e. to 8’ = (@', w’), where w is the
vector of unknown parameters in £2,,). As the information matrix is block-
diagonal for 3 and £2,, the use of a block-diagonal matrix I" to approx-
imate the Hessian matrix of the log-likelihood function with respect to
0 yields expression (2.13) for the subvector of parameters 3. The use of
consistent but not efficient estimates for the unknown elements of §2, in

(2.13) will be sufficient for 3 to have the same asymptotic properties as
the ML estimator.

2 For an earlier discussion of approximations to the ML solution, the reader is referred
to Fisher (1925, ch. 9), Kendall and Stuart (1961, pp. 48-51), and Rothenberg and
Leenders (1964).
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Expression (2.13) defines a class of two-step estimators. A member of
this class can be characterized by a particular choice for the matrix I". If
we use the Hessian matrix for I" in (2.13), we implement the second step
of the Newton—Raphson algorithm.? Provided one starts with consistent
parameter estimates an approximate solution of the system (2.12), which
satisfies the requirements for (2.13) is also obtained at the second step of
the Gauss—Newton algorithm. The function S in (2.11) can be written
as an inner product of vectors.

Y(Ir® 2, o=~ (2.14)
where
e = Pov= (e/le/2...e/T)/,

and P= (I7® 4, 1Y is the matrix obtained from the decomposition of
the positive definite matrix (I7 ® £2;') = P’P. The derivative of € with
respect to 3 is

0
% e _wMP. 2.15)
B
The second step of the Gauss—Newton procedure can be written as
2 A de 0’1" de
—ag_11=== _— 2.16
B=p H:aﬁaﬁ] Bﬁe} K ( a)
B=p
— ,é + [I/"V/M/—I(IT ® Q;l)Mfl IjVJ71 W/Mrfl(IT ® Q;l)i),
(2.16b)

where the carats above the symbols denote that the quantities are evalu-
ated at consistent parameter estimates, for example W= (W, Wj W5). The
second order derivative of S with respect to 8; and B; is

RERY |: 9%¢e’ :| [85’] |: 8€:|
=_ €— — . (2.17)
0B:0B; 0B;3p; 0B; | L aB;

Under the assumptions underlying our model, it can be shown by using
the strong law for martingales (see, e.g., Feller 1966, p. 238) that the
first r.h.s. term in (2.17) converges to zero in probability, so that the
two-step estimator in (2.16) implements expression (2.13) and therefore
the two-step Gauss—Newton procedure (2.16) is one member of a class
of estimators which are asymptotically equivalent to the ML estimator,
defined as the exact solution of expression (2.12). Further, expression
(2.16) can be calculated either using the analytical derivatives given in

3 The reader, who is not familiar with numerical procedures to solve systems of non-linear
equations, is referred to Goldfeld and Quandt (1972).



Large sample estimation 209

(2.15), evaluating them at consistent parameter estimates, as has been
done, e.g., by Nelson (1976), or by numerical calculation of the partial
derivatives in (2.16a) of € with respect to 3, as is proposed by Box and
Jenkins (1970) for univariate models.

The two-step Gauss—Newton estimator (2.16) can be interpreted as a
“residual-adjusted” Aitken estimator. Adding the quantity ) ;' G0,
to both sides of (2.9), we get for the sample period

y = Woc+ W0 + Way + Mo
= W3+ Mo, (2.18)

where
m

y/ = (y,p . . -sy;> .. ->y,T) and Y, =2+ Z Gy

h=1

Application of generalized least squares to the system (2.18), after eval-
uation of the regressand, the regressors, and the disturbance covariance
matrix at consistent parameter estimates denoted by the carats, yields

A

B=[W'M(Ir® 2, ") M LA'(/]’1 (WM~ (Ir® 2,1 M),
(2.19)

which is equivalent to (2.16b).

The two-step estimator in (2.19) is similar to those proposed by Rein-
sel (1976) for other models and has the same asymptotic properties as
the ML estimator under fixed and known initial values and ignoring pos-
sible restrictions on the FE parameters implied by the specification (2.1).
The estimator ﬁ is consistent, asymptotically normally distributed and
efficient, with a large sample covariance matrix consistently estimated by

V@) = [W' M= (Ir @ ;1) 8w (2.20)
Joint estimation of the parameters in the system (2.4) and (2.5) involves
the following steps:

(1) Using the error representation shown in (2.7), estimate the parame-
ters of each equation separately using, for example, the Box—Jenkins
(1970) non-linear least squares approach or a univariate ML proce-
dure. The estimates so obtained will be consistent but not efficient.
They will be asymptotically efficient within the class of estimation
methods for the univariate ARMA representation of z;,. As the first-
step estimator plays a crucial role in a two-step estimation procedure,
it is preferable to use a non-linear least squares or a single-equation
maximum likelihood method to estimate the parameters of each FE
separately instead of using, for example, an instrumental variables
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approach. The main objective of this first step is to obtain an esti-
mate of v,, say ¥;,t =1,2,...,T.

Use the 9,s to form an estimate of the covariance matrix §2, = Ev,v),
namely

T
2, = Zi;;;/T. (2.21)

=1

Express the 7th equation of the system (2.4) as

st bitantu (Zyp Y @2
where

u‘{liz = (Zi1—15 Bir—25 - - - » 31':77:,')3

0. = (Bi15 625 - - - s Oin,)s

g, = 1Y 55T s

Vi = Vits Yizs - > Yimd>
with 'y;j being the ithrow of G}, j = 1,2, ..., m.

Expressing (2.22a) for all z, we have
Zi=ct+ W0, +0v,+v, i=1,2,...,p, (2.22b)

where w;, and g, are typical rows of W;; and Q, respectively, and ¢
isa T x 1 vector with elements equal to one.

We then apply ordinary least squares to each equation (2.22a), after
replacing Q by O, a matrix of the first-step residuals 9, to obtain
consistent estimates of ;.

Compute expression (2.19). Iteration of steps 1-4 yields the ML
estimator? given known and fixed initial conditions. In small samples
it is not clear that the iterated estimator for 3 is to be preferred to B
For example, it is well known that ML estimators for parameters
of many models have poor finite sample properties relative to usu-
ally employed loss functions.’> Nelson (1976) provides Monte Carlo
results pertaining to a system similar to a particular set of FEs that

4 Other iterative algorithms that may be computationally more efficient can be employed
to compute the ML estimate (see, e.g., Chow and Fair 1973) who considered a dynamic
system with AR errors.

vl

See Zellner (1971a) for some results relating to ML estimation of parameters of the log-

normal distribution. For static simultaneous equation models, ML estimators frequently
are found to possess no finite moments and hence have unbounded risk relative to a
quadratic loss function. Last, Stein’s well-known results indicate that ML estimators are
often inadmissible relative to a quadratic loss function (see references and analysis in
Zellner and Vandaele 1974).



Large sample estimation 211

indicate a substantial gain of efficiency of the joint estimators with

respect to univariate procedures. The finite sample properties of B in

(2.19) and estimators obtained by iteration are as yet not established.
The system of FEs (2.10) can also be written as

z= Whc+ W0+ Wiy + v. (2.23)

Generalized least squares applied to (2.23) after replacing the lagged
error terms in W, by their sample estimates W, and §2, by a consistent
estimate §2, leads to

Bors = (W' (Ir® 2, )W W' (Ir@ 2;")= (2.24)

Expression (2.24) gives a consistent joint estimator for 3, but it usually
is not efficient. From a comparison with (2.19), it is obvious that the
estimator in (2.24) is not a solution to the first order conditions for a
maximum of the likelihood function, so that iterative solution of (2.24)
will not yield the ML estimator. It rather gives a solution of the first
order conditions for a maximum of the likelihood function with respect
to B under the condition that W, = W, implying that S/3/3 is linear
in B (see, e.g., Maddala 1971 for a similar discussion of single-equation

models).
As mentioned above, FEs are often encountered in which the 6; coef-
ficient vectors in (2.22) are all the same, thatis6; =0, =603 =--- =0,

= 6" In such cases, the restricted matrix W in (2.10) takes the form

20 21 .- 2511
™ 2] 22 2_nt2
wo = . (2.25)
Tpxn . .
271 . N 2T _n

We then write the system (2.10) as
z=Wc+ W00 +u. (2.26)

Then the approximate ML estimators for 31 = (c/, 8, 4')' are given by
A (@] . . . . N A
M =[(WW) 2 (W Wa)] (a2 (y— W60),  (2.27a)

00 = [Wf R W' Ry, (2.27b)
with

R=Q7'— Q7 (W W) [(Wo Wa) 271 (Wh Wa)] ! (W W5) 27,
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where §2 is an estimate of 2 = [M(I7 ® §2,) M] and W, is formed using
lagged residuals. The large sample covariance matrix for the restricted
estimators in (2.27), 3%, denoted V,, is consistently estimated by

Vo= (W01 where WO = [Wa WO W5]. (2.28)

In case of general linear restrictions on the elements of 3 in (2.18),
say C3 = a, where C is a given matrix with ¢ linearly independent rows
of rank ¢, and a is a given ¢ x 1 vector, an estimator of 3 satisfying the
restriction is given by

B=B- (W W) \C[C(W' 2 W)IC1N(CB - a), (2.29)

with [;’ as shown in (2.19), 2 = [M(IrQ® $£2,)M], and large sample
covariance matrix, V(3), consistently estimated by

V@) =w'etw !
_ (W/Q—l W)—lc/[c(ﬁ,//gq W)—lc/]—lc(W/Q—l 157)_1.
(2.30)

While (2.29) and (2.30) are relevant for the case of general linear restric-
tions, it should be appreciated that the matrices involved in the expres-
sions are quite large from a numerical point of view for systems of even
moderate size.5

To test the restriction that 0, =0, = --- =0, = 0, an n x 1 vector,
introduced in connection with (2.26), we consider the following residual
sums of squares:

8§ = (3— WD), @71 (35— W50, (2.31)
and
S8, = (3 — Wy 273 - W), (2.32)

where the carats denote that the quantities are computed using the
second-step estimates of 37 and (3, respectively. Thus, the approximate
likelihood ratio,

Nlog (SS,/SS), (2.33)

6 With respect to the large matrices that are encountered in joint estimation procedures and
that will usually lead to a multicollinearity problem, it is worthwhile to mention the use
of approximate Bayes estimates such as considered by Zellner and Vandaele (1974). In
a Monte Carlo study of the small sample (7" = 20) properties of several estimators for a
dynamic model with first order autoregressive errors, Swamy and Rappoport (1978) con-
clude that in terms of mean-square errors the ridge regression and the approximate min-
imum mean-square error estimates of the regression coefficients are significantly better
than alternative estimates such as ML or Hatanaka’s (1974) residual adjusted estimates.
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is distributed as x2 in large samples where N = Tp and m = n(p — 1), the
number of restrictions involved in @; = 0, = - -- = 8, = ). Thus (2.33)
provides a large sample x2 test of a frequently encountered hypothesis
in model construction. In a similar fashion, large sample x? tests of the
general linear hypothesis C3 = a can be constructed.

The computation of the likelihood ratio (ILR) requires parameter esti-
mates for the restricted and the unrestricted versions of the model and can
therefore be laborious. For the purpose of computational convenience, it
is preferable to use the Wald-test (W) (see, e.g., Sargan 1975) when it is
easier to estimate the unrestricted model than to estimate the restricted
model and to use the LLagrange multiplier (LM)-test (see, e.g., Breusch
and Pagan 1978) or the efficient score (ES)-test (see, e.g., Rao 1973)
when the restricted model is easily estimated. All four test statistics have
the same asymptotic properties.

Imposing the restrictions 8; = 07,7 =1, 2, .. ., p, leads to a reduction
of the size of the matrices involved in the joint estimation of a set of FEs,
so that the LM test may be preferred. The approximate LM (and ES)
test statistic is obtained by evaluation of the first derivatives of the log-
likelihood function with respect to 3 in (2.12) at the restricted parameter

estimates B in (2.27) and forming the quadratic form

drm = (W QT WA [W RWI] ™' W, 2 ') (2.34)

b=

c=&®

y=p®

where R is defined in (2.27b). Under the null hypothesis 8; = 87, i =1,
2, ..., p, ¢y is distributed as x2 in large samples where m = n(p — 1).

In order to test non-linear restrictions on the parameters 3 — for exam-
ple, restrictions on 8 implied by the underlying structural form (2.1) —
the W-test will usually be preferred on the basis of its computational con-
venience. Suppose that we want to test a set of m non-linear differentiable
restrictions on 3, #;(3) = 0, 1 =1, ...,m. Under this null hypothesis,
the approximate W-statistic given by

oh )
¢W={h<ﬂ>/[@(w9—lwrlﬁ} h(ﬁ)} > (2.35)
p=p

where h(3) is an m x 1 vector with typical element %;(3) and 0h/00 is
the matrix of first derivatives of /2 with respect to 3, is in large samples
distributed as x2. Work is needed to establish the finite-sample properties
of the asymptotic test statistics discussed above.
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3 Specification of and estimation and testing procedures
for sets of transfer functions

To specify a set of transfer functions (TFs), we partition the vector 2; in
(2.1) as follows, 2, = (3,x,), where y, is a p; x 1 vector of endogenous
variables and x; is a p, x 1 vector of exogenous variables with p; + p,
= p. With z, so partitioned, the system in (2.1) becomes

Hy (L) Hp(D) ||y |_|a n Fi1 (L) F(L) || ewn 3.1)

Hy (L) Hp(L) || x C By (L) Fyn(l) ||ex | '
The assumption that x;, is exogenous gives rise to the following restrictions
on the system in (3.1):

H)(L)=0, Fl)=0, (L) =0. (3.2)

With the restrictions in (3.2) imposed on (3.1), we have
Hy (L)y, + Ha(L)x, = ¢ + Fii(Dey,, (3.32)
Hy(L)x; = ¢ + Fax(L)ey;. (3.3b)

The system in (3.3a) is in the form of a set of linear, dynamic simulta-
neous equations while that in (3.3b) is a set of ARMA equations for the
exogenous variables.

The TFs associated with (3.3a), obtained by multiplying both sides of
(3.3a) by H}; (L), the adjoint matrix associated with H;; (L) and normal-
izing the system, are

oDy, = c1 + A(L)x; + B(L)ey, (3.4a)
=c + A(L)x; + K(L)e,, (3.4b)

where

¢(L) = g ' Hi1 (L)),

with g being the normalizing constant and |H;; (L)| being the determinant
of Hy1(L);

o1 =g 'Hf (L)é

is a p; x 1 vector of constants,
A(L) = —g " Hy (L) Hia(L) = Y AL,
i=0
and

q .
B(L) =g 'Hy(L)Fi (L) =) B;L'.
j=0
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The coefficients of the matrix lag operator K(L) in (3.4b) are given by
K; = B]»Bgl, 7j=1,2, ...,q9,and g, = Byey; is a p; x 1 disturbance
vector with E(e,) = 0, E(e,e,) = By B}, = §2,, and zero serial correlations.
In order to identify (3.4), we assume that |[H;;(L)| and |K(L)| have their
roots outside the unit circle and that the r.h.s. and the L.h.s. of (3.4) have
no factors in common. Just as with the FEs, the AR polynomial ¢ (L) is
the same in each equation if no cancelling occurs. To allow for possibly
different ¢ (L) in different equations, we shall write the TF system as

¢i(L)yi = c1i + 6;(L)x + B(L)e:s i=1,2,...,p1, (3.5)

where
d:(L) =1 — @it L — ¢inL? — i, L™,

with m; assumed known, and &’ (L) is the ith row of A(L) and K(L) is the
ith row of K(L). Since the error terms in (3.5) have a structure similar to
those in (2.4), the representation presented in (2.7) is relevant here.

Each TF can be estimated separately using single-equation non-linear
least squares or the single-equation ML procedure. Joint estimation of
the parameters of the set of TFs (3.5) will now be considered. We write
the system (3.5) as

y=Yo+c +Xb6+w, (3.6)
where
V-1 V1e—2 -« Vie—m 0 0
0 0 V-1 -oo Vot—my . 0
Y = . >
plxﬁmi ; 0
i=1 0 e o “en e e e ypltfmpl

¢ = [p11 P12 b1, P21+ P2y - Bpimy, 15

and X, is a p; X p1p2(r + 1) matrix with typical row, say the jth, given

3‘1' = [0; O:~-~>O: X1zs X1z—15+ -+ 5 Xlz—rs X2z5 - - - 5 Xpyr—rs 0305---;0]’
(=1 (r+1)p2 elements (r41) p, elements (p1—1)(r+1) p elements
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8§ =vec [Ag Ay ... A,]) and, provided the values of the initial conditions
are zero, u; = Ke where ¢’ = [¢], €},..., €] and

I, O 0]
K; \\\
K=
K,
0 \‘\ :
L0 ... K, K I, |

Of course some of the columns of the matrix X, will be deleted when we
have exclusion restrictions on the vector é.
For a sample of T observations, we write the system (3.6) as

y= Y¢+XOCI + X6 +uwy
=ZiA1 +u, 3.7

with
Z, = (Y; Xos X)J )‘/1 = (¢,J c/la 6/)

As in the preceding section, the likelihood function for the unrestricted
system of TFs, conditional on zero starting values,’ can be written as

LA 20, K, 3) o |2:]?exp(S), (3.8)
where
S=-1y—-ZIAM)YK ' (I;r @ 2, )K ' (v — Zi A).

The first order conditions for a maximum of the log-likelihood function
are

g_f = ZK (I ® 27K 'y = 0, (3.9)
where

A= (AL A
with A, = vec[K;, ..., K;]’; and

Z =2y, Z2),

7 As with the set of FEs, the starting values may be “backforecasted” using single TF
equations. They may also be considered as unknown parameters to be estimated (e.g.
Phillips 1966).
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with Z, being a Tp; x piq matrix of disturbances,

Z/z = [Eg‘]s 1=1,2,...,p1, I=1,2,...,9, j=1,2,...,p1,
and with typical row

5 =1[0,0,...,0,0,...,0g,0...0 ... 0...0j7-10...0].

Ip; times p1 elements 1 elements

ith position

As in the preceding section, a fully® efficient two-step estimator of X is
obtained using expression (2.13) to yield
A=[ZRN (L@ ORI 2] [ZR(Ir @ 27) K4,
(3.10)

where the carats denote that the unobserved quantities are computed at
consistent estimates of A, A, and the sample residuals obtained from the
estimates, and

g
w = (w),...,w;) where w =y, + Z Ke,_;.
=1

The remarks made in the preceding section concerning expressions (2.13)

and (2.19) also apply to (3.10). It should be noticed that the requirement

on the limit of I in (2.13) has also to be satisfied in TF context, where

it leads to conditions on the limiting values of the second moments of x;.

The steps in obtaining joint estimates of the parameters in (3.5) are as

follows:

(1) Fit individual equations of (3.5) to obtain consistent estimates of the
contemporaneous residuals, &;,, where &, = Byey,.

(2) Use the residuals to form a consistent estimate of the contempora-
neous covariance matrix of &,, §2,, namely

2. =Y 8&/T (3.11)

(3) For T observations, write the ith equation of (3.5) as

yi=cit+ Yo, + X6+ Ok; +¢;
Fmi+e, 1=12,...,p1, (3.12)

8 This means, that the estimator is as efficient as the ML estimator for the parameters of
the TF form, ignoring restrictions coming from the underlying structural form.
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where y; has typical element y;, Y; has typical row (3;;_15 Vir—25 .-
yitfm,'), X'z has typical row (xltz Xlr—1s o9 Xlz—rps o5 Xpors Xppr—15 -+ 5
Xpyi—rp)> Q has typical row (e;,_;,€,_,,...,&4), Which does not
depend on .

Imposing restrictions on the error serial correlations could lead to a
different matrix Q; for different:=1, 2, ..., p;. Further, €; has typical
element Eits ﬁb; = (¢i1> ¢i2: cees ¢im,')> 6; = (81'103 8i11: cees ailr”’ e
8ipy05 Bipyls - - -3 Oipyr pzl_) is the vector of coefficients in the elements of
vector 6;(L). And K, = (Klys Kligs .. - 5 l-c;-q) with F-‘,;j being a typical row
0fI<j>].: L,2,...,¢t= 1, 1,..., 1),3 T x lajiz ., Y, X, Q):
’I’]; = (Cli: d);: 6;: K’i)

We then apply ordinary least squares to each equation (3.12), after
replacing €; by &;, a matrix of the first step residuals &, to obtain
consistent estimates of Q.

(4) Compute expression (3.10), using the residuals obtained in step 2 and
the consistent parameter estimates Qg and 7); to evaluate the unknown
quantities in (3.10). Iteration of (3.10) yields the ML estimator given
known and fixed initial conditions. To compute the inverse of K, one
ought to exploit the block-triangular structure of this matrix. This
reduces the inversion of a 7p; matrix to addition and multiplication
of p; X p; matrices.

The large sample covariance matrix of the estimator proposed in
(3.10) is consistently estimated by

var) = [ZR -\ (Ir@ 2, )R 2] (3.13)

In considering TF estimation, it is important to realize that the num-
ber of parameters in each TF can be large when there are several input
variables in the vector x; and lags relating to them are long. In such cases
it will be expedient to consider reducing the number of free parameters
to be estimated by making assumptions regarding the forms of lagged
responses as is done in the distributed lag literature (see, e.g., Almon
1965, Dhrymes 1971, Zellner 1971b, ch. 7, and Shiller 1973). And of
course, introducing the restriction that ¢, (L) = ¢(L) = --- = ¢, (L) =
¢(L) in (3.5), when warranted, will lead to fewer free parameters to be
estimated. A large-sample x? test of the hypothesis that ¢ (L) = ¢, (L)
= ... = ¢, (L) = ¢(L) can be constructed as in the case of FEs where
a similar hypothesis was considered. Linear and non-linear restrictions
on the TF parameters can be tested along the lines of the testing proce-
dures proposed for the system of FEs. An example of a test of non-linear
restrictions is J. D. Sargan’s test on common factors in the polynomials
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¢:(L) and 6;(L) in the TF equation (3.5) which, if the common factor
hypothesis is not rejected, leads to an ARMA representation of the dis-
turbances in (3.5).

4 Estimation and testing procedures for structural
equations

The structural equations (SEs), shown explicitly in (3.3a), will now be
considered. We shall assume that a sufficient number of zero restrictions
has been imposed on the parameters of the system such that the remaining
free parameters are identified (see, e.g., Hannan 1971 and Hatanaka
1975). In what follows, we shall first take up “single-equation” estimation
techniques for parameters in individual SEs and then go on to develop a
“joint estimation” procedure that can be employed to estimate parameters
appearing in a set of SEs.

4.1 Single-equation estimation procedure

The ith SE of the system in (3.3a) is given by

P1 4 p1
D hiDyi+ Y hiDxj=éu+ Y fiDej, t=1,2,...,T.
j=1 j=p1+1 j=1

4.1)

On imposing identifying zero restrictions and a normalization rule, Z;o
= 11in h;(L) = hio + hi1 L + - - - , the remaining free parameters of (4.1)
can be estimated utilizing the techniques described below.

As shown in connection with (2.7) above, we can write

p1
> fillyeje = ¢i(Lyeirs (4.2)

=1
where
di(Deiy = &y + Pi1&ii—1 + Gin€ir—a + -+ + Dig€ir—qi»

where ¢; £ max; g, with g; the degree of fij(L), and g; is a non-
autocorrelated, normally distributed disturbance term with zero mean
and constant finite variance, o2, for all z. On substituting from (4.2) in
(4.1) we have

p1 P
D o hiDyi+ Y hi(Dxj = ¢y + ¢i(Deis t=1,2,..., T, (4.3)
j=1 j=p1+1
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with property that x;; and ¢;, are independent for all /, z and 7.

Since more than one current endogenous variable appears in (4.3),
along with lagged endogenous variables, and since the disturbance terms
are serially correlated, it is well known that usual estimation techniques
such as two-stage least-squares, etc. yield inconsistent structural coeffi-
cient estimates.

Similarly, non-linear techniques for minimizing ZtT: 1 sl-zz with respect
to the parameters of (4.3) yield inconsistent coefficient estimates because
of the “simultaneous equation” complication of correlation between dis-
turbances ¢;(L)¢;, and the endogenous variables among the explanatory
variables in (4.3).

To get consistent estimates of the parameters in (4.3), one can use an
instrumental variables method using as instruments for the current and
lagged endogenous variables, the current and lagged exogenous variables.
Onecanalsousethe v;;—4,—1» =1, ..., p1,/ = 1,2, ..., asinstruments
for the current and lagged endogenous variables, as these instruments are
independent of the error term ¢;(L)e;,. The use of lagged endogenous
variables as instruments has been proposed by Phillips (1966). On the
basis of the instrumental variable estimates, ¢;; and ft,-j L),j=1,2,...,
D, in (4.3), one can compute the residuals

1 P
hi(Dyje+ Y hy(Dxj — éus
j=p1+1

A j—
Nie =

~.
i M'@
)

and then fit a g;th order MA model to the residuals to get consistent
estimates of the ¢;s, [ =1,2,..., ¢

Alternatively, as explained in Zellner and Palm (1974), one may use the
FEs (or TFs) to substitute for current endogenous variables appearing in
(4.3) with coefficients with unknown values, thatis y;, 7= 1,2, ..., p1,
for j # i. For example, the FEs for the y; given in (2.4) are

Yie = ¢; +0,;(L)yj; + tirs (4.4)

where 9_]‘ (L) the homogeneous part of 6;(L). On substituting from (4.4)
in (4.3) for vy, j =1, 2, ..., p1, for j # i, we obtain
P _ P P
Y+ Y hijole; +0;(Dyid + > hi(Lyje+ Y hi(L)x;,
j=1 j=1 j=p1+1
J#
=cu + ¥i(Déi, (4.5)
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where

Vi(D&i = ¢i(Dei — Z hijottics
Hél

with (L), usually being a polynomial of degree m, and }_z,-j(L) is the
homogeneous part of 4;(L). The error terms, &;,t =1,2, ..., T, are
normally and independently distributed each with zero mean and finite,
common variance, 0'52,--

Note that for given values of ¢; and the parameters in 9_j (L), (4.5)
is in the form of a TF that is linear in the parameters. In view of this
our estimation approach involves analyzing (4.5) as a TF with ¢; = ¢; and

9; ;W) = 0; ; (L), where ¢j and 0; ;(L) are consistent estimates obtained from
estimation of the FEs in (4.4).

Given that these consistent estimates of ¢; and 0;(L) are inserted in
(4.5), a non-linear computational algorithm, e.g. Marquardt’s, can be
utilized to obtain consistent estimates of the remaining free parameters
of (4.5) by minimizing the residual sum of squares S = Zth 1 é}i with
respect to the free parameters, where &; is given by

p1 -
Ex=yi— ¢+ Z hijol¢; + 0 (L)y;.]

j=1
J#
p1 _ P m N
+ > Dy + Y hiDxie+ Y Wik (4.6)
j=1 j=pi+1 j=1

Of course, one has to be cautious that the regressor matrix in (4.6) does
not become singular, as one substitutes linear combinations of lagged
endogenous variables for the current endogenous variables. The inverse
of the Hessian matrix of S, evaluated at the consistent estimates, provides
large-sample standard errors. These results in conjunction with the large-
sample normal distribution of the estimates provide a basis for performing
large sample tests of hypotheses.

The above procedure for estimating parameters of (4.6) can be applied
fori=1,2, ..., p;, to obtain “single-equation” parameter estimates
and residuals, éh, 1=1,2, ...,p1,t=1,2, ..., T. Since

P1
&y =&y — E RijoVics
=1

J#
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where v;, is a FE disturbance defined in (2.7),

P1

& =§iz+zhijo77m 1=1,2,..., p1, 4.7
j=1
J#

is a consistent estimate of ;, in (4.2). Also from (4.2), €, = Fjjpe;; where
€ = (€115 €205 - - . Ep11)» SO that

F1(L)e,, = Fioen, + Fiiie—1 + - + Frygen—g
=€, + Fig;, 1 +"'+Fq€t—q’ (4.8)
with F; = Fqul_lz), j=1,2, ...,q. The error vector &, in (4.8) is
normally distributed with mean zero and covariance matrix E(g,g;) =
Fy10F],, = X, and zero serial correlations. Thus from (4.7), it is possible
to compute &, once all equations of the system are estimated. The &;s

thus computed will play a role in the joint estimation procedure to be
described in the next section.

4.2 FJoint estimation of a set of structural equations
We now consider (4.1) for: =1,2, ..., p1,

> Huy, 4+ Y Hox j=&+ Y Fiuneu a (4.9)

s q
1=0 j=0 h=0

where the diagonal elements of Hyo are equal to one. For a sample of T
observations, we can write the system (4.9) as

y=2Zin, + Yin, + Fe, (4.10)
where

y/=(y/1>y/2>-~-:y/T),
Z1 = (XoX1), p1T x pr(1+ p1s + por + p2),
Xg):[lpllpl-'-slpl]s PIXPIT:

L, ®...5
1/1 = cee ) plTX P%:
5, ®...¥,
IPI ® (3/03/1 e ‘y/—s-HlexJO ce x/—r-H)
X1 = IPl ® (3/13/0 x/—r+2) >
_IPI ®(J/T—l "'J/T—sij"' odT—r)

p1T x p1(p1s + par + p2)s
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with some of the columns of Z; and Y; being deleted when the exclusion
restrictions are imposed in order to identify the structural parameters,

I, 0 ... ... ... ... 07
F_ >
F = I
T xpT F‘I N \\ :
0
.0
L O 0 'F F I, ]
and

e =(e)...e),

€, = Fyipey; is defined in (4.8).
Since the &;s are assumed to be normally distributed, the likelihood
function can be written as

L, Z15m15 025 Zes F) o | Hiol 12|72
x exp| [ — Zim, — Yin)™ ' (Ir ® Z7Y)
Fl'y—Zim — Y]} 41D
In order to keep the block-triangular structure of the matrix F, we proceed

in a way slightly different from Reinsel (1977) and write the first order
conditions for a maximum of the likelihood function as

dlnL

an,
dlnL

an,
dlnL

B

where

=Z\F ' (I;r® ;") F'lu=0, (4.12a)

= —Tvec(Hi10) '+ F ' (Ir® =, ") F'u=0, (4.12b)

=XF ' (Ir® ") F 'u=0, (4.12¢)

ﬂIVGC[Fle...Fq]/,
X;=[€Z]5 1'2152:“01)1: l=1;2,~--545 j=1525---3p15
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with a typical row

€ =1[0,0...0,0...£;;...0,0...8j5...0...0;7,0],

p1 [ times P2 elements

ith position
and
u = Fe.

The first r.h.s. term of (4.12b) may be written as

—vec(Z'V'VH) (4.13)
where

L1 1

Y, = ?;etei = ?V’V,
with

vV = |:€11 Epi1 }5

Tx p 1T E€pT
and VH;}, = Wis the T x p; matrix of reduced form disturbances. Also,
—vec(Z' VW) = —(W' @ X vec(V) = —(W' ® I,)(Ir® £, ')e.
We can write the set of first order conditions for a maximum of the like-
lihood function with respect to ' = (0}, 15, 3) as

dlnL -

al = ZF Y Ir® 57Y) Flu=0, (4.14)

n

where

Z=(Xo, X1, 1 — F(W® Ipl): X3).

As discussed by Reinsel (1977), neglecting terms which, divided by 7,
have zero probability limit as 7" — oo, we have

1 9%, 1 A
plim — ——— = plim —Z F~! (I ® $7")F~' Z.
T—oo 1 0MOTY T—o00

Using the results given in (2.13), the following two-step estimator for n
has the same asymptotic distribution as the ML estimator:

A JlnL
H=7- r(ﬁ)”%(ﬁx (4.15)
n
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.. . . 1. .
where 7) is a consistent estimator of n such that 72 (1) — ng), no being
the true parameter value, has some limiting distribution and the matrix
I’ (M) is such that

1 1 8%2InL
lim — I"(f) = phim — -~ (1.,
D D = D T Sy 10

where the unknown matrix X, is replaced by a consistent estimate
1 L
S =2 ) eie ).
=1

Since the information matrix is block-diagonal with respect to n and X, it
is sufficient to substitute a consistent estimate of X, in order to efficiently
estimate 7).

Applying (4.15) to the present problem yields

A=n+ [Z/FH(IT@2;1)15712]712/15/71(&@2;1)1571&)
(4.16)

where the carats denote that the unknown quantities are evaluated at con-
sistent parameters estimates. The first-step consistent estimates can be
obtained using one of the single-equation estimation methods proposed
in section 4.1. Since we can write the system in (4.10) as

y=W-FWQIL,)n:+u—¢el=2Zn+u=Zn+ Fe,
4.17)

we may apply generalized least squares to (4.17) after having evaluated
the regressand ¥, the regressors Z and the disturbance covariance matrix
F(Ir ® X,)F at consistent parameter estimates — this is in fact one way
of computing the two-step estimator in (4.16) and it shows that the two-
step estimator (4.16) can also be interpreted as a residual-adjusted esti-
mator. Reinsel (1977) derives a slightly different estimator to which he
gives an instrumental variables interpretation. It is obvious that the com-
putation of the two-step estimator (4.16) which, if iterated until con-
vergence, yields the ML estimator given fixed and known initial con-
ditions, involves the inverse of the p; 7T x p; T disturbance covariance
matrix F(I7 ® X.)F'. In the way we have analyzed the problem, this
involves the inversion of F which is a blockband triangular matrix. As
shown by Palm (1977a), it only requires multiplication and addition of
matrices of order p; X p;.

As already discussed in section 2, the approximation in (4.16) to the
second step of the Newton—Raphson algorithm, is in fact the second step
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of the Gauss—Newton algorithm starting from consistent parameter esti-
mates. The large sample covariance matrix of 7) is consistently estimated
by

V) =ZF (Ir® £ F1 217, (4.18)

Since 1:] will be approximately normally distributed in large samples,
approximate tests of hypotheses can be constructed along the lines dis-
cussed in section 2.

As in the discussion of TF estimation, it is important to emphasize that
(4.16) involves rather large matrices when the dimensionality of 17 is large.
The situation is similar to that encountered in three-stage least squares
but here in addition to structural coefficients, there are also parameters of
the MA disturbance process to estimate. As with three-stage least squares,
the estimation approach described above can be applied to subsets of the
structural equations.

4.3 Single-equation structural estimation reconsidered: two-step LIML

Given that full information methods usually involve complicated com-
putations and that the complete system is not always fully specified, we
consider in this section single-equation methods from a ML point of view.

Consider a structural equation, assumed to be identified by exclusion
restrictions, of the system (4.1), say the first,

Yona + XoBay = w, (4.19)

where Yy = (v; Y1) is the T x m () matrix of observations on the current
endogenous variables included in the first equation, with my = m; + 1;
Xy is the matrix of observations on included lagged endogenous,
included current and lagged exogenous variables and a column of 1s
for the constant term; 7)¢;y and By are vectors of the non-zero structural
coefficients in the first equation; and «| = (411 u12 . . . Ui 7).

We write the unrestricted reduced form for Yy as

Yoy = XMy + Voy = Xy, + Xy Io. + Viys (4.20)

where I1(,) = ([T}, :11;) and X oy denotes the T x ko matrix of predeter-
mined variables excluded from the first equation.
Postmultiplying (4.20) by 71y and comparing the result with (4.19)

yields the following restrictions:

IMomayy =0, Iimgy = Bq- (4.21)
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From the assumptions on the model, the rows of V(;) are normally dis-
tributed, with zero mean and common covariance matrix §2(;y. Each row
of V(1) can be represented as a MA of order g(;y. In order to get a simple
structure for the disturbance term covariance matrix, we vectorize the
model (4.20) as follows:

vec(Y(y)) = Wi vec(ITy) + W vec(Io.) + vec(V ), (4.22)
with

m(l) ® 3‘«/
W, = ,
m(l) ® x

with j = 1,0 and &, being the 7th row of X;.
We write (4.22) as

Yay = Wit + Wommo + vy, (4.23)
and the MA representation of v(j) as
vy = Feq)s (4.24)
where
Ly, O 0
Fay
Fay = | Fayga >
0 \ 0
0 0 Fuygy Fuor Ingy (4.25)

and €(;) is normally distributed with covariance matrix £y and zero
serial correlations. The likelihood function may then be written as

Ly Wi, Wo, 715 o, 201 Fay) o 121" exp(S),  (4.26)
where
= -3 — Wim — Womo) 27 vy — Wi — Wommo)s
and
2 = Foy(Ir ® ) Fyy.-

We define the LIML estimator in a way slightly different from the usual
definition, as the estimator which maximizes (4.26) with respect to 7,
0, F(1y, and 711y subject to 1y 11y = 0. In terms of asymptotic proper-
ties of the LIML estimator it does not matter whether we maximize the
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likelihood function concentrated with respect to £2(;y or use a consistent
estimate for §2(;y in the first order conditions for a maximum of the likeli-
hood function with respect to the remaining parameters. The restrictions
may also be vectorized as

[77/(1) & Iko]ﬂ'O =0. (4.27)
The Lagrangean expression is

T /
z2= —E log |.Q(1)| +S—-A [77/(1) %) Iko]ﬂo, (4.28)

where A is the &2y x 1 vector of Lagrange multipliers.
The set of first order conditions for a maximum is

dz/om = W2 gy =0 (4.292)
dz/0mo = W2 vgy — () ® L) A =0 (4.29b)
3z/d¢p = W, vy =0 (4.29¢)
where

¢ = vec[Fuy1s Fuyzs - - -5 Faygy, !
W&Z[Eij], 1= 1,2,...,1"’[(1), [ = 1,2,...,q(1), ]= 1,2,...,7}’[(1),

and

el =10,0...0, 0...£;1,0...0, 0...£/,0...0,,...0...0¢;7,0...0].

Im1y times, m (1) elements

ith position

32/0m; = =Ly, ® N = 0, (4.29d)
92/0X = —[nyy ® Iy lmo = 0. (4.29¢)

We can solve (b) for g, to get
mo = (W27 Wo) "' [Wo2 7 vy — WAm1) — (1) ® T A (4.30)
Substituting (4.30) into (4.29¢) and solving for A gives
A=[y ® L)W' Wol gy ® In)] ™!
x [y ® L) (WHR2™ Wo) ' Wo2 7' (vyy — Wimy)]. (4.31)

The set of first order conditions for a maximum in (4.29) is clearly non-
linear in the parameters. We can approximate the solution by a two-step
Newton—Raphson procedure, as has been done in (2.13), starting with
consistent estimates for 7o, 71, ¢, and 71(;), computing A from expression
(4.31) and evaluating
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0=0—r)"[52/30),_; (4.32)
where
0= (77,15 ¢/s 77()) n,(1)5 A/)/)

0 is a consistent estimate of 6 satisfying the requirement in (2.13), and

WRTIW W W, WieTW, 0 0
WL, W WL W WL W 0 0

r@)=| w2 'W Wo2'Ws Wy2"'Ws — L, ®X) —1gy ® L)
0 0 — Ty ® X) 0 -1
0 0 — My ® L) I, 0

(4.33)

The unknown elements of £2;) in £2 = Fu)(I7 x §21)) F{,, are replaced by consis-
tent estimates. The probability limit of the matrix (1/T7)I" ) in (4.33) usually is
the matrix (1/7) (3%2/3030")(0,) where 6, is the vector of true parameter values
of 8. Of course, one can iterate the expression (4.32) to get the exact solution of
the first order conditions for a maximum of the likelihood function, which is the
limited-information ML estimator given fixed and known initial conditions. In
terms of asymptotic efficiency, it is not necessary to continue the iteration after
the second step.

5 Some concluding remarks

(1) In this chapter, we have presented several estimators for the three
forms of a dynamic SEM with moving average disturbances and discussed
their asymptotic properties. The results essentially rely upon:
(a) the asymptotic properties of the ML estimator of the parameters of
dynamic models, and
(b) a result given by Fisher (1925), Kendall and Stuart (1961), Rothen-
berg and Leenders (1964) and later by Dhrymes and Taylor (1976)
concerning the asymptotic properties of a two-step iteration of the
first-order conditions for a maximum of the likelihood function.
Of course, the starting values for the iteration and the matrix I” approxi-
mating the matrix of second order derivatives of the log-likelihood func-
tion have to satisfy some conditions (see, e.g., (2.13)), which we give in
the text, but which we do not verify explicitly for the estimation problems
considered. It ought to be clear that these requirements, such as stated
in (2.13), have to be checked in practical situations.
(2) Computation of the estimators presented above generally involves
operations on large matrices. For example, in each case one has to com-
pute the inverse of the covariance matrix of a vector-MA process. The
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estimation methods presented here open an immense field of application
for good numerical matrix inversion procedures exploiting the special
features of the covariance matrix of an MA process.

(3) Despite the fact that the field of application of the methods pre-
sented is probably limited to small models, the results of the chapter clar-
ify a number of questions concerning the asymptotic properties of estima-
tors for dynamic and static models. For example, if the disturbances of the
TF system in (3.6) are not correlated, i.e. K, =0,2=1,2, ...,q,then
the two-step estimator given in (3.10) specializes to Zellner’s estimator
for seemingly unrelated regressions.

As a second example, assume that H;;(L) in (3.3a) is an unimodular
matrix, i.e. |H;; (L)| = constant, then the expression given in (3.10) spe-
cializes to an expression with Z= (X0, X, Zg) and the covariance matrix
of the estimator in (3.10) will be asymptotically a block-diagonal matrix
as plim7_, o (1/ T [(X(X) 'Z,] = 0 under suitable conditions. Therefore
it will be sufficient to have consistent estimates of A, to efficiently estimate
(¢}, ") in (3.7). A similar result has been established by Amemiya (1973).

(4) It is to be expected that the estimation results can, at least for
samples of the size encountered in applied work, be improved by using
two-step estimators approximating the first order conditions for a maxi-
mum of the exact likelihood function. One step in the direction of using
the exact likelihood function is to “backforecast” the values of the ini-
tial conditions for FE, TF, or structural equation systems. This aspect
however deserves additional work.

(5) The discussion has been in terms of large-sample properties of the
estimators and test statistics for dynamic models. Small-sample proper-
ties of the estimators and test statistics have to be investigated. However,
the Monte Carlo results obtained by Nelson (1976) justify some opti-
mism about improving estimation precision in small samples by use of
the joint estimates which we have considered.
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Rejoinder (1981)
Franz C. Palm and Arnold Zellner

1 Introduction

In Palm and Zellner (1980), hereafter referred to as P-Z, we have pre-
sented an asymptotically efficient two-step and iterative estimation proce-
dure for the parameters of the final equation (FE), transfer function (TF)
and structural form of a dynamic simultaneous equation model (SEM)

Originally published in the Fournal of Econometrics 17 (1981), 131-8.
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with vector moving average (MA) disturbances. Asymptotic efficiency
of the two-step estimator requires the use of consistent initial parameter
estimates. The procedure outlined in P-Z to generate the initial estimates
usually does not yield consistent estimates.

We are grateful to J. McDonald and J. Darroch for pointing out (in
the preceding comment, hereafter denoted as Mc-D, and in Darroch
and McDonald 1981) that the procedure to compute the initial estimates
of the MA parameters of the disturbances and a method to get initial
estimates of the structural coefficients generally are not consistent. The
reason for this is that the single-equation innovations which play a cru-
cial role in our estimation procedure have correlation properties that are
different from those of the innovations in the system. In fact, each single-
equation innovation is a weighted sum of all current and past innovations
of the system.

McDonald and Darroch indicate how consistent initial estimates can be
obtained. The procedures that they suggest are computationally demand-
ing. There is a need for computationally less cumbersome procedures. In
this note, we shall show how consistent initial estimates can be obtained
in a simpler way by modifying the procedures suggested in P-Z.

In section 2, we shall discuss consistent estimation of vector MA pro-
cesses. Section 3 is devoted to single structural equation estimation. We
conclude [in section 4] with some final remarks, one of which is on consis-
tent estimation of a single reduced form equation when the disturbances
of the system are generated by a vector MA process.

2 Consistent estimation of a vector MA process

In order to outline how consistent estimates for the parameters of a vector
MA process can be obtained, we consider the following vector MA model
(see also (2.5) in P-Z and (1) in Mc-D:

w = G(L) v, 2.1

px1 pxp px1
where u, is a vector of stationary random variables, v; is the vector of
normally distributed system innovations, with mean zero and covariance
matrices Ev, v, = &,/ §2,, 8, being the Kronecker delta. The u,s may be
observable random vectors or unobservable disturbances in a system of
equations. In the latter case, the residuals obtained by consistently esti-
mating the system can be used. The matrix

q
G(L)=> G/, Go=1,
j=0
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is an invertible matrix operator, whose elements are finite polynomials of
degree ¢ in the lag operator L.

A typical element of u,, say u;;, can be represented as an MA of degree
¢; < ¢ in one variable, v}, called the univariate or single-equation inno-
vation, which is a normally distributed white noise. Then, the vector u,

can be written as
w, = AL}, 2.2)

where A(L) is a diagonal matrix polynomial with A(0) =1, (see also (3) in
Mc-D). The univariate innovations can be obtained by applying a ratio-
nal matrix lag operator to the v;s, i.e., v = A~/ (L)u, = A~1(L)G(L)v,
(provided A(L) is invertible). Therefore, each element v}, usually depends
on the current and all lagged values of u; or equivalently on the current
and lagged values of vj;, j = 1, ..., p . Also the o]'s will usually be cross-
correlated. Premultiplying (2.1) by the adjoint matrix of G(L), G*(L), we
obtain

G*(Du, = |G(D)|v,, (2.3)

where |G(L)| is the determinant of G(L). As the system (2.1) has been
normalized through the requirement Gy = I, , the off-diagonal elements
in G*(L) will be homogeneous polynomials in L, so that the ith equation
in (2.3) is in the form of a transfer function equation with an MA process
in the system innovation v;,. Notice that the MA parameters in (2.3) are
the same in different equations.

The estimation procedure presented by P-Z (pp. 209, 217,221), can be
modified as follows to yield consistent initial estimates of the parameters
in G(L) and £2,.

Step 2:  Estimation of the system innovations and of £2,. After substitu-
tion of consistent estimates of the final equations’, transfer functions’ or
structural equations’ disturbances, say #%,, obtained in Step 1 by instru-
mental variables estimation or derived from the univariate innovations
using (2.2), the transfer function equations in (2.3) can be estimated
separately using, e.g., non-linear least squares. The residuals in (2.3) are
consistent estimates of the system innovations and can be used to estimate
2, by

2y==Y 1.
Tz:l

Step 3:  Estimation of the matrices G;,j=1,. .., g. The parameters in (3)
are functions of the parameters of the Gjs. Consistent estimates of some,
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possibly all, parameters in (2.1) can be obtained from the single-equation
estimates of (2.3). In any case, they can be obtained from the regressions
of the ;s on &,_1,¥,_2,...,0;—4. The Gjs can also be estimated by the
method described in Step 3 of P-Z using the system innovations.

The estimates obtained in Steps 2 and 3 are used in Step 4 to gen-
erate fully efficient estimates of the system parameters. The procedure
outlined in Steps 2 and 3 has computational advantages compared with
the traditional method of solving the set of non-linear equations

1 & d
72@&;_1. =Y Gi2G, ;, i=0,1,...,q, (2.4)
t=1 j=i
for the elements in 2, Gy, . . . , Gy, using, e.g., the algorithm developed

by Wilson (1969), and then solving (2.1) to get estimates of the v,s. It will
also be more easily implemented than frequency domain methods, such
as those presented by Hannan (1970, pp. 383-8, 1975) and suggested by
Reinsel (1979).

As an illustration, consider the following bivariate process:

Ul 14+g,L gL D1
_ ; 25
|:u21:| |: gL  1+giL ]| v (2:5)

w, = (I + G, L)v,,

or

which satisfies the assumptions made for (2.1). The univariate innova-
tions are given by v}, = (1 — AL lu,i = 1,2, where A; is the root of
pi(DAZ + A+ pi(1) = 0, satisfying |;] < 0, with p;(1) being the first
order autocorrelation coefficient of u;;. A single-equation innovation can
usually be expressed as a sum of infinite MAs in the system innovations,
eg. v, = (1 — ML ' x (1 +g1 Do, + (1 — A L) g2Lvs,.

The model (2.5) can be written in the form of (2.3),

(1 + gaL)uy, — g2Luy, = [(1 + g1 LY(1 + g4 L) — g2g3L%] vy,
(1 +g1D)uz, — gsLuy, = [(1 + g1 L)(1 + g4L) — g283 L% 2.
(2.6)

Consistent estimates of the g;s, : = 1, . . . , 4, and of the disturbances
v1; and v,, are obtained through fitting separately the transfer function
equations in (2.6) with second order MA errors. Consider now the model
(2.5) with the restriction gz = 0. Then in (2.5), u,, is written as a univariate
MAwith A, = —gsand o5, = v,,. Substitution ofu,, = (1 + g4L)v,, into
the first equation in (2.6) leads to a simplified transfer function equation
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for u;, with one “explanatory variable,” v, = v}, , and a first order MA
disturbance,

uy, — g292-1 = (1 + g1 L)v1,, 2.7

from which g1, g, and v, can be estimated. Similarly, ifg, = g4 = 0, u;, =
1+ g1L)vy,,with A; = —g; and v;, = 9§, . The second equation in (2.6)
becomes

Uzr — g3'vi<[_1 = V21 (2.8)

so that g3 and v,, can be consistently estimated in a linear regression of
U, on Iy,_;.

This analysis illustrates the usefulness in some situations of single-
equation innovations for the estimation of MA parameters in systems
of equations. At present, the relevance of univariate innovations in time
series modeling is widely recognized (see, e.g., Haugh and Box 1977).

Obviously, for models with diagonal MA matrices the single-equation
innovations are identical with the system innovations, and the single-
equation parameter estimates and residuals can be used straightforwardly
in the expressions for the asymptotically efficient estimators. Among oth-
ers, Nelson (1976) assumes diagonal MA matrices, an assumption which
leads to a substantial reduction of the number of parameters to be esti-
mated. Notice also, that any vector ARMA model can be transformed into
arestricted autoregressive model with diagonal MA matrices through pre-
multiplication as in (2.3) by the adjoint matrix associated with the MA
part. In the transformed model, single-equation and system innovations
are identical.

3 Single structural equation estimation

In the notation of P-Z a single structural equation, say the 7th one, of a
dynamic SEM with vector MA disturbances can be written as

p1 p
vt Y hg(Dye+ Y hg(L)xie = ci + i 3.1)
j=1 J=p1+1
where the £;(L) = zrio h,ﬂLl are scalar polynomials in L of degree r,

h;;(0) = 0, the y;s are endogenous variables, the x;s are exogenous vari-
ables, and u;, is the 7th element of a vector of disturbances generated by a
p1 x 1vector MA such as defined in (2.1). The variables x;s are assumed
strictly exogenous, i.e., x;; and u;, are independent, all j, ¢, 7. On impos-
ing identifying exclusion restrictions the remaining parameters in (3.1)
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can be consistently estimated by an instrumental variables method as
described in P-Z (p. 270).

As an alternative Zellner and Palm (1974) (see also P-Z, pp. 221-2)
proposed to substitute the estimated FEs or TFs for the current endoge-
nous variables in (3.1) (except for y;) and then to apply non-linear least
squares to obtain estimates for the parameters in the /;(L)s.

However, as shown by Darroch and McDonald (1981) when non-
linear least squares is applied, the structural disturbance is represented as
an MA in one innovation that depends on all current and past values of the
system innovations vj, so that this single-equation innovation and some of
the explanatory variables are correlated. Therefore, the non-linear least
squares method applied to a structural equation, after substitution as
described above, fails to produce consistent estimates of the structural
coefficients. OLS applied to (3.1) after substitution of fitted values 9;;_
foryjt—k Z&jz—k“‘wjt—k)]’ =1,...,p,k=0,1,...,9,k=0,1, ...,q,
(except for v;,),

y1t+2 |:th]ly]z 1+ i hz]lyjt l:| + Z hzj(L)x]t

I=g+1 j=p1+1
1 q
=c¢+ | Uz — E yl@jtfl 5 (32)
j=1 1=0

where we assume without loss of generality that g < all r;j, will yield consis-
tent estimates of the parameters in %;(L), provided the Lh.s. explanatory
variables are orthogonal to the disturbance term between brackets on the
r.h.s. One can obtain y;_s that satisfy this requirement by OLS applied
to a regression of y;,_, on z;,

Vb = ZY + Wir—ps (3.3)

where the vector 2; consists of all the variables appearing on the Lh.s. of
(B.1), except v, j =1, ..., p1,/ < ¢ , and includes enough additional
variables that are uncorrelated with u;, (e.g. other lagged exogenous vari-
ables not appearing in (3.1)) for the inverse of the OLS estimator applied
to (3.2) to exist.

The estimation procedure can be applied to all p; structural equations.
The residuals can be computed and used as described in section 2 to
obtain consistent estimates of the system MA parameters. When ¢ = 0,
the structural disturbances are uncorrelated and this estimation proce-
dure leads to the truncated two-stage least squares estimator (see Brundy
and Jorgenson 1974) where, instead of using all predetermined variables
of the model in the OLS regression of the first stage, one uses a selected



Rejoinder 239

subset. Notice the similarity with the model with uncorrelated distur-
bances. As in the model with MA errors all current and past endogenous
variables up to lag ¢ are correlated with the disturbance term u;, they
have to be treated as “dependent” variables for which an instrumental
variable has to be used or a substitution made. Also, none of them can
be included as a regressor in 2,. Despite this fact, there are many ways to
obtain consistent estimates of the structural parameters in the /;(L)s.

It should be noted that non-linear least squares estimation of (3.2),
implementing GLS, is inconsistent as there will be correlation between
some explanatory variables and the innovations associated with (3.2). In
the final form or the TF form each endogenous variable in the system of
equations consisting of (3.1),7 =1, ..., p; , is expressed as a rational
distributed lag on all exogenous variables and an error term, which is a
sum of ARMA processes in the v;s. Substitution of the estimated final
form or TF equation for the current and all lagged endogenous variables
in (3.1) leads to a linear regression equation with an error term that can be
represented as a univariate ARMA process with an innovation that is inde-
pendent of the regressors. As stated in Darroch and McDonald (1981)
non-linear least squares estimation will be consistent. It is expected to be
more efficient than OLS estimation, which is also consistent.

Concluding remarks

(a) To conclude, through a modification of Steps 2 and 3 of the proce-
dure presented in P-Z, consistent estimates of the MA parameters
and of the system innovations can be obtained. They can be used
to generate fully efficient estimates along the lines outlined by P-Z.
In some cases, the single-equation innovations will be very useful to
get initial consistent estimates of the vector MA parameters. These
procedures are expected to be computationally less demanding than
the procedure proposed in Mc-D.

(b) There are many ways to obtain consistent estimates of the structural
parameters of a dynamic SEM with vector MA errors. One can use
instrumental variables or substitute for the “dependent” variables in
the structural equation. After appropriate substitution OLS will be
consistent whereas non-linear least squares (or GLS) may not be
consistent.

(c¢) The points discussed in this note are also relevant for single-equation
reduced form estimation, when lagged endogenous variables are
present and the disturbances are generated by a vector MA pro-
cess. Although the disturbance term of the single reduced form equa-
tion can be represented by an MA in one variable, neither OLS nor
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non-linear least squares estimates of a single reduced form equa-
tion are consistent. In both cases there will be correlation between
explanatory variables and the disturbance or the innovation. But the
methods presented in section 3 and appropriately specialized are
consistent.
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6 Time series and structural analysis of
monetary models of the US economy (1975)

Arnold Zellner and Franz C. Palm

1 Introduction

In previous work, Zellner and Palm (1974), an approach for building and
analyzing dynamic econometric models was presented that is a blend of
recently developed time series techniques and traditional econometric
methods. This approach was applied in analyzing dynamic variants of
a small Keynesian macroeconometric model formulated by Haavelmo
(1947). In the present chapter, we apply our approach in the analysis of
variants of a dynamic monetary model formulated by Friedman (1970,
1971).

We commence our present analysis by presenting the structural equa-
tions of an initial variant of Friedman’s model, denoted S°, that is viewed
as a starting point for our analyses. That is, as in previous work we set forth
a number of testable implications of S°, in particular the implications of
SY for the forms of the final and transfer equations for the variables of S°.
Using monthly data for the US economy, 1953-72, and time series anal-
ysis, the implications of S° are checked against the information in the
data. As will be seen, some of S°’s implications do not square with
the information in the data. This leads us to consider other variants of
the model whose implications can be checked with the data. In this way
we attempt to iterate in on a variant of the model that is in accord with
the information in the data. When a variant has been obtained that is
in accord with the data information, it can be checked further with new
sample information.

In considering possible variants of the initial model S°, we shall be
concerned with, among others, the following issues: (1) rational vs. other
representations of the formation of anticipations, (2) open versus closed

Research supported by National Science Foundation Grant GS-40033, H. G. B. Alexander
Endowment Fund, Graduate School of Business, University of Chicago, and the Belgian
National Science Foundation.

Originally published in Sankhya: The Indian Fournal of Statistics, Series C 37 (1975),
12-56.
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loop control policies, (3) relationship of “nominal” and “real” sectors of
the economy, (4) lag structures and other features of behavioral equations,
and (5) serial correlation properties of disturbance terms. As will be seen,
these issues can be analyzed by comparing the theoretical and empirical
properties of final equation and transfer equation systems.

The plan of the chapter is as follows. In section 2, we present and
discuss the structural, transfer, and final equations of the initial variant
of Friedman’s model. We then turn to the results of empirical analyses
designed to check the consistency of the initial variant with the informa-
tion in our data. After summarizing the empirical findings, we go on in
section 3 to describe and analyze variants of the initial model. In sec-
tion 4, we consider properties of a variant of the model that we believe is
consistent with the information in our data. Additional empirical analy-
ses and tests of our final variant are reported. A summary of results and
some concluding remarks are presented in section 5.

2 Analysis of an initial variant, S°, of a monetary model

2.1 Structural equations of S°

In this section we describe the structural equations of a simple mon-
etary model that we regard as a good starting point in our search for
a formulation that is consistent with the information in our data. If
it is found that the simple model is inconsistent with the data, alter-
native variants will be considered. The equations of the initial variant
include (1) a money demand equation, (2) a money supply equation, (3)
a money market clearing relationship, (4) the Fisher equation, and (5) an
anticipation formation equation. In the initial variant of the model, the
anticipation formation equation is formulated as a “partial adjustment”
equation and possible lag structures in the structural equations are pur-
posely suppressed. The equations of the model are first presented in deter-
ministic form and then transformed to a stochastic difference equation
representation.

The first equation of the model is a money demand equation that we
write as follows:

Y, = Ae"*MP A,y > 0, (2.1)

where A and y; are constant parameters, the subscript z denotes the value
of a variable in the z-th time period, Y, = nominal income, Mf) = nominal
money balances demanded, and 7, = nominal interest rate. Following
Friedman, we have assumed that (2.1) is homogeneous of degree one
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in MD and P,, the price level.! Further, we have included a particular
functional form for the dependence of money demand on the interest
rate.? Last, we have intentionally excluded any lags in the money demand
relations, a point that will receive attention below.

The second relationship of the model is a money supply function, for-
mulated as follows:

MS = Be"" H, B,y, >0, (2.2)

where B and y, are constant parameters, Z\/If = nominal supply of money,
and, H, = “high-powered” money or the monetary base (currency plus
bank deposits with the Federal Reserve System).

We assume that H, is an exogenous variable, an assumption whose
implications will be explored below.

Given that the money market clears each period, we have

MP =M =M, (2.3)

where M, is the actual stock of money.
The next equation of the model is the Fisher equation,

L =p+ r;, (2.4a)
where p = the real rate of interest, assumed constant, and rzt =

(Alog P)* = (AP,/P,_1)*, the anticipated rate of inflation. Given that
(Alog Y)* = (Alog P)* + (A log y,)*, where ry = (Alog ¥))* is the
anticipated rate of change of nominal income and g} = (Alogy,)* is the
anticipated rate of change of real income, y,, we have r; =rjy —g;. If
we, along with Friedman, assume that g} =g, =g, a constant,®> where
g, = Alog y,, the actual rate of change of real income, (2.4a), can be

rewritten as,
L=p—gtry=c+ry, (2.4b)

with ¢ = p — g, assumed constant.
The last equation of the model is an “adaptive expectations” equation
that has been employed in many studies, namely,

riﬁ’z - rik,z—l = ﬂ(ryt_l - V;k’,,l) ,8 > 0) (25)

where ry, | = A log Y;_;, the lagged rate of growth of nominal income.

1 Some empirical results of Laidler (1966) suggest that this approximation may be accept-
able.

2 Other functional forms could be employed. However, some alternatives lead to a model
that is non-linear in the variables.

3 Below, we relax this assumption.
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Upon substituting from (2.3) in (2.1) and (2.2), taking logarithms of
(2.1) and (2.2) and differencing them and (2.4b), the resulting equations
of the initial model S° are:

ry, = 14 +ru, (2.6)
M, = V241, +rm,, 2.7
Ai; = Arg, (2.8)
Ary = B(ry_, —ry_)- (2.9)

T

Since (2.9) can be expressed as [1 — (1 — B)L]ry, = BLry,, where L
is a lag operator (Lx; = x;-1), we have [1—(1—B)L](1 — Dry =
B(1 — L)Lry,. Then on noting that (2.8) is (1 — L)ry;, = (1 — L)z;, we can
replace (2.8) and (2.9) by

[1— (1 —B)L]Ai, = BL(1 — L)ry,. (2.10)

Thus the three equations of the model involving the three observable
endogenous variables ry;, Az, and rag, and the observable exogenous vari-
able ry, are given by (2.6), (2.7), and (2.10). These three equations can
be expressed in matrix form with the addition of random disturbance
terms, uy;, Us, and us;, as follows:

1 —1 -V ry 0 Ui
0 1 —¥2 o, | =1 | ra+ | vy |,
BLA—-L) 0 1—(1-pL|| 4i 0 6
2.11a)

or in more general form,
Hyy, = aryg +u, (2.11b)

where H;; denotes the matrix on the Lh.s. of (2.11a), ¥, = (ry, rar,, At)
o = (O) 1, O): and ul[ = (U1 Uzys u3z)~

We shall now derive the transfer functions (TFs) and final equations
(FEs) associated with the structural equations S° in (2.11) and establish
properties of the TF and FE systems.

2.2 Transfer functions (TFs) for S°, (2.11)

Solving the system (2.11) for ry;, rar,, and Az, in terms of ry, by premul-
tiplying (2.11) by the adjoint matrix HJ; associated with H;;, we get the
TFs

|I_Ill|yz=H;k1arH,+Hik1un (2.12)
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where |Hj;|, the determinant of Hy, is given by |[Hy;| =1 - (1 — B)L —
By + y2)L(1 — L), which is a second degree polynomial in L, and the
adjoint matrix H is given by:

1-1-8L 1-(1-8)L Y1+ 72
Hi\=|»npLA-L) 1-1-BL-ypLA-L) y
BL(1—L) BL(1—L) 1
(2.13)

Explicitly, the TF system in (2.12) is then:

ry,
1-QA-=BL—-By1+v)L(A—-D)]|rm
Ai,
1-(1-pL vy
= |(1-QA-BL-—nBLA-L)|rg +|vx|, (2.142)
BL(1—L) V3,

with v, = H}ju,, where v, = (v1,, V2 03,).

From examination of the Lh.s. of (2.14a), it is seen that S° implies
that each of the three TFs has an autoregressive (AR) part that is of
second order and that the parameters of the AR parts of the three TFs
are identical. Further the implied lags on rg, the rate of growth of high-
powered money, in the TFs are shown in the following table:

TF for  Order of lagon rp,

ry; 1
M, 2
Aty 2

In addition to these implications of S° for the forms of the TFs, it should
be noted that (2.14) involves some strong restrictions on the parameters
of the TFs that can be appreciated by rewriting (2.14a) as follows:

Ty,
[1-(=B+mL+nLl?]|ry,
At
1-(1-8)L V1
=|[1-A=B+n)L+mL?|rg + |va | (2.14b)
BL— BL? U3,

where n = (y; + y2)8 and n; = y; 8. The following are restrictions on the
parameters of (2.14b) implied by S°:



248 Arnold Zellner and Franz C. Palm

(1) The sum of the coefficients of ry,_, and ry,_, equals the coefficient of
rg,_, in the TF for ry;.
(if) The coefficient of ry, should equal one in the TF for ry; and rp;, and
be equal to zero in the TF for Ag,.
(iii) In each of the three TFs, the sum of the AR parameters is equal to
B, the coefficient of rg, , — ry, , in the TF for Ai,.
(@iv) In the TF for Az, the sum of the coefficients of r,_, and ry,_, is zero.
(v) The sum of the coefficients of vy, and ry,_, in the TF for ry;, equals
the coefficient of ry,_, in the TF for ry;.
The restrictions (i)—(v) can be tested in empirical analysis of the TF
system in (2.14). Further, the properties of the error vector v, in (2.14)
can also be investigated. Since v, = Hj,u,;, with H}| shown in (2.13),
it is clear that assumptions about the serial correlation properties of u,
imply testable implications regarding the serial correlation properties of
v,. For example, if the u,s are assumed to be serially uncorrelated, then
the elements of v,, given by

1 (1 -1 =B Lluy, + [1 = A = B)Llus + (y1 + v2)us,
o= vy | =|1BLA - LDuy, +[1 -1 —=B)L—-ynBLA— L)]uy + yous | »
V3, BL( — Duy, + BL(1 — Lyuy, + us,

(2.15)

will be autocorrelated. In fact, under the assumption that the u;,s are
serially uncorrelated, the moving average (MA) processes on the v;,s will
have the following properties given that y;, y» 2 0and 0 < 8 < 1:

Error term  Order of MA process

V1 1
V2 2
V3 2

In empirical analyses, these implications regarding the orders of the MA
error processes, that are lower bounds, can be tested empirically.

2.3 Final equations for S°

We assume that the exogenous variable ry, is generated independently?
of the other variables by the following autoregressive moving average
(ARMA) process:

¢ (Drg, = 0,(L)ug, (2.16)

4 Below we consider the implications of a breakdown of this independence assumption.
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Table 6.1 Selected properties of FEs

Variable Order of AR Order of MA error®
ry, 24+p max(l + g, p + ny)
M, 24p max(2 + ¢, p + n2)
Az 2+p max(2 + ¢, p + n3)
TH, P q

Note:

% niyi =1, 2, 3, denotes the order of the MA processes for v;;,
i=1, 2, 3, respectively. Since, as shown above, the n; > 0,7 =
1, 2, 3, the orders of the MA errors in the FEs are bounded
from below.

where ¢,(L) and 6,(L) are polynomials in L of finite degrees, p and g,
respectively, and uy, is a non-autocorrelated error term with zero mean,
constant variance that is distributed independently of the structural dis-
turbance terms appearing in (2.11a). Properties of the process in (2.16),
including the values of p and ¢, will be determined from the data on rg,.

If we premultiply the system in (2.14a) by ¢,(L) and substitute ¢, (L)rg,
= 0,(L)us,;, from (2.16), we obtain the FEs for endogenous variables ry,
ry, and Az, namely:

ry,
(1-QAQ—=BL—-B+ )L —D)]p,(L) | rm,
Ai,
1—(-p)L V1t
=|1-QA-BL—-—nBLA - L) |0;,(Dus, +¢,(L) | v |»
BL(1—L) V3,

(2.17)

It is seen from (2.17) that each FE is in ARMA form with idenzical AR
parts, an implication that will be tested with our data. In table 6.1, we
summarize the features of the FEs in (2.16) and (2.17).

Given that we determine the forms and estimate the parameters of the
FEs from our data, it is possible to assess whether the information in our
data, is consistent with the implications of S® that have been set forth
above.

2.4 Empirical analyses of final equations of the initial model S°

In this subsection we report the results of analyses of the FEs (2.16) and
(2.17) first employing Box—Jenkins (1970) techniques and then utilizing
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likelihood ratio tests and posterior odds. The latter techniques, used pre-
viously in Zellner and Palm (1974), appear to us to be less judgmental
than Box—Jenkins (hereafter, B]) techniques.

BJ (1970) suggest differencing a series until it is stationary and then
computing and studying estimates of the autocorrelation and partial
autocorrelation functions in order to determine the orders of the AR
and MA parts of the final equations.’> For the monthly series® under
consideration — that is, those for nominal personal income, high-powered
money, and nominal money balances — the proportionate rate of growth
of each of these variables seems to be generated by a stationary pro-
cess while the first difference of the monthly nominal interest rates also
appears to be stationary (see figure 6.1).

In figure 6.2, the estimated autocorrelation and partial autocorrelation
functions for the series Az, the first difference of the monthly market
interest rate on three-month treasury bills (3MTB) are presented.” The
bands represent a large sample +26 confidence interval for the autocor-
relation parameters where ¢ is a large-sample standard error associated
with the sample estimates of the autocorrelation parameters. The esti-
mates of the first, sixth, and seventh autocorrelation coefficients lie out-
side the 426 band. Using the first order autocorrelation coefficient, which
appears to be quite different from zero, as a cut-off of the autocorrelation
function, the results suggest a first order MA process. With respect to the
estimated partial autocorrelation function, only the estimate of the first
order partial autocorrelation coefficient lies outside the £26 interval. If
the first order partial autocorrelation coefficient is deemed significantly
different from zero while all higher order coefficients are assumed equal
to zero, the error process in the FE for Az would be a first order AR
process. Estimation of a (1, 1, 1) process® produced the following result
using 240 monthly observations on z,, 1953-72:

(1—0.124L)Ai, = 0.012 + (14 0.334L)e, s> =0.0534,
(0.147) (0.020) (0.139)

(2.18)

where ¢, is a non-autocorrelated error term with zero mean and con-
stant variance, s is the residual sum of squares divided by the number

5 See Box and Jenkins (1970), Nelson (1973), and Zellner and Palm (1974) for further
discussion and applications of these techniques.

6 The data are discussed in the appendix at the end of the chapter (p. 286).

7 The computations were performed using a computer program developed by C. R. Nelson
and S. Beveridge, Graduate School of Business, University of Chicago.

8 In Box and Jenkins (1970, terminology a (p, d, g) process for a variable denotes a process
that is stationary in the dth difference of the variable with AR part of order p and MA
error process of order g.
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of degrees of freedom, and the figures in parentheses are large-sample
standard errors.

Analyses similar to those with the 3MTB rate were performed with the
interest on four-six-month prime commercial paper (4—6PCP). Again
the process suggested by the autocorrelation and partial autocorrelation
functions’ estimates is a (1, 1, 1) process that was estimated using 240
monthly observations on 7,, 1953-1972, with the following result:

(1 —0.573L)Ai, = 0.006 + (1 — 0.0569L)e, s2 =10.0378.
(0.100) (0.012) (0.122)
(2.19)

The first differences of In M;, where M; is currency plus demand
deposits, appear to be subject to a slight trend indicating an increasing
proportionate rate of change in nominal balances. The autocorrelation
function for the first differences, shown in figure 6.2, falls off slowly while
the partial autocorrelation function has values significantly different from
zero at lags 1, 2, and 3. If we consider lag 3 as a cut-off, the underlying
process for AlnM, is a pure third order AR process that was estimated
with the following result:

(1 —0.240L—0.204L%> — 0.235L)Aln M, = (o 00095) + e
(0.0641) (0.0647) (0.0642) 0.00027)

2 =0.00000757. (2.20)

Notice that all coefficients in (2.20) are significantly different from zero
at a reasonable significance level.

With respect to monthly personal income, Y, the first difference of
InY, appears to be stationary, see figure 6.1. Except for lag 4 and lag 9,
the estimates of the autocorrelation coefficients lie within the +26 band
and those of the partial autocorrelation coefficient all lie within or close to
the 26 band (see figure 6.3). If we take the value of the autocorrelation
function at lag 4 to be a cut-off of the function, the process for AlnY,
may be a fourth order MA with zero coefficients for ¢,_;, ¢;,_» and ¢, 3.
Estimation of this scheme led to:

AlnY, =0. 09053 +(1 4+ 0 144L4)et s2 = 0.00002. (2.21)

Last, the first differences of InH, show a slight trend that can be elim-
inated by second differencing. For the levels In H,, the autocorrelation
function falls off slowly while the partial autocorrelation function has a
value significantly different from zero at lag 1. For AlnH,, the estimated
partial autocorrelation function has some values up to lag 6 that lie out-
side the £26 band while the autocorrelation function has significantly
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Note: Figures below abscissa should be read as negative.

positive autocorrelations for a large number of lags (see figure 6.3). In
view of these results, the choice of an underlying scheme is not obvious.
On fitting a (1, 1, 1) scheme, the result is:

(1+0.615L)AlnH, =
(0.403) .0012)

2 = 0.0000326.

0.004 + (1 - 0,6831)c,
(0.372)

(2.22)
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Table 6.2 Results of Box—Fenkins

analyzes of FEs

Variable ARMA process
i, : BMTB) 1,1,1)

7, : (4-6PCP) 1,1,1)

InM, (3,1, 0)

InY, 0,1, 4

lnH, (15 1> 1)

It is seen that neither the AR parameter nor the MA parameter is signif-
icantly different from zero. If both are taken equal to zero, InH, would
follow a random walk.

The analyses reported above provide a tentative identification of the
processes generating Az;, AlnM;,;, AlnY, and AlnH,, with the results sum-
marized in table 6.2.

As indicated in the previous subsection, AR parts of the FEs for the
endogenous variables, Az, AlnM;, and AlnY, should be identical and of
order p + 2, where p is the order of the AR part of the FE for InH*, namely
p=1asshown in table 6.2. On comparing the results in table 6.2 with the
implications of the model S°, shown in table 6.1, we see that the AR part
of the FE for AlnM;, has order 3, consistent with the requirement that it
be p + 2 = 3. However, the empirically determined orders of the AR parts
of the FEs for Ai, and for AlnY,, 1 and 0, respectively, are not consistent
with the implication of S° that they be of order p + 2 = 3. Further, the
empirically determined orders of the MA error processes of the FEs for
AlnM;, and A, are, respectively, 0 and 1, which is inconsistent with the
implication of S° that they be equal to or greater than 1 4+ ¢ = 2, where
q is the order of the MA error process in the FE for AlnH,.

It is clear that the empirical analyses of the FEs have produced find-
ings apparently inconsistent with the implications of model S°. However,
before considering modifications of S°, we shall consider the FEs’ speci-
fications employing large sample likelihood ratio tests and posterior odds
ratios.

2.5 Empirical analyses of final equations using likelthood ratio tests and
posterior odds ratios

In this subsection, we compare alternative specifications of the FEs using
large-sample likelihood ratios that approximate posterior odds ratios.’ In

9 That is if A = ratio of maximized likelihood functions under hypotheses H; and Hy, the
posterior odds ratio, K3, in large-samples is given approximately by Kjz = (71 /m2)A,
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addition to the variables appearing explicitly in model S°, we also analyze
processes for Iny, and InP,, where y, is the monthly index of industrial
production and P, is the monthly consumer price index. These latter
variables will appear in variants of S° considered below.

The results of estimating alternative schemes for the variables are
reported in tables 6.3—6.9. The variants of the processes considered have
been suggested by analyses reported in the previous subsection and also
by the usual practice of considering somewhat broader schemes that may
be supported by the information in the data. Large-sample x? tests have
been employed to determine whether schemes somewhat broader than
those presented in the previous subsection are supported by the informa-
tion in the data. Information regarding the application of the yx? tests is
presented in tables 6.10-6.12.

For the 3MTRB interest rate, i, a (2, 1, 3) model appears significantly
better than either a (1, 1, 1) or a (2, 1, 2) model while the (3, 1, 3)
model seems to be more in accord with the information in the data than
either (1, 1, 1), (2, 1, 2), or (3, 2, 1) models. Since the estimation results
provide a third order AR coefficient significantly different from zero at a
reasonable significance level, we conclude that the data favor a (3, 1, 3)
model for the 3MTB interest rate.

As regards the 4-6MPCP rate, (2, 1, 3), (3, 1, 2), and (3, 1, 3) are
significantly different from (1, 1, 1) or (2, 1, 2) models at the significance
levels indicated in table 6.3. However, it does not appear to be possible
to discriminate among the (2, 1, 3), (3, 1, 2), and (3, 1, 3) models. Even
though the (2, 1, 3) model is nested in the (3, 1, 3) model, the likelihood
ratio is very close to 1. From the estimates of the (2, 1, 3) and (3, 1, 2)
models it is difficult to discriminate between them and thus we shall
tentatively carry along both variants.

According to the results of the likelihood ratio tests, a (3, 1, 3) model
for InM,, is more in accord with the information in the data than (3, 1, 0),
2,1, 2), (2,1, 3), or (3, 1, 2) models. The estimation results for the (3,
1, 3) model suggest that all its parameters are significantly different from
zero at a reasonable significance level.

With respect to InY;, the logarithm of nominal income, the (0, 1, 4)
model suggested by the BJ identification techniques performed very well
relative to alternative and is thus retained.

For InH,, the logarithm of high-powered money, a random-walk model,
(0, 1, 0), performs as well as more complicated models on the basis of
the large-sample x? tests and thus is retained at the present stage.

where 1 /7, is the prior odds ratio for the two hypotheses. See Lindley (1961), Palm

(1973), and Zellner and Palm (1974, p. 22) for derivation and discussion of this approx-
imation and Zellner (1971, ch. 10) for discussion of posterior odds ratios.
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Table 6.6 Estimated FEs for the In of personal income, 1953—1972

Estimates of the Estimates of the

RSS, AR part MA part
Model residual sum

(p, d, q) of squares DF RSS/DF ARI1 AR2 AR3 MA1 MA2 MA3 Constant

1. (0, 1, 4) 0.0058 237 0.00002 —0.144 0.0052
(0.0656)  (0.0004)

2. (1,0, 0) 0.0605 238 0.00025 0.971 0.179
(0.00098) (0.0063)

Table 6.7 Estimated FEs for the In of high-powered money, 1953—-1972

RSS Estimates of the Estimates of the
Model resid’ual sum AR part MA part
(, d, q) of squares DF RSS/DF ARl AR2 AR3 MAIl MA2 MA3 Constant
1. (0,1,0) 0.007759 238 0.0000326 8.000%%75)
2. (1,1,0) 0.007738 237 0.0000326 0.0522 0.0024
(0.0645) (0.0004)
3. (0,1,1) 0.007737 237 0.0000326 —0.054 0.0025
(0.0645) (0.00039)
4. (1,1, 1) 0.007700 236 0.0000326 —0.615 0.683 0.004
(0.403) (0.372) (0.0012)

With respect to Iny,, the logarithm of the monthly index of industrial
production, BJ analysis and likelihood ratio tests both support a (1, 1, 0)
model.'?

Last, various processes for the logarithm of the monthly consumer price
index, InP,, appear better supported by the information in the data than
the (2, 1, 0) model suggested by BJ techniques.!! Since it does not seem
possible to discriminate well among more complicated variants, we shall
choose the simplest, a (2, 1, 1) model.

In summary, the results of our analyses using monthly data, 1953—
72, suggest tentatively the findings reported in table 6.13 with regard to
the processes that probably generated the observations on our variables.
Also shown in table 6.13 are results using data for 1953-62 and 1963-72
subperiods that indicate little change in the orders of the lag polynomials
for the processes considered.

Viewing the results in table 6.13 for the 195372 period in terms of
the implications of S for the FEs set forth in table 6.1, the finding for
InH,, a (0, 1, 0) process, indicates that p = 0 and ¢ = 0. Given that p = 0,

10 See figure 6.3 for estimates of the autocorrelation and partial autocorrelation functions
for Alny;,.

11 See figure 6.3 for estimates of the autocorrelation and partial autocorrelation functions
for AlnP,.
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Table 6.10 Results of the large-sample likelihood ratio test applied to FEs,
1953-1972

Critical points for x2

 L(XIH)

Models compared T L(X|Hy) 2lna r a=0.05 a«=010 o=0.20

1. Market rates 3MTB

Hy:(1,1,1)vs. H : (2,1,2) 2.04665 1.43241 2 5.99 4.60 3.22
1,1, 1) (2,1,3) 9104.01 18.2329 3 7.82 6.25 4.64
1,1, 1) (3,1,3) 13599.7 19.0356 4 9.49 7.78 5.99
(1,1, 1) (3,1,2) 8.76987 4.34265 3 7.82 6.25 4.64
2,1,2) (2,1,3) 4448.33 16.8006 1 3.84 2.71 1.64
2,1,2) (3,1,3) 6644.64 17.6031 2 5.99 4.60 3.22
2,1,2) (3,1,2) 4.28479 2.91014 1 3.84 2.71 1.64
2,1,3) (3,1,3) 1.49368 0.80249 1 » » »
3,1,2) (3,1,3) 1550.68 14.6929 1 » » »

2. Interest rates 4—6MPCP

Hy:(1,1,1)vs. H : (2,1,2) 3.81787 2.67938 2 5.99 4.60 3.22
(1,1, 1) 2,1,3) 213945 15.3366 3 7.82 6.25 4.64
1,1, 1) (3,1,3) 2139.45 15.3366 4 9.49 7.78 5.99
1,1, 1) (3,1,2) 3540. x 10° 30.1593 3 7.82 6.25 4.64
2,1,2) (2,1,3) 560.350 12.6571 1 3.84 2.71 1.64
2,1,2) 3,1,3) 560.350 12.6571 2 5.99 4.60 3.22
2,1,2) (3,1,2) 9272.x 102 27.4799 1 3.84 2.71 1.64
2,1,3) 3,1,3) 1 0 1 » » »
(3,1,2) (3,1,3) i<l - 1 » » »

Table 6.11 Results of the large-sample likelihood ratio test applied to FEs,
1953-1972

Critical points for x2

LX)

Models compared - L(X\Hy)) 2Inx r =005 =010 o=0.20

3. Currency and demand deposits : M,

Hy:(3,1,0)vs. H : (3,1,2) 1.14450 0.269929 2 5.99 4.60 3.22
3,1,0) 3,1,3) 100.411 9.21855 3 7.82 6.25 4.64
2,1,2) (2,1,3) 2.24336 1.61595 1 3.84 2.71 1.64
2,1,2) (3,1,2) 2.24336 1.61595 1 » » »
2,1,2) 3,1,3) 196.813 10.5645 2 5.99 4.60 3.22
3,1,2) 3,1,3) 87.7229 8.34837 1 5.99 4.60 3.22
2,1,3) (3,1,3) 87.7229 8.94837 1 3.84 2.71 1.64

4. Consumer price index

Hy:(2,1,0)vs. H : (2,1,1) 8006.92 17.9761 1 3.84 2.71 1.64
2,1,0) (2,1,2) 9150.49 18.2431 2 5.99 4.60 3.22
2,1,0) 3,1,2) 15625.1 19.3133 3 7.82 6.25 4.64
2,1,0) (3,1,1) 10457.0 18.5100 2 5.99 4.60 3.22
2,1,1) (2,1,2) 1.14267 0.266728 1 3.84 2.71 1.64
2,1, 1) (3,1,2) 1.95114 1.33683 2 5.99 4.60 3.22
2,1,1) 3,1,1) 1.30594 0.533844 1 3.84 2.71 1.64
2,1,2) (3,1,2) 1.70758 1.07015 1 » » >
3,1,1) 3,1,2) 1. 0 1 » » »
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Table 6.12 Results of the large-sample likelihood ratio test applied to FEs,
1953-1972

Critical points for x?2

 L(X|H)

Models compared T L(X|H)) 2Ilna r «a=0.05 a«a=0.10 «=0.20

5. High-powered money

H,:(0,1,0)vs. Hy : (1,1,0) 1.38423 0.650288 1 3.84 2.71 1.64
0,1,0) 0,1,1) 1.40588 0.681328 1 » > »
0,1,0) 1,1,1) 2.49906 1.83183 2 5.99 4.60 3.22
(1,1, 0) (1,1,1) 1.80518 1.18132 1 3.84 2.71 1.64
0,1,1) 1,1,1) 1.77744 1.15035 1 » » »

6. Industrial production index

Hy:(1,1,0)vs. Hy : (1,1,2) 1.08239 0.158334 2 5.99 4.60 3.22
1,1,0) 1,1,1) 1.08772 0.168169 1 3.84 2.71 1.64
1,1,0) 2,1,1) 1.14293 0.267185 2 5.99 4.60 3.22
1,1, 1) 21,1 1 0 1 3.84 2.71 1.64

Table 6.13 Models suggested by large-sample likelihood ratio tests and
estimation results

Period of analysis

Variable 1953-1972 1953-1962 1963-1972

i, : BMTB) 2,1,3)o0r (3, 1, 3) 2,1,3)0r (3,1, 3) 2,1,3) 0r (3,1, 3)
i, : (4-6PCP) 2,1,3)0r (3,1, 2) 2,1,3)0r (3,1, 2) 2,1,3)0r(3,1,2)
InM;, 3,1, 3) 2,1,2)o0r (3,1, 3) 2,1,3)0r (3,1, 3)
InY; 0, 1,4 0, 1,4 0, 1,4

InH,; 0,1, 0) (0, 1,0) or (2,1, 0) 0,1, 0)

Iny;, (1,1,0) 1,1, 0) (1,1,0)or (1,1, 1)
InP, 2,1, )or(1,1,1) 2,1,0)or (1,1, 1) 2,1,1)or(1,1,1)

model S° implies that the AR parts of the FEs for 7,, InM;, and InY;
should all be second order (see table 6.1). The findings reported in table
6.13 contradict this implication in that the orders of the AR parts of the
FEs for 7; (3MTB) and for InM{, are 3 while that for InY; is 0. Thus some
major implications of S° are apparently in conflict with the information
in the data and there is a need to consider variants of the initial model.!?

12 Ifinstead of expressing S° in terms of the growth rate of nominal income, we expressed it
in terms of the rate of growth of the price level, r,,, and if we continue to assume that the
growth rate of real income or output is constant, this would be equivalent to substituting
rp, and ry forry and r;k,t > respectively, where r is the anticipated rate of inflation. Then

the empirical result for InP, in table 6.13 is compatible with the implication of this variant

of SO but there is still an incompatibility with respect to the empirical findings relating
to the FE for InM;,.
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3 Formulation and analysis of variants of the initial
model S°

The findings reported in table 6.13 indicate a need to reformulate S°. In
particular, the finding that real output, Iny,, follows a (1, 1, 0) process
may mean that the approximation of a constant growth rate for real output
embedded in S° may be inadequate. Reformulation of S° to permit r,, =
Alny, to be variable along with a relaxation of the assumption that the
income elasticity of demand for real balances is equal to 1 leads to a
variant of S that we shall refer to as S!. The equations of S! are given in
(3.1a-3.1d):

rp, +ory, = y1 A + 1 (3.1a)
rm = y24i try, (3.1b)
Aip = Ar), (3.10)
r =T, =B, =15 ) (3.1d)

where variables are defined as above in connection with the development
of (2.6)-(2.9), r,, = Alny,, and « is the income elasticity of demand for
real balances.

On expressing the unobservable anticipated rate of inflation r*

e in terms
of observables the system S! in (3.1) can be expressed as follows:

1 —1 —VY1 th
0 1 —Y2 M,
—-BL(1—-L) 01-—0-pB)L|| Az
0 —« Uu;
=1 o0 [”’f} + | |, (3.2)
0 0 Ve U3z

where u;, 1 = 1, 2, 3, are disturbance terms. Initially, we shall go forward
under the assumption that ry, and r,, are exogenous variables.

Solving the system in (3.2) for r, , 75, and Az, as in (2.14) above, we
obtain the TFs associated with S! in (3.2):

"p,
(1-QA-=-BL+By1+r)LA—-LD)]|rum
Al,
1-(1-p8)L —a[l -1 - pB)L]
=|1-0-BL-npLA~-L) —aypBL(1-L)
BL(1 - L) —afL(1 — L)
V1
X [VHZ} + | vz | (3.3)
Ty,

U3
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Table 6.14 Degrees of lag polynomials in (3.3)

Variable AR MAforrg, MAforr,  MA for error®

T'p, 2 1 1 1<
M, 2 2 2 2<
Aty 2 2 2 2<
Note:

@ “1 <” indicates that the order of the MA error process is at
least 1 or greater and similarly for “2 <.”

where v, = Hyu,, v, = (vi;5 V215 v3,), Hf is given in (2.13), and u, =
(u1,5 us,us3,) are the structural disturbances in (3.2).

Notice that the AR parts of the TFs for S' in (3.3) are identical to
those for S° in (2.14a) and thus should be of order 2 with identical
parameters. If « = 1, the MA polynomials for ry and r,, in the first
and third equations sum to 0. With o # 1, this restriction is no longer
satisfied. Further, the MA polynomial for r,, in the second equation is
proportional to that for r,, in the third equation.!® Table 6.14 provides
a summary of degrees of the various polynomials appearing in (3.3). It
is seen from the table that the degrees of the polynomials are rather low
and the same in a number of instances, a point that can be checked
empirically.

If we assume that the exogenous variables are generated independently
of the other variables by the following ARMA schemes,

d1(L)ry, = 01 (L)uy, (3.4)
d2(L)ry, = 02(L)us;, (3.5)

where ¢;(L) and 6;(L), : = 1, 2, are finite polynomials in L of
degrees p; and ¢;, respectively, we can solve for the FEs of S! by
substituting from (3.4)—(3.5) in (3.3). Note, however, that this involves
assuming that the real growth rate, r,, is exogenous to the monetary
sector and that policy-makers, assumed to control rg,, the rate of growth
of high-powered money, have adopted an “open-loop” control strategy.'*
With these qualifications in mind, we present the FEs of S! in (3.6):

13 There are other restrictions on the parameters of (3.3) similar to those discussed in
connection with (2.14) above.

14 The latter assumption excludes possible feedback effects on the policy-makers’ actions.
See Sargent (1973) and Sargent and Wallace (1973) where such feedback effects are
considered.
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Table 6.15 Degrees of lag polynomials in FEs for variables in (3.6)

Variable Degree of AR polynomial Degree of MA polynomial

p, 2+p1+p2 1+p1+p1+p2+q1 and 1+p;+¢g2 <
M, 24p1+p2 24 p1+p22+p2+q1 and 24p; +¢q2 <
Az 2+4+p1+p2 2+p1+p22+p2+q1 and 2+p; +¢2 <
Yp,
[1-QQ-B8L+ByLA— L)]p1(L)p2(L) | rm,
A,
1-(1-8)L —a[l = (1 - B)L]
= |1-0-BL-ynBLA—-L) —ayBL(l-L)
BL(1 — L) —afL(1 — L)
V1
b2 (L)01 (L)uy,
L L 5 3.6
X |:¢1(L)92(L)u5l +¢1( )¢2( ) Zjl ( )
t

where y = y; 4+ y». If no cancelling occurs, the degrees of the polynomials

in the ARMA schemes given in (3.6) are as shown in table 6.15.

With respect to table 6.15, the empirical results for the FEs in table
6.13 indicate that p; = ¢; = 0, p» = 1, and ¢, = 0. Thus, if we retain a (3,
1, 3) or a (3, 1, 2) model for i, and a (3, 1, 3) model for InM;,, we have
compatibility with the requirements set forth in table 6.15. However if no
cancelling occurs, there is an incompatibility with respect to the degrees
of the AR and MA polynomials in the empirically determined process for
InP,, namely (2, 1, 1). In addition, on viewing the estimates of the AR
parameters in the (3, 1, 3) FE for InM;, and those for the (3, 1, 3) FEs
for 7, it is seen that they are far from being identical as required by the
form of (3.6). Thus there appear to be fundamental problems with the
S! formulation of the model.

In considering reformulation of S!, the following points were consid-
ered:

(1) « in the money demand function (3.1a) could be a polynomial in L,
a(L). This would bring current and lagged values of r,, into (3.1a).
However, such a modification of S! leads to implications for the FEs
that are incompatible with the empirical findings reported in table
6.13. This is also the case if other lagged effects were incorporated in
the structural equations (3.1).

(2) The rate of growth of real output, r,,, considered to be exogenous
in S!, might be an endogenous variable. However, this assumption
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leads to implications for the FEs at variance with the empirical results
in table 6.13.

(3) The rate of growth of high-powered money, ry , might be subject
to closed loop control, that is dependent on current and/or lagged
endogenous variables. This assumption has implications for the FEs
properties that are not in agreement with the empirical findings for
the FEs.

(4) Some cancelling may occur in the FE for r,, in (3.6). For example, if
¢o (L) were proportionalto 1 — (1 — 8)L , cancelling would occur and
(3.6) would be compatible with the empirical results insofar as the
degrees of AR and MA polynomials are considered. However, there
does not appear to be any obvious rationale for assuming that the AR
polynomial in the FE for r,, namely ¢,(L) in (3.5), is proportional
to 1 — (1 — B)L . Further, even if this were assumed, there is still
the problem that estimates of corresponding parameters in the 3rd
degree AR polynomials in the FEs for r,, and A, appear to be quite
dissimilar.

(5) It may be that use of Az, in (3.1b), the money supply relation, and/or
the Cagan expectation formation equation, (3.1d), are inappropriate.
Below we consider these possibilities.

As mentioned in (3.5), problems with the S! formulation of the model
may be due to inadequacies in formulating the money supply relation
(3.1b) and the expectation equation (3.1d). As the model is shown in
(3.1), expectations are not rational in the sense of Muth (1961) . . . Sar-
gent and Wallace (1973) have provided a model, similar in some respects
to those considered above, within which the Cagan expectation forma-
tion process is rational. A variant of the Sargent—Wallace model, denoted
S2, will now be considered.

The equations of the Sargent—Wallace model, employing our notation
with u;, and u,, structural disturbance terms, are:

rm, =71p + 051(”; - r;;til) 4+ —=Lwu, o <0 3.7
=422, (3.8)
1—A

Equation (3.7) is obtained by differencing a log-log demand equation
for real balances with real income assumed constant. Sargent employs
T T rather than our Ai; however, given that the Fisher equation
(2.4a) holds with a constant real rate of interest,!” this formulation is

15 Alternatively, we could assume that the real rate is variable and follows a random walk.
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equivalent to ours in (3.1a). Equation (3.8) represents Cagan’s expec-
tation formation process and is equivalent to our (3.1d) except that our
equation involves using r,_, rather than r,, in (3.8). Equation (3.9) is a
money supply equation that differs from ours in that ry, is made to depend
onr, = ﬁ’”w the anticipated rate of inflation that is assumed gener-
ated by (3.8) for the monetary authorities as well as for the demanders
of money balances. If InH, is assumed exogenous and follows a (0, 1, 0)
process, as appears to be the case in our data, ryg, = AlnH, = «p + ¢
could be considered to be included in u,,. Thus the major modifications
embedded in Sargent’s model vis-a-vis our S° is a timing change in the
expectation equation and the inclusion of rj in the rate of change of
money supply.

On substituting from (3.8) and (3.9) in (3.7), the FE for r,, is obtained
which when substituted in (3.9) yields the FE for ryy,.1° Given that u;, and
u,, are non-autocorrelated, these FEs are a (1, 1, 2) process for InP, and
a (1, 1, 1) process for InM,. Both of these processes are in conflict with
the empirical findings reported in table 6.13 above, namely a (1, 1, 1)
ora (2, 1, 2) process for InP, and a (3, 1, 3) process for InM;,. Thus the
“rational” Cagan model in (3.7)—(3.9) does not appear to be consistent
with the information in our data. Even if we relax the assumption that
real income is constant in (3.7)—(3.9) by introducing r,, as a variable in
(3.7), we still find the model incompatible with our empirical results.

The last variant of the model to be considered, S?, involves introducing
a rational expectations relation to replace Cagan’s [1956] assumption. In
this formulation, our equations are:

Gorp, + 11y, = V1AL + Pary, + s (3.10)
Dorp, = P3rp + )/gAi + org, + uz, (3.11)
Aly = A} + Uz, (3.12)
rp, = Elrp | (3.13)

where the ¢;s are polynomial lag operators, (3.10) is the money

demand equation, (3.11) the money supply equation, (3.12) the Fisher

equation,!” and (3.13) the rational hypothesis where E(rp, | .) denotes the
13

16 The FEs are given explicitly below:
¢Lyrp, = (1 = ALyuz, — (1 = AL)(1 — Lyuy,
¢Lry, = [1 =2+ ¢(D)]uze — (1 = 1A = Dyuyy,

where ¢(L) = XA + a1(1 — A) — [A + a1 (1 — A)]L. Note that the factor 1 — AL
has been canceled in obtaining these FEs.

17 If the real rate of interest is variable, its first difference can be assumed incorporated in
the structural disturbance us;.



Time series and structural analysis 273

conditional expectation of r,, as of time ¢ given the equations of the model
and past information.

On substituting for the endogenous variables Az, and ryy, in (3.10), we

have
rp = @y [=1ry, + V1AL + dary, + ]
= ¢ [ = d1ry, + (11 + G103 ' v2) Ar) + dadpy ' bary,
+adby Sra ]+ dg  [wre + Gadby uz + (i + Gady ' y2)us]-
(3.14)

Then, under the simplifying assumption that ¢q, ¢1, ¢3, ¥1, and y» are
constant parameters, ¢, and ¢4 are polynomials of the same degree with
the same roots we have:

E(rp, 1) = ¢5'[ = d1Ery + (11 + ¢ag ') A7),
+ ¢ad; ' $3Erp, + pah, 6 Erp ]
+¢g ' [Eut, + ¢atp; ' Bz, + (v1 + dap; ' v2) Eus,],
(3.15)

where all expectations on the r.h.s. of (3.15) denote conditional expecta-
tions at time z given past information. On multiplying both sides by ¢o¢»,
using (3.13), and rearranging terms, we have:

[Pod2 — P211A — P304 — Pay2 Al Ary,
= _¢1¢2AE7‘3}, + ¢48AEVHI + Urs (3.16)
where
v = G2 AEuy;, + ¢4 AEus; + (h2y1 + ¢day2) AEus,.

Now if the variables ry, and r, are generated by the following ARMA
processes,

01 (L)rg, = wi(L)ua,

02 (L)ry, = wa(L)us;, (3.17)
the conditional expectations of ry, and r,, can be written as

Erp,=—0{(L)rg, + w) (Lua,

Ery,=—0,(Dry, + wy(L)us,, (3.18)

where 0/(L) and w}(L) are the homogeneous parts of 0;(L) and w;(L),
respectively, 7 = 1, 2.
Substituting from (3.18) in (3.16) and using (3.12), we have
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¢(L) Ai, = Y1 (L)rg, + Ya(L)ry, + v, (3.19)
where
d(L) = (Pop2 — P21 A — $39s — Pay2A)
Y1(L) = —$s 4861 (L),
V2(L) = Ap1¢p26,(L),
and

v, = v, — P12 Awjus, + PaS Awug, + G(L)us,.

In matrix form the system in (3.10)—(3.13) becomes

P —Ps —n Tp, 0 —¢ ro Uy,

—¢3 G2 —w2 rm, | =1 A O [ , } + | u

0 0 0] Ai, Y1 Yo H v,
(3.20)

The determinant of the matrix on the L.h.s. of (3.20), denoted det Hy;,
is

det Hy; = ¢(¢od2 — P304), (3.21)

while its adjoint matrix, H, is:

D29 Psd V12 + Vo
Hf\ = | ¢3¢ dop v1¢3 + y2dbo |- (3.22)
0 0 g2 — ¢3¢

Then the transfer functions associated with (3.21) are

p, s + U1 (V12 + v2a)
D (Pop2 — P3pa) | v, | = | 0¢od + V1 (V13 + vado) | TH,
At Y1(Pod2 — P34)

[ =120 + V2 (y12 + Vapa)
+ | =130 + Y2 (13 + v2dbo) | 1y,
| V2(Pog2 — ¢304)

[ P20 ¢adp vid2 + vodpa | [ urs
+ | ¢3¢ o Vi3 + V2o || u2s
| 0 0 ¢opo— 304 || 9

(3.23)

Ifin (3.23) we substitute for ry, and r,, from (3.17), we obtain the final
equations for r,,, a1, and Az,. The empirical results for the processes on
rg, and r,, indicate that 6; and w; in (3.17) are each of degree 0 while
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6, is of degree 1 and w;, is of degree 0. These findings imply that ¥; =0
and that the final equations are given explicitly by

T'p, 3¢s
O (Pod2 — P3¢a)02 | 11, | = | 0¢0@ | Ooua,
A, 0
— 01020 + Y2 (Y192 + V264)

+ | =193 + V2 (Y183 + vado) | us,
Yo (o2 — P3pa)

Uy
+92HT1 Uz | » (3.24)

/
vl

with Hf, given in (3.22).

For the FEs in (3.24) to be compatible with our empirical findings in
table 6.13, some cancelling has to occur. In particular, under the simpli-
fying assumption made in (3.15) that ¢, and ¢, have the same degree
and

$2XPss  OF Py = A, (3.25)

we can eliminate the common factor ¢, and (3.24) becomes

@' (o — P31)0s1), 8¢’
O(Po — P30)0arar, | = | o’ | Oruta,
&6, A, 0
019" + V(1 + v2)
+| —01030" + Y5, (V13 + v2bo) | us,
125 i
¢ dr r+rd) | [un

+05 | 930" pod” (V13 + vadbo) | | w2 | »
0 0 1 o

where ¢’ = ¢/p2, Wy = /P, and v = v] /5.
We assume that
Y1, Y25 915 8, ¢po and ¢3 are each of degree 0;
¢ is of degree 2 and thus ¢’ is of degree 1; and
¥, is of degree 2,

and if the u;s, 1 =1, 2, . . ., 5, are serially uncorrelated, v = ¢'(L)us,,
where ¢'(L) is of degree 1. Under these conditions, the FEs in (3.26)
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have the following properties:

,:(2,1,2)
InM,:(3,1,3)
InP:(2,1,2).

On comparing the above properties of the FEs with the empirical findings
reported in table 6.13, it is seen that there is a high degree of compatibility.

Explicit forms of the structural equations, (3.10)-(3.13), embodying
the conditions given in (3.25) and those below equation (3.26), and the
empirically determined final equations for Iny, and InH, are given below

ra, = &3 [Birp, +ary, — yi A, — uy,) (3.10")
rym, = )L¢4_1 [Borp, + v2 Al + 87 p, + ua] (3.11)
Aiy = Ar, +us, (3.12)
r, = l;(rp’ [) (3.13)
ry, = ao + 05 tuy, (3.172")
rH, = )+ s, (3.17v)

where we have taken ¢ = «, ¢9 = B1, $3 = B2, P4 = AP, in line with
(3.25), and the A, as, ys and fBs are scalar parameters. It is seen that
variables and disturbances on the r.h.s. of the money demand equation,
(3.10"), and the money supply equation, (3.11") are “smoothed” by the
same polynomial. Of course, it may be that their parameters are slightly
different in equations (3.10") and (3.11’) and that we have not picked
up such differences in our empirical analyses.!® However, the system
presented above is compatible with our empirical findings for the FEs.

The next step in our work will involve analysis of the TFs associated
with the compatible structural equation system presented above. From
(3.23), the TFs are:

@' (po — P3M)rp, = SAP'rp, + [—19" + Y3(1 + v2W)]ry,
+ @'ur + ¢'uz + (1 + v20)0] (3.27)
¢ (Po — P3M)rm, = 8o rh, + [—d1939" + Y5193 + v290)]ry,
+ ¢3¢ u1; + pod'uz, + (Y13 + v20)v;,
(3.28)
¢ Aiy = Yy, + 2. (3.29)

18 On comparing estimates of the AR parameter in (3.17a) with estimates obtained from
other FEs, we find them very similar.
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Table 6.16 Degrees of polynomials in TFs (3.27)—(3.29)

Variable AR MA for ry, MA for ry, MA for error?
T'p, 1 1 2 1<

M, 2 1 2 1<

Aiy 1 2 1<

Note:

@ If the u;;s, 7 = 1, 2, 3 are serially correlated we will have strict inequalities.

Under the assumptions made in (3.15), the polynomials in the TFs
have the degrees shown in table 6.16, implications that will be checked
empirically.!®

Of course the implications of the TFs may or may not be found consis-
tent with the information in our data. For example, if r,, is not exogenous,
this will affect estimates of the TTs based on the assumption that r,, is
an exogenous variable and will probably lead to incompatibilities. Fur-
ther, if r,, is an endogenous variable and if the real sector is modeled
along with the monetary sector, our empirically determined FEs imply
that any such system must be characterized by cancelling of polynomials
in order to have its FEs compatible with the empirically determined FEs
presented above. These are some of the issues that will receive theoretical
and empirical attention in future work.

4 Empirical analysis of the transfer functions of S3

We now turn to the analysis of the TFs presented in (3.27), (3.28) and
(3.29). If model S has generated the data, the results in table 6.16 should
empirically be verified. The empirical analysis of the TFs is done along the
lines suggested by Box—Jenkins (1970) and by Zellner and Palm (1974).
Alternative specifications for the TFs are compared with those implied
by the model S> using a large-sample likelihood ratio (LR) test. The
results of estimating these alternatives are reported in tables 6.17-6.20.
Equation M, in each of the tables is compatible as far as the order of the
polynomials is concerned with S> (see table 6.16). The transfer function
M3 is compatible with S!. Alternative specifications are reported in tables
6.17-6.20 and compared using the LR test in table 6.21. The estimation
results deserve some comments. The parameter estimates are in gen-
eral rather imprecise. This is somewhat disquieting as the sample size is

19 See Zellner and Palm (1974) for empirical analyses of TFs associated with a small
dynamic Keynesian model.
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Table 6.21 Results of the large-sample likelihood ratio test applied to
the TFs 1954-1972

L(x|H) Critical points for x?2

Models compared A= LI Ho) 21lnA r ~— 005 o020

1. Market rates: 3MTB

Hy:M2vs. H : M1 1.829 1.208 3 7.82 4.64
M4 M1 2.478 1.815 3 7.82 4.64
M3 M1 5.383 3.366 5 11.07 7.23
M8 M2 2.943 2.159 2 5.99 3.22
M2 M3 3.064 2.239 5 11.07 7.23
M6 M3 1.490 0.798 4 9.44 5.90
M7 M3 7.211 3.951 6 12.59 9.56
M8 M3 9.016 4.398 7 14.07 9.82
M3 M4 2.173 1.552 2 5.99 3.22
M8 M5 5.790 3.512 2 5.99 3.22
M7 Mo 4.840 3.154 2 5.99 3.22
M8 M6 6.051 3.600 3 7.82 4.64
M8 M7 1.250 0.446 1 3.84 1.64

2. Interest rates : 4—6MPCP

Hy:M2vs. H : M1 21.669 6.152 3 7.82 4.64
M4 M1 3.437 2.469 3 7.82 4.64
M8 M1 29.094 6.741 5 11.07 7.23
M8 M2 1.343 0.590 2 5.99 3.22
M2 M3 1. 5 11.07 7.23
Mo M3 1.088 0.169 4 9.44 5.90
M7 M3 1.343 0.590 6 12.59 8.56
M8 M3 1.343 0.590 7 14.07 9.82
M8 M4 8.465 4.272 2 5.99 3.22
M8 M5 5.927 3.559 2 5.99 3.22
M7 M6 1.234 0.421 2 5.99 3.22
M8 M7 1. 1 3.84 1.64
M3 M6 1.234 3 7.82 4.64

3. Rate of change in consumer price index

Hy:M2vs. H : M1 16761.3 19.454 4 9.44 5.90
M3 M1 3506.0 16.324 5 11.07 7.23
M4 M1 2631.85 15.750 4 9.44 5.90
M6 M1 3506.02 16.324 5 11.07 7.23
M7 M1 1709.40 14.887 3 7.82 4.64
M8 M1 13.27 5.171 1 3.84 1.64
Mo M3 1.
M3 M4 1.332 0.573 1 3.84 1.64
Mo M4 1.332 0.573 2 5.99 3.22
M1 M5 1.361 0.616 1 3.84 1.64
M2 M5 22809.56 20.070 5 11.07 7.23
M3 M5 4771.16 16.941 6 12.59 8.56
M4 M5 3581.55 16.367 5 11.07 7.23
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Table 6.21 (cont.)

L(x|H;) Critical points for x?2

Models compared A= x| Fo) 21nx r 7 — 005 o=0.20

Hjy: M6 vs. H; : M5 4771.16 16.941 7 14.07 9.82
M7 M5 2326.23 15.504 4 9.44 5.90
M8 M5 18.06 5.787 2 5.99 3.22
M3 M7 2.05 1.436 2 5.99 3.22
M4 M7 1.54 0.864 1 3.84 1.64
M2 M8 1262.68 14.282 3 7.82 4.64
M3 M8 264.12 11.153 4 9.44 5.90
M4 M8 198.27 10.579 3 7.82 4.64
M6 M3 264.12 11.153 5 11.07 7.29
M7 M8 128.77 9.716 2 5.99 3.22

4. Rate of change of the stock of money (M1)

Hy:M2vs. H : M1 238.99 10.953 4 9.44 5.90
M3 M1 21.15 6.103 3 7.82 4.64
M4 M1 872.62 13.543 5 11.07 7.29
M6 M1 5730.86 17.307 6 12.59 8.56
M7 M1 2098.99 15.298 6 12.59 8.56
M8 M1 4104.40 16.640 6 12.59 8.56
M6 M2 23.980 6.354 2 5.99 3.22
M2 M3 11.301 4.850 2 5.99 3.22
M4 M3 41.263 7.440 3 7.82 4.64
M6 M3 270.991 11.204 4 9.44 5.90
M7 M3 99.253 9.195 4 9.44 5.90
M8 M3 194.079 10.537 5 11.07 7.29
M6 M4 6.567 3.764 1 3.84 1.64
M7 M4 2.405 1.755 1 3.84 1.64
M3 M4 4.703 3.096 2 5.99 3.22
M2 M5 8.543 4.290 4 9.44 5.90
M6 M5 204.860 10.645 6 12.59 8.56
M7 M5 75.032 8.636 6 12.59 8.56
M3 M5 140.900 9.896 7 14.07 9.82
M8 M7 1.955 1.340 1 3.84 1.64

relatively large. Most of the alternatives are obtained by dropping some
of the non-significant parameter estimates and lead to simpler schemes.
The ideal procedure would be to fix upper limits to the degrees of the
polynomials in the TFs and then to explore systematically the parameter
space by changing the degrees inside the fixed limits and retaining the
model with the highest RSS. Such a procedure would have ML justifi-
cation. However it would be cumbersome to implement. Selecting a few
alternatives may lead to the same results. At least it may lead us to reject
the TF of a theoretical model so far inadequately entertained.
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For the market rate for 3 MTBs none of the more complicated models
My, My, Mz, My, Mg, M7 does better than Mg for which all the parameters
except the constant are significant at the 5 percent level. Only M5 is
significantly different from Mg at the level of 0.20. If we retain model
Ms, it is not compatible with the TFs of S2.

For the 4-6 MPCP rate, M; is preferred to M,, and M, or M5 are
preferred to Mg at the 0.2 level. If we retain M, or Ms, we have structures
similar to those for 3MTB. Notice that most of the coefficients in My
and Mj5 are significant at the 0.05 level. Also the parameter estimates for
both series are similar. A few remarks are now appropriate. Although the
results suggest that the TFs in accord with the information in the data are
simpler than those implied by S! or S3, we cannot entirely reject model
S>. The theoretically meaningful model S> implies that the variable rg,
does not affect the interest rate. Bringing the variable ry, into the TF for
3MTB and 4-6 MPCP does not lead to an important gain in RSS. In
addition no coefficient of rg, is significant at the 0.05 level. This finding
supports some implications of S>. The RSS do not vary significantly by
increasing the number of lags. The likelihood function seems to be rather
flat and thus does not permit sharp discrimination among the estimated
models.

For the rate of change in the consumer price index, models M; and
Ms5 are preferred to My, M3, My, Mg, M7, Mg, and Mg is more in accord
with the data than M,, M3, My, Mg, M. It is reasonable to accept ten-
tatively TF M;. However few coefficients of M; are significant at the
0.05 level.

For the proportionate rate of change in the stock of money, model
M, is preferred to My, My, Mg, M7, Mg at the 0.05 level, whereas it is
preferred to M3 at the 0.20 level. M3 is significantly different from the
models Mz, My, Ms, M7, and Mg at the 0.20 level. For ryr,, model S8
is empirically validated. Notice that one of the roots of the AR part for
the three variables r,,, ra,, and Az, is close to 1, suggesting that perhaps
second order differencing of the endogenous variables is adequate. Again
parameter estimates are not very precise. If M is retained, two roots of
the AR part for r,, and ry, are very similar, giving additional evidence
that the variables are generated by some joint process. Whether M; or
Ms is retained for the interest rates, the AR part has one root close to 1
and in common with the AR part for r,, and ry,.

5 Concluding remarks

At a first glance, the results of the TFs’ analysis are not compatible with
model $3. At least for the interest rate series, they do not lead to a relevant
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choice of the dynamic structure. The schemes retained from the empirical

analysis are of higher order than those summarized in table 6.16. For

the interest rates the RSS does not vary much from model to model.

The likelihood function seems to be very flat in the neighborhood of

its maximizing parameter values. The sample is not powerful enough

to discriminate among alternative specifications and we have to rely on
external information (e.g. from economic theory) to choose the structure.

The assumptions underlying S? (i.e. the “rational expectation” hypothesis

and the variable InH, generated by a random walk) are not ruled out by

the information in the data. Model S! is not compatible with the empirical
findings which do not show any dependence of the interest rates on the
money base.

A factor which may have disturbed the analysis and which has to be
studied in future work is seasonality. It is obvious from the figures 6.2
and 6.3 that seasonal effects have not completely been eliminated from
the seasonally adjusted variables. For example for the variable r,,, the
twelfth order autocorrelation is significantly different from 0. For per-
sonal income and for the index of industrial production, the twelfth order
partial autocorrelation is significant at the 5 percent level. The seasonally
unadjusted interest rate series shows a clear presence of seasonal effects.
The twelfth order autocorrelation is significantly different from 0 at the
5 percent level. In the price series, seasonality seems to be very strong.
Both, the autocorrelation and the partial autocorrelation of order 12 are
significantly different from 0. The seasonal effects show up again in the
TFs’ analysis. The estimated autocorrelation function of the disturbances
of all the TFs has a significant value at lag 12.

In summary, the main findings of the present statistical analysis are:
(1) Although the results of the likelihood ratio tests appear to favor more

complicated schemes, they do not lead to a systematic rejection of
model S? for the US data for the period 1953-72.

(2) The data indicate that the variable InH, follows a random walk.

(3) The variables and the disturbances of the money demand equa-
tion and the money supply equation are smoothed by the same first
order lag polynomial. (See 3.10'-3.11"). A surprising feature is that
the degrees of the lag polynomials in the structural form are rather
low.

(4) The structure of the model is stable over the twenty-year period cov-
ered by the sample. Splitting the sample into two parts and estimat-
ing the same schemes for the subperiods leads to very similar results
and nearly identical parameter estimates for the series, except for the
process InH, where an upward shift occurred in the drift parameter
around the year 1963.
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APPENDIX DATA SOURCES

1.

Three-Month Treasury Bill market rates (3MTB) are averages com-
puted from daily closing bid prices. Data were obtained from the Fed-
eral Reserve Bulletin.

. Four—six-month Prime Commercial Paper rates (4-6 MPCP), are aver-

ages of daily offering rates of dealers and were obtained from the Federal
Reserve Bulletin.

. Seasonally adjusted M1 (currency plus demand deposits) data were

obtained as follows: (1) 1953—8 figures were obtained from the Decem-
ber 1970, Federal Reserve Bulletin, pp. 895-909; (2) 1959-72 figures
were obtained from February 1973 Federal Reserve Bulletin, pp. 72-3.
The monthly data are averages of daily figures.

. The Consumer Price Index (CPI), Bureau of Labor Statistics index

for city wage-earners and clerical workers was obtained from 1971
Business Statistics for 1953—70. For 1971-2 data were obtained from
the Federal Reserve Bulletin.

. Personal income (PI) data, seasonally adjusted, were obtained from

1971 Business Statistics for 1953-70. For 1971-2 data were obtained
from the Federal Reserve Bulletin.

. Index of Industrial Production (IIP) data, seasonally adjusted, were

obtained from 1971 Business Statistics for 1953-70. For 1971-2 data
were obtained from the Federal Reserve Bulletin.

. High-powered money (H) data, seasonally adjusted, were taken as the

sum of the average of daily figures for currency outside the Treasury,
Federal Reserve Banks and vaults of all commercial banks, plus the
average of daily figures for the total reserves of all member banks. The
data were obtained as follows: (1) 1953-8 figures were obtained from
the Federal Reserve Bulletin; (2) 1959-72 figures were obtained from
the February 1973 Federal Reserve Bulletin, pp. 72-9.

BIBLIOGRAPHY

Box, G. E. P. and G. M. Jenkins (1970), Time Series Analysis, Forecasting and

Control (San Francisco: Holden-Day)

Cagan, P. (1956), “The monetary dynamics of hyperinflation,” in M. Friedman

(ed.), Studies in the Quantiry Theory of Money (Chicago, University of Chicago
Press), 25-120

Friedman, M. (1956), “The quantity theory of money — a restatement,” in M.

Friedman (ed.), Studies in the Quantity Theory of Money (Chicago, University
of Chicago Press), 3—24

(1970), “A theoretical framework for monetary analysis,” Fournal of Political

Economy 78, 193-238



Time series and structural analysis 287

(1971), “A monetary theory of nominal income,” Journal of Political Economy

79, 323-37

Haavelmo, T. (1947), “Methods of measuring the marginal propensity to con-
sume,” Journal of the American Statistical Sociery 42, 105-22; reprinted in
W. Hood and T. C. Koopmans (eds.), Studies in Econometric Methods (New
York, John Wiley, 1953)

Laidler, D. (1966), “The rate of interest and the demand for money, some empir-
ical evidence,” Journal of Political Economy 74, 545-55

Lindley, D. V. (1961), “The use of prior probability distributions in statistical
inference and decision,” in J. Neyman (ed.), Proceedings of the Fourth Berke-
ley Symposium on Mathematical Statistics and Probabiliry, 1 (Berkeley, CA,
University of California Press), 453—68

Muth, J. F. (1961), “Rational expectations and the theory of price movements,”
Econometrica 29, 315-35

Nelson, C. R. (1973), Applied Time Series Analysis for Managerial Forecasting
(San Francisco, Holden-Day)
Palm, F. C. (1973), “On the Bayesian approach to comparing and testing
hypotheses when ‘Knowing Little,” ” University of Chicago, manuscript
Sargent, T. J. (1973), “‘Rational’ Expectations, the Real Rate of Interest and
the ‘Natural’ Rate of Unemployment,” University of Minnesota, mimeo
(Berkeley, CA, University of California Press)

Sargent, T. J. and N. Wallace (1973), “Rational expectations and the dynamics
of hyperinflation,” International Economic Review 14, 328-50

Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics (New
York, John Wiley)

Zellner, A. and F. C. Palm (1974), “Time series analysis and simultaneous equa-
tion models,” Journal of Econometrics, 2, 17-54; chapter 1 in this volume



7 Time series versus structural models: a case

study of Canadian manufacturing inventory
behavior (1975)

Pravin K. Trivedi

1 Time series and structural dynamic models

The purpose of this chapter is to present some results which throw light
on the relative strengths of time series models of the type popularized
by Box and Jenkins (Box and Jenkins 1970; Naylor, Seans, and Wich-
ern 1972) and structural models of inventory investment behavior in
Canadian manufacturing.! The choice of inventory investment as a test-
ing ground is motivated by the dual considerations of its importance in
the short-run behavior of national income and in its extremely volatile
behavior which makes its prediction especially difficult. Furthermore,
even when considerable care is given to formulation and estimation of
inventory at varying levels of aggregation (see Courchene 1967; Hirsch
and Lovell 1969; Trivedi 1969), the results tend not to be robust so that
for production purposes there may be some justification in resorting to
mechanical (“naive”) devices.? The comparison carried out in this chap-
ter, however, does not solely concern the prediction problem. It is also
concerned with the inter-relationships between time series models and
structural models. The following aspects are considered:
(a) The restrictions (parametric or general) placed by structural models
of inventory behavior on specification of the corresponding ARMA
models

I am indebted to David Wilton of Statistics Canada for his encouragement and advice in
writing this chapter, to Philip Smith for his helpful comments on section 3, and to Gloria
Glaubowitz and Margaret Howes for assistance with data-gathering and estimation. The
work reported here was started when I was at Statistics Canada.
Originally published in the International Economic Review 16 (1975), 587-608.

A straight comparison of time series and structural model is odious since it is possible
that the latter contains all information while the former contains none. However, this has
not prevented some investigators from doing so. This exercise is, presumably, meaningful
when the structural specification of the model is not robust or even approximately correct.
The class of ARIMA models will be regarded here as the major alternative to struc-
tural model building. This choice is reasonable since it is the most well developed of the
mechanical forecasting models. Also the principles on which it is based have been clearly
expounded by Box and Jenkins.

)
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(b) The characteristics of the structural model which lead to an unstable
ARMA model of aggregate inventory investment.

As an illustration consider the following simple structural dynamically

stable model;

a(B)y, = B(B)x; + 6 (B)n:» (1.1)

where o(B), B(B), and 6(B) are finite order polynomials in the lag-
operator B, 1, is a stochastic disturbance, and x;, is an explanatory vari-
able. Suppose now that the generation of x, may be described by the
autoregressive- moving average model of the form?>

w(B)x; = u(B)e; (1.2)

where w(B), nw(B) are polynomials in the lag operator B, and &; is a
stochastic term which for convenience is assumed to be NID (0, ¢2).
Substituting (1.2) in (1.1), and multiplying by w(B)

w(B)a(B)y: = B(B)(B)e, + o(B)0(B)n,; (1.3)

which is seen to be an autoregressive-moving average model. (1.3) is of
course simply the final form® of the structural model consisting of (1.1)
and (1.2), but it differs from an unrestricted ARMA model in that it is
subject to restrictions imposed on «(B), 8(B), 6(B), w(B), and u(B), by
the structural model. That is, knowledge of restrictions on polynomials
a(B), B(B), 0(B), w(B), and wu(B) leads to a particular ARMA model for
the endogenous variable.

The foregoing argument suggests that when the time series of explana-
tory variable(s) in the structural dynamic model can be represented as a
realization from an ARMA model, the reduced form of the model is also
an ARMA model. In such a case it may be convenient to use it as a basis
for forecasting, though, by proceeding directly to an unrestricted reduced
form, the structural restrictions are neglected.® On the other hand, where
structural models are themselves misspecified, or based on data with

3 The assumption that the exogenous variable x is generated by an ARMA process is clearly
restrictive and is one of convenience only. A preliminary time series analysis may help to
test the appropriateness of the assumption.

The polynomials on both sides of the equation.

w(B)a(B)y: = B(B)(B)e;

are subject to certain restrictions. In particular, we assume that they have no common
roots (an identification condition) and that coefficients associated with the highest powers
of B in each of the polynomials w(B), «(B), 8(B), u(B) are non-zero.

In using the term “final form” I am following Zellner and Palm (1974).

The structural restrictions are often complex since they include not only the usual
zero-type restrictions but also qualitative information about relative magnitudes of
coefficients— information which is somewhat difficult to incorporate formally in

IS

o wn
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large measurement errors, or are not robust for other reasons, the cor-
responding restricted reduced forms are not appropriate for forecasting
purposes.

If the structural model contains more than one explanatory variable,
the final form of the model will still have the ARMA form provided that
it is appropriate to express all the exogenous variables in the ARMA
form. Similarly, the presence of additional endogenous variables poses
no problems provided a complete model is specified.

The implications of the underlying structural model for the final form
model may be examined somewhat more generally by rewriting the model
(1.3) in terms of the roots of the polynomials. Thus

P1

D2 q1 1
[[a-wB]]a-eBy =[]0~ #B[]A~uBe
i=1

i=1 i=1 i=1
1 r2
+[]a-wB ] -6 Bn,
i=1 =1
(1.4)

where o}, a, B/, 1}, and 6 are, respectively, pi, p2, g1, 11, and r, roots
of the polynomials w(B), a(B), B(B), u(B), and 6 (B). Imposing the nec-
essary restrictions on the roots to secure identification, it is seen that the
degree of the autoregressive part of the model is not greater than (p; +
p2) and that of the moving average part is not greater than max(q; + 7y,
p1 + r2). In practice, if some of the roots of the polynomials are close
to zero, it may be possible to find an approximation with fewer autore-
gressive or moving average terms. Clearly one of the attractions of an
ARMA model lies in the possibility that after neglecting small roots one
may obtain a parsimonious representation. Neglecting the possibility of
small roots, however, it is easy to see that knowledge of the underlying
structural model will provide useful implications about the final ARMA
model. For instance, if g is of high order and if most of the roots of
B(B) are non-negligible in size, it may not be easy to find a parsimonious
moving average representation.

One final point regarding the r.h.s. of (1.4) is worth noting. The sum
of the two moving average terms here may be replaced by another moving
average by the following argument. Let K = max(q; + r1, p1 + r2) . Let
us assume that the sum of the moving average errors defines a discrete
time series stochastic process with a finite number of autocovariances. If

an estimation procedure. It may often be the case that the time series model cannot
make use of such structural information very easily, even when it is available.
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v, denotes the composite error term and its K autocovariances exist, then
the spectral density of v, is

K
folw) = <%> ;(cje*ifw), (1.52)

where ¢; = Ev,v,_; defines the jth autocovariance of v f,(w) can be
uniquely factorized as

2
1 ijw
folw) = <E> ;8]'@] , (1.5b)

by choosing 8 to be real and requiring that the roots of §, 121 + ...+
3, = 0 lie on or outside the unit circle. Thus the composite error term
may be thought of as a simple K term moving average (see Hannan 1970,
ch. 16).

A possible attraction of time series models arises from the difficulties
of specifying structural models which, for example, involve unobservable
variables, such as “expected sales” in inventory models, for which it is
difficult to specify a generation mechanism at all precisely. Although this
is only one illustration, it emphasizes that there are many obstacles to
structural estimation which, in general, uses much more information.
However, in the concluding section of this chapter, it is indicated that
time series and structural estimation may be complementary, rather than
competing, approaches.

Although the basic idea behind this chapter is a comparison of ARMA
models and structural models of inventory investment in durables and
non-durables groups of Canadian manufacturing, there are two useful
by-products. First we obtain some new estimates of inventory equations
for different categories of assets. Second we obtain some information
regarding the effect of aggregation over types of assets on the specification
of inventory equations.

The data are described in section 2, the fitted time series models in
section 3, and the structural models in section 4. The concluding section
[5] compares the results of sections 3 and 4.

2 Data

The data used in this study are obtained from the Statistics Canada
publications Inventories, Shipments and Orders in Manufacturing Industries
(Cat. 31-001) and Indexes of Real Domestic Product by Industry (Cat. 61—
005). They are quarterly seasonally unadjusted, and relate to the period
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1961(I1)-1973(1). All figures are estimated values in millions of dollars in
current prices and relate to the following variables:

S: Shipments
N: New orders received during quarter
U: Unfilled orders at end of quarter
RM: Total inventory held (raw materials) at end of quarter
GIP: Total inventory held (goods in process) at end of quarter
FG: Total inventory held (finished products) at end of quarter
TIH: Total inventory held at end of quarter
TIO: Total inventory owned (durables)
ITHBNO: Inventory held but not owned.

The components of total inventory held (TTH) are RM, GIP, and FG.”

The data are available for non-durable and durable groups; we identify
the two groups by the use of prefix ND and D, respectively.®

It certainly would have been possible to utilize data at a more disaggre-
gated level, though this alternative has not been pursued in view of the
problems of data accuracy. The greatest reservation one has regarding
the data concerns the use of value rather than volume figures which must
lead to biases of unknown magnitude. On the other hand, it is hard to
see why, in spite of this limitation, the study should fail to provide at least
some insights.

A well-established line of disaggregation in the literature is between
the industries which produce to order (PTO) and those which produce
for stocks (PFS) (see Courchene 1967; Beisley 1969; Trivedi 1970). The
classification adopted in the chapter cuts across the PTO-PFS distinction
in that each contains certain groups of industries which produce both to
order and for stocks (see Courchene 1967, pp. 331-2). However, there
are sufficient differences between the two groups to justify the present
chapter.

7 TIH differs from TIO in that it excludes the value of progress payments received by
manufacturers for partially completed items such as aircraft, ships, or structures using
fabricated steel. “As work proceeds on such items, total inventory values increase until
the time of delivery. But deducting the balance or progress payments on manufacturers’
books from total inventory, the value of manufacturers’ investment inventory is derived”
(see Inventories, Shipments and Orders in Manufacturing Industries, Concepts and Methods,
Statistics Canada). The method of progress payments is important only for the durables
group. For non-durables, TIH and TIO are equal. Thus for durables we have two distinct
concepts of total inventory and the choice of any one must depend upon the purpose of
the investigation.

An additional variable which was used unsuccessfully is the real domestic product (RDP)
of each broad sector of the manufacturing industry.

®
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3 Time series models

First consider the results of fitting to each dependent variable an
autoregressive-moving average model along the lines of Box and Jenkins
(1970). The class of models considered may be written in their notation
in the form

(1- BYP(1 - Bl —¢B—---—¢,B")
x (1 =y B* —yB* — -+ — 9, B”) (3, — o)
= (1-6,B-6,B*-..—6,B9)
x (1 —& B —£&B% — ... —£0BY) (e, — 6p), (3.1)

where the successive polynomials in the lag operator B may be called
the non-stationary seasonal part, the regular non-stationary part, the
regular autoregressive part, the seasonal autoregressive part, the regular
moving average part, and the seasonal moving average part, respectively.
Each model belonging to this general class may be characterized by seven
parameters p, d, ¢, P, D, Q, and s which denote the following: p is the num-
ber of regular autoregressive parameters (¢, . . . , ¢,), d is the number of
regular differences, ¢ is the number of regular moving average parameters
01,025 ...,0,), Pis number of seasonal autoregressive parameters (11,
Yas .. .5 ¥p)s Dis the number of seasonal differences, Q is the number
of seasonal moving average parameters, and s, the order of the seasonal.
s equals four in our case since we use quarterly data throughout. The
parameters ¢ and 6 allow for the presence of a constant term in the
model.

In line with the Box—Jenkins procedure we compute the simple and
partial autocorrelation functions for each time series. The simple ones are
presented in tables 7.1 and 7.2. In each case we present the first eleven
autocorrelation coefficients. These are intended to suggest the choice
of the appropriate (p, d, q¢) (P, D, Q)° model in each case. Two points
are worth noting here. First the task of choosing the appropriate model
may be considerably simplified by calculating many more autocorrelation
coefficients than I have chosen to calculate. (My choice was dictated by
the consideration that in a time series of about 45 observations this is
roughly the number that can be computed reasonably precisely.) Second
it may be difficult to identify uniquely the appropriate (p, d, ¢) (P, D, Q)
model on the basis of the study of the autocorrelation function alone,
so that an extensive use of diagnostic checks is highly desirable after the
time series models have been fitted.
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Tables 7.1 and 7.2 give computed autocorrelation coefficients for sea-
sonally unadjusted inventory investment (row 1) and annual changes in
inventory investment (row 2). From row 2 note that in case of manufac-
turing durables the coefficients are high not only at the low lags of order
1 and 2, but also at higher lags of order 4, 5, 6, and 7. The raw mate-
rials’ component of aggregate inventory shares this characteristic more
clearly than the two other. The finished goods component shows very
little systematic behavior. For the manufacturing non-durables, the total
inventories held category also shows presence of large (significantly dif-
ferent from zero) coefficients at lags of order 1, 4, 5, 6, and 7, though the
only component that shares this pattern is the finished goods component.
From this, it seems reasonable to draw the preliminary conclusion that
the raw materials’ component dominates the aggregate behavior in case
of manufacturing durables, whereas the finished goods component does
so for non-durables, total inventory.

In tables 7.3 and 7.4, are listed the various (p, d, ¢) (P, D, Q)* models
which are fitted to the component series.’ In addition to the estimated
model, the standard errors of all coefficients, the sample size, residual
variances, and goodness of fit statistics are also presented. The main
diagnostic check used is based on the comparison of

Q=n) i,

¥
k=1

where 7, is the kth order autocovariance of the residuals from the
fitted model, ¥ being the number of autocovariances computed, and 7
the sample size. A chi-square test based on the statistic Q provides a
useful overall check of goodness of fit (see Pierce 1971). In a certain
number of cases where the choice of the appropriate model was not
immediately obvious, and more than one model was plausible, these
were all fitted but have not necessarily been included in the tables.
The major features of these fitted models are as follows:
(i) With one exception of IHBNO the fitted models allhave d=1,D =1,
o=1.
(ii) Especially for the durables category it is a little difficult to choose
“the” model. On one hand the (0, 1, 6)(0, 1, 1)* model for D/TIO
and D/RM seems over-parameterized. On the other hand, other,

9 In fitting the time series models I have used the program “TYMPAC” provided by
Queen’s University, Kingston, Ontario. This uses an algorithm described in Box and
Jenkins (1970), which sets preperiod residuals equal to zero.
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more parsimonious alternatives yield higher residual variances and
significantly non-zero residual autocorrelations, especially at lags 6
and 7. We have presented both sets of results since there are grounds
for choosing the parsimonious representation even where residual
variance is greater.

For the durables group we observe a lack of homogeneity in the type
of model fitted. That is, even where the model is the same, numer-
ical coefficients are different. The “best” model for D/RM, D/GIP,
and D/FG all have different forms, suggesting somewhat different
underlying structures. In case of the non-durables group this is not
true to the same extent. Such differences are plausible and to be
expected given what is known about the differential responses of
components of aggregate inventory to their determinants (see, for
example Trivedi and Rowley 1975, ch. 6). One is led to the conclu-
sion that the aggregation problem may exist for the pure time series
models as it may for structural econometric models. The presence of
significant aggregation biases would cast doubt on the temporal sta-
bility of the time series models in this area because the components
are known to differ considerably in their volatility.1°

Finally note that the fitted time series models indicate that in most
cases at least the seasonal pattern of the inventory investment series is
stable, that is, the coefficient of B* in the seasonal part of the model is
not significantly different from unity. This point suggests that in the
structural models the use of seasonal dummies in the usual way may
be appropriate. But this conclusion should be treated with caution

10 Consider, for example, the following coefficients of variation for the components and
the aggregate,

Coefficient of variation (percent)

Component Durables Non-durables
TIO 43.1 (190.8) 74.4 (137.4)
TIH 50.6 (206.8) 74.4 (137.4)
RM 56.3 (80.0) 201.0 (57.6)
GIP >100.0 (73.5) 66.9 (24.7)
FG 301.00 (55.0) 131.00 (55.04)

where the figures in parenthesis are the sample mean values in million dollars. This
suggests that the success of time series models for prediction purposes in this area may
be limited. Additional reasons for such skepticism are contained in the final section of
this chapter, where I compare time, series models with their econometric counterparts.
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in view of a deficiency of the numerical algorithm that was used (see
Kang 1973).

4 Econometric models of inventory investment

Itis not possible in the space available here to provide detailed justification
for the general form of specification that is used. The interested reader
should consult Childs (1967), Beisley (1969), Hirsch and Lovell (1969),
and Trivedi and Rowley (1975), on this point. However, the following
comments may serve as a brief background.

The most common feature of specification is the use of the flexible
accelerator model incorporating an adjustment process relating actual
and desired inventories, the latter being a linear function of a small num-
ber of variables. Expected demand (or orders) is taken to be the most
important determinant of desired stock. Expectations may relate to one
or more future periods. This simple model may be modified in a number
of ways. First, in industries producing primarily to order (PTO group)
it is more pertinent to use a measure of established demand rather than
expected demand because factors which encourage PTO are those which
also make production time-consuming and storage of finished goods an
uneconomic activity. A second modification is the introduction of a buffer
stock variable which represents an error in forecasting sales to explain the
unanticipated reductions in inventories. In a number of formulations—
Lovell (1961), Lovell and Darling (1965), Hirsch and Lovell (1969),
and Trivedi (1970) — this variable is either the current or one-period
lagged rate of change of sales or shipments. It typically has a negative
coefficient. There are other alternative specifications of the buffer stock
variable such as that in Helliwell ez al. (1972) which rely on economywide
models to achieve a distinctive specification. The importance of a buffer
stock variable is an empirical matter, but a priori reasoning suggests that
its importance will be greater in those industries in which production for
stocks (PFS) is common.

In addition to those factors mentioned above, the other main consider-
ation explicitly introduced in the models is capacity utilization, or rather
a proxy variable for it.

In a more detailed analysis a number of other factors would be consid-
ered. These include the role of production smoothing, speculative motive,
and financial factors. However, previous studies have shown that the first
of these may be largely seasonal and hence adequately captured by prior
seasonal adjustment or explicit inclusion of dummy variables, whereas
the latter two are not of major importance so that their omission may not
be serious.
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4.1 Raw (or purchased) materials inventory

4.1.1 Durables The appropriate decision variable to look at in this
context is the purchases made by the firm — but published data usually
relate to the observed change in materials inventories, R, — R;_;, which
represents the difference between additions, A4;, and withdrawals from
stocks, M;; that is

Rz_Rz—l =At_Mt- (4-1)

The variables A, and M, may be eliminated by use of auxiliary relations
such as

A =Ppo+ bR + PR+ B34y 4.2)
and
Mt = ,34 QI (4—3)
or
L
M, =3 8N-i, (4.32)
i=0

where R} represents the desired level of materials stocks. The logic behind
(4.2) is simply the gradual adjustment of additions to stock to a desired
level which is itself determined by either past commitments or future
expectations. The choice of the appropriate variables determining R} and
M, depends on the industry in question. Thus, for instance, in dealing
with the PTO case, it seems realistic to substitute (4.3a) and

K
R =) aN_ (4.4)
i=0

in (4.2).
(The integer K (like L) is unknown.) Substitution into (4.2) and (4.1)
yields

K L
AR, =Bo+ Py aiN_i—Bsy §iN_i+p2R

=0 =0

+B834, 1. (4.5)

When dealing with PFS industries modifications to (4.5) are needed,
though not necessarily of a fundamental nature.

Some of the empirical estimates available in the literature are variants
of (4.5); in general, non-availability of data on placement of orders leads
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to A, ; being omitted. (In the specific context of (4.5), note that identi-
fication of ¢;and §; ¢ =1,...,K; j=1, ..., L) poses a problem since
some of the terms such as (817 — B461), (Biaz — B4d2) could be close
to zero.)

4.1.2  Non-durables In case of the non-durables group N, ;is replaced
by its anticipated value Nl+j. Let N, and Nr+1 denote forecasts of orders
receivable in the current and the following periods. Suppose that firms
do not look beyond this horizon in forming their inventory plans. Then
the relevant variant of (4.5) is (4.6)

1
AR, =yo+ Y vis1Neyi — 3N — ya Ry, (4.6)
=0

where the term —y 3N, represents the extent to which inventories are
drawn down by current usage. Since we are dealing with quarterly sea-
sonally unadjusted data, it is assumed that orders forecasts are generated
recursively by

A

N, =601 N1 +04N_4 — 014N, 5 (4.7)
Niy1 = 01N, + 04 N,_3 — 010, N, _4, (4.8)

which when substituted in (4.6) yields

AR, = yo +01(y1 + v201) N—1 + 204 N3 + 164N, 4 (4.9)
—0104(y1 + y201)N_5s — 3N, — yaR,_;.

4.2 Finished goods inventory

4.2.1 Durables If the production behavior of this sector is dominated
by industries which produce to order, it is not appropriate to regard the
flexible accelerator hypothesis as very relevant for the explanation of fin-
ished goods inventory investment. The motives which otherwise encour-
age firms to maintain a stable relation between stocks and orders are
absent here. Indeed Childs (1967) suggests that it is more appropriate to
regard the backlog of unfilled orders as the appropriate decision variable
in this case. This point is now well established in the literature. For this
reason, we should not expect the kind of model applied to raw materials
inventory to work very well for finished goods. I have nevertheless fitted
this model as a check on this type of a priori reasoning. The finished goods
equation analogous to (4.5) is referred to as (4.10).
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4.2.2  Non-durables The model used is similar to that for raw mate-
rials. Beginning with

AFG, = 8+ 8N, + 8N, 41 + 835(N, — N)) — 84FG,_1, (4.10)

which incorporates the buffer stock variable (N, — N,) to capture the
effect of errors of expectation and using the forecasting (4.7) and (4.8),
the last equation can be reduced to

AFG, =80 — 85N, + ((81 + 83)01 + 8207 ) Ni—1 — 820162 N3
— (81 4 83)02N,—s — ((81 + 85)0102 + 820702) Ni_5
_8,FG,_,. “.11)

Note that the sign restrictions on this equation are the same as before.

4.3 Goods in progress

4.3.1 Durables Once again the production behavior of this group is
assumed to be determined by the commitment to deliver goods for which
there is an established demand. Hence a distributed lag function on past
new orders is used as a proxy for expected shipments. Introducing the
rate of change of unfilled orders as a measure of capacity utilization, we
obtain an equation of the same form as raw materials:

GIP, = GIP._ = jio+ ) tiNeisr + st (U = Ui)
i=1

—Mm2GIP;_y. (4.12)

Despite the apparent plausibility of this model, there are good theoret-
ical reasons why we cannot expect it to work satisfactorily in practice.
The main limitation is the basic inability of the flexible accelerator model
to account for the complicated dynamics which characterize the behav-
ior of goods in progress. This point is expanded below in dealing with
the non-durables groups. A second point is the problem of valuation of
goods in process which makes any estimate of changes in its stock sub-
ject to extremely wide margins of error, thereby complicating further the
problem of assessing how well the given model fits the data.

4.3.2  Non-durables Previous econometric studies of work in progress
behavior have shown insufficient recognition of the fact that the period of
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production, p, is not time invariant and time profile of the consumption
of inputs is highly variable in the short run.!!

Two other issues concern the validity of a stock adjustment-type model
and the importance of the buffer stock motive. Accelerator mechanism
implies that investment in work in progress takes place at a rate deter-
mined by the rate of change of output or sales. However, empirical evi-
dence has not always provided strong support for the lagged adjustment
form of the accelerator.!? Lastly, mention must be made for the need to
incorporate sales expectations in this context; for when we admit the pos-
sibility of accumulating work in progress between stages of reproduction,
it is possible that its behavior is akin to that of finished goods, though its
actual importance is an empirical matter.

As a first approximation (which is hard to improve upon in the present
state of data) I consider for goods in process the same model as for fin-
ished goods inventory (4.11). For convenience of reference it is written
explicitly in the form

AGIP = vy — 3N, + ((11 +v3)01 + 1207 )N (4.13)
+v2010: N3 — (v +v3)02 N4
— [1 4 v3)610; + 120760, N5 — v GIP,_y,

where the coefficients v; ( = 0, 4) take place of the §; =0, 4) in (4.11).
This formulation incorporates the buffer stock role and the importance
of sales anticipations, but leaves out the role of other factors.

4.3.3  Stochastic specification To complete the specification of vari-
ous equations we shall assume that the stochastic term in the equation
has either moving average or autoregressive representation, of finite but

11 Specific illustrations of this are provided by shortening of by working overtime or by
operating more machines: both possibilities retard the operation of the accelerator mech-
anism, p may vary cyclically and may be systematically related to capacity utilization.
Not enough is known to us from theoretical models to suggest what factors underlie
such variation. However, if it is present, it tends to vitiate the mechanical operation of
the accelerator. Empirical research on the time shape of production processes throws
some indirect light on this question.

Abramovitz (1950, pp. 160-77, 380-8) reported that his findings for the continuous
process industries in the United States showed work in progress investment to be related
to the rate of change of output without a lag, and with slight lead in the discontinu-
ous process industries. Stanback’s (1962) study lends further support to these findings.
Econometric investigation of the issue is hampered by unavailability of reliable disaggre-
gated data. Although Lovell’s (1961) results give some support to the flexible accelerator,
these relate to the sum of work in progress and raw materials inventories, rather than to
one component alone. Further result provided by Courchene (1967) and Trivedi (1970)
provide at best only weak support for the lagged adjustment hypothesis, leaving open a
distinct possibility that various other factors such as changes in composition of goods
and the time profile of production dominate the mechanical role of the the accelerator.

12
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unknown order. The assumption of autocorrelated residuals is realistic
and may be interpreted as representing either inherent properties of eco-
nomic disturbances or as a logical outcome of algebraic transformations,
or assumptions about expectations formation, or misspecification of the
relationship. There are considerable difficulties in distinguishing between
the two possibilities (see Hendry 1974), and in choosing between autore-
gressive and moving average representation of the error.!?

4.3.4  Seasonaliry Inclusion of seasonal dummies in the model may be
regarded as an implicit allowance for production smoothing (see Darling
and Lovell 1971).

Also the sales forecasting assumption we have used above for the non-
durables group implies that seasonality considerations are built into for-
mation of sales expectation and hence additional inclusion of seasonal
dummy variables is not called for (see Trivedi 1970). If so, inclusion of
seasonals provides a check on the specification. All specifications reported
below were estimated with and without seasonal dummies. The latter
were introduced in two ways — the usual zero—one type of variables and
the product of the zero—one dummy with the lagged dependent variable
on each estimated equation. This second variant allows for the possibility
that the rate of adjustment to the desired stock varies seasonally.!*

5 Results

The results of estimating (4.5), (4.10), and (4.12) for durables and (4.9),
(4.11), and (4.13) for non-durables are given in tables 7.5-7.7. The last
column of these tables indicates what stochastic specification was chosen.
The only difference between tables 7.6 and 7.7 is that the latter pertains to
specifications for non-durables which include seasonals. Each table also
includes an equation, numbered (4.14)—(4.16), explaining the variation
of total (sum of the three components) inventory investment with the
same general form as other component equations. This gives some idea

of the magnitude of aggregation effects on coefficients as well as goodness
of fit.

13 The estimation procedure used for fitting models with these stochastic specifications
uses non-linear optimization algorithms. The details of these may be found in Trivedi
(1970) and Hendry (1974).

14 The use of seasonal dummy variables which interact with the lagged stock of inventories
is interpreted as a way of taking account of an adjustment rate which varies season-
ally. Alternative interpretations are also available — e.g. systematic seasonal changes in
composition of inventories.
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From Table 7.5, which contains results for durables, the following
points emerge:

(1) The a priori sign restrictions are satisfied in case of (4.5), (4.10),
(4.12), (4.14a), (4.15a), (4.15b) (with minor exceptions in (4.10)
and (4.12) where N,_1, N,_» and N,_3 have the “wrong” sign). This
is a relatively minor dent in the basic model as all the coefficients in
question are not significantly different from zero. Furthermore, the
model was not expected to be quite suitable for durables finished
goods inventory.

(ii) For both durables and non-durables the fit is closest for ARM and
worst for AGIP, with AFG in between. We also obtain this order-
ing in time series models. In both cases the ordering conforms to the
ordering of the coefficient of variation of the dependent variable. The
overall performance of the basic model in explaining the variation in
the dependent variable is satisfactory. For durables, the level of past
orders and the rate of change of unfilled orders contributes strongly
to the explanation, D/N,_» has a larger coefficient than D/N,_; and
D/N,_3. The effect of an increase in the rate of change of D/U,_;,
interpreted here as an increase in the rate of change of capacity uti-
lization, is to increase stocks. As in many previous studies the signifi-
cant role of the stock adjustment process is confirmed by the results.
For D/AGIP and D/AFG the preceding remarks still do not apply
with the same force, since the flexible accelerator model appears
inadequate for explaining D/ AGIP. This is a worrying shortcoming
in view of the high quarterly average value of this component. On
the other hand, the performance of the model in explaining D/AFG
is quite satisfactory though the seasonals dominate somewhat.!® To
test whether the estimated equations adequately reflect the complex-
ity of the distributed lag, diagnostic checks provided by the empirical
autocorrelation function of residuals and cross-correlation function
between regression residuals and N, were used. The calculated auto-
correlation coefficients for residuals from (4.5) and (4.10) are now
given.

Lag 1 2 3 4 5 6 7 8 9 10

Equation:
4.5) 0.088 0.109 0.073 —0.099 0.085 —0.286 —0.173  0.045 0.130 —0.148
(4.10) 0.26 0.077 —-0.024 —-0.063 0.100  0.035 0.135 —0.056 —0.170 —0.194

15 The durables category also includes some industries for which it is not sensible to think
of AFG as a decision variable.
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Only the value at lag 6 borders on statistical significance. For non-
durables it is more important to explain ND/ARM and ND/AFG
than ND/AGIP, since the last item is on average about 2% times
smaller. Table 7.6 shows that the model is very satisfactory for
ND/AFG in the sense that all coefficients are well determined.
The buffer stock variable and expected sales play their hypothe-
sized role in determining actual inventory investment. The addition
of interactive seasonals does not significantly improve the explana-
tion though this conclusion should be interpreted with caution since
equation (4.11) is nor nested in (4.11a). On theoretical grounds
(4.11) seems preferable. For ND/ARM the chosen model is not
appropriately judged either by results in table 7.6 or table 7.7.
Finally, for ND/AGIP the model is only marginally worse than for
ND/AFG. Here, the inclusion of interactive seasonals improves the
fit somewhat, the comparison being once again obscured by the fact
that (4.13) is not nested in (4.13a).

(i1ii)) The two preceding sections emphasized the heterogeneity of behav-
ior of components of aggregate inventory; the reasons given suggest
why a single explanatory model cannot be expected to perform uni-
formly well. To a certain extent an inability to explain the aggre-
gate satisfactorily will reflect such difficulties both in the structural—
econometric and in the time series framework. On the other hand, if
the disaggregated series are individually subject to relatively greater
random variation (including variation due to measurement errors)
than the aggregate, then the aggregate equation provides a useful
overall check on the empirical validity of the model. Considered in
this way the results of (4.14), (4.15a), (4.16) and (4.16a) provide
additional support for the basic model.

Equations (4.14) and (4.15a) differ in the choice of dependent
variable and in the use of interactive seasonals in place of simple sea-
sonals in the latter. Equation (4.14) uses the concept of total inven-
tory owned (TIO) which differs from the total held (TTH) in that
it excludes the value of progress payments. (See section 2, p. 291.)
Thus it is to be expected, and table 7.5 confirms, that our model
would provide a somewhat tighter fit when D/ ATIO is the dependent
variable. (In case of non-durables there is no conflict since ATIO =
ATIH.) Both equations, while confirming the empirical validity of
the model, suffer from the same limitation; that is, the autocorre-
lation function of the residuals shows high values at lags 6, 7, and
9:—-0.314, —0.348, and —0.316, respectively. The time series models
(see table 7.3), do not share this characteristic, but the residual
variance for both D/ATIO and D/ATIH is considerably larger than
for the structural models.
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The above comments apply to non-durables as well, with the qual-
ifications that the chosen stochastic specifications appear to deal with
the problem of autocorrelation quite satisfactorily; on the other hand,
the coefficients are less well determined. The residual variance of
the structural model is once again smaller than that of the corre-
sponding time series model, 11455 (table 7.7) compared with 12380
(table 7.4).

(iv) The structural models estimated seem to suggest that at least for the
durables, the polynomial 8(B) (see (1.3)), is of a high order, perhaps
6 or 7, whereas, a(B) and n(B) are low order polynomials. Thus when
we also take account of w(B) and ©(B) it seems unlikely that ARIMA
models for durables inventory investment will be characterized by a
low degree of parameterization. This problem is likely to be less
serious for the non-durable group.

6 Conclusion

Structural analysis provides additional insight into the workings of time
series (forecasting) models of inventory behavior. In particular, it appears
that three difficulties which plague econometric research also affect time
series models. These are: the problem of aggregation over different types
of inventories, the complexity of lag distributions on explanatory vari-
ables, and the presence of unobservable variables on the structural model.
Some might argue that these pose no difficulties at all for those who
want to ignore all structural information and predict unrestricted ARIMA
reduced forms. The present chapter, it seems, has provided some grounds
for skepticism regarding the superiority of this alternative over economet-
ric modeling.

From another point of view time series and structural models need not
be thought of as competing approaches. A possible way of integrating
them in the present context is to regard the expected orders or expected
sales as the systematic part of a random variable whose generation may
be described by an ARMA process. The decomposition into random and
systematic components may be carried out by a preliminary fitting of an
ARMA model to the sales series; the predictions generated by the fitted
model can then be used as an explanatory variable in a structural model.
This two-stage procedure is based on somewhat restrictive assump-
tions regarding the joint distribution of errors on the two relevant equa-
tions. Under somewhat more general stochastic assumptions one would
fit the ARMA and the structural models simultaneously, utilizing any
across-equation constraints that arise. Though computationally this is
more difficult, statistically it may be more efficient. However, the issues
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arising from these considerations would take us beyond the scope of this
chapter.
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8 Time series analysis of the German
hyperinflation (1978)

Paul Evans

1 Introduction

Historical studies of periods of rapid and sustained inflation as well as
empirical studies of the demand for and supply of money have convinced
monetarists that a strong link exists between money and prices. Indeed,
Friedman (1968) has argued that movements in the money supply dom-
inate movements in the price level.

One study that monetarists have often cited as strong evidence for this
link between money and prices is Phillip Cagan’s [1956] study of hyperin-
flations. With data on the money supplies and price levels of six countries
in the throes of hyperinflation, Cagan finds that the hyperinflations were
apparently caused by the pressure of a rapidly growing and exogenous
money supply against a stable demand for real money balances. Unfor-
tunately, the statistical procedures available to Cagan did not enable him
to test the specification of his model adequately. In particular, he tested
neither his specification of the mechanism generating expected inflation
rates nor his specification of an exogenous money supply. Indeed, he
failed even to test for serial correlation of the error terms.! The Monte
Carlo experiments of Granger and Newbold (1974) amply demonstrate
that the goodness of fit of a regression is often greatly over-stated when
serial correlation is present in the error term. It is therefore desirable to
reassess Cagan’s study.

In this chapter, I apply the technique advocated by Zellner and Palm
(1974, 1975) to test three specifications of the dynamics of the German
hyperinflation:

I have benefited from discussions with Arnold Zellner and from the comments of Milton
Friedman and other participants of a Money and Banking Workshop at the University of
Chicago. Of course, all errors are my sole responsibility.
Originally published in the International Economic Review 19 (1978), 195-209.
1 Eden (1974) provides the Durbin—Watson statistics for Cagan’s regressions. They indicate
strong positive serial correlation in the error terms. Note, however, that Cagan’s statistical
techniques were sophisticated for the time at which he wrote his thesis.

315
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* Model C, Cagan’s original model;

¢ Model MC, a modification of Cagan’s original model in which expec-
tations of inflation are rational in the sense of Muth (1961); and

* Model S&W, named after Sargent and Wallace (1973), in which expec-
tations are rational and the money supply is endogenous.

I find that none of these models is consistent with the data. In particular,

expectations are not formed adaptively a la Cagan and the money supply

is not exogenous. One can, however, conclude that the demand function

was stable during the German hyperinflation.

2 Three models of hyperinflation

Model C can be written in discrete time as?

M, =11, —aDIT} + c(L)u,, a> 0; 2.1
M =bIT*  +(1—b), 0<b<l; 2.2)
DM, = f(D)v; (2.3)

where M, is the exogenous rate of growth of the money supply (= money
demand); I1, is the rate of inflation; /1;" is the rate of inflation expected
in period ¢ to take place between periods r and ¢ 4+ 1; D is the difference
operator (e.g. DM, = M, — M,_,); L is the lag operator (e.g. Lv; = v,_1);
cLy=1—-—¢L — -+ —¢l?and L)y =1—-fL—--- —fL'5 a, b,
€15 *++ Cg5 J1s - - . » fr are parameters; and u, and v, are independently
and identically distributed random variables with zero means and finite
variances. Equation (2.1) is the demand function for real balances. It is
written in first differences because real income, one of the real variables
collapsed into the disturbance term c(L)u, is likely to be non-stationary
in its levels.> This disturbance term is posited to be a gth order moving
average in the independently and identically distributed error term u,.
Equation (2.2) is a standard adaptive expectations equation. It has the
implication that the expected rate of inflation adapts by the fraction 1 —
b of the departure of the actual rate of inflation from its expectation in
the previous period. The growth rate of the money supply is a stochastic
variable. As such, it can under weak conditions, be represented as an
autoregressive, integrated, moving average (ARIMA) process of order

2 1 have suppressed all constant terms in the theoretical models of the paper.
3 Let

log(m,/P;) = ap + ay log ¥, — all} + U,

where m; is the money supply, I; is the price level, Y; is real income, and U, is a stationary
disturbance term. If log Y; is a difference-stationary process, then U; + a;log Y; is non-
stationary while D(U; + ajlog Y?) is stationary. If one identifies ¢(L)u; with D(U; + a;log
Y:), differencing the above equation yields (2.1).
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(p,d,")* with p, d, and rfinite (and, one must hope, small) positive integers.
Equation (2.3), which will be found to be consistent with the data, is a
special case of the general ARIMA model, where p = 0 and d = 1. Note
that M, is an exogenous variable because u, is independent of v,.

One can obtain the stochastic process of IT, for model C by multiplying
(2.1) by 1 — bL and substituting from (2.2):

A-b6L)M, =1 -5bL)I1, —a(1 — b)DIT, + (1 — bL)c(L)u,,
or
{[1—a(l=0)]—[b—a(—0b)]L}I, = (1 —bL)[M, — c(L)u,].
Now, differencing this equation and substituting for M, from (2.3) gives
{[1—a(—5)] —[b—a( —0b)]L}DII,
=1 -bL)[f(L)v;, — ¢(L)Du,] (2.4)

According to Granger’s Lemma, the sum of any number of moving aver-
ages can be written as a moving average in a single random variable (see
Anderson 1971). The order of this moving average will typically equal
the order of the longest constituent moving average. Therefore, (2.4) can
be written as

g(L)DIM, = h(L)e,, (2.5)
where
_1_|bzed =B,
sh)=1- [1 —a(1— b)] g
hl)y=1—-mhL—---— hq/Lq,;

¢ = max(q + 2, r + 1); and ¢, is an independently and identically dis-
tributed random variable. One can check whether I7, follows this ARIMA
process whose order is (1, 1, ¢') by using Box—Jenkins techniques. This
will be done in the next section.

One frequent objection to the expectations mechanism (2.2) is that
it uses only the past history of the inflation rate in predicting its future
evolution.’ In fact, rational and fully informed economic actors would

4 A variable x; follows an ARIMA process of order (p,d,r) if it must be differenced at least
d times to be stationary, its autoregressive part is of order p, and its moving-average part
is of order r.

5 Equation (2.2) may be written as

1-b >,
I =<1_bL>H[=(17b)Zb _;.

1=0

Thus, I1;" is a geometrically weighted average of current and all past rates of inflation.
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incorporate all relevant information — not just the history of inflation
rates — into /1;. Moreover, Muth [1961] has shown that, even if only the
history of inflation rates is known, the mechanism (2.2) is equivalent to
the least squares predictor of /71, if, and only if, /1, obeys the stochastic
process

DIT, = (1 — bL)e,.

Since g(L) in (2.5) is of degree one, model C cannot obtain unless expec-
tations are not rational a /la Muth.
Sargent and Wallace have proposed that (2.2) be replaced by

H[* = Etnt-‘rl} (2-6)

where E, denotes an expectation conditional on knowledge of IT7,,
I, ,,...,M;;M,_,,...and the structure of the model (2.1), (2.6), and
(2.3) (hereafter called model MC). For time ¢ + 1, (2.1) and (2.6) imply
that

M1 =M +a(E 1 12 — EdT ) — c(L)ug. 2.7

Now, applying the operator E, to (2.7) and rearranging yields

1 a
EIl = <_) E;[M;11 — c(L)usy1] + <—) E. I, 5.

14+a 14+a
(2.8)
Applying the same procedure iteratively enables one to obtain
1 00 a 7
E Il = lta ; 1+a E,[Myiv1 — c(Duryiv1ls
(2.9)

where the end condition

a 1
lim | —— ) EJT;1iy1 =
tim () Bt =0
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has be imposed.® Substituting (2.9) into (2.6) and the result into (2.1)
gives

a > a \'
M[ —Hz = — <1 +a> Z <1 +a> DE[[Ml+i+1 —C(L)Mt+i+1]

=0
+c(Lu,. (2.10)

In order to obtain the ARIMA process generating I7,, one first looks
at the term

(lj-a)z<1j_a) E/M yiy1 — c(Duryiga]. (2.11)

=0

Equation (2.3) implies that

EM, ., =M, - five— o= fiv
EM; 2 = EM; 1 — ho— o1 — = fivir2
=M, -(h+ Lo+ o1 — froer

EM =M ~-fi+fot+-+fo—(A+ Lo+ -+ fic1)

V1= = fiOpo1, k2T
Similarly,
Eic(L)u;py = —ciuty — cottyy — -+ — Cqlhy_g41
Eic(Duyyn = —cotty — C3Up—y — -+ — Cqlbs—g42

Eic(Duiyr =0, k=gq.

Therefore, the expression (2.11) can be written as

aDM; — F;Dv, — --- — E,Dv, 11
+ClDut+~-~+Cunt_q+1, (212)
where Fi, . . ., F, and Cy, . . . , C; are linear combinations of the
parameters fi, . . ., frand ¢, . . . , ¢4, respectively. Substituting (2.12)

6 This condition is necessary for stability since its failure at any time ¢ would lead to an
immediate explosion of the price level. It is satisfied so long as households anticipate
that the rate of inflation will grow at a rate less rapid than 1/a per period. Consequently,
households will continue to hold some real cash balances at any positive, but constant,
rate of inflation, however great it might be. Note that stability does not depend on the
rate at which households adjust their expectations to current conditions so long as this
adjustment is rational a /a Muth.
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into (2.10) and rearranging gives us

II,=M,;+aDM, — FiDv, —---— F,Dv,_,;
+Ci1Du,+ -+ CDu;_gq1 — c(L)u,.

Finally, differencing both members of this equation and substituting from
(2.3) yields

DIT,=1 +a—aL) f(L)v, — ¢(L)Du, + D*[Cyu, + - -
+Cqut7q+1_Fl7Jz - Fo_,q1]. (2.13)

By Granger’s Lemma, the right-hand member of (2.13) is a moving aver-
age of order ¢ = max[r + 1, ¢ + 1]. Therefore, I7, follows an ARIMA
process of order (0, 1, ¢”). This implication of model MC can also be
tested with Box—Jenkins techniques. This, too, will be done in the next
section.

Sargent and Wallace point out that the German government printed
money during the hyperinflations largely as an expedient for raising rev-
enue. They argue that the government would have followed a rule for
expanding the money supply that would on average have maintained its
real command over resources. They then propose

1-b
M, = ( )nl + 9, (2.14)

1-b6L

as such a rule. Note that the rate of growth of the money supply is endoge-
nous since it depends on the current rate of inflation. Following Sargent
and Wallace, I assume that the disturbance term v;, which subsumes all
other influences on monetary policy, is independent of #, and serially
independent.

In order to obtain the stochastic process of 71, for the model (2.1),
(2.6), and (2.14) (hereafter called model S&W), substitute (2.6) and
(2.14) into (2.1):

1-b
<1 —bL) I, + v, — II; = aDE Il 1 + uy,

or
b
m H,; = —aDEtH,H =+ v, — Uy, (215)

where I further assume that ¢(L) = 1. To solve this model, I first guess
that

1-5
Eant-H = (m) I, (2.16)
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and then confirm that the guess is correct. Substituting (2.16) into (2.15)

yields
b 1-b
(1 — bL) DIT, = —a (1 — bL) DIT, + v, — u;,
or
DIT, = (1 —bL)(v; — u,)/[6 + a(1 — b)]. 2.17)
Hence,

E Il =11, — b(v, —u)/[b + a(l — b)]

=H,—[ b }[b—l—a(l—b)]nl
b+ a(l — b) 1-bL

b 1-b
:H[— Dle 17[.
1-bL 1-bL

The guess (2.16) is therefore correct, and the process (2.17) generates
IT,. Consequently, Box—Jenkins procedures should demonstrate that /7,
is generated by a (0,1,1) process if model S&W holds. Moreover, differ-
encing (2.14) and substituting from (2.17) yields

DM, = Do, + (1 — b)(v, — u)/[b + a(l — b)]. (2.18)

Because the right-hand member of (2.18) is a first order moving average,
M, is generated by an ARIMA process of order (0,1,1) in model S&W.
These implications will be checked in the next section.

3 Time series analysis

The techniques of Box and Jenkins (1970) are used in order to identify
and fit the stochastic processes generating I7, and M, for the German
hyperinflation.” Accordingly, the first step is to examine the sample auto-
correlations in table 8.1.

Many non-stationary economic series can be transformed into station-
ary series by differencing enough times. I assume that /7, and M, has such
a property. According to Box and Jenkins, one can determine the mini-
mal degree of differencing necessary to induce stationarity by examining
the sample autocorrelations of the series.® For example, in table 8.1 the

7 See section 6 for a description of the data. To keep my study comparable with those of
Cagan and Sargent and Wallace, I have used Cagan’s data. I have also analyzed data from
the original hyperinflation sources, obtaining similar results.

8 Of course, nowadays one would decide this question with a battery of unit-root tests.
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Table 8.1 Sample autrocorrelations for [T, M, M — I1, and various
differences®

Lags

Variable 1 2 3 4 5 6 7 8 9 10 11 12

n 0.47 0.28 039 045 0.20 0.23 0.25 0.16 0.13 0.18 0.13 0.07
DI1 -0.25 -0.26 0.10 0.08 —0.17 0.03 0.01 —0.06 —0.03 0.06 0.09 0.10
D11 -0.50 —-0.15 0.25 —0.02 —0.15 0.13 —0.02 —0.05 0.01 —0.02 0.01 0.12
M 0.84 0.78 0.70 0.60 0.39 0.30 0.18 0.08 0.01 —0.04 —0.07 —0.10
DM -0.25 0.00 —0.18 0.25 —0.25 —0.04 —0.07 —0.01 —0.01 —0.00 0.07 —0.00
D’M -0.52 0.17 -0.21 0.22 —0.15 0.01 —0.04 0.02 —0.01 —0.02 0.08 —0.00
M-1I 0.16 —0.23 0.08 0.04 —0.22 —-0.13 —-0.06 —0.11 0.01 0.14 0.14 0.03

DM — ) —-0.23 —-0.37 0.29 —0.02 —0.18 0.07 —0.02 —0.13 0.02 0.04 0.09 0.10

Note:
¢ The approximate standard errors are 0.12 for the entries in the first three rows and 0.18 for
the other entries.

first few sample autocorrelations of M, have the usual pattern for a non-
stationary series because they are large and decay slowly.® By contrast,
the sample autocorrelations for DM; hover around zero, suggesting that
it is stationary. Examining the first few sample autocorrelations of D*>M,,
which are large and negative, strengthens this conclusion. They indicate
that D®>M,; is over-differenced; that is, DM, need not be differenced again
to be stationary.

The most important distinguishing feature of a non-stationary series is
its failure to decay at early lags. Consequently, the sample autocorrela-
tions of 1, suggest non-stationarity. By contrast, those of DIT, rapidly
approach insignificance as the lag increases, suggesting stationarity.!°
The large negative sample autocorrelations of D?IT, also indicate over-
differencing. It is therefore reasonable to claim that I7; is not stationary
but that DI, is.

After finding the minimal degree of differencing required for station-
arity, the sample autocorrelations are useful for identifying the process
generating the serial correlation of the differenced series. For example, the
first two sample correlations of DIT, are significant but follow no apparent
pattern. According to Box and Jenkins, this behavior suggests that DIT,
is a second order moving average and hence that I1; is an ARIMA (0,1,2)

9 The first few sample autocorrelations of a non-stationary series tend to be larger and to
decay more slowly, the larger is the sample size.

10 In a large sample with # observations, the sample autocorrelations are distributed as
NID(0, n~1/2)under the null hypothesis of no serial correlation. It may be misleading to
base identifications on large-sample results for samples that are not in fact large.
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Table 8.2 Firted processes for DIT®

323

Order ARI MA1 MA2 MA3 Constant S.E. R? Q(12) Q24)
(0,1,1) 0.782 0.00613 0.180 0.230 11.0 15.8
(0.074) (0.00488)
0,1,2) 0.535 0.303 0.00623 0.176 0.276 49 10.0
0.123)  (0.123) (0.00383)
0,1,3) 0.566 0.322 —0.073 0.00626 0.176 0.280 4.6 9.1
(0.130)  (0.148) (0.131)  (0.00420)
1,1,00 —0.272 0.0132 0.198 0.068 17.4 249
(0.121) (0.0234)
1,1,1) 0.366 0.965 0.00354 0.178 0.258 7.7 14.1
0.120)  (0.017) (0.00136)
1,1,2) —0.167 0.389 0.408 0.00731 0.176 0.279 4.7 9.3
(0.434)  (0.408)  (0.318) (0.00550)
Note:

¢ Approximate standard errors appear in parentheses below each parameter estimate.

e Q(n) statistic is distributed in large sample as n — k) where 7 is the order of the
Th tatist distributed in larg ple as x?2 k) wh the order of th
Q statistic and k is the number of parameters fitted.

Table 8.3 Fitted processes for DM*

Order ARI1 MAI1 MA2 Constant  S.E. R? Q(2) Q249
(0,1,0) 0.0113 0.0831 0.076 5.1 6.0
(0.0147)

0,1,1) 0.300 0.0103 0.0825 0.076 5.1 6.1

(0.175) (0.0104)
0,1,2) 0.303 —0.010 0.0102 0.0839 0.076 5.1 6.1
(0.199) (0.230)  (0.0107)
(1,1,0) —0.295 0.0131 0.0827 0.073 5.1 6.1
(0.192) (0.0148)
(1,1,1) —0.368 0.267 0.0106 0.0839 0.076 5.1 6.1
0.748)  (0.692) (0.0130)
Note:

¢ Approximate standard errors appear in parentheses below each parameter estimate.
The Q(n) statistic is distributed in large samples as x2(n — k) where # is the order of the
Q statistic and k is the number of parameters fitted.

process. Similarly, M; would be identified as a (0,1,0) process because
the sample autocorrelations are neither significant at the 0.10 level nor
patterned.

Tables 8.2 and 8.3 contain the results of fitting these and some other
processes for IT, and M;. Table 8.4 gives the test statistics!! for comparing
some of the models fitted in tables 8.2 and 8.3. The tentative identifica-
tions appear to be acceptable, but the process (0,1,1) for /7, and M, also

11 Minus twice the logarithm of the likelihood ratio is distributed as x 2 (k) in large samples,
where % is the number of restrictions tested.
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Table 8.4 Comparison of statistical models

Variable Models compared Test statistic
I (0,1,1) versus (0,1,2) 2.05
(0,1,2) versus (0,1,3) 0.23
(0,1,1) versus (1,1,1) 1.22
(0,1,2) versus (1,1,2) 0.17
M (0,1,0) versus (0,1,1) 3.56%
(0,1,1) versus (0,1,2) 0.00
(0,1,0) versus (1,1,0) 3.47¢
(0,1,0) versus (1,1,1) 0.00
Note:

¢ Statistically significant at the 0.10 level.

Table 8.5 Implied orders of the ARIMA processes for I1 and M*

n M
Model C 1,1, +2) (0,1,0) or (0,1,1)
Model MC (0,1, +1) or (0,1,max[2,q +1]) (0,1,0) or (0,1,1)
Model S&W (0,1,1) (0,1,1)
Data (0,1,2) or (0,1,1) (0,1,0) or (0,1,1)

Note:
¢ Rows one and two are based on the assumption that M, is a process
of order (0,1,0) or (0,1,1).

appears to be consistent with the data. The data, however, appear to rule
out the model (1,1,2) for I1,.

Table 8.5 presents the implications of the three models and the data
for the orders of the ARIMA processes followed by I7; and M;. Model C
does not appear to be consistent with the data. Models MC and S&W,
however, are consistent with the observed orders of the ARIMA processes
for I1, and M,.

We can eliminate model S&W from consideration by taking another
tack, however. Equation (2.18) can be rewritten as

DM, = (1 —0L)n,,
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where 6 is a parameter approximately equal to 0.7'2 and #, is a seri-
ally independent random variable with a zero mean and finite variance.
Furthermore, the parameter 6 is insensitive to the choice of b, a(1 — b)
and var u,/var v,. Therefore, a belief in model S&W can be formulated
in a prior density function for 6 with, say, a mean of 0.7 and a standard
deviation of 0.15. In section 7, I derive the functional form of the poste-
rior odds ratio for comparing the null hypotheses Hy and 6 = 0 with the
alternative hypothesis H; that 6 is distributed with a probability density
function f(6), —1 < 6 < 1. In this problem, choosing f(f) to be the beta
distribution function

0.003262(1 +0)7(1 — 6)?

allows one to impose a mean of 0.71 and a standard deviation of 0.15 (see
Zellner 1971, pp. 371-3). The sample information then converts prior
odds of 1:1 in favor of Hy into posterior odds of 219:1. Consequently,
one can reject model S&W.13

4 Further time series analysis of model MC

According to table 8.5, the implications of model MC for the orders of
the ARIMA processes generating /1, and M, are consistent with the data
if g =0 or 1 and r = 0. Therefore, if model MC obtains, (2.1) can be
rewritten as

M, —1II, = —aDEII;1y + u, — c1t4-1, (4.1)

12 Tt is easy to show by equating the first order autocorrelations for (2.18) to —6/(1 + 62)
that

where

(1 —b)%(1 + varu,/varv,)

U tad =B +a(l—0)]

Because of (2.17), 0.787 in table 8.2 estimates b. Choosing a(1 — b) = 0.75, the average
of Cagan’s “reaction indices” ([1956, p. 69]), one finds that x = 0.0166(1 + var u;/var
v;). For variance ratios ranging from 1/5 to 5, 6 ranges from 0.73 to 0.87. If either b
or a(l — b) were smaller, one could rationalize somewhat smaller s. Most reasonable
values of b, a(1 — b), and var u;/var v; nevertheless imply that 6 is near 0.7. A standard
deviation of 0.15 also seems to be consistent with these considerations.

The Bayesian procedure for comparing hypotheses is superior to the informal Box—
Jenkins and sampling theory methods used in the chapter. It would therefore be desirable
to compare models C and MC by computing a posterior odds ratio. Unfortunately,
obtaining an expression for the posterior odds ratio for this comparison is a non-trivial
problem.

13
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where the parameter ¢; could actually be zero. Equation (2.9) implies
that

1 o a \'
Eznz-H = (1 T a) ; (1 T a) Ez(Mz+i+1 — Ui+l T+ Cluz+z')

4
:Mz—i-(l_:a)M[

This equation, (2.3) with »r = 0, and (4.1) lead to

M, -1, =—a| DM
¢ 3 a|: z+(1+

C1
) Duz] +u —crug
a

—av; + [M} u; — ( ° ) Us_1. 4.2)

14+a 1+a

According to (4.2), M; — II, is a first order moving average unless
¢y = 0, in which case it is white noise. The sample autocorrelations for
M, — I1; and D(M, — I1,) in table 8.1 suggest that M; — I, is white noise.
Nevertheless, it proves to be better represented by the first order moving
average process

M, — 11, =—-0.0661+(1 + 0. 458L)zut (4.3)
(0.0520) (0.16
S.E. = 0.207, R* = 0.078, Q(12) =4.0, Q(24) = 1.6,

where w; is supposed to be a serially independent disturbance term with
a zero mean and finite variance. Furthermore, at the 0.10 significance
level, the first order moving average (4.3) cannot be rejected in favor of
the second order moving average!*
M, —1II, = —0.0638+(1 + 0 321L 0.294L>)®, (4.4)
(0.0368) (0.198)
S.E. =0.203, R2 = 0.138, Q(12) = 2.3, 0(24) = 5.3.

These findings provide strong evidence that the disturbance term in the
money demand function (2.1) was stationary. In this sense, then, money
demand was stable during the German hyperinflation. This stability held
notwithstanding the non-stationarity of the growth rate of the money
supply.

Differencing (4.2), substituting from (2.3) with r = 0, and rearranging

yields
14+a(l —cy) c
DI, = v, + aDv, — [Tal Du, + ] —;a Du, ;.

14 Minus twice the logarithm of the likelihood ratio is 2.24.
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Table 8.6 Sample cross-correlations berween the prewhitened M and I series®

Lag

—6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6
—-0.14 —-0.17 0.35 —-0.25 —0.04 0.32 0.65 —0.43 0.14 —0.06 0.18 —0.15 —0.04

Note:
¢ The approximate standard error for each entry is 0.18. Positive lags imply that
money leads prices, and negative lags imply that prices lead money.

By Granger’s Lemma, 1, has the representation
DI, =1 —6,L—6,L*n,, (4.6)

where 0, and 6, are parameters and #;, is a serially independent distur-
bance term with a zero mean and finite variance. Furthermore, it is clear
from (4.5) and (4.6) that the cross-correlations between v, and n,; are
non-zero only at the lags 7 = 0 and 1. By contrast, model C implies that
they are cross-correlated at every lag : > 0 and not cross-correlated at
negative lags, while model S&W implies that they are cross-correlated
only at { = —1 and 0.1°

Table 8.6 presents the sample cross-correlations between the residuals
from the (0,1,0) process for M; and residuals from the (0,1,2) process
for I7,.'° Those at lags —1, 0, and +1 are significant at the 0.10 level,
indicating that money not only affects prices but also is affected by them.
Therefore, all three models are inconsistent with the data. Note, however,
that in constructing his series for the Germany money supply, Cagan
obtains his figures for the middle of the month by interpolating between
end-of-month figures. The series on M; could therefore appear to be
correlated with I7,_; even if the “true” M, series was exogenous vis-d-
vis IT;. Nevertheless, the substantial cross-correlations at lags —4 and —3
make the conclusion that prices affect money inescapable. One may there-
fore rule out model MC.

5 Conclusions

None of the models considered in this chapter is consistent with Cagan’s
data from the German hyperinflation. In particular, Cagan’s simple
adaptive-expectations mechanism appears not to have described the for-
mation of expectations. Moreover, the growth rate of the money supply

15 See (2.4), (2.5), (2.17), and (2.18).
16 See Haugh (1976) for a discussion of the method used below.
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appears to have depended on past inflation rates. The growth rate of
the German money supply did strongly and contemporaneously affect
the inflation rate, however, a finding completely consistent with the exis-
tence of a stable demand function for money. There is also no evidence
against the hypothesis that the demand for money depended on rationally
expected future inflation rates.

6 Data

The basic data from which I calculated M, the rate of growth of the money
supply, and IT,, the rate of inflation, appear in Cagan (1956, pp. 102-3).
The series IT, is available from June 1917 to November 1923. I excluded
the observations for July 1923-November 1923 for both series because
preliminary analysis indicated that the error terms of their ARIMA pro-
cesses are not covariance stationary when I include any of these obser-
vations. The demand for money may thus have been unstable in the last
few months of the hyperinflation.

Note that the data are not ideal for the purposes of this [chapter]
since Cagan calculated some of the observations by interpolation. It is
well known that interpolation may disguise the stochastic properties of a
series.

7 Bayesian analysis of the first order moving
average process

Consider the first order moving average
Ve =1u —Ou;_g, (7.1)

where u, is NID(0,02). The likelihood function for vy = (31, ¥25 . . . s n)’s
a vector of # observations on y;, is

/2 —m _ YV @)y
@m) 2o V(©) 72 exp [‘T ; (7.2)
where V(0) is the n x n banded matrix
1+6%2 -0 0 0
-0 146> -6 - 0
0 -6  1+6% ... 0

Vo) = . ‘ ' . . (7.3)
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The null hypothesis is
Hy:6=0 and p@)xl/o, 0<o < 0. (7.4)

The improper prior p(o) « l/o is frequently chosen when one is com-
pletely agnostic about the variance o2. The alternative hypothesis

H :pB,0) xf@)/o, —-1<6O<1, 6#0, 0<o <00,
(7.5)
is agnostic about the variance but informative about 8 since f(0) is a proper
probability density function, which I assume to be bounded, continuous

and positive over the entire parameter space. Following Zellner (1971,
p. 298), one may therefore write the posterior odds ratio as

p(%)}
p(HD
@) "2V [5° 0~ exp[—y/ V1 (0)y/20%)do
X
@m)~ ”/Zf_lf(ﬁ)lV(G)\ 1/2f0 o " Lexp[—y' V-1(0)y/202%]dodb
_ [mHo)H Jo" o exp(—y'y/20%)do }

|

p(H) fjl £O)1V(©)71/2 [;° oL exp[—y' V-1(0)y/20%]dodd
or
P(%) / ~1/2 — 2
Ko = OV PV @)/ vy 2o,
‘ p(H) / /

(7.6)

since V(0) is the n x » identity matrix. In (7.6), p(Hy)/p(H;) is the prior
odds ratio.
One can show by multiplying the matrix below by 17(6) that

C,_1Cy 6C,_>Cy 92(3,,_36‘0 Gnilc()C()

6C,_2Co C,_,C, 6C,_3C; --- 8" 2C,C,
Vfl(e) = 92Cn,3CQ 0C,_5C; C,_3C, Qn_3COCz

9"71006‘0 9"720001 9"73C0C2 - CoCrq
7.7)

where

1— 92(i+1) )
CiEW, 2=1,...,n, (78)
is the determinant of the ¢ x7 banded matrix analogous to 1/(6). Note
that ~1(6) is symmetric and each entry 2% above the diagonal equals
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67=iC,_;C;_,. The diagonal entry v% is C,_;C;_;. Therefore,

n n n
YV ey =C,! Z Cu-iCi_13} +2C,! Z Zej_lcnfjciflyiyj

im1 i=1 j=1

j>i
n—1
=SO)+2) 0" R(0), (7.9)
k=1
where
n 1— 62(n+1—i) 1— 92i )
S(G)E;[ — D }[1_92}%, (7.10)
and
n 1— 92(n+17j) 1— 92(]'7/3)
R@®) = ) [ 7D } [ T }yfyf_k,
J=k+1
k=1,...,n— 1. (7.11)
Substituting (7.9) into (7.6) yields
P(%)} /1
Ky = [ £(©)
e/ )
n/2
1— 2N/
x 4 =07y do  (7.12)

[1 - g20r+D)] [Sw) 125 9%(9)}
k=1
since |V(8)| = C, = [1 — 62@+D]/(1 — 63).
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9 A time series analysis of seasonality in
econometric models (1978)

Charles I. Plosser

1 Introduction

The traditional literature on seasonality has mainly focused attention on
various statistical procedures for obtaining a seasonally adjusted time
series from an observed time series that exhibits seasonal variation. Many
of these procedures rely on the notion that an observed time series can
be meaningfully divided into several unobserved components. Usually,
these components are taken to be a trend or cyclical component, a sea-
sonal component, and an irregular or random component. Unfortunately,
this simple specification, in itself, is not sufficient to identify a unique
seasonal component, given an observed series. Consequently, there are
difficult problems facing those wishing to obtain a seasonally adjusted
series. For example, the econometrician or statistician involved in this
adjusting process is immediately confronted with several issues. Are the
components additive or multiplicative? Are they deterministic or stochas-
tic? Are they independent or are there interaction effects? Are they stable
through time or do they vary through time? Either explicitly or implic-
itly, these types of questions must be dealt with before one can obtain a
seasonally adjusted series.

One approach to answering some of these questions would be to incor-
porate subject-matter considerations into the decision process. In particu-
lar, economic concepts may be useful in arriving at a better understanding
of seasonality. Within the context of an economic structure (e.g. a simple

This work has been financed, in part, by the National Science Foundation under Grant GS
40033 and the H. G. B. Alexander Research Foundation, Graduate School of Business,
University of Chicago. The author is grateful to Arnold Zellner for his helpful comments
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Wecker also provided helpful suggestions. All remaining errors, however, remain the sole
responsibility of the author.

Originally published in A. Zellner (ed.), Seasonal Analysis of Economic Time Series, Pro-
ceedings of the Conference on the Seasonal Analysis of Economic Time Series, Washington,
DC, September 9-10, 1976, Economic Research Report ER-1, Washington, DC: Bureau
of the Census, US Department of Commerce, December 1978, 365-407.
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supply and demand model), the seasonal variation in one set of variables,
or in one market, should have implications for the seasonal variation in
closely related variables and markets.! For example, the seasonality in
the amount of labor supplied in non-agricultural labor markets is not
independent of the labor demanded in agricultural labor markets. Con-
sequently, knowledge of the economic structure can provide one with
a great deal of understanding about the seasonal variation of different
variables, such as where it comes from and what might cause it to vary
through time.

The purpose of this chapter is to suggest and investigate an approach
that involves the incorporation of seasonality directly into an economic
model.? Analyzing the problem from this perspective has two important
implications. First, if an adjusted series is the objective, an economic
model that incorporates seasonality may provide an analyst with a better
understanding of the source and type of seasonal variation, as indicated
in the previous paragraph. This understanding, in turn, may aid in the
development of improved adjustment procedures. Second, including sea-
sonality in an economic model avoids the necessity of using a seasonally
adjusted data base in estimating an economic model and subsequent
concern over whether the seasonal adjustment procedure itself may be
causing distortions of the economic analysis and the interpretation of the
model.? For example, although many economic time series are available
in adjusted form, there are some series that are not adjusted at all (e.g.
interest rates). Wallis (1974) shows how the use of adjusted and unad-
justed data in the same model can lead to spurious dynamic relationships
between variables where dynamic relationships do not otherwise exist.

Furthermore, to the extent model builders do not take seasonality into
account in the specification of a model because they believe that using
seasonally adjusted data has eliminated that need, they could be led into
model misspecification, misleading inferences about parameter values,
and poor forecasts. Such problems would naturally arise if the adjust-
ment procedure did not effectively eliminate the seasonal variation in
the data. Consequently, the adjustment procedure may have the effect of

Kuznets (1933) was concerned with how seasonal movements worked their way through
various markets. Fundamental to this approach is the idea of induced or derived seasonal
variation. That is, seasonality is induced into some markets because of seasonality in other
markets. However, Kuznets first obtained what he called the seasonal component of an
observed series and proceeded to compare these seasonal components in related markets.
2 An example of how an economic model can be built to generate seasonal or periodic
behavior can be found in US Department of the Interior (1962).

3 Laffer and Ranson (1971) were concerned with this problem and made use of seasonal
dummies in an attempt to avoid the dependence on the seasonally adjusted data.
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inducing properties on a series that are spurious concerning the model
under consideration.

In Zellner and Palm (1974), techniques were developed for analyz-
ing dynamic econometric models that combined traditional econometric
modeling with the time series techniques developed by Box and Jenkins
(1970). In a subsequent work, Zellner and Palm (1975), these tech-
niques were applied to the analysis of several monetary models of the
US economy. Using monthly data for 1953-72, the information in the
data was checked against the implications derived from these models.
They pointed out, in the conclusion of their work, that even though
they were using seasonally adjusted data, effects of seasonality seemed
to be present in the autocorrelation structure of some of the variables,
as well as in the residuals of the transfer functions. These complications
might be expected from data that are smoothed in the same manner,
regardless of the underlying stochastic process or economic mechanism at
work.

Finally, if the data being used to test and estimate a model are inap-
propriate for the particular model, the model is likely to produce poor
forecasts. Even in the case of forecasting univariate time series, the effects
of seasonal adjustment may cause poor predictions. This lack of predic-
tion accuracy may arise from the fact that the adjustment procedures
periodically undergo revision, such that the form of the filter and the
weights employed are changing through time. That is, the raw data are
being passed through a filter that may vary considerably over a particu-
lar sample period. The result would be to introduce an instability in the
stochastic properties of the adjusted data that may not exist in the raw or
unadjusted data.

Figures 9.1 and 9.2 provide an illustrative example of the type of predic-
tion problem suggested in the preceding paragraph. Using the method-
ology of Box and Jenkins (1970), a univariate time series model was built
for the unadjusted money stock (M1). The model was identified using
monthly data for January 1953—-December 1962 and then used to fore-
cast unadjusted M1 through 1963 (i.e. forecasting up to twelve steps
ahead). Subsequently, the model was updated with actual data through
December 1963 and then used to forecast M1 for 1964. This process
was repeated through 1972. The results of this exercise are presented
graphically in figure 9.1. These are the plots of the actual and the pre-
dicted series as well as a set of 95 percent prediction intervals. As can
be seen, the model seems to do rather well with the actual series coming
close to being outside the prediction interval in 1967 and again in 1969.
Even at the twelve-step-ahead forecast, the error is rarely more than 1 to
2 percent.
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In contrast to this is a model developed using the same techniques for
the seasonally adjusted money supply. The same updating and prediction
procedure was performed with the model, and the results are shown in
figure 9.2. Notice the relatively larger prediction errors at the twelve-
step-ahead forecast. More important is the observation that the actual
series often wanders outside the prediction interval. It is, of course, very
difficult to compare the results in figures 9.1 and 9.2 directly because, in
fact, the models are predicting two different series. A complete analysis
of the findings presented in figures 9.1 and 9.2 would constitute a study
in and of itself, but such an analysis is not the intention of this work.
However, these simple results should be sufficient to cause one to ask
questions concerning the role of adjustment — and, perhaps, its usefulness
in forecasting.*

The organization of the remainder of this chapter is as follows: section 2
is a methodological section that includes a brief discussion of the analysis
of linear dynamic econometric models as developed in Zellner (1975)
and Zellner and Palm (1974), as well as some of the theoretical aspects
involved in modeling seasonal time series. Suggestions are then made
concerning the way one might go about building seasonality into a model
and how to check the consistency of the specification of the model with
data. In section 3, a simple economic model is proposed with explicit
assumptions regarding the manner in which seasonality enters the system.
This is followed by a detailed discussion of the implications of the model
for the properties of the stochastic processes for the endogenous variables.
In particular, consideration is given to how the effects of changes in the
values of structural parameters and of properties of the processes for
exogenous variables would lead to changes in the seasonal properties of
the output variables of the model. Section 4 presents the results of an
empirical analysis of the model, and section 5 provides a discussion of
the results and implications for future research.

2 Methodology for analyzing seasonal economic models

In this section, a methodology is suggested for analyzing seasonal eco-
nomic models. In . . . subsection [2.1] on the analysis of linear dynamic
econometric models, a brief discussion is provided of the analysis of lin-
ear dynamic econometric models as developed by Zellner (1975) and
Zellner and Palm (1974). In . . . subsection [2.2] on seasonality in time

4 There are certainly alternative explanations for this observed phenomenon. However,
these results are only meant to be suggestive, and not conclusive evidence of the distortions
that may be caused by seasonal adjustment. The reader who is interested in the details of
the development of the exact models used for this example is referred to Plosser (1976).
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series data, several approaches to modeling data with seasonal variation
are discussed. Finally, in . . . subsection [2.3] on an approach to the
analysis of seasonality in structural models, the methodology developed
in...subsection [2.1]...and [2.2] ... is utilized to illustrate several ways
of incorporating seasonality in an econometric model and techniques for
checking the model’s specification against information in the data.

2.1 Analysis of linear dynamic econometric models

As indicated by Quenouille (1968) and Zellner and Palm (1975), a linear
multiple time series (MTS) process can be written as follows:

H(L)z, = F(L)e,,
fort=1,2,..., T
pxp px1 pxp pxl 2.1

where z, is a vector of p observable variables (in this case written as devi-
ations from their respective means), ¢, is a p x 1 vector of unobservable
random errors, L is the lag operator such that L*x, = x,_;, and H(L)
and F(L) are p x p matrices of full rank having elements that are finite
polynomials in L. In addition, the error vector ¢, is assumed to have the
following properties:

Ee, =0
for all ¢, ¢*
EEIEI* = 8 Iy, (2.2)

r

where §,,+ is the Kronecker delta and I, is a p x p-unit matrix. Note that
contemporaneous and serial correlations between errors are introduced
through F(L).

This general MTS model includes the linear dynamic simultaneous
equation model as a special case. Assume that prior information, in par-
ticular economic theory, suggests that certain elements of 2, can be treated
as being endogenous and others as being exogenous. The system (2.1)
can then be written as follows:

Hy Hp ||y, | _ | P Fa||e, (2.3)

Hy Hp | |x, Fo Folle,|” '
Given that Y, represents a vector of endogenous variables and x, a vector
of exogenous variables, the following restrictions are implied:

1‘121 = 0, F12 =0 and F21 = 0; (24)
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with these restrictions imposed, the usual structural equations from (2.3)
are given in (2.5):

Hyy + Hizx, = Fuey,, (2.5)
and
I{ZZEI = F22g25 (26)

represents an autoregressive moving average process generating the
exogenous variables.’

If it is now assumed that the roots of the determinantal equations
|[H11(§)] = 0 and |H»2,(§)| = 0 lie outside the unit circle, the system
(2.5) can be rewritten in two forms that can be of use in analyzing the
model. The first form represents a system of final equations (FEs) for the
endogenous variables. They are obtained by substituting for x, in (2.5)
the expression

&[ = I—ézl F22£2[ (27)

and then premultiplying both sides of the resulting expression by the
adjoint of Hj; that yields

|Hiily + HTIHHHZEIFHQZI = Hf| Fiie,, (2.8)
or
| Hi1|| Fo2ly, = — Hy Hio FD, Faze,, + | oo | Hfy Friey, (2.9)

where |H;;| denotes the determinant and Hl’; the adjoint matrix of Hj;.
This representation implies that each endogenous variable can be writ-
ten in the form of an autoregressive integrated moving average (ARIMA)
model of the type developed and analyzed by Box and Jenkins (1970).
Thus, as emphasized by Zellner and Palm, those who utilize the Box and
Jenkins models for forecasting are not making use of a technique that is
necessarily distinct from standard econometric models. In fact, they are
utilizing a very specialized reduced form, the FE, that is well suited for
forecasting but may or may not be very informative for structural analy-
sis. However, this representation of the model can provide insights into
the stochastic structure of the endogenous variables in the system. For
example, if one is interested in seasonality, the autocorrelation coefficient
at the seasonal lag can be analyzed with respect to changes in structural

5 If one or more of the elements of x; is deterministic, it can not be handled in this fashion
but must be analyzed through the transfer functions, a discussion of which will follow.
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parameters or changes in the processes generating the exogenous vari-
ables. Furthermore, this type of analysis is helpful in understanding what
type of adjustment procedure may be suggested by the model.

Upon inspection, several things can be noted about (2.9). First, since
the assumption is made that all the elements of F(L) and H(L) are finite
polynomials in L, then if no cancellation takes place, it is apparent that
each and every endogenous variable in the system will have identical
autoregressive (AR) polynomials and they will be of order equal to or
greater than the AR polynomials for the elements of x,. This theoretical
restriction might be one means of testing the model against information
obtained from the data. In addition, there are restrictions placed on the
form of the moving average (MA) polynomial in (2.9). However, there
are possible reasons why these theoretical restrictions on the AR and MA
polynomials may not be observed in the data even when the model is
true. One problem, mentioned by Zellner and Palm, is the possibility of
cancellation. This will occur if there are common roots in the AR and
MA portions. Depending upon the complexity of the structural model,
this may or may not be noticed by the analyst but if not recognized could
lead to estimated FEs that do not appear to satisfy the restrictions implied
on the polynomials by the model.®

The second set of equations derived from the system (2.5) that can be
of value in testing assumptions about the structural model is the set of
transfer functions (TFs). These equations can be obtained from (2.5) by
multiplying both sides by H;; this yields

|I_Ill|2z:_H;F11—112§[+Hr1Fllé1[: (2.10)
or, alternatively,

—HJ'\ Hy» Hf| Fiy
%7 TTHy T THul 0
11 11

As noted by Kmenta (1971), Pierce and Mason (1971), and Zellner and
Palm (1974), this form expresses the current values of endogenous vari-
ables as functions of the current and past values of the exogenous variables
and is restricted in form. Formally, (2.11) is a set of rational distributed
lag (RDL) equations (Jorgenson (1966) and Dhrymes (1970), or a sys-
tem of multiple-input transfer functions (MITF) of the type described
by Box and Jenkins (1970).

This form of the model is useful for prediction and control. In par-
ticular, it is useful for assessing the response, over time and in total,

(2.11)

6 Of course, if the model is incorrect or misspecified, then these restrictions will also fail to
hold.



Time series analysis of seasonality 341

of endogenous variables to changes in exogenous variables. Notice that,
here too, there are strong restrictions on the form of the TFs under the
assumptions of a specific model. For instance, if no cancellation occurs
and if all the elements of H}; and H;, are finite polynomials, then all of
the inputs have the same denominator polynomial. There are also restric-
tions on the form of the error process in (2.11). Other tests that could be
carried out concern testing the assumptions of the exogeneity of the x,s.
By estimating and analyzing (2.11) and comparing the results with the
restrictions implied by a specific structural model, it is felt that many use-
ful insights can be obtained concerning the adequacy of the specification
of the structure. In particular, interest here will focus on the specification
of the seasonal aspects of the model.

2.2 Seasonality in time series data

Before discussing how one would incorporate seasonality in a structural
model, it will be useful to review briefly several approaches to modeling
data that have seasonal properties. The two approaches discussed here
are the traditional concept of seasonality that treats an observed series as
the sum of three components — a trend or cyclical component, a seasonal
component, and a noise component’ —and the multiplicative times series
model as developed by Box and Jenkins (1970).

One of the more common approaches to seasonality within the frame-
work of the aforementioned traditional model is the dummy variable
model. The general form of such a model is

§
Ve = y[c + Zaidiz + € (2.12)
i=1

where ¢ is the trend or cyclical component, ¢, is an error term, and
the dummy variables d;, are used to represent the seasonal component of
the series. (Often . . ., »¢ is represented by a polynomial in ¢, time.) If
monthly data were under consideration, one might use a dummy variable
for each month representing a series with a fixed periodic or seasonal
component. The estimate of «; would represent the estimated mean for
the sth month. If such a system is presumed to be the true model, it is then
straightforward to obtain a seasonally adjusted series by just subtracting
the seasonal component that yields

a—

V=3 —y =3 +e, (2.13)

7 As noted earlier, it is in this conceptual framework that the idea that a series can be
decomposed into a seasonal component and a seasonally adjusted series arises.



342 Charles I. Plosser

where
3 =) aidi, (2.14)
i=1

Another approach, also using this traditional decomposition, is the Cen-
sus Bureau X-11 program (see US Department of Commerce 1967).
The basic idea of this approach is to eliminate the seasonal component
v through the application of symmetric moving average filters. That is,
a seasonally adseries is obtained by passing the unadjusted data through
a filter of the form

k
=Y Bivi-i = B(L)y,s (2.15)
i=—k

where the §;s are fixed weights such that 8, = 8_; and Zf:_ xBi =1,and
L is the lag operator. In terms of the traditional components model, this
filter is chosen such that the seasonal component is taken out and the
trend or cyclical component is unaffected. (That is, B(L)y; = y¢, and
B(L)y; =0.)

Another class of models that is of special interest and that contains the
dummy variable approach as a special case, is the multiplicative seasonal
time series models of Box and Jenkins (1970). These models are of the
general form:

Tp(L)gp(L)AP Az = 2,(L°) Oy (L)a, (2.16)

where s is the length of the seasonal period (e.g. 12 for monthly data),
AP = (1 - L)P,A? = (1 — L)%, I" and £2 are seasonal polynomials in L*
of degree P and Q respectively, ¢ and 6 are polynomials in L of degree p
and g, respectively, and a; is a white-noise error term. It is also assumed
that the roots of I"'(¢§) = 0 and ¢(¢) = 0 lie outside the unit circle so that
the process is stationary and the roots of £2(¢) = 0 and 6(¢§) = 0 lie on or
outside the unit circle. Box and Jenkins refer to this as a model of order
®d,9) (BD,Q)s.

Consider the process (0,1,1) (0,1,1)1, as a simple example. It can be
written as

(1-L1—-Lz=0-6,L)1—2,L?)a,. (2.17)

Letw, = (1 — L) (1 — L%z, (i.e. let w; equal the seasonal differences of
the changes in z;). Now the moving average process governing z; is easily
seen by multiplying out the polynomials on the r.h.s. of (2.17), yielding

w,=0—-6,L—2,L"?+0,2,LY?)a,. (2.18)
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Therefore, this multiplicative model can be interpreted as an ordinary MA
process of order 13. The distinction is that the multiplicative formulation
restricts the weights on lags 2 through 11 to be 0 and on lag 13 to be the
product of the weights for lags 1 and 12.

In general, these multiplicative seasonal models cannot be decomposed
or interpreted within the traditional unobserved components framework
without precise definitions of the components and some further identi-
fying restrictions.® However, there is one special case of (2.16) that has
an interpretation as the dummy variable case described earlier. Assume
that observations were taken quarterly on some variable z;. In addition,
assume that the true processes generating the z;s were such that each
quarter had a different mean but otherwise the series was just a random,
non-autocorrelated variable, a;. Such a process could be written as

2 = a1dy; + aady; + asds, + agdy + a;, (2.19)

where d;, is a dummy variable that takes on the value 1 in the ¢th quarter
and O elsewhere. The estimates of the «;s would represent the mean of
the ith quarter. If one were to seasonally difference this process, then the
remaining process would be

(1-LYz =1 - LYa,. (2.20)

The effect of seasonal differencing is to eliminate a constant, deterministic
seasonal pattern. The process in (2.20) indicates that under the particular
model in (2.19), the seasonal differences of z; obey a first order seasonal
moving average process with a parameter value of 1. Alternatively, if the
as were considered non-autocorrelated and the model were found to have
a first order seasonal moving average parameter of less than 1, then the
implication would be that the seasonal pattern is changing through time.
That is, the seasonal means are changing through time.’

The multiplicative model will be used in this work because of its flex-
ibility in describing not only certain types of additive or deterministic
seasonal patterns but also seasonal patterns that might not be constant
through time. In addition, it readily fits into the framework of analysis of
this chapter.

8 See Cleveland (1972). He . . . proposed an underlying stochastic process for which the
Census X~-11 is nearly optimal from the standpoint of conditional expectation. He argues
that, for processes very near this, the X—11 does quite well, but, when departures occur,
the appropriateness of the X—11 decomposition is thrown into doubt.

9 These models are the first satisfactory models for forecasting seasonal series with changing
seasonal patterns. For a more complete development and discussion of these models see
Box and Jenkins (1970, ch. 9).
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2.3 An approach to the analysis of seasonality in structural models

One question with which this work is concerned is how seasonality enters
a structural econometric model. The primary focus is on testing the
assumption that seasonality enters the system through exogenous forces.
That is, can the seasonal fluctuations of the endogenous variables of the
system be explained by the seasonality of the exogenous variables? There
are, of course, other possibilities, such as certain parameters in the struc-
ture that fluctuate seasonally and, therefore, induce a seasonal pattern
in the endogenous variables even when the exogenous variables are non-
seasonal.

One approach that might be put forward combines the traditional
concept of seasonality and seasonal adjustment with the concepts and
methodology presented in . . . subsection [2.1] . . . Assume that the
endogenous variables of the system, denoted by Y and the exogenous
variables of the system, denoted by x,, can be written as follows:

Y, =¥ty t

X, = X; +x; +u, (2.21)
where no superscript on x or y indicates an observed variable, a super-
script ¢ denotes the trend or cyclical component, s denotes the seasonal

component, and v, and u, are noise components. In addition, assume
that one believes the true economic relationship is in terms of the trend

components. In the notation of . . . subsection [2.1] . . ., the model can
be written as
Hng + Hypx; = Fyey,. (2.22)

Substitution yields
I_Ill(_zt _Xi _yz) + IJIZ(&[ _ﬁi _ZI) = Fllglzi (223)
or
HﬁHIZ HﬁHIZ H1*1F11 H1*1HIZ
Y=y, - x, + x; + e+ U, +2,.
== |Hy| T* [Hal 77 [Hul T [Hpl
(2.24)

It is clear that if (2.22) is the true model, then the model builder must
be very concerned about how the trend component is obtained from the
observed or unadjusted data. On the other hand, such a theory could
be tested using the unadjusted data and the seasonal components, using
(2.24). For example, a restriction implied by (2.22) on (2.24) is that
the coefficient of 2; is 1 and the coefficient of x is the negative of the
coefficient on x,.
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Assume, on the other hand, that one believes that seasonal fluctuations
in the exogenous variables work their way through the system like all other
fluctuations in the exogenous variables. In addition, suppose interest is
focused on the ability of the seasonal fluctuations in the exogenous vari-
ables to explain the seasonality in the endogenous variables. Under these
conditions, (2.25) would have to hold

HﬁHlZ
V4 x' = 0. (2.25)
=t |Hyi| ™

This restriction arises from the fact that the true economic model exists
between the observed series, and, therefore, the seasonal portion of x,
should explain the seasonal portion of Y,

However, this approach still suffers from the problems of defining and
obtaining an optimal adjustment and/or appropriate decomposition.

As indicated earlier, the approach taken in this chapter is slightly
different. The structural model is written in a manner which pre-
sumes that its form holds for the observed data and not only the trend
component

Hy1y: + Hipx, = Fiiey,. (2.26)

The hypothesis to be tested is that seasonality enters the system through
the process generating the exogenous variables. That is, the process gen-
erating x,, (2.6), is written as a multiplicative seasonal time series model.
By doing this, it is hoped to broaden the model by allowing a slightly
greater flexibility with regard to the form of the seasonal fluctuation.

Since one of the objectives is to avoid choosing an arbitrary decomposi-
tion prior to developing an adequate model, a means must be devised by
which conclusions can be drawn concerning the ability of the exogenous
variables to account for the seasonality in the endogenous variables. For-
tunately, there is a straightforward method of doing this. Since the process
generating the x,s will be associated, in general, with both seasonal AR
and seasonal MA polynomials, it is possible to trace these polynomials
through the analysis to determine their impact on the TFs and FEs of
the system. Once the TFs and FEs have been obtained, they can be esti-
mated and the results compared with the implications of the theory used
in writing the structural model. To the extent that the estimated models
are in agreement regarding the behavior of these seasonal polynomials,
the hypothesis of exogenous seasonality will be accepted.

Proceeding in the manner previously described yields some interest-
ing insights into the type of stochastic properties that are likely to be
exhibited by the endogenous variables. Assume that (2.26) is written as
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a multivariate-multiplicative seasonal time series process.
szSzzﬁz = Fxp Tzzézp (2.27)

where it is assumed that S,; and 75, are matrices having elements that are
polynomials is L’, where s is the seasonal period. For simplicity, consider
the case where the exogenous variables are independent so that Hj,, S,
T55, and T, are all diagonal. This is sufficient to enable each and every
exogenous variable to be written as a strictly multiplicative seasonal time
series process.

Given (2.27) as the process generating x,, a set of FEs can be obtained

Xp>

by substituting (2.27) in to (2.26) with the following result:

| Hi1 || Hozl| Sozly: = — Hyy Hi2 S, Hyy For Toze,, + Hyy | Hoz || So2ley, -
(2.28)

Inspection of (2.28) reveals that the AR portion of the processes for the
endogenous variables will, in general, be in the form of the multiplica-
tive seasonal model. However, the MA portion of (2.28) does not factor,
in general, into the multiplicative form. Consequently, one might not,
in general, expect to find the endogenous variables to be strictly multi-
plicative seasonal processes (i.e. multiplicative in both the AR and MA
portions). It would seem that the MA term would have characteristics
of both multiplicative and additive seasonal variation. This implication
will be investigated further in the economic model analyzed in the next
section, and it will be seen that if certain restrictions are placed on the
structure and on the processes generating the exogenous variables, (2.28)
will become strictly multiplicative.

Although no mention has been made, up to this point, of constant terms
or intercept terms, it is straightforward to see how they can be handled
in the framework that has been discussed. If these intercept terms are
considered constants, they can be carried along as deterministic elements
of x,, or, if they are considered random and generated by a process,
perhaps seasonal, they can again be considered as elements of x,. In
either case, the inclusion of these intercepts is a simple extension of the
methodology outlined in this section.

To summarize, the approach that will be applied in the following
sections is to:

1. Construct an economic model with an explicit specification of season-
ality

2. Derive the implied TFs and FEs of the model noting where the sea-
sonal specification places restrictions on the form of these equations

3. Empirically check these restrictions against the data
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4. Utilize the empirical results to suggest alternative specifications of the
model if the model under consideration proves deficient.

3 Analysis of an economic model

3.1 Model formulation

In this section, a simple monetary model is formulated and analyzed to
illustrate how the techniques outlined in the previous sections might be
helpful in gaining insights about seasonality and its role in an economic
model.

The economic model contains five variables: Equilibrium money stock,
a measure of real income or wealth, nominal interest rate, price level, and
the monetary base. The model is written to allow for various types of
lag structures having form and length that are to be inferred from the
data. In addition, no restrictions are placed on the theoretical elasticities
and the growth rate of real output is allowed to vary. Expectations in
this model are generated rationally in the sense of Muth (1961). That is,
expectations are formed, based on information in the past history of the
exogenous variables and the structure of the model. Finally, the monetary
base and real income (output) are treated as exogenous or independently
determined, and seasonality is assumed to enter the system only through
these variables.

Obviously, in a simple model, such as this, there are many possible
sources of specification error. However, this study focuses on two impor-
tant aspects of the model. First, the assumption of the exogeneity of the
monetary base and real income may not be an adequate representation.
For instance, as specified, the model assumes that an open loop control
strategy has been adopted by the policy-makers with regard to the cre-
ation of the monetary base. The alternative is, of course, some sort of
closed loop control scheme, whereby the authorities respond to changes
in the price level or interest rate in determining the growth of the base.
The exogeneity of real income assumes the absence of a Phillips-curve
relationship or feedback from the monetary sector to the real sector.!?
Therefore, it is of interest to investigate the adequacy of the exogeneity
assumptions in light of these other possible specifications of the model.

Secondly, seasonality is assumed to enter the model only through the
exogenous variables. It may be that there are separate seasonal effects that
enter directly through the money demand or money supply equations that

10 See Lucas (1973) and Sargent (1973) for a more thorough treatment of the issues sur-
rounding this phenomenon.
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are different from those induced by the seasonal influence of real income
and the base. Such effects may be due to seasonally varying parameters in
the structure. If this is the case, the empirical results would be at variance
with the implications of the model.

The equations of the model include (1) a money demand equation,
(2) a money supply equation, (3) a money market equilibrium condition,
(4) the Fisher equation, and (5) a rational expectations equation. We can
write these equations as follows:

MP = L(Y,,i,, P) 3.1
M? = S(B) (3.2)
M, = MP =M? (3.3)
i, =p 3.4)
n) = E(me | ); (3.5)

where

MP = nominal money demand at time ¢
M?$ = nominal money supply at time ¢

Y, = real income (output) at time ¢

i, = nominal interest rate at time ¢

P, = price level at time ¢

B, = net source base at time ¢
p; = anticipated real interest rate as of time ¢
= anticipated rate of inflation as of time ¢

Equation (3.5) builds the rational expectations hypothesis into the model,
and E(7; | -) denotes a conditional expectation of inflation given the equa-
13

tions of the model and past information.!!
It will be assumed that (3.1) can be written as

rym, = oty — B1Ai + yirp + uis (3.6)

11" Given the previous structure, there are many other issues that could also be raised. For
example, most economists agree that permanent income, or possibly wealth, is a more
appropriate income measure for the money demand function than real output. One
might also consider an adjustment process rather than require market clearing at each
time ¢z. Finally, a more complicated money supply relationship might be considered to
allow for changing reserve ratios, or changing interest rates that would affect the money
multiplier. Clearly, a thorough examination of this model would have to consider these
alternatives. However, the objective of this chapter is somewhat less ambitious. Here,
the intent is to gain a better understanding of the techniques and the issues surrounding
seasonality.
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and that the money multiplier is non-autocorrelated so that (3.2) can be
written as

rM, = C(27’B[ =+ U (37)

where A = (1 — L) is the difference operator; hence, r, = Afn(k) is the
rate of growth of k. The coefficients are, in general, unrestricted in that
they can be interpreted as polynomials in the lag operator. However,
as a starting point, it will be assumed that they are constants, and the
empirical results will be utilized to suggest alternative lag structures.!?
For convenience, both u;, and u,, will be considered independent, non-
autocorrelated disturbance terms.

The remainder of the model involves the Fisher equation and the ratio-
nal expectations hypothesis. Since 7, =¢n P —tn P, = Aln P, =

P
i[ = p;k —|— TEKJHI, (38)
and the expectation can be written as

r}k)wrl = I;(rprﬂ | ) (39)

At this point, some assumption must be made about p;, the anticipated
real rate of interest. In order to keep this analysis from becoming unduly
complicated, the anticipated real rate will be considered a random vari-
able with a constant expected value. Therefore,

i =rp,, + Uz, (3.10)

where ©;, may have a non-zero mean. Of course, if the anticipated real rate
were autocorrelated, then u;, would also be autocorrelated. In addition,
usz, will be considered independent of u;, and u,,.

Utilizing the assumption that the monetary base and real income are
exogenous, the system can be completed by writing down the processes
generating these variables.

(L) T(L'*) Ararp, = Op(L)R2p(L M) us, (3.11)
dy(L)Ty(L'?) Avary, = Oy (L) Q2y(L?)us,, (3.12)

where ¢, , I';, ©;, and §2, are polynomials in the lag operator having roots
that satisfy the stationarity and invertibility conditions, and I"g, Iy, 25,
and §2y represent the seasonal polynomials that are to be traced through
the model.

12 \Whether differencing is appropriate for these structural relationships is not a real issue.
The result of over-differencing would be to induce moving average complications into
the error structure that can be handled in the estimation procedure. (See Plosser and
Schwert 1976.)
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Now that the model has been developed, the system represented by
equations (3.6), (3.7), (3.9), and (3.10) can be rewritten in the form of
a system of simultaneous equations as shown in (2.5), yielding!?

1 —vy =B1A| | ra,
1 0 O er
0 0 (DAIZ l.l

0 — ” Ui
I [ﬂ: w |, (3.13)
—¥1Ap WA,

where

@ =(y1 — B1) .
= 81\
v=ud(775) o
]:

00 _ j
%z_mz@(m flﬁ ) (L)

(=B Y
Ay, =Ap < )
Z ; 71— B

(Euziqj1 — B1Eusitjy1 — Eugiqjy1) + PApus,,
t t t

(3.14)

Uy Uy, and us, are non-autocorrelated and independent disturbance
terms. For convenience, let

[1 = —p1A
Hy=|1 0 o |, (3.15)
0 0 @4y,
and
B 0 —
I‘I]Q: —0 0 . (316)
| —¥1412 =241

Through some simple algebraic manipulations, both the TFs and FEs
can be written down, and the following analysis highlights some of the
more interesting properties of the TFs and FEs.!*

13 For the mathematical derivation of (3.13), the reader is referred to appendix A.
14 See appendix A for the derivations.
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3.2 Analysis of the transfer functions

The TFs of the system are easily obtained by premultiplying both sides

of (3.13) by Hf,. Writing the resulting system of equations, one by one,

the TF of each endogenous variable can be analyzed in greater detail.
The TF for the nominal money stock can be simplified to

Appry, = azAgarp, + Arpuy,. (3.17)

The money supply is seen to be a function only of the base and real
income does not enter as an input. Under the assumption that a, is a
constant coefficient, (3.17) is simply a regression model with moving aver-
age errors. If a5 is a polynomial in the lag operator, it is a distributed lag
model. In either case, note that «, can be directly estimated, using non-
linear techniques. In addition, if all of the seasonality in M is explained by
the base (B), then the only evidence of seasonal autocorrelation should
appear in the noise process as a seasonal moving average polynomial of
order 1 and parameter value of 1. Alternatively, there might be seasonal
fluctuations in the money multiplier. As was noted earlier, the model has
implicitly assumed that the multiplier is non-autocorrelated. However, to
the extent that the Federal Reserve Board offsets changes in the money
multiplier by either increasing or decreasing the amount of currency as it
deemed appropriate, the result would be to force the first order seasonal
moving average parameter (SMA) away from 1 and to induce downward
bias into the estimated value of «,. In fact, if the Fed followed a policy
of no money growth and sought only to offset the multiplier exactly, the
estimate of a, and of the first order SMA parameter would be near zero.

The TF for prices is somewhat more complicated than the one describ-
ing money but, by that very fact, turns out to have interesting interpreta-
tions. Through some algebraic manipulations, the following expression
is obtained:

a® — B1AY, —a1 P — B1AY,
Aprp = <7 Aprg + | ————— | Aw2ry
e n®

+Ap(—Puy, + Puy, — B1Av,) (3.18)

The analysis of this expression will depend, to a large degree, on what
can be said about the form of the distributed lag on Aj,rp and Aj,ry;,.
Fortunately, several interesting observations can be made. Consider the
case where all the structural parameters in the model are polynomials
of zero degree in L. Under these circumstances, the only polynomials
in L (other than the difference operators) arise from the terms ¥; and
¥,. Note from (3.14), where ¥, and ¥, are defined, and equations
(A.19) and (A.20) in appendix A (p. 376), that, in general, ¥, and ¥,
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will be polynomials which are infinite in length. The implication is that
even though there are no lagged relationships specified in the structural
model, due to the expectational aspect of the model there exists an infi-
nite distributed lag relationship between the exogenous variables and the
endogenous variables of the system. Consequently, estimating this trans-
fer function would, most likely, result in a rational distributed lag (RDL)
model as a means of parsimoniously representing such a relationship.

Secondly, in appendix A it is shown that the expressions for ¥; and
¥, involve the summation of varying powers and cross-products of the
parameters in the seasonal and non-seasonal polynomials that are gen-
erating the exogenous variables. It is possible that the data would not
indicate a need for seasonal parameters (i.e. specific coefficients at the
seasonal lags) in the RDL formulation. If this is true, then the only evi-
dence of seasonal autocorrelation appears in the error term as a sea-
sonal moving average polynomial of order 1 with parameter value of 1.
The presence of ¥ and ¥, also indicate that, even though A;,rp and
Ajxry may be seasonal, the existence of an expectations mechanism has
a smoothing effect on the output variable A;,rp. This smoothing effect
arises out of the infinite distributed lag relationship between the inputs
and the output variable Arp. In other words, Aj,rp will be a weighted
average of all past values of Aj,rp and Aj,ry,.

An additional point of interest is how this model can simplify under
alternative assumptions about the structural model. For example, if the
classical quantity theory of money were true, then 8; would equal zero,
and y; would equal 1, allowing (3.18) to reduce to

Ajorp = 0 A1prp, — a1 Arary + Avp[—ur, + uzl. (3.19)

In a similar manner, the TF for the nominal interest rate can be written

as
A1r1, = il A + 2 Apory + Z12 . (3.20)
124 / 12V B, t 127y, ; z- .

Notice that here too, the distributed lags on A,rp and Aj,ry, will in gen-
eral be infinite in length and, therefore, more easily modeled as a RDL
even when the structural parameters indicate only contemporaneous rela-
tionships. As was pointed out, this is due to the expectations aspect of the
model. In addition, if ¥, and ¥, do not display strong seasonal proper-
ties, the only evidence of seasonality that one would expect to find, if the
model is correct occurs in the error term of the form A;,. Once again,
it is worthy of note that because of ¥ ; and ¥, and the smoothing effect
they have on Aq,1;, the interest rate most likely would not display seasonal
movements that are visually striking.
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Table 9.1 Summary of TFs

Simplified formulation

General formulation (B1=0andy; =1)
Avrpm, = a1A12r, + Arpuz, Aqary, = azA12rB, + Aruz,
a® — B1AY
Aqprp = T Aqorp, Aqprp, = apA12rg, — a1 Apary;
1

o poaw + Ara(—uy, + u2)
a1P — 1AV,

—= ] A
* < 7o ) 12

+ A2 (= Puy; + Puz, — P1Av;)

. 14 . ¢BI'B
Azt = (51) Aqarp, Aqzt, = 062(1 - @B-QB> FAyprp,
123 A1z ovly
+ <$> Aqory, + <F) vy — oy <1 — Oyy FApry, + Arpus,

Table 9.1 summarizes the transfer functions (TFs) for the model under
consideration. Both a general formulation and a simplified formulation
suggested by the classical quantity theory of money, as previously dis-
cussed, are presented for comparison.

3.3 Analysis of the final equations

The next set of equations to be analyzed are the final equations (FEs)
(table 9.2). They can be obtained, as indicated, in . . . subsection [2.1] ...
In deriving these equations, it is important to recognize that (3.11) and
(3.12) are rewritten as
]
Us;

A |TB | ¢opl's O - ®Opf2p 0 )
Pleg | 7| 0 oyly 0 OyRy
= H'B, | "], 3.21

o 4722 |:u5[ ( )

This presumes the independence of u,, and us,, but such a restriction is
not necessary. An alternative specification might allow the (1,2) and (2,1)
elements of F,; in (3.21) to be non-zero. This would allow for a dynamic
relationship among the inputs.

As derived in appendix A, the FE for the equilibrium money stock (M)
can be written as follows:

PopdylBIyArp, = Y1 P20y vyOpS2pus,
+ ¢ppy I BIyu1 P Arpuz;. (3.22)
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Notice that y; @ ¢y can be factored out of both sides, leaving
¢plpA12rpm, = 02OpR2pus, + dplpAi2us,. (3.23)

The FE for the money stock is a function of the structural parameter o5,
the error term u,,, and process generating the monetary base (B). More
important is that, by introducing seasonality by way of the exogenous
variables, seasonality is induced on the endogenous variable (M) and,
in fact, on each and every endogenous variable in the system, as will be
pointed out in subsequent analyses.

It is known (e.g. see Anderson 1971) that the sum of two moving aver-
age processes is representable as a single invertible linear process in one
random variable. Consequently, given that u,, and u,, are independent
due to the assumption that the monetary base is exogenous, the order
of this moving average polynomial will be equivalent to the order of the
expression a2 @ g2 or ¢l gA1,, whichever is greater.

The FE for prices (P) is shown in appendix A to be

V1PopdpylplyArarp = [Pos — B1 AV ¢y yOpS2puy,
+ [~ Pay — B1 AW, BOyS2yus,
+¢ppyl Bl vA12[—Puy, + Pus, — B1Av].
(3.24)

Once again, seasonality is seen to be induced on an endogenous variable
only as a result of exogenous seasonality. This fact is evident from the
presence of the A, operator and the seasonal polynomials I"'g, Iy, £2p,
and £2y. As occurred in the FE for money, the AR side of (3.24) is in the
form of the multiplicative seasonal time series model, and the MA portion
is not. In fact, the MA portion appears to border on the unintelligible.
However, some insights can be obtained from this representation.

In order to gain some understanding of (3.24), suppose pp =y =g =
I'y =1 and that 25 = 2y = (1 — L'?), then (3.24) can be rewritten as:

Vi@ Arp = Ap[(Pay — B1AY1)Opus,
+ (—Pa; — f1AY,)Oyus, — Puy, + Puy, — f1Av,].
(3.25)

Equation (3.25) now appears to be in the terms of the general multiplica-
tive time series model. However, it is not, because both ¥; and ¥, are
expressions involving seasonal polynomials and are, in general, of infinite
length. Therefore, it is convenient to consider two possible cases for this
expression, when 8; = 0 and 8; # 0.
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Suppose that the classical quantity theory of money were to be consid-
ered. In that case, (3.25) reduces to

Aprp = Aplaa@puy, — o Oyus, — uy, + uz], (3.26)

which is obtained by allowing the exogenous variables to have no AR poly-
nomials and for the seasonality to approach the seasonal means problem
as well as having §; = 0 and y; = 1 (i.e. restricting the interest rate elas-
ticity of the demand for money to zero and requiring demand for real cash
balances to the homogeneous of degree zero in the price level). Notice
that, once again, as the economic model is simplified, so is the implied
stochastic structure of the output variables of the system.

The implication of (3.26) is that the seasonally differenced rate of infla-
tion would be a pure MA process. It would be in the form of the multi-
plicative seasonal model with the seasonal moving average polynomial of
order 1 and parameter value close to 1.

As was noted previously, the model has been carried through under the
assumption that the us in (3.26) are independent of one another. Under
such an assumption the order of the monthly MA process would be of the
order of w2,® g or Oy, whichever is larger. However, u#,, and #s5, may not
be independent either contemporaneously or through time, and similarly
for u;, and u,,.

Neither of these complications would alter the basic economics of the
model but could affect the orders of the MA portions of the FEs. There-
fore, if the classical quantity theory of money is true, one might expect to
observe an ARIMA model for the natural log of prices to be of the form
(0,1,9) (0,1,1)12, where q is determined by @y, ®p and the covariance
structure between the error terms.

The second case of (3.25) to be considered allows 8 to be different
from zero. In order to gain insight into this case, it is necessary to analyze
the expressions for ¥ ; and ¥, in greater detail. Rewriting (3.25) yields

Vi@PArp = Ap[ParOpus, — Va1Oyus, — Puy,
+ Quy, — B1Av] — Apfr1A[W1Opuy, + ¥2Ovyus,],
(3.27)

or

= =B Y
Vi®Arp =W, — ApprA ) <y 5 [Olzﬂj(f)l (L)®puy,
1— B

— o) (L) Oyus,). (3.28)

Jj=0
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Now, under the assumption that the structural coefficients are just con-
stants, W, is a finite MA polynomial of order equal to the maximum order
of A, ®p or Oy, with seasonal polynomial A;,. The second term is more
complicated.

The expressions n](-f)l (L) and 71;}?1 (L) merely represent the weighting
scheme applied to the infinite past history of Aj,rp and Aj,ry,, respec-
tively, to obtain the forecast of these variables at time z, for time z + 7 + 1.
This would imply that the FE for prices would involve an infinite MA
polynomial. It is very difficult to evaluate the form of this polynomial for
anything except the most trivial cases. However, if either @, @y, 25, or
§2y are of degree greater than zero, then the polynomial will be of infinite
length. In finite samples, this infinite MA model may be indistinguish-
able from a more parsimonious AR representation. If the decay of this
infinite MA is very slow, then one might even be led into differencing the
series or estimating an AR polynomial that had a root close to the unit
circle. It is even more interesting to note that the presence of ¥ | and ¥,
is due to the necessity of generating expectations and has an apparent
smoothing effect on the autocorrelation structure of A;,rp, resulting in
the seasonality in prices that appears much less pronounced.

The last FE to be considered is the one implied for the nominal interest
rate (). It can be written as follows:

NPPpdyI YAzt = i1y YORS2puy, + 120 pOYR2yus,
+ ooyl Bl yy14127;. (3.29)

As has occurred for money and prices, seasonality has occurred in the
nominal interest rate. In addition, the r.h.s. of (3.29) does not indicate
that a multiplicative time series model is the correct representation of the
data if the model is true but that some mixture of the multiplicative and
additive models would be more appropriate. However, if it is assumed
that I'g =Ty =1 and 25 = 2y = Aj;, then (3.29) can be rewritten as

DPPppyAii, = A12[V10yOpus + YodppOyus;, + ¢pdyu:],
(3.30)

or allowing ¢ = ¢y =1, as
DAty = A [V1OBus;, + ¥2Oyus, + v;]. (3.31)

Notice that the terms ¥ ; and ¥, appear here as they did in the FE for
prices. Consequently, if 8; # 0, then the data may indicate the need for
an AR polynomial for Aj,z. In addition, if ¥, and ¥, imply weights
that decline very slowly, then A;,z may appear non-stationary in finite
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samples. Similarly, the presence of ¥ and ¥ ,, most likely, indicates that
the seasonality in the interest rate is greatly attenuated.

Alternatively, simplifications of the economic model naturally lead to
a simplification of the stochastic structure of A,z If §; = 0, i.e. the
classical quantity theory is true, with some algebraic manipulation, (3.3)
reduces to

A, = (OS82 — 1) Fuy, — a1 (OyQy — 1) Fus, + Ajpus,,
(3.32)

where us, is obtained from the expression for Aj,v; in (42) and F is
the forward shift operator so that F/z, = 2, ;. Therefore, the univariate
model for the nominal interest rate might well be expected to follow
something similarto a (1,0,¢) (0,1,1);, or (0,1,4") (0,1,1),, process, where
g and ¢’ would be determined by ® g and @ and the covariance between
uy, and us,.

A summary of the FEs discussed in this section are presented in table
9.2. For comparison, both the general and the simplified versions are
presented.

3.3.1 FEsandthe census X—11 adjustment procedure In light of the work
done by Cleveland (1972), who found a stochastic model for which the
X-11 procedure is nearly optimal in the sense of conditional expectation,
itis interesting to analyze the stochastic structure implied by the economic
model to see if and when the model might imply a structure for which
the X-11 method, for example, is appropriate. The model developed by
Cleveland is

(1—-L)1 —L"y,=(1—-028L+027L%+024(L>+---+ L8
+0.23L° +0.22L° +0.16 L' — 0.50L"2
+0.34L" 4+ 0.07L")¢,, (3.33)

where c; is a white-noise error term.!> This suggests that for data having an
autoregressive structure (1 — L) (1 — L'?) and having a moving average
structure of length 14 and similar to that specified in (61), the X-11
procedure may do a fairly accurate job of decomposition.

Consider, for example, the FE for the money stock. From (3.33) and
(3.23), it can be seen that, if the economic model is correct and if ¢ 5 and

15 That is, for stochastic processes very similar to the one he derives, the seasonally adjusted
data created by the X-11 can be considered approximately equal to the conditional
expectation of a trend component, given the observed series.
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I'p are identically equal to 1, then

Araryr, = 020p2pus, + Arattz, (3.34)
or

(1-L)1 - L"»-nM, = T(L)u,, (3.35)

where T 'is at least of order 12 and maybe higher depending on the order
of a,® 52 5. Equation (3.35) suggests that the X—11 procedure may pro-
vide a satisfactory decomposition of £z M; under some restrictions on the
behavior of the exogenous variables. Though 7(L) is not likely to conform
exactly to the MA process described in (3.33), the AR position is iden-
tical. On the other hand, if ¢ or I'p are not one, i.e. if the exogenous
variables display autoregressive properties, the X—11 procedure could
produce grossly inaccurate results.

This analysis can also be done with the FE for prices and the interest
rate. Consider (3.25) as the FE for prices. If y, @ = y1(y1 — B1) is
not a constant (i.e. contains a lag structure), the economic model would
be indicating AR polynomials and, hence, a departure from the type of
process for which the X—11 procedure is considered appropriate.

3.3.2  FEs and Box—Yenkins multiplicarive seasonal model ~ An additional
point of interest is that the AR portion of all the FEs are already in the
form of the multiplicative seasonal time series model, discussed in. . . sub-
section [2.3] . . . However, the MA portions do not appear to factor into
seasonal and non-seasonal polynomials. In fact, the models, in general,
imply a mixture type of model that contains some aspects of a multi-
plicative nature and others of an additive nature. This suggests that the
properties of this type of mixed model should be investigated as a start-
ing point for developing methods of adjustment. It would be of interest,
however, to determine a set of conditions under which the theory would
predict the multiplicative model. For the FE for the money stock, a suffi-
cient set of conditions is to let 25 = A}, = (1 — L'?) and I's = 1, which
yields, from (3.23),

¢pA12rym, = 2p(02OBuUs; + Ppuz,). (3.36)

Finally, if 5 = 1, (3.36) reduces to a very simple pure seasonal moving
average model

Appry, = 2p(2Opuy, + uz,). (3.37)

These assumptions are equivalent to stating that the process generating
the monetary base has no autoregressive polynomials associated with it,
neither seasonal nor non-seasonal, and that the seasonality in the base is
very close to following the seasonal means model. (See . . . subsection
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[2.3] . ..) Recalling that u4, and u,, are assumed independent, and, con-
sidering the case where « is just a constant, the r.h.s. of (3.28) reduces
to a monthly MA polynomial having a degree that is equal to the degree
of ®p and a seasonal polynomial of first degree and parameter value
of approximately 1. Under such circumstances, the model implied for
the natural log of money would be written as (0,1,¢) (0,1,1);2, where ¢
depends on the properties of ®p.

Similarly, (3.26) represents a multiplicative formulation for the FE for
the price variable. In this case, both 2z and £2y need to approximately
equal (1 — L'?), I'g, and I'y equal to 1, and, in addition, the quantity
theory of money must hold so that §; = 0 and y; = 1.

3.3.3 FEs and dependence of seasonality on structural assumptions
Because the FE for the money stock is reasonably simple, it is instructive
to investigate it further. In particular, consider the effects on key aspects
of the autocorrelation structure of Aj,ry, under some different assump-
tions about the polynomials and parameters on the r.h.s. of (3.34).

Appry, = w, = a2O@pRpuy, + Arpuz,. (3.38)

Assume that the base is truly exogenous, i.e. the model is correct so that

E(ugun;_p) = 0 for all k. (3.39)
By assumption,
2 .
_Joiy ifk=0
E(uﬁltu‘ltfk) - {0 lfk ;é 0" (340)

Although it has been assumed, so far, that u,, is serially uncorrelated,
it is interesting to relax this assumption somewhat. Recall that in this
model u,, incorporates changes in the money multiplier. Now, the money
multiplier may have seasonal properties that are unspecified here. In order
to keep the problem manageable, assume that changes in the money
multiplier are random except for a seasonal effect. That is, assume that

o2 ifk=0
E(usuz—p) = {y2 ifk=12 (3.41)
0 otherwise,

which implies that changes in the multiplier follow a seasonal MA(1)
process. If the multiplier were non-autocorrelated, then, of course,

7/8) = 0. Finally, assume that

Op=(1-06L), (3.42)
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and
p=(1—-QL"Y). (3.43)
Under these assumptions, the variance of A7, or w, can be shown to be
v =21+ 0 + 202 +2(0? — 1) (3.44)

A convenient method of getting an idea of how different assumptions
affect seasonality is to investigate the autocorrelation coefficient of w; at
lag 12. The autocovariance of w; at lag 12 is simply

yS = —a22(1 + 0207 — oF + 2y 2, (3.45)
and the autocorrelation coefficient
(@) _ Vl(;)) — _0‘29(1 + 02)04 - C72 + 27/(2>
P ® T 0214 02)(1 4 22)0? + 2(62 —v2)
~a32(1+ 0 — (1+2p3)

B 3.46
Q2(1+ 021+ 22k +2(1 - p2)’ (3.46)

where 1 = 02 /05 and pf? = 3/12)/62

If ,of? = 0 and £2 = 1, then it is clear that ,o<w) is known with certainty,

since the process for the money stock is simply the dummy variable case.
That is,

o 1 o3(1+6>h+1 1
pw = L s (3.47)
2 21 +60)h+1 2

However, if there is seasonality in the multiplier, meaning pg) # 0, then
the implied value of ,012 is

e _ 1, B +OHh+1-2p3

P2 21400k +1- pf?

(3.48)

which, for pi? > 0, is greater than — (or | p(w)| < %), even though 2 = 1.

Assume that the Fed. was interested in creating the simplest seasonal
pattern possible in the money supply. If they knew the parameter o, and
the stochastic structure of the money multiplier (02 and yl 2 in this case),
then values of ©, £2, and 6 could be chosen to obtain a ,012 ) of — —, which
would imply that the seasonal pattern in the money supply was merely
a stable seasonal mean. It would then be straightforward to either adjust
the money supply or, for the Fed., to design an optimal control scheme
to effectively eliminate seasonality in the money supply.
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3.4 Summary

In this section, the basic framework of a simple monetary model was
postulated. Explicit assumptions were made regarding several important
aspects of the model. First, the assumptions were made that the monetary
base and real income are exogenous inputs to the system. This places the-
oretical restrictions on the covariance matrix between these variables and
the endogenous variables of the system that can be checked against the
data. Another issue of importance is the question of whether the economic
structure generates seasonal fluctuations or acts only as a transmitter of
seasonality. In order to shed light on this issue, it was hypothesized that
seasonality enters the system only through the exogenous variables. This
approach would be consistent with the system transmitting only seasonal-
ity. It was shown that this resulted in seasonality being induced into each
and every endogenous variable and the FEs and, more importantly, the
TFs obtained from the model display restrictions concerning the loca-
tion and magnitude of certain seasonal parameters and polynomials. An
important point to make concerning the FE is that, due to cancellation,
the AR portion of the endogenous variables is not identical. Therefore,
the estimated univariate models should not be restricted to have the same
AR polynomials in the empirical work.

In addition, the theory suggests that, in general, the multiplicative sea-
sonal model is not implied by the structure. Instead, a more general
structure is suggested that contains both additive and multiplicative char-
acteristics. The model was then investigated in order to ascertain a set of
assumptions sufficient to allow the theory to predict that a multiplicative
seasonal model would be adequate in describing the FEs. It was found
that, as the seasonality in the exogenous variables approached the sim-
ple seasonal means case and as the economic structure approached the
classical quantity theory of money, the FEs approach a special case of the
multiplicative seasonal model, or the seasonal means case. These results
indicate that decomposition schemes, based on the general multiplicative
time series model, would be inappropriate, since they are not suggested by
the economic structure. In fact, it is clear that the multiplicative seasonal
model will not, in general, result from linear models.

Another point investigated in this section was when the economic
model implied that the stochastic behavior of the output variables would
be of a form, similar to that suggested by Cleveland (1972), which might
be appropriate for decomposition by the X—11 procedure. Finally, it was
shown how an economic model can explain explicitly why seasonality in
interest rates and prices does not appear to be important. The existence
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of an expectations mechanism has an attenuating effect on the seasonality
and the autocorrelation structure of these series.

4 Empirical results

The purpose of this section is to demonstrate how one might utilize avail-
able data to test a theoretical economic model, such as the one outlined
and analyzed in the previous section.

4.1 Analysis of the univariate time series

In this section, the results from the analysis of the univariate time series
properties of the raw or unadjusted data for each variable in the model
are reported and compared with the implications of the FEs, as discussed
in previous sections. The techniques used are essentially those developed
by Box and Jenkins (1970) for the analysis of time series data as well
as several other techniques, including likelihood ratio tests and posterior
odds ratios, as utilized by Zellner and Palm (1974, 1975) and Zellner
(1975). In general, interest centers on identifying and estimating models
in the form, described in . . . subsection [2.3] . . .,

¢p(L) (L)AL A%z = 0,(1)R20(L)a;,

written as an ARIMA model of order (p, d, ¢) (B D, Q);. Itis assumed that
a; is white noise and that the roots of ¢(¢§) = 0 and ® (§) = 0, the monthly
polynomials and I'(§) = 0 and £2(£) = 0, the seasonal polynomials lie
outside the unity circle so that w, = A APz is stationary and invertible.

It is important to note that, for a stationary series, the autocorrelations
approach zero as the lag increases, so that persistently high values for
the estimated autocorrelations at increasing lags might suggest the need
for differencing. In addition, and a point that is often overlooked, is that
sample autocorrelations need not have large values for a non-stationary
series. All that is required is that the series generate a sample autocor-
relation function that remains relatively flat. Similarly, a persistence of
high or stable values at lags 12, 24, . . ., etc. (with monthly data) would
suggest the need for annual or seasonal differencing.

However, in many instances, the question of the appropriateness of
differencing or the question of stationarity is not readily resolved. Unfor-
tunately, tests and test statistics that rely on the asymptotic distribu-
tion of the observation vector are questionable, since the distribution of
these statistics, when the series exhibits homogeneous non-stationarity,
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is generally not known.!® In light of this, it would seem inappropriate to
use standard testing procedures to test for stationarity. One alternative
to consider is to proceed with differencing and test for a root of one in
the resulting model’s MA polynomial. If there is a root of 1, the process
becomes non-invertible, and there is an indication of over-differencing.!”
However, two caveats must be mentioned here. First, Nelson (1974)
has shown that, for the first order moving average process, the standard
error of the parameter estimate, based on an asymptotic normal distribu-
tion, is under-stated in sample sizes as large as 100. In addition, it is not
clear what the distributional properties of the standard tests are under
the null hypothesis, i.e. when the moving average parameter equals 1.
Consequently, the approach followed in this work has been to utilize the
standard techniques for the identification of the ARIMA models while,
at the same time, being aware of the problems that might arise in finite
samples when the stationarity of the series is in question. Recall that,
based on the theory in the section on the analysis of an economic model,
this problem may arise with both the model for prices and the model for
interest rates.

It is useful, at this point, to make a few comments concerning the
data being used in this analysis. As with all other econometric work,
there is the recurring problem of finding data that adequately measure
the quantities which are of theoretical interest. In this case, even the
theoretical quantities are, in some instances, not universally agreed upon,
such as the appropriate definition of the money stock, the appropriate
measure of income, and the use of short versus long-run interest rates.

The actual data used in this study are detailed in appendix B (p. 380).
The series are made up of monthly observations from January 1953
through July 1971. The net source base, as calculated by the St. Louis
Federal Reserve Bank, is used as the unadjusted monetary base. The
money stock is represented by M1, currency plus demand deposits. The
interest rate is the yield on one-month Treasury bills, as compiled by
Fama (1975). These data should constitute reliable measures of the the-
oretical quantities. The remaining two series are somewhat less reliable
measures for the variables of interest. The price level is represented by
the Consumer Price Index (CPI) and real income (output) is measured
by the Index of Industrial Production (IIP). Both of these measures are
apt to contain measurement error by the mere fact that they are indexes.
Sampling properties of these indexes might also cause problems, because
the individual components of each index are not measured every month.

16 See White (1958) and Anderson (1959).
17 See Plosser and Schwert (1976).
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Figure 9.3 Monetary base, seasonally adjusted, 1953-1971, billion
dollars

Plots of the raw data are presented in figures 9.3-9.7. Upon inspection
of these charts, it becomes apparent why the issue of the appropriate
level of differencing becomes difficult. In particular, the growth rates
of the monetary base, M1, and the CPI seem to be increasing steadily
throughout the time period. However, this does not appear as strikingly in
the IIP. The interest rate appears nonstationary or highly autoregressive,
