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variate ARIMA models are established with important application for
model-checking and model construction. The theory and applications
of these procedures to a variety of econometric modeling and forecast-
ing problems as well as Bayesian and non-Bayesian testing, shrinkage
estimation, and forecasting procedures are also presented and applied.
Finally, attention is focused on the effects of disaggregation on forecast-
ing precision and the new Marshallian macroeconomic model ()
that features demand, supply, and entry equations for major sectors of
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Introduction

In the early 1970s we were concerned about the relationships between
multivariate and univariate time series models, such as those brilliantly
analyzed by Quenouille (1957) and Box and Jenkins (1970) and mul-
tivariate dynamic structural econometric models that had been and are
widely employed in explanation, prediction and policy-making. Fortu-
nately, we discovered the relationships and reported them in our paper,
Zellner and Palm (1974) that is included in part I of this volume (chapter
1). See also the other general chapters in part I discussing general features
of our approach, the reactions of leading researchers, and many useful
references to the literature.

Having discovered the algebraic relations connecting statistical time
series and structural econometric models, we next considered how this
discovery might be used to produce improved models. In this connec-
tion, we thought it important not only to emphasize a philosophical
preference for sophisticatedly simple models that is discussed in sev-
eral chapters in part I and Zellner, Keuzenkamp, and McAleer (2001),
but also operational techniques that would help researchers actually pro-
duce improved models. As illustrated in the chapters included in this
volume, our approach involves (1) deducing algebraically the implied
marginal processes and transfer functions for individual variables in a
multi-equation model, e.g. a vector autoregression (VAR) or a structural
econometric model (SEM), and (2) comparing these derived equations’
forms and properties with those derived from the data by use of empir-
ical model identification and testing techniques. See Palm and Zellner
(1980), included in part I (chapter 5) for some early estimation and test-
ing procedures that have been improved over the years. If the information
in the data is compatible with the empirically determined, simple time
series models and not with those implied by a VAR or SEM, then we
conclude that the VAR or SEM needs reformulation and improvement.
See, for example our (1975) paper in part II (chapter 6) analyzing mone-
tary models of the US economy and other papers for applications of this
approach to many other problems including Trivedi (1975) on modeling

xiii
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inventory behavior (chapter 7), Evans (1978) on the German hyperin-
flation (chapter 8), Plosser (1976) on seasonality (Chapter 9), Webb
(1985) on behavior of speculative prices (chapter 10), Ahking and Miller
(1987) on exchange rate models (chapter 11), and Maravall and Mathis
(1994) on diagnosis of VAR models using French macroeconomic data
(chapter 12). These studies demonstrate well the usefulness of our
SEMTSA approach in analyzing, comparing, and improving models.

Since there is often no satisfactory model available, in part III we illus-
trate how relatively simple forecasting equations have been developed,
studied, and tested in point and turning point forecasting experiments
using modern estimation and forecasting techniques. Here the objective
is to get forecasting equations that work well in point and turning point
forecasting and have reasonable dynamic properties. Then the objective
is to produce reasonable economic models to rationalize the good empiri-
cal performance of these empirical forecasting equations. Thus we do not
in the present instance go from theory to the data but reverse the process
by going from what works well empirically to theory that explains this
unusual empirical finding. As mentioned in several chapters in part III,
the empirical forecasting equations for countries’ annual GDP growth
rates have been rationalized by Hong (1989) in terms of a Hicksian [IS-
LM macroeconomic model, by Min (1992) in terms of a generalized
real business cycle model that he formulated and by Zellner and Anton
(1986) in terms of an aggregate demand and supply model. Thus the
empirical relations studied intensively in the chapters included in part
III have some theoretical as well as empirical support. Note, too, that
many methodological tools were developed and tested in the chapters
on empirical forecasting work in part III – namely, Bayesian shrinkage
estimation and prediction, optimal turning point forecasting techniques,
optimal Bayesian model-combining or pooling methods, etc. Also, com-
parisons of forecasting root mean-squared errors (RMSEs) and mean
absolute errors (MAEs) indicate that various simple forecasting equa-
tions’ performance is competitive with that of certain large-scale macroe-
conometric models for many economies. See, for example some compar-
isons reported in Garcia-Ferrer et al. (1987) and Hoogstrate, Palm, and
Pfann (2000) (chapter 13 and 18) for some improved results that utilize
various pooling techniques in analysis and forecasting of panel data for
eighteen countries.

While the studies in part III provide useful, improved macroeconomic
results, it is the case that aggregation of output and other kinds of data,
say over sectors of an economy, can involve a loss of valuable informa-
tion, as has been discussed many times in the past. Thus part IV presents
chapters dealing with disaggregation, forecasting, and modeling. A simple
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experiment, reported in Zellner and Tobias (2000) (chapter 22) shows
empirically how disaggregation can result in improved forecasting pre-
cision in connection with forecasting the annual medians of eighteen
countries’ growth rates. In chapters 20 and 21 by LeSage and Magura
(1990) and LeSage (1990), it is shown how shrinkage point and turn-
ing point forecasting procedures perform using regional data. Then in
Zellner (2000) and in Zellner and Chen (2000) (chapters 23 and 24),
Marshallian sector models of industrial sectors are formulated, building
on the earlier work of Veloce and Zellner (1985), and tested in forecast-
ing experiments using annual data for eleven sectors of the US economy.
The annual output forecasts of the sectors are added to get a forecast
of total GDP and its growth rate year by year. Such forecasts are com-
pared with forecasts derived from models implemented with aggregate
data. In this instance, it was found that it pays to disaggregate. Further
work to improve and expand the Marshallian sector model in line with
the SEMTSA approach is described in these chapters.

In summary, pursuing the SEMTSA approach over the years has been
an exciting experience that has led to new empirical findings, improved
and novel methodological tools, and improved models. We thank all those
who have contributed to these positive developments and hope that future
developments will be even better. Also, thanks to the US National Science
Foundation and the H. G. B. Alexander Endowment Fund, University of
Chicago, for financial support. Ashwin Rattan at Cambridge University
Press, provided much help in arranging for the publication of our book,
for which we are most grateful.

 

References cited in this introduction appear in chapters in the text except for
Zellner, H. Keuzenkamp, and McAleer (2001).

Minor editorial intervention has been made to update the text of some chapters.
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Zellner, A., H. Keuzenkamp, and M. McAleer, 2001, Simplicity, Inference and
Econometric Modeling (Cambridge, Cambridge University Press)





Part I

The SEMTSA approach





1 Time series analysis and simultaneous
equation econometric models (1974)

Arnold Zellner and Franz C. Palm

1 Introduction

In this chapter we take up the analysis of dynamic simultaneous equation
models (SEMs) within the context of general linear multiple time series
processes such as studied by Quenouille (1957). As noted by Quenouille,
if a set of variables is generated by a multiple time series process, it
is often possible to solve for the processes generating individual vari-
ables, namely the “final equations” of Tinbergen (1940), and these are
in the autoregressive-moving average (ARMA) form. ARMA processes
have been studied intensively by Box and Jenkins (1970). Further, if a
general multiple time series process is appropriately specialized, we obtain
a usual dynamic SEM in structural form. By algebraic manipulations, the
associated reduced form and transfer function equation systems can be
derived. In what follows, these equation systems are presented and their
properties and uses are indicated.

It will be shown that assumptions about variables being exogenous,
about lags in structural equations of SEMs, and about serial correlation
properties of structural disturbance terms have strong implications for
the properties of transfer functions and final equations that can be tested.
Further, we show how large sample posterior odds and likelihood ratios
can be used to appraise alternative hypotheses. In agreement with Pierce
and Mason (1971), we believe that testing the implications of structural
assumptions for transfer functions and, we add, final equations is an
important element in the process of iterating in on a model that is rea-
sonably in accord with the information in a sample of data. To illustrate
these general points and to provide applications of the above methods,

Research financed in part by NSF Grant GS-2347 and by income from the H.G.B. Alexan-
der Endowment Fund, Graduate School of Business, University of Chicago. Some of the
ideas in this chapter were presented in econometrics lectures and at a session of the Econo-
metric Society’s meeting in 1971 by one of the authors. The second author received financial
support from the Belgian National Science Foundation.

Originally published in the Journal of Econometrics 2 (1974), 17–54.
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a dynamic version of a SEM due to Haavelmo (1947) is analyzed using
US post-Second World War quarterly data.

The plan of the chapter is as follows. In section 2, a general multiple
time series model is specified, its final equations are obtained, and their
properties set forth. Then the implications of assumptions needed to
specialize the multiple time series model to become a dynamic SEM
for transfer functions and final equations are presented. In section 3,
the algebraic analysis is applied to a small dynamic SEM. Quarterly US
data are employed in sections 4 and 5 to analyze the final and transfer
equations of the dynamic SEM. Section 6 provides a discussion of the
empirical results, their implications for the specification and estimation
of the structural equations of the model, and some concluding remarks.

2 General formulation and analysis of a system of
dynamic equations

As indicated by Quenouille (1957), a linear multiple time series process
can be represented as follows:1

H(L) zt = F(L) et , t = 1, 2, . . . , T,
p×p p×1 p×p p×1 (2.1)

where z′
t = (z1t , z2t , . . . , zpt) is a vector of random variables, e′

t =
(e1t , e2t , . . . , e pt) is a vector of random errors, and H(L) and F(L) are
each p × p matrices, assumed of full rank, whose elements are finite poly-
nomials in the lag operator L, defined as Lnzt = zt−n. Typical elements
of H(L) and F(L) are given by hi j = ∑ri j

l=0 hi j l Ll and fi j = ∑qi j

l=0 fi j l Ll .
Further, we assume that the error process has a zero mean, an identity
covariance matrix and no serial correlation, that is:

Eet = 0, (2.2)

for all t and t′,

Eete′
t ′ = δtt ′ I, (2.3)

where I is a unit matrix and δtt ′ is the Kronecker delta. The assumption
in (2.3) does not involve a loss of generality since correlation of errors
can be introduced through the matrix F(L).

The model in (2.1) is a multivariate autoregressive-moving average
(ARMA) process. If H(L) = H0, a matrix of degree zero in L, (2.1) is a

1 In (2.1), zt is assumed to be mean-corrected, that is zt is a deviation from a population
mean vector. Below, we relax this assumption.
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moving average (MA) process; if F(L) = F0, a matrix of degree zero in L,
it is an autoregressive (AR) process. In general, (2.1) can be expressed as:

r∑
l=0

Hl Ll zt =
q∑

l=0

Fl Ll et , (2.4)

where Hl and Fl are matrices with all elements not depending on L,
r = maxi,jri j and q = maxi,jqi j .

Since H(L) in (2.1) is assumed to have full rank, (2.1) can be solved
for zt as follows:

zt = H−1(L)F(L)et , (2.5a)

or

zt = [H∗(L)/|H(L)|]F(L)et , (2.5b)

where H∗(L) is the adjoint matrix associated with H(L) and |H(L)| is the
determinant which is a scalar, finite polynomial in L. If the process is to
be invertible, the roots of | H(L) |= 0 have to lie outside the unit circle.
Then (2.5) expresses zt as an infinite MA process that can be equivalently
expressed as the following system of finite order ARMA equations:

|H(L)|zt = H∗(L)F(L)et . (2.6)

The ith equation of (2.6) is given by:

|H(L)|zit = α′
i et , i = 1, 2, . . . , p, (2.7)

where α′
i is the ith row of H∗(L)F(L).

The following points regarding the set of final equations in (2.7) are of
interest:
(i) Each equation is in ARMA form, as pointed out by Quenouille

(1957, p. 20). Thus the ARMA processes for individual variables
are compatible with some, perhaps unknown, joint process for a set
of random variables and are thus not necessarily “naive,” “ad hoc”
alternative models.

(ii) The order and parameters of the autoregressive part of each equa-
tion, |H(L)| zit , i = 1, 2, . . . , p, will usually be the same.2

(iii) Statistical methods can be employed to investigate the form and
properties of the ARMA equations in (2.7). Given that their forms,
that is the degree of |H(L)| and the order of the moving average

2 In some cases in which |H(L)| contains factors in common with those appearing in all
elements of the vectors α′

i , e.g. when H is triangular, diagonal or block diagonal, some
cancelling will take place. In such cases the statement in (ii) has to be qualified.
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errors, have been determined, they can be estimated and used for
prediction.

(iv) The equations of (2.7) are in the form of a restricted “seemingly
unrelated” autoregressive model with correlated moving average
error processes.3

The general multiple time series model in (2.1) can be specialized
to a usual dynamic simultaneous equation model (SEM) if some prior
information about H and F is available. That is, prior information may
indicate that it is appropriate to regard some of the variables in zt as
being endogenous and the remaining variables as being exogenous, that
is, generated by an independent process. To represent this situation, we
partition (2.1) as follows:(

H11 H12

H21 H22

) (
yt
xt

)
=

(
F11 F12

F21 F22

) (
e1t

e2t

)
. (2.8)

If the p1 × 1 vector yt is endogenous and the p2 × 1 vector xt is exogenous,
this implies the following restrictions on the submatrices of H and F:

H21 ≡ 0, F21 ≡ 0, and F12 ≡ 0. (2.9)

With the assumptions in (2.9), the elements of e1t do not affect the ele-
ments of xt and the elements of e2t affect the elements of yt only through
the elements of xt. Under the hypotheses in (2.9), (2.8) is in the form
of a dynamic SEM with endogenous variable vector yt and exogenous
variable vector xt generated by an ARMA process. The usual structural
equations, from (2.8) subject to (2.9), are:4

H11(L)
p1×p1

yt
p1×1

+ H12(L)
p1×p2

xt
p2×1

= F11(L)
p1×p1

e1t
p1×1

, (2.10)

while the process generating the exogenous variables is:

H22(L)
p2×p2

xt
p2×1

= F22(L)
p2×p2

e2t
p2×1

, (2.11)

with p1 + p2 = p.

Analogous to (2.4), the system (2.10) can be expressed as:
r∑

l=0

H11l Ll yt +
r∑

l=0

H12l Ll xt =
q∑

l=0

F11l Ll e1t , (2.12)

where H11l, H12l and F11l are matrices the elements of which are coeffi-
cients of Ll. Under the assumption that H11 0 is of full rank, the reduced

3 See Nelson (1970) and Akaike (1973) for estimation results for systems similar to (2.7).
4 Hannan (1969, 1971) has analysed the identification problem for systems in the form of

(2.10).
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form equations, which express the current values of endogenous variables
as functions of the lagged endogenous and current and lagged exogenous
variables, are:

yt = −
r∑

l=1

H−1
110 H11l Ll yt −

r∑
l=0

H−1
110 H12l Ll xt

+
q∑

l=0

H−1
110 F11l Ll e1t . (2.13)

The reduced form system in (2.13) is a system of p1 stochastic difference
equations of maximal order r.

The “final form” of (2.13), Theil and Boot (1962), or “set of fun-
damental dynamic equations” associated with (2.13), Kmenta (1971),
which expresses the current values of endogenous variables as functions
of only the exogenous variables, is given by:

yt = −H−1
11 (L)H12(L)xt + H−1

11 (L)F11(L)e1t . (2.14)

If the process is invertible, i.e. if the roots of |H11(L)| = 0 lie outside
the unit circle, (2.14) is an infinite MA process in xt and e1t. Note that
(2.14) is a set of “rational distributed lag” equations, Jorgenson (1966),
or a system of “transfer function” equations, Box and Jenkins (1970).
Also, the system in (2.14) can be brought into the following form:

|H11(L)|yt = −H∗
11(L)H12(L)xt + H∗

11(L)F11(L)e1t , (2.15)

where H∗
11(L) is the adjoint matrix associated with H11(L) and |H11(L)|

is the determinant of H11(L). The equation system in (2.15), where each
endogenous variable depends only on its own lagged values and on the
exogenous variables, with or without lags, has been called the “sepa-
rated form,” Marschak (1950), “autoregressive final form,” Dhrymes
(1970), “transfer function form,” Box and Jenkins (1970), or “funda-
mental dynamic equations,” Pierce and Mason (1971).5 As in (2.7),
the p1 endogenous variables in yt have autoregressive parts with iden-
tical order and parameters, a point emphasized by Pierce and Mason
(1971).

Having presented several equation systems above, it is useful to con-
sider their possible uses and some requirements that must be met for
these uses. As noted above, the final equations in (2.7) can be used to
predict the future values of some or all variables in zt, given that the forms
of the ARMA processes for these variables have been determined and that

5 If some of the variables in xt are non-stochastic, say time trends, they will appear the final
equations of the system.
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parameters have been estimated. However, these final equations cannot
be used for control and structural analysis. On the other hand, the reduced
form equations (2.13) and transfer equations (2.15) can be employed for
both prediction and control but not generally for structural analysis except
when structural equations are in reduced form (H110 ≡ I in (2.12)) or in
final form [H11 ≡ I in (2.10)]. Note that use of reduced form and transfer
function equations implies that we have enough prior information to dis-
tinguish endogenous and exogenous variables. Further, if data on some
of the endogenous variables are unavailable, it may be impossible to use
the reduced form equations whereas it will be possible to use the transfer
equations relating to those endogenous variables for which data are avail-
able. When the structural equation system in (2.10) is available, it can be
employed for structural analysis and the associated “restricted” reduced
form or transfer equations can be employed for prediction and control.
Use of the structural system (2.10) implies not only that endogenous and
exogenous variables have been distinguished, but also that prior informa-
tion is available to identify structural parameters and that the dynamic
properties of the structural equations have been determined. Also, struc-
tural analysis of the complete system in (2.10) will usually require that
data be available on all variables.6 For the reader’s convenience, some of
these considerations are summarized in table 1.1.

Aside from the differing data requirements for use of the various equa-
tion systems considered in table 1.1, it should be appreciated that before
each of the equation systems can be employed, the form of its equations
must be ascertained. For example, in the case of the structural equation
system (2.10), not only must endogenous and exogenous variables be
distinguished, but also lag distributions, serial correlation properties of
error terms, and identifying restrictions must be specified. Since these are
often difficult requirements, it may be that some of the simpler equation
systems will often be used although their uses are more limited than those
of structural equation systems. Furthermore, even when the objective of
an analysis is to obtain a structural equation system, the other equation
systems, particularly the final equations and transfer equations, will be
found useful. That is, structural assumptions regarding lag structures,
etc. have implications for the forms and properties of final and trans-
fer equations that can be checked with data. Such checks on structural
assumptions can reveal weaknesses in them and possibly suggest alterna-
tive structural assumptions more in accord with the information in the
data. In the following sections we illustrate these points in the analysis of
a small dynamic structural equation system.

6 This requirement will not be as stringent for partial analyses and for fully recursive models.
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Table 1.1 Uses and requirements for various equation systems

Uses of equation systems

Structural Requirements for use of
Equation system Prediction Control analysis equation systems

1. Final equationsa (2.7) yes no no Forms of ARMA processes
and parameter estimates

2. Reduced form
equations (2.13)

yes yes no Endogenous–exogenous
classification of variables,
forms of equations, and
parameter estimates

3. Transfer equationsb

(2.15)
yes yes no Endogenous–exogenous

classification of variables,
forms of equations, and
parameter estimates

4. Final form equationsc

(2.14)
yes yes no Endogenous–exogenous

classification of variables,
forms of equations, and
parameter estimates

5. Structural equations
(2.10)

yes yes yes Endogenous–exogenous
variable classification,
identifying information,d

forms of equations, and
parameter estimates

Notes:
a This is Tinbergen’s (1940) term.
b These equations are also referred to as “separated form” or “autoregressive final form”
equations.
c As noted in the text, these equations are also referred to as “transfer function,” “funda-
mental dynamic,” and “rational distributed lag” equations.
d That is, information in the form of restrictions to identify structural parameters.

3 Algebraic analysis of a dynamic version of
Haavelmo’s model

Haavelmo (1947) formulated and analyzed the following static model
with annual data for the United States, 1929–41:

ct = αyt + β + ut , (3.1a)

rt = µ(ct + xt) + v + wt (3.1b)

yt = ct + xt − rt (3.1c)

where ct, yt and rt are endogenous variables, xt is exogenous, ut and wt

are disturbance terms, and α, β, µ and v are scalar parameters. The
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definitions of the variables, all on a price-deflated, per capita basis, are:
ct = personal consumption expenditures,
yt = personal disposable income,
rt = gross business saving, and
xt = gross investment.7

Equation (3.1a) is a consumption relation, (3.1b) a gross business sav-
ing equation, and (3.1c) an accounting identity.

In Chetty’s (1966, 1968) analyzes of the system (3.1) employing
Haavelmo’s annual data, he found the disturbance terms highly auto-
correlated, perhaps indicating that the static nature of the model is not
appropriate. In view of this possibility, (3.1) is made dynamic in the fol-
lowing way:

ct = α(L)yt + β + ut , (3.2a)

rt = µ(L)(ct + xt) + v + wt (3.2b)

yt = ct + xt − rt (3.2c)

In (3.2a), α(L) is a polynomial lag operator that serves to make ct a
function of current and lagged values of income. Similarly, µ(L) in (3.2b)
is a polynomial lag operator that makes rt depend on current and lagged
values of ct + xt, a variable that Haavelmo refers to as “gross disposable
income.” On substituting for rt in (3.2b) from (3.2c), the equations for
ct and yt are:

ct = α(L)yt + β + ut , (3.3a)

yt = [1 − µ(L)](ct + xt) − v − wt . (3.3b)

With respect to the disturbance terms in (3.3), we assume:(
ut

−wt

)
=

(
f11(L) f12(L)
f21(L) f22(L)

) (
e1t

e2t

)
, (3.4)

where the fi j (L) are polynomials in L, e1t and e2t have zero means, unit
variances, and are contemporaneously and serially uncorrelated.

Letting z′
t = (ct , yt , xt), the general multiple time series model for zt,

in the matrix form (2.1), is:

H(L)
3×3

zt
3×1

= θ
3×1

+ F(L)
3×3

et
3×1

, (3.5)

7 In Haavelmo’s paper, gross investment, xt, is defined equal to “government expenditures
+ transfers − all taxes + gross private capital formation,” while gross business saving,
rt, is defined equal to “depreciation and depletion charges + capital outlay charged to
current expense + income credited to other business reserves − revaluation of business
inventories + corporate savings”.
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where e′
t = (e1t , e2t , e3t) satisfies (2.2)–(2.3) and θ′ = (θ1, θ2, θ3) is a vec-

tor of constants. In explicit form, (3.5) is: h11(L) h12(L) h13(L)
h21(L) h22(L) h23(L)
h31(L) h32(L) h33(L)

  ct

yt

xt


=

 θ1

θ2

θ3

 +
 f11(L) f12(L) f13(L)

f21(L) f22(L) f23(L)
f31(L) f32(L) f33(L)

  e1t

e2t

e3t

 . (3.6)

To specialize (3.6) to represent the dynamic version of Haavelmo’s
model in (3.3) with xt exogenous, we must have θ1 = β, θ2 = v,

h11(L) ≡ 1 h12(L) ≡ −α(L) h13(L) ≡ 0
h21(L) ≡ −[1 − µ(L)] h22(L) ≡ 1 h23(L) ≡ −[1 − µ(L)]
h31(L) ≡ 0 h32(L) ≡ 0 h33(L)

(3.7a)

and

f13(L) ≡ f23(L) ≡ f31(L) ≡ f32(L) ≡ 0. (3.7b)

Utilizing the conditions in (3.7), (3.6) becomes: 1 h12(L) 0
h21(L) 1 h23(L)

0 0 h33(L)

  ct

yt

xt


=

 θ1

θ2

θ3

 +
 f11(L) f12(L) 0

f21(L) f22(L) 0
0 0 f33(L)

  e1t

e2t

e3t

 . (3.8)

Note that the process on the exogenous variable is h33(L)xt = f 33(L)e3t +
θ3 and the fact that xt is assumed exogenous requires that h31(L) ≡
h32(L) ≡ 0 and that F(L) be block diagonal as shown in (3.8).

In what follows, we shall denote the degree of hi j (L) by ri j and the
degree of fi j (L) by qi j .

From (3.8), the final equations for ct and yt are given by:

(1 − h12h21)h33ct = θ ′
1 + ( f11 − f21h12)h33e1t

+ ( f12 − f22h12)h33e2t + f33h12h23e3t (3.9)

and

(1 − h12h21)h33yt = θ ′
2 + ( f21 − f11h21)h33e1t

+ ( f22 − f12h21)h33e2t − f33h23e3t , (3.10)
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Table 1.2 Degrees of lag polynomials in final equations

Degrees of MA polynomials for errorsb

Degrees of AR
Final equation polynomialsa e1t e2t e3t

Maximum of Maximum of Maximum of
(3.9): ct r33 and r33 + q11 and r33 + q12 and r12 + r23 + q33

r12 + r21 + r33 r33 + r12 + q21 r33 + r12 + q22

(3.10): yt r33 and r33 + q21 and r33 + q22 and r23 + q33

r12 + r21 + r33 r33 + r21 + q11 r33 + r21 + q12

(3.11): xt r33 – – q33

Notes:
a ri j is the degree of hi j . Note from (3.7a), h21 ≡ h23 ≡ −[1 − µ(L)], and thus r21 = r23.
b qi j is the degree of fi j .

with h21 ≡ h23 and θ ′
1 and θ ′

2 being new constants. Note that the AR parts
of (3.9) and (3.10) have the same order and parameters. The degrees of
the lag polynomials in (3.9) and (3.10) and in the process for xt,

h33xt = f33e3t + θ3, (3.11)

are indicated in table 1.2.
As mentioned above, the AR polynomials in the final equations for

ct and yt are identical and of maximal degree equal to r 12 + r 21 + r 33,
as shown in table 1.2, where r12 = degree of α(L) in the consumption
equation, r21 is the degree of µ(L) in the business saving equation, and
r33 is the degree of h33, the AR polynomial in the process for xt. Also, if
the disturbance terms ut and wt are serially uncorrelated and if all the qi j

in table 1.2 are zero, the following results hold:
(i) In the final equation for ct, the degree of the AR part is larger than or

equal to the order of the MA process for the disturbance term; that is
r 12 + r 21 + r 33 � max(r 12 + r 23, r 33 + r 12), with equality holding if
r 33 = 0, since r 21 = r 23, or if r 21 = r 23 = 0.

(ii) In the final equation for yt, the degree of the AR polynomial is larger
than or equal to the order of the MA process for the disturbance
term; i.e., r 12 + r 21 + r 33 � r 33 + r 21 with equality holding if r 12 = 0.
Thus if the process for xt is purely AR and the structural disturbance
terms ut and wt are not serially correlated, (i) and (ii) provide useful
implications for properties of the final equations that can be checked
with data as explained below.

Further, under the assumption that the structural disturbance
terms ut and wt are serially uncorrelated, all qi j other than q33 in
table 1.2 will be equal to zero. If the process for xt is analyzed to
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determine the degree of h33, r33, and of f33, q33, this information can
be used in conjunction with the following:

(iii) In the final equation for ct, the degree of the AR polynomial will be
smaller than or equal to the order of the MA disturbance if q 33 � r 33.

(Note r 21 = r 23.) If q 33 < r 33, the degree of the AR polynomial will
be greater than the order of the MA disturbance term.

(iv) In the final equation for yt, the degree of the AR polynomial will
be greater than the order of the MA disturbance term given that
r 12 + r 33 > q 33 and r 12 > 0. They will be equal if r 12 = 0 and r 33 �
q 33 or if r12 + r33 = q33. The latter will be greater if r 12 + r 33 < q 33.

In what follows, post-Second World War quarterly data for the United
States, 1947–72, are employed to analyze the final equations for ct, yt and
xt and to check some of the implications mentioned above.

From (3.8), the dynamic structural equations of the dynamized
Haavelmo model are: 1 h12 0

h21 1 h23

 ct

yt

xt

 =
θ1

θ2

 +
 f11 f12

f21 f22

 e1t

e2t

 , (3.12a)

or (
1 h12

h21 1

) (
ct

yt

)
=

(
θ1

θ2

)
+

(
0

−h23

)
xt +

(
f11 f12

f21 f22

) (
e1t

e2t

)
.

(3.12b)

From (3.12b), the transfer equations, the analogue of (2.15) are:∣∣∣∣ 1 h12

h21 1

∣∣∣∣ (ct

yt

)
=

(
θ ′′

1
θ ′′

2

)
+

(
1 −h12

−h21 1

) (
0

−h23

)
xt

+
(

1 −h12

−h21 1

) (
f11 f12

f21 f22

) (
e1t

e2t

)
, (3.13)

or

(1 − h12h21)ct = θ ′′
1 + h12h23xt + ( f11 − f21h12)e1t

+ ( f12 − f22h12)e2t (3.14)

and

(1 − h12h21)yt = θ ′′
2 − h23xt + ( f21 − f11h21)e1t

+ ( f22 − f12h21)e2t , (3.15)

where θ ′′
1 and θ ′′

2 are constant parameters that are linear functions of θ1

and θ2.
The following properties of the transfer equations, (3.14) and (3.15)

are of interest:
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(a) The AR parts of the two transfer equations are identical. Since h12 is
of degree r12 and h21 of degree r21, the order of the autoregression in
each equation is r 12 + r 21.

(b) In (3.14) the degree of the operator h12h23 hitting xt is r 12 + r 23 =
r 12 + r 21, the same as that for the autoregressive part of the equation,
1 − h12h21.

(c) In (3.15), the degree of the lag operator, −h23, applied to xt is r 23 =
r 21, which is less than or equal to the degree of 1 − h12h21, the AR
polynomial.

(d) The lag operator acting on xt in the equation for ct, h12h33, is a mul-
tiple of that acting on xt in the equation for yt and thus the former
has degree larger than or equal to that of the latter.

(e) If the structural disturbance terms are serially uncorrelated, i.e. fi j

has degree zero in L for i, j = 1, 2, the orders of the MA error terms
in (3.14) and (3.15) are r 12 � 0 and r 21 � 0, respectively. Thus for
both equations, the order of the MA error process is less than or
equal to the order of the AR part of the equation.

By use of appropriate statistical techniques and data, the transfer equa-
tions in (3.14)–(3.15) can be analyzed to determine the degrees of lag
polynomials and to estimate parameter values. With these results in hand,
it is possible to check the points (a)–(e) relating to the transfer equations
associated with Haavelmo’s dynamic model. The results of such calcula-
tions are reported below.

4 Empirical analyzes of final equations (3.9)–(3.11)

4.1 Analyzes utilizing Box–Jenkins techniques

In this subsection, we report the results of applying [Box–Jenkins] (BJ)
identification and estimation procedures to the final equations of the
dynamized Haavelmo model. Box and Jenkins (1970, p. 175) provide the
following relations between the autocorrelation and partial autocorrela-
tion functions associated with stationary stochastic processes for a single
random variable:8

(1) For a purely AR process of order p, the autocorrelation function tails
off and the partial autocorrelation function9 has a cut-off after lag p.

(2) For a purely MA process of order q, the autocorrelation function
has a cut-off after lag q and the partial autocorrelation function tails
off.

8 See Box and Jenkins (1970, pp. 64–5) for a definition of this function.
9 Autocorrelation functions have been formerly used in econometrics, see, e.g., Wold

(1953).
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Figure 1.1 Plots of data for yt , ct , and xt , 1949–1970

(3) For a mixed ARMA process, with the order of the AR being p and
that of the MA being q, the autocorrelation function is a mixture
of exponential and damped sine waves after the first q − p lags and
the partial autocorrelation function is dominated by a mixture of
exponentials and damped sine waves after the first p − q lags.

Box and Jenkins suggest differencing a series until it is stationary and
then computing estimates of the autocorrelation and partial autocorrela-
tion functions. Using (1)–(3), it may be possible to determine or identify
the nature of the process for the differenced series as well as values of
p and q. Once the process or model and p and q have been determined,
the model’s parameters can be estimated, usually by use of a non-linear
estimation procedure.

Plots of the data for the variables of Haavelmo’s model, ct, yt, and xt, are
shown in figure 1.1.10 From this figure, it is seen that the variables appar-
ently have trends and thus are non-stationary. First or second differencing

10 The variables have been defined above. The data are seasonally adjusted quarterly, price-
deflated, per capita aggregates, expressed in dollars at an annual rate, for the US economy,
1947I–1972II, obtained from official sources cited in the appendix.
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Figure 1.2 Plots of data for ct − ct−1, yt − yt−1, and xt − xt−1, 1950–
1970

of the variables may induce stationarity. For the reader’s benefit, plots of
the first differences of the variables are presented in figure 1.2. It is clear
from the plots of the first differences that they are less subject to trend
than are the levels of the variables. However, a slight trend in the magni-
tudes of the first differences may be present if the levels are subject to a
relatively constant proportionate rate of growth. For this reason, we also
performed analyzes based on second differences.

In figure 1.3, we present the estimated autocorrelation function for the
series ct − ct−1, the first difference of consumption.11 Also indicated in
figure 1.3, is a ±2σ̂ confidence band for the autocorrelations where σ̂ is
a large sample standard error for the sample autocorrelations.12 It is seen
that all estimated autocorrelations lie within the band except for that of
lag 2. This suggests that the underlying process is not purely AR. If the
autocorrelation estimate for lag 2 is regarded as a cut-off, the results

11 The computer program employed was developed by C. R. Nelson and S. Beveridge,
Graduate School of Business, University of Chicago.

12 σ̂ 2 is an estimate of the following approximate variance of rk, the kth sample serial corre-
lation, given in Bartlett (1946). With ρv = 0 for v > q , var (rk) =̇ (1 + 2

∑q
v=1 ρ2

v )/T, for
k > q. The ±2σ̂ bounds for r k, k = 1, 2, . . . , 12, are calculated under the assumption,
ρv = 0, v > 0. For k > 12, they are calculated assuming ρv = 0, v > 12.
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Figure 1.3 Estimated autocorrelation function and estimated partial
autocorrelation function for ct − ct−1
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Figure 1.4 Estimated autocorrelation function and estimated partial
autocorrelation function for yt − yt−1

suggest that a second order MA process may be generating the first
differences of ct. The estimated partial autocorrelation function, also
shown in figure 1.3, does not appear to contradict this possibility. Estima-
tion of a second order MA model for the first differences of consumption,
led to the following results using the BJ non-linear algorithm:

ct − ct−1 = et + 0.0211et−1 + 0.278et−2 + 10.73 s 2 = 530,
(0.101) (0.101) (2.96)

(4.1)

where s2 is the residual sum of squares (RSS) divided by the number
of degrees of freedom and the figures in parentheses are large sample
standard errors.

For income, yt, a plot of the first differences is given in figure 1.2. From
the plot of the estimated autocorrelations for the first differences in figure
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Figure 1.5 Vertical areas of figures 1.3–1.5 for xt − xt−1: on the right:
φ̂k̂k̂, on the left: rl

1.4, it appears that none of the autocorrelations is significantly different
from zero, a finding that leads to the presumption that the underlying
model is not AR. Estimates of the partial autocorrelations for lag 4 and
lag 10 lie close to the limits of the ±2σ̂ band – see figure 1.4. Other
partial autocorrelations appear not to differ significantly from zero. If all
autocorrelations and partial autocorrelations are deemed not significantly
different from zero, then the conclusion would be that the first differences
of income are generated by a random walk model which was estimated
with the following results:

yt − yt−1 = et + 10.03 s 2 = 842.
(8.336) (4.2)

For the first differences of investment, xt − xt−1 – see the plot in
figure 1.2 – the estimated autocorrelation and partial autocorrelation
functions are given in figure 1.5. The autocorrelations alternate in sign
and show some significant values for lags less than or equal to 5 which
suggests an AR model. The partial autocorrelation function has a cut-off
at lag 4, supporting the presumption that the model is AR and indicat-
ing a fourth order AR scheme. Also, the partial autocorrelation function
for the second differences has a cut-off at lag 3 while the autocorrelations
alternate in sign for lags less than 11, findings which support those derived
from analysis of first differences. In view of these findings, a fourth order
AR model has been fitted with the data:

(1 + 0.263L − 0.0456L2 + 0.0148L3 + 0.376L4)(xt − xt−1)
(0.0942) (0.0976) (0.0970) (0.0933)

= et + 7.738 s 2 = 939. (4.3)
(3.265)
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In contrast to the processes for the first differences of ct and yt in (4.1)
and (4.2), that for the first differences of investment, xt, in (4.3) has an
AR part. Thus the requirement of the structural form that all endogenous
variables have identical AR parts of order equal to or greater than that
for xt – see (3.9)–(3.10) above – is not satisfied given the results in (4.1)–
(4.3). Using the notation of table 1.2 with hi j of degree ri j regarded as
an element of H(L)/(1 − L), the degree of the AR polynomial in (4.31)
is r 33 = 4 while that of the error process is q 33 = 0. In the case where no
cancelling occurs in (4.1)–(4.2), it is clear that the conditions (3.9) and
(3.10) of table 1.2 can not be met. Even if h23 in (3.8) satisfies h23 ≡ 0
so that ct and yt are generated independently of xt, the conditions on
the final equations are not met by the results for the final equations in
(4.1)–(4.3).13 Thus while (4.1)–(4.3) appear to be consistent with the
information in the data, they are not compatible with the dynamized
Haavelmo model specified in section 3, (3.2a)–(3.2c).

At this point, the following are considerations that deserve attention:
(1) Although the fits of the models in (4.1)–(4.3) are fairly good, it may

be that schemes somewhat more complicated than (4.1)–(4.3) are
equally well or better supported by the information in the data and
are compatible with the implications of the Haavelmo model. This
possibility is explored below.

(2) To compare and test alternative final equations for each variable, it
would be desirable to have inference methods that are less “judgmen-
tal” and more systematically formal than are the BJ methods. In the
next subsection, we indicate how likelihood ratios and posterior odds
ratios can be used for discriminating among alternative final equation
models.

(3) It must be recognized that there are some limitations on the class of
AR models that can be transformed to a stationary process through
differencing. That is, only those AR models whose roots lie on the
boundary or inside the unit circle can be transformed to stationary
models by differencing. Other transformations, say logarithmic, have
to be used for models with roots outside the unit circle.

(4) Differencing series may amplify the effects of measurement errors
present in the original data and seriously affect estimates of the
autocorrelation and partial autocorrelation functions. Of course, this
problem arises not only in the BJ approach but also in any analysis of
ARMA processes, particularly those of high order.

13 If h23 ≡ 0, then (4.1)–(4.2) imply r 12 + r 21 = 1; r 12 + q 21, q 11, q 12, r 12 + q 22 � 2
(with at least one equality); and r 21 + q 11, q 21, r 21 + q 12, q 22 � 0. These condi-
tions imply q 11 = q 12 = q 21 = q 22 = r 21 = 0, r 21 = 1, and r 21 = 2 which cannot hold
simultaneously.
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4.2 Analyzes of final equations utilizing likelihood ratios and
posterior odds

The purpose of this section is to provide additional procedures for iden-
tifying or determining the forms of final equations. These procedures
involve use of likelihood ratios and Bayesian posterior odds. After show-
ing how to obtain likelihood ratios and posterior odds, some of the results
are applied in the analysis of Haavelmo’s model.

Consider the following ARMA model for a single random variable zt,

φ(L)zt = θ(L)εt , t = 1, 2, . . . , T, (4.4)

where φ(L) and θ(L) are polynomials in L of degree p and q, respectively.
Assume that the εt’s are normally and independently distributed, each
with zero mean and common variance, σ 2. Let ut ≡ θ(L)εt. Then given
the “starting values” for εt and zt, ε0 and z0, the vector u′ = (u1, u2

′ . . . . ,
uT) has a T-dimensional multivariate normal distribution with zero mean
vector and covariance matrix Σ , that is:

p(u|φ, θ, σ2, z0, ε0) = (2Π)−T/2 exp |Σ |− 1
2
{− 1

2 u′Σ−1u
}

, (4.5)

where φ′ = (φ1, φ2, . . . , φp) and θ′ = (θ1, θ2, . . . , θ q). The matrix Σ is a
T × T positive definite symmetric matrix with elements given by:

σt,t−k = σ 2

(
1 +

q∑
i=1

θ2
i

)
, for k = 0,

σt,t−k = σ 2

(
−θk +

q∑
i=k+1

θi−kθi

)
, for 0 < k � q , (4.6)

σt,t−k = 0, for k > q .

Also, the joint probability density function (pdf) for the εts, given by

εt = zt − φ1zt−1 − · · · − φpzt−p + θ1εt−1 + · · · + θq εt−q ,

t = 1, 2, . . . , T, (4.7)

is:

p(ε|φ, θ, σ2, ε0, z0) = (2Πσ 2)−T/2 exp

{
− 1

2σ 2

T∑
t=1

ε2
t

}
. (4.8)
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Since the Jacobian of the transformation from the εts to the zts is equal
to one, the joint pdf for the zts, the likelihood function, is:

p(z|φ, θ, σ2, ε0, z0) = (2Πσ 2)−T/2 exp

{
− 1

2σ 2

T∑
t=1

(zt − φ1zt−1

− · · · − φpzt−p + θ1εt−1 + θ2εt−2

+ · · · + θq εt−q )2

}
. (4.9)

In this context, (4.9) is convenient since Marquardt’s non-linear compu-
tational algorithm can be applied to obtain maximum likelihood (ML)
estimates.

If we have an alternative ARMA model,

φa(L)zt = θa(L)εat , t = 1, 2, . . . , T, (4.10)

where φa(L) is of degree pa, θa(L) of degree qa and the error process εat

is NID(0, σ 2
a ), then the likelihood ratio, λ, for (4.4) and (4.10) is

λ = (max l(φ, θ, σ|z))/(max l(φa, θa, σa|z)),
φ,θ,σ φa ,θa ,σa

(4.11)

where l(φ, θ, σ |z) denotes (4.9) viewed as a function of its parameters and
similarly for l(φa, θa, σa|z). The ratio of maximized likelihood functions
in (4.11) reduces to:

λ = (
σ̂ 2

a

/
σ̂ 2)T/2

, (4.12)

where

σ̂ 2 = 1
T

T∑
t=1

(zt − φ̂1zt−1 − · · · − φ̂ pzt−p + θ̂1ε̂t−1 + · · · + θ̂q ε̂t−q )2

(4.13a)

and

σ̂ 2
a = 1

T

T∑
t=1

(zt − φ̂1azt−1 − · · · − φ̂ paazt−pa + θ̂1a ε̂a,t−1 + · · ·

+θ̂qaa ε̂a,t−qa )
2 (4.13b)

are the ML estimates for σ 2 and σ 2
a .

If model (4.10) is nested in model (4.4), i.e. pa � p and/or q a � q ,
with at least one strict inequality, and under the assumption that (4.10)
is the true model, 2lnλ is approximately distributed as χ2

r with r being
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the number of restrictions imposed on (4.4) to obtain (4.10); that is,
r = p + q − (pa + q a) – see Silvey (1970, pp. 112–13). In choosing a
significance level for this test, it is very important, as usual, to consider
errors of the first and second kind. Rejecting the nested model when it
is “true” appears to us to be a less serious error than failing to reject it
when the broader model is “true”. That is, using the restricted model
when the restrictions are not “true” may lead to serious errors. Use of
the broader model, when the restricted model is “true,” involves carrying
along some extra parameters which may not be as serious a problem
as giving these parameters incorrect values. This argues against using
extremely low significance levels, e.g. α = 0.01 or α = 0.001. Also, these
considerations rationalize somewhat the usual practice of some degree of
over-fitting when the model form is somewhat uncertain. More systematic
analysis and study of this problem would be desirable.

In order to compare (4.4) and (4.10) in a Bayesian context, we have
to specify a prior distribution on the parameter space. In the problem
of comparing nested models, this prior distribution has a mixed form
with weights whose ratio is the prior odds on alternative models – see,
e.g., Jeffreys (1961, p. 250), Zellner (1971, pp. 297ff.), and Palm (1972).
Formally, the posterior odds ratio relating to (4.4) and (4.10) is given by:

K1a = Π

Πa

∫
p(φ, θ, σ)l(φ, θ, σ|z) dφ dθ dσ∫

p(φa, θa, σa)l(φa, θa, σa|z) dφa dθa dσa
, (4.14)

where K1a is the posterior odds ratio, Π/Πa is the prior odds ratio, and
p(φ, θ, σ ) and p(φa, θa, σ a) are the prior pdfs for the parameters. Before
(4.14) can be made operational, it is necessary to formulate the prior pdfs
and to evaluate the integrals, either exactly or approximately.14

We now compute likelihood ratios to compare alternative formulations
of the final equations of Haavelmo’s model. The information in table 1.2
and empirical results in the literature on quarterly consumption relations
suggest higher order AR and MA schemes than those fitted in section
4.1. For example, a fourth order AR model for the second differences of

14 Note however, as pointed out by Lindley (1961), the likelihood functions in the numer-
ator and denominator of (4.14) can be expanded about ML estimates. If just the first
terms of these expansions are retained, namely l(φ̂, θ̂, σ̂|z) and l(φ̂a, θ̂a, σ̂a|z), and if
the prior pdfs are proper, (4.14) is approximated by:

K1a =̇ [Π/Πa[l(φ̂, θ̂, σ̂|z)/ l(φ̂a, θ̂a, σ̂a|z)],

i.e. a prior odds ratio, Π/Πa, times the usual likelihood ratio. As Lindley points out,
additional terms in the expansions can be retained and the resulting expression will
involve some prior moments of parameters. Thus on assigning a value to Π/Πa, the
prior odds ratio, the usual likelihood ratio is transformed into an approximate posterior
odds ratio for whatever non-dogmatic, proper prior pdfs employed.
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consumption with third order MA error terms is a scheme tentatively sug-
gested by considerations presented in section 4.1. This scheme has been
fitted with both the consumption and income data with results shown for
ct and yt in tables 1.3 and 1.4 and those for xt in table 1.5 with figures in
parentheses being large sample standard errors. Also shown in table 1.3
are the results for the simple schemes of section 4.1 and results for several
other specifications. It should be noted that use of the broader schemes
for ct and yt results in decreases in the value of the residual sum of squares
divided by degrees of freedom of about 8–12 percent. However, it must
be noted that the large sample standard errors associated with the point
estimates are rather large in a number of instances.

To put the comparison of alternative schemes on a more formal basis,
likelihood ratios have been computed and are reported in table 1.6. Using
these ratios as a basis for large sample χ2 tests, it is found that it is
possible to reject the simpler versions at reasonable significance levels.
The results of the tests indicate that it is reasonable to retain the model
(5, 1, 4) for consumption and income and (4, 1, 0) for investment. Given
that these models are tentatively accepted, it is the case that the AR
and MA polynomials for the consumption and income processes have
identical degrees. However, the point estimates of the AR parameters
of consumption and income processes are not very similar, a finding
that must be tempered by the fact that standard errors associated with
coefficient estimates are rather large, particularly for the AR parameters of
the income process. It would be very desirable to develop joint estimation
techniques for the two equations in order to increase the precision of
estimation and joint test procedures for testing the hypothesis that the
AR parameters are the same for the two processes.

What are the implications of retaining (5, 1, 4) models for ct and yt and
a (4, 1, 0) model for xt? As noted above, the empirical finding that first
differencing appears adequate to induce stationarity for all three variables
suggests that the model can be expressed in first difference form. That
is, we rewrite (3.5) as follows:

H(L)(1 − L)zt = θ + F(L)et , (4.15)

where H(L) has elements that are the elements of H(L) divided by 1 − L.
With the polynomials hi j (L) of degree ri j considered elements of H(L)
rather than H(L) and if no cancelling occurs in (4.15), then under the
restrictions imposed on the Haavelmo model in the preceding section
(see table 1.2), we have r 33 = 4; q 33 = 0; r 12 + r 21 + r 33 = 5;

r33 + q11, r33 + r12 + q21, r33 + q12, r33 + r12 + q22,

r12 + r23 + q33 � 4
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Table 1.6 Results of large-sample likelihood ratio tests applied to final
equations of Haavelmo’s model

Critical points for χ r
2

Models compareda λ = L 114(X|H1)
L 114(X|H0)

2 ln λ r α = 0.05 α = 0.10 α = 0.20

1. Consumption ct

H0 : (0, 1, 2) vs. H1 : (4, 2, 3)b 573.547 – – – – –
H0 : (0, 1, 2) vs. H1 : (5, 1, 4) 2098.29 15.230 7 14.07 12.02 9.80
H0 : (5, 2, 2) vs. H1 : (4, 2, 3)b 15.871 – – – – –
H0 : (4, 2, 3) vs. H1 : (5, 1, 4) 3.654 2.592 2 5.99 4.61 3.22

2. Income yt

H0 : (0, 1, 0) vs. H1 : (0, 1, 4)c 31.697 6.912 1 3.84 2.71 1.64
H0 : (0, 1, 0) vs. H1 : (4, 1, 4) 4937.0 × 102 26.219 8 15.51 13.36 11.03
H0 : (0, 1, 0) vs. H1 : (5, 1, 4) 5236.0 × 102 26.337 9 16.92 14.68 12.24
H0 : (0, 1, 0) vs. H1 : (4, 2, 3)b 44.453 – – – – –
H0 : (4, 2, 3) vs. H1 : (5, 1, 4) 117.8 × 102 18.748 2 5.99 4.61 3.22

3. Investment xt

H0 : (4, 1, 0) vs. H1 : (5, 2, 1)b 5.678 – – – – –

Notes:
a H : (p, d, q) denotes an ARMA model for the dth difference of a variable that has AR polynomial
of degree p. and MA error polynomial of degree q.
b These are non-nested hypotheses.
c Here there are three restrictions on the parameters of the MA error process.

and

r33 + q21, r33 + r21 + q11, r33 + q22, r33 + r21 + q12,

r23 + q33 � 4,

with at least one equality holding in both cases. These restrictions imply
r 12 + r 21 = 1, all qi j = 0 and r 12 = r 21 = 0, conditions that cannot hold
simultaneously. Also, if we retain a (5, 2, 1) model for investment, we
end up with a contradiction.

If we make the assumption that the joint process for ∆ct and ∆yt is
independent of ∆xt, i.e. h23 ≡ 0 in (3.8), an assumption that may appeal
to some Quantity of Money theorists but not to most Keynesians, the
degrees of the polynomials reported in table 1.2 are reduced by r33 and we
have the following restrictions on the degrees of the AR polynomials in the
processes for ∆ct and ∆yt : r 12 + r 21 = 5; q 11, q 12, r 12 + q 21, r 12 + q 22 �
4; and q 21, q 22, r 21 + q 11, r 21 + q 12 � 4, with at least one equality hold-
ing in both cases. With further assumptions, e.g. r 12 = 2 and r 21 = 3, it
is possible to determine compatible values for the degrees of the struc-
tural equations’ lag polynomials and error term polynomials. However,
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this compatibility is attained only with the controversial assumption that
the joint process for ∆ct and ∆yt is independent of the process for
∆xt, Haavelmo’s investment variable.15 A major implication of this last
assumption is that the analysis of the transfer functions should reveal no
dependence of either ∆ct or ∆yt on ∆xt, a point that is checked in the
next section where we analyze the transfer equations (3.14)–(3.15).

An alternative way to achieve compatibility of the results of the final
equation analyzes with structural assumptions is to assume that h23(L) ≡
h33(L). This assumption implies that the investment variable influences
∆ct and ∆yt only through its disturbance term. With this assumption, h33

cancels in (3.9) and (3.10) and the empirical findings, combined with
the results in table 1.2, imply that r 33 = 4, r 23 = r 33 = 4, by assumption,
q 33 = 0, r 12 + r 21 = 5,

q11, q12, r12 + q21, r12 + q22 � 4

and

q21, q22, r21 + q11, r21 + q12 � 4,

with at least one equality in each case. Further, the autoregressive parts
of the final equations for ct and yt are identical to the autoregressive
parts in their transfer equations. These implications of the assumption,
h23(L) ≡ h33(L), and of final equation findings for the forms of the trans-
fer equations will be checked in the next section.

5 Empirical analyses of transfer equations (3.14)–(3.15)

We now turn to an analysis of the transfer functions, shown in (3.14)–
(3.15), associated with the dynamized Haavelmo model. These equations
express ct and yt as functions of their own lagged values, of current and
lagged values of xt, and of current and lagged error terms. The first step in
the analysis of the transfer functions is the determination or identification
of the degrees of the lag polynomials. In general, a transfer function can
be written as an infinite moving average process in exogenous variables
plus an error term, ut, with zero mean, that is,

yt = v(L)xt + ut , (5.1)

where v(L) = ∑∞
i=0 vi Li . Often this infinite process can be well approx-

imated by a finite distributed lag model of order k, that is v(L) =
15 In terms of (3.8), this assumption implies that h23(L) ≡ 0. With this assumption,

the structural equations are, from (3.3): ∆ct = α(L)∆yt + β + ut and ∆yt = [1 −
µ(L)]∆ct − v − wt. That is, current and lagged values of yt affect consumption and
current and lagged consumption affect income.
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i=0 vi Li . Solving the Yule–Walker equations for a kth order approxi-

mation, we obtain

Eyt xt−τ = v0 Ext xt−τ + v1 Ext−1xt−τ + · · · + vkExt−kxt−τ , (5.2)

τ = 0, 1, 2, . . . , k.

Rough estimates of the vis can be obtained by replacing the expectations
in (5.2) by corresponding sample moments and solving for the vis. This is
equivalent to regressing yt on current and lagged values of xt. Note, too,
that v(L) can be written as the ratio of two lag polynomials of degrees
s and r, ωs(L) and θ r(L), as follows:

v(L) = [ωs (L)/θr (L)]Lb, (5.3)

with b some non-negative integer. Introduction of b �= 0 allows for some
“dead time” in the response pattern of yt to xt. Using (5.3) and the prelim-
inary estimates of the vis, obtained as described above, preliminary esti-
mates of the parameters ωs(L), ωjs, j = 0, 1, 2, . . . , s , and of θ r(L), θ is,
i = 1, 2, . . . , r , can be found. As Box and Jenkins (1970, p. 378) point
out, the vjs, the impulse response weights, consist of:
(1) b zero values, v0, v1, . . . , vb−1,
(2) a further s − r + 1 values, vb, . . . , vb+s−r, following no fixed pattern

(if s < r, no such values occur), and
(3) values vj, with j � b + s − r + 1, following a pattern given by an rth

order difference equation with starting values vb+s . . . vb+s−r+1.
Properties (1)–(3) can help to determine the values of b, s, and r from
the preliminary estimates of the vs. Then the residuals ût = yt − v̂(L)xt

are analyzed to determine the degrees of the AR and MA parts of the
error process using estimated autocorrelation and partial autocorrelation
functions. Final estimation of the transfer function so determined can
be accomplished in the BJ approach by use of Marquardt’s non-linear
algorithm.

It is important to observe that the results of final equation analyses
can be employed to obtain some information about the degrees of trans-
fer functions’ lag polynomials. In fact, if assumptions regarding struc-
tural equations’ forms are in accord with information in the data, there
should be compatibility between the final equations’ and transfer equa-
tions’ forms that we determine from the data.16 That is, final equation
analysis led us to (5, 1, 4) processes for ct and yt and to a (4, 1, 0)
process for xt, namely, φ(4)(L)∆xt = et, or∆xt = φ−1

(4) (L)et. If we differ-
ence the transfer functions in (3.14) and (3.15) and then substitute

16 Here we abstract from the possibility that h23(L) ≡ 0 since in this case transfer functions
show no dependence on xt, a point that is checked below.
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∆xt = φ−1
(4) (L)et, we obtain the final equations for ct and yt. To obtain

compatibility with the empirically determined (5, 1, 4) final equations for
ct and yt, the transfer functions must have polynomials hitting ∆xt with
degree s � 3 in the numerator and degree r = 0 in the denominator. In
addition, the ratio of lag polynomials operating on the transfer functions’
error terms should have a numerator of degree zero and denominator of
degree one.

Under the assumption h23(L) ≡ h33(L), introduced tentatively in the
previous section, the final equation analyzes yield the following implica-
tions for the transfer functions’ lag structures in (3.14)–(3.15):
(1) The AR parts of both transfer functions are identical with the AR

parts of the final equations and are of degree r 12 + r 21 = 5.
(2) The polynomial, h23, hitting ∆xt in the transfer function for income,

is identical with the AR part of the final equation for xt and has degree
r 23 = r 33 = 4.

(3) The polynomial operating on ∆xt in the consumption transfer func-
tion has degree of at least 4.

(4) The order of the moving average error process in each transfer equa-
tion is equal to 4.

We shall check points (1)–(4) in the empirical analyzes that follow. In
this connection, it is the case that there is no assurance that the informa-
tion in the data will be in accord with compatible findings for the final
equations and transfer functions of the Haavelmo model since model
specification errors, measurement errors, imperfect seasonal adjustment,
etc. can affect analyzes to produce incompatible results.

To determine the degrees of the lag polynomials in (3.14)–(3.15) and
to get starting values for the vs, different values for k were employed in
connection with (5.1)–(5.2) that provided preliminary estimates of the vs.
For k = 8 and the first difference of ct, the vis with i = 0, 1 and 6 appear
to be significantly different from zero and the behavior of the estimated
vis is very irregular. The fact that v0 is significantly different from zero
implies that b = 0. With respect to determining values for r and s, the
degrees of the polynomials in (5.3), the results are not very precise. The
values indicated by our final equation analysis are used and starting val-
ues for the ωis are based on the estimates of the vis for alternative values
of s and r. Further, the analysis of the residuals from an eighth order
distributed lag model for the first difference of ct suggests a mixed first
order AR and second order MA error process. However, it is thought that
this determination of the transfer function’s properties is very tentative
and thus it was thought worthwhile to proceed to estimate transfer func-
tions in forms suggested by our final equation analyzes. Some estimation
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results for these forms are shown in (5.4)–(5.5): with s = 3,

∆ct = (− 0.129 + 0.188L + 0.0875L2 − 0.037L3)∆xt
(0.0689) (0.0704) (0.070) (0.068)

+ et/(1 + 0.0208L) + 10.41, (5.4)
(0.105) (2.297)

with residual sum of squares (RSS) equal to 41,617, and with s = 2,

∆ct = (− 0.149 + 0.172L + 0.0830L2)∆xt
(0.0685) (0.0709) (0.0677)

+ et/(1 − 0.0047L) + 10.03,
(0.105) (2.34) (5.5)

with RSS = 43,226.
Under the assumption h23(L) ≡ h33(L), an estimate of the transfer

function form suggested by the final equation analysis is:

∆ct = −
0.0349 + 0.171L + 0.264L2

(0.068) (0.106) (0.102)

1 + 0.575L − 0.187L2

(0.289) (0.480)

∆xt

+
1 − 0.550L − 0.559L2

(0.388) (0.465)

1 − 0.484L − 0.695L2 +0.288L3

(0.327) (0.431) (0.200)

et + 10.55,
(8.573) (5.6)

with RSS = 30,945.
With respect to the first differences of yt, with k = 8, implementation

of (5.1)–(5.2) resulted in just v0 being significantly different from zero,
suggesting that b = 0. The estimated vis appear to follow a damped wave-
like pattern. The difference between the values of r and s is thus thought to
be small but this inference is very uncertain. In view of this, the values of
s and r implied by the final equation analysis, s � 3 and r = 0 have been
employed along with a ratio of polynomials for the error process with
numerator of degree 0 and denominator of degree 1. Some estimates
reflecting these considerations follow.

For s = 3,

∆yt = (0.385 + 0.139L + 0.0938L2 − 0.124L3)∆xt
(0.066) (0.0675) (0.067) (0.0658)

+ et

(1 + 0.055L)
+ 10.83

(2.15)
,

(0.105) (5.7)
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with RSS = 38,908, and for s = 2,

∆yt = (0.355 + 0.121L + 0.117L2)∆xt
(0.067) (0.0696) (0.066)

+ et/(1 + 0.0077L) + 10.01,
(0.103) (2.301) (5.8)

with RSS = 41,547.
Under the assumption that h23(L) ≡ h33(L), the transfer function for

income suggested by the final equation analyzes has been estimated with
the following results:

∆yt =
0.417 + 0.063L + 0.068L2

(0.075) (0.165) (0.163)

1 − 0.0628L − 0.111L2 + 0.389L3

(0.316) (0.325) (0.172)

∆xt

+
1 + 0.517L

(0.315)

1 + 0.551L − 0.147L2

(0.303) (0.114)

et + 11.02
(2.396) , (5.9)

with RSS = 36,462.
The estimates reported in (5.4)–(5.9) are in accord with the implica-

tions of final equation analyzes for the forms of the transfer functions.
Further, we see that for (5.4)–(5.5) and (5.7)–(5.8), the AR polynomials
for ∆ct and ∆yt are almost identical, a requirement that the transfer func-
tions must satisfy given that the variables are generated by a joint process
with xt exogenous. Further, from (3.14), (a) the AR part of the transfer
function for ∆ct should be identical, up to degree 1, to that operating on
∆xt in the same equation if the Haavelmo model is adequate, and (b) the
lag operator acting on ∆xt in the equation for ∆ct should be a multiple of
that for ∆xt in the income equation. The first of these requirements is not
satisfied by the results in (5.4)–(5.5) since the polynomials acting on ∆ct

and ∆xt have differing degrees. However, the requirements (a) and (b)
are satisfied, as far as the degrees are concerned, for (5.6) and (5.9).17

Last, as mentioned above, one way to have the empirically determined
final equations compatible with the dynamized Haavelmo model in (3.8)
is to assume h23 ≡ 0, i.e. that the process for ∆xt is independent of the
joint process for ∆ct and ∆yt. This implies no dependence of ∆ct and of
∆yt on ∆xt in the transfer equations. The dependence that has been found

17 This suggests that the restriction h21 ≡ h23, originally imposed, is probably not in accord
with the information in the data.
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above might be interpreted as due to specification errors (e.g. xt might not
be exogenous) or to other complicating factors (e.g. measurement errors,
poor seasonal adjustment, etc.). On the other hand, it may be that the
alternative assumption h23 ≡ h33 is more in accord with the information
in the data. Note the substantial reduction in RSS associated with (5.6)
and (5.9) relative to the RSS for other models.

To explore this last point more systematically, some alternative trans-
fer function models, formulated without taking into account results of
final equation analyzes, have been estimated, with results shown in tables
1.7 and 1.8. For comparison, results with models implied by the final
equation analyzes are also presented. A quick look at the residual sum
of squares (RSS) indicates that for consumption, alternative model M5

yields about a 12 percent reduction in RSS relative to M1 while M7 yields
about a 20 percent reduction. For income, M5 yields about a 3 percent
reduction in RSS relative to M1 while M7 provides the lowest RSS, about
6 percent lower than for M1.

For nested models, a large sample likelihood ratio test procedure has
been employed to compare alternative formulations, with results reported
in table 1.9. For consumption, M2 is preferred to M1 at the 5 percent
level. However, pairwise comparisons of M2 against M4, M5 and M6 favor
the latter relative to M2. However, in comparisons with M7, both M2 and
M4 are rejected. Thus the results of the likelihood ratio tests favor M7,
a model that is compatible with the results of the final equation analysis
under the assumption h23(L) ≡ h33(L). The results for income transfer
functions, shown in the bottom of table 1.9, indicate that M2 is rejected
in favor of M1 while M4 performs better than M3 or M6. Compared with
M7, models M2, M4 and M6 are rejected at the 5 percent significance
level, it appears that M7 is not significantly different from M5. The results
of these comparisons suggest that it is reasonable to accept tentatively,
models M1, M5 or M7 as being in accord with the information in the
data. If we retain models M7 for consumption and M7 for income,18

18 Other possibilities, e.g. M7 for ∆ct and M1 for ∆yt or M7 for ∆ct and M5 for ∆yt, lead to
incompatibilities with the requirements that the final and transfer equations must satisfy.
In the first case, M7 for ∆ct and M1 for ∆yt, the AR parts of the transfer functions are not
identical as required in (3.14)–(3.15) and even possible cancelling will not be sufficient to
satisfy the condition on the polynomials hitting ∆xt in (3.14)–(3.15). If we retain M7 for
∆ct and M5 for ∆yt, their autoregressive parts have the same order, r 12 + r 21 = 5, and the
degrees of the polynomials for ∆xt are, respectively, r 12 + r 23 = 5 and r 23 = 3, implying
r 21 = 2. However, the assumption h21(L) ≡ h23(L), implying r 21 = r 23, is no longer
satisfied. In addition, there is incompatibility with the analysis of the final equations
requiring r 23 = 4.
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Table 1.9 Results of large-sample likelihood ratio tests applied to transfer
functions of Haavelmo’s model

Critical points for χ2
r

Models compared λ = L(y|H1)
L(y|H0)

2 1n λ r α = 0.05 α = 0.10 α = 0.20

1. Consumption
(1) H0 : M2 H1 : M1 6.66 3.79 1 3.84 2.71 1.64
(2) H0 : M1 H1 : M5 702.27 13.11 5 11.07 9.24 7.29
(3) H0 : M2 H1 : M4 678.89 13.04 5 11.07 9.24 7.29
(4) H0 : M2 H1 : M5 4679.79 16.90 6 12.59 10.64 8.56
(5) H0 : M2 H1 : M6 992.41 13.80 5 11.07 9.24 7.29
(6) H0 : M3 H1 : M5 126.11 9.67 5 11.07 9.24 7.29
(7) H0 : M4 H1 : M5 6.893 3.86 5 11.07 9.24 7.29
(8) H0 : M2 H1 : M7 3.5×105 25.56 5 11.07 9.24 7.29
(9) H0 : M4 H1 : M7 5.02×102 12.44 1 3.84 2.71 1.64

2. Income
(1) H0 : M2 H1 : M1 26.609 6.563 1 3.84 2.71 1.64
(2) H0 : M4 H1 : M3 1.999 1.385 1 3.84 2.71 1.64
(3) H0 : M4 H1 : M6 2.935 2.153 3 7.81 6.25 4.64
(4) H0 : M2 H1 : M7 683.83 13.06 5 11.07 9.24 7.29
(5) H0 : M4 H1 : M7 9,065 18.22 5 11.07 9.24 7.29
(6) H0 : M6 H1 : M7 3,088 16.07 2 5.99 4.61 3.22
(7) H0 : M5 H1 : M7 5.86 3.54 1 3.84 2.71 1.64

we have r 12 + r 21 = 5 for the order of the AR polynomials acting on ∆ct

and ∆yt, the degrees of the polynomials operating on ∆xt are of degrees,
5 and 4, respectively, and the error processes are each of order 4. Under
the assumption that h23(L) ≡ h33(L), these results are in accord with the
requirements that the final equations must satisfy (see table 1.2).

6 Summary of results and implications for structural
equations

In table 1.10, we present the preferred final equation and transfer func-
tion models for the dynamized Haavelmo model. From the information
provided in table 1.10, the following are the implied restrictions on the
lag structures appearing in the structural equations of the model where
the ri j s refer to the degrees of elements of H(L), the matrix H(L) divided
by (1 − L):
1. r 12 = 1; r 33 = r 23 = r 21 = 4; q 11 = q 12 = 0; and q 21, q 22 � 3, with at

least one equality holding.
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Table 1.10 Final equation and transfer function models for dynamized
Haavelmo modela

Systems of Order of Degree of lag Order of MA
equations Model AR part polynomial for ∆xt error process

1. Final equations
∆ct (5, 1, 4)b r 12 + r 21 = 5 − q 11, q 12, r 12 + q 21,

r 12 + q 22 � 4
(at least one equality
holding)

∆yt (5, 1, 4)b r 12 + r 21 = 5 − q 21, q 22, r 21 + q 11,
r 21 + q 12 � 4
(at least one equality
holding)

∆xt (4, 1, 0)b r 33 = 4 − q 33 = 0

2. Transfer functions
∆ct M7

c r 12 + r 21 = 5 r 12 + r 23 = 5 q 11, q 12, r 12 + q 21,
r 12 + q 22 � 4
(at least one equality)

∆yt M7
c r 12 + r 21 = 5 r 23 = 4 q 21, q 22, q 11 + r 21,

q 12 + r 21 � 4
(at least one equality)

Notes:
a It is assumed that h23 ≡ h33.
b See tables 1.3–1.5 where estimated models are presented.
c See table 1.8 where estimated models are presented.

2. The transfer functions show a dependence of ∆ct and of ∆yt on ∆xt.
Under the assumption that h23 ≡ h33, the final equations and transfer
functions selected by the likelihood ratio tests are compatible insofar
as the degrees of the relevant lag polynomials are considered.

3. Explicitly, a structural representation compatible with the results of
the final equation and transfer function analyses is:

 1 −α(1) 0
µ

(4)
1 − 1 1 µ

(4)
2 − 1

0 0 µ
(4)
2 − 1

 (1 − L)

 ct

yt

xt

 (6.1)

=
 θ1

θ2

θ3

 +

 f (0)
11 f (0)

12 0

f (≤3)
21 f (≤3)

22 0
0 0 f (0)

33


 e1t

e2t

e3t

 ,

where the superscripts in parentheses denote the degrees of lag polyno-
mials that were determined from the final equation and transfer function
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analyzes. Note that these polynomials are equal to the polynomials of
the matrix H(L) in (3.8) divided by a common factor 1 − L. The factor
1 − L hitting the variables ct, yt and xt puts them in first difference form,
a transformation that appears adequate to induce stationarity in all three
variables, a condition required for the correlogram analysis of the vari-
ables. That the same differencing transformation induces stationarity in
all variables is not necessary for all models but is an empirical finding
in the present case. Also, to achieve compatibility, it is necessary that
h11(L) ≡ h22(L) ≡ 1, a special case of what was assumed in (3.7a). Last,
it should be noted that µ

(4)
1 (L) and µ

(4)
2 (L) are not necessarily identical.

The system in (6.1) can alternatively be expressed in the form of (3.2a)–
(3.2c) as follows: 1 0 −α(1) 0

−µ
(4)
1 1 0 −µ

(4)
2

−1 1 1 −1

 (1 − L)


ct

rt

yt

xt

 =
β

ν

0

 +
ut

wt

0

 ,

(6.2)

with ut a serially uncorrelated disturbance term and wt following a third
order moving average process. Further, ut and wt will generally be corre-
lated.

Using the identity, ∆yt = ∆ct + ∆xt − ∆r t, we can eliminate ∆rt from
(6.2) to obtain:

∆ct = α0∆yt + α1∆yt−1 + β + ut , (6.3a)

and

∆yt = (
1 − µ

(4)
1

)
∆ct + (

1 − µ
(4)
2

)
∆xt − ν − wt ,

=
4∑

i=0

γi∆ct−i − ν + w ′
t , (6.3b)

where α(1) ≡ α0 + α1L, 1 − µ
(4)
1 ≡ ∑4

i=0 γi Li , and −(1 − µ
(4)
2 )∆xt =

f (0)
33 e3t have been used and w ′

t ≡ −(wt + f (0)
33 e3t). The two-equation sys-

tem in (6.3) is a simultaneous equation model with dynamic lags and
contemporaneously correlated disturbance terms, ut and w ′

t , the former
non-autocorrelated and the latter following a third order MA process.
We can estimate the parameters of (6.3) employing “single equation” or
“joint” estimation techniques as explained briefly below.19

19 These estimation procedures will be treated more fully in future work. A . . . paper by
Byron (1973) treats some of these problems from the likelihood point of view. Also, it
will be noted that non-unique estimates for certain parameters are available from the
final equation and transfer function analyzes. In certain instances, these latter estimates



Time series analysis 39

For single-equation estimation of (6.3a), we consider it in conjunction
with the final equation20 for yt, namely a (5, 1, 4) ARMA process that we
write as:

∆yt =
5∑

i=1

δi∆yt−i + φ1 +
4∑

i=0

λ1i a1t−i , (6.4)

where a1t is a non-autocorrelated error with zero mean and constant finite
variance. The parameters of (6.4) have already been estimated above. We
now substitute for ∆yt in (6.3a) from (6.4) to obtain

∆ct = α0∆̃yt + α1∆yt−1 + β ′ + v1t , (6.5)

where ∆̃yt ≡ ∑5
i=1 δi∆yt−i , β ′ ≡ φ1(α0 + α1) and v1t ≡ w ′

t +
α0

∑4
i=0 λ1i a1t−i a fourth order MA process. Given consistent esti-

mates of the δis in ∆̃yt, we can calculate consistent estimates of α0, α1, β

and parameters of the MA process for v1t. The results of this approach
are presented and discussed below.

With respect to single-equation estimation of (6.3b), we consider it
in conjunction with the (5, 1, 4) ARMA final equation for ct that was
estimated above and is expressed as:

∆ct =
5∑

i=1

ηi∆ct−i + φ2 +
4∑

i=0

λ2i a2t−i , (6.6)

where a2t is a non-autocorrelated error with zero mean and constant finite
variance. Then on substituting for ∆ct in the second line of (6.3b) from
(6.6), we have:

∆yt = γ0∆̃ct +
4∑

i=1

γi∆ct−i + ν ′ + v2t , (6.7)

where ∆̃ct ≡ ∑5
i=1 ηi∆ct−i , ν ′ ≡ ν + γ0φ2, and v2t ≡ w ′

t +
γ0

∑4
i=0 λ2i a2t−i , a fourth order MA process. Since consistent esti-

mates of the ηi are available from the analysis of (6.6), they can be used
in conjunction with (6.7) to obtain consistent estimates of the γ s, ν, and
the parameters of the process for v2t.

As regards joint estimation of (6.5) and (6.7), single-equation analysis
yields residuals that can be used to estimate the covariance matrix for the
disturbances, the v1ts and v2ts. For a two-equation system, this matrix
will be generally a 2T × 2T matrix with four submatrices in the form of

are obtained from estimates of ratios of lag polynomials and thus are probably not very
reliable.

20 Alternatively, the transfer function for ∆yt could be employed. However, it is not clear
that use of the transfer function is to be preferred.
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Table 1.11 Single-equation estimates of parameters of consumption equation
(6.5)

1. Using ∆̃yt from final equation for ∆yt

∆ct = − 0.333
(0.180)

∆̃yt + 0.251
(0.111)

∆yt−1 + 10.45
(2.297)

+(1 − 0.180L
(0.127)

+ 0.022L2

(0.128)
− 0.375L3

(0.118)
− 0.079L4

(0.119)
)a1t

RSS = 40,701 DF = 86
2. Using ∆̃yt from transfer function for ∆yt

∆ct = − 0.034
(0.092)

∆̃yt + 0.300
(0.116)

∆yt−1 + 7.216
(2.240)

+(1 − 0.258L
(0.129)

+ 0.193L2

(0.116)
− 0.217L3

(0.119)
+ 0.003L4

(0.115)
)a′

1t

RSS = 40,646 DF = 86

band matrices characteristic of MA processes. Let this matrix be denoted
Ω and an estimate of it, Ω̂. Then with v′ = (v′

1v′
2), where the vector v1

has elements v1t and v2 elements v2t, minimization of v′Ω̂−1ν can be
done to provide joint estimates of the parameters.21

In table 1.11, we present various single-equation consistent estimates
of the parameters of the consumption equation in (6.3a). In the first line
of the table, the final equation for ∆yt was employed to substitute for
∆̃yt in the consumption function while in the second line the transfer
function for ∆yt was employed.22 It is seen that in both cases the point
estimate for α0 is negative. However, the standard errors are large so that
a confidence interval at a reasonable level would include positive values.
The estimates of α1, the coefficient of ∆yt–1 in (6.3a), are in the vicinity
of 0.3 with a standard error of about 0.1.23 That α0 and α1 are not very
precisely estimated is probably due to collinearity of ∆̃yt and ∆yt–1. Use
of an informative prior distribution for α0 and α1 in a Bayesian analysis
could help to improve the precision of inferences. To specify a prior distri-
bution for α0 and α1 and also to interpret the results in table 1.11, it may
be useful to regard ∆c p

t , the planned change in expenditures, including
durables, to be linked to permanent income change, ∆yp

t , and transi-
tory income change, ∆yt

t , as follows: ∆c p
t = k∆yp

t + α0∆yt
t + α1∆yt

t−1.
In planning consumption expenditures for the tth period, note that ∆yt

t
is as yet unrealized transitory income whereas ∆yt

t−1 is realized transitory
income for period t − 1. We believe that consumer reactions to real-
ized transitory income will be much greater than those to as yet unreal-
ized transitory income, i.e. α1 > α0 with α0 small. Using ∆ct = ∆c p

t1 + ut

21 The new residuals can be employed to re-estimate Ω and thus iteration of the process
on Ω (and also on the parameters in ∆̃ct and ∆̃yt) is possible.

22 Note that the estimation of the consumption equation using the final equation expression
for ∆yt is not linked to the assumption that ∆xt is exogenous whereas use of the transfer
function expression for ∆yt is.

23 As explained below, α1 can be viewed as the coefficient of realized transitory income
change and thus an estimate of α1 in the vicinity of 0.3 seems reasonable.
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and ∆yt = ∆yp
t + ∆yt

t in connection with the relation for ∆c p
t above, we

have ∆ct = α0∆yt + α1∆yt−1 + β + ut with β = (k − α0)∆yp
t − α1∆yp

t−1,
assumed constant.24 Within this framework, given the hypothesis that
reaction to unrealized transitory income change, ∆yt

t is rather small, if
not zero, while reaction to realized transitory income change ∆yt

t−1 is
positive, probably an α1 between zero and one, the results in table 1.11
appear plausible.

In conclusion, we believe that the techniques presented above can be
very helpful in checking the specifying assumptions of many existing lin-
ear or linearized models and in “iterating in” on models that are suitable
approximations to the information in our data and that may predict well.
Some topics that will receive attention in future work include further
development of estimation techniques for different equation systems,
joint testing procedures for nested and non-nested hypotheses, analy-
ses of the comparative predictive performance of final equation, transfer
function and structural equation systems, Bayesian procedures utilizing
informative prior distributions, and applications. Finally, we cannot resist
remarking that the present work lends support to the notion that so-called
“naive” ARMA time series models are not all that naive after all.

APPENDIX DATA SOURCES

Personal consumption expenditures, disposable personal income, gross
investment data

Series 1946–65:
United States Department of Commerce/Office of Business Economics,

1966, The National Income and Product Accounts of the United
States, 1929–65, Statistical Tables (Washington, DC)

Series 1966–72:
United States Department of Commerce/Office of Business Economics,

Survey of Current Business (Washington, DC)
Consumer price index:
United States Department of Commerce/Office of Business Economics,

Survey of Current Business (Washington, DC)
Population data:
US Bureau of the Census, Current Population Reports: Population esti-

mates, Series P-25 (Washington, DC)

24 Alternatively, we could assume (k − α0)∆yp
t − α1∆yp

t−1 = β + εt , where εt is a non-
autocorrelated random error with zero mean and constant variance.
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2 Statistical analysis of econometric
models (1979)

Arnold Zellner

1 Introduction

Substantial progress has been made in developing data, concepts, and
techniques for the construction and statistical analysis of econometric
models. Comprehensive data systems, including national income and
product accounts, price, wage and interest rate data, monetary data, and
many other measures, have been developed for almost all countries. In
many cases, annual measurements have been augmented by quarterly
and monthly measurements of a broad array of economic variables. In
recent years, scientifically designed sample surveys have been employed
to expand the data bases of a number of countries. While research contin-
ues to improve data bases, we must recognize that the work that produced
our current, extensive data bases is a major accomplishment in the field
of scientific measurement and enables economic analysts to avoid the
charge of “theory without measurement.”

In reviewing the development of concepts for the statistical analysis of
econometric models, it is very easy to forget that in the opening decades
of [the twentieth] century a major issue was whether a statistical approach
was appropriate for the analysis of economic phenomena. Fortunately, the
recognition of the scientific value of sophisticated statistical methods in
economics and business has buried this issue. To use statistics in a sophis-
ticated way required much research on basic concepts of econometric
modeling that we take for granted today. It was necessary to develop fun-
damental concepts such as complete model, identification, autonomous
structural relationships, exogeneity, dynamic multipliers, and stochastic
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equilibrium, to name a few, that play an important role in linking statis-
tical analyzes and economic theory.

Many statistical estimation, testing, and prediction techniques have
been developed for use in connection with many different kinds of
econometric models, including linear and non-linear interdependent
structural models, models involving qualitative and quantitative vari-
ables, models with time series complications, models for combined time
series and cross-section data, and models with random parameters. This
research on statistical techniques, and computer programs implement-
ing them, a joint product of statisticians and econometricians, has been
extremely important in the development of modern econometric model-
ing techniques.

Given this past record of solid achievement in the areas of measure-
ment, concepts, and statistical techniques, it is relevant to ask how cur-
rent statistical analyzes of econometric models can be improved so as
to yield models with better forecasting and policy-analysis performance.
To answer this question, I shall first try, in section 2, to summarize the
main features of current or traditional econometric modeling techniques.
Traditional econometric analyzes, like many statistical analyzes, tend to
concentrate attention mainly on given models and not on procedures for
discovering and repairing defects of proposed models. Section 3 describes
an approach that emphasizes the latter aspect of econometric model con-
struction and is a blend of traditional econometric techniques and mod-
ern time series techniques. While this approach, called structural econo-
metric modeling time series analysis (SEMTSA), is not a panacea for all
problems, it probably will be helpful in improving the quality of econo-
metric models. A concluding section 4 considers prospects for the future.

2 The traditional econometric modeling approach

In this section, I shall attempt to characterize traditional econometric
modeling techniques, to provide a summary of statistical procedures used
in econometric modeling, and to describe some of the statistical needs of
traditional econometric model builders.

2.1 Overview of the traditional approach

The schematic diagram in figure 2.1 represents, in broad outline, the
activities of many econometric modelers. Whatever the problem, there is
usually a statement of objectives, although, at times, the statement may
not be so clear-cut and specific as could be desired. Sometimes, objectives
are so ambitious that, given our present knowledge, data, and techniques,
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Figure 2.1 Econometric modeling
Note: For further discussion of this approach to modeling, see Hamilton
et al. (1969) and Zellner (1970).
a It is assumed that this study shows the project to be feasible.
b It is assumed that a modeling approach is selected.
c The iterative procedure may disclose problems in the original formu-
lation of goals, feasibility, and methodology so that refining and refor-
mulation of the effort may not be confined solely to the model itself.
Also, it is possible that other feedback loops, not shown in the figure,
may be important in the process of converging on a satisfactory variant
of a model.
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they may be practically unattainable. The next steps in traditional econo-
metric modeling involve a review of the theoretical and empirical litera-
ture bearing on the objectives of a modeling project, preparation of a data
base, and preliminary data analysis. The objective of these activities is the
formulation of an initial variant of an econometric model. Unfortunately,
most econometrics and statistics texts are woefully silent on the basic
methodology of how to formulate an initial variant of a model. General
prescriptions, such as “use relevant economic theory” and “formulate as
simple a model as possible,” are valuable guidelines. Often the relevant
economic theory does not yield precise information regarding functional
forms of relationships, lag structures, and other elements involved in a
stochastic specification of a model. Further, model simplicity has yet to
be defined in a completely satisfactory manner. Still, it is worthwhile to
emphasize the importance of using elements of economic theory, other
outside information, and simplicity in formulating an initial variant of
a model. For example, models that imply unexploited profit opportuni-
ties probably will be unsatisfactory because exploitation of such profit
opportunities will generally upset properties of the proposed model that
contains them.

Once an initial variant of a model, denoted by M0, has been formu-
lated, it is traditionally subjected to a number of mathematical, statisti-
cal, computer simulation, and judgmental checks. These include simple
mathematical checks on the number of equations and number of endoge-
nous variables, consistency of variables’ units of measurement, conditions
for parameter identification, and compatibility with results from math-
ematical economic theory. Computer simulation experiments are often
employed to gain information about local and global dynamic and other
properties of M0. Statistical checks involve formal hypothesis testing pro-
cedures, forecasting tests, residual analysis, data evaluation, and other
diagnostic checks. In evaluating the adequacy of M0, a good deal of judg-
ment or prior information is employed, usually informally. For example,
the algebraic signs and magnitudes of parameter estimates are reviewed to
ascertain whether they are compatible with results provided by economic
theory, by previous studies, and by judgmental information.

If M0 is found to be inadequate in certain respects, work is under-
taken to reformulate M0 and to produce a new variant of the model, M1.
Then M1 is subjected to the battery of checks mentioned previously. This
process of checks and reformulation continues, using as much new data
as possible, until a satisfactory version of the model is obtained, satis-
factory in the senses that it passes diagnostic checks satisfactorily and
accomplishes the objectives of the model-building project.

In connection with realizing the objectives of a model-building project,
it is useful to have formulated as simple a model as possible. If the
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objectives require the model builder to capture much detail, the model
probably will be large, but with care in model building it can still be
sophisticatedly simple. Large and simple models seem preferable to large
and complicated models. In fact, a very disturbing feature of some large,
complicated models in the literature is that it is not known whether they
have a unique solution or many solutions.

In the past, model builders have used some or sometimes all the ele-
ments of the approach described above, but generally have not been vig-
orous enough in applying the various checks. Mathematical analyzes have
often been superficial and incomplete. Simulation experiments have not
been very extensive or well designed in general. Statistical checks on
the quality of data and on specifying assumptions have not been pur-
sued vigorously enough. The relationship of models’ properties to rele-
vant economic theory has not been examined thoroughly in a number of
instances. Finally, many econometric model builders have not stressed
simplicity enough. Some currently operating econometric models are
highly complex systems of a hundred or more non-linear stochastic dif-
ference equations with hundreds of parameters that have to be estim-
ated from highly aggregated time series data. Failure to take account
of Ockham’s Razor, the Jeffreys–Wrinch Simplicity Postulate, and the
Principle of Parsimony in formulating econometric models has had very
serious consequences in much traditional econometric model building.
See Jeffreys (1957, 1967) for evidence of the importance of simplicity in
science.

These criticisms of traditional econometric models have to be tem-
pered, however, because many methodological techniques needed in
a sensible model-building process are not yet available. Good formal
sequential testing procedures for model construction remain to be devel-
oped. Even for a given structural econometric model, exact finite-sample
tests and optimal finite-sample estimates and predictors have not been
available. Good or optimal designs for simulation experiments remain
to be derived. The problems of missing and imperfect data have not
been completely solved. Tried and tested economic theory dealing with
stochastic markets, dynamic reactions, and a number of other important
issues has not been available. Thus econometric model building has been
a mixture of economic and statistical theory and empirical practice. It is
probable that such interaction between theory and practice will produce
improvements in both.

To illustrate elements of recent statistical practice in traditional econo-
metric model building, I next review some estimation, testing, and pre-
diction techniques and provide some indications of current developments
and open problems.
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2.2 Statistical estimation problems

Learning the values of parameters appearing in structural econometric
models (SEMs) is important in checking the implications of alternative
economic theories and in using SEMs for prediction, forecasting, and
policy-making. Thus, econometric research has placed a heavy emphasis
on statistical estimation problems.

2.2.1 Asymptotically justified estimation procedures Research since the
1940s has resulted in a greatly enhanced understanding of estimation
problems associated with SEMs and a relatively large number of opera-
tional procedures for obtaining consistent, asymptotically normally dis-
tributed, and efficient parameter estimates for some or all parameters
of linear and non-linear, static, and dynamic SEMs with serially uncor-
related or serially correlated errors. These procedures, which are dis-
cussed at length in econometric textbooks and the econometric literature,
include maximum likelihood, two- and three-stage least squares, K-class,
double K-class, instrumental-variable, non-linear maximum likelihood,
non-linear two- and three-stage least squares, and other procedures. Fur-
ther, many of the parameter estimates produced by such procedures
approximate Bayesian posterior means of parameters in large samples.
A most important result of this research, aside from providing asymptot-
ically justified estimation procedures, has been to rule out a number of
proposed inconsistent and/or asymptotically inefficient estimation proce-
dures. For example, it is well known by now that misapplication of the
classical least squares (CLS)1 estimation procedure to estimate structural
parameters produces inconsistent estimates except in the very special case
of a fully recursive SEM.

Choice among alternative asymptotically justified estimates has often
been made on the basis of ease of computation. For example, with systems
linear in the parameters, calculation of two- and three-stage least squares
estimates involves just simple algebraic operations, whereas computation
of maximum likelihood estimates involves more complex numerical pro-
cedures. Some current computer packages compute a number of asymp-
totically justified estimates and leave the difficult choice among them to
the user. Of course, in truly large samples, asymptotically equivalent esti-
mates should not be very far different. If in practice such estimates, based
on a given large sample of data, are radically different, this may be inter-
preted as indicating that the asymptotic properties of different estimates

1 Some use the term ordinary least squares (OLS); I prefer classical least squares (CLS), since
the least squares principle is not ordinary.
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take hold at different sample sizes or, more likely, that specification errors
are present and affect alternative estimates differently. Unfortunately, not
much analysis is available on the sensitivity of alternate asymptotically jus-
tified estimates to various kinds of specification errors; one . . . paper in
this area is Hale, Mariano, and Ramage (1978). More systematic anal-
ysis of this range of problems and production of asymptotically justified
estimates that are relatively robust to specification errors would be wel-
come and would serve as a useful additional guide to users in selecting
estimates when the sample size is truly large. On the other hand, if the
sample size is not truly large, even if a SEM is correctly specified, various
asymptotically justified estimates of the same parameter can assume quite
different values.

Students and others invariably ask for a definition of what constitutes
a truly large sample. An easy answer to this question is hard to give.
The sample size alone is not usually all that is relevant. Values of the
parameters and features of input or exogenous variables also must be
considered. Because parameter values usually are unknown and the object
of estimation, prior information about them is needed before one can say
with any confidence what is a truly large sample in connection with the
estimation of a specific SEM. Needless to say, if the sample size is not
truly large, the asymptotic justifications for estimation and other large-
sample inference procedures become dubious. In a Bayesian context,
one can compute the posterior distribution for a parameter and check
to see that it is approximately normal with posterior mean equal to the
maximum likelihood estimate and posterior variance equal to the relevant
element of the inverse of the estimated Fisher information matrix. If so,
large-sample conditions have been encountered. These considerations do
not give a justification for using the large-sample normal approximation
to the posterior distribution without computing the exact finite-sample
posterior distribution.

2.2.2 Finite-sample problems and procedures Recognition that large-
sample justifications for estimation procedures do not contain explicit
information on how large a sample must be for them to hold and that prac-
tical workers often must deal with limited data has prompted considerable
research on the finite-sample properties of estimation procedures. A good
deal of research has been concentrated on obtaining analytically the exact
finite-sample distributions of certain asymptotically justified estimators,
for example, maximum likelihood (ML), two-stage least squares (2SLS),
and other estimators for parameters in relatively simple models. This
ingenious and difficult distributional work unfortunately has shown that
the finite-sample distributions of estimators, derived in the main from
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an underlying non-central Wishart distribution, are rather complicated
and involve a number of parameters with unknown values. The latter fact
makes the application of these distributional results to concrete prob-
lems difficult. This research has shown that asymptotically equivalent
estimators have very different finite-sample properties. For example, the
(limited-information) ML estimator does not possess finite moments of
any order, and in certain frequently encountered cases the 2SLS estima-
tor does not possess a mean or higher moments. Also, certain asymptoti-
cally unbiased estimators can have serious finite-sample biases. Further,
and perhaps surprising, under some conditions, the inconsistent CLS or
OLS estimator has a smaller mean squared error (MSE) than consis-
tent estimators that possess a finite-sample second moment. Of course,
if an estimator fails to possess a second moment, it has infinite MSE
and is clearly inadmissible. This is not to say that MSE is the only cri-
terion for judging estimators, but it has received considerable attention
in this area of research. As stated before, these results have been surpris-
ing to many, particularly those who narrowly emphasize unbiasedness,
or minimum MSE, or minimum-variance unbiasedness as criteria for
judging estimators or who uncritically accept asymptotic justifications.
To illustrate that these criteria are inadequate even for the simple case
in which a structural parameter θ is equal to the reciprocal of a reduced
form regression coefficient, π , that is, θ = 1/π , the ML and almost all
other asymptotically justified estimation procedures would recommend
estimating θ by θ̂ = 1/π̂ , where π̂ is the least squares estimator of the
regression coefficient π . Because π̂ is normally distributed, θ̂ is the recip-
rocal of a normally distributed variable and hence does not possess finite
moments of any order. Thus θ̂ has infinite risk and is inadmissible relative
to quadratic and many other loss functions.

In addition to exact distributional work on the finite-sample properties
of asymptotically justified estimators, research has provided approxima-
tions to the moments of these estimators, surprisingly even sometimes
when moments do not exist. As Anderson (1977) has pointed out, these
moment expressions approximate moments of truncated Taylor or other
series approximations to the estimators and not moments of the estima-
tors. How important this distinction is remains to be seen. Further, very
fruitful work that uses Edgeworth–Charlier series approximations to the
moments and distributions of estimators has been reported by Sargan
(1976).

Monte Carlo studies also have been employed in an effort to determine
the finite-sample properties of alternative estimators (see Sowey 1973).
Generally, these studies have been marred by an inadequate coverage
of the high-dimensional parameter spaces associated with models, even
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simple two-equation supply and demand models that usually contain
about ten or more parameters. Because risk functions of estimators usu-
ally intersect, failure to examine the entire parameter space can yield mis-
leading and confusing results regarding the dominance of one estimator
relative to another in terms of, for example, MSE. Thus, the results of
Monte Carlo experiments that investigate the behavior of estimators over
a limited number of points in the parameter space must be considered very
cautiously. See Thornber (1967) for a valuable illustration of this point.

While much effort has been directed at determining the finite-sample
properties of given, asymptotically justified estimators, relatively little
work has been done on the problem of producing estimates that have
a small-sample justification. Using approximate moment expressions,
Nagar (1959) attempted to define an approximate minimal-MSE esti-
mator for structural coefficients within the K-class. Unfortunately, his
“estimator” depends on parameters with unknown values that have to be
estimated to operationalize his estimator. When these parameters are esti-
mated, it appears that the “optimal” properties of his estimator are vitally
affected. Nagar’s work provides some evidence that use of a value ofK less
than one, the value that produces the 2SLS estimate, is probably better
than the value of one. Analysis by Sawa (1972) provides the approximate
MSE of a K-class estimator for a structural parameter of a simple model
and points in the same direction, namely, that finite-sample MSE usually
is lower, and sometimes much lower, when a value of K < 1 is employed.
Sawa (1972) has also reported properties of estimators that are a linear
combination of the 2SLS and the inconsistent CLS estimators. By appro-
priate choice of the weights, he has obtained approximately unbiased and
approximate minimal-MSE estimators. These results do not appear rel-
evant for cases in which the second moment of the 2SLS estimator does
not exist, and the justification for considering a linear combination of a
consistent and an inconsistent estimator is not apparent.

. . . Fuller (1977) has presented modified limited-information ML and
modified fixed K-class estimators that have finite moments. Restricting
these modified estimators to have the same, but arbitrary, bias, he shows
that to order T−2, where T is the sample size, the modified ML estimator
dominates in terms of approximate MSE.

In almost all the analytical finite-sample work on the sampling proper-
ties of estimates, problems with time series complications have not been
analyzed, for example, estimates of parameters of models with lagged
endogenous variables and/or serially correlated error terms. Relatively
little effort has been devoted to obtaining good finite-sample estimates of
error terms’ covariance matrices . . . [S]tatistical work by Perlman, Eaton,
and others certainly seems relevant. It is highly probable that all, or almost
all, the asymptotically justified estimators mentioned are inadmissible
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under quadratic loss and other loss functions over a wide range of condi-
tions. This range of “Steinian” issues has received very little attention in
connection with finite-sample work on structural parameter estimators’
properties. The impact of pretesting on the finite-sample properties of
the usual structural-coefficient estimators is relatively unexplored. For
example, I have conjectured that the limited-information ML estimator’s
distribution subject to a favorable outcome of the rank test for identifi-
ability will possess finite moments. In the simple case in which a struc-
tural parameter is the reciprocal of a reduced form regression coefficient,
θ = 1/π , it is easy to establish that the ML estimator θ̂ = 1/ π̂ , subject
to the outcome of a t test that rejects π = 0, possesses finite moments,
where π̂ is the least squares (ML) estimate of π . Last and most basic, the
relevance of sampling-theory criteria, such as unbiasedness, admissibil-
ity, and minimal MSE of estimators for the analysis of a given sample of
data, has not been considered adequately in the econometric literature.
Sampling properties of procedures seem relevant before we take the data
in connection with design problems or in characterizing average proper-
ties of estimation procedures. The relevance of these average properties in
analyzing a particular set of data is not clear. Further, as many, including
Tiao and Box (1973), have emphasized, the computed value of an opti-
mal point estimator can be a very bad representation of the information
in a given set of data. Likelihood advocates emphasize the importance of
studying properties of likelihood functions, while Bayesians emphasize
the desirability of studying both likelihood functions and posterior dis-
tributions to understand the information content of a given sample for
possible values of parameters of a model. For both likelihood advocates
and Bayesians, a point estimate is just a summary measure that does not
necessarily convey all or most of the information in a sample regarding
parameters’ probable values.

2.2.3 Bayesian estimation results [Since the mid-1960s], there has
been a growing amount of research concerned with developing and apply-
ing the Bayesian approach to the problems of estimating values of parame-
ters in SEMs and other econometric models, and elements of the Bayesian
approach have appeared in econometric textbooks. As is well known,
inferences about parameters’ values, for example, elements of a parame-
ter vector θ, are based on the posterior probability density function (pdf)
for θ,

p(θ | D, I) = cp(θ | I)�(θ | D), (2.1)

where c = [
∫

p(θ | I)�(θ | D)dθ]−1 is a normalizing constant, D denotes
the data, I denotes the prior information, p(θ | I) is the prior pdf, and
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�(θ | D) is the likelihood function. The following points are relevant par-
ticularly for analyses of SEMs:
1. The posterior pdf in (2.1) is an exact finite-sample pdf, and, hence,

large-sample approximations, while sometimes convenient and useful,
are, in principle, not needed. This statement applies to the analysis of
all kinds of models, including static and dynamic SEMs.

2. Use of the prior pdf, p(θ | I), enables an investigator to incorporate
prior information in an analysis, as much or as little as he sees fit.
Of course, if no sample information were available, as is the case in
some low-income countries, prior information would be the only kind
of information available. In connection with SEMs, prior information
must be introduced in some form to identify structural parameters. In
sampling-theory approaches, the identifying information has almost
always been introduced as exact restrictions on parameter values (e.g.
setting certain coefficients equal to zero, equivalent to using a degen-
erate or dogmatic prior pdf for these parameters in a Bayesian setting).
Use of prior pdfs enables investigators to represent this required prior
information more flexibly; see Drèze (1975) and Kadane (1975).

3. Use of Bayes’ Theorem provides the complete posterior pdf for param-
eters of interest and not just a summary point estimate. If a point
estimate is desired, however, it usually can be obtained readily. For
example, for quadratic loss functions, it is well known that the mean
of the posterior pdf, if it exists, is an optimal point estimate in the
sense of minimizing posterior expected loss.

4. Generally, Bayesian estimates have very good sampling properties,
because they minimize average risk when average risk is finite and
are admissible.

5. In large samples under general conditions, the posterior pdf, p(θ | D, I),
assumes a normal form with mean vector equal to the ML estimate of
θ and covariance matrix equal to the inverse of the estimated Fisher
information matrix. Thus, in large samples there is a dovetailing of
Bayesian and sampling-theory numerical results; however, their inter-
pretation is quite different.
I now turn from the general features of the Bayesian approach to a brief

review of some Bayesian estimation results for the SEM. A representation
of the linear (in the parameters) SEM is

Y
n×g

Γ
g×g

= X
n×k

B
k×g

+ U
n×g

, (2.2)

where Y is an n × g matrix of observations on g endogenous (or depen-
dent) variables and X is an n × k matrix of observations on k prede-
termined variables, assumed of rank k. Predetermined variables include
both exogenous (independent) and lagged endogenous variables. Γ is a
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g × g structural parameter matrix, assumed non-singular, and B is a k ×
g matrix of structural parameters. U is an n × g matrix of disturbance or
error terms. It will be assumed that the rows of U have been independently
drawn from a g-dimensional normal distribution with zero mean vector
and g × g positive definite symmetric (pds) covariance matrix Σ . Note
that if Γ = Ig, the system in (2.2) is in the form of a multivariate regres-
sion model when X contains no lagged endogenous variables or in the
form of a multivariate autoregressive system with input variables when X
contains both exogenous (or independent) and lagged endogenous vari-
ables. In the special case Γ = Ig, analysis of (2.2) from the Bayesian point
of view would proceed pretty much along multivariate regression lines if
initial values for the lagged endogenous variables are taken as given (see
Zellner 1971 and the references cited there).

The unrestricted reduced form (URF) system associated with the SEM
in (2.2) is given by postmultiplying both sides of (2.2) by Γ −1 to yield:

Y = XB Γ −1 + UΓ −1 (2.3)

or

Y
n×g

= X
n×k

Π
k×g

+ V
n×g

(2.4)

where

Π = B Γ −1 and V = UΓ −1, (2.5)

with the k × g matrix Π being the (URF) coefficient matrix and the n × g
matrix V the URF disturbance or error matrix. The assumptions about
the rows of U imply that the rows of V can be considered independently
drawn from a g-dimensional normal distribution with zero mean vector
and g × g pds covariance matrix Ωg = (Γ −1)′ΣΓ −1.

Under the assumptions made earlier, the parameters Π and Ωg of the
URF system in (2.4) are identified and can be estimated by using Bayesian
or non-Bayesian techniques whether or not the structural parameters in
Γ , B, and Σ are identified. It has long been recognized that, under the
assumptions made above, Γ , B, and Σ are not identified and that addi-
tional prior information must be added in order to identify these struc-
tural parameters. Identifying prior information can take various forms.
Here we discuss only the case in which it involves restrictions that subsets
of structural parameters assume zero values. In addition, it is necessary
to adopt a normalization rule for elements of the Γ matrix. Here we let
all diagonal elements of Γ be equal to 1. We shall write the system in
(2.2) with identifying restrictions and normalization rule imposed as

YΓr = XBr + U. (2.6)
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Then the restricted reduced form system is given by

Y = XBr Γ
−1

r + UΓ −1
r (2.7)

= XΠr + Vr . (2.8)

Obviously, the fundamental function of the restrictions is to reduce the
number of free structural parameters and, by so doing, to provide a model
in which the remaining free structural parameters in Γ r and Br are identi-
fied. Explicit statements of the conditions for identification of structural
parameters are given in econometrics textbooks and other works. Since
the free parameters in Γ r, Br, and Σ are identified, their number cannot
exceed the number of parameters in the URF system in (2.4), namely,
kg parameters in Π and g(g + 1)/2 distinct parameters in the g × g RF
covariance matrix Ωg.

The likelihood function for the restricted structural system in (2.6) is

�(Γr , Br , Σ | D) ∝ {mod |Γr |}n|Σ |−n/2 (2.9)

· exp
{− 1

2 tr (YΓr − XBr )′(YΓr − XBr )Σ−1}
where ∝ denotes proportionality, D denotes the data, and mod |Γ r|
denotes the absolute value of the Jacobian determinant, |Γ r|, for the trans-
formation from the n rows of U to the n rows of Y in (2.6). If the system in
(2.6) is autoregressive, (2.9) is the likelihood function conditional upon
initial values (assumed given). Then, from (2.1), the posterior pdf for the
free parameters in Γ r, Br, and Σ is given by

p(Γr , Br , Σ | D, I) ∝ p(Γr , Br , Σ | I)�(Γr , Br , Σ | D), (2.10)

where p(Γ r, Br, Σ | I) is the prior distribution and the prior information is
denoted by I. Given a prior distribution and the likelihood function, the
technical problems of analyzing properties of the posterior distribution,
that is, obtaining its normalizing constant, its marginal distributions, and
its moments, remain.

In the special case of a fully recursive SEM, Γ r is in triangular form,
implying that |Γ r| = 1, and Σ is assumed to have a diagonal form. These
assumptions simplify the likelihood function in (2.9) considerably and
also simplify the analysis of the posterior pdf in (2.10) (see Zellner 1971
for details). The fully recursive case, however, is a very special case of a
SEM. In the general case, work has concentrated on the analysis of (2.10)
using the likelihood function in (2.9). In several studies, the posterior dis-
tribution in (2.10) has been computed for a few simple models. Drèze and
Morales (1976), Harkema (1971), Morales (1971), and Richard (1973)
have analyzed it by using several different informative prior distributions.
Except for some approximate results provided by Zellner (1971) and
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Zellner and Vandaele (1975), it is necessary to use numerical integra-
tion techniques to analyze features of the posterior distribution. These
approximate results have been used by Mehta and Swamy (1978) to pro-
vide a ridgelike Bayesian estimate. Kloek and van Dijk (1976) have stud-
ied the application of Monte Carlo numerical-integration techniques in
analyzing posterior distributions. Although more experience with applica-
tions, assessing and using various prior distributions, and computational
procedures would be useful, past research has yielded results that will
be valuable in obtaining better analyzes of given SEMs, particularly in
small-sample cases.

Bayesian research also has focused on limited-information analyzes,
that is, estimation of parameters of a single equation or of a subset of
equations of a SEM. Complete posterior distributions for these prob-
lems have been obtained and analyzed by Drèze (1972, 1976), Morales
(1971), Reynolds (1977), Rothenberg (1975), and Zellner (1971). A sin-
gle equation of the system in (2.6), say the first, is given by

y1
n×1

= Y1
n×m1

γ1
m1×1

+ X1
n×k1

β1
k1×1

+ u1
n×1

, (2.11)

where y1 and Y1 are components of Y, that is, Y = (y1
... Y1

... Y0) with the
variables in Y0 not appearing in (2.11), X1 is a submatrix of X, X =
(X1

... X0) with the variables in X0 not appearing in (2.11), and u1 is a
subvector of U, U = (u1

... U0) and γ1 and β1 are parameter vectors to
be estimated. The assumptions introduced about the rows of U imply
that the elements of u1 have been independently drawn from a normal
distribution with zero mean and variance σ 11. The URF equations for y1

and Y1, a subset of the equations in (2.4), are

(y1
... Y1) = X(π1

... Π1) + (v1
... V1). (2.12)

On postmultiplying both sides of (2.12) by (1
... − γ ′1)′ and comparing

the result with (2.11), we achieve compatibility, given that

π1 = Π1γ1 +
(
β1

0

)
, (2.13)

where the zero vector on the r.h.s. of (2.13) is (k − k1) × 1, and u1 =
v1 − V1γ 1. From (2.12) and (2.13), the estimation problem can be
viewed as a restricted multivariate regression problem with the struc-
tural parameters γ1 and β1 involved in the restrictions on the elements
of π1 and Π1. A necessary condition for the identification of γ1, β1, and
σ 11 is that k − k1 ≥ m1. Note that (2.13) reflects restrictions arising from



58 Arnold Zellner

just the first equation (2.11) of a system. The information in restrictions
similar to (2.13) associated with other structural equations is not taken
into account in estimating γ1, β1, and σ 11 and hence the nomenclature,
limited-information or single-equation analysis.

Previous research has shown that ML, 2SLS, and 3SLS estimates are
approximate means of posterior pdfs for structural parameters under spe-
cial conditions. Of course, given complete posterior pdfs for parameters,
optimal point estimates can be computed, that is, posterior means for
quadratic loss functions and medians for absolute-error loss functions. A
particularly simple optimal point estimate under a generalized quadratic
loss function can be derived as follows. Upon multiplying both sides of
(2.13) on the left by X = (X1

... X0), we obtain

Xπ1 = XΠ1γ1 + X1β1 = Z̄1δ1, (2.14)

where Z̄1 = (XΠ1
... X1) and δ′

1 = (γ ′
1

...β′
1). Take as loss function,

L = (Xπ1 − Z̄1d1)′(Xπ1 − Z̄1d1)

= (δ1 − d1)′Z̄ ′
1Z̄1(δ1 − d1), (2.15)

a generalized quadratic loss function. Given a posterior pdf for the
reduced form parameters π1 and Π1, the posterior expectation of L in
the first line of (2.15) can be evaluated yielding EL = Eπ ′

1X′π1 − 2d′
1

EZ̄′
1 Xπ1 + d′

1 EZ̄′
1Z̄1d1, where E is the posterior expectation operator.

Then the value of d1 that minimizes expected loss, d1
∗, termed a

minimum-expected-loss (MELO) estimate, is given by Zellner (1978):

d1
∗ = (EZ̄′

1Z̄1)−1 EZ̄′
1 Xπ1. (2.16)

When the system in (2.12) is analyzed under a diffuse prior for the
regression coefficients π1 and Π1 and for the error covariance matrix,
the marginal posterior pdf for (π1

... Π1) is in the matrix Student t form,
and, hence, the expectations in (2.16) are readily available. In this case,
Zellner (1978) has shown that d1

∗ is in the form of a K-class estimate
with a value of k that depends on the sample size and is less than one
in finite samples. Also, d1

∗ possesses at least first and second sampling
moments (Zellner and Park 1979). Further, the optimal estimate of γ1 is
a matrix-weighted average of the 2SLS and CLS estimates with the weight
on the CLS estimate going to zero as the sample size increases (Zellner
1976). In small samples, however, the optimal estimate of γ1 and β1 can
be very close to or exactly equal to the CLS estimate. Thus, empirical
workers who have persisted in their use of CLS estimates may not be very
far from an optimal estimate in small samples. Further, this averaging of
2SLS and CLS estimates bears some resemblance to the work of Sawa,
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mentioned previously; however, the weights that Sawa uses and those
associated with (2.16) are different. Last, this point-estimation approach
has been applied to yield a MELO estimate of parameters appearing in
all equations of a system, that is, δi, δ2, . . . , δg, where δ′

i = (γ ′
i

...β′
i). Also

see Mehta and Swamy (1978) for some useful Bayesian results for obtain-
ing point estimates of the δis that are related to ridge-regression results.

Some additional issues regarding the Bayesian approach have been
aptly summarized in the following remarks by Tukey (1976):

It is my impression that rather generally, not just in econometrics, it is considered
decent to use judgment in choosing a functional form, but indecent to use judg-
ment in choosing a coefficient. If judgment about important things is quite all
right, why should it not be used for less important ones as well? Perhaps the real
purpose of Bayesian techniques is to let us do the indecent thing while modestly
concealed behind a formal apparatus. If so, this would not be a precedent. When
Fisher introduced the formalities of the analysis of variance in the early 1920s, its
most important function was to conceal the fact that the data was being adjusted
for block means, an important step forward which if openly visible would have
been considered by too many wiseacres of the time to be “cooking the data.” If
so, let us hope the day will soon come when the role of “decent concealment”
can be freely admitted.

2.3 Hypothesis testing and SEMs

Sampling-theory procedures used for testing hypotheses relating to struc-
tural coefficients’ values have in the main been large-sample procedures,
usually large-sample likelihood ratio tests or large-sample tests based on
the Wald criterion, that is, for testing the rank condition for identifia-
bility, over-identifying restrictions on structural parameters, and general
linear hypotheses regarding structural parameters’ values . . . [R]esearch
(Berndt and Savin 1975; Savin 1976) has emphasized that asymptoti-
cally equivalent testing procedures can produce conflicting results when
used in finite-sample situations with a given nominal significance level.
Analysis of asymptotic power functions by Morgan and Vandaele (1974)
has demonstrated that certain ad hoc testing procedures are dominated
by standard large-sample testing procedures. Also, finite-sample approx-
imations to the sampling distribution of the likelihood-ratio test statistic
have received little, if any, attention in the econometric literature.

In special cases, the exact finite-sample distribution of a test statistic is
available. In one such case the null hypothesis specifies the values of all
coefficients of endogenous variables in an equation, for example, γ1 = γ0

1
and β1i = 0 in y1 = Y1γ1 + X1β1 + u1. Conditional on γ1 = γ0

1, it is
seen that y1 − Y1γ

0
1 = X1β1 + u1 is in the form of a multiple regression
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given that X1 does not contain lagged endogenous variables. In this special
situation, test statistics that have exact t or F distributions are available;
however, the requirement that the null hypothesis specify values for all ele-
ments of γ1 is quite restrictive. Also, when the system is dynamic, that is,
when X1 contains lagged endogenous variables, only approximate large-
sample test procedures are available. The quality of the approximation
and finite-sample power functions for widely used large-sample approxi-
mate tests are relatively unexplored topics in econometric research.

Another topic that has received very little attention in econometric
research is the effects of pretests on the properties of subsequent tests
and on estimators’ and predictors’ properties. That pretesting can vitally
affect properties of estimators is evident from consideration of simple
cases, for example, y1t = γ y2t + u1t and y2t = π2xt + u2t. The RF equa-
tions for this simple system are y1t = π1xt + v1t and y2t = π2xt + v2t with
γ = π1/π2. The ML estimator for γ is γ̂ = π̂1/π̂2, where π̂i = Σxtyit/Σxt

2,
i = 1, 2. γ̂ does not possess finite moments; however, the distribution
of γ̂ subject to the outcome of a pretest that rejects π2 = 0, namely,
|π̂2| > csπ̂2 > 0, where c is a critical value and sπ̂2 is the standard error
associated with π̂2, does possess finite moments.

Work on Bayesian posterior odds ratios for selected hypotheses relating
to SEMs’ parameters’ values is reported in Reynolds (1977). The poste-
rior odds ratio, K12, for two mutually exclusive hypotheses, H1 and H2,
is given by

K12 = 012 ×
∫

p1(θ)�1(θ | y)dθ
/ ∫

p2(θ)�2(θ | y)dθ, (2.17)

where 012 is the prior odds ratio, and for i = 1, 2, pi(θ) is the prior pdf, and
�i(θ | y) is the likelihood function. If H1 and H2 are mutually exclusive
and exhaustive, and H1 is θ = θ0, while H2 is θ �= θ0, a pretest estimate
that is optimal relative to quadratic loss is given by

θ̂ = p1θ
0 + p2θ̂2

= θ0 + (θ̂2 − θ0)/(K12 + 1), (2.18)

where K12 = p1/p2 = p1/(1 − p1), where p1 and p2 are the posterior
probabilities on H1 and H2, respectively, and θ̂2 is the posterior mean for θ
under H2. The Bayesian pretest estimate, which also can be computed for
other kinds of hypotheses, is a neat solution to the pretesting problem as it
relates to estimation. Similar considerations apply in obtaining combined,
optimal predictions from two or more alternative models.
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2.4 Prediction procedures for SEMs

Several alternative methods for generating predictions from SEMs have
been discussed in the literature. First, it has been recognized that the URF
system Y = XΠ + V can be fitted by least squares and used to generate
unrestricted reduced form predictions (URFPs). Such predictions will
not generally be efficient because restrictions on structural coefficients
that imply restrictions on the elements of Π are not reflected in URFPs.
Second, from the restricted SEM, YΓr = XBr + U, we can obtain the
restricted reduced form system Y = XBrΓ r

−1 + Vr, and restricted reduced
form predictions (RRFPs) can be obtained from ŷ′

f = x′
f B̂r Γ̂

−1
r , where

x′
f is a given vector and B̂r and Γ̂ r are estimated restricted structural-

coefficient estimates. Such predictions will be asymptotically efficient if
B̂r and Γ̂r are asymptotically efficient estimates and if, of course, there are
no specification errors. If Br and Γr are estimated by inefficient but consis-
tent methods, it is not always the case that a predictor based on them will
be better in large samples than an URFP (Dhrymes 1973). Last, the par-
tially restricted reduced form (PRRF) equations can be used to generate
predictions, namely, yi = XΠiγi + Xiβ1 + vi , i = 1, 2, . . . , g . Estimates
of Π i,γ i, andβi along with given vectors x′

f and x′
if yield the PRRFPs ŷi =

x′
f Π̄i γ̄ i + x′

i f β̄i , i = 1, 2, . . . , g . Since the PRRFPs use more prior infor-
mation than the URFPs in over-identified SEMs, they will have higher
precision in large samples than URFPs. On the other hand, they will not
generally be as precise as RRFPs in large samples when no specification
errors are present in the SEM. Approximate expressions for the variance-
covariance matrix of forecast error vectors are available in the literature for
the prediction procedures mentioned previously. Further, it is apparent
that specification errors can vitally affect relative large-sample properties
of these predictors. Then, too, only limited attention has been given to the
problems of predicting future values of the exogenous variables in X.

It has been pointed out in the literature that the RRF predictor,
ŷ′

f = x′
f B̂r Γ̂

−1
r , will not in general possess finite moments, whereas the

other predictors mentioned will have finite moments in general for the
URF predictor and in most situations for the PRRF predictor (Knight
1977). More thorough analyzes of alternative predictors’ finite-sample
properties would be most valuable; see Schmidt (1977) for Monte Carlo
experimental evidence that led him to conclude that “The first main
conclusion . . . is that inferences about forecasts are not terribly reliable,
unless one’s sample is fairly large” (p. 1004).

From the Bayesian point of view, the predictive probability function for
the URF system, Y = XΠ + V, is available. Its mean vector is an optimal
point prediction relative to a quadratic loss function. Optimal multi-step
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predictions for the URF when it has autoregressive complications have
been obtained by Chow (1973). Richard (1973) has studied predictive
pdfs for the SEM and has applied some of his results that incorporate
restrictions on structural coefficients in the analysis of small models. Fur-
ther work to enlarge the range of prior pdfs used in these analyzes and to
provide computer programs to perform calculations conveniently would
be worthwhile.

Some other issues that arise in use of econometric models for forecast-
ing are (a) procedures for using judgmental information and econometric
models in making forecasts; (b) ways of combining forecasts from alter-
native models (Nelson 1972; Granger and Newbold 1977); (c) criteria for
the evaluation of the accuracy of forecasts (Granger and Newbold 1973,
1977); (d) data quality and forecasting (Zellner 1958); and (e) seasonal
adjustment and forecasting (Plosser 1976a, 1976b). Further, the relative
forecasting performance of univariate auto-regressive-integrated-moving
average (ARIMA) time series and econometric models has been the sub-
ject of much research (Leuthold et al. 1970; Cooper 1972; Nelson 1972;
Christ 1975; also see section 3).

3 The SEMTSA approach

As mentioned before, much past econometric research has concentrated
on the analysis of given models and yielded relatively little on formal
methods for checking whether formulated models are consistent with
information in sample data and for improving models. In addition, many
time series aspects of econometric modeling have not been adequately
treated. This is not to say that time series considerations were totally
absent from econometric research, but rather that there was no systematic
synthesis of econometric modeling and time series analysis.

Most important in stimulating some econometricians’ interest in time
series techniques was the good forecasting performance of simple, uni-
variate time series models relative to that of large econometric models
in the work of Cooper (1972) and Nelson (1972). Much earlier, Milton
Friedman suggested that econometric models’ forecasts be compared
with those of simple, univariate “naive” models, a suggestion imple-
mented by Christ (1951). The relatively good forecasting performance
of simple univariate autoregressive (AR) or Box–Jenkins’ ARIMA mod-
els surprised econometric model builders. In theory, a properly specified
multi-equation econometric model should yield more precise forecasts
than a univariate time series model, since the former incorporates much
more sample and prior information. The reasonable conclusion, drawn
by many from these forecasting studies, is that the econometric models
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considered in these studies probably contain serious specification errors
(e.g. see Hickman 1972). For example, the econometric models may
contain incorrect functional forms for relations, inappropriate lag struc-
tures, incorrect assumptions about the exogeneity of variables, incorrect
assumptions about error terms’ properties, and so forth. Because the rela-
tionship between econometric models and univariate ARIMA processes
was not clearly understood, many econometricians considered simple
time series models to be ad hoc, mechanical, alternative models. Fur-
ther, it was not apparent how time series analysis could be used to improve
properties of SEMs. These issues were taken up in an article by Zellner
and Palm (1974) and have since been pursued in a number of other works
such as Evans (1975, 1976, 1978); Palm (1976, 1977); Plosser (1976a,
1976b); Prothero and Wallis (1976), Trivedi (1975), Wallis (1976, 1977),
and Zellner and Palm (1975).

This research on the SEMTSA approach has, first, emphasized that
dynamic, linear (in the parameters) SEMs are a special case of multi-
variate or multiple time series processes, such as studied by Quenouille
(1957) and others. Second, it has been shown that assuming variables to
be exogenous places important restrictions on the parameters of a multi-
ple time series process. Third, the transfer function (TF) equation system
associated with a dynamic linear SEM has been derived and shown to be
strongly restricted by structural assumptions. While the TF equation sys-
tem had appeared in the econometric literature earlier under other names,
its role in econometric model building had not been emphasized. Fourth,
in the case of random exogenous variables generated by a multiple time
series process, it is possible to derive the final equations (FEs), associated
with the SEM, and individual FEs are in the form of ARIMA processes of
the type studied by Box and Jenkins (1970) and others. Thus, as empha-
sized in the SEMTSA approach, the Box–Jenkins ARIMA processes are
not ad hoc, alternative (to SEMs), mechanical models but are, in fact,
implied by SEMs (see the studies cited previously for explicit examples).
In addition, assumptions about structural equations’ properties have
strong implications for the forms of FEs and TFs that can be tested.

To make some of these considerations explicit, a multiple time series
process for a p × 1 vector of random variables zt (assumed mean-
corrected for convenience) is represented as follows (Quenouille 1957):

H(L)
p×p

zt
p×1

= F(L)
p×p

et
p×1

t = 1, 2, . . . , T, (3.1)

where H (L) and F(L) are finite order matrix polynomials (assumed of full
rank) in the lag operator L, and et is a vector of serially uncorrelated errors
with zero mean vector and identity covariance matrix. If, for example,
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F(L) is of degree zero in L, that is, F(L) = F0, with F0 of full rank, then the
error vector in (3.1) is F0et with zero mean and only a non-zero contem-
poraneous covariance matrix, EF0ete′

t F
′
0 = F0 F ′

0. Other specifications of
F(L) allow for moving average error terms. For stationarity |H(L)| = 0
must have all its roots outside the unit circle, while for invertibility the
roots of |F(L)| = 0 must lie outside the unit circle.

Upon multiplying both sides of (3.1) by the adjoint matrix associated
with H(L), denoted by H∗(L), we obtain

|H(L)|zt = H∗(L)F(L)et , (3.2)

a set of FEs for the elements of zt. Each of the FEs in (3.2) is in autore-
gressive moving average (ARMA) form that is, |H(L)|zit = α′

i et, where
|H(L)| is an autoregressive polynomial, and α′

i, a 1 × p vector of polyno-
mial operators, is the ith row of H∗(L)F(L). That α′

i et, a sum of moving
average processes, can be represented as a moving average process in a
single random variable has been proved in the literature. Thus even with
the general multiple time series process in (3.1), processes on individual
variables will be in the Box–Jenkins form.

In structural econometric modeling it is usually assumed that some of
the variables in zt are exogenous. Let z′

t = (y′
t
... x′

t), where yt, a p1 × 1
vector, denotes the vector of endogenous variables and xt, a p2 × 1 vector,
denotes the exogenous variables. Then (3.1) can be written as(

H11

H21

∣∣∣∣ H12

H22

)(
yt

xt

)
=

(
F11

F21

∣∣∣∣ F12

F22

)(
e1t

e2t

)
, (3.3)

where the partitioning of H(L) = {Hij}, F(L) = {Fij}, and et has been
made to conform to that for z′

t = (y′
t
... x′

t). The assumption that xt is
exogenous places the following restrictions on the matrix lag operators in
(3.3):

H21 ≡ 0, F12 ≡ 0, and F21 ≡ 0. (3.4)

On inserting (3.4) in (3.3), we have

H11yt + H12xt = F11e1t , (3.5)

and

H22xt = F22et . (3.6)

The equation system in (3.5) is the dynamic structural-equation sys-
tem, while that in (3.6) is the multivariate ARMA process generating the
exogenous variables in xt.



Statistical analysis of econometric models 65

By multiplying both sides of (3.5) on the left by the adjoint matrix
associated with H11, denoted by H11

∗, we obtain the TF system,

|H11| yt + H11
∗H12xt = H11

∗F11e1t . (3.7)

Last, the FEs associated with (3.5)–(3.6) are obtained by multiplying
both sides of (3.6) on the left by H22

∗, the adjoint matrix associated with
H22, to obtain

|H22| xt = H22
∗F22e2t , (3.8)

and substituting for xt in (3.7) from (3.8) to yield

|H11| |H22| yt = −H∗
11 H12 H∗

22 F22e2t + |H22| H∗
11 F11e1t . (3.9)

Equations (3.8) and (3.9) are the FEs for the variables in xt and yt,
respectively. Each variable has an ARMA process, as mentioned before.
Simple modifications of the analysis presented previously to take account
of non-stochastic exogenous variables, such as time trends, and seasonal
or other “dummy” variables, can easily be made.

In structural econometric modeling in the past, workers have concen-
trated attention on the SEM given in (3.5). Economic and other consider-
ations have been employed to justify the classification of variables into the
two categories, endogenous and exogenous. Further special assumptions
regarding the matrices H11, H12, and F11 are required to achieve identifi-
cation (e.g. see Hannan 1971). These assumptions place restrictions on
lag patterns in equations, serial correlation properties of error terms, and
on which variables appear with non-zero coefficients in equations of the
system. If the resultant system is appropriately specified and estimated,
it of course can be used for forecasting, control, and structural analysis,
the traditional objectives of SEMs. It must be recognized, however, that
a large number of specifying assumptions have to be made to implement
the SEM in (3.5), and the probability that errors will be made in specify-
ing an initial variant of (3.5) generally will be high. The solution to this
problem is not to discard the initial variant of (3.5), which may contain
much valuable information, but to pursue complementary analyses that
can help to identify problems in the formulation of the initial variant and
to suggest appropriate reformulation of specifying assumptions. Also, it
is important that these complementary analyses yield useful results along
the way toward obtaining a good SEM.

In the SEMTSA approach, it is suggested that workers use economic
theory and other outside information to formulate an initial, tentative
form for (3.5). The next step involves deducing algebraically the forms
of the TF system in (3.7) and the FEs in (3.9). As is obvious from the
forms of the TF and FE systems, assumptions regarding the SEM in (3.5)
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will result in a number of important restrictions on TFs and FEs that can
be checked empirically. For example, from (3.7), (3.8), and (3.9), it is
seen that the AR parts of the FEs and TFs will be identical when lag
operators do not contain common factors. As pointed out in Zellner and
Palm (1974), systems with special features, that is, fully recursive sys-
tems or systems in which H11 is block-diagonal, will lead to cancellation,
and thus the AR parts of FEs and TFs will not be identical. Also, other
special assumptions about the forms of H11 and H12 in (3.5) will result
in TFs and FEs with different AR lag polynomials (see Zellner and Palm
1975 for an example). Work on examining the implications of specific
SEMs for the forms of FEs and TFs is extremely important in enhancing
understanding of SEMs. For example, the effect of changing a variable’s
classification from exogenous to endogenous on the forms of the TFs
and FEs can be easily determined. Also, structural assumptions about
lag structures, properties of structural error terms, and forms of policy-
makers’ control policies all result in strong restrictions on TFs and FEs.
In addition, Quenouille (1957, ch. 5) has provided valuable analysis of
the effects of incorrect inclusion or exclusion of variables, measurement
errors, parameters varying with time, non-linearities, and so on.

When the forms of TFs and FEs associated with a SEM have been
derived, the next step in the SEMTSA approach is to analyze data to
determine or identify the forms of FEs and TFs to check that the empir-
ically determined FEs and TFs are compatible with those implied by
the tentatively formulated SEM. Of course, this work not only provides
checks on a SEM but also estimates FEs that can be used for prediction
and TFs that can be used for prediction and control. If the analysis of
the FEs and TFs provides results compatible with the implications of the
SEM, the SEMs’ parameters can be estimated, and it can be used for
prediction, control, and structural analysis. If, as is usually the case, the
results of FE and TF analysis do not confirm the implications of an initial
variant of a SEM, the SEM must be reformulated. This reformulation
process is facilitated considerably by knowing the results of TF and FE
analyses. That is, the latter analyses usually indicate specific deficiencies
of the initial variant of a SEM, and many times recognition of these defi-
ciencies is an important first step in finding remedies for them. When the
initial variant of a SEM has been reformulated, its implications for the
forms of FEs and TFs can be checked empirically. Also, the roots of FEs
and TFs can be calculated, estimated, and examined for reasonableness.

The SEMTSA approach provides an operational and useful synthesis
of traditional econometric and time series analysis techniques that can
produce SEMs with fewer specification errors and better forecasting per-
formance. As with traditional SEMs, however, some statistical problems
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associated with the SEMTSA approach require further research. First,
there is the problem of determining the forms of the FEs from sample
data. Box and Jenkins’ well-known suggested techniques based on proper-
ties of estimated autocorrelation and partial autocorrelation functions are
helpful in ruling out a number of forms for FEs; however, these techniques
are rather informal. For nested FE models, large-sample likelihood-ratio
tests can be employed to aid in discriminating among alternative FE mod-
els. For nested and non-nested models, Bayesian posterior odds ratios also
are useful. For example, in discriminating between a white-noise process
and a first order moving average process, Evans (1978) has shown that the
posterior odds ratio is a function not only of the first order sample serial
correlation coefficient, r1, but also of higher order sample serial correla-
tion coefficients, r2, r3, . . . , the latter having weights that decline as the
sample size increases. Because r1 is not a sufficient statistic and because
the ris are highly correlated in small samples, a large-sample test using
just r1 does not use all the sample information and can lead to erroneous
inferences. Posterior odds ratios also are useful in situations in which roots
of AR polynomials lie on the unit circle, a situation in which it is known
that usual large-sample likelihood-ratio tests based on χ2 statistics are
invalid. Geisel (1976) has reported work indicating that Bayesian poste-
rior odds ratios performed better than variants of Box–Jenkins procedures
in discriminating among alternative ARIMA schemes. Extensions of this
work and the early work of Whittle (1951) on Bayesian hypothesis testing
in time series analysis would be very valuable. This work also can shed
light on the problem of determining the degree, if any, of differencing
required to induce stationarity. Note that in formulating a posterior odds
ratio, stationarity is not required. Stationarity is required for most uses
of sample autocorrelation and partial autocorrelation functions.

Second, there is the problem of determining the forms of TFs. Impor-
tant work on this problem for simple TFs has been reported by Box and
Jenkins (1970, 1976), Haugh and Box (1977), Haugh (1972), Granger
and Newbold (1977), and others. Also, the econometric work on dis-
tributed lag models is relevant (e.g. see Aigner 1971, Dhrymes 1971,
Griliches 1967, and Nicholls, Pagan, and Terrell 1975) . . . [W]ork of
Sims (1972, 1975), Skoog (1976), Pierce and Haugh (1977), Wu (1978),
and others on tests for special recursive structures, along with procedures
suggested by Box, Jenkins, Haugh, Granger, Newbold, and others, may
be useful in checking the assumptions about input variables’ properties. In
TFs with several input variables, it may be advisable to reduce the number
of free parameters by using some of the assumptions in the distributed-lag
literature regarding coefficients of current and lagged input variables (e.g.
see Shiller 1973). As with determining the forms of FEs, it is probable
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that posterior odds ratios will be found useful in discriminating among
alternative forms for TFs and in obtaining posterior probabilities associ-
ated with alternative variants of TF’s.

Third, there is the problem of obtaining good estimates of parame-
ters in FEs, TFs, and SEMs. Currently, various asymptotically justified
estimates are available, and some of these take account of random ini-
tial conditions and restrictions implied by the assumptions of stationarity
and invertibility. The small-sample properties of these asymptotically jus-
tified estimates require much further investigation, a point also empha-
sized by Newbold (1976), who writes: “As regards estimation, I am not
sure that uncritical use of maximum likelihood estimates is justified in
small samples without some investigation of their sampling properties.”
As pointed out in section 2, ML estimators do not in general possess
good finite-sample properties. These comments imply that more work to
obtain good finite-sample estimates is required. Extensions of the valu-
able work of Box and Jenkins (1970, 1976), Newbold (1973), Tiao and
Hillmer (1976), and others on Bayesian estimation of time series mod-
els seem to be possible and can provide additional good finite-sample
estimation results.

Fourth, the problems associated with seasonality are important in for-
mulating and analyzing SEMs and yet have received relatively little atten-
tion. Because seasonal variation accounts for a large fraction of the vari-
ation of many economic variables, a proper treatment of seasonality is
critical. In much econometric work, seasonally adjusted variables are
used with little or no attention to the procedures employed for seasonal
adjustment and their possible effects on determination of lag structures
and other features of SEMs. In the SEMTSA approach, Plosser (1976a,
1976b) and Wallis (1976) have provided valuable analyzes of seasonality
in SEMs.

Fifth, the problem of measurement errors in economic time series
requires much more attention. It is well known that a number of economic
series are derived wholly or in part from sample surveys. Many statistical
analyses of such data are based on the usually erroneous assumption of
simple random sampling. Analyzes that take proper account of the designs
of sample surveys, their sampling errors, and possible biases would be
most welcome. Further work to consider SEMs subject to measurement
error would also be valuable. For example, (3.5) could be formulated in
terms of the true values of variables, z′

t = (y′
t
... x′

t). The measured values
of variables ztm

′ = (ytm
′ ,xtm

′) could be assumed given by ztm = Rzt + ξt,
where R is a matrix of coefficients reflecting systematic measurement
errors and ξt is a vector of random measurement errors. In this form, the
SEM becomes what engineers call a state-variable model. Perhaps use of
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results in the engineering literature would be useful in work with SEMs.
Measurement problems are not insignificant: Initial and subsequently
revised figures for GNP and other important quarterly economic series
differ considerably, in some cases systematically, and provide different
information regarding cyclical turning points (see Zellner 1958). Similar
results have been obtained in current work with preliminary and revised
figures for quarterly nominal GNP. Revisions in the preliminary esti-
mates of quarterly GNP amounting to 5–10 billion dollars are common.
For example, the first and subsequently revised figures (in billion current
dollars) for GNP in the fourth quarter of 1954 are 361.0, 362.0, 367.1,
367.1, 367.7, and 373.4; for the fourth quarter of 1965, the preliminary
and subsequently revised figures are 694.6, 697.2, 704.4, 708.4, 710.0,
and 710.0. These figures illustrate an important measurement problem
confronting econometric model builders and forecasters that has not been
adequately treated in the literature.

Sixth, aggregation problems have received increased attention . . . Arti-
cles by Geweke (1976), Tiao and Wei (1976), Wei (1976), and Rose
(1977) provide valuable results on temporal and other kinds of aggrega-
tion in the context of time series models. In work by Laub (1971, 1972),
Peck (1973, 1974) and Levedahl (1976), attention has been focused on
economic models for individual firms and consumers using panel data
and the implications of these microanalyses for aggregate dividend, invest-
ment, and automobile expenditure functions. At the microlevel, discrete
decisions, such as buy/not buy or change/don’t change the dividend rate,
are extremely important. Yet macroformulations of behavioral relation-
ships that are incorporated in many SEMs do not properly take account
of this discrete microbehavior and as a result are misspecified. Many esti-
mated investment, dividend, and automobile expenditure functions that
are based on partial adjustment models show long response lags that are
spurious and are the result of aggregation over buyers and non-buyers
or corporations that change and those that do not change the dividend
rate in a particular quarter. Levedahl (1976) has shown analytically and
empirically that the adjustment coefficient in a partial adjustment model
for automobile expenditures is related to the proportion of consumers
purchasing a car in a particular period. Because this proportion varies
considerably over time, the adjustment coefficient is an unstable parame-
ter, and models fitted under the assumption that it is stable have obvious
problems in forecasting. These findings relating to defects of widely used
partial adjustment equations have serious implications for SEMs that
incorporate such equations. Further work on formulating macro-SEMs
that takes better account of discrete elements in economic behavior seems
very important in obtaining better models.
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Seventh, forms of policy-makers’ control may change and thus cause
instability in lag parameters and other features of a model, a point empha-
sized by Lucas (1973). Analyzes using subsamples of data may indicate
the empirical importance of this problem.

Last, time series analysts have identified relatively simple, low order
ARIMA processes for economic variables appearing in SEMs. On the
other hand, the ARIMA processes or FEs associated with most SEMs
are usually complicated, high order schemes. To illustrate, Leuthold et al.
(1970) formulated and estimated a SEM for analysis of hog markets
with daily data. They also identified and fitted ARIMA processes for
the daily price and quantity variables. Their time series model for price
was found to be a simple random walk. As shown in Zellner (1974), the
form of their SEM implies FEs for price and quantity with AR parts
of at least third order, quite at variance with their random walk finding
for the price variable. It seems that they forced a misspecified SEM on
the data, one that involves the implicit assumption of unexploited profit
opportunities in the hog markets. Indeed Muth (1961, p. 327, n. 11), in
his pathbreaking paper on rational expectation models (i.e. models that do
not imply unexploited profit opportunities), writes in connection with a
general supply and demand model: “If the production and consumption
flows are negligible compared with the speculative inventory level, the
process [on price] approaches a random walk. This would apply to daily
or weekly price movements of a commodity whose production lag is a
year.” Thus, economic theory provides some support for the empirical
finding that daily hog prices follow a random walk and that the SEM for
the hog markets is probably misspecified.

Similar considerations apply to the Hendry (1974) model of the UK
analyzed in Prothero and Wallis (1976). The latter workers identified
rather simple ARIMA processes for variables appearing in Hendry’s
SEM. The FEs associated with Hendry’s estimated model have ninth
order AR parts. Prothero and Wallis (1976, p. 483) apparently take this
finding of a ninth order AR part of the FEs of Hendry’s model seri-
ously and attribute the relatively low orders of the empirically identi-
fied FEs to “relatively small coefficients of higher powers of L [the lag
operator], which proved difficult to detect in our univariate analyzes.”
Also, they state that “the size of the available sample [forty-two quarterly
observations] has clearly restricted our ability to detect subtle higher-
order effects.” Whether these subtle higher order effects are real or are
results of specification errors present in the eight-equation Hendry model
is a point that deserves further attention. In addition, the burgeoning lit-
erature on rational expectation economic models has important implica-
tions for the formulation and analysis of SEMs (for some examples, see
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Ranson 1974, Evans 1975, Grossman 1975, Nelson 1975, Sargent and
Wallace 1975, Wickens 1976, McCallum 1977, and Flood and Garber
1978).

4 Conclusions

This review of some of the research on SEMs has emphasized the follow-
ing major points:
1. Substantial progress has been made in research on statistical methods

for constructing, analyzing, and using econometric models.
2. There is a serious need for developing and vigorously applying addi-

tional statistical, mathematical, computer simulation, and economic
diagnostic checks of properties of the SEMs.

3. For given SEMs, more work has to be done to develop and apply
estimation, testing, and prediction procedures that have finite-sample
justifications. In this connection, the present author and others believe
that Bayesian procedures offer good solutions for many finite-sample
problems.

4. More formal procedures for using prior information in the analysis of
given SEMs are required, a problem area that can be approached most
satisfactorily at present by use of the Bayesian approach.

5. Most serious is the need for formal, sequential statistical procedures
for constructing SEMs.

6. The synthesis of traditional econometric model-building techniques
and modern time series analysis techniques, called the SEMTSA
approach previously, will probably lead to improved SEMs, a view
of the present writer, Granger and Newbold (1975), and others.

7. Further use of existing economic theory, such as the theory of efficient
markets (see Fama 1970 for a review of this theory), and rational
expectations theory probably will yield better SEMs. Having SEMs
consistent with elements of sound economic theory has long been
emphasized in the econometric literature, and further attention to this
point in current work with SEMs is critical.
So that this listing of research needs not be construed as misrepre-

senting the quality of current US macro-SEMs that are used to generate
quarterly forecasts of important economic variables, such as GNP, unem-
ployment, prices, and interest rates, it is relevant to consider Christ’s
(1975) thoughtful and relatively favorable review of the forecasting prop-
erties of such models. In the opening sentence of his article, he writes:
“Econometric models of the U.S. economy have been developed to the
point where forecasters who use them can forecast real and nominal GNP
two or three quarters ahead with root mean square errors of less than one
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percent, and six quarters ahead with RMS errors of one to two percent.”
This rather optimistic summary statement fails to take account of the fact
that population RMS errors have been estimated from rather small sam-
ples of forecast errors and hence are not very precise. A confidence inter-
val at a reasonable level for the population RMS error would probably
be rather broad. Also, the implication of a 1–2 percent error for nominal
GNP that now exceeds 1.5 trillion (1,000 billion) dollars, is about a 15 to
30 billion dollar or greater error, which would be considered substantial
by most analysts.

Further with respect to the very same models that yield RMS errors
of 1 or 2 percent, Christ (1975) in the second paragraph of his article
writes: “Though the models forecast well over horizons of four to six
quarters, they disagree so strongly about the effects of important mone-
tary and fiscal policies that they cannot be considered reliable guides to
such policy effects, until it can be determined which of them are wrong in
this respect and which (if any) are right.” This statement clearly indicates
that at least some, or perhaps all, of the models that Christ considered
(Wharton; Data Resources Inc.; Bureau of Economic Analysis; St. Louis;
Fair; Liu-Hwa; Hickman-Coen; and University of Michigan) probably
contain serious specification errors.

Next, Christ (1975, p. 59) writes:

In general, it appears that subjectively adjusted forecasts using ex ante exogenous
values are better than the others. It is no surprise that subjective adjustment
helps. It may surprise some that the use of actual exogenous values does not help,
and sometimes hinders. But there is likely to be some interaction, in the sense
that if a forecaster feels that the preliminary forecast turned out by his model is
unreasonable, he may both adjust the model and change his ex ante forecast of
the exogenous variables, in order to obtain a final forecast that he thinks is more
reasonable (emphasis in the original).

Christ’s conclusion that “subjectively adjusted forecasts . . . are better than
the others” underlines the importance of using prior information care-
fully in preparing forecasts. His statement that use of the actual values,
rather than the anticipated values, of exogenous variables “does not help”
is indeed surprising. In this connection, it should be appreciated that
the subjective adjustments often take the form of adjusting the values
of intercept terms in equations of a model. Because equations often are
formulated in terms of non-stationary variables and may be considered
as local approximations, adjustments to intercept terms and slope coef-
ficients will be needed when values of the variables move away from
sample values. In such situations, thoughtful adjustment of intercept
terms is a partial step in the direction of obtaining better results; but,
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because it is partial, there is no assurance that use of actual rather than
anticipated values of exogenous variables will produce better results in
general.

Last, from the information on models’ forecast errors that Christ has
assembled, it appears that SEMs for both nominal and real GNP outper-
form univariate ARIMA schemes for these variables in terms of estimated
RMS errors. As pointed out before, many have recognized, implicitly or
explicitly, that a correctly specified multi-equation SEM should, in the-
ory, perform better in forecasting than a univariate ARIMA process. For
example, Box and Jenkins (1976, p. 493) comment:

If the question is whether a set of univariate [ARIMA] models of this kind which
takes no account of relationships between the series describes a set of related time
series better than the corresponding multivariate [econometric] model then pre-
dictably the answer must be “No.” It is a sobering commentary on lack of expertise
in the practical aspects of modeling that instances have occurred where well-built
univariate models have done better than poorly built multivariate “econometric”
ones.

In closing, it must be concluded from what has been presented and
from Christ’s remarks, that, while considerable progress has been made
in work with SEMs, an econometric model as satisfactory as the Ford
Model T has not as yet appeared.
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Comment (1979)

David A. Belsley and Edwin Kuh

Zellner’s [chapter 2] marks a significant step in econometric writings,
for it is one of the first pieces by a major econometrician that recognizes
the full spectrum of the actual practice of econometric model building –
including its trial-and-error (or iterative) aspects that are often viewed
askance by econometric theorists. Implicit in Zellner’s broad-gauged view
is a realization that the classical statistical techniques, in their purist sense,
provide a model-building methodology that is as constricting as it is beau-
tiful. And it has been in an effort to make progress in the highly complex
real world of quantitative economics that econometricians, against this
formal statistical backdrop, have developed an informal, backroom set of
procedures that have proved a necessary part of actual model building:
Econometricians have long been classroom theorists and closet pragma-
tists. It takes courage to recognize openly that econometric model build-
ing is an iterative process. It takes courage because it gives recognition to a
practice that is highly vulnerable to attack – and for good reasons. In par-
ticular, once one admits the legitimacy of modifying an errant hypothesis
in light of its failure to account for the facts or for the investigator’s implicit
prior beliefs, then one must always fear, contrary to the classical philoso-
phy, that the final hypothesis will be determined mainly by the data and
become devoid of a rigorous interpretation. Although we all understand
the rational import of such criticism, most of us, deep down, also realize
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that enlightened and clever iteration in model building, combined with
appropriate retesting with new information, can greatly defuse this criti-
cism while helping to speed the process of applied econometric research –
indeed often allowing it to occur at all. The problem comes in discovering
means for making iterative model building enlightened and clever, and it
is in part with such issues that Zellner is concerned.

Realizing that many informal econometric practices, practices that
attain their effective legitimacy in the heat of battle rather than in the
textbooks, are at variance with the various formal procedures, is it not
better to recognize such practices, study them for what value they may
have, and encourage research into means for correctly modifying and
testing such models? We think so, and we feel that Zellner has provided a
possible framework for such evolution. In his approach, we can see that
such a growth in the discipline of econometrics can have its own theoret-
ical foundations. Indeed, Zellner calls attention to many areas of frontier
econometric research, in which theoretical development might provide
the practicing econometrician with a more rigorous framework for iter-
ative model-building techniques. These areas include Bayesian estima-
tion, robust estimation, time-varying parametric structures, sequential
hypothesis testing, and Zellner’s structural econometric modeling time
series analysis (SEMTSA), which joins traditional econometric struc-
tural modeling and the more mechanical application of the Box–Jenkins
type of time series analysis. To this list we would like to add the diag-
nostic analysis of data, an analysis that is capable of assessing the suit-
ability of the data for estimating specific models and for testing specific
hypotheses. Such diagnostics are particularly useful in analyzing the non-
experimental data that typically arise in the social sciences. This is an
important topic that Zellner does not discuss. We have little doubt that
procedures for model building that draw properly on these topics, topics
often considered peripheral to the accepted body of econometrics, could
provide a theoretically sound iterative approach to model building that
is more productive than a practice based solely on currently accepted
theory.

Why does such a large gap exist between what econometricians learn
in the classroom and what they practice? There are several reasons for
this gap that could, in principle, be removed in a straightforward man-
ner, which include a lack of appropriate software and a lack of adequate
training, even in accepted theory, among some practitioners. Other rea-
sons are less easily dealt with. Some modeling techniques, for example,
even if well known and otherwise implementable, are simply considered
too cumbersome or time-consuming. Proper construction of Bayesian
priors affords a good example of this and, at present, constitutes one of
the major practical drawbacks to the implementation of many Bayesian
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techniques. Another reason, perhaps the most important one, lies in the
inability of econometrics, based on existing theory, to handle the com-
plexities encountered in analyzing the real world – including the frailty
of the human mind correctly to provide all important prior restrictions
for a given model before “machine touches data.” This last reason vir-
tually ensures that models will, in fact, be built piecemeal. It is time for
the econometrics profession to recognize this simple truth and to place
various iterative procedures under its theoretical umbrella.

The status of econometrics today, as Zellner indicates, offers no
grounds for complacency. It is true that the discipline of econometrics
has come a long way [in the years since 1950] and even provides a body
of knowledge that serves as a model for some other disciplines. Yet one
may at times sense a large and increasing gap between the current ortho-
doxy of econometric theory and the research frontier in econometrics
(and in related disciplines that have much to offer econometrics), a gap
that is manifest in a widespread reluctance to consider novel procedures
seriously. This is readily apparent when one considers the effect that
the mention of terms such as the Stein estimator, Kalman filtering, or even
numerical analysis can have. A similar effect could have been evoked only a
few years ago by the mention of terms such as Bayesian estimation, random
coefficients, or even spectral analysis, an effect that still exists to some extent
today. There are obvious reasons why econometricians might resist the
introduction of new techniques and new methodology. Econometricians
can be justifiably proud of the techniques they have developed. Most have
invested much effort in mastering their knowledge and skill, and it is only
natural to resist new ideas, unless they can be proved to be substantially
better. Also, new techniques often originate in other “seemingly unre-
lated” disciplines, usually with notational differences that are irksome.
This apparently small problem has surely been one of the more impor-
tant reasons why the efforts from various fields of engineering, numerical
analysis, or data analysis, all of which have some useful things to teach
us, have been slow to take hold.

We have little to add to what Zellner says on the potential roles and
importance of the topics he mentions: Bayesian estimation, robust esti-
mation, time-varying parameters, sequential testing, and SEMTSA. We
would, however, like to add to the overall picture a few thoughts on the
importance of the diagnostic analysis of data. Examination of the suit-
ability of a particular data set for a specific econometric analysis has
been widely ignored in actual economic practice. This happens, in part,
because econometricians are effectively stuck with non-experimental data
over which they typically have no control, and they therefore accept them
without further question. In addition, little is known about data problems,
such as errors in variables, collinearity, and outliers. What little is known
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presents such theoretical or practical headaches that an ostrich-like pos-
ture seems somehow justified. In fact, these problems with econometric
data make an analysis of their suitability to a particular application even
more imperative here than in other disciplines, such as in physics and
in some branches of engineering, in which experiments constructed to
be devoid of many problems are possible. Collinearity can clearly render
a specific set of non-experimental data useless for many important tests
of hypotheses based on the estimated coefficients of the collinear vari-
ates. Likewise, anomalous data points, arising perhaps through error or
perhaps from a data structure not relevant to the model at hand, can dom-
inate estimation or hypothesis testing, much to the detriment of correctly
understanding the model being investigated. Therefore, reliable diagnos-
tic techniques are required that allow the econometric practitioner – either
before estimation or as a concomitant part of the estimation procedure –
systematically to assess the suitability of the data for estimating the par-
ticular model or testing specific hypotheses. Initial efforts toward such
diagnostics are given in Mosteller and Tukey (1977) and in Belsley, Kuh,
and Welsch (1979), and, at least in the latter case, these diagnostics have
indeed been presented by the authors as an initial stage in a more general
iterative model-building scheme, such as that advocated by Zellner.



Belsley, D. A., E. Kuh, and R. E. Welsch (1979), Regression Diagnostics: Identifying
Disparate Data and Sources of Collinearity (New York, John Wiley)

Mosteller, F. and J. W. Tukey (1977), Data Analysis and Regression (Reading,
Mass., Addison-Wesley)

Comment (1979)

Carl F. Christ

Both parts of Zellner’s [chapter 2] are admirable. The first part is on the
current state of the art of structural econometric modeling. The second is
on the relation of that art to time series analysis à la Quenouille and Box–
Jenkins. Zellner himself has made significant contributions to both these
areas. In addition, he offers many thoughtful suggestions for future work.

The chapter’s first main part, section 2, provides an excellent summary
of the preconceptions and procedures involved in structural econometric
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models and their specification, estimation, evaluation, revision, and
use. The discussion is illustrated with the aid of the general linear-in-
parameters additive-disturbances structural econometric model (SEM)
displayed in (2.2) and its reduced form (2.3). The model will be useful
to statisticians seeking an overview of econometrics, to those who seek to
put specialized knowledge of econometrics into perspective, and to those
seeking problems to solve.

An additional comment may be helpful regarding Zellner’s entirely
correct (but, perhaps, misleadingly brief) statement in subsection 2.2.2
that many consistent econometric estimators do not have finite means or
variances and, therefore, have infinitive mean square errors (MSEs) and
are inadmissible relative to quadratic loss functions. The discovery of this
fact can have a traumatic effect on students. In subsections 2.2.2 and 2.3,
Zellner offers one possible way to avoid it. He does not mention another
way suitable for asymptotically normal estimators, which is to adopt a
truncated quadratic loss function, thus: L = (θ̂ − θ)2 when |θ̂−θ | � k,
and L = k2 otherwise, where L is the loss, θ and θ̂ are the parameter and
its estimator, and k is some positive constant. This renders the expected
loss finite and allows it to be approximated for large samples by the MSE
of the limiting normal distribution that is associated with θ̂ . The use of
a bounded loss function is preferable to an unbounded one (such as the
MSE) not only because of the foregoing but also because an unbounded
objective function can lead to grossly unrealistic behavior prescriptions,
as is well shown by the celebrated St. Petersburg Paradox.

The chapter’s second main part, section 3, summarizes the relation-
ship, elucidated in Zellner and Palm (1974), between SEMs and time
series analysis (see (3.1)–(3.9)). Before the nature of this relationship was
realized, it was possible to believe that time series analysis was a mindless
technique for seeking empirical relations among observed variables, quite
divorced from (and indeed the antithesis of) the use of economic theory to
formulate SEMs. Now, however, it becomes clear (as Zellner points out)
that the SEM in (2.2) or (2.6) is a special case of the Quenouille-type
multiple time series model in (3.1) and that the maintained economic
hypothesis specifying that certain variables are exogenous in the SEM
has important testable implications for the parameters of the time series
model. In my view, this is a neat and important discovery. Based on that,
Zellner proposes a synthesis that he calls structural econometric model-
ing time series analysis (SEMTSA). The name is close enough to that of
Senta, the heroine who, by her faithfulness, redeemed Wagner’s Flying
Dutchman from his fate of having to sail the oceans foreover, to inspire
in me the fantasy that SEMSTA will, by its faithful application, redeem
econometrics from its fate of being at sea forever for lack of suitable
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statistical testing. Zellner does not go that far, but he does believe (and I
with him) that SEMSTA is a promising approach.

The final part of the chapter, section 4, . . . contains a summary and also
some references to Christ (1975) concerning the accuracy of forecasts
made with the aid of econometric models of the United States. Zellner
gives a quotation from p. 59 of my article and then expresses surprise that
the use of actual values of the exogenous variables (rather than ex ante
forecasts thereof) does not help. I submit that the unquoted remainder of
the quoted paragraph removes the surprise. Please read the quotation in
Zellner’s section 4, and then read the rest of the paragraph that is quoted
here:

This suggests that when unadjusted models are used, actual exogenous values
should yield better forcasts than ex ante values. The two sets of forecasts from the
Fair model bear this out. It also suggests that if subjectively adjusted models are
used, ex ante exogenous values should yield better forecasts than actual values. A
comparison of the EAF3 and EPF forecasts from the BEA model bears this out.

Zellner’s chapter has an extensive bibliography. In sum, Zellner’s chap-
ter is excellent. The editors are to be congratulated for inviting him to
contribute it.



Christ, C. F. (1975), “Judging the performance of econometric models of the US
economy,” International Economic Review 16, 54–74

Zellner, A. and F. C. Palm (1974), “Time series and structural analysis of mon-
etary models of the US economy,” Sankhyā: The Indian Journal of Statistics,
Series C 37, 12–56; chapter 6 in this volume

Comment (1979)

Peter M. Robinson

Zellner has treated us [in chapter 2] to an illuminating discussion of
many of the tools available for the statistical analysis of some economet-
ric models. I feel, however, that his remarks on the issue of finite-sample
theory versus asymptotic theory need to be placed in perspective. Zellner
reminds us that asymptotic properties may be inappropriate for use in

Research was supported by National Science Foundation Grant Soc. 78–05803.
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statistical inferences based on the sample sizes often encountered in eco-
nomics. He stresses the importance of examining finite-sample prop-
erties of asymptotically justifiable decision procedures and of develop-
ing procedures with desirable finite-sample properties. In commenting
on the relevance of asymptotic theory and describing the progress that
has been made in finite-sample theory, however, he does not mention
that there often are considerable differences between the assumptions
on which these theories rest. Some exact finite-sample properties (such
as bias and risk) of relatively simple estimators can be obtained under
mild conditions. Unfortunately, it is often difficult to investigate analyt-
ically the properties of more complicated estimators, let alone find their
exact finite-sample distributions, without resorting to precise distribu-
tional assumptions. Moreover, to the extent that such properties can be
obtained at all, the need for mathematical tractability sometimes presents
us with little choice of parent distribution. Much of the finite-sample
work Zellner describes assumes that the disturbances in the economet-
ric model are independent, identically distributed (iid) normal random
variables. Zellner explicitly makes this assumption in his discussion of
the Bayesian analysis of the simultaneous equation model, in subsection
2.2.3, and, previously, takes it for granted when reporting some of the
results in subsection 2.2.2. Therefore, application of the finite-sample
theory might be accompanied by data analysis to assess the suitability of
the normality assumption, and consideration might be also given to use
of normality-inducing transformations.

Which conditions are sufficient for asymptotic properties – consistency,
asymptotic normality, asymptotic efficiency – of various estimators (ML,
2SLS, 3SLS, Bayesian, etc.) for the simultaneous equations system? One
needs some (often uncheckable) assumptions of the existence of certain
limits involving the exogenous varibles, but not a precise description of
the residuals. If these are martingale differences satisfying relatively mild
moment and homogeneity assumptions, the estimators typically are con-
sistent and have the same asymptotic normal distribution as they would
have under the iid normal assumptions. Moreover, one can determine
asymptotic properties under more dramatic departures from the classi-
cal assumptions. It often is possible to establish consistency and asymp-
totic normality (with a consistently estimable covariance matrix) when
the residuals have an unknown serial correlation structure or are het-
eroskedastic. One also can construct estimators that are asymptotically
efficient in these circumstances, using weighted least squares, autoregres-
sive transformation, spectral methods, and so on, although these may
require even larger sample sizes to justify using the asymptotics. Zell-
ner describes . . . developments in finite-sample theory, but he tends to
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ignore those in asymptotic theory. I agree, of course, that application of
asymptotics to small samples can produce misleading results and use of
exact finite-sample theory, when appropriate, is desirable. If it is a ques-
tion of deciding whether an asymptotic theory or a finite-sample theory
provides the better approximation, I believe one should consider not only
whether the sample size is “truly large” but also the different assumptions
on the variables and any information on robustness to departures from
these assumptions. My earlier remarks suggest that this choice may not be
clear-cut. Another factor that might be considered is the relative ease of
applying the central limit theorem compared with that of applying many
finite-sample distributions.

For a number of econometric models, one has little or no power
to choose between asymptotic and finite-sample properties or between
asymptotically justified and finite-sample estimators. Zellner emphasizes
closed form estimators of the linear structural system, involving endoge-
nous variables with continuous distributions, and iid disturbances. He
reports some progress in finite-sample work on time series models, but
this seems limited, and the problems to be overcome in developing read-
ily computable finite-sample estimators and properties for the range of
models served by the current asymptotic theory seem great. (Note also
that estimators of many time series models, based on an exact or approx-
imate Gaussian likelihood and certain moment estimators, often have
desirable asymptotic properties, even in the absence of Gaussianity.) For
some econometric models, we have large-sample estimators and prop-
erties (some of which, admittedly, seem to rest on precise distributional
assumptions), but little or nothing is known about finite-sample theory,
such as the many regressions and structural systems that are non-linear in
the parameters, the models containing discrete-valued or limited depen-
dent variables, and the models for markets in disequilibrium. One can
sympathize with Zellner’s call for simplicity in model building without
necessarily wishing to exclude all these latter models from consideration.

Section 3 of the chapter is concerned with Zellner’s structural econo-
metric modeling time series analysis (SEMTSA) method, which may
well help to improve the quality of econometric models and forecasts.
Although SEMTSA has a number of desirable features, I do not believe
that a proposed econometric model should be too readily rejected on
the basis of this type of analysis, because the introduction of the autore-
gressive moving average model (ARMA) representation ((3.6)) of the
exogenous variables might produce misleading results. Of course, this
specification is not involved in the usual estimates of the system H11yt +
H12xt = ut that is being judged. Zellner observes that his analysis also
allows for non-stochastic xt, although it does not generally work if xt is
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stochastic but not ARMA. It cannot always be taken for granted that an
ARMA representation – at least one of manageably low order – will be
sufficiently accurate to justify the ensuing analysis.

Zellner suggests that workers use prior knowledge to choose an initial
specification of the “structural system” (3.5), but does not say how the
remaining component of (3.1), the model (3.6) for xt, will arise. Presum-
ably, univariate or multivariate ARMA identification procedures would
be involved. The accuracy with which (3.6) is specified is clearly impor-
tant in determining the form of the FE (3.8). Small differences in the
ARMA orders of elements of xt can correspond to large differences in
the degrees of polynomials, such as |H11||H22|. Failure to confirm an ini-
tial transfer function of the form − H−1

11 H12 might be due in part to poor
testing power resulting from deviations from the ARMA specifications
of ut and xt. Zellner mentions that some high order ARMA coefficients
in the FE may be so small as to make rejection of a low order model
difficult. This notion seems plausible, because one can write |H11||H22|
= Π j(1 − θ jL) and because |θ j| < 1 for all j, in a stationary model, the
coefficients of high powers of L might be very small. Even when this is not
the case, some methods for ARMA identification, such as those in which
models are considered in increasing order of complexity, are capable of
producing a model that incorrectly omits high order terms.

Comment (1979)

Thomas J. Rothenberg

Zellner has provided [in chapter 2] a thoughtful survey of some . . .
research and unsolved problems in the statistical analysis of econometric
models. He wisely restricts his attention to a limited class of structural
equation models; to survey all the models used by economists would be
an impossible task. Readers unfamiliar with the work of econometricians,
however, should not think that multi-equation forecasting models exhaust
the economist’s repertoire. Single-equation models describing individ-
ual behavior, models of income and wealth distribution, unobserved-
variable models, contingency-table analysis, Markov transition models,
and so on, also are used widely. (Indeed, Zellner has been a major con-
tributor to numerous areas of econometric theory that are not discussed
in his chapter.) As indicated in Zellner’s introductory comments, the
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material surveyed is illustrative of the research and problems encoun-
tered by economists whenever they try to develop stochastic models of
economic behavior.

In his survey, Zellner makes a number of critical comments on the state
of current econometric modeling techniques and statistical procedures. I
am in substantial agreement with his major points and would simply add
the following remarks:
1. . . . [M]ost econometric inference procedures are justified on the basis

of large-sample theory. The exact sampling distributions generally are
very complicated and, hence, are approximated by asymptotic dis-
tributions based on the central limit theorem. Better approximations,
usually based on the Edgeworth expansion, are generally available and
have been developed for special cases in the work surveyed by Zellner.
Additional . . . work by Anderson, Phillips, Sargan, and others treat
more general cases. A large body of literature by mathematical statis-
ticians also is relevant. Improved test statistics, which yield approx-
imately the correct size, have been known since the late 1930s and
are summarized by Bartlett (1954), Box (1949), and Lawley (1956).
General methods for constructing estimators and tests that are optimal
to a second order of approximation have been developed by Pfanzagl
(1973), Ghosh and Subramanyam (1974), Efron (1975), and Pfanzagl
and Wefelmeyer (1978a, 1978b).

This research on improved statistical procedures based on second
order asymptotic approximations has not yet been incorporated into
the econometrics textbooks. Furthermore, the application of general
statistical theorems to the specific models used by econometricians is
still in progress. Improved approximations in time series models, for
example, are still at an early stage of development. Zellner surely is
correct in calling for more work in this area. But the foundations for
a small-sample justification of inference procedures in econometrics
now exist.

In multi-parameter models, the algebra of deriving Bayesian poste-
rior marginal densities and moments often is just as difficult as that of
deriving exact sampling distributions. In practice, Bayesians are forced
to assume unpleasantly simple conjugate prior distributions or to rely
on large-sample approximations in order to obtain tractable poste-
rior distributions. Of course, better approximations to posterior dis-
tributions can be found by using Edgeworth-type expansions. Thus,
it seems that the development of better approximations to distribu-
tion functions will be important for both Bayesian and non-Bayesian
econometricians.

2. Both Bayesians and sampling theorists assume a known likelihood
function, typically one based on normally distributed errors. In
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practice, we do not know the probability distribution for the errors.
A solution, of course, is to embed our model in a larger one contain-
ing more parameters. Unfortunately, our ignorance is often so great
that we are led to models with a large number of parameters, and
the result is very imprecise measurement. The Bayesian approach that
adds parameters with a fairly tight prior distribution is an attractive
compromise. The classical theory of robust estimation is another alter-
native that needs to be extended to structural equation models.

3. The art of model building involves much trial and error, as indicated in
Zellner’s overview of the modeling process. It also involves the interac-
tion of many different persons and many overlapping data sets. We base
our models on all the past models we have read about, even if we only
dimly remember them. It is extremely difficult to make this process
formal. Indeed, one sometimes is led in despair to give up all hope of
using formal statistical methods to describe our data-mining practices.
A more optimistic position is taken in the pathbreaking monograph by
Leamer (1978), in which sequential specification searches are modeled
from a Bayesian point of view.

4. The synthesis of time series methods and structural equation modeling
is an important . . . development and should prove helpful in improv-
ing our specification of dynamic relations. Of course, not all structural
models involve time in an essential way. Much econometric work anal-
yses cross-section data over a single time interval. Furthermore, if the
major question to be answered involves the long-run effects of pol-
icy changes, it seems unlikely that improved specification of short-run
dynamics will be of much help. But, as a tool for improving short-run
forecasts, the SEMTSA approach holds much promise.

One weakness of the approach should be pointed out. Any structural
specification does indeed lead to an implication about the order of the
autoregressive part of the final equation; however, tests of the order of
an autoregressive process are likely to have very low power. Given any
low order process, there exists a high order process (with very small
coefficients, perhaps) that has approximately the same likelihood. The
inability to reject the null hypothesis that the order is low need not be
convincing evidence that the structural model is false. The specific
numerical values of the final equation’s coefficients implied by a given
structure must be tested against the data.

5. With respect to the merits of the Bayesian approach, I have little to
add to what I have said elsewhere (Rothenberg 1975a, 1975b). Unlike
physical constants (like the weight of a coin, the length of a table, or the
number of balls in an urn), the parameters of econometric models are
subjective, hypothetical constructs. Likewise, the error terms in struc-
tural equation models represent a host of poorly understood effects,
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due to various sorts of misspecification. It certainly is not unnatural
to treat both the parameters and the errors symmetrically as random
variables where the probability distributions represent the econome-
trician’s uncertainty. For some purposes, I find it quite reasonable to
treat some parameters and some error terms as having subjective prior
probability distributions. I am not convinced that it is always reason-
able. Ultimately, a Bayesian’s credibility depends on his or her ability
to justify the particular prior distribution used in the analysis. Most
sensible statistical procedures are Bayes (or approximately Bayes) with
respect to some prior distribution and some loss function. In reporting
results of statistical analysis, perhaps the best we can do is to indicate
the range of possible conclusions that arise from a reasonable set of pri-
ors. Again, Leamer (1978) has much of interest to say on this subject.
In addition to these remarks, some more general comments about the

current state of econometrics are perhaps in order. I think it is useful to
distinguish three different levels at which there are unsolved problems in
econometrics. First, there are the very basic questions of methodology:
What are the fundamental principles for modeling complex economic
phenomena? Is traditional statistical theory at all relevant for economet-
ric models? If so, is the Bayesian approach more satisfactory than sam-
pling theory alternatives? Second, there are the technical and mathemat-
ical difficulties of deriving the statistical properties of estimators and test
statistics, of calculating marginal and conditional distributions, and of
constructing numerical algorithms for computing actual estimates and
distributions. Third, there are the questions of art: For a given applied
problem, what are reasonable assumptions to make about data, number
of variables, number of equations, functional form, error distribution,
prior distribution, and so forth?

Although the second class of problems is naturally of interest to statis-
ticians and theoretical econometricians, it is important to emphasize that
the basic methodological questions and the questions of art are critical.
Indeed, one can argue that the technical and mathematical difficulties
in econometrics are trivial when compared with the almost insurmount-
able problems in trying to capture an extraordinarily complex reality in
manageable models. With perseverance and better statistical training,
econometricians will produce the distribution theory and computer algo-
rithms that are needed. There is much more doubt in my mind that in the
near future we shall be able to produce economic models that are widely
accepted. I do not find it surprising that macroeconometric models are
unreliable guides to the effects of government policy. More surprising
is the fact that they forecast as well as they appear to do. Econometrics
is a field with much technique and as yet only modest accomplishment.
Because many different models can explain the available data equally well,
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model formulation must be based on considerable intuition, institutional
knowledge, and economic understanding. Unfortunately, these are very
scarce commodities. We have not yet produced the econometric version
of the Model T, and it is unlikely that better statistical theory alone will
provide the technological breakthrough that is needed.
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Rejoinder (1979)

Arnold Zellner

I thank the discussants for their kind comments on my [chapter 2] and for
the thoughtful points they have raised. I shall respond to the discussants
in reverse alphabetical order, which I prefer for an obvious reason.

Originally published as an Invited paper; Journal of the American Statistical Association 74
(1979). C© Journal of the American Statistical Association.
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Rothenberg correctly points out that econometricians have analyzed
many different problems by using a broad array of statistical models,
some of which were mentioned briefly at the beginning of my chapter.
Many of the statistical points made in the chapter are relevant for analyses
of more complicated models, for example, non-linear models or models
for discrete random variables, also mentioned by Robinson. With respect
to improved second order asymptotic approximations, Takeuchi (1978)
has reported on his and M. Akahira’s work and on independent work
by Pfanzagl and Wefelmeyer (1978) on the third order asymptotic effi-
ciency of the maximum likelihood and Bayesian estimators with respect
to unbounded loss functions (pace Christ, see below) and smooth prior
distributions in the case of the Bayesian estimator. Takeuchi notes that
the comparison of asymptotic efficiency is made possible only after esti-
mators are adjusted for asymptotic bias or asymptotic median or modal
bias and states (1978 p. 7) that “Before adjustments nothing can be said
about the relative advantages of various estimators in terms of any ‘loss’
such as the mean square error, nor can we always gain in terms of MSE by
adjusting for bias as was proved by Morimune [in the case of the single-
equation LIML estimator].” This statement abstracts from the fact that
Bayesian estimators relative to specific priors and loss functions have well-
known finite-sample optimal sampling properties. Regarding improved
sampling-theory testing procedures, Rothenberg has provided references
relating to my remarks in section 2.3 on finite-sample approximations
to distributions of test statistics. These references do not contribute to
the many delicate and deep issues regarding alternative approaches for
comparing and testing hypotheses. On the algebra of deriving Bayesian
marginal posterior densities and the choice of prior distributions, I agree
that good approximation procedures are useful and can extend the range
of prior distributions that can be employed. Also, advances in numerical
integration techniques have been, and will be, very useful. As Rothenberg
and Robinson remark, everything in the world is not normal. It is thus
fortunate that transformations that may induce normality can and have
been used in econometrics. In addition, some analyses in the financial
economic literature have been based on stable-Paretian, univariate Stu-
dent t and mixture distributions, and analyses of multiple and multivariate
regression models based on multivariate and matrix Student t distribu-
tions, respectively, have appeared (Tong 1976; Zellner 1976; Fraser and
Ng 1978). On the SEMTSA approach, it seems relevant for cross-section
data, because such data relate to time series processes for individuals in
the cross-section. The time series aspect of cross-section data should not
be overlooked and, in fact, is a primary reason for the growing emphasis
on longitudinal or panel data for which time series considerations are
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extremely important. On testing the implications of a SEM, mentioned
by both Rothenberg and Robinson, not only are the implications for the
FEs testable but those for the TFs and structural equations are also obvi-
ously testable. On the ability to discriminate among alternative forms for
the FEs, the hog market example discussed in my chapter is relevant. In
the area of macroeconomics, in Ranson (1974) economic theory is devel-
oped that predicts random-walk or near-random-walk behavior for some
macroeconomic variables, and time series analyses provide some support
for his theory. Thus, in some cases economic theory and empirical anal-
yses point in the direction of low order final equations. This topic needs
much more research, as I suggested in my discussion of the Prothero–
Wallis results. It is always possible to complicate a model by adding more
parameters. The basic issue is whether addition of such parameters is
useful or required in relation to the objectives of an analysis. On long-
run versus short-run models, my experience (see Hamilton et al. 1969) is
that the role of prior information is very important in long-run modeling
and that the discussion relating to my figure (2.1) is quite relevant. Time
series considerations also are relevant, for example, in deciding whether
trends are stochastic and/or deterministic. On the issues of capturing an
extraordinarily complex reality in manageable models, questions of art
in modeling, physical constants and parameters in econometric models,
and other philosophical issues, much could be said. At present, I shall
just point to the early skeptics who refused to believe that there was any
merit in applying mathematics and statistics in analyses of social science
problems. I believe that subsequent experience has shown them to be
wrong.

Robinson is right in pointing to different assumptions underlying
asymptotic and finite-sample analyses. The critical point, in my opinion,
is well expressed by Robinson, namely, “I agree, of course, that appli-
cation of asymptotics to small samples can produce misleading results,
and use of exact finite-sample theory, when appropriate, is desirable.”
Also, in agreement with Robinson, I emphasized the importance of diag-
nostic checking and robustness of statistical procedures. On the power
to discriminate between the fruitfulness of finite-sample and asymptotic
analyses, mathematical analyses and Monte Carlo experiments can be
most helpful. Of course, in problems for which no finite-sample results
are available, asymptotic approximations will have to be used, and Monte
Carlo experimental results can be employed to check the quality of
the asymptotic approximations. Use of the simplicity criterion in model
building does not preclude, as Robinson apparently suggests, the use of
a wide range of models. It does appear fruitful, however, to choose the
simplest model compatible with achieving the objectives of a modeling
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project. On processes for the stochastic vector xt in (3.3) and (3.6) of my
chapter, these should be carefully identified from the data. If it is found
that they are not ARMA processes, then, of course, one should not use
ARMA processes. In such cases, one can determine the forms of these
processes and use them, or one can go ahead conditionally on given val-
ues for the xts and analyze the TF and structural equation systems. In
forecasting, however, one has to generate future values of the xt vector
so that the problem of modeling the xt process arises again. In a number
of problems, for example, supply and demand models, an ARMA pro-
cess for xt may not be a bad approximation. On the other hand, when
elements of xt are subject to policy control, close attention must be paid
to the nature of control processes.

Christ raises a very important point regarding the use of unbounded
loss functions. In connection with existence of estimators’ moments and
associated infinite risks, in Zellner (1978, p. 154) I wrote in my conclu-
sions, “ML and perhaps other estimators might perform better relative
to performance criteria that are not sensitive to the existence or nonex-
istence of sampling moments,” in part in response to a comment on my
work made by George Barnard (1975) on the possible use of bounded loss
functions. Use of bounded loss functions will affect the Gauss–Markov
theorem, Stein’s results, and use of posterior means as point estimates
as well as any other estimates that are optimal relative to unbounded
loss functions. Robustness of results to the form of the criterion or loss
function is certainly an issue that deserves more research (see Zellner and
Geisel 1968, Zellner 1973, and Varian 1975 for some work on this topic).
Ideally, the form of the criterion or loss function should reflect serious
subject-matter considerations.

Belsley and Kuh remark that “Proper construction of Bayesian pri-
ors . . . constitutes one of the major practical drawbacks to the imple-
mentation of many Bayesian techniques.” This remark perhaps overlooks
the well-known fact that many non-Bayesian estimation results can be
produced by Bayesian methods based on diffuse priors or as means of
conditional posterior distributions in which nuisance parameters are set
equal to sample estimates. Thus, many non-Bayesian estimates in use
can be given a Bayesian interpretation. Belsley and Kuh are right in say-
ing that construction of operational, informative prior distributions is a
difficult problem, akin to the problem of formulating good models for
observations. Some . . . Bayesian research on formulating informative
priors by Bernardo, Dickey, Kadane, Lindley, Novick, Press, Winkler,
myself, and others may be helpful with respect to this problem. Last, I
agree fully with Belsley and Kuh that “diagnostic analysis of data” is a
crucial topic that deserves more attention in econometrics and elsewhere.
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Clearly, what one gets out of an analysis depends on what one puts into
it, and the data are an important input. In conclusion, I appreciate this
opportunity to express my views on matters that appear to me to be criti-
cal for improving statistical analyses of econometric models. Among other
useful results, improved statistical analyses can help to discover possible
defects of current econometric models and prompt work to correct them.
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3 Structural econometric modeling and time
series analysis: an integrated approach (1983)

Franz C. Palm

1 Introduction

An important and difficult part of econometric modeling is the speci-
fication of the model. Any applied econometrician knows how trouble-
some it can be to obtain a satisfactory specification of the model. While
the problem of specification analysis has received increasing attention in
econometric research in recent years, many of the existing econometric
textbooks provide few guidelines on how to obtain a satisfactory specifi-
cation. This is surprising as the specification of the model is necessary in
order to justify the choice of an estimation or testing procedure among
the large variety of existing procedures, the properties of which are well
established given that the true model is known. The consequences of mis-
specification errors due to the exclusion of relevant explanatory variables
are more extensively discussed in standard textbooks on econometrics.
Misspecification tests such as the Durbin–Watson test belong to the tools
of any empirical econometrician. Among the exceptions to what has been
said about the treatment of specification analysis in textbooks, we should
mention the book by Leamer (1978), in which he distinguishes six types
of specification searches and presents solutions for each of them within a
Bayesian framework. But the present state of econometric modeling leads
us to stress once more Zellner’s (1979, p. 640) conclusion concerning the
research on structural econometric models (SEMs): “Most serious is the
need for formal, sequential statistical procedures for constructing SEMs.”

The computations reported in this chapter were carried out by David A. Kodde, I wish to
thank him for his able assistance and his useful comments. I have benefitted from helpful
discussions with and comments by Carl F. Christ, Jean-François Richard, and especially
Christopher A. Sims and Arnold Zellner, and from useful remarks by the participants of the
ASA–CENSUS–NBER Conference on Applied Time Series Analysis of Economic Data
held in Washington and by members of the Econometrics Seminar at CORE, University of
Louvain.

Originally published in A. Zellner (ed.), Applied Time Series Analysis of Economic Data,
Proceedings of the Conference on Applied Time Series Analysis of Economic Data, October
13–15, 1981, Arlington, VA, Economic Research Report ER-5, Washington, DC, Bureau
of the Census, US Department of Commerce, October 1983, 99–233.
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In section 2 of this chapter, we review existing approaches to economet-
ric modeling. We shall first briefly outline the traditional approach and
the time series approach to dynamic econometric model building. Then
we present the structural econometric modeling and time series analy-
sis (SEMTSA, see Zellner 1979), which integrate the best features of
econometric and time series techniques to analyze regression and struc-
tural equations in a framework of sequential testing of hypotheses.

In section 3, the SEMTSA will be applied to a multivariate dynamic
model for seven Dutch quarterly macroeconomic variables for the period
1952–79. The initial model is an unrestricted vector autoregressive (VAR)
model, which is assumed to be sufficiently general to include the data-
generating process. Next, in a top-to-bottom approach, theoretically
meaningful restrictions on the parameters of the VAR model are formu-
lated and confronted with the information in the data. The dynamic prop-
erties of the restricted model are compared with those of the unrestricted
model. Also, the postsample forecasting performance of the unrestricted
and the restricted models is investigated. In this way, we try to iterate into
a model that is a good parsimoniously parametrized approximation for
the data-generating process.

In section 4, we shall draw some tentative conclusions concerning the
application of the SEMTSA in general and the empirical results of our
study in particular. We shall point to problems that remain to be solved.

The estimation and testing procedures used throughout this chapter are
chosen on the basis of their large sample properties. Their finite sample
properties are known for special models only.

2 Approaches to econometric model building

2.1 The traditional approach to econometric modeling

The methodology of traditional econometric modeling will be briefly out-
lined in this section. For a more detailed description and a schematic rep-
resentation of model-building activities, the reader is referred to Zellner
(1979).

Formally, one assumes that the model is given. The observations are
used to estimate the parameters of the model. In practice, however,
econometricians derive the model at least in part from the data. When
specifying an initial model, the investigator makes use of economic theory,
knowledge about institutional arrangements, and other subject-matter
considerations. Sometimes a heavily – perhaps too strongly – restricted
model is chosen as an initial model because the estimation of its param-
eters is straightforward.
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The initial model is estimated using an estimation technique which
is appropriate according to criteria such as unbiasedness, consistency,
efficiency, . . . , provided the initial model is the true model. The esti-
mation results of the model are judged on the basis of the algebraic
t-values, the plausibility of the parameter estimates and their expected
sign, the stability over time of the estimates, the serial correlation prop-
erties of the residuals, and the fit of the equations. When the initial
model is not satisfactory as judged by one or more of these criteria,
it is respecified and re-estimated. For instance, a significant Durbin–
Watson test statistic has often led to fitting a regression model with first
order autoregressive disturbances. Similarly, the finding that two-stage
least squares [2SLS]estimates differ slightly from ordinary least squares
[OLS]estimates is used as argument to ignore the simultaneity aspect.
Certainly, in many situations the correct remedy has been applied to
cure the model. However, as long as there is no systematic way to analyze
the sample evidence, the diagnostic checking and reformulation of the
initial model may be done quite differently by two independent inves-
tigators. That different final model specifications have been reported in
the economic literature for similar data sets and observation periods is
evidence for this statement.

The traditional approach to econometric modeling has certainly
yielded very valuable results. These lines should not be interpreted as
generally convicting econometricians of bad practice. Instead, we want
to emphasize the need for a more systematic, formal approach to econo-
metric modeling, in which the best elements of the traditional approach
ought to be incorporated.

2.2 Time series identification of dynamic econometric models

Besides the progress made in modeling univariate time series during the
[1970s], many contributions to formal modeling of regression equations,
bivariate and multivariate models have been made by time series analyzes.
(See Box and Jenkins 1970, chs. 10, 11: Granger and Newbold 1977:
Haugh and Box 1977; and Jenkins and Alavi 1981 among many others.)

Similar to univariate ARIMA modeling, modern time series model
building of vector processes consists of three stages: Identification, esti-
mation and diagnostic checking. In contrast to the econometric approach,
time series analysts explicitly rely on data to determine the model spec-
ification (or identification). More specifically, the time series analysis is
directed towards finding a transformation of the data into a vector of
innovations that are orthogonal to the lagged variables included in the
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model. Thereby, the aim of many time series analysts using a time domain
approach is to find a parsimonious representation of the data-generating
process.

Usually, the series to be modeled are made stationary and prewhitened.
The cross-correlation function between the prewhitened series is used to
check for the presence of feedback. When there is unidirectional Wiener–
Granger “causality” (see Granger 1969) present, say from x to y only, the
bivariate process for y and x can be modeled as a dynamic regression
equation for y given x and a univariate (ARMA) model for the input x.
The cross-correlation function for the prewhitened series εy and εx is used
to determine the degree of distributed lag polynomials in the regression
equation.

In vector time series models with feedback present, the autocorrelation
and partial autocorrelation matrices are used to achieve a parsimonious
parametrization of the model (see Jenkins and Alavi 1981, Tiao and Box
1981).

At this point, we shall make several comments on the time series
approach to econometric model building:
(1) Usually the approach is applied to low dimensional vector processes.

As most data in econometrics are non-experimental, dynamic econo-
metric modeling has to account for the effects of the explanatory
variables, which vary over the sample period. Therefore, there will
usually be more than one explanatory variable included in an econo-
metric equation, so that the specification of the lag structure using
estimated cross-correlation functions becomes difficult, if not impos-
sible in practice.

(2) The assumption that all the variables in the model are generated
by a vector ARIMA process may be unrealistic. For instance, struc-
tural changes, which occur frequently in econometric models, can be
modeled by expanding the set of explanatory variables, using dummy
variables or products of explanatory variables and dummy variables.
A structural change in the parameters of the ARMA process of x does
not hamper the analysis of the regression function of y on x as long
as the marginal process for x is of no direct interest in the analysis.
Nevertheless, if one wants to transform the process of x into a white
noise, the presence of a structural change in the process for x will
complicate matters substantially. Special cases such as the effect of
interventions on a given response variable in the form of changes in
levels have been studied by Box and Tiao (1975).

(3) Mostly, the forms and the parameter values of the linear filters which
prewhiten the variables are not known but have to be determined
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empirically. Owing to the small samples available in many econo-
metric studies, the estimates of the univariate ARIMA models are
often not very precise and their use may crucially affect the results of
the subsequent analysis.

(4) In tests on the cross-correlations of prewhitened series, the favorite
null hypothesis is that of independence of the series. Under this
hypothesis, the population correlation coefficients of the prewhitened
series are zero and the asymptotic distribution of the sample cross-
correlations is known. They are independently normally distributed
with mean zero and variance equal to (n − k)−1, with n being the sam-
ple size and k being the order of the cross-correlations. An asymptotic
test of the null hypothesis of independent series is easily constructed.
However, in economic applications, where economic theory indicates
that there is a relationship between endogenous and exogenous vari-
ables, the hypothesis of independence of the series is not the most nat-
ural null hypothesis (see Hernández-Iglesias and Hernández-Iglesias
1980). Rather, econometricians often would like to find out what the
shape of the lag distribution between y and x looks like, given that
there exists a relationship between the series.

(5) Finally, for the use of autocorrelations and cross-correlations, sta-
tionary series are needed. In regression analysis, one can dispense
with this requirement. In fact, the mean of the endogenous vari-
able is assumed to vary with the explanatory variables. Also, the
non-stationarity of the regressor variables may sometimes help to
increase the precision of the regression coefficients estimates and
forecasts.

Although the time series approach is not always appropriate in econo-
metric applications, it can be very valuable when a bivariate or a low
dimensional vector time series model constitutes the appropriate frame-
work of analysis. For instance, when the aim of an application is to fore-
cast an economic series, y, the use of a leading indicator, x, may increase
forecasting precision. Similarly, when y has to be controlled through x,
knowledge of the regression function for y can be useful if not requisite.
Sometimes, economic theory implies testable restrictions on the parame-
ters of a joint time series process, such as the absence of Wiener–Granger
“causality” in one or both directions. Here, too, the usefulness of vector
time series models has been demonstrated. From the discussion in this
section, we conclude that in empirical work one has to combine the best
features of the time series approach with existing econometric techniques.
In the next subsection, we shall present the SEMTSA, which is a blend
of econometric and time series methods.
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2.3 Structural econometric modeling and time series analysis

Continuing research efforts during the 1970s . . . led to a combination of
econometric and time series methods and their joint application in econo-
metric modeling. Under the influence of modern time series analysis, the
role of the data for the choice of a specification has become very impor-
tant. Besides a large number of theoretical contributions, many empirical
studies have been done. A more detailed survey can be found in Palm
(1981).

In this subsection, we shall discuss the predominant features of the
SEMTSA of regression models and behavioral equations.

2.3.1 Testing restrictions In the SEMTSA, economic theory and other
subject-matter considerations such as institutional knowledge, relation-
ships established empirically for similar data are used to specify a model
and to formulate restrictions on the model. The restrictions and the
assumptions underlying the model are formally confronted with the infor-
mation in the data. Restrictions that are not contradicted by the sample
information are incorporated in the model. Hypotheses regarding lag
length, parameter stability, and exogeneity are tested.

Examples of restrictions originating from theoretical considerations
are:
� A partial adjustment model, adaptive or rational expectations schemes
� Exclusion restrictions as a result of some causal mechanism
� The requirement of homogeneity of degree zero or 1 with respect to

some or all explanatory variables, such as, for example implied by mod-
ern demand theory

� An “error correction” mechanism, such as introduced by Davidson
et al. (1978), an “integral correction” term proposed and applied by
Hendry and Von Ungern-Sternberg (1980).
The index models introduced by Sargent and Sims (1977) also include

theoretically plausible restrictions. Dynamic econometric models based
on more sophisticated optimizing behavior such as presented by Sargent
(1981) obviously have an economic interpretation.

Among the restrictions that are easily imposed on the model without
having necessarily an economic interpretation, we mention the Almon
lag polynomials, which are equivalent to linear restrictions on distributed
lag coefficients and the common factor restrictions leading to a regres-
sion model or a structural equation with autoregressive disturbances (e.g.
Sargan 1964). However, testing the non-linear restrictions implied by the
presence of common factors can create problems (see Sargan 1980).
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2.3.2 From general to specific considerations In several . . . contributions
to econometric modeling, the authors advocate – for very different rea-
sons – starting the specification analysis with a fairly general model, that
is, a model with a sufficient number of explanatory variables and lags for
the true model to be nested within the initial model. For instance, Sims
(1980a) argues that we generally do not have strong a priori knowledge
(restrictions) to impose on the model. As an alternative to the tradi-
tional SEM, Sims uses multivariate autoregressive models that have a
large number of unrestricted parameters.

In order to formulate an initial model, that includes the data-generating
process, Zellner and Palm (1974) expand the small Haavelmo model
by specifying finite-lag polynomials for the disturbances and for those
variables, for which the dynamics were very uncertain. Their analysis is
an example of a “bottom-up” or “specific-to-general” approach. (For a
discussion of the advantages of a “bottom-up” approach compared with
a “top-down” approach, see Zellner 1980.) A general initial model in a
specification analysis can be obtained from a simple model by expanding
the dynamics of those equations, for which the lag structure is a priori
indeterminate.

Mizon (1977) and Mizon and Hendry (1980), among others, propose
to start with a general model, specifying a uniquely ordered sequence of
nested hypotheses and compare them using formal statistical tests.

Although starting with a loosely parametrized model implies a loss of
degrees of freedom and possibly the presence of high multicollinearity
between the regressors, it reduces the danger of analyzing models that
are overly restricted. In agreement with Zellner and Palm (1974), reject-
ing the nested model, when it is true, will be a less serious error than using
a restricted model, when the restrictions are not true. Similar considera-
tions are sometimes put forward as an argument in favor of a specification
analysis starting with a general model.

The general initial model can be used as a maintained hypothesis
throughout the specification analysis, which aims at searching for the
true model inside the initial model. As long as the true model is nested
in the restricted model under the null hypothesis, Ho, the distribution of
the test statistic under Ho is correct and the data can guide us towards the
true model. Ideally, the investigator will formulate a sequence of nested
hypotheses on the parameters of the initial model and test whether more
restricted versions of the model are compatible with the data. Restrictions
such as discussed in subsection 2.3.1 will be included in the sequence of
hypotheses. Tests of specification in the form of a uniquely ordered nested
sequence have desirable asymptotic properties. They are uniformly most
powerful (see Anderson 1971, p. 263) in the class of unbiased tests. In
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practice, however, selecting a uniquely ordered sequence of hypotheses
will be quite difficult, as several alternative sequences might be a pri-
ori reasonable. Therefore, the investigator will often carry along several
alternative model specifications. In general, when a hypothesis in the
sequence is not rejected by the data, it is imposed on the model. As a
safeguard against misspecification, the serial correlation properties of the
residuals of the restricted model should be checked. The sequence of
tests stops when one hypothesis is rejected or when the last hypothesis
cannot be rejected while the residuals of the most restricted model do
not indicate any misspecification. Starting the specification analysis with
a general model with serially uncorrelated disturbances has the following
advantages:
(1) All the dynamics are incorporated in the systematic (explained) part

of the equation instead of being left in the disturbance term. This
enables the investigator to interpret the parameters more easily in
terms of economic behavior.

(2) The conditions for the identification of the structural parameters
in dynamic models with (vector) white-noise errors can be checked
more easily in practice than those for models with serially correlated
disturbances (see Hannan 1971).

(3) Many of the structural estimation methods and testing procedures
designed for the static SEM can be applied to the dynamic SEM with
white-noise disturbances. If the disturbances of an initial regression
model are uncorrelated and homoskedastic, OLS has well-known
optimal properties besides its obvious computational advantages,
which can be important in a sequential testing setup. In a regres-
sion model with autocorrelated disturbances, but no lagged endoge-
nous variables present, the OLS estimator is unbiased and consistent,
but it is not efficient and the formula for the standard errors for
OLS is no longer appropriate. Similarly, the F- and t-tests for linear
and exclusion restrictions are no longer valid as such (see Kiviet
1979).

Notice that an initial finite order dynamic model with autoregressive
disturbances can be transformed into a higher order finite distributed lag
model with white-noise errors.

If the disturbances of the initial model are generated by a moving aver-
age process, the transformed model has infinite distributed lags and a
finite order starting model can at best be considered as an approximation
to the data-generating process. To limit the size of the approximation
error, the number of lags included in the model will usually have to be
large, which can lead to a substantial loss of degrees of freedom. Finally,
although modeling the moving average process for the disturbances jointly
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with the regression or structural coefficients can be computationally cum-
bersome, it is necessary to achieve efficient estimation.

2.3.3 Model diagnostic checking Under the constant emphasis in the
time series literature on residual correlation analysis and other diagnostic
checks, econometricians have shifted their attention from the analysis of
low order autoregressive and moving average processes to more general
auto-correlation and cross-correlation schemes. Tests, such as the Box–
Pierce (1970) test, have been very useful and have led to the development
of many new tests for the presence of correlation in time series.

Diagnostic checking is synonymous with misspecification analysis.
Given a model, one investigates whether more general models are more
appropriate according to some criterion. It is going from specific to gen-
eral, to use the terminology of Mizon and Hendry (1980) (see also Mizon
1977). Silvey’s (1959) Lagrange multiplier and Rao’s (1973) efficient
score testing principle are well suited for misspecification analysis and
many of the . . . tests developed [in the 1970s] are applications of these
principles. (See Newbold 1981 for a survey of model checking tests.)
Misspecification analysis is and has to be part of thorough econometric
modeling. In the SEMTSA approach, the initial and the most restricted
version of the model will have to be subjected to misspecification
analysis.

2.3.4 Checking the overall consistency of the model Checking the overall
consistency of the model is an important part of econometric modeling.
An econometric model should be consistent with a priori knowledge and
with the information in the data. Granger (1981) provides several exam-
ples of inconsistent models. Points, such as raised in his paper, should
be taken into consideration when formulating a model. In addition, one
should analyze the dynamic properties of the model, check the impli-
cations of the joint data-generating process for the associated marginal
processes, and check the forecasting performance of the model.

One of the first questions asked by model builders is whether the dif-
ferent equations specified separately fit together. Common practice is to
solve the complete model, either analytically, if the model is linear, or
numerically, if the model is non-linear. Implausible values for the multi-
pliers and for the solution of the model may lead to a reformulation of
the model.

Subsequently, the implications of the restricted structural form for the
properties of the transfer functions and the final equations ought to be
checked along the lines proposed by Zellner and Palm (1974, 1975). The
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set of transfer functions associated with the structural form of a dynamic
simultaneous equation model with vector moving average errors is the
solution of the system which expresses each endogenous variable as a
function of its own lagged values, of the current and lagged values of the
exogenous variables, and of an error term which can be represented as a
moving average in one variable. The lag length and the parameter values
for the individual transfer function equations can be determined empiri-
cally and compared with those derived from the structural model. Under
the additional assumption that the exogenous variables are generated by
a multivariate ARMA model, the set of final equations for the endoge-
nous (and exogenous) variables can be obtained after substitution for the
exogenous variables. In the system of final equations, the endogenous
variables are expressed as a set of restricted seemingly unrelated ARMA
equations. The individual final equations can be analyzed, for example,
along the lines proposed by Box and Jenkins (1970).

Any incompatibility between the results of the empirical analysis of
the individual transfer functions and final equations and those derived
from the tested structural form is an indication of a misspecification in at
least one of these forms of the model and can be used to reformulate the
model.

The role of the empirical analysis of the final equation and the transfer
function forms for the structural form and for the properties of a simulta-
neous equation model has been discussed and illustrated by Zellner and
Palm (1974, 1975). They also show how the model can be respecified
when an incompatibility has been detected. The analysis of the final equa-
tions as a means for checking the dynamics of a simultaneous equation
model has been pursued by Trivedi (1975), Prothero and Wallis (1976),
and Wallis (1977), among others.

When the implications of the structural form of the model are in agree-
ment with the results of the empirical analysis of the transfer functions
and final equations, the model can be used to predict postsample obser-
vations. (See Christ 1975 on this point.)

If postsample data are available, the predictive performance of the
structural form ought to be compared with that of the transfer func-
tions and/or the final equations. If it predicts less well than the transfer
functions or the final equations, there are good reasons for believing that
the structural model is misspecified. If all three forms predict badly, the
model is either misspecified or it has been subject to a structural change
during the postsample period.

The predictive performance of the model can be formally checked using
a test based on the distribution of the forecast errors – either assuming
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that the parameters of the model are known (see Hendry 1980) or that
they have been estimated (see Dhrymes et al. 1972).

2.3.5 Some general remarks on SEMTSA The procedure outlined in
the preceding subsections ought to be considered as a guideline for mod-
eling systems of dynamic equations. Zellner (1979) discusses some of the
statistical problems associated with the SEMTSA approach that require
further research.

On many occasions, the data will not contain sufficient information to
validate or reject all the assumptions underlying a simultaneous equation
model, so that the tests will be inconclusive or the investigator has to rely
on untested assumptions.

Also, before starting with the specification analysis, one has to decide
whether a full information analysis of the complete initial model is feasi-
ble and desirable or whether one has to opt for an analysis under limited
information (not necessarily through limited information maximum like-
lihood). Owing to the size of many simultaneous equation models used
in practice, a full information analysis will hardly be feasible for most
instances – except perhaps for models constructed for a small-scale pur-
pose. In addition, one might expect an analysis under limited information
to be robust against errors of misspecification in the remaining equations.
With respect to the single-equation methods applied to a simultaneous
equation model with autoregressive errors, Hendry (1974, p. 576) con-
cludes that they pointed up the existence of misspecification and pro-
vided clues to its solution. About the disadvantages of testing subgroups
of larger hypotheses, as will happen with a specification analysis under
limited information, Darroch and Silvey (1963, p. 557) write: “Separate
tests of h1 and h2 may induce a poor test of h1 ∩ h2 because it is possible
that for some Θ with high probability, L(h1) and L(h2) are both “near 1”
while L(h1 ∩ h2) is small.” For this reason, Byron (1974) suggests testing
the restrictions on single structural equations first and, on the acceptance
of all these tests, to test jointly for all over-identifying restrictions on the
reduced form.

The computational intractability of an analysis under full information
due to the size of the model has been put forward by Drèze (1976) as
an argument in favor of limited information analysis in a Bayesian con-
text . . . Malinvaud (1981) stressed this argument in a call for more
research into estimation and testing procedures under limited informa-
tion. However, limited information estimates and tests are usually not
independent so that full information considerations are needed. In our
application, we opt for an analysis under limited information and formu-
late the restrictions on the parameters of each equation separately.
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3 An application of SEMTSA

3.1 Specification of an initial model

Given that a specification analysis starts with a fairly general model with
possibly white-noise disturbances, we consider the following pth order
VAR model

zt
m×1

= A1zt−1
m×m m×1

+ . . . Apzt−p + B
m×3

s t
3×1

+ δ
m×1

+ γt
m×1

+ ut
m×1

, (3.1)

where zt is a vector of observed random variables, Ai, i = 1, . . . p, and
B are matrices of constant parameters, st is a vector of seasonal dummy
variables denoted by s it, i = 1, 2, 3, and being equal to 1 in the ith quarter
and zero otherwise, δ and γ are vectors of parameters and ut is a vector
of random disturbances assumed to be normally distributed, with mean
zero and covariance matrices E utu′

t ′ = δtt ′ Σ , where δtt ′ is the Kronecker
delta.

In this section, we report the results of an empirical analysis of a
vector autoregressive (VAR) model specified for seven quarterly season-
ally unadjusted macroeconomic variables for the Netherlands. The VAR
model serves as an initial model to which we subsequently apply a spec-
ification analysis, check for possible misspecification and investigate the
overall consistency of the finally retained version of the model.

The sample covers the period 1952–79. Among the chosen variables,
there are the major macroeconomic indicators: Aggregated gross national
expenditures in constant prices (Y) and their price index (P), the unem-
ployment rate (U) and a wage variable (W), nominal money balances
(M) as measured by M2 and a long-term interest rate (R) on govern-
ment bonds, and an index of import prices (PI). Domestic variables are
included in pairs of a real or a nominal variable and the associated price
index. The index of import prices is introduced in order to take account
of some of the effects of changes abroad on the open economy of the
Netherlands. The choice of the variables is quite similar to that made by
Sims (1980a). All the variables, except the interest rate, are expressed in
natural logarithms. Quite obviously this multivariate AR process is not a
complete model for the Dutch economy. If we assume a complete macroe-
conomic model for the Netherlands to be approximately log-linear with
exogenous variables generated by a multivariate ARMA process with lin-
ear trend, the marginal process for the seven variables considered above
will also be a multivariate ARMA model with linear trend. A VAR model
is then an approximation for the marginal ARMA process, from which
all other variables appearing in a complete model for the Dutch economy
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have been eliminated by integration. Although the marginal process is
compatible with a larger model for the Dutch economy, one should keep
in mind that its parameters may not be stable with respect to policy inter-
ventions, other than those in the form of a pure innovation. As will be
seen below, after applying a fourth order VAR filter to the data, little cor-
relation is left in the series. The VAR model is simple in the sense that
its implications for the properties of the data-generating process are well
understood. For instance, it implies that the long-run solution of the
model does not depend on the time path of the variables. Nevertheless,
when using an unrestricted VAR model, one usually violates the Principle
of Parsimony. Our ultimate objective is to arrive at a more parsimoniously
parametrized model that takes account of the correlation in the data and
that can be interpreted in terms of economic behavior.

To detect possible structural changes, the empirical analysis has first
been done for the subperiod 1952–73. Obviously, the choice of the year
1973 is not arbitrary. Two major developments are thought to have
induced a structural change in the Dutch economy; the increase of the
price of oil in 1973 and the change from a regime of fixed exchange rates
to a system with partly flexible rates.

We first fit an unrestricted fourth order VAR model to the seven vari-
ables described above. The variables have been arranged in the following
order: M, W, U, Y, P, R, PI. As expected, the estimates of the unrestricted
reduced form parameters are not very precise. They do not exhibit any
regular pattern. Many coefficients are not significantly different from zero.
The estimates are not reproduced here. Notice also that by fitting a fourth
order VAR model, we estimate the matrix of fourth order partial auto-
correlations. Partial autocorrelations and stepwise vector autoregressions
often play an important role in multiple time series modeling (see Tiao
and Box 1981).

To investigate whether a four-period lag structure is sufficiently general,
the residual correlation matrices for the unrestricted VAR model have
been computed. The overall picture is that the estimated correlations are
quite small. If we use 2T−1/2 (twice the approximate large sample standard
error), with T being the sample size, as a yardstick for the precision of
the estimates, very few residual correlations are significantly different
from zero. We conclude that the fourth order VAR model is acceptable
as a starting point for the specification analysis. Of course, the visual
inspection of the residual correlations is not a perfect substitute for formal
testing of the appropriateness of the starting model with respect to the
lag length. A formal test such as implemented by Sims (1980a) requires
that we extend the set of explanatory variables and is expensive in terms
of degrees of freedom.
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For the period 1952–73, none of the coefficients of the variables M,
W, P, R and PI lagged four periods was significantly different from zero
at conventional significance levels. This result led to the formulation of
the null hypothesis of the coefficients of the five variables listed above.
Using a large sample likelihood ratio test, we get χ2(35) = 47.630, which
indicates that the fourth order lags on the nominal variables are not sig-
nificantly different from zero at a 5 percent level (χ2

0.95(35) = 49.57). It
is plausible that the lags for nominal variables are shorter than those for
real variables.

A similar picture arises for the fourth order VAR model for the period
1952–79. In order to take account of possible structural changes, a
dummy variable, denoted D74 and with value 1 in 1974–9 and zero
elsewhere, has been included in the VAR model.

For the complete sample period, too, it was decided to use a VAR model
excluding the fourth lag of the five nominal variables. The likelihood ratio
test χ2(35) = 55.08 is significant at the 5 percent level. If we correct it for
the loss of degrees of freedom, it will become insignificantly different from
zero. The estimated residual correlations of these VAR models, which
we will call the unrestricted models, are given in tables 3.8 and 3.10
(pp. 124, 128). Keeping the maximal lag for a given variable the same in
all the equations of the model has the advantage that OLS estimates of
the unrestricted reduced form equations separately will also be maximum
likelihood estimates given initial conditions.

After the determination of the lag length, we next formulate restrictions
on the parameters of the reduced form of the VAR model. Quite naturally
one is interested in the exogeneity of PI, which implies block triangular
reduced form matrices Ai, i = 1, . . . 4, in (3.1). (See Geweke 1978 for
a discussion of exogeneity in systems of equations.) For a small country
under a regime of fixed exchange rates, import prices are often assumed
to be exogenous. With pegged exchange rates, policy-makers attempt-
ing to stabilize the exchange rate might generate the exogeneity of the
exchange rate with respect to the policy instruments (see Sims 1977).
These restrictions are easily incorporated and tested.

A large sample Wald test that is equivalent to a likelihood ratio test
yields a χ2(20) = 95.95 for 1952–1973 and a χ2(20) = 115.10 for 1952–
79, which are significant at the level 0.005. For the hypothesis of the block
exogeneity of PI, R, P, Y, and U, the test statistics χ2(30) = 193.69 for
1952–73 and χ2(30) = 141.44 are significant at the level 0.005 too.

In the monetary approach to the balance of payments under a regime
of fixed exchange rates, the variables PI, R, P, Y (and U) are some-
times assumed to be jointly exogenous with respect to the reserves flow,
which forms a component of the money supply. The exogeneity of the five
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variables with respect to M is stronger than what is needed in the mon-
etary approach to the balance of payments. Rather surprisingly, there
is little evidence in our data set pointing towards some block triangular
structure of the VAR process. This also holds true for the joint exogeneity
of the real sector with respect to the monetary sector.

3.2 A limited information analysis of the initial model

3.2.1 Introduction As the hypotheses of exogeneity formulated above
do not seem to be supported by the data, we decide to use the unre-
stricted VAR model as a maintained hypothesis and to analyze it equation
by equation. Our aim is to formulate restrictions that are meaningful in
terms of economic behavior and that are not contradicted by the infor-
mation in the data. For computational purposes, there is little need to
restrict the number of parameters in the fourth order VAR model for
seven variables, although the unrestricted VAR model seems to be highly
over-parametrized. Regularities in and similarities between the VAR mod-
els for different countries and/or different sample periods show up in the
moving average representation (MAR) of these models. Also, many eco-
nomic series seem to follow a random-walk process or some other low
degree univariate ARIMA model. For some series, in particular for finan-
cial data, these empirical findings have been explained and justified by
economic theory (see Samuelson 1965). The regularities in the dynamics
for many economic series point towards the existence of some common
underlying structure. Therefore, testing restrictions on the parameters
of the VAR model may be very useful for exploring, interpreting, and
possibly understanding the dynamics of these models.

A limited information single-equation approach is clearly a second
best strategy in terms of the power or the efficiency of the statistical
procedures. However it is tractable and computationally less demanding
compared with handling the complete model, possibly with non-linear
restrictions. Given the size of our model, we could jointly analyze the
complete model. By using an equation-by-equation approach, we also
hope to get more insight into the performance of a limited information
single-equation analysis, which will often be applied in larger models.

When modeling the equations separately we take the unrestricted VAR
model as a maintained framework in which the alternative specifications
for the single equations will be nested. In this way, the maximum lag
length is determined and the list of predetermined variables needed for
two-stage least squares (2SLS) is given. The following specifications were
chosen using theoretical considerations and the information from the
estimated unrestricted reduced form. Here, the inclusion of a variable
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in differenced form in a specification is equivalent to imposing a linear
restriction on the coefficients of the lag polynomials. As we assume that all
the dynamics are incorporated in the “systematic” part of the model, the
equations can be consistently estimated by OLS or, when more than one
current endogenous variable is present in an equation, by 2SLS. There
is some evidence that 2SLS estimates are not “optimal” in finite samples
(see Zellner and Park 1979). However, the method is easy to implement
and it is also consistent when the structural equation to be estimated is
actually a recursive form equation.

The specification of behavioral (or structural form) equations is a
means of formulating over-identifying restrictions on the reduced form
of the model. Historically, the structural form of the standard economet-
ric model originates from the deterministic models used in economics,
to which a disturbance term has been added. The structural coefficients
usually have economic interpretations and they are assumed to be stable
with respect to policy interventions. Statistically, the structural form cor-
responds to an over-parametrization of the model in order to subse-
quently reduce the number of parameters by means of identifying and
over-identifying restrictions. Given that there are many predetermined
variables in our unrestricted model, it is not difficult to identify the param-
eters in a behavioral equation and more importantly to generate restric-
tions on the reduced form parameters by imposing exclusion and other
restrictions on a behavioral equation. Of course, one can argue that eco-
nomic theory tells us which variables are of importance for the behavior
of an economic agent and that theory is rather silent about the exclusion
of other variables from a behavorial equation. To the extent that over-
identifying restrictions generated in this way are tested and confronted
with the information in the data, the danger of using false restrictions
may be limited.

For the variables M, W, and P, it is possible in the framework of our
VAR model to formulate relationships that have a behavioral interpreta-
tion. The equations for Y and R include the current endogenous variable
P, but the restrictions imposed on the equations for these variables are
basically data-instigated. Finally, for U and PI, we directly impose restric-
tions on the reduced form equations. These restrictions are suggested by
patterns in the parameter estimates of the unrestricted reduced form
equations. One can look at the restricted model as a system consisting
of a set of behavioral equations analyzed under limited information to
which one adds (restricted) reduced form equations to make the model
complete. Any incompatibility with the data-generating process of the set
of restrictions formulated in an equation-by-equation approach should
show up in a joint test of all restrictions considered.
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Table 3.1 Nominal money balances (2SLS)

∆M

1952–1973a 1952–1979b

∆M−1 0.214
(2.025)

0.408
(4.741)

−V−1 −0.055
(4.195)

−0.045
(3.281)

∆P−2 −0.214
(1.875)

−0.059
(0.523)

∆R0 −0.012
(1.222)

0.003
(0.401)

Y0 − Y−2 0.071
(1.046)

0.069
(0.990)

S1 0.027
(3.501)

0.037
(4.669)

S2 0.040
(6.564)

0.044
(6.952)

S3 0.025
(5.154)

0.019
(3.878)

C −0.315
(4.284)

−0.264
(3.443)

Notes:
a SER = 0.013; DW = 1.888; GP = 0.075.
b SER = 0.015; DW = 1.879; GP = 0.609.

The results of the single equation analysis are reported in tables 3.1–
3.7. The symbols ∆ and C are used to denote the first difference operator
and a constant term, respectively. The symbol D74 represents a dummy
variable which is equal to 1 in the period 1974–9 and zero otherwise. A
subscript indicates the number of lags. The variable V denotes the veloc-
ity of money, i.e. V = P + Y − M. Figures in parentheses are t-values (in
absolute value). SER and 2SLS denote standard error of regression and
two-stage least squares, respectively. DW denotes the Durbin–Watson
statistic. GP denotes Godfrey’s (1976) π-statistic for testing for first order
disturbance serial correlation in an equation from a dynamic simultane-
ous equation system. This statistic has an approximate standard normal
distribution. The data and the choice of the specifications for the indi-
vidual equations deserve a short explanation.

The data are quarterly seasonally unadjusted observations on:

Mt = total domestic money balances as measured by M2 in the hands
of the public averaged over the quarter (in million guilders)

Wt = index of weekly wages, according to regulations, private and
public sector, vacations, and other additional pay included, all
adult employees: 1975 = 100

Ut = quarterly average of unemployed males in percentage of total
male employees
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Yt = gross national expenditures in quarter t, in million guilders per
year, expressed in constant prices

Pt = price index of gross national expenditures; 1975 = 100
Rt = average of the interest rates on the three most recently issued

long-term government bonds
PIt = price index of all import goods; 1975 = 100.

3.2.2 Nominal money balances (M) The specification for nominal
money balances can be interpreted as a demand for money function.
The variables that are usually included in an empirical demand func-
tion for money appear as explanatory variables in the equation for M
which has been retained after an extensive investigation into the shape of
a demand for money function for the Netherlands (see Blommestein and
Palm 1980). The relative change of nominal money balances is explained
by the relative change of real total expenditures averaged over two quarters
and of its price index, the change in the interest rate, and by the inverse of
the velocity of money as perceived in period t − 1. This last explanatory
variable – also called error correction term (see Davidson et al. 1978) –
takes account of the effect on the change in money balances of a dise-
quilibrium in money holdings compared with total nominal expenditures
in period t − 1. As such, the specification describes the serial correlation
properties of monetary balances very well. The steady state solution of
the model implies a constant velocity of circulation. The value of the
velocity depends on the rates of change prevailing in a given steady state.
Alternative specifications, in which the interest rate level is included and
which imply that the steady velocity of circulation also depends on the
interest rate level, do not yield satisfactory results. The coefficient of
the level of the interest rate was usually insignificant and had a “wrong”
sign.

The amount of nominal balances is determined by the demand side.
The main policy instruments of the Dutch Central Bank are the discount
rate, credit regulations, which actually take the form of a penalty for
excessive lending by private banks, and interventions in foreign currency
markets to stabilize the exchange rate. To the extent that the determinants
of the demand for money are included in the model, it is not necessary to
include a behavioral equation for the Central Bank in order to complete
the model.

The specification for the demand for money is not entirely stable over
time. Some estimated coefficients change when the sample period is
extended. In particular, the effect of a change in interest rates on the
growth of money balances becomes positive although it is small and
insignificant. In the 1970s, nominal balances measured by M2 have
been affected by heavy variations of short-term interest rates such as the
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interest rate on three-month interbank deposits, which induced substitu-
tion between time deposits and assets not included in M2 (see den Butter
and Fase 1979). Furthermore, the change in the exchange rates system
has had its impact on the behavior of economic agents. Also the com-
position of M2 has changed during the period of observation. The ratio
of currency stock to demand and time deposits decreased in the 1960s
and 1970s. An analysis of the effect of these changes requires a more
disaggregated approach and naturally leads to an extension of the model
or the use of more satisfactory monetary aggregates (see Barnett 1980),
a line that will not be pursued in the present chapter. As the effect of
∆R is small, we retain the specification for both sample periods. Finally,
we notice that when the lagged growth rate of money is left out of the
specification, all parameter estimates have the expected sign. However,
then there is much correlation left in the residuals, in particular for the
complete sample period.

3.2.3 The wage equation (W) The wage equation is a Phillips-curve
type specification in which the relative change in nominal wages is
explained by the unemployment rate and the expected rate of inflation
P∗

t − Pt−1, denoted as ∆P∗
t . We assume that expectations are rational, i.e.

P∗
t = E(Pt | Φt−1), where the expectations are taken, given the model and

the set of variables up to the period t − 1, Φ t−1. Following McCallum’s
(1976) proposal, the equation has been estimated by 2SLS after substi-
tution of ∆Pt for ∆P∗

t . In this way, consistent estimates of the parameters
of the wage equation are obtained. If we assume the “natural” rate of
unemployment to be constant, the empirical finding that the coefficient
of ∆P∗

t is not significantly different from one suggests that there is little
or no long-run trade-off between inflation and unemployment. The con-
stant term can be interpreted as being composed of the “natural” rate of
unemployment and some “autonomous” wage rate change such as due
to an increase of the productivity, the contributions to social security, and
tax rates during the sample period. Notice also that there is some sea-
sonality present in the equation. Phillips-curve type equations are used
in macroeconomic models for the Netherlands (see Driehuis 1972). It
should also be noted that in the reduced form of the restricted model,
wages depend on Pt−1 and Pt−2 with coefficients summing to 0.9, which
implies almost complete compensation for increases in the price index of
total expenditures (table 3.2).

The specifications of the wage equation in macroeconomic models in
which the wage sum per worker in enterprises is usually explained are,
in general, more sophisticated than the specification retained here. Our
choice of explanatory variables is limited through the size of the initial
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Table 3.2 Nominal wages (2SLS)

∆W

1952–1973a 1952–1979b

U−1 −0.0028
(0.694)

−0.0048
(1.801)

∆P∗
t 0.874

(4.630)
0.713
(4.050)

S1 0.017
(2.694)

0.020
(3.786)

S2 0.0028
(0.472)

0.0047
(1.008)

S3 0.0058
(1.162)

0.009
(2.071)

C 0.0063
(1.543)

0.0073
(1.944)

Notes:
a SER = 0.016; DW = 2.47; GP = −2.354.
b SER = 0.016; DW = 2.24; GP = −1.265.

VAR model. Single-equation modeling in the framework of a multivariate
model naturally leads to an extension of the dimension of the model.

3.2.4 Unemployment (U) The specification for the unemployment
rate ought to be interpreted as a restricted reduced form equation. The
variables finally included in the specification have been selected because
their coefficients were significant in the unrestricted reduced form. The
numerical values of the unrestricted reduced form parameter estimates
pointed towards restrictions that could easily be imposed on the parame-
ters. The plausibility of the results in terms of the sign of the parameters,
of the presence of some variables, also played a role in the formulation of
the restrictions. For instance, the restricted equation is homogeneous of
degree zero in all nominal variables.

However, when using a formal large sample chi-square test, the restric-
tions imposed on the unemployment equations reported in table 3.3 are
significantly different from zero at conventional levels of significance.
Presently, we retain the restricted version of the equation. In the analy-
sis of the complete restricted model, we shall pay more attention to the
specification of the unemployment equation.

3.2.5 Total expenditures (Y) For the aggregate expenditures in con-
stant prices, an initial fairly general structural equation has been formu-
lated, identified through exclusion restrictions and estimated by 2SLS.
Next, variables for which the coefficients were not significantly different
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Table 3.3 Unemployment (OLS)

U

1952–1973a 1952–1979b

(M − P)−1 −1.522
(3.192)

−1.361
(3.572)

(W − P)−1 1.149
(2.814)

1.032
(3.083)

∆Y−2 −0.680
(1.461)

−1.531
(3.906)

(P − P I)−3 0.085
(0.285)

0.097
(0.432)

∆2 P I−1 −1.628
(3.576)

−1.127
(3.109)

U−1 1.409
(13.60)

1.392
(16.46)

U−2 −0.826
(4.665)

−1.130
(8.535)

U−3 0.513
(2.958)

0.980
(7.415)

U−4 −0.095
(0.894)

−0.266
(2.925)

S1 0.008
(0.073)

0.215
(2.973)

S2 −0.617
(5.937)

−0.279
(4.163)

S3 −0.002
(0.017)

0.091
(1.050)

C 10.08
(3.273)

8.903
(3.605)

D 74 0.173
(2.739)

Notes:
a SER = 0.103; R2 = 0.966; ln L = 79.046; DW = 2.065.
b SER = 0.109; R2 = 0.97; ln L = 93.224; DW = 2.092.

from zero and for which the parameter estimates were implausible have
been excluded. This procedure led to the finally retained specifications
in table 3.4. It seems to be difficult to give the specifications in table
3.4 a behavioral interpretation, given that the variable Y is the total of
the expenditures of all agents in the economy. In the restricted equation,
total expenditures are explained by real money balances, the change in the
unemployment rate, the domestic inflation rate, the foreign price level,
and lagged expenditures.

The specifications in table 3.4 are not homogeneous in the nominal
variables. Several alternative specifications, which were homogeneous of
degree zero in nominal magnitudes or in which the effect of the level
of the interest rate and of the unexpected component of the inflation
rate were introduced, did not yield satisfactory empirical results. That
a priori meaningful restrictions are apparently not supported by the
sample information is possibly explained by the highly aggregate nature
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Table 3.4 Total expenditures (2SLS)

Y

1952–1973a 1952–1979b

(M − P)−2 0.169
(2.304)

0.163
(2.573)

∆U−1 −0.028
(1.116)

−0.006
(0.380)

P0 − P−2 −0.087
(0.451)

−0.055
(0.296)

P I−2 −0.165
(2.830)

−0.099
(4.055)

Y−1 0.406
(3.368)

0.431
(4.208)

Y−2 0.524
(3.945)

0.487
(4.400)

Y−3 −0.302
(2.296)

−0.305
(2.858)

Y−4 0.229
(1.876)

0.152
(1.507)

S1 −0.057
(2.737)

−0.075
(4.871)

S2 0.014
(0.747)

0.005
(0.304)

S3 0.027
(1.246)

0.036
(2.152)

C 1.311
(1.511)

2.115
(2.467)

t 0.0006
(0.626)

0.002
(1.903)

Notes:
a SER = 0.022; DW = 2.002; GP = −0.609
b SER = 0.023; DW = 1.986; GP = −0.428.

of the variable Y. Again, quite naturally one is led to expand the model
through disaggregation of Y into consumption, investment and govern-
ment expenditures, variations in inventory holdings, and other expendi-
ture categories.

3.2.6 The price index of aggregate expenditures (P) The rate of change
of the total expenditures deflator is explained by the relative change in the
wages, the import price, and total expenditures in constant prices. The
rate of change in total expenditures has a negative impact on the rate of
inflation. As the constant term was very small and insignificant, we opted
for a homogeneous specification for the price in the period 1952–73. For
the complete sample period, we include the dummy variable D74, defined
above.

In the specification for the domestic price variable, variations in prices
are explained by changes in the major cost components, wages, and
imports, corrected for the variations in total expenditures. As such, the
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Table 3.5 The price equation (2SLS)

∆P

1952–1973a 1952–1979b

∆W 0.452
(9.375)

0.461
(9.026)

∆W−1 0.133
(2.883)

0.116
(2.636)

∆Y −0.036
(1.984)

−0.035
(1.914)

∆P I−1 0.104
(1.848)

0.048
(1.300)

D 74 0.006
(2.615)

Notes:
a SER = 0.010; DW = 1.919; GP = −0.803.
b SER = 0.010; DW = 2.042; GP = −1.668.

equation is a generalized version of the full cost pricing. (For more details
on the theoretical justification of aggregate price equations, see Driehuis
1972 and Nieuwenhuis 1980.) As the first price equation in table 3.5 is
homogeneous, it has a static equilibrium solution. With the inclusion of a
constant term, that could be interpreted as the effect of cost components
which are not explicitly taken account of, the price equation would not
have a static equilibrium solution. The coefficient estimates are actually
not affected by the introduction of a constant term. Therefore, the solu-
tion of the homogeneous part of the complete model is insensitive too
in this respect. As we shall see in subsection 3.4.3, the predictions for Pt

could probably be improved by the inclusion of a constant term in the
price equation. For the period 1974–9, it is consistent with a steady state
solution of 8 percent per annum.

3.2.7 The interest rate (R) Several specifications have been fitted to
the interest rate. The closed economy version of the Fisher equation stat-
ing that nominal interest rates equal the anticipated real rate of interest
plus the expected rate of inflation is not very useful in this context. Fur-
thermore, it requires a model for the ex ante real rate of interest which has
apparently not been constant in the Netherlands during the period 1952–
79. For our data, the closed economy version of the Fisher equation com-
bined with alternative simple models for the ex ante real rate of interest did
not yield standard errors of regression smaller than 2 percentage points.

An open economy version of the Fisher equation requires a two-regime
model. For the period of fixed exchange rates, one ought to expect the
domestic interest rates of a small economy to be closely linked to the
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Table 3.6 The interest rate (2SLS)

R

1952–1973a 1952–1979b

R−1 0.954
(34.72)

0.928
(41.63)

−V−1 −0.359
(1.012)

−0.953
(2.847)

P I−1 − P I−3 2.426
(2.604)

2.080
(2.644)

∆U−2 −0.240
(1.425)

−0.424
(2.309)

P0 − P−2 3.039
(1.984)

0.819
(0.363)

S1 −0.043
(0.416)

0.053
(0.450)

S2 0.130
(0.769)

0.372
(2.187)

S3 0.164
(1.106)

0.368
(2.460)

C 1.845
(0.977)

−5.103
(2.810)

Notes:
a SER = 0.197; DW = 1.621; GP = 1.579.
b SER = 0.289; DW = 1.665; GP = 1.649.

interest rates on international money markets. In a regime of flexible
exchange rates, foreign interest rates and the spot and forward exchange
rates are the major determinants of the domestic interest rates. For both
regimes, the set of variables in the model has to be extended in order to
get a theoretically satisfactory relation for the interest rate.

In this chapter we do not follow this line, but try to specify a parsi-
moniously parametrized equation for the nominal interest rate on gov-
ernment bonds. This is done along the lines of the approach that we
applied to the total expenditures in constant prices. In table 3.6, the
nominal interest rate is explained by the liquidity ratio, the rate of infla-
tion of imports, the domestic inflation rate averaged over two quarters,
the change in the unemployment rate, and the lagged nominal interest
rate. The presence of a slight seasonal pattern shows up in the specifi-
cation. The explanatory variables included in the equations of table 3.6
also appear in the interest rate equation of some macroeconomic models
for the Netherlands. Notice that the rates of change are not expressed as
percentage points but as fractions. The estimate of the coefficient of the
domestic price change, which is also a consistent estimate of the coeffi-
cient of the expected inflation rate, differs from the value that it ought
to take according to the Fisher equation. Finally, the results in table 3.6
suggest that the coefficient of R−1 is insignificantly different from 1, so
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Table 3.7 The price of imports (OLS)

PI

1952–1973a 1952–1979b

∆M−2 0.354
(2.635)

0.245
(2.077)

(P − W)−2 0.206
(3.483)

0.176
(3.080)

∆P−2 0.391
(2.952)

0.360
(2.459)

Y−2 0.161
(3.548)

0.080
(1.706)

PI−1 0.899
(24.63)

0.987
(61.608)

S1 0.018
(3.610)

0.017
(3.153)

S2 0.015
(2.290)

0.018
(2.713)

S3 0.011
(1.720)

0.008
(1.271)

C −1.607
(3.078)

−1.049
(1.799)

t 0.0003
(0.410)

0.0010
(1.426)

T 89 0.167
(8.563)

Notes:
a SER = 0.016; R2 = 0.94; ln L = 236.047; DW = 1.37.
b SER = 0.018; R2 = 0.99; ln L = 281.72; DW = 1.38.

that a specification in which the change in the interest rate is explained is
in line with our empirical findings.

3.2.8 The import price (PI) One would have expected that this vari-
able passed the exogeneity test for the period of fixed exchange rates, as
the import price is the product of the exchange rate times the price of
import goods expressed in foreign currency, which could be assumed to
be exogenous. Given that we had to reject the exogeneity of the import
prices, we decided to adopt a strategy of restricting the reduced form
equation for the import price. The results of our analysis are reported
in table 3.7, where the price of imports is explained by the change in
money balances and domestic prices, the level of total expenditures, real
wages, and lagged import prices. The estimated coefficient of the lagged
import price is very close to 1, suggesting that the data support a speci-
fication in which the rate of change of import prices is the variable to be
explained. A dummy variable, T89, has been included for the first quar-
ter of 1974, when the shock of the oil price increase worked through in
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import prices. Notice that the variable T89 has not been included in the
unrestricted initial model. As the import price series includes prices of
primary, intermediate, and final import products, it is again difficult to
give an interpretation in terms of economic behavior of the specification
finally chosen. The signs of the estimated coefficients are in line with what
one expects. For instance, an increase in the domestic rate of inflation
may be expected to lead to an increase of the price of the competitive
import commodities and/or to an increase in the rate of exchange.

To summarize, whenever possible, we fitted a specification with theo-
retically meaningful restrictions. Thereby, we limited ourselves to linear
relationships among the seven variables listed above and with maximum
lag equal to 4. When it was too difficult to formulate a behavioral rela-
tionship owing to the limited number of variables included in the model,
we restricted the single structural or reduced form equations using the
information in the data.

The model consisting of the equations reported in tables 3.1–3.7 will be
called the “restricted model.” It implies a plausible block recursive (Wold)
structure for the systematic part (the disturbance covariance matrix is not
block diagonal) of the model for the observable variables:

Past →
W → P → R → M

U ↑↓
P I Y

↗ (3.2)

The variables for the labor market and the import price are explained
by predetermined variables only, whereas the remaining variables are
jointly determined as indicated in the graph (figure 3.2, p. 135). It is not
surprising that wages are not simultaneously determined with prices, as
the correction of wages for price inflation usually takes place two times a
year, i.e. with a delay of one quarter on average. Similarly, the nominal
variables R and M are instantaneously affected by changes in aggregate
expenditures or the price index of aggregate expenditures, whereas they
influence the labor and commodity market variables with a lag of one
quarter. One has to be careful when interpreting the restricted model.
Only the equations for M, W, and P have a behavioral interpretation.
For the variables R and Y, the structural form equations were purely
instrumental in generating restrictions on the reduced form equations
for the remaining variables in the system. The reduced form equations
for these variables have been added to the behavioral equations of M, W,
and P to obtain a complete system representing the marginal process for
the seven variables considered in this chapter.

The number of parameters in the initial model (196 for 1952–73, 203
for 1952–79) has been reduced by more than two-thirds (64 for 1952–73,



122 Franz C. Palm

67 for 1952–79) among which there are 18 seasonal parameters. Three
additional parameters have been included to take account of the struc-
tural changes that occurred after 1973. Given that the restricted model
is a low dimensional marginal process, from which variables (e.g. policy
instruments) that could lead to a structural change in the parameters
have been eliminated by integration, its parameters seem to be fairly sta-
ble over the sample period. Although 11 out of 40 coefficients other than
constant terms, seasonal, and trend coefficients change by a factor more
than two, only the estimates of the coefficient of U−3 in the unemploy-
ment equation, of the constant term in the interest rate equation, and
the coefficient of PI−1 in the import equation change by more than two
coefficient standard errors for 1952–73. A fully satisfactory treatment of
the parameter instability requires an extension of the model. We have
achieved a substantial reduction of the number of parameters, although
we claim neither that our model is the most parsimonious parametriza-
tion of the VAR model nor that we have not imposed any false restriction.
With exception of the dummy variable T89 in the import price equation
for the complete sample period, the restricted model is nested in our
starting model.

The estimates of the restricted model are not fully efficient as they
are single-equation (limited-information) estimates. Owing to the non-
linearity of the restrictions implied by the rational expectations assump-
tion and the still fairly large number of parameters in the restricted model,
it is difficult to obtain fully efficient parameter estimates for testing all
restrictions jointly, as suggested by Byron (1974). A likelihood ratio test is
based on the quotient of the determinants of efficiently estimated reduced
form disturbance covariance matrices for the unrestricted and restricted
models, respectively. When comparing the determinant of the 2SLS resid-
ual covariance matrix with that of the estimated unrestricted VAR model,
one obtains an upper bound for the likelihood ratio, i.e. a test statistic
that is biased towards rejection of the restricted model. These bounds
are 336 for the period 1952–73 and 324 for the period 1952–79 (or 224
and 242.6, respectively, if we correct for the loss of degrees of freedom
as Sims 1980a suggests). Three-stage least squares (3SLS) estimates are
not fully efficient asymptotically, as the non-linear restrictions implied
by the rational expectations hypothesis are ignored. A joint test based
on 3SLS estimates under the null hypothesis yields approximate likeli-
hood ratio statistics of 133.3 for 1952–73 and 286.5 for 1952–79 (or 90.7
and 201.6, respectively, when we correct for the loss of degrees of free-
dom), which are asymptotically chi-square distributed with 133 and 137
degrees of freedom, respectively. When estimating the model jointly by
3SLS, we imposed the additional restriction that the coefficient of ∆P∗

equals 1. For the period 1952–73, the restricted model is not rejected at
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conventional significance levels, whereas for the complete period we have
to reject the restricted model, although one should keep in mind that a
test based on 3SLS estimates (which are not exact maximum likelihood
estimates) is still biased towards rejection of the null hypothesis. Also,
when using Akaike’s information criterion, the restricted model would be
rejected at the margin only for the complete period. These results should
be interpreted with care. Little is known about the power of these tests
in small samples and on how to adjust the significance level when sample
size increases. Schwarz’s (1978) large sample approximation 1n K01 =
−1/2[χ q

2 − q1nT ] for the posterior odds ratio K01 of two alternative
nested hypotheses, where χ2

q is the likelihood ratio statistic, q is the num-
ber of restrictions implied by the null hypothesis, and T is the sample size,
strongly supports the restricted model for both sample periods. Notice
that the posterior odds explicitly take account of the sample size.

Restricting the coefficient of ∆P∗ to 1 yields a Phillips-curve with no
trade-off present in the long run between unemployment and inflation.
Interestingly, this restriction implies that the reduced form equations for
∆W and ∆P are identical, except for the coefficients of U−1 and the sea-
sonal dummies, the constant term, and the error variance. Interpreted
in this way, the restriction does not seem to be implausible. Also, with
this restriction imposed, the 3SLS estimates of the parameters and distur-
bance correlations are very reasonable. Without the additional restriction,
the 3SLS estimates seem to be somewhat ill-conditioned. This is not sur-
prising, given that the number of parameters to be estimated is large.
To conclude, the restrictions imposed on the VAR model are in accord
with the information in the data for 1952–73. For the complete period,
the restrictions are not entirely compatible with the sample evidence – at
least, when 3SLS estimates are used as subsititutes for the exact likeli-
hood estimates. This is probably due to a structural change induced by
the oil price increase in 1973.

3.3 Diagnostic checking

To check the adequacy of the restricted model, we computed the residual
correlation matrices. They are given in tables 3.8–3.11 for the two sample
periods respectively. As the residuals of an equation do not necessarily
sum to zero, the residuals have been taken in deviation from their sample
mean.

The i-jth element of matrix θ in tables 3.8–3.11 is the sample correla-
tion between ûit+θ and ûjt. If we use 2T−1/2 as a yardstick for the signif-
icance of the individual residual correlations, 21 and 27 among the 392
residual correlations are significantly different from zero in the periods
1952–73 and 1952–79, respectively. Among them, there are two and eight
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Table 3.8 Residual correlation matrices for the unrestricted reduced form,
1952–1979

θ = 0

1.00 −0.01 −16 −0.05 0.04 0.03 0.11
−0.01 1.00 0.03 0.13 0.53 0.21 0.08

0.16 0.03 1.00 −0.30 0.08 −0.01 −0.06
−0.05 0.13 −0.30 1.00 −0.19 0.03 0.11

0.04 0.53 0.08 −0.19 1.00 0.14 0.19
0.03 0.21 −0.01 0.03 0.14 1.00 0.39
0.11 0.08 −0.06 0.11 0.19 0.39 1.00

θ = 1

0.02 −0.01 0.02 −0.04 0.08 −0.02 0.08
0.08 0.00 0.04 −0.00 0.03 0.03 0.11
0.04 0.05 0.05 0.02 −0.02 0.06 0.08
0.05 −0.00 −0.03 0.03 −0.03 −0.04 −0.07
0.03 0.02 0.00 −0.02 0.18 0.03 0.22
0.01 0.06 0.01 −0.07 0.03 0.04 0.14
0.01 0.06 0.03 −0.04 0.07 0.11 0.37

θ = 2

−0.07 0.01 0.10 −0.06 0.05 −0.03 0.13
0.13 0.03 0.13 0.01 0.11 0.04 0.22
0.00 0.03 0.15 0.04 −0.01 0.01 0.12
0.09 −0.04 0.05 −0.06 −0.02 −0.00 −0.03
0.07 0.08 0.04 −0.03 0.16 0.09 0.26
0.06 0.09 −0.09 0.00 0.16 0.10 0.24
0.06 0.05 −0.03 −0.03 −0.09 0.05 0.09

θ = 3

−0.04 −0.08 −0.06 −0.10 −0.00 0.03 0.24
−0.00 0.01 0.01 0.02 0.12 −0.02 0.11
−0.01 0.07 −0.02 −0.13 0.03 0.17 0.14
−0.02 −0.13 0.04 0.08 −0.01 0.01 −0.08

0.08 −0.06 0.02 −0.01 −0.07 −0.00 0.20
−0.12 −0.11 −0.05 0.03 −0.09 0.10 0.08
−0.05 −0.07 −0.06 0.04 −0.19 0.03 −0.02

θ = 4

−0.00 0.20 0.15 −0.17 0.10 −0.05 0.12
0.04 −0.11 0.13 −0.02 0.11 −0.00 0.13
0.01 −0.03 −0.07 −0.01 −0.15 −0.08 0.12

−0.03 −0.17 0.06 −0.03 −0.02 0.01 0.00
−0.06 0.08 0.05 −0.06 0.11 0.06 0.18
−0.08 −0.07 −0.09 −0.12 −0.04 −0.13 −0.10
−0.08 −0.09 0.07 −0.13 0.01 −0.10 −0.12
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Table 3.8 (cont.)

θ = 5

−0.06 −0.07 −0.26 0.12 −0.03 0.05 0.02
0.08 −0.04 −0.07 −0.03 −0.04 −0.03 0.11

−0.15 0.01 −0.20 0.15 0.03 0.08 0.11
−0.03 −0.10 0.05 −0.09 −0.05 0.00 −0.11

0.13 0.10 0.04 0.01 −0.14 −0.02 0.15
0.01 −0.01 −0.03 0.08 −0.13 −0.12 −0.12
0.01 −0.12 0.07 −0.01 −0.14 −0.12 −0.15

θ = 6

0.13 0.00 −0.04 0.12 −0.02 0.08 −0.04
0.17 −0.08 0.05 −0.02 −0.08 0.03 0.17
0.05 −0.12 −0.13 0.01 −0.14 −0.05 −0.12

−0.05 0.12 −0.05 0.16 0.07 0.07 0.10
0.23 −0.10 0.23 −0.16 −0.15 −0.12 0.01
0.02 0.01 0.02 0.09 0.02 −0.07 0.02
0.14 0.01 0.17 0.02 −0.04 −0.12 −0.10

θ = 7

−0.04 0.08 −0.00 −0.18 0.11 −0.12 −0.11
−0.00 0.08 −0.09 −0.08 −0.04 −0.04 −0.04

0.04 −0.02 −0.19 0.06 −0.09 0.01 0.03
0.02 −0.05 −0.13 −0.08 0.01 0.00 −0.01

−0.02 −0.06 0.09 −0.06 −0.12 −0.15 −0.10
0.04 −0.08 0.07 0.05 −0.11 −0.26 −0.04
0.01 −0.11 0.10 −0.08 −0.17 −0.08 −0.16

θ = 8

−0.02 −0.22 0.12 −0.08 −0.04 −0.16 −0.07
0.08 0.08 0.10 −0.03 0.06 0.04 −0.00
0.03 −0.08 0.10 0.03 −0.13 0.14 −0.09

−0.00 0.21 −0.06 −0.12 0.08 −0.01 −0.04
−0.07 0.03 0.15 −0.05 0.08 0.06 −0.02

0.24 0.12 0.15 0.18 −0.03 −0.04 −0.14
−0.04 −0.02 0.05 −0.05 −0.00 −0.02 −0.02

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 2T−1/2 , T = 108.
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Table 3.9 Residual correlation matrices for the restricted reduced form,
1952–1979

θ = 0

1.00 −0.10 0.14 −0.10 0.02 0.01 0.09
−0.10 1.00 0.01 0.12 −0.19 0.13 0.05

0.14 0.01 1.00 −0.25 0.02 −0.09 −0.02
−0.10 0.12 −0.25 1.00 −0.18 0.03 0.28

0.02 −0.19 0.02 −0.18 1.00 −0.10 0.07
0.01 0.13 −0.09 0.03 −0.10 1.00 0.25
0.09 0.05 −0.02 0.28 0.07 0.25 1.00

θ = 1

0.05 0.04 −0.19 −0.07 −0.04 0.11 −0.10
0.08 −0.12 0.05 0.04 0.12 −0.15 −0.05

−0.04 0.09 −0.05 0.07 0.08 −0.13 −0.13
0.17 −0.18 −0.16 0.01 0.13 0.11 0.12
0.09 −0.07 0.14 0.11 −0.06 0.05 0.21

−0.11 0.08 0.06 −0.15 0.08 0.16 0.03
0.07 −0.03 −0.11 0.02 0.29 0.19 0.28

θ = 2

0.00 0.17 0.13 −0.08 −0.19 0.16 0.07
0.08 0.00 0.10 −0.00 0.05 0.01 0.12
0.02 −0.10 0.18 0.17 −0.07 −0.13 −0.02

−0.14 0.11 −0.03 −0.09 0.06 0.07 0.05
−0.10 0.07 −0.27 0.16 −0.02 0.08 0.01

0.07 −0.10 0.02 0.05 0.15 −0.04 −0.03
0.13 −0.07 −0.15 −0.06 0.00 0.17 0.01

θ = 3

−0.07 0.05 0.11 −0.07 0.06 0.07 0.10
−0.08 0.04 −0.13 −0.12 0.08 −0.01 −0.05
−0.14 0.07 −0.06 0.03 0.06 0.25 0.04
−0.13 0.00 −0.09 0.12 0.09 0.06 −0.01

0.14 −0.16 0.11 −0.00 −0.14 0.02 −0.04
−0.03 −0.17 −0.07 0.04 0.01 −0.02 −0.07
−0.12 0.09 −0.22 −0.04 −0.04 0.29 −0.01

θ = 4

0.18 0.20 0.33 −0.15 −0.04 −0.13 0.08
0.06 0.03 0.07 −0.01 0.14 0.08 −0.01

−0.05 −0.03 0.14 0.00 −0.02 0.03 0.19
−0.04 −0.12 −0.03 0.06 0.15 −0.02 0.09
−0.10 0.15 −0.02 −0.15 0.12 −0.00 −0.14
−0.03 0.01 −0.07 −0.09 −0.07 −0.16 −0.30
−0.04 0.00 0.11 −0.20 0.09 −0.05 −0.02
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Table 3.9 (cont.)

θ = 5

−0.13 0.04 −0.17 0.17 0.09 −0.05 −0.18
0.05 −0.05 −0.02 −0.03 0.03 0.03 0.14

−0.15 0.06 −0.07 0.21 0.28 0.07 0.06
0.06 −0.09 0.02 −0.08 −0.02 −0.08 −0.00
0.01 0.20 0.04 0.09 −0.20 −0.09 0.02

−0.03 −0.04 0.10 0.05 −0.15 −0.07 −0.20
0.09 −0.05 0.06 0.01 0.06 −0.14 −0.03

θ = 6

0.06 −0.01 0.11 −0.04 −0.06 0.06 −0.07
0.16 −0.00 0.05 −0.02 −0.04 0.03 0.04
0.03 −0.17 −0.05 0.07 0.06 0.00 0.06
0.03 0.04 −0.19 0.22 −0.07 −0.01 0.02

−0.02 −0.04 0.05 −0.01 0.05 −0.11 −0.15
−0.06 0.11 0.13 0.00 −0.02 −0.12 −0.03

0.16 0.10 −0.04 0.06 −0.06 −0.08 −0.04

θ = 7

−0.15 0.15 0.06 −0.11 0.05 −0.05 0.05
−0.02 −0.00 −0.13 −0.07 −0.06 −0.08 −0.18
−0.11 −0.00 −0.16 0.08 0.08 0.10 0.10

0.13 −0.04 −0.05 −0.13 0.00 0.03 −0.07
−0.07 −0.10 0.07 0.04 −0.07 0.02 0.06
−0.00 −0.03 0.10 −0.06 0.12 −0.30 −0.16

0.01 0.06 0.01 −0.13 −0.15 −0.05 −0.25

θ = 8

0.09 −0.11 0.22 −0.13 0.17 −0.15 0.07
0.00 0.21 0.13 0.02 0.00 0.07 −0.01
0.09 −0.04 0.19 0.10 −0.02 0.08 0.03
0.00 0.23 −0.06 −0.17 −0.05 −0.04 0.07

−0.15 0.14 0.06 −0.01 0.20 0.03 −0.02
0.10 0.09 0.16 0.22 −0.13 0.02 0.00

−0.04 −0.02 0.13 −0.11 −0.10 0.04 −0.07

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 2T −1/2 , T = 108.
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Table 3.10 Residual correlation matrices for the unrestricted reduced form,
1952–1973

θ = 0

1.00 −0.14 0.15 −0.04 −0.07 −0.09 0.24
−0.14 1.00 −0.14 0.17 0.42 0.22 0.11

0.15 −0.14 1.00 −0.28 0.06 0.07 −0.09
−0.04 0.17 −0.28 1.00 −0.13 0.01 0.27
−0.07 0.42 0.06 −0.13 1.00 0.14 0.08
−0.09 0.22 0.07 0.01 0.14 1.00 0.31

0.24 0.11 −0.09 0.27 0.08 0.31 1.00

θ = 1

0.01 0.01 0.01 −0.07 0.14 −0.06 0.14
0.08 −0.07 0.05 −0.06 0.03 0.03 0.10
0.02 0.01 0.00 −0.03 0.10 −0.02 0.09
0.15 0.02 −0.01 0.02 −0.04 0.00 0.01

−0.04 −0.03 −0.01 0.01 0.17 −0.04 0.17
0.04 0.04 0.03 −0.03 0.14 −0.07 0.12
0.05 −0.01 0.03 0.05 0.09 −0.02 0.16

θ = 2

−0.17 0.03 0.14 −0.02 0.00 0.04 0.06
0.11 0.01 0.05 0.06 0.13 −0.08 0.11

−0.06 0.04 −0.06 0.04 0.13 −0.01 0.09
0.02 −0.15 0.03 −0.08 −0.06 −0.05 0.05
0.11 0.14 −0.02 0.08 0.17 0.08 0.23

−0.07 0.09 −0.09 0.16 0.03 0.03 0.04
−0.05 −0.07 −0.02 −0.01 −0.21 −0.05 −0.05

θ = 3

0.09 0.06 0.07 −0.06 −0.01 −0.02 0.14
−0.06 −0.08 −0.07 0.06 0.06 0.08 0.04
−0.01 0.04 −0.05 −0.13 0.13 0.19 0.16
−0.03 −0.15 0.08 0.04 0.00 −0.15 −0.13

0.05 −0.11 −0.04 0.07 −0.22 0.12 0.18
0.04 −0.12 −0.05 −0.03 −0.07 0.18 −0.19
0.12 −0.07 0.09 0.04 −0.27 0.05 −0.07

θ = 4

0.07 0.17 0.20 −0.18 0.05 −0.07 0.01
0.07 −0.16 0.18 0.05 0.01 −0.01 0.13
0.01 0.10 −0.11 −0.03 −0.10 −0.06 0.09
0.05 −0.10 0.20 −0.09 −0.04 0.00 −0.01
0.01 0.08 −0.01 0.16 −0.09 0.06 0.14
0.10 −0.12 −0.05 −0.12 −0.06 −0.21 −0.03

−0.02 −0.14 0.13 −0.08 −0.04 0.02 −0.04
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Table 3.10 (cont.)

θ = 5

−0.19 −0.16 −0.05 0.07 −0.06 −0.07 0.01
0.02 0.03 0.00 0.09 −0.14 0.10 0.20

−0.26 0.05 −0.12 0.11 0.01 −0.06 −0.02
0.13 −0.06 0.14 −0.16 0.02 0.10 0.04
0.11 0.10 −0.05 0.14 −0.28 0.16 0.18

−0.02 0.14 −0.02 0.20 −0.02 0.06 0.08
−0.12 −0.08 0.04 −0.04 −0.10 0.09 0.01

θ = 6

0.16 −0.05 0.07 0.18 −0.16 0.13 0.06
0.05 −0.04 0.00 0.14 −0.11 −0.01 0.14
0.08 −0.17 −0.02 −0.05 −0.25 −0.06 −0.22

−0.02 0.14 −0.03 0.03 0.12 −0.06 0.18
0.17 −0.07 0.16 −0.03 −0.10 −0.12 −0.05
0.04 −0.01 −0.12 0.10 0.06 −0.14 0.07
0.01 −0.06 0.04 −0.00 −0.02 −0.01 0.02

θ = 7

−0.11 0.11 −0.11 −0.10 0.10 0.15 0.11
−0.04 −0.01 −0.12 0.02 −0.20 −0.11 −0.16

0.15 −0.06 −0.17 0.03 −0.16 −0.03 0.10
0.01 0.13 −0.05 0.00 0.04 0.11 −0.07

−0.08 −0.24 0.09 −0.04 −0.20 −0.16 −0.15
0.06 0.03 0.01 0.11 −0.14 −0.13 0.05

−0.07 −0.05 0.02 −0.15 −0.18 −0.15 −0.29

θ = 8

−0.18 −0.17 0.13 −0.10 −0.03 −0.16 −0.10
0.09 −0.09 0.07 −0.06 −0.18 −0.00 −0.13

−0.03 −0.13 0.16 −0.01 −0.17 0.12 0.00
−0.01 0.27 0.05 −0.20 0.07 0.10 0.05
−0.04 −0.07 0.18 −0.10 0.07 −0.06 −0.17

0.10 0.09 0.00 0.17 0.00 −0.08 −0.05
−0.23 0.10 −0.12 0.04 0.04 −0.01 −0.08

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 2T−1/2 , T = 84.
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Table 3.11 Residual correlation matrices for the restricted reduced form,
1952–1973

θ = 0

1.00 −0.06 0.12 −0.08 −0.01 0.14 0.19
−0.06 1.00 −0.09 0.19 −0.16 0.12 0.11

0.12 −0.09 1.00 −0.25 0.13 −0.08 0.00
−0.08 0.19 −0.25 1.00 −0.15 −0.10 0.23
−0.01 −0.16 0.13 −0.15 1.00 −0.14 0.11

0.14 0.12 −0.08 −0.10 −0.14 1.00 0.19
0.19 0.11 0.00 0.23 0.11 0.19 1.00

θ = 1

0.02 0.01 −0.02 −0.02 −0.01 0.01 −0.08
0.01 −0.26 −0.03 0.09 0.18 −0.13 −0.13

−0.11 0.22 −0.03 0.15 −0.00 −0.07 0.03
0.14 −0.23 −0.05 −0.01 0.09 −0.02 0.07
0.10 0.01 0.14 0.01 −0.01 0.09 0.09

−0.07 0.13 −0.11 0.12 0.03 0.19 0.05
0.04 0.00 0.00 0.16 0.29 −0.09 0.27

θ = 2

0.10 0.14 0.11 −0.03 −0.17 0.02 0.01
0.00 −0.04 0.15 0.05 −0.02 0.15 0.20

−0.16 −0.08 0.04 0.12 −0.05 −0.13 0.02
−0.19 0.21 −0.01 −0.08 0.04 0.18 0.08
−0.09 0.01 −0.20 0.15 −0.02 −0.12 −0.01

0.26 −0.18 −0.06 0.12 0.09 0.12 0.06
0.11 −0.05 −0.10 −0.03 −0.01 0.02 −0.00

θ = 3

−0.02 −0.04 0.04 −0.01 0.05 −0.07 −0.06
−0.15 0.05 −0.10 −0.12 0.11 0.04 −0.16
−0.06 −0.06 0.09 −0.04 0.07 0.14 0.16
−0.10 0.04 −0.10 0.09 0.11 −0.03 −0.07

0.22 −0.18 0.08 0.02 −0.16 −0.04 0.02
0.09 −0.10 −0.16 −0.08 0.10 0.15 −0.20
0.01 0.05 −0.23 −0.04 −0.02 0.20 −0.03

θ = 4

0.17 0.23 0.25 −0.07 −0.05 −0.04 0.03
0.09 −0.08 0.07 −0.01 0.12 −0.13 −0.05

−0.09 0.00 0.11 −0.11 0.02 0.04 0.11
0.09 −0.14 0.04 0.06 0.14 0.00 0.13

−0.07 0.10 0.03 −0.16 0.06 0.05 −0.09
0.15 −0.08 −0.16 −0.09 −0.10 −0.12 −0.29
0.13 0.01 0.02 −0.17 0.10 0.13 −0.01
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Table 3.11 (cont.)

θ = 5

−0.16 −0.04 0.05 0.25 0.13 −0.12 −0.10
−0.02 −0.06 −0.02 −0.03 −0.04 0.04 0.07
−0.24 0.09 −0.02 −0.18 0.22 −0.08 0.03

0.13 −0.07 0.04 −0.08 −0.02 0.21 0.04
0.06 0.31 −0.04 0.12 −0.20 −0.02 0.02
0.07 −0.14 0.04 0.11 −0.12 −0.12 −0.17
0.09 −0.05 0.18 −0.04 0.08 −0.00 0.02

θ = 6

0.06 −0.10 0.19 0.09 −0.04 0.08 0.00
0.10 0.02 0.02 0.02 −0.09 −0.03 0.00
0.05 −0.15 −0.01 −0.01 −0.01 0.08 −0.01
0.03 0.06 −0.16 0.12 0.03 −0.13 −0.02

−0.01 −0.07 0.04 0.07 0.05 −0.17 −0.13
0.04 0.11 0.01 0.03 0.01 −0.09 0.00
0.26 0.16 0.07 0.02 0.05 −0.11 −0.08

θ = 7

−0.22 0.16 −0.02 0.01 0.02 0.01 0.07
−0.14 −0.05 −0.02 −0.03 −0.15 −0.17 −0.24

0.10 −0.08 −0.10 −0.06 0.10 0.06 0.15
0.07 −0.07 −0.00 −0.08 −0.03 0.03 −0.04

−0.02 −0.16 0.07 −0.05 −0.01 0.08 0.04
−0.03 0.15 0.05 0.15 −0.01 −0.18 −0.06

0.09 −0.01 0.01 −0.05 −0.13 −0.18 −0.30

θ = 8

−0.08 −0.05 0.18 −0.07 0.15 −0.18 −0.01
0.06 0.17 0.05 −0.07 0.02 0.02 −0.02
0.09 0.02 0.20 0.06 −0.00 0.00 0.01
0.00 0.27 −0.04 −0.18 −0.06 0.04 0.11

−0.17 0.16 0.03 −0.02 0.27 −0.02 0.02
0.04 0.11 0.02 0.24 −0.10 −0.07 −0.02

−0.03 −0.04 0.07 −0.07 −0.07 −0.06 −0.04

Note: The underlined figures (in absolute value) are greater than 2 approximate standard
errors, 2T−1/2 , T = 84.
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significant autocorrelations, respectively. Notice that many correlations
are only marginally significant. Although we did not jointly test the vector
white noise assumption of the disturbances, we conclude from the resid-
ual analysis that the restricted model performs fairly well in this respect.
(Compare tables 3.8 and 3.10 with 3.9 and 3.11, respectively.) Few exist-
ing econometric models have been checked for the cross-equation resid-
ual correlations.

3.4 Dynamic properties and forecasting performance of the model

3.4.1 Solving the model After choosing a restricted specification, we
now look into the dynamic properties of the model. Instead of solving
the characteristic equation, which is a polynomial of degree 28, we apply
the simulation approach used by Sims (1980a) to the unrestricted and
the restricted versions of the model. In order to take account of all the
correlation properties of the model while having orthogonal system inno-
vations, we write the model in recursive form. The structural form of a
pth-order VAR model with expectations variables, denoted by z∗

t , can be
written as

C0
m×m

zt
m×1

= C∗
o

m×m
z∗

t
m×1

+ C1zt−1

+ · · · + Cpzt−p

+ D
m×3

s t
3×1

+
m×1

+ βt
m×1

+ ηt
m×1

, (3.3)

where Ci , i = 0, . . . p, C∗
0, D, α and β are matrices and vectors of coef-

ficients respectively, zt, st, and t are defined in (3.1), and ηt is a vector
of normally distributed disturbances with Eηt = 0, Eηtη

′
t ′ = δtt ′Ω, with

δtt ′ being the Kronecker delta. When z∗
t = E(zt|zt−θ , θ = 1, 2, . . .),

the matrices and vectors of the reduced form for the observable variables
given in (3.1), satisfy the following relationships

Ai = FCi , i = 1, . . . p, with

F = C−1
0 [C∗

0[C0 − C∗
0]−1 + I]

B = FD, δ = Fα, γ = Fβ, ut = C−1
0 ηt and

Σ = C−1
0 ΩC′−1

0 . (3.4)

The covariance matrix Σ can be decomposed as Σ = G ΛG ′, where
G is a lower triangular matrix, with diagonal elements equal to 1, Λ is a
diagonal matrix. Premultiplying (3.1) by G−1 yields one recursive form
of the model.
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We write the model in recursive form with the variables arranged in the
following order M, W, U, Y, P, R, and PI, with the recursive and reduced
form equations for PI being identical. The equation for M includes the
current values of the remaining six variables in the model, the equation
for W includes all current endogenous variables except M, etc. Given the
openness of the Dutch economy, we expect that the variables PI, R, and
P are strongly and quickly influenced by changes in the world economy,
while the four remaining variables are also more strongly determined by
changes in domestic economic conditions.

The solution of the model (excluding the seasonals and trend term)
for the effect of a shock in the initial period equal to one standard error
of regression is given in figures 3.1–3.7. This solution is the MAR of a
VAR. It is given by the coefficients of the infinite matrix lag polynomial
[I − ∑p

i=1 Ai Li ]−1GΛ1/2 , with L being the lag operator. We solved the
model for 120 quarters, but we report the response pattern for the first 60
quarters only. The solution of the homogeneous part of the model seems
to be fairly stable. The inclusion of a time trend term in the reduced
form equations takes up most of the instability owing to the sustained
economic growth during almost the entire sample period. The value of
the shock in the initial period is inferable from the figures. For instance,
in figure 3.1, the shock of the restricted model for the period 1952–73
equals 0.012. (See the response of M to shock of M.)

With the exception of the response of M, W, P, and PI to shocks of R
and the response of P to shocks of Y, the MAR of the unrestricted model
is not very sensitive to the choice of the sample period. The empirical
results indicate some instability over time of the impact of shocks of R on
other nominal variables in the unrestricted VAR model. In general, the
unrestricted and the restricted models exhibit a different dynamic behav-
ior. The length of the period and the amplitude of the dominant cycle
increase and the shape of the solution becomes much smoother when
restrictions are imposed. This empirical finding clearly shows that the
dynamic (interim) multipliers of a model can be very sensitive to impos-
ing restrictions on the parameters of the model. Usually, the short-run
response patterns of a variable to its own innovation are similar for the
unrestricted and the restricted model. This result is not surprising given
that the own lags are generously specified in most restricted equations.
The response to own innovations seems to be slightly over-estimated
in the restricted model. Differences between the restricted and unre-
stricted models show up in the cross-effects for some variables. In par-
ticular, the responses of the nominal variables W, P, and R to shocks
of U are reversed when restricting the model, a finding that is a useful
hint on how to improve the dynamic specification of the restricted model.
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Finally, the estimated step response function obtained by summation of
the impact and interim multipliers is usually more robust with respect to
imposing restrictions than the impulse response. This finding is important
for the use of restricted dynamic models for medium- and long-term
policy evaluation.

Similar to the results obtained by Sims (1980a) for the United States,
money innovations have persistent effects on the nominal variables in
the unrestricted model. For the restricted model, the reactions to money
innovations are cyclical. Monetary shocks have some effects on real vari-
ables in the unrestricted model.

The response of U in the restricted model has the same shape for all
seven innovations, whereas the phase of the cycles in the response is dif-
ferent. The unemployment innovation is followed by an accommodating
monetary policy, a decrease in Y first and an increase in Y later on. The
reactions of wages and import prices to an unemployment innovation (in
the restricted model) are similar to those for the US data. They differ
from the pattern obtained by Sims (1980a) for Germany.

The impact of wage shocks on real variables (U, Y) is small in the unre-
stricted model. It takes much longer than for German data, before the
wage innovation has a negative effect on Y. The impact of a wage increase
on unemployment becomes really perceptible after two-and-a half years.
Prices and wages have similar reactions to shocks in all the variables.
Their response to nominal variables is greater than that to real variables.
An expenditure innovation is followed by wage and price increases, by
a reduction in unemployment first and an increase after a lag of two–
seven quarters. Its impact on interest rates is substantial, whereas that on
import prices is negligible. The shape of the reaction of Y, W, and PI to
an impulse in Y is the same for the Netherlands and for Germany. The
impact of an initial price shock on nominal money balances is different for
the two periods (unrestricted model). In the first period, a price impulse
leads to an expansion of money balances, while for the complete period,
the money supply finally reacts negatively to an initial price increase. Real
variables are not too sensitive to a price shock. However, they are affected
by an increase in the interest rates. The reaction of W, P, and PI to P has
a similar shape for the Netherlands and the United States whereas the
responses of M, Y, W, P, and PI to a price increase have similar patterns
for Germany and the Netherlands. In the reaction of interest rates to a
monetary impulse, the Keynesian liquidity effect lasts for two or three
quarters in the period 1952–73. It lasts much longer in the period 1952–
79. The Fisher effect, that increased liquidities lead to more (expected)
inflation and therefore to higher nominal interest rates, is absent from the
unrestricted model for 1952–79. It is interesting to note that for long-term
US interest rates for the period 1952–71, the liquidity effect disappears
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after three–four quarters. (See Taylor 1972.) When money balances are
measured by M1, no liquidity effect shows up for US short-term interest
rates in an unrestricted twelfth order VAR model for monthly postwar
(1948–78) data. (See Sims 1980b.) Finally, import prices have a nega-
tive effect on unemployment, followed by a positive effect, and a reverse
effect on expenditures. The shape of the reaction of PI to its own impulse
in the unrestricted model is similar to that for the United States and for
Germany.

If we assume that the money supply, the nominal wages, and the inter-
est rates are the instruments for economic policy, controlling the money
supply or the interest rates seems to be more effective than wage con-
trols in reducing unemployment in the short run – at least according to
the unrestricted model. When using the restricted model, monetary and
wage policies seem to be more effective in fighting unemployment than
an interest rate policy. They are equally effective in stabilizing the price
level in the short run. Compared with the results for the United States
and Germany given by Sims (1980a), the pattern of the response func-
tions is much more erratic. This is probably due to the use of seasonally
unadjusted data in our study. Notice finally that there is no indication
in the simulation results of absence of Wiener–Granger “causality” (or
of strong exogeneity, which is more stringent; see Engle, Hendry, and
Richard 1980) for any variable in the system as each variable is affected
by shocks in any of the seven variables in the model.

In conclusion, given that imposing restrictions on the parameters can
substantially affect the dynamic behavior of a model, one should carefully
investigate the consequences of these restrictions for the dynamics of
the model. The MAR is a very useful means for verifying the stability
over time of dynamic relationships, checking the dynamic properties of a
model, comparing them with the dynamics of more general models, and
investigating the exogeneity of a variable or a set of variables. Although
the MAR is sometimes very sensitive to the choice of the variables in
the model, there appear similarities in the MAR of models for different
periods, countries, and data sets. These similarities point towards the
existence of some common underlying structure that has to be disclosed
and explained.

3.4.2 The final equation form Next, we check the properties of the
final equations or the univariate ARIMA models associated with the VAR
processes considered in this study. Premultiplying the system (3.1) by the
adjoint matrix of the polynomial matrix operator

A(L) = [I −
p∑

i=1

Ai Li ], A∗(L),
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we obtain the set of final equations associated with (3.1)

|A(L)|zt = A∗(L)[Bs t + δ + γ t] + A∗(L)ut , (3.5)

where |A(L)| is the determinant of A(L). As there are no exogenous
variables in these VAR processes, the analysis of the transfer functions
outlined in subsection 2.3.4 cannot be done. From the results of the
model simulations, we can conclude that the homogeneous part of our
VAR model is stable. Taking annual changes. I − L4, where L is the lag
operator, eliminates a linear trend and seasonal dummy variables. This
transformation of the endogenous variables is expected to yield stationary
seasonally adjusted series, provided the assumptions on the VAR process
hold true.

The empirical analysis of the single series confirmed our findings for
the multivariate model. Very simple schemes are sufficient to model the
seasonals in the series. (See Zellner 1978 for modeling seasonality.) In
table 3.12, we report the estimated autocorrelation functions (ACF) and
partial autocorrelation functions (PACF) of the differenced series, and
in table 3.13, we give the estimated univariate ARIMA models1 for the
period 1952–73. Parsimoniously parametrized specifications have been
chosen after an analysis of the estimated autocorrelation functions. One
root of the characteristic equation associated with the univariate models
for M and for P is slightly smaller than 1. All other roots are substantially
smaller than 1. First differencing apparently induced stationarity, which
confirms the results for the vector processes. We should mention that we
computed the ACFs and PACFs for the complete sample period. The
estimated ACFs and PACFs for W and for P are insensitive to the choice
of the sample period. For Y, the ACFs and PACFs point towards a slight
parameter instability, whereas for M, R, and PI, a structural change in
1974–9 clearly shows up in the ACFs and PACFs. As we had to use sea-
sonal lag polynomials instead of dummy variables in the univariate mod-
els, it becomes difficult to check further implications of the unrestricted
and restricted VAR models for the properties of the lag polynomials of
the final equations. Still, as stated above, the univariate ARIMA models
can be used as a standard of comparison for the forecasting properties of
the VAR models.

3.4.3 The predictive performance of the models Next we compare the
postsample forecasting properties of the unrestricted VAR, the restricted
VAR, and the univariate ARIMA models. Each model has been esti-
mated from the data up to 1973. The multi-step-ahead predictions, we

1 The computations were performed using a computer program for non-linear least squares
estimation developed by C. R. Nelson, University of Washington, Seattle.
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Figure 3.8 Nominal money balances (M), 1952–1980

compute, are minimum mean-square error forecasts of the (logarithms
of the) series given the model, observations up to the original date and
parameter estimates.

In figures 3.8–3.14, the observations (in natural logarithms, except R)
for the period 1952–79 are plotted. We have also plotted the predictions
generated in 1973 for the period 1974–9 using the univariate ARIMA
processes, and the unrestricted and restricted VAR models. Except for Y
and PI, the forecasts of the series using the unrestricted VAR model are
above the realized values, those for the restricted model are below the true
series. The forecasts for the univariate ARIMA models are usually close
to the observed values. The medium-term forecasts of the unemployment
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Figure 3.9 Wages (W), 1952–1980

rate using the restricted VAR model are rather inaccurate. The medium-
term forecasts for U are very sensitive to the effect of the variable
(M − P)−1 (its coefficient has been rounded off to 1.5) in the restricted
equation (see table 3.3), indicating once more that the specification of the
restricted unemployment equation is not entirely satisfactory. Note that
by choosing the year 1973 with the large increase of the oil price and
the change in the exchange rate regime for the Netherlands to generate
forecasts up to twenty-four quarters ahead, we investigate the predictive
performance of the models under rather severe conditions.

To assess the forecast performance of the alternative models for var-
ious forecast horizons, we computed the ratio of the root mean-square
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Figure 3.10 Unemployment (U), 1952–1980

prediction error to the root mean square of the realizations for the period
1974–9. These inequality coefficients denoted by

Ut(�) =


T∑

t=t0
[yit+� − ŷi t(�)]2

T∑
t=t0

y2
i t−�


1/2

,

where yit+� is the realization of (the logarithm of) variable i at time t + �

and ŷit(�) is the �-step-ahead forecast of variable i made at time t, are
basically descriptive measures of the forecasting precision, although one
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Figure 3.11 Total gross expenditures in constant prices (Y), 1952–1980

could design a decision problem that would require minimization of Ui(�)
computed for a single variable. In table 3.14, we report the inequality
coefficients for �-step-ahead predictions, � = 1, . . . 16. The models
have been estimated for the period 1952–73 and re-estimated for the
period 1952–75. For each model, we generate (25 − �) �-step-ahead
predictions, � = 1, . . . 16, for the period 1974–9 and compute the
inequality coefficients. The bias of the forecasts appearing in figures 3.8–
3.14 for almost all models and variables disappears when the model is
re-estimated using data beyond 1973, or when a different origin date is
chosen. Although in practice a forecaster will probably re-estimate his
models as soon as new observations become available, we have only once
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Figure 3.12 The price index of total gross expenditures (P), 1952–1980

re-estimated our models for the period 1952–75 in order to limit the
computations.

In table 3.14, we also give the inequality coefficients for predictions
obtained when smoothness restrictions are imposed on the reduced form
parameters of the unrestricted VAR model. Litterman (1980) successfully
used smoothness restrictions in forecasting US macroeconomic series.
These restrictions can be interpreted as a shrinkage technique or as prior
information in a Bayesian framework. We write the ith reduced form
equation as
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zit =
7∑

j=1

4∑
�=1

αi j�zj t−� +
3∑

k=1

bikskt + δi + γi t + uit. (3.6)

Briefly, in line with Litterman’s approach (for more details, refer to Lit-
terman 1980), because a random walk model fits and predicts many eco-
nomic series rather well, it is used to center the coefficient of zit−1 at one,
i.e. E(αii1) = 1, and all remaining coefficients at zero. All parameters,
except the disturbance variance σ 2

i , bik, and δi, have an informative (nor-
mal) prior distribution. The prior standard deviations (SD) are assumed
to decrease with �:

SD(αi j�) = λ/�, i = j, SD(γi ) = λ (3.7a)

= θλ∂i/�σ̂ j , i �= j, (3.7b)

where λ and θ are parameters to be specified and σ̂ j is the standard
error of regression j. The correlation between αii1 and γ i is assumed to
be −0.7, whereas the remaining coefficients are assumed to be uncorre-
lated with each other. These restrictions can be summarized in a set of
stochastic linear restrictions on the regression coefficients and lead to a
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“mixed estimator” that has been used to generate the forecasts for the
period 1974–9. The parameter λ, which measures the precision of the
smoothness restrictions, takes the values 0.5 and 0.1. When θ = 1, own
and cross-variables dynamics have equal prior weights. For θ = 0.2,
the variance of cross-variables effects is reduced (own weight) by a fac-
tor 25. Formulating smoothness restrictions as proposed by Litterman
(1980) can be interpreted as going from specific to general; that is, the
starting point is a random walk model for which one allows for some
cross-variables interaction. Alternatively, as the smoothness restrictions
force the coefficients of the (finite) AR representation to die out, they ful-
fill a role similar to that of an MA part, which implies that the higher order
coefficients of the (infinite) autoregressive representation of an ARMA
model follow a mixture of exponentials and damped sine waves. Restric-
tions originating from economic theory can also be implemented in a soft
way (“soft theory”) through smoothness restrictions. For a given reduced
form equation, the explanatory variables are subdivided into variables
that are judged important for explaining the endogenous variable, and
the remaining predetermined variables. For the first group of explanatory
variables, the coefficient standard deviation is given in (3.7a), whereas
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that for the second category of variables is given in (3.7b). The lagged
values of the endogenous variable and the price variable P are assumed
to be relevant in all equations. In addition, for M, the first group consists
of Y and R; for W, the relevant variable is U; for U, the relevant variables
are M, W, Y, and PI; for Y, these are M, U, and PI; for P, these are W,
Y, and PI; for R, these are M, U, Y, and PI; and finally for PI, these are
M, W, and PI. Inequality coefficients for models using “soft theory” are
also given in table 3.14.

The results in table 3.14 are very interesting. Despite the fact that
we re-estimated our models only once and that we analyzed the forecast
performance for the period after the oil price increase, the forecasting
performance is very reasonable, with the exception of the accuracy of the
medium-term forecasts for the unemployment variable. The restricted
VAR model predicts (the logarithms of) M and P better than any alter-
native model. For W, the restricted VAR model predicts as well as the
univariate ARIMA model and it predicts better than the remaining mod-
els. Notice that we have been able to formulate behavioral equations for
these three variables taking the unrestricted VAR model as a maintained
hypothesis. As might be expected from the results in figure 3.10, the
unemployment rate is rather inaccurately predicted over a horizon longer
than four quarters when we use the restricted VAR model. Beyond a
horizon of ten quarters, the predictions are worse than zero-level extrap-
olations. This also happens for 15- and 16-step-ahead forecasts of U using
“soft theory” stochastic restrictions with λ = 0.1. For y, the short-run
forecast performance of all the models is almost identical. Over a hori-
zon of sixteen quarters, it is quite similar, whereas over a longer horizon,
the equal weight prior with λ = 0.1 performs better than other models.
Finally, for the import prices, the univariate ARIMA model and the model
with equal weight prior restrictions and λ = 0.1 predict better than the
other models. Contrary to the conclusion from the exogeneity test of PI,
the results in table 3.14 seem to indicate an absence of Wiener–Granger
“causality” from domestic variables to PI.

To conclude, the restricted VAR model seems to predict most of the
variables better than the unrestricted VAR model does. Also, models with
smoothness restrictions imposed generally forecast rather well. However,
there is not a single set of parameter values λ and θ for which the forecast-
ing precision is uniformly better over the different variables and horizons.

Of course, the results in table 3.14 should be interpreted with care.
As we do not have the probability distribution of the inequality coef-
ficients, we cannot use them to formally test the predictive properties.
Approximate forecast intervals can be straightforwardly computed using
the MAR of the model. Also, one could average the inequality coefficients,
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weighting them by a factor inversely related to the length of the forecast
horizon, thereby ignoring the dependence between forecast errors for
successive periods. More work on the forecasting performance of models
analyzed here is in progress.

To see how smoothness restrictions affect the dynamics of the model,
we computed the MAR for the models, when the smoothness restrictions
are imposed on the reduced form parameter estimates for 1952–73. As
an illustration, the graphs of the MAR for M and U are represented in
figures 3.15 and 3.16. With equal weight or “soft theoretical” restrictions
imposed, the MAR for all variables usually has the same shape as that of
the unrestricted VAR model. Own weight restrictions sometimes heavily
distort the shape of the MAR. The conclusion that models with “soft
theoretical” restrictions seem to predict fairly well and have dynamics
similar to those of the unrestricted VAR model is very interesting and
indicates a sensible way of restricting densely parametrized models. The
possible implications of this result for modeling have to be more exten-
sively explored.

To summarize this section, we investigated the lag length and the struc-
tural stability of a VAR model for seven macroeconomic variables for the
Netherlands. Next we tested for the exogeneity of PI and for that of
PI, R, P, Y, and U jointly. Upon acceptance, these restrictions com-
bined with the absence of instantaneous Wiener–Granger “causality”
would imply a block recursive model, for which the transformation of
the structural form into the reduced form would not affect the maximal
lag length within a block. But, given that the exogeneity restrictions had
to be rejected, we restricted the individual equations in the model using
a limited information approach along the lines of traditional econometric
modeling. Thereby, we used the unrestricted VAR model as a frame-
work in which the true model is assumed to be nested. The outcome
of the test of all restrictions jointly is not unambiguous, suggesting that
some of the restrictions might not be correct. We did not find much
evidence in the residual correlations that points towards a misspecifica-
tion of the restricted and unrestricted models. The dynamic properties
of the unrestricted VAR model were found to be different from those of
the restricted one. The accuracy of the forecasts from the unrestricted
and the restricted VAR models and from the univariate ARIMA schemes
is different too. The use of restrictions, either exact or stochastic, often
improves the forecast performance. Both VAR models were found to be
consistent on a number of points with the properties of the univariate
ARIMA schemes.

Finally, although the restricted VAR model can be improved in many
ways, in particular the cross-variables interaction in some equations,
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it does not seem to be very inferior to the unrestricted model, despite the
substantial reduction of the number of parameters. Also, “soft” restric-
tions may be a useful alternative to dogmatic restrictions in econometric
modeling.

4 Some tentative conclusions

In this chapter, we first presented the traditional approach to economet-
ric modeling and several procedures proposed and applied in the time
series literature on modeling bivariate and multivariate processes. Then
we outlined the main features of the SEMTSA, which is an attempt to
integrate econometric specification analysis and time series modeling that
should be complements to rather than substitutes for each other. In the
second part, we applied the SEMTSA to a VAR model for some of the
main macroeconomic variables for the Netherlands. The restricted model
obtained through SEMTSA has different dynamic properties than the
unrestricted one, but it does not seem to be inferior to the unrestricted
VAR model in terms of the results of diagnostic checking and forecast-
ing properties. Certainly, the specification of the restricted model can be
improved. A comparison of the MAR of the restricted and unrestricted
model indicates where the cross-variables dynamics are affected by the
restrictions. One should, of course, allow for sampling errors in the MAR
estimates. For this purpose, it would be useful to compute approximate
confidence intervals for the MAR parameters.

As already indicated earlier, the formulation of behavioral and theo-
retically meaningful restricted relationships often requires the introduc-
tion of additional variables in the model. For instance, the restricted
reduced form equation for unemployment predicts rather badly. How-
ever, there is more information available on the medium-term develop-
ment of the labor market than we used in our model. The change of
the total labor force, the hiring for the public sector can be predicted
fairly well over a horizon of two–three years. However, it is not pos-
sible to model this kind of detail in small dimensional VAR models.
High dimensional VAR models with a rich lag structure still are com-
putationally intractable. When modeling a larger number of economic
variables using a top-to-bottom approach, the general initial model will
have to be obtained from a restricted model by expanding the dynam-
ics of those equations for which the lag structure is very uncertain. The
alternative “bottom-up” approach, which consists of formulating a sim-
ple, parsimoniously parametrized model, usually does not suffer from
a computational intractability owing to a large number of parameters.
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However, it should be noted that a “bottom-up” approach often has
elements in common with a “top-down” approach. For instance, the
“bottom-up” approach proposed by Box and Jenkins (1970) (for mul-
tiple time series, see Tiao and Box 1981) starts with an analysis of the
autocorrelations and partial autocorrelations, i.e. an analysis of a very
dense parametrization of a second order stationary process. For the gas
furnace data, Tiao and Box (1981, p. 813) show that the correct model
structure could not be detected if only very low order vector autoregres-
sive processes were considered as is sometimes done in a “bottom-up”
approach.

Clearly, a better understanding of the interaction of economic variables
in time is needed. We fully agree with the statement by Nerlove (1972,
p. 277): “Without strong theoretical justification for a particular form
of lag distribution, and perhaps even strong prior belief about the quan-
titative properties of that distribution and the factors on which those
properties depend, it is generally impossible to isolate the lag distribu-
tion in any very definitive way from the sort of data generally available.”
However, we want to add that a theoretically justified dynamic model only
lacks a confrontation with “hard facts,” i.e. the empirical validation of the
model.

Finally, a number of questions arise with the formal procedures for
econometric modeling in general. The statistical properties of the proce-
dures presented and applied in SEMTSA are only partially known. Quite
often, one has to reject a set of restrictions tested at once or sequen-
tially when the overall size is fixed at conventional levels (e.g. using the
Bonferroni inequality or the Scheffé procedure). This happens for the
large sample chi-square test even if one corrects it for the loss of degrees
of freedom as Sims (1980a) does. More research into the finite sample
properties such as the power of the sequential tests used in specification
analysis is needed and it is expected to be very rewarding. The contribu-
tions to the field of pretest estimators may be very valuable, too, although
some areas of application of pretesting which are relevant for SEMTSA
are still relatively unexplored.

Instead of looking for the statistical properties of the modeling pro-
cedure as a whole, one can interpret it as a pursuit of consistency of
the accepted model in its different forms with the information available
such as a priori information on structural parameters and on multipliers,
the conformity of the autocorrelations of the endogenous and exogenous
variables and the residuals of the different forms with the properties of the
autocorrelation functions implied by the finally accepted model. Many
econometricians consider this as a minimum requirement.
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APPENDIX DATA SOURCES

The series M, U, Y, P, and R have been collected at De Nederlandsche
Bank NV, and were kindly provided to us by Professor Dr. M. M. G.
Fase. The series W and PI are published in Maandschrift van het C.B.S.
(Den Haag, Centraal Bureau voor de Statistiek).
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Comment (1983)

Carl F. Christ

In science, two opposite approaches are useful. One is to begin with a
theory and test it against data. The other is to begin with data, look for
regularities, and seek to build a theory to account for them.

Structural econometric modeling (SEM), in principle, begins with a
theory and tests it against data. I agree with Professor Palm that the spec-
ification chosen for the theory is of crucial importance. Unfortunately,
there is no systematic method for discovering a good theoretical specifi-
cation. I agree also that it is desirable to begin with a model that is general
enough to include the correct model as a special case, and then appeal to
data to narrow the general model down to a more specific model. Unfor-
tunately again, it’s hard to begin that way, because models that are simple
enough to be tractable are not necessarily general enough to include the
correct model.

Time series analysis (TSA) seeks to discover empirical regularities that
connect current and past observations of variables and that have purely
random error terms. When I first encountered TSA, it struck me as a
mindless method of data-mining, using no knowledge or theories about
the subject matter being studied. However, SEM regards certain variables
as exogenous, and supposes no knowledge of the processes that determine
them. Hence, the proposal by Zellner and Palm (1974) to combine SEM
for a set of variables designated as endogenous with TSA for a set of
variables designated as exogenous appears promising.

The ARIMA equations obtained from TSA for exogenous variables
need to be tested against future data, just as do the econometric equa-
tions obtained from SEM for endogenous variables given the exogenous
variables. Do the equations and parameter values fitted to past data con-
tinue to fit future data as expected? If not, they are suspect. If so, we may
have tentative confidence in them.
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Palm tells us that if all methods predict the endogenous variables
poorly, then either the model is misspecified or it has been subjected to a
structural change. I suggest that an apparent structural change is a case of
misspecification, in this sense: If we can explain the structural change, we
can then specify a more general model that will give a unified explanation
of events both before and after the apparent structural change.

Palm begins with brief descriptions of SEM and TSA. Then, he
describes and recommends techniques that can be used to combine them,
once an initial model has been chosen that is general enough to include
the correct model as a special case nested within the general model.

In the remainder of [chapter 5], Palm illustrates the use of these tech-
niques by means of a model of the Dutch economy. It is useful to distin-
guish several steps in his procedure.

First, he introduces us to his initial “unrestricted” seven-equation quar-
terly autoregressive dynamic model of the Dutch economy. We learn that
the model is linear in seven endogenous variables and four exogenous
variables. The seven endogenous variables are the interest rate R and
the logarithms of the money stock, the wage rate, the unemployment
rate, real income, the price level, and the import price level. (These logs
are denoted by M, W, U, Y, P, and PI respectively.) The four exogenous
variables include no economic variables: They are a linear time trend and
three seasonal dummies. The unrestricted model contains current values
and four lagged values of each endogenous variable. It has no identifying
restrictions, and hence is unidentified. (Palm wisely does not attempt to
estimate it.) Formally, its structural form can be represented by Palm’s
(3.3).

Second, consider the reduced form of this unrestricted model. It is
represented by (3.1). Palm estimates it by ordinary least squares[OLS],
for 1952–73 and for 1952–79. He doesn’t show the estimates, but he
tells us about them, and shows the residual correlation matrices in tables
3.8 and 3.10 . He concludes that this model “is acceptable as a starting
point.” As noted below, I am not ready to accept this conclusion.

Third, Palm examines the t-ratios of the reduced form coefficients,
and drops the fourth lag of all variables except U and Y on grounds of
insignificance. He tests and rejects the hypotheses that (a) import prices
are exogenous to a subset of six equations, and (b) that the five variables
PI, R, P, Y, and U are exogenous to a subset of two equations. He does
this by testing for block triangularity of the reduced form matrices.

Fourth, Palm specifies a restricted structural model, nested within
the original unrestricted model (except that he now includes two more
dummy variables). He is frank to say that most of the equations of
this restricted model do not have a clear behavioral derivation or
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interpretation. These equations are given in tables 3.1–3.7, along with
2SLS estimates for the same two sample periods. There is very little
simultaneity in the coefficient matrix of these restricted equations. Three
of them are, in effect, single-equation models, each determining the cur-
rent value of a single variable, based on past data. These are the equa-
tions for unemployment (3.3), import prices (3.7), and the wage rate
(3.2). (The latter contains price expectations, but these are assumed to
be based on past data.) The only simultaneity in the matrix occurs next
in the causal chain: Current income and prices are simultaneously deter-
mined by (3.4) and (3.5), based on the previously determined wage rate
and past data. Then, (3.6) determines the current interest rate, based on
the price level and past data. And, finally, (3.1) determines the money
stock, based on income and the interest rate and past data. But Palm notes
that the system is not block-recursive, because the covariance matrix of
disturbances is not block-diagonal. I might add that when the equilib-
rium system is considered (obtained by setting all lagged variables equal
to current values), the system’s coefficient matrix is fully simultaneous,
as determined by the neat method of McElroy (1978). It is a curious sys-
tem from the economic point of view. All seven variables are determined
without reference to any policy variables, or indeed any exogenous eco-
nomic variables. The model ignores taxes, government expenditures, and
Central Bank policy variables.

Fifth, Palm compares the structural estimates for the two periods, and
reports that the parameters of the restricted model seem to be fairly stable
over the sample period. He says this even though, of the 40 parameters
other than constant terms and seasonal dummy coefficients, 11 change by
more than a factor of 2 when the years 1974–9 are added to the sample.
He also performs several tests of the restricted model, some of which
reject it for the longer sample period (1952–79).

Sixth, Palm estimates the reduced form of the restricted model. Again
the estimates are not presented, but the residual correlation matrices are
shown in tables 3.9 and 3.11.

Seventh, for forecasting purposes, he forms a recursive system from
the reduced form (3.1) by premultiplying it by the matrix G−1, which
diagonalizes the covariance matrix of disturbances. (See (3.4) and the
paragraph following it.) The recursive system is used to obtain dynamic
multipliers, plotted in figures 3.1–3.7 for both sample periods and for
both the unrestricted and restricted models. The two models yield very
different dynamic multipliers, as Palm notes. This means that it’s very
important to know which of the models (if either) is close to reality.
Changing the sample period makes a substantial difference to the unre-
stricted model multipliers in about half of the 49 cases.
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Eighth, Palm obtains the univariate ARIMA equations (the final equa-
tion forms), and exhibits them in table 3.13 . The autoregressive process
order never exceeds 4, and in six of seven cases is 0 or 1 or 2. The mov-
ing average process order never exceeds 4, and in four of seven cases is
zero.

Ninth, Palm presents and summarizes forecasts (table 3.14 and fig-
ures 3.8–3.14) made by the two recursive forms (of the unrestricted and
restricted models) and the univariate ARIMA models. There are some
very bad forecasting errors, especially for unemployment via the recursive
forms (errors of 38 percent–150 percent for forecasts two to four years
ahead). Four years ahead, the ARIMA forecasts are either best or second
best among the three for every one of the seven variables. That doesn’t
speak very well for either of the structural models.

The imposition of smoothness restrictions on the reduced form of the
unrestricted model makes a modest improvement in its forecasting ability
for income and the interest rate. (See table 3.14.)

Let us reconsider the unrestricted seven-equation model described
above, from which Palm’s analysis began. He tells us that it “is assumed to
be sufficiently general to include the data-generating process.” I regard
this model as a useful vehicle for illustrating the techniques he has in
mind. But surely the “data-generating process” for the Dutch economy
is not captured by such a simple linear quarterly difference equation
model of seven endogenous variables with four lags. Where is monetary
policy represented in this model? Fiscal policy? Foreign exchange policy?
International trade and investment? The stock of productive resources?
Productivity?

Palm concedes that “quite obviously” his fourth order multivariate
autoregressive reduced form (3.1) is not a complete model of the Dutch
economy. He claims, however, that it can be considered as an approxi-
mation to the reduced form of a complete model of the Dutch economy,
from which all but his seven variables have been eliminated by integra-
tion. (This claim is weaker than the assumption that the seven-equation
model is “sufficiently general to include the data-generating process.”)
The claim may be correct. It has testable implications about the behavior
of variables that belong in a complete model of the Dutch economy but
do not appear in Palm’s seven-equation model. It would be desirable to
test these implications empirically before accepting Palm’s claim.

In conclusion, the statistical testing methods illustrated here are inter-
esting and promising. Structural econometric model builders will do well
to learn more about them. But the method of obtaining the unrestricted
and restricted models, and the seven equation models so obtained, are
seriously flawed, in my judgment.



Comment 169



McElroy, F. W. (1978), “A method of causal ordering,” International Economic
Review 19, 1–23

Zellner, A. and F. C. Palm (1974), “Time series analysis and simultaneous equa-
tion econometric models,” Journal of Econometrics 2, 17–54; chapter 1 in this
volume.

Comment (1983)

Christopher A. Sims

There are very few examples in the econometric literature of economy-
wide models estimated with serious attention to their properties as multi-
variate stochastic processes. The model Palm estimates in his [chapter 3]
is one of these examples, and it deserves imitation and extension. I believe
that what Palm is doing here is important, and I have only small disagree-
ments with the way he specifies, estimates, and presents his model.

Since there is so much work underlying the chapter, I cannot mention
every aspect of it that merits special commendation or criticism. Let me
begin by drawing attention to Palm’s extensive use of plots of the mul-
tivariate moving average representations of models with different speci-
fications as ways of comparing them. Like the autocovariance function,
the spectral density, and the autoregressive representation, the moving
average representation is a complete summary of the second order prop-
erties of the model. All these ways of summarizing a model’s properties
are also connected to the model’s forecast accuracy in a natural way – if a
sequence of models has forecast error variances converging to the forecast
error variance of the true model, it must also have moving average rep-
resentations (and autocorrelation functions, and spectral densities, and
autoregressive representations) converging at least pointwise to their true
values. In this, these summaries differ from some other apparently natural
ones. Lag lengths, parameter values, and characteristic equation roots in
a sequence of ARIMA models can stay arbitrarily far away from those of
the true model while forecast errors converge to those of the true model.
Thus, models that appear to be very different in terms of their ARIMA
parameterizations may have similar second order properties. It is worth-
while, therefore, to compare their moving average representations to see
whether and how they differ.

As compared to the other summaries which connect naturally to fore-
cast error, the moving average representation has the advantage that it
can be interpreted as a set of simulations of responses to typical “shocks.”



170 Christopher A. Sims

These shocks, in turn, often invite behavioral economic interpretation.
(Some would even argue that they make such interpretation misleadingly
natural.) It appears to be more difficult to interpret the other summaries
in most circumstances. The spectral density is valuable for intepreting
models of seasonal data, despite the appearance of imaginary numbers
in its multivariate form. The Fourier transform of the moving average
representation might combine some advantages of the spectral density
and the moving average representation; John Geweke of the University
of Wisconsin has . . . [made] use of functions of the Fourier transform of
the moving-average representation in interpreting multivariate economic
time series models. The coefficients of the autoregressive representation,
when treated as real valued functions of the lag, will have highest power
(largest absolute values of their Fourier transforms) at precisely those
frequencies where the spectral density is smallest. This means that for
smooth economic time series, the coefficients of the autoregressive rep-
resentation are likely to be oscillatory and erratic, making them difficult
to interpret directly.

I wish Palm had gone a bit further (of course this is unfair, consider-
ing how much work he has already done) in using the differences in the
moving average representations (MARs) and other diagnostic devices he
employs to determine what it is about his restricted model that gives it
such a strong predictive advantage over all the other models for M and
P and over all the other multivariate models for W. Correspondingly,
he might have gone further to discover why all the multivariate models
do so much worse than the univariate model for U. He suggests that,
since the restricted model does nearly worst of all the models at predict-
ing U, the restrictions on that equation deserve special scrutiny. But it
is not necessarily true that the restrictions on the U equation are pri-
marily responsible for the model’s poor performance in predicting U. It
could even be that the same restrictions which help predict M are mak-
ing the U forecasts deteriorate. That it is not mainly the U equation
restrictions which are to blame is borne out by the fact that all the mul-
tivariate models are more similar to each other in their poor forecasts of
U than they are to the much better univariate model forecasts for this
variable.

Palm formally follows the standard textbook prescription for generating
linear restrictions on his simultaneous equations model from economic
theory. Some of the equations are explicitly acknowledged to be reduced
form equations, and we are given no explanation for how a priori theory
leads to restrictions on these equations, though restrictions are imposed.
Two more, those for R and Y, are equations containing more than one
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current endogenous variable, but are explicitly labeled as not having any
behavioral intepretation. For these equations also there is no explanation
of how a priori theory leads to restrictions. The M equation is claimed
to be a demand for money equation, and theory clearly is behind at least
one of the restrictions on it – particularly the omission of level effects
of the interest rate because they proved to be of the wrong sign. But
since the interest rate equation has no behavioral interpretation, how is it
meant to be distinguished from the demand for money equation? Would
it not have been simpler to treat this equation, as well as the Y equation,
as straightforward reduced forms? Perhaps there is a case to be made for
introducing simultaneity into the part of the model that has been specified
on a purely empirical basis, but the case is not made in the chapter. The
W and P equations are claimed to be behavioral, but the claims are weak
in my opinion.

On the whole, Palm’s procedure for introducing restrictions seems to
me reasonable, but in fact nearly entirely an empirical simplification of
the model rather than an imposition of any a priori known information. It
is hard to see in what application the restricted model might be hoped to
be structural in the sense of invariant under a policy intervention, when
the unrestricted model was not.

As I have already mentioned, it is appealing to make certain “natural”
identifications of the disturbances of multivariate time series models and
to use these to interpret the moving average representation. Particularly
attractive, and no doubt often reasonable, is the practice of treating inno-
vations in policy variables as being generated by policy choice, so that
the moving average coefficients on these innovations represent responses
to policy-induced changes in the policy variables. One must always bear
in mind, however, the possibility that policy variables may have moved
historically in response to non-policy influences, so that the response
to innovations in these variables is not appropriately interpreted as a
response to a policy-induced change in the variable. For money, wages,
and interest rates, it is certainly possible that some of the historical varia-
tion was generated by the private sector, not by policy. Palm’s conclusions
about the effectiveness of various policies from examination of the MARs
should, therefore, probably have been put forth more cautiously.

My own research interests and philosophy run so close to those dis-
played in this chapter that I could continue at some further length with
discussion of technical fine points. This seems a good point to close these
formal comments, however, with the hope that the profession will be
seeing more empirical work along these lines and displaying these high
standards of thoroughness and integrity.
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Response to the discussants (1983)

Franz C. Palm

I would like to thank the discussants for the thoughtfulness of their com-
ments. They have raised several interesting issues. In my response, I shall
consider three themes.

1 Marginalization, exogenous variables, and
parameter stability

One of the points raised by Professor Christ is concerned with the absence
from the model of (exogenous) economic variables such as taxes, gov-
ernment expenditures, international trade, and investment. On many
occasions (for instance, in the presence of a closed loop policy), policy
variables can be treated as partly endogenous and stochastic. Similarly,
exogenous variables are often stochastic. These variables can then be
eliminated from the model by integration (or substitution). However, the
parameters of the marginal, multivariate or univariate, model are func-
tions of the parameters in the broader model. They remain stable as
long as the parameters of the latter model are stable. It is legitimate to
restrict the analysis to the marginal process provided its parameters are
approximately stable. One can think of three reasons why a multivariate
marginal model could be flawed: (a) A log-linear dynamic specification
is too simple to be a reasonable approximation for the data-generating
process; (b) some exogenous variables are non-stochastic and should,
therefore, appear in the model; (c) the parameters have changed over the
sample period. In my opinion, a log-linear specification for the model and
the assumption of stochastic exogenous variables are reasonable working
hypotheses in the present context. Concerning the last point, I hope that
I have carefully analyzed the parameter stability and, in particular, the
implications for the period 1974–9 of a model that has been specified
and estimated from data up to 1973, a year for which a structural change
in the economy of the Netherlands is very likely. Also, I hope that I have
been sufficiently cautious in my conclusions about the presence of struc-
tural changes in the sample period.

Finally, from my own experience and in line with a remark by Profes-
sor Sims, the estimates of the (restricted) autoregressive representation
are less stable than those of the moving average representation (MAR).
Therefore, the MAR is better suited for an analysis of the structural sta-
bility than the autoregressive representation. As stated in the chapter, it
is the response of several variables in the model to shocks in the interest
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rate that seems to be most strongly affected by parameter instability and
for which the specification could be improved accordingly.

2 Simultaneity and economic interpretation

The restricted multivariate model can be interpreted as a set of structural
equations that has been completed by adding reduced form equations.
The model is statistically complete, but it is not a complete behavioral
model (think, for instance, of limited-information maximum likelihood).
The remark that “It is a curious system from an economic point of view”
comprises an interpretation which the model can and should not be given.

The question of whether the interest rate equation is actually a demand
for money equation can be answered by stating what the determinants of
the demand for money are. I explain money balances by income, prices,
and interest rates only (besides the seasonal dummies). These variables
have been selected on the basis of a priori considerations, although the
dynamics of the equation have been at least in part derived from the
observations. Exclusion of other variables from the equation implies the
identification of the parameters of the demand function.

Whether it would have been simpler to directly specify reduced form
equations for Y and R, as Professor Sims suggests, is not obvious. The
reader should realize that specifying a relationship with more than one
current endogenous variable is a straightforward way of incorporating
restrictions in the reduced form. For instance, the following relationship

γ1t + βy2t + γ x1t = u1t , with Eu1t = 0,

implies that the expectations of y1t, y2t, and x1t lie in a hyperplane or
alternatively that the reduced form equation of y1t is proportional to that
of y2t, except for the coefficient of x1t. The specifications for Y and R
should be interpreted in this way.

3 Forecasting

First, I would like to emphasize that the forecasts have been computed
from the reduced form and not from the recursive form, as Professor
Christ states.

When comparing the forecasting performance of the vector models
with that of the univariate ARIMA models, one should keep in mind
that differencing of the series not only eliminates the linear trend and
the seasonal dummy variables but also transforms the stochastic struc-
ture of the disturbances of the univariate ARIMA models. If the distur-
bances in the univariate models for the original series are non-stationary
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and generated by a random walk, differencing will induce a white-noise
disturbance term. Assuming that the factors that affect the unemploy-
ment rate are (especially after 1973) non-stationary could possibly imply
non-stationary disturbances in the univariate model for U. It may also
explain why the forecasting performance of the univariate model for
(1 − L4)U is superior to that of the vector models.

Finally, I am glad to see that the discussants do not have major objec-
tions against the approach proposed in my chapter and that they are
sympathetic to the statistical methods that I used.



4 Time series analysis, forecasting, and
econometric modeling: the structural
econometric modeling, time series analysis
(SEMTSA) approach (1994)

Arnold Zellner

In this chapter an account of our experiences in modeling and
forecasting the annual output growth rates of 18 industrialized
countries is presented. A structural econometric modeling, time-series
analysis (SEMTSA) approach is described and contrasted with other
approaches. Theoretical and applied results relating to variable and
model selection and point and turning-point forecasting are discussed.
A summary of results and directions for future research concludes the
chapter.

1 Introduction

In this chapter we shall provide an account of some of our experiences
in modeling, forecasting, and interpreting time series data. Since the
literature on these topics is so extensive, a comprehensive survey would
require one or probably more volumes. Thus, we have decided to describe
our approach, the experience that we have had with it, and its relation to
a part of the statistical and econometric time series literature.

Obtaining good macroeconomic and microeconomic and other time
series models is important since they are useful in explanation, prediction,
and policy-making or control. The basic issue that is addressed in this
chapter is how to produce such good time series models. Our SEMTSA
approach (see, e.g., Zellner and Palm 1974, 1975; Plosser 1976, 1978;
Zellner 1979, 1984, 1991; Palm 1983; Wallis 1983; Webb 1985; Manas-
Anton 1986; Hong 1989; Min 1991) will be briefly compared to sev-
eral other approaches that have emerged in the literature. Rather than
just present theoretical procedures that may be useful in producing good

This research was financed by income from the H. G. B. Alexander Endowment Fund,
Graduate School of Business, University of Chicago, and by a grant from the National
Science Foundation.

Originally published in the Journal of Forecasting 13 (1994), 215–33. CCC 0277–
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models, an account will be given of both theoretical and applied results in
what follows. Obviously, the issue of how well procedures work in serious
applications is of first order importance.

The plan of the chapter is as follows. In section 2, a description of the
SEMTSA approach and some brief comparisons with other approaches
are provided. Also, our experience in applying it in the analysis of
macroeconomic time series data is described. In section 3 theoretical and
applied results on variable and model selection procedures are presented.
Section 4 takes up some aggregation issues in model formulation as they
relate to forecasting performance treated . . . by Espasa and Matea (1990)
and others. The final section [5] contains a summary of results and some
conclusions about future work.

2 Background on the SEMTSA approach and
its applications

In the SEMTSA approach the first step involves a description of main
objectives, as emphasized in Zellner (1979). In our present modeling
work, our objectives are to produce models which (1) forecast well, (2)
are useful in explanation, and (3) serve policy-makers’ needs adequately.
As will be seen, in our work we do not attempt to achieve all three
goals at once, as is the case in some structural econometric modeling
approaches (see, for example, Hickman 1972; Fair 1991). Rather, we
proceed sequentially by approaching the forecasting goal first, then the
explanatory goal, and finally the policy or control goal using many sets
of data, in our case data for many countries.

As regards the forecasting goal, we indicate the variable or variables
which are of major concern. It is recognized that these variables can be
modeled in a multiple or multivariate time series model, including vector
autoregressions (VARs) as a special case, or in a multi-equation struc-
tural econometric model. However, as recognized by Keynes, Friedman,
Christ, Box, Tiao, Sims, this author, and many others, in such multi-
variate models, there are many parameters, which usually makes tests of
model specification not very powerful and estimates and predictions not
very precise. Further, there is a high probability that errors may occur
in formulating equations of such models which can lead to models with
unusual properties (see, e.g., the results of simulation experiments with
large-scale econometric models reported in Adelman and Adelman 1959;
Hickman 1972; Zellner and Peck 1973). Further, . . . these multiple
equation models are [often] non-linear in variables and parameters, a
fact which makes understanding them somewhat difficult even with the
results of simulation experiments available. For example, it is difficult
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to establish whether such large, non-linear models have unique or many
solutions, what their global dynamic properties are, and what are the
finite sample properties of estimation, testing, and prediction techniques,
particularly when there is considerable use of the data in pretesting to
determine forms of models. Add to this the problems of systematic and
random measurement errors in the variables employed and one begins
to understand the serious problems that arise in attempting to model a
set of time series variables in a “one-shot” attempt to get a satisfactory
multivariate time series or structural econometric model.

In the SEMTSA approach, we formulate the components of a model,
using as much sound background information as possible, and then estab-
lish that the components work well in forecasting a good deal of out-of-
sample data. Then, using relevant subject-matter theory and background
information, we attempt to put the components together to form a sen-
sible explanatory model. The explanatory model so formulated can then
be tested further using as much new data as possible, that is, data for
additional time periods going forward or backward in time and for addi-
tional economic entities (say, countries). As will be seen, the formula-
tion of the component forecasting relations, usually transfer functions,
is conditioned by certain information relating to properties of an overall
multivariate model for the set of variables. Finally, adapting the model to
make it useful not only for explanation and prediction but also for policy
making will take additional work.

To make some of the above points explicit, suppose that we initially
tentatively entertain a linear multiple time series model as put forward
many years ago by Quenouille (1957) and now often referred to as a
multivariate autoregressive, moving average (MVARMA) process:

H(L)zt = F(L)et , (2.1)

where zt and et are m × l vectors of random variables, the former observ-
able and mean-corrected and the latter a white-noise error vector. H(L)
and F(L) are m × m matrix lag operators with L being the lag or backshift
operator. If F(L) is of zero degree, the system is a VAR. Note that if m and
the degree of H(L) are large, this VAR will contain a very large number
of parameters which, as pointed out above, will present problems. Now,
if H(L) is invertible, that is, H−1(L) = H(L)∗/|H(L)|, where H(L)∗ is the
adjoint matrix associated with H(L), we can write (2.1) as follows:

|H(L)|zt = H(L)∗F(L)et (2.2a)

or

|H(L)|zit = a′
i et , (2.2b)



178 Arnold Zellner

where zit is the ith element of zt and a′
i denotes the ith row of H∗(L)F(L).

Equation (2.2b) indicates that individual elements of zt have processes in
the univariate ARMA form. If H(L) is large in dimension, that is, if m is
large, and of high degree, the autoregressive polynomial |H(L)| in (2.2)
will be of high degree unless there are some common roots on both sides
of (2.2) which cancel. Given a tentatively restricted form for (2.1), it is
possible to derive the implied ARMA processes for individual variables, as
shown in (2.2) and check their forms against forms determined from the
data (see references cited above for examples illustrating this procedure).
Note, however, that in order to get fixed parameter, stationary processes
in (2.2), a number of rather strong assumptions must be made about
the process in (2.1) which may not be satisfied in practice. For example,
some of the variables in zt may not be covariance stationary and/or some
of the elements of H(L) and F(L) may be time-varying.

Further, in connection with (2.1), if we are willing to assume, as many
model builders do, that a subvector x′

t of z′
t = (y′

t , x′
t) is exogenous, then

we can write system (2.1) as follows:(
H11

0
H12

H22

) (
yt

xt

)
=

(
F11

0
0

F22

) (
e1t

e2t

)
(2.3a)

or

H11yt = −H12xt + F11e1t

H22xt = F22e2t , (2.3b)

where H(L) and F(L) have been partitioned in conformity with the par-
titioning of zt and for convenience, the submatrices’ dependence on L is
not explicitly shown. The assumption that xt is exogenous implies that the
following submatrices of H(L) and F(L) are identically zero, namely H21,
F12, and F21. The first line of (2.3b) is in the form of a linear dynamic
econometric model while the second provides a tentative multiple time
series process for the exogenous variables in xt.

From (2.3b), given that H11 is invertible, the transfer function (TF)
system is given by:

|H11|yt = −H∗
11 H12xt + H∗

11 F11e1t , (2.4a)

and a single TF equation (say, the ith) is

|H11|yit = b′
i xt + c ′

i e1t , (2.4b)

where H∗
11 is the adjoint matrix associated with H11, b′

i is the ith row of
−H∗

11 H12, and c ′
i is the ith row of H∗

11 F11. It is seen from (2.4b), that
the polynomial operator hitting each element of yt is the same, barring
the cancellation of common roots in particular equations of (2.4a). Also,
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the use of (2.4) does not necessarily imply that the input or exogenous
variables are covariance stationary. Further, if we are willing to put some
restrictions on the parameters of the structural equations given in (2.3b),
these will imply restrictions on the TF system in (2.4a), which can be
tested (see Zellner and Palm 1975, for explicit examples with applica-
tions to checking the properties of a small structural model of the US
economy using monthly data). Here we started with a restricted ver-
sion of (2.3b), the structural equations and assumptions regarding xt, as
many other model builders have done. Unfortunately, several variants
of the structural equation system, with adaptive or rational expectations
assumptions, were found not to be completely supported by the informa-
tion in the data. This is an example of an attempt to obtain a multivari-
ate model in a “one-shot” approach. For a description of other failures
of this approach, see the evaluation by McNees (1986) of a number of
structural econometric models. Also, as shown by Litterman (1980) and
McNees (1986), attempts to use unrestricted VARs to model quarterly
macroeconomic variables for the US economy have not been success-
ful. Use of prior distributions on autoregressive parameters, as in Litter-
man (1980, 1986), Highfield (1986), and others’ work which center pro-
cesses for individual variables at random walks with drift, tend to improve
on unrestricted VARs’ performance in forecasting but were not entirely
satisfactory in forecasting financial variables and recent turning points.
Perhaps centering processes for individual variables at random walks is
inappropriate since random-walk models do not always perform well in
forecasting (see below for further discussion and empirical results bear-
ing on this issue). Further, as pointed out above, a VAR usually implies
marginal ARMA processes for individual variables which have very high
order AR and MA parts (see (2.2)). Finally, for ten or so macroeconomic
variables and data sets generally available, an unrestricted multiple time
series approach based on (2.1) does not seem fruitful in view of the large
number of parameters and model uncertainty present.

In view of the failures of “one-shot” approaches to modeling macroe-
conomic variables, including our own, the problem is how to proceed
in order to obtain reliable models. In research for the paper (Garcia-
Ferrer et al. 1987) we argued as follows. First, since many had tried
one-shot approaches and failed, we decided to take a component-by-
component or a variable-by-variable approach. We selected an impor-
tant, key variable, the real total output of an economy as measured by
real gross national or domestic product (data available for many coun-
tries in the IMF computerized database at the University of Chicago).
Most “one-shot” attempts to model this variable along with many oth-
ers have failed. As shown by Christ (1951), Cooper (1972), and Nelson
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(1972), many large-scale models’ forecasts were not as good as those of
very simple univariate naive models (e.g. random walks, low order AR
models, or simple ARMA models). Also, in the exchange rate area, Meese
and Rogoff (1983) showed that random-walk models performed better
in forecasting than did three structural exchange rate models (see also
Wolff 1985, 1987, who improved the structural exchange rate models’
performance by use of time-varying parameter state-space versions but
not to an extent that they entirely dominated random-walk models’ pre-
dictive performance). In interpreting such results, years ago Friedman
(1951), who was influential in having such forecasting tests performed,
suggested that if a large model could not perform better in forecasting
than a univariate naive model then it was probably faulty and needed
reformulation.

The above considerations, along with Jeffreys’ (1967) advice to con-
sider all variation random unless shown otherwise and his “simplicity
postulate” which suggests that simpler models will probably work bet-
ter than complicated models, led us in Garcia-Ferrer et al. (1987) to
start with a relatively simple autoregressive model of order three for the
rate of growth of real annual GNP (RGNP) for a country. That is, with
yit = ln RGNPi t − ln RGNPi t−1, the growth rate of the ith country in the
tth year, we entertained the following autoregressive model of order three,
denoted by AR(3):

yit = β0i + β1i yi,t−1 + β2i yi,t−2 + β3i yi,t−3 + uit i = 1, 2, . . . , N

t = 1, 2, . . . , T, (2.5)

where uit was assumed to be a scalar white-noise error term. Now it may
be asked, why did we first difference and choose an AR(3)? We first dif-
ferenced the log of RGNP to obtain the rate of growth because there is a
great interest in this variable. Also, first differencing is helpful in reducing
the effects of certain types of constant or time-varying systematic mea-
surement biases, and it is, of course, a procedure for possibly inducing
stationarity, although we were not too sanguine on this point. Further,
by using an AR(3) process, we allowed for the possibility of having com-
plex conjugate roots giving rise to an oscillatory component and a real
root producing a local trend. Indeed, in subsequent analyses by Geweke
(1988) and Hong (1989), it was shown empirically using data for many
countries that in each case there are two complex roots and one real root,
giving rise to damped cycles and non-explosive local trends. Note that
the Nelson–Plosser (1982) (0, 1, 1) ARIMA process for US RGNP does
not admit the possibility of complex roots and associated cyclical com-
ponents. In this regard, see also Harvey and Todd (1983), who favored
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(2, 1, 1) or (2, 1, 2) models. Finally, Cooper (1972) showed that a simple
AR process performed as well or better in forecasting than did compli-
cated multi-equation models.

In view of the above considerations, we decided to begin our analy-
zes with an AR(3) model for the growth rate of real annual output as
shown in (2.5) and annual data for eight European countries and the
United States, 1951–73 for fitting and 1974–81 for out-of-sample one-
step-ahead forecasting. The results of these forecasting experiments pro-
duced what Thomas Huxley has called an “ugly fact,” namely a fact that
destroyed the a priori arguments mentioned in the previous paragraph.
Our AR(3) models for the nine countries did not forecast any better than
various naive random walk models (see reported RMSEs in Garcia-Ferrer
et al. 1987). Given the simplicity of the AR(3) model, it was not difficult
to determine the reason for poor forecasting performance. The model was
missing badly in forecasting downturns and upturns, generally showing
over-shooting and under-shooting. With the nature of the problem clear,
it was not too hard to remember Burns’ and Mitchell’s (1946) fundamen-
tal work on business cycles using pre-Second World War data relating to
several economies. They found that stock prices and money generally
led aggregate economic activity in business fluctuations. Also, Moore,
Zarnowitz, and others had emphasized the value of using such leading
indicator variables in forecasting even though many were skeptical. Stock
prices reflect quickly all kinds of news events, policy changes, etc. affect-
ing an economy while the real economy usually responds to such events
with a lag. Also, money supply changes can operate to affect consumer
and producer demands as well as reflect information that policy-makers
may have that is not available to the general public. Further, since world
events probably affect individual economies, we decided to introduce a
“common world effect” into each country’s equation. Thus (2.5) was
embellished to incorporate these considerations to produce the following
third order autoregressive-leading indicator (AR(3)LI) model:

yit = β0i + β1i yit−1 + β2i yit−2 + β3i yit−3 + β4i SRit−1

+ β5i SRit−2 + β6i GMit−1 + β7i WSRt−1 + uit (2.6)

= x′
itβi + uit,

where SRit and GMit are the rates of change of real stock prices and real
money, respectively, and WSRt is the world stock return, the median of
the SRits in year t. Specifically, SRit = (1 − L) ln(SPit/Pit) and GMit =
(1 − L) ln(Mit/Pit), where SPit is a stock price index, Pit is a price index,
and Mit is nominal money (M1) holdings at the end of year t.
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With respect to the trend-stationary (TS) versus difference-stationary
(DS) issue, we note that it has been considered in the literature in terms of
models, AR(1)s, etc. which have not been shown to perform well in fore-
casting. Thus results based on these models may not be dependable. In
(2.6), the output variable, yit, is clearly affected by the input leading indi-
cator variables which may be generated by non-stationary processes and
can induce varied cyclical and trend components in the output variable,
yit. As indicated below, the AR(3)LI model in (2.6) performs reasonably
well in point and turning point forecasting.

When (2.6) was implemented by simply using least squares estimation
with annual data 1951–73 for nine countries1 and one-year-ahead fore-
casts were made for the years 1974–81, it was found that there was a
decided improvement in forecasting performance vis-à-vis use of AR(3)
models and several random-walk models. Further, an interesting fea-
ture of the error terms was noted when we employed the common effect
variable, lagged world stock returns, WSRt−1, namely the contemporane-
ous error terms for individual countries were not very highly correlated.
Also, there was little indication that the error terms are autocorrelated
(see Zellner, Hong, and Gulati 1990 for the fitted relations and measures
of autocorrelation). Also, in Garcia-Ferrer et al. (1987) there are some
comparisons of the forecasting performance of (2.6) to that of large-scale
OECD models combined with judgmental adjustments.

Further, in Garcia-Ferrer et al. (1987) additional computations were
performed to check the effects of using two types of Stein-like shrinkage
techniques in forecasting which generally produced better overall results.
These calculations exploited the fact that the coefficient vectors for dif-
ferent countries are not too different in value. Using vector and matrix
notation, we can write (2.5) for the ith country as follows: yi = Xiβ i +
ui, i = 1, 2, . . . , N. Then, assuming along with Swamy (1971), Lind-
ley and Smith (1972), and others, β i = θ + vi, where θ is the common
mean of the β is and vi is an error vector, it is not difficult to combine the
information in the data with the information in the distribution of the
β is to obtain estimates of the β is. As we specified the system, the esti-
mate of β i is an average of the least squares estimate β̂ i = (X ′

i Xi)−1 X ′
i yi

and an estimate of θ , the mean of the β is. On using such an estimate
for each country, the nine annual, one-step-ahead forecasts, 1974–81,
were generally improved relative to using just the least squares or dif-
fuse prior Bayes’ forecasts, with RMSE used as a criterion of forecasting
performance.

1 All data are taken from the IMF IFS data bases.
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Also, we analyzed the data using a time-varying parameter model,
namely, yit = x′

itβ it + uit, and β it = β it−1 + εit, a vector random walk.
Parameters were assumed time varying to reflect possible effects of wars,
policy changes, aggregation, and so on. On implementing the above time-
varying parameter model there were improvements relative to use of fixed-
parameter models for many countries. Recall that the period 1951–81
includes at least two wars, the Korean and Vietnamese, two oil crises,
changes from fixed exchange rates to floating exchange rates in the early
1970s for many countries, etc. In performing our estimation and fore-
casting calculations, no points were omitted nor were any dummy or
intervention variables employed. It appears that the leading indicator
variables alone or coupled with shrinkage or time-varying parameters
produced reasonably good forecasting results for the nine countries.

Since there is a possibility that in some sense the sample of nine
countries and/or the period employed were “special” it was considered
extremely important to check previously obtained results with an expan-
ded sample of countries and a longer time period. Thus in Hong (1989)
and Zellner and Hong (1989), data for eighteen countries, European
countries including Spain, as well as for the United States, Canada,
Japan, and Australia, 1951–84 were employed. This expanded data-base
included data for the sharp 1982 recession which were not included in ear-
lier analyzes. Generally, the one-year-ahead forecasting results for 1974–
84 were similar to those found earlier; results reported in Zellner and
Hong (1989). Further improvements were made by including a second
general effect variable in each country’s equation, namely the median of
the countries’ growth rates for year t, denoted by wt. That is, the equation
for each country shown in (2.6) was modified as follows:

yit = αi wt + x′
i tβi + uit (2.7a)

and the following equation was assumed for wt:

wt = δ0 + δ1wt−1 + δ2wt−2 + δ3wt−3 + δ4MSRt−1

+ δ5MGMt−1 + vt , (2.7b)

an AR(3)LI with the following leading indicator variables, MGMt and
MSRt, the medians of the eighteen countries’ real money and real stock
price growth rates (see figure 4.1 for plots of these data). We denote the
model in (2.7) an ARLI/WI model. Use of it along with complete shrink-
age led to improved forecasting results for most countries (see Zellner
and Hong 1989). Also, Hong (1989) showed that the AR(3)LI models
performed better in one-year-ahead forecasting, 1974–84, for eighteen
countries than the Nelson–Plosser (1982) (0, 1, 1) ARIMA model and
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Figure 4.1 Boxplots of data for eighteen countries, 1954–1984. For
each year the horizontal line in the box is the median growth rate and
the height of the box is the interquartile range of the eighteen countries’
growth rates. The end points of the lines extending from each box indi-
cate the highest and lowest growth rates in the given year. Shown are
annual growth rates of (a) real output, (b) real money, and (c) real stock
prices
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a version of the Barro (1978) “money surprise” model. Further, Hong
(1989) computed the roots of the ARLI process for each country and
showed that in each instance there was a high posterior probability that
there are two complex roots and one real root with amplitudes less than
one. Plots of the posterior distributions of the periods indicated cycli-
cal periods of roughly four–six years’ duration. Finally, Otter (1990)
re-analyzed some of the Zellner–Hong (1989) data using a canonical
correlation approach and Hankel matrix identification procedures which
require strong stationarity assumptions. While he claimed to get better
forecasting results, he did not make comparisons with the Zellner–Hong
shrinkage forecasting results which are better than his and the results that
he did report in his confused table 4.1, when unscrambled reveal no fore-
casting improvement as measured by median RMSE of forecast, 2.41 for
the AR(3)LI model, and 2.94 and 2.44 for two variants of his canonical
correlation approach.2

To check further the forecasting properties of the ARLI and ARLI/WI
models, a Bayesian decision theoretic methodology for forecasting turn-
ing points in the rates of growth of real GNP was developed building on
earlier work of Wecker (1979) and Kling (1987). In Zellner and Hong
(1989), Zellner et al. (1990), and Zellner, Hong, and Min (1991) this
methodology was developed and applied to forecast turning points in
eighteen countries’ growth rates. In the last reference, using a variety
of models including fixed- and time-varying parameter models with and
without pooling, approximately 70 percent or more of 158 turning points,
1974–87, were correctly forecasted. The procedures employed involved
a definition of a turning point and use of a predictive density to compute
the probability of a downturn or of an upturn. Having these probabilities
calculated and a 2 × 2 loss structure, it is possible to choose a forecast
that minimizes expected loss. For example, if the 2 × 2 loss structure is
symmetric, then one forecasts downturn when the probability of a down-
turn is greater than 1/2 and no-downturn otherwise. In figure 4.2 and
table 4.1 are shown the results of these probability calculations for eigh-
teen countries year by year. The turning point forecasts, based on these
computed probabilities, were compared with those of some naive models
using Breier scores and were found to be much superior to all naive mod-
els used. That the models performed so well in forecasting turning points
(approximately 70 percent of 158 turning points correctly forecasted)
was indeed a pleasant surprise.

2 Further, Otter (1990) excluded data for several countries, made some incorrect compar-
isons, and did not employ exactly the same data as employed in our work.
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Figure 4.2 Percentages of correct forecasts, 1974–1986.
See Zellner, Hong, and Gulati (1990) for additional information regard-
ing methods and models
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Table 4.2 RMSEs for pooled and unpooled ARLI/WI models’ forecasts, by
country, 1974–1987a

RMSE(%) Countries Freq. Prop.

(a) Pooled TVPM
1.00–1.49 FRN GER NET SPN 4 0.22
1.50–1.99 AUR BEL CAN FIN ITY NOR SWD UKM USA 9 0.50
2.00–2.49 AUL DEN JAP SWZ 4 0.22
2.50–2.99 IRE 1 0.06
3.00–3.49 – 0 0.00

Median = 1.74 Minimum = 1.17 Maximum = 2.53 18 1.00

(b) Unpooled TVPM
1.00–1.49 UKM 1 0.06
1.50–1.99 BEL FRN GER NET SPN SWD 6 0.33
2.00–2.49 AUR USA 2 0.11
2.50–2.99 CAN DEN ITY NOR 4 0.22
3.00–3.49 AUL FIN IRE JAP SWZ 5 0.28

Median = 2.37 Minimum = 1.39 Maximum = 3.32 18 1.00

(c) Pooled FPM
1.00–1.49 NOR SPN 2 0.11
1.50–1.99 AUR BEL CAN FIN FRN GER NET SWD UKM 9 0.50
2.00–2.49 AUL DEN IRE ITY JAP SWZ USA 7 0.39
2.50–2.99 – 0 0.00
3.00–3.49 – 0 0.00

Median = 1.86 Minimum = 1.21 Maximum = 2.48 18 1.00

(d) Unpooled FPM
1.00–1.49 – 0 0.00
1.50–1.99 BEL NET NOR UKM USA 5 0.28
2.00–2.49 FRN SPN SWD 3 0.17
2.50–2.99 AUR CAN GER IRE 4 0.22
3.00–3.49 AUL DEN FIN JAP SWZ 5 0.28
3.50–3.99 ITY 1 0.06

Median = 2.60 Minimum = 1.50 Maximum = 3.68 18 1.01

Note:
a See Min and Zellner (1990) for explicit specification of the models employed in these
calculations, namely variants of the model in (2.7) of the chapter.

In table 4.2, taken from Min and Zellner (1993), there is a signifi-
cant demonstration of the effects of pooling on forecasting performance
for two models. Note that pooling results in eighteen countries’ forecast
RMSEs being highly concentrated around a low value whereas without
pooling there is much more dispersion in countries’ forecast RMSEs and
their median value is higher than in the pooled case. That pooling has
such a significant effect on the precision of forecasts is indeed remarkable.
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Having provided an overview of selected aspects and results of the
SEMTSA approach, in the next section results provided by use of
Bayesian model and variable selection techniques will be presented.

3 Model and variable selection procedures and results

Here selected Bayesian model and variable selection procedures will be
described and applied. As explained above, the issue of whether fixed-
parameter (FP) models or time-varying parameter (TVP) models are
more appropriate for modeling economic time series is a central one.
If parameter values change because of Lucas effects, aggregation, wars,
strikes, and other causes, FP models may not be adequate for modeling
and forecasting. To approach this problem, in Garcia-Ferrer et al. (1987)
both FP and TVP models were estimated and used in forecasting. The
results favored somewhat the TVP models, the AR(3)LI model in (2.6)
with the parameter vector assumed generated by a vector random walk. In
Min and Zellner (1993), posterior odds for FP versus TVP models were
derived and evaluated year by year for the period 1974–87 for eighteen
countries. The prior densities used in forming the posterior odds for 1974
were the posterior densities based on annual data, 1954–73, with initial
priors rather diffuse. In tables 4.3(a) and 4.3(b) some of these posterior
odds are presented. It is seen that for a number of countries the odds
favour TVP models. Also, in table 4.4 it is seen that when odds favor
TVP models, the TVP models tend to have lower RMSEs of forecast
than do FP models and vice versa. Thus the posterior odds appear to be
useful in screening models for forecasting purposes. Further, they can be
used in a decision theoretic framework to choose between or among alter-
native forecasts or to combine forecasts of alternative models (see Min
and Zellner 1993; Palm and Zellner 1992, for theoretical and empirical
analyses illustrating these points). Important in this context is the issue of
whether or not to combine models when the models considered do or do
not constitute an exhaustive set (see also Diebold 1989). That Bayesian
posterior odds are useful in these problems is indeed fortunate.

As regards variable selection, the approach described in Zellner and
Siow (1980) and Zellner (1984, ch. 3.7) will be used here to determine
what variables to include in a FP ARLI model. This approach to selecting
or testing alternative leading indicator and other variables to include in
a model has also been employed in several studies reported in Poirier
(1991) and is different from the approach employed by Stock and Watson
(1991). Here we are interested in comparing the AR(3)LI model in (2.6)
with some narrower and some broader models. Thus we consider a broad
model containing a constant term, c, and eight input variables, namely
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Table 4.3(a) Posterior odds for fixed versus time-varying parameter
models computed from annual data, 1973–1987a

Models

Unpooled Pooled

Country ARLIb ARLI/WIc ARLId ARLI/WIe

Australia 0.16 0.34 1.01 0.94
Austria 0.01 0.07 0.21 1.02
Belgium 1.64 0.45 0.40 1.57
Canada 0.41 2.21 0.57 1.72
Denmark 0.01 0.39 0.05 0.99
Finland 0.78 1.68 0.36 0.76
France 0.01 1.30 0.47 1.42
Germany 0.00 0.01 0.16 1.43
Ireland 6.18 3.04 1.87 1.50
Italy 0.01 0.06 0.32 1.21
Japan 0.45 0.48 6.81 0.91
Netherlands 0.41 2.32 0.10 1.92
Norway 6.60 4.95 1.36 1.09
Spain 0.27 0.75 0.57 1.35
Sweden 0.25 0.34 0.04 0.58
Switzerland 0.71 4.25 0.21 0.91
United Kingdom 0.22 8.67 0.13 0.82
United States 9.18 17.31 0.24 0.81

Notes:
a Posterior distributions for models’ parameters, computed using annual
data 1954–72, were used to form Bayes factors for the period 1973–87. Prior
odds were set 1:1 in all cases. The entries in the table are odds in favor of fixed
parameter (FP) models. See Min and Zellner (1993) for derivations and other
results.
b Unpooled FP/ARLI versus unpooled TVP/ARLI.
c Unpooled FP/ARLI/WI versus unpooled TVP/ARLI/WI.
d Pooled FP/ARLI versus pooled TVP/ARLI.
e Pooled FP/ARLI/WI versus pooled TVP/ARLI/WI.

three lagged values of the output growth rate, denoted here by y1, y2, and
y3 as well as rates of growth of real stock prices and of real money, lagged
one or two years and denoted by S1 and S2 and M1 and M2, respectively,
and the lagged median growth rate of real stock prices, denoted by W1.
With all models containing a constant term, c, there is just one model with
all eight input variables, eight models containing any seven variables,
28 models containing any six variables, 56 models containing any five
variables, 70 models containing any four variables, and so on with a total
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Table 4.3(b) Number of countries, by values of posterior odds, fixed
versus time-varying parameter models, annual data, 1973–1987a

Models

Unpooled Pooled

Posterior odds, ARLI ARLI/WI ARLI ARLI/WI
FP versus TVP ARLI ARLI/WI ARLI ARLI/WI

0–0.49 12 8 12 0
0.5–0.99 2 1 2 8
1.00–1.99 1 2 3 10
≥ 2.00 3 7 1 0

Notes:
a See Min and Zellner (1993) for derivation of posterior odds based on 1:1 prior
odds.

Table 4.4 Number of countries by posterior odds and root mean-squared error
(RMSE) of forecast, by type of model, annual output growth rates,
1974–1987a

ARLI ARLI/WI
Lower RMSE for: Lower RMSE for:

Posterior odds favour FPM TVPM Tot. FPM TVPM Tot.

(a) Unpooled models
FPM 3 1 4 5 4 9
TVPM 3 11 14 1 8 9
Tot. 6 12 18 6 12 18

(b) Pooled models
FPM 4 0 4 3 6 9
TVPM 0 14 14 1 8 9
Tot. 4 14 18 4 14 18

Note:
a Taken from Min and Zellner (1993).

of 256 possible models. Thus the AR(3)LI is just one of 256 possible
linear models involving the eight input variables and a constant. Testing
it against 255 alternatives raises the issue of “selection” effects. That is, it
may be that with so many alternative models, one may fit the data just by
chance or due to over-fitting. This issue will be discussed further below.
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Table 4.5 Model selection using posterior odds, mean-squared error and
out-of-sample forecast RMSEs

1954–1973 1954–1987 Out-of-sample,
1974–1987,

Modela Oddsb MSEc Oddsb MSEc RMSE of forecastd

1. AR(3)LI 2.80 1.79 6.19 2.70 2.31
cy1y2y3S1S2M1W1

2. cy3M1M2W1 17.42 1.57 2.74 3.46 2.74
3. cy3S1M1M2W1 15.67 1.53 14.29 2.88 2.44
4. cy3S1M1W1 8.61 1.81 26.34 2.87 2.30
5. cy3S1S2M1W1 12.88 1.59 59.92 2.56 2.22
6. cS1S2M1M2W1

e 2.18 2.27 1.68 3.44 2.59
7. cy1S1M1W1

f 2.11 2.39 2.55 3.48 2.54
8. AR(3) cy1y2y3 0.04 5.41 0.01 5.76 2.69
9. Random walk for 0.06 4.89 0.02 5.75 2.68

ln GNP with drift, c
10. General model 1.00 1.81 1.00 2.80 2.47

cy1y2y3S1S2M1M2W1

Notes:
a The general model in line 10 is given by yt = c + β1 yt−1 + β2 yt−2 + β3 yt−3 + β4SRt−1 +
β5SRt−2 + β6GMt−1 + β7GMt−2 + β8Wt−1 + εt and denoted by cy1y2y3S1S2M1M2W1.
Other models are particular cases of the general model.
b Posterior odds are computed for each specific model versus the general model in line 9
with prior odds in each case taken 1:1. See Zellner (1984, ch. 3.7) for expressions for odds.
c Within-sample mean-squared error = ∑N

t=1 ε̂2
t /v, where v = degrees of freedom, or num-

ber of observations minus number of estimated parameters.
d One-step-ahead forecast errors, ∆t were employed to compute RMSEs given by

RMSE =
√√√√ 14∑

1

∆2
t /14

e This is the model selected by Mittnik (1990), based on data 1953–73 for the United States.
f This is the model selected by Otter (1990), based on data 1954–73 for the United States.

Here we shall just note that variable selection will initially be performed
using the data for 1954–73 and the preferred models will be evaluated
further in out-of-sample forecasting using data for 1974–87, fourteen
annual one-step-ahead forecasts. Then the odds are recalculated using
all the data, 1954–87. The results of these calculations are presented in
table 4.5.

It is seen from table 4.5, based on data for the United States, that
the posterior odds on the basic AR(3)LI model in (2.6) versus the gen-
eral model containing a constant c and eight input variables, shown in
line 9, is 2.80:1.00. This posterior odds is based on prior odds of 1:1,
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data 1954–73, and the procedures in Zellner (1984, ch. 3.7). Also, the
within-sample MSE = ∑20

i=1 ε̂2
i /v, where v = degrees of freedom, is 1.79

for the AR(3)LI model in line 1 and 1.81 for the general model in line
9. Further, the RMSEs of forecast for out-of-sample forecasts, 1974–87
(fourteen forecasts) are 2.31 and 2.47 percentage points, respectively.
Finally, the recomputed odds for the entire period 1954–87 is 6.19:1.00
for the AR(3)LI model versus the general model. Thus in this compari-
son, the ARLI(3)LI model fares well.

In lines 8 and 9 of table 4.5 are shown results for a random walk
with drift and an AR(3) model. The posterior odds, MSEs, and forecast
RMSEs overwhelmingly favor the AR(3)LI relative to these models, as in
previous work. For example, the RMSEs of forecast are 2.31, 2.69, and
2.68 respectively, for these three models.

With respect to the period 1954–73, the models in lines 2–5 are the
ones most favored by the posterior odds and/or the MSE criteria after
examining all 256 models. The posterior odds reported in table 4.5 are all
based on equal prior probabilities on all 256 models. There is a question
as to whether this is appropriate given that we selected models from a
large number, 256. If pA is the probability associated with the AR(3)LI
model and pB is the probability associated with the other 255 models and
each of them is given an equal probability, the prior odds for any pair
of models is pA/(pB/255) = 255. pA/pB will usually not be equal to
one. For example, if pA = 1/16 and pB = 15/16, then the prior odds =
255/15 = 17, that is, 17:1 on the AR(3)LI model versus any other of
the 255 alternative models. In this calculation, we have assumed the 256
models are exhaustive, that is, pA + pB = 1. Of course, this is usually not
the case. We could take pA = 1/16 and pB = 5/16, in which case the
odds would be equal to 255/5 = 51. These and other assumptions (e.g.
see Jeffreys 1967, p. 254) indicate that when we are considering a single
model, here an AR(3)LI model versus a large number of alternatives,
to avoid “selection effects” it is not wise to use 1:1 prior odds but odds
which favor the basic or null model, here an AR(3)LI model.

With the above proviso regarding prior odds, we see that with a cor-
rection for selection, the odds on the models in lines 2–5 vis-à-vis the
AR(3)LI model in line 1 are not high. For example, with a conservative
factor of 10 to guard against selection effects, the odds on the AR(3)LI
model versus that in line 2 is (10)(2.80)/(17.42) = 1.6 in favor of the
AR(3)LI model. Note that the forecast RMSEs for these models are 2.31
for the AR(3)LI model versus 2.74 for the model in line 2. Similar com-
parisons can be made with the models in lines 3–5. Finally, we note that
only y3 (that is, yt−3) appears in these models but not y1 and y2 (that is,
yt−1 and yt−2). It is the case that yt + βyt−3 = 0, with 0 < β < 1 yields
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a damped oscillatory solution with period equal to six years. Thus inclu-
sion of only yt−3 is a parsimonious way of including a six-year cyclical
component in a model.

The model in line 6 of table 4.5 is the one identified for the United
States using Hankel matrix identification procedures in Mittnik (1990).
As can be seen, it is not favored by the odds or by a MSE comparison
vis-à-vis the AR(3)LI model. Also, its RMSE of forecast 2.59 is somewhat
larger than that of the AR(3)LI model, namely 2.31. Similar conclusions
relate to the Otter (1990) model in line 7 versus the AR(3)LI model in
line 1. Of course, it would be desirable to extend these comparisons using
data for other countries as Mittnik (1990) did in his careful study.

4 Aggregation and non-linearity

In this section a brief discussion of and some preliminary empirical results
relating to aggregation and non-linearity will be presented.

With respect to aggregation, one main concern is whether an aggregate
variable is better modeled and forecasted using a model for it or whether
it is better to model its components, forecast them, and use their sum
as the forecast of the aggregate variable. Of course, if there is interest
in forecasting the components, they will have to be modeled. However,
there is still the issue, raised in personal conversation with Espasa in 1990,
whether to add the component forecasts to forecast the aggregate or to
forecast it directly, an issue treated in Espasa and Matea (1990).

In terms of the vector yt in (2.4a), an aggregate can be defined as YA
t =∑N

i=1 yit = ι′yt where ι′ = (1 1 . . . 1), a vector with all elements equal to 1.
Thus from (2.4a)

|H11|YA
t = −ι′H∗

11 H12xt + ι′H∗
11 F11e1t

= φ′(L)xt + θ ′(L) e1t , (4.1)

where φ′(L) ≡ −ι′H∗
11 H12 and θ ′(L) ≡ c ′H∗

11 F11e1t . It is seen that the
polynomial hitting YA

t , the aggregate variable, is the same one hitting
each component of yt, as shown in (2.4), given no cancellation of com-
mon roots. This point is being checked empirically in our current work
with the components of real GNP.

Also, note that in (2.4), each yit can depend on specific subsets of
the elements of xt, leading indicator variables specific to individual com-
ponents of real GNP. On the other hand, in (2.4), the relation for the
aggregate, probably all the elements of xt appear, which makes it hard
to implement. However, aggregate leading indicator variables may be
used as an approximation. Preliminary theoretical analyzes indicate that
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forecasting components using specific input variables for each and adding
forecasts of them to forecast an aggregate is the preferred approach under
many conditions.

As regards non-linearities, non-linear effects can enter the AR(3)LI
model in (2.6) through the leading indicator variables. That is, for exam-
ple, erratic, chaotic movements in the money supply variable will induce
such movements in the output variable. Also, with TVP models, parame-
ter values can move to produce non-linear effects. While these and other
statistical models (for example, threshold autoregressions, etc.) can pro-
duce non-linear effects, it would be desirable to have an explicit subject-
matter justification for non-linearities, as, for example, in the asymmet-
ric cost of adjustment literature. In addition, we have considered certain
generalized production functions which have variable returns to scale and
associated U-shaped average cost functions put forward by Zellner and
Revankar (1969). One such function is log Yt + θYt = x′

tβ, where Yt =
output or RGNP, θ is a positive parameter, and x′

t is a row vector of input
variables. On first differencing this relation we obtain

yt = log Yt/Yt−1 = 1
1 + θYt−1

∆x′
tβ + ut , (4.2)

where ut is an additive white-noise error term and the approximation log
Yt/Yt−1 = (Yt − Yt−1)/Yt−1 has been employed. On tentatively relating
∆x′

t to lagged values of yt, leading indicator variables, and a constant, we
obtain

yt = 1
1 + θYt−1

[β0 + β1yt−1 + β2yt−2 + β3yt−3 + β4SR t−1

+ β5St−2 + β6GMt−1 + β7Wt−1] + ut , (4.3)

a non-linear version of our ARLI model. Note that with θ > 0, when
Yt−1 is near full employment, the coefficients on the input variables are
smaller in absolute value than they are when Yt−1 has a lower value.

When (4.3) was estimated using annual data for the United States and
used to produce one-year-ahead forecasts, the results shown in table 4.6
were obtained. It is seen that using a value of θ different from zero has
produced somewhat lower RMSEs of forecast. Also, it should be noted
that with the use of generalized production functions, demand functions
for labor and capital assume simple non-linear forms, somewhat similar
in form to (4.2). Taking account of such non-linearities as well as those
associated with asymmetric costs of adjustment may well indeed improve
the explanatory and forecasting performance of our models.
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Table 4.6 Forecasting errors of real output growth rates for the United States,
1974–1990a

Forecast errors (Forecasts − actual values)

Value of θ

Real output growth rates 0 (ARLI) 0.001 0.005 0.01

1974 −0.54 0.94 0.85 0.86 0.87
1975 −1.27 1.02 1.30 1.45 1.48
1976 4.77 −3.52 −3.93 −4.03 −4.04
1977 4.56 0.81 −0.19 −0.45 −0.50
1978 5.16 −0.84 −1.19 −1.31 −1.34
1979 2.44 −0.07 −0.50 −0.60 −0.62
1980 −0.16 −0.51 −0.81 −0.82 −0.82
1981 1.92 −2.13 −2.88 −2.99 −3.01
1982 −2.58 3.93 3.85 3.83 3.82
1983 3.51 3.25 1.63 1.25 1.19
1984 6.43 −2.50 −3.07 −3.26 −3.29
1985 3.43 1.10 0.19 −0.03 −0.06
1986 2.81 3.64 1.77 1.35 1.28
1987 3.31 2.64 1.45 1.14 1.08
1988 4.32 −2.60 −3.60 −3.79 −3.82
1989 2.48 0.41 −0.60 −0.81 −0.84
1990 0.96 1.56 0.05 −0.25 −0.29
RMSE (74–87) 2.30 2.08 2.09 2.09
RMSE (74–90) 2.22 2.09 2.11 2.12

Note:
a Updated data (August 1991) were used. The forecasting model for the output growth
rate, yt, is:

yt = 1
(1 + θYt−1)

{β0 + β1Yt−1 + β2Yt−2 + β3Yt−3 + β4SR t−1 + β5SR t−2

+ β6GMt−1 + β7 MSR t−1} + ut

where yt = ln(Yt/Yt−1) with Yt = real GNP in year t.

5 Summary and conclusions

Selected theoretical and empirical results have been presented illustrat-
ing the SEMTSA approach to model building. As can be seen from
what has been presented, it is an operational approach that has already
yielded useful results. Fixed-parameter and time-varying parameter mod-
els which forecast growth rates of real output for eighteen countries
have been formulated and tested in out-of-sample forecasting tests, with
encouraging results. Bayesian shrinkage forecasting techniques have been
shown to be effective in reducing RMSEs of forecast. Bayesian decision
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theoretic procedures for forecasting turning points have been formulated
and applied with considerable success, with about 70 percent of 158 turn-
ing points for eighteen countries correctly forecasted. Model and variable
selection procedures have been formulated and successfully applied. Pre-
liminary results on procedures for forecasting components of aggregates
and adding them up to obtain a forecast of an aggregate have been briefly
mentioned and are under study. Also, selected results for a class of non-
linear models have been presented which are encouraging. Works that
link these results to economic theory have been cited.

To conclude, in the present problem area the SEMTSA approach
has already provided a number of sound, tested reliable procedures and
results. Future work to extend them and to integrate them with and to
improve economic theory will lead to even more such results and, hope-
fully, models that are dependable in explanation, prediction, and control.
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5 Large-sample estimation and testing
procedures for dynamic equation
systems (1980)

Franz C. Palm and Arnold Zellner

1 Introduction

In this chapter we consider large-sample estimation and testing proce-
dures for parameters of dynamic equation systems with moving average
error terms that are frequently encountered in econometric work (see,
e.g., Quenouille 1957 and Zellner and Palm 1974). As pointed out in
Zellner and Palm (1974), three-equation systems that are particularly rel-
evant in econometric model building are (1) the final equations (FEs), (2)
the transfer functions (TFs), and (3) the structural equations (SEs). In the
present work, we specify these equation systems and develop large-sample
“joint” or “system” estimation and testing procedures for each system of
equations. These “joint” or “system” estimation procedures are itera-
tive. They provide asymptotically efficient estimates of the parameters at
the second step of iteration. The maximum likelihood (ML) estimator
is obtained by iterating until convergence. The “joint” estimation meth-
ods provide parameter estimates that are more precise in large samples
than those provided by single-equation procedures and the “joint” test-
ing procedures are more powerful in large samples than those based on
single-equation methods.

The aim of the chapter is to present a unified approach for estimating
and testing FE, TF, and dynamic SE systems. In the chapter we use the
results of previous work on the asymptotic properties of the ML estimator
of the parameters of a dynamic model. We extend the recent work on effi-
cient two-step estimation of dynamic models (e.g. Dhrymes and Taylor
1976, Hatanaka 1976, Reinsel 1976, 1977, Palm 1977a). It is interesting
to note that the development of estimation methods for dynamic models is

Research financed by National Science Foundation Grants GS 40033 and SOC 7305547,
income from the H. G. B. Alexander Endowment Fund, Graduate School of Business,
University of Chicago, and the Belgian National Science Foundation. Some of the results
in this chapter [were] presented in an earlier draft completed in 1974.

Originally published in the Journal of Econometrics 12 (1980), 251–83.
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very similar to that for static models where iterative estimation procedures
such as ML estimation under limited and full information developed at
the Cowles Commission were also followed by asymptotically equivalent
but computationally simpler methods such as the two-stage least squares
[2SLS], three-stage least squares [3SLS], and linearized ML methods,
respectively.

Previous work related to the present work includes that of Hannan
(1969, 1971), Deistler (1975, 1976), and Hatanaka (1975), who have
considered the identification problem for dynamic SE systems with mov-
ing average error terms. Maximum likelihood estimation of dynamic
SEMs with moving average errors has been considered by Byron (1973),
Phillips (1966) and Wall (1976) in the time domain, and for dynamic
SEMs with stationary errors by Espasa (1977) in the frequency domain.
Spectral estimation methods for static SEMs with stationary errors have
been proposed by Hannan and Terrell (1973) and by Espasa (1977).
Among many other workers, Durbin (1959), Box and Jenkins (1970),
Maddala (1971), Pierce (1972), Akaike (1973), Pesaran (1973), Wilson
(1973), Anderson (1975), Hannan (1975), Kang (1975), Nelson (1976),
Nicholls (1976), Osborn (1976), and Reinsel (1976) have considered
estimation of parameters of single-equation or multi-equation ARMA
and transfer function (TF) models. The problem of TF estimation in a
single-equation context has been extensively studied in the “distributed-
lag” area. Closely related to our approach for FEs is the work of Nelson
(1976) who considered joint estimation of a special FE system with diag-
onal MA matrices.

For a system of TFs, Wilson (1973) proposes an iterative procedure
leading to a ML estimator. With respect to ML methods for TFs (e.g.
Wilson 1973) and dynamic SEMs (e.g. Byron 1973, Phillips 1966, and
Wall 1976), our approach is computationally more convenient to imple-
ment while having similar asymptotic properties. Many of the spectral
methods apply to more general models, in the sense that the authors
assume a stationary error process. In the light of Espasa’s conclusion that
treating the errors simply as a stationary process when they are generated
by an AR or an MA model can lead, in the presence of lagged endogenous
variables, to a loss of statistical efficiency, we parameterize the errors as
a multivariate MA process. For an extensive review of the literature, the
reader is referred to Aigner (1971), Nicholls, Pagan, and Terrell (1975),
and Åström and Bohlin (1966). Finally, estimation methods for dynamic
models with autoregressive errors, which have a long tradition in econo-
metrics, are reviewed by Hendry (1976).

In what follows we shall specify the FE system that we consider in
section 2 and then go on to develop estimation and testing procedures
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for parameters of the FE system. In section 3, a TF system is specified
and inference procedures for it are developed, while in section 4 the SE
system is presented and procedures for analyzing it are developed. Section
5 is devoted to a summary and discussion of the results with particular
emphasis on relating them to the structure of econometric estimation
procedures and on pointing to problems that remain to be analyzed.

2 Specification of and estimation and testing procedures
for final equations

Let z′
t = (z1t, z2t, . . . , zpt) be a vector of p observable random variables

generated by the following multivariate autoregressive moving average
(ARMA) process such as studied by Quenouille (1957):

H(L)
p×p

zt
p×1

= c̄
p×1

+ F(L)
p×p

et ,
p×1

t = 1, 2, . . . , T, (2.1)

where c̄ is a p × 1 vector of constants, L is a lag operator such that Lnzt =
zt−n, H(L) = {hij(L)} and F(L) = {fij(L)} are p × p matrix lag operators
with typical elements being finite degree polynomials in L, namely hij(L)
and fij(L), respectively, and et is a p × 1 random error vector. We assume
that et is normally distributed with

Eet = 0 and Eete′
t ′ = δtt ′ Ip, (2.2)

for all t and t ′, where δtt ′ is the Kronecker delta. Contemporaneous and
serial correlation as well as different variances for the error process in
(2.2) can be introduced through appropriate specification of F(L). We
further assume that the inverse of H(L), H−1(L) = H∗(L)/|H(L)|, exists,
where H∗(L) is the adjoint matrix associated with H(L) and |H(L)| is the
determinant of H(L) that is a scalar polynomial of finite degree in L with
roots lying outside the unit circle.

The “final equations” (FEs) associated with (2.1), obtained by multi-
plying both sides of (2.1) on the left by H∗(L) and normalizing the system,
are given by

θ(L)zt = c + A(L)et , (2.3)

where

θ(L) = d−1|H(L)| = (1 − θ1L − · · · − θnLn)

is a scalar polynomial in L, d is a normalizing constant,

c = d−1 H∗(L)c̄
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is a vector of constants, and

A(L) = d−1 H∗(L)F(L)

is a matrix lag operator of degree m.
In order to identify the system (2.3), we assume among other things

that the roots of |A(L)| are outside the unit circle, and that both sides
of (2.3) do not have common factors. As pointed out in previous work,
Zellner and Palm (1974, 1975), the AR polynomial θ(L) operates on each
element of zt. Unless there is canceling, the AR parts of the equations in
(2.3) should be of identical order and have the same parameters. Since it
is often of interest to test that the AR parameters are the same in different
equations and also for greater generality, we shall take up the problem of
estimating parameters of the following system:

θi (L)zit = ci + uit, i = 1, 2, . . . , p, (2.4)

where

θi (L) = 1 − θi1L − θi2L2 − · · · − θini L
ni ,

with ni given, i = 1, 2, . . . , p, and uit is the ith element of the vector
ut = A(L)et.

In connection with convenient estimation of the parameters in (2.4),
we express the error vector ut as

ut = A0et + A1et−1 + · · · + Amet−m

= vt + G1vt−1 + · · · + Gmvt−m, (2.5)

where Gi = Ai A−1
0 , i = 1, 2, . . . , m, A0 is assumed to be non-singular,

and vt = A0et is normally distributed with Evt = 0, and

Evtv′
t = A0 A ′

0 = Ωv and Evtv′
t ′ = 0, t �= t ′. (2.6)

A typical element of ut, say uit, may be represented as a moving average
in one random variable (see, e.g., Ansley, Spivey and Wroblenski 1977,
Palm 1977b, or Granger and Morris 1976),

uit = vit + λi1vit−1 + · · · + λimvit−m, (2.7)

where the λihs are such that they reproduce the autocorrelation structure
of uit, i.e.,

ωi i

m− j∑
h=0

λih+ j λih =
m− j∑
h=0

a′
ih+ j aih, j = 0, 1, . . . , m,

with λi0 = 1, ωi i being the i × i element of Ωv as defined in (2.6), and
a′

ih being the ith row of Ah in (2.5). The disturbances vit on the r.h.s. of
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(2.7) are normally and independently distributed, each with zero mean
and common variance ωii.

Each FE may be estimated separately using a single-equation non-
linear least squares or single-equation ML procedure. Joint estimation
of the parameters in the system shown in (2.4) and (2.5) will now be
considered. In doing so, we ignore possible restrictions implied by the
underlying structural model (2.1). For an example of joint ML estimation
of a set of FEs, the reader is referred to Wallis (1977). We write the system
of FEs as

θ1(L) 0 . . . 0

0 θ2(L)
...

...
. . . 0

0 . . . 0 θp(L)




z1t

z2t
...

zpt

 = c + vt +
m∑

h=1

Ghvt−h, (2.8)

or alternatively as

zt = c + W1tθ + ut , (2.9)

with

W1t
p×k

=


z1t−1 z1t−2 . . . z1t−n1 0 . . . . . . . . . . . . . . . 0

0 . . . . . . 0 z2t−1 z2t−2 . . . z2t−n2 0 . . . 0
...

...
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . zpt−np


θ′

1×k
= (θ11, θ12, θ13, . . . , θ1n1 , θ21, . . . , θ2n2 , . . . , θpnp ),

k =
p∑

i=1

ni ,

and for a sample of T observations

z
Tp×1

= W0
(Tp×p)

c
(p×1)

+ W1
(Tp×k)

θ
(k×1)

+ u
(Tp×1)

, (2.10)

where

z′ = (z′
1, z′

2, . . . , z′
T),

W ′
0 = (Ip, Ip, . . . , Ip),

W ′
1 = (W ′

11, W ′
12, . . . , W ′

1T),

u′ = (u′
1, u′

2, . . . , u′
T).

Assuming initial conditions to be zero, the vector u may be expressed in
terms of v,

u = Mv,
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where

M =



Ip 0 . . . . . . . . . . . . 0

G1 Ip 0 . . . . . . . . .
...

G2 G1 Ip 0 . . . . . .
...

...
...

Gm Gm−©1 . . . . . . Ip0 . . .
...

0 Gm . . . . . . . . . . . .
...

0 . . . . . . . . . Gm . . . Ip


,

and

v′ = (v′
1, v′

2, . . . , v′
T).

The assumption of zero initial values is basically made for the purpose
of simplicity. One can also “backforecast” the values of the initial condi-
tions for a set of FEs,1 as Box and Jenkins (1970) do for single-equation
ARMA models, or treat the initial conditions as unknown parameters
(e.g. Phillips 1966). Whether backforecasting improves the properties of
estimators under all conditions is not known. The treatment of the ini-
tial conditions generally does not affect the asymptotic properties of the
estimators presented in this chapter, but may be very important in small-
sample situations – see, e.g., Kang (1975) and Osborn (1976). Under
zero initial conditions, the likelihood function is

L(θ, c, M, Ωv, z) ∝ |Ωv|−T/2 exp (S), (2.11)

where

S = − 1
2 (z − W0c − W1θ)′M ′−1(IT ⊗ Ω−1

v )M−1(z − W0c − W1θ).

The first order conditions for a maximum of the log-likelihood function
(see, e.g., Palm 1977a) are

∂S/∂β = W ′M ′−1(IT ⊗ Ω−1
v )M−1u = 0, (2.12)

β′ = (c′, θ′, γ ′),
γ = vec [G1 G2 . . . Gm]′,

1 For example for a vector MA (1) model xt = εt − Aεt−1, the backward version is given
by xt = et − Bet+1, where εt and et are both white noise with covariance matrix Ω. From
the autocovariance function of xt, we have Ω + AΩA ′ = Ω + BΩB′ and −AΩ = −ΩB′.
Given consistent parameter estimates of the forward version Â and Ω̂, B̂ = Ω̂ Â ′Ω̂−1 is a
consistent estimate of B, that can be used to backforecast xt using the backward version
of the model.



Large sample estimation 207

with “vec” denoting the operation of vectorizing a matrix, stacking col-
umn after column,

W = [W0 W1 W2],

with W2 being a Tp × p2m matrix of disturbances,

W ′
2 = [

vl ′
ij

]
, i = 1, . . . , p, l = 1, . . . , m, j = 1, . . . , p,

and with typical row

vl ′
ij = [0, 0, . . . , 0

l p times
0 . . . 0vj1 0 . . . 0

p elements
0 . . . 0vj2 0 . . . 0 0 . . . 0vj T . . .. 00 ]

ith position

For given Ωv, the set of equations in (2.12) is non-linear in the param-
eters of M. The solution of (2.12) requires an iterative procedure.

An alternative to the exact ML solution of (2.12) is provided by approx-
imating the first order condition (2.12). Using a lemma given by Dhrymes
and Taylor (1976),2 a two-step estimator of β with the same asymptotic
properties as the ML estimator is given by

ˆ̂β = β̂ − Γ −1(β̂)
∂S
∂β

(β̂), (2.13)

where Γ (β̂) is non-singular matrix such that

plim
T→∞

1
T

Γ (β̂) = plim
T→∞

1
T

∂2S
∂β∂β′ (β0),

β0 is the true parameter value and β̂ is a consistent estimator of β0 such
that T

1
2 (β̂ − β0) has some limiting distribution. The matrix Γ and the

vector ∂S/∂β in (2.13) also depend on the unknown parameters of Ωv.
The lemma given by Dhrymes and Taylor (1976) applies to all the

parameters in the likelihood function (i.e. to ∂ ′ = (β′, ω′), where ω is the
vector of unknown parameters in Ωv). As the information matrix is block-
diagonal for β and Ωv, the use of a block-diagonal matrix Γ to approx-
imate the Hessian matrix of the log-likelihood function with respect to
∂ yields expression (2.13) for the subvector of parameters β. The use of
consistent but not efficient estimates for the unknown elements of Ωv in
(2.13) will be sufficient for ˆ̂β to have the same asymptotic properties as
the ML estimator.

2 For an earlier discussion of approximations to the ML solution, the reader is referred
to Fisher (1925, ch. 9), Kendall and Stuart (1961, pp. 48–51), and Rothenberg and
Leenders (1964).
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Expression (2.13) defines a class of two-step estimators. A member of
this class can be characterized by a particular choice for the matrix Γ . If
we use the Hessian matrix for Γ in (2.13), we implement the second step
of the Newton–Raphson algorithm.3 Provided one starts with consistent
parameter estimates an approximate solution of the system (2.12), which
satisfies the requirements for (2.13) is also obtained at the second step of
the Gauss–Newton algorithm. The function S in (2.11) can be written
as an inner product of vectors.

v′(IT ⊗ Ω−1
v

)
v = ε′ε, (2.14)

where

ε = Pv = (e′
1 e′

2 . . . e′
T)′,

and P = (IT ⊗ A−1
0 ) is the matrix obtained from the decomposition of

the positive definite matrix (IT ⊗ Ω−1
v ) = P ′ P. The derivative of ε with

respect to β is

∂ε

∂β
= −W ′M ′−1 P ′. (2.15)

The second step of the Gauss–Newton procedure can be written as

ˆ̂β = β̂ −
{[

∂ε

∂β

∂ε′

∂β

]−1
∂ε

∂β
ε

}
β=β̂

, (2.16a)

= β̂ + [Ŵ ′M̂ ′−1(IT ⊗ Ω̂−1
v )M̂−1Ŵ]−1Ŵ ′M̂ ′−1(IT ⊗ Ω̂−1

v )v̂,

(2.16b)

where the carats above the symbols denote that the quantities are evalu-
ated at consistent parameter estimates, for example Ŵ = (W0W1Ŵ2). The
second order derivative of S with respect to β i and β j is

∂2S
∂βi∂β j

= −
[

∂2ε′

∂βi∂β j

]
ε −

[
∂ε′

∂βi

] [
∂ε

∂β j

]
. (2.17)

Under the assumptions underlying our model, it can be shown by using
the strong law for martingales (see, e.g., Feller 1966, p. 238) that the
first r.h.s. term in (2.17) converges to zero in probability, so that the
two-step estimator in (2.16) implements expression (2.13) and therefore
the two-step Gauss–Newton procedure (2.16) is one member of a class
of estimators which are asymptotically equivalent to the ML estimator,
defined as the exact solution of expression (2.12). Further, expression
(2.16) can be calculated either using the analytical derivatives given in

3 The reader, who is not familiar with numerical procedures to solve systems of non-linear
equations, is referred to Goldfeld and Quandt (1972).
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(2.15), evaluating them at consistent parameter estimates, as has been
done, e.g., by Nelson (1976), or by numerical calculation of the partial
derivatives in (2.16a) of ε with respect to β, as is proposed by Box and
Jenkins (1970) for univariate models.

The two-step Gauss–Newton estimator (2.16) can be interpreted as a
“residual-adjusted” Aitken estimator. Adding the quantity

∑m
h=1 Ghvt−h

to both sides of (2.9), we get for the sample period

y = W0c + W1θ + W2γ + Mv

= Wβ + Mv, (2.18)

where

y′ = (y′
1, . . . , y′

t , . . . , y′
T) and yt = zt +

m∑
h=1

Ghvt−h.

Application of generalized least squares to the system (2.18), after eval-
uation of the regressand, the regressors, and the disturbance covariance
matrix at consistent parameter estimates denoted by the carats, yields

ˆ̂β= [
Ŵ ′M̂ ′−1(IT ⊗ Ω̂−1

v

)
M̂−1Ŵ

]−1[Ŵ ′M̂ ′−1(IT ⊗ Ω̂−1
v

)
M̂−1 ŷ

]
,

(2.19)

which is equivalent to (2.16b).
The two-step estimator in (2.19) is similar to those proposed by Rein-

sel (1976) for other models and has the same asymptotic properties as
the ML estimator under fixed and known initial values and ignoring pos-
sible restrictions on the FE parameters implied by the specification (2.1).
The estimator ˆ̂β is consistent, asymptotically normally distributed and
efficient, with a large sample covariance matrix consistently estimated by

V̂( ˆ̂β) = [
Ŵ ′M̂ ′−1(IT ⊗ Ω̂−1

v

)
M̂−1Ŵ

]−1
. (2.20)

Joint estimation of the parameters in the system (2.4) and (2.5) involves
the following steps:
(1) Using the error representation shown in (2.7), estimate the parame-

ters of each equation separately using, for example, the Box–Jenkins
(1970) non-linear least squares approach or a univariate ML proce-
dure. The estimates so obtained will be consistent but not efficient.
They will be asymptotically efficient within the class of estimation
methods for the univariate ARMA representation of zit. As the first-
step estimator plays a crucial role in a two-step estimation procedure,
it is preferable to use a non-linear least squares or a single-equation
maximum likelihood method to estimate the parameters of each FE
separately instead of using, for example, an instrumental variables
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approach. The main objective of this first step is to obtain an esti-
mate of vt, say v̂t , t = 1, 2, . . . , T.

(2) Use the v̂ts to form an estimate of the covariance matrix Ωv = Evtv′
t ,

namely

Ω̂v =
T∑

t=1

v̂t v̂′
t/T. (2.21)

(3) Express the ith equation of the system (2.4) as

i = 1, 2, . . . , p,
zit = ci + w′

1i tθi + q′
tγ i + vit, (2.22a)

t = 1, 2, . . . , T,

where

w′
1i t = (zit−1, zit−2, . . . , zit−ni ),

θ′
i = (θi1, θi2, . . . , θini ),

q′
t = (v′

t−1, v′
t−2, . . . , v′

t−m),

γ ′
i = (γ ′

i1, γ ′
i2, . . . , γ ′

im),

with γ ′
ij being the ith row of Gj, j = 1, 2, . . . , m.

Expressing (2.22a) for all t, we have

zi = ciι + W1iθi + Qγ i + vi , i = 1, 2, . . . , p, (2.22b)

where w′
1i t and q′

t are typical rows of W1i and Q, respectively, and ι
is a T × 1 vector with elements equal to one.

We then apply ordinary least squares to each equation (2.22a), after
replacing Q by Q̂, a matrix of the first-step residuals v̂t , to obtain
consistent estimates of γ i.

(4) Compute expression (2.19). Iteration of steps 1–4 yields the ML
estimator4 given known and fixed initial conditions. In small samples
it is not clear that the iterated estimator for β is to be preferred to ˆ̂β.
For example, it is well known that ML estimators for parameters
of many models have poor finite sample properties relative to usu-
ally employed loss functions.5 Nelson (1976) provides Monte Carlo
results pertaining to a system similar to a particular set of FEs that

4 Other iterative algorithms that may be computationally more efficient can be employed
to compute the ML estimate (see, e.g., Chow and Fair 1973) who considered a dynamic
system with AR errors.

5 See Zellner (1971a) for some results relating to ML estimation of parameters of the log-
normal distribution. For static simultaneous equation models, ML estimators frequently
are found to possess no finite moments and hence have unbounded risk relative to a
quadratic loss function. Last, Stein’s well-known results indicate that ML estimators are
often inadmissible relative to a quadratic loss function (see references and analysis in
Zellner and Vandaele 1974).
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indicate a substantial gain of efficiency of the joint estimators with
respect to univariate procedures. The finite sample properties of ˆ̂β in
(2.19) and estimators obtained by iteration are as yet not established.

The system of FEs (2.10) can also be written as

z = W0c + W1θ + W2γ + v. (2.23)

Generalized least squares applied to (2.23) after replacing the lagged
error terms in W2 by their sample estimates Ŵ2 and Ωv by a consistent
estimate Ω̂v leads to

ˆ̂βGLS = [
Ŵ ′(IT ⊗ Ω̂−1

v

)
Ŵ

]−1Ŵ ′(IT ⊗ Ω̂−1
v

)
z. (2.24)

Expression (2.24) gives a consistent joint estimator for β, but it usually
is not efficient. From a comparison with (2.19), it is obvious that the
estimator in (2.24) is not a solution to the first order conditions for a
maximum of the likelihood function, so that iterative solution of (2.24)
will not yield the ML estimator. It rather gives a solution of the first
order conditions for a maximum of the likelihood function with respect
to β under the condition that W2 = Ŵ2, implying that ∂S/∂β is linear
in β (see, e.g., Maddala 1971 for a similar discussion of single-equation
models).

As mentioned above, FEs are often encountered in which the θi coef-
ficient vectors in (2.22) are all the same, that is θ1 = θ2 = θ3 = · · · = θp

= θ(r). In such cases, the restricted matrix W1 in (2.10) takes the form

W (r )
1

Tp×n
=


z0 z−1 . . . z−n+1

z1 z−2 z−n+2
...

...
zT−1 . . . . . . zT−n

 . (2.25)

We then write the system (2.10) as

z = W0c + W(r )
1 θ(r ) + u. (2.26)

Then the approximate ML estimators forβ(r)
′ = (c′, θ(r)

′
, γ ′)′ are given by[ ˆ̂c

ˆ̂γ

](r )

= [
(W0Ŵ2)′Ω̂−1(W0Ŵ2)

]−1
(W0Ŵ2)Ω̂−1(ŷ − W(r )

1
ˆ̂θ(r )), (2.27a)

ˆ̂θ(r ) = [
W(r )′

1 RW(r )
1

]−1W(r )′
1 Rŷ, (2.27b)

with

R = Ω̂−1 − Ω̂−1(W0Ŵ2)[(W0Ŵ2)′Ω̂−1(W0Ŵ2)]−1(W0Ŵ2)′Ω̂−1,
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where Ω̂ is an estimate of Ω = [M(IT ⊗ Ωv)M′] and Ŵ2 is formed using
lagged residuals. The large sample covariance matrix for the restricted
estimators in (2.27), ˆ̂β(r ), denoted Vr, is consistently estimated by

V̂r = [Ŵ(r )′
Ω̂−1Ŵ(r )]−1 where Ŵ(r ) = [

W0W(r )
1 Ŵ2

]
. (2.28)

In case of general linear restrictions on the elements of β in (2.18),
say Cβ = a, where C is a given matrix with q linearly independent rows
of rank q, and a is a given q × 1 vector, an estimator of β satisfying the
restriction is given by

β̃ = ˆ̂β − (Ŵ ′Ω̂−1Ŵ)−1C′[C(Ŵ ′Ω̂−1Ŵ)−1C′]−1(C ˆ̂β − a), (2.29)

with ˆ̂β as shown in (2.19), Ω̂ = [M̂(IT ⊗ Ω̂v)M̂′], and large sample
covariance matrix, V(β̃), consistently estimated by

V̂(β̃) = (Ŵ ′Ω̂−1Ŵ)−1

− (Ŵ ′Ω̂−1Ŵ)−1C′[C(Ŵ ′Ω̂−1Ŵ)−1C′]−1C(Ŵ ′Ω̂−1Ŵ)−1.

(2.30)

While (2.29) and (2.30) are relevant for the case of general linear restric-
tions, it should be appreciated that the matrices involved in the expres-
sions are quite large from a numerical point of view for systems of even
moderate size.6

To test the restriction that θ1 = θ2 = · · · = θp = θ(r), an n × 1 vector,
introduced in connection with (2.26), we consider the following residual
sums of squares:

SSr = ( ˆ̂y − ˆ̂W(r ) ˆ̂β(r )), ˆ̂
Ω−1( ˆ̂y − ˆ̂W(r ) ˆ̂β(r )), (2.31)

and

SSu = ( ˆ̂y − ˆ̂W ˆ̂β)′ ˆ̂
Ω−1( ˆ̂y − ˆ̂W ˆ̂β), (2.32)

where the carats denote that the quantities are computed using the
second-step estimates of β(r) and β, respectively. Thus, the approximate
likelihood ratio,

N log (SSr /SSu), (2.33)

6 With respect to the large matrices that are encountered in joint estimation procedures and
that will usually lead to a multicollinearity problem, it is worthwhile to mention the use
of approximate Bayes estimates such as considered by Zellner and Vandaele (1974). In
a Monte Carlo study of the small sample (T = 20) properties of several estimators for a
dynamic model with first order autoregressive errors, Swamy and Rappoport (1978) con-
clude that in terms of mean-square errors the ridge regression and the approximate min-
imum mean-square error estimates of the regression coefficients are significantly better
than alternative estimates such as ML or Hatanaka’s (1974) residual adjusted estimates.
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is distributed as χ2
m in large samples where N = Tp and m = n(p − 1), the

number of restrictions involved in θ1 = θ2 = · · · = θp = θ(r). Thus (2.33)
provides a large sample χ2 test of a frequently encountered hypothesis
in model construction. In a similar fashion, large sample χ2 tests of the
general linear hypothesis Cβ = a can be constructed.

The computation of the likelihood ratio (LR) requires parameter esti-
mates for the restricted and the unrestricted versions of the model and can
therefore be laborious. For the purpose of computational convenience, it
is preferable to use the Wald-test (W) (see, e.g., Sargan 1975) when it is
easier to estimate the unrestricted model than to estimate the restricted
model and to use the Lagrange multiplier (LM)-test (see, e.g., Breusch
and Pagan 1978) or the efficient score (ES)-test (see, e.g., Rao 1973)
when the restricted model is easily estimated. All four test statistics have
the same asymptotic properties.

Imposing the restrictions θi = θ(r), i = 1, 2, . . . , p, leads to a reduction
of the size of the matrices involved in the joint estimation of a set of FEs,
so that the LM test may be preferred. The approximate LM (and ES)
test statistic is obtained by evaluation of the first derivatives of the log-
likelihood function with respect to β in (2.12) at the restricted parameter

estimates ˆ̂β(r) in (2.27) and forming the quadratic form

φLM = {u′Ω−1W1[W ′
1 RW1]−1W ′

1Ω
−1u}∣∣∣∣∣∣∣∣

φi =φ̂(r )

c=ĉ(r )

γ=γ̂ (r )

, (2.34)

where R is defined in (2.27b). Under the null hypothesis θi = θ(r), i = 1,
2, . . . , p, φLM is distributed as χ2

m in large samples where m = n(p − 1).
In order to test non-linear restrictions on the parameters β – for exam-

ple, restrictions on β implied by the underlying structural form (2.1) –
the W-test will usually be preferred on the basis of its computational con-
venience. Suppose that we want to test a set of m non-linear differentiable
restrictions on β, hi(β) = 0, i = 1, . . . , m. Under this null hypothesis,
the approximate W-statistic given by

φW =
{

h(β)′
[

∂h
∂β

(W ′Ω−1W)−1 ∂h′

∂β

]−1

h(β)

}
β= ˆ̂β

, (2.35)

where h(β) is an m × 1 vector with typical element hi(β) and ∂h/∂β is
the matrix of first derivatives of h with respect to β, is in large samples
distributed as χ2

m. Work is needed to establish the finite-sample properties
of the asymptotic test statistics discussed above.
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3 Specification of and estimation and testing procedures
for sets of transfer functions

To specify a set of transfer functions (TFs), we partition the vector zt in
(2.1) as follows, z′

t = (y′
t x

′
t), where yt is a p1 × 1 vector of endogenous

variables and xt is a p2 × 1 vector of exogenous variables with p1 + p2

= p. With zt so partitioned, the system in (2.1) becomes[
H11(L) H12(L)
H21(L) H22(L)

] [
yt
xt

]
=

[
c̄1

c̄2

]
+

[
F11(L) F12(L)
F21(L) F22(L)

] [
e1t

e2t

]
. (3.1)

The assumption that xt is exogenous gives rise to the following restrictions
on the system in (3.1):

H21(L) ≡ 0, F12(L) ≡ 0, F21(L) ≡ 0. (3.2)

With the restrictions in (3.2) imposed on (3.1), we have

H11(L)yt + H12(L)xt = c̄1 + F11(L)e1t , (3.3a)

H22(L)xt = c̄2 + F22(L)e2t . (3.3b)

The system in (3.3a) is in the form of a set of linear, dynamic simulta-
neous equations while that in (3.3b) is a set of ARMA equations for the
exogenous variables.

The TFs associated with (3.3a), obtained by multiplying both sides of
(3.3a) by H∗

11(L), the adjoint matrix associated with H11(L) and normal-
izing the system, are

φ(L)yt = c1 + ∆(L)xt + B(L)e1t (3.4a)

= c1 + ∆(L)xt + K(L)εt , (3.4b)

where

φ(L) = g−1|H11(L)|,
with g being the normalizing constant and |H11(L)| being the determinant
of H11(L);

c1 = g−1 H∗
11(L)c̄1

is a p1 × 1 vector of constants,

∆(L) = −g−1 H∗
11(L)H12(L) =

r∑
i=0

∆i Li ,

and

B(L) = g−1 H∗
11(L)F11(L) =

q∑
j=0

Bj Lj .
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The coefficients of the matrix lag operator K(L) in (3.4b) are given by
Ki = Bj B−1

0 , j = 1, 2, . . . , q , and εt = B0e1t is a p1 × 1 disturbance
vector with E(εt) = 0, E(εtε

′
t) = B0 B′

0 = Ωε, and zero serial correlations.
In order to identify (3.4), we assume that |H11(L)| and |K(L)| have their
roots outside the unit circle and that the r.h.s. and the l.h.s. of (3.4) have
no factors in common. Just as with the FEs, the AR polynomial φ(L) is
the same in each equation if no cancelling occurs. To allow for possibly
different φ(L) in different equations, we shall write the TF system as

φi (L)yit = c1i + δ′
i (L)xt + k′

i (L)εt , i = 1, 2, . . . , p1, (3.5)

where

φi (L) = 1 − φi1L − φi2L2 − φimi L
mi ,

with mi assumed known, and δ′
i (L) is the ith row of ∆(L) and k′

i (L) is the
ith row of K(L). Since the error terms in (3.5) have a structure similar to
those in (2.4), the representation presented in (2.7) is relevant here.

Each TF can be estimated separately using single-equation non-linear
least squares or the single-equation ML procedure. Joint estimation of
the parameters of the set of TFs (3.5) will now be considered. We write
the system (3.5) as

yt = Ytφ + c1 + Xtδ + u1t , (3.6)

where

Yt

p1×
p1∑

i=1
mi

=


y1t−1 y1t−2 . . . y1t−m1 0 . . . . . . . . . 0

0 0 y2t−1 . . . y2t−m2 . . . 0
... 0
0 . . . . . . . . . . . . . . . . . . yp1t−mp1

 ,

φ′ = [φ11 φ12 . . . φ1m1 φ21 . . . φ2m2 . . . φp1mp1
],

and Xt is a p1 × p1 p2(r + 1) matrix with typical row, say the jth, given
by

x′
j t = [0, 0, . . . , 0,

( j−1)(r+1)p2 elements

x1t , x1t−1, . . . , x1t−r , x2t , . . . , xp2t−r
(r+1)p2 elements

, 0, 0, . . . , 0],
(p1− j )(r+1)p2 elements
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δ = vec [∆0 ∆1 . . . ∆r]′ and, provided the values of the initial conditions
are zero, u1 = Kε where ε′ = [ε′

1, ε′
2, . . . , ε′

T] and

K =



Ip1 0 . . . . . . 0

K1
...

...
...

Kq
...

0
...

0 . . . Kq K1 Ip1


.

-----------------------

Of course some of the columns of the matrix Xt will be deleted when we
have exclusion restrictions on the vector δ.

For a sample of T observations, we write the system (3.6) as

y = Yφ + X0c1 + Xδ + u1

= Z1λ1 + u1, (3.7)

with

Z1 = (Y, X0, X), λ′
1 = (φ′, c′

1, δ′).

As in the preceding section, the likelihood function for the unrestricted
system of TFs, conditional on zero starting values,7 can be written as

L(λ1, Ωε, K, y) ∝ |Ωε|−T/2exp(S), (3.8)

where

S = − 1
2 (y − Z1λ1)′K′−1(IT ⊗ Ω−1

ε

)
K−1(y − Z1λ1).

The first order conditions for a maximum of the log-likelihood function
are

∂S
∂λ

= Z′K ′−1(IT ⊗ Ω−1
ε

)
K−1u1 = 0, (3.9)

where

λ′ = (λ′
1, λ′

2),

with λ2 = vec[K1, . . . , Kq]′, and

Z = [Z1, Z2],

7 As with the set of FEs, the starting values may be “backforecasted” using single TF
equations. They may also be considered as unknown parameters to be estimated (e.g.
Phillips 1966).
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with Z2 being a Tp1 × p2
1q matrix of disturbances,

Z′
2 = [

εl ′
ij

]
, i = 1, 2, . . . , p1, l = 1, 2, . . . , q , j = 1, 2, . . . , p1,

and with typical row

εl ′
ij = [0, 0, . . . , 0,

l p1 times

0, . . . , 0εj10 . . . 0
p1 elements

. . . 0 . . . 0 0εj T . . . 0]
p1 elements

ith position

.

As in the preceding section, a fully8 efficient two-step estimator of λ is
obtained using expression (2.13) to yield

ˆ̂λ = [
Ẑ′K̂′−1(IT ⊗ Ω̂−1

ε

)
K̂−1 Ẑ

]−1[Ẑ′K̂′−1(IT ⊗ Ω̂−1
ε

)
K̂−1ŵ

]
,

(3.10)

where the carats denote that the unobserved quantities are computed at
consistent estimates of λ, λ̂, and the sample residuals obtained from the
estimates, and

w′ = (
w′

1, . . . , w′
T

)
where wt = yt +

q∑
h=1

Khεt−h.

The remarks made in the preceding section concerning expressions (2.13)
and (2.19) also apply to (3.10). It should be noticed that the requirement
on the limit of Γ in (2.13) has also to be satisfied in TF context, where
it leads to conditions on the limiting values of the second moments of xt.
The steps in obtaining joint estimates of the parameters in (3.5) are as
follows:
(1) Fit individual equations of (3.5) to obtain consistent estimates of the

contemporaneous residuals, ε̂t , where εt = B0e1t.
(2) Use the residuals to form a consistent estimate of the contempora-

neous covariance matrix of εt, Ωε, namely

Ω̂ε =
T∑

t=1

ε̂t ε̂
′
t/T. (3.11)

(3) For T observations, write the ith equation of (3.5) as

yi = c1iι + Yiφi + Xiδi + Qκi + εi

= Jiηi + εi , i = 1, 2, . . . , p1, (3.12)

8 This means, that the estimator is as efficient as the ML estimator for the parameters of
the TF form, ignoring restrictions coming from the underlying structural form.
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where yi has typical element yit, Yi has typical row (yit−1, yit−2, . . . ,
yit−mi ), Xi has typical row (x1t , x1t−1, . . . , x1t−r1i , . . . , xp2t , xp2t−1, . . . ,
xp2t−r p2i ), Q has typical row (ε′

t−1, ε′
t−2, . . . , εt−q ), which does not

depend on i.
Imposing restrictions on the error serial correlations could lead to a

different matrix Qi for different i = 1, 2, . . . , p1. Further, εi has typical
element εit, φ′

i = (φi1, φi2, . . . , φimi ), δ′
i = (δi10, δi11, . . . , δi1r1i , . . . ,

δi p20, δi p21, . . . , δi p2r p2i
) is the vector of coefficients in the elements of

vector δ′
i (L). And κ′

i = (κ′
i1, κ′

i2, . . . , κ′
iq ) with κ′

ij being a typical row
of Kj, j = 1, 2, . . . , q, ι = (1, 1, . . . , 1)′, T × 1, Ji = (ι, Yi, Xi, Q),
η′

i = (c1i , φ′
i , δ

′
i , κ

′
i ).

We then apply ordinary least squares to each equation (3.12), after
replacing εi by ε̂i , a matrix of the first step residuals ε̂t to obtain
consistent estimates of Q.

(4) Compute expression (3.10), using the residuals obtained in step 2 and
the consistent parameter estimates Ω̂ε and η̂i to evaluate the unknown
quantities in (3.10). Iteration of (3.10) yields the ML estimator given
known and fixed initial conditions. To compute the inverse of K̂, one
ought to exploit the block-triangular structure of this matrix. This
reduces the inversion of a Tp1 matrix to addition and multiplication
of p1 × p1 matrices.

The large sample covariance matrix of the estimator proposed in
(3.10) is consistently estimated by

vâr( ˆ̂λ) = [
Ẑ′K̂′−1(IT ⊗ Ω̂−1

ε

)
K̂−1 Ẑ

]−1
. (3.13)

In considering TF estimation, it is important to realize that the num-
ber of parameters in each TF can be large when there are several input
variables in the vector xt and lags relating to them are long. In such cases
it will be expedient to consider reducing the number of free parameters
to be estimated by making assumptions regarding the forms of lagged
responses as is done in the distributed lag literature (see, e.g., Almon
1965, Dhrymes 1971, Zellner 1971b, ch. 7, and Shiller 1973). And of
course, introducing the restriction that φ1(L) ≡ φ2(L) ≡ · · · ≡ φp1 (L) ≡
φ(L) in (3.5), when warranted, will lead to fewer free parameters to be
estimated. A large-sample χ2 test of the hypothesis that φ1(L) ≡ φ2(L)
≡ · · · ≡ φp1 (L) ≡ φ(L) can be constructed as in the case of FEs where
a similar hypothesis was considered. Linear and non-linear restrictions
on the TF parameters can be tested along the lines of the testing proce-
dures proposed for the system of FEs. An example of a test of non-linear
restrictions is J. D. Sargan’s test on common factors in the polynomials
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φi(L) and δ′
i (L) in the TF equation (3.5) which, if the common factor

hypothesis is not rejected, leads to an ARMA representation of the dis-
turbances in (3.5).

4 Estimation and testing procedures for structural
equations

The structural equations (SEs), shown explicitly in (3.3a), will now be
considered. We shall assume that a sufficient number of zero restrictions
has been imposed on the parameters of the system such that the remaining
free parameters are identified (see, e.g., Hannan 1971 and Hatanaka
1975). In what follows, we shall first take up “single-equation” estimation
techniques for parameters in individual SEs and then go on to develop a
“joint estimation” procedure that can be employed to estimate parameters
appearing in a set of SEs.

4.1 Single-equation estimation procedure

The ith SE of the system in (3.3a) is given by

p1∑
j=1

hij(L)yj t +
p∑

j=p1+1

hij(L)xj t = c̄1i +
p1∑

j=1

fij(L)e j t , t = 1, 2, . . . , T.

(4.1)

On imposing identifying zero restrictions and a normalization rule, hii0

= 1 in hii(L) = hii0 + hii1L + · · · , the remaining free parameters of (4.1)
can be estimated utilizing the techniques described below.

As shown in connection with (2.7) above, we can write

p1∑
j=1

fij(L)e j t = φi (L)εit, (4.2)

where

φi (L)εit = εit + φi1εi t−1 + φi2εi t−2 + · · · + φiq εi t−qi ,

where qi � maxj qij, with qij the degree of fij(L), and εit is a non-
autocorrelated, normally distributed disturbance term with zero mean
and constant finite variance, σ 2

ε , for all t. On substituting from (4.2) in
(4.1) we have

p1∑
j=1

hij(L)yj t +
p∑

j=p1+1

hij(L)xj t = c̄1i + φi (L)εit, t = 1, 2, . . . , T, (4.3)
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with property that xjt and εi t ′ are independent for all j, t and t′.
Since more than one current endogenous variable appears in (4.3),

along with lagged endogenous variables, and since the disturbance terms
are serially correlated, it is well known that usual estimation techniques
such as two-stage least-squares, etc. yield inconsistent structural coeffi-
cient estimates.

Similarly, non-linear techniques for minimizing
∑T

t=1 ε2
it with respect

to the parameters of (4.3) yield inconsistent coefficient estimates because
of the “simultaneous equation” complication of correlation between dis-
turbances φi(L)εit and the endogenous variables among the explanatory
variables in (4.3).

To get consistent estimates of the parameters in (4.3), one can use an
instrumental variables method using as instruments for the current and
lagged endogenous variables, the current and lagged exogenous variables.
One can also use the yj t−qi −l , j = 1, . . . , p1, l = 1, 2, . . . , as instruments
for the current and lagged endogenous variables, as these instruments are
independent of the error term φi(L)εit. The use of lagged endogenous
variables as instruments has been proposed by Phillips (1966). On the
basis of the instrumental variable estimates, ˆ̄c1i and ĥij(L), j = 1, 2, . . . ,
p, in (4.3), one can compute the residuals

η̂it =
p1∑

j=1

ĥij(L)yj t +
p∑

j=p1+1

ĥij(L)xj t − ˆ̂c1i ,

and then fit a q ith order MA model to the residuals to get consistent
estimates of the φils, l = 1, 2, . . . , qi.

Alternatively, as explained in Zellner and Palm (1974), one may use the
FEs (or TFs) to substitute for current endogenous variables appearing in
(4.3) with coefficients with unknown values, that is yjt, j = 1, 2, . . . , p1,
for j �= i . For example, the FEs for the yjt given in (2.4) are

yj t = c j + θ̄ j (L)yj t + uit, (4.4)

where θ̄ j (L) the homogeneous part of θ j (L). On substituting from (4.4)
in (4.3) for yjt, j = 1, 2, . . . , p1, for j �= i, we obtain

yit +
p1∑

j=1
j �=i

hi j0[c j + θ̄ j (L)yj t] +
p1∑

j=1

h̄ij(L)yj t +
p∑

j=p1+1

hij(L)xj t

= c̄1i + ψi (L)ξit, (4.5)
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where

ψi (L)ξit = φi (L)εit −
p1∑

j=1
j �=i

hi j0uit,

with ψ(L), usually being a polynomial of degree m, and h̄ij(L) is the
homogeneous part of hij(L). The error terms, ξ it, t = 1, 2, . . . , T, are
normally and independently distributed each with zero mean and finite,
common variance, σ 2

ξi
.

Note that for given values of cj and the parameters in θ̄ j (L), (4.5)
is in the form of a TF that is linear in the parameters. In view of this
our estimation approach involves analyzing (4.5) as a TF with cj = c̃ j and

θ̄ j (L) = ˜̄θ j (L), where c̃ j and ˜̄θ j (L) are consistent estimates obtained from
estimation of the FEs in (4.4).

Given that these consistent estimates of cj and θ j (L) are inserted in
(4.5), a non-linear computational algorithm, e.g. Marquardt’s, can be
utilized to obtain consistent estimates of the remaining free parameters
of (4.5) by minimizing the residual sum of squares S = ∑T

t=1 ξ̃2
it with

respect to the free parameters, where ξit is given by

ξ̃it = yit − c̄1i +
p1∑

j=1
j �=i

hi j0[c̃ j + ˜̄θ j (L)yj t]

+
p1∑

j=1

h̄ij(L)yj t +
p∑

j=p1+1

hij(L)xj t +
m∑

j=1

ψij ξ̃i t− j . (4.6)

Of course, one has to be cautious that the regressor matrix in (4.6) does
not become singular, as one substitutes linear combinations of lagged
endogenous variables for the current endogenous variables. The inverse
of the Hessian matrix of S, evaluated at the consistent estimates, provides
large-sample standard errors. These results in conjunction with the large-
sample normal distribution of the estimates provide a basis for performing
large sample tests of hypotheses.

The above procedure for estimating parameters of (4.6) can be applied
for i = 1, 2, . . . , p1, to obtain “single-equation” parameter estimates
and residuals, ξ̂it, i = 1, 2, . . . , p1, t = 1, 2, . . . , T. Since

ξit = εit −
p1∑

j=1
j �=i

hi j0vit,
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where vit is a FE disturbance defined in (2.7),

ε̂it = ξ̂it +
p1∑

j=1
j �=i

ĥi j0v̂it, i = 1, 2, . . . , p1, (4.7)

is a consistent estimate of εit in (4.2). Also from (4.2), εt = F110e1t where
εt = (ε1t , ε2t , . . . , εp1t), so that

F11(L)e1t = F110e1t + F111e1t−1 + · · · + F11q e1t−q

= εt + F1εt−1 + · · · + Fqεt−q , (4.8)

with Fj = F11j F−1
110, j = 1, 2, . . . , q . The error vector εt in (4.8) is

normally distributed with mean zero and covariance matrix E(εtε
′
t) =

F110 F ′
110 = Σε and zero serial correlations. Thus from (4.7), it is possible

to compute ε̂t once all equations of the system are estimated. The ε̂ts
thus computed will play a role in the joint estimation procedure to be
described in the next section.

4.2 Joint estimation of a set of structural equations

We now consider (4.1) for i = 1, 2, . . . , p1,

s∑
l=0

H11l yt−l +
r∑

j=0

H12 j xt− j = c̄1 +
q∑

h=0

F11he1t−h, (4.9)

where the diagonal elements of H110 are equal to one. For a sample of T
observations, we can write the system (4.9) as

y = Z1η1 + Y1η2 + Fε, (4.10)

where

y′ = (y′
1, y′

2, . . . , y′
T),

Z1 = (X0 X1), p1T × p1(1 + p1s + p2r + p2),

X′
0 = [Ip1 Ip1 . . . , Ip1 ], p1 × p1T,

Y1 =
 Ip1 ⊗ . . . y′

1
. . .

Ip1 ⊗ . . . y′
T

 , p1T × p2
1,

X1 =
 Ip1 ⊗ (y′

0y′
1 . . . y′

−s+1x′
1x′

0 . . . x′
−r+1)

Ip1 ⊗ (y′
1y′

0 x′
−r+2)

Ip1 ⊗ (y′
T−1 . . . y′

T−s x
′
T . . . x′

T−r )

 ,

p1T × p1(p1s + p2r + p2),
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with some of the columns of Z1 and Y1 being deleted when the exclusion
restrictions are imposed in order to identify the structural parameters,

F
p1 1T



Ip1 0 . . . . . . . . . . . . 0

F1
...

...
...

Fq
...

0
...

... 0
0 . . . 0 Fq . . . F1 Ip1


,

-------------------------------------

-----------------------

--------------------------------------------------

T × p

and

ε′ = (ε′
1 . . . ε′

T),

εt = F110e1t is defined in (4.8).
Since the εts are assumed to be normally distributed, the likelihood

function can be written as

L(y, Z1, η1, η2, Σε, F) ∝ |H110|T|Σε|−T/2

× exp
{−1

2

[
(y − Z1η1 − Y1η2)′F ′−1(

IT ⊗ Σ−1
ε

)
F−1(y − Z1η1 − Y1η2)

]}
. (4.11)

In order to keep the block-triangular structure of the matrix F, we proceed
in a way slightly different from Reinsel (1977) and write the first order
conditions for a maximum of the likelihood function as

∂lnL
∂η1

= Z′
1 F ′−1(IT ⊗ Σ−1

ε

)
F−1u = 0, (4.12a)

∂lnL
∂η2

= −Tvec(H110)−1 + Y′
1 F ′−1(IT ⊗ Σ−1

ε

)
F−1u = 0, (4.12b)

∂lnL
∂β

= X′
2 F ′−1(IT ⊗ Σ−1

ε

)
F−1u = 0, (4.12c)

where

β = vec[F1 F2 . . . Fq ]′,

X′
2 = [

εl ′
ij

]
, i = 1, 2, . . . , p1, l = 1, 2, . . . , q , j = 1, 2, . . . , p1,
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with a typical row

εl ′
ij = [0, 0 . . . 0,

p1 l times

0 . . . ε j1 . . . 0,
p2 elements

0 . . . ε j2 . . . 0

i th position

. . . 0ε j T− l 0],

and

u = Fε.

The first r.h.s. term of (4.12b) may be written as

−vec
(
Σ̂−1

ε V ′VH−1
110

)
, (4.13)

where

Σ̂ε = 1
T

T∑
t=1

εtε
′
t = 1

T
V ′V,

with

V
T×p1

=
[

ε11 εp11

ε1T εp1T

]
,

and VH−1
110 = W is the T × p1 matrix of reduced form disturbances. Also,

−vec
(
Σ̂−1

ε V ′W
) = −(

W ′ ⊗ Σ̂−1
ε

)
vec(V ′) = −(W ′ ⊗ Ip1 )

(
IT ⊗ Σ̂−1

ε

)
ε.

We can write the set of first order conditions for a maximum of the like-
lihood function with respect to η′ = (η′

1, η′
2, β′) as

∂lnL
∂η

= Z′F ′−1(IT ⊗ Σ̂−1
ε

)
F−1u = 0, (4.14)

where

Z = (X0, X1, Y1 − F(W ⊗ Ip1 ), X2).

As discussed by Reinsel (1977), neglecting terms which, divided by T,
have zero probability limit as T → ∞, we have

− plim
T→∞

1
T

∂2lnL
∂η∂η′ = plim

T→∞

1
T

Z′F ′−1(IT ⊗ Σ̂−1
ε

)
F−1 Z.

Using the results given in (2.13), the following two-step estimator for η
has the same asymptotic distribution as the ML estimator:

ˆ̂η = η̂ − Γ (η̂)−1 ∂lnL
∂η

(η̂), (4.15)
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where η̂ is a consistent estimator of η such that T
1
2 (η̂ − η0), η0 being

the true parameter value, has some limiting distribution and the matrix
Γ (η̂) is such that

plim
T→∞

1
T

Γ (η̂) = plim
T→∞

1
T

∂2lnL
∂η∂η′ (η0),

where the unknown matrix Σε is replaced by a consistent estimate

Σ̂ε = 1
T

T∑
t=1

εt(η̂)ε′
t(η̂).

Since the information matrix is block-diagonal with respect to η and Σε, it
is sufficient to substitute a consistent estimate of Σε in order to efficiently
estimate η.

Applying (4.15) to the present problem yields

ˆ̂η = η̂ + [Ẑ′ F̂ ′−1(IT ⊗ Σ̂−1
ε

)
F̂−1 Ẑ]−1 Ẑ′ F̂ ′−1(IT ⊗ Σ̂−1

ε

)
F̂−1û,

(4.16)

where the carats denote that the unknown quantities are evaluated at con-
sistent parameters estimates. The first-step consistent estimates can be
obtained using one of the single-equation estimation methods proposed
in section 4.1. Since we can write the system in (4.10) as

ȳ = [y − F(W ⊗ Ip1 )η2 + u− ε] = Zη + u = Zη + Fε,

(4.17)

we may apply generalized least squares to (4.17) after having evaluated
the regressand ȳ, the regressors Z and the disturbance covariance matrix
F(IT ⊗ Σε)F ′ at consistent parameter estimates – this is in fact one way
of computing the two-step estimator in (4.16) and it shows that the two-
step estimator (4.16) can also be interpreted as a residual-adjusted esti-
mator. Reinsel (1977) derives a slightly different estimator to which he
gives an instrumental variables interpretation. It is obvious that the com-
putation of the two-step estimator (4.16) which, if iterated until con-
vergence, yields the ML estimator given fixed and known initial con-
ditions, involves the inverse of the p1T × p1T disturbance covariance
matrix F(IT ⊗ Σε)F ′. In the way we have analyzed the problem, this
involves the inversion of F which is a blockband triangular matrix. As
shown by Palm (1977a), it only requires multiplication and addition of
matrices of order p1 × p1.

As already discussed in section 2, the approximation in (4.16) to the
second step of the Newton–Raphson algorithm, is in fact the second step
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of the Gauss–Newton algorithm starting from consistent parameter esti-
mates. The large sample covariance matrix of ˆ̂η is consistently estimated
by

V̂( ˆ̂η) = [Ẑ′ F̂ ′−1(IT ⊗ Σ̂−1
ε

)
F̂−1 Ẑ]−1. (4.18)

Since ˆ̂η will be approximately normally distributed in large samples,
approximate tests of hypotheses can be constructed along the lines dis-
cussed in section 2.

As in the discussion of TF estimation, it is important to emphasize that
(4.16) involves rather large matrices when the dimensionality of η is large.
The situation is similar to that encountered in three-stage least squares
but here in addition to structural coefficients, there are also parameters of
the MA disturbance process to estimate. As with three-stage least squares,
the estimation approach described above can be applied to subsets of the
structural equations.

4.3 Single-equation structural estimation reconsidered: two-step LIML

Given that full information methods usually involve complicated com-
putations and that the complete system is not always fully specified, we
consider in this section single-equation methods from a ML point of view.

Consider a structural equation, assumed to be identified by exclusion
restrictions, of the system (4.1), say the first,

Y(1)η(1) + X(1)β(1) = u1, (4.19)

where Y(1) = (y1 Y1) is the T × m(1) matrix of observations on the current
endogenous variables included in the first equation, with m(1) = m1 + 1;
X(1) is the matrix of observations on included lagged endogenous,
included current and lagged exogenous variables and a column of 1s
for the constant term; η(1) and β(1) are vectors of the non-zero structural
coefficients in the first equation; and u′

1 = (u11 u12 . . . u1T).
We write the unrestricted reduced form for Y(1) as

Y(1) = XΠ(1) + V(1) = X(1)Π1. + X(0)Π0. + V(1), (4.20)

where Π ′
(1) = (Π ′

1.

... Π ′
0.) and X(0) denotes the T × k0 matrix of predeter-

mined variables excluded from the first equation.
Postmultiplying (4.20) by η(1) and comparing the result with (4.19)

yields the following restrictions:

Π0.η(1) = 0, Π1.η(1) = β(1). (4.21)
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From the assumptions on the model, the rows of V(1) are normally dis-
tributed, with zero mean and common covariance matrix Ω(1). Each row
of V(1) can be represented as a MA of order q(1). In order to get a simple
structure for the disturbance term covariance matrix, we vectorize the
model (4.20) as follows:

vec
(
Y ′

(1)

) = W1 vec(Π1.) + W0 vec(Π0.) + vec
(
V ′

(1)

)
, (4.22)

with

Wj =
 Im(1) ⊗ x′

j1
. . .

Im(1) ⊗ x′
j T

 ,

with j = 1, 0 and x′
j t. being the tth row of X(j).

We write (4.22) as

y(1) = W1π1 + W0π0 + v(1), (4.23)

and the MA representation of v(1) as

v(1) = F(1)ε(1), (4.24)

where

F(1) =



Im(1) 0 0

F(1)1

F(1)q(1)

0 0

0 0 F(1)q(1) F(1)1 Im(1)

 ,

(4.25)

and ε(1) is normally distributed with covariance matrix Ω(1) and zero
serial correlations. The likelihood function may then be written as

L(y(1), W1, W0, π1, π0, Ω(1), F(1)) ∝ |Ω(1)|−T/2 exp(S), (4.26)

where

S = − 1
2 (y(1) − W1π1 − W0π0)′Ω−1(y(1) − W1π1 − W0π0),

and

Ω = F(1)(IT ⊗ Ω(1))F ′
(1).

We define the LIML estimator in a way slightly different from the usual
definition, as the estimator which maximizes (4.26) with respect to π1,
π0, F(1), and η(1) subject to Π0.η(1) = 0. In terms of asymptotic proper-
ties of the LIML estimator it does not matter whether we maximize the
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likelihood function concentrated with respect to Ω(1) or use a consistent
estimate for Ω(1) in the first order conditions for a maximum of the likeli-
hood function with respect to the remaining parameters. The restrictions
may also be vectorized as

[η′
(1) ⊗ Ik0 ]π0 = 0. (4.27)

The Lagrangean expression is

z = −T
2

log |Ω(1)| + S − λ′[η′
(1) ⊗ Ik0 ]π0, (4.28)

where λ is the k0 × 1 vector of Lagrange multipliers.
The set of first order conditions for a maximum is

∂z/∂π1 = W ′
1Ω

−1v(1) = 0 (4.29a)

∂z/∂π0 = W ′
0Ω

−1v(1) − (η(1) ⊗ Ik0 )λ = 0 (4.29b)

∂z/∂φ = W ′
2Ω

−1v(1) = 0 (4.29c)

where

φ = vec[F(1)1, F(1)2, . . . , F(1)q(1) ]
′

W ′
2 = [

εl ′
ij

]
, i = 1, 2, . . . , m(1), l = 1, 2, . . . , q(1), j = 1, 2, . . . , m(1),

and

εl ′
ij = [0, 0 . . . 0, 0 . . . ε j1, 0 . . . 0,

lm(1) times, m(1) elements
0 . . . ε j2, 0 . . . 0, , . . . 0 . . . 0 ε j T−l 0 . . . 0

i th position

].

∂z/∂η1 = −(Im(1) ⊗ λ′)π0 = 0, (4.29d)

∂z/∂λ = −[η′
(1) ⊗ Ik0 ]π0 = 0. (4.29e)

We can solve (b) for π0, to get

π0 = (
W ′

0Ω
−1W0

)−1[W ′
0Ω

−1(y(1) − W1π1) − (η(1) ⊗ Ik0 )λ
]
. (4.30)

Substituting (4.30) into (4.29e) and solving for λ gives

λ =[(η′
(1) ⊗ Ik0 )[W

′
0Ω

−1W0]−1(η(1) ⊗ Ik0 )]
−1

× [(η′
(1) ⊗ Ik0 )(W

′
0Ω

−1W0)−1W ′
0Ω

−1(y(1) − W1π1)]. (4.31)

The set of first order conditions for a maximum in (4.29) is clearly non-
linear in the parameters. We can approximate the solution by a two-step
Newton–Raphson procedure, as has been done in (2.13), starting with
consistent estimates for π0, π1, φ, and η(1), computing λ from expression
(4.31) and evaluating
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ˆ̂θ = θ̂ − Γ (θ̂)−1[∂z/∂θ]θ=θ̂, (4.32)

where

θ = (π′
1, φ′, π′

0, η′
(1), λ

′)′,

θ̂ is a consistent estimate of θ satisfying the requirement in (2.13), and

Γ (θ) =


W ′

1Ω
−1W1 W ′

1Ω
−1W2 W ′

1Ω
−1W0 0 0

W ′
2Ω

−1W1 W ′
2Ω

−1W2 W ′
2Ω

−1W0 0 0
W ′

0Ω
−1W1 W ′

0Ω
−1W2 W ′

0Ω
−1W0 − (Im(1) ⊗ λ) −(η(1) ⊗ Ik0 )

0 0 − (Im(1) ⊗ λ′) 0 −Π ′
0.

0 0 − (η′
(1) ⊗ Ik0 ) −Π0. 0


(4.33)

The unknown elements of Ω (1) in Ω = F(1)(IT × Ω (1))F ′
(1) are replaced by consis-

tent estimates. The probability limit of the matrix (1/T)Γ (θ̂) in (4.33) usually is
the matrix (1/T) (∂2z/∂θ∂θ′)(θ0) where θ0 is the vector of true parameter values
of θ. Of course, one can iterate the expression (4.32) to get the exact solution of
the first order conditions for a maximum of the likelihood function, which is the
limited-information ML estimator given fixed and known initial conditions. In
terms of asymptotic efficiency, it is not necessary to continue the iteration after
the second step.

5 Some concluding remarks

(1) In this chapter, we have presented several estimators for the three
forms of a dynamic SEM with moving average disturbances and discussed
their asymptotic properties. The results essentially rely upon:
(a) the asymptotic properties of the ML estimator of the parameters of

dynamic models, and
(b) a result given by Fisher (1925), Kendall and Stuart (1961), Rothen-

berg and Leenders (1964) and later by Dhrymes and Taylor (1976)
concerning the asymptotic properties of a two-step iteration of the
first-order conditions for a maximum of the likelihood function.

Of course, the starting values for the iteration and the matrix Γ approxi-
mating the matrix of second order derivatives of the log-likelihood func-
tion have to satisfy some conditions (see, e.g., (2.13)), which we give in
the text, but which we do not verify explicitly for the estimation problems
considered. It ought to be clear that these requirements, such as stated
in (2.13), have to be checked in practical situations.

(2) Computation of the estimators presented above generally involves
operations on large matrices. For example, in each case one has to com-
pute the inverse of the covariance matrix of a vector-MA process. The
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estimation methods presented here open an immense field of application
for good numerical matrix inversion procedures exploiting the special
features of the covariance matrix of an MA process.

(3) Despite the fact that the field of application of the methods pre-
sented is probably limited to small models, the results of the chapter clar-
ify a number of questions concerning the asymptotic properties of estima-
tors for dynamic and static models. For example, if the disturbances of the
TF system in (3.6) are not correlated, i.e. Kh = 0, h = 1, 2, . . . , q , then
the two-step estimator given in (3.10) specializes to Zellner’s estimator
for seemingly unrelated regressions.

As a second example, assume that H11(L) in (3.3a) is an unimodular
matrix, i.e. |H11(L)| = constant, then the expression given in (3.10) spe-
cializes to an expression with Ẑ = (X0, X, Ẑ2) and the covariance matrix
of the estimator in (3.10) will be asymptotically a block-diagonal matrix
as plimT→∞(1/T)[(X ′

0 X) ′ Ẑ2] = 0 under suitable conditions. Therefore
it will be sufficient to have consistent estimates ofλ2 to efficiently estimate
(c′

1, δ′) in (3.7). A similar result has been established by Amemiya (1973).
(4) It is to be expected that the estimation results can, at least for

samples of the size encountered in applied work, be improved by using
two-step estimators approximating the first order conditions for a maxi-
mum of the exact likelihood function. One step in the direction of using
the exact likelihood function is to “backforecast” the values of the ini-
tial conditions for FE, TF, or structural equation systems. This aspect
however deserves additional work.

(5) The discussion has been in terms of large-sample properties of the
estimators and test statistics for dynamic models. Small-sample proper-
ties of the estimators and test statistics have to be investigated. However,
the Monte Carlo results obtained by Nelson (1976) justify some opti-
mism about improving estimation precision in small samples by use of
the joint estimates which we have considered.
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Rejoinder (1981)

Franz C. Palm and Arnold Zellner

1 Introduction

In Palm and Zellner (1980), hereafter referred to as P–Z, we have pre-
sented an asymptotically efficient two-step and iterative estimation proce-
dure for the parameters of the final equation (FE), transfer function (TF)
and structural form of a dynamic simultaneous equation model (SEM)

Originally published in the Journal of Econometrics 17 (1981), 131–8.
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with vector moving average (MA) disturbances. Asymptotic efficiency
of the two-step estimator requires the use of consistent initial parameter
estimates. The procedure outlined in P–Z to generate the initial estimates
usually does not yield consistent estimates.

We are grateful to J. McDonald and J. Darroch for pointing out (in
the preceding comment, hereafter denoted as Mc–D, and in Darroch
and McDonald 1981) that the procedure to compute the initial estimates
of the MA parameters of the disturbances and a method to get initial
estimates of the structural coefficients generally are not consistent. The
reason for this is that the single-equation innovations which play a cru-
cial role in our estimation procedure have correlation properties that are
different from those of the innovations in the system. In fact, each single-
equation innovation is a weighted sum of all current and past innovations
of the system.

McDonald and Darroch indicate how consistent initial estimates can be
obtained. The procedures that they suggest are computationally demand-
ing. There is a need for computationally less cumbersome procedures. In
this note, we shall show how consistent initial estimates can be obtained
in a simpler way by modifying the procedures suggested in P–Z.

In section 2, we shall discuss consistent estimation of vector MA pro-
cesses. Section 3 is devoted to single structural equation estimation. We
conclude [in section 4] with some final remarks, one of which is on consis-
tent estimation of a single reduced form equation when the disturbances
of the system are generated by a vector MA process.

2 Consistent estimation of a vector MA process

In order to outline how consistent estimates for the parameters of a vector
MA process can be obtained, we consider the following vector MA model
(see also (2.5) in P–Z and (1) in Mc–D:

ut
p×1

= G(L) vt
p×p p×1

, (2.1)

where ut is a vector of stationary random variables, vt is the vector of
normally distributed system innovations, with mean zero and covariance
matrices Evtv′

t ′ = δtt ′Ωv, δtt ′ being the Kronecker delta. The uts may be
observable random vectors or unobservable disturbances in a system of
equations. In the latter case, the residuals obtained by consistently esti-
mating the system can be used. The matrix

G(L) =
q∑

j=0

Gj Lj , G0 = Ip
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is an invertible matrix operator, whose elements are finite polynomials of
degree q in the lag operator L.

A typical element of ut, say uit, can be represented as an MA of degree
q i � q in one variable, v∗

it, called the univariate or single-equation inno-
vation, which is a normally distributed white noise. Then, the vector ut

can be written as

ut = Λ(L)v∗
t , (2.2)

where Λ(L) is a diagonal matrix polynomial with Λ(0) = Ip (see also (3) in
Mc–D). The univariate innovations can be obtained by applying a ratio-
nal matrix lag operator to the vts, i.e., v∗

t = Λ−1(L)ut = Λ−1(L)G(L)vt

(provided Λ(L) is invertible). Therefore, each element v∗
it usually depends

on the current and all lagged values of uit or equivalently on the current
and lagged values of vjt, j = 1, . . . , p . Also the v∗

t s will usually be cross-
correlated. Premultiplying (2.1) by the adjoint matrix of G(L), G∗(L), we
obtain

G∗(L)ut = |G(L)|vt , (2.3)

where |G(L)| is the determinant of G(L). As the system (2.1) has been
normalized through the requirement G0 = Ip , the off-diagonal elements
in G∗(L) will be homogeneous polynomials in L, so that the ith equation
in (2.3) is in the form of a transfer function equation with an MA process
in the system innovation vit. Notice that the MA parameters in (2.3) are
the same in different equations.

The estimation procedure presented by P–Z (pp. 209, 217, 221), can be
modified as follows to yield consistent initial estimates of the parameters
in G(L) and Ωv.

Step 2: Estimation of the system innovations and of Ωv. After substitu-
tion of consistent estimates of the final equations’, transfer functions’ or
structural equations’ disturbances, say ût, obtained in Step 1 by instru-
mental variables estimation or derived from the univariate innovations
using (2.2), the transfer function equations in (2.3) can be estimated
separately using, e.g., non-linear least squares. The residuals in (2.3) are
consistent estimates of the system innovations and can be used to estimate
Ωv by

Ω̂v = 1
T

T∑
t=1

v̂t v̂′
t .

Step 3: Estimation of the matrices Gj, j = 1, . . . , q. The parameters in (3)
are functions of the parameters of the Gjs. Consistent estimates of some,
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possibly all, parameters in (2.1) can be obtained from the single-equation
estimates of (2.3). In any case, they can be obtained from the regressions
of the ûits on v̂t−1, v̂t−2, . . . , v̂t−q . The Gjs can also be estimated by the
method described in Step 3 of P–Z using the system innovations.

The estimates obtained in Steps 2 and 3 are used in Step 4 to gen-
erate fully efficient estimates of the system parameters. The procedure
outlined in Steps 2 and 3 has computational advantages compared with
the traditional method of solving the set of non-linear equations

1
T

T∑
t=1

ût û′
t−i =

q∑
j=i

G j ΩvG′
j−i , i = 0, 1, . . . , q , (2.4)

for the elements in Ωv, G1, . . . , Gq, using, e.g., the algorithm developed
by Wilson (1969), and then solving (2.1) to get estimates of the vts. It will
also be more easily implemented than frequency domain methods, such
as those presented by Hannan (1970, pp. 383–8, 1975) and suggested by
Reinsel (1979).

As an illustration, consider the following bivariate process:[
u1t

u2t

]
=

[
1 + g1L g2L

g3L 1 + g4L

] [
v1t

v2t

]
, (2.5)

or

ut = (I + G1L)vt ,

which satisfies the assumptions made for (2.1). The univariate innova-
tions are given by v∗

it = (1 − λi L)−1uit, i = 1, 2 , where λi is the root of
ρ i(1)λ2

i + λi + ρ i(1) = 0 , satisfying |λi| < 0, with ρ i(1) being the first
order autocorrelation coefficient of uit. A single-equation innovation can
usually be expressed as a sum of infinite MAs in the system innovations,
e.g. v∗

1t = (1 − λ1L)−l × (1 + g1L)v1t + (1 − λ1L)−1g2Lv2t.
The model (2.5) can be written in the form of (2.3),

(1 + g4L)u1t − g2Lu2t = [(1 + g1L)(1 + g4L) − g2g3L2]v1t ,

(1 + g1L)u2t − g3Lu1t = [(1 + g1L)(1 + g4L) − g2g3L2]v2t .

(2.6)

Consistent estimates of the gis, i = 1, . . . , 4, and of the disturbances
v1t and v2t are obtained through fitting separately the transfer function
equations in (2.6) with second order MA errors. Consider now the model
(2.5) with the restriction g3 = 0. Then in (2.5), u2t is written as a univariate
MA with λ2 = −g4 and v∗

2t ≡ v2t . Substitution of u2t = (1 + g4L)v2t into
the first equation in (2.6) leads to a simplified transfer function equation
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for u1t with one “explanatory variable,” v2t ≡ v∗
2t , and a first order MA

disturbance,

u1t − g2v2t−1 = (1 + g1L)v1t , (2.7)

from which g1, g2 and v1t can be estimated. Similarly, if g2 = g4 = 0, u1t =
(1 + g1L)v1t , with λ1 = −g1 and v1t ≡ v∗

1t . The second equation in (2.6)
becomes

u2t − g3v∗
1t−1 = v2t , (2.8)

so that g3 and v2t can be consistently estimated in a linear regression of
u2t on v̂∗

1t−1.
This analysis illustrates the usefulness in some situations of single-

equation innovations for the estimation of MA parameters in systems
of equations. At present, the relevance of univariate innovations in time
series modeling is widely recognized (see, e.g., Haugh and Box 1977).

Obviously, for models with diagonal MA matrices the single-equation
innovations are identical with the system innovations, and the single-
equation parameter estimates and residuals can be used straightforwardly
in the expressions for the asymptotically efficient estimators. Among oth-
ers, Nelson (1976) assumes diagonal MA matrices, an assumption which
leads to a substantial reduction of the number of parameters to be esti-
mated. Notice also, that any vector ARMA model can be transformed into
a restricted autoregressive model with diagonal MA matrices through pre-
multiplication as in (2.3) by the adjoint matrix associated with the MA
part. In the transformed model, single-equation and system innovations
are identical.

3 Single structural equation estimation

In the notation of P–Z a single structural equation, say the ith one, of a
dynamic SEM with vector MA disturbances can be written as

yit +
p1∑

j=1

hij(L)yjt +
p∑

j=p1+1

hij(L)xjt = ci + uit, (3.1)

where the hij(L) = ∑rij

l=0 hijl Ll are scalar polynomials in L of degree rij,
hii(0) = 0, the yjts are endogenous variables, the xjts are exogenous vari-
ables, and uit is the ith element of a vector of disturbances generated by a
p1 × 1 vector MA such as defined in (2.1). The variables xjts are assumed
strictly exogenous, i.e., xjt and uit ′ are independent, all j, t, t′. On impos-
ing identifying exclusion restrictions the remaining parameters in (3.1)
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can be consistently estimated by an instrumental variables method as
described in P–Z (p. 270).

As an alternative Zellner and Palm (1974) (see also P–Z, pp. 221–2)
proposed to substitute the estimated FEs or TFs for the current endoge-
nous variables in (3.1) (except for yit) and then to apply non-linear least
squares to obtain estimates for the parameters in the hij(L)s.

However, as shown by Darroch and McDonald (1981) when non-
linear least squares is applied, the structural disturbance is represented as
an MA in one innovation that depends on all current and past values of the
system innovations vit, so that this single-equation innovation and some of
the explanatory variables are correlated. Therefore, the non-linear least
squares method applied to a structural equation, after substitution as
described above, fails to produce consistent estimates of the structural
coefficients. OLS applied to (3.1) after substitution of fitted values ŷ j t−k

for yj t−k = ŷ j t−k + ŵ j t−k, j = 1, . . . , p1, k = 0, 1, . . . , q , k = 0, 1, . . . , q ,
(except for yit),

yit +
p1∑

j=1

[
q∑

l=0

hijl ŷ j t−l +
rij∑

l=q+1

hijl yj t−l

]
+

p∑
j=p1+1

hij(L)xjt

= ci +
[

uit −
p1∑

j=1

q∑
l=0

hijl ŵjt−l

]
, (3.2)

where we assume without loss of generality that q � all rij, will yield consis-
tent estimates of the parameters in hij(L), provided the l.h.s. explanatory
variables are orthogonal to the disturbance term between brackets on the
r.h.s. One can obtain ŷjt−ks that satisfy this requirement by OLS applied
to a regression of yjt−k on zt,

yjt−k = z′
tγ + wjt−k, (3.3)

where the vector zt consists of all the variables appearing on the l.h.s. of
(3.1), except yjt−l, j = 1, . . . , p1, l � q , and includes enough additional
variables that are uncorrelated with uit (e.g. other lagged exogenous vari-
ables not appearing in (3.1)) for the inverse of the OLS estimator applied
to (3.2) to exist.

The estimation procedure can be applied to all p1 structural equations.
The residuals can be computed and used as described in section 2 to
obtain consistent estimates of the system MA parameters. When q = 0,
the structural disturbances are uncorrelated and this estimation proce-
dure leads to the truncated two-stage least squares estimator (see Brundy
and Jorgenson 1974) where, instead of using all predetermined variables
of the model in the OLS regression of the first stage, one uses a selected
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subset. Notice the similarity with the model with uncorrelated distur-
bances. As in the model with MA errors all current and past endogenous
variables up to lag q are correlated with the disturbance term uit, they
have to be treated as “dependent” variables for which an instrumental
variable has to be used or a substitution made. Also, none of them can
be included as a regressor in zt. Despite this fact, there are many ways to
obtain consistent estimates of the structural parameters in the hij(L)s.

It should be noted that non-linear least squares estimation of (3.2),
implementing GLS, is inconsistent as there will be correlation between
some explanatory variables and the innovations associated with (3.2). In
the final form or the TF form each endogenous variable in the system of
equations consisting of (3.1), i = 1, . . . , p1 , is expressed as a rational
distributed lag on all exogenous variables and an error term, which is a
sum of ARMA processes in the vits. Substitution of the estimated final
form or TF equation for the current and all lagged endogenous variables
in (3.1) leads to a linear regression equation with an error term that can be
represented as a univariate ARMA process with an innovation that is inde-
pendent of the regressors. As stated in Darroch and McDonald (1981)
non-linear least squares estimation will be consistent. It is expected to be
more efficient than OLS estimation, which is also consistent.

Concluding remarks

(a) To conclude, through a modification of Steps 2 and 3 of the proce-
dure presented in P–Z, consistent estimates of the MA parameters
and of the system innovations can be obtained. They can be used
to generate fully efficient estimates along the lines outlined by P–Z.
In some cases, the single-equation innovations will be very useful to
get initial consistent estimates of the vector MA parameters. These
procedures are expected to be computationally less demanding than
the procedure proposed in Mc–D.

(b) There are many ways to obtain consistent estimates of the structural
parameters of a dynamic SEM with vector MA errors. One can use
instrumental variables or substitute for the “dependent” variables in
the structural equation. After appropriate substitution OLS will be
consistent whereas non-linear least squares (or GLS) may not be
consistent.

(c) The points discussed in this note are also relevant for single-equation
reduced form estimation, when lagged endogenous variables are
present and the disturbances are generated by a vector MA pro-
cess. Although the disturbance term of the single reduced form equa-
tion can be represented by an MA in one variable, neither OLS nor



240 Franz C. Palm and Arnold Zellner

non-linear least squares estimates of a single reduced form equa-
tion are consistent. In both cases there will be correlation between
explanatory variables and the disturbance or the innovation. But the
methods presented in section 3 and appropriately specialized are
consistent.
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6 Time series and structural analysis of
monetary models of the US economy (1975)

Arnold Zellner and Franz C. Palm

1 Introduction

In previous work, Zellner and Palm (1974), an approach for building and
analyzing dynamic econometric models was presented that is a blend of
recently developed time series techniques and traditional econometric
methods. This approach was applied in analyzing dynamic variants of
a small Keynesian macroeconometric model formulated by Haavelmo
(1947). In the present chapter, we apply our approach in the analysis of
variants of a dynamic monetary model formulated by Friedman (1970,
1971).

We commence our present analysis by presenting the structural equa-
tions of an initial variant of Friedman’s model, denoted S0, that is viewed
as a starting point for our analyses. That is, as in previous work we set forth
a number of testable implications of S0, in particular the implications of
S0 for the forms of the final and transfer equations for the variables of S0.
Using monthly data for the US economy, 1953–72, and time series anal-
ysis, the implications of S0 are checked against the information in the
data. As will be seen, some of S0’s implications do not square with
the information in the data. This leads us to consider other variants of
the model whose implications can be checked with the data. In this way
we attempt to iterate in on a variant of the model that is in accord with
the information in the data. When a variant has been obtained that is
in accord with the data information, it can be checked further with new
sample information.

In considering possible variants of the initial model S0, we shall be
concerned with, among others, the following issues: (1) rational vs. other
representations of the formation of anticipations, (2) open versus closed

Research supported by National Science Foundation Grant GS-40033, H. G. B. Alexander
Endowment Fund, Graduate School of Business, University of Chicago, and the Belgian
National Science Foundation.

Originally published in Sankhyā: The Indian Journal of Statistics, Series C 37 (1975),
12–56.
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loop control policies, (3) relationship of “nominal” and “real” sectors of
the economy, (4) lag structures and other features of behavioral equations,
and (5) serial correlation properties of disturbance terms. As will be seen,
these issues can be analyzed by comparing the theoretical and empirical
properties of final equation and transfer equation systems.

The plan of the chapter is as follows. In section 2, we present and
discuss the structural, transfer, and final equations of the initial variant
of Friedman’s model. We then turn to the results of empirical analyses
designed to check the consistency of the initial variant with the informa-
tion in our data. After summarizing the empirical findings, we go on in
section 3 to describe and analyze variants of the initial model. In sec-
tion 4, we consider properties of a variant of the model that we believe is
consistent with the information in our data. Additional empirical analy-
ses and tests of our final variant are reported. A summary of results and
some concluding remarks are presented in section 5.

2 Analysis of an initial variant, S0, of a monetary model

2.1 Structural equations of S0

In this section we describe the structural equations of a simple mon-
etary model that we regard as a good starting point in our search for
a formulation that is consistent with the information in our data. If
it is found that the simple model is inconsistent with the data, alter-
native variants will be considered. The equations of the initial variant
include (1) a money demand equation, (2) a money supply equation, (3)
a money market clearing relationship, (4) the Fisher equation, and (5) an
anticipation formation equation. In the initial variant of the model, the
anticipation formation equation is formulated as a “partial adjustment”
equation and possible lag structures in the structural equations are pur-
posely suppressed. The equations of the model are first presented in deter-
ministic form and then transformed to a stochastic difference equation
representation.

The first equation of the model is a money demand equation that we
write as follows:

Yt = Aeγ1it MD
t A, γ1 > 0, (2.1)

where A and γ 1 are constant parameters, the subscript t denotes the value
of a variable in the t-th time period, Yt = nominal income, MD

t = nominal
money balances demanded, and it = nominal interest rate. Following
Friedman, we have assumed that (2.1) is homogeneous of degree one
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in MD
t and Pt, the price level.1 Further, we have included a particular

functional form for the dependence of money demand on the interest
rate.2 Last, we have intentionally excluded any lags in the money demand
relations, a point that will receive attention below.

The second relationship of the model is a money supply function, for-
mulated as follows:

MS
t = Beγ2it Ht B, γ2 > 0, (2.2)

where B and γ 2 are constant parameters, MS
t = nominal supply of money,

and, Ht = “high-powered” money or the monetary base (currency plus
bank deposits with the Federal Reserve System).

We assume that Ht is an exogenous variable, an assumption whose
implications will be explored below.

Given that the money market clears each period, we have

MD
t = MS

t = Mt (2.3)

where Mt is the actual stock of money.
The next equation of the model is the Fisher equation,

it = ρ + r ∗
pt

, (2.4a)

where ρ = the real rate of interest, assumed constant, and r ∗
pt

=
(∆ log Pt)∗ = (∆Pt/Pt−1)∗, the anticipated rate of inflation. Given that
(∆ log Yt)∗ = (∆ log Pt)∗ + (∆ log yt)∗, where r ∗

Yt
= (∆ log Yt)∗ is the

anticipated rate of change of nominal income and g∗
t = (∆ log yt)∗ is the

anticipated rate of change of real income, yt, we have r ∗
pt

= r ∗
Yt

− g∗
t . If

we, along with Friedman, assume that g∗
t = gt = g , a constant,3 where

gt = ∆ log yt, the actual rate of change of real income, (2.4a), can be
rewritten as,

it = ρ − g + r ∗
Yt

= c + r ∗
Yt

, (2.4b)

with c = ρ − g, assumed constant.
The last equation of the model is an “adaptive expectations” equation

that has been employed in many studies, namely,

r ∗
Yt

− r ∗
Yt−1

= β(rYt−1 − r ∗
Yt−1

) β > 0, (2.5)

where rYt−1 = ∆ log Yt−1, the lagged rate of growth of nominal income.

1 Some empirical results of Laidler (1966) suggest that this approximation may be accept-
able.

2 Other functional forms could be employed. However, some alternatives lead to a model
that is non-linear in the variables.

3 Below, we relax this assumption.
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Upon substituting from (2.3) in (2.1) and (2.2), taking logarithms of
(2.1) and (2.2) and differencing them and (2.4b), the resulting equations
of the initial model S0 are:

rYt = γ1∆it + rMt , (2.6)

rMt = γ2∆it + r Ht , (2.7)

∆it = ∆r ∗
Yt

, (2.8)

∆r ∗
Yt

= β(rYt−1 − r ∗
Yt−1

). (2.9)

Since (2.9) can be expressed as [1 − (1 − β)L]r ∗
Yt

= βLrYt , where L
is a lag operator (Lxt = xt−1), we have [1 − (1 − β)L](1 − L)r ∗

Yt
=

β(1 − L)LrYt . Then on noting that (2.8) is (1 − L)r ∗
Yt

= (1 − L)it , we can
replace (2.8) and (2.9) by

[1 − (1 − β)L]∆it = βL(1 − L)rYt . (2.10)

Thus the three equations of the model involving the three observable
endogenous variables rYt , ∆it, and rMt and the observable exogenous vari-
able r Ht are given by (2.6), (2.7), and (2.10). These three equations can
be expressed in matrix form with the addition of random disturbance
terms, u1t, u2t and u3t, as follows: 1 −1 −γ1

0 1 −γ2

−βL(1 − L) 0 1 − (1 − β)L

 rYt

rMt

∆it

 =
0

1
0

 r Ht +
u1t

u2t

u3t

 ,

(2.11a)

or in more general form,

H11yt = αr Ht + ut , (2.11b)

where H11 denotes the matrix on the l.h.s. of (2.11a), y′
t = (rYt , rMt , ∆it)

α′ = (0, 1, 0), and u′
t = (u1t, u2t, u3t).

We shall now derive the transfer functions (TFs) and final equations
(FEs) associated with the structural equations S0 in (2.11) and establish
properties of the TF and FE systems.

2.2 Transfer functions (TFs) for S0, (2.11)

Solving the system (2.11) for rYt , rMt , and ∆it in terms of rHt by premul-
tiplying (2.11) by the adjoint matrix H∗

11 associated with H11, we get the
TFs

|H11|yt = H∗
11αr Ht + H∗

11ut , (2.12)
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where |H11|, the determinant of H11, is given by |H11| = 1 − (1 − β)L −
β(γ1 + γ2)L(1 − L), which is a second degree polynomial in L, and the
adjoint matrix H∗

11 is given by:

H∗
11 =

1 − (1 − β)L 1 − (1 − β)L γ1 + γ2

γ2βL(1 − L) 1 − (1 − β)L − γ1βL(1 − L) γ2

βL(1 − L) βL(1 − L) 1

.

(2.13)

Explicitly, the TF system in (2.12) is then:

[1 − (1 − β)L − β(γ1 + γ2)L(1 − L)]

 rYt

rMt

∆it


=

1 − (1 − β)L
1 − (1 − β)L − γ1βL(1 − L)
βL(1 − L)

 r Ht +
v1t

v2t

v3t

 , (2.14a)

with vt = H∗
11ut, where v′

t = (v1t, v2t, v3t).
From examination of the l.h.s. of (2.14a), it is seen that S0 implies

that each of the three TFs has an autoregressive (AR) part that is of
second order and that the parameters of the AR parts of the three TFs
are identical. Further the implied lags on rHt , the rate of growth of high-
powered money, in the TFs are shown in the following table:

TF for Order of lag on r Ht

rYt 1
rMt 2
∆it 2

In addition to these implications of S0 for the forms of the TFs, it should
be noted that (2.14) involves some strong restrictions on the parameters
of the TFs that can be appreciated by rewriting (2.14a) as follows:

[1 − (1 − β + η)L + ηL2]

 rYt

rMt

∆it


=

1 − (1 − β)L
1 − (1 − β + η1)L + η1L2

βL − βL2

 r Ht +
v1t

v2t

v3t

 , (2.14b)

where η = (γ1 + γ2)β and η1 = γ1β. The following are restrictions on the
parameters of (2.14b) implied by S0:
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(i) The sum of the coefficients of r Yt−1 and r Yt−2 equals the coefficient of
r Ht−1 in the TF for rYt .

(ii) The coefficient of rHt should equal one in the TF for rYt and rMt and
be equal to zero in the TF for ∆it.

(iii) In each of the three TFs, the sum of the AR parameters is equal to
β, the coefficient of r Ht−1 − r Ht−2 in the TF for ∆it.

(iv) In the TF for ∆it, the sum of the coefficients of r Ht−1 and r Ht−2 is zero.
(v) The sum of the coefficients of r Ht−1 and r Ht−2 in the TF for rMt equals

the coefficient of r Ht−1 in the TF for rYt .
The restrictions (i)–(v) can be tested in empirical analysis of the TF
system in (2.14). Further, the properties of the error vector vt in (2.14)
can also be investigated. Since vt = H∗

11ut, with H∗
11 shown in (2.13),

it is clear that assumptions about the serial correlation properties of ut
imply testable implications regarding the serial correlation properties of
vt. For example, if the uts are assumed to be serially uncorrelated, then
the elements of vt, given by

vt =
v1t

v2t

v3t

 =
[1 − (1 − β)L]u1t + [1 − (1 − β)L]u2t + (γ1 + γ2)u3t

γ2βL(1 − L)u1t + [1 − (1 − β)L − γ1βL(1 − L)]u2t + γ2u3t

βL(1 − L)u1t + βL(1 − L)u2t + u3t

 ,

(2.15)

will be autocorrelated. In fact, under the assumption that the uits are
serially uncorrelated, the moving average (MA) processes on the vits will
have the following properties given that γ1, γ2 �= 0 and 0 < β < 1:

Error term Order of MA process

v1t 1
v2t 2
v3t 2

In empirical analyses, these implications regarding the orders of the MA
error processes, that are lower bounds, can be tested empirically.

2.3 Final equations for S0

We assume that the exogenous variable rHt is generated independently4

of the other variables by the following autoregressive moving average
(ARMA) process:

φp(L)r Ht = θq (L)u4t , (2.16)

4 Below we consider the implications of a breakdown of this independence assumption.
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Table 6.1 Selected properties of FEs

Variable Order of AR Order of MA errora

rYt 2 + p max(1 + q, p + n1)
rMt 2 + p max(2 + q, p + n2)
∆it 2 + p max(2 + q, p + n3)
rHt p q

Note:
a ni, i = 1, 2, 3, denotes the order of the MA processes for vit ,
i = 1, 2, 3, respectively. Since, as shown above, the ni > 0, i =
1, 2, 3, the orders of the MA errors in the FEs are bounded
from below.

where φp(L) and θ q(L) are polynomials in L of finite degrees, p and q,
respectively, and u4t is a non-autocorrelated error term with zero mean,
constant variance that is distributed independently of the structural dis-
turbance terms appearing in (2.11a). Properties of the process in (2.16),
including the values of p and q, will be determined from the data on rHt .

If we premultiply the system in (2.14a) by φp(L) and substitute φp(L)rHt

= θ q(L)u4t, from (2.16), we obtain the FEs for endogenous variables rYt ,
rMt and ∆it, namely:

[1 − (1 − β)L − β(γ1 + γ2)L(1 − L)]φp(L)

 rYt

rMt

∆it


=

1 − (1 − β)L
1 − (1 − β)L − γ1βL(1 − L)
βL(1 − L)

θq (L)u4t + φp(L)

v1t

v2t

v3t

,

(2.17)

It is seen from (2.17) that each FE is in ARMA form with identical AR
parts, an implication that will be tested with our data. In table 6.1, we
summarize the features of the FEs in (2.16) and (2.17).

Given that we determine the forms and estimate the parameters of the
FEs from our data, it is possible to assess whether the information in our
data, is consistent with the implications of S0 that have been set forth
above.

2.4 Empirical analyses of final equations of the initial model S0

In this subsection we report the results of analyses of the FEs (2.16) and
(2.17) first employing Box–Jenkins (1970) techniques and then utilizing
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likelihood ratio tests and posterior odds. The latter techniques, used pre-
viously in Zellner and Palm (1974), appear to us to be less judgmental
than Box–Jenkins (hereafter, BJ) techniques.

BJ (1970) suggest differencing a series until it is stationary and then
computing and studying estimates of the autocorrelation and partial
autocorrelation functions in order to determine the orders of the AR
and MA parts of the final equations.5 For the monthly series6 under
consideration – that is, those for nominal personal income, high-powered
money, and nominal money balances – the proportionate rate of growth
of each of these variables seems to be generated by a stationary pro-
cess while the first difference of the monthly nominal interest rates also
appears to be stationary (see figure 6.1).

In figure 6.2, the estimated autocorrelation and partial autocorrelation
functions for the series ∆it, the first difference of the monthly market
interest rate on three-month treasury bills (3MTB) are presented.7 The
bands represent a large sample ±2σ̂ confidence interval for the autocor-
relation parameters where σ̂ is a large-sample standard error associated
with the sample estimates of the autocorrelation parameters. The esti-
mates of the first, sixth, and seventh autocorrelation coefficients lie out-
side the ±2σ̂ band. Using the first order autocorrelation coefficient, which
appears to be quite different from zero, as a cut-off of the autocorrelation
function, the results suggest a first order MA process. With respect to the
estimated partial autocorrelation function, only the estimate of the first
order partial autocorrelation coefficient lies outside the ±2σ̂ interval. If
the first order partial autocorrelation coefficient is deemed significantly
different from zero while all higher order coefficients are assumed equal
to zero, the error process in the FE for ∆it would be a first order AR
process. Estimation of a (1, 1, 1) process8 produced the following result
using 240 monthly observations on it, 1953–72:

(1 − 0.124L
(0.147)

)∆it = 0.012
(0.020)

+ (1 + 0.334L
(0.139)

)et s 2 = 0.0534,

(2.18)

where et is a non-autocorrelated error term with zero mean and con-
stant variance, s2 is the residual sum of squares divided by the number

5 See Box and Jenkins (1970), Nelson (1973), and Zellner and Palm (1974) for further
discussion and applications of these techniques.

6 The data are discussed in the appendix at the end of the chapter (p. 286).
7 The computations were performed using a computer program developed by C. R. Nelson

and S. Beveridge, Graduate School of Business, University of Chicago.
8 In Box and Jenkins (1970, terminology a (p, d, q) process for a variable denotes a process

that is stationary in the dth difference of the variable with AR part of order p and MA
error process of order q.
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of degrees of freedom, and the figures in parentheses are large-sample
standard errors.

Analyses similar to those with the 3MTB rate were performed with the
interest on four–six-month prime commercial paper (4–6PCP). Again
the process suggested by the autocorrelation and partial autocorrelation
functions’ estimates is a (1, 1, 1) process that was estimated using 240
monthly observations on it, 1953–1972, with the following result:

(1 − 0.573L
(0.100)

)∆it = 0.006
(0.012)

+ (1 − 0.0569L
(0.122)

)et s 2 = 0.0378.

(2.19)

The first differences of ln M1, where M1 is currency plus demand
deposits, appear to be subject to a slight trend indicating an increasing
proportionate rate of change in nominal balances. The autocorrelation
function for the first differences, shown in figure 6.2, falls off slowly while
the partial autocorrelation function has values significantly different from
zero at lags 1, 2, and 3. If we consider lag 3 as a cut-off, the underlying
process for ∆lnM1t is a pure third order AR process that was estimated
with the following result:

(1 − 0.240L
(0.0641)

− 0.204L2

(0.0647)
− 0.235L3

(0.0642)
)∆ ln M1t = (0.00095

(0.00027)
) + et

s 2 = 0.00000757. (2.20)

Notice that all coefficients in (2.20) are significantly different from zero
at a reasonable significance level.

With respect to monthly personal income, Yt, the first difference of
lnYt appears to be stationary, see figure 6.1. Except for lag 4 and lag 9,
the estimates of the autocorrelation coefficients lie within the ±2σ̂ band
and those of the partial autocorrelation coefficient all lie within or close to
the ±2σ̂ band (see figure 6.3). If we take the value of the autocorrelation
function at lag 4 to be a cut-off of the function, the process for ∆lnYt

may be a fourth order MA with zero coefficients for et−1, et−2 and et−3.
Estimation of this scheme led to:

∆ ln Yt = 0.0052
(0.0004)

+(1 + 0.144L4

(0.0656)
)et s 2 = 0.00002. (2.21)

Last, the first differences of lnHt show a slight trend that can be elim-
inated by second differencing. For the levels ln Ht, the autocorrelation
function falls off slowly while the partial autocorrelation function has a
value significantly different from zero at lag 1. For ∆lnHt, the estimated
partial autocorrelation function has some values up to lag 6 that lie out-
side the ±2σ̂ band while the autocorrelation function has significantly
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Figure 6.2
Note: Figures below abscissa should be read as negative.

positive autocorrelations for a large number of lags (see figure 6.3). In
view of these results, the choice of an underlying scheme is not obvious.
On fitting a (1, 1, 1) scheme, the result is:

(1 + 0.615L
(0.403)

)∆lnHt = 0.004
(0.0012)

+ (1 − 0.683L
(0.372)

)et

s 2 = 0.0000326. (2.22)
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Table 6.2 Results of Box–Jenkins
analyzes of FEs

Variable ARMA process

it : (3MTB) (1, 1, 1)
it : (4-6PCP) (1, 1, 1)
lnM1t (3, 1, 0)
lnYt (0, 1, 4)
lnHt (1, 1, 1)

It is seen that neither the AR parameter nor the MA parameter is signif-
icantly different from zero. If both are taken equal to zero, lnHt would
follow a random walk.

The analyses reported above provide a tentative identification of the
processes generating ∆it, ∆lnM1t, ∆lnYt and ∆lnHt, with the results sum-
marized in table 6.2.

As indicated in the previous subsection, AR parts of the FEs for the
endogenous variables, ∆it, ∆lnM1t and ∆lnYt should be identical and of
order p + 2, where p is the order of the AR part of the FE for lnHt, namely
p = 1 as shown in table 6.2. On comparing the results in table 6.2 with the
implications of the model S0, shown in table 6.1, we see that the AR part
of the FE for ∆lnM1t has order 3, consistent with the requirement that it
be p + 2 = 3. However, the empirically determined orders of the AR parts
of the FEs for ∆it and for ∆lnYt, 1 and 0, respectively, are not consistent
with the implication of S0 that they be of order p + 2 = 3. Further, the
empirically determined orders of the MA error processes of the FEs for
∆lnM1t and ∆it are, respectively, 0 and 1, which is inconsistent with the
implication of S0 that they be equal to or greater than 1 + q = 2, where
q is the order of the MA error process in the FE for ∆lnHt.

It is clear that the empirical analyses of the FEs have produced find-
ings apparently inconsistent with the implications of model S0. However,
before considering modifications of S0, we shall consider the FEs’ speci-
fications employing large sample likelihood ratio tests and posterior odds
ratios.

2.5 Empirical analyses of final equations using likelihood ratio tests and
posterior odds ratios

In this subsection, we compare alternative specifications of the FEs using
large-sample likelihood ratios that approximate posterior odds ratios.9 In

9 That is if λ = ratio of maximized likelihood functions under hypotheses H1 and H2, the
posterior odds ratio, K12, in large-samples is given approximately by K12 = (π1/π2)λ,
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addition to the variables appearing explicitly in model S0, we also analyze
processes for lnyt and lnPt, where yt is the monthly index of industrial
production and Pt is the monthly consumer price index. These latter
variables will appear in variants of S0 considered below.

The results of estimating alternative schemes for the variables are
reported in tables 6.3–6.9. The variants of the processes considered have
been suggested by analyses reported in the previous subsection and also
by the usual practice of considering somewhat broader schemes that may
be supported by the information in the data. Large-sample χ2 tests have
been employed to determine whether schemes somewhat broader than
those presented in the previous subsection are supported by the informa-
tion in the data. Information regarding the application of the χ2 tests is
presented in tables 6.10–6.12.

For the 3MTB interest rate, it, a (2, 1, 3) model appears significantly
better than either a (1, 1, 1) or a (2, 1, 2) model while the (3, 1, 3)
model seems to be more in accord with the information in the data than
either (1, 1, 1), (2, 1, 2), or (3, 2, 1) models. Since the estimation results
provide a third order AR coefficient significantly different from zero at a
reasonable significance level, we conclude that the data favor a (3, 1, 3)
model for the 3MTB interest rate.

As regards the 4–6MPCP rate, (2, 1, 3), (3, 1, 2), and (3, 1, 3) are
significantly different from (1, 1, 1) or (2, 1, 2) models at the significance
levels indicated in table 6.3. However, it does not appear to be possible
to discriminate among the (2, 1, 3), (3, 1, 2), and (3, 1, 3) models. Even
though the (2, 1, 3) model is nested in the (3, 1, 3) model, the likelihood
ratio is very close to 1. From the estimates of the (2, 1, 3) and (3, 1, 2)
models it is difficult to discriminate between them and thus we shall
tentatively carry along both variants.

According to the results of the likelihood ratio tests, a (3, 1, 3) model
for lnM1t is more in accord with the information in the data than (3, 1, 0),
(2, 1, 2), (2, 1, 3), or (3, 1, 2) models. The estimation results for the (3,
1, 3) model suggest that all its parameters are significantly different from
zero at a reasonable significance level.

With respect to lnYt, the logarithm of nominal income, the (0, 1, 4)
model suggested by the BJ identification techniques performed very well
relative to alternative and is thus retained.

For lnHt, the logarithm of high-powered money, a random-walk model,
(0, 1, 0), performs as well as more complicated models on the basis of
the large-sample χ2 tests and thus is retained at the present stage.

where π1/π2 is the prior odds ratio for the two hypotheses. See Lindley (1961), Palm
(1973), and Zellner and Palm (1974, p. 22) for derivation and discussion of this approx-
imation and Zellner (1971, ch. 10) for discussion of posterior odds ratios.
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Table 6.6 Estimated FEs for the ln of personal income, 1953–1972

Estimates of the Estimates of the
RSS, AR part MA part

Model residual sum
(p, d, q) of squares DF RSS/DF AR1 AR2 AR3 MA1 MA2 MA3 Constant

1. (0, 1, 4) 0.0058 237 0.00002 − 0.144
(0.0656)

0.0052
(0.0004)

2. (1, 0, 0) 0.0605 238 0.00025 0.971
(0.00098)

0.179
(0.0063)

Table 6.7 Estimated FEs for the ln of high-powered money, 1953–1972

Estimates of the Estimates of the
RSS, AR part MA part

Model residual sum
(p, d, q) of squares DF RSS/DF AR1 AR2 AR3 MA1 MA2 MA3 Constant

1. (0, 1, 0) 0.007759 238 0.0000326 0.0025
(0.00037)

2. (1, 1, 0) 0.007738 237 0.0000326 0.0522
(0.0645)

0.0024
(0.0004)

3. (0, 1, 1) 0.007737 237 0.0000326 − 0.054
(0.0645)

0.0025
(0.00039)

4. (1, 1, 1) 0.007700 236 0.0000326 − 0.615
(0.403)

0.683
(0.372)

0.004
(0.0012)

With respect to lnyt, the logarithm of the monthly index of industrial
production, BJ analysis and likelihood ratio tests both support a (1, 1, 0)
model.10

Last, various processes for the logarithm of the monthly consumer price
index, lnPt, appear better supported by the information in the data than
the (2, 1, 0) model suggested by BJ techniques.11 Since it does not seem
possible to discriminate well among more complicated variants, we shall
choose the simplest, a (2, 1, 1) model.

In summary, the results of our analyses using monthly data, 1953–
72, suggest tentatively the findings reported in table 6.13 with regard to
the processes that probably generated the observations on our variables.
Also shown in table 6.13 are results using data for 1953–62 and 1963–72
subperiods that indicate little change in the orders of the lag polynomials
for the processes considered.

Viewing the results in table 6.13 for the 1953–72 period in terms of
the implications of S0 for the FEs set forth in table 6.1, the finding for
lnHt, a (0, 1, 0) process, indicates that p = 0 and q = 0. Given that p = 0,

10 See figure 6.3 for estimates of the autocorrelation and partial autocorrelation functions
for ∆lnyt.

11 See figure 6.3 for estimates of the autocorrelation and partial autocorrelation functions
for ∆lnPt.
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Table 6.10 Results of the large-sample likelihood ratio test applied to FEs,
1953–1972

Critical points for χ2
r

Models compared
λ = L(X|H1)

L(X|H0) 2 ln λ r α = 0.05 α = 0.10 α = 0.20

1. Market rates 3MTB
H0 : (1, 1, 1) vs. H1 : (2, 1, 2) 2.04665 1.43241 2 5.99 4.60 3.22

(1, 1, 1) (2, 1, 3) 9104.01 18.2329 3 7.82 6.25 4.64
(1, 1, 1) (3, 1, 3) 13599.7 19.0356 4 9.49 7.78 5.99
(1, 1, 1) (3, 1, 2) 8.76987 4.34265 3 7.82 6.25 4.64
(2, 1, 2) (2, 1, 3) 4448.33 16.8006 1 3.84 2.71 1.64
(2, 1, 2) (3, 1, 3) 6644.64 17.6031 2 5.99 4.60 3.22
(2, 1, 2) (3, 1, 2) 4.28479 2.91014 1 3.84 2.71 1.64
(2, 1, 3) (3, 1, 3) 1.49368 0.80249 1 ,, ,, ,,

(3, 1, 2) (3, 1, 3) 1550.68 14.6929 1 ,, ,, ,,

2. Interest rates 4–6MPCP
H0 : (1, 1, 1) vs. H1 : (2, 1, 2) 3.81787 2.67938 2 5.99 4.60 3.22

(1, 1, 1) (2, 1, 3) 2139.45 15.3366 3 7.82 6.25 4.64
(1, 1, 1) (3, 1, 3) 2139.45 15.3366 4 9.49 7.78 5.99
(1, 1, 1) (3, 1, 2) 3540. × 103 30.1593 3 7.82 6.25 4.64
(2, 1, 2) (2, 1, 3) 560.350 12.6571 1 3.84 2.71 1.64
(2, 1, 2) (3, 1, 3) 560.350 12.6571 2 5.99 4.60 3.22
(2, 1, 2) (3, 1, 2) 9272. × 102 27.4799 1 3.84 2.71 1.64
(2, 1, 3) (3, 1, 3) 1 0 1 ,, ,, ,,

(3, 1, 2) (3, 1, 3) λ < 1 – 1 ,, ,, ,,

Table 6.11 Results of the large-sample likelihood ratio test applied to FEs,
1953–1972

Critical points for χ2
r

Models compared
λ = L(X|H1)

L(X|H0) 2 ln λ r α = 0.05 α = 0.10 α = 0.20

3. Currency and demand deposits : M1

H0 : (3, 1, 0) vs. H1 : (3, 1, 2) 1.14450 0.269929 2 5.99 4.60 3.22
(3, 1, 0) (3, 1, 3) 100.411 9.21855 3 7.82 6.25 4.64
(2, 1, 2) (2, 1, 3) 2.24336 1.61595 1 3.84 2.71 1.64
(2, 1, 2) (3, 1, 2) 2.24336 1.61595 1 ,, ,, ,,

(2, 1, 2) (3, 1, 3) 196.813 10.5645 2 5.99 4.60 3.22
(3, 1, 2) (3, 1, 3) 87.7229 8.34837 1 5.99 4.60 3.22
(2, 1, 3) (3, 1, 3) 87.7229 8.94837 1 3.84 2.71 1.64

4. Consumer price index
H0 : (2, 1, 0) vs. H1 : (2, 1, 1) 8006.92 17.9761 1 3.84 2.71 1.64

(2, 1, 0) (2, 1, 2) 9150.49 18.2431 2 5.99 4.60 3.22
(2, 1, 0) (3, 1, 2) 15625.1 19.3133 3 7.82 6.25 4.64
(2, 1, 0) (3, 1, 1) 10457.0 18.5100 2 5.99 4.60 3.22
(2, 1, 1) (2, 1, 2) 1.14267 0.266728 1 3.84 2.71 1.64
(2, 1, 1) (3, 1, 2) 1.95114 1.33683 2 5.99 4.60 3.22
(2, 1, 1) (3, 1, 1) 1.30594 0.533844 1 3.84 2.71 1.64
(2, 1, 2) (3, 1, 2) 1.70758 1.07015 1 ,, ,, ,,

(3, 1, 1) (3, 1, 2) 1. 0 1 ,, ,, ,,
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Table 6.12 Results of the large-sample likelihood ratio test applied to FEs,
1953–1972

Critical points for χ2
r

Models compared
λ = L(X|H1)

L(X|H0) 2 ln λ r α = 0.05 α = 0.10 α = 0.20

5. High-powered money
H0 : (0, 1, 0) vs. H1 : (1, 1, 0) 1.38423 0.650288 1 3.84 2.71 1.64

(0, 1, 0) (0, 1, 1) 1.40588 0.681328 1 ,, ,, ,,

(0, 1, 0) (1, 1, 1) 2.49906 1.83183 2 5.99 4.60 3.22
(1, 1, 0) (1, 1, 1) 1.80518 1.18132 1 3.84 2.71 1.64
(0, 1, 1) (1, 1, 1) 1.77744 1.15035 1 ,, ,, ,,

6. Industrial production index
H0 : (1, 1, 0) vs. H1 : (1, 1, 2) 1.08239 0.158334 2 5.99 4.60 3.22

(1, 1, 0) (1, 1, 1) 1.08772 0.168169 1 3.84 2.71 1.64
(1, 1, 0) (2, 1, 1) 1.14293 0.267185 2 5.99 4.60 3.22
(1, 1, 1) (2, 1, 1) 1 0 1 3.84 2.71 1.64

Table 6.13 Models suggested by large-sample likelihood ratio tests and
estimation results

Period of analysis

Variable 1953–1972 1953–1962 1963–1972

it : (3MTB) (2, 1, 3) or (3, 1, 3) (2, 1, 3) or (3, 1, 3) (2, 1, 3) or (3, 1, 3)
it : (4-6PCP) (2, 1, 3) or (3, 1, 2) (2, 1, 3) or (3, 1, 2) (2, 1, 3) or (3, 1, 2)
lnM1t (3, 1, 3) (2, 1, 2) or (3, 1, 3) (2, 1, 3) or (3, 1, 3)
lnYt (0, 1, 4) (0, 1, 4) (0, 1, 4)
lnHt (0, 1, 0) (0, 1, 0) or (2, 1, 0) (0, 1, 0)
lnyt (1, 1, 0) (1, 1, 0) (1, 1, 0) or (1, 1, 1)
lnPt (2, 1, 1) or (1, 1, 1) (2, 1, 0) or (1, 1, 1) (2, 1, 1) or (1, 1, 1)

model S0 implies that the AR parts of the FEs for it, lnM1t and lnYt

should all be second order (see table 6.1). The findings reported in table
6.13 contradict this implication in that the orders of the AR parts of the
FEs for it (3MTB) and for lnM1t are 3 while that for lnYt is 0. Thus some
major implications of S0 are apparently in conflict with the information
in the data and there is a need to consider variants of the initial model.12

12 If instead of expressing S0 in terms of the growth rate of nominal income, we expressed it
in terms of the rate of growth of the price level, rpt , and if we continue to assume that the
growth rate of real income or output is constant, this would be equivalent to substituting
rpt and r ∗

pt
for rYt and r ∗

Yt
, respectively, where r ∗

pt
is the anticipated rate of inflation. Then

the empirical result for lnPt in table 6.13 is compatible with the implication of this variant
of S0 but there is still an incompatibility with respect to the empirical findings relating
to the FE for lnM1t.
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3 Formulation and analysis of variants of the initial
model S0

The findings reported in table 6.13 indicate a need to reformulate S0. In
particular, the finding that real output, lnyt, follows a (1, 1, 0) process
may mean that the approximation of a constant growth rate for real output
embedded in S0 may be inadequate. Reformulation of S0 to permit ryt =
∆lnyt to be variable along with a relaxation of the assumption that the
income elasticity of demand for real balances is equal to 1 leads to a
variant of S0 that we shall refer to as S1. The equations of S1 are given in
(3.1a–3.1d):

r pt + αr yt = γ1∆it + rMt (3.1a)

rMt = γ2∆it + r Ht (3.1b)

∆it = ∆r ∗
pt

(3.1c)

r ∗
pt

− r ∗
pt−1

= β(r pt−1 − r ∗
pt−1

), (3.1d)

where variables are defined as above in connection with the development
of (2.6)–(2.9), ryt = ∆lnyt, and α is the income elasticity of demand for
real balances.

On expressing the unobservable anticipated rate of inflation r ∗
pt

in terms
of observables the system S1 in (3.1) can be expressed as follows: 1 −1 −γ1

0 1 −γ2

−βL(1 − L) 0 1 − (1 − β)L

  r pt

rMt

∆it


=

0 −α

1 0
0 0

 [
r Ht

r yt

]
+

u1t

u2t

u3t

 , (3.2)

where uit, i = 1, 2, 3, are disturbance terms. Initially, we shall go forward
under the assumption that rHt and ryt are exogenous variables.

Solving the system in (3.2) for rpt , rMt , and ∆it, as in (2.14) above, we
obtain the TFs associated with S1 in (3.2):

[1 − (1 − β)L + β(γ1 + γ2)L(1 − L)]

 r pt

rMt

∆it


=

1 − (1 − β)L −α[1 − (1 − β)L]
1 − (1 − β)L − γ1βL(1 − L) −αγ2βL(1 − L)
βL(1 − L) −αβL(1 − L)


×

[
r Ht

r yt

]
+

v1t

v2t

v3t

 , (3.3)



Time series and structural analysis 269

Table 6.14 Degrees of lag polynomials in (3.3)

Variable AR MA for rHi MA for ryt MA for errora

rpt 2 1 1 1≤
rMt 2 2 2 2≤
∆it 2 2 2 2≤

Note:
a “1 ≤” indicates that the order of the MA error process is at
least 1 or greater and similarly for “2 ≤.”

where vt = H∗
11ut , v′

t = (v1t , v2t , v3t), H∗
11 is given in (2.13), and u′

t =
(u1t , u2tu3t) are the structural disturbances in (3.2).

Notice that the AR parts of the TFs for S1 in (3.3) are identical to
those for S0 in (2.14a) and thus should be of order 2 with identical
parameters. If α = 1, the MA polynomials for rHt and ryt in the first
and third equations sum to 0. With α �= 1, this restriction is no longer
satisfied. Further, the MA polynomial for ryt in the second equation is
proportional to that for ryt in the third equation.13 Table 6.14 provides
a summary of degrees of the various polynomials appearing in (3.3). It
is seen from the table that the degrees of the polynomials are rather low
and the same in a number of instances, a point that can be checked
empirically.

If we assume that the exogenous variables are generated independently
of the other variables by the following ARMA schemes,

φ1(L)r Ht = θ1(L)u4t (3.4)

φ2(L)r yt = θ2(L)u5t , (3.5)

where φi(L) and θ i(L), i = 1, 2, are finite polynomials in L of
degrees pi and qi , respectively, we can solve for the FEs of S1 by
substituting from (3.4)–(3.5) in (3.3). Note, however, that this involves
assuming that the real growth rate, ryt , is exogenous to the monetary
sector and that policy-makers, assumed to control rHt , the rate of growth
of high-powered money, have adopted an “open-loop” control strategy.14

With these qualifications in mind, we present the FEs of S1 in (3.6):

13 There are other restrictions on the parameters of (3.3) similar to those discussed in
connection with (2.14) above.

14 The latter assumption excludes possible feedback effects on the policy-makers’ actions.
See Sargent (1973) and Sargent and Wallace (1973) where such feedback effects are
considered.
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Table 6.15 Degrees of lag polynomials in FEs for variables in (3.6)

Variable Degree of AR polynomial Degree of MA polynomial

rpt 2 + p1 + p2 1 + p1 + p2, 1 + p2 + q1 and 1 + p1 + q2 ≤
rMt 2 + p1 + p2 2 + p1 + p2, 2 + p2 + q1 and 2 + p1 + q2 ≤
∆it 2 + p1 + p2 2 + p1 + p2, 2 + p2 + q1 and 2 + p1 + q2 ≤

[1 − (1 − β)L + βγ L(1 − L)]φ1(L)φ2(L)

 r pt

rMt

∆it


=

1 − (1 − β)L −α[1 − (1 − β)L]
1 − (1 − β)L − γ1βL(1 − L) −αγ2βL(1 − L)
βL(1 − L) −αβL(1 − L)


×

[
φ2(L)θ1(L)u4t

φ1(L)θ2(L)u5t

]
+ φ1(L)φ2(L)

v1t

v2t

v3t

 , (3.6)

where γ ≡ γ1 + γ2. If no cancelling occurs, the degrees of the polynomials
in the ARMA schemes given in (3.6) are as shown in table 6.15.

With respect to table 6.15, the empirical results for the FEs in table
6.13 indicate that p1 = q1 = 0, p2 = 1, and q2 = 0. Thus, if we retain a (3,
1, 3) or a (3, 1, 2) model for it and a (3, 1, 3) model for lnM1t, we have
compatibility with the requirements set forth in table 6.15. However if no
cancelling occurs, there is an incompatibility with respect to the degrees
of the AR and MA polynomials in the empirically determined process for
lnPt, namely (2, 1, 1). In addition, on viewing the estimates of the AR
parameters in the (3, 1, 3) FE for lnM1t and those for the (3, 1, 3) FEs
for it, it is seen that they are far from being identical as required by the
form of (3.6). Thus there appear to be fundamental problems with the
S1 formulation of the model.

In considering reformulation of S1, the following points were consid-
ered:
(1) α in the money demand function (3.1a) could be a polynomial in L,

α(L). This would bring current and lagged values of ryt into (3.1a).
However, such a modification of S1 leads to implications for the FEs
that are incompatible with the empirical findings reported in table
6.13. This is also the case if other lagged effects were incorporated in
the structural equations (3.1).

(2) The rate of growth of real output, ryt , considered to be exogenous
in S1, might be an endogenous variable. However, this assumption
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leads to implications for the FEs at variance with the empirical results
in table 6.13.

(3) The rate of growth of high-powered money, rHt , might be subject
to closed loop control, that is dependent on current and/or lagged
endogenous variables. This assumption has implications for the FEs
properties that are not in agreement with the empirical findings for
the FEs.

(4) Some cancelling may occur in the FE for rpt in (3.6). For example, if
φ2(L) were proportional to 1 − (1 − β)L , cancelling would occur and
(3.6) would be compatible with the empirical results insofar as the
degrees of AR and MA polynomials are considered. However, there
does not appear to be any obvious rationale for assuming that the AR
polynomial in the FE for ryt , namely φ2(L) in (3.5), is proportional
to 1 − (1 − β)L . Further, even if this were assumed, there is still
the problem that estimates of corresponding parameters in the 3rd
degree AR polynomials in the FEs for ryt and ∆it appear to be quite
dissimilar.

(5) It may be that use of ∆it in (3.1b), the money supply relation, and/or
the Cagan expectation formation equation, (3.1d), are inappropriate.
Below we consider these possibilities.

As mentioned in (3.5), problems with the S1 formulation of the model
may be due to inadequacies in formulating the money supply relation
(3.1b) and the expectation equation (3.1d). As the model is shown in
(3.1), expectations are not rational in the sense of Muth (1961) . . . Sar-
gent and Wallace (1973) have provided a model, similar in some respects
to those considered above, within which the Cagan expectation forma-
tion process is rational. A variant of the Sargent–Wallace model, denoted
S2, will now be considered.

The equations of the Sargent–Wallace model, employing our notation
with u1t and u2t structural disturbance terms, are:

rMt = r pt + α1(r ∗
pt

− r ∗
pt−1

) + (1 − L)u1t α1 < 0 (3.7)

r ∗
pt

= (1 − λ)
1 − λL

r pt (3.8)

rMt = 1 − λ

1 − λL
r pt + u2t . (3.9)

Equation (3.7) is obtained by differencing a log-log demand equation
for real balances with real income assumed constant. Sargent employs
r ∗

pt
− r ∗

pt−1
rather than our ∆it; however, given that the Fisher equation

(2.4a) holds with a constant real rate of interest,15 this formulation is

15 Alternatively, we could assume that the real rate is variable and follows a random walk.
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equivalent to ours in (3.1a). Equation (3.8) represents Cagan’s expec-
tation formation process and is equivalent to our (3.1d) except that our
equation involves using rpt−1 rather than rpt in (3.8). Equation (3.9) is a
money supply equation that differs from ours in that rMt is made to depend
on r ∗

pt
= 1−λ

1−λLr pt , the anticipated rate of inflation that is assumed gener-
ated by (3.8) for the monetary authorities as well as for the demanders
of money balances. If lnHt is assumed exogenous and follows a (0, 1, 0)
process, as appears to be the case in our data, rHt = ∆lnHt = α0 + et

could be considered to be included in u2t. Thus the major modifications
embedded in Sargent’s model vis-à-vis our S0 is a timing change in the
expectation equation and the inclusion of r ∗

pt
in the rate of change of

money supply.
On substituting from (3.8) and (3.9) in (3.7), the FE for rpt is obtained

which when substituted in (3.9) yields the FE for rMt .
16 Given that u1t and

u2t are non-autocorrelated, these FEs are a (1, 1, 2) process for lnPt and
a (1, 1, 1) process for lnMt. Both of these processes are in conflict with
the empirical findings reported in table 6.13 above, namely a (1, 1, 1)
or a (2, 1, 2) process for lnPt and a (3, 1, 3) process for lnM1t. Thus the
“rational” Cagan model in (3.7)–(3.9) does not appear to be consistent
with the information in our data. Even if we relax the assumption that
real income is constant in (3.7)–(3.9) by introducing ryt as a variable in
(3.7), we still find the model incompatible with our empirical results.

The last variant of the model to be considered, S3, involves introducing
a rational expectations relation to replace Cagan’s [1956] assumption. In
this formulation, our equations are:

φ0r pt + φ1r yt = γ1∆it + φ4rMt + u1t , (3.10)

φ2rMt = φ3r pt + γ2∆
i
t + δr Ht + u2t , (3.11)

∆it = ∆r ∗
pt

+ u3t , (3.12)

r ∗
pt

= E
t
(r pt | .), (3.13)

where the φis are polynomial lag operators, (3.10) is the money
demand equation, (3.11) the money supply equation, (3.12) the Fisher
equation,17 and (3.13) the rational hypothesis where E

t
(r pt | .) denotes the

16 The FEs are given explicitly below:

φ(L)r pt = (1 − λL)u2t − (1 − λL)(1 − L)u1t

φ(L)rMt = [1 − λ + φ(L)]u2t − (1 − λ)(1 − L)u1t ,

where φ(L) ≡ λ + α1(1 − λ) − [λ + α1(1 − λ)]L. Note that the factor 1 − λL
has been canceled in obtaining these FEs.

17 If the real rate of interest is variable, its first difference can be assumed incorporated in
the structural disturbance u3t.
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conditional expectation of rpt as of time t given the equations of the model
and past information.

On substituting for the endogenous variables ∆it and rMt in (3.10), we
have

r pt = φ−1
0 [−φ1r yt + γ1∆it + φ4rMt + u1t]

= φ−1[ − φ1r yt + (
γ1 + φ4φ

−1
2 γ2

)
∆r ∗

pt
+ φ4φ

−1
2 φ3r pt

+ φ4φ
−1
2 δr Ht

] + φ−1
0

[
u1t + φ4φ

−1
2 u2t + (

γ1 + φ4φ
−1
2 γ2

)
u3t

]
.

(3.14)

Then, under the simplifying assumption that φ0, φ1, φ3, γ1, and γ2 are
constant parameters, φ2 and φ4 are polynomials of the same degree with
the same roots we have:

E
t
(r pt | .) = φ−1

0

[ − φ1 Eryt + (
γ1 + φ4φ

−1
2 γ2

)
∆r ∗

pt

+ φ4φ
−1
2 φ3 Er pt + φ4φ

−1
2 δEr Ht

]
+ φ−1

0

[
Eu1t + φ4φ

−1
2 Eu2t + (

γ1 + φ4φ
−1
2 γ2

)
Eu3t

]
,

(3.15)

where all expectations on the r.h.s. of (3.15) denote conditional expecta-
tions at time t given past information. On multiplying both sides by φ0φ2,
using (3.13), and rearranging terms, we have:

[φ0φ2 − φ2γ1∆ − φ3φ4 − φ4γ2∆]∆r ∗
pt

= −φ1φ2∆Eryt + φ4δ∆Er Ht + vt , (3.16)

where

vt = φ2∆Eu1t + φ4∆Eu2t + (φ2γ1 + φ4γ2)∆Eu3t .

Now if the variables rHt and ryt are generated by the following ARMA
processes,

θ1(L)r Ht = w1(L)u4t

θ2(L)r yt = w2(L)u5t , (3.17)

the conditional expectations of rHt and ryt can be written as

Er Ht =−θ ′
1(L)r Ht + w ′

1(L)u4t

Er yt =−θ ′
2(L)r yt + w ′

2(L)u5t , (3.18)

where θ ′
i (L) and w ′

i (L) are the homogeneous parts of θ i(L) and wi(L),
respectively, i = 1, 2.

Substituting from (3.18) in (3.16) and using (3.12), we have
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φ(L)∆it = ψ1(L)r Ht + ψ2(L)r yt + v′
t , (3.19)

where

φ(L) = (φ0φ2 − φ2γ1∆ − φ3φ4 − φ4γ2∆)

ψ1(L) = −φ4∆δθ ′
1(L),

ψ2(L) = ∆φ1φ2θ
′
2(L),

and

v′
t = vt − φ1φ2∆w ′

2u5t + φ4δ∆w ′
1u4t + φ(L)u3t .

In matrix form the system in (3.10)–(3.13) becomes φ0 −φ4 −γ1

−φ3 φ2 −γ2

0 0 φ

  r pt

rMt

∆it

 =
 0 −φ1

∆ 0
ψ1 ψ2

 [
r Ht

r yt

]
+

u1t

u2t

v′
t

 .

(3.20)

The determinant of the matrix on the l.h.s. of (3.20), denoted det H11,
is

det H11 = φ(φ0φ2 − φ3φ4), (3.21)

while its adjoint matrix, H∗
11, is:

H∗
11 =

φ2φ φ4φ γ1φ2 + γ2φ4

φ3φ φ0φ γ1φ3 + γ2φ0

0 0 φ0φ2 − φ3φ4

 . (3.22)

Then the transfer functions associated with (3.21) are

φ(φ0φ2 − φ3φ4)

 r pt

rMt

∆it

 =
δφ4φ + ψ1(γ1φ2 + γ2φ4)

δφ0φ + ψ1(γ1φ3 + γ2φ0)
ψ1(φ0φ2 − φ3φ4)

 r Ht

+
−φ1φ2φ + ψ2(γ1φ2 + γ2φ4)

−φ1φ3φ + ψ2(γ1φ3 + γ2φ0)
ψ2(φ0φ2 − φ3φ4)

 r yt

+
φ2φ φ4φ γ1φ2 + γ2φ4

φ3φ φ0φ γ1φ3 + γ2φ0

0 0 φ0φ2 − φ3φ4

u1t

u2t

v′
t

 .

(3.23)

If in (3.23) we substitute for rHt and ryt from (3.17), we obtain the final
equations for rpt , rMt , and ∆it. The empirical results for the processes on
rHt and ryt indicate that θ1 and w1 in (3.17) are each of degree 0 while
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θ2 is of degree 1 and w2 is of degree 0. These findings imply that ψ1 ≡ 0
and that the final equations are given explicitly by

φ(φ0φ2 − φ3φ4)θ2

 r pt

rMt

∆it

 =
δφ4φ

δφ0φ

0

 θ2u4t

+
−φ1φ2φ + ψ2(γ1φ2 + γ2φ4)

−φ1φ3φ + ψ2(γ1φ3 + γ2φ0)
ψ2(φ0φ2 − φ3φ4)

 u5t

+ θ2 H∗
11

u1t

u2t

v′
t

 , (3.24)

with H∗
11 given in (3.22).

For the FEs in (3.24) to be compatible with our empirical findings in
table 6.13, some cancelling has to occur. In particular, under the simpli-
fying assumption made in (3.15) that φ2 and φ4 have the same degree
and

φ2 ∝ φ4, or φ4 = λφ2, (3.25)

we can eliminate the common factor φ2 and (3.24) becomesφ′(φ0 − φ3λ)θ2r pt

φ(φ0 − φ3λ)θ2rMt

φ′θ2∆it

 =
 δφ′λ

δφ0φ
′

0

 θ2u4t

+
 −φ1φ

′ + ψ ′
2(γ1 + γ2λ)

−φ1φ3φ
′ + ψ ′

2(γ1φ3 + γ2φ0)
ψ ′

2

 u5t

+ θ2

 φ′ φ′λ (γ1 + γ2λ)
φ3φ

′ φ0φ
′ (γ1φ3 + γ2φ0)

0 0 1

 u1t

u2t

v′′
t

 ,

(3.26)

where φ′ = φ/φ2, ψ ′
2 = ψ /φ2 and v′′

t = v′
t/φ2.

We assume that

γ1, γ2, φ1, δ, φ0 and φ3 are each of degree 0;

φ is of degree 2 and thus φ′ is of degree 1; and

ψ ′
2 is of degree 2,

and if the uits, i = 1, 2, . . . , 5, are serially uncorrelated, v′′
t = φ′(L)u3t ,

where φ′(L) is of degree 1. Under these conditions, the FEs in (3.26)
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have the following properties:

it : (2, 1, 2)

lnMt : (3, 1, 3)

lnPt : (2, 1, 2).

On comparing the above properties of the FEs with the empirical findings
reported in table 6.13, it is seen that there is a high degree of compatibility.

Explicit forms of the structural equations, (3.10)–(3.13), embodying
the conditions given in (3.25) and those below equation (3.26), and the
empirically determined final equations for lnyt and lnHt are given below

rMt = φ−1
4 [β1r pt + αr yt − γ1∆it − u1t] (3.10′)

rMt = λφ−1
4 [β2r pt + γ2∆it + δr Ht + u2t] (3.11′)

∆it = ∆r ∗
pt

+ u3t (3.12′)
r ∗

pt
= E

t
(r pt | .) (3.13′)

r yt = α0 + θ−1
2 u4t (3.17a′)

r Ht = α′
0 + u5t , (3.17b′)

where we have taken φ1 ≡ α, φ0 ≡ β1, φ3 ≡ β2, φ4 = λφ2 in line with
(3.25), and the λ, αs, γ s and βs are scalar parameters. It is seen that
variables and disturbances on the r.h.s. of the money demand equation,
(3.10′), and the money supply equation, (3.11′) are “smoothed” by the
same polynomial. Of course, it may be that their parameters are slightly
different in equations (3.10′) and (3.11′) and that we have not picked
up such differences in our empirical analyses.18 However, the system
presented above is compatible with our empirical findings for the FEs.

The next step in our work will involve analysis of the TFs associated
with the compatible structural equation system presented above. From
(3.23), the TFs are:

φ′(φ0 − φ3λ)r pt = δλφ′r Ht + [−φ1φ
′ + ψ ′

2(γ1 + γ2λ)]r yt

+ φ′u1t + φ′u2t + (γ1 + γ2λ)v′′
t (3.27)

φ′(φ0 − φ3λ)rMt = δφ0φ
′r Ht + [−φ1φ3φ

′ + ψ ′
2(γ1φ3 + γ2φ0)]r yt

+ φ3φ
′u1t + φ0φ

′u2t + (γ1φ3 + γ2φ0)v′′
t

(3.28)

φ′∆it = ψ ′
2r yt + v′′

t . (3.29)

18 On comparing estimates of the AR parameter in (3.17a) with estimates obtained from
other FEs, we find them very similar.
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Table 6.16 Degrees of polynomials in TFs (3.27)–(3.29)

Variable AR MA for rHt MA for ryt MA for errora

rpt 1 1 2 1 ≤
rMt 2 1 2 1 ≤
∆it 1 – 2 1 ≤

Note:
a If the uit s, i = 1, 2, 3 are serially correlated we will have strict inequalities.

Under the assumptions made in (3.15), the polynomials in the TFs
have the degrees shown in table 6.16, implications that will be checked
empirically.19

Of course the implications of the TFs may or may not be found consis-
tent with the information in our data. For example, if ryt is not exogenous,
this will affect estimates of the TFs based on the assumption that ryt is
an exogenous variable and will probably lead to incompatibilities. Fur-
ther, if ryt is an endogenous variable and if the real sector is modeled
along with the monetary sector, our empirically determined FEs imply
that any such system must be characterized by cancelling of polynomials
in order to have its FEs compatible with the empirically determined FEs
presented above. These are some of the issues that will receive theoretical
and empirical attention in future work.

4 Empirical analysis of the transfer functions of S3

We now turn to the analysis of the TFs presented in (3.27), (3.28) and
(3.29). If model S3 has generated the data, the results in table 6.16 should
empirically be verified. The empirical analysis of the TFs is done along the
lines suggested by Box–Jenkins (1970) and by Zellner and Palm (1974).
Alternative specifications for the TFs are compared with those implied
by the model S3 using a large-sample likelihood ratio (LR) test. The
results of estimating these alternatives are reported in tables 6.17–6.20.
Equation M2 in each of the tables is compatible as far as the order of the
polynomials is concerned with S3 (see table 6.16). The transfer function
M3 is compatible with S1. Alternative specifications are reported in tables
6.17–6.20 and compared using the LR test in table 6.21. The estimation
results deserve some comments. The parameter estimates are in gen-
eral rather imprecise. This is somewhat disquieting as the sample size is

19 See Zellner and Palm (1974) for empirical analyses of TFs associated with a small
dynamic Keynesian model.
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Table 6.21 Results of the large-sample likelihood ratio test applied to
the TFs 1954–1972

Models compared λ = L(x|H1)
L(x|H0)

2 ln λ r
Critical points for χ2

r

α = 0.05 α = 0.20

1. Market rates : 3MTB
H0 : M2 vs. H1 : M1 1.829 1.208 3 7.82 4.64

M4 M1 2.478 1.815 3 7.82 4.64
M8 M1 5.383 3.366 5 11.07 7.23
M8 M2 2.943 2.159 2 5.99 3.22
M2 M3 3.064 2.239 5 11.07 7.23
M6 M3 1.490 0.798 4 9.44 5.90
M7 M3 7.211 3.951 6 12.59 9.56
M8 M3 9.016 4.398 7 14.07 9.82
M8 M4 2.173 1.552 2 5.99 3.22
M8 M5 5.790 3.512 2 5.99 3.22
M7 M6 4.840 3.154 2 5.99 3.22
M8 M6 6.051 3.600 3 7.82 4.64
M8 M7 1.250 0.446 1 3.84 1.64

2. Interest rates : 4–6MPCP
H0 : M2 vs. H1 : M1 21.669 6.152 3 7.82 4.64

M4 M1 3.437 2.469 3 7.82 4.64
M8 M1 29.094 6.741 5 11.07 7.23
M8 M2 1.343 0.590 2 5.99 3.22
M2 M3 1. 5 11.07 7.23
M6 M3 1.088 0.169 4 9.44 5.90
M7 M3 1.343 0.590 6 12.59 8.56
M8 M3 1.343 0.590 7 14.07 9.82
M8 M4 8.465 4.272 2 5.99 3.22
M8 M5 5.927 3.559 2 5.99 3.22
M7 M6 1.234 0.421 2 5.99 3.22
M8 M7 1. 1 3.84 1.64
M8 M6 1.234 3 7.82 4.64

3. Rate of change in consumer price index
H0 : M2 vs. H1 : M1 16761.3 19.454 4 9.44 5.90

M3 M1 3506.0 16.324 5 11.07 7.23
M4 M1 2631.85 15.750 4 9.44 5.90
M6 M1 3506.02 16.324 5 11.07 7.23
M7 M1 1709.40 14.887 3 7.82 4.64
M8 M1 13.27 5.171 1 3.84 1.64
M6 M3 1.
M3 M4 1.332 0.573 1 3.84 1.64
M6 M4 1.332 0.573 2 5.99 3.22
M1 M5 1.361 0.616 1 3.84 1.64
M2 M5 22809.56 20.070 5 11.07 7.23
M3 M5 4771.16 16.941 6 12.59 8.56
M4 M5 3581.55 16.367 5 11.07 7.23
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Table 6.21 (cont.)

Models compared λ = L(x |H1)
L(x |H0)

2 ln λ r
Critical points for χ2

r

α = 0.05 α = 0.20

H0 : M6 vs. H1 : M5 4771.16 16.941 7 14.07 9.82
M7 M5 2326.23 15.504 4 9.44 5.90
M8 M5 18.06 5.787 2 5.99 3.22
M3 M7 2.05 1.436 2 5.99 3.22
M4 M7 1.54 0.864 1 3.84 1.64
M2 M8 1262.68 14.282 3 7.82 4.64
M3 M8 264.12 11.153 4 9.44 5.90
M4 M8 198.27 10.579 3 7.82 4.64
M6 M8 264.12 11.153 5 11.07 7.29
M7 M8 128.77 9.716 2 5.99 3.22

4. Rate of change of the stock of money (M1)
H0 : M2 vs. H1 : M1 238.99 10.953 4 9.44 5.90

M3 M1 21.15 6.103 3 7.82 4.64
M4 M1 872.62 13.543 5 11.07 7.29
M6 M1 5730.86 17.307 6 12.59 8.56
M7 M1 2098.99 15.298 6 12.59 8.56
M8 M1 4104.40 16.640 6 12.59 8.56
M6 M2 23.980 6.354 2 5.99 3.22
M2 M3 11.301 4.850 2 5.99 3.22
M4 M3 41.263 7.440 3 7.82 4.64
M6 M3 270.991 11.204 4 9.44 5.90
M7 M3 99.253 9.195 4 9.44 5.90
M8 M3 194.079 10.537 5 11.07 7.29
M6 M4 6.567 3.764 1 3.84 1.64
M7 M4 2.405 1.755 1 3.84 1.64
M8 M4 4.703 3.096 2 5.99 3.22
M2 M5 8.543 4.290 4 9.44 5.90
M6 M5 204.860 10.645 6 12.59 8.56
M7 M5 75.032 8.636 6 12.59 8.56
M8 M5 140.900 9.896 7 14.07 9.82
M8 M7 1.955 1.340 1 3.84 1.64

relatively large. Most of the alternatives are obtained by dropping some
of the non-significant parameter estimates and lead to simpler schemes.
The ideal procedure would be to fix upper limits to the degrees of the
polynomials in the TFs and then to explore systematically the parameter
space by changing the degrees inside the fixed limits and retaining the
model with the highest RSS. Such a procedure would have ML justifi-
cation. However it would be cumbersome to implement. Selecting a few
alternatives may lead to the same results. At least it may lead us to reject
the TF of a theoretical model so far inadequately entertained.
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For the market rate for 3 MTBs none of the more complicated models
M1, M2, M3, M4, M6, M7 does better than M8 for which all the parameters
except the constant are significant at the 5 percent level. Only M5 is
significantly different from M8 at the level of 0.20. If we retain model
M5, it is not compatible with the TFs of S3.

For the 4–6 MPCP rate, M1 is preferred to M2, and M4 or M5 are
preferred to M8 at the 0.2 level. If we retain M4 or M5, we have structures
similar to those for 3MTB. Notice that most of the coefficients in M4

and M5 are significant at the 0.05 level. Also the parameter estimates for
both series are similar. A few remarks are now appropriate. Although the
results suggest that the TFs in accord with the information in the data are
simpler than those implied by S1 or S3, we cannot entirely reject model
S3. The theoretically meaningful model S3 implies that the variable rHt

does not affect the interest rate. Bringing the variable rHt into the TF for
3MTB and 4–6 MPCP does not lead to an important gain in RSS. In
addition no coefficient of rHt is significant at the 0.05 level. This finding
supports some implications of S3. The RSS do not vary significantly by
increasing the number of lags. The likelihood function seems to be rather
flat and thus does not permit sharp discrimination among the estimated
models.

For the rate of change in the consumer price index, models M1 and
M5 are preferred to M2, M3, M4, M6, M7, M8, and M8 is more in accord
with the data than M2, M3, M4, M6, M7. It is reasonable to accept ten-
tatively TF M1. However few coefficients of M1 are significant at the
0.05 level.

For the proportionate rate of change in the stock of money, model
M1 is preferred to M2, M4, M6, M7, M8 at the 0.05 level, whereas it is
preferred to M3 at the 0.20 level. M3 is significantly different from the
models M2, M4, M6, M7, and M8 at the 0.20 level. For rMt , model S3

is empirically validated. Notice that one of the roots of the AR part for
the three variables rpt , rMt , and ∆it is close to 1, suggesting that perhaps
second order differencing of the endogenous variables is adequate. Again
parameter estimates are not very precise. If M1 is retained, two roots of
the AR part for rpt and rMt are very similar, giving additional evidence
that the variables are generated by some joint process. Whether M1 or
M5 is retained for the interest rates, the AR part has one root close to 1
and in common with the AR part for rpt and rMt .

5 Concluding remarks

At a first glance, the results of the TFs’ analysis are not compatible with
model S3. At least for the interest rate series, they do not lead to a relevant
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choice of the dynamic structure. The schemes retained from the empirical
analysis are of higher order than those summarized in table 6.16. For
the interest rates the RSS does not vary much from model to model.
The likelihood function seems to be very flat in the neighborhood of
its maximizing parameter values. The sample is not powerful enough
to discriminate among alternative specifications and we have to rely on
external information (e.g. from economic theory) to choose the structure.
The assumptions underlying S3 (i.e. the “rational expectation” hypothesis
and the variable lnHt generated by a random walk) are not ruled out by
the information in the data. Model S1 is not compatible with the empirical
findings which do not show any dependence of the interest rates on the
money base.

A factor which may have disturbed the analysis and which has to be
studied in future work is seasonality. It is obvious from the figures 6.2
and 6.3 that seasonal effects have not completely been eliminated from
the seasonally adjusted variables. For example for the variable rpt , the
twelfth order autocorrelation is significantly different from 0. For per-
sonal income and for the index of industrial production, the twelfth order
partial autocorrelation is significant at the 5 percent level. The seasonally
unadjusted interest rate series shows a clear presence of seasonal effects.
The twelfth order autocorrelation is significantly different from 0 at the
5 percent level. In the price series, seasonality seems to be very strong.
Both, the autocorrelation and the partial autocorrelation of order 12 are
significantly different from 0. The seasonal effects show up again in the
TFs’ analysis. The estimated autocorrelation function of the disturbances
of all the TFs has a significant value at lag 12.

In summary, the main findings of the present statistical analysis are:
(1) Although the results of the likelihood ratio tests appear to favor more

complicated schemes, they do not lead to a systematic rejection of
model S3 for the US data for the period 1953–72.

(2) The data indicate that the variable lnHt follows a random walk.
(3) The variables and the disturbances of the money demand equa-

tion and the money supply equation are smoothed by the same first
order lag polynomial. (See 3.10′–3.11′). A surprising feature is that
the degrees of the lag polynomials in the structural form are rather
low.

(4) The structure of the model is stable over the twenty-year period cov-
ered by the sample. Splitting the sample into two parts and estimat-
ing the same schemes for the subperiods leads to very similar results
and nearly identical parameter estimates for the series, except for the
process lnHt where an upward shift occurred in the drift parameter
around the year 1963.
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APPENDIX DATA SOURCES

1. Three-Month Treasury Bill market rates (3MTB) are averages com-
puted from daily closing bid prices. Data were obtained from the Fed-
eral Reserve Bulletin.

2. Four–six-month Prime Commercial Paper rates (4–6MPCP), are aver-
ages of daily offering rates of dealers and were obtained from the Federal
Reserve Bulletin.

3. Seasonally adjusted M1 (currency plus demand deposits) data were
obtained as follows: (1) 1953–8 figures were obtained from the Decem-
ber 1970, Federal Reserve Bulletin, pp. 895–909; (2) 1959–72 figures
were obtained from February 1973 Federal Reserve Bulletin, pp. 72–3.
The monthly data are averages of daily figures.

4. The Consumer Price Index (CPI), Bureau of Labor Statistics index
for city wage-earners and clerical workers was obtained from 1971
Business Statistics for 1953–70. For 1971–2 data were obtained from
the Federal Reserve Bulletin.

5. Personal income (PI) data, seasonally adjusted, were obtained from
1971 Business Statistics for 1953–70. For 1971–2 data were obtained
from the Federal Reserve Bulletin.

6. Index of Industrial Production (IIP) data, seasonally adjusted, were
obtained from 1971 Business Statistics for 1953–70. For 1971–2 data
were obtained from the Federal Reserve Bulletin.

7. High-powered money (H) data, seasonally adjusted, were taken as the
sum of the average of daily figures for currency outside the Treasury,
Federal Reserve Banks and vaults of all commercial banks, plus the
average of daily figures for the total reserves of all member banks. The
data were obtained as follows: (1) 1953–8 figures were obtained from
the Federal Reserve Bulletin; (2) 1959–72 figures were obtained from
the February 1973 Federal Reserve Bulletin, pp. 72–9.
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7 Time series versus structural models: a case
study of Canadian manufacturing inventory
behavior (1975)

Pravin K. Trivedi

1 Time series and structural dynamic models

The purpose of this chapter is to present some results which throw light
on the relative strengths of time series models of the type popularized
by Box and Jenkins (Box and Jenkins 1970; Naylor, Seans, and Wich-
ern 1972) and structural models of inventory investment behavior in
Canadian manufacturing.1 The choice of inventory investment as a test-
ing ground is motivated by the dual considerations of its importance in
the short-run behavior of national income and in its extremely volatile
behavior which makes its prediction especially difficult. Furthermore,
even when considerable care is given to formulation and estimation of
inventory at varying levels of aggregation (see Courchene 1967; Hirsch
and Lovell 1969; Trivedi 1969), the results tend not to be robust so that
for production purposes there may be some justification in resorting to
mechanical (“naive”) devices.2 The comparison carried out in this chap-
ter, however, does not solely concern the prediction problem. It is also
concerned with the inter-relationships between time series models and
structural models. The following aspects are considered:
(a) The restrictions (parametric or general) placed by structural models

of inventory behavior on specification of the corresponding ARMA
models

I am indebted to David Wilton of Statistics Canada for his encouragement and advice in
writing this chapter, to Philip Smith for his helpful comments on section 3, and to Gloria
Glaubowitz and Margaret Howes for assistance with data-gathering and estimation. The
work reported here was started when I was at Statistics Canada.

Originally published in the International Economic Review 16 (1975), 587–608.
1 A straight comparison of time series and structural model is odious since it is possible

that the latter contains all information while the former contains none. However, this has
not prevented some investigators from doing so. This exercise is, presumably, meaningful
when the structural specification of the model is not robust or even approximately correct.

2 The class of ARIMA models will be regarded here as the major alternative to struc-
tural model building. This choice is reasonable since it is the most well developed of the
mechanical forecasting models. Also the principles on which it is based have been clearly
expounded by Box and Jenkins.

288
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(b) The characteristics of the structural model which lead to an unstable
ARMA model of aggregate inventory investment.

As an illustration consider the following simple structural dynamically
stable model;

α(B)yt = β(B)xt + θ(B)ηt , (1.1)

where α(B), β(B), and θ(B) are finite order polynomials in the lag-
operator B, ηt is a stochastic disturbance, and xt, is an explanatory vari-
able. Suppose now that the generation of xt may be described by the
autoregressive- moving average model of the form3

ω(B)xt = µ(B)εt (1.2)

where ω(B), µ(B) are polynomials in the lag operator B, and εt is a
stochastic term which for convenience is assumed to be NID (0, σ 2

ε ).
Substituting (1.2) in (1.1), and multiplying by ω(B)

ω(B)α(B)yt = β(B)µ(B)εt + ω(B)θ(B)ηt , (1.3)

which is seen to be an autoregressive-moving average model.4 (1.3) is of
course simply the final form5 of the structural model consisting of (1.1)
and (1.2), but it differs from an unrestricted ARMA model in that it is
subject to restrictions imposed on α(B), β(B), θ(B), ω(B), and µ(B), by
the structural model. That is, knowledge of restrictions on polynomials
α(B), β(B), θ(B), ω(B), and µ(B) leads to a particular ARMA model for
the endogenous variable.

The foregoing argument suggests that when the time series of explana-
tory variable(s) in the structural dynamic model can be represented as a
realization from an ARMA model, the reduced form of the model is also
an ARMA model. In such a case it may be convenient to use it as a basis
for forecasting, though, by proceeding directly to an unrestricted reduced
form, the structural restrictions are neglected.6 On the other hand, where
structural models are themselves misspecified, or based on data with

3 The assumption that the exogenous variable x is generated by an ARMA process is clearly
restrictive and is one of convenience only. A preliminary time series analysis may help to
test the appropriateness of the assumption.

4 The polynomials on both sides of the equation.

ω(B)α(B)yt = β(B)µ(B)εt

are subject to certain restrictions. In particular, we assume that they have no common
roots (an identification condition) and that coefficients associated with the highest powers
of B in each of the polynomials ω(B), α(B), β(B), µ(B) are non-zero.

5 In using the term “final form” I am following Zellner and Palm (1974).
6 The structural restrictions are often complex since they include not only the usual

zero-type restrictions but also qualitative information about relative magnitudes of
coefficients – information which is somewhat difficult to incorporate formally in
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large measurement errors, or are not robust for other reasons, the cor-
responding restricted reduced forms are not appropriate for forecasting
purposes.

If the structural model contains more than one explanatory variable,
the final form of the model will still have the ARMA form provided that
it is appropriate to express all the exogenous variables in the ARMA
form. Similarly, the presence of additional endogenous variables poses
no problems provided a complete model is specified.

The implications of the underlying structural model for the final form
model may be examined somewhat more generally by rewriting the model
(1.3) in terms of the roots of the polynomials. Thus

p1∏
i=1

(1 − ω∗
i B)

p2∏
i=1

(1 − α∗
i B)yt =

q1∏
i=1

(1 − β∗
i B)

r1∏
i=1

(1 − µ∗
i B)εt

+
p1∏

i=1

(1 − ω∗
i B)

r2∏
i=1

(1 − θ∗
i B)ηt ,

(1.4)

where ω∗
i , α∗

i , β∗
i , µ∗

i , and θ∗
i are, respectively, p1, p2, q1, r1, and r2 roots

of the polynomials ω(B), α(B), β(B), µ(B), and θ(B). Imposing the nec-
essary restrictions on the roots to secure identification, it is seen that the
degree of the autoregressive part of the model is not greater than (p1 +
p2) and that of the moving average part is not greater than max(q1 + r1,
p1 + r2). In practice, if some of the roots of the polynomials are close
to zero, it may be possible to find an approximation with fewer autore-
gressive or moving average terms. Clearly one of the attractions of an
ARMA model lies in the possibility that after neglecting small roots one
may obtain a parsimonious representation. Neglecting the possibility of
small roots, however, it is easy to see that knowledge of the underlying
structural model will provide useful implications about the final ARMA
model. For instance, if q is of high order and if most of the roots of
β(B) are non-negligible in size, it may not be easy to find a parsimonious
moving average representation.

One final point regarding the r.h.s. of (1.4) is worth noting. The sum
of the two moving average terms here may be replaced by another moving
average by the following argument. Let K = max(q1 + r1, p1 + r2) . Let
us assume that the sum of the moving average errors defines a discrete
time series stochastic process with a finite number of autocovariances. If

an estimation procedure. It may often be the case that the time series model cannot
make use of such structural information very easily, even when it is available.
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vt denotes the composite error term and its K autocovariances exist, then
the spectral density of vt is

fv(w) =
(

1
2π

) K∑
−K

(c j e−i jw), (1.5a)

where cj = Evtvt−j defines the jth autocovariance of vt; fv(w) can be
uniquely factorized as

fv(w) =
(

1
2π

) ∣∣∣∣∣∑
j=0

δ j e i jw

∣∣∣∣∣
2

, (1.5b)

by choosing δ0 to be real and requiring that the roots of δk−1zk−1 + · · · +
δo = 0 lie on or outside the unit circle. Thus the composite error term
may be thought of as a simple K term moving average (see Hannan 1970,
ch. 16).

A possible attraction of time series models arises from the difficulties
of specifying structural models which, for example, involve unobservable
variables, such as “expected sales” in inventory models, for which it is
difficult to specify a generation mechanism at all precisely. Although this
is only one illustration, it emphasizes that there are many obstacles to
structural estimation which, in general, uses much more information.
However, in the concluding section of this chapter, it is indicated that
time series and structural estimation may be complementary, rather than
competing, approaches.

Although the basic idea behind this chapter is a comparison of ARMA
models and structural models of inventory investment in durables and
non-durables groups of Canadian manufacturing, there are two useful
by-products. First we obtain some new estimates of inventory equations
for different categories of assets. Second we obtain some information
regarding the effect of aggregation over types of assets on the specification
of inventory equations.

The data are described in section 2, the fitted time series models in
section 3, and the structural models in section 4. The concluding section
[5] compares the results of sections 3 and 4.

2 Data

The data used in this study are obtained from the Statistics Canada
publications Inventories, Shipments and Orders in Manufacturing Industries
(Cat. 31–001) and Indexes of Real Domestic Product by Industry (Cat. 61–
005). They are quarterly seasonally unadjusted, and relate to the period
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1961(I)–1973(I). All figures are estimated values in millions of dollars in
current prices and relate to the following variables:

S: Shipments
N: New orders received during quarter
U: Unfilled orders at end of quarter

RM: Total inventory held (raw materials) at end of quarter
GIP: Total inventory held (goods in process) at end of quarter
FG: Total inventory held (finished products) at end of quarter

TIH: Total inventory held at end of quarter
TIO: Total inventory owned (durables)

IHBNO: Inventory held but not owned.

The components of total inventory held (TIH) are RM, GIP, and FG.7

The data are available for non-durable and durable groups; we identify
the two groups by the use of prefix ND and D, respectively.8

It certainly would have been possible to utilize data at a more disaggre-
gated level, though this alternative has not been pursued in view of the
problems of data accuracy. The greatest reservation one has regarding
the data concerns the use of value rather than volume figures which must
lead to biases of unknown magnitude. On the other hand, it is hard to
see why, in spite of this limitation, the study should fail to provide at least
some insights.

A well-established line of disaggregation in the literature is between
the industries which produce to order (PTO) and those which produce
for stocks (PFS) (see Courchene 1967; Beisley 1969; Trivedi 1970). The
classification adopted in the chapter cuts across the PTO–PFS distinction
in that each contains certain groups of industries which produce both to
order and for stocks (see Courchene 1967, pp. 331–2). However, there
are sufficient differences between the two groups to justify the present
chapter.

7 TIH differs from TIO in that it excludes the value of progress payments received by
manufacturers for partially completed items such as aircraft, ships, or structures using
fabricated steel. “As work proceeds on such items, total inventory values increase until
the time of delivery. But deducting the balance or progress payments on manufacturers’
books from total inventory, the value of manufacturers’ investment inventory is derived”
(see Inventories, Shipments and Orders in Manufacturing Industries, Concepts and Methods,
Statistics Canada). The method of progress payments is important only for the durables
group. For non-durables, TIH and TIO are equal. Thus for durables we have two distinct
concepts of total inventory and the choice of any one must depend upon the purpose of
the investigation.

8 An additional variable which was used unsuccessfully is the real domestic product (RDP)
of each broad sector of the manufacturing industry.
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3 Time series models

First consider the results of fitting to each dependent variable an
autoregressive-moving average model along the lines of Box and Jenkins
(1970). The class of models considered may be written in their notation
in the form

(1− B s )D(1 − B)d(1 − φ1 B − · · · − φp BP)

× (1 − ψ1 B s − ψ2 B 2s − · · · − ψp BPs )(yt − φ0)

= (1 − θ1 B − θ2 B 2 · · · − θq B q )

× (1 − ξ1 B s − ξ2 B 2s − · · · − ξQBQs )(εt − θ0), (3.1)

where the successive polynomials in the lag operator B may be called
the non-stationary seasonal part, the regular non-stationary part, the
regular autoregressive part, the seasonal autoregressive part, the regular
moving average part, and the seasonal moving average part, respectively.
Each model belonging to this general class may be characterized by seven
parameters p, d, q, P, D, Q, and s which denote the following: p is the num-
ber of regular autoregressive parameters (φ1, . . . , φp), d is the number of
regular differences, q is the number of regular moving average parameters
(θ1, θ2, . . . , θ q), P is number of seasonal autoregressive parameters (ψ1,
ψ2, . . . , ψp), D is the number of seasonal differences, Q is the number
of seasonal moving average parameters, and s, the order of the seasonal.
s equals four in our case since we use quarterly data throughout. The
parameters φ0 and θ0 allow for the presence of a constant term in the
model.

In line with the Box–Jenkins procedure we compute the simple and
partial autocorrelation functions for each time series. The simple ones are
presented in tables 7.1 and 7.2. In each case we present the first eleven
autocorrelation coefficients. These are intended to suggest the choice
of the appropriate (p, d, q) (P, D, Q)s model in each case. Two points
are worth noting here. First the task of choosing the appropriate model
may be considerably simplified by calculating many more autocorrelation
coefficients than I have chosen to calculate. (My choice was dictated by
the consideration that in a time series of about 45 observations this is
roughly the number that can be computed reasonably precisely.) Second
it may be difficult to identify uniquely the appropriate (p, d, q)(P, D, Q)
model on the basis of the study of the autocorrelation function alone,
so that an extensive use of diagnostic checks is highly desirable after the
time series models have been fitted.
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Tables 7.1 and 7.2 give computed autocorrelation coefficients for sea-
sonally unadjusted inventory investment (row 1) and annual changes in
inventory investment (row 2). From row 2 note that in case of manufac-
turing durables the coefficients are high not only at the low lags of order
1 and 2, but also at higher lags of order 4, 5, 6, and 7. The raw mate-
rials’ component of aggregate inventory shares this characteristic more
clearly than the two other. The finished goods component shows very
little systematic behavior. For the manufacturing non-durables, the total
inventories held category also shows presence of large (significantly dif-
ferent from zero) coefficients at lags of order 1, 4, 5, 6, and 7, though the
only component that shares this pattern is the finished goods component.
From this, it seems reasonable to draw the preliminary conclusion that
the raw materials’ component dominates the aggregate behavior in case
of manufacturing durables, whereas the finished goods component does
so for non-durables, total inventory.

In tables 7.3 and 7.4, are listed the various (p, d, q)(P, D, Q)s models
which are fitted to the component series.9 In addition to the estimated
model, the standard errors of all coefficients, the sample size, residual
variances, and goodness of fit statistics are also presented. The main
diagnostic check used is based on the comparison of

Q̇ = n
J∑

k=1

r̂ 2
k ,

where r̂k is the kth order autocovariance of the residuals from the
fitted model, J being the number of autocovariances computed, and n
the sample size. A chi-square test based on the statistic Q provides a
useful overall check of goodness of fit (see Pierce 1971). In a certain
number of cases where the choice of the appropriate model was not
immediately obvious, and more than one model was plausible, these
were all fitted but have not necessarily been included in the tables.

The major features of these fitted models are as follows:
(i) With one exception of IHBNO the fitted models all have d = 1, D = 1,

Q = 1.
(ii) Especially for the durables category it is a little difficult to choose

“the” model. On one hand the (0, 1, 6)(0, 1, 1)4 model for D/TIO
and D/RM seems over-parameterized. On the other hand, other,

9 In fitting the time series models I have used the program “TYMPAC” provided by
Queen’s University, Kingston, Ontario. This uses an algorithm described in Box and
Jenkins (1970), which sets preperiod residuals equal to zero.
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more parsimonious alternatives yield higher residual variances and
significantly non-zero residual autocorrelations, especially at lags 6
and 7. We have presented both sets of results since there are grounds
for choosing the parsimonious representation even where residual
variance is greater.

(iii) For the durables group we observe a lack of homogeneity in the type
of model fitted. That is, even where the model is the same, numer-
ical coefficients are different. The “best” model for D/RM, D/GIP,
and D/FG all have different forms, suggesting somewhat different
underlying structures. In case of the non-durables group this is not
true to the same extent. Such differences are plausible and to be
expected given what is known about the differential responses of
components of aggregate inventory to their determinants (see, for
example Trivedi and Rowley 1975, ch. 6). One is led to the conclu-
sion that the aggregation problem may exist for the pure time series
models as it may for structural econometric models. The presence of
significant aggregation biases would cast doubt on the temporal sta-
bility of the time series models in this area because the components
are known to differ considerably in their volatility.10

(iv) Finally note that the fitted time series models indicate that in most
cases at least the seasonal pattern of the inventory investment series is
stable, that is, the coefficient of B4 in the seasonal part of the model is
not significantly different from unity. This point suggests that in the
structural models the use of seasonal dummies in the usual way may
be appropriate. But this conclusion should be treated with caution

10 Consider, for example, the following coefficients of variation for the components and
the aggregate,

Coefficient of variation (percent)

Component Durables Non-durables

TIO 43.1 (190.8) 74.4 (137.4)
TIH 50.6 (206.8) 74.4 (137.4)
RM 56.3 (80.0) 201.0 (57.6)
GIP >100.0 (73.5) 66.9 (24.7)
FG 301.00 (55.0) 131.00 (55.04)

where the figures in parenthesis are the sample mean values in million dollars. This
suggests that the success of time series models for prediction purposes in this area may
be limited. Additional reasons for such skepticism are contained in the final section of
this chapter, where I compare time, series models with their econometric counterparts.
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in view of a deficiency of the numerical algorithm that was used (see
Kang 1973).

4 Econometric models of inventory investment

It is not possible in the space available here to provide detailed justification
for the general form of specification that is used. The interested reader
should consult Childs (1967), Beisley (1969), Hirsch and Lovell (1969),
and Trivedi and Rowley (1975), on this point. However, the following
comments may serve as a brief background.

The most common feature of specification is the use of the flexible
accelerator model incorporating an adjustment process relating actual
and desired inventories, the latter being a linear function of a small num-
ber of variables. Expected demand (or orders) is taken to be the most
important determinant of desired stock. Expectations may relate to one
or more future periods. This simple model may be modified in a number
of ways. First, in industries producing primarily to order (PTO group)
it is more pertinent to use a measure of established demand rather than
expected demand because factors which encourage PTO are those which
also make production time-consuming and storage of finished goods an
uneconomic activity. A second modification is the introduction of a buffer
stock variable which represents an error in forecasting sales to explain the
unanticipated reductions in inventories. In a number of formulations–
Lovell (1961), Lovell and Darling (1965), Hirsch and Lovell (1969),
and Trivedi (1970) – this variable is either the current or one-period
lagged rate of change of sales or shipments. It typically has a negative
coefficient. There are other alternative specifications of the buffer stock
variable such as that in Helliwell et al. (1972) which rely on economywide
models to achieve a distinctive specification. The importance of a buffer
stock variable is an empirical matter, but a priori reasoning suggests that
its importance will be greater in those industries in which production for
stocks (PFS) is common.

In addition to those factors mentioned above, the other main consider-
ation explicitly introduced in the models is capacity utilization, or rather
a proxy variable for it.

In a more detailed analysis a number of other factors would be consid-
ered. These include the role of production smoothing, speculative motive,
and financial factors. However, previous studies have shown that the first
of these may be largely seasonal and hence adequately captured by prior
seasonal adjustment or explicit inclusion of dummy variables, whereas
the latter two are not of major importance so that their omission may not
be serious.
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4.1 Raw (or purchased) materials inventory

4.1.1 Durables The appropriate decision variable to look at in this
context is the purchases made by the firm – but published data usually
relate to the observed change in materials inventories, Rt − Rt−1, which
represents the difference between additions, At, and withdrawals from
stocks, Mt; that is

Rt − Rt−1 = At − Mt . (4.1)

The variables At and Mt may be eliminated by use of auxiliary relations
such as

At = β0 + β1 R∗
t + β2 Rt−1 + β3 At−1 (4.2)

and

Mt = β4 Qt (4.3)

or

Mt =
L∑

i=0

δi Nt−i , (4.3a)

where Rt
∗ represents the desired level of materials stocks. The logic behind

(4.2) is simply the gradual adjustment of additions to stock to a desired
level which is itself determined by either past commitments or future
expectations. The choice of the appropriate variables determining Rt

∗ and
Mt depends on the industry in question. Thus, for instance, in dealing
with the PTO case, it seems realistic to substitute (4.3a) and

R∗
t =

K∑
i=0

αi Nt−i (4.4)

in (4.2).
(The integer K (like L) is unknown.) Substitution into (4.2) and (4.1)

yields

∆Rt = β0 + β1

K∑
i=0

αi Nt−i − β4

L∑
i=0

δi Nt−i + β2 Rt−1

+β3 At−1. (4.5)

When dealing with PFS industries modifications to (4.5) are needed,
though not necessarily of a fundamental nature.

Some of the empirical estimates available in the literature are variants
of (4.5); in general, non-availability of data on placement of orders leads
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to At−1 being omitted. (In the specific context of (4.5), note that identi-
fication of αi and δj (i = 1, . . . , K; j = 1, . . . , L) poses a problem since
some of the terms such as (β1α1 − β4δ1), (β1α2 − β4δ2) could be close
to zero.)

4.1.2 Non-durables In case of the non-durables group Nt+j is replaced
by its anticipated value N̂t+j. Let N̂t and N̂t+1 denote forecasts of orders
receivable in the current and the following periods. Suppose that firms
do not look beyond this horizon in forming their inventory plans. Then
the relevant variant of (4.5) is (4.6)

∆Rt = γ0 +
1∑

i=0

γi+1N̂t+i − γ3Nt − γ4 Rt−1, (4.6)

where the term −γ 3Nt represents the extent to which inventories are
drawn down by current usage. Since we are dealing with quarterly sea-
sonally unadjusted data, it is assumed that orders forecasts are generated
recursively by

N̂t = θ1Nt−1 + θ4Nt−4 − θ1θ4Nt−5 (4.7)

N̂t+1 = θ1N̂t + θ4Nt−3 − θ1θ4Nt−4, (4.8)

which when substituted in (4.6) yields

∆Rt = γ0 + θ1(γ1 + γ2θ1)Nt−1 + γ2θ4Nt−3 + γ1θ4Nt−4 (4.9)

− θ1θ4(γ1 + γ2θ1)Nt−5 − γ3Nt − γ4 Rt−1.

4.2 Finished goods inventory

4.2.1 Durables If the production behavior of this sector is dominated
by industries which produce to order, it is not appropriate to regard the
flexible accelerator hypothesis as very relevant for the explanation of fin-
ished goods inventory investment. The motives which otherwise encour-
age firms to maintain a stable relation between stocks and orders are
absent here. Indeed Childs (1967) suggests that it is more appropriate to
regard the backlog of unfilled orders as the appropriate decision variable
in this case. This point is now well established in the literature. For this
reason, we should not expect the kind of model applied to raw materials
inventory to work very well for finished goods. I have nevertheless fitted
this model as a check on this type of a priori reasoning. The finished goods
equation analogous to (4.5) is referred to as (4.10).
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4.2.2 Non-durables The model used is similar to that for raw mate-
rials. Beginning with

∆FGt = δ0 + δ1N̂t + δ2N̂t+1 + δ3(N̂t − Nt) − δ4 FGt−1, (4.10)

which incorporates the buffer stock variable (N̂t − Nt) to capture the
effect of errors of expectation and using the forecasting (4.7) and (4.8),
the last equation can be reduced to

∆FGt = δ0 − δ3Nt + (
(δ1 + δ3)θ1 + δ2θ

2
1

)
Nt−1 − δ2θ1θ2Nt−3

− (δ1 + δ3)θ2Nt−4 − (
(δ1 + δ3)θ1θ2 + δ2θ

2
1 θ2

)
Nt−5

−δ4 FGt−1. (4.11)

Note that the sign restrictions on this equation are the same as before.

4.3 Goods in progress

4.3.1 Durables Once again the production behavior of this group is
assumed to be determined by the commitment to deliver goods for which
there is an established demand. Hence a distributed lag function on past
new orders is used as a proxy for expected shipments. Introducing the
rate of change of unfilled orders as a measure of capacity utilization, we
obtain an equation of the same form as raw materials:

GIPt − GIPt−1 = µ0 +
m∑

i=1

µi Nt−i+1 + µm+1(Ut − Ut−1)

−µm+2GIPt−1. (4.12)

Despite the apparent plausibility of this model, there are good theoret-
ical reasons why we cannot expect it to work satisfactorily in practice.
The main limitation is the basic inability of the flexible accelerator model
to account for the complicated dynamics which characterize the behav-
ior of goods in progress. This point is expanded below in dealing with
the non-durables groups. A second point is the problem of valuation of
goods in process which makes any estimate of changes in its stock sub-
ject to extremely wide margins of error, thereby complicating further the
problem of assessing how well the given model fits the data.

4.3.2 Non-durables Previous econometric studies of work in progress
behavior have shown insufficient recognition of the fact that the period of
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production, p̄, is not time invariant and time profile of the consumption
of inputs is highly variable in the short run.11

Two other issues concern the validity of a stock adjustment-type model
and the importance of the buffer stock motive. Accelerator mechanism
implies that investment in work in progress takes place at a rate deter-
mined by the rate of change of output or sales. However, empirical evi-
dence has not always provided strong support for the lagged adjustment
form of the accelerator.12 Lastly, mention must be made for the need to
incorporate sales expectations in this context; for when we admit the pos-
sibility of accumulating work in progress between stages of reproduction,
it is possible that its behavior is akin to that of finished goods, though its
actual importance is an empirical matter.

As a first approximation (which is hard to improve upon in the present
state of data) I consider for goods in process the same model as for fin-
ished goods inventory (4.11). For convenience of reference it is written
explicitly in the form

∆GIP = ν0 − ν3Nt + (
(ν1 + ν3)θ1 + ν2θ

2
1

)
Nt−1 (4.13)

+ ν2θ1θ2Nt−3 − (ν1 + ν3)θ2Nt−4

− [
(ν1 + ν3)θ1θ2 + ν2θ

2
1 θ2

]
Nt−5 − ν4GIPt−1,

where the coefficients ν i (i = 0, 4) take place of the δi (i = 0, 4) in (4.11).
This formulation incorporates the buffer stock role and the importance
of sales anticipations, but leaves out the role of other factors.

4.3.3 Stochastic specification To complete the specification of vari-
ous equations we shall assume that the stochastic term in the equation
has either moving average or autoregressive representation, of finite but

11 Specific illustrations of this are provided by shortening of p̄ by working overtime or by
operating more machines: both possibilities retard the operation of the accelerator mech-
anism, p̄ may vary cyclically and may be systematically related to capacity utilization.
Not enough is known to us from theoretical models to suggest what factors underlie
such variation. However, if it is present, it tends to vitiate the mechanical operation of
the accelerator. Empirical research on the time shape of production processes throws
some indirect light on this question.

12 Abramovitz (1950, pp. 160–77, 380–8) reported that his findings for the continuous
process industries in the United States showed work in progress investment to be related
to the rate of change of output without a lag, and with slight lead in the discontinu-
ous process industries. Stanback’s (1962) study lends further support to these findings.
Econometric investigation of the issue is hampered by unavailability of reliable disaggre-
gated data. Although Lovell’s (1961) results give some support to the flexible accelerator,
these relate to the sum of work in progress and raw materials inventories, rather than to
one component alone. Further result provided by Courchene (1967) and Trivedi (1970)
provide at best only weak support for the lagged adjustment hypothesis, leaving open a
distinct possibility that various other factors such as changes in composition of goods
and the time profile of production dominate the mechanical role of the the accelerator.
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unknown order. The assumption of autocorrelated residuals is realistic
and may be interpreted as representing either inherent properties of eco-
nomic disturbances or as a logical outcome of algebraic transformations,
or assumptions about expectations formation, or misspecification of the
relationship. There are considerable difficulties in distinguishing between
the two possibilities (see Hendry 1974), and in choosing between autore-
gressive and moving average representation of the error.13

4.3.4 Seasonality Inclusion of seasonal dummies in the model may be
regarded as an implicit allowance for production smoothing (see Darling
and Lovell 1971).

Also the sales forecasting assumption we have used above for the non-
durables group implies that seasonality considerations are built into for-
mation of sales expectation and hence additional inclusion of seasonal
dummy variables is not called for (see Trivedi 1970). If so, inclusion of
seasonals provides a check on the specification. All specifications reported
below were estimated with and without seasonal dummies. The latter
were introduced in two ways – the usual zero–one type of variables and
the product of the zero–one dummy with the lagged dependent variable
on each estimated equation. This second variant allows for the possibility
that the rate of adjustment to the desired stock varies seasonally.14

5 Results

The results of estimating (4.5), (4.10), and (4.12) for durables and (4.9),
(4.11), and (4.13) for non-durables are given in tables 7.5–7.7. The last
column of these tables indicates what stochastic specification was chosen.
The only difference between tables 7.6 and 7.7 is that the latter pertains to
specifications for non-durables which include seasonals. Each table also
includes an equation, numbered (4.14)–(4.16), explaining the variation
of total (sum of the three components) inventory investment with the
same general form as other component equations. This gives some idea
of the magnitude of aggregation effects on coefficients as well as goodness
of fit.

13 The estimation procedure used for fitting models with these stochastic specifications
uses non-linear optimization algorithms. The details of these may be found in Trivedi
(1970) and Hendry (1974).

14 The use of seasonal dummy variables which interact with the lagged stock of inventories
is interpreted as a way of taking account of an adjustment rate which varies season-
ally. Alternative interpretations are also available – e.g. systematic seasonal changes in
composition of inventories.



T
ab

le
7.

5
M

an
uf

ac
tu

ri
ng

du
ra

bl
es

∗

L
ag

ge
d

D
ep

en
de

nt
de

pe
nd

en
t

S
to

ch
as

ti
c

N
o.

va
ri

ab
le

N
t−

1
N

t−
2

N
t−

3
∆

U
t−

1
va

ri
ab

le
Q

1
Q

2
Q

3
C

on
st

an
t

σ̂
2 ε

sp
ec

ifi
ca

ti
on

(4
.5

)
D

/
∆

R
M

0.
05

02
(1

.5
4)

0.
13

75
(3

.1
5)

0.
08

31
(1

.9
2)

0.
08

02
(2

.8
9)

−0
.2

12
9

(3
.6

8)
0.

02
34

(4
.1

2)
−0

.0
07

4
(1

.0
7)

−0
.0

33
1

(2
.6

1)
29

.9
6

17
17

(4
.1

0)
D

/
∆

F
G

−0
.0

37
41

(1
.5

1)
0.

01
91

(0
.5

2)
0.

12
28

(3
.6

6)
0.

06
62

(2
.0

4)
−0

.2
20

1
(4

.2
1)

0.
02

24
(2

.2
5)

0.
11

50
(9

.4
0)

0.
08

52
(8

.2
5)

10
0.

86
28

42
.

2M
A

(4
.1

2)
D

/
∆

G
IP

0.
14

11
(0

.1
01

8)
0.

02
86

(0
.3

9)
−0

.0
33

2
(0

.3
5)

0.
12

78
(1

.7
1)

−0
.5

09
5

(2
.0

6)
−0

.0
00

6
(0

.0
6)

−0
.0

02
4

(0
.3

5)
−0

.0
25

9
(2

.2
1)

30
3.

3
86

26
1A

R

(4
.1

4)
D

/
∆

T
IO

0.
09

09
(2

.1
3)

0.
29

37
(1

.4
3)

0.
18

23
(3

.8
0)

0.
11

86
(2

.1
3)

−0
.2

71
2

(7
.6

0)
0.

02
80

(4
.5

0)
0.

00
46

(0
.9

4)
0.

01
31

(2
.4

0)
23

5.
1

67
62

(4
.1

5A
)

D
/
∆

T
IO

0.
09

18
(1

.0
9)

0.
20

49
(1

.9
9)

0.
28

87
(2

.7
0)

0.
17

26
(2

.2
8)

−0
.2

53
8

(6
.4

7)
23

7.
71

(2
.9

1)
∗∗

11
9.

38
(1

.8
3)

∗∗
−1

09
.2

2
(1

.5
1)

∗∗
28

7.
54

12
31

9.

E
qu

at
io

n
S

to
ch

as
tic

sp
ec

ifi
ca

tio
n

(4
.1

0)
U

t
=

ε
t
−

0.
51

84
ε

t−
1

(2
.9

0)
−

0.
54

01
ε

t−
2

(3
.1

2)

(4
.1

2)
U

t
=

0.
62

20
U

t−
1

+
ε

t
(2

.7
9)

N
ot

es
:

∗
T

he
te

rm
in

br
ac

ke
ts

be
lo

w
ea

ch
co

ef
fic

ie
nt

is
th

e
as

so
ci

at
ed

t-
ra

ti
o.

∗∗
T

he
se

ar
e

co
ef

fic
ie

nt
s

of
si

m
pl

e
qu

ar
te

rl
y

du
m

m
y

va
ri

ab
le

s.



T
ab

le
7.

6
M

an
uf

ac
tu

ri
ng

no
n-

du
ra

bl
es

D
ep

en
de

nt
L

ag
ge

d
S

to
ch

as
ti

c
N

o.
va

ri
ab

le
N

t
N

t−
1

N
t−

3
N

t−
4

N
t−

5
de

pe
nd

en
t

C
on

st
an

t
σ̂

2 ε
sp

ec
ifi

ca
ti

on

(4
.9

)
N

D
/
∆

R
M

−0
.0

86
9

(0
.6

0)
0.

30
92

(1
.9

7)
0.

10
40

(0
.7

2)
−0

.0
29

1
(0

.1
74

4)
0.

05
14

(0
.2

7)
−0

.5
32

2
(2

.2
5)

55
9.

8
58

28
4M

A

(4
.1

1)
N

D
/
∆

F
G

−0
.3

59
8

(7
.1

6)
0.

38
68

(6
.1

7)
0.

18
59

(3
.2

4)
−0

.2
08

7
(2

.8
6)

−0
.2

45
1

(2
.6

0)
−0

.2
44

4
(1

.6
6)

17
2.

5
23

25
3M

A

(4
.1

3)
N

D
/
∆

G
IP

0.
06

46
(1

.3
9)

0.
12

22
(2

.5
5)

0.
09

51
(2

.8
5)

−0
.0

36
7

(2
.8

5)
−0

.1
28

0
(2

.3
3)

−0
.0

64
6

(1
.3

9)
5.

92
49

8
2M

A

E
qu

at
io

n
st

oc
ha

st
ic

sp
ec

ifi
ca

tio
n

(4
.9

)
U

t
=

ε
t
−

0.
08

35
ε

t−
1

(0
.3

3)
−

0.
23

9ε
t−

2
(1

.0
4)

+
0.

53
87

ε
t−

3
(2

.4
9)

+
0.

62
20

ε
t−

4
(2

.7
9)

(4
.1

1)
U

t
=

ε
t
+

0.
83

52
ε

t−
1

(3
.2

3)
+

0.
39

03
ε

t−
2

(1
.2

5)
−

0.
49

87
ε

t−
3

(1
.9

0)

(4
.1

3)
U

t
=

ε
t
+

0.
31

90
ε

t−
1

(1
.4

3)
−

0.
78

96
ε

t−
2

(3
.6

8)



T
ab

le
7.

7
M

an
uf

ac
tu

ri
ng

no
n-

du
ra

bl
es

D
ep

en
de

nt
L

ag
ge

d
S

to
ch

as
ti

c
N

o.
va

ri
ab

le
N

t
N

t−
1

N
t−

3
N

t−
4

N
t−

5
Q

1
Q

2
Q

3
de

pe
nd

en
t

C
on

st
an

t
σ̂

2 ε
sp

ec
ifi

ca
ti

on

(4
.9

a)
N

D
/
∆

R
M

0.
10

23
(0

.8
7)

−0
.0

72
1

(0
.3

8)
0.

38
87

(1
.4

3)
−0

.0
48

5
(0

.1
4)

−0
.3

78
4

(2
.0

1)
0.

02
20

(0
.9

5)
−0

.0
11

4
(0

.5
5)

−0
.0

79
0

(3
.1

1)
0.

01
27

(0
.1

4)
37

.1
6

43
04

1M
A

(4
.1

1a
)

N
D

/
∆

F
G

−0
.2

33
2

(2
.7

5)
0.

16
98

(1
.4

3)
−0

.0
73

6
(0

.5
0)

0.
48

39
(4

.1
8)

−0
.0

22
9

(0
.1

61
9)

0.
00

31
(0

.2
9)

0.
03

57
(4

.1
1)

0.
00

57
(0

.3
6)

−0
.4

68
0

(2
.5

0)
30

6.
12

24
64

2M
A

(4
.1

3a
)

N
D

/
∆

G
IP

0.
05

11
(1

.6
1)

−0
.0

05
3

(−
0.

09
)

0.
14

91
(2

.5
2)

−0
.1

75
2

(3
.6

0)
−0

.0
56

4
(2

.8
8)

−0
.0

07
9

(0
.5

3)
0.

00
11

(0
.1

0)
−0

.0
79

6
(0

.9
1)

5.
74

27
5

(4
.1

6a
)

N
D

/
∆

T
IH

−0
.3

60
0

(1
.1

1)
0.

37
92

(1
.5

1)
0.

45
13

(1
.0

9)
0.

43
13

(1
.0

4)
−0

.8
71

9
(2

.6
7)

0.
05

31
(2

.4
6)

0.
02

67
2

(1
.4

3)
0.

05
43

(3
.2

1)
−0

.0
67

8
(0

.7
50

)
19

1.
87

11
45

5

E
qu

at
io

n
st

oc
ha

st
ic

sp
ec

ifi
ca

tio
n

(4
.9

a)
u t

=
ε

t
−

0.
60

04
ε

t−
1

(3
.1

9)

(4
.1

1a
)

u t
=

ε
t
+

1.
07

3ε
t−

1
(6

.2
7)

+
0.

73
33

ε
t−

2
(4

.3
4)



310 Pravin K. Trivedi

From Table 7.5, which contains results for durables, the following
points emerge:
(i) The a priori sign restrictions are satisfied in case of (4.5), (4.10),

(4.12), (4.14a), (4.15a), (4.15b) (with minor exceptions in (4.10)
and (4.12) where Nt−1, Nt−2 and Nt−3 have the “wrong” sign). This
is a relatively minor dent in the basic model as all the coefficients in
question are not significantly different from zero. Furthermore, the
model was not expected to be quite suitable for durables finished
goods inventory.

(ii) For both durables and non-durables the fit is closest for ∆RM and
worst for ∆GIP, with ∆FG in between. We also obtain this order-
ing in time series models. In both cases the ordering conforms to the
ordering of the coefficient of variation of the dependent variable. The
overall performance of the basic model in explaining the variation in
the dependent variable is satisfactory. For durables, the level of past
orders and the rate of change of unfilled orders contributes strongly
to the explanation, D/Nt−2 has a larger coefficient than D/Nt−1 and
D/Nt−3. The effect of an increase in the rate of change of D/Ut−1,
interpreted here as an increase in the rate of change of capacity uti-
lization, is to increase stocks. As in many previous studies the signifi-
cant role of the stock adjustment process is confirmed by the results.
For D/∆GIP and D/∆FG the preceding remarks still do not apply
with the same force, since the flexible accelerator model appears
inadequate for explaining D/∆GIP. This is a worrying shortcoming
in view of the high quarterly average value of this component. On
the other hand, the performance of the model in explaining D/∆FG
is quite satisfactory though the seasonals dominate somewhat.15 To
test whether the estimated equations adequately reflect the complex-
ity of the distributed lag, diagnostic checks provided by the empirical
autocorrelation function of residuals and cross-correlation function
between regression residuals and Nt were used. The calculated auto-
correlation coefficients for residuals from (4.5) and (4.10) are now
given.

Lag 1 2 3 4 5 6 7 8 9 10

Equation:
(4.5) 0.088 0.109 0.073 −0.099 0.085 −0.286 −0.173 0.045 0.130 −0.148
(4.10) 0.26 0.077 −0.024 −0.063 0.100 0.035 0.135 −0.056 −0.170 −0.194

15 The durables category also includes some industries for which it is not sensible to think
of ∆FG as a decision variable.
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Only the value at lag 6 borders on statistical significance. For non-
durables it is more important to explain ND/∆RM and ND/∆FG
than ND/∆GIP, since the last item is on average about 2 1

2 times
smaller. Table 7.6 shows that the model is very satisfactory for
ND/∆FG in the sense that all coefficients are well determined.
The buffer stock variable and expected sales play their hypothe-
sized role in determining actual inventory investment. The addition
of interactive seasonals does not significantly improve the explana-
tion though this conclusion should be interpreted with caution since
equation (4.11) is not nested in (4.11a). On theoretical grounds
(4.11) seems preferable. For ND/∆RM the chosen model is not
appropriately judged either by results in table 7.6 or table 7.7.
Finally, for ND/∆GIP the model is only marginally worse than for
ND/∆FG. Here, the inclusion of interactive seasonals improves the
fit somewhat, the comparison being once again obscured by the fact
that (4.13) is not nested in (4.13a).

(iii) The two preceding sections emphasized the heterogeneity of behav-
ior of components of aggregate inventory; the reasons given suggest
why a single explanatory model cannot be expected to perform uni-
formly well. To a certain extent an inability to explain the aggre-
gate satisfactorily will reflect such difficulties both in the structural–
econometric and in the time series framework. On the other hand, if
the disaggregated series are individually subject to relatively greater
random variation (including variation due to measurement errors)
than the aggregate, then the aggregate equation provides a useful
overall check on the empirical validity of the model. Considered in
this way the results of (4.14), (4.15a), (4.16) and (4.16a) provide
additional support for the basic model.

Equations (4.14) and (4.15a) differ in the choice of dependent
variable and in the use of interactive seasonals in place of simple sea-
sonals in the latter. Equation (4.14) uses the concept of total inven-
tory owned (TIO) which differs from the total held (TIH) in that
it excludes the value of progress payments. (See section 2, p. 291.)
Thus it is to be expected, and table 7.5 confirms, that our model
would provide a somewhat tighter fit when D/∆TIO is the dependent
variable. (In case of non-durables there is no conflict since ∆TIO =
∆TIH.) Both equations, while confirming the empirical validity of
the model, suffer from the same limitation; that is, the autocorre-
lation function of the residuals shows high values at lags 6, 7, and
9: −0.314, −0.348, and −0.316, respectively. The time series models
(see table 7.3), do not share this characteristic, but the residual
variance for both D/∆TIO and D/∆TIH is considerably larger than
for the structural models.
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The above comments apply to non-durables as well, with the qual-
ifications that the chosen stochastic specifications appear to deal with
the problem of autocorrelation quite satisfactorily; on the other hand,
the coefficients are less well determined. The residual variance of
the structural model is once again smaller than that of the corre-
sponding time series model, 11455 (table 7.7) compared with 12380
(table 7.4).

(iv) The structural models estimated seem to suggest that at least for the
durables, the polynomial β(B) (see (1.3)), is of a high order, perhaps
6 or 7, whereas, α(B) and η(B) are low order polynomials. Thus when
we also take account of ω(B) and µ(B) it seems unlikely that ARIMA
models for durables inventory investment will be characterized by a
low degree of parameterization. This problem is likely to be less
serious for the non-durable group.

6 Conclusion

Structural analysis provides additional insight into the workings of time
series (forecasting) models of inventory behavior. In particular, it appears
that three difficulties which plague econometric research also affect time
series models. These are: the problem of aggregation over different types
of inventories, the complexity of lag distributions on explanatory vari-
ables, and the presence of unobservable variables on the structural model.
Some might argue that these pose no difficulties at all for those who
want to ignore all structural information and predict unrestricted ARIMA
reduced forms. The present chapter, it seems, has provided some grounds
for skepticism regarding the superiority of this alternative over economet-
ric modeling.

From another point of view time series and structural models need not
be thought of as competing approaches. A possible way of integrating
them in the present context is to regard the expected orders or expected
sales as the systematic part of a random variable whose generation may
be described by an ARMA process. The decomposition into random and
systematic components may be carried out by a preliminary fitting of an
ARMA model to the sales series; the predictions generated by the fitted
model can then be used as an explanatory variable in a structural model.
This two-stage procedure is based on somewhat restrictive assump-
tions regarding the joint distribution of errors on the two relevant equa-
tions. Under somewhat more general stochastic assumptions one would
fit the ARMA and the structural models simultaneously, utilizing any
across-equation constraints that arise. Though computationally this is
more difficult, statistically it may be more efficient. However, the issues
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arising from these considerations would take us beyond the scope of this
chapter.
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8 Time series analysis of the German
hyperinflation (1978)

Paul Evans

1 Introduction

Historical studies of periods of rapid and sustained inflation as well as
empirical studies of the demand for and supply of money have convinced
monetarists that a strong link exists between money and prices. Indeed,
Friedman (1968) has argued that movements in the money supply dom-
inate movements in the price level.

One study that monetarists have often cited as strong evidence for this
link between money and prices is Phillip Cagan’s [1956] study of hyperin-
flations. With data on the money supplies and price levels of six countries
in the throes of hyperinflation, Cagan finds that the hyperinflations were
apparently caused by the pressure of a rapidly growing and exogenous
money supply against a stable demand for real money balances. Unfor-
tunately, the statistical procedures available to Cagan did not enable him
to test the specification of his model adequately. In particular, he tested
neither his specification of the mechanism generating expected inflation
rates nor his specification of an exogenous money supply. Indeed, he
failed even to test for serial correlation of the error terms.1 The Monte
Carlo experiments of Granger and Newbold (1974) amply demonstrate
that the goodness of fit of a regression is often greatly over-stated when
serial correlation is present in the error term. It is therefore desirable to
reassess Cagan’s study.

In this chapter, I apply the technique advocated by Zellner and Palm
(1974, 1975) to test three specifications of the dynamics of the German
hyperinflation:

I have benefited from discussions with Arnold Zellner and from the comments of Milton
Friedman and other participants of a Money and Banking Workshop at the University of
Chicago. Of course, all errors are my sole responsibility.
Originally published in the International Economic Review 19 (1978), 195–209.

1 Eden (1974) provides the Durbin–Watson statistics for Cagan’s regressions. They indicate
strong positive serial correlation in the error terms. Note, however, that Cagan’s statistical
techniques were sophisticated for the time at which he wrote his thesis.
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� Model C, Cagan’s original model;
� Model MC, a modification of Cagan’s original model in which expec-

tations of inflation are rational in the sense of Muth (1961); and
� Model S&W, named after Sargent and Wallace (1973), in which expec-

tations are rational and the money supply is endogenous.
I find that none of these models is consistent with the data. In particular,
expectations are not formed adaptively à la Cagan and the money supply
is not exogenous. One can, however, conclude that the demand function
was stable during the German hyperinflation.

2 Three models of hyperinflation

Model C can be written in discrete time as2

Mt = Πt − aDΠ∗
t + c(L)ut , a > 0; (2.1)

Π∗
t = bΠ∗

t−1 + (1 − b)Πt , 0 < b < 1; (2.2)

DMt = f (L)vt ; (2.3)

where Mt is the exogenous rate of growth of the money supply (= money
demand); Π t is the rate of inflation; Π∗

t is the rate of inflation expected
in period t to take place between periods t and t + 1; D is the difference
operator (e.g. DMt = Mt − Mt−1); L is the lag operator (e.g. Lvt = vt−1);
c(L) = 1 − c1L − · · · − cqLq and f(L) = 1 − f1L − · · · − frLr; a, b,
c1, · · · cq, f1, . . . , fr are parameters; and ut and vt are independently
and identically distributed random variables with zero means and finite
variances. Equation (2.1) is the demand function for real balances. It is
written in first differences because real income, one of the real variables
collapsed into the disturbance term c(L)ut is likely to be non-stationary
in its levels.3 This disturbance term is posited to be a qth order moving
average in the independently and identically distributed error term ut.
Equation (2.2) is a standard adaptive expectations equation. It has the
implication that the expected rate of inflation adapts by the fraction 1 −
b of the departure of the actual rate of inflation from its expectation in
the previous period. The growth rate of the money supply is a stochastic
variable. As such, it can under weak conditions, be represented as an
autoregressive, integrated, moving average (ARIMA) process of order

2 I have suppressed all constant terms in the theoretical models of the paper.
3 Let

log(mt/Pt ) = a0 + a1 log Yt − aΠ∗
t + Ut ,

where mt is the money supply, Pt is the price level, Yt is real income, and Ut is a stationary
disturbance term. If log Yt is a difference-stationary process, then Ut + a1log Yt is non-
stationary while D(Ut + a1log Yt) is stationary. If one identifies c(L)ut with D(Ut + a1log
Yt), differencing the above equation yields (2.1).
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(p,d,r)4 with p, d, and r finite (and, one must hope, small) positive integers.
Equation (2.3), which will be found to be consistent with the data, is a
special case of the general ARIMA model, where p = 0 and d = 1. Note
that Mt is an exogenous variable because ut is independent of vt.

One can obtain the stochastic process of Π t for model C by multiplying
(2.1) by 1 − bL and substituting from (2.2):

(1 − bL)Mt = (1 − bL)Πt − a(1 − b)DΠt + (1 − bL)c(L)ut ,

or

{[1 − a(1 − b)] − [b − a(1 − b)]L}Πt = (1 − bL)[Mt − c(L)ut].

Now, differencing this equation and substituting for Mt from (2.3) gives

{[1 − a(1 − b)] − [b − a(1 − b)]L}DΠt

= (1 − bL)[ f (L)vt − c(L)Dut] (2.4)

According to Granger’s Lemma, the sum of any number of moving aver-
ages can be written as a moving average in a single random variable (see
Anderson 1971). The order of this moving average will typically equal
the order of the longest constituent moving average. Therefore, (2.4) can
be written as

g(L)DΠt = h(L)et , (2.5)

where

g(L)≡1 −
[

b − a(1 − b)
1 − a(1 − b)

]
L;

h(L)≡1 − h1L − · · · − hq ′ Lq ′
;

q′ = max(q + 2, r + 1); and et is an independently and identically dis-
tributed random variable. One can check whether Π t follows this ARIMA
process whose order is (1, 1, q′) by using Box–Jenkins techniques. This
will be done in the next section.

One frequent objection to the expectations mechanism (2.2) is that
it uses only the past history of the inflation rate in predicting its future
evolution.5 In fact, rational and fully informed economic actors would

4 A variable xt follows an ARIMA process of order (p,d,r) if it must be differenced at least
d times to be stationary, its autoregressive part is of order p, and its moving-average part
is of order r.

5 Equation (2.2) may be written as

Π∗
t =

(
1 − b

1 − bL

)
Πt = (1 − b)

∞∑
i=0

bi Πt−i .

Thus, Π∗
t is a geometrically weighted average of current and all past rates of inflation.
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incorporate all relevant information – not just the history of inflation
rates – into Π∗

t . Moreover, Muth [1961] has shown that, even if only the
history of inflation rates is known, the mechanism (2.2) is equivalent to
the least squares predictor of Π t+1 if, and only if, Π t obeys the stochastic
process

DΠt = (1 − bL)et .

Since g(L) in (2.5) is of degree one, model C cannot obtain unless expec-
tations are not rational à la Muth.

Sargent and Wallace have proposed that (2.2) be replaced by

Π∗
t = EtΠt+1, (2.6)

where Et denotes an expectation conditional on knowledge of Π t,
Π t−1, . . . , Mt, Mt−1, . . . and the structure of the model (2.1), (2.6), and
(2.3) (hereafter called model MC). For time t + 1, (2.1) and (2.6) imply
that

Πt+1 = Mt+1 + a(Et+1Πt+2 − EtΠt+1) − c(L)ut+1. (2.7)

Now, applying the operator Et to (2.7) and rearranging yields

EtΠt+1 =
(

1
1 + a

)
Et[Mt+1 − c(L)ut+1] +

(
a

1 + a

)
EtΠt+2.

(2.8)

Applying the same procedure iteratively enables one to obtain

EtΠt+1 =
(

1
1 + a

) ∞∑
i=0

(
a

1 + a

)i

Et[Mt+i+1 − c(L)ut+i+1],

(2.9)

where the end condition

lim
i→∞

(
a

1 + a

)i

EtΠt+i+1 = 0
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has be imposed.6 Substituting (2.9) into (2.6) and the result into (2.1)
gives

M t − Πt = −
(

a
1 + a

) ∞∑
i=0

(
a

1 + a

)i

DEt[Mt+i+1 − c(L)ut+i+1]

+ c(L)ut . (2.10)

In order to obtain the ARIMA process generating Π t, one first looks
at the term(

a
1 + a

) ∞∑
i=0

(
a

1 + a

)i

Et[M t+i+1 − c(L)ut+i+1]. (2.11)

Equation (2.3) implies that

EtM t+1 = M t − f1vt − f2vt−1 · · · − fr vt−r−1

Et Mt+2 = Et Mt+1 − f2vt − f3vt−1 − · · · − fr vt−r−2

= M t − ( f1 + f2)vt − ( f2 + f3)vt−1 · · · − fr vt−r−1

...

EtM t+k = Mt − ( f1 + f2 + · · · + fr )vt − ( f1 + f2 + · · · + fr−1)

vt−1 − · · · − fr vt−r−1, k ≥ r.

Similarly,

Etc(L)ut+1 = −c1ut − c2ut−1 − · · · − cq ut−q+1

Etc(L)ut+2 = −c2ut − c3ut−1 − · · · − cq ut−q+2

...

Etc(L)ut+k = 0, k ≥ q .

Therefore, the expression (2.11) can be written as

aDMt − F1 Dvt − · · · − Fr Dvt−r+1

+ C1 Dut + · · · + Cq Dut−q+1, (2.12)

where F1, . . . , Fr and C1, . . . , Cq are linear combinations of the
parameters f1, . . . , fr and c1, . . . , cq, respectively. Substituting (2.12)

6 This condition is necessary for stability since its failure at any time t would lead to an
immediate explosion of the price level. It is satisfied so long as households anticipate
that the rate of inflation will grow at a rate less rapid than 1/a per period. Consequently,
households will continue to hold some real cash balances at any positive, but constant,
rate of inflation, however great it might be. Note that stability does not depend on the
rate at which households adjust their expectations to current conditions so long as this
adjustment is rational à la Muth.
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into (2.10) and rearranging gives us

Πt = M t + aDM t − F1 Dvt − · · · − Fr Dvt−r+1

+ C1 Dut + · · · + CDut−q+1 − c(L)ut .

Finally, differencing both members of this equation and substituting from
(2.3) yields

DΠt = (1 + a − aL) f (L)vt − c(L)Dut + D2[C1ut + · · ·
+ Cq ut−q+1− F1vt − · · · Fr vt−r+1]. (2.13)

By Granger’s Lemma, the right-hand member of (2.13) is a moving aver-
age of order q′′ = max[r + 1, q + 1]. Therefore, Π t follows an ARIMA
process of order (0, 1, q′′). This implication of model MC can also be
tested with Box–Jenkins techniques. This, too, will be done in the next
section.

Sargent and Wallace point out that the German government printed
money during the hyperinflations largely as an expedient for raising rev-
enue. They argue that the government would have followed a rule for
expanding the money supply that would on average have maintained its
real command over resources. They then propose

Mt =
(

1 − b
1 − bL

)
Πt + vt (2.14)

as such a rule. Note that the rate of growth of the money supply is endoge-
nous since it depends on the current rate of inflation. Following Sargent
and Wallace, I assume that the disturbance term vt, which subsumes all
other influences on monetary policy, is independent of ut and serially
independent.

In order to obtain the stochastic process of Π t for the model (2.1),
(2.6), and (2.14) (hereafter called model S&W), substitute (2.6) and
(2.14) into (2.1):(

1 − b
1 − bL

)
Πt + vt − Πt = aDEtΠt+1 + ut ,

or (
b

1 − bL

)
Πt = −aDEtΠt+1 + vt − ut , (2.15)

where I further assume that c(L) = 1. To solve this model, I first guess
that

Et DΠt+1 =
(

1 − b
1 − bL

)
Πt , (2.16)
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and then confirm that the guess is correct. Substituting (2.16) into (2.15)
yields (

b
1 − bL

)
DΠt = −a

(
1 − b

1 − bL

)
DΠt + vt − ut ,

or

DΠt = (1 − bL)(vt − ut)/[b + a(1 − b)]. (2.17)

Hence,

EtΠt+1 = Πt − b(vt − ut)/[b + a(1 − b)]

= Πt −
[

b
b + a(1 − b)

] [
b + a(1 − b)

1 − bL

]
Πt

= Πt −
(

b
1 − bL

)
DΠt =

(
1 − b

1 − bL

)
Πt .

The guess (2.16) is therefore correct, and the process (2.17) generates
Π t. Consequently, Box–Jenkins procedures should demonstrate that Π t

is generated by a (0,1,1) process if model S&W holds. Moreover, differ-
encing (2.14) and substituting from (2.17) yields

DM t = Dvt + (1 − b)(vt − ut)/[b + a(1 − b)]. (2.18)

Because the right-hand member of (2.18) is a first order moving average,
Mt is generated by an ARIMA process of order (0,1,1) in model S&W.
These implications will be checked in the next section.

3 Time series analysis

The techniques of Box and Jenkins (1970) are used in order to identify
and fit the stochastic processes generating Π t and Mt for the German
hyperinflation.7 Accordingly, the first step is to examine the sample auto-
correlations in table 8.1.

Many non-stationary economic series can be transformed into station-
ary series by differencing enough times. I assume that Π t and Mt has such
a property. According to Box and Jenkins, one can determine the mini-
mal degree of differencing necessary to induce stationarity by examining
the sample autocorrelations of the series.8 For example, in table 8.1 the

7 See section 6 for a description of the data. To keep my study comparable with those of
Cagan and Sargent and Wallace, I have used Cagan’s data. I have also analyzed data from
the original hyperinflation sources, obtaining similar results.

8 Of course, nowadays one would decide this question with a battery of unit-root tests.
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Table 8.1 Sample autocorrelations for Π , M, M − Π , and various
differencesa

Lags

Variable 1 2 3 4 5 6 7 8 9 10 11 12

Π 0.47 0.28 0.39 0.45 0.20 0.23 0.25 0.16 0.13 0.18 0.13 0.07
DΠ −0.25 −0.26 0.10 0.08 −0.17 0.03 0.01 −0.06 −0.03 0.06 0.09 0.10
D2Π −0.50 −0.15 0.25 −0.02 −0.15 0.13 −0.02 −0.05 0.01 −0.02 0.01 0.12
M 0.84 0.78 0.70 0.60 0.39 0.30 0.18 0.08 0.01 −0.04 −0.07 −0.10
DM −0.25 0.00 −0.18 0.25 −0.25 −0.04 −0.07 −0.01 −0.01 −0.00 0.07 −0.00
D2M −0.52 0.17 −0.21 0.22 −0.15 0.01 −0.04 0.02 −0.01 −0.02 0.08 −0.00
M − Π 0.16 −0.23 0.08 0.04 −0.22 −0.13 −0.06 −0.11 0.01 0.14 0.14 0.03
D(M − Π) −0.23 −0.37 0.29 −0.02 −0.18 0.07 −0.02 −0.13 0.02 0.04 0.09 0.10

Note:
a The approximate standard errors are 0.12 for the entries in the first three rows and 0.18 for
the other entries.

first few sample autocorrelations of Mt have the usual pattern for a non-
stationary series because they are large and decay slowly.9 By contrast,
the sample autocorrelations for DMt hover around zero, suggesting that
it is stationary. Examining the first few sample autocorrelations of D2Mt,
which are large and negative, strengthens this conclusion. They indicate
that D2Mt is over-differenced; that is, DMt need not be differenced again
to be stationary.

The most important distinguishing feature of a non-stationary series is
its failure to decay at early lags. Consequently, the sample autocorrela-
tions of Π t suggest non-stationarity. By contrast, those of DΠ t rapidly
approach insignificance as the lag increases, suggesting stationarity.10

The large negative sample autocorrelations of D2Π t also indicate over-
differencing. It is therefore reasonable to claim that Π t is not stationary
but that DΠ t is.

After finding the minimal degree of differencing required for station-
arity, the sample autocorrelations are useful for identifying the process
generating the serial correlation of the differenced series. For example, the
first two sample correlations of DΠ t are significant but follow no apparent
pattern. According to Box and Jenkins, this behavior suggests that DΠ t

is a second order moving average and hence that Π t is an ARIMA (0,1,2)

9 The first few sample autocorrelations of a non-stationary series tend to be larger and to
decay more slowly, the larger is the sample size.

10 In a large sample with n observations, the sample autocorrelations are distributed as
NID(0, n−1/2)under the null hypothesis of no serial correlation. It may be misleading to
base identifications on large-sample results for samples that are not in fact large.
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Table 8.2 Fitted processes for DΠa

Order AR1 MA1 MA2 MA3 Constant S.E. R2 Q(12) Q(24)

(0,1,1) 0.782
(0.074)

0.00613
(0.00488)

0.180 0.230 11.0 15.8

(0,1,2) 0.535
(0.123)

0.303
(0.123)

0.00623
(0.00383)

0.176 0.276 4.9 10.0

(0,1,3) 0.566
(0.130)

0.322
(0.148)

−0.073
(0.131)

0.00626
(0.00420)

0.176 0.280 4.6 9.1

(1,1,0) −0.272
(0.121)

0.0132
(0.0234)

0.198 0.068 17.4 24.9

(1,1,1) 0.366
(0.120)

0.965
(0.017)

0.00354
(0.00136)

0.178 0.258 7.7 14.1

(1,1,2) −0.167
(0.434)

0.389
(0.408)

0.408
(0.318)

0.00731
(0.00550)

0.176 0.279 4.7 9.3

Note:
a Approximate standard errors appear in parentheses below each parameter estimate.
The Q(n) statistic is distributed in large sample as χ2(n − k) where n is the order of the
Q statistic and k is the number of parameters fitted.

Table 8.3 Fitted processes for DMa

Order AR1 MA1 MA2 Constant S.E. R2 Q(12) Q(24)

(0,1,0) 0.0113
(0.0147)

0.0831 0.076 5.1 6.0

(0,1,1) 0.300
(0.175)

0.0103
(0.0104)

0.0825 0.076 5.1 6.1

(0,1,2) 0.303
(0.199)

−0.010
(0.230)

0.0102
(0.0107)

0.0839 0.076 5.1 6.1

(1,1,0) −0.295
(0.192)

0.0131
(0.0148)

0.0827 0.073 5.1 6.1

(1,1,1) −0.368
(0.748)

0.267
(0.692)

0.0106
(0.0130)

0.0839 0.076 5.1 6.1

Note:
a Approximate standard errors appear in parentheses below each parameter estimate.
The Q(n) statistic is distributed in large samples as χ2(n − k) where n is the order of the
Q statistic and k is the number of parameters fitted.

process. Similarly, Mt would be identified as a (0,1,0) process because
the sample autocorrelations are neither significant at the 0.10 level nor
patterned.

Tables 8.2 and 8.3 contain the results of fitting these and some other
processes for Π t and Mt. Table 8.4 gives the test statistics11 for comparing
some of the models fitted in tables 8.2 and 8.3. The tentative identifica-
tions appear to be acceptable, but the process (0,1,1) for Π t and Mt also

11 Minus twice the logarithm of the likelihood ratio is distributed as χ2(k) in large samples,
where k is the number of restrictions tested.
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Table 8.4 Comparison of statistical models

Variable Models compared Test statistic

Π (0,1,1) versus (0,1,2) 2.05
(0,1,2) versus (0,1,3) 0.23
(0,1,1) versus (1,1,1) 1.22
(0,1,2) versus (1,1,2) 0.17

M (0,1,0) versus (0,1,1) 3.56a

(0,1,1) versus (0,1,2) 0.00
(0,1,0) versus (1,1,0) 3.47a

(0,1,0) versus (1,1,1) 0.00

Note:
a Statistically significant at the 0.10 level.

Table 8.5 Implied orders of the ARIMA processes for Π and Ma

Π M

Model C (1,1,q +2) (0,1,0) or (0,1,1)
Model MC (0,1,q +1) or (0,1,max[2,q +1]) (0,1,0) or (0,1,1)
Model S&W (0,1,1) (0,1,1)
Data (0,1,2) or (0,1,1) (0,1,0) or (0,1,1)

Note:
a Rows one and two are based on the assumption that Mt is a process
of order (0,1,0) or (0,1,1).

appears to be consistent with the data. The data, however, appear to rule
out the model (1,1,2) for Π t.

Table 8.5 presents the implications of the three models and the data
for the orders of the ARIMA processes followed by Π t and Mt. Model C
does not appear to be consistent with the data. Models MC and S&W,
however, are consistent with the observed orders of the ARIMA processes
for Π t and Mt.

We can eliminate model S&W from consideration by taking another
tack, however. Equation (2.18) can be rewritten as

DM t = (1 − θ L)nt ,
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where θ is a parameter approximately equal to 0.712 and nt is a seri-
ally independent random variable with a zero mean and finite variance.
Furthermore, the parameter θ is insensitive to the choice of b, a(1 − b)
and var ut/var vt. Therefore, a belief in model S&W can be formulated
in a prior density function for θ with, say, a mean of 0.7 and a standard
deviation of 0.15. In section 7, I derive the functional form of the poste-
rior odds ratio for comparing the null hypotheses H0 and θ = 0 with the
alternative hypothesis H1 that θ is distributed with a probability density
function f(θ), −1 < θ < 1. In this problem, choosing f(θ) to be the beta
distribution function

0.003262(1 + θ)17(1 − θ)2

allows one to impose a mean of 0.71 and a standard deviation of 0.15 (see
Zellner 1971, pp. 371–3). The sample information then converts prior
odds of 1:1 in favor of H0 into posterior odds of 219:1. Consequently,
one can reject model S&W.13

4 Further time series analysis of model MC

According to table 8.5, the implications of model MC for the orders of
the ARIMA processes generating Π t and Mt are consistent with the data
if q = 0 or 1 and r = 0. Therefore, if model MC obtains, (2.1) can be
rewritten as

M t − Πt = −aDEtΠt+1 + ut − c1ut−1, (4.1)

12 It is easy to show by equating the first order autocorrelations for (2.18) to −θ /(1 + θ2)
that

θ = 1 + x
2

− x
2

√
1 + 4

x
,

where

x ≡ (1 − b)2(1 + var ut/ var vt )
[1 + a(1 − b)][b + a(1 − b)]

.

Because of (2.17), 0.787 in table 8.2 estimates b. Choosing a(1 − b) = 0.75, the average
of Cagan’s “reaction indices” ([1956, p. 69]), one finds that x = 0.0166(1 + var ut/var
vt). For variance ratios ranging from 1/5 to 5, θ ranges from 0.73 to 0.87. If either b
or a(1 − b) were smaller, one could rationalize somewhat smaller θs. Most reasonable
values of b, a(1 − b), and var ut/var vt nevertheless imply that θ is near 0.7. A standard
deviation of 0.15 also seems to be consistent with these considerations.

13 The Bayesian procedure for comparing hypotheses is superior to the informal Box–
Jenkins and sampling theory methods used in the chapter. It would therefore be desirable
to compare models C and MC by computing a posterior odds ratio. Unfortunately,
obtaining an expression for the posterior odds ratio for this comparison is a non-trivial
problem.
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where the parameter c1 could actually be zero. Equation (2.9) implies
that

EtΠt+1 =
(

1
1 + a

) ∞∑
i=0

(
a

1 + a

)i

Et(M t+i+1 − ut+i+1 + c1ut+i )

= M t +
(

c1

1 + a

)
ut .

This equation, (2.3) with r = 0, and (4.1) lead to

M t − Πt = −a
[

DMt +
(

c1

1 + a

)
Dut

]
+ ut − c1ut−1

= −avt +
[

1 + a(1 − c1)
1 + a

]
ut −

(
c1

1 + a

)
ut−1. (4.2)

According to (4.2), Mt − Π t is a first order moving average unless
c1 = 0, in which case it is white noise. The sample autocorrelations for
Mt − Π t and D(Mt − Π t) in table 8.1 suggest that Mt − Π t is white noise.
Nevertheless, it proves to be better represented by the first order moving
average process

M t − Πt = − 0.0661
(0.0520)

+(1 + 0.458L
(0.168)

)ŵt (4.3)

S.E. = 0.207, R2 = 0.078, Q(12) = 4.0, Q(24) = 7.6,

where wt is supposed to be a serially independent disturbance term with
a zero mean and finite variance. Furthermore, at the 0.10 significance
level, the first order moving average (4.3) cannot be rejected in favor of
the second order moving average14

Mt − Πt = − 0.0638
(0.0368)

+(1 + 0.321L
(0.191)

− 0.294L2

(0.198)
)ŵt (4.4)

S.E. = 0.203, R2 = 0.138, Q(12) = 2.3, Q(24) = 5.3.

These findings provide strong evidence that the disturbance term in the
money demand function (2.1) was stationary. In this sense, then, money
demand was stable during the German hyperinflation. This stability held
notwithstanding the non-stationarity of the growth rate of the money
supply.

Differencing (4.2), substituting from (2.3) with r = 0, and rearranging
yields

DΠt = vt + aDvt −
[

1 + a(1 − c1)
1 + a

]
Dut +

(
c1

1 + a

)
Dut−1.

(4.5)

14 Minus twice the logarithm of the likelihood ratio is 2.24.
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Table 8.6 Sample cross-correlations between the prewhitened M and Π seriesa

Lag

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6
−0.14 −0.17 0.35 −0.25 −0.04 0.32 0.65 −0.43 0.14 −0.06 0.18 −0.15 −0.04

Note:
a The approximate standard error for each entry is 0.18. Positive lags imply that
money leads prices, and negative lags imply that prices lead money.

By Granger’s Lemma, Π t has the representation

DΠt = (1 − θ1L − θ2L2)nt , (4.6)

where θ1 and θ2 are parameters and nt is a serially independent distur-
bance term with a zero mean and finite variance. Furthermore, it is clear
from (4.5) and (4.6) that the cross-correlations between vt and nt+i are
non-zero only at the lags i = 0 and 1. By contrast, model C implies that
they are cross-correlated at every lag i ≥ 0 and not cross-correlated at
negative lags, while model S&W implies that they are cross-correlated
only at i = −1 and 0.15

Table 8.6 presents the sample cross-correlations between the residuals
from the (0,1,0) process for Mt and residuals from the (0,1,2) process
for Π t.16 Those at lags −1, 0, and +1 are significant at the 0.10 level,
indicating that money not only affects prices but also is affected by them.
Therefore, all three models are inconsistent with the data. Note, however,
that in constructing his series for the Germany money supply, Cagan
obtains his figures for the middle of the month by interpolating between
end-of-month figures. The series on Mt could therefore appear to be
correlated with Π t−1 even if the “true” Mt series was exogenous vis-à-
vis Π t. Nevertheless, the substantial cross-correlations at lags −4 and −3
make the conclusion that prices affect money inescapable. One may there-
fore rule out model MC.

5 Conclusions

None of the models considered in this chapter is consistent with Cagan’s
data from the German hyperinflation. In particular, Cagan’s simple
adaptive-expectations mechanism appears not to have described the for-
mation of expectations. Moreover, the growth rate of the money supply

15 See (2.4), (2.5), (2.17), and (2.18).
16 See Haugh (1976) for a discussion of the method used below.
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appears to have depended on past inflation rates. The growth rate of
the German money supply did strongly and contemporaneously affect
the inflation rate, however, a finding completely consistent with the exis-
tence of a stable demand function for money. There is also no evidence
against the hypothesis that the demand for money depended on rationally
expected future inflation rates.

6 Data

The basic data from which I calculated Mt, the rate of growth of the money
supply, and Π t, the rate of inflation, appear in Cagan (1956, pp. 102–3).
The series Π t is available from June 1917 to November 1923. I excluded
the observations for July 1923–November 1923 for both series because
preliminary analysis indicated that the error terms of their ARIMA pro-
cesses are not covariance stationary when I include any of these obser-
vations. The demand for money may thus have been unstable in the last
few months of the hyperinflation.

Note that the data are not ideal for the purposes of this [chapter]
since Cagan calculated some of the observations by interpolation. It is
well known that interpolation may disguise the stochastic properties of a
series.

7 Bayesian analysis of the first order moving
average process

Consider the first order moving average

yt = ut − θut−1, (7.1)

where ut is NID(0,σ 2). The likelihood function for y ≡ (y1, y2, . . . , yn)′,
a vector of n observations on yt, is

(2π)−n/2σ−n|V(θ)|−1/2 exp
[
− y′V−1(θ)y

2σ 2

]
, (7.2)

where V(θ) is the n × n banded matrix

V(θ) ≡


1 + θ2 −θ 0 · · · 0

−θ 1 + θ2 −θ · · · 0
0 −θ 1 + θ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 + θ2

 . (7.3)
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The null hypothesis is

H0 : θ = 0 and p(θ) ∝ 1/σ, 0 < σ < ∞. (7.4)

The improper prior p(σ ) ∝ 1/σ is frequently chosen when one is com-
pletely agnostic about the variance σ 2. The alternative hypothesis

H1 : p(θ, σ ) ∝ f(θ)/σ, −1 < θ < 1, θ �= 0, 0 < σ < ∞,

(7.5)

is agnostic about the variance but informative about θ since f(θ) is a proper
probability density function, which I assume to be bounded, continuous
and positive over the entire parameter space. Following Zellner (1971,
p. 298), one may therefore write the posterior odds ratio as

K01 =
[

p(H0)
p(H1)

]
×

{
(2π)−n/2|V(0)|−1/2

∫ ∞
0 σ−n−1 exp[−y′V−1(0)y/2σ 2]dσ

(2π)−n/2
∫ 1
−1 f(θ)|V(θ)|−1/2

∫ ∞
0 σ−n−1 exp[−y′V−1(θ)y/2σ 2]dσdθ

}

=
[

p(H0)
p(H1)

] { ∫ ∞
0 σ−n−1 exp(−y′y/2σ 2)dσ∫ 1

−1 f(θ)|V(θ)|−1/2
∫ ∞

0 σ−n−1 exp[−y′V−1(θ)y/2σ 2]dσdθ

}
,

or

K01 =
[

p(H0)
p(H1)

] / ∫ 1

−1
f(θ)|V(θ)|−1/2[y′V−1(θ)y/y′y]−n/2dθ,

(7.6)

since V(0) is the n × n identity matrix. In (7.6), p(H0)/p(H1) is the prior
odds ratio.

One can show by multiplying the matrix below by V(θ) that

V −1(θ) ≡


Cn−1C0 θCn−2C0 θ2Cn−3C0 · · · θn−1C0C0

θCn−2C0 Cn−2C1 θCn−3C1 · · · θn−2C0C1

θ2Cn−3C0 θCn−3C1 Cn−3C2 · · · θn−3C0C2
...

...
...

. . .
...

θn−1C0C0 θn−2C0C1 θn−3C0C2 · · · C0Cn−1

 ,

(7.7)

where

Ci ≡ 1 − θ2(i+1)

1 − θ2
, i = 1, . . . , n, (7.8)

is the determinant of the i ×i banded matrix analogous to V(θ). Note
that V−1(θ) is symmetric and each entry vij above the diagonal equals
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θ j−iCn−jCi−1. The diagonal entry vii is Cn−iCi−1. Therefore,

y′V−1(θ)y = C−1
n

n∑
i=1

Cn−i Ci−1y2
i + 2C−1

n

n∑
i=1

n∑
j=1
j>i

θ j−i Cn− j Ci−1yi yj

= S(θ) + 2
n−1∑
k=1

θk Rk(θ), (7.9)

where

S(θ) ≡
n∑

i=1

[
1 − θ2(n+1−i)

1 − θ2(n+1)

] [
1 − θ2i

1 − θ2

]
y2

i , (7.10)

and

Rk(θ) ≡
n∑

j=k+1

[
1 − θ2(n+1− j )

1 − θ2(n+1)

] [
1 − θ2( j−k)

1 − θ2

]
yj yj−k,

k = 1, . . . , n − 1. (7.11)

Substituting (7.9) into (7.6) yields

K01 =
[

p(H0)
p(H1)

] / ∫ 1

−1
f(θ)

×


(1 − θ2)y′y

[1 − θ2(n+1)]
[

S(θ) + 2
n−1∑
k=1

θk Rk(θ)
]


n/2

dθ (7.12)

since |V(θ)| = Cn = [1 − θ2(n+1)]/(1 − θ2).
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9 A time series analysis of seasonality in
econometric models (1978)

Charles I. Plosser

1 Introduction

The traditional literature on seasonality has mainly focused attention on
various statistical procedures for obtaining a seasonally adjusted time
series from an observed time series that exhibits seasonal variation. Many
of these procedures rely on the notion that an observed time series can
be meaningfully divided into several unobserved components. Usually,
these components are taken to be a trend or cyclical component, a sea-
sonal component, and an irregular or random component. Unfortunately,
this simple specification, in itself, is not sufficient to identify a unique
seasonal component, given an observed series. Consequently, there are
difficult problems facing those wishing to obtain a seasonally adjusted
series. For example, the econometrician or statistician involved in this
adjusting process is immediately confronted with several issues. Are the
components additive or multiplicative? Are they deterministic or stochas-
tic? Are they independent or are there interaction effects? Are they stable
through time or do they vary through time? Either explicitly or implic-
itly, these types of questions must be dealt with before one can obtain a
seasonally adjusted series.

One approach to answering some of these questions would be to incor-
porate subject-matter considerations into the decision process. In particu-
lar, economic concepts may be useful in arriving at a better understanding
of seasonality. Within the context of an economic structure (e.g. a simple

This work has been financed, in part, by the National Science Foundation under Grant GS
40033 and the H. G. B. Alexander Research Foundation, Graduate School of Business,
University of Chicago. The author is grateful to Arnold Zellner for his helpful comments
and encouragement. J. M. Abowd, R. E. Lucas, H. V. Roberts, G. W. Schwert, and W. E.
Wecker also provided helpful suggestions. All remaining errors, however, remain the sole
responsibility of the author.

Originally published in A. Zellner (ed.), Seasonal Analysis of Economic Time Series, Pro-
ceedings of the Conference on the Seasonal Analysis of Economic Time Series, Washington,
DC, September 9–10, 1976, Economic Research Report ER-1, Washington, DC: Bureau
of the Census, US Department of Commerce, December 1978, 365–407.

332



Time series analysis of seasonality 333

supply and demand model), the seasonal variation in one set of variables,
or in one market, should have implications for the seasonal variation in
closely related variables and markets.1 For example, the seasonality in
the amount of labor supplied in non-agricultural labor markets is not
independent of the labor demanded in agricultural labor markets. Con-
sequently, knowledge of the economic structure can provide one with
a great deal of understanding about the seasonal variation of different
variables, such as where it comes from and what might cause it to vary
through time.

The purpose of this chapter is to suggest and investigate an approach
that involves the incorporation of seasonality directly into an economic
model.2 Analyzing the problem from this perspective has two important
implications. First, if an adjusted series is the objective, an economic
model that incorporates seasonality may provide an analyst with a better
understanding of the source and type of seasonal variation, as indicated
in the previous paragraph. This understanding, in turn, may aid in the
development of improved adjustment procedures. Second, including sea-
sonality in an economic model avoids the necessity of using a seasonally
adjusted data base in estimating an economic model and subsequent
concern over whether the seasonal adjustment procedure itself may be
causing distortions of the economic analysis and the interpretation of the
model.3 For example, although many economic time series are available
in adjusted form, there are some series that are not adjusted at all (e.g.
interest rates). Wallis (1974) shows how the use of adjusted and unad-
justed data in the same model can lead to spurious dynamic relationships
between variables where dynamic relationships do not otherwise exist.

Furthermore, to the extent model builders do not take seasonality into
account in the specification of a model because they believe that using
seasonally adjusted data has eliminated that need, they could be led into
model misspecification, misleading inferences about parameter values,
and poor forecasts. Such problems would naturally arise if the adjust-
ment procedure did not effectively eliminate the seasonal variation in
the data. Consequently, the adjustment procedure may have the effect of

1 Kuznets (1933) was concerned with how seasonal movements worked their way through
various markets. Fundamental to this approach is the idea of induced or derived seasonal
variation. That is, seasonality is induced into some markets because of seasonality in other
markets. However, Kuznets first obtained what he called the seasonal component of an
observed series and proceeded to compare these seasonal components in related markets.

2 An example of how an economic model can be built to generate seasonal or periodic
behavior can be found in US Department of the Interior (1962).

3 Laffer and Ranson (1971) were concerned with this problem and made use of seasonal
dummies in an attempt to avoid the dependence on the seasonally adjusted data.
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inducing properties on a series that are spurious concerning the model
under consideration.

In Zellner and Palm (1974), techniques were developed for analyz-
ing dynamic econometric models that combined traditional econometric
modeling with the time series techniques developed by Box and Jenkins
(1970). In a subsequent work, Zellner and Palm (1975), these tech-
niques were applied to the analysis of several monetary models of the
US economy. Using monthly data for 1953–72, the information in the
data was checked against the implications derived from these models.
They pointed out, in the conclusion of their work, that even though
they were using seasonally adjusted data, effects of seasonality seemed
to be present in the autocorrelation structure of some of the variables,
as well as in the residuals of the transfer functions. These complications
might be expected from data that are smoothed in the same manner,
regardless of the underlying stochastic process or economic mechanism at
work.

Finally, if the data being used to test and estimate a model are inap-
propriate for the particular model, the model is likely to produce poor
forecasts. Even in the case of forecasting univariate time series, the effects
of seasonal adjustment may cause poor predictions. This lack of predic-
tion accuracy may arise from the fact that the adjustment procedures
periodically undergo revision, such that the form of the filter and the
weights employed are changing through time. That is, the raw data are
being passed through a filter that may vary considerably over a particu-
lar sample period. The result would be to introduce an instability in the
stochastic properties of the adjusted data that may not exist in the raw or
unadjusted data.

Figures 9.1 and 9.2 provide an illustrative example of the type of predic-
tion problem suggested in the preceding paragraph. Using the method-
ology of Box and Jenkins (1970), a univariate time series model was built
for the unadjusted money stock (M1). The model was identified using
monthly data for January 1953–December 1962 and then used to fore-
cast unadjusted M1 through 1963 (i.e. forecasting up to twelve steps
ahead). Subsequently, the model was updated with actual data through
December 1963 and then used to forecast M1 for 1964. This process
was repeated through 1972. The results of this exercise are presented
graphically in figure 9.1. These are the plots of the actual and the pre-
dicted series as well as a set of 95 percent prediction intervals. As can
be seen, the model seems to do rather well with the actual series coming
close to being outside the prediction interval in 1967 and again in 1969.
Even at the twelve-step-ahead forecast, the error is rarely more than 1 to
2 percent.
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In contrast to this is a model developed using the same techniques for
the seasonally adjusted money supply. The same updating and prediction
procedure was performed with the model, and the results are shown in
figure 9.2. Notice the relatively larger prediction errors at the twelve-
step-ahead forecast. More important is the observation that the actual
series often wanders outside the prediction interval. It is, of course, very
difficult to compare the results in figures 9.1 and 9.2 directly because, in
fact, the models are predicting two different series. A complete analysis
of the findings presented in figures 9.1 and 9.2 would constitute a study
in and of itself, but such an analysis is not the intention of this work.
However, these simple results should be sufficient to cause one to ask
questions concerning the role of adjustment – and, perhaps, its usefulness
in forecasting.4

The organization of the remainder of this chapter is as follows: section 2
is a methodological section that includes a brief discussion of the analysis
of linear dynamic econometric models as developed in Zellner (1975)
and Zellner and Palm (1974), as well as some of the theoretical aspects
involved in modeling seasonal time series. Suggestions are then made
concerning the way one might go about building seasonality into a model
and how to check the consistency of the specification of the model with
data. In section 3, a simple economic model is proposed with explicit
assumptions regarding the manner in which seasonality enters the system.
This is followed by a detailed discussion of the implications of the model
for the properties of the stochastic processes for the endogenous variables.
In particular, consideration is given to how the effects of changes in the
values of structural parameters and of properties of the processes for
exogenous variables would lead to changes in the seasonal properties of
the output variables of the model. Section 4 presents the results of an
empirical analysis of the model, and section 5 provides a discussion of
the results and implications for future research.

2 Methodology for analyzing seasonal economic models

In this section, a methodology is suggested for analyzing seasonal eco-
nomic models. In . . . subsection [2.1] on the analysis of linear dynamic
econometric models, a brief discussion is provided of the analysis of lin-
ear dynamic econometric models as developed by Zellner (1975) and
Zellner and Palm (1974). In . . . subsection [2.2] on seasonality in time

4 There are certainly alternative explanations for this observed phenomenon. However,
these results are only meant to be suggestive, and not conclusive evidence of the distortions
that may be caused by seasonal adjustment. The reader who is interested in the details of
the development of the exact models used for this example is referred to Plosser (1976).
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series data, several approaches to modeling data with seasonal variation
are discussed. Finally, in . . . subsection [2.3] on an approach to the
analysis of seasonality in structural models, the methodology developed
in . . . subsection [2.1] . . . and [2.2] . . . is utilized to illustrate several ways
of incorporating seasonality in an econometric model and techniques for
checking the model’s specification against information in the data.

2.1 Analysis of linear dynamic econometric models

As indicated by Quenouille (1968) and Zellner and Palm (1975), a linear
multiple time series (MTS) process can be written as follows:

H(L)zt = F(L)et ,

for t = 1, 2, . . . , T

p × p p × 1 p × p p × 1 (2.1)

where zt is a vector of p observable variables (in this case written as devi-
ations from their respective means), et is a p × 1 vector of unobservable
random errors, L is the lag operator such that Lkxt = xt−k, and H(L)
and F(L) are p × p matrices of full rank having elements that are finite
polynomials in L. In addition, the error vector et is assumed to have the
following properties:

Eet = 0

for all t, t∗

Eete
′
t∗ = δtt∗ Ip, (2.2)

where δtt∗ is the Kronecker delta and Ip is a p × p-unit matrix. Note that
contemporaneous and serial correlations between errors are introduced
through F(L).

This general MTS model includes the linear dynamic simultaneous
equation model as a special case. Assume that prior information, in par-
ticular economic theory, suggests that certain elements of zt can be treated
as being endogenous and others as being exogenous. The system (2.1)
can then be written as follows:[

H11 H12

H21 H22

] [
y

t
xt

]
=

[
F11 F12

F21 F22

] [
e1t
e2t

]
. (2.3)

Given that y
t

represents a vector of endogenous variables and xt a vector
of exogenous variables, the following restrictions are implied:

H21 ≡ 0, F12 ≡ 0 and F21 ≡ 0; (2.4)
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with these restrictions imposed, the usual structural equations from (2.3)
are given in (2.5):

H11y
t
+ H12xt = F11e1t , (2.5)

and

H22xt = F22e2t (2.6)

represents an autoregressive moving average process generating the
exogenous variables.5

If it is now assumed that the roots of the determinantal equations
|H11(ξ)| = 0 and |H22(ξ)| = 0 lie outside the unit circle, the system
(2.5) can be rewritten in two forms that can be of use in analyzing the
model. The first form represents a system of final equations (FEs) for the
endogenous variables. They are obtained by substituting for xt in (2.5)
the expression

xt = H−1
22 F22e2t (2.7)

and then premultiplying both sides of the resulting expression by the
adjoint of H11 that yields

|H11|yt
+ H∗

11 H12 H−1
22 F22e2t = H∗

11 F11e1t , (2.8)

or

|H11||H22|yt
= −H∗

11 H12 H∗
22 F22e2t + |H22|H∗

11 F11e1t , (2.9)

where |Hi j | denotes the determinant and H∗
i j the adjoint matrix of Hi j .

This representation implies that each endogenous variable can be writ-
ten in the form of an autoregressive integrated moving average (ARIMA)
model of the type developed and analyzed by Box and Jenkins (1970).
Thus, as emphasized by Zellner and Palm, those who utilize the Box and
Jenkins models for forecasting are not making use of a technique that is
necessarily distinct from standard econometric models. In fact, they are
utilizing a very specialized reduced form, the FE, that is well suited for
forecasting but may or may not be very informative for structural analy-
sis. However, this representation of the model can provide insights into
the stochastic structure of the endogenous variables in the system. For
example, if one is interested in seasonality, the autocorrelation coefficient
at the seasonal lag can be analyzed with respect to changes in structural

5 If one or more of the elements of xt is deterministic, it can not be handled in this fashion
but must be analyzed through the transfer functions, a discussion of which will follow.
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parameters or changes in the processes generating the exogenous vari-
ables. Furthermore, this type of analysis is helpful in understanding what
type of adjustment procedure may be suggested by the model.

Upon inspection, several things can be noted about (2.9). First, since
the assumption is made that all the elements of F(L) and H(L) are finite
polynomials in L, then if no cancellation takes place, it is apparent that
each and every endogenous variable in the system will have identical
autoregressive (AR) polynomials and they will be of order equal to or
greater than the AR polynomials for the elements of xt . This theoretical
restriction might be one means of testing the model against information
obtained from the data. In addition, there are restrictions placed on the
form of the moving average (MA) polynomial in (2.9). However, there
are possible reasons why these theoretical restrictions on the AR and MA
polynomials may not be observed in the data even when the model is
true. One problem, mentioned by Zellner and Palm, is the possibility of
cancellation. This will occur if there are common roots in the AR and
MA portions. Depending upon the complexity of the structural model,
this may or may not be noticed by the analyst but if not recognized could
lead to estimated FEs that do not appear to satisfy the restrictions implied
on the polynomials by the model.6

The second set of equations derived from the system (2.5) that can be
of value in testing assumptions about the structural model is the set of
transfer functions (TFs). These equations can be obtained from (2.5) by
multiplying both sides by H∗

11; this yields

|H11|yt
= −H∗

11 H12xt + H∗
11 F11e1t , (2.10)

or, alternatively,

y
t
= −H∗

11 H12

|H11| xt + H∗
11 F11

|H11| e1t , (2.11)

As noted by Kmenta (1971), Pierce and Mason (1971), and Zellner and
Palm (1974), this form expresses the current values of endogenous vari-
ables as functions of the current and past values of the exogenous variables
and is restricted in form. Formally, (2.11) is a set of rational distributed
lag (RDL) equations (Jorgenson (1966) and Dhrymes (1970), or a sys-
tem of multiple-input transfer functions (MITF) of the type described
by Box and Jenkins (1970).

This form of the model is useful for prediction and control. In par-
ticular, it is useful for assessing the response, over time and in total,

6 Of course, if the model is incorrect or misspecified, then these restrictions will also fail to
hold.
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of endogenous variables to changes in exogenous variables. Notice that,
here too, there are strong restrictions on the form of the TFs under the
assumptions of a specific model. For instance, if no cancellation occurs
and if all the elements of H∗

11 and H12 are finite polynomials, then all of
the inputs have the same denominator polynomial. There are also restric-
tions on the form of the error process in (2.11). Other tests that could be
carried out concern testing the assumptions of the exogeneity of the xts.
By estimating and analyzing (2.11) and comparing the results with the
restrictions implied by a specific structural model, it is felt that many use-
ful insights can be obtained concerning the adequacy of the specification
of the structure. In particular, interest here will focus on the specification
of the seasonal aspects of the model.

2.2 Seasonality in time series data

Before discussing how one would incorporate seasonality in a structural
model, it will be useful to review briefly several approaches to modeling
data that have seasonal properties. The two approaches discussed here
are the traditional concept of seasonality that treats an observed series as
the sum of three components – a trend or cyclical component, a seasonal
component, and a noise component7 – and the multiplicative times series
model as developed by Box and Jenkins (1970).

One of the more common approaches to seasonality within the frame-
work of the aforementioned traditional model is the dummy variable
model. The general form of such a model is

yt = yc
t +

s∑
i=1

αi di t + εt , (2.12)

where yc
t is the trend or cyclical component, εt is an error term, and

the dummy variables dit are used to represent the seasonal component of
the series. (Often . . . , yc

t is represented by a polynomial in t, time.) If
monthly data were under consideration, one might use a dummy variable
for each month representing a series with a fixed periodic or seasonal
component. The estimate of αi would represent the estimated mean for
the ith month. If such a system is presumed to be the true model, it is then
straightforward to obtain a seasonally adjusted series by just subtracting
the seasonal component that yields

ya
t = yt − ys

t = yc
t + εt , (2.13)

7 As noted earlier, it is in this conceptual framework that the idea that a series can be
decomposed into a seasonal component and a seasonally adjusted series arises.
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where

ys
t =

s∑
i=1

αi di t , (2.14)

Another approach, also using this traditional decomposition, is the Cen-
sus Bureau X–11 program (see US Department of Commerce 1967).
The basic idea of this approach is to eliminate the seasonal component
ys

t through the application of symmetric moving average filters. That is,
a seasonally adseries is obtained by passing the unadjusted data through
a filter of the form

ya
t =

k∑
i=−k

βi yt−i = B(L)yt , (2.15)

where the β is are fixed weights such that β i = β−i and
∑k

i=−k βi = 1, and
L is the lag operator. In terms of the traditional components model, this
filter is chosen such that the seasonal component is taken out and the
trend or cyclical component is unaffected. (That is, B(L)yc

t = yc
t , and

B(L)ys
t = 0.)

Another class of models that is of special interest and that contains the
dummy variable approach as a special case, is the multiplicative seasonal
time series models of Box and Jenkins (1970). These models are of the
general form:

ΓP(Ls )φp(L)∆D
s ∆d zt = Ω
(Ls )Θq (L)at , (2.16)

where s is the length of the seasonal period (e.g. 12 for monthly data),
∆D

s = (1 − Ls )D, ∆d = (1 − L)d , Γ and Ω are seasonal polynomials in Ls

of degree P and Q respectively, φ and θ are polynomials in L of degree p
and q, respectively, and at is a white-noise error term. It is also assumed
that the roots of Γ (ξ) = 0 and φ(ξ) = 0 lie outside the unit circle so that
the process is stationary and the roots of Ω(ξ) = 0 and θ(ξ) = 0 lie on or
outside the unit circle. Box and Jenkins refer to this as a model of order
(p,d,q) (P,D,Q)s.

Consider the process (0,1,1) (0,1,1)12 as a simple example. It can be
written as

(1 − L12)(1 − L)zt = (1 − Θ1L)(1 − Ω1L12)at . (2.17)

Let wt = (1 − L) (1 − L12)zt (i.e. let wt equal the seasonal differences of
the changes in zt). Now the moving average process governing wt is easily
seen by multiplying out the polynomials on the r.h.s. of (2.17), yielding

wt = (1 − Θ1L − Ω1L12 + Θ1Ω1L13)at . (2.18)



Time series analysis of seasonality 343

Therefore, this multiplicative model can be interpreted as an ordinary MA
process of order 13. The distinction is that the multiplicative formulation
restricts the weights on lags 2 through 11 to be 0 and on lag 13 to be the
product of the weights for lags 1 and 12.

In general, these multiplicative seasonal models cannot be decomposed
or interpreted within the traditional unobserved components framework
without precise definitions of the components and some further identi-
fying restrictions.8 However, there is one special case of (2.16) that has
an interpretation as the dummy variable case described earlier. Assume
that observations were taken quarterly on some variable zt. In addition,
assume that the true processes generating the zts were such that each
quarter had a different mean but otherwise the series was just a random,
non-autocorrelated variable, at. Such a process could be written as

zt = α1d1t + α2d2t + α3d3t + α4d4t + at , (2.19)

where dit is a dummy variable that takes on the value 1 in the ith quarter
and 0 elsewhere. The estimates of the αis would represent the mean of
the ith quarter. If one were to seasonally difference this process, then the
remaining process would be

(1 − L4)zt = (1 − L4)at . (2.20)

The effect of seasonal differencing is to eliminate a constant, deterministic
seasonal pattern. The process in (2.20) indicates that under the particular
model in (2.19), the seasonal differences of zt obey a first order seasonal
moving average process with a parameter value of 1. Alternatively, if the
as were considered non-autocorrelated and the model were found to have
a first order seasonal moving average parameter of less than 1, then the
implication would be that the seasonal pattern is changing through time.
That is, the seasonal means are changing through time.9

The multiplicative model will be used in this work because of its flex-
ibility in describing not only certain types of additive or deterministic
seasonal patterns but also seasonal patterns that might not be constant
through time. In addition, it readily fits into the framework of analysis of
this chapter.

8 See Cleveland (1972). He . . . proposed an underlying stochastic process for which the
Census X–11 is nearly optimal from the standpoint of conditional expectation. He argues
that, for processes very near this, the X–11 does quite well, but, when departures occur,
the appropriateness of the X–11 decomposition is thrown into doubt.

9 These models are the first satisfactory models for forecasting seasonal series with changing
seasonal patterns. For a more complete development and discussion of these models see
Box and Jenkins (1970, ch. 9).
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2.3 An approach to the analysis of seasonality in structural models

One question with which this work is concerned is how seasonality enters
a structural econometric model. The primary focus is on testing the
assumption that seasonality enters the system through exogenous forces.
That is, can the seasonal fluctuations of the endogenous variables of the
system be explained by the seasonality of the exogenous variables? There
are, of course, other possibilities, such as certain parameters in the struc-
ture that fluctuate seasonally and, therefore, induce a seasonal pattern
in the endogenous variables even when the exogenous variables are non-
seasonal.

One approach that might be put forward combines the traditional
concept of seasonality and seasonal adjustment with the concepts and
methodology presented in . . . subsection [2.1] . . . Assume that the
endogenous variables of the system, denoted by y

t
, and the exogenous

variables of the system, denoted by xt , can be written as follows:

y
t
= yc

t
+ ys

t
+ vt

xt = xc
t + xs

t + ut , (2.21)

where no superscript on x or y indicates an observed variable, a super-
script c denotes the trend or cyclical component, s denotes the seasonal
component, and vt and ut are noise components. In addition, assume
that one believes the true economic relationship is in terms of the trend
components. In the notation of . . . subsection [2.1] . . . , the model can
be written as

H11yc
t
+ H12xc

t = F11e1t . (2.22)

Substitution yields

H11
(
y

t
− ys

t
− vt

) + H12
(
xt − xs

t − ut

) = F11e1t , (2.23)

or

y
t
= ys

t
− H∗

11 H12

|H11| xt + H∗
11 H12

|H11| xs
t + H∗

11 F11

|H11| e1t + H∗
11 H12

|H11| ut + vt .

(2.24)

It is clear that if (2.22) is the true model, then the model builder must
be very concerned about how the trend component is obtained from the
observed or unadjusted data. On the other hand, such a theory could
be tested using the unadjusted data and the seasonal components, using
(2.24). For example, a restriction implied by (2.22) on (2.24) is that
the coefficient of ys

t
is 1 and the coefficient of xs

t is the negative of the
coefficient on xt .
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Assume, on the other hand, that one believes that seasonal fluctuations
in the exogenous variables work their way through the system like all other
fluctuations in the exogenous variables. In addition, suppose interest is
focused on the ability of the seasonal fluctuations in the exogenous vari-
ables to explain the seasonality in the endogenous variables. Under these
conditions, (2.25) would have to hold

ys
t
+ H∗

11 H12

|H11| xs
t = 0. (2.25)

This restriction arises from the fact that the true economic model exists
between the observed series, and, therefore, the seasonal portion of xt
should explain the seasonal portion of y

t
.

However, this approach still suffers from the problems of defining and
obtaining an optimal adjustment and/or appropriate decomposition.

As indicated earlier, the approach taken in this chapter is slightly
different. The structural model is written in a manner which pre-
sumes that its form holds for the observed data and not only the trend
component

H11yt + H12xt = F11e1t . (2.26)

The hypothesis to be tested is that seasonality enters the system through
the process generating the exogenous variables. That is, the process gen-
erating xt , (2.6), is written as a multiplicative seasonal time series model.
By doing this, it is hoped to broaden the model by allowing a slightly
greater flexibility with regard to the form of the seasonal fluctuation.

Since one of the objectives is to avoid choosing an arbitrary decomposi-
tion prior to developing an adequate model, a means must be devised by
which conclusions can be drawn concerning the ability of the exogenous
variables to account for the seasonality in the endogenous variables. For-
tunately, there is a straightforward method of doing this. Since the process
generating the xts will be associated, in general, with both seasonal AR
and seasonal MA polynomials, it is possible to trace these polynomials
through the analysis to determine their impact on the TFs and FEs of
the system. Once the TFs and FEs have been obtained, they can be esti-
mated and the results compared with the implications of the theory used
in writing the structural model. To the extent that the estimated models
are in agreement regarding the behavior of these seasonal polynomials,
the hypothesis of exogenous seasonality will be accepted.

Proceeding in the manner previously described yields some interest-
ing insights into the type of stochastic properties that are likely to be
exhibited by the endogenous variables. Assume that (2.26) is written as
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a multivariate-multiplicative seasonal time series process.

H22S22xt = F22T22e2t , (2.27)

where it is assumed that S22 and T22 are matrices having elements that are
polynomials is Ls, where s is the seasonal period. For simplicity, consider
the case where the exogenous variables are independent so that H22, S22,
T22, and T22 are all diagonal. This is sufficient to enable each and every
exogenous variable to be written as a strictly multiplicative seasonal time
series process.

Given (2.27) as the process generating xt , a set of FEs can be obtained
by substituting (2.27) in to (2.26) with the following result:

|H11||H22||S22|yt = −H∗
11 H12S∗

22 H∗
22 F22T22e2t + H∗

11|H22||S22|e1t .

(2.28)

Inspection of (2.28) reveals that the AR portion of the processes for the
endogenous variables will, in general, be in the form of the multiplica-
tive seasonal model. However, the MA portion of (2.28) does not factor,
in general, into the multiplicative form. Consequently, one might not,
in general, expect to find the endogenous variables to be strictly multi-
plicative seasonal processes (i.e. multiplicative in both the AR and MA
portions). It would seem that the MA term would have characteristics
of both multiplicative and additive seasonal variation. This implication
will be investigated further in the economic model analyzed in the next
section, and it will be seen that if certain restrictions are placed on the
structure and on the processes generating the exogenous variables, (2.28)
will become strictly multiplicative.

Although no mention has been made, up to this point, of constant terms
or intercept terms, it is straightforward to see how they can be handled
in the framework that has been discussed. If these intercept terms are
considered constants, they can be carried along as deterministic elements
of xt , or, if they are considered random and generated by a process,
perhaps seasonal, they can again be considered as elements of xt . In
either case, the inclusion of these intercepts is a simple extension of the
methodology outlined in this section.

To summarize, the approach that will be applied in the following
sections is to:
1. Construct an economic model with an explicit specification of season-

ality
2. Derive the implied TFs and FEs of the model noting where the sea-

sonal specification places restrictions on the form of these equations
3. Empirically check these restrictions against the data
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4. Utilize the empirical results to suggest alternative specifications of the
model if the model under consideration proves deficient.

3 Analysis of an economic model

3.1 Model formulation

In this section, a simple monetary model is formulated and analyzed to
illustrate how the techniques outlined in the previous sections might be
helpful in gaining insights about seasonality and its role in an economic
model.

The economic model contains five variables: Equilibrium money stock,
a measure of real income or wealth, nominal interest rate, price level, and
the monetary base. The model is written to allow for various types of
lag structures having form and length that are to be inferred from the
data. In addition, no restrictions are placed on the theoretical elasticities
and the growth rate of real output is allowed to vary. Expectations in
this model are generated rationally in the sense of Muth (1961). That is,
expectations are formed, based on information in the past history of the
exogenous variables and the structure of the model. Finally, the monetary
base and real income (output) are treated as exogenous or independently
determined, and seasonality is assumed to enter the system only through
these variables.

Obviously, in a simple model, such as this, there are many possible
sources of specification error. However, this study focuses on two impor-
tant aspects of the model. First, the assumption of the exogeneity of the
monetary base and real income may not be an adequate representation.
For instance, as specified, the model assumes that an open loop control
strategy has been adopted by the policy-makers with regard to the cre-
ation of the monetary base. The alternative is, of course, some sort of
closed loop control scheme, whereby the authorities respond to changes
in the price level or interest rate in determining the growth of the base.
The exogeneity of real income assumes the absence of a Phillips-curve
relationship or feedback from the monetary sector to the real sector.10

Therefore, it is of interest to investigate the adequacy of the exogeneity
assumptions in light of these other possible specifications of the model.

Secondly, seasonality is assumed to enter the model only through the
exogenous variables. It may be that there are separate seasonal effects that
enter directly through the money demand or money supply equations that

10 See Lucas (1973) and Sargent (1973) for a more thorough treatment of the issues sur-
rounding this phenomenon.
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are different from those induced by the seasonal influence of real income
and the base. Such effects may be due to seasonally varying parameters in
the structure. If this is the case, the empirical results would be at variance
with the implications of the model.

The equations of the model include (1) a money demand equation,
(2) a money supply equation, (3) a money market equilibrium condition,
(4) the Fisher equation, and (5) a rational expectations equation. We can
write these equations as follows:

M D
t = L(Yt , it , Pt) (3.1)

M S
t = S(Bt) (3.2)

Mt = M D
t = M S

t (3.3)

it = ρ∗
t + π∗

t (3.4)

π∗
t = E

t
(πt | ·), (3.5)

where

M D
t = nominal money demand at time t

M S
t = nominal money supply at time t

Yt = real income (output) at time t

it = nominal interest rate at time t

Pt = price level at time t

Bt = net source base at time t

ρ∗
t = anticipated real interest rate as of time t

π∗
t = anticipated rate of inflation as of time t

Equation (3.5) builds the rational expectations hypothesis into the model,
and E

t
(πt | ·) denotes a conditional expectation of inflation given the equa-

tions of the model and past information.11

It will be assumed that (3.1) can be written as

rMt = α1rYt − β1∆it + y1r Pt + u1t , (3.6)

11 Given the previous structure, there are many other issues that could also be raised. For
example, most economists agree that permanent income, or possibly wealth, is a more
appropriate income measure for the money demand function than real output. One
might also consider an adjustment process rather than require market clearing at each
time t. Finally, a more complicated money supply relationship might be considered to
allow for changing reserve ratios, or changing interest rates that would affect the money
multiplier. Clearly, a thorough examination of this model would have to consider these
alternatives. However, the objective of this chapter is somewhat less ambitious. Here,
the intent is to gain a better understanding of the techniques and the issues surrounding
seasonality.
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and that the money multiplier is non-autocorrelated so that (3.2) can be
written as

rMt = α2r Bt + u2t (3.7)

where ∆ = (1 − L) is the difference operator; hence, rk = ∆�n(k) is the
rate of growth of k. The coefficients are, in general, unrestricted in that
they can be interpreted as polynomials in the lag operator. However,
as a starting point, it will be assumed that they are constants, and the
empirical results will be utilized to suggest alternative lag structures.12

For convenience, both u1t and u2t will be considered independent, non-
autocorrelated disturbance terms.

The remainder of the model involves the Fisher equation and the ratio-
nal expectations hypothesis. Since πt = �n Pt+1 − �n Pt = ∆�n Pt+1 =
r Pt+1

it = ρ∗
t + r ∗

Pt+1
, (3.8)

and the expectation can be written as

r ∗
Pt+1

= E
t
(r Pt+1 | ·). (3.9)

At this point, some assumption must be made about ρ∗
t , the anticipated

real rate of interest. In order to keep this analysis from becoming unduly
complicated, the anticipated real rate will be considered a random vari-
able with a constant expected value. Therefore,

it = r ∗
Pt+1

+ u3t , (3.10)

where u3t may have a non-zero mean. Of course, if the anticipated real rate
were autocorrelated, then u3t would also be autocorrelated. In addition,
u3t will be considered independent of u1t and u2t.

Utilizing the assumption that the monetary base and real income are
exogenous, the system can be completed by writing down the processes
generating these variables.

φB(L)ΓB(L12)∆12r Bt = ΘB(L)ΩB(L12)u4t (3.11)

φY(L)ΓY(L12)∆12rYt = ΘY(L)ΩY(L12)u5t , (3.12)

where φi , Γ i, Θ i, and Ω i are polynomials in the lag operator having roots
that satisfy the stationarity and invertibility conditions, and Γ B, ΓY, ΩB,
and ΩY represent the seasonal polynomials that are to be traced through
the model.

12 Whether differencing is appropriate for these structural relationships is not a real issue.
The result of over-differencing would be to induce moving average complications into
the error structure that can be handled in the estimation procedure. (See Plosser and
Schwert 1976.)
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Now that the model has been developed, the system represented by
equations (3.6), (3.7), (3.9), and (3.10) can be rewritten in the form of
a system of simultaneous equations as shown in (2.5), yielding131 −υ1 −β1∆

1 0 0
0 0 Φ∆12

 rMt

r Pt

it


+

 0 −α1

−α2 0
−Ψ1∆12 −Ψ2∆12

 [
r Bt

rYt

]
=

 u1t

u2t

∆12vt

 , (3.13)

where

Φ = (γ1 − β1)

Ψ1 = α2

∞∑
j=0

( −β1

γ1 − β1

) j

π
(B)
j+1(L)

Ψ2 = −α1

∞∑
j=0

( −β1

γ1 − β1

) j

π
(Y)
j+1(L)

∆12vt = ∆12

∞∑
j=0

( −β1

γ1 − β1

) j

(E
t
u2t+ j+1 − β1 E

t
u3t+ j+1 − E

t
u1t+ j+1) + Φ∆12u3t ,

(3.14)

u1t, u2t, and u3t are non-autocorrelated and independent disturbance
terms. For convenience, let

H11 =
1 −γ1 −β1∆

1 0 0
0 0 Φ∆12

 , (3.15)

and

H12 =
 0 −α1

−α2 0
−Ψ1∆12 −Ψ2∆12

 . (3.16)

Through some simple algebraic manipulations, both the TFs and FEs
can be written down, and the following analysis highlights some of the
more interesting properties of the TFs and FEs.14

13 For the mathematical derivation of (3.13), the reader is referred to appendix A.
14 See appendix A for the derivations.
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3.2 Analysis of the transfer functions

The TFs of the system are easily obtained by premultiplying both sides
of (3.13) by H∗

11. Writing the resulting system of equations, one by one,
the TF of each endogenous variable can be analyzed in greater detail.

The TF for the nominal money stock can be simplified to

∆12rMt = α2∆12r Bt + ∆12u2t . (3.17)

The money supply is seen to be a function only of the base and real
income does not enter as an input. Under the assumption that α2 is a
constant coefficient, (3.17) is simply a regression model with moving aver-
age errors. If α2 is a polynomial in the lag operator, it is a distributed lag
model. In either case, note that α2 can be directly estimated, using non-
linear techniques. In addition, if all of the seasonality in M is explained by
the base (B), then the only evidence of seasonal autocorrelation should
appear in the noise process as a seasonal moving average polynomial of
order 1 and parameter value of 1. Alternatively, there might be seasonal
fluctuations in the money multiplier. As was noted earlier, the model has
implicitly assumed that the multiplier is non-autocorrelated. However, to
the extent that the Federal Reserve Board offsets changes in the money
multiplier by either increasing or decreasing the amount of currency as it
deemed appropriate, the result would be to force the first order seasonal
moving average parameter (SMA) away from 1 and to induce downward
bias into the estimated value of α2. In fact, if the Fed followed a policy
of no money growth and sought only to offset the multiplier exactly, the
estimate of α2 and of the first order SMA parameter would be near zero.

The TF for prices is somewhat more complicated than the one describ-
ing money but, by that very fact, turns out to have interesting interpreta-
tions. Through some algebraic manipulations, the following expression
is obtained:

∆12r Pt =
(

α2Φ − β1∆Ψ1

γ1Φ

)
∆12r Bt +

(−α1Φ − β1∆Ψ2

γ1Φ

)
∆12rYt

+ ∆12(−Φu1t + Φu2t − β1∆vt) (3.18)

The analysis of this expression will depend, to a large degree, on what
can be said about the form of the distributed lag on ∆12r Bt and ∆12rYt .
Fortunately, several interesting observations can be made. Consider the
case where all the structural parameters in the model are polynomials
of zero degree in L. Under these circumstances, the only polynomials
in L (other than the difference operators) arise from the terms Ψ 1 and
Ψ 2. Note from (3.14), where Ψ 1 and Ψ 2 are defined, and equations
(A.19) and (A.20) in appendix A (p. 376), that, in general, Ψ 1 and Ψ 2
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will be polynomials which are infinite in length. The implication is that
even though there are no lagged relationships specified in the structural
model, due to the expectational aspect of the model there exists an infi-
nite distributed lag relationship between the exogenous variables and the
endogenous variables of the system. Consequently, estimating this trans-
fer function would, most likely, result in a rational distributed lag (RDL)
model as a means of parsimoniously representing such a relationship.

Secondly, in appendix A it is shown that the expressions for Ψ 1 and
Ψ 2 involve the summation of varying powers and cross-products of the
parameters in the seasonal and non-seasonal polynomials that are gen-
erating the exogenous variables. It is possible that the data would not
indicate a need for seasonal parameters (i.e. specific coefficients at the
seasonal lags) in the RDL formulation. If this is true, then the only evi-
dence of seasonal autocorrelation appears in the error term as a sea-
sonal moving average polynomial of order 1 with parameter value of 1.
The presence of Ψ 1 and Ψ 2 also indicate that, even though ∆12r Bt and
∆12rYt may be seasonal, the existence of an expectations mechanism has
a smoothing effect on the output variable ∆12r Pt . This smoothing effect
arises out of the infinite distributed lag relationship between the inputs
and the output variable ∆12r Pt . In other words, ∆12r Pt will be a weighted
average of all past values of ∆12r Bt and ∆12rYt .

An additional point of interest is how this model can simplify under
alternative assumptions about the structural model. For example, if the
classical quantity theory of money were true, then β1 would equal zero,
and γ 1 would equal 1, allowing (3.18) to reduce to

∆12r Pt = α2∆12r Bt − α1∆12rYt + ∆12[−u1t + u2t]. (3.19)

In a similar manner, the TF for the nominal interest rate can be written
as

∆12it =
(

Ψ1

Φ

)
∆12r Bt +

(
Ψ2

Φ

)
∆12rYt +

(
∆12

Φ

)
vt . (3.20)

Notice that here too, the distributed lags on ∆12r Bt and ∆12rYt will in gen-
eral be infinite in length and, therefore, more easily modeled as a RDL
even when the structural parameters indicate only contemporaneous rela-
tionships. As was pointed out, this is due to the expectations aspect of the
model. In addition, if Ψ 1 and Ψ 2 do not display strong seasonal proper-
ties, the only evidence of seasonality that one would expect to find, if the
model is correct occurs in the error term of the form ∆12. Once again,
it is worthy of note that because of Ψ 1 and Ψ 2 and the smoothing effect
they have on ∆12it , the interest rate most likely would not display seasonal
movements that are visually striking.
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Table 9.1 Summary of TFs

Simplified formulation
General formulation (β1 = 0 and γ1 = 1)

∆12rMt = α1∆12r Bt + ∆12u2t ∆12rMt = α2∆12r Bt + ∆12u2t

∆12r Pt =
(

α2Φ − β1∆Ψ1

γ1Φ

)
∆12r Bt ∆12r Pt = α2∆12r Bt − α1∆12rYt

+
(

α1Φ − β1∆Ψ2

γ1Φ

)
∆12rYt

+ ∆12(−u1t + u2t )

+ ∆12(−Φu1t + Φu2t − β1∆vt )

∆12it =
(

Ψ1

Φ

)
∆12r Bt ∆12it = α2

(
1 − φBΓB

ΘBΩB

)
F∆12r Bt

+
(

Ψ2

Φ

)
∆12rYt +

(
∆12

Φ

)
vt − α1

(
1 − φYΓY

ΘYΩY

)
F∆12rYt + ∆12u3t

Table 9.1 summarizes the transfer functions (TFs) for the model under
consideration. Both a general formulation and a simplified formulation
suggested by the classical quantity theory of money, as previously dis-
cussed, are presented for comparison.

3.3 Analysis of the final equations

The next set of equations to be analyzed are the final equations (FEs)
(table 9.2). They can be obtained, as indicated, in . . . subsection [2.1] . . .
In deriving these equations, it is important to recognize that (3.11) and
(3.12) are rewritten as

∆12

[
r Bt

rYt

]
=

[
φBΓB 0

0 φYΓY

]−1 [
ΘBΩB 0

0 ΘYΩY

]
·
[
u4t

u5t

]
= H−1

22 F22

[
u4t

u5t

]
. (3.21)

This presumes the independence of u4t and u5t, but such a restriction is
not necessary. An alternative specification might allow the (1,2) and (2,1)
elements of F22 in (3.21) to be non-zero. This would allow for a dynamic
relationship among the inputs.

As derived in appendix A, the FE for the equilibrium money stock (M)
can be written as follows:

γ1ΦφBφYΓBΓY∆12rMt = γ1Φα2φYΓYΘBΩBu4t

+ φBφYΓBΓYυ1Φ∆12u2t . (3.22)
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Notice that γ 1ΦφYΓY can be factored out of both sides, leaving

φBΓB∆12rMt = α2ΘBΩBu4t + φBΓB∆12u2t . (3.23)

The FE for the money stock is a function of the structural parameter α2,
the error term u2t, and process generating the monetary base (B). More
important is that, by introducing seasonality by way of the exogenous
variables, seasonality is induced on the endogenous variable (M) and,
in fact, on each and every endogenous variable in the system, as will be
pointed out in subsequent analyses.

It is known (e.g. see Anderson 1971) that the sum of two moving aver-
age processes is representable as a single invertible linear process in one
random variable. Consequently, given that u2t and u4t are independent
due to the assumption that the monetary base is exogenous, the order
of this moving average polynomial will be equivalent to the order of the
expression α2ΘBΩB or φBΓ B∆12, whichever is greater.

The FE for prices (P) is shown in appendix A to be

γ1ΦφBφYΓBΓY∆12r Pt = [Φα2 − β1∆Ψ1]φYΓYΘBΩBu4t

+ [−Φα1 − β1∆Ψ2]φBΓBΘYΩYu5t

+ φBφYΓBΓY∆12[−Φu1t + Φu2t − β1∆vt].

(3.24)

Once again, seasonality is seen to be induced on an endogenous variable
only as a result of exogenous seasonality. This fact is evident from the
presence of the ∆12 operator and the seasonal polynomials Γ B, ΓY, ΩB,
and ΩY. As occurred in the FE for money, the AR side of (3.24) is in the
form of the multiplicative seasonal time series model, and the MA portion
is not. In fact, the MA portion appears to border on the unintelligible.
However, some insights can be obtained from this representation.

In order to gain some understanding of (3.24), suppose φB = φY = ΓB =
ΓY = 1 and that ΩB = ΩY = (1 − L12), then (3.24) can be rewritten as:

γ1Φ∆12r Pt = ∆12[(Φα2 − β1∆Ψ1)ΘBu4t

+ (−Φα1 − β1∆Ψ2)ΘYu5t − Φu1t + Φu2t − β1∆vt].

(3.25)

Equation (3.25) now appears to be in the terms of the general multiplica-
tive time series model. However, it is not, because both Ψ 1 and Ψ 2 are
expressions involving seasonal polynomials and are, in general, of infinite
length. Therefore, it is convenient to consider two possible cases for this
expression, when β1 = 0 and β1 �= 0.
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Suppose that the classical quantity theory of money were to be consid-
ered. In that case, (3.25) reduces to

∆12r Pt = ∆12[α2ΘBu4t − α1ΘYu5t − u1t + u2t], (3.26)

which is obtained by allowing the exogenous variables to have no AR poly-
nomials and for the seasonality to approach the seasonal means problem
as well as having β1 = 0 and γ 1 = 1 (i.e. restricting the interest rate elas-
ticity of the demand for money to zero and requiring demand for real cash
balances to the homogeneous of degree zero in the price level). Notice
that, once again, as the economic model is simplified, so is the implied
stochastic structure of the output variables of the system.

The implication of (3.26) is that the seasonally differenced rate of infla-
tion would be a pure MA process. It would be in the form of the multi-
plicative seasonal model with the seasonal moving average polynomial of
order 1 and parameter value close to 1.

As was noted previously, the model has been carried through under the
assumption that the us in (3.26) are independent of one another. Under
such an assumption the order of the monthly MA process would be of the
order of α2ΘB or ΘY, whichever is larger. However, u4t and u5t may not
be independent either contemporaneously or through time, and similarly
for u1t and u2t.

Neither of these complications would alter the basic economics of the
model but could affect the orders of the MA portions of the FEs. There-
fore, if the classical quantity theory of money is true, one might expect to
observe an ARIMA model for the natural log of prices to be of the form
(0,1,q) (0,1,1)12, where q is determined by ΘY, ΘB and the covariance
structure between the error terms.

The second case of (3.25) to be considered allows β1 to be different
from zero. In order to gain insight into this case, it is necessary to analyze
the expressions for Ψ 1 and Ψ 2 in greater detail. Rewriting (3.25) yields

γ1Φ∆12r Pt = ∆12[Φα2ΘBu4t − Ψ α1ΘYu5t − Φu1t

+ Φu2t − β1∆vt] − ∆12β1∆[Ψ1ΘBu4t + Ψ2ΘYu5t],

(3.27)

or

γ1Φ∆12r Pt = Wt − ∆12β1∆

∞∑
j=0

( −β1

γ1 − β1

) j [
α2π

(B)
j+1(L)ΘBu4t

− α1π
(Y)
j+1(L)ΘYu5t

]
. (3.28)
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Now, under the assumption that the structural coefficients are just con-
stants, Wt is a finite MA polynomial of order equal to the maximum order
of ∆, ΘB or ΘY, with seasonal polynomial ∆12. The second term is more
complicated.

The expressions π
(B)
j+1(L) and π

(Y)
j+1(L) merely represent the weighting

scheme applied to the infinite past history of ∆12r Bt and ∆12rYt , respec-
tively, to obtain the forecast of these variables at time t, for time t + j + 1.
This would imply that the FE for prices would involve an infinite MA
polynomial. It is very difficult to evaluate the form of this polynomial for
anything except the most trivial cases. However, if either ΘB, ΘY, ΩB, or
ΩY are of degree greater than zero, then the polynomial will be of infinite
length. In finite samples, this infinite MA model may be indistinguish-
able from a more parsimonious AR representation. If the decay of this
infinite MA is very slow, then one might even be led into differencing the
series or estimating an AR polynomial that had a root close to the unit
circle. It is even more interesting to note that the presence of Ψ 1 and Ψ 2

is due to the necessity of generating expectations and has an apparent
smoothing effect on the autocorrelation structure of ∆12r Pt , resulting in
the seasonality in prices that appears much less pronounced.

The last FE to be considered is the one implied for the nominal interest
rate (i). It can be written as follows:

γ1ΦφBφYΓBΓY∆12it = γ1Ψ1φYΓYΘBΩBu4t + γ1Ψ2φBΓBΘYΩYu5t

+ φBφYΓBΓYγ1∆12vt . (3.29)

As has occurred for money and prices, seasonality has occurred in the
nominal interest rate. In addition, the r.h.s. of (3.29) does not indicate
that a multiplicative time series model is the correct representation of the
data if the model is true but that some mixture of the multiplicative and
additive models would be more appropriate. However, if it is assumed
that ΓB = ΓY = 1 and ΩB = ΩY = ∆12, then (3.29) can be rewritten as

ΦφBφY∆12it = ∆12[Ψ1φYΘBu4t + Ψ2φBΘYu5t + φBφYvt],

(3.30)

or allowing φB = φY =1, as

Φ∆12it = ∆12[Ψ1ΘBu4t + Ψ2ΘYu5t + vt]. (3.31)

Notice that the terms Ψ 1 and Ψ 2 appear here as they did in the FE for
prices. Consequently, if β1 �= 0, then the data may indicate the need for
an AR polynomial for ∆12it. In addition, if Ψ 1 and Ψ 2 imply weights
that decline very slowly, then ∆12it may appear non-stationary in finite
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samples. Similarly, the presence of Ψ 1 and Ψ 2, most likely, indicates that
the seasonality in the interest rate is greatly attenuated.

Alternatively, simplifications of the economic model naturally lead to
a simplification of the stochastic structure of ∆12it. If β1 = 0, i.e. the
classical quantity theory is true, with some algebraic manipulation, (3.3)
reduces to

∆12it = α2(ΘBΩB − 1)Fu4t − α1(ΘYΩY − 1)Fu5t + ∆12u3t ,

(3.32)

where u3t is obtained from the expression for ∆12vt in (42) and F is
the forward shift operator so that F j zt = zt+ j . Therefore, the univariate
model for the nominal interest rate might well be expected to follow
something similar to a (1,0,q) (0,1,1)12 or (0,1,q′) (0,1,1)12 process, where
q and q′ would be determined by ΘB and ΘY and the covariance between
u4t and u5t.

A summary of the FEs discussed in this section are presented in table
9.2. For comparison, both the general and the simplified versions are
presented.

3.3.1 FEs and the census X–11 adjustment procedure In light of the work
done by Cleveland (1972), who found a stochastic model for which the
X–11 procedure is nearly optimal in the sense of conditional expectation,
it is interesting to analyze the stochastic structure implied by the economic
model to see if and when the model might imply a structure for which
the X–11 method, for example, is appropriate. The model developed by
Cleveland is

(1 − L)(1 − L12)yt = (1 − 0.28L + 0.27L2 + 0.24(L3 + · · · + L8)

+ 0.23L9 + 0.22L10 + 0.16L11 − 0.50L12

+ 0.34L13 + 0.07L14)ct , (3.33)

where ct is a white-noise error term.15 This suggests that for data having an
autoregressive structure (1 − L) (1 − L12) and having a moving average
structure of length 14 and similar to that specified in (61), the X–11
procedure may do a fairly accurate job of decomposition.

Consider, for example, the FE for the money stock. From (3.33) and
(3.23), it can be seen that, if the economic model is correct and if φB and

15 That is, for stochastic processes very similar to the one he derives, the seasonally adjusted
data created by the X–11 can be considered approximately equal to the conditional
expectation of a trend component, given the observed series.
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ΓB are identically equal to 1, then

∆12rMt = α2ΘBΩBu4t + ∆12u2t , (3.34)

or

(1 − L) (1 − L12)-nMt = T(L)ut , (3.35)

where T is at least of order 12 and maybe higher depending on the order
of α2ΘBΩB. Equation (3.35) suggests that the X–11 procedure may pro-
vide a satisfactory decomposition of �n Mt under some restrictions on the
behavior of the exogenous variables. Though T(L) is not likely to conform
exactly to the MA process described in (3.33), the AR position is iden-
tical. On the other hand, if φB or ΓB are not one, i.e. if the exogenous
variables display autoregressive properties, the X–11 procedure could
produce grossly inaccurate results.

This analysis can also be done with the FE for prices and the interest
rate. Consider (3.25) as the FE for prices. If γ 1Φ = γ 1(γ 1 − β1) is
not a constant (i.e. contains a lag structure), the economic model would
be indicating AR polynomials and, hence, a departure from the type of
process for which the X–11 procedure is considered appropriate.

3.3.2 FEs and Box–Jenkins multiplicative seasonal model An additional
point of interest is that the AR portion of all the FEs are already in the
form of the multiplicative seasonal time series model, discussed in . . . sub-
section [2.3] . . . However, the MA portions do not appear to factor into
seasonal and non-seasonal polynomials. In fact, the models, in general,
imply a mixture type of model that contains some aspects of a multi-
plicative nature and others of an additive nature. This suggests that the
properties of this type of mixed model should be investigated as a start-
ing point for developing methods of adjustment. It would be of interest,
however, to determine a set of conditions under which the theory would
predict the multiplicative model. For the FE for the money stock, a suffi-
cient set of conditions is to let ΩB

.= ∆12 = (1 − L12) and ΓB = 1, which
yields, from (3.23),

φB∆12rMt = ΩB(α2ΘBu4t + φBu2t). (3.36)

Finally, if φB = 1, (3.36) reduces to a very simple pure seasonal moving
average model

∆12rMt = ΩB(α2ΘBu4t + u2t). (3.37)

These assumptions are equivalent to stating that the process generating
the monetary base has no autoregressive polynomials associated with it,
neither seasonal nor non-seasonal, and that the seasonality in the base is
very close to following the seasonal means model. (See . . . subsection



360 Charles I. Plosser

[2.3] . . .) Recalling that u4t and u2t are assumed independent, and, con-
sidering the case where α2 is just a constant, the r.h.s. of (3.28) reduces
to a monthly MA polynomial having a degree that is equal to the degree
of ΘB and a seasonal polynomial of first degree and parameter value
of approximately 1. Under such circumstances, the model implied for
the natural log of money would be written as (0,1,q) (0,1,1)12, where q
depends on the properties of ΘB.

Similarly, (3.26) represents a multiplicative formulation for the FE for
the price variable. In this case, both ΩB and ΩY need to approximately
equal (1 − L12), ΓB, and ΓY equal to 1, and, in addition, the quantity
theory of money must hold so that β1 = 0 and γ 1 = 1.

3.3.3 FEs and dependence of seasonality on structural assumptions
Because the FE for the money stock is reasonably simple, it is instructive
to investigate it further. In particular, consider the effects on key aspects
of the autocorrelation structure of ∆12rMt under some different assump-
tions about the polynomials and parameters on the r.h.s. of (3.34).

∆12rMt = wt = α2ΘBΩBu4t + ∆12u2t . (3.38)

Assume that the base is truly exogenous, i.e. the model is correct so that

E(u4tu2t−k) = 0 for all k. (3.39)

By assumption,

E(u4tu4t−k) =
{
σ 2

4 if k = 0
0 if k �= 0

. (3.40)

Although it has been assumed, so far, that u2t is serially uncorrelated,
it is interesting to relax this assumption somewhat. Recall that in this
model u2t incorporates changes in the money multiplier. Now, the money
multiplier may have seasonal properties that are unspecified here. In order
to keep the problem manageable, assume that changes in the money
multiplier are random except for a seasonal effect. That is, assume that

E(u2tu2t−k) =


σ 2

2 if k = 0

γ
(2)
12 if k = 12

0 otherwise,

(3.41)

which implies that changes in the multiplier follow a seasonal MA(1)
process. If the multiplier were non-autocorrelated, then, of course,
γ

(2)
12 = 0. Finally, assume that

ΘB = (1 − ΘL), (3.42)
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and

ΩB = (1 − ΩL12). (3.43)

Under these assumptions, the variance of ∆12rMt or wt can be shown to be

γ
(w)
0 = α2

2(1 + Θ2)(1 + Ω2)σ 2
4 + 2

(
σ 2

2 − γ
(2)
12

)
. (3.44)

A convenient method of getting an idea of how different assumptions
affect seasonality is to investigate the autocorrelation coefficient of wt at
lag 12. The autocovariance of wt at lag 12 is simply

γ
(w)
12 = −α2

2Ω(1 + Θ2)σ 2
4 − σ 2

2 + 2γ
(2)
12 , (3.45)

and the autocorrelation coefficient

ρ
(w)
12 = γ

(w)
12

γ
(w)
0

= −α2
2Ω(1 + Θ2)σ 2

4 − σ 2
2 + 2γ

(2)
12

α2
2(1 + Θ2)(1 + Ω2)σ 2

4 + 2
(
σ 2

2 − γ
(2)
12

)
= −α2

2Ω(1 + Θ2)h − (
1 + 2ρ

(2)
12

)
α2

2(1 + Θ2)(1 + Ω2)h + 2
(
1 − ρ

(2)
12

) , (3.46)

where h = σ 2
4 /σ 2

2 and ρ
(2)
12 = γ

(2)
12 /σ 2

2 .
If ρ

(2)
12 = 0 and Ω = 1, then it is clear that ρ

(w)
12 is known with certainty,

since the process for the money stock is simply the dummy variable case.
That is,

ρ
(w)
12 = −1

2
· α2

2(1 + Θ2)h + 1
α2

2(1 + Θ2)h + 1
= −1

2
. (3.47)

However, if there is seasonality in the multiplier, meaning ρ
(2)
12 �= 0, then

the implied value of ρ
(w)
12 is

ρ
(w)
12 = −1

2
· α2

2(1 + Θ2)h + 1 − 2ρ
(2)
12

α2
2(1 + Θ2)h + 1 − ρ

(2)
12

, (3.48)

which, for ρ
(2)
12 > 0, is greater than − 1

2 (or |ρ(w)
12 | < 1

2 ), even though Ω = 1.
Assume that the Fed. was interested in creating the simplest seasonal

pattern possible in the money supply. If they knew the parameter α2 and
the stochastic structure of the money multiplier (σ 2

2 and γ 2
12 in this case),

then values of Θ, Ω, and σ 2
4 could be chosen to obtain a ρ

(w)
12 of − 1

2 , which
would imply that the seasonal pattern in the money supply was merely
a stable seasonal mean. It would then be straightforward to either adjust
the money supply or, for the Fed., to design an optimal control scheme
to effectively eliminate seasonality in the money supply.
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3.4 Summary

In this section, the basic framework of a simple monetary model was
postulated. Explicit assumptions were made regarding several important
aspects of the model. First, the assumptions were made that the monetary
base and real income are exogenous inputs to the system. This places the-
oretical restrictions on the covariance matrix between these variables and
the endogenous variables of the system that can be checked against the
data. Another issue of importance is the question of whether the economic
structure generates seasonal fluctuations or acts only as a transmitter of
seasonality. In order to shed light on this issue, it was hypothesized that
seasonality enters the system only through the exogenous variables. This
approach would be consistent with the system transmitting only seasonal-
ity. It was shown that this resulted in seasonality being induced into each
and every endogenous variable and the FEs and, more importantly, the
TFs obtained from the model display restrictions concerning the loca-
tion and magnitude of certain seasonal parameters and polynomials. An
important point to make concerning the FE is that, due to cancellation,
the AR portion of the endogenous variables is not identical. Therefore,
the estimated univariate models should not be restricted to have the same
AR polynomials in the empirical work.

In addition, the theory suggests that, in general, the multiplicative sea-
sonal model is not implied by the structure. Instead, a more general
structure is suggested that contains both additive and multiplicative char-
acteristics. The model was then investigated in order to ascertain a set of
assumptions sufficient to allow the theory to predict that a multiplicative
seasonal model would be adequate in describing the FEs. It was found
that, as the seasonality in the exogenous variables approached the sim-
ple seasonal means case and as the economic structure approached the
classical quantity theory of money, the FEs approach a special case of the
multiplicative seasonal model, or the seasonal means case. These results
indicate that decomposition schemes, based on the general multiplicative
time series model, would be inappropriate, since they are not suggested by
the economic structure. In fact, it is clear that the multiplicative seasonal
model will not, in general, result from linear models.

Another point investigated in this section was when the economic
model implied that the stochastic behavior of the output variables would
be of a form, similar to that suggested by Cleveland (1972), which might
be appropriate for decomposition by the X–11 procedure. Finally, it was
shown how an economic model can explain explicitly why seasonality in
interest rates and prices does not appear to be important. The existence
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of an expectations mechanism has an attenuating effect on the seasonality
and the autocorrelation structure of these series.

4 Empirical results

The purpose of this section is to demonstrate how one might utilize avail-
able data to test a theoretical economic model, such as the one outlined
and analyzed in the previous section.

4.1 Analysis of the univariate time series

In this section, the results from the analysis of the univariate time series
properties of the raw or unadjusted data for each variable in the model
are reported and compared with the implications of the FEs, as discussed
in previous sections. The techniques used are essentially those developed
by Box and Jenkins (1970) for the analysis of time series data as well
as several other techniques, including likelihood ratio tests and posterior
odds ratios, as utilized by Zellner and Palm (1974, 1975) and Zellner
(1975). In general, interest centers on identifying and estimating models
in the form, described in . . . subsection [2.3] . . . ,

φp(L)ΓP(Ls )∆D
s ∆d zt = Θq (L)ΩQ(Ls )at ,

written as an ARIMA model of order (p, d, q) (P, D, Q)s. It is assumed that
at is white noise and that the roots of φ(ξ) = 0 and Θ(ξ) = 0, the monthly
polynomials and Γ (ξ) = 0 and Ω(ξ) = 0, the seasonal polynomials lie
outside the unity circle so that wt = ∆d∆D

s zt is stationary and invertible.
It is important to note that, for a stationary series, the autocorrelations

approach zero as the lag increases, so that persistently high values for
the estimated autocorrelations at increasing lags might suggest the need
for differencing. In addition, and a point that is often overlooked, is that
sample autocorrelations need not have large values for a non-stationary
series. All that is required is that the series generate a sample autocor-
relation function that remains relatively flat. Similarly, a persistence of
high or stable values at lags 12, 24, . . . , etc. (with monthly data) would
suggest the need for annual or seasonal differencing.

However, in many instances, the question of the appropriateness of
differencing or the question of stationarity is not readily resolved. Unfor-
tunately, tests and test statistics that rely on the asymptotic distribu-
tion of the observation vector are questionable, since the distribution of
these statistics, when the series exhibits homogeneous non-stationarity,
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is generally not known.16 In light of this, it would seem inappropriate to
use standard testing procedures to test for stationarity. One alternative
to consider is to proceed with differencing and test for a root of one in
the resulting model’s MA polynomial. If there is a root of 1, the process
becomes non-invertible, and there is an indication of over-differencing.17

However, two caveats must be mentioned here. First, Nelson (1974)
has shown that, for the first order moving average process, the standard
error of the parameter estimate, based on an asymptotic normal distribu-
tion, is under-stated in sample sizes as large as 100. In addition, it is not
clear what the distributional properties of the standard tests are under
the null hypothesis, i.e. when the moving average parameter equals 1.
Consequently, the approach followed in this work has been to utilize the
standard techniques for the identification of the ARIMA models while,
at the same time, being aware of the problems that might arise in finite
samples when the stationarity of the series is in question. Recall that,
based on the theory in the section on the analysis of an economic model,
this problem may arise with both the model for prices and the model for
interest rates.

It is useful, at this point, to make a few comments concerning the
data being used in this analysis. As with all other econometric work,
there is the recurring problem of finding data that adequately measure
the quantities which are of theoretical interest. In this case, even the
theoretical quantities are, in some instances, not universally agreed upon,
such as the appropriate definition of the money stock, the appropriate
measure of income, and the use of short versus long-run interest rates.

The actual data used in this study are detailed in appendix B (p. 380).
The series are made up of monthly observations from January 1953
through July 1971. The net source base, as calculated by the St. Louis
Federal Reserve Bank, is used as the unadjusted monetary base. The
money stock is represented by M1, currency plus demand deposits. The
interest rate is the yield on one-month Treasury bills, as compiled by
Fama (1975). These data should constitute reliable measures of the the-
oretical quantities. The remaining two series are somewhat less reliable
measures for the variables of interest. The price level is represented by
the Consumer Price Index (CPI) and real income (output) is measured
by the Index of Industrial Production (IIP). Both of these measures are
apt to contain measurement error by the mere fact that they are indexes.
Sampling properties of these indexes might also cause problems, because
the individual components of each index are not measured every month.

16 See White (1958) and Anderson (1959).
17 See Plosser and Schwert (1976).
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Figure 9.3 Monetary base, seasonally adjusted, 1953–1971, billion
dollars

Plots of the raw data are presented in figures 9.3–9.7. Upon inspection
of these charts, it becomes apparent why the issue of the appropriate
level of differencing becomes difficult. In particular, the growth rates
of the monetary base, M1, and the CPI seem to be increasing steadily
throughout the time period. However, this does not appear as strikingly in
the IIP. The interest rate appears nonstationary or highly autoregressive,
which was noted in the theoretical discussions as something that might
be observed.

Table 9.3 summarizes the results of a univariate time series analysis
of the different series.18 The first two series, �n(B) and �n(Y), represent
the exogenous variables in the system, and the models shown in table 9.3
describe the processes governing them. These findings indicate that there
are no autoregressive polynomials associated with the exogenous variables
and that the moving average polynomials are of low order. In terms of the
notation of the model, φB = ΓB = φY = ΓY = ΘB = 1, ΩB = (1 − 0.897
L12), ΩY = (1 − 0.915 L12), and ΘY = (1 + 0.247 L + 0.157 L2).

18 These calculations, as well as many others in this chapter, were performed using a set
of time series programs developed by C. R. Nelson, S. Beveridge, and G. W. Schwert,
Graduate School of Business, University of Chicago. The reader is referred to Plosser
(1976) for a more complete documentation of the development of these results.
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Figure 9.4 Index of industrial production, seasonally adjusted, 1953–
1971 (base: 1967 = 100)
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Figure 9.5 M1, Seasonally adjusted, 1953–1971, billion dollars
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Figure 9.6 Consumer price index, seasonally adjusted, 1953–1971
(base: 1967 = 100)
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Figure 9.7 Yield on one-month Treasury bills, 1953–1971 (rate of
return per month)
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An analysis of the �n(M) reveals that an (0, 1, 3) (0, 1, 1)12 appears as
an adequate representation of the data. (Note that this is the same model
used in generating the forecasts in the first section.) Since this variable
is an endogenous variable in the system, the next step is to interpret
these results in light of the theoretical FEs implied by the model, (3.23).
Since the SMA1 parameter for this model is much less than 1, it appears
that if the theory is correct, the model can not be factored exactly, so
the multiplicative model is at best an approximation. Also, since u4t in
(3.23) is non-seasonal by construct, the fact that the seasonality is slightly
different in the process for rMt and r Bt indicates the possibility of seasonal
influences from u2t. As noted and discussed earlier, this could be due to
seasonal fluctuations in the multiplier.

Another point is that the monthly MA polynomial is of order 3 in this
case, and, under the assumption of constant coefficients in the structure,
the theory suggested that the order should be the same as the order of
ΘB, which is zero. This might suggest that something else is entering
the FE. A likely possibility is a term that involves u5t, the error from
the process generating real output. This could occur, as was suggested
in . . . section [3] . . ., if the base and real output were not independent.
Another possibility is that u2t is autocorrelated at low lags as well as at
seasonal lags.

The second endogenous variable to be analyzed is the price level for
which the CPI is used as representative. Recall, from the discussion
in . . . section [3] . . ., that the analysis indicated that seasonal differences
of the rate of inflation may very well appear as an AR process or even
non-stationary in finite samples. Although an examination of the sample
autocorrelation structure does not suggest non-stationarity, the results
of fitting an ARIMA model to ∆12r Pt do point to that possibility. The
model developed for this combination of differencing is a (1, 1, 1) (0,
1, 1)12. The estimated values are presented in table 9.3. Note that the
AR parameter is very close to one, suggesting non-stationarity. Unfortu-
nately, as was indicated previously, the standard statistical tests cannot be
performed here with satisfactory results.19 If the data are differenced, the
preferred model appears to be (0, 2, 1) (0, 1, 1)12. Since it is difficult to
compare these models, the question of which one is preferred is left unan-
swered. However, the mere fact that this situation occurs lends support
to the theory which suggested that such a phenomenon might exist.

19 It is important to note that the AR and MA parameter appear close to each other, and,
therefore, the possibility of redundancy must be considered. If the (1, 1, 1) (0, 1, 1)12
model is redundant, then the parameters are not identified and the usual test procedures
can not be utilized. However, a study of the standard errors of the parameter estimates
and the correlation coefficient between them does not suggest redundancy or indicate
that they are not identified.
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The last of the endogenous variables is the nominal interest rate. The
data used are the yields on one-month Treasury bills. The same problem
is experienced here that was experienced with the univariate model for
prices. The theory suggests that either an AR model of the seasonal differ-
ences or even apparent non-stationarity of the seasonal differences might
be observed in finite samples. It was seen that this was a result of the
expectation mechanism at work. Note that, for the (1, 0, 2) (0, 1, 1)12

model presented in table 9.3, the autoregressive coefficient is close to
1. Once again, the standard testing procedures can not be utilized here
when the null hypothesis is that the process is non-stationary. However,
the model appears reasonably well behaved, showing no signs of redun-
dancy or instability over time. Alternatively, the (0, 1, 2) (0, 1, 1)12 also
appears adequate, given the data.

The univariate time series models analyzed here display a remarkable
degree of consistency, not only in the monthly process but in the sea-
sonal process as well. The actual models chosen are summarized in the
following manner:

�n(Bt) : (0, 1, 0)(0, 1, 1)12

�n(Yt) : (0, 1, 2)(0, 1, 1)12

�n(Mt) : (0, 1, 3)(0, 1, 1)12

�n(Pt) : (0, 2, 1)(0, 1, 1)12 or (1, 1, 1)(0, 1, 1)12

it : (0, 1, 2)(0, 1, 1)12 or (1, 0, 2)(0, 1, 1)12

Though these parsimonious models should be interpreted as FEs with
caution, the analyses indicate a reasonable amount of compatibility with
the theory, as proposed in . . . section [3] . . . If one were to rely solely on
these results, several hypotheses about the structural model could not be
rejected. For instance, since the AR portions of the exogenous variables
are of degree zero, the AR portions of the endogenous variables should
be of degree zero or greater. In fact, for prices and interest rates, the cases
where the AR polynomials are greater than zero were exactly those that
were suggested by the expectation mechanism. This speaks well for the
hypothesis regarding rational expectations. Secondly, all of the models
displayed a very similar seasonal moving average polynomial. The theory
suggested that if ΩB = ΩY = ∆12, then the seasonal polynomials for the
endogenous variables could be factored out, and the seasonal multiplica-
tive model would be the appropriate representation with a seasonal mov-
ing average polynomial close to ∆12. With the exception of the process
for the money supply that has an SMA1 coefficient of 0.469, the sea-
sonal moving average parameter for the remaining endogenous variables
was indeed close to 1 (0.92 for prices and 0.90 for the interest rate).
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The results described in the previous paragraph should not be regarded
as conclusive but suggestive of further analysis. The results of the transfer
function analysis in the following subsection will provide further checks
on the adequacy of the model as well as suggestions for possible modifi-
cation.

4.2 Analysis of the transfer functions

The next step in the analysis of the model entails the estimation of the
TFs. These distributed lag models, which express the current endogenous
variables in the system in terms of current and past exogenous variables,
are initially developed under the assumption that the model has been
properly specified concerning which variables are endogenous and which
are exogenous. However, this is not an innocuous assumption and should
be considered an important part of the specification of any econometric
model that should be checked against the data.

In this chapter, use will be made of the cross-correlations between the
residuals from the TF estimation and the various prewhitened exogenous
variables. Under the null hypothesis that the model is correctly specified
these cross-correlations are distributed independently with zero mean
and large sample variance of 1/T, where T is the sample size. If these
cross-correlations between the current residual and future prewhitened
inputs are non-zero, then the suspicion must be that feedback is likely to
be occurring. This simple test should provide a check on the specification
of the exogenous variables in the model.20

Table 9.4 reports the estimated TFs.21 These results provide addi-
tional checks on the specification of the model presented in . . . section
[3] . . . Based on the model, the TF for the nominal money stock is given
by (3.17). Consequently, if the model is correctly specified, the structural
coefficient α2 can be directly estimated. Also of interest is the implication
on the error structure of (3.17). As was pointed out earlier, the error
structure of the estimated model should display a seasonal moving aver-
age polynomial of the form (1 − L12). However, this polynomial may be
affected by seasonal autocorrelation in u2t.

The model presented in table 9.4 suggests an estimate of α2 of 0.172
with an estimated standard error of 0.053. One would expect this param-
eter to be in the neighborhood of 1.0, i.e. the elasticity of M1 with respect

20 See Haugh (1972) and Plosser (1976) for further discussion of this point.
21 The observant reader may note that σ̂ 2

a appears only slightly smaller and sometimes larger
in the estimated TFs than σ̂ 2

u obtained from the univariate models. This is due to the
estimation techniques used. The univariate models are estimated using backforecasting,
while the TFs are not. See Box and Jenkins (1970) for a discussion.
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to the base should be close to 1. Furthermore, the results indicate a sig-
nificant amount of autocorrelation in u2t. In particular, as was concluded
from the univariate model, seasonal autocorrelation seems to be present,
as evidenced by the seasonal moving average parameter being substan-
tially different from 1. These results indicate that the base should not be
considered the sole source of seasonality in M1.

Finally, the diagnostic checks applied to this model indicate evidence
of non-zero cross-correlations between the current residuals and future
values of the base. This suggests model misspecification in the sense that
either there is feedback from M1 to the base or that there is a dynamic
relationship between the multiplier and the base. In either case, the results
provide evidence that the base is not the sole source of seasonality in
M1 and that a more complicated money supply relationship needs to be
specified.

Obviously, if the TF for M1 is misspecified, the results should indicate
that the other TFs are also inadequate. In both the TF for prices and
interest rates, the seasonal moving average parameter is less than 1. Fur-
thermore, cross-correlation checks suggest that neither the base nor real
income can be considered exogenous relative to prices. The source of this
problem for the base is the appearance of u2t in the error structure of the
TF for prices. The source of the problem for real income is more likely a
short-run Phillips-curve relationship that is missing from the model. As
for the interest rate equation, the cross-correlations indicate that the base
is virtually independent of the nominal interest rate and that real income,
though significantly related, shows evidence of feedback.

4.3 Summary of empirical findings

The results of the empirical analysis are not supportive of the economic
model detailed in . . . section [3] . . .The weaknesses of the model seem
to stem from the seasonality in the unobserved money multiplier and its
relationship with the monetary base and from the feedback effects indi-
cating that real income is not an exogenous variable. These problems
were clearly pointed out in the TF analysis but were suggested even in
the analysis of the FEs. The FEs did not present enough evidence by
themselves to reject the model, but the seasonal moving average param-
eter in the univariate model for M1, being much less than anticipated,
was indicative of the weakness of the model’s specification.

Certainly, at this point, the analyst attempting to construct a satis-
factory seasonal model of the economy could proceed by modifying the
model presented here in such a way as to eliminate the defects that are
suggested by the analysis. For example, the inclusion of a real sector or



374 Charles I. Plosser

a short-run Phillips curve would be a logical extension and would make
output endogenous. In addition, further consideration must be given to
the specification of the money supply relationship.

Despite the weakness of the model analyzed, it proved useful in demon-
strating the methodological issues and the relevance of the form of anal-
ysis presented in . . . section [2] . . .Clearly, the techniques demonstrated
here can be very useful in analyzing even very simple supply and demand
models for any market.

5 Discussion

In this chapter, an effort has been made to investigate seasonality in eco-
nomic data from a slightly different perspective than has been common
in the literature. Interest is focused on demonstrating a methodology
whereby seasonality can be directly incorporated into an econometric
model. Utilizing this approach, one can determine what is implied about
the seasonal properties of the endogenous variables in the model and use
the implications to check the specification of the model against informa-
tion in the data.

There are several different perspectives from which one can view the
results of this approach. First, for the econometrician it has been shown
how one might build seasonality into a model and check the specification.
Although, in the example analyzed here, the seasonality entered through
the exogenous economic variables, there are possibilities of including
seasonal structural parameters or, in other types of markets, one may
consider including stochastic seasonal variables, such as rainfall, to act
as the driving seasonal force. In proceeding in this manner, the model
builder must carefully consider the possible sources of seasonal variation
in [her] output variables. However, the analyst avoids using data that have
been smoothed, using methods which may not be appropriate for [her]
purposes.

There may still be reasons, however, for obtaining a seasonally adjusted
series. In these cases, it would, of course, be ideal to make use of a
model that would specify the source and type of seasonality. That is,
through the use of an economic model and some economic analysis,
understanding and insights can be gained concerning seasonal variation
in economic time series, e.g. what might cause seasonality to change
through time. Unfortunately, it may not be feasible to construct econo-
metric models for every series that may need to be adjusted. Under these
circumstances, obtaining a seasonally adjusted series based only on the
past history of the series may prove to be necessary. However, it was
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demonstrated that, in general, the stochastic properties of economic vari-
ables in the system are not independent of the economic structure of
which they are a part. Therefore, it would seem appropriate for those
who wish to obtain adjusted series to study the stochastic behavior of the
unadjusted data, investigating its form and properties, prior to adjust-
ment. In making such an analysis, it is useful to realize that the standard
linear econometric models do not imply that the multiplicative seasonal
models of Box and Jenkins (1970), in general, hold. Even in the case
of the exogenous variables following the multiplicative specification, the
endogenous variables would be a mixture of an additive and multiplicative
process.

Many issues, of course, remain unresolved, but it would do no harm to
suggest that econometricians or any consumer of economic data consider
carefully the objectives of seasonal adjustment and why it is that adjusted
data are desired. It may prove very easy to fail to see when one should stop
making corrections and alterations to data once the process has started.
Furthermore, the more the basic data are changed, the more cautiously
any estimated relationship must be regarded, and, certainly, its results
become more difficult to interpret. If some initial model does not provide
an adequate explanation of the phenomenon under study, one should try
to improve the model by explicit introduction of the factors that may have
been omitted.

Seasonality, for instance, can be incorporated into an economic model
in various ways. For example, it seems that the concern for abstract-
ing from seasonality in economic data has stemmed partly from the
belief that somehow economic agents respond to seasonal fluctuations
differently from non-seasonal fluctuations, because these seasonal move-
ments are so highly predictable. Therefore, using data which have not
been adjusted may lead to misleading inferences about the true relation-
ship, because the estimation would be contaminated by the relationship
among the seasonal components. However, one can view this aspect of
the seasonality problem as being part of a broader class of issues that
has received a great deal of attention in the economics literature in the
last few years. This literature is concerned with making the distinction
between anticipated and unaticipated effects. It would seem a natural
extension to merely consider seasonality as then belonging to this larger
class of anticipated phenomena. Similarly, from the standpoint of fore-
casting, one may be concerned only with whether a particular obser-
vation deviates from what might have been anticipated and whether or
not the anticipated portion was seasonal or non-seasonal may be of less
importance.
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APPENDIX A DERIVATIONS OF FEs AND TFs

This appendix details the derivations of the final equations (FEs) and the
transfer functions (TFs) for the monetary model described in . . . subsec-
tion [3.1] . . . . The analyzes and interpretations of these results however,
are primarily conducted in the text and not undertaken here.

The model is written as

r D
Mt

= α1rYt + β1∆it + γ1r Pt + u1t (A.1)

r S
Mt

= α2r Bt + u2t (A.2)

it = r ∗
Pt+1

+ u3t (A.3)

r ∗
Pt+1

= E
t
(r Pt+1 | ·) (A.4)

rMt = r D
Mt

= r S
Mt

. (A.5)

Substituting (A.5) and (A.3) into (A.1) results in

rMt = α1rYt + β1∆(r ∗
Pt+1

+ u3t) + γ1r Pt + u1t . (A.6)

Combining this then with (A.2) and solving for r Pt yields

γ1r Pt = α2r Bt − α1rYt − β1(r ∗
Pt+1

− r ∗
Pt

) − β1∆u3t + u2t − u1t .

(A.7)

Now, for convenience, define

X t ≡ α2r Bt − α1rYt − β1∆u3t + u2t − u1t , (A.8)

and rewrite (A.7) as

γ1r Pt = X t − β1(r ∗
Pt+1

− r ∗
Pt

). (A.9)

Under the assumption of rational expectations, the conditional expecta-
tion of r Pt+1 can be calculated from (A.9)

E
t
(r Pt+1 | ·) = γ −1

1 [E
t
X t+1 − β1r ∗

Pt+2
+ β1r ∗

Pt+1
], (A.10)

or

(γ1 − β1)r ∗
Pt+1

= E
t
X t+1 − β1r ∗

Pt+2
. (A.11)

The same can be done for r Pt+2 , yielding

(γ1 − β1)r ∗
Pt+2

= E
t
X t+2 − β1r ∗

Pt+3
, (A.12)

which substituted into (A.11) gives

(γ1 − β1)r ∗
Pt+1

= E
t
X t+1 − β1

γ1 − β1
E
t
X t+2 + β1r ∗

Pt+3
. (A.13)
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Solving this recursively then yields

r ∗
Pt+1

= (γ1 − β1)−1
∞∑
j=0

(
β1

γ1 − β1

) j

E
t
X t+ j+1. (A.14)

Note that the anticipated rate of inflation is a weighted average of all
expected future values of the exogenous variables. The weighting scheme
itself is determined by the model or structure. The importance of these
future values will, in large part, be determined by the term −β1

γ1−β1
.

In order to generate expectations of future values of the exogenous vari-
ables, the assumption that they are ARIMA processes proves convenient.
In fact, based on the analysis in . . . section [2] . . ., one can interpret
these processes as implying that these variables are generated by some
unspecified structure and that the processes, used as inputs into this sys-
tem, are merely the final equations from the model actually generating
the monetary base and real income. These exogenous variables are then
written as multiplicative seasonal time series models of the type described
in . . . section [2] . . .

φB(L)ΓB(L12)∆12r Bt = ΘB(L)ΩB(L12)u4t (A.15)

φY(L)ΓY(L12)∆12rYt = ΘY(L)ΩY(L12)u5t . (A.16)

Note that ΓB, ΓY, ΩB, and ΩY represent the seasonal polynomials that
have an explicit representation maintained to allow them to be traced
through the model. Taking conditional expectations and dropping the Ls
for convenience produces

E
t
r B t+1 = ∆−1

12

[(
1 − φBΓB

ΘBΩB

)
∆12r B t+1

]
(A.17)

E
t
rY t+1 = ∆−1

12

[(
1 − φYΓY

ΘYΩY

)
∆12rY t+1

]
. (A.18)

Equations (A.17) or (A.18) simply indicate that the one-step-ahead fore-
cast can be written in terms of an infinite distributed lag of all past val-
ues where the weights are determined by the AR and MA polynomials.
Through recursive calculations, one could obtain an expression for the
expected value of any future observation, conditional on the information
contained in the series at time t. That is,

E
t
r B t+ j = ∆−1

12 π
(B)
j (L)∆12r Bt (A.19)

E
t
rY t+ j = ∆−1

12 π
(Y)
j (L)∆12rYt , (A.20)
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where π
(·)
j (L) represents the polynomial in L that gives weights applied

to all previous observations of the exogenous variable to produce the
minimum mean-square error forecast for j periods into the future. Note
that the weights are a function of j, the forecast horizon.

Using (A.3), (A.14) can now be rewritten as

(γ1 − β1)it =
∞∑
j=0

( −β1

γ1 − β1

) j

E
t
X t+ j+1, (A.21)

or as

Φ∆12it = Ψ1∆12r Bt + Ψ2∆12rYt + ∆12vt , (A.22)

where

Φ = (γ1 − β1)

Ψ1 = α2

∞∑
j=0

( −β1

γ1 − β1

) j

π
(B)
j+1(L)

Ψ2 = −α1

∞∑
j=0

( −β1

γ1 − β1

) j

π
(Y)
j+1(L)

∆12vt = ∆12

∞∑
j=0

( −β1

γ1 − β1

) j

× (E
t
u2t+ j+1 − β1E

t
u3t+ j+1 − E

t
u1t+ j+1)

+ (γ1 − β1)∆12u3t . (A.23)

In matrix form, the system can now be written as1 −γ1 −β1∆

1 0 0
0 0 Φ∆12

 rMt

r Pt

it



+
 0 −α1

−α2 0
−Ψ1∆12 −Ψ2∆12

 [
r Bt

rYt

]
=

 u1t

u2t

∆12vt

 . (A.24)

Referring to the first matrix on the l.h.s. as H11, its determinant can be
written as

|H11| = γ1Φ∆12, (A.25)

while its adjoint is
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H∗
11 =

 0 γ1Φ∆12 0
−Φ∆12 Φ∆12 −β1∆

0 0 γ1

 . (A.26)

By premultiplying both sides of (A.16) by H−1
11 and then multiplying

through by |H11|, the following can be obtained:

|H11|
rMt

r Pt

it

 = H∗
11

 0 α1

α2 0
Ψ1∆12 Ψ2∆12

 [
r Bt

rYt

]
+ H∗

11

 u1t

u2t

∆12vt

 .

(A.27)

More explicitly,

γ1Φ∆12

rMt

r Pt

it

 =
 γ1Φα2 0

Φα2 − β1∆Ψ1 −Φα1 − β1∆Ψ2

γ1Ψ1 γ1Ψ2

 [
∆12r Bt

∆12rYt

]

+
 0 γ1Φ∆12 0

−Φ∆12 Φ∆12 −β1∆

0 0 γ1

  u1t

u2t

∆12vt

 .

(A.28)

The set of equations in (A.27) or (A.28) represent the set of TFs for the
system.

The set of FE can be obtained by substituting

[
∆12r Bt

∆12rYt

]
=

[
φBΓB 0

0 φYΓY

]−1 [
ΘBΩB 0

0 ΘYΩY

] [
u4t

u5t

]
= H−1

22 F22

[
u4t

u5t

]
(A.29)

into (A-28), resulting in

|H11||H22|
rMt

r Pt

it

= −H∗
11 H12 H∗

22 F22

[
u4t

u5t

]
+ |H22|H∗

11

 u1t

u2t

∆12vt

 ,

(A.30)
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or, more explicitly,

γ1ΦφBφYΓBΓY

∆12rMt

∆12r Pt

∆12it


=

 γ1Φα2 0
Φα2 − β1∆Ψ1 − Φα1 − β1∆Ψ1

γ1Ψ1 γ1Ψ2

 [
φYΓYΘBΩBu4t

φBΓBΘYΩYu5t

]

+ φBφYΓBΓY

 0 γ1Φ∆12 0
−Φ∆12 Φ∆12 −β1∆

0 0 γ1

  u1t

u2t

∆12vt


(A.31)

The derivations presented here are summarized and analyzed in . . .
section [3] . . .

APPENDIX B SOURCES OF DATA

1. Monetary Base (B) data, seasonally unadjusted, were provided by the
St. Louis Federal Reserve Bank. They are averages of daily figures and
have been subject to no adjustment for changes in reserve margins or
the like.

2. Index of Industrial Production (IIP) data were taken from the season-
ally unadjusted. Federal Reserve Board Production Index, as specified
by the Board of Governors of the Federal Reserve System Statistical Release
G.12.3, “Business Indexes.”

3. Money Stock (M1) data, not seasonally adjusted, are averages of daily
figures for currency plus demand deposits, as specified by the Board of
Governors of the Federal Reserve System Statistical Release H.6, and the
Federal Reserve Bulletin.

4. Consumer Price Index (CPI) data, not seasonally adjusted, were taken
from the US Department of Labor, Bureau of Labor Statistics.

5. Interest Rate (i) data was compiled by Fama (1975) from Salomon
Brothers quote sheets and represent the yields on one-month US
Treasury bills.
All the above data, except for the monetary base and the yields

on the Treasury bills, were taken from the data base as collected by
Data Resources, Inc., as provided to the University of Chicago, Grad-
uate School of Business, through the H. G. B. Alexander Research
Foundation.
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Comment (1978)

Gregory C. Chow

The conference participants can probably be divided into two groups:
Those who believe in using a specific model because they think they have
a good one, and those who prefer not to choose a model but rather to
devise robust methods. Time does not allow me to discuss these opposing
positions. However, I agree with the late Chairman Mao that we should
let a hundred flowers bloom.

Among those who believe in using a model, some would perform mul-
tivariate, and others would perform univariate time series analyzes. The
papers in this session [of the conference] are devoted to multivariate time
series analyzes. In particular, the basic proposition of Charles Plosser’s
[chapter 9] is that the analysis of seasonal fluctuations in economic time
series, and the construction of econometric models, can be made an
integrated process. My comments will be divided into three parts. First,
I will summarize the main features of Plosser’s particular approach to
combine a seasonal model with a traditional simultaneous econometric
model. Second, I will comment on the specific illustrative example used
in his chapter. Third, I will suggest an alternative approach to integrate
seasonal fluctuations with a simultaneous equations model.
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In Plosser’s approach, it is first assumed that the economic model for
the endogenous variables yt and the exogenous variables xt can be written
as

H11(L)yt + H12(L)xt = F11(L)e1t (C.1a)

H22(L)xt = F22(L)e2t , (C.1b)

where Hij and Fij are polynomials in the lag operator L with matrix coeffi-
cients, and e1t and e2t are serially independent random variables. Second,
there exist seasonalities in xt that can be described by the multiplica-
tive seasonal time series models of Box and Jenkins [1970], i.e. H22(L)
and F22(L) take the special form, such that the ith element xi

t of xt is
determined by

Γ (Ls )φ(L)(1 − Ls )D(1 − L)d xi
t = Ω(Ls )Θ(L)ei

2t , (C.2)

where s = 12 if seasonal fluctuations in monthly data are being studied, the
operators (1 − Ls)D and (1 − L)d will serve to difference the original series
seasonally and consecutively, φ(L) and Θ(L) are the usual autoregressive
and moving average operators for the process governing xi

t , and, finally,
Γ (Ls) and Ω(Ls) are seasonal AR and MA polynomials (or polynomials
in L12) that help characterize the seasonalities in the process. Strictly
speaking, all operators in (C.2) should be superscripted by the index i for
the ith exogenous variable, but this superscript has been omitted. The
basic approach is to trace the implications of the particular specifications
of Γ i(Ls) and Ω i(Ls), which are parts of the specifications of H22(L) and
F22(L), respectively, on the transfer functions and the final equations of
the model (C.1a) and (C.1b), thus imposing restrictions on the latter
equations for statistical analysis and testing.

The transfer functions [TFs], often called the final form of an econo-
metric model (to be distinguished from the final equations [FEs], which
will be presented) are obtained by using (C.1a) to express yt as a dis-
tributed lag function of xt and e1t, i.e.

yt = −H−1
11 H12xt + H−1

11 F11e1t . (C.3)

The final equations are obtained by using the identity H−1
11 ≡

|H11|−1 H∗
11, H∗

11 being the adjoint matrix of H11 and |H11| being its deter-
minant, to isolate a (common) scalar autoregressive polynomial in L,
|H11(L)|, for each of the elements of yt, rather than the original matrix
autoregressive polynomial H11(L) for the vector yt

|H11|yt = −H∗
11 H12xt + H∗

11 F11e1t . (C.4)
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Using xt = H−1
22 F22e2t = |H22|−1 H∗

22 F22e2t to substitute for xt in (C.4),
we obtain

|H11||H22|yt = −H∗
11 H12 H∗

22 F22e2t + |H22|H∗
11 F11e1t . (C.5)

Insofar as the specifications of the seasonal AR and MA polynomials
Γ i(Ls) and Ω i(Ls) affect H22 and F22, respectively, they also impose
restrictions, through |H22|, H∗

22, and F22 on the final equations (C.5),
and these restrictions can be confronted with the time series data on the
endogenous variables.

Having briefly described the general approach, let me list its major
characteristics as follows:
1. The linear simultaneous equations model (C.1a) explains the observed

time series yt by the observed xt, rather than the seasonally adjusted
series, as might be supposed.

2. Seasonality in yt is explained solely by the seasonality in xt and not by
seasonality in the parameters or other mechanisms.

3. Seasonality in xt is described by the multiplicative seasonal model of
Box and Jenkins for each exogenous variable separately and not by a
simultaneous multiplicative seasonal model for the vector xt, nor by
some additive model.

4. The algebraic relationships between the specifications of the seasonal
variations in the exogenous variables, such as imbedded in H22(L) and
F22(L) through (C.2) and the final equations (C.5), appear to be very
complicated. Even for medium-size models, it appears difficult to trace
explicitly the algebraic implications of the seasonal equations (C.2) on
the final equations (C.5). Thus, the approach of this chapter might be
applicable only to very small and very specialized models.

5. In general, the transfer functions (C.3) and even the partially final
equations (C.4), where xt has not been eliminated, do not involve
H22(L) and F22(L) and are, therefore, not affected by the specifications
of the seasonal pattern for xt. It is only in the special example, treated by
Plosser, that the seasonalities in xt impose restrictions on the transfer
functions. The reason is the rational expectations hypothesis adopted
in the illustrative example. By this hypothesis, some endogenous vari-
ables will depend on the conditional expectations of xt which, in turn,
are distributed lag functions of past xt−k as implied by the seasonal
model (C.2). Hence, the relations between yt and the lagged exoge-
nous variables, as given by the transfer functions, are also restricted
by the specification of the seasonal pattern given by (C.2).

6. The approach does not yield a decomposition of an economic time
series into seasonal, trend-cycle, and irregular, components. Purely
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for the purpose of measuring the changes in such important eco-
nomic variables such as industrial production, the consumer price
index [CP], and the rate of unemployment net of seasonal effects, the
approach fails to provide an answer.
Concerning the illustrative example, the author is aware of many

of its limitations and shortcomings. I will, however, emphasize several
problems with this example, since they have bearing on the general
applicability of the proposed approach. The simple model explains three
endogenous variables – money stock, a general price index, and the rate of
interest – by two exogenous variables – the monetary base and the aggre-
gate real output – to be measured by the Index of Industrial Production
[IIP]. The first problem concerns the use of the selected exogenous vari-
ables alone to account for the seasonalities in the econometric model.
The first exogenous variable, the monetary base, is a policy instrument.
Why should the monetary authorities determine the monetary base fol-
lowing a certain seasonal pattern that is independent of all the endoge-
nous variables in the economy? There is a general problem of attributing
seasonalities in the policy variables that are independent of the internal
workings of the economy. Are not the increases in the demand for money
during certain seasons, such as the Christmas–New Year holidays, due
to the seasonal pattern of demand itself? Similarly, are not seasonal fluc-
tuations in the Index of Industrial Production due, at least partly, also
to the seasonal pattern of demand? It seems difficult to attribute all the
seasonalities in any reasonable econometric model to the exogenous vari-
ables, as usually defined, without including at least some seasonal dummy
variables that are not used by the author.

The second problem is that the mechanism transmitting the season-
alities in the exogenous variables to the endogenous variables, such as
the first transfer function relating the changes in the money stock to the
changes in the monetary base in the general formulation of table 9.1, is far
too simple to be useful. It is likely that such simple formulations are used
in order to keep track of the algebraic relations between the transfer func-
tions and the final equations, on the one hand, and the seasonal specifica-
tions of the exogenous variables on the other. This example raises doubt
on whether more complicated formulations can be explicitly analyzed by
the approach of this chapter. Third, even in this over-simplified exam-
ple, analysis and interpretation of the implications of the seasonalities in
xt on the dynamic characteristics of yt have encountered difficulties, as
exemplified by the final equation (3.22) for the rate of change in the price
level. Fourth, related to the third problem is the difficulty of obtaining
conclusive results from statistical analysis of the final equations. The final
equations are derived from the many characteristics of the econometric
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model besides the seasonal characteristics of the exogenous variables. To
attribute the dynamic characteristics of the final equations to the seasonal
specifications alone would, therefore, be extremely difficult. Could not
the same dynamic implications for the final equations have been derived
from a different seasonal model combined with different specifications
for the remaining parts of the econometric model? This problem would
surely be more serious for larger models. Fifth, one may question whether
the particular method of trend elimination by way of various differencing
operations is adequate. The requirement appears to exist that, after the
differencing operations, the resulting model should have autoregressive
polynomials having roots which will insure that the time series are sta-
tionary. How much does one sacrifice by restricting the method of trend
elimination to differencing operations and by insisting that only station-
ary models be studied? Sixth, few significant economic conclusions seem
to have resulted from the example.

As the above comments may apply not only to the specific economic
example, one would question the general applicability of the method pro-
posed. There is no question that this chapter has suggested interesting
ideas and methods for analyzing seasonalities in economic time series.
However, unless these problems could be resolved and a serious and
relevant economic application could be provided to demonstrate its use-
fulness, I am afraid that the approach would not be widely accepted by
analysts of seasonalities in economic time series.

By way of providing an alternative approach to combining seasonal
analysis with the construction of an econometric model for cyclical fluc-
tuations, I would like to suggest the following specifications and methods
of analysis . . . Adrian Pagan (1975) has pointed out the possibility of
applying the filtering and estimation methods for state-space models to
the estimation of seasonal and cyclical components in economic time
series. The following suggestion is essentially a combination of an econo-
metric model for the cyclical components with the filtering and estimation
of the seasonal components formulated in a state-space form. Assume,
first, that the vector yt of endogenous variables is the sum of cyclical,
seasonal, and irregular components, as given by

yt = yc
t + ys

t + vt , (C.6)

and, second, that the cyclical component yc
t is governed by the following

model:

yc
t = Ayc

t−1 + Cxt + b + ut , (C.7)

where xt is a vector of exogenous variables and ut is a vector of random
disturbances. The exogenous variables might or might not be seasonally
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adjusted, but this issue does not affect our analysis, since the vector xt,
seasonally adjusted or not, is treated as predetermined. Third, an autore-
gressive seasonal model is assumed for the seasonal component, as illus-
trated by, but not confined to, the simple scheme

ys
t = Bys

t−12 + wt , (C.8)

where wt consists of random residuals. Combining equations (C.7) and
(C.8), we can write the vector zt of unobserved components in the form

zt = Mzt−1 + Nxt + εt , (C.9)

where zt includes both yc
t and ys

t as its first two subvectors as well as the
necessary lagged yc

t−k and ys
t−k to transform the original model (C.7) of

possibly higher order and equation (C.8) of order 12 into first order, the
matrix M will depend on the matrices A and B, the matrix N will depend
on C and b, the vector xt will include dummy variables to absorb the
intercept b of equation (C.7), and εt will depend on ut and wt. Equation
(C.6) can be rewritten as

yt = [I I O]zt + vt (C.10)

Thus, (C.9) and (C.10) are in the standard state-space form, the first
explaining the unobserved state variables zt and the second relating the
observed yt to zt. Given observations on yt and xt, the conditional expec-
tations of the unobserved components of zt can be estimated by the well-
known techniques of Kalman filtering and smoothing, provided that the
parameters A, C, b, and thus M and N, are known.

In practice, the parameters A, C, and b of the econometric model (C.7)
are unknown. One can employ seasonally adjusted data for yc

t , obtained
by a standard seasonal adjustment procedure, and the standard statisti-
cal estimation techniques to obtain estimates of A, C, and b. Using these
estimates, one can then compute estimates of the seasonal and cyclical
components in zt by Kalman filtering and smoothing. The new estimates
of yc

t will serve as new data for the reestimation of the econometric model
(C.7). New estimates of the seasonal components ys

t will result from this
process. I believe that this approach, as well as the approach suggested by
Plosser to combine econometric modeling with the specifications of sea-
sonalities in economic variables, should be further studied and pursued.
In closing, I would like to thank and congratulate Charles Plosser for
having provided us with an interesting, original, and thought-provoking
paper.
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Comment and implications for policy-makers
and model builders (1978)

Raymond E. Lombra

. . . Charles Plosser has [in chapter 9] presented an interesting alternative
procedure for dealing with seasonality in econometric models. The fun-
damental premise he argues is that “economic concepts may be useful
in arriving at a better understanding of seasonality. Within the context
of an economic structure . . . the seasonal variation in one set of vari-
ables . . . should have implications for the seasonal variation in closely
related variables.” In general, this view, articulated by Nerlove (1964, p.
263) and others some time ago, leads one to look beyond the mechanical
approaches for dealing with seasonality, such as the Census X–11 proce-
dure, and instead seek a structural approach. As is well known, the major
problems with the mechanical approaches revolve around defining and
obtaining an optimal decomposition of the unobserved seasonal compo-
nent from the observed series. On the other hand, the major difficulty
associated with a structural approach concerns the identification of the
correct structure. I suspect many of us would agree that the structural
approach is preferable. However, the difficulties associated with making
such an approach operational have led most producers and consumers of
adjusted data to adopt the mechanical approaches as a kind of second-
best solution.1

No doubt, nearly all of our empirical work suffers from problems gener-
ated by using imperfectly adjusted data. However, the major issues revolve

The author expresses his gratitude to Herbert Kaufman and Dennis Farley for helpful
comments during the preparation of this comment.

1 It should be pointed out that producers and consumers of data probably have different
objective functions and face different constraints. A producer like the Census Bureau
must turn out a huge number of series on a timely basis. This being the case, a struc-
tural approach may only be useful as a diagnostic tool, employed from time to time, to
evaluate the output from a mechanical approach. Researchers, on the other hand, desire
to minimize the distortions that seasonal fluctuations can generate in trying to identify
longer-run relationships. Plosser’s chapter is primarily directed at producing a technique
applicable to the latter set of problems.
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Table C.1 Range of M1 growth rates yielded by alternative
adjustment procedures, 1975 (growth rates are expressed as
seasonally adjusted annual percentage rates)

1975 High Low Range

January −2.1 −10.9 8.8
February 4.3 −6.4 10.7
March 11.5 7.2 4.3
April 8.0 1.3 6.7
May 11.3 5.5 5.8
June 19.2 11.7 7.5
July 6.2 2.9 3.3
August 7.0 1.2 5.8
September 6.1 0.4 5.7
October 0.4 −3.3 3.7
November 13.1 3.2 9.9
December 2.8 −6.9 9.7
Average (X) (X) 6.8

Note:
X Not applicable.

around the seriousness of such problems and whether or not an alterna-
tive method for dealing with seasonality, such as Plosser’s, can provide
us with a better understanding of the processes generating seasonality. If
the latter can be accomplished, it may assist the producers of seasonally
adjusted data in improving their procedures and, thereby, aid the users
of such data.

Since the technique developed in Plosser’s approach is applied to a
simple monetary model of the US economy, it might be useful to illus-
trate the type of data problems faced by the Federal Reserve System, the
key user of money stock data in the United States . . . Fry (US Federal
Reserve System 1976b) applied a variety of seasonal adjustment tech-
niques to monthly money stock data. In general, he found that “a variety
of plausible seasonal methods produce roughly similar turning points in
the M1 series, but seasonally adjusted growth rates differ substantially in
the short run” (1976b, pp. 1–2) . . . Table C.1 is part of a larger table
in Fry’s paper (1976b, p. 14). It shows the range of M1 growth rates for
1975, produced by applying eleven different seasonal adjustment proce-
dures to the unadjusted data.2

2 The eleven procedures included various X–11 options (multiplicative, additive moving
seasonal, and constant seasonal), multiplicative and additive versions of a regression
technique, developed by Stephenson and Farr (1972), and a new daily method, developed
by Pierce, VanPeski, and Fry (US Federal Reserve System 1976b, 1976c).
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As can be seen, the average range of monthly growth rates, produced
by the eleven procedures, was nearly 7 percentage points (or $1.7 billion).
Perhaps I am overly sensitive to these results, but, in view of the fact that
the short-run target ranges for M1 specified by the Federal Open Market
Committee are typically 4 percentage points wide, it is a bit unsettling
to learn that the implied confidence interval for the adjusted data is so
wide.3

Another serious problem for the Federal Reserve System concerns the
ex post facto revisions in the seasonal factors that are initially adopted. As
is well known, the factors derived from an X–11-type procedure used to
adjust current data (which, in effect, are forecasts of seasonal factors) will
be subject to revision in following years as the extrapolations of the termi-
nal years in the ratios and moving averages are replaced with actual data.
This procedure along, with the way outliers are handled, often results
in significant ex post facto revisions in the date relative to the data polic-
ymakers initially had available to guide their actions . . . Figure C.1 vividly
illustrates this problem. The first published data for the money stock are
often very different from the revised data, and the revised data tend to
show considerably less variance. It seems clear that the variety of issues
underlying these adjustment problems firmly establishes the need for new
approaches to seasonal analysis.

The primary focus of Plosser’s chapter is to build an econometric model
that contains an explicit specification of the causal sequence generating
seasonality in the endogenous variables. More specifically, the central
hypothesis to be tested is that seasonality enters the system through the
processes generating the exogenous variables. The presumption is that the
structure then transmits the exogenous seasonal impulses to the endoge-
nous variables. An alternative hypothesis, as Plosser recognizes, is that
various parameters in the structure could fluctuate seasonally. The result,
of course, would be observed seasonality in the endogenous variables
without any seasonality in the exogenous variables. The latter hypothesis
would imply a different model for each season and would be considerably
more difficult to specify and estimate.

The simple macromodel constructed to test the hypothesis treats the
monetary base and real income as exogenous, and, therefore, it is assumed
that seasonality enters the system only through systematic movements in
these variables. In addition, the real rate of interest is, in effect, also
treated exogenously, since a constant expected value is assumed.

3 See Lombra and Torto (1975) for a detailed discussion of the role of money stock target
ranges in the strategy of monetary policy.
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As is usually true in applied econometrics, there are a variety of con-
cessions that a researcher must make to translate a theoretical construct
into a model that can be estimated. This being the case, it is often easy
to critique the compromises made in doing empirical work. Of course,
there are a variety of such compromises that Plosser has made. Rather
than trace the problems with the model in detail, it is sufficient to point
out that, when Plosser checked his empirical findings against the restric-
tions implied by the model and accompanying assumptions, he found the
model and assumptions deficient. More specifically, there appeared to be
evidence of seasonality in the structure (particularly the money multi-
plier), and the assumed exogeniety of real income and the monetary base
appeared to be inappropriate. Although the results are, in some sense,
negative, they do reveal the major strength of Plosser’s approach: By con-
structing a model with an explicit specification of the processes generating
seasonality, various restrictions on the model were imposed and could be
checked. This diagnostic checking, in turn, will lead to improved model
specification.

Unfortunately, it would appear that model builders rarely check their
results for the effects of seasonality and for sensitivity to alternative sea-
sonal adjustment procedures for the input data. This void in hypothe-
sis testing has become potentially more serious with the development
of monthly and weekly models. Assuming policy-maker performance, in
the short run, is dependent ultimately on the reliability of short-run data
and the robustness of such models, the potential costs of poor seasonal
analysis are obvious.

The results in Plosser’s chapter probably come as no great surprise to
many of us. For example, if the description of monetary policy in (2.2) is
reasonably accurate, it seems fairly clear that, in the short run, movements
in the monetary base are not exogenous, but rather, are a function in part
of contemporaneous movements in income and interest rates.4 This being
the case, correctly explaining the seasonality in the base will require the
specification of a reaction function for the Federal Reserve System that
captures seasonal objectives.5

More generally, the systematic movement (in contrast to the strictly
seasonal movements) in the money stock over time are the product of

4 To illustrate, the correlation coefficient between the monthly seasonal factors estimated
by X–11 for total reserves (a critical part of the monetary base) and the 90-day Treasury
bill rate for 1960–75 is about 0.6.

5 The seasonal forces the Federal Reserve System may be concerned with might include,
i.e., regular Treasury financings (such as quarterly refundings) and the increase in money
demand over the last half of the year as production, consumption, and borrowing rise in
anticipation of Christmas.
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natural seasonals on the demand side (such as seasonal movements in the
currency: demand deposit ratio) and the supply side (i.e. seasonal aspects
of bank behavior), and the systematic movements in policy as reflected in
the variance of the monetary base. However, the systematic movements
in the base may reflect both cyclical and seasonal phenomena.6

To illustrate, assume that there is a cyclical upswing in economic activ-
ity which lasts eighteen months (January of year 1 through June of year 2)
and that the Federal Reserve system allows the base and, therefore, the
money stock to expand as much as is necessary to hold short-term interest
rates constant throughout the period. Subsequently, we will observe sys-
tematic movement in the money stock in the January–June period of both
years, and I would guess that few would want to characterize such sys-
tematic movement as seasonal. Against this background, I would expect
some systematic movement to remain in the M1 series, even after perfect
seasonal filtering.

In summary, I would want to reserve judgment on the ultimate payoff
of Plosser’s time series approach in this specific area until it can be shown
that a considerably more complex model can, in fact, be successfully esti-
mated. However, on the other hand, Plosser has clearly demonstrated the
need for model builders to consider carefully the souces of seasonal varia-
tion in the endogenous variables, and he has developed a general method
to identify the sources that appears feasible. As he states, “the stochas-
tic properties of economic variables in the system are not independent
of the economic structure of which they are a part. Therefore, it would
seem appropriate for those who wish to obtain adjusted series to study
the stochastic behavior of the unadjusted data, investigating its form and
properties prior to adjustment.”7

Finally, Plosser’s work along with several other . . . papers (Sims 1974;
Wallis 1974; Kaufman and Lombra 1977), amply demonstrate that var-
ious estimated relationships can be quite sensitive to the way seasonality
is handled. My own guess is that such problems will ultimately be solved
only when talented teams of researchers (econometricians, theoreticians,
and institutionalists), like those that combined to build the large macro-
models, can be brought together to extend the work of Plosser and others
on the structure of seasonality.8

6 This issue is discussed in detail in Kaufman and Lombra (1977) and in the . . . report of
the Advisory Committee on Monetary Statistics (US Federal Reserve System 1976a).

7 A good example of the failure to consider structural relationships is the inattention
accorded balance sheet constraints by most producers or users of seasonally adjusted
data.

8 The papers by Engle, Granger, Pierce, and Wallis, . . . [cited in their conference paper],
represent important building blocks in this process.
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Response to discussants (1978)

Charles I. Plosser

In his comment, Gregory Chow lists six characteristics of the general
approach for the analysis of seasonal economic models that I have pro-
posed. I would like to take this opportunity to briefly comment on these
characteristics and clarify some of the issues involved.

Chow’s first point seems to suggest that econometric models should
be built to explain the seasonally adjusted data rather than the observed
series. The notion that seasonally adjusted data are the only data of inter-
est or relevance to the economist for the purpose of testing economic
theories seems to stem, in part, I think, from the over-used notion of
breaking an economic time series into trend cycle, seasonal, and random
components and assuming that the economic model exists solely between
the trend-cycle components. As pointed out in . . . subsection [2.3] . . . of
[chapter 9], this approach could be used and would lead to very explicit
restrictions on the properties of the FEs and TFs. Alternatively, as in the
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approach suggested by Chow in his remarks, one can pose the restric-
tion that the series can be decomposed to the sum of three unobserved
components and obtain seasonally adjusted series first, before the model
is estimated. This seems to me to be a distinct disadvantage. It would
be preferable to set up hypotheses to be tested regarding the decomposi-
tion rather than assume it takes a certain form and then never bother to
investigate the validity of the assumption.

There is another more fundamental reason for not proceeding in
this manner where it is assumed that the appropriate economic model
exists exclusively between the so-called cyclical components. As discussed
briefly at the end of my chapter, the role of anticipations has played an
increasingly important function in economic theory since the perma-
nent income hypothesis was advanced by Milton Friedman. In models
in which expectations play an important role, the appropriate distinction
to be made is between anticipated and unanticipated phenomenon and
not to some arbitrarily chosen decomposition dealing with trend, cycles,
and seasonal components. In making the distinction between anticipated
and unanticipated effects, it would seem appropriate to merely consider
seasonal fluctuations as a contribution, primarily, to the anticipated com-
ponent. If such a model is appropriate, the economist or econometrician
should be considering a different type of adjustment procedure (e.g. a
prewhitening filter that reduces a series to white noise), rather than one
that focuses only on the seasonal component.

The second and third points listed by Chow refer more to the spe-
cific example I considered rather than the general approach. The model
builder certainly has the option to allow structural parameters (elements
of H11 or H12) to vary seasonally as well as to model the exogenous
variables in a different manner. Both of these approaches would have
implications for the forms of the TFs and FEs that could be checked
against the data.

The fourth point raised by Chow is that the algebra is very complicated,
and, therefore, the approach “might be applicable only to very small and
very specialized models.” Clearly, more experience is needed in applying
the approach suggested here, but it is not necessarily true that only small
models can be considered. Many of the characteristics that cause the
algebraic manipulations to be simplified are actually found in many of the
larger econometric models, including either a fully recursive or a block-
recursive structure. Consequently, larger models would not necessarily
be more complicated to analyze.

The fifth characteristic noted by Chow concerns the role of expecta-
tions that was previously discussed. The sixth point asserts that the pro-
cedures do not yield a decomposition into the usual set of unobserved
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components. In light of this discussion, it is not clear whether such a
decomposition is desirable or not. However, analysis of the sort suggested
can be helpful in understanding the types of adjustment procedures that
might be appropriate. The FEs, for example, are in the form of univariate
time series models, and there have been various methods suggested for
decomposing these models if such an adjustment is of interest.

I hope that this discussion clarifies some of the issues in question.
Although our techniques may differ, it is clear that Chow and I both
favor incorporating seasonality into econometric models and feel that
there may be much to learn from doing so.



10 The behavior of speculative prices and the
consistency of economic models (1985)

Robert I. Webb

1 Introduction

Modern financial economic theory suggests that changes in speculative
prices should follow simple time series processes in an informationally
efficient capital market. Moreover, this theoretical implication enjoys
substantial support in the empirical financial economic literature (see
Fama 1970). Yet, the implications of the observed time series behavior
of speculative price changes for the structure of equilibrium models of
asset pricing or information theory do not appear to be fully appreciated.
Simply stated, financial economists have not attempted to integrate time
series analysis with econometric model building along the lines suggested
by Zellner (1979b) and Zellner and Palm (1974).

2 Changes in speculative prices in an efficient capital
market: theory and evidence

Fama (1970) has defined an efficient capital market as one in which
speculative prices fully (and correctly) reflect available information. In
such a market, changes in speculative prices occur only in response to new
information or to reassessments of existing information. The pioneering
empirical work of Working (1934), Kendall (1953), Roberts (1959), and
Bachelier (1964) suggested that changes in various speculative price series
appeared to follow simple time series processes or “fair game” models (in
particular, random or quasi-random walks). Excepting Bachelier, the first
rigorous economic theory consistent with the above empirical evidence
was developed by Samuelson (1965).

Opinions expressed herein are those of the author and do not necessarily represent the
opinions of the Chicago Mercantile Exchange. Earlier versions of this chapter have benefited
from comments by Victor A. Canto, Richard Leonard, Terry Marsh, and especially Arnold
Zellner.
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Samuelson demonstrates that changes in futures prices will follow
martingale or submartingale processes under very general assumptions
concerning the stochastic behavior of spot commodity prices. Although
Samuelson’s theory is illustrated with respect to futures prices it applies
to fluctuations in speculative prices in general. The critical assumption
is that speculative prices are determined in an informationally efficient
capital market.1 Essentially, Samuelson develops a ‘general stochastic
model of price changes’given the assumption of an informationally effi-
cient capital market and without specifying an equilibrium model of asset
pricing. Alternatively stated, Samuelson examines how speculative prices
will fluctuate in informationally efficient capital markets for any equilib-
rium model of asset pricing.2

3 The Zellner–Palm consistency constraints

Zellner and Palm have (1974, 1975) proposed a method of integrating
time series analysis and econometric model building which Zellner
(1979b) has called the SEMTSA (Structural Econometric Modeling
Time Series Analysis) approach. Essentially, Zellner and Palm recognize
that any system of simultaneous equations for a dynamic linear model may
be equivalently represented as a multiple time series process (assuming
of course, that the input variables are generated by autoregressive inte-
grated moving average (ARIMA) processes as well). Further, they con-
tend that one may describe individual final equations [FEs] to a structural
econometric model by univariate ARIMA models for the output variables.
Similarly, the time series model of an input variable may be regarded as
the final equation of the (presumably unknown) model generating it. The
structural econometric model will imply certain restrictions on the final
equations or, equivalently, on the order of the ARIMA models for the
output variables. These restrictions may be tested to assess whether the

1 The assumption of informationally efficient capital markets is not a sufficient condition
for security returns to follow simple martingale processes – an additional assumption, such
as constancy of expected returns, is required. Violation of this additional assumption, of
course, does not necessarily imply that security returns will follow complicated martin-
gale processes. The actual complexity of the time series processes for security returns or
interest rates is an empirical issue.

2 As Fama (1970) has pointed out, Samuelson’s conclusions concerning the fair game
properties of changes in speculative prices may be derived more easily. Essentially, one
need only specify that “the conditions of market equilibrium can be stated in terms of
expected returns and that equilibrium expected returns are formed on the basis of (and
thus fully reflect) the information set.” Simply stated, a sequence of expected returns
or changes in speculative prices is assumed to follow a fair game process with respect
to a temporal sequence of information sets. This suggests that the time series behavior
of speculative prices has implications for both the manner in which new information is
incorporated into prices as well as the time series process by which new information enters
the marketplace.



Behavior of speculative prices 399

structural econometric model is internally consistent.3 Alternatively, the
order of the empirically identified ARIMA process of an output variable
implies certain restrictions on the transfer function [TF] models and on
the time series processes of the input variables.

4 Applications of the Zellner–Palm consistency constraints

4.1 Application to equilibrium models of asset pricing

Ross (1976) has proposed the Arbitrage Pricing Theory (APT) as
an alternative to the simple one-period Capital Asset Pricing Model
(CAPM) of Sharpe (1964). Lintner (1965), Mossin (1966), and Black
(1972). For our purposes, the APT may be conveniently represented by
a linear transfer function model of m asset returns and k risk factors of
the following form:

r j,t = vj (B)Zj,t + vi (B)X i,t + · · · + vk(B)Xk,t + nt , (4.1)

j = 1, . . . , m, i = 1, . . . , k, m > k,

where rj,t is the uncertain return on asset j at time t, vj(B) represents the
transfer function of factor Zj, and nt represents the noise process (which
may be represented by an ARIMA process). In this model, factor Zj,t
represents the expected return on asset j, while factors X1 . . . Xk repre-
sent other risk factors. All risk factors are assumed to follow time series
processes which may be described by multiplicative seasonal ARIMA
models.4

The primary point of contention between the two alternative models
of asset pricing centers on the number and nature of the risk indices
(although the APT also requires fewer restrictive assumptions than the
CAPM). Roll and Ross (1980) present empirical analysis which suggests
that there are at least three or four unique risk factors rather than only
one as the CAPM posits.

The Zellner–Palm consistency constraints can be used to delimit the
class of possible risk factors in the APT asset pricing model by indicating
the time series properties that valid risk factors must possess. Moreover,
the consistency constraints can be used to derive restrictions on the order
of the transfer functions for the APT.

3 Implicit in these constraints are assumptions that the input and output variables may be
suitably described by ARIMA processes. The assumption that input variables follow an
ARIMA process also imposes some restrictions on the form of control of input variables
subject to control.

4 Plosser (1976) argues that seasonality in certain economic time series is not well described
by multiplicative seasonal ARIMA models, as Box and Jenkins (1976) suggest.
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When i = 2, the Zellner–Palm consistency constraints are

p0 ≤ (
pn + r1 + p1 + ps

1 + r2 + p2 + ps
2

)
,

q0 ≤ max
[(

pn + b + r2 + p2 + ps
2 + q1 + q s

1 + s1
)
,(

pn + b + r1 + ps
1 + q2 + q s

2 + s2
)
,(

b + r2 + p2 + ps
2 + r1 + p1 + ps

1 + qn
)]

, (4.2)

where the univariate time series X1 and X2 and noise model n are repre-
sented by ARMA(p1, q1), ARMA(p2, q2), and ARMA(pn, qn) processes,
respectively; the numerator and denominator polynomials in the trans-
fer function model are of order s and r, respectively, and b is the ‘delay
operator’ or lag in response of the output variable to changes in the input
variables. (It should be noted that s need not equal r.) The subscripts
denote the output variable o, input variables X1 and X2, or noise term
nt. The superscript s indicates a seasonal parameter. It should also be
noted that when other possible models are considered the degrees of
polynomials hitting the output variable would be larger than indicated in
inequalities (4.2).

The time series behavior of the output variables for equilibrium mod-
els of asset pricing have already been estimated elsewhere. The empirical
analyses of Working, Kendall and Roberts mentioned earlier as well as
studies by Fama (1965, 1975) and Roll (1966) are consistent with a quasi-
random walk for such variables as stock returns, short-term interest rates,
and changes in grain futures prices. This research suggests that changes
in speculative prices or changes in expected returns may be characterized
by IMA(1) or MA(1) processes. The restrictions on discrete linear com-
bined transfer function models, such as (4.1) above, and the time series
processes for the input variables (when suitably described by ARIMA
models) are derived by substituting in the order for the ARIMA pro-
cess the output variable follows into the appropriate set of consistency
constraints. Obviously, as the number of input variables increases the
consistency constraints become more complex.

If changes in futures prices, stock returns, interest rates, and other out-
put variables from financial economic models follow simple “fair game”
processes such as an IMA(1), then the Zellner–Palm consistency con-
straints impose some fairly strong restrictions on financial structural
econometric models (SEMs). Consider, the least restrictive case for the
APT. Let the delay operator equal zero and assume that the impact
of a change in any risk factor on returns is completely contemporane-
ous. Under such circumstances the Zellner–Palm consistency constraints
require either that the time series process for each of the three or four risk
factors (input variables) follows MA(1) or multiplicative seasonal MA(1)
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processes or a linear combination of the risk factors follows an IMA(1)
process.

4.2 Application to information theoretic models

Goldman and Sosin (1979) posit a model of financial market disequilib-
rium due to uncertainty surrounding the speed of information dissem-
ination (Type 1) and the sequence or order (Type 2) in which traders
are informed. When Type 2 uncertainty is held constant but Type 1
uncertainty exists, then Goldman and Sosin contend that speculators
will always “under-shoot” the price (i.e. not fully impound all informa-
tion). The amount of under-shooting decreases but still remains positive
as the trading interval decreases toward zero (i.e. as continuous trad-
ing is approached). In other words, serial correlation in prices results in
a world where information dissemination is uncertain and information
production is costly.

For convenience of exposition, speculative prices are assumed to be
determined according to (4.1). The interpretation of (4.1) differs from
before, in that it is no longer an equilibrium model and Zj no longer
appears in the model. As before, however, the risk factors change in
response to new information which, in turn, induces price changes. More-
over, prices may respond over time to a piece of new information rather
than immediately change. If changes in speculative prices follow sim-
ple time series processes then the restrictions on the transfer functions
of (4.1) are the same as before regardless of whether capital markets
are informationally efficient. Moreover, to the extent that new (unantic-
ipated) information also follows a white-noise process then this would
imply that information theoretic models which posit a lagged adjustment
to speculative prices are inconsistent with the Zellner–Palm consistency
constraints.5 Simply stated, the simplicity of the time series processes
for observed changes in speculative prices severely restricts the nature of
possible informational flows and financial market disequilibria.

4.3 Additional considerations

The formulation of time series processes as ARIMA models rather than
as high order AR processes serves to economize on the number of
parameters. The use of Box–Jenkins (1976) techniques or single-equation

5 This may not appear to hold in certain empirical applications where data collection meth-
ods induce an apparent lag. That is, data may be reported in intervals which are more
frequent than the market can actually adjust to.
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likelihood ratio tests in the analysis of appropriate time series models for
jointly dependent variables, however, ignores information contained in
the cross-equation covariances of the disturbances or lost in the transfor-
mation necessary to induce variance–covariance stationarity. This prob-
lem may be circumvented through the use of joint tests in a multiple time
series framework. Univariate time series models for output variables may
be identified individually or multivariate identification procedures may
be used.6

A related issue concerns the impact of sampling variability on check-
ing the consistency constraints. Finite sample confidence intervals are
difficult to construct analytically currently, but may be available in the
future. Application of the Zellner–Palm consistency constraints repre-
sents an attempt to exploit available information and is not contingent
upon the identification of a “true” ARIMA model (if, indeed, one even
exists) for the output variable. It should be emphasized that one need not
measure the time series processes of the output variables very sharply to
arrive at conclusions which essentially reject a broad class of models.7

5 Conclusions

The simple time series processes which changes in speculative prices
apparently follow impose strong restrictions on both (dynamic linear)
equilibrium models of asset pricing and models of informational flows and
disequilibria in financial markets. Macroeconomic and monetary models
which posit interest and inflation rates as output variables are similarly
restricted.8,9 Indeed, the absence of relationship between money and

6 . . . Palm (1977) has shown that one “may represent any variable out of a multivariate
normal ARIMA process as a univariate normal ARIMA process. Thus, the analysis of
the likelihood function associated with a single final equation is legitimate.” In addition,
Wallis (1977) has proposed a method of joint estimation. Tiao and Tsay (1983) discuss
multivariate identification methods.

7 There is also a technical problem associated with the use of Box–Jenkins (1976) identi-
fication and estimation techniques which deserves explicit mention. Namely, economic
variable may have ARIMA models of higher order than those identified. This problem
arises whenever economic variables may be characterized by high degree polynomials
where the higher order roots have small but non-zero coefficients. In these cases, the
identification techniques used may ignore the small non-zero coefficients which results
in the identification of a lower order ARIMA model for the variable than actually exists.
Essentially, this results in excluding the low frequency components of the time series.
Naturally, this difficulty may be largely avoided if there are sufficient data to permit a
more thorough investigation.

8 Zellner (1979b) makes a similar observation concerning capital market efficiency. Other
common output variables may also follow simple time series processes. For example . . . ,
Hall (1978) argues that economic theory would predict that consumption should follow
a random walk with drift.

9 See Zellner (1979a). For example, in many monetary models a relationship between the
nominal interest rate and the growth rates of money and real income is specified. In an
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interest rates reported by Pierce (1977) and Feige and Pearce (1976) may
not be an indication of tests with low power as Hsiao (1977) contends,
but rather a reflection of the inadequacy of certain economic models.
Obviously, these restrictions may change if more advanced time series
analytic techniques lead to the identification of a “finer structure” for the
time series processes which changes in speculative prices follow.
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economy,” Sankhyā: The Indian Journal of Statistics; Series C 37, 12–56;
chapter 6 in this volume



11 A comparison of the stochastic processes of
structural and time series exchange rate
models (1987)

Francis W. Ahking and Stephen M. Miller

Zellner and Palm (1974) show that comparing the actual with the
implied stochastic processes generating the endogenous variables
in a system of dynamic structural equations provides important
information about the system’s correct specification. We apply their
methodology to structural exchange rate models. We find that the
log of the bilateral exchange rate is generally well approximated by a
random-walk model. This implies that the stochastic processes
generating the exogenous variables should also be random-walk
models. Our empirical results, however, show that this is not, in
general, the case. We conclude by suggesting a reconciliation of
our results based on a technique developed by Beveridge and
Nelson (1981).

1 Introduction

. . . [T]heories of exchange rate determination have emphasized the asset
approach to foreign exchange markets. As an asset price, the exchange
rate is seen as adjusting rapidly and freely to maintain stock equilibrium.
For example, in the pure monetary approach, the exchange rate is deter-
mined when the total stocks of outstanding foreign and domestic moneys
are held willingly by economic agents (see, e.g., Dornbusch 1976; Bilson
1978; Frenkel 1978; Frankel 1983; Hoffman and Schlagenhauf 1983;
Huang 1984). Moreover, expectations of future exchange rate move-
ments play a dominant role in determining the current spot rate. This
linkage of expectations to the current spot rate is usually accomplished
by assuming that uncovered interest rate parity holds, that the foreign
exchange market is efficient, and that expectations about the future spot
rate are formed rationally.

We acknowledge the comments of P. R. Allen and two anonymous referees on previous
drafts and the support of the University of Connecticut Computer Center. The usual caveat
applies. A longer version of this chapter with more detail (Ahking and Miller 1986) is
available from the authors.

Originally published in the Review of Economics and Statistics 69 (1987), 496–502.
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Empirical research on exchange rate determination has two dimen-
sions. First, the structural approach estimates the various asset models
of exchange rate determination (see, e.g., Bilson 1978; Frenkel 1978;
Frankel 1979; Dornbusch 1980; Driskill 1981; Edwards 1983). Some
studies support the asset approach while others find little explanatory
power. The . . . rational expectations models of exchange rate deter-
mination test the systematic response of expectations to the stochas-
tic processes generating the fundamental determinants of the exchange
rate. Hence, cross-equation parameter restrictions between the equa-
tions generating the fundamental determinants and the exchange rate are
employed in the final system estimation (see, e.g., Hoffman and Schla-
genhauf 1983; Huang 1984).

Second, the time series approach examines the foreign exchange mar-
ket using the various tests of market efficiency developed to analyze equity
markets. At the simplest level, researchers examine whether the stochas-
tic behavior of the exchange rate is well approximated by a random walk
(see, e.g., Poole 1967; Burt, Kaen, and Booth 1977; Logue and Sweeney
1977).1

Although different, the two empirical approaches are related. The time
series approach tests for foreign exchange market efficiency by examining
the stochastic evolution of the time series of the exchange rate and by test-
ing for possible correlations between the exchange rate and other lagged
variables, including the lagged exchange rate. It provides useful informa-
tion on the stochastic behavior of the exchange rate, but sheds little light
on the fundamental determinants of the exchange rate. The structural
approach provides a theory of exchange rate determination; but, it is not
concerned generally with testing for foreign exchange market efficiency.

Several researchers (e.g. Hodrick 1979 and Levich 1985, and especially
Mussa 1983) observe that foreign exchange market efficiency and ratio-
nal expectations impose testable restrictions on the stochastic behavior of
the exchange rate and its fundamental determinants. That is, a systematic
relationship between the stochastic processes generating both the funda-
mental determinants of the exchange rate and the exchange rate itself
should exist. Few of the above-mentioned empirical studies, however,
attempt to use this information.

We provide a systematic analysis of the relationship between the
stochastic behavior of the exchange rate and its fundamental deter-
minants, employing Zellner and Palm’s (1974) and Zellner’s (1984,
chs. 2.1, 2.2) methodology. Zellner and Palm (1974) demonstrate that

1 See Levich (1985) for a thorough and critical review of the tests of foreign exchange
market efficiency.
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the stochastic process of an endogenous variable from a dynamic simulta-
neous equations system is implied by the stochastic processes generating
the exogenous variables. Thus, [comparing] the conformity of the actual
stochastic process generating the endogenous variable with that implied
by the exogenous variables constitutes an important check in formulating
and estimating dynamic economic models. If the restrictions implied by
the stochastic processes generating the exogenous variables are rejected
when compared with the stochastic behavior of the endogenous vari-
able, then the structural economic model is probably misspecified. In
this case, new structural models must be developed that are consistent
with the stochastic information in the data. Our objective here is not to
test for rational expectations or for foreign exchange market efficiency.
We employ Zellner and Palm’s (1974) methodology because of its gen-
erality; it does not require the assumptions that expectations are rational
or that exchange rates are determined in efficient markets.

We proceed as follows. Section 2 describes the various exchange rate
models and examines the data base and our empirical results. Section 3
interprets the implications of our empirical analyses of exchange rate
determination. Finally, a summary and conclusion are in section 4.

2 A stylized exchange rate model and empirical analysis

We specify a general exchange rate model that subsumes other models as
special cases. Our stylized reduced form equation is

st = b0st−1 + b1(mt − m∗
t ) + b2(yt − y∗

t )

+ b3(it − i∗
t ) + b4

(
π e

t − π∗e
t

)
+ b5(pt−1 − p∗

t−1) + b6(yt−1 − y∗
t−1)

+ b7 Bt − b∗
7 B∗

t + et , (2.1)

where

st = log of the spot exchange rate, defined as the

domestic price of one unit of foreign currency

mt (m∗
t ) = log of the domestic (foreign) nominal money stock

yt (y∗
t ) = log of the domestic (foreign) real income level

it (i∗
t ) = log of one plus the domestic (foreign) nominal

interest rate

π e
t (π∗ e

t ) = log of one plus the expected domestic (foreign)

inflation rate
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pt (p∗
i ) = log of the domestic (foreign) price level

Bt (B∗
t ) = cumulative domestic (foreign) trade balance

By appropriate parameter restrictions, specific exchange rate models are
derived from (2.1): (i) The flexible price monetary model (e.g. Bilson
1978 and Frenkel 1978) results if b0 = b4 = b5 = b6 = b7 = b∗

7 = 0; (ii)
The short-run flexible price monetary model (e.g. Bilson 1979 and
Edwards 1983) emerges from the flexible price monetary model once
the parameters b2 and b3 are interpreted as distributed-lag operators
(i.e. b2 = b2(L) and b3 = b3(L), where b2(L) and b3(L) are polynomial
functions in the lag operator L); (iii) The sticky-price monetary model
(e.g. Dornbusch 1976 and Frankel 1979) results if b0 = b5 = b6 = b7 =
b∗

7 = 0; (iv) The dynamic stock-flow model of Driskill (1981) imposes
b3 = b4 = b7 = b∗

7 = 0; (v) The stock-flow model of Hooper and Morton
(1982) constrains b0 = b5 = b6 = 0; and (vi) The rational expectations
monetary model (e.g. Hoffman and Schlagenhauf 1983 and Huang 1984)
is the same as the flexible price monetary model but for the imposing of
uncovered interest rate parity and solving for the rational expectations
solution after determining the stochastic processes generating the exoge-
nous variables.

To apply the Zellner–Palm methodology, the stochastic processes gen-
erating the exogenous variables must be explicitly defined. We assume
that the stochastic processes generating the exogenous variables can be
well approximated by univariate ARIMA models, i.e.

γi (L)zit = δi (L)ηi t , (2.2)

where

zit = (mt , m∗
t , yt , y∗

t , it , i∗
t , π e

t , π∗ e
t , pt , p∗

t , Bt , B∗
t ),

ηi t = zero-mean independently distributed white-noise

stochastic processes.

Given the suggestion by several researchers that the exchange rate is a
random walk, (2.1) is a random-walk model if the following restrictions
are true:

b0 = b5 = b6 = 0

γi (L) = (1 − L),

and

δi (L) = 1, for all i.
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The data employed are monthly observations from 1973:4 to 1984:6 for
Canada, France, Germany, Italy, Japan, Switzerland, the United King-
dom, and the United States. Generally, data are drawn from OECD,
Main Economic Indicators, and are not seasonally adjusted.2 The exchange
rates are bilateral spot rates with the United States as the domestic econ-
omy. The price level is the consumer price index, and real income is the
industrial production index; both are indexed to 1975 = 100. We use the
narrow (M1) definition for the money stock and a short-term interest
rate (it). Following Frankel (1979), we use a long-term interest rate (rt)
as a proxy for expected inflation (π e

t ). The cumulative trade balance is
obtained by summing the trade balance for each country.

The Zellner–Palm technique suggests determining the univariate time
series models of the exogenous variables and drawing inferences about
the time series properties of the endogenous variables using the structural
model. Then, a comparison of the implied with the actual time series
properties of the endogenous variables suggests whether the structural
economic model is misspecified.

Our empirical analysis begins with fitting univariate ARIMA models to
the individual variables rather than variables in relative form (i.e. the log of
the domestic variable minus the log of the foreign variable) using the Box–
Jenkins (1976) time-series modeling method. Table 11.1 summarizes the
estimated univariate time-series models.3 In general, all the estimated
parameters are significantly different from zero at the 5 percent level, and
all models have white-noise residuals.4

Table 11.1, column (1) presents the final models for the log of the
spot exchange rate. With one exception, the log of the spot exchange
rate appears to be a white-noise process after first differencing. Thus, a
random-walk model appears to describe the stochastic processes of the
spot exchange rates adequately.

The exception is Canada. In addition to first differencing, the log of
the United States to Canadian dollar spot exchange rate has a significant
autoregressive seasonal at lag 12. The Ljung–Box Q-statistic, although

2 Our preference is to use only seasonally unadjusted data. This is not possible, however,
for all our variables. This does not present difficulty in our econometric work since we
are not including seasonally adjusted and unadjusted data in the same regression. Rather,
our econometric work involves modeling a univariate ARIMA model for each variable.
A more detailed list of variables and data sources is contained in an appendix to Ahking
and Miller (1986).

3 A more complete description of the final models with separate tables for each variable is
contained in Ahking and Miller (1986).

4 The exception is the nominal money stock for Switzerland, where we can reject the
hypothesis of white-noise residuals at the 5 percent level.
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Table 11.1 ARIMA models

st mt it rt yt Bt pt

Country (1) (2) (3) (4) (5) (6) (7)

United States – (3,1,12)a (12,1,0) (7,1,0) (13,1,0) (12,2,1) (2,1,0)
Canada (12,1,0) (15,1,0) (8,1,0) (7,1,0) (0,1,15)a (12,2,5) (13,1,0)
Japan (0,1,0) (14,1,0) (1,1,0) (0,1,0) (0,1,15)a (0,2,13)a (13,1,0)
France (0,1,0) (14,1,0) (1,1,0) (3,1,0) (2,0,12)a (15,1,0) (15,1,0)
Germany (0,1,0) (12,1,0) (0,1,1) (1,1,0) (0,1,1) (12,2,5) (13,1,0)
Italy (0,1,0) (0,1,12)a (0,1,0) (1,1,0) (2,0,12)a (15,1,0) (2,1,0)
Switzerland (0,1,0) (13,1,0) (0,1,0) (1,1,0) – (16,2,0) (13,1,0)
United Kingdom (0,1,0) (21,1,0) (0,1,0) (0,1,1) (13,0,0) (15,1,0) (15,1,0)

Notes:
This table provides summary information only. The convention used is (p, d, q ), where p is
the highest implied order of the AR polynomials, d is the degree of ordinary differencing, and
q is the highest implied order of the MA polynomials. For example, the money stock in the
United Kingdom is estimated as (1 − θ L9)(1 − φL12)(1 − L)mt = µ + et and is identified
in the table as (21, 1, 0). Details of the estimated models are in Ahking and Miller (1986).
The models are estimated using the ARIMA procedure in SAS, version 82.2.
– Means that the data are not available.
a Denotes that the model is also seasonally differenced.

implying a white-noise process at the 5 percent level, has the largest value
of all the exchange rates.

These results impose strong a priori restrictions on the time series prop-
erties of the exogenous variables in any structural exchange rate model. In
particular, excluding Canada, a sufficient condition for the spot exchange
rate to have a random-walk representation is that all the exogenous vari-
ables are also random walks.5 For Canada, its spot exchange rate with
the United States has a significant autoregressive seasonal only at lag
12; a sufficient condition requires that its exogenous variables have only
significant seasonal autoregressive parameters, but no other AR or MA
parameters.

Columns (2)–(7) of table 11.1 present the final models for the exoge-
nous variables – the logs of the money stock, one plus the short-term
interest rate, one plus the long-term interest rate, industrial production,
the cumulative trade balance (unlogged), and the price level, respec-
tively. The price variables appear only in Driskill’s (1981) model as lagged
endogenous variables and are presented for completeness.

5 The reason why this is only a sufficient and not a necessary condition is that there is a
possibility of cancellation of common AR and MA factors of the exogenous variables. See
Zellner and Palm (1974, n. 2) and Palm (1977).



Comparison of stochastic processes 411

The results are as follows. First, all variables except the indexes of
industrial production for France, Italy, and the United Kingdom require
first differencing, and in some cases, seasonal differencing, to induce sta-
tionarity. Second, only the short-term interest rates of Italy, Switzerland,
and the United States, and Japan’s long-term interest rate, are adequately
modeled as random walks. All the other variables have non-zero AR and
MA parameters. Moreover, with the exception of the short-term and
long-term interest rates, nearly all other exogenous variables have sea-
sonality as indicated by significant AR or MA parameters at lag 12.

The results suggest that the estimated stochastic processes of the spot
exchange rates are inconsistent with their implied stochastic processes. In partic-
ular, the implied stochastic processes for the exchange rate involve non-
zero AR, MA, and seasonal parameters, whereas the estimated stochastic
processes do not. More formal tests of alternative models using the log-
likelihood ratio test against the exchange rate models reported in table
11.1 yield similar conclusions (see Ahking and Miller 1986).

The apparent inconsistency between the stochastic processes of the
exchange rates and their fundamental determinants may be due to can-
cellation of common AR and MA factors of the exogenous variables (see
Zellner and Palm 1974 and Palm 1977). For the exchange rates to be ran-
dom walks, however, requires a complete cancellation of the AR and the
MA polynomials of the exogenous variables, including seasonal parame-
ters. Our results suggest that this is a remote possibility.

Structural exchange rate models are frequently estimated with the
exogenous variables in relative form. This estimation procedure imposes
a common stochastic structure on the domestic and foreign exoge-
nous variables. Our results suggest that this condition is unlikely to be
true. Nonetheless, we also obtained the univariate time series models
of the exogenous variables in relative form except for the cumulative
trade balance. These time series models are, in general, different from
those reported in table 11.1. But they also include non-zero AR and
MA parameters, as well as seasonal parameters. These results are not
reported.

Finally, it is also possible that the apparent inconsistency between the
stochastic processes of the exchange rates and their fundamental determi-
nants is due to the fact that the exchange rate equation should be treated
as one equation in a system of simultaneous equations, including real
incomes, the nominal interest rates, and the cumulative trade balances
as endogenous variables and nominal money stocks and possibly other
explanatory variables as exogenous variables. In this system of equations,
the minimum order of the AR and MA polynomials for the exchange rates
should be the same as those implied by the order of the AR and MA
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polynomials of the nominal money stocks. Our results suggest that this
condition is unlikely to be met.

Based on the empirical results, it appears that none of the empirical
exchange rate models is consistent with the information contained in the
data.

3 Interpretations and implications

Our results suggest a failure of existing exchange rate models, a strong
conclusion. Of the seven bilateral spot exchange rates examined, six are
adequately modeled as random walks while the United States: Canadian
dollar exchange rate has a significant autoregressive seasonal lag. These
results are consistent with the view that the foreign exchange markets are
efficient and that exchange rates are determined like asset prices (e.g.
stock prices).6

When seen as asset prices determined in efficient markets, observed
exchange rates can also be viewed as equilibrium prices adjusting rapidly
to clear foreign exchange markets. The flexible price monetary model
with its purchasing power parity (PPP) condition views the exchange
rate as an equilibrium relationship between two relative prices where the
two prices are determined by equilibrium conditions in the domestic and
foreign money markets. In sum, the simple monetary model postulates an
equilibrium relationship between exchange rates, domestic and foreign
nominal money supplies, real incomes, and interest rates. But, observed
domestic and foreign nominal money supplies, real incomes, and interest
rates are not necessarily at their equilibrium values. This may explain why
the stochastic properties of the exchange rates are inconsistent with the
stochastic properties implied by their fundamental determinants.

The short-run monetary models are attempts to allow for lagged adjust-
ment to equilibrium in the money markets. The adjustment scheme, how-
ever, is ad hoc and the long distributed lags of domestic and foreign nomi-
nal money stocks, real incomes, and interest rates imply serial correlations
in the exchange rate. The implications for exchange rates, moreover, are
not borne out by an examination of their stochastic properties.

The sticky-price monetary models are based on the assumption that
PPP does not hold in the short run because of “sticky” goods prices.
Frankel (1979) specifies an equilibrium model with PPP imposed only

6 Our results only suggest weak form efficiency in the foreign exchange market (i.e. changes
in spot exchange rates are uncorrelated with past changes). Meese and Rogoff (1983a),
however, find that various exchange rate models fail to perform better than a random-walk
model of the exchange rate in out-of-sample forecasts, i.e. semi-strong form efficiency in
the foreign exchange market.
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in the long run, but the estimated model involves no lagged variables.
Driskill’s (1981) model includes lagged prices as explanatory variables.
From table 11.1, we note that the observed price indexes are all serially
correlated, appearing to justify the assumption that PPP holds only in
the long run. Serial correlation in the price indexes, however, should
also imply serial correlation in the exchange rates. Put differently, sticky-
price models suggest that the exchange rate should immediately over-
shoot its long-run equilibrium value following a monetary disturbance.
When the exchange rate begins adjusting toward long-run equilibrium
(i.e. PPP), we should observe serial correlations in the exchange rate
where the structure of the serial correlations should be the same as the
structure of the serial correlations in the domestic and foreign price levels
(e.g. see Dornbusch 1976, p. 1165 and Frankel 1979, p. 620). This is
not borne out by the empirical results.

Also, the failure of the stock-flow model to explain the stochastic behav-
ior of the exchange rate may be attributed to the failure to measure prop-
erly the equilibrium values of the exogenous variables.

The rational expectations models present a paradox. These models
explicitly test the restrictions implied by the assumption of rational expec-
tations. Hoffman and Schlagenhauf (1983) and Huang (1984) are unable
to reject their rational expectations restrictions. Their results, therefore,
can be interpreted as being consistent with foreign exchange market effi-
ciency (see Abel and Mishkin 1983). Their reduced form exchange rate
equations all include distributed lags of the exogenous variables. Serial
correlations in the exogenous variables are not inconsistent with for-
eign exchange market efficiency. But, since the stochastic behavior of
the exogenous variables implies the stochastic behavior of the endoge-
nous variables, their exchange rate series should be serially correlated.
The paradox is that if we interpret their empirical results as being consis-
tent with foreign exchange market efficiency, then the time series of the
exchange rates must be serially correlated, contrary to our results.7 We,
unfortunately, do not have a good explanation for this seeming paradox.
One possibility is that the tests performed by Hoffman and Schlagenhauf
and Huang are not sufficiently powerful to reject their hypotheses.

Our discussion suggests that the existing empirical models of exchange
rate determination are misspecified. The primary source of misspecifi-
cation, in our view, is the use of observed values of the exogenous vari-
ables rather than equilibrium values. Since the equilibrium values of the
exogenous variables are typically unobservable, a satisfactory empirical

7 Hoffman and Schlagenhauf [1983], however, report in n. 6 of their paper that all their
exchange rate series can be approximated by a random walk.
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model of the exchange rate may be difficult to implement. A useful
methodology has been proposed . . . by Beveridge and Nelson (1981),
however. They develop a time series technique for decomposing an
observed time series into permanent and cyclical components. The per-
manent component of a non-stationary time series is always a random
walk while the cyclical component is a stationary ARMA process. If the
permanent component can be interpreted as the equilibrium value, then
the various exchange rate theories can be tested. More specifically, the
exogenous variables in a reduced form equation of the exchange rate
can first be decomposed into permanent and cyclical components. The
exchange rate series, since it is already a random walk, has no cyclical
component. If we interpret the permanent components of the exogenous
variables as equilibrium values, then they can be used as the explana-
tory variables in the reduced form exchange rate equations. Since the
permanent components of the exogenous variables are random walks,
their stochastic properties are consistent with the stochastic behavior of
the exchange rates. Thus, tests of the various theories of exchange rate
determination can be conducted with these permanent values.

4 Summary and conclusion

Zellner and Palm (1974) show that if a structural model is correctly spec-
ified, then the actual time series behavior of the endogenous variables is
the same as that implied by the time series behavior of the exogenous
variables. A comparison of the actual and implied time series properties
of the endogenous variables then provides important information on the
specification of any structural econometric model.

Using the Zellner–Palm methodology that does not depend upon the
assumptions of rational expectations or efficient foreign exchange mar-
kets, we find that six monthly bilateral exchange rates are adequately
modeled as random walks. The seventh, the United States: Canadian
dollar exchange rate, has a significant autoregressive seasonal lag. These
results are consistent with the view of exchange rates as asset prices deter-
mined in efficient markets. For consistency, the time series behavior of
the fundamental determinants of the exchange rate must also be ran-
dom walks, with the possible exception of Canada where autoregres-
sive seasonal parameters are permissible. The time series properties of
the nominal money stocks, real incomes, one plus the short-term and
one plus the long-term interest rates, the cumulative trade balances, and
the price levels, all of which are considered to be important fundamental
determinants of exchange rates, are, with few exceptions, not random
walks. Thus, existing exchange rate models appear to be misspecified.
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Our results are related to the work of Meese and Rogoff (1983a, 1983b)
who find that various structural exchange rate models fail to perform bet-
ter than a random-walk model in out-of-sample predictions. Neverthe-
less, several important differences in approach and interpretation need to
be identified. They suggest several possible explanations for their results,
including sampling errors, simultaneous equations bias, and instability
of the money demand equations. But, even if all these possible causes
of the failure of the structural exchange rate models can be remedied,
the structural exchange rate models would probably, in our opinion,
still be misspecified in the Zellner–Palm sense. We suggest that since
most exchange rate theories are formulated as equilibrium relationships
between the exchange rate and its fundamental determinants, the use of
the observed values of the exogenous variables instead of their equilibrium
values in a reduced form equation of the exchange rate is inappropriate
and leads to misspecification of the empirical models.

Our study also differs from Meese and Rogoff’s on an important
methodological point. The Zellner–Palm technique demonstrates that
a univariate time series model can be derived from a structural model.
Meese and Rogoff, in our opinion, view time series models as alternatives
to, and as competing with, the structural models. When time series and
structural models are seen as complementary rather than competing, it
provides important insights into Meese and Rogoff’s results. For exam-
ple, the “correct” univariate time series model should perform no worse
in out-of-sample forecasting than the “correct” structural model. Thus, if
the random-walk model is the correct univariate time series model, then
structural models will not perform better than the random-walk model.

A promising line of research that may resolve the conundrum raised
by our work is to decompose the observed time series of the exogenous
variables in an exchange rate equation into permanent and transitory
(cyclical) components as suggested by Beveridge and Nelson (1981).
If the permanent components can be interpreted as equilibrium values,
then they can be used as explanatory variables in exchange rate equa-
tions, and empirical tests to distinguish various theories of exchange rate
determination can be carried out.
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12 Encompassing univariate models in
multivariate time series: a case study (1994)

Augustı́n Maravall and Alexandre Mathis

Through the encompassing principle, univariate ARIMA analysis could
provide an important tool for diagnosis of VAR models. The univariate
ARIMA models implied by the VAR should explain the results from uni-
variate analysis. This comparison is seldom performed, possibly due to
the paradox that, while the implied ARIMA models typically contain a
very large number of parameters, univariate analysis yields highly parsi-
monious models. Using a VAR application to six French macroeconomic
variables, it is seen how the encompassing check is straightforward to
perform, and surprisingly accurate.

1 Introduction

After the crisis of traditional structural econometric models, a particu-
lar multivariate time series specification, the Vector Autoregression or
VAR model has become a standard tool used in testing macroeconomic
hypotheses. Zellner and Palm (1974, 1975) showed that the reduced form
of a dynamic structural econometric model has a multivariate time series
model expression, and that this relationship could be exploited empiri-
cally as a diagnostic tool in assessing the appropriateness of a structural
model. As Hendry and Mizon (1992) state, a well-specified structural
model should encompass the results obtained with a VAR model; similar
analyses are also found in Monfort and Rabemananjara (1990), Clements
and Mizon (1991), and Palm (1986).

It is also well known that a multivariate time series model implies a
set of univariate models for each of the series. Thus, as argued by Palm
(1986), univariate results can, in turn, provide a benchmark for multi-
variate models, and should be explained by them. When done, the com-
parison usually takes the form of comparing the forecasting performances

Thanks are due to Stephania Fabrizio, Grayham Mizon, Franz Palm, the Associate Editor,
and two referees for their valuable comments.
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of the multivariate model versus the set of univariate models, identified
with Box–Jenkins (1970) techniques, see Palm 1983. More generally,
however, since the multivariate model implies a set of univariate models,
these should be derived from the fitted multivariate one, and then com-
pared to the models obtained through univariate analysis. If the two sets
of univariate models are clearly different, then there is reason to suspect
specification error in some of the models. Given that, in general, direct
identification of the univariate model is simpler than identification of the
multivariate one, lack of agreement between the two sets of univariate
models may well indicate misspecification of the multivariate model and
invalidate, as a consequence, its use in testing economic hypotheses.

Therefore, the use of univariate models as a diagnostic tool should
include the comparison between the univariate models derived from the
multivariate one and those obtained with univariate analysis (we shall
refer to them as “implied” and “estimated” univariate models). This
comparison, however, is seldom done. Univariate analysis is used (often
wrongly) in identification of multivariate models (see, for example, Jenk-
ins 1979 and Maravall 1981); it is hardly ever used (as it rightly should) in
the diagnostics stage. Perhaps this is due to what Rose (1986) has termed
“the autoregressivity paradox”, which can be described as follows.

It is a well-known fact that the immense majority of ARIMA models
fitted to economic series are parsimonious, including few parameters. Yet
even relatively small multivariate models imply univariate models with a
very large number of parameters. Therefore, if the world is multivariate
(as it is), ARIMA models should be highly unparsimonious, and hence of
little practical use. Yet we know that this is not the case. How can the two
facts be reconciled? Rose (1985, 1986) suggests an explanation: macro-
economic variables are basically contemporaneously correlated and there
are few dynamic relationships among them. The explanation is a bit dras-
tic, and it seems sensible to seek for some alternative . . .. As pointed out
by Wallis (1977), two possibilities come to mind: First, it may happen
that the autoregressive (AR) and moving average (MA) polynomials of
the implied ARIMA model have roots in common. Cancelling them out,
the order of the model would be reduced. Second, some of those two
polynomials may contain a large number of small coefficients that would
be undetectable for the sample size used. The first possibility will be
denoted the “root effect”, and the second, the “coefficient effect”.

Although both effects are certainly possible, the question remains as to
whether they can be measured with enough accuracy in actual applica-
tions. For example, the autoregressive coefficient estimates in VAR mod-
els are, on occasion, unstable, and the roots of the polynomials are sen-
sitive to small variations in those coefficients. That factor might have an
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effect on the detection of common roots. Furthermore, it is an empirical
fact that often the factorization of the determinant of the AR matrix in
VAR models yields roots with a relatively large modulus. This might affect
the presence of small coefficients in the implied univariate representation.

Yet the issue of whether the root and coefficient effect can actually be
detected, so as to simplify an ARMA model with perhaps forty or fifty
parameters to an ARMA model with (at most) two or three parameters,
is ultimately an empirical issue. Therefore, we shall look at an example
consisting of a standard VAR model, for six quarterly macroeconomic
variables. We shall see whether, in practice, despite the Autoregressivity
Paradox, univariate analysis (a relatively familiar tool) can be of practical
help in checking the adequacy of a multivariate model. Finally, we con-
sider what the comparison says in terms of an economic application: the
measurement of the persistence of macroeconomic shocks.

2 Univariate models implied by a vector
autoregressive model

Let zt = (z1t, . . . , zkt)′ be a stationary stochastic vector process which
follows the VAR model

Φ(L)zt = at + µ, (2.1)

where L is the usual lag operator, Φ(L) is a (k × k) matrix with finite
polynomials in L as elements, at is a k-dimensional white-noise variable
with zero mean vector and contemporaneous covariance matrix Ω, and
µ is a vector of constants. If the (i, j)th element of Φ(L) is a polynomial
with coefficients Φi j k, k = 0, 1, . . . , we adopt the standardization Φi i0

= 1, and Φi j0 = 0 for i �= j. Finally, the stationarity of zt implies that the
roots of the equation |Φ(L)| = 0 (where |•| denotes the determinant of
a matrix) lie outside the unit circle. Following Zellner and Palm (1974),
to obtain the univariate representation of zit (i = 1, . . . , k), we simply
need to express (2.1) as

zt = [Φ(L)]−1(at + µ) = |Φ(L)|−1Φ∗(L)(at + µ), (2.2)

where Φ∗(L) is the adjoint matrix of Φ(L). For the ith element of zt, (2.2)
becomes

|Φ(L)|zit =
k∑

j=1

Φ∗
i j (L)aj t + ci , (2.3)

where ci is a constant, equal to the ith element of Φ∗(1)µ. Since (ignoring
the constant) the r.h.s. of (3) is the sum of k finite moving averages, it
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can also be represented as a finite moving average θ i(L)uit , where uit is a
white-noise variable, such that

θi (L)uit =
k∑

j=1

Φ∗
i j (L)aj t (2.4)

(see Anderson 1971). Considering (2.3) and (2.4), the univariate models
implied by (2.1) are given by

φ(L)zit = θi (L)uit + ci , i = 1, . . . , k, (2.5)

where the autoregressive (AR) polynomial is equal to

φ(L) = |Φ(L)|, (2.6)

and each moving average polynomial, together with the variance of the
univariate innovation uit , can be obtained through (2.4) as detailed in
appendix A. It is worth noting:
(a) A VAR process implies univariate ARMA (not simply AR) models,

and that all univariate models share the same AR polynomial (2.6)
(b) As shown in appendix A, the univariate MA polynomials are always

invertible, with the orders (qi) depending on the elements Φi j (L)
(c) When µ �= 0, the univariate model for zit will always contain a con-

stant.

3 A case study: the series and univariate analysis

We consider six quarterly macroeconomic series of the French economy,
taken from Deniau, Fiori, and Mathis (1989). Each series has eighty-
four observations and starts in the first quarter of 1963. The series are
the following:

dt = public debt

yt = gross domestic product (GDP)

pt = GDP deflator

rt = interest rate (on first-class bonds)

nt = balance of the current account (exports–imports)

mt = monetary aggregate (M1).

The sources of the series, as well as some (minor) modifications per-
formed on them, are described in the above reference. Figure 12.1 plots
the six series; all, except nt (which can take negative values), have been log
transformed. They seem to exhibit, in all cases, a non-constant mean and,
as seen in figure 12.2, Autocorrelation Functions (ACF) that converge
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Figure 12.1 Macroeconomic series

very slowly. The Augmented Dickey–Fuller (ADF) tests, allowing for
a constant (according to result (c) above), are presented in the first
row of table 12.1. At the 5 percent size, the critical value – taken from
MacKinnon (1991) – is 2.90, and hence in no case is the unit root hypoth-
esis rejected. (All regressions were run with eight lags, enough to whiten
all series.)
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Table 12.1 Tests on the univariate series

dt yt pt rt nt mt

ADF-t 0.62 −0.89 1.12 −1.61 −1.90 0.67
Q27 19.9 20.8 24.3 22.8 22.9 24.0

−

Figure 12.2 ACF: series
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Table 12.2 Residual standard deviation

Estimated Implied
ARIMA ARIMA VAR

dt 0.0359 0.0359 0.0319
yt 0.0112 0.0092 0.0086
pt 0.0079 0.0073 0.0070
rt 0.0394 0.0374 0.0361
nt 0.0288 0.0311 0.0283
mt 0.0199 0.0205 0.0186

First differences of all series were thus taken, and the following ARIMA
models were identified and estimated (all differenced series were centered
around the mean):

(1 − 0.74
(0.11)

L4)∇ log dt = (1 − 0.32
(0.16)

L4)u1t , (3.1a)

∇ log yt = u2t , (3.1b)

∇2 log pt = (1 − 0.74
(0.07)

))u3t ,

(1 − 0.35
(0.10)

L)∇ log rt = u4t , (3.1d)

∇nt = (1 − 0.47
(0.10)

L4)u5t , (3.1e)

(1 + 0.19
(0.09)

L − 0.50
(0.10)

L4)∇ log mt = u6t . (3.1f)

(The numbers in parentheses below the parameter estimates are the
associated standard errors.) The ACF of the residuals are displayed in
figure 12.3, and in all cases they are seen to be close to the ACF of white
noise. The Box–Ljung–Pierce Q statistics for the first twenty-seven auto-
correlations are displayed in the second row of table 12.1, and for the
six series they are smaller than the corresponding χ2 (5 percent) critical
value. The residual standard deviations are displayed in the first column
of table 12.2. Three comments are in order:
(i) Since our aim is to confront the parsimony of these estimated univari-

ate models with the lack of parsimony of univariate ARIMAs derived
from a VAR model, an important model selection criterion was to
minimize the number of parameters. Although alternative specifica-
tions are certainly possible, the models in (3.1) passed all diagnostics
and, besides the innovation variance, no model contains more than
two parameters.
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Figure 12.3 ACF: residuals

(ii) All variables are integrated of order 1 [or I(1)], except for the GNP
deflator pt. However, estimation of an ARIMA(1,1,1) model without
imposing the second unit root yields

(1 − 0.94
(0.04)

L)∇ log pt = (1 − 0.70
(0.09)

L)u3t , (3.1c)

with slightly smaller values of Q27 and of the residual variance. Since
there are no compelling reasons to impose the second unit root,
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Table 12.3 Engle–Granger cointegration test

dt yt pt rt nt mt

Q27 34.4 28.2 26.4 23.9 36.5 30.1
ADF-t −2.93 −1.79 −2.67 −3.38 −4.42 −3.16
Critical value (5%) −5.22 −5.22 −5.22 −5.22 −5.22 −5.23

to preserve the order of integration, we shall use as the estimated
univariate model for pt that given by (3.1c).

(iii) Finally, concerning the model for mt, factorization of the AR poly-
nomial produced the following roots:

Modulus: 0.80 0.84 0.89
Frequency: 0 π/2 π

The first root (1 − 0.8L) is associated with the trend, and the last two
roots with the once- and twice-a-year seasonal frequencies; all roots dis-
play a relatively large modulus.

4 Testing for cointegration

Before proceeding to estimation of a multivariate model for the six vari-
ables, we need to test for the presence of cointegration relationships
among them. Let xt = (x1t, . . . , x6t) denote the vector of the six undif-
ferenced variables; two procedures will be applied. First, following Engle
and Granger (1987), we compute the six regressions

xj t = α0 + α j t +
6∑

t=1; i �= j

αt xi t + e j t , (4.1a)

(j = 1, . . . , 6). Then, ADF tests are run on the series of estimated
residuals êjt. If in no case the null hypothesis of a unit root is rejected, the
series are not cointegrated.

For the six regressions of the type (4.1a), the first row of table 12.3
shows the Q (27) statistics associated with the autocorrelation function
of the residuals obtained in the Dickey–Fuller regression on êjt (using up
to four lagged values). The second and third rows present the Dickey–
Fuller t-statistics to test for the hypothesis that there is a unit root, and
its corresponding 5 percent critical value; these last values have been
computed using the response surface regression of MacKinnon (1991).
It is seen that in no case is the unit root hypothesis rejected. If the term αjt
is removed from (4.1a), the results remain basically unchanged, except
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Table 12.4 Johansen cointegration test

Number of cointegrating vectors

r ≤ 5 r ≤ 4 r ≤ 3 r ≤ 2 r ≤ 1 r = 0

Lambda-max test 3.45 7.99 10.14 13.33 22.29 35.59
Critical value (5%) 10.25 14.17 22.30 26.58 37.76 42.04

Trace test 3.45 11.44 21.59 34.92 57.21 92.80
Critical value (5%) 10.25 16.94 32.59 47.11 72.48 98.20

when the variable nt is the regressand, in which case the t-statistic becomes
marginally significant.

The second type of cointegration test performed is that proposed by
Johansen (1988), based on the rank of the matrix Π in the multivariate
regression

∆xt = Γ1∆xt−1 + · · · + Γp−1∆xt−p+1 + Πxt−p + µ + εt . (4.1b)

Since, at this stage, the model is unrestricted, each matrix of parameters
in (4.1b) is of order 6 × 6, and hence, considering our sample size, a small
value of p is required. Setting p = 2, the autorcorrelations of the estimated
residuals were reasonably low (values of p > 2 implied estimation of over
100 parameters). Letting r denote the number of cointegrating vectors,
table 12.4 presents the lambda-max and trace tests for the sequential
testing of H0: r ≤ j (j = 5, . . . , 1, 0), where the 5 percent critical values
have been taken from Gardeazabal and Regulez (1990). Both tests indi-
cate that the six series can be safely assumed to be noncointegrated.

5 The vector autoregressive model (VAR)

Since we can assume that there are no cointegration relationships, the
VAR model can be specified in first differences of the variables. Such a
VAR model, for the six variables we consider, was estimated by Deniau,
Fiori, and Mathis (1989) in order to analyze the effect of the public debt
on several macroeconomic variables of the French economy. The model
was identified in a manner similar to that proposed by Hsiao (1981) and
Caines, Keng, and Sethi (1981). In a first step, the VAR structure is
determined, equation by equation, according to the results of “causality
tests” between variables; the maximum lags are found with an MFPE
information criterion. The model thus specified is estimated as a SURE
model. We re-estimated the same VAR with the rates of growth replaced
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by the differences in logs. Also, a few parameters that were not significant
were removed. (The effect of these modifications was minor.) It should
be stressed that the aim of the chapter is not to improve upon the VAR
specification, but to look at a model already available in the literature, in
order to see whether it explains (or encompasses) the results obtained in
univariate analysis.

The estimated model has a total of twenty autoregressive coefficients,
and hence, for a six-variate VAR, it is considerably parsimonious (an
average of 3.3 parameters per equation). In terms of (2.1), letting zt

denote the vector:

zt = (∇ log dt , ∇ log yt , ∇ log pt , ∇ log rt , ∇nt , ∇ log mt)′,

the estimated Φ(L) matrix is given by

Φ(L) =


φ11 0 φ13 0 0 φ16

φ21 φ22 0 φ24 0 0
0 0 φ33 φ34 0 0
0 0 0 φ44 φ45 0
0 φ52 0 φ54 φ55 0

φ61 φ62 0 0 0 φ66

 ,

where 0 denotes the null polynomial, and the non-zero elements are the
following polynomials in L:

φ11 = 1 − 0.202
(2.07)

L4, φ13 = −1.08
(3.06)

L − 0.987
(2.78)

L4, φ16 = 0.548
(−3.46)

L2,

φ21 = −0.055
(3.13)

L8, φ22 = 1, φ24 = −0.065
(3.62)

L7,

φ33 = 1 − 0.137
(1.98)

L − 0.299
(4.3)

L2 − 0.303
(4.3)

L5, φ34 = −0.058
(3.76)

L2,

φ44 = 1 − 0.34
(3.48)

L, φ45 = 0.3
(−2.36)

L,

φ52 = 0.964
(−2.9)

L, φ54 = −0.192
(−2.58)

L, φ55 = 1 + 0.4
(−4.1)

L4,

φ61 = −0.097
(1.94)

L, + 0.15
(−2.96)

L2, φ62 = −0.73
(6.62)

L,

φ66 = 1 + 0.18
(−2.1)

L − 0.35
(3.65)

L4,

where the t-statistics of the parameter estimates are given in parentheses.
In terms of its economic interpretation, the model implies that a positive
shock in the public debt increases, in the short to medium term, aggre-
gate demand (with a limited crowding-out effect), which in turn increases
imports. As a consequence, the balance of the current account deteri-
orates, and there is an increase in interest rates associated with foreign
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capital inflows. Economic interpretation, however, is not our present con-
cern, and we refer to the Deniau, Fiori, and Mathis (1989) paper.

An important element in the diagnosis of a VAR model is the behav-
ior of the vector of estimated residuals ât. Table 12.5 summarizes the
correlation functions among the components of ât. The “⊕”, “�”, and
“•” signs indicate, respectively, a positive significant correlation, a nega-
tive significant correlation, and a correlation that can be assumed to be
zero (see Tiao and Box 1981). The distribution of the significant cor-
relations appears to be random; the largest positive and negative values
are 0.31 and −0.30, and the number of significant ones is seventeen, or
approximately 5 percent of the total number of computed correlations.
The residuals obtained behave, thus, as a white-noise vector.

The residual variances are given in the second column of table 12.2.
Compared to the ones obtained in the univariate ARIMA fit, it is seen
that the innovations in the multivariate model have smaller variances. The
percentage reduction varies between 2 percent (variable nt) and 23 per-
cent (variable yt), with an average reduction of approximately 11 percent.

To further validate the models, an out-of-sample forecasting exercise
was performed. Some of the series were modified after 1985, and the last
observation available on our complete set of series is for 1985:4. In order
to increase the number of out-of-sample forecasts, the ARIMA and VAR
models were estimated with data up to 1983:4. Then, one-period-ahead
forecasts were computed for the four quarters of 1984 and of 1985. Table
12.6 presents the root mean-squared error of the out-of-sample forecasts
for the six series. The results for yt , pt , rt, and mt are clearly close to the in-
sample values given in table 12.2, and for dt the out-of-sample forecast is
better. For nt, the out-of-sample forecast deteriorates and an F-test for the
equality of variances in the case of the VAR model yielded the value 3.4,
and hence equality could be marginally rejected. (For the other series, the
corresponding F values were not significant.) As for the relative perfor-
mance of ARIMA and VAR models in out-of-sample forecasting, for four
variables the VAR yields better forecasts, while in two cases the ARIMA
models perform better. In no case, however, is the difference between
the two forecasts large. Considering the improvement in in-sample fit
and the overall better performance in out-of-sample forecasting of the
multivariate model, the univariate ARIMA models do not seem to “par-
simoniously encompass” the VAR one (see Hendry and Mizon 1992).

In summary, both the set of estimated ARIMA models and the VAR
model behave reasonably. The multivariate structure does not bring spec-
tacular improvement, but it does bring some. Altogether, considering the
simplicity of the models identified, the results represent sensible applica-
tions of univariate ARIMA and VAR modeling.
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Table 12.6 Out-of-sample forecast: RMSE

Estimated
ARIMA VAR

dt 0.0148 0.0155
yt 0.0133 0.0119
pt 0.0081 0.0078
rt 0.0496 0.0435
nt 0.0502 0.0529
mt 0.0175 0.0154

6 Implied univariate models in the VAR and comparison
with the estimated ARIMA models: ad hoc comparison

Following the derivation of section 2 and appendix A, the univariate
ARIMA models implicit in the VAR model have been obtained. The third
column of table 12.2 contains the innovation variances of the implied
univariate models. They are similar to those obtained with the estimated
ARIMA models, and slightly closer to the innovation variances of the
VAR model.

Concerning the autoregressive and moving average coefficients of the
implied ARIMAs, the common AR polynomial, φ(L) of (5), is of order
22. The order qi of the six moving average polynomials are those in the
first row of table 12.8, and hence, despite the parsimony of our VAR
model, the example provides a good illustration of the autoregressivity
paradox referred to earlier: While the univariate models implied by the
VAR contain an average of forty-two AR and MA parameters, the uni-
variate models estimated in section 3 have an average number of 1.3
parameters. We mentioned before two simple reasons that might explain
the apparent paradox; let us see how they operate in practice.

It is well known that, when the matrix Φ(L) in (2.1) has a block-
triangular or block-diagonal structure, exact cancellation of roots between
the AR and MA polynomials in some of the implied univariate models will
occur (see Goldberger 1959, Wallis 1977, and Palm 1986). The matrix
Φ(L), in our case, does not have that type of structure, and hence no such
root cancellations can be done. For each of the six series, the twenty-two
roots of φ(L) have to be compared with the roots of the corresponding
polynomial θ i(L). Computation of the 144 roots shows that the VAR
model is indeed stationary, although a high proportion of the roots are
relatively large and, for example, only seven of them are smaller than 0.5
in modulus. The MA polynomials are invertible, and they also display
roots that are relatively large in modulus.
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Table 12.7 Series dt, AR and MA roots of the
univariate model implied by the VAR

Root Modulus Frequency

Roots of the autoregressive polynomial
−0.92 0.92 3.14

0.91 0.91 0
0.03 ± 0.85i 0.85 1.54
0.61 ± 0.54i 0.81 0.73

−0.67 ± 0.41i 0.78 2.59
−0.56 ± 0.55i 0.78 2.36

0.77 ± 0.10i 0.77 0.13
0.29 ± 0.68i 0.73 1.17

−0.15 ± 0.67i 0.69 1.79
−0.55 ± 0.25i 0.61 2.71

0.28 ± 0.53i 0.60 1.08
0.50 0.50 0

−0.26 0.26 3.14
Roots of the moving average polynomial

0.85 0.85 0
0.60 ± 0.54i 0.81 0.73

−0.67 ± 0.41i 0.78 2.59
−0.04 ± 0.78i 0.78 1.62
−0.55 ± 0.55i 0.77 2.36
−0.76 0.76 3.14

0.30 ± 0.67i 0.73 1.15
0.66 ± 0.07i 0.66 0.10
0.23 ± 0.50i 0.56 1.14

−0.37 ± 0.33i 0.49 2.41
−0.19 0.19 3.14

When comparing, for the six series, the AR and MA roots, in order to
decide which of them cancel out, a criterion is needed. Let ω and h denote
the frequency (in radians) and modulus, respectively, of a complex root,
and consider, for example, the implied ARMA model for the variable dt.
Table 12.7 displays the roots of the AR and MA polynomials (to facilitate
interpretation, the roots displayed are those of L−1). It is easy to accept
that the MA root with ω = 2.59 and h = 0.78 will cancel out with the
root with the same frequency and modulus in φ(L). But, what about the
pair of roots (ω = 1.62, h = 0.78) and (ω = 1.54, h = 0.85)? Since,
on the one hand, the roots of the polynomials in the implied ARIMA
models are complicated functions of forty-one parameters (those in Φ(L)
and in Ω) and, on the other hand, the comparison involves 144 roots,
computed from eighty-four observations on the vector of variables, we
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Table 12.8 Order of ARMA (p, q) model

dt yt pt rt nt mt

p q p q p q p q p q p q

Implied ARMA 22 19 22 24 22 17 22 20 22 21 22 21
Implied ARMA after ad 13 10 10 12 5 0 6 4 10 9 13 12

hoc root cancellation
Estimated ARMA 1 1 0 0 1 1 1 0 0 1 2 0

had a priori doubts as to whether formal testing could be of help, and
hence proceeded in two ways. First, a simple ad hoc criterion is used,
which is fairly restrictive and biased towards under-cancellation. Second,
a formal test, adapted from Gourieroux, Monfort, and Renault (1989) is
performed.

The ad hoc criterion, discussed in appendix B, is as follows: The root
( ĥ1, ω̂1) will cancel with the root ( ĥ2, ω̂2) if
(a) | ĥ1 − ĥ2| ≤ 0.05,
(b) |ω̂1 − ω̂2| ≤ 0.05,
(c) | ĥ1 − ĥ2| + |ω̂1 − ω̂2| ≤ 0.07.

Applying this criterion to our example, to get an insight into the prox-
imity of the cancelled roots, we consider the two that are most distant,
in terms of the sum of the two absolute deviations. These are the root
(ω = 0.73, h = 0.81) in the AR polynomial and the root (ω = 0.78, h =
0.79) in the MA polynomial, of the univariate model for rt. The two
roots generate the AR and MA polynomials (1 − 1.21 L + 0.66 L2) and
(1 − 1.12 L + 0.63 L2), respectively. Assume the AR polynomial is the
result of estimating an AR(2) model with T = 84 observations (our sam-
ple size), and that we perform the test φ1 = 1.12 and φ2 = −0.63 (i.e.
the AR polynomial is equal to the MA one). Then, denoting by M the
asymptotic covariance matrix of the autoregressive parameter estimators,

S = (Φ̂ − Φ)′M−1(Φ̂ − Φ) ∼̇ χ2
2 ,

where Φ̂ ′= (1.21, −0.66) and Φ ′= (1.12, −0.63). Using the expression
for M in Box and Jenkins (1970, p. 244), it is found that S = 1.61, certainly
below the 95 percent critical value of 5.99. Since this result holds for the
pair of cancelled roots that are most distant, it is clear that the criterion
favors undercancellation.

Using the above criterion, roots were cancelled in the implied ARMA
model; remultiplying the remaining ones, new models are obtained for the
six variables. Their orders are indicated in the second row of table 12.8:



434 Augustı́n Maravall and Alexandre Mathis

Table 12.9 Implied ARMA models after cancellation of roots:
ad hoc criterion

dt yt pt rt nt mt

AR coefficients
Lag 1 0.05 0.92 0.15 −0.18 −0.21 0.02
Lag 2 0.04 −0.08 0.30 0.25 0.25 0.04
Lag 3 −0.03 0.09 −0.01 −0.14 −0.08 −0.03
Lag 4 0.65 0.02 0.01 −0.08 −0.48 0.65
Lag 5 −0.06 −0.08 0.30 0.02 −0.06 −0.06
Lag 6 −0.00 −0.00 – −0.01 0.08 −0.00
Lag 7 −0.02 0.03 – – −0.04 −0.02
Lag 8 −0.07 −0.04 – – −0.03 −0.07
Lag 9 −0.01 0.01 – – −0.02 −0.01
Lag 10 0.00 0.00 – – −0.01 0.00
Lag 11 −0.02 – – – – −0.02
Lag 12 0.01 – – – – 0.01
Lag 13 0.00 – – – – 0.00
MA coefficients
Lag 1 0.03 0.98 – −0.50 −0.21 0.29
Lag 2 −0.04 −0.18 – 0.06 0.20 −0.09
Lag 3 0.02 0.12 – −0.10 −0.07 0.05
Lag 4 0.31 0.03 – −0.11 −0.03 0.18
Lag 5 −0.01 −0.17 – – 0.00 −0.02
Lag 6 0.00 0.05 – – −0.01 0.00
Lag 7 0.00 −0.09 – – −0.01 0.00
Lag 8 0.00 0.10 – – −0.00 −0.02
Lag 9 −0.01 −0.00 – – 0.00 0.01
Lag 10 −0.00 −0.00 – – – −0.01
Lag 11 – 0.01 – – – −0.00
Lag 12 – 0.00 – – – 0.00

They have been considerably reduced (the average number of parameters
per model drops from forty-two to seventeen), but the models are still far
from the parsimony of the ARMA models from univariate analysis.

The implied ARMA models obtained after removing common roots
are displayed in table 12.9. Since (as shown in appendix B) the stan-
dard deviation of ω̂ and of ĥ are larger for roots with smaller modulus,
cancellation will be likely to affect the roots with relatively large modu-
lus. Thus the remaining ARMA models will mostly contain the smaller
roots, which are estimated with less precision. In considering whether the
ARMA models of table 12.9 can be made more parsimonious by remov-
ing small coefficients (undetectable in estimation), again a criterion is
needed. Considering that most of the standard errors of the parameters
in the estimated ARMA models of expressions (3.1a)–(3.1f) are in the
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order of 0.09 or larger, a reasonable criterion is to remove coefficients that
are below 0.18 in absolute value. Proceeding in this way, the following
models are obtained.
(a) Series dt:

(1 − 0.65 L4)∇log dt = (1 − 0.31 L4)u1t , (6.1a)

which is quite close to (3.1a). In this case, the VAR model certainly
explains the model obtained in univariate analysis.

(b) Series yt:

(1 − 0.92 L)∇log yt = (1 − 0.98 L)u2t , (6.1b)

or, approximately, the random walk model of (3.1b). Again, the VAR
model explains well the estimated univariate ARIMA model. Con-
sidering the relatively large decrease in the residual variance of yt

in the VAR model, the variable GDP seems particularly suited for
multivariate analysis.

(c) Series pt:

(1 − 0.15 L − 0.30 L2 − 0.30 L5)∇log pt = u3t . (6.1c)

Model (6.1c) appears to be quite distant from (3.1c), yet if in the
latter the MA polynomial is inverted and approximated up to the
fourth power, the product (1 − 0.94 L)(1 − 0.70)−1, after deleting
small coefficients, yields

(1 − 0.24 L − 0.17 L2 − 0.23 L5)∇log pt = u3t ,

more in line with (6.1c). However, in so far as a fourth order
approximation to (1 − 0.70 L)−1 is a poor approximation, the series
pt illustrates how, when the univariate model contains a rela-
tively large MA root, VAR models will have trouble capturing that
behavior.

(d) Series rt:

(1 + 0.18L − 0.25L2)∇log rt = (1 + 0.50L)u4t ,

somewhat different from the model (3.1d). However, expressing the
model in pure autoregressive form, it is obtained as

(1 − 0.32 L)∇log rt = u4t , (6.1d)

with all other parameters smaller than 0.10 and converging fast
towards zero. Models (3.1d) and (6.1d) are obviously very close.

(e) Series nt:

(1 + 0.21L − 0.25L2 + 0.48L4)∇nt = (1 + 0.21L − 0.20L2)u5t
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Expressing this time the model in pure MA form, it is obtained that

∇nt = (1 − 0.47 L4)u5t , (6.1e)

with all other MA parameters smaller than 0.15. Model (6.1e) is the
same as (3.1e).

(f) Series mt:

(1 − 0.65L4)∇ log mt = (1 − 0.29L − 0.18L4)u6t .

The autoregressive expression is found to be

(1 + 0.29 L − 0.46 L4)∇log mt = u6t , (6.1f)

with all other parameters smaller than 0.10. Again, model (6.1f) is
reasonably close to model (3.1f).

In conclusion, when the (conservative) ad hoc criterion is used, care-
ful analysis of the multivariate VAR model explains well the models
obtained with univariate analysis. We turn next to the results of formal
testing.

7 Comparison of the implied and estimated univariate
ARIMA models: a test procedure

Despite the large number of roots we wish to compare, it is straightfor-
ward to adapt to our case an ingenious testing procedure developed by
Gourieroux, Monfort, and Renault (1989). Let the AR and MA polyno-
mials of one of the implied ARIMA models be, respectively,

φ(L) = 1 + φ1 B + · · · + φp Bp, θ(L) = 1 + θ1 B + · · · + θq Bq ,

and assume there are r common roots shared by the two polynomials.
Then, there exists a polynomial λ(L), of order r, formed by the product
of all the common roots, such that

φ(L) = λ(L)α(L), θ(L) = λ(L)β(L).

Let α(L) = 1 + α1L +· · ·+ αaβa, a = p − r, and β(L) = 1 + β1L + · · · +
βbB

b, b = q − r. Removing λ(L) from the previous two equations yields

φ(L)β(L) = θ(L)α(L), (7.1)

an identity between two polynomials of order k = p + q − r. Denote by
ψ the vector of coefficients of the implied ARMA, and by δ the vector of
coefficients after the common polynomial λ(L) has been removed, i.e.

ψ = [φ1, . . . , φp, θ1, . . . , θq ]′, (7.2)

δ = [α1, . . . , αa, β1, . . . , βb]′. (7.3)
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Table 12.10 Test for common roots

Order of
implied ARMA

Number of
common roots

Order of
simplified ARMA

dt (22, 19) 18 (4, 1)
yt (22, 24) 22 (0, 2)
pt (22, 17) 17 (5, 0)
rt (22, 20) 20 (2, 0)
nt (22, 21) 21 (1, 0)
mt (22, 21) 19 (3, 2)

Equating the coefficients of Lj (j = 1, . . . , k) in (7.1) yields a system of k
equations. Conditional on ψ , the system is linear in δ and can be written
as

h = Hδ, (7.4)

where h is a k-dimensional vector and H a k × (k − r) matrix. Conditional
on δ, the system is linear in ψ and can be expressed as

e = Eψ,

where e is a k-dimensional vector and E a k × (p + q) matrix. The test
consists of the following procedure:
(1) Run OLS on (7.4) to obtain δ̂, and with this estimator construct the

matrix Ê. Compute, then, the (k × k) matrix ξ = Ê Σ Ê′, where Σ

denotes the covariance matrix of the estimators of the parameters
in ψ .

(2) Run GLS on (7.3), using ξ as the covariance matrix of the error
term, and denote by SSR the sum of squares of the residuals in this
regression. For the test consisting of

H0 : φ(L) and θ(L) have exactly r common roots,

HA : φ(L) and θ(L) have at most r common roots,

the statistics (T × SSR) is distributed as a χ2 variable with r degrees
of freedom. In order to proceed sequentially, we start with r =
min(p, q), i.e. with r equal to its maximum possible value. If H0

is rejected, we then set r′= r − 1 and redo the test, until H0 is not
rejected.

Implementation of the test requires computation of the matrices H, h,
E, e, and Σ . A simple procedure is described in appendix C. Table 12.10
presents the results from the test (for a 5 percent size), and it is seen that
the orders of the ARMA models obtained after removal of the common
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Table 12.11 Implied ARMA models after cancellation
of roots, results from the test

dt yt pt rt nt mt

AR coefficients
Lag 1 0.03 – 0.16 0.31 −0.12 0.91
Lag 2 0.14 – 0.28 0.09 – −0.33
Lag 3 −0.01 – −0.02 – – 0.45
Lag 4 0.40 – −0.01 – – –
Lag 5 – – 0.30 – – –
MA coefficients
Lag 1 0.02 −0.03 – – – −0.79
Lag 2 – −0.00 – – – −0.17

roots are much smaller than the ones obtained with the ad hoc (restric-
tive) criterion of section 6. The coefficients of the ARMA model after
removal of the common roots are the elements of δ, consistently esti-
mated when running the test; they are displayed in table 12.11. Ignoring
small parameters, table 12.11 yields the following models:

(1 − 0.40L4)∇ log dt = u1t , (7.5a)

∇ log yt = u2t , (7.5b)

(1 − 0.16L − 0.28L2 − 0.30L5)∇ log pt = u3t , (7.5c)

(1 − 0.31L)∇ log rt = u4t , (7.5d)

∇nt = u5t , (7.5e)

(1 − 0.91L + 0.33L2 − 0.45L3)∇ log mt = (1 + 0.79L + 0.17L2)u6t .

(7.5f)

The first model is similar to model (3.1a), since the AR representation of
the latter is, approximately, (1 − 0.42 L4 − 0.13 L8)∇log dt = ult. Model
(7.5b) is the same as model (3.1b), and models (7.5d) and (3.1d) are
practically identical. As for the series pt, model (7.5c) is very close to the
implied ARIMA model obtained with the ad hoc criterion (i.e. model
(6.1c)), which was seen to be a rough approximation to (3.1c). For the
first four series, thus, the test gives results that are in close agreement with
the results of direct univariate analysis and with the implied univariate
models obtained with the ad hoc criterion.

For the last two series, however, models (7.5e) and (7.5f) are markedly
different from models (3.1e) and (3.1f). In both cases it happens that
significant coefficients at seasonal lags are missing. This is due to the fact
that the test yields a value of r which is too large, so that the AR and
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MA polynomials in the simplified ARMA models are not long enough to
reach the seasonal lags. Setting r = 18 for nt and r = 17 for mt, so as to
allow for seasonal coefficients, the model for nt can be expressed (once
small coefficients have been removed) as

∇nt = (1 − 0.40L4)u5t ,

and that for mt as

(1 + 0.15L − 0.53L4)∇ log mt = u6t .

These two models are now very similar to model (3.1e) and (3.1f). There-
fore, our example shows that, when using the Gourieroux–Monfort–
Renault test for cancelling common roots, care should be taken with
seasonal models. Blind application of the test may over-estimate the value
of r, with the consequence that seasonal coefficients may be left out from
the derived model. Once this fact is taken into account, the test is seen
to perform surprisingly well. In summary, it seems safe to conclude that
the ARMA models obtained from univariate analysis are quite in agree-
ment with the univariate models derived from the VAR. This result is
true whether the comparison is made with an ad hoc criterion or with a
testing procedure.

8 An economic application

The comparison of the VAR model with the ARIMA models estimated
with univariate techniques has shown how the results obtained in the latter
can be reasonably explained by the VAR. Be that as it may, since the com-
parison implies cancelling many roots and removing many small coeffi-
cients, it is of interest to see how, when those models are used in economic
applications, inferences may be affected by the type of model used.

The application we chose is related to the effort by macroeconomists
at explaining the permanent changes in aggregate output, as well as
the fluctuations around this “permanent component.” From an early
period when the permanent component (or trend) of the series was
assumed deterministic, economists have moved towards modeling trends
as stochastic components. When a variable contains a stochastic trend, a
shock in the series will not only affect the so-called cyclical component,
but will also have an impact on the permanent one. The measurement of
this long-term effect (or “persistence”) of shocks has been the subject of
attention by macroeconomists. In a univariate world, for I(1) series with
Wold representation,

∇xt = ψ(B)ut , (8.1)
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the impact of a shock ut on xt+k is given by (1 + ψ1 + · · · + ψk)ut. Fol-
lowing Campbell and Mankiw (1987), the persistence of a standardized
shock ut = 1 can be defined as its very long-run impact on the series or,
more formally, as

m = lim
k→∞

k∑
t=0

ψk = ψ(1).

There has been considerable interest in estimating persistence, in par-
ticular for the case of aggregate output, where different values of ψ(1)
have been assigned to different theories of the business cycle. If ψ(1) > 1,
“real factors,” typically associated with supply (such as changes in pro-
ductivity), would account for both economic growth and most of the
business cycle. On the contrary, if ψ(1) < 1, the business cycle would be
more likely to be associated with transitory (typically demand) shocks;
see, for example, the discussion in Lippi and Reichlin (1991).

Of the several approaches to the estimation of persistence, we shall
select three that are relevant to our example. First, following Campbell
and Mankiw (1987), ψ(1) can be obtained from the univariate ARIMA
estimation of (8.1) using Box–Jenkins methods. Second, since additional
variables may provide information in explaining deviations of a variable
with respect to its trend level, Evans (1989) computes the measure using
the parameters from a VAR estimation. Specifically, he proposes to use
ψ(1) in the univariate ARIMA model implied by the VAR one. These two
measures are based, in theory, on the same set of univariate innovations.
Moreover, since the ARIMA models implied by the VAR should be in
agreement with the ACF of the series, and this function is the basic
identification tool in univariate analysis, the two measures of persistence
should not be too distant. Discrepancies between them would be likely
to indicate misspecification in some of the models.

Evans finds, however, that persistence of GNP, measured with the
ARIMA model implied by his VAR model, is considerably different from
the measures obtained by Campbell and Mankiw with univariate analysis.
In order to see whether this discrepancy flags some problem with the
model specification, we re-estimated the bivariate VAR model of Evans
(who kindly supplied us with the data). The equation for GNP is given
by

yt = −0.62
(0.38)

+ 0.13
(0.11)

yt−1 + 0.18
(0.11)

yt−2 + 0.02
(0.10)

yt−3 − 0.48
(0.33)

xt−1

+ 1.32
(0.50)

xt−2 − 0.59
(0.33)

xt−3 − 0.85
(0.26)

dt + at ,

(8.2)
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Figure 12.4 One-period-ahead forecast errors: VAR and AR(1) model

where yt = ∇log GNP, xt is the unemployment rate, and dt a step dummy
variable capturing a structural break; the numbers in parentheses denote
standard errors.

To judge the validity of the equation it is not possible to perform a
proper out-of-sample forecast exercise because the series yt has been sub-
sequently revised (partly because of revisions in seasonal factors). We split
the sample period used by Evans into two subperiods, one with the first
100 observations and the other with the last forty observations. His VAR
model was re-estimated for the first subperiod, and one-period-ahead
forecasts were computed for the second subperiod. Figure 12.4 compares
the associated one-period-ahead forecast errors with those obtained with
a simple “AR(1) + constant” structure (with no structural break), esti-
mated also for the first 100 observations. The two series of errors are very
close, and the large number of parameters in (8.2) does not improve upon
the naive AR(1) specification. The equation is overly parameterized, and
this is reflected in the large standard errors of the parameter estimates.
The difference between the VAR and univariate measures of persistence
thus does not seem the result of a more efficient multivariate estimation;
on the contrary, the VAR model obtained seems an unreliable tool for
inference.
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Table 12.12 Measures of persistencea

Estimated Implied
ARIMA ARIMA VAR

dt 2.61
(0.80)

2.57 2.95
(0.77)

yt 1
(0.00)

1.10 1.69
(0.28)

pt 5.01
(1.89)

3.80 4.56
(1.35)

rt 1.54
(0.16)

1.61 1.75
(0.19)

nt 0.53
(0.10)

0.78 1.01
(0.15)

mt 1.45
(0.31)

1.18 1.24
(0.19)

Note:
a The standard errors of the estimators
(computed using linear approximations) are
provided in parentheses.

Finally, Pesaran, Pierse, and Lee (1993) suggest a multivariate measure
of persistence, with the innovations defined with respect to the multivari-
ate information set. In the univariate case, if g(ω) denotes the spectrum
of ∇xt in (8.2), using a well-known result, g(0) = ψ(1)2σ 2

u . The multi-
variate extension of this result, for the case of the VAR model given by
(2.1), is

g(0) = [Φ(1)−1]Ω[Φ(1)−1]′.

The measure of persistence proposed by Pesaran, Pierse, and Lee is given
by the squared root of the elements of the main diagonal of this matrix,
standardized by the variance of the appropriate multivariate innovation.
(For a vector with only one variable, the multivariate measure becomes
the univariate one.)

Table 12.12 presents the three measures of persistence for the six vari-
ables we consider. The first two measures refer to the response to the
univariate innovation, which is a function of all the innovations of the
multivariate model, as shown in expression (2.4). Therefore, the two mea-
sures are not strictly comparable to that obtained with the VAR model,
which reflects the response to the innovation defined in a multivariate
information set. It is seen, however, that, given the precision of the mea-
surements, for four variables dt, pt, rt, and mt, the three measures are
reasonably close. A unit innovation in public debt has a large permanent
effect on the level of debt, and a similar result is obtained for the price
level variable. In this later case, the discrepancy between the two ARIMA
measures may reflect the limitations of the VAR model in capturing a
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series with a relatively large MA root, as mentioned in section 7. For the
interest rate and the monetary aggregate series the persistence is slightly
larger than 1, although for mt it could be easily accepted as equal to 1.

For the series yt and nt the univariate and multivariate results are more
distant. For the GDP series the univariate measure of persistence is 1,
while the multivariate measure is 1.7 and, considering the standard errors,
they cannot be accepted as equal. According to the interpretation men-
tioned above, this could be seen as evidence that, when the innovation is
cleaned of the effects due to other correlated shocks (i.e. when the infor-
mation set is enlarged), the real business cycle theory gains support. For
the balance of trade series, the univariate measure is below 1, while the
multivariate measure is 1. An economic interpretation of the persistence
measures is beyond the scope of this chapter. Relevant to our discussion
are the following two results:
(a) The proximity of the measures of persistence between the estimated

and implied ARIMA models shows that inferences drawn from the
VAR (concerning persistence) explain well the ones obtained from
univariate analysis. Altogether, it is somewhat striking that the mea-
surement is not more affected by the numerous cancellations of roots
and removal of coefficients.

(b) The univariate measure of persistence may be a reasonable approx-
imation to the persistence measured in a wider information set. But
there are cases when this is clearly not true.

9 Summary and conclusions

It is well known that a linear dynamic structural econometric model has
a reduced form with a multivariate linear time series model expression,
which in turn implies univariate ARIMA models for each of the series.
An important way to evaluate a structural econometric model, thus, is by
checking for whether it encompasses the appropriate VAR model. Since
the univariate models implied by VAR models have ARIMA expressions,
in a similar manner, an important way to evaluate a VAR model is to see
if the results obtained with univariate analysis can be explained by the
VAR, i.e. if the ARIMA models implied by the VAR are close to the ones
found in univariate analysis. Since identification of univariate models is
easier than identification of (not too small) VAR models, if an implied
ARIMA model is substantially different from the ARIMA model that fits
the unvariate series, the difference may well reflect misspecification of the
multivariate model (an example is provided in section 8).

Although the idea is simple, it is rarely put into practice. This may be
partly due to the fear that the comparison may be worthless because of the
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so-called autoregressivity paradox: while the ARIMA models from uni-
variate analysis typically have very few parameters, the implied ARIMA
models, even for relatively small VAR models, have a very large number of
parameters. Can we reasonably expect to bring, for example, a forty-five-
parameter ARIMA model down to a one- or two-parameter one? More
generally, can we expect univariate models to be useful as diagnostic tools
for VAR models?

The question is general, but the answer is ultimately empirical. Thus we
consider a particular application: A VAR model for six quarterly macroe-
conomic variables. First, using univariate analysis, ARIMA models are
fitted to each one of the series. Not counting the innovation variances,
all models have at most two parameters. Then, after testing for cointe-
gration, a parsimonious VAR model is estimated; the model is a slight
modification of the one used by some French economists to analyze the
effect of public debt on several macroeconomic variables. It is seen that
both the set of univariate ARIMA models and the VAR model provide
good fits and perform reasonably well in out-of-sample forecasting.

Next, the univariate models implied by the VAR are derived (following
a procedure described in appendix A). All have an AR polynomial of
order 22, and the orders of the MA polynomials vary between 18 and
24. The application considered provides thus a good example for the
autoregressivity paradox ignoring the innovation variances, the average
number of parameters is forty-two for the implied ARIMA models and
1.3 for the ones estimated in univariate analysis.

In order to compare the two types of models, the roots of the common
AR and of the six MA polynomials of the implied models are computed
(a total of 144 roots). To determine which ones should cancel out, two
approaches are followed. First, we use a simple ad hoc criterion (discussed
in appendix C), biased towards under-cancellation. Once the common
roots are removed, careful analysis of the simplified models shows that
the ARIMA models from univariate estimation are remarkably close to
the ones implied by the VAR. The comparison also evidences the gain
from multivariate modelling for some variables (in particular, GDP) and,
in the case of the price variable, the difficulties of the VAR specifications
in handling series with a large moving average root. Second, a formal
test is applied to determine the roots that could be cancelled. The test is
seen to be biased towards over-cancellation, in particular when the series
contains seasonality. Careful application of the test, however, yields finally
implied ARIMA models that are in agreement with those obtained with
the ad hoc criterion and with univariate analysis.

In summary, the VAR model explains reasonably well the results from
univariate analysis and passes, thus the encompassing test. All considered,
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it seems safe to conclude that the improvement obtained with the multi-
variate model is not very large, but that it can be properly attributed to
having captured some relationships among the macroeconomic variables.

Although the differences between the implied and estimated ARIMA
models are relatively small, it is still of interest to see what effect they may
have when the models are used for economic inference. As an example,
we consider the problem of measuring the so-called persistence, or long-
term effect, of shocks on macroeconomic variables. Persistence has been
estimated in different ways, three of which are relevant to our discus-
sion: First, it has been measured using ARIMA models from univariate
analysis. Second, it has been measured using implied ARIMA models
(derived from VAR ones). Third, we consider a multivariate measure
based directly on the VAR model.

The three measures of persistence are computed for the six series. The
first two measures are close, and hence the VAR model again explains well
the inference obtained in univariate analysis. The comparison also shows
how, although for some variables the inference based on univariate analy-
sis may approximate the one based on multivariate models, on occasion,
it can be misleading. This is clearly the case for the GDP variable.

APPENDIX A UNIVARIATE ARIMA MODELS IMPLIED BY
A VECTOR AUTOREGRESSIVE MODEL

As seen in section 2, the univariate model for the ith series implied by
the multivariate VAR is given by (2.5), where φ(L) is straightforward
to obtain through (2.6) and the moving average part θ i(L)uit satisfies
(2.4). We proceed to summarize a procedure (easy to implement in most
available softwares) to obtain θi (L) and the variance of uit , σ 2

i .
The adjoint matrix Φ∗(L) is directly obtained from Φ(L), and hence

the elements Φ∗
i j (L) and the matrix Ω (with the contemporaneous covari-

ances of the vector at) are assumed known. Let q denote the order of
the polynomial θ t(L). The autocovariances of the r.h.s. of (4), say γ 0,
γ 1, . . . , γ q , can be obtained through the Autocovariance Generating
Function(ACGF),

γi (L) = ft(L)Ω ft(L−1)′,

where ft(L) is the ith row of Φ∗(L). The ACGF γ i(L) is an expression of
the type

γi (L) = γ0 +
q∑

t=1

γi (Li + L−i ), (A.1)
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and our aim is to find the moving average process θ i(L)uit that gener-
ates this set of autocovariances. We proceed as follows (for notational
simplicity the subscript i is dropped). Write (A.1) as

γ (L) = L−q (γq + · · · + γ0Lq + · · · + γq L2q ) = L−q Γ (L).

Since the polynomial Γ (L) is symmetric around Lq, the 2q roots of
the equation Γ (z) = 0 can be expressed as the sets (r1, . . . , rq) and
r −1

1 , . . . , r −1
q ), with |ri| ≥ 1 ≥ |r −1

i |, i = 1, . . . , q. In practice, however,
there is no need to compute the 2q roots of Γ (z). Using the transformation
y = z + 1/z, the polynomial Γ (z) is transformed into a polynomial in y
of order q, say,

A(y) = a0 + a1y + · · · + aq yq , (A.2)

where the vector of coefficients a = (a0, a1, . . . aq)′ is obtained as follows.
Let

b0 = 2,

b1 = (0, 1),

b j = (0, b j−1) − (b j−2, 0, 0), h = 2, . . . , q ,

and build the (q + 1) × (q + 1) matrix S = [s1, . . . , sq+ 1], with the
columns given by

s1 = (1, Oq )′,
s j = (b j−1, Oq− j+1)′, j = 2, . . . , q ,

sq+1 = b′
q ,

where Ok denotes a k-dimensional row vector of zeros. Then, a = Sγ ,
where γ = (γ 0, γ 1, . . . , γ q)′. Let y1, . . . , yq denote the q roots of (A.2).
In each of the equations

z2 − yj z + 1 = 0, j = 1, . . . , q , (A.3)

selecting the root zj such that |zj| ≥ 1, the polynomial θ(L) is found
through

θ(L) = (1 − z1L) . . . (1 − zq L), (A.4)

and σ 2
i can be obtained from σ 2

i = γ0(1 + ∑q
i=1 θ2

i )−1.
Notice that the coefficient yj in (A.3) can be complex. In this case, the

solution is found in the following way: Let yj = a + bi, and define k = a2 −
b2 − 4 m = 2ab, and h2 = [(|k| + (k2 + m2)1/2)/2]. Then, if zj = zr

j + zi
j i

is a solution of (A.3), its real and imaginary parts are given by

zr
j = (−a ± c)/2, zi

j = (−b ± d)/2,
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where, when k ≥ 0, c = h, d = m/2h, and when k < 0, d = [sign(m)] h,
c = m/2d.

The derivation of θ i(B)uit is valid for invertible as well as non-invertible
moving averages. (In the latter case, the unit root would appear twice
in Γ (L)1.) But, as we proceed to show, the moving average part of the
implied ARIMA will always be invertible, thus |zi| > 1 for i = 1, . . . , q.

A univariate finite order autoregressive model, by construction, is
invertible. But, as seen in section 2, the univariate models implied by mul-
tivariate VAR ones are not finite autoregressive models, but full ARMAs,
where the moving average part can be long and complex. There is thus
the question of whether, for some values of the φ-parameters in the AR
matrix, the MA part of an implied univariate model may include a unit
root.

Consider the VAR model given by (2.1). We have seen in (A.1) that,
in the factorization of γ (L), we can always choose θ i(L) so as to have
all roots on or outside the unit circle. Thus we have only to prove that
no root of θ i(L) will be on the unit circle. If θ i(L) has a unit root, this
implies a 0 in the spectrum for an associated frequency. If the spectrum
of the l.h.s. of (2.4) has a 0, all components in the r.h.s. of (2.4) have a
spectrum with a 0 for that particular frequency (see Teräsvirta 1977), and
hence the polynomials Φ∗

i j (L), j = 1, . . . , k, will share the same unit root.
Considering the expansion of the determinant of Φ(L) by the elements
of the ith row:

|Φ(L)| =
k∑

j=1

Φi j (L)Φ∗
i j (L),

and factorizing the unit root common to Φ∗
t1(L), . . . , Φ∗

ik(L), the same
unit root will have to appear in |Φ(L)|. The root would thus be present in
the AR and MA polynomials of the implied ARIMA model, and hence
it would cancel out. It follows that the univariate models implied by the
VAR model are always invertible.

APPENDIX B A COMMENT ON THE PRECISION OF THE
FREQUENCY AND MODULUS OF THE ROOTS IN AN
ESTIMATED AUTOREGRESSIVE MODEL

When using models with AR expressions, it is often of interest to look at
the roots of the AR polynomials, where the roots are expressed in terms
of the frequency ω and the modulus h. Since ω and h are computed as
functions of the AR parameters, it is important to know how errors in
the estimators of the latter induce imprecision in the measurements of
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ω and h. In our case the interest is due to the need to select a criterion to
determine when two roots can be safely assumed to be close enough for
cancellation. Since our comparison involves 144 roots, where the mod-
ulus and frequency of each one are non-linear functions of the forty-one
parameters in the matrices Φ(L) and Ω, we seek a simple ad hoc crite-
rion, such that only roots that are clearly close in a probabilistic sense
will be cancelled. In order to do that, we consider the case of an AR(2)
model for series of the same length as ours (T = 84). One could expect
perhaps a precision somewhat similar to that of our VAR model, with 3.3
parameters per equation: the slight gain from the multivariate fit could
compensate for the small increase in the number of parameters.

Let the AR(2) model be given by

zt − φ1zt−1 − φ2zt−2 = at . (B.1)

Expressing the roots of x2 − φ1x − φ2 = 0 in terms of frequency and
modulus, for 0 < ω < π (i.e. when the roots are not real), it is obtained
that

h =
√

− φ2, ω = a cos
φ1

2
√− φ2

. (B.2)

It is then possible to approximate the functions that relate the estimation
errors in h and ω (to be denoted δh and δω) to the estimation errors in φ1

and φ2 (denoted ε1 and ε2, respectively). Since, for the relevant range 0
> φ2 > −1 and 0 < ω < Π , the functions given by (B.2) are continuous
in φ1 and φ2, it is straightforward to obtain the linear approximation
that relates δ = (δh, δω) to ε = (ε1, ε2). The estimators of h and ω are
consistent (becoming superconsistent when h = 1), and the asymptotic
covariance matrix of δ, Vδ, can be linearly approximated by

Vδ = DVε D′, (B.3)

where Vε is the asymptotic covariance matrix of ε, equal to

Vε = 1 − h4

T

[
1 ρ

ρ 1

]
, ρ = −2h cos ω

1 + h2
,

and D is the matrix of derivatives

D =
(

∂δ

∂ε

)
=

[
0 −(2h)−1

−(2h sin ω)−1 −(2h2 tan ω)−1

]
.

In our example, the vast majority of the roots have modulus in the range
0.6 to 0.9. For h = 0.6, 0.75, 0.9, table 12A.1 presents the standard devi-
ations of the estimation errors for h and φ2, obtained with the asymptotic
approximation (they do not depend on ω). The larger the modulus, the
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Table 12A.1 Modulus estimator for a complex root
in an AR(2) model, asymptotic results (T = 84)

Modulus h S.E. of ĥ AR coeff. φ2 S.E. of φ̂2

0.600 0.085 0.360 0.102
0.750 0.060 0.562 0.090
0.900 0.036 0.810 0.064

Figure 12A.1 MSE: modulus estimator

smaller the estimation error becomes for both parameters. For the values
in table 12A.1, despite its larger numerical value (in absolute terms), the
modulus is estimated with more precision than φ2.

In order to assess the accuracy of the linear approximation, 10,000 sim-
ulations of eighty-four observations each from model (B.1) were made,
for the three values of h in table 12A.1 and fifty partitions of the interval
ω ∈ (0, Π). In each case, the AR coefficients were estimated, and the
estimators of h and ω were obtained through (B.2). For the pairs (h, ω),
figures 12A.1 and 12A.2 compare the standard errors of the modulus
and frequency estimators, respectively, obtained with the simulation and
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Figure 12A.2 MSE: frequency estimator

with the linear approximation. For δm, the approximation works reason-
ably well; for δω, except for relatively large modulus, the approximation is
less reliable. From . . . figures [12A.1 and 12A.2] it is seen that, for com-
plex roots with values of h between 0.6 and 0.9 (our range of concern), the
standard error of δh varies between 0.03 and 0.09, while that of δω varies
between 0.04 and 0.3. Considering the positive correlations between the
two errors for low values of h and ω (figure 12A.3), we adopted the fol-
lowing simple criterion: for the two roots (h1, ω1) and (h2, ω2) to cancel,
we require that the differences h1 − h2 and ω1 − ω2 be smaller than 0.05
(in absolute value). We require further that the sum of the two absolute
differences be smaller than 0.07.

The criterion seems safe in the following sense: Consider a pair of
cancelled roots in one of the implied ARIMA models, and let δ and d
denote the errors in the estimators of (h, ω) in the AR and MA roots,
respectively. Assume δ is distributed normally, with zero mean vector
and covariance matrix (B.3), and that we wish to test δ = d. For all roots
actually cancelled, the p-value of the test would be smaller than 0.5. In
this way, the criterion will tend towards under-cancellation, and will avoid
cancelling roots measured with imprecision.
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Figure 12A.3 Correlation: Modulus and frequency estimators

APPENDIX C COMMON ROOTS TEST: COMPUTATION
OF THE MATRICES

To carry out the test described in section 7, the matrices H, h, E, e, and
Σ need to be computed. For the first four matrices, this can easily be
done in the following way: Let Oj denote a column vector of j zeros, and
define the vector c = (c1, . . . , cd)′, the (m × n) matrix

A(c) =



1 0 . . . 0
c1 1 . . . 0

...
...

...
...

... 1

cd
... c1

0 cd
...

...
...

...
0 0 . . . cd


,

with n < d < m, and the m-dimensional vector b(c) = (1, c′, O ′
m−d−1)′.

Then,
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h = b(φ) − b(θ), e = b(α) − b(β),

and the matrices H and E can be obtained through

H = [H1
... − H2], E = [−E1

... E2],

where H1, H2, E1, and E2 are given by

H1 = A(θ), n = p − r,

H2 = A(φ), n = q − r,

E1 = A(β), n = p,

E2 = A(α), n = q ,

and m = p + q − r in all cases.
Finally, we need an estimator of Σ = cov(ψ), where ψ contains the

parameters of the implied univariate model. These parameters are func-
tions of the VAR model parameter estimates, as indicated by (2.4) and
(2.6). The VAR model parameters are the AR coefficients Φ(L) and the
elements of Ω, the residual error covariance matrix. Let Φ denote the
vector of AR coefficient estimators, and σ the vector containing the esti-
mators of the elements in Ω. (In order to simplify notation, we delete the
symbol “∧” to denote an estimator.) Then, a linear approximation to Σ

yields

Σ
.= JMJ ′,

where

J =
[

∂ψ

∂Φ

...
∂ψ

∂σ

]
, M = cov(Φ, σ )′ =

[
MΦ MΦσ

MσΦ Mσ

]
.

The derivatives in J have been computed numerically. As for the matrix
M, the first submatrix MΦ = cov(Φ) is available from the VAR estimation
results; also, asymptotically, MΦσ = Mσ Φ = 0. In order to obtain Mσ =
cov(σ ), its elements are expressions of the form cov(σ i j σ kh), where Ω =
(σ i j ), and

σi j = T−1
∑

t

ai ta j t .

Since the vector at ∼ N6(0, Ω), from its moment-generating function, it
is straightforward to find that, for all values of i, j, k, h,

cov(σi j σkh) .= (σikσ j h + σ j kσih)/T,

and hence Mσ can be easily computed.
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Series C 37, 12–56; chapter 6 in this volume



Part III

Macroeconomic forecasting and modeling





13 Macroeconomic forecasting using pooled
international data (1987)

Antonio Garcia-Ferrer, Richard A. Highfield,
Franz C. Palm, and Arnold Zellner

1 Introduction

It has long been recognized that national economies are economically
interdependent (see, e.g., Burns and Mitchell 1946 for evidence of
comovements of business activity in several countries and Zarnowitz 1985
for a summary of recent evidence). Recognition of such interdependence
raises the question: Can such interdependence be exploited economet-
rically to produce improved forecasts of countries’ macroeconomic vari-
ables such as rates of growth of output, and so forth? This is the problem
that we address in this chapter, using annual and quarterly data for a sam-
ple of European Economic Community (EEC) countries and the United
States.

We recognize that there are several alternative approaches to the prob-
lem of obtaining improved international macroeconomic forecasts. First,
there is the approach of Project Link that attempts to link together elab-
orate structural models of national economies in an effort to produce
a world structural econometric model. A recent report on this ambi-
tious effort was given by Klein (1985). We refer to this approach as a
“top-down” approach, since it uses highly elaborate country models to
approach the international forecasting problem. In our work, we report
results based on a “bottom-up” approach that involves examining the
properties of particular macroeconomic time series variables, building
simple forecasting models for them, and appraising the quality of fore-
casts yielded by them. We regard this as a first step in the process of
constructing more elaborate models in the structural econometric mod-
eling time series analysis (SEMTSA) approach described by Palm (1983),
Zellner (1979), and Zellner and Palm (1974). Analysis of simple models

This research was financed in part by the National Science Foundation and by income
from the H. G. B. Alexander Endowment Fund, Graduate School of Business, University
of Chicago. C. Hong provided valuable computational assistance.

Originally published in the Journal of Business and Economic Statistics 5(1) (1987), 53–67.
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for the rates of growth of output for various countries provides bench-
mark forecasting performance against which other models’ performance
can be judged, much in the spirit of Nelson’s (1972) work with US data.
What is learned in this process can be very helpful in constructing more
elaborate models. As Kashyap and Rao (1976, p. 221) remark,

Since the number of possible classes [or models] in the multivariate case is several
orders larger than the corresponding number of univariate classes, it is of utmost
importance that we develop a systematic method of determining the possible
classes. This is best done by considering the equations for the individual variables
y1, . . . , ym separately.

The plan of our chapter, which reports our progress to date, is as follows.
In Section 2, we analyze data on annual growth rates of real output for
nine countries. The forecasting performance of several naive models is
compared with that of more sophisticated models that incorporate lead-
ing indicators, common influences, and similarities in models’ param-
eter values across countries in a Bayesian framework. (For some other
studies comparing the properties of alternative forecasting procedures,
see Makridakis et al. 1982; Harvey and Todd 1983; Meese and Geweke
1984; Zellner 1985; McNees 1986.) In addition, the quality of forecasts
so obtained is compared with that of other available forecasts. Section
3 deals with an analysis of quarterly data for six countries. Again the
forecasting performance of several naive models is compared with that of
several slightly more complex models. Finally, in Section 4 a summary
of results is presented and some concluding remarks regarding future
research are presented.

2 Analyzes of annual data for nine countries

Annual data, 1951–81, for nine countries’ output growth rates, measured
as gt = ln(Ot/Ot−1), where Ot is real output (real GNP or real GDP),
have been assembled in the main from the IMF’s International Financial
Statistics data base. (An appendix giving the data is available on request.)
The data relate to the following countries: Belgium, Denmark, France,
Germany, Ireland, Italy, the Netherlands, the United Kingdom, and the
United States. Plots of the basic data are shown in figure 13.1, including
data for Spain that have not as yet been analyzed.

Our procedure in analyzing our data was as follows:
1. We used the data, 1954–73, twenty observations to fit each of our

models, with the 1951–3 data used for initial lagged values of variables.
2. Then the fitted models were employed to generate eight one-step-

ahead forecasts for the years in our forecast period, 1974–81. In
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making one-step-ahead forecasts, models were re-estimated using all
past data prior to each forecast period.

3. Forecast errors were computed for each forecast period and coun-
try. The root mean-squared errors (RMSEs) by country and overall
measures of forecasting precision have been computed to appraise the
forecasting performance of different models.

2.1 Individual country models

Years ago, Milton Friedman suggested that the forecasting performance
of naive models (NMs) be determined to serve as a benchmark in evalu-
ating the forecasting performance of more complicated models and pro-
cedures, a suggestion pursued by Christ (1951) in his evaluation of the
forecasting performance of a structural econometric models of the US
economy and many others. Here we use the following two NMs to fore-
cast the growth rate gt:

NMI: ĝt = 0, (2.1)

NMII: ĝt = gt−1. (2.2)

The forecast of NMI, ĝt = 0, is optimal in a mean-squared error (MSE)
sense if the logarithm of output, Ot, follows a random walk – that is,
gt ≡ ln Ot − ln Ot−1 = ε1t, where ε1t is a white-noise error term with zero
mean. Then ĝt = 0 is the minimal MSE forecast. The NMII forecast is a
minimal MSE forecast if gt follows a random walk, gt = gt−1 + ε2t, where
ε2t is a white-noise error term with zero mean. For this latter process,
E(gt|I t) = gt−1 (where It denotes values of gt prior to period t) is a minimal
MSE forecast. For each country, the two NM forecasts in (2.1)–(2.2)
were calculated for each of eight years in the forecast period 1974–81
with results shown in lines A and B of table 13.1.

From line A of table 13.1, it is seen that NMI’s RMSEs in percentage
points range from 4.38 for Ireland to 2.21 for the United Kingdom. The
median RMSE across countries is 3.09.

In line B of table 13.1, the RMSEs for NMII are shown. These range
from 2.06 percentage points for Ireland to 4.88 for Italy, with a median
of 3.73. Thus the range of the RMSEs and the median RMSE for NMII’s
forecasts are both larger than those for NMI. Both NMs’ forecast errors
are rather large, however, particularly in the vicinity of turning points
in the rate of growth of output that occurred in the neighborhoods of
1974–5 and 1979–80 for most countries. Thus possible improvement in
forecasting performance relative to that of the NMs’ performance might
be attained through improved forecasting of turning points.



T
ab

le
13

.1
R

oo
tm

ea
n-

sq
ua

re
d

er
ro

rs
(R

M
S

E
s)

of
on

e-
st

ep
-a

he
ad

fo
re

ca
st

s
of

an
nu

al
re

al
ou

tp
ut

gr
ow

th
ra

te
s

fo
r

ni
ne

co
un

tr
ie

s

M
od

el
B

el
gi

um
D

en
m

ar
k

F
ra

nc
e

G
er

m
an

y
Ir

el
an

d
It

al
y

N
et

he
rl

an
ds

U
ni

te
d

K
in

gd
om

U
ni

te
d

S
ta

te
s

Pe
rc

en
ta

ge
po

in
ts

A
N

M
I

(ĝ
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As a first step in the direction of attempting to improve on the fore-
casting performance of NMs I and II, we fitted autoregressions of order
3 (AR(3)s) to each country’s data. That is,

git = αoi + α1i gi t−1 + α2i gi t−2 + α3i gi t−3 + εi t ,

t = 1, 2, . . . , 20, i = 1, 2, . . . , 9, (2.3)

was considered for each country. We chose an AR(3) model to allow for
the possibility of having two complex roots, associated with a cyclical
solution, and one real root associated with a trend in the growth rate.

The AR(3) model in (2.3) was estimated for each country separately
using twenty observations, 1954–73. Using a diffuse prior distribution
for the parameters and given initial starting values, it is well known that
the posterior means of the autoregressive parameters are identical to least
squares estimates. In addition, the mean of the one-step-ahead predictive
distribution is identical to the least squares point prediction. Thus these
diffuse prior estimates and diffuse prior predictions are the same as those
provided by application of least squares (see, e.g., Zellner 1971, ch. 7).
Later, these diffuse prior predictions will be compared with those based
on more informative prior distributions.

For many countries, the autoregressive parameters were not estimated
very precisely, and if one performed mechanical “t-tests” of hypothe-
ses that coefficients of lagged terms are equal to 0 at an approximate
5 percent level of significance, many coefficients appeared equal to 0
with the exception of those for Ireland. Moreover, the residuals from the
fitted relations appeared to be non-autocorrelated. In cases in which the
autoregressive coefficients are “truly” equal to 0 or very small in value,
there should not be much if any improvement in forecasting precision
relative to that of the NMs. It is recognized, however, that the preced-
ing approximate t-tests or F-tests are not very powerful; and thus it was
decided to compute AR(3) forecasts and their RMSEs that are shown in
row C of table 13.1. It is seen that the largest RMSE is 4.75 for Italy,
whereas the smallest is 1.69 for Ireland. The median RMSE is 3.46, that
for Denmark; it is considerably higher than the median RMSE for NMI,
namely 3.09. The AR(3) model resulted in a lower RMSE relative to
NMI just for Ireland and the United States, where the improvement is
relatively large, 1.69 versus 4.38 and 2.48 versus 3.48, and for France
and the Netherlands, where the improvement is slight, 2.89 versus 2.96
and 3.52 versus 3.77.

Thus, using AR(3) models did not produce substantially improved
overall performance, perhaps because unneeded parameters were added
and/or because the effects of lagged terms were masked due to omitted
relevant variables, a possibility explored hereafter. It was also noted that
AR(3) models had large forecasting errors in the vicinity of turning points.
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Since the NMs and the AR(3) models generally performed rather
poorly in the vicinity of turning points, it was decided to add a lead-
ing indicator variable, lagged real stock returns for each country (see
Fischer and Merton 1984, who found that lagged stock market vari-
ables were useful in forecasting US real GNP). This indicator variable is
close to being white-noise and thus could be buried in the error terms
of our AR(3)s that also appeared to be non-autocorrelated. By taking a
measurable white-noise component out of our approximately white noise
error terms, we are effectively attempting to “forecast white-noise” along
the lines suggested by Granger (1983). In these experiments, we used
the AR(3) model in (2.3) with each country’s equation containing that
country’s real stock returns lagged one and two years. Thus two terms,
real stock returns lagged one and two years, were added to (2.3) and
the relations were fitted for each country by least squares. The results of
forecasting from these “leading indicator” models are shown in row D of
table 13.1. The lowest RMSE is 1.82 for Ireland and the largest is 3.95
for Italy, with a median equal to 2.70, that for Belgium. This median
RMSE of 2.70 is quite a bit lower than that for the AR(3) without lead-
ing indicator terms, namely 3.46. Thus use of the leading indicator terms
in the AR(3) model has led to about a 22 percent reduction in median
RMSE. On comparing rows C and D of table 13.1, it is also seen that
the RMSEs in row D are with two exceptions, France and Ireland, lower
(many considerably lower) than the corresponding RMSEs in row C for
the AR(3) model. It appears that use of each country’s real stock returns
has produced a noticeable and important improvement in forecasting
performance relative to those of the AR(3) model and the NMs. Note
that the median RMSE for NMII is 3.73, whereas that for the leading
indicator model in row D is 2.70, approximately a 38 percent reduction.

The leading indicator AR(3) models’ RMSEs in row D of table 13.1 do
not reflect any allowance for intercountry effects, except insofar as these
are reflected in each country’s lagged variables. There are many ways to
model interdependencies among countries. One simple way of doing this
is to view the median real stock return of all countries as representing
a “world effect” that exerts an influence on individual countries as an
indicator of future world conditions. With this possibility in mind, we
expanded the AR(3) model in (2.3) to allow for two lagged own-country
real stock return terms and a one-period lagged effect of the world real
stock return as measured by the median of the nine countries’ one-period
lagged real stock returns. With the addition of this lagged world return
variable to the model used in row D of table 13.1, the model was fitted
by least squares for each country. The residuals for each country’s model
were found not to be very highly correlated with those of other countries,
suggesting that the world return variable was indeed picking up a common
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Table 13.2 Summary measures of forecasting performance for single-equation
forecasts

Largest-country Smallest-country Median of nine
Model RMSE RMSE countries’ RMSEs

Percentage points
A NMI (ĝt = 0) 4.38 2.21 3.09
B NMII (ĝt = gt−1) 4.88 2.06 3.73
C AR(3) 4.75 1.69 3.46
D AR(3) with two lagged

own-real stock returnsa
3.95 1.82 2.70

E AR(3) as in D plus one
lag of real world returna

3.06 1.54 2.39

F AR(3) as in E plus one
lag of real money growth
ratea

2.92 1.47 2.23

Notes: Based on information in table 13.1.
a See the notes in table 13.1.

influence affecting all countries. RMSEs of forecasts for these “leading
indicator, world return, AR(3)” models are shown in row E of table 13.1.
The largest RMSE is 3.06 for Italy, and the smallest is 1.54 for Belgium.
The median RMSE is 2.39, about a 12 percent reduction relative to the
median RMSE in line D, 2.70.

Another leading indicator that has received considerable attention is
the rate of growth of a country’s real money supply. Thus the one-period
lagged real money supply growth rate was added as a variable in each
country’s AR(3) model along with the two lagged stock return variables
and the lagged world return variable. The forecasting performance of
this model, fitted by least squares for each country, is shown in row F of
table 13.1. The median RMSE is 2.23 percentage points, lower than that
for all other models. The lowest country RMSE is 1.47 for Germany, and
the highest is 2.92 for Denmark. Relative to the RMSEs in row E of table
13.1, those in row F show large reductions for Germany, from 2.31 to
1.47; Italy, from 3.06 to 2.57; the United Kingdom, from 2.91 to 2.23;
and the United States, from 2.43 to 1.82. In the cases of Belgium, France,
and the Netherlands, there are slight increases in the RMSEs. Thus it
appears that introducing the lagged money growth rates has provided an
improvement in forecasting performance.

For convenience some of the summary measures mentioned previously
are collected in table 13.2. We see from table 13.2 that the world return,
own-stock return, money growth rate leading indicator AR(3) model in
row F of tables 13.1 and 13.2 has produced the lowest median RMSE
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of forecast, the lowest country RMSE, and the lowest, largest country
RMSE. For the model in row F,

git = αoi + α1i gi t−1 + α2i gi t−2 + α3i gi t−3 + β1i SRit−1

+ β2i SRit−2 + γi WRt−1 + δi GMit−1 + uit , (2.4)

the RMSEs of forecast ranged from 2.92 percentage points for Denmark
to 1.47 for Germany, with a median of 2.23 for the nine countries. Except
for Denmark and the United Kingdom, RMSEs are much smaller than
those for NMI (see table 13.1). The RMSEs for Denmark and the United
Kingdom are about the same as those for NMI. Relative to NMII, the
RMSEs for forecasts from (2.4) are all substantially lower with the excep-
tion of France, for which they are equal. Thus, in summary, use of the
model in (2.4) has produced improvement in terms of median RMSE rel-
ative to all other models. Use of (2.4) has also produced improvements
for most countries.

It has been recognized in the literature that parameters may not be con-
stant through time because of aggregation effects, policy changes, and so
forth; thus time-varying parameter (TVP) versions of our models were
formulated, estimated, and used in forecasting. (For some other works
using Bayesian TVP models, see Harrison and Stevens 1976, Doan, Lit-
terman, and Sims 1983, Highfield 1984, Los 1985, and West, Harrison,
and Migon 1985). The TVP model that we employed for each country
is in the following form:

git = x′
i tβi t + uit (2.5a)

βi t = βi t−1 + vi t , (2.5b)

where x′
i t is a vector of input variables including a unit element for the

intercept term, three lagged values of git , and lagged leading indicator
variables. The time-varying coefficient vector βi t is assumed to follow a
vector random walk, as shown in (2.5b). Further, we assume that uits
have been independently drawn from a normal distribution with zero
mean and variance σ 2

i and that the vi t vectors have been independently
drawn from a multivariate normal distribution with zero mean vector and
covariance matrix φiσ

2
i I – that is,

uits: NID
(
0, σ 2

i

)
and vi ts: NID

(
0, φiσ

2
i I

)
. (2.6)

If φi = 0, this model reduces to a fixed parameter model.
The model in (2.5) was estimated using a Bayesian recursive state–

space algorithm with various values of φ ranging from 0 to 0.50. The
mean of the one-step-ahead predictive distribution was used as a forecast,
since the mean is an optimal forecast relative to a squared error loss
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function with results shown in table 13.3. In part A of table 13.3, results
for the AR(3) model with two lagged own-real stock return variables,
SRit−1 and SRit−2, included as leading indicator variables are presented.
For φi = 0, the RMSEs are identical with those in row D of table 13.1.
For positive values of φi, including some not shown in the table, there
were declines in the country RMSEs, some large, but the improve-
ment was not encountered in all cases. For example, on comparing row
A.1 (φi = 0) with row A.3 (φi = 0.50), it is seen that the RMSEs for
Belgium, Denmark, France, and Italy show declines, some large, on
allowing parameters to vary. In the cases of Germany, Ireland, the Nether-
lands, and the United States, however, the RMSEs increased slightly,
except in the case of Ireland, where the increase was large. For φi = 0.50,
the median RMSE is 2.52, whereas for φi = 0, the fixed parameter case,
the median RMSE is 2.70. Thus there is a slight overall reduction in
median RMSE in going from φi = 0 to φi = 0.50.

In part B of table 13.3, a time-varying parameter AR(3) model includ-
ing own-lagged stock return variables, SRit−1 and SRit−2, the lagged
world return, WRt−1, and lagged money growth rate, MGit−1, was used
to produce one-step-ahead forecasts for the years 1974–81. Its RMSEs
of forecast are shown in rows B.1–3 of table 13.3. For φi = 0, the model
reduces to the fixed parameter model in row F of table 13.1. The median
RMSE for the country forecasts with φi = 0, the fixed parameter case is
2.23, and for the time-varying parameter cases, φi = 0.25 and φi = 0.50,
the median RMSEs are 1.92 and 1.82, respectively, the latter about
18 percent lower than that for φi = 0. For φi = 0.50 relative to φi = 0,
there are large reductions in country RMSEs for France, Germany, Italy,
and the United Kingdom and small reductions for Denmark and the
Netherlands. For Belgium and the United States, the RMSEs are essen-
tially the same for φi = 0.50 as for φi = 0, whereas for Ireland the RMSE
is increased from 1.83 to 2.59 in going to time-varying parameters with
φi = 0.50. Thus although the overall reduction in median RMSE is large
(approximately 18 percent in using time-varying parameter models and
encountered for six of the nine countries), for three countries there was
no improvement in RMSE. Current research is focused on use of time-
varying parameter models along with the pooling techniques described
in the next section.

2.2 Forecasts based on pooled international data

In this section we consider forecasts derived from models implemented
with data from all countries – that is, pooled international data. There
are many different pooling models. Here we report the forecasting
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performance of a subset of these models. Of particular interest is the
extent to which use of various pooling models results in improved fore-
casting performance relative to that of naive models and of single-
equation models implemented just with individual countries’ data. As
previously, we use the annual data on countries’ growth rates of output
and other variables for the period 1954–73 to fit our models. Then these
fitted models are employed to compute one-year-ahead forecasts for the
eight years 1974–81 using updated estimates based on all data prior to
each forecast period.

The first model that we consider is the AR(3) model including each
country’s real stock returns lagged one and two years. We have such
a model for each of our nine countries. The seemingly unrelated regres-
sion (SUR) approach was used, with an estimated disturbance covariance
matrix, to obtain pooled estimates of coefficient vectors for each country.
One-year-ahead forecasts based on these pooled estimates, updated each
year, were obtained for the years 1974–81. The RMSEs of these forecasts
are presented in row E 2 of table 13.4. For comparison, the RMSEs of
unpooled forecasts – that is, individual country least squares forecasts –
are presented in row E 1 of table 13.4. In this case, the pooled forecasts’
RMSEs are smaller in three cases than the corresponding unpooled fore-
cast RMSEs. The lack of substantial improvement through pooling in
this case may be due to the large number of elements in the disturbance
covariance matrix, forty-five elements, that must be estimated and the
fact that the sample size is not large. As shown in table 13.5, rows E 1
and E 2, the median RMSEs for the unpooled and pooled forecasts are
2.70 and 3.08, respectively. Thus overall there is not much difference in
the performance of the unpooled and pooled forecasts in this instance.
Both median RMSEs, however, are substantially below those for the NMs
and for an unpooled AR(3) model (see rows A–D in table 13.5).

In a second pooling experiment, an AR(3) model with each coun-
try’s real stock returns lagged one and two years and a world return
variable lagged one year was considered. Because, as mentioned previ-
ously, introduction of the lagged world return variable in each country’s
equation produced error terms’ contemporaneous correlations that were
very low, we used the following simple pooling technique. Let gi be the
observation vector of the ith country’s growth rates and Xi the matrix
of observations of the ith country’s input variables with a typical row
(1, git−1, git−2, git−3, SRit−1, SRit−2, WRt−1). Then the pooled coeffi-
cient vector estimate, denoted by β̄, was computed as follows:

β̄ = (X ′
1 X1 + X ′

2 X2 + · · · + X ′
9 X9)−1

× (X ′
1 X1β̂1 + X ′

2 X2β̂2 + · · · + X ′
9 X9β̂9), (2.7)
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Table 13.5 Summary statistics for root mean-squared errors
(RMSEs) in table 13.4

Median Lowest-country Highest-country
Model RMSE RMSE RMSE

Percentage points
A NMI 3.09 2.21 4.38
B NMII 3.73 2.06 4.88
C NMIII 3.23 1.88 3.90
D AR(3): Unpooleda 3.46 1.69 4.75
E AR(3) plus two lagged real stock returns

1. Unpooleda 2.70 1.82 3.95
2. Pooledb 3.08 1.86 3.88

F As in row E plus lagged world return
1. Unpooleda 2.39 1.54 3.06
2. Pooledc 2.62 1.70 3.08

G As in row F plus lagged real money growth rate
1. Unpooleda 2.23 1.47 2.92
2. Pooled(1)c 2.22 1.35 2.87
3. Pooled(2)d (η = 0.5) 1.78 1.25 2.52

a See note a, table 13.4.
b See note b, table 13.4.
c See note c, table 13.4.
d See note d, table 13.4.

a matrix-weighted average of the single-equation least squares estimates,
β̂i = (X ′

i Xi )−1 X ′
i gi (i = 1, 2, . . . , 9). The joint estimate β̄ in (2.7) can

be rationalized in at least three ways. First, if we assume that countries’
parameter vectors and their disturbance variances are not very different,
we can consider the following model for the observations:

g1
g2
...

g9

 =


X1

X2
...

X9

β +


u1

u2
...

u9

 . (2.8a)

Given that we use least squares to estimate the common coefficient vector
β, the result is the estimate shown in (2.7).

Second, if for each country we have gi = Xiβi + ui and we assume
that the βis are random satisfying βi = θ + vi (i = 1, 2, . . . , 9), where
θ is a common mean vector and the vi vectors are uncorrelated with
the variables in Xi, then gi = Xiθ + ηi, where ηi = Xivi + ui. Then,
under relatively weak conditions, the estimator β̄ in (2.7) is a consistent
estimator for θ. If more were assumed about the properties of the uis and
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vis it is possible to define asymptotically efficient estimators for θ and
predictors. This involves introducing possibly questionable assumptions
and additional parameters, however. Since our sample size is small and
we do not have much data to assess the quality of the needed additional
assumptions, we decided to use β̄ in (2.7) for each country to generate
pooled forecasts.

A third way of rationalizing β̄ in (2.7) is to consider a version of the
Lindley and Smith (1972) pooling model. Here we have gi = Xiβi + ui

(i = 1, 2, . . . . , 9) or
g1
g2
...

g9

 =


X1 0 · · · 0
0 X2 · · · 0
...

. . .
...

0 0 · · · X9



β1
β2
...
β9

 +


u1

u2
...

u9

 , (2.8b)

or

g = Zβa + u, (2.8c)

where g′ = (g′
1g′

2 · · · g′
9), Z is the block-diagonal matrix in (2.8b), β′

a =
(β′

1β
′
2 · · ·β′

9), and u′ = (u′
1 u′

2 · · · u′
9). Further, it is assumed that

βi = θ + vi , i = 1, 2, . . . , 9, (2.9)

where θ is a mean vector for the βis. If we assume that the uis are inde-
pendent, each with an N(0, σ 2I) distribution, and that the vis are inde-
pendent, each with an N(0, σ 2

v I) distribution, the probability density
function for βa given the data, σ 2, λ = σ 2/σ 2

v , and θ = β̄ in (2.7) has a
posterior mean, β̄a, given by

β̄a = (Z′Z + λI)−1(Z′g + λJβ̄)

= (Z′Z + λI)−1(Z′Zβ̂ + λJβ̄), (2.10)

where β̂ = (Z′Z)−1 Z′g, with typical subvector β̂i = (X ′
i Xi )−1 X ′

i gi , and
J ′ = (I I · · · I). β̄a in (2.10) is a matrix-weighted average of β̂, the
vector of the equation-by-equation least squares estimates, β̂i, and β̄
the pooled estimate given in (2.7). The weights involve λ = σ 2/σ 2

v . If
σ 2

v → 0, λ → ∞ and βi → θ, from (2.9), and β̄a → Jβ̄ or each subvector
of β̄a approaches β̄, the pooled estimate in (2.7). On the other hand,
if λ = σ 2/σ 2

v → 0, then β̄a → β̂, the equation-by-equation least squares
estimates. Using (2.10) to generate forecasts for various values of λ and for
different models, it was generally found that use of a very large value for
λ – that is, the pooled estimate in (2.7) – produced the most satisfactory
forecasts in a RMSE sense.
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Thus, with the preceding considerations and results in mind, we
present the RMSEs of forecasts generated using β̄ as the coefficient vec-
tor estimate for each country. The RMSEs of these pooled forecasts are
presented in row F 2 of table 13.4 with the RMSEs of unpooled forecasts
in row F 1. The pooled forecasts’ RMSEs are smaller in six of nine cases.
Also from rows F 1 and F 2 of table 13.5, however, the median RMSE
for the unpooled estimates is 2.39, whereas that for the pooled estimates
is 2.62, a 9 percent increase. Thus use of pooled forecasts in this case led
to an improvement for six of nine countries, but an increase in the overall
median RMSE.

Using the same pooling technique – that is, the common coefficient
vector estimate β̄ in (2.7) – for all countries and an AR(3) model with
own-country real stock returns lagged one and two years, the lagged world
return, and each country’s lagged money growth rate, pooled forecasts
were generated. The RMSEs associated with these pooled forecasts are
shown in row G 2 and the unpooled forecasts’ RMSEs are shown in row
G 1 of table 13.4. For four of nine countries, the pooled RMSEs are
smaller. From table 13.5, rows G 1 and G 2, the median RMSEs for the
unpooled and pooled forecasts are 2.23 and 2.22, respectively. It is seen
that pooling in this instance led to just a very small reduction in median
RMSE.

Last, another method of pooling was tried for the model considered
in the last paragraph and in row G of tables 13.4 and 13.5. For the ith
country, ĝ i t is its output growth rate least squares forecast for period t.
Let ḡ t be the mean of the individual countries’ forecasts for period t –
that is, ḡt = ∑9

i=1 ĝi t/9. Then we define a pooled forecast, ḡ i t , as follows:

ĝi t = (1 − η)ĝi t + ηḡt

= ḡt + (1 − η)(ĝi t − ḡt), (2.11)

where η is a weighting factor. From the second line of (2.11), it is seen
that we are “shrinking” the individual forecasts, ĝ i t , toward the mean
forecast, ḡ t, in a Steinlike manner.

RMSEs for country forecasts, 1974–81, based on (2.11) for selected
values of η are shown in table 13.6. With η = 0, the RMSEs are identical
to those shown in row G 1 in table 13.4 – that is, those for least squares
forecasts for individual countries with no pooling. It is seen that for η

values 0.25, 0.50, and 0.75 there are large reductions in country RMSEs
relative to those for η = 0 for Denmark, France, Germany, Ireland, and
Italy, small reductions for the Netherlands and the United States, and
slight increases for Belgium and the United Kingdom. For η = 0.5,
the median RMSE is 1.78, with the smallest RMSE being 1.25 and the
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Table 13.6 Country root mean-squared errors (RMSEs) of the forecast for
1974–1981, associated with the use of the pooling model (2.11) for various
values of η

United United
η Belgium Denmark France Germany Ireland Italy Netherlands Kingdom States Median

Percentage points
0 1.56 2.92 2.43 1.47 1.83 2.57 2.63 2.23 1.82 2.23
0.25 1.59 2.48 2.01 1.30 1.59 2.24 2.55 2.32 1.73 2.01
0.50 1.68 2.21 1.61 1.25 1.52 2.01 2.52 2.46 1.78 1.78
0.75 1.80 2.18 1.26 1.34 1.64 1.89 2.53 2.63 1.97 1.89
1 1.96 2.39 1.01 1.54 1.91 1.92 2.57 2.82 2.25 1.96

Note:
Individual country forecasts, ĝi t , were generated using the model in (2.4) and pooled using the relation
in (2.11).

largest 2.52. This median RMSE of 1.78 is about 20 percent lower than
the median RMSE of 2.23 for the unpooled least squares forecasts (see
rows G 1 and G 3 of table 13.5). Thus the pooling procedure given in
(2.11) has produced a substantial improvement in forecasting precision
as measured by median RMSE. Plots of pooled forecasts, calculated from
(2.11) and actual annual growth rates are presented in figure 13.2.

2.3 Comparison with OECD forecasts

In a very interesting article, Smyth (1983) presented an analysis of the
annual forecasts made by the Organization for Economic Cooperation
and Development (OECD) for seven countries’ rates of growth of real
GNP for the years 1968–79. Although this period is different from our
period, 1974–81, in that the difficult (in a forecasting sense) years 1980
and 1981 are not included, it is thought that a comparison of RMSEs of
forecast is of interest.

Smyth (1983, p. 37) explained that “It is probable that more policy
attention in the various countries is attached to the annual forecasts than
to the half-yearly ones and that is why we analyze them here.” He went on
(1983, p. 38) to state, “While account is taken of both official and unoffi-
cial national forecasts, the OECD forecasts are entirely the responsibility
of the OECD Department of Economics and Statistics.” He described
the OECD forecasting procedures as follows (1983, p. 37):

The OECD’s forecasting cycle is semi-annual. The forecasting “round” begins
with a simulation of the interlink model to provide an initial update of the previous
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Figure 13.2 Plots of annual pooled forecasts and actual output growth
rates, 1974–1981; the pooled forecasts are from row G 3 of table 13.4
(η = 0.5)

set of forecasts in the light of changes in exogenous factors. This, together with
an assessment of special factors influencing each economy, provides a basis for
preliminary assessments of the level of demand for the individual economies,
which permits initial estimates of import and export demand. Exchange rates
and the real price of oil are assumed to remain unchanged over the forecast
period. Fiscal and monetary policy assumptions are made on the basis of existing
stated policies.

Budgetary statements are widely used to estimate public consumption and
investment. Private investment components are forecast separately . . . There
is quite extensive reliance on investment surveys. Private consumption depends
primarily on personal disposable income. The stockbuilding forecast is often
based upon the behaviour of stock–output ratios.
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Figure 13.2 (cont.)

Further, he noted (1983, p. 37) that “judgements are imposed on the
forecasting round by individuals not associated with the modelling pro-
cess – namely, individuals from the OECD’s various country desks.”

It is clear that the OECD forecasting procedures are much more com-
plicated than those presented here. Whereas we have employed various
stock market return variables to reflect “outside influences and informa-
tion,” the OECD approach involves use of detailed data and the judgment
of individuals in an attempt to capture outside influences and informa-
tion. These and other differences in our and the OECD approaches are
apparent to the reader from what has been presented previously.

As Smyth (1983, p. 45) showed, the OECD forecasts are better than
those of naive random-walk models for all countries. The RMSEs of the
OECD annual GNP growth rate forecasts, 1968–79, are given in table
13.7, part A, along with those reported in table 13.4, rows G 1–G 3,
for countries appearing both in our and the OECD samples. The major
results shown in part A of table 13.7 are the following:
1. Our unpooled least squares forecasts, 1974–81, based on (2.4), have

lower RMSEs for three of the five countries – Germany, Italy, and
the United Kingdom. For France and the United States, the OECD
RMSEs are considerably smaller. The median RMSE of our forecasts,
2.23, is slightly larger than that for the OECD forecasts, 2.12.
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Table 13.7 Comparison of forecasting performance

United United Median
Forecasts France Germany Italy Kingdom States RMSE

Percentage points
A. RMSEs of GNP growth rate forecasts, by country
OECD (1968–9)a 1.45 2.12 2.86 2.26 1.38 2.12
Table 4 (1974–81)

G1 unpooledb 2.43 1.47 2.57 2.23 1.82 2.23
G2 pooledc 1.35 2.03 2.22 2.26 2.75 2.22
G3 pooledd 1.61 1.25 2.01 2.46 1.78 1.78

B. Mean absolute errors of GNP growth rate forecasts, by country
OECD (1968–79)a 1.10 1.63 2.55 1.72 0.85 1.63
Table 4 (1974–81)

G1 unpooledb 1.94 1.08 2.12 1.84 1.42 1.84
G3 pooledd 1.32 1.10 1.50 2.02 1.64 1.50

Table 4 (1974–9)
G1 unpooledb 1.57 1.25 2.39 1.22 1.12 1.25
G3 pooledd 0.98 1.12 1.74 1.41 1.33 1.33

Notes:
a Taken from Smyth (1983, table 3, p. 45).
b Least squares forecasts for individual countries using the model in (2.4).
c Forecasts computed using the pooled coefficient estimate in (2.7) and the variables in
(2.4).
d Forecasts computed using the pooling technique in (2.11) with η = 0.5 and the model
in (2.4).

2. Our 1974–81 pooled forecasts, row G 2 of table 13.7, computed using
the coefficient estimate in (2.7) and the variables in (2.4), have RMSEs
smaller than the OECD’s for three countries – France, Germany, and
Italy; the same RMSE for the United Kingdom; and a much larger
RMSE for the United States. The median RMSEs, 2.12 for the OECD
forecasts and 2.22 for our forecasts, are very similar.

3. Our 1974–81 pooled forecasts, row G 3 of table 13.7, computed using
the shrinkage formula in (2.11) with η = 0.5 and the model in (2.4),
have RMSEs that are smaller for two countries, Germany and Italy,
and larger for the remaining three countries. The median RMSE for
our forecasts is 1.78, somewhat lower than that for the OECD fore-
casts, namely 2.12.

4. On comparing the OECD forecast RMSEs in table 13.7 with those
for our Bayesian TVP models’ forecast RMSEs for φ = 0.50 in table
13.3, it is seen that the latter are much smaller for Germany, 0.97
versus 2.12; Italy, 1.68 versus 2.86, and the United Kingdom, 1.82
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versus 2.26, and somewhat larger for France, 2.08 versus 1.45, and
the United States, 1.81 versus 1.38. The median RMSE for the TVP
models’ forecasts is 1.82, lower than the OECD median RMSE, 2.12.

5. In addition to the OECD RMSEs reported in table 13.7, Smyth (1983,
table 13.3, p. 47) reported the following RMSEs for countries not in
our sample: Canada, 1.71, and Japan, 4.40.
Overall, it is concluded that our pooled and TVP forecasts compare

favorably with the OECD forecasts except in the case of the United States,
for which the OECD forecasts have a smaller RMSE. This conclusion
should be qualified because the periods covered are not exactly the same.
As mentioned previously, our period contains the “difficult” forecast-
ing years 1980 and 1981. On the other hand, the OECD forecasts are
“on-line” forecasts made in December of year t − 1 for year t and may
thus be subject to difficulties associated with use of preliminary esti-
mates of GNP and related variables, whereas we have used data that
are currently available for past years. At present, it is difficult to deter-
mine how these two considerations affect the comparisons reported in
table 13.7.

As a final comparison of the OECD forecasts and ours, we present
mean absolute errors (MAEs) for the OECD and our forecasts, 1974–81,
in part B of table 13.7. Also shown are the MAEs for the years 1974–9, a
period that may be more comparable to the OECD period. Our unpooled
forecasts for the 1974–81 period have lower MAEs for two countries,
Germany and Italy, and larger MAEs for the remaining three countries.
The OECD median MAE is 1.63, and for our unpooled forecasts it is
1.84. When the 1974–9 period is used for our unpooled forecasts, our
MAEs are lower for three countries and the median MAE is 1.25, much
lower than that for the OECD forecasts, namely 1.63.

As regards the MAEs for our pooled forecasts for the 1974–81 period,
the pooled forecasts have lower MAEs for two of the countries and a
median MAE of 1.50, almost the same as that for the OECD forecasts.
When the 1974–9 period is used, our pooled forecasts have lower MAEs
for four of the five countries and a larger MAE for the United States. The
median MAE is 1.33 for our pooled forecasts and 1.63 for the OECD
forecasts. As mentioned previously, forecasts for the six-year period
1974–9 are seen to be more accurate for most countries than those for
the eight-year period 1974–81.

In conclusion, it appears that our relatively mechanical forecasts
are competitive with the OECD forecasts except in the case of the
United States, in which the OECD forecasts are better. Although sev-
eral hypotheses to explain this finding could be considered, we shall not
pursue this matter further now.
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3 Forecasting quarterly output growth rates

Quarterly data, 1967:II–1977:IV, for six countries’ output growth rates
calculated from seasonally adjusted data and other variables have been
employed to fit models. Then the fitted models have been used to gen-
erate one-quarter-ahead forecasts for each of sixteen quarters, 1978:I–
1981:IV. Each model has been re-estimated quarter by quarter during the
forecast period using data available prior to the forecast quarter. As with
our analyzes of annual data, we are interested in determining the extent
to which pooling data across countries improves forecasting accuracy.
For comparative purposes, we provide forecasting results for three naive
models and autoregressive integrated moving average (ARIMA) mod-
els. The latter were identified using standard Box–Jenkins (1976) pro-
cedures and the 1967:II–1977:IV data. Then they were used to produce
one-quarter-ahead forecasts with parameter estimates updated quarter by
quarter.

In rows A–C of table 13.8, the RMSEs of one-quarter-ahead forecasts
for the sixteen quarters in the period 1978:I–1981:IV produced by three
NMs are reported for each of the six countries. The median RMSEs are
1.16, 1.50, and 1.20 for NMs I, II, and III, respectively. These overall
measures suggest that NMs I and III outperform NMII. For NMI, the
country RMSEs range from a low of 0.71 for Spain to a high of 1.65 for
the United Kingdom. The United Kingdom’s RMSEs are the largest for
each NM.

Shown in row D of table 13.8 are the ARIMA one-quarter-ahead fore-
cast RMSEs country by country. They range from a low of 0.94 for
Germany to a high of 1.70 for the United Kingdom. The median RMSE
is 1.18, about 2 percent higher than that for NMI. Thus the ARIMA
forecasts are not appreciably better overall than those obtained from use
of NMI. The RMSEs for NMI are lower than those for the ARIMA mod-
els for France, Spain, and the United Kingdom and higher for Germany,
Italy, and the United States.

In row E of table 13.8, unpooled and pooled forecasting results are
presented. Each country’s output growth rate was related linearly to a
constant, C, its own-output growth (OG) rate lagged one quarter, OG(1),
its own-real stock return lagged one quarter S(1), the median of the
country real stock returns lagged one quarter, W(1), and each country’s
money growth rate lagged one quarter, M(1). The unpooled forecasts
are least squares forecasts derived from the individual country models
with coefficient estimates updated quarter by quarter. These unpooled
forecasts’ median RMSE is 1.24, higher than that for two of the NMs
and that for the ARIMA models. Thus these unpooled forecasts do not
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Table 13.8 Root mean-squared errors (RMSEs) for one-quarter-ahead
forecasts of quarterly output growth rates for six countries, 1978I–1981IV

United United Median
Model France Germany Italy Spain Kingdom States RMSE

Percentage points
A NMI (ĝi t = 0) 0.97 1.06 1.53 0.71 1.65 1.25 1.16
B NMII (ĝi t = ĝi t−1) 1.09 1.45 1.70 1.13 2.63 1.56 1.50
C NMIII 0.91 1.02 1.34 1.18 1.73 1.22 1.20

(ĝi t = past mean growth rate)
D ARIMAa 1.20 0.94 1.44 0.77 1.70 1.16 1.18
E C, OG(1), S(1), W(1), M(1)b

1. Unpooledc 1.29 1.18 1.44 1.17 1.78 1.20 1.24
2. Pooledd 1.01 1.03 1.33 0.95 1.92 1.24 1.14
3. Poolede (η = 0.5) 1.12 1.15 1.34 1.09 1.87 1.23 1.19

F C, OG (1, 2, 3, 4, 8), S(1), W(1), M(1)f

1. Unpooledc 1.31 1.08 1.58 0.95 1.92 1.20 1.26
2. Pooledd 0.98 0.94 1.38 0.89 1.88 1.23 1.10
3. Poolede (η = 0.5) 1.14 1.09 1.44 0.95 1.93 1.21 1.18

Notes: Models were fitted using the data for 1967II–1977IV and re-estimated using the data
available before each forecast quarter.
a ARIMA models, identified and estimated using the 1967II–1977IV data, were used to
generate one-quarter-ahead forecasts with parameter estimates updated quarter by quarter.
b C = constant, OG(1) = output growth rate lagged one quarter, S(1) = stock returns
lagged one quarter, W(1) = world stock return (median of country returns) lagged one
quarter, and M(1) = money growth rate lagged one quarter.
c Country-by-country least squares forecasts.
d Pooled forecasts using the procedure in (2.7).
e Forecasts computed using the pooling technique in (2.11) with η = 0.5.
f Variables as defined in note b but with output growth rates lagged one, two, three, four,
and eight quarters for each country.

compare very favorably with those of NMs I and III and of the ARIMA
models.

Pooled forecasts were obtained from the model in row E of table 13.8
by a procedure exactly the same as that described in (2.7). The Lindley–
Smith procedure (see (2.10)) was also applied, and it was found that
using very large values of the variance ratio parameter produced the low-
est RMSEs of forecast; that is, the procedure reduced to the use of the
pooling formula in (2.7). The pooled forecasts’ RMSEs in row E 2 of
table 13.8 are lower than those for the unpooled forecasts for four of
the six countries. The median RMSE is also 8 percent lower than the
corresponding median RMSE for the unpooled forecasts. The pooling
techniques in (2.11) with η = 0.5 produced the results in row E 3 of
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table 13.8. It resulted in lower RMSEs for four of the six countries and
a 4 percent decrease in the median RMSE. Thus pooling has gener-
ally increased forecast precision. Further, the pooled forecasts’ median
RMSEs compare favorably with those of the ARIMA and NM forecasts.

Shown in row F [of table 13.8] are forecasting results for a model
similar to that considered in row E except that the output growth rate has
been lagged one, two, three, four, and eight quarters rather than just one
quarter. The lags of four and eight quarters were introduced to allow for
possible inadequacies in the output seasonal adjustment procedures. The
unpooled country least squares forecasts have RMSEs ranging from 0.95
for Spain to 1.92 for the United Kingdom, with a median RMSE equal
to 1.26, about the same as that for the unpooled forecasts in row E 1
[of table 13.8]. Further, the median RMSE for the unpooled forecasts in
row F 1 is slightly larger than those for two of the NMs and the ARIMA
models. On the other hand, the median RMSEs for the pooled forecasts
in rows F 2 and F 3 of table 13.8 are 1.10 and 1.18, lower than that for
the unpooled forecasts, 1.26, and those for the NMs. Again, pooling has
produced an overall gain in forecasting accuracy. Note that on comparing
the country RMSEs in row F 1 with those in row F 2 the former unpooled,
forecast RMSEs are all larger except for the case of the United States.

In a last set of experiments with the quarterly data, data on short-
term interest rates were obtained for three countries – France, Germany,
and the United States. Interest rates lagged one quarter and one through
four quarters were introduced in the models of rows E and F of table
13.9. The RMSEs of one-quarter-ahead forecasts from these models with
lagged interest rates included are shown in table 13.9 along with RMSEs
for the NMs and the ARIMA models. Adding the lagged interest rate
terms generally led to reductions in RMSEs in almost all cases. Further,
the pooled country forecast RMSEs are all lower than the corresponding
unpooled country forecast RMSEs. The pooled country forecast RMSEs
in row F 2 of table 13.9 are all smaller than the corresponding RMSEs
for the NMs and the ARIMA models. Plots of these forecasts and actual
quarterly output growth rates are presented in figure 13.3. In future
work, lagged interest rate terms will be introduced in other countries’
models.

4 Summary of results and concluding remarks

For annual data on the growth rate of real output for eight EEC countries
and the United States, one-year-ahead forecasts were generated for the
years 1974–81 using different models and forecasting techniques, with
the following results in terms of forecasting RMSEs:
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Table 13.9 Root mean-squared errors (RMSEs) for one-quarter-ahead
forecasts of quarterly output growth rates for three countries, 1978I–1981IV

Model France Germany United States

Percentage points
A NMI (ĝi t = 0) 0.97 1.06 1.25
B NMII (ĝi t = git −1) 1.09 1.45 1.56
C NMIII (ĝi t = past mean growth rate) 0.91 1.02 1.22
D ARIMAa 1.20 0.94 1.16
E C, OG(1, 2, 3, 4, 8), S(1), W(1), M(1), IN(1)b

1. Unpooledc 1.29 1.07 1.17
2. Pooledd 0.92 0.91 1.13

F C, OG(1, 2, 3, 4, 8), S(1), W(1), M(1)
IN(1, 2, 3, 4)e

1. Unpooledc 1.50 1.06 1.28
2. Pooledd 0.89 0.93 1.03

Notes: See the note to table 13.8.
a See note a in table 13.8.
b Here the model for each country is the same as that described in note f of table 13.8 with
the addition of a country short-term interest rate lagged one-quarter, IN(1).
c Country-by-country least squares forecasts.
d Pooled forecasts using the procedure in (2.7).
e This model is the same as that on row E of this table except that each country’s short-
term interest rate enters lagged one, two, three, and four quarters, IN(1, 2, 3, 4).

1. Our AR(3)-leading indicator models outperformed several naive mod-
els and purely autoregressive models. These results underline the
importance of using leading indicator variables in forecasting.

2. Our time-varying parameter models that incorporated country lagged
stock returns, the lagged median return, and lagged money growth
produced improved forecasts for six of the nine countries and improved
overall forecast performance as measured by the median of the RMSEs
of forecast for individual countries.

3. Relatively simple techniques for pooling individual countries’ data or
forecasts, applied to our models, led to an improvement in forecasting
precision for many countries and overall.

4. The precision of our forecasts, produced by our relatively simple mod-
els and techniques, compares favorably with that of annual OECD
forecasts, produced by use of much more complicated models and
methods and incorporating judgmental information.
As regards our forecasting experiments with quarterly real output

growth rates for several countries, one-quarter-ahead forecasts for the
period 1978:I–1981:IV were calculated and compared, with the follow-
ing results:
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Figure 13.3 Plots of quarterly pooled forecasts and actual output
growth rates, 1978:I–1981:IV; the pooled forecasts are from the model
in row F of table 13.9
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1. Forecasts derived from our pooled autoregressive–leading indicator
models compared favorably with those produced by three naive models
and ARIMA models as measured by median RMSEs.

2. As with the annual data, use of relatively simple pooling techniques
led to improved forecasting precision in terms of the countries’ median
RMSEs and in terms of many countries’ RMSEs.
The results described are encouraging and indicate that use of rela-

tively simple models and pooling techniques leads to improved forecast-
ing results. In future work, we shall use additional variables – for example,
lagged exchange rates that Litterman (1986) has found useful – and more
recent data to check further the forecasting performance of our models.
We also plan to use combinations of time-varying parameter models and
various pooling techniques in an attempt to obtain further improvements
in forecasting precision. Finally, an effort will be made to rationalize the
forms of our models using relevant macroeconomic theory and to extend
them to incorporate additional variables to be forecasted. Such interac-
tion between subject matter theory and statistical analysis is needed to
develop “causal” models that explain past data and forecast reasonably
well.
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14 Forecasting international growth rates
using Bayesian shrinkage and other
procedures (1989)

Arnold Zellner and Chansik Hong

1 Introduction

In our past work, Garcia-Ferrer et al. (1987), we employed several meth-
ods to forecast growth rates of real output (GNP or GDP) for eight Euro-
pean Economic Community (EEC) countries and the United States year
by year for the period 1974–81. It was found that diffuse prior or least
squares forecasts based on an autoregressive model of order 3 includ-
ing leading indicator variables, denoted by AR(3)LI, were reasonably
good in terms of forecast root mean-squared error (RMSE) relative to
those of three naive models and of AR(3) models without leading indica-
tor variables. Also, it was found that certain shrinkage forecasting tech-
niques produced improved forecasting results for many countries and that
our simple mechanical forecasts compared favorably with [Organization
for Economic Cooperation and Development] (OECD) annual fore-
casts which were constructed using elaborate models and judgmental
adjustments.

In the present chapter our main objectives are to extend our earlier work
by (1) providing further analysis of shrinkage forecasting techniques, (2)
providing forecasting results for an extended time period, 1974–84, for
our past sample of nine countries, (3) applying our forecasting techniques
to data relating to nine additional countries, and (4) reporting results
of forecasting experiments using a simple modification of our AR(3)LI
model.

The importance of checking the forecasting performance of our tech-
niques using new data is reflected in objectives (2) and (3) above. The
modification of our AR(3)LI model, mentioned in (4), was motivated by
macroeconomic considerations embedded in structural models currently
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Alexander Endowment Fund, Graduate School of Business, University of Chicago. Luis
Mañas-Antón, Carla Inclan, and Michael Zellner provided valuable research assistance.
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4076/89/$3.50. C© 1989, Elsevier Science Publishers BV (North-Holland).
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being formulated, which yield reduced form equations similar in form
to our AR(3)LI forecasting model and reduced form equations for other
variables (e.g. the rate of inflation, employment growth, etc.) that will be
subjected to forecasting tests in the future.

The plan of the chapter is as follows. In section 2 our AR(3)LI model is
explained and analysis yielding several shrinkage forecasts is presented.
Also, an extended version of our AR(3)LI model is specified and it is
shown how it can be employed to yield forecasts. Section 3 is devoted to
a presentation of our data, and in section 4 previous forecasting results
are compared with those relating to our broader data set and with those
yielded by our extended AR(3)LI model. Finally, we provide a summary
of results and some concluding remarks in section 5.

2 Model description and forecasting procedures

In this section, we shall describe the autoregressive-leading indicator
(ARLI) model employed in our past work as well as some possible exten-
sions of it. Then we shall consider various forecasting procedures of our
ARLI models.

2.1 Model description

In Garcia-Ferrer et al. (1987), the following AR(3)LI model was
employed to generate one-year-ahead forecasts of the growth rate of real
output, yit , for eight years, 1974–81, for nine countries:

yit = β0i + β1i yi t−1 + β2i yi t−2 + β3i yi t−3 + β4i SRit−1

+ β5i SRit−2 + β6i GMit−1 + β7i WRt−1 + uit ,

i = 1, 2, . . . , 9, t = 1, 2, . . . , T, (2.1a)

or

yi = Xiβi + ui , i = 1, 2, . . . , 9, (2.1b)

where, with L being the lag operator and the subscript i, t denoting the
value of a variable for the ith country in the tth time period,

yit = rate of growth of output = (1 − L) log Oit with

Oit real output

SRit = real stock return = (1 − L) log(SPit/Pit) with SPit

a stock price index and Pit a general price index

GMit = growth rate of real money supply

= (1 − L) log(Mit/Pit) with Mit = nominal money supply
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WRt = world return

= median of countries’ real stock returns,SRit in period t

β j i = parameters for i th country, j = 0, 1, . . . , 7

uit = disturbance term.

In (2.1b) the model for each country is expressed in matrix notation
with yit a typical element of yi, (1, yit−1, yit−2, yit−3, SRit−1, SRit−2,
GMit−1, WRt−1) a typical row of Xi, and uit a typical element of ui.
Some comments regarding the model in (2.1) follow:
(1) An autoregression of order 3 was chosen to permit the possibility

of having two complex roots associated with a cycle and a real root
associated with a trend. Past calculations indicated that estimated
roots had these properties for eight of the nine countries. Also, use
of just an AR(3) process without leading indicator variables did not
perform well in actual forecasting. Use of leading indicator variables
led to improved forecasts in most cases as measured by RMSEs of
forecast.

(2) The disturbance terms in (1) were found to be practically serially
uncorrelated for most countries and not highly correlated across
countries, results based on least squares analyses of (1) using ini-
tial annual data of 1951–73 for estimation. The introduction of the
“common effect” variable, WRt, reduced contemporaneous distur-
bance terms’ correlations considerably.

(3) The leading indicator stock return variables and money growth rate
variable apparently caught the effects of oil price shocks, policy
changes, etc. in the period of fit 1951–73 and in our previous fore-
cast period 1974–81. Here we are employing market variables to take
rough account of expectational and other effects influencing coun-
tries’ output growth rates.

(4) Macroeconomic considerations suggest that a measure of world out-
put growth and changes in countries’ real exchange rates affect coun-
tries’ exports and these should be included in our ARLI model.
Since these variables are close to being white noise, they may be
buried in the disturbance terms of (2.1). Below, we shall report some
results using an ARLI model including a measure of world output
growth.

(5) In our past work, forecasts from (2.1), using least squares and some
shrinkage forecast procedures, were reported. Also, some forecasts
yielded by a time-varying-parameter version of (2.1) were reported.
Some of these results will be presented below and compared with
more recently obtained results.
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In our forecasting experiments, we employ annual data, usually 1954–
73, twenty observations with data from 1951–53 used for initial lagged
values to fit our models.1 Then the fitted models are employed to forecast
outcomes for 1974 and subsequent years with the models re-estimated
year by year. Multi-year-ahead forecasts have not as yet been calculated.
For the forecast period 1974–81 (eight years), least squares forecasts
using (2.1) have yielded forecast RMSEs ranging from 1.47 to 2.92 with
a median of 2.23 percentage points for eight EEC countries and the
United States (see table 14.2, line F of Garcia-Ferrer et al. 1987). Our
“η-shrinkage” forecasts described below, yielded forecast RMSEs ranging
from 1.25 to 2.52 percentage points with a median of 1.78 percentage
points (see table 14.4, line G3 of Garcia-Ferrer et al. 1987). Similar
results for an extended time period and for nine additional countries are
presented below.

2.2 Derivation and description of shrinkage forecasts

In this subsection, we provide derivations of several shrinkage forecasts,
including the “η-forecast” and the “γ -forecast.” The performance of
these forecasts will be compared with those of naive models and diffuse
prior forecasts or least squares forecasts derived from the ARLI model,
or variants of it, shown in (2.1).

The η-forecast involves averaging a forecast from (2.1), say a diffuse
prior or least squares forecast for a particular country, ŷi f , with the mean
of all the N countries’ forecasts, ŷf = ∑N

i=1 ŷi f /N, as follows:

ỹ∗
i f = η ŷf + (1 − η)ŷi f

= ŷf + (1 − η)(ŷi f − ŷf ). (2.2)

From the second line of (2.2), it is seen that for 0 < η < 1, a country’s
forecast, ŷi f , is shrunk toward the average forecast ŷf for all countries.

One way to obtain an optimal forecast in the form of (2.2) is to employ
the following predictive loss function:

L = (yi f − ỹi f )2 + c

(
N∑

i=1

yi f /N − ỹi f

)2

, (2.3)

where c > 0 is a given constant, the yi f s are the future unknown values,
i = 1, 2, . . . , N, and ỹi f is some forecast. Note that the loss function
in (2.3) incorporates an element of loss associated with being away from

1 The 1954–73 period was used for all countries except Australia 1960–73, Canada 1959–
73, Japan 1956–73, and Spain 1958–73.
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the mean outcome in its second term. Under the assumption that the
yi f s are independent (common influences have been represented by input
variables in (2.1)) and have predictive probability density functions (pdfs)
with mean mi and variance vi, i = 1, 2, . . . , N. The predictive expectation
of the loss function in (2.3) is

EL = vi + (mi − ỹi f )2 + c[E(ȳ f − Eȳ f )2 + (Eȳ f − ỹi f )2], (2.4)

where ȳ f = ∑N
i=1 yi f /N. On minimizing (2.4) with respect to ỹi f , the

result is

ỹ∗
i f = η

N∑
i=1

mi/N + (1 − η)mi , (2.5)

where η = c/(1 + c). If diffuse priors for the βis in (2.1) are employed,
the means of the predictive pdfs are mi = x ′

i f β̂i , i = 1, 2, . . . , N,
where x ′

i f is a vector of observed inputs for the first future period and

β̂i = (X ′
i Xi )−1 X ′

i yi , the least squares estimate for country i. Under these
conditions (2.5) takes the form of (2.2) with ŷi f = x ′

i f β̂i . This is the
“diffuse prior η-forecast.”

Another approach for obtaining relatively simple shrinkage forecasts is
a slightly modified form of the Lindley–Smith (1972) procedure in which
the coefficient vectors are assumed generated by

βi = θ + δi , i = 1, 2, . . . , N, (2.6)

with the δis assumed independently distributed, each having a
N(0, φ−1σ 2

u Ik) distribution where 0 < φ < ∞, σ 2
u is a common variance of

uit for all i and t, and θ is a k × 1 mean vector. If the uits are assumed nor-
mally and independently distributed, each with zero mean and common
variance σ 2

u , then a conditional point estimate for β ′ = (β ′
1, β ′

2, . . . , β ′
N),

denoted by β̃a, an Nk × 1 vector, is given by

β̃a = (Z ′Z + φ INk)−1(Z ′Zβ̂ + φ Jβ̃), (2.7)

where Z is a block-diagonal matrix with X1, X2, . . . , XN on the
main diagonal, β̂ = (Z ′Z)−1 Z ′y, where y ′ = (y ′

1, y ′
2, . . . , y ′

N), β̂ ′ =
(β̂ ′

1, β̂ ′
2, . . . , β̂ ′

N) with β̂i = (X ′
i Xi )−1 X ′

i yi , J ′ = (Ik, Ik, . . . , Ik), and

β̃ =
(

N∑
i=1

X ′
i X ′

i

)−1 N∑
i=1

X ′
i Xi β̂i , (2.8)

a matrix-weighted average of the least squares estimates, the β̂i s, which
replaces θ in (2.7). Also, β̃ in (2.8) can be obtained by regressing
y ′ = (y ′

1, y ′
2, . . . , y ′

N) on X, where X ′ = (X ′
1, X ′

2, . . . , X ′
N), that is, from
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one big regression in which it is assumed that the βis are equal. Point
forecasts can be obtained using the coefficient estimate β̃a for various
selected values of φ. When φ is very large, (2.7) reduces approximately to
(2.8). Forecasts based on the estimate in (2.8) have been reported . . . in
Garcia-Ferrer et al. (1987). It should be recognized that, while the βis are
probably not all the same, the bias introduced by assuming them to be
may be more than offset in a MSE error sense by a reduction in variance.

As an alternative to the assumptions used in connection with (2.6),
following the “g-prior” approach of Zellner (1983, 1986), we assume
that the δis in (2.6) are independently distributed with normal distribu-
tions N[0, (X ′

i Xi )−1σ 2
δ ]. With this assumption and the earlier assump-

tion made about the uits, the joint pdf for y ′ = (y ′
1, y ′

2, . . . , y ′
N) and

β ′ = (β ′
1, β ′

2, . . . , β ′
N) is proportional to

exp
{−[(y − Zβ) ′(y − Zβ) + γ (β − Jθ)′Z ′Z(β − Jθ)]/2σ 2

u

}
,

(2.9)

where γ = σ 2
u /σ 2

δ and other quantities have been defined in connection
with (2.6)–(2.7). On completing the square on β in the exponential terms
of (2.9), the mean of β given y, γ and θ is

β = [(Z ′Z)−1 Z ′y + γ Jθ]/(1 + γ ), (2.10a)

with the ith subvector of β given by

βi = (β̂i + γθ)/(1 + γ ), (2.10b)

where β̂i = (X ′
i Xi )−1 X ′

i yi , the least squares estimate for the ith coun-
try’s data. Thus (2.10b) is a simple average of β̂i and θ with γ = σ 2

u /σ 2
δ

involved in the weights. When a diffuse prior pdf for θ, p(θ) ∝ const., is
employed, the posterior pdf for θ can be derived from (2.9) and employed
to average the expression in (2.10) to obtain the marginal mean ofβi given
γ and the data, namely,

β
m
i = (β̂i + γ β̃)/(1 + γ ), (2.11)

with β̃ given in (2.8), the estimate resulting from a big regression in which
the βis are assumed equal. As γ = σ 2

u /σ 2
δ grows in value, β

m
i → β̃ while

as γ = σ 2
u /σ 2

σ → 0, β
m
i → β̂i , the ith country’s least squares estimate.

If instead of assuming that δi has a N(0, (X ′
i Xi )−1σ 2

δ ) distribution,
we assume that the δis are independently distributed, with a N[0,
(X ′

i Xi )−1σ 2
i ] distribution, i = 1, 2, . . . , N, then analysis similar to that

presented in connection with (2.9) yields as the conditional mean of βi,

βc
i = (β̂i + γiθ)/(1 + γi ), i = 1, 2, . . . , N, (2.12)
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where γi = σ 2
u /σ 2

i . If we further condition on θ = β̃, with β̃ given in (2.8),
then

βc
i = (β̂i + γi β̃)/(1 + γi ), i = 1, 2, . . . , N, (2.13)

which is similar to (2.11) except that the γi s are not all equal as is the
case in (2.11).

Upon introducing prior pdfs for σ u and σ δ, or σ u and the σ is, it is
possible to compute the marginal distributions of the βis, a possibility to
be explored in future work (see Miller and Fortney 1984 for interesting
computations on a closely related problem). At present, we shall evaluate
(2.13) for various values of γ i and determine the quality of resulting
forecasts. That is, the γ i-forecast for country i is

ỹi f = x ′
i f β

c
i , (2.14)

with βc
i given in (2.13) and x′

i f a given input vector.
In summary, we shall use the η-forecast in (2.2), the γ -forecast based on

(2.11) and the γ i-forecast in (2.14) in our forecasting experiments. Also,
note that the η-forecasting approach can be applied to the γ -forecasts.

2.3 Elaboration of the AR(3)LI model

As mentioned previously, we think that it is advisable to add a variable
reflecting world real income growth, denoted by wt, to our AR(3)LI model
in (2.1). Then our equation becomes

yi t = wtαi + x ′
i tβi + uit , i = 1, 2, . . . , N, t = 1, 2, . . . T,

(2.15)

where x′
i tβi represents the constant and other lagged variables in (2.1)

and αi is the ith country’s coefficient of the world income growth rate
variable, wi. To forecast one period ahead using (2.15), it is clear that wt

must be forecasted. To do this we introduce the following equation for wt

which will be estimated and used to forecast wt one period in the future:

wt = π0 + π1wt−1 + π2wt−2 + π3wt−3 + π4MSRt−1

+ π5MGMt−1 + vt , t = 1, 2, . . . , T, (2.16)

where MSRt is the median of all countries’ real stock returns, MGMt the
median of all countries’ real money growth rates, vt a disturbance term,
and the π is are parameters. Thus (2.16) indicates that we are employing
an AR(3)LI model for wt, the rate of growth of world real income. As a
proxy for wt, we employ the median of all countries’ real output growth
rates.
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Viewing (2.15)–(2.16), it is seen that we have a “triangular” system.
For the future period f = T + 1, we have

Eyi f = Ew f Eαi + x ′
i f Eβi , i = 1, 2, . . . , N, (2.15a)

Ew f = z ′
f Eπ, (2.15b)

where Eyi f and Ewf are means of the predictive pdfs for yi f and wf, respec-
tively, and Eαi, Eβi and Eπ are posterior means of the parameters αi, βi

and π ′ = (π0, π1, . . . , π6), respectively. If the system in (2.15)–(2.16)
is fully recursive and diffuse prior pdfs for all parameters are employed,
Eπ = π̂ , Eαi = α̂i and Eβi = β̂i, where π̂ , α̂i and β̂i are least squares
estimates (see Zellner 1971, ch. 8 and Bowman and Laporte 1975). Also,
Ew f = z ′

f π̂ and Eyi f = z ′
f π̂ α̂i + x ′

i f β̂i , i = 1, 2, . . . , N. Thus forecasts
under these assumptions are easily computed. If the system in (2.15)–
(2.16) is not fully recursive, that is, the uits and vt are correlated, then the
expectations in (2.15) have to reflect the non-recursive nature of the sys-
tem. In the present work, we shall use a “conditional” forecasting proce-
dure which is equivalent to a 2SLS point forecast. That is, the parameters
αi and βi in (2.15) are estimated by 2SLS, a conditional Bayesian esti-
mate (see Zellner 1971, p. 266), and these estimates along with a forecast
of wt from (2.16) are employed to obtain a forecast of yit from (2.15).
Such forecasts will be compared with those that assume that wts value in
a forecast period is perfectly known, a “perfect foresight” assumption. In
current work, an unconditional Bayesian approach for analyzing (2.15)–
(2.16) when the uits and vt are correlated is being developed.

3 Data

Annual data for eighteen countries employed in our work have been
assembled in the main from the IMF’s International Financial Statis-
tics data base . . . The output data include annual rates of growth of real
output (GNP or GDP), of real stock prices and of real money for each
country. In computing rates of growth of real stock prices, an index of
nominal stock prices was deflated by an index of the price level for each
country. Nominal money, M1, was deflated by a general price index for
each country to obtain a measure of real money.

Boxplots of output growth rates, real stock price growth rates, and real
money growth rates are shown in figure 14.1. It is seen that the median
growth rates exhibit a cyclical pattern with that for real stock prices having
a considerably greater amplitude than those for output and real money
growth rates. Also, as might be expected, the interquartile ranges of the
real stock price growth rates are much larger than those of output and
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Figure 14.1 Boxplots of data for eighteen countries, 1954–1984

real money growth rates. Further, the interquartile ranges for growth
rates of real stock prices appear to be slightly smaller in the vicinity of
troughs than of peaks for the first half of the sample and the ranges for
all three variables tend to be slightly larger in the vicinity of peaks than
of troughs in many cases. Last, the plots of the real money and real stock
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price growth rates give some evidence of a slight lead relative to those of
the output growth rates.

It will be noted from the plots in figure 14.1 that there are some appar-
ently outlying points in the data with a number of them present in the
data from the nine additional countries’ data. These outlying data points
are being subjected to close scrutiny and procedures for accommodating
outlying data points are being considered for use in future work. In the
present study, all data were employed, including outlying data without any
special treatment given to them.

4 Forecasting results

In this section, we first compare RMSEs of one-year-ahead forecasts,
1974–81 (eight years), with those for the period 1974–84 for our original
nine countries using various models and methods. Then for nine addi-
tional countries, forecasting results for the period 1974–84 are presented
and compared with earlier results. Finally, the effects of introducing a
world growth rate variable in our AR(3)LI model in (1a) on forecasting
performance will be described.

4.1 Forecasting results for an expanded data set

Shown in table 14.1 are the RMSEs of forecast for nine countries for
the periods 1974–81 and for 1974–84. Here and elsewhere, all models
were re-estimated using data up to the forecast year. In the top panel of
table 14.1, results for the eight one-year-ahead forecasts, 1974–81, are
shown. It is seen that the median RMSE for the AR(3)LI model, 2.23
percentage points, is quite a bit lower than the median RMSEs for the
naive models and for the AR(3) model. In addition, shrinkage or pooling
techniques applied to the AR(3)LI model led to median RMSEs of 2.22
and 1.78, a very slight reduction in the former case and a somewhat larger
reduction in the latter case, from 2.23 to 1.78 percentage points. Use of
the η-shrinkage procedure, with η = 0.5, led to reduction of RMSEs for
seven of the nine countries.

As regards the results for 1974–84, in the lower panel of table 14.1, the
AR(3)LI model’s median RMSE is 2.41 percentage points, a good deal
lower than those associated with the naive models and the AR(3) model.
Also, the two shrinkage or pooling procedures produced modest decreases
in median RMSEs, from 2.41 to 2.26 and 2.31 and in six of nine cases
for the η-shrinkage procedure. In these respects, the forecasting results
parallel those obtained for the shorter period, 1974–81. However, note
that there is an increase in the median RMSEs for the AR(3)LI model in
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going from the period 1974–81 to the longer period 1974–84 which also
shows up in seven of the nine countries’ RMSEs.

In table 14.2 RMSEs of forecast are shown for nine additional coun-
tries. Here the median RMSE for the AR(3)LI model, 3.33, is somewhat
larger than that for the naive models and for the AR(3) model. However,
the shrinkage or pooled forecasts based on the AR(3)LI model show sub-
stantial reductions in median RMSEs, from 3.33 to 2.01 and 2.32, which
are similar in magnitude to those reported for the original nine countries
for the periods 1974–81 and 1974–84 in table 14.1. In table 14.2, on
comparing the AR(3)LI country RMSEs with the corresponding shrink-
age RMSEs, it is seen that there is a reduction of RMSEs in all but one
case. Thus for the nine additional countries, shrinkage results in a some-
what greater improvement in forecasting results than in the case of the
original nine countries.

In table 14.3 summary forecasting results for different models, applied
to all eighteen countries’ data to forecast year by year for the period 1974–
84, are reported. It is seen that the AR(3)LI model’s median RMSE is
about 13 percent or more below those of the AR(3) and naive model’s
median RMSEs, 2.62 versus 3.00 or greater. Also, the shrinkage or pooled
forecasts median RMSEs, 2.14 and 2.32, are 18 and 11 percent lower,
respectively, than the AR(3) model’s median RMSE. Further, the ranges
of the AR(3)LI and shrinkage forecast RMSEs for the eighteen countries
are much smaller than those for the AR(3) and naive models.

In summary, the shrinkage or pooling techniques used earlier in Garcia-
Ferrer et al. (1987) for nine countries for the period 1974–81 are effec-
tive in reducing overall median RMSEs for an extended forecast period,
1974–84, and for nine additional countries.

The η-shrinkage forecast RMSEs, reported above, are based on the
same value of η = 0.5 for all countries. It is of interest to see how sensitive
forecasting results for individual countries are to variation in the value of
η. In table 14.4 one-year-ahead forecast RMSEs are reported for selected
values of η in (2) for each of the eighteen countries in our sample. When
η = 0, the forecasts are least squares forecasts for each country based
on our AR(3)LI model in (2.1a). When η = 1.0, the forecast for each
country is the mean of the eighteen countries’ least squares forecasts
from the AR(3)LI model in (2.1a). On viewing the median RMSEs at
the bottom of table 14.4, it is seen that the median RMSEs are 2.43
for η = 0.25, 2.32 for η = 0.5, and 2.21 for η = 0.75, all below the
median RMSE for η = 0, 2.62, that for individual countries’ unshrunk
least squares forecasts. For individual countries, the RMSEs change as
the value of η changes. For example in the case of Belgium, the RMSEs
vary from 1.73 for η = 0 to 2.35 for η = 1.0, with a minimum of 1.70
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Table 14.3 Summary statistics on forecasting results for eighteen countries,
1974–1984

Model Median RMSE Smallest RMSE Largest RMSE

(Percentage points)
A NMI (ŷt = 0) 3.07 2.29 4.15
B NMII (ŷt = yt−1) 3.02 1.87 4.26
C NMIII (ŷt = past average) 3.09 1.76 4.98
D AR(3)a 3.00 1.75 4.34
E AR(3)LIb 2.62 1.62 3.68

1. Shrinkage(1)c 2.14 1.65 2.79
2. Shrinkage(2)d 2.32 1.52 3.25

Notes:
a Least squares forecasts from an AR(3) model for each country.
b Least squares forecasts from an AR(3) model with leading indicator variables shown in
(2.1a).
c Least squares forecasts with use of coefficient estimate in (2.8).
d Use of shrinkage equation in (2.2) with η = 0.5.

for η = 0.25. Two countries’ minimal RMSEs occur for η = 0 and η =
0.25, six for η = 0.50, one for η = 0.75, and seven for η = 1.0. The median
RMSE of these minimal values is 1.96, somewhat below that associated
with the use of η = 0.5 for all countries, namely 2.32, or of η = 0.75,
2.21.

Just as it is of interest to determine the sensitivity of countries’ η-
forecasts to the values of η employed, it is of interest to determine how
sensitive γ -forecasts for countries are to the value of γ employed. The
coefficient estimate in (2.13) permits γ to be different for different coun-
tries. In table 14.5, RMSEs of forecast are reported for each country for
selected values of γ . A zero value for γ yields AR(3)LI least squares fore-
casts while a very large value for γ results in an AR(3)LI forecast based
on the pooled coefficient estimate in (2.8). From the median RMSEs
reported at the bottom of table 14.5, it is seen that a common value of
γ = 5.0 yields a median RMSE equal to 2.13, not far different from that
associated with γ = 106, namely 2.14. However for individual countries,
RMSEs show more substantial variation as γ assumes different values.
For example in the case of Germany, the RMSE is 1.80 when γ = 2.0,
quite a bit lower than the RMSE of 2.00 associated with γ = 106. Ten of
the eighteen countries show minimal RMSEs for γ = 106, while the
remaining eight countries have minima in the vicinity of γ = 0.5 to
γ = 1.0 in five cases and of γ = 2 to γ = 5 for the remaining three.
The median RMSE for these minimal values is 2.01, slightly lower than



Forecasting international growth rates 499

Table 14.4 Sensitivity of η-forecast root mean-squared errors (RMSEs) to
value of η for AR(3)LI model in (2.1a), 1974–1984a

Country η = 0 η = 0.25 η = 0.50 η = 0.75 η = 1.0

(Percentage points)
Belgium 1.73 1.70 1.81 2.04 2.35
Denmark 2.73 2.49 2.37b 2.41 2.59
France 2.52 2.29 2.07 1.90 1.77b

Germany 2.28 2.04 1.94b 2.01 2.24
Ireland 2.80 2.51 2.31 2.24b 2.29
Italy 3.40 3.04 2.73 2.46 2.27b

Netherlands 2.41b 2.42 2.50 2.65 2.87
United Kingdom 2.32b 2.44 2.63 2.89 3.20
United States 2.14 1.97b 2.03 2.31 2.75
Australia 3.34 2.80 2.32 1.92 1.67b

Austria 2.71 2.40 2.12 1.87 1.67b

Canada 3.68 3.27 2.92 2.64 2.46b

Finland 3.37 2.86 2.42 2.10 1.95b

Japan 3.33 2.90 2.51 2.18 1.96b

Norway 1.62 1.53 1.52b 1.57 1.70
Spain 2.06 1.86 1.81b 1.91 2.14
Swedenc 2.32 2.28 2.29b 2.34 2.44
Switzerland 3.45 3.26 3.25b 3.42 3.75

Median RMSE 2.62 2.43 2.32 2.21 2.28
Range 1.62–3.68 1.53–3.27 1.52–3.25 1.57–3.42 1.67–3.75

Notes:
a The η-forecast is ỹi f = η ŷf + (1 − η)ŷi f , where ŷf is the mean of the eighteen countries’
least squares forecasts and ŷi f is the ith country’s least squares forecast.
b Minimum of entries in each row. The median of these RMSEs is 1.96.
c Based on ten forecasts, 1974–83.

the median RMSE of 2.14 when γ = 106 is used for all countries. In
future work it may be worthwhile to estimate γ for each country which
will probably produce lower RMSEs for selected countries, e.g., Belgium,
the Netherlands, the United States, and Norway. Also combinations of
γ -forecast and η-forecast procedures are under consideration as well as
other shrinkage techniques.

4.2 Forecasting using a world output growth rate variable

As mentioned previously, countries’ exports are influenced by world
income or output. Thus a world output growth rate variable, denoted
by wt , was added to the AR(3)LI model as shown in (2.15). The variable
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Table 14.5 Sensitivity of γ -forecast root mean-squared errors (RMSEs) to
values of γ for AR(3)LI model in (2.1a), 1974–1984a

Country γ = 0 γ = 0.50 γ = 1.0 γ = 2.0 γ = 3.0 γ = 5.0 γ = 106

(Percentage points)
Belgium 1.73 1.60b 1.62 1.69 1.74 1.81 1.96
Denmark 2.73 2.34 2.22 2.16b 2.16b 2.18 2.26
France 2.52 2.17 2.01 1.87 1.81 1.75 1.66b

Germany 2.28 1.91 1.81 1.80b 1.82 1.87 2.00
Ireland 2.80 2.47 2.34 2.24 2.20 2.17 2.14b

Italy 3.40 3.00 2.82 2.67 2.61 2.55 2.45b

Netherlands 2.41 2.34b 2.35 2.38 2.41 2.44 2.53
United Kingdom 2.32 2.19 2.18b 2.21 2.24 2.28 2.39
United States 2.14 1.98b 2.06 2.24 2.35 2.48 2.79
Australia 3.34 2.72 2.46 2.25 2.16 2.09 2.01b

Austria 2.71 2.35 2.19 2.03 1.96 1.89 1.77b

Canada 3.68 3.08 2.83 2.63 2.54 2.47 2.39b

Finland 3.37 2.70 2.42 2.20 2.12 2.06 2.01b

Japan 3.33 2.89 2.71 2.57 2.51 2.46 2.40b

Norway 1.62 1.54b 1.54b 1.56 1.58 1.61 1.68
Spain 2.06 1.85 1.76 1.70 1.68 1.66 1.65b

Swedenc 2.32 2.18 2.12 2.07 2.05 2.03 2.01b

Switzerland 3.45 2.98 2.81 2.71 2.68b 2.68b 2.71

Median RMSE 2.62 2.34 2.22 2.21 2.16 2.13b 2.14
Range 1.62–3.68 1.54–3.08 1.54–2.83 1.56–2.71 1.58–2.68 1.61–2.68 1.65–2.79

Notes:
a The coefficient estimate in (2.13) was employed to compute forecasts. When γ = 0, the forecasts are
least squares forecasts, and when γ = 106, they are produced using the coefficient estimate in (2.8).
b Minimum of entries in each row.
c Based on ten forecasts, 1974–83.

wt is taken to be the median of the eighteen countries’ output growth
rates for the year t – (see figure 14.1 for a plot of wt for the years in our
sample).

To use (2.15) in forecasting, it is necessary to forecast wt. The model
for wt in (2.16) was fitted by least squares, using data from 1954–73, and
used to forecast the 1974 value and subsequent values with coefficient
estimates updated year by year for the years 1974–84. The RMSEs of
these one-year-ahead forecasts and of those yielded by an AR(3) model
of wt are reported, along with MAEs, in table 14.6. It is seen that the
AR(3)LI model for wt produced a RMSE of 1.48 and a MAE of 1.24,
values much smaller than those associated with forecasts from an AR(3)
model, 2.74 and 2.24, respectively. The forecasts from these two mod-
els for wt, denoted by ŵt(1) for the AR(3) forecasts and ŵt(2) for the
AR(3)LI model forecasts, were used to generate one-year-ahead forecasts
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Table 14.6 Root mean-squared errors (RMSEs) and mean absolute
errors (MAEs) of one-year-ahead forecasts of the medians of
eighteen countries’ output growth rates, 1974–84a

Model RMSE MAE

(Percentage points)
AR(3) 2.74 2.24
AR(3)LIb 1.48 1.24

Notes:
a The initial estimation period is 1954–73 (twenty years). Estimates are updated
year by year in the forecast period.
b With wt being median output growth rate in year t, the AR(3)LI model is
wt = π0 + π1wt−1 + π2wt−2 + π3wt−3 + π4xt−1 + π5zt−1 + εt , where, for year
t, xt is the median of countries’ growth rates of real stock prices and zt the
median of countries’ growth rates of real money. This equation was employed
to generate one-year-ahead least squares forecasts for each year, 1974–84.

from (2.15) for individual countries’ output growth rates for 1974–84,
using the γ -forecast with a very large value of γ . Also, for compara-
tive purposes, a “perfect foresight” model, one in which it is assumed
that wt is known exactly, was employed to generate forecasts with results
given in . . . column [(1)] of table 14.7. With the wt value assumed
known in each forecast period, the median RMSE of the annual fore-
casts for the eighteen countries, 1974–84, is 1.82, a value much lower
than those reported in table 14.3, and for the AR(3)LI model without
the wt variable it is 2.14, shown in . . . column [(4)] of table 14.7. In
column (2) of table 14.7 are shown forecast RMSEs when wt was fore-
casted using an AR(3) model. Since the AR(3) forecasts of wt are not
very good (see table 14.6) the forecasts of country output growth rates
based on them are in general not as good as those based on known val-
ues of the wt variable. When the AR(3)LI model in (2.16) was used to
produce forecasts of wt, denoted by ŵt(2), and these were used to fore-
cast individual countries’ output growth rates, the results, as shown in
column (3) of table 14.7, were much better. The median RMSE associ-
ated with these forecasts is 1.90, not far different from the “perfect fore-
sight” median RMSE of 1.82. Also when ŵt(2) was employed, sixteen of
eighteen countries’ RMSEs were reduced relative to the RMSEs for the
AR(3)LI model without the world growth variable, shown in column (4)
of table 14.7. Further, the median RMSE of 1.90, associated with the
AR(3)LI world growth rate model, is smaller than all of those shown in
table 14.3.



502 Arnold Zellner and Chansik Hong

Table 14.7 Root mean-squared errors (RMSEs) of one-year-ahead
forecasts of annual real output growth rates employing an AR(3)LI
model including the world growth rate, 1974–1984a

AR(3)LI AR(3)LI AR(3)LI AR(3)LI
with wt

b with ŵt (1)c with ŵt (2)d without wt
e

Country (1) (2) (3) (4)

(Percentage points)
Belgium 1.54 2.80 1.79 1.96
Denmark 1.77 2.74 2.04 2.26
France 1.03 1.90 1.36 1.66
Germany 0.90 2.39 1.35 2.00
Ireland 2.82 1.57 2.54 2.14
Italy 1.57 3.08 1.82 2.45
Netherlands 1.86 2.52 2.27 2.53
United Kingdom 1.87 2.67 2.21 2.39
United States 2.56 2.95 2.36 2.79
Australia 2.24 2.39 1.96 2.01
Austria 1.23 2.06 1.57 1.77
Canada 2.27 2.81 2.15 2.39
Finland 2.14 2.13 1.83 2.01
Japan 2.85 2.30 2.58 2.40
Norway 1.66 1.79 1.45 1.68
Spain 1.12 2.03 1.22 1.65
Swedenf 1.62 2.58 1.70 2.01
Switzerland 2.20 3.17 2.42 2.71

Median RMSE 1.82 2.46 1.90 2.14
Range 0.90–2.85 1.57–3.17 1.22–2.58 1.65–2.71

Notes:
a The model employed is shown in (2.15) and estimated under the assumption
that coefficients are the same for all countries.
b The value of wt, the median output growth rate or world growth rate, is assumed
known in the forecast period, a “perfect foresight” assumption.
c ŵt (1) is a forecast of wt from an AR(3) model for wt (see table 14.6).
d ŵt (2) is a forecast of wt from the AR(3)LI model described in note b of table
14.6.
e Least squares forecasts using AR(3)LI model in (2.1), with the use of coefficient
estimate in (2.8).
f Based on ten forecasts, 1974–83.

4.3 Comparisons with OECD forecast RMSEs

Smyth (1983) has presented a description of the forecasting procedures
employed by the OECD to produce annual forecasts of seven countries’
annual rates of growth of output, 1968–79. The OECD forecasts are
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Table 14.8 Comparison with OECD forecast root mean-squared errors
(RMSEs)

United United
Forecasts Canada France Germany Italy Japan Kingdom States Median Range

(Percentage points)
1 OECD, 1968–79 1.71 1.45 2.12 2.86 4.40 2.26 1.38 2.12 1.38–4.40
2 AR(3)LI, 1974–84

a Least squares 3.68 2.52 2.28 3.40 3.33 2.32 2.14 2.52 2.14–3.68
b γ -forecastsa 2.39 1.66 2.00 2.45 2.40 2.39 2.79 2.39 1.66–2.79
c η-forecastsb 2.92 2.07 1.94 2.73 2.51 2.63 2.03 2.51 1.94–2.92

3 AR(3)LI with 2.15 1.36 1.35 1.82 2.58 2.21 2.36 2.15 1.35–2.58
forecasted wt,
1974–84c

Notes:
a γ = 106 in model for eighteen countries.
b η = 0.5 in model for eighteen countries.
c wt, the world output growth rate was forecasted from (2.16) and used in (2.15) to produce γ -forecasts
for eighteen countries with γ = 106.

derived from elaborate country econometric models and are subjected
to judgmental adjustments by individuals not associated with the mod-
eling process – that is, by individuals from the OECD’s various country
desks (see Smyth 1983, p. 37). In Garcia-Ferrer et al. (1987, pp. 61ff.)
comparisons of RMSEs of OECD forecasts for five countries with those
provided by AR(3)LI models were presented and discussed. In table 14.8,
OECD RMSEs of forecast for seven countries, 1968–79, are presented
along with forecast RMSEs for the same countries, 1974–84, computed
in the present study. While the forecast periods 1968–79 and 1974–84
are somewhat different and different methodologies were employed, it is
still of interest to consider the relative forecasting performance of OECD
and our forecasts.

From table 14.8, it is seen that the OECD forecast RMSEs have a
median of 2.12 percentage points with a range of 1.45–4.40. The OECD’s
RMSE for Japan, 4.40 is quite large. The median RMSEs, in our study
range from 2.52 for least squares forecasts from our AR(3)LI model
in (2.1) to 2.15 for the forecasts obtained from our “AR(3)LI world
income” model in (2.15) using a forecasted value of wt from (2.16) and a
γ -forecast with γ = 106. The range of the forecast RMSEs in this latter
case is 1.35–2.58. The RMSEs in line 3 of table 14.8 are smaller than
the corresponding OECD RMSEs in five of seven cases. Large reductions
were encountered for Germany, Italy, and Japan, while smaller reductions
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appeared for France and the United Kingdom. In the cases of the United
States and Canada, the OECD RMSEs were smaller, much smaller for
the United States. These comparisons, however, must be qualified since
the forecast period and data used by OECD are different from those
employed in this study.

5 Summary and concluding remarks

We have presented the results of forecasting experiments for nine coun-
tries’ annual output growth rates for the periods 1974–81 and 1974–84
and similar results for an additional sample of nine countries for the
period 1974–84. In general, the forecasting experiments revealed that
methods and models employed . . . in Garcia-Ferrer et al. (1987) worked
reasonably well when applied to an extended sample of data and coun-
tries. The shrinkage forecasting procedures produced larger reductions
in RMSEs of forecast for the nine additional countries than for the origi-
nal sample of nine countries. The AR(3)LI model, incorporating a world
income growth rate variable, forecasted the best and provided forecast
RMSEs that compared favorably with the RMSEs of OECD forecasts
for a subsample of seven countries that were produced using complex
country models and judgmental adjustments.

In future work, we shall extend our forecasting experiments to include
forecasts derived from time-varying parameter Bayesian state–space
models – see Garcia-Ferrer et al. (1987) and Highfield (1986) for macroe-
conomic forecasting results obtained with such models. In addition, as
stated in section 1, macroeconomic structural equation systems are under
consideration that have reduced form equations for the rate of growth of
output that are similar in form to the forecasting equations used in our
present and past work. These structural macroeconomic equation sys-
tems also yield reduced form equations for several additional variables
that will be appraised in future forecasting experiments. With several
forecasting equations per country, there will be an opportunity to experi-
ment with a broader range of shrinkage forecasting techniques. Hopefully,
this work will yield a set of forecasting equations for each country that
yield reasonably good forecasts for a broad sample of countries and for
a temporally expanded data set. Further, disaggregation will be studied
by modeling components of GNP as fractions or log-fractions of relevant
aggregates. In this way, we hope to “iterate in” to satisfactory structural
models for countries in the structural econometric modeling, time series
analysis (SEMTSA) approach put forward in our past work (see Zellner
and Palm 1974, 1975; Palm 1983; and Zellner 1979, 1984, 1987).
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15 Turning points in economic time series, loss
structures, and Bayesian forecasting (1990)

Arnold Zellner, Chansik Hong, and Gaurang M. Gulati

1 Introduction

In a letter commenting on a draft of Zellner (1987), Barnard (1987)
wrote, “I very much liked your emphasis on the need for sophisticated,
simple model building and testing in social science.” Apparently, Barnard
and many other scientists are disturbed by the complexity of many mod-
els put forward in econometrics and other social sciences. And indeed
we think that they should be disturbed since not a single complicated
model has worked very well in explaining past data and in predicting as
yet unobserved data. In view of this fact, in Garcia-Ferrer et al. (1987)
and Zellner and Hong (1989), a relatively simple, one-equation model
for forecasting countries’ annual output growth rates was formulated,
applied, and found to produce good forecasts year by year, 1974–84 for
eighteen countries. This experience supports Barnard’s and many others’
preference for the use of sophisticatedly simple models and methods. See
Zellner (1988) for further discussion of this issue.

In the present chapter, we extend our previous work to consider the
problem of forecasting future values and turning points of economic time
series given explicit loss structures. Kling (1987, pp. 201–4) has provided
a good summary of past work on forecasting turning points by Moore
(1961, 1983), Zarnowitz (1967), Wecker (1979), Moore and Zarnowitz
(1982), Neftci (1982), and others. In this work there is an emphasis on
the importance and difficulty of forecasting turning points. Also, in our
opinion, not enough attention has been given to the role of loss structures
in forecasting just turning points and in forecasting turning points and
the future values of economic variables.

Research financed in part by the National Science Foundation and by income from the H.
G. B. Alexander Endowment Fund, Graduate School of Business, University of Chicago.

Originally published as part VI in S. Geisser, J. S. Hodges, S. J. Press, and A. Zell-
ner (eds.), Bayesian and Likelihood Methods in Statistics and Econometrics: Essays in Honor
of George A. Barnard (Amsterdam, North-Holland, 1990), 371–93. C© Elsevier Science
Publishers BV (North-Holland).
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The plan of our chapter is as follows. In section 2, we introduce loss
structures and explain how optimal forecasts of the occurrence of turn-
ing points and future values of economic time series can be computed.
Applications of our procedures are presented in section 3 based on annual
output growth rate data for eighteen countries and an autoregressive
model with leading indicator variables employed in our previous work
(see Garcia-Ferrer et al. 1987 and Zellner and Hong 1989). In section 4,
a summary of results and some concluding remarks are presented.

2 Turning points, loss structures, and forecasting

As Wecker (1979) and Kling (1987) recognize, given a model for past
observations and a definition of a turning point, probabilities relating to
the occurrence of future turning points can be evaluated. In our work,
we, along with Kling (1987), evaluate these probabilities using predictive
probability density functions for as yet unobserved, future values of vari-
ables which take account of uncertainty regarding the values of model
parameters as well as the values of future error terms. We also indicate
how to take account of model uncertainty in evaluating probabilities relat-
ing to future events such as the occurrence or non-occurrence of a turning
point at a future time.

2.1 Forecasting turning points

As regards the definition of turning points in an economic time series,
we recognize that there are many possible definitions and that no one
definition has achieved universal acceptance. Thus in what follows, we
present analysis that can be employed for whatever definition of a turning
point is adopted. We shall employ one, particularly simple definition of
a turning point to illustrate our analysis and then go on to use a broader
definition in our applied work.

Let the given past measurements of a variable, say the growth rate of
real GNP, be denoted by y′ = (y1, y2, . . . , yn−1, yn) and z ≡ yn+1 be the
first future value of the series. Particular definitions of a downturn (DT)
and of an upturn (UT) and their negations, based on just yn−1, yn and z
are given by,

yn−1 < yn and
{

z < yn ≡ Downturn (DT1)
z ≥ yn ≡ No Downturn (NDT1),

(2.1a)
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and

yn−1 > yn and
{

z > yn ≡ Upturn (UT1)
z ≤ yn ≡ No Upturn (NUT1),

(2.1b)

where the subscript 1 on DT, UT, etc., denotes that one past observation,
yn−1 and one future observation, z ≡ yn+1 have been employed in defining
downturns and upturns. Below, we shall introduce broader definitions of
DTs and UTs.

Given a model assumed to generate the observations, y, let p(y | θ) be
the likelihood function for the past data, where θ is a vector of parame-
ters, π(θ | I) a prior distribution for θ , and p(θ | D) ∝ π(θ | I) p(y | θ) the
posterior distribution for θ , where D = (y, I) represents the past sample
and prior information. Then with p(z | θ , D) representing the probabil-
ity density function (pdf) for z ≡ yn+1, given θ and the past data, the
predictive pdf for z is given by

p(z | D) =
∫

Θ

p(z | θ , D)p(θ | D)dθ −∞ < z < ∞, (2.2)

where θ ⊂ Θ, the parameter space. As is well known, p(z | D) can be
viewed as an average of the conditional pdf, p(z | θ , D) with the posterior
pdf, p(θ | D) serving as the weighting function.

The predictive pdf in (2.2) can be employed to obtain probabilities
associated with the events in (2.1). For example, if yn−1 < yn, the proba-
bility of a downturn, PDT1 is given by

PDT1 =
∫ yn

−∞
p(z | D)dz, (2.3)

while the probability of no downturn is PNDT1 = 1 − PDT1 . Note that with
yN−1 < yN, the probability of an upturn, given the definitions in (2.1), is
zero.

With yn−1 < yn and the probability of a downturn PDT1 as given by (2.3),
we now wish to make a decision as to whether to forecast a downturn or
no downturn. To solve this problem, consider the loss structure shown
in table 15.1. The two possible outcomes are DT1 and N DT1. If the act
forecast a DT1 is chosen, loss is scaled to be 0 if the forecast is correct and
to be c1 > 0 if it is incorrect. If the act forecast a N DT1 is chosen, loss is
0 if the outcome is N DT1 and c2 > 0 if it is DT1. In many circumstances,
c1 	= c2. From (2.3), probabilities associated with the outcomes DT1 and
NDT1 are available and can be used to compute expected losses associated
with the two acts shown in table 15.1 as follows:

EL | Forecast DT1 = 0 · PDT1 + c1(1 − PDT1 ) = c1(1 − PDT1 ),

(2.4a)
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Table 15.1 Forecasting loss structure
given yn−1 < ya

n

Possible outcomes

Acts DT1 N DT1

Forecast DT1 0 c1

Forecast N DT1 c2 0

Note:
a c1 and c2 are given positive quantities.

and

EL | Forecast NDT1 = c2 PDT1 + 0(1 − PDT1 ) = c2 PDT1 .

(2.4b)

If (2.4a) is less than (2.4b), that is c1(1 − PDT1 ) < c2PDT1 or, equivalently

1 <
c2

c1

(
PDT1

1 − PDT1

)
, (2.5a)

or

PDT1 >
c1

c1 + c2
, (2.5b)

then choosing the act forecast a DT1 will lead to lower loss than choosing
the act forecast N DT1. Note that if c2 = c1, this rule leads to a forecast
of a DT1 if PDT1 > 1/2. On the other hand, if c2/c1 is much larger than
1, say c2/c1 = 2, then the condition in (2.5) would be satisfied for PDT1/

(1 − PDT1 ) > 1/2 or PDT1 > 1/3. This example indicates that the decision
to forecast a downturn is very sensitive to the value of the ratio c2/c1 as
well as to the value of PDT1 . Thus, considering just the value of PDT1 in
forecasting turning points is not usually satisfactory except in the special
case of symmetric loss, c1 = c2.1

2.2 Point forecasts using different loss functions

Above, we have considered the problem of forecasting turning points.
Now we consider the problem of deriving point forecasts using two dif-
ferent loss functions, one appropriate for a downturn situation and the
other for a no-downturn situation. That loss functions can be different in

1 Since analysis of forecasting an upturn, UT1, given that yn−1 > yn is similar to that for
forecasting a downturn, it will not be presented.
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these two situations is an important consideration which should be taken
into account in producing forecasts.

Consider forecasting the value of z ≡ yn+1 given yn−1 < yn and the
probability of a DT1 from (2.3) employing squared error loss functions.
Let

LDT1 = k1(ẑ − z)2 k1 > 0 (2.6a)

be the loss incurred if a downturn occurs and ẑ is used as a point forecast
of z and

LN DT1 = k2(ẑ − z)2 k2 > 0 (2.6b)

be the loss incurred if no downturn occurs and ẑ is used as a point forecast
of z. Expected loss is

EL = PDT1k1 E(ẑ − z)2|DT1 + (1 − PDT1 )k2 E(ẑ − z)2|NDT1.

(2.7)

On minimizing (2.7) with respect to the choice of ẑ, the minimizing value
for ẑ, denoted by ẑ∗, is2

ẑ∗ = PDT1k1z̄DT1 + (1 − PDT1 )k2z̄NDT1

PDT1k1 + (1 − PDT1 )k2
, (2.8)

a weighted average of the conditional mean of z given z < yn, z̄DT1 , and
the conditional mean of z given z ≥ yn, z̄NDT1 , with weights PDT1k1 and (1
− PDT1 ) × k2. Note that if k1 = k2, ẑ∗ = z̄, the mean of the predictive pdf
p(z | D) in (2). However, if k1 	= k2, ẑ∗ in (2.8) will not be equal to z̄. For
example, if PDT1 = 1/2, (2.8) reduces to ẑ∗ = (k1z̄DT1 + k2z̄N DT1 )/(k1 + k2)
which differs from z̄. Thus while z̄ is optimal relative to an overall squared
error loss function (k1 = k2), it is not optimal in the case that different
loss functions (k1 	= k2) are appropriate for downturn and no-downturn
situations.

In (2.6a–b), we have allowed for the possibility that loss functions may
be different for downturn and no-downturn cases. However, the use of
symmetric, squared error loss functions may not be appropriate in all cir-
cumstances. If LDT1 (z, ẑ) and LN DT1 (z, ẑ) are general convex loss func-
tions for DT1 and N DT1, respectively, then expected loss is given by

EL = PDT1 ELDT1 (z, ẑ)|DT1 + (1 − PDT1 )ELN DT1 (z, ẑ)|N DT1

(2.9)

2 To derive ẑ∗ in (2.8) express (2.7) as EL = PDT1 k1[E(z − z̄DT1 )2 | DT1 + (ẑ − zN DT1 )2] +
(1 − PDT1 )k2[E(z − z̄N DT1 )2 | N DT1 + (ẑ − z̄N DT1 )2] and minimize with respect to ẑ∗.
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where the expectations on the r.h.s. of (2.9) are computed using the
conditional predictive pdfs p(z | z < yn, D) and p(z | z ≥ yn, D). Then
EL in (2.9) can be minimized, analytically or by computer methods to
obtain the minimizing value of ẑ.

To illustrate the approach described in the previous paragraph, it may
be that given a DT, over-forecasting is much more serious than under-
forecasting by an equal amount. A loss function, the LINEX loss func-
tion, employed in Varian (1975) and Zellner (1986), is a convenient loss
function which captures such asymmetric effects. It is given by:

LDT1 = b1[ea1(ẑ−z) − a1(ẑ − z) − 1]
b1 > 0
a1 > 0.

(2.10)

When ẑ= z, loss is zero and when ẑ− z > 0, a case of over-forecasting, loss
rises almost exponentially with a1 > 0. When ẑ − z < 0, loss rises almost
linearly. Choice of the value of a1 governs the degree of asymmetry. For
example when a1 has a small value, the loss function in (2.10) is close
to a symmetric squared error loss function as can be seen by noting that
ea1(ẑ−z) =̇ 1 + a1(ẑ − z) + a2

1(ẑ − z)2/2 and substituting this expression in
(2.10).

With N DT1, it may be that under-forecasting is a more serious error
than over-forecasting by an equal amount. The following LINEX loss
function provides such asymmetric properties.

LN DT1 = b2[ea2(ẑ−z) − a2(ẑ − z) − 1]
b2 > 0
a2 < 0.

(2.11)

The loss functions in (2.10) and (2.11) can be inserted in (2.9) and an
optimal point forecast can be computed. Note that the necessary condi-
tion for a minimum of (2.9) is

PDT1

d ELDT1 | DT1

dẑ
+ (1 − PDT1 )

d ELN DT1 | N DT1

dẑ
= 0. (2.12)

If the derivatives in this last expression are approximated by expanding
them around ẑ1 and ẑ2, values which set them equal to zero, respectively,
the approximate value of ẑ, ẑ∗, which satisfies (2.12) is given by

ẑ∗ = wẑ1 + (1 − w)ẑ2, (2.13)

where w = PDT1b1a2
1/[PDT1b1a2

1 + (1 − PDT1 )b2a2
2]. Thus it is seen that

when [PDT1/(1 − PDT1 )](b1a2
1/b2a2

2] is large, ẑ∗ is close to ẑ1 and when
it is small, ẑ∗ is close to ẑ2, with ẑ1 = −�n(Ee−a1z | DT1)/a1 and ẑ2 =
−�n(Ee−a2z | N DT1)/a2. Again, the optimal point forecast in (2.12) is
sensitive not only to the values of PDT1 and 1 − PDT1 , but also to the
values of the loss functions’ parameters, a1, a2, b1, b2.
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Table 15.2 Extended forecasting loss structurea

Possible outcomes

Acts DT1 N DT1

Forecast DT1 k1(ẑ − z)2 k2(ẑ − z)2 + c1

Forecast N DT1 k1(ẑ − z)2 + c2 k2(ẑ − z)2

Note:
a It is assumed that yn−1 < yn and DT1 and N DT1 are defined as
in (2.1a) of the text. The random variable z ≡ yn+1 denotes the as
yet unobserved value of yn+1 and ẑ is some point forecast of z. k1,
k2, c1, and c2 are given constants.

2.3 Turning point and point forecasting combined

Above, we have considered forecasting turning points and point fore-
casting separately. In this section, we provide a loss structure within the
context of which it is possible to obtain a minimum expected loss solu-
tion to the joint problem of forecasting turning points and obtaining point
forecasts.

The loss structure which we shall employ is shown in table 15.2. It is
seen that we allow for different quadratic losses, k1(ẑ − z)2 and k2(ẑ − z)2

for DT1 and N DT1 cases as in (2.6). Also, we incorporate additive ele-
ments of loss, c1 and c2 to reflect errors in turning point forecasts as in
table 15.1.

To obtain the minimum expected loss solution, we consider choice
of the DT1 forecast, derive the optimal point prediction and evaluate
expected loss using it. We do the same for a N DT1 forecast and then
choose the act, forecast DT1 or forecast N DT1 which has the lower
evaluated expected loss. As will be seen, the optimal point forecast of z
has a value consistent with the selected optimal turning point forecast.

Given a choice of the DT1 forecast, expected loss is given by:

ELDT1 = PDT1k1 E[(ẑ − z)2 | DT1]

+ (1 − PDT1 ){k2 E[(ẑ − z)2 | N DT1] + c1}. (2.14)

The value of ẑ which minimizes (2.14) subject to the side condition ẑ <

yn is denoted by ẑDT1 . Then (2.14) is evaluated at ẑ = ẑDT1 . Similarly, if
the N DT1 forecast is chosen, expected loss is given by:

ELN DT1 = PDT1{k1 E(ẑ − z)2 | DT1 + c2}
+ (1 − PDT1 )k2 E(ẑ − z)2 | N DT1. (2.15)
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The value of ẑ which minimizes (2.15) subject to ẑ ≥ yn is denoted by
ẑN DT1 and it can be used to evaluate (2.15). Then, if ELDT1 (ẑ = ẑDT1 ) <

ELN DT1 (ẑ = ẑN DT1 ), we forecast a DT1 and use ẑDT1 as our point forecast.
Alternatively, if ELDT1 (ẑ = ẑDT1 ) > ELN DT1 (ẑ = ẑN DT1 ), we forecast a
N DT1 and use ẑN DT1 as our point forecast.

In a special case k1 = k2 and c1 = c2 = 0, the above procedure yields
the mean of the predictive pdf for z, denoted by z, as the optimal point
prediction and a DT1 forecast if z < yn or a N DT1 forecast if z > yn.

As another special case, consider k1 = k2 = 1 and c1, c2 > 0. Then
minimization of (2.14) with respect to ẑ subject to ẑ < yn, leads to

ẑDT1 =
{

z if z < yn

yn − ∆ if z ≥ yn,
(2.16)

where ∆ > 0 is arbitrarily small and

ELDT1 (ẑ = ẑDT1 ) =
{

(1 − PDT1 )c1 + E(z − z)2 if z < yn

(1 − PDT1 )c1 + E(z − z)2 + (yn − z)2 if z ≥ yn.

Similarly, minimization of (2.15) with respect to ẑ subject to ẑ ≥ yn leads
to:

ẑN DT1 =
{

yn if z < yn

z if z ≥ yn,
(2.17)

and

ELN DT1 (ẑ = ẑN DT1 ) =
{

PDT1c2 + E(z − z)2 + (yn − z)2 if z < yn

PDT1c2 + E(z − z)2 if z ≥ yn

Thus if z < yn the optimal turning point forecast is DT1 if

(1 − PDT1 )c1 + E(z − z)2 < PDT1c2 + E(z − z)2 + (yn − z)2,

or

1 <
PDT1c2 + (yn − z)2

(1 − PDT1 )c1
, (2.18a)

or

PDT1 >
c1 − (yn − z)2

c1 + c2
. (2.18b)

Also, with z ≥ yn and (2.18) holding, z is the optimal point forecast
for z. By similar considerations, if z < yn and PDT1 < [c1 − (yn − z)2]/
(c1 + c2) then the optimal turning point forecast is N DT1 and the optimal
point forecast is ẑN DT1 = yn.
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With z̄ ≥ yn, then by the same line of reasoning, if

PDT1 >
c1 + (yn − z̄)2

c1 + c2
, (2.19)

the optimal forecasts are DT1 and ẑDT1 = yn − ∆. On the other hand, if
the inequality in (2.19) is reversed, the optimal forecasts are N DT1 and
ẑN DT1 = z.

The analysis leading to (2.18) and (2.19) was based on the assumption
that k1 = k2 = 1. The above analysis, while tedious, can be extended to
cover the case k1 	= k2 with k1, k2 > 0 and c1, c2 > 0.

2.4 Summary and additional considerations

In summary, it has been shown how the loss structures in tables 15.1 and
15.2 can be used to obtain forecasts of turning points and how the proba-
bility of a DT and various loss functions can be employed to obtain opti-
mal point forecasts. The main conclusion which emerges is that forecasts
of turning points and of a future value are quite sensitive to assumptions
regarding loss structures.

Above we have concentrated attention on the first future observation, z
= yn+1 given yn−1 < yn or given yn−1 > yn (see (2.1)). Given a predictive
pdf for the next q future observations, z′ = (z1, z2, . . . , zq) ≡ (yn+1,
yn+2, . . . , yn+q), namely p(z | D), −∞ < zi < ∞, i = 1, 2, . . . , q, it is
possible to calculate the probabilities associated with various inequalities
involving the zis, using the predictive pdf, p(z | D). For example, the
probability that z1, z2 < z3 > z4, z5 can be computed.

The definitions in (2.1) can be broadened to include more past and
future observations, as Wecker (1979) and Kling (1987) indicate. As an
example consider, with z1 ≡ yn+1 and z2 ≡ yn+2,

yn−2 < yn−1 < yn and
{

z1 < yn and z2 < z1 ≡ DT2

otherwise ≡ N DT2,
(2.20)

where DT2 ≡ downturn based on two previous observations and two
future observations relative to the given value yn and N DT2 ≡ no such
downturn. Then given yn−2 < yn−1 < yn, the probability of a DT2, PDT2 ,
is given by

PDT2 =
∫ yn

−∞

∫ z1

−∞
p(z1, z2 | D)dz2dz1, (2.21)
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Figure 15.1 Probability mass function for probabilities of a DT

where it has been assumed that ∞ < zi < ∞, i = 1, 2.3 This probability
can be employed along with the loss structure in table 15.1 to choose
between the acts forecast DT2 and forecast N DT2 so as to minimize
expected loss. Also, this analysis can be combined with the problem of
obtaining optimal point predictions of z1 and z2. Finally, using m past
values and m future values, a DTm can be defined and its probability
calculated and used in forecasting.

Above, we have considered just one model for the observations, y′ =
(y1, y2, . . . , yn−1, yn). Often forecasters utilize several alternative models,
M1, M2, . . . , Mr, for example autoregressive models of differing orders,
autoregressive models with various leading indicator variables, etc. Let
pi(y | Mi, Di) be the marginal pdf for y, based on model Mi and sample
and prior information Di.4 Then the posterior probability associated with
the ith model Mi, denoted by Pi is given by

Pi = Πi pi (y | Mi , Di )

/
r∑

i=1

Πi pi (y | Mi , Di ) (2.22)

where Π i, i = 1, 2, . . . , r is the prior probability associated with Mi.5

Also, for each model the predictive pdf for z = yn+1 can be derived and
is denoted by pi(z | Mi, Di). It can be used, for example, to compute
the probability of a DT, PiDT. The PiDTs and the Pis in (2.22) allow us
to form a probability mass function as shown in figure 15.1 for the case
of r = 4. Figure 15.1 reveals the effects of model uncertainty on the

3 Note that yn−2, yn−1 < yn > z1, z2 is an alternative definition of a DT2 and its probability
of occurring is

∫ yn
−∞

∫ yn
−∞ p(z1, z2 | D)dz1dz2, somewhat different from (2.21).

4 As is well known, pi (y | Mi , Di ) = ∫
Θi

pi (y | Mi , θ i )π(θ i | Ii )dθ i where pi (y | Mi , θ i ) is the
likelihood function given model i, θ i is a vector of parameters with prior pdf π(θ i | Ii),
where Ii denotes the prior parameters, Di = (y, Ii) and θ i ⊂ Θ i, the parameter space.

5 Here we assume that the r models are mutually exclusive and exhaustive. It is possible to
relax the assumption that the collection of models is exhaustive.
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probability of a DT. That is, instead of having a single probability of a
DT, when there is model uncertainty, we have several probabilities of a
DT, P1DT, P2DT, . . . , PrDT and their respective probabilities, P1, P2, . . . ,
Pr. The usual practice of selecting one model and viewing it as “abso-
lutely true” in deriving a single probability of a DT obviously abstracts
from model uncertainty and is inappropriate when model uncertainty is
present.

Formally, we have the marginal predictive pdf, p(z | D), given by

p(z | D) =
r∑

i=1

Pi pi (z | Mi , Di ), (2.23)

where Pi is given in (2.22) and D is the union of the Di. Then, for example,
the probability of a DT1, PDT1 is given by

PDT1 =
∫ yn

−∞
p(z | D)dz (2.24)

=
r∑

i=1

Pi Pi DT1 ,

where Pi DT1 = ∫ yn

−∞ pi (z | Mi , Di )dz is the probability of DT1 based on
model Mi. It is seen from the second line of (2.24) that PDT1 is an average
of the PiDT1 with the posterior model probabilities, the Pis serving as
weights. Further, various measures can be computed to characterize the
dispersion and other features of the PiDT1s. For example their variance is
given by

var(Pi DT1 ) =
r∑

i=1

Pi (Pi DT1 − PDT1 )
2. (2.25)

Given a loss structure such as that in table 15.1, PDT1 in (2.24) can be
employed to make an optimal choice between forecast DT1 or forecast
N DT1. Similar analysis yields results for forecasting an upturn or no
upturn. For broader definitions of turning points, predictive pdfs for sev-
eral future observations would replace pi (z | Mi, Di) in (2.23) and the
integral in (2.24) would have to be modified along the lines shown in
(2.22).

Finally, the problem of forecasting turning points in two or more time
series is of interest. Given a definition of a turning point, and a model
for two or more time series, probabilities of downturns or upturns can
be computed from the joint predictive pdf of future values of the several
time series. Then, given a loss structure, optimal turning point forecasts
can be derived. In the case of two time series, for example the rates of
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growth of output and of inflation, the set of possible forecasts will involve
forecasting downturns for both variables, a downturn for one variable and
no downturn for the other, or no downturn for both variables. Given m
such possible forecasts and m possible outcomes, an m × m loss structure
can be defined, an expanded version of the 2 × 2 case shown in table
15.1. Using probabilities associated with possible outcomes, the forecast
that minimizes expected loss can be determined along the lines shown in
(2.4) for the 2 × 2 case. Also, the multiple models, multiple time series
case can be addressed using a generalization of the multiple models, one
time series case analyzed above.

3 Data and applications

In this section some of the techniques described above will be applied in
the analysis of data relating to annual output growth rates for eighteen
countries used in our previous work, Garcia-Ferrer et al. (1987), and
Zellner and Hong (1987) . . .

Shown in figure 15.2 is a boxplot of the annual rates of output growth
for eighteen countries over the period, 1951–85. It is seen that the annual
median growth rates, given by the horizontal line in each box, appear to
follow a cyclical path with peaks in 1955, 1960, 1964, 1969, 1973, 1976,
1979, and 1984 and troughs in 1952, 1958, 1963, 1966, 1971, 1975,
and 1981. The average time between peaks is 4.1 years and between
troughs is 4.8 years. To provide more detail, figures. 15.3a and 15.3b
provide the number of countries experiencing peaks and troughs in each
year. It is seen that many countries experienced peaks in years close to or
at 1955, 1960, 1964, 1969, 1973, 1976, 1979, and 1984. As regards
troughs, they were encountered for many countries in years close to
or at 1954, 1958, 1962, 1966–7, 1971, 1975, 1977, and 1982. These
descriptive measures reflect the well-known fact that economies’ output
growth rates, while not perfectly synchronized, tend to move up and down
together, as noted by Burns and Mitchell (1946), Zarnowitz (1985) and
others.

We now turn to the problem of forecasting turning points for the eigh-
teen countries’ growth rates of annual output. Here a downturn is defined
to be a sequence of observations satisfying yn−1, yn−2 < yn > yn+1 and an
upturn a sequence of observations satisfying yn−2, yn−1 > yn < yn+1. While
these are not the only possible definitions, they will be used since if there
were a deterministic four-year cycle in the data, these definitions would
be exactly appropriate for identifying peaks and troughs.

Our forecasting model, an autoregression of order 3 with leading indi-
cator variables, denoted by AR(3)LI model, used in our previous work,
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Garcia-Ferrer et al. (1987), and Zellner and Hong (1987) is6

yit = αi0 + α1i yi t−1 + α2i yi t−2 + α3i yi t−3 i = 1, 2, . . . , 18

+ β1i SRit−1 + β2i SRit−2 + β3i GMit−1

+ β4i WRt−1 + εi t , t = 1, 2, . . . , T

(3.1)

where the subscripts i and t denote the ith country and tth year, respec-
tively and

yit = growth rate of real output

SRit = growth rate of real stock prices

GMit = growth rate of real money

WRt = “world return,” the median of the SRits

εi t = error term

The εi ts are assumed independently drawn from a normal distribution
with zero mean and variance σ 2

i for all i and t. Using annual data, 1951–
73, a diffuse prior pdf for the parameters, the countries’ Student-t pre-
dictive pdfs for 1974 were computed, updated year by year, and used
to compute probabilities of downturns and upturns. Then using the loss
structure in table 15.2 with c1 = c2 forecasts of downturns (DTs) and
upturns (UTs) were made. In this case, a DT is forecasted when PDT >

1/2 and N DT is forecasted when PDT < 1/2. Also, a UT is forecasted when
PUT > 1/2 and NUT when PUT < 1/2. For all eighteen countries over the
period 1974–85, under the definition two preceding observations below
(or above) a current observation and the following observation below (or
above) the current observation for a DT (UT), our forecasting procedure
yielded the results shown in table 15.3.

We see from panel A of table 15.3 that forty-five out of sixty-eight or 66
percent of the DT/N DT forecasts are correct. Of the forty DT forecasts
thirty-five or 88 percent are correct. However, only ten of twenty-eight
or 36 percent of the N DT forecasts are correct. As regards forecasts of
UTs or NUTs, sixty of eighty-two forecasts, 73 percent are correct. Of
the sixty-three UT forecasts, forty-three or 68 percent are correct while
for the NUT forecasts, seventeen of nineteen, or 89 percent are correct.
Thus except for the N DT forecasts, the turning point forecasts are quite
good.

6 See appendix tables [15A.1 and 15A.2] for a description of the statistical fits of (2.26)
to our data and Garcia-Ferrer et al. (1987) and Zellner and Hong (1987) for the quality
of point forecasts yielded by (2.26).
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Table 15.3 Forecasts of turning points for eighteen
countries’ output growth rates, 1974–1985a

Forecast Correct Incorrect Total

A Downturn (DT) and No Downturn (N DT)
DT 35 5 40
N DT 10 18 28

Total 45 23 68
Percent (66) (34) (100)

B Upturn (UT) and No Upturn (NUT)
UT 43 20 63
NUT 17 2 19

Total 60 22 82
Percent (75) (25) (100)

Note:
a With yt denoting a growth rate in year t, the following
definitions have been employed: yn−2, yn−1 < ẏn ≤ yn+1 ≡ DT;
yn−2, yn−1 < yn≤yn+1 ≡ N DT; yn−2, yn−1 > yn < yn+1 ≡ UT;
and yn−2, yn−1 > yn ≥ yn+1 ≡ NUT.

As regards the eighteen incorrect N DT forecasts, four occurred for cal-
culated PDTs between 0.40 and 0.49, eight for calculated PDTs between
0.30 and 0.39 and four for calculated PDTs between 0.20 and 0.29. Thus
sixteen of the eighteen incorrect N DT forecasts had substantial proba-
bilities of DTs associated with them. If a more conservative rule for fore-
casting DTs had been employed – say, forecast a downturn if PDT > 0.2 –
then only two of the N DT forecasts would be incorrect. The results of
using a cut-off probability of 0.2, that is forecast a DT if PDT > 0.2, which
would be optimal given a cost parameter ratio c2/c1 = 4 in table 15.1, are:
fifty-one or 85 percent of sixty DT forecasts correct and six or 75 per-
cent of eight N DT forecasts correct. These figures indicate very well the
sensitivity of turning point forecasting to asymmetry of loss structures.

4 Summary and concluding remarks

The problems of forecasting turning points and future values of economic
time series were considered with the major result being that such forecasts
are very sensitive to properties of loss structures. An operational proce-
dure for forecasting turning points was formulated and applied to forecast
turning points in output growth rates for eighteen countries, 1974–85,
utilizing an AR(3)LI model fitted with pre-1974 data and updated year by
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year in the forecast period. In general, with the exception of no-downturn
forecasts, the results were encouraging, namely 66 percent of the DT and
N DT forecasts correct and 75 percent of the UT and NUT forecasts
correct. These results indicate that our AR(3)LI model and our forecast-
ing techniques may be of practical value to applied economic forecasters
not only in providing forecasts regarding turning points but also in com-
puting probabilities associated with future, as yet unobserved values of
economic variables.
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16 Forecasting turning points in international
output growth rates using Bayesian
exponentially weighted autoregression,
time-varying parameter, and pooling
techniques (1991)

Arnold Zellner, Chansik Hong, and Chung-ki Min

1 Introduction

In previous work (Zellner, Hong, and Gulati 1990 and Zellner and Hong
1989), the problem of forecasting turning points in economic time series
was formulated and solved in a Bayesian decision theoretic framework.
The methodology was applied using a fixed parameter autoregressive,
leading indicator (ARLI) model and unpooled data for eighteen coun-
tries to forecast turning points over the period 1974–85. In the present
chapter, we investigate the extent to which use of exponential weight-
ing, time-varying parameter ARLI models, and pooling techniques leads
to improved results in forecasting turning points for the same eighteen
countries over a slightly extended period, 1974–86.

The methodology employed in this work has benefited from earlier
work of Wecker (1979), Moore and Zarnowitz (1982), Moore (1983),
Zarnowitz (1985), and Kling (1987). Just as Wecker and Kling have done,
we employ a model for the observations and an explicit definition of a
turning point, for example a downturn (DT) or an upturn (UT). Along
with Kling, we allow for parameter uncertainty by adopting a Bayesian
approach and computing probabilities of a DT or UT given past data
from a model’s predictive probability density function (pdf) for future
observations. Having computed such probabilities from the data, we use
them in a decision theoretic framework with given loss structures to obtain
optimal turning point forecasts which can readily be computed.

The plan of our chapter is as follows. In section 2, we explain our
models and methods. Section 3 is devoted to a description of our data.

Research financed in part by the National Science Foundation and by income from the
H. G. B. Alexander Endowment Fund, Graduate School of Business, University of Chicago.

Originally published in the Journal of Econometrics 49 (1991), 275–304. 0304–
4076/91/$03.50. C© 1991 Elsevier Science Publishers BV (North-Holland).

528



Forecasting international turning points 529

In section 4, the results of the present chapter are compared to those
computed using earlier methods and to turning point forecasting results
yielded by naive models. Finally, section 5 presents a summary of results
and some concluding remarks.

2 Models and methods

In this chapter we use two alternative models for each country. The first
is a fixed parameter, autoregressive model of order 3 with lagged leading
indicator variables, denoted by FP/ARLI and given by

yit = x′
i tβi + uit , t = 1, 2, . . . , T, i = 1, 2, . . . , N, (2.1)

where the subscripts i and t denote the value of a variable for the ith
country in the tth year. Further,

yit = rate of growth of output, real GNP or GDP

βi = a k × 1 parameter vector

uit = disturbance term

x′
i t = (yit−1, yit−2, yit−3, 1, SPit−1, SPit−2, GMit−1, WSPt−1)

with

SPit = rate of growth of real stock prices

GMit = rate of growth of real money, M1, divided by a

general price index

WSPt = median of the SPits for the tth year

Equation (2.1) incorporates an autoregression of order 3 to allow for
the possibility of having two complex roots and a real root for the process.
After using this assumption in Garcia-Ferrer et al. (1987) and in Zellner
and Hong (1989), calculations reported in Hong (1989) show that with
high posterior probabilities, there are two complex roots and one real
root in the FP/ARLI model for each of the eighteen countries in our
sample. Further, lagged stock price change variables are introduced to
capture expectational, policy change and other chaotic effects. The lagged
growth rate of real money is employed to represent real balance effects and
WSPt−1 to allow for common shocks hitting all countries. (See Zellner,
Hong, and Gulati 1990 for estimates of the parameters of (2.1) for each of
the eighteen countries in our sample and for evidence that the uits are not
very highly autocorrelated.) In our present work, we shall assume that
the uits are independently distributed, each with a normal distribution
with zero mean and variance σ 2

i .
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We consider two variants of model (2.1), namely a fixed parameter
variant as shown in (2.1), and a time-varying parameter (TVP) version,
denoted by TVP/ARLI, as shown in (2.2),

yit = x′
i tβi t + u′

i t . (2.2)

Aggregation effects, policy changes, etc. may cause parameters to vary
through time and hence the use of a time-varying parameter vector in
(2.2). As in past work (Garcia-Ferrer et al. 1987), we assume that the
βi ts are generated by a vector random-walk process,

βi t = βi t−1 + vi t , i = 1, 2, . . . , N, t = 1, 2, . . . , T, (2.3)

where the vi ts are assumed independently and identically normally
distributed with zero mean vector and covariance matrix φσ 2

i Ik, with
0 < φ < ∞. When φ has a very small value, (2.2) behaves like a fixed
parameter model.

The second model which we shall employ is that given in (2.1) with the
addition of a world real income (WI) growth rate variable, wt, namely,

yit = wtαi + x′
i tβi + ηi t , i = 1, 2, . . . , N, t = 1, 2, . . . , T,

(2.4)

where wt is a measure of world income growth, which we represent by
the median of the individual country growth rates, the yits in the tth year
and αi is a scalar parameter. To use (2.4) to forecast, there is need for an
equation to forecast the wts. It is assumed that the ηi ts are zero mean,
independent normal error terms with variance σ 2

ηi . In previous work we
have found that an AR(3)LI model for wt works well in forecasting (see
Zellner and Hong 1989). This model is given by

wt = z′
tπ + εt , t = 1, 2, . . . , T, (2.5)

where

π = coefficient vector

εt = white noise, zero mean normal disturbance term with

variance σ 2
ε

z′
t = (wt−1, wt−2, wt−3, 1, WSPt−1, WGMt−1),

with

WSPt = median of countries’ SPits for year t, and

WGPt = median of countries’ GMit for year t
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Thus the world output growth rate as represented by wt is assumed gen-
erated by an AR(3)LI model.

As written in (2.4) and (2.5), the model is a fixed parameter model,
denoted by FP/ARLI / WI. Just as above, it is possible to allow the
coefficient vectors in (2.4) and (2.5) to be time-varying and gener-
ated by independent, vector random-walk processes. This yields our
time-varying parameter, autoregressive, leading indicator, world income
model, denoted by TVP/ARLI / WI (see appendix, p. 554 for further
details).

As regards pooling techniques (see Garcia-Ferrer et al. 1987 and Zell-
ner and Hong 1989 for effects of pooling on the RMSEs of one-year-
ahead point forecasts), we shall employ an extreme form of pooling in
the present chapter. That is we assume that the coefficient vectors in (2.1)
and (2.2) are the same for all countries. Under this assumption, (2.1) and
(2.2) become

yit = x′
i tβ + uit , (2.1a)

and

yit = xi tβt + u′
i t . (2.2a)

Similarly, with respect to (2.4), we assume

yit = wtα + x′
i tβ + ηi t , (2.4a)

and in the TVP version,

yit = wtαt + x′
i tβt + η′

i t , (2.4b)

wt = z′
tπt + ε′

t . (2.5a)

While the assumptions embedded in (2.1a), (2.2a), (2.4a), and (2.4b)
may seem extreme, it is the case that they have led to good point forecasts
in previous work and, as will be seen, to good turning point forecasts in
our present work.

Finally, we note that exponential weighting or “discounting” (see, e.g.,
West, Harrison, and Migon 1985 and Highfield 1986) can be employed
when parameters are thought to be changing in value through time. By
putting heavier weight on recent observations and lighter weight on obser-
vations distant in time from the present, use of exponential weighting
produces parameter estimates which can adapt to local changes in values
of parameters. Thus exponential weighting is a procedure that permits
adaptation to deterministic and/or random changes in parameters’ values
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(see appendix for recursions for computing TVP estimates and exponen-
tially weighted parameter estimates).

2.1 Optimal turning point forecasts

As mentioned above, if we have a model for the observations, a definition
of a turning point, a predictive pdf, and a loss structure, we can compute
an optimal turning point forecast. Above we have indicated several models
which we shall use in our analyzes. As regards definitions of turning
points, we shall use the following definitions employed in our previous
work:

Definition of a downturn (DT) in year T + 1: If the annual growth
rate observations for country i, yiT−2, yiT−1, yiT, and yiT+1 satisfy

yiT−2, yiT−1 < yiT > yiT+1, (2.6a)

then a DT has occurred in period T + 1 for country i, while if the growth
rates satisfy

yiT−2, yiT−1 < yiT ≤ yiT+1, (2.6b)

no DT (NDT) has occurred for country i in period T + 1. Note that
we condition the definition of a DT on two previous observations being
below a third observation. Similarly, we define an upturn as follows:

Definition of a upturn (UT) in year T + 1: If the growth rate
observations satisfy

yi,T−2, yiT−1 > yiT < yiT+1, (2.7a)

an UT has occurred in period T + 1, while if

yiT−2, yiT−1 > yiT ≥ yiT+1, (2.7b)

no UT (NUT) has occurred for country i in period T + 1.

While the definitions in (2.6) and (2.7) are not the only possible defi-
nitions, we shall use them because they are explicit and seem appropriate
for data which may display a cycle with about a four-year period. Note
that if there were a deterministic cycle with an exact four-year period, the
above definitions would be completely appropriate.

Having defined a DT in (2.6a), the problem of forecasting arises when
we have observed yiT−2, yiT−1, and yiT , and yiT+1 is a future, as yet
unobserved, value. If a predictive pdf for yiT+1 given all past data, a
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PDT

p[yiT +1 A1, DT]

yiT +1ˆ yiT

yiT +1

Figure 16.1 Calculation of probability of a DT in period T + 1.

model, and prior information through period T are available, then we
can compute the probability of a DT, PDT, as shown below.

As is well known, in general a predictive pdf for a future observation,
e.g. yiT+1, −∞ < yiT+1 < ∞, is given by

p(yiT+1 | DT) =
∫
θ

f (yiT+1 |θ, DT)π(θ | DT) dθ, (2.8)

where f (yiT+1 | θ, DT) is the pdf for yiT+1 given the parameter vector θ ⊂
Θ, the parameter space, and DT, the past sample and prior information
as of time T, and π(θ | DT) is the posterior pdf for θ yielded by Bayes’
Theorem.

The predictive pdf in (2.8) is calculated for each of our models, as
shown in the appendix, and used to evaluate probabilities of DTs and
UTs. For example, using the definition in (2.6a) and the predictive pdf
in (2.8), the probability of a DT for country i in the future period T + 1,
denoted by PDT, is

PDT = Pr(yiT+1 < yiT | A1, DT) =
∫ yiT

−∞
p(yiT+1 | A1, DT) dyiT+1,

(2.9)

where A1 denotes the condition: yiT−2, yiT−1 < yiT. In figure 16.1, the
calculation of (2.9) is illustrated. The shaded area in figure 16.1 is just
the probability of a DT. Note that it will be larger than 1

2 if the given value
yiT > ŷiT+1, the modal value of the predictive pdf.

Once PDT has been computed, we use its value in conjunction with the
loss structure in table 16.1 to choose an optimal turning point forecast.
In table 16.1 losses are scaled to be zero if forecasts are correct, while
losses c1, c2 > 0 are incurred for incorrect forecasts. For example, if the
forecast DT is selected and the outcome is NDT, then loss c1 is incurred.
Thus c1 and c2 represent costs associated with two possible errors, namely
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Table 16.1 Loss structure for forecasting
downturn (DT) or no downturn (NDT)

Outcomes

DT NDT Expected losses

Forecasts
DT 0 c1 c1(1 − PDT)
NDT c2 0 c2PDT

Probabilities PDT 1 − PDT

(1) forecast DT and the outcome is NDT and (2) forecast NDT and
the outcome is DT. (See Zellner, Hong, and Gulati 1990 for analysis of
expanded loss structures which take account of not only cost c1 and c2

but also costs associated with errors of point forecasts.)
The expected losses, shown in table 16.1, associated with the choice

of a DT or a NDT forecast, can be employed to choose the forecast
which minimizes expected loss. For example, if c1(1 − PDT) < c2PDT, or
equivalently,

1 < (c2/c1)PDT/(1 − PDT), (2.10)

the optimal forecast is DT. Note that the decision rule in (2.10) involves
a cost parameter ratio, c2/c1, and the odds on a DT occurring, PDT/(1 −
PDT). If c2/c1 = 1, the case of a symmetric loss structure, (2.10) will be
satisfied if PDT > 0.5. Thus for a symmetric loss structure, forecast DT
if PDT > 1

2 and NDT if PDT does not satisfy this condition. On the other
hand if c2/c1 = 4, (2.10) will be satisfied for PDT > 0.2. Thus, if the com-
puted value of PDT is larger than 0.2 and c2/c1 = 4, the optimal forecast
is DT. In this case, a less stringent condition on PDT is employed to help
avoid the relatively large cost c2 associated with an incorrect NDT fore-
cast. See Zellner and Hong (1988) for the results of forecasting turning
points using various cost parameter ratios.

Since the methodology of forecasting UTs using the definition in (2.7),
a predictive pdf for yiT+1, and a loss structure similar to that in table
16.1 with positive costs c3 and c4, associated with incorrect UT and NUT
forecasts, respectively, is similar to that explained above for forecasting
DTs, it will not be presented. To minimize expected loss in choosing
between UT and NUT forecasts, one chooses an UT forecast if c3(1 −
PUT) < c4 PUT or, equivalently,

1 < (c4/c3)PUT/(1 − PUT), (2.11)
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where PUT is the probability of an upturn in period T + 1 given by

PUT = Pr(yiT+1 > yiT | A2, DT) =
∫ ∞

yiT

p(yi,T+1 | A2, DT) dyiT+1,

(2.12)

where A2 is the condition yiT−2, yiT−1 > yiT. Thus when A2 is satisfied,
the probability of an UT, PUT, can be computed from (2.12) and used to
select between UT and NUT forecasts so as to minimize expected loss.

In our empirical work, from the annual output growth rate data for each
country, we identify sequences of data satisfying condition A1: yit−2, yit−1

< yit . Then we use the data through year t to compute the predictive pdf
for yit+1 and use it to choose optimally between DT and NDT forecasts, as
explained above. A similar procedure is employed with respect to making
UT and NUT forecasts. These procedures were carried out for each of our
two models using fixed parameters, time-varying parameters and expo-
nential weighting, and the pooling techniques mentioned above. Similar
calculations have been performed without employing pooling. The results
will be presented after a brief discussion of our data.

3 Description of data

The data employed in our calculations have been taken from the IMF
International Financial Statistics data base and are available on a diskette
on request for a small fee to cover costs. The annual data 1954–73 were
used to estimate our models with data 1951–3 serving as initial values.
The models were used to compute probabilities of DTs and UTs for
each country whenever a sequence of points satisfying the conditions for
turning points, defined above, was encountered, using all data prior to
the year in which a turning point could occur.

The output data for each country, either annual real GNP or real GDP,
were logged and first-differenced to yield annual growth rates. Similarly,
nominal money, M1, at the end of each year was deflated by a general
price index, logged and first-differenced to yield the rate of change of real
money. A general price index was used to deflate an annual stock price
index, which was logged and first-differenced to yield a rate of growth of
real stock prices for each country and year.

Shown in figure 16.2 are boxplots for the three variables’ data used
in this study, rates of growth of real output, real money, and real stock
prices. In each box, the horizontal line is the median of the eighteen
countries’ values of a variable in a particular year, the height of each box
is the interquartile range of the eighteen countries’ values of a variable



536 Arnold Zellner, Chansik Hong, and Chung-ki Min

20

10

0

−10
1954 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

Year

1954 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

Year

1954 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

Year

80
70
60
50
40
30
20
10

−10
−20
−30
−40
−50
−60
−70

0

30

20

10

−10

−20

0

Real output

Real stock prices

Real money

Figure 16.2 Box plots of annual growth rates, 1954–1986



Forecasting international turning points 537

in a given year while the points outside each box are observations in the
tails of the distribution of values of a variable in a particular year. From
figure 16.2, it is seen that the countries’ output, money, and real stock
price growth rates tend to move up and down together with the variation
of the growth rate of real stock prices considerably larger than that of the
other two variables. It will be noted that there are several outlying points
in the data. While we plan to deal with these outlying points in future
work, in the present study all data were employed with no adjustments for
outliers or anything else.

In figure 16.2, the horizontal lines in the boxes are the median values
of variables in each year used in our model for wt in (2.5). It is indeed
interesting to note that the annual median growth rates of output, real
money, and real stock prices follow rather smooth paths through time
which appear to exhibit fluctuations with about a four-year period as
measured from peak to peak or trough to trough. (See Zellner and Hong
1989 for evidence on the forecasting performance of the ARLI model for
wt in (2.5).)

4 Results of forecasting turning points, eighteen countries,
1974–1986

For each country’s data, 1974–86, we identified sequences of observa-
tions which satisfied our definitions of turning points given in (2.6) and
(2.7). Then we used data from 1954 through year T, the year prior to
the year in which a turning point did or did not occur, to compute the
probabilities that a turning point would occur in year T + 1 from the pre-
dictive pdfs of six alternative models. These probabilities were employed
to make optimal turning point forecasts as explained above. Initially, we
report results based on a symmetric loss structure for which a turning
point is forecasted when its probability of occurrence is greater than 0.5.
After reporting these results, others relating to asymmetric loss structures
will be presented and discussed.

The six models used in making turning point forecasts are the following
third-order ARLI models:
1. TVP/ARLI, a time-varying parameter ARLI model
2. TVP/ARLI/WI, a time-varying parameter ARLI-world income model
3. EW/ARLI, an exponentially weighted ARLI model
4. EW/ARLI/WI, an exponentially weighted ARLI-world income model
5. FP/ARLI, a fixed parameter ARLI model
6. FP/ARLI/WI, a fixed parameter ARLI-world income model.
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Each model is implemented with no pooling of data across countries and
with pooling using the methods discussed in section 2. Our calculations
provide information relating to the following questions:
(a) Do fixed parameter models perform as well as TVP and EW ARLI

models?
(b) Do the models containing the world income variable perform better

than those that do not?
(c) Does pooling of data across countries improve forecast performance?
(d) Are DT and NDT forecasts better than UT and NUT forecasts?
(e) Is the percentage of correct DT forecasts greater than the percentage

of correct NDT forecasts?
(f) Is the percentage of correct UT forecasts greater than the percentage

of correct NUT forecasts?
The forecasting results presented below for 158 turning point forecasts
will help to provide answers to these and other questions.

In table 16.2 and figures 16.3 and 16.4 are shown results of using our
six models to forecast 158 turning points for eighteen countries, 1974–
86. Using symmetric loss structures, we forecast a DT when PDT > 1

2 and
an UT when PUT > 1

2 . In the upper panel of table 16.2, the forecasting
results using no data pooling are presented. The model that appears to
have a slight edge over the others is the TVP/ARLI/WI model. Use of
it led to 82 percent of 158 turning point forecasts being correct, that
is 129 of 158 forecasts are correct. Of the 76 DT and NDT forecasts,
use of this model produces 83 percent correct forecasts, while for 82
UT and NUT forecasts, 80 percent are correct. For the other models, of
158 turning point forecasts, the percentages correct vary from 72 to 77,
somewhat lower than for the TVP/ARLI/WI model. Also for the 76 DT
and NDT forecasts, use of these other models leads to percentages correct
that range from 68 to 76, while for the 82 UT and NUT forecasts, the
percentages correct vary from 74 to 77. Thus use of the TVP/ARLI/WI
model produces approximately 80 percent correct forecasts overall and
for DT/NDT and UT/NUT forecasts separately.

Note further, from panel A of table 16.2, that use of TVP models pro-
duces better results than fixed parameter models or models with exponen-
tial weighting. However, in most cases the differences in performance as
measured by percentage of correct forecasts are not large. Further, from
lines 1–4 of table 16.2, it is seen that addition of the world income vari-
able leads to small improvements in forecasting performance relative to
that of models not including it.

From panel B of table 16.2, which provides results based on data pooled
across countries, use of the TVP/ARLI/WI and EW/ARLI/WI models
results in 80 and 81 percent, respectively, of 158 turning point forecasts
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Figure 16.3 Percentages of correct forecasts, 158 turning point fore-
casts, 1974–1986

being correct. The percentages correct for the other models range from
74 to 79, with models incorporating the WI variable performing slightly
better than those not including it. Also, the TVP and EW models tend
to perform slightly better in forecasting turning points relative to the
pooled fixed parameter models.1 Similar conclusions emerge with respect
to results for the 76 DT and NDT and 82 UT and NUT forecasts. In
addition, with the use of pooling, the performance of the models for
DT/NDT forecasting, 80–88 percent correct, is somewhat better than
that for the UT/NUT forecasts, 67–76 percent correct.

As regards the comparison of the results in the upper and lower panels
of table 16.2, it appears that pooling has led to improved DT and NDT
forecasts but no improvement with respect to UT and NUT forecasts. It
is the case that pooling leads to much better performance of the NDT
forecasts, particularly for the FP models.

To summarize the results in table 16.2 and figures 16.3 and 16.4,
use of our methods and models leads to approximately 70–80 percent
correct turning point forecasts based on 158 cases. While the differences
in performance are not large in many instances, the results tend to favor
the TVP/ARLI/WI model with or without pooling which produces 80
and 82 percent correct turning point forecasts, respectively.

1 The fixed parameter model denoted by FP/ARLI was employed in our [earlier] work
without pooling (see Zellner, Hong, and Gulati 1990).
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To appraise the forecasting performance of various models and meth-
ods further, we have shown the numbers of incorrect forecasts in table
16.2. For example, the TVP/ARLI/WI model in line 2 produces 29 incor-
rect turning point forecasts, 13 associated with DT and NDT forecasts
and 16 associated with UT and NUT forecasts. If the loss structure in table
16.1 is symmetric with c1 = c2 = 1 and if a similar one for UT/NUT fore-
casts is also symmetric with costs of incorrect forecasts equal to 1, then 29
is the realized loss associated with the use of the unpooled TVP/ARLI/WI
model in forecasting turning points. From table 16.2, it is seen that real-
ized losses range from 29 to 45 for panel A of the table and from 30
to 41 for panel B. These results can be compared to the results that are
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Table 16.3 Performance of various procedures for forecasting turning points
in annual output growth rates for eighteen countries, 1974–1986

Number and percentage of incorrect forecastsa

Forecasting procedures
76 DT and
NDT forecasts

82 UT and
NUT forecasts

158 turning
point forecasts

1 Eternal optimistb 59
(78)

34
(41)

93
(59)

2 Eternal pessimistc 17
(22)

48
(59)

65
(41)

3 Deterministic four-year cycled 17
(22)

34
(41)

51
(32)

4 TVP/ARLI/WI unpooled 13
(17)

16
(20)

29
(18)

TVP/ARLI/WI pooled 12
(16)

20
(24)

32
(20)

Notes:
a Figures in parentheses are percentages of incorrect forecasts.
b An eternal optimist forecasts either NDT or UT.
c An eternal pessimist forecasts either DT or NUT.
d Forecasts either DT or UT.

associated with an eternally pessimistic forecaster who always chooses DT
and NUT forecasts (see table 16.3, line 2). Since there were 59 actual DTs
out of 76 cases, the eternal pessimist has 17 of his DT forecasts wrong.
Also, since there were 34 NUTs in 82 cases, 48 of his NUT forecasts are
incorrect. Thus his total number of incorrect forecasts is 17 + 48 = 65.
As is evident, this eternally pessimistic forecaster experiences a realized
loss under symmetric loss of 65 which is much higher than those associ-
ated with the models and methods in table 16.2. Thus, our turning point
forecasts are much better than those of an “eternal pessimist.”

Also shown in table 16.3 are the forecasting results of an “eternal opti-
mist” who always forecasts NDT and UT. The eternal optimist has 59 of
his 76 NDT forecasts incorrect and 34 of his 82 UT forecasts incorrect.
Thus his realized loss is 59 + 34 = 93, much higher than that associated
with the unpooled or pooled TVP/ARLI/WI model’s realized losses, 29
and 32, respectively.

The forecasting performance of a person who believes in a deterministic
four-year cycle is shown in line 3 of table 16.3. Such a forecaster always
forecasts DT and UT with the result that 17 of his 76 DT forecasts and 34
of his 82 UT forecasts are incorrect. Thus his total realized loss is 51, again
higher than those produced using the unpooled or pooled TVP/ARLI/WI
model, namely 29 and 32, respectively. Further, as can be seen from the
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Table 16.4 Expected number of turning points,
DTs, and UTs

Model Unpooled Pooled

1 TVP/ARLI 104 98
2 TVP/ARLI/WI 101 98
3 EW/ARLI 101 102
4 EW/ARLI/WI 98 99
5 FP/ARLI 100 98
6 FP/ARLI/WI 96 94

Actual number of turning points 107 107
Total number of cases 158 158

figures in table 16.2, the realized losses for all of our models are much
lower than those of the eternal optimist, the eternal pessimist, and the
deterministic four-year cycle forecaster.

In summary, in terms of overall realized losses, the results in tables
16.2 and 16.3 indicate that all of our models performed better than the
eternal optimist, the eternal pessimist, and the deterministic four-year
cycle forecasters. The addition of the WI variable has led to improved
forecasting as measured by overall realized loss.

We can also ask if our turning point forecasts are better than those
yielding by coin-flipping, that is use of a probability of a DT = 1

2 on
all occasions or probability of an UT = 1

2 on all occasions. Under these
assumptions, the expected number of turning points = 1

2 × 158 = 79.
However, we observe 59 DTs and 48 UTs in our data using the definitions
in (2.6) and (2.7). Thus there are 107 actual turning points observed. The
number of [turning points] observed, 107 of 158 cases, is much greater
than the number predicted by a coin-flipping forecaster, 79. On the other
hand, if we sum our computed probabilities of turning points for the 158
possible turning points, we obtain the results shown in table 16.4.

It is seen that the forecasting results of table 16.4 indicate that our
methods and models yield an expected number of turning points much
closer to the observed outcome, 107, than those of the pessimistic fore-
caster, the coin-flipping forecaster, and a deterministic four-year cycle
forecaster who would forecast a DT or an UT on every occasion and thus
would expect 158 turning points.

In tables 16.5 and 16.6 we display results for DT and NDT and UT
and NUT forecasts separately for each model, with and without pooling.
For the results without pooling, shown in panel A, we see that for all
models the percentages of correct DT forecasts are much higher than
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Table 16.5 Forecasting downturns (DTs) and no downturns (NDTs) in
annual output growth rates, eighteen countries, 1974–1986

Decision rule: forecast DT if PDT > 0.5

Number

Model Forecast Correct Incorrect Total % correct Realized loss

(A) No pooling
TVP/ARLI DT 47 6 53 89 18

NDT 11 12 23 48
TVP/ARLI/WI DT 49 3 52 94 13

NDT 14 10 24 58

EW/ARLI DT 40 5 45 89 24
NDT 12 19 31 39

EW/ARLI/WI DT 45 5 50 90 19
NDT 12 14 26 46

FP/ARLI DT 40 3 43 93 22
NDT 14 19 33 42

FP/ARLI/WI DT 38 2 40 95 23
NDT 15 21 36 42

(B) With pooling
TVP/ARLI DT 50 6 56 89 15

NDT 11 9 20 55
TVP/ARLI/WI DT 52 5 57 91 12

NDT 12 7 19 63

EW/ARLI DT 52 4 56 93 11
NDT 13 7 20 65

EW/ARLI/WI DT 53 3 56 95 9
NDT 14 6 20 70

FP/ARLI DT 47 2 49 96 14
NDT 15 12 27 56

FP/ARLI/WI DT 49 2 51 96 12
NDT 15 10 25 60

those for NDT forecasts, with the former ranging from 89 to 95 percent
and the latter from 39 to 58 percent. The poor performance of NDT
forecasts was also encountered in Zellner, Hong, and Gulati (1990) using
the unpooled FP/ARLI model. The percentages of the TVP/ARLI/WI
model’s DT and NDT forecasts correct, 94 and 58, respectively, are higher
than the corresponding percentages for all other models except for the DT
percentage correct for the FP/ARLI/WI model, 95. As regards the effects
of pooling on forecasting performance, panel B of table 16.5 indicates
that pooling has resulted in an increase in the percentage of correct NDT
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Table 16.6 Forecasting upturns (UTs) and no upturns (NUTs) in annual
output growth rates, eighteen countries, 1974–1986

Decision rule: forecast UT if PUT > 0.5.

Number

Model Forecast Correct Incorrect Total % correct Realized loss

(A) No pooling
TVP/ARLI UT 44 15 59 75 19

NUT 19 4 23 83
TVP/ARLI/ WI UT 42 10 52 81 16

NUT 24 6 30 80

EW/ARLI UT 45 18 63 71 21
NUT 16 3 19 84

EW/ARLI/WI UT 42 13 55 76 19
NUT 21 6 27 78

FP/ARLI UT 45 16 61 74 19
NUT 18 3 21 86

FP/ARLI/WI UT 43 16 59 73 21
NUT 18 5 23 78

(B) With pooling
TVP/ARLI UT 39 17 56 70 26

NUT 17 9 26 65
TVP/ARLI/WI UT 40 12 52 77 20

NUT 22 8 30 73

EW/ARLI UT 40 19 59 68 27
NUT 15 8 23 65

EW/ARLI/WI UT 41 14 55 74 21
NUT 20 7 27 74

FP/ARLI UT 41 19 60 68 26
NUT 15 7 22 68

FP/ARLI/WI UT 39 12 51 76 21
NUT 22 9 31 71

forecasts for all models and not much change in the percentages of correct
DT forecasts.

Just as above, we can ask how many DTs a coin-flipper, an optimist, a
pessimist, or a believer in a deterministic four-year cycle would predict.
Since there are 76 cases meeting the conditions for forecasting either DT
or NDT, a coin-flipper using PDT = 1

2 in each case would expect 38 DTs.
The optimist would expect zero DTs, while the other two forecasters
would expect 76 DTs. The number of downturns actually observed is 59,
far from zero, 38, or 76. If we sum the probabilities of DTs associated
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with the 76 cases in which a DT could occur according to our definition,
the sums for our different models range from 42 to 49 for our unpooled
cases and from 44 to 51 for our pooled cases. Thus the expected number
of DTs computed from our models are much closer to the actual number
of observed DTs, 59, than are those of a coin-flipper, an optimist, a
pessimist, and a believer in a deterministic four-year cycle.

In table 16.6, information is provided on the performance of our mod-
els and methods in forecasting UTs and NUTs. Without pooling, 71–81
percent of the UT forecasts are correct and 78–86 percent of the NUT
forecasts are correct. The numbers of incorrect forecasts range from 16
for the TVP/ARLI/WI model to 21 for the EW/ARLI and FP/ARLI/WI
models. Again the TVP/ARLI/WI model performs slightly better than the
other models. The same is true when pooling is used as shown in panel
B of table 16.6, although the differences are rather small.

Further, there are 82 cases in which either an UT or a NUT forecast
can be selected. A coin-flipper, PUT = 1

2 , would expect 41 UTs. A pes-
simist who forecasts NUT in each case, equivalent to PUT = 0, would
expect zero UTs. On the other hand, an optimist and a believer in a
deterministic four-year cycle would expect 82 UTs. Actually, there were
48 UTs observed in our data, much greater than zero, much lower than
82, and somewhat larger than the coin-flipper’s expected number, 41.
On the basis of the sum of our computed probabilities, we found that our
expected number of UTs ranged from 53 to 58 for our unpooled models
and from 48 to 54 for our pooled models. The pooled TVP/ARLI/WI
model’s summed probabilities equals 47.6, very close indeed to the num-
ber of UTs observed, namely 48.

From the above turning point forecasting performance, based on sym-
metric loss structures or equivalently on the use of the decision rules, fore-
cast a DT if PDT > 0.5, otherwise forecast a NDT, and forecast an UT if
PUT > 0.5, otherwise forecast NUT, we conclude that the TVP/ARLI/WI
model, with or without pooling, produces relatively good results. The
margin of superiority of this model is generally small relative to other
models which included the WI variable. These models perform quite a
bit better than do four naive turning point forecasting procedures.

Shown in table 16.7 are probabilities of DTs by year and country com-
puted from the pooled TVP/ARLI/WI model using the definition of a
DT given in (2.6a). For example, the probability of a DT in 1974 for
Belgium is 0.82 based on data through 1973. The asterisk affixed to this
probability indicates that the Belgian output growth rate did indeed turn
down in 1974. It is seen that eight countries have high DT probabili-
ties in 1974 and that all experienced a DT in this year. In 1977, thir-
teen countries have high probabilities of a DT and twelve experienced a
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downturn, Japan, with a probability of a DT equal to 0.83 did not expe-
rience a DT, as indicated by the dash affixed to its probability. However,
one year later in 1978, the probability of a DT for Japan is 0.55, based on
data through 1977, and it did experience a DT in 1978. In the majority of
cases for which the probabilities of DTs are high, a DT was experienced.
In addition to the exception noted for Japan in 1977, other exceptions are
encountered for Switzerland in 1980, Norway in 1984, and Switzerland
in 1985. In each of these cases, the probability of a DT in the next year
is high and a DT occurred in that year. Thus for these cases, there is an
early false DT forecast followed by a correct DT forecast in the next year.
There are also several cases in which the probability of a DT is low and
yet a DT occurred, for example for the United Kingdom in 1979 and for
Austria, Denmark, and Switzerland in 1986. In general, however, when
the probabilities of a DT are high, countries experienced DTs, while when
they are low they did not experience DTs.

In table 16.8, the computed probabilities of UTs by country and year
based on the pooled TVP/ARLI model are displayed. In general, when the
computed probabilities are high, UTs occurred, while when they are low,
UTs did not occur. For example in 1975, the probabilities of an UT are
smaller than 0.50 for ten countries and eight of them did not experience
an UT. In this year four countries had probabilities of an UT equal to or
greater than 0.50 and two experienced UTs. Germany, with a probability
of an UT of 0.70, did not experience an UT in 1975; however, for the
next year, 1976, its probability of an UT is 0.98 and it did experience an
upturn. Similarly for the United States, its 1975 probability of an UT is
0.52 and it did not experience an UT, but its 1976 probability is 0.90
and its output growth rate did turn up in 1976. In several other cases, for
example Denmark, Germany, and Sweden in 1981 and 1982, a similar
pattern is encountered, namely high probabilities of UTs in 1981 and
1982 with UTs occurring in the latter but not in the former year. Also, in
some cases, the probabilities of an UT are low and yet upturns occurred,
for example for Australia and Denmark in 1975 and for Ireland in 1980.
Overall, however, when the computed probabilities are high, UTs usually
occurred, while when they are low, UTs did not occur.

We now turn to a presentation of some forecasting results for asym-
metric loss structures. In table 16.9 are shown the results of DT/NDT
forecasts for various values of the cost parameter ratio, c2/c1, where c1

and c2 are the cost parameters in the loss structure given in table 16.1.
When c2/c1 = 4, it is optimal to forecast a DT when the probability of a
DT is greater than 0.2. For this case, 74 DT forecasts were made with 59
or 80 percent correct. Only two NDT forecasts were made and both were
correct. With c2 = 4c1, the cost of an erroneous NDT forecast is much
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Table 16.10 Brier scores for turning point forecasts,
eighteen countries, 1974–1986a

Model All turning points Downturns Upturns

(A) No pooling
1 TVP/ARLI 0.32 0.30 0.35
2 TVP/ARLI/WI 0.31 0.30 0.33
3 EW/ARLI 0.37 0.35 0.38
4 EW/ARLI/WI 0.34 0.33 0.35
5 FP/ARLI 0.37 0.36 0.37
6 FP/ARLI/WI 0.35 0.36 0.35

(B) With pooling
7 TVP/ARLI 0.31 0.26 0.35
8 TVP/ARLI/WI 0.28 0.24 0.31
9 EW/ARLI 0.32 0.28 0.37

10 EW/ARLI/WI 0.29 0.26 0.32
11 FP/ARLI 0.34 0.30 0.37
12 FP/ARLI/WI 0.29 0.27 0.31

Note:
a The Brier score is defined in (4.1) in the text.

greater than that of an erroneous DT forecast and thus fewer NDT fore-
casts are made. On the other hand, when c2/c1 = 1

4 , the optimal decision
rule is to forecast a DT when the probability of a DT is greater than 0.8, a
rule which leads to fewer DT forecasts being made. In this case, only 30
DT forecasts were made with 29 or 97 percent being correct. Of 46 NDT
forecasts made in this case, 16 or 35 percent are correct. These results
indicate that the turning point forecasting procedure adapts to variations
in the cost parameter ratio, c2/c1. Similar results have been obtained for
forecasting UTs and NUTs when the cost parameter ratio, or equivalently
the “cut-off” probability of an UT, is varied.

In table 16.10 the Brier scores for our turning point forecasts are pre-
sented. The Brier score, or quadratic probability score, denoted by B is
defined as follows:

B =
N∑

i=1

2(Pi − Ri )2/N, (4.1)

where N = number of forecasts, Pi = computed probability associated
with the ith forecast, and Ri = realized outcome, equal to one if the fore-
casted event occurred and equal to zero if it did not. B ranges from 0



552 Arnold Zellner, Chansik Hong, and Chung-ki Min

to 2, with B = 0 denoting perfect accuracy. B in (4.1) was computed
separately for all our turning point forecasts and for DT/NDT and
UT/NUT forecasts separately.

From the results in table 16.10, it is seen that the Brier scores for all
turning points range from 0.31 to 0.37 for the six models when there is
no pooling, and from 0.28 to 0.34 with pooling. With no pooling the
TVP/ARLI/WI model has the lowest Brier score, namely 0.31. With
pooling, this same model has the lowest score, 0.28. Thus according
to the Brier score criterion, the TVP/ARLI/WI model performed the
best with pooling resulting in about a 10 percent reduction in Brier
score relative to the unpooled case. Further, the other models’ perfor-
mance also shows improvement with pooling in every case. The pooled
EW/ARLI/WI model’s Brier score, 0.29, is only slightly larger than that of
the TVP/ARLI/WI model. It is also the case that inclusion of the WI vari-
able improved performance in every case relative to that of corresponding
models without this variable. Last, the FP/ARLI model performed the
worst both in the case of no pooling and with pooling.

In the case of computed probabilities for DTs, the Brier scores range
from 0.30 to 0.36 for models with no pooling and from 0.24 to 0.30
with pooling. In each case, the score is lower with pooling, indicating
that pooling improves performance. The lowest and best score, 0.24, is
encountered for the TVP/ARLI/WI model with pooling. A score of 0.26
is obtained for the pooled TVP/ARLI and EW/ARLI/WI models. That
these three models, which allow for non-constant parameters, exhibit the
best performance is noteworthy.

With respect to computed probabilities for UTs, the models with no
pooling have Brier scores of 0.33 to 0.38, while those with pooling range
from 0.31 to 0.37. In this case, pooling did not produce a uniform
improvement in the scores. For the TVP/ARLI/WI model, its scores are
0.33 with no pooling and 0.31 with pooling, the latter being the lowest
and best score. Also, the results in table 16.10 indicate that the Brier
scores are somewhat better for probabilities associated with DTs than for
those associated with UTs for all models except the FP/ARLI/WI model
with no pooling where they were equal. Thus, using the Brier score mea-
sure, forecasting performance with respect to UTs is slightly poorer than
that for DTs.

Finally, in table 16.11 are shown the Brier scores for the naive turning
point forecasters, the eternal optimist, the eternal pessimist, the coin-
flipper, and the believer in a deterministic four-year cycle. As can be seen,
the Brier scores for all these naive forecasters are larger than all those in
table 16.10 indicating that naive forecasters’ performance is poorer than
that associated with the models and methods reported in table 16.10.
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Table 16.11 Brier scoresa for eternal optimist, eternal pessimist, coin-flipper,
and deterministic four-year cycle forecasters

Forecaster
76 DT and
NDT forecasts

82 UT and
NUT forecasts

158 turning
point forecasts

Eternal optimistb 1.55 0.83 1.18
Eternal pessimistc 0.45 1.17 0.82
Coin-flipperd 0.50 0.50 0.50
Deterministic four-year cyclee 0.45 0.83 0.65

Notes:
a The Brier score is defined in (4.1) in the text.
b The eternal optimist assumes that the probability of a DT = 0 and the probability of an
UT = 1.0 on all occasions.
c The eternal pessimist assumes that the probability of a DT = 1.0 and the probability of
an UT = 0 on all occasions.
d A coin-flipper assumes that the probability of a DT or of an UT = 1

2 on all occasions.
e A deterministic four-year cycle forecaster assumes that the probability of an UT or a
DT = 1.0 on all occasions.

5 Summary and concluding remarks

In this chapter we have found that several ARLI models have produced
rather good turning point forecasting performance. Using a Bayesian
decision theoretic approach to generate optimal turning point forecasts,
it was found that about 80 percent of 158 turning point forecasts for
eighteen countries, 1974–86, are correct using the TVP/ARLI/WI and
EW/ARLI/WI models with pooling (see table 16.2). For other models,
with and without pooling, the percentage of correct turning point fore-
casts is 72 or higher. Similar good results are obtained for DT/NDT and
UT/NUT forecasts separately. Also these forecasts are superior to those
of several naive turning point forecasting procedures.

The weakest performance was encountered in the case of NDT fore-
casts where, with pooling, the percentage of correct forecasts ranges from
55 to 70. In the case of the pooled TVP/ARLI/WI model NDT forecasts,
7 of 19 NDT forecasts were incorrect. For these 7 cases, the computed
probabilities of DTs have values from 0.27 to 0.47. Thus in each of these
cases there is a substantial probability of a DT. If a more conservative
rule for forecasting DTs were employed, say forecast a DT if PDT > 0.2,
then, as shown in table 16.9, all NDT forecasts are correct.

Finally, the good performance of our models and methods in fore-
casting turning points in annual growth rates of real output for eighteen
countries, 1974–86, is surprising in view of the fact that this period is
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a difficult one from the point of view of forecasting. That is, the period
is one in which two oil crises occurred, countries moved from fixed to
flexible exchange rates, monetary policy in the United States changed
dramatically in 1979, inflation and unemployment rates were very high
in the late 1970s, etc. The fact that our models and methods performed
so well without any ad hoc adjustments for the effects of these major
events suggests that they may be useful to private and public decision-
makers who are interested in computing probabilities of DTs and UTs
and forecasting turning points.

APPENDIX CALCULATION OF POSTERIOR AND
PREDICTIVE DISTRIBUTIONS

A.1 Fixed parameter models

Dropping the subscript i, the model in (2.1) of the text is yt = x′
tβ + ut , t

= 1, 2, . . . , n. The uts are assumed independently drawn from a zero-
mean normal distribution with variance σ 2. A spread out normal-inverted
gamma natural conjugate prior distribution for β and σ was employed,
namely p(β | σ ) ∼ N(0, σ 2I × 106) and p(σ ) ∼ IG(ν0s0) with ν0 and
s0 assigned very small values. Then at t = 0, with given initial values,
the predictive probability density function (pdf) for y1, denoted by p(y1 |
D0), is in the univariate Student-t form. That is, tν0 = (y1 − x′

i β̂0)/s0a0

has a univariate Student-t pdf with ν0 degrees of freedom where a2
0 =

1 + x′
i xi · 106 and β̂0 = 0. By updating the posterior pdfs period by period

by use of Bayes’ Theorem, they can be employed to obtain predictive
pdfs period by period. For example, the predictive pdf for yt+1 is in the
univariate Student-t form and such that

tνt = (yt+1 − x′
t+1β̂t)/stat (A.1)

has a univariate Student-t pdf where

β̂t = (Z′
t Zt)−1 Z′

t yt , (A.2)

with y′
t = (yt , yt−1, yt−2, . . . , y1), Z′

t = (xt , xt−1, . . . , x1), and a2
t = 1 +

x′
t+1(Z′

t Zt−1)−1xt+1. The following up-dating formulas were employed:

β̂t = β̂t−1 + (Z′
t−1 Zt−1)−1xt(yt − x′

t β̂t−1)/[1 + x′
t(Z′

t Zt)−1xt],

νt = νt−1 + 1,

νt s 2
t = vt−1st−1 + (yt − x′

t β̂t)
2 + (β̂t − β̂t−1)′Z′

t−1 Zt−1(β̂t − β̂t−1),

(Z′
t Zt)−1 = (Z′

t−1 Zt−1)−1 − (Z′
t−1 Zt−1)−1xt x′

t(Z′
t−1 Zt−1)−1/

[1 + x′
t(Z′

t−1 Zt−1)−1xt].
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To compute, for example, the probability that yt+1 < yt, given infor-
mation through t, Pr(yt+1 < yt | Dt), use is made of (A.1) from which
yt+1 = stat tνt + x′

t+1β̂t . Then Pr(yt+1 < yt | Dt) = Pr[tνt < (yt − x′
t+1β̂t)/

stat | Dt], which was evaluated using the Student-t distribution with νt

degrees of freedom.
For the pooled ARLI model, all countries’ parameters were assumed to

be the same, that is, β1 = β2 = · · · = β18 and σ 1 = σ 2 = · · · = σ 18, and a
spread-out natural conjugate prior pdf and the above methods were used
to compute posterior and predictive pdfs period by period. The predictive
pdfs were employed to compute probabilities of downturns and upturns,
as explained above.

Similar procedures were employed to update posterior and predictive
pdfs for the FP/ARLI/WI model in (2.4) and (2.5) of the text under
the assumption that (2.4) and (2.5) constitute a fully recursive econo-
metric model with constant variance, zero-mean independent normal
disturbance terms. Using spread-out natural conjugate prior pdfs for the
parameters, posterior and one-step-ahead predictive pdfs were computed
using regression-like results in the literature (see Zellner 1971, ch. 8 and
Bowman and Laporte 1975). The one-step-ahead predictive pdf for yt+1

from (2.4) was approximated by a univariate Student-t pdf conditioned
on wt+1 = ŵt+1 the mean of the predictive pdf for wt+1. Such predictive
pdfs were employed to compute probabilities of turning points. For the
pooled FP/ARLI/WI model, countries’ parameters were all assumed to
be the same and the procedures described above were employed.

A.2 Time-varying parameter (TVP) models

For the TVP model (2.2)–(2.3), on dropping the subscript i for conve-
nience, we have for t = 1, 2, . . . , n

yt = x′
tβt + ut , ut ’s NID(0, σ 2), (A.3a)

βt = βt−1 + vt , vt ’s NID(0, φσ 2 Ik). (A.3b)

The distribution on the initial coefficient vector, β0, was taken to be a
spread-out normal distribution for β0 given σ with a zero-mean vector
and an inverted gamma pdf for σ with small values for its parameters,
ν0 and s0, p(σ | ν0, s 2

0) ∝ σ−(ν0+1) exp{−νs 2
0/2σ 2}. Then by direct calcu-

lations, at time t, we have

β̂t = β̂t−1 + Vt−1xt(yt − x′
t β̂t−1)/(1 + x′

t Vt−1xt),

νt s 2
t = νt−1s 2

t−1 + (yt − x ′
t β̂t)

2 + (β̂t − β̂t−1)′V−1
t−1(βt − β̂t−1),

νt = νt−1 + 1,

Vt = Vt−1 − Vt−1xt x′
t Vt−1/(1 + x ′

t Vt−1xt) + φ Ik,
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and, for the predictive pdf,

p(yt+1 | Dt) → tνt = (yt+1 − x′
t+1β̂t)/stat ,

where

a2
t = 1 + x ′

t+1Vt xt+1.

The parameter φ was assigned a value equal to 0.30 in the above calcu-
lations.

For the pooled TVP/ARLI model, the equations in (A.3a)–(A.3b) are
interpreted as relating to all countries, and recursions similar to those pre-
sented above, with φ = 0.01, were employed to compute predictive pdfs
and associated quantities. For the TVP/ARLI/WI model, it was assumed
to be fully recursive, and recursions similar to those presented above
were employed for each of its two equations country by country for the
unpooled case and for the entire set of countries in the pooled case. The
φ parameter was assigned a value of 0.20 for the unpooled case and 0.10
for the pooled case. The values of φ were selected to provide a minimum
for the median of the eighteen countries’ RMSEs of one-year-ahead fore-
casts, 1974–86, for each model.

In the case of models employing exponential weighting, we have for
the ith country (with the subscript i omitted for convenience):

W 1/2
t yt = W 1/2

t Xtβ + εt , (A.4a)

or

y∗
t = X∗

t β + εt , (A.4b)

where

Wt =


1 0 0 . . . 0
0 µ 0 . . . 0
0 0 µ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . µt−1

 ,

yt =


yt

yt−1
...
y1

 and Xt =


x ′

t
x ′

t−1
...

x ′
1

 .

We assume that εt ∼ N(0, σ 2It). As is evident from (A.4a) or (A.4b),
this can be considered to be a fixed parameter model with the current
observations given heavier weights than those more removed from the
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present. With a diffuse prior for the parameters, the posterior mean of β
with data through t is

β̂t = (X ′
t Wt Xt)−1 X ′

t Wt yt ,

and

s 2
t = (yt − Xt β̂t)

′(yt − Xt β̂t)/(t − k).

From the predictive pdf for yt+1,

tνt = (yt+1 − x ′
t+1β̂t)/stat

has a univariate Student-t distribution with νt = t − k degrees of freedom,
where a2

t = 1 + x ′
t+1(X ′

t Wt Xt)−1xt+1.
In the calculations presented in the text, the parameter µ was assigned

a value equal to 0.95 for the unpooled ARLI and ARLI/WI models. In
the case of pooling, wherein the value of β was assumed the same for all
countries, µ was taken equal to 0.85 for the ARLI model and 0.80 for
the ARLI/WI model. These µ values provided a minimum value of the
median RMSEs of one-year-ahead forecasts, 1974–86, for the eighteen
countries.
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17 Bayesian and non-Bayesian methods for
combining models and forecasts with
applications to forecasting international
growth rates (1993)

Chung-ki Min and Arnold Zellner

1 Introduction

In past work, Garcia-Ferrer et al. (1987) and Zellner and Hong (1989),
variants of a relatively simple autoregressive model of order three contain-
ing lagged leading indicator variables, called an ARLI model, provided
good one-year-ahead forecasts of annual output growth rates for eighteen
industrial countries, 1974–84. In Zellner, Hong, and Gulati (1990) and
Zellner, Hong, and Min (1991), this ARLI model and variants of it pro-
duced good turning point forecasts, about 70–80 percent of 158 turning
points correctly forecasted. In Hong (1989), the ARLI model’s cyclical
properties were analyzed and its forecasting performance was shown to be
slightly superior to that of a version of Barro’s “money surprise” model.
LeSage (1989) and LeSage and Magura (1990) have used ARLI mod-
els to forecast employment growth rates and turning points in them for
eight metropolitan labor markets with satisfactory results. Blattberg and
George (1991) used similar techniques in successfully forecasting sales
of different brands of a product.

Some of our past work has involved use of fixed parameter models
(FPMs) and time-varying parameter models (TVPMs). In the present
chapter, we derive and compute posterior odds relating to our FPMs
and TVPMs using data for eighteen countries, 1973–87. While there are
many reasons – Lucas effects, aggregation effects, wars, etc. – for believ-
ing that parameters may be time-varying, economic theorists’ models
are generally fixed parameter models. Our calculated posterior odds will

Research financed by the National Science Foundation and by income from the H. G. B.
Alexander Endowment Fund. Graduate School of Business, University of Chicago. Cheng
Hsiao and two referees provided comments which were helpful in revising an earlier version
of this chapter.

Originally published in the Journal of Econometrics, Annals 56 (1993), 89–118.
0304/4076/93-$05.00. C© 1993 Elsevier Science Publishers BV. All rights reserved.
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shed some light on the parameter constancy issue and are used to choose
between FPMs’ and TVPMs’ forecasts year by year. As an alternative
approach, we consider procedures for combining models and/or their
forecasts (see Clemen 1989, an extensive review paper discussing theo-
retical and empirical work on various methods of combining forecasts).
While a good portion of the literature suggests that combining forecasts
will produce better forecasting performance, we show that this argument
is not true in general. Clearly, combining a good forecast with a bad fore-
cast will not usually produce a combined forecast that performs better
than the good forecast, a point also made in Diebold (1990a). To cope
with this problem, we develop a Bayesian forecast selection rule based
on a predictive loss criterion which indicates which of several forecasts,
including a combined forecast, is optimal. This rule is applied in forecast-
ing experiments and results are compared to those of other procedures.
Thus, our chapter provides analytical and empirical results on the ques-
tions: (1) Fixed or time-varying parameters? (2) To combine or not to
combine? (3) If so, how? and (4) How do different procedures perform
in actual forecasting?

The plan of the chapter is as follows. Section 2 deals with the issue of
whether or not to combine forecasts. In section 3, it is indicated how pos-
terior odds can be used to choose between or among models in such a way
as to minimize expected loss. Then, building on the work of Geisel (1975)
and Zellner (1989), posterior odds are employed to combine forecasts of
two or more exhaustive or non-exhaustive models. Further, a Bayesian
forecast selection rule is derived using a predictive loss structure which
can be employed to decide when to use a combined forecast and when to
use some other forecast. Section 4 contains a brief review of our data and
models and presentation of the results of our forecasting experiments.
A summary of results and some concluding remarks are presented in
section 5.

2 To combine or not to combine forecasts?

In previous analyses of whether to combine or average different fore-
casts, it has been customary to assume that all forecasts being combined
are unbiased (see, e.g., Reid 1968, 1969 and Bates and Granger 1969
which, according to Clemen 1989, “are considered by most forecast-
ers to be the seminal works in the area of combining forecasts”). While
some works (e.g. Clemen 1989, Diebold and Pauly 1987, and Palm and
Zellner 1990) discuss the possibility of forecasts being biased, the earlier
analytical results, based on the assumption of no bias (see also Winkler
1981 for a Bayesian analysis involving the assumption of no bias), are
still influential. Therefore we review briefly the analysis leading to the
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conclusion that combining forecasts leads to improved performance in
terms of a mean-squared error reduction. Let f1 and f2 be two unbiased
forecasts, that is, f 1 = y + e1 and f 2 = y + e2, where y is the actual, ran-
dom outcome and e1 and e2 are zero mean errors with variances σ 2

1 and σ 2
2 ,

respectively, and covariance σ 12. Bates and Granger (1969) showed that
with f c = w f 1 + (1 − w) f 2, a combined forecast, then E( f c − y)2 will
be minimized if w = w∗ = (σ 2

2 − σ12)/(σ 2
1 + σ 2

2 − 2σ12) and E( f c − y)2

< E( f i − y)2, i = 1, 2. Thus using a value of w different from 0 or 1
is considered to be optimal. However, as is almost obvious, this conclu-
sion depends critically on the unbiasedness assumption, as shown below.
Also, it should be noted that only linear combinations of the two fore-
casts are being considered. It may be that limiting the analysis to linear
combinations is unduly restrictive. Further, it has been noted that the
optimal weight, w∗, depends on parameters with unknown values which
must be estimated. How estimation of the weights affects the optimality
conclusion requires analysis. If past observations are available on y − f 1

and y − f 2 and it is assumed that these pairs are iid bivariate normal
with a zero mean vector, then the predictive density can be derived and
used to evaluate E(y − f c)2 and to obtain an optimal value of w. Again
it will be optimal always to combine forecasts. In this case the weights are
functions of sample quantities and prior parameters. However, the anal-
ysis is based on the assumption that the es have zero means and constant
covariance matrix for all sample points, very strong assumptions which
clearly will not hold in all situations.

We now consider what happens when the condition of zero bias is
relaxed. Let f1 and f2 be two forecasts and y the random variable being
forecasted. Assume f 1 − y = e1 and f2 − y = θ + e2, where e1 and e2

have zero means, variance σ 2, and covariance σ 12, and θ is the unknown
bias associated with f2. Then we have MSE1 = E(y − f 1)2 = σ 2 and
MSE2 = E(y − f 2)2 = θ2 + σ 2. If we consider a combined forecast, f c =
w f 1 + (1 − w) f 2, where w is a weight, 0 < w < 1, then f c − y = w( f 1 −
y) + (1 − w)( f 2 − y) and MSEc = E( f c − y)2 = w2σ 2 + (1 − w)2(σ 2 +
θ2) + 2w(1 − w)σ 12. It follows that

MSEc − MSE1 = (1 − w)σ 2[(1 − w)(θ/σ )2 − 2w(1 − ρ12)],

(2.1)

where ρ12 = σ 12/σ
2. From (1), MSEc − MSE1 > 0 if (1 − w)(θ/σ )2 −

2w(1 − ρ12) > 0, or

(θ/σ )2 > (2w/(1 − w))(1 − ρ12). (2.2)

As ρ12 → 1, this condition approaches (θ/σ )2 > 0 which will be satisfied
for |θ | > 0. As ρ 12 → −1, the condition approaches (θ/σ )2 > 4w/(1− w).
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For example, if w = 1
2 , the value of w∗ above when σ 2

1 = σ 2
2 = σ 2, (2.2)

yields (θ/σ )2 > 2(1 − ρ12) or |θ |/σ > 1.414(1 − ρ12)1/2 or |θ |/σ > 1.414
if ρ12 = 0. If w = 1

2 , and ρ12 = 0, MSEc − MSE1 = (σ 2/2) [(θ/σ )2/2−1]
which can be large if |θ |/σ is large. Thus use of weights appropriate for
unbiased forecasts can be quite suboptimal when forecasts are biased.

In summary, it is seen that the presence of bias in forecasts can result
in combined forecasts being worse in terms of MSE than individual fore-
casts. See also Diebold (1990a, 1990b) for additional analysis of these
issues. Forecasts may be biased for many reasons including use of shrink-
age techniques or asymmetric loss functions and presence of specifica-
tion, measurement, and other errors. Correcting for such time-varying
biases and defining “optimal weights” is difficult. Thus it is important to
appraise models and their forecasts carefully before combining them. In
the next section, we show how posterior odds can be utilized to compare
models and choose between or among them and their forecasts.

3 Posterior odds and choosing models and their forecasts

3.1 Posterior odds and choosing models

Many, including Jeffreys (1967), Zellner (1971, 1984), Geisel (1975),
Leamer (1978), Schwarz (1978), and Rossi (1983, 1985), have indicated
how posterior odds can be calculated and used to discriminate between
or among different hypotheses and models. In the present context, we
compute posterior odds for a fixed parameter model (FPM) versus a
time-varying parameter model (TVPM), denoted by K = P1/P2, where
P1 and P2 are the posterior probabilities associated with the FPM and
the TVPM, respectively (see appendix A, p. 582, for a derivation of the
explicit expression for K used in our calculations). It has been recognized
in many works that parameters of aggregate time series models may not be
constant because of (1) aggregation effects, (2) effects of policy changes,
that is Lucas effects, (3) effects of major events such as strikes, wars, oil
crises, etc., (4) adaptive optimization on the part of economic agents,
(5) changes in factor prices that induce changes in choice of production
techniques, and (6) changes in tastes and preferences, perhaps due to
generational, advertising, and educational effects. Given so many reasons
for anticipating parameters to be time-varying, it is indeed of interest
to compute odds on FPMs versus TVPMs country by country to gain
information relating to this important issue.

Further, if we have a standard two-state, two-action loss structure,
shown in table 17.1, we can make the choice of model which yields lower



Bayesian and non-Bayesian methods 563

Table 17.1 A loss structurea for model selection

State of world

FPMb TVPMc Expected loss

Choices FPM 0 c1 c1P2

TVPM c2 0 c2P1

Posterior probability P1 P2

Notes:
a c1 and c2 are positive losses associated with incorrect choices.
b FPM denotes a fixed parameter model.
c TVPM denotes a time-varying parameter model.

expected loss. If the loss structure is symmetric, c1 = c2, then we choose
FPM if K > 1 and TVPM if K < 1. As has been explained in the litera-
ture, posterior odds reflect goodness of fit, extent to which prior informa-
tion is in accord with sample information, relative precision of sample,
and prior information and sample size (see the references cited above for
discussions of these points).

For each year in our forecast period, we compute the posterior odds
K = P1/P2 based on data up to the forecast year. If K > 1, we choose
the FPM and use the mean of its predictive density for the forecast year’s
output growth rate as our point forecast. If K < 1, we choose the TVPM
and use its one-year-ahead predictive mean as our point forecast. These
calculations are performed year by year, with K being updated, beginning
with forecast year 1974 and ending with forecast year 1987.

Since it is possible that neither the FPM nor the TVPM may perform
well relative to a benchmark model (BMM), we expand the 2 × 2 loss
structure in table 17.1 to a 3 × 3 loss structure relating to choices of the
FPM, the TVPM, and the BMM using posterior odds computed for pairs
of these models year by year. Using these posterior odds and assuming
that the 3 × 3 loss structure is symmetric, we choose among the three
models so as to minimize expected loss and use the mean of the predictive
density of the model so chosen as our point forecast. The BMM used in
these calculations is an autoregressive model of order 3.

3.2 Combining and choosing among individual and combined forecasts

Given that posterior odds are available relating to two mutually exclusive
models, the issue arises as to how they can be used to combine the models
and/or their forecasts (see Diebold 1990b for further discussion). If the
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models are considered to be exhaustive, then their probabilities add to
one and the expectation of a future observation, y, is just

E(y) = P1E(y | FPM) + (1 − P1)E(y | TVPM)

= (K/(1 + K))E(y | FPM) + (1/(1 + K))E(y | TVPM).

(3.1)

This last expression is the predictive mean of a future observation given
that we average over the two models. Clearly if K is large, favoring the
FPM, its mean will get a large weight and that of the TVPM will receive a
small weight. Since the large value of K reflects good relative performance
of the FPM in the past, it seems appropriate to give its forecast heavier
weight in the combined forecast. The predictive mean in (3.1) will be
used as a point forecast in our forecasting experiments.

It should be appreciated that the posterior odds is just a relative measure
which does not assure that the absolute performance of either model
is satisfactory. For example, if K = 19, P1 = 0.95, a high probability
associated with the FPM. However, this high probability is attained under
the assumption that the two models are exhaustive. If they are not, then
it is clear that with K = 19, P1 might have any value and the mean in
(3.1) cannot be computed. Since there is another rationalization of the
combining formula in (3.1) other than the exhaustive assumption (see
below), we shall use the predictive mean in (3.1), the Bayesian combined
forecast (BCF) in our forecasting experiments.

When the models considered, say a FPM and a TVPM, do not con-
stitute an exhaustive set, as is usually the case since there are many addi-
tional models which can be considered, the posterior odds K = P1/P2

can be computed, but it is not possible to evaluate P1 and P2 separately
and thus the first line of (3.1) cannot be implemented. For this problem,
Zellner (1989) introduced the concept of a combining predictive density
which is closest in a distance metric sense to the predictive densities of
the non-exhaustive models and suggested use of the mean of the com-
bined predictive density as a point forecast. With a weighted quadratic
distance measure, it was shown that for two non-exhaustive models (e.g.
FPM and TVPM) the mean of the combined predictive density is given
by the second line of (3.1). Note that to compute the second line of (3.1)
only the value of K = P1/P2 and the means of the two models’ predic-
tive densities are needed. The values of P1 and P2 individually are not
needed.

In (3.1) it has been assumed that the available forecasts will be aver-
aged. If we consider the predictive squared error loss structure in table
17.2, wherein possible forecast choices and different states of the world
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Table 17.2 Predictive squared error loss structurea

State
Expected loss

Model Choice set M1 (FPM) M2 (TVPM) Mc (P1v1 + P2v2 + Pcv̄) +

M1 (FPM) v1 v2 + ∆12 v̄ + w2∆12 ∆12w2(P1 + P2 + Pc)
M2 (TVPM) v1 + ∆12 v2 v̄ + w1∆12 ∆12w1(P1 + P2 + Pc)
Mc v1 + w2

2∆12 v2 + w2
1∆12 v̄ + w1w2∆12 ∆12w1w2(P1 + P2 + Pc)

Posterior P1 P2 Pc

probability

Note:
a In the table, vi = E(y − ȳi)

2, the variance of Mi’s predictive density, v̄ = w1v1 + w2v2,
with wi = Pi/(P1 + P2) and ∆12 = (ȳ1 − ȳ2)2, where ȳ1 and ȳ2 are predictive
means of M1’s and M2’s predictive densities, respectively. Each non-diagonal entry in
the table is given by Ej(y − ȳi)2, where Ej indicates that Mj’s predictive density is employed.

are shown, it is optimal to choose the combined forecast when only
three alternatives are available, namely choose the FPM’s forecast, the
TVPM’s forecast, or the combined forecast, shown in (3.1). This can
be seen from consideration of table 17.2. The entries in table 17.2
are expected squared error losses given that model i’s forecast, ȳi, the
predictive mean, is used and model j is appropriate. In this situation,
expected loss, computed using Mj’s predictive density, is Ej(y − ȳi)2 =
Ej[y − ȳj − (ȳi − ȳj)]2 = Ej(y − ȳj)2 + (ȳi − ȳj)2 ≡ +vj + ∆i j , where ȳj is
the mean of Mj’s predictive density, vj is the variance of Mj’s predictive
density, and ∆i j ≡ (ȳi − ȳj)2. On comparing expected losses shown in
table 17.2, which can be done without assuming the models (M1, M2, and
Mc) are exhaustive, we have E(L | Mc)/E(L | M1) = P1/(P1 + P2) < 1
and E(L | Mc)/E(L | M2) = P2/(P1 + P2) < 1. Thus, choice of the
combined forecast (3.1) leads to minimal expected loss for the predictive
squared error loss structure in table 17.2.

To allow for other models not explicitly considered in table 17.2,
we consider the 3 × 4 loss structure in table 17.3 which includes M4,
e.g. a benchmark model. On comparing expected losses given in the
last column of table 17.3, it is seen that the combined forecast is not
always preferred because of additional terms involving ∆14 = (ȳ1 − ȳ4)2,
∆24 = (ȳ2 − ȳ4)2, and ∆c4 = (ȳc − ȳ4)2, where ȳ4 is the predictive mean
of M4 and ȳc is the predictive mean of Mc.

Given that M4 is specified, say an AR (3) benchmark model, posterior
odds can be calculated and used in connection with table 17.3 to choose
the forecast which leads to minimal expected loss.
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ȳ 4
ar

e
pr

ed
ic

ti
ve

m
ea

ns
of

M
i
an

d
M

4
,r

es
pe

ct
iv

el
y,
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3.3 Regression combining techniques

Having discussed general Bayesian procedures for combining models and
their forecasts, we now briefly take up regression procedures which have
been used extensively in the literature (see, e.g., Nelson 1972, Granger
and Ramanathan 1984, Diebold and Pauly 1987, and the discussion and
references in Clemen 1989). In this approach past actual values of a vari-
able are related to forecasts of them provided by two or more forecasting
methods; that is, the following regression relation is considered:

At = α + β1 f1t + β2 f2t + ut , t = 1, . . . , n. (3.2)

In regressing At on f1t and f2t, two forecasts, some impose the constraint
that the intercept is zero and the regression coefficients add to one. Oth-
ers allow for a non-zero intercept to allow for possible bias and may or
may not impose the condition that the regression coefficients sum to
one. Further, others have used ridge regression techniques, time-varying
parameter techniques, etc. in analyzing the relation between At and f1t
and f2t. In our opinion, the basic problem is one of identifying or deter-
mining the form of this relationship. If it is not determined very well,
it is not at all clear that the regression approach will yield satisfactory
results. Note that in comparison to the Bayesian combining relationship
in (3.1), there the weights or coefficients on the individual forecasts, the
predictive means, are not least squares weights. Further, if f1t and f2t
are derived from imperfect models, say models with important variables
omitted, then they will have biases that usually vary through time in a
complicated way. Modeling such time-varying biases seems difficult. Be
that as it may, below we implement variants of the regression approach
to produce combined forecasts and compare measures of their forecast-
ing performance to those of other approaches described above and in
section 4.

4 Models, methods, and their performance in forecasting

In this section, we first describe the models which we shall employ to fore-
cast annual output growth rates for eighteen countries year by year, 1974–
87, using data 1951–73 to “start up” the forecasting experiments. Second,
we enumerate the forecasting techniques which will be employed. Third,
we briefly describe the data employed in our calculations and then present
the empirical forecasting results for uncombined, combined, unpooled,
and pooled forecasts derived from use of fixed and time-varying param-
eter models.
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4.1 Models and forecasts

The two models that we employ, used in our previous work, are (i) a
univariate autoregression of order 3 containing lagged leading indicator
variables, denoted by ARLI, and (ii) the ARLI model expanded to include
a measure of current world income growth, denoted by ARLI/WI. As
explained in our past work, an autoregression of order 3 is employed
to allow for the possibility of there being two complex conjugate roots,
giving rise to an oscillatory component, and one real root associated with
a local trend. In Hong (1989) it is shown that ARLI models for eighteen
countries have two complex roots and one real root with high posterior
probability in each case. Further, Hong established that the oscillatory
components are damped in each case and have periods in the vicinity
of four–six years. Also, each estimated real root has amplitude less than
one. As regards the leading indicator variables, lagged growth rates of real
stock prices and of real money, they are introduced to take account of
informational, expectational, and policy effects as well as a real balance
effect exerted by money supply changes (see Zellner, Huang, and Chau
1965 for discussion and estimation of a real balance effect). The world
income variable, introduced in Zellner and Hong (1989), is a variable
affecting countries’ exports. Further discussion of the economic rationale
of the ARLI models is provided by Hong (1989) who shows that they
can be produced as the reduced form equations of particular IS-LM
models. Also, Zellner and Manas-Anton (1986) link up the ARLI models
to reduced form equations obtained from particular aggregate supply and
demand models and Min (1990) shows their relation to generalized real
business cycle models.

In what follows, we utilize fixed parameter (FP) and time-varying
parameter (TVP) versions of the ARLI and ARLI/WI models. The FP
versions of these models, denoted by FP/ARLI and FP/ARLI/WI, are
utilized with and without pooling. The unpooled FP/ARLI model is

yit = x′
i tβi + uit , i = 1, 2, . . . , N, t = 1, 2, . . . , T, (4.1)

where yit = annual output growth rate for ith country in the tth year,
βi = k × 1 parameter vector, x′

i t = (1, yit−1, yit−2, yit−3, SRit−1, SRit−2,
GMit−1, MSRt−1), where SRit = rate of growth of real stock prices, GMit

= rate of growth of real money, M1, MSRt = median of SRits in year
t, and uit is an error term. We assume that the uits are NID(0, σ 2

i ).
Using a diffuse prior density for βi and σ i, it is well known that given
initial values 1951–3 and data 1954–73, the predictive density for 1974’s
output growth rate is in the univariate Student-t form with mean equal
to the least squares forecast of the 1974 growth rate (see, e.g., Zellner
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1971). This is our 1974 forecast for the FP/ARLI model without pooling.
To forecast 1975’s output growth rate, we update our predictive density
to incorporate the 1974 data and use its mean, the least squares forecast
of 1975’s growth rate, as our forecast. Proceeding in this way year by
year, we obtain a sequence of unpooled FP/ARLI forecasts, recursively
calculated, for the years 1974–87.

The FP/ARLI/WI model, introduced and used in Zellner and Hong
(1989), involves adding a scalar world income growth rate variable, wt,
to (4.1) as follows:

yit = wtαi + x′
i tβi + uit , (4.2)

where αi is a scalar parameter and wt is the median of the yits in the tth
year. The term x′

i tβi is exactly the same as that in (4.1). To use (4.2)
to forecast, it is necessary to forecast wt. To accomplish this, we use the
following ARLI model for wt, an autoregression of order 3 including
lagged leading indicator variables:

wt = z′
tπ + εt , (4.3)

where z′
t = (1, wt−1, wt−2, wt−3, MSRt−1, MGMt−1), with MSRt =

median growth rate of real stock prices for year t and MGMt = median
growth rate of real money for year t with the median taken relative to
the eighteen countries for year t. The εts in (4.3) are assumed indepen-
dently drawn from a zero mean normal distribution with variance σ 2

w . For
country i, (4.2) and (4.3) constitute a triangular system which we assume
to be fully recursive, that is uit and εt are assumed to be independently
distributed for all t. Using the recursive assumption and a diffuse prior
density for the parameters, we implement the model using data 1951–3
for initial values and 1954–73, twenty years, for estimation and obtain an
approximate predictive density for the output growth rate in 1974. The
mean of this predictive density is our forecast for 1974. On updating the
posterior and predictive densities year by year, a sequence of forecasts
for the remaining years, 1975–87, is obtained. These are our unpooled
FP/ARLI/WI forecasts.

Our unpooled, time-varying parameter models are simple elaborations
of the above fixed parameter models. Our unpooled TVP/ARLI model is
(4.1) with βi made time-varying, that is,

yit = x′
i tβi t + uit , (4.4)

and

βi t = βi t−1 + vi t . (4.5)
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Thus in our unpooled TVP/ARLI model, used in Garcia-Ferrer et al.
(1987), the random coefficient vector is assumed to be generated by a
vector random-walk process. Given start-up data, 1951–73, and an initial
state distribution, recursive calculations provide a predictive density for
the 1974 output growth rate, the mean of which is our point forecast. On
recursively updating the predictive densities year by year, their means are
our unpooled TVP/ARLI model forecasts, 1974–87.

Our unpooled TVP/ARLI/WI model is that shown in (4.2) and (4.3)
with the parameters made random as shown below:

yit = wtαi t + x′
i tβi t + uit , (4.6)

wt = z′
tπt + εt , (4.7)αi t

βi t
πt

 =
αi t−1

βi t−1
πt−1

 +
ηi t

vi t

δt

 . (4.8)

Recursive algorithms and needed assumptions for obtaining and updating
predictive densities for this system are given in appendix B (p. 583). The
means of these successively updated predictive densities, 1974–87, are
our unpooled TVP/ARLI/WI forecasts.

We have also computed separate forecasts and combined forecasts for
alternative models under various pooling assumptions. In pooling the
FP/ARLI model in (4.1), we assumed that the coefficient vectors, the
βis, satisfy βi t = θ + εi t with εi t ∼ N(0, σ 2, Σ), an assumption implying
that the βi ts have a common mean vector θ, a model similar to those
used by, among others, Swamy (1971) and Lindley and Smith (1972).
In connection with the FP/ARLI/WI model in (4.2) and (4.3), we make
a similar assumption, namely that αi t = α + vit and βi t = θ + εi t , where
ε∗

i t = (vi tε
′
i t)

′ is assumed N(0, σ 2 Σ∗). Thus we allow the βs to be time-
varying with a fixed hyperparameter vector θ and call these models fixed
hyperparameter ARLI models, denoted by FHP–ARLI. Using these pool-
ing assumptions, individual and combined forecasts were computed year
by year, 1974–87 (see appendix C, p. 587, for details).

The pooled TVHP/ARLI model is given by

yt = Xtβt + ut , ut ∼ N(0, σ 2Im),

with y′
t = (y1t , y2t , . . . , ymt), β′

t = (β′
1t , β

′
2t , . . ., β′

mt), u′
t = (u1t , u2t , . . .,

umt), and
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Xt =


x′

1t 0′ · · · 0′

0′ x′
2t · · · 0′

...
...

. . .
...

0′ 0′ · · · x′
mt

 .

Further it is assumed that β t = Bθ t + εt and θ t = θ t−1 + ηt, where εt is
N(0, σ 2 Ω) and is independent of ηt which is N(0, φσ 2 Ik) with Ω =
In ⊗ Σ and B

′ = [Ik Ik . . . Ik].
It is seen that with these pooling assumptions the βi t given θt have a

common mean vector, θt, which is assumed generated by a random walk.
See appendix B for further description and analysis of this pooling model
and a similar one for the TVP/ARLI/WI model.

4.2 Description of data

The data used in our study have been taken from the University of
Chicago IMF International Financial Statistics data base . . . Annual data
1954–73 were used to estimate our models with data 1951–3 serving as
initial values. Then the one-year-ahead forecasts described in the preced-
ing sections were computed year by year, 1974–87, with models being
updated each year.

The output data for each country, either annual real GNP or real
GDP, were logged and first-differenced to yield annual growth rates.
For each country nominal money, M1, at the end of each year was
deflated by a general price index, logged and first-differenced to yield
the rate of change of real money. Similarly, for each country a general
price index was used to deflate an annual stock price index, which was
logged and first-differenced to yield a rate of growth of real stock prices.
Symbolically the variables are given by: yit = (1 − L)ln(Oit/Pit), SRit =
(1 − L)ln(SPit/Pit), and GMit = (1 − L)ln(Mit/Pit), where L is the lag
operator, Lnxt=xt−n, and for the ith country in the tth year, Oit=output
level, Pit = general price index, SPit = stock price index, and Mit = nom-
inal M1. Data plots are given in Garcia-Ferrer et al. (1987) and Zellner
and Hong (1989).

4.3 Empirical results

In tables 17.4a and 17.4b, we present posterior odds for FP versus TVP
models, based on data 1973–87. For the unpooled ARLI and ARLI/WI
models, twelve and eight countries, respectively, have odds of less than
0.50, that is greater than 2:1 in favor of the TVP models. For the ARLI
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Table 17.4a Posterior odds for fixed versus time-varying
parameter models computed from annual data, 1973–1987a

Models

Unpooled Pooled

Country ARLIb ARLI/WIc ARLId ARLI/WIe

Australia 0.16 0.34 1.01 0.94
Austria 0.01 0.07 0.21 1.02
Belgium 1.64 0.45 0.40 1.57
Canada 0.41 2.21 0.57 1.72
Denmark 0.01 0.39 0.05 0.99
Finland 0.78 1.68 0.36 0.76
France 0.01 1.30 0.47 1.42
Germany 0.00 0.01 0.16 1.43
Ireland 6.18 3.04 1.87 1.50
Italy 0.01 0.06 0.32 1.21
Japan 0.45 0.48 6.81 0.91
Netherlands 0.41 2.32 0.10 1.92
Norway 6.60 4.95 1.36 1.09
Spain 0.27 0.75 0.57 1.35
Sweden 0.25 0.34 0.04 0.58
Switzerland 0.71 4.25 0.21 0.91
United Kingdom 0.22 8.67 0.13 0.82
United States 9.18 17.31 0.24 0.81

Notes:
a Posterior distributions for models’ parameters, computed using
annual data 1954–72, were used to form Bayes factors for the period
1973–87. Prior odds were set 1:1 in all cases. The entries in the table
are odds in favor of fixed parameter (FP) models.
b Unpooled FP/ARLI versus unpooled TVP/ARLI.
c Unpooled FP/ARLI/WI versus unpooled TVP/ARLI/WI.
d Pooled FHP/ARLI versus pooled TVHP/ARLI.
e Pooled FHP/ARLI/WI versus pooled TVHP/ARLI/WI.

model, only three countries have odds greater than or equal to 2:1 in
favor of the FP model. Thus without the WI variable, there is a general
preference for TVP for twelve countries. However, with the WI variable
included, the odds favor TVPs for eight countries and FPs for seven. For
the pooled ARLI model, TVHPs are favored for twelve countries. How-
ever, for the pooled ARLI/WI model, all countries’ odds are between 0.50
and 1.99, somewhat inconclusive with respect to whether the hyperpa-
rameter vector is fixed or time-varying.
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Table 17.4b Number of countries by values of posterior odds, fixed
versus time-varying parameter models, annual data, 1973–1987a

Models

Unpooled Pooled

Posterior odds, FP versus TVPb ARLI ARLI/WI ARLI ARLI/WI

0–0.49 12 8 12 0
0.50–0.99 2 1 2 8
1.00–1.99 1 2 3 10
≥ 2.00 3 7 1 0

Notes:
a Tabulation of data from table 17.4a. See notes of table 17.4a and
appendix A for procedures employed in computing odds.
b Posterior odds for fixed parameter (FP) versus time-varying parameter (TVP)
models.

Tables 17.5, 17.6a, and 17.6b provide RMSEs of forecasts for unpooled
and pooled FP and TVP models as well as those for two decision theoretic
model selection procedures. For the unpooled ARLI model, it is seen
from table 17.6a that the lowest median RMSEs are those for the TVP
and LS2 cases, where LS2 denotes a 2 × 2 symmetric loss structure,
table 17.1 with c1 = c2, relating to the choice of FP and TVP models’
forecasts. For the pooled ARLI model, the lowest median RMSE is that
for the TVHP version, 1.95, with 1.97 being the RMSE for the LS2

forecasts. Note that pooling has resulted in about a 15 percent reduction
in median RMSEs. Further, in the case of the pooled ARLI forecasts,
the minimal and maximal RMSEs are lower in every case. For the four
methods reported in table 17.6a, it appears that for both the pooled cases
the TVP and LS2 forecasts are overall the best and are not very different.
For each of the forecasting methods, pooling models performed better
than corresponding unpooled models according to the median RMSE
criterion and generated improved RMSEs in many individual cases.

Table 17.6b shows that pooled ARLI/WI models’ forecasts and model
selection procedures perform better than their unpooled counterparts.
For example, the median RMSEs for the pooled models and procedures
range from 1.74 to 1.86, while for the unpooled models and procedures
they range from 2.24 to 2.60. For the unpooled case, the LS2 forecast
had a median RMSE of 2.24, slightly below those of the forecasts of
the FP, TVP, and LS3 procedures. For the pooled ARLI/WI model all
procedures worked about equally well in terms of median RMSE.
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Table 17.5 Root mean-squared errors (RMSEs) of the
one-year-ahead forecasts of annual real output growth rates for
1974–1987 for several variants of fixed parameter autoregressive
leading indicator (FP/ARLI), world income (FP/ARLI/WI)
models, and an AR(3) benchmark modela

Models

Unpooled Unpooled Pooled Pooled
Country AR(3) ARLI ARLI/WI ARLIb ARLI/WIb

(percentage points)
Australia 2.72 3.21 3.45 2.10 2.27
Austria 2.58 2.75 2.84 1.97 1.80
Belgium 2.80 1.71 1.54 1.87 1.94
Canada 2.79 2.70 2.52 2.08 1.74
Denmark 2.89 3.40 3.21 2.77 2.39
Finland 2.45 3.22 3.32 1.85 1.69
France 2.16 2.51 2.27 1.58 1.62
Germany 2.90 2.82 2.82 1.97 1.56
Ireland 2.38 2.56 2.68 2.19 2.48
Italy 3.88 3.19 3.68 2.35 2.14
Japan 2.93 3.02 3.46 2.13 2.23
Netherlands 2.86 1.92 1.67 1.92 1.60
Norway 1.76 1.72 1.84 1.71 1.44
Spain 2.35 2.17 2.28 1.68 1.21
Sweden 1.98 2.11 2.15 2.30 1.76
Switzerland 3.77 3.24 3.15 2.56 2.43
United Kingdom 2.94 2.13 1.50 2.20 1.92
United States 2.69 2.31 1.99 2.53 2.08
Median 2.76 2.63 2.60 2.09 1.86
Minimum 1.76 1.71 1.50 1.58 1.21
Maximum 3.88 3.40 3.68 2.77 2.48

Notes:
a See text for discussion of models.
b In these cases the hyperparameters are fixed.

To show more clearly the effects of using pooled and unpooled models,
table 17.6c presents RMSEs for unpooled and pooled ARLI/WI forecasts
by RMSE interval and by country. On comparing panels A and B, it is
seen that the pooled TVHPM forecast RMSEs are much more highly
concentrated in the vicinity of 1.5 to 2.5 than is the case of RMSEs for
forecasts of the unpooled TVPM. The same conclusion holds for the
comparison of the distribution of countries by RMSE for the pooled and
unpooled FPMs. Finally, on comparing panels A and C, it is seen that
the results for the pooled TVHPMs and the pooled FHPMs are similar.
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Table 17.6a Root mean-squared errors (RMSEs) of various one-year-ahead
forecasts of annual real output growth rates, 1974–1987, using an
autoregressive leading indicator (ARLI) model

Unpooled ARLI Pooled ARLI

Country FP TVP LS2
a LS3

b FHP TVHP LS2
a LS3

b

(percentage points)
Australia 3.21 3.01 3.06 2.72c 2.10c 2.16 2.36 2.46
Austria 2.75 1.99 1.92c 2.33 1.97 1.67c 1.82 2.32
Belgium 1.71 1.70c 1.71 1.71 1.87 1.70c 1.93 1.93
Canada 2.70c 2.96 2.96 3.28 2.08 2.05c 2.07 2.07
Denmark 3.40 2.67c 2.67c 2.67c 2.77 2.48 2.45 2.38c

Finland 3.22 2.97 3.22 2.45c 1.85 1.53c 1.54 1.69
France 2.51 2.27c 2.27c 2.61 1.58 1.23c 1.37 1.49
Germany 2.82 1.91c 1.91c 2.81 1.97 1.54c 1.55 1.55
Ireland 2.56 2.90 2.56 2.36c 2.19c 2.26 2.28 2.33
Italy 3.19 2.32c 2.32c 3.39 2.35 2.18c 2.22 2.22
Japan 3.02c 3.16 3.16 3.16 2.13c 2.46 2.13c 2.13c

Netherlands 1.92c 2.05 2.04 2.29 1.92 1.42c 1.59 1.59
Norway 1.72c 2.31 1.96 1.76 1.71c 1.95 1.94 1.76
Spain 2.17 1.87c 1.93 2.08 1.68 1.51c 1.52 1.52
Sweden 2.11 1.93c 1.97 2.03 2.30 1.90c 1.99 2.03
Switzerland 3.24 3.18c 3.25 3.25 2.56 2.11c 2.35 2.52
United Kingdom 2.13 1.90c 1.98 1.98 2.20 1.96c 1.96c 1.96c

United States 2.31c 2.46 2.43 2.37 2.53 2.46c 2.49 3.09
Median 2.63 2.31 2.29c 2.41 2.09 1.95c 1.97 2.05
Minimum 1.71 1.70 1.71 1.71 1.58 1.23 1.37 1.49
Maximum 3.40 3.18 3.25 3.39 2.77 2.48 2.49 3.09

Notes:
a Year-by-year model selection based on the 2 × 2 symmetric loss structure (LS2) in table
17.1. The forecast of the model favored by posterior odds is employed.
b Year-by-year model selection based on a 3 × 3 symmetric loss structure (LS3), involving
FP, TVP, and an AR(3) benchmark model. The forecast of the model chosen to minimize
expected loss was used.
c Minimal value in row.

In table 17.7, we form 2 × 2 tables relating models preferred by the
posterior odds criterion and relative size of RMSEs of FPMs and TVPMs.
In general there appears to be a positive association present. For exam-
ple, for the unpooled ARLI model, when the posterior odds favor the
FPM, three of four RMSEs were smaller for the FPM model, while
when they favor the TVPM, eleven of fourteen favored TVPMs had lower
RMSEs. In the case of the pooled ARLI models, the association is perfect,
while for the pooled ARLI/WI model the association is somewhat weaker.
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Table 17.6b Root mean-squared errors (RMSEs) of various one-year-ahead
forecasts of annual real output growth rates, 1974–1987, using an
autoregressive leading indicator – world income (ARLI/WI) modela

Unpooled ARLI/WI Pooled ARLI/WI

Country FP TVP LS2
a LS3

b FHP TVHP LS2
a LS3

b

(percentage points)
Australia 3.45 3.23 3.23 3.10c 2.27c 2.27c 2.29 2.29
Austria 2.84 2.13c 2.14 2.42 1.80 1.70c 1.70c 1.70c

Belgium 1.54c 1.78 1.77 1.77 1.94 1.84c 1.94 1.94
Canada 2.52c 2.78 2.64 3.01 1.74c 1.78 1.74c 1.74c

Denmark 3.21 2.68c 2.95 2.95 2.39 2.14c 2.26 2.26
Finland 3.32 3.16 3.32 2.91c 1.69 1.58c 1.58c 1.58c

France 2.27 1.74c 2.29 2.33 1.62 1.43c 1.60 1.60
Germany 2.82 1.98c 1.98c 2.84 1.56 1.23c 1.42 1.42
Ireland 2.68 3.15 3.35 2.38c 2.48c 2.53 2.49 2.49
Italy 3.68 2.51c 2.58 3.52 2.14 1.98c 2.18 2.18
Japan 3.46 3.32c 3.32c 3.32c 2.23c 2.30 2.28 2.28
Netherlands 1.67c 1.74 1.86 2.28 1.60 1.39c 1.64 1.64
Norway 1.84 2.56 2.19 1.76c 1.44c 1.55 1.56 1.56
Spain 2.28 1.85c 2.15 2.37 1.21 1.17c 1.21 1.21
Sweden 2.15 1.90c 1.97 2.09 1.76 1.50c 1.51 1.51
Switzerland 3.15 3.04c 3.17 3.17 2.43 2.23c 2.38 2.38
United Kingdom 1.50 1.39c 1.50 1.50 1.92 1.69c 1.87 1.87
United States 1.99c 2.22 2.19 2.19 2.08 1.94c 2.02 2.02
Median 2.60 2.37 2.24c 2.40 1.86 1.74c 1.80 1.80
Minimum 1.50 1.39 1.50 1.50 1.21 1.17 1.21 1.21
Maximum 3.68 3.32 3.35 3.52 2.48 2.53 2.49 2.49

Notes:
a, b, c See notes of table 17.6a.

In tables 17.8a and 17.8b, we present forecasting results relating to
two combining methods. One, COMB1, is an average of the predictive
means of FP and TVP models with posterior probabilities or posterior
odds involved in the weights (see (3.1) above). The other, COMB2,
is the forecast provided by the Bayesian predictive loss model selec-
tion rule described in connection with the predictive loss structures in
table 17.3 . . . We see from tables 17.8a and 17.8b that, while pooling
resulted in improved performance of the combining procedures, the com-
bining procedures did not in general produce large or even moderately
large decreases in median RMSEs. Further there was not much difference
in the performance of the two combining procedures. The pooled TVHP
forecasts tended to perform best and also better in terms of median RMSE
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Table 17.7 Number of countries by posterior odds and root mean-squared
error (RMSE) of forecast by type of model, annual output growth rates,
1974–1987

ARLI ARLI/WI
Lower RMSE for: Lower RMSE for:

FPM TVPM Total FPM TVPM Total

(A) Unpooled models
Posterior FPM 3 1 4 5 4 9
odds favor: TVPM 3 11 14 1 8 9

Total 6 12 18 6 12 18

ARLI ARLI/WI
Lower RMSE for: Lower RMSE for:

FHPM TVHPM Total FHPM TVHPM Total

(B) Pooled models
Posterior FHPM 4 0 4 3 7 10
odds favor: TVHPM 0 14 14 2 6 8

Total 4 14 18 5 13 18

than equally weighted averages of FP and TVP forecasts (results available
on request).

Tables 17.9a and 17.9b present the results of employing three regres-
sion combining techniques. It is seen that the regression combining tech-
nique A, involving a zero intercept and free regression coefficients, pro-
duces the lowest median RMSEs in all but one case, with values of 2.24
and 2.21 for the unpooled cases (see table 17.9a) and 2.25 and 1.89 for
the pooled cases (see table 17.9b). These values are not far different from
corresponding RMSEs for the Bayesian COMB1 method, namely 2.35,
2.22, 1.99, and 1.77. However, the regression combining methods A, B,
and C produced rather different results. Further none of the regression
combining techniques produced a median RMSE lower than that asso-
ciated with the pooled FHP and TVHP ARLI/WI models, namely 1.86
and 1.74.

5 Summary and concluding remarks

From our empirical results, we have reached the following conclusions:
(1) While there is some evidence in terms of posterior odds values for

time-varying parameter models in the case of unpooled models and
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Table 17.8a Root mean-squared errors (RMSEs) of one-year-ahead forecasts
of annual real output growth rates, 1974–1987, using model combining
approaches based on posterior odds and a predictive model selection rule

Unpooled ARLI Pooled ARLI

Country FP TVP COMB1
a COMB2

b FHP TVHP COMB1
a COMB2

b

Australia 3.21 3.01 3.07 2.93c 2.10 2.16 2.11 2.06c

Austria 2.75 1.99c 2.05 2.11 1.97 1.67c 1.77 1.81
Belgium 1.71 1.70c 1.72 1.72 1.87 1.70c 1.75 1.80
Canada 2.70 2.96 2.97 2.65c 2.08 2.05c 2.05c 2.06
Denmark 3.40 2.67c 2.79 2.69 2.77 2.48c 2.51 2.48c

Finland 3.22 2.97c 3.08 3.03 1.85 1.53c 1.63 1.62
France 2.51 2.27c 2.32 2.43 1.58 1.23c 1.34 1.41
Germany 2.82 1.91c 1.96 1.96 1.97 1.54c 1.66 1.67
Ireland 2.56c 2.90 2.69 2.66 2.19 2.26 2.20 2.08c

Italy 3.19 2.32c 2.38 2.76 2.35 2.18c 2.23 2.33
Japan 3.02c 3.16 3.07 3.06 2.13c 2.46 2.23 2.24
Netherlands 1.92c 2.05 1.98 1.92c 1.92 1.42c 1.55 1.64
Norway 1.72c 2.31 1.99 1.74 1.71 1.95 1.79 1.58c

Spain 2.17 1.87c 1.93 1.87c 1.68 1.51c 1.56 1.60
Sweden 2.11 1.93c 1.96 1.95 2.30 1.90c 1.97 1.96
Switzerland 3.24 3.18c 3.25 3.21 2.56 2.11c 2.29 2.40
United Kingdom 2.13 1.90c 1.97 1.97 2.20 1.96c 2.00 2.00
United States 2.31c 2.46 2.40 2.35 2.53 2.46c 2.48 2.49
Median 2.63 2.31c 2.35 2.39 2.09 1.95c 1.99 1.98
Minimum 1.71 1.70 1.72 1.72 1.58 1.23 1.34 1.41
Maximum 3.40 3.18 3.25 3.21 2.77 2.48 2.51 2.49

Notes:
a A Bayesian model combining procedure in which two models, such as a FP and a TVP model,
are combined with weights based on their posterior odds ratio (see (3.1) in text).
b A Bayesian predictive model selection rule in which the model with the minimum expected loss
is used to forecast at each time period. Choice is made among the forecasts of three models, a
FPM, a TVPM, and a combined model, using the predictive loss structure in table 17.3.
c Minimal value in row.

pooled ARLI models, for the pooled ARLI/WI models the evidence
is not as decisive with respect to models with time-varying hyperpa-
rameters. However, use of TVP models led to reductions in RMSEs
of forecast in many cases.

(2) The use of various Bayesian and non-Bayesian forecast combining
methods did not produce much, if any, reduction in RMSEs vis-à-vis
those for uncombined forecasts. Different Bayesian combining meth-
ods did not produce very different results, whereas different regres-
sion combining techniques did and were not as good as certain
Bayesian procedures.

(3) Several new procedures for selecting forecasts and for combining
forecasts were developed. Further investigation of their theoretical
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Table 17.8b Root mean-squared errors (RMSEs) of one-year-ahead forecasts
of annual real output growth rates, 1974–1987, using model combining
approaches based on posterior odds and a predictive model selection rule

Unpooled ARLI/WI Pooled ARLI/WI

Country FP TVP COMB1
a COMB2

b FHP TVHP COMB1
a COMB2

b

Australia 3.45 3.23 3.29 3.13c 2.27 2.27 2.26c 2.27
Austria 2.84 2.13c 2.22 2.27 1.80 1.70c 1.73 1.75
Belgium 1.54c 1.78 1.74 1.74 1.94 1.84c 1.89 1.91
Canada 2.52c 2.78 2.66 2.61 1.74 1.78 1.74 1.73c

Denmark 3.21 2.68c 2.86 2.89 2.39 2.14c 2.25 2.22
Finland 3.32 3.16c 3.22 3.25 1.69 1.58c 1.62 1.58c

France 2.27 1.74c 2.00 2.03 1.62 1.43c 1.52 1.55
Germany 2.82 1.98c 2.01 1.99 1.56 1.23c 1.39 1.43
Ireland 2.68 3.15 3.03 2.55c 2.48 2.53 2.50 2.45c

Italy 3.68 2.51c 2.75 3.03 2.14 1.98c 2.05 2.12
Japan 3.46 3.32c 3.40 3.36 2.23c 2.30 2.26 2.30
Netherlands 1.67 1.74 1.71 1.66c 1.60 1.39c 1.51 1.53
Norway 1.84c 2.56 2.22 1.87 1.44 1.55 1.48 1.40c

Spain 2.28 1.85c 1.99 1.98 1.21 1.17 1.16c 1.19
Sweden 2.15 1.90c 1.92 2.00 1.76 1.50c 1.59 1.61
Switzerland 3.15 3.04c 3.15 3.17 2.43 2.23c 2.32 2.40
United Kingdom 1.50 1.39c 1.47 1.48 1.92 1.69c 1.79 1.79
United States 1.99c 2.22 2.10 2.12 2.08 1.94c 2.00 2.01
Median 2.60 2.37 2.22 2.20c 1.86 1.74c 1.77 1.77
Minimum 1.50 1.39 1.47 1.48 1.21 1.17 1.16 1.19
Maximum 3.68 3.32 3.40 3.36 2.48 2.53 2.50 2.45

Notes:
a, b, c See notes of table 17.8a.

properties and more experience in using them would be desirable.
Also, posterior odds for fixed versus time-varying parameter models
have been derived, computed, and shown to be useful in evaluating
alternative models.

(4) As shown graphically in table 17.6c, the pooling techniques that we
utilized in connection with fixed and time-varying parameter models
led to substantial reductions in forecast RMSEs (see also tables 17.5,
17.6a, and 17.6b).

Finally, our forecasting methods and models have been applied using
data for a period, 1951–87, which includes the Korean War, the Viet-
namese War, price and credit controls, strikes, oil crises, exchange
rate policy changes, major changes in US monetary policy, etc. That
our models and methods worked to produce good forecasting results
without any special adjustments for these and other major events is
indeed satisfying. It appears that our leading indicator stock market and
money variables reflect information about major events before output
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Table 17.9a Root mean-squared errors (RMSEs) of combined
annual output growth rate forecasts of FP and TVP models using
regression methods, 1974–1987a

Combined unpooled Combined unpooled
ARLI forecastsb ARLI/WI forecastsb

Country A B C A B C

Australia 2.40c 3.43 2.49 2.61 3.26 2.55c

Austria 1.86c 2.12 2.31 1.70c 2.03 2.17
Belgium 1.71c 1.79 3.08 1.85c 1.85c 2.48
Canada 2.54c 3.46 2.73 3.22 3.22 2.90c

Denmark 2.02c 2.70 2.44 2.35c 2.70 2.67
Finland 2.43 3.07 2.39c 2.46 3.46 2.40c

France 3.97c 4.19 4.25 1.95c 1.97 2.65
Germany 1.59c 1.95 1.62 1.59c 2.04 1.60
Ireland 3.03 2.83 2.80c 3.45 3.09 3.07c

Italy 2.23c 3.20 2.75 2.84c 3.51 2.86
Japan 3.51c 3.55 4.06 4.20 4.55 3.88c

Netherlands 1.54c 2.06 1.94 1.76c 2.51 2.15
Norway 2.40 2.92 1.96c 2.59 3.02 1.94c

Spain 1.41c 2.42 2.65 1.48c 2.99 2.87
Sweden 1.75c 1.95 1.77 1.57c 1.96 1.85
Switzerland 2.96c 3.90 3.49 2.95c 3.66 3.37
United Kingdom 2.10c 2.25 2.38 1.41c 1.51 2.11
United States 2.24c 2.50 2.34 2.08c 2.30 2.18
Median 2.24c 2.77 2.46 2.21c 2.84 2.51
Minimum 1.41 1.79 1.62 1.41 1.51 1.60
Maximum 3.97 4.19 4.25 4.20 4.55 3.88

Notes:
a Regression weights for the 1974 regression combined forecast were
obtained by regressing actual outcomes on FP and TVP models’ forecasts for
the years 1965–73. Weights for subsequent years were obtained by updating the
1974 weights year by year.
b Methods A, B, and C involve regression of actual outcomes on FP and TVP
models’ forecasts under the following conditions. For regression A, the intercept
is zero and the regression coefficients are unrestricted. For regression B. the
intercept is zero and the regression coefficients are constrained to add to one.
For regression C, the intercept and the coefficients are unrestricted. See Granger
and Ramanthan (1984) for further discussion of these methods.
c Minimal value in row.

adjustments take place. Thus the output growth rate responds with a lag
to changes in lagged indicator variables and such variables reflect antic-
ipated systematic and non-systematic shocks, which produce oscillatory
behavior of output growth rates, a topic to be explored further in future
research.
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Table 17.9b Root mean-squared errors (RMSEs) of combined
annual output growth rate forecasts of FHP and TVHP models
using regression methods, 1974–1987a

Combined pooled Combined pooled
ARLI forecastsb ARLI/WI forecastsb

Country A B C A B C

Australia 2.69 2.54 2.49c 2.64 2.61 2.40c

Austria 1.86c 1.96 2.00 1.68c 1.77 1.91
Belgium 2.25 2.06c 2.62 1.90c 1.92 2.61
Canada 2.36 2.30 2.21c 1.97c 2.16 2.25
Denmark 2.26c 2.98 2.51 2.15c 2.39 2.18
Finland 1.82 1.70c 1.79 1.73 1.74 1.72c

France 2.62 2.25 1.93c 1.46c 1.48 2.15
Germany 1.69 1.88 1.63c 1.08c 1.10 1.16
Ireland 2.66 2.36c 2.78 2.67 2.66 2.37c

Italy 2.55c 2.67 2.66 2.04 2.03c 2.31
Japan 2.86 2.56c 4.19 3.47c 3.48 3.82
Netherlands 1.50 1.47c 1.59 1.89 1.84c 2.21
Norway 1.90 1.88c 2.01 1.60 1.57c 1.95
Spain 1.69c 1.69c 2.54 1.19 1.18c 1.63
Sweden 1.94 1.83c 2.00 1.63 1.56c 1.78
Switzerland 2.46c 2.58 2.56 2.47 2.44c 2.66
United Kingdom 1.90c 2.08 2.11 1.84c 2.08 1.95
United States 2.70 2.65c 2.83 2.25c 2.27 2.41
Median 2.25 2.17c 2.35 1.89c 1.98 2.20
Minimum 1.50 1.47 1.59 1.08 1.10 1.16
Maximum 2.86 2.98 4.19 3.47 3.48 3.82

Notes:
a, b, c See notes of table 17.9a.

APPENDIX A POSTERIOR ODDS FOR FIXED VERSUS
TIME-VARYING PARAMETER MODELS

Denote the hypothesis of fixed parameters by H0 and that of time-varying
parameters by H1. Then, as is well known, the posterior odds, denoted
by K, is given by

K = Pr(H0 | y, Z, I0)/Pr(H1 | y, Z, I1)

= Pr(H0 | I0)
Pr(H1 | I1)

f (y | H0, Z, I0)
f (y | H1, Z, I1)

, (A.1)

where Pr (H0 | I0)/Pr (H1 | I1) is the prior odds, taken equal to one in
our calculations, and the second factor on the r.h.s. of (A.1) is the Bayes
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factor. Here y = data, Z = data on the exogenous or input variables,
and I0 and I1 denote prior information under hypotheses H0 and H1,
respectively.

In our calculations, we employed the data 1951–72 to obtain posterior
densities for the parameters (see appendix B) which were employed as
prior densities in computing the posterior odds incorporating data for
1973. The Bayes factors were computed readily by exploiting the fact
that the marginal density of the observation vector y′ = (yt+1, yt+ 2, . . . ,
yT) can be expressed as follows:

f (y | Hi , Z, Ii )

= p(yt+1, yt+2, . . . , yT | Z, Hi , Ii )

= p(yt+1 | Zt+1, Hi , Ii )p(yt+2 | yt+1 Zt+1, Zt+2, Hi , Ii )

× . . . × p(yT | yt+1, yt+2, . . . , yT−1 Zt+1, . . . , ZT, Hi , Ii ),

(A.2)

for i = 0, 1, with each factor on the r.h.s. of (A.2) in the univariate
Student-t form. Thus the computation of the Bayes factor in (A.1), period
by period, is relatively straightforward. Explicitly.

P(yτ | yt+1, . . . , yτ−1, Zt+1, . . . , Zτ , Hi , Ii )

= aiτ {1 + hiτ (yτ − ŷiτ | τ−1)2/yτ−1}−(vτ−1+1)/2.

Then,

f (y | Hi , Z, Ii ) =
T∏

τ=t+1

aiτ {1 + hiτ (yτ − ŷiτ | τ−1)2/yτ−1}−(vτ−1+1)/2.

APPENDIX B UPDATING PROCEDURES FOR
PREDICTIVE DENSITY OF TIME-VARYING PARAMETER
MODELS

B.1 Unpooled case

The model for the ith country, where for convenience we drop the sub-
script i, is

yt = x′
tβt + ut , uts NID(0, σ 2),

βt = βt−1 + εt , εts NID(0, φσ 2 I),
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for t = 1, 2, . . . . Our distributions on the initial state, with I0 denoting
initial information, are given by

p(β0 | σ, I0) ∼ N(0, 106 × σ 2 I),

p(σ | I0) ∼ IG
(
v0, s 2

0

)
,

where v0 and s 2
0 have been assigned small values in the inverted gamma

density for σ .
Then the recursive algorithm for updating parameters is Posterior

mean:

β̂t = β̂t−1 + Vt−1xt(yt − x′
t β̂t−1)/(1 + x′

t Vt−1xt),

Residual SS:

vts 2
t = vt−1s 2

t−1 + (yt − x′
t β̂t)

2 + (β̂t − β̂t−1)′V−1
t−1(β̂t − β̂t−1),

Degrees of freedom:

vt = vt−1 + 1,

where

Vt ≡ σ−2cov(βt+1 | σ, Dt) = Ct + φ I,

Ct ≡ σ−2cov(βt | σ, Dt) = Vt−1 − Vt−1xt x′
t Vt−1/(1 + x′

t Vt−1xt),

Dt = information available at t.

At time t, the predictive density for yt+1 is

p(yt+1 | xt+1, Dt , I0) =
∫ ∫

p(yt+1 | xt+1, βt+1, σ )

×p(βt+1, σ | Dt , I0)dβt+1dσ,

∝
vt +

(
yt+1 − x′

t+1β̂t

stat

)2


−(vt+1)/2

,

and thus

tvt = (yt+1 − x′
t+1β̂t)/stat ,

has a univariate Student-t density with vt degrees of freedom where a2
t =

1 + x′
t+1Vt xt+1.
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B.2 A pooled case

Using the notation introduced in section 4, the model for the observation
vector y′

t = (y1t , y2t , . . . , ymt) is

yt = Xtβt + ut , ut ∼ NID(0, σ 2 Im), (B.1a)

βt = βθt + εt , εt ∼ NID(0, σ 2Ω) (B.1b)

θt = θt−1 + ηt ηt ∼ NID(0, φσ 2 Ik), (B.1c)

with ut, εt, and ηt assumed independently distributed. Then the following
densities are relevant: The joint density for (yt, βt, θt) given (σ , φ, Ω,
θt−1) is

p(yt , βt , θt |θt−1, σ, Xt , φ, Ω)

= p(yt |βt , σ, Xt)p(βt |θt , σ, Ω)p(θt |θt−1, σ, φ)

∝ σ−m exp
{−(yt − Xtβt)

′(yt − Xtβt)/2σ 2}
× σ−mk|Ω| −1/2 exp

{−(βt − Bθt)′Ω−1(βt − Bθt)/2σ 2}
× (φσ 2)−k/2 exp

{−(θt − θt−1)′(θt − θt−1)/2φσ 2} . (B.2)

The posterior joint density for βt, θt, σ given yt, Xt, Dt−1, φ, Ω, where
Dt−1 ≡ information available at time t − 1 is

p(βt , θt , σ | yt , Xt , Dt−1, φ, Ω) ∝ p(yt |βt , θt , σ, Xt , Dt−1, φ, Ω)

× p(βt , θt , σ | Xt , Dt−1, φ, Ω).

(B.3)

On substituting from (B.1b) in (B.1a), we have

yt = Xt(Bθt + εt) + ut = Xt Bθt + Xtεt + ut . (B.4)

Then, using (B.4) and (B.1c), with a normal-IG density for (θ1, σ ),
namely p(θ1, σ | D0, φ) = p(θ1 | σ, D0, φ) p(σ | D0) with the first
factor N(θ0, σ 2 V0) and the second IG(v0, s 2

0), we obtain the following
joint posterior density for (θt, σ ):

p(θt , σ | Dt , φ, Ω) ∼ N(θ̂t|t , σ 2Ct) × IG
(
vt , s 2

t

)
, (B.5)

and

p(θt | Dt , φ, Ω) = ct | Ct |−1/2{vts 2
i + (θt − θ̂t | t)′C−1

t (θt − θ̂t | t)
}−(k+vt )/2

,

(B.6)

where

ct = Γ

(
vt + k

2

) (
vts 2

t

)vt/2
/πk/2Γ (vt/2),



586 Chung-ki Min and Arnold Zellner

θ̂t | t = {
V−1

t−1 + B′X′
t Mt Xt B

}−1{V−1
t−1θ̂t−1 | t−1 + B′X′

t Mt yt

}
,

Mt ≡ {Im + X′
tΩ Xt}−1,

Ct ≡ σ−2 var(θt | Dt) = {
V−1

t−1 + B′X′
t Mt Xt B

}−1
,

Vt = Ct + φ I,

vt = vt−1 + mt ,

vts 2
t = vt−1s 2

t−1 + (yt − Xt Bθ̂t | t)′Mt(yt − Xt Bθ̂t | t)

+ (θ̂t | t − θ̂t−1 | t−1)′V−1
t−1(θt | t − θ̂t−1 | t−1).

The marginal density for βt given Dt, σ , and Ω is obtained from (B.5)
in conjunction with (B.1b), namely,

p(βt , σ | Dt−1, φ, Ω) = N[Bθ̂t−1 | t−1, σ 2(BVt−1 B′ + Ω)]

× IG
(
vt−1, s 2

t−1

)
. (B.7)

On combining (B.7) with the likelihood function for (B.1a) via Bayes’
Theorem and integrating out σ , the result is

p(βt | Dt , φ, Ω) = Γ [(vt + mk)/2]
πmk/2Γ (νt/2)

(
vts 2

t

)vt | 2 |Rt | −1/2

×{
vts 2

t + (βt − β̂t | t)
′ R−1

t (βt − β̂t | t)
}−(mk+vt )/2

,

(B.8)

where, in addition to quantities defined above.

β̂t | t = {X ′
t Xt + At}−1{X ′

t yt + At Bθ̂t−1 | t−1},
At ≡ (BVt−1 B′ + Ω)−1, Rt ≡ σ−2 var(βt | Dt) = (X ′

t Xt + At)−1.

(B.9)

Finally, the predictive density for yt+1 is obtained by integrating the
joint density for yt+1 and σ given Xt+1, Dt with respect to σ . We have

p(yt+1, σ | Xt+1, Dt) =
∫

p(yt+1 | Xt+1, βt+1, σ )p(βt+1, σ | Dt)dβt+1,

(B.10)

and on integrating (B.10) over σ , the result is

p(yt+1 | Xt+1, Dt) = at |Pt | −1/2{vts 2
t + (yt+1 − ŷt+1)′ P−1

t

×(yt+1 − ŷt+1)
}−(m+vt )/2

, (B.11)

where

at = Γ

(
vt + m

2

) (
vts 2

t

)vt/2
/πm/2Γ (vt/2),
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ŷt+1 = Xt+1 Bθ̂t | t ,

Pt ≡ σ−2 var(yt+1 | Dt) = Xt+1 A−1
t+1 X ′

t+1 + Im.

It is seen that (B.11) is in the form of a multivariate Student-t density,
and thus the marginal density for an element of yt+1, say yi,t+1, has a
univariate Student-t density (see, e.g., Zellner 1971, app. B.2).

B.3 Values for hyperparameters (φ, Σ)

The values of (φ, Σ), with Ω = In ⊗ Σ , have been selected to minimize
RMSEs of one-year-ahead forecasts for the pre-forecast period 1969–73.
(The values of (φ, Σ) presented below are for the models with variables
in percentage points.) Subsequent calculations for 1974 and following
years have been conditioned on these values.
(1) Unpooled TVP models:{

φ = 0.3 for ARLI,
φ = 0.2 for ARLI/WI;

(2) Pooled TVP models:

φ = 0.1 for ARLIand ARLI/W,

Σ =


0.1 0

0.002
. . .

0 0.002

 ;

(3) Pooled FP models:Σ =


0.1 0

0.002
. . .

0 0.002

 ;

(4) The equation for world real income growth rate: φ = 0.5.

APPENDIX C UPDATING PROCEDURES FOR
PREDICTIVE DENSITY OF A POOLED FHP MODEL

Using the notation introduced in section 4, the model for the observation
vector y′

t = (y1t , y2t , . . . , ymt) is

yt = Xtβt + ut , ut ∼ NID(0, σ 2 Im),

βt = Bθ + εt , εt ∼ NID(0, σ 2Ω).
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These will be equivalent to model (B.1a)–(B.1c) when φ is set to zero.
Therefore the same updating procedures can be used with φ set to zero.
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18 Pooling in dynamic panel data models: an
application to forecasting GDP growth
rates (2000)

André J. Hoogstrate, Franz C. Palm, and
Gerard A. Pfann

In this chapter, we analyze issues of pooling models for a given set of N
individual units observed over T periods of time. When the parameters
of the models are different but exhibit some similarity, pooling may
lead to a reduction of the mean squared error of the estimates and
forecasts. We investigate theoretically and through simulations the
conditions that lead to improved performance of forecasts based on
pooled estimates. We show that the superiority of pooled forecasts in
small samples can deteriorate as the sample size grows. Empirical
results for postwar international real gross domestic product growth
rates of 18 Organization for Economic Cooperation and Development
countries using a model put forward by Garcia-Ferrer, Highfield,
Palm, and Zellner and Hong, among others illustrate these findings.
When allowing for contemporaneous residual correlation across
countries, pooling restrictions and criteria have to be rejected when
formally tested, but generalized least squares (GLS)-based pooled
forecasts are found to outperform GLS-based individual and ordinary
least squares-based pooled and individual forecasts.

Panel data are used more and more frequently in business and economic
studies. Sometimes a given number of entities is observed over a longer
period of time, whereas traditionally panel data are available for a large
and variable number of entities observed for a fixed number of time peri-
ods (e.g. see Baltagi 1995 for a[n] . . . overview; Maddala 1991; Mad-
dala, Trost, and Li 1994). In this chapter, we analyze issues of pooling
models for a given set of N individual units observed over T periods of
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the Economics Research Foundation, which is part of the Netherlands Organization for
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time. Large T asymptotics, with N fixed, provide the benchmark against
which to evaluate the methods considered. Pooling estimates in panel-
data models is appropriate if parameters are the same for the individual
units observed. When the parameters are different but exhibit some sim-
ilarity, pooling may also lead to a reduction of the mean-squared error
(MSE) of the estimates. A reduction of the MSE will be achieved when the
square of the bias resulting from imposing false restrictions is outweighed
by the reduction of the variance of the estimator due to restricted estima-
tion. The existence of this trade-off has generated the literature on MSE
criteria and associated tests for the superiority of restricted over unre-
stricted least squares estimators (e.g. see Wallace and Toro-Vizcarrondo
1969; Goodnight and Wallace 1972; McElroy 1977; Wallace 1972).

Pooling techniques have been successfully applied, for instance, to test
the market efficiency hypothesis (e.g. see Bilson 1981) and to forecast
multicountry output growth rates (e.g. see Mittnik 1990). In a study
of real gross national product (GNP) growth rates of nine Organization
for Economic Cooperation and Development (OECD) countries for the
period 1951–81, Garcia-Ferrer et al. (1987) showed that pooled estimates
of an (autoregressive) AR(3) model with leading indicator (LI) variables,
denoted by AR(3)LI, provided superior forecasting results. Forecasting
results for an extended time period, 1974–84, and an extended number
of countries, eighteen OECD countries, provided by Zellner and Hong
(1989) were in favor of the earlier findings. Leading economic indicators
have come to play a dominant role in forecasting business cycle turn-
ing points on a single-country level (Stock and Watson 1989) as well as
on a multicountry level (Zellner, Hong, and Min 1991). Cross-country,
cross-equation restrictions have also been imposed successfully to ana-
lyze convergence of annual log real per capita output for fifteen OECD
countries from 1900 to 1987 (Bernard and Durlauf 1995).

The objective of this chapter is threefold. First, in Section 1, we inves-
tigate theoretically whether the improvement of forecasting performance
using pooling techniques instead of single-country forecasts remains valid
as T grows large(r) while N remains constant. The model that we inves-
tigate consists of a set of dynamic regression equations with contempo-
raneously correlated disturbances. It nests the specifications put forward
by Garcia-Ferrer et al. (1987) and used in many studies since (e.g. see
Zellner 1994). Second, in section 2 we present simulation results that
give some insights into the importance of the gains from pooling data
when the sample size is small. The simulations also provide evidence on
the statistical properties of some test procedures for pooling restrictions.
Third, the theoretical results are investigated empirically. The Zellner,
Hong, and Min (1991) data, slightly modified to have a consistent set
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of real GDP growth rates of eighteen OECD countries for an extended
period of 1948 to 1990, are used to forecast international growth rates
using individual and pooled estimates of the AR(3)LI model. Section 3
concludes.

1 The model and the forecasting procedures

Consider a linear regression model for N units/countries and T successive
observations:

yit = x ′
i tβi + εi t , i = 1, 2, . . . N, t = 1, 2, . . . T, (1.1)

or

yi
T×1

= Xi
(T×k)

βi
(k×1)

+ εi
T×1

, i = 1, 2, . . . , N, (1.2)

where yit denotes the value of the endogenous variable y for country i
in period t, xit is a vector of explanatory variables, β i is a vector of k
regression coefficients for country i, and εi t denotes a disturbance term.
Alternatively, the model (1.2) for N countries can be written as

y
n×1

= X ∗
(n×Nk)

βa
(Nk×1)

+ ε
n×1

, (1.3)

with y = (y ′
1 , y ′

2 , . . . , y ′
N)′, X ∗ = diag(X1, X2, . . . , XN), βa = (β ′

1, β ′
2,

. . . , β ′
N)′, ε = (ε′

1, ε′
2, . . . , ε′

N)′, and n = TN.
We allow the vector xit to contain lagged values of yit . The disturbances

εi t are assumed to be normally distributed with mean 0 and zero serial
correlations, possibly contemporaneously correlated; that is ε ∼ N(0, Ω)
with Ω = Σ ⊗ IT, where Σ denotes the contemporaneous covariance
matrix of dimension N. The regressors xit are predetermined:

E(xitε
′
j s |xlt−1, . . . , l = 1, 2, . . . , N) = 0 for all i, j and t ≤ s .

The system of seemingly unrelated regressions (SUR) in (1.3) has been
extensively studied in the literature, from both a classical and a Bayesian
point of view. For instance, Haitovsky (1990) generalized Zellner’s (1971)
Bayesian analysis of the SUR, using a linear hierarchical structure similar
to that in the Lindley and Smith (1972) pooling model. Chib and Green-
berg (1995) carried out a hierarchical analysis of SUR models with serially
correlated errors and time-varying parameters. Nandram and Petruccelli
(1997) considered pooling autoregressive time series panel data using
a hierarchical framework for a model with a highly structured covari-
ance matrix Σ , with off-diagonal elements that depend on one unknown
parameter.
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For Σ = σ 2IN, assuming a hierarchical structure, Garcia et al. (1987),
Zellner and Hong (1989), and Min and Zellner (1993) considered shrink-
age forecasts based on an estimate of βa in (1.3), which is a matrix-
weighted average of the equation-by-equation least squares estimates β̂ i

and a pooled estimate (i.e. the least squares estimate of β restricting the
β is in (1.3) to be the same).

A scalar-weighted average of these estimators results, with the scalar
weight depending on the ratio of σ 2 and the prior variance of the β is,
if the “g-prior” approach of Zellner (1986) is adopted (see Zellner and
Hong 1989).

In this chapter, we consider the problem of choosing among forecasts
based on various estimators of βa in (1.3) from a sampling theory point of
view using an F-statistic that has been proposed to test for pooling. Note
that there is a direct link between an F-statistic for linear restrictions on
the coefficients of a linear regression model and the posterior odds used
to choose among the models associated with the hypothesis to be tested,
although their interpretations will differ (see Zellner 1984).

The reasons for considering the problem of choosing among forecasts
are fourfold.

First, under a diagonal loss structure, it is optimal to select a forecast
rather than to combine forecasts (e.g. see Min and Zellner 1993).

Second, as described previously, the problem of combining fore-
casts has been extensively studied in the literature, using a hierarchical
structure, whereas the problem of choosing among forecasts based on
alternative estimators for an SUR has received less attention. In par-
ticular, SUR models for N as large as 18 have not been extensively
used.

Third, adopting a fully-fledged hierarchical Bayesian procedure in a
model with unrestricted covariance matrix Σ , when N is large, requires
integration in high dimensions (at least N(N + 1)/2). For applications
with N as large as 18, this requirement may make it prohibitive to use
such procedures if it is not appropriate to impose some structure on Σ .

Fourth, unpooled and pooled forecasts are the ingredients required
for combining forecasts in a hierarchical structure. Our results can be
interpreted as a benchmark against which combined forecasts can be
judged.

We consider the following one-step-ahead forecasts of yiT + 1, ŷiT + 1 =
x ′

iT + 1β̂ i , with β̂ i being an estimate of β i:
1. The individual forecast is based on the least squares estimator of β i,

β̂ i = (X ′
i Xi )−1 X ′

i yi . (1.4)
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2. The pooled (p) forecast is based on the OLS estimator for the pooled
data,

β̂ p = (X ′X)−1 X ′y, (1.5)

where X = (X ′
1, X ′

2, . . . , X ′
N)′.

3. The forecast (g) is based on a feasible SUR estimator of β i, β̂
g
i , being

the ith subvector of the generalized least squares (GLS) estimator of
βa in (1.3),

β̂g
a = (X ∗′Ω̂−1 X ∗)−1 X ∗′Ω̂−1y, (1.6)

with Ω̂ being a consistent estimate of Ω.
4. The forecast (pg) is based on a pooled feasible GLS estimator of β i,

β̂ pg = (X ′Ω̂−1 X)−1 X ′Ω̂−1y. (1.7)

The predictors based on the estimators (1.4)–(1.5) were used by
Garcia-Ferrer et al. (1987) and Zellner and Hong (1989) to obtain point
forecasts of GNP growth rates and by Zellner, Hong, and Min (1991)
to forecast turning points in GNP growth. We investigate the behavior
of the four previously mentioned predictors when the time dimension of
the sample becomes large. We compare the performance of individual
forecasts with the pooled forecasts when T grows while N remains fixed
and investigate the conditions under which pooling leads to improved
forecast performance.

To compare the forecast performance, we use the mean-squared fore-
cast error (MSFE) criterion

MSFE(ŷiT+1) =̇ x ′
iT+1MSE(β̃ i )xiT+1 + σ 2

i , (1.8)

where β̃ i denotes an estimator of β i (one of the estimators (1.4)–(1.7)) and
σ 2

i is the ith diagonal element of Σ . The cross-term x ′
iT+1(βi − β̃ i )εiT+1

has been deleted from the r.h.s. of (1.8) as it vanishes asymptotically.
Comparing the MSFEs of various forecasts basically reduces to compar-
ing the MSEs of the estimators used to compute the forecasts.

The results obtained by McElroy (1977) can be applied to compare
the GLS estimator β̂

g
a (6) for βa with the pooled GLS estimator (1.7)

β̂
pg
a = (ι ⊗ β̂ pg), with ι being an N × 1 unit vector. When Ω is unknown

and a consistent estimate is used, the results of McElroy (1977) hold
for a large sample. When Ω = σ 2In, McElroy’s (1977) results specialize
accordingly and can be used to compare the OLS estimators β̂ i in (1.4)
with the pooled estimator β̂p in (1.5). When Ω is known, the restricted
GLS estimator β̂

pg
a is preferred to β̂

g
a by the strong MSE criterion defined
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by McElroy if

l ′[MSE
(√

nβ̂g
a

) − MSE
(√

nβ̂ pg
a

)]
l ≥ 0 (1.9)

holds for all Nk × 1 vectors l 	= 0. Notice that the condition (1.9) implies
superiority of the pooled estimator for each country. Imposing restrictions
erroneously produces a biased estimator. When the condition (1.9) holds,
the size of the bias is outweighed by the reduction of the variance of the
estimator.

Using the results of McElroy, (1.9) can be shown to hold iff λn ≤
1/2 with λ ′

n = δ ′
n(RVn R ′)−1δn/2 and δn = √

n(Rβa). Notice that Rβa = 0
denotes the restrictions on βa when we pool across countries, and the q
× Nk matrix R with q = (N − 1)k is

R = [ιN−1 ⊗ Ik, −IN−1 ⊗ Ik], (1.10)

with ιN−1 being an (N − 1) unit vector. Vn = n(X ∗′Ω− 1X ∗)−1 is the
covariance matrix of

√
nβ̂

g
a.

The null hypothesis Rβa = 0 is true iff λn = 0. The restricted estimator
β̂

pg
a is preferred to β̂

g
a by the first weak MSE criterion, which requires that

the trace of the difference of the MSE matrices in (1.9) be non-negative.
This holds whenever

λn ≥ θn, (1.11)

with θn = 1/2µntr[Vn R ′(RVn R ′)−1 RVn] and µn being the smallest char-
acteristic root of V−1

n . Finally, the pooled GLS estimator is better than the
GLS estimator by the second weak MSE criterion defined by McElroy
(1977) as

E
[
n
(
β̂g

a − βa
)′V−1

n

(
β̂g

a − βa
) − n

(
β̂ pg

a − βa
)′V−1

n

(
β̂ pg

a − βa
)] ≥ 0,

(1.12)

which holds iff λn ≤ q/2 – that is, iff 2λn is smaller than the number of
restrictions on regression coefficients in the system.

As shown by McElroy (1977), when the Xis are strictly exogenous
(standard regression model) the test statistic

F ∗(Ω) = n
(
Rβ̂

g
a
)′

(RVn R ′)−1
(
Rβ̂

g
a
)/

q

SSE
(
β̂

g
a
)/

(n − q )
∼ F(q , n − q , λT),

(1.13)

where SSE(β̂g
a) = (y − X ∗β̂g

a)′Ω−1(y − X ∗β̂g
a) has a non-central F-

distribution. It can be used to test hypotheses about λ. Rejecting the null
hypothesis when the statistic is large provides a uniformly most powerful
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test for λn ≤ λ ∗ against λn > λ ∗, where λ ∗ = 1/2, θn, or q/2 depending
on the chosen MSE criterion.

As n → ∞ (e.g. for T → ∞ and fixed N), qF ∗ in (1.13) converges
to a (non-)central χ2(q, λ) distribution with λ = limn→∞ λn, when the
sequence of alternative hypotheses is chosen in such a way that λn con-
verges to a finite limit λ. When Ω is replaced by a consistent estimator
and/or in the presence of predetermined variables among the regres-
sors, the same limiting distribution for qF ∗ results. Moreover, as n →
∞ the covariance matrices for both

√
nβ̂

g
a and

√
nβ̂

pg
a converge to con-

stant matrices. If the restrictions Rβa = 0 do not hold, δn, and hence the
bias of

√
nβ̂

pg
a , increases without bound while the unrestricted estimator√

nβ̂
g
a remains unbiased. Therefore, for each of the three MSE criteria,

there exists a sufficiently large n to make β̂
pg
a worse than β̂

g
a in terms of

MSE. In the case in which the restrictions are false, the non-centrality
parameter λn increases without bound. As a result, the power of a test of
H0 : λn ≤ λ ∗ tends to 1 and the test is consistent.

In section 2, we shall report the findings of an empirical analysis of
the MSFE of forecasts based on unrestricted and pooled estimators. In
particular, we shall investigate under which conditions and for which
sample size it pays to use a pooled estimator rather than an unrestricted
estimator.

2 Empirical analyses

In this section we investigate an AR(3) model and an AR(3)LI model
used by Garcia-Ferrer et al. (1987) and Zellner and Hong (1989). The
data set consists of the post-Second World War real GDP growth rates
of eighteen OECD countries. The parameters of the individual countries
are estimated using samples for which the starting date varies between
1949 and 1957 and ends in 1990 (see appendix A, p. 609). In subsection
2.1, we present the models, estimate, and test them. Subsection 2.2 is
devoted to a simulation study of the finite-sample properties of McElroy’s
criteria for pooling. The empirical models for a subset of the eighteen
OECD countries are used in the simulations. Finally, in subsection 2.3 we
check the pooling restrictions for the eighteen countries using McElroy’s
criteria.

2.1 The models

The following AR(3)LI model was employed to generate one-year-ahead
forecasts of the growth rate of real GDP, for the period 1981–90, for
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Table 18.1 The root mean-squared forecast error (RMSFE) for the
individual country forecast and for the pooled forecast using the AR(3) model
when up to fifteen observations are excluded from the estimation period

Number of observations excluded

0 5 10 15

Unpooled Pooled Unpooled Pooled Unpooled Pooled Unpooled Pooled
(1) (2) (3) (4) (5) (6) (7) (8)

Australia 3.66 3.36 3.66 3.41 3.60 3.35 3.26 3.30
Austria 1.53 0.92 1.30 0.89 0.92 0.74 1.03 0.75
Belgium 1.38 1.79 1.54 1.71 1.59 1.69 1.97 1.74
Canada 3.90 3.47 4.26 3.44 4.39 3.43 4.59 3.35
Denmark 1.86 1.81 2.04 1.77 2.45 1.81 2.66 1.72
Finland 1.49 1.37 1.29 1.38 1.23 1.52 1.26 1.69
France 1.44 1.59 1.67 1.52 1.69 1.47 1.70 1.46
Germany 4.27 4.50 4.40 4.30 4.47 4.39 4.37 4.34
Ireland 2.23 1.68 2.48 1.67 3.78 1.64 3.95 1.74
Italy 2.40 1.55 2.39 1.47 2.42 1.52 2.43 1.52
Japan 1.09 0.99 1.05 0.98 1.14 1.06 1.32 1.23
Netherlands 1.67 1.46 1.60 1.42 1.42 1.26 1.61 1.27
Norway 4.95 3.98 5.00 3.91 5.52 3.86 5.66 3.71
Spain 1.03 1.19 2.03 1.22 2.00 1.34 1.79 1.54
Sweden 1.41 1.19 1.47 1.16 1.72 1.20 1.69 1.22
Switzerland 1.54 1.48 1.56 1.48 1.65 1.40 2.00 1.43
United Kingdom 2.38 1.90 2.51 1.88 2.77 1.93 2.90 1.96
United States 3.15 2.74 3.59 2.64 4.20 2.76 4.13 2.75
Median 1.76 1.63 2.04 1.59 2.21 1.58 2.22 1.71

eighteen OECD countries:

yit = β0i + β1i yi t + β2yit−2 + β3yit−3 + β4i SRit−1

+ β5i SRit−2 + β6i GMit−1 + β7i WRit−1 + εi t , (2.1)

where yit denotes the first difference of the logarithm of real output, SRit

denotes the first difference of the log of a stock price index divided by
a general price index, GMit denotes the first difference of the log of the
nominal money supply divided by a general price index, and WRit denotes
world return, which equals the median of countries’ real stock return in
period t.

The AR(3) model arises as a special case of model (2.1) when β4i =
β5i = β6i = β7i = 0.

To illustrate the gains from pooling when T is small, we performed the
actual one-step-ahead forecasts for the period 1983–90 using an AR(3)
model. The results are shown in table 18.1, in which columns (1) and
(2) are based on models estimated by all data, columns (3) and (4) are
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from models estimated by excluding the first five observations for each
country, columns (5) and (6) are from models estimated by excluding the
first ten observations, and finally columns (7) and (8) are from models
estimated by excluding the first fifteen observations. As expected, as T
gets smaller, the forecasting performance of the pooled forecast domi-
nates the individual predictor. This is apparent in two ways in table 18.1.
First, the number of countries for which the individual forecast is better
declines as T becomes smaller. Second, the difference in median-root
mean squared errors (RMSEs) increases as T decreases.

Next we compare the forecasting performance for different periods
of time. Table 18.2 reports RMSEs for forecasts (RMSFEs) based on
country-specific OLS parameter estimates and pooled parameter esti-
mates for the forecasting periods 1974–87, 1974–90, and 1983–90. For
the three forecast periods and for both models, the pooled forecasts dom-
inate the individual forecasts in most instances. Moreover, the median of
the RMSFEs is lowest for the pooled forecasts in the six cases. This
finding is in line with those of Garcia-Ferrer et al. (1987) for a forecast
period 1974–81 and Zellner and Hong (1989) for the periods 1974–81
and 1974–84. Notice also that for the forecast period 1983–90, surpris-
ingly the AR(3) model performs better than the AR(3)LI model in terms
of RMSFE. For the forecast period 1974–87, the AR(3)LI clearly per-
forms better than the AR(3) model in most instances. There are small
differences with results reported by Min and Zellner (1993) for the same
forecast period. These are because they used GNP and GDP data and an
estimation period 1954–73 with data for 1951–3 serving as initial values
whereas in the present study strictly GDP data are used for all countries
and the estimation period is 1961–73 with data for 1958–60 serving as
initial values.

The finding that, as T grows, the difference between the MSFEs of
forecasts based on OLS and pooled forecasts becomes larger suggests that
the restrictions of identical parameters across countries are not literally
true. Before testing these restrictions, we shall examine the presence of
contemporaneous correlation between the disturbances for the eighteen
countries in the AR(3) and AR(3)LI models, respectively.

For the estimation period 1961–80, as expected, the residuals of the
AR(3) model show more contemporaneous correlation than the residuals
of the AR(3)LI model. Including leading indicators, which are approx-
imately white noise, accounts for a major part of the contemporaneous
residual correlation present in the AR(3) model.

From the estimated residual correlations, most of which are posi-
tive as expected, it also appears that the countries can be clustered in
regional groups exhibiting much within-group contemporaneous residual
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600 André J. Hoogstrate, Franz C. Palm, and Gerard A. Pfann

Table 18.3 Testing for contemporaneous error covariances

Hypotheses about Σ

H0: Diagonal Diagonal Block-diagonala

H1: Unrestricted Block-diagonala Unrestricted

AR(3)LI 167.68 99.40 77.28
1961–80 df = 153 df = 17 df = 136

p = 0.197 p < 0.001 p > 0.5

AR(3)LI 290.88 149.67 141.21
1961–90 df = 153 df = 17 df = 136

p < 0.01 p < 0.001 p = 0.362

AR(3) 353.46 105.94 247.5
1961–80 df = 153 df = 17 df = 136

p < 0.001 p < 0.001 p < 0.001

AR(3) 474.67 137.79 336.88
1961–90 df = 153 df = 17 df = 136

p < 0.001 p < 0.001 p < 0.01

Note:
a We distinguish the following seven blocks: (1) Canada, the United States;
(2) Australia, Japan; (3) Denmark, Finland, Norway, Sweden; (4) Belgium,
France, Germany, the Netherlands; (5) the United Kingdom, Ireland;
(6) Austria, Switzerland; (7) Italy, Spain.

correlation and little between-group contemporaneous residual correla-
tion indicating that shocks to real GDP growth are partly synchronized
within blocks and uncorrelated between blocks. We distinguish the follow-
ing seven regional blocks – (1) Canada, the United States; (2) Australia,
Japan; (3) Denmark, Finland, Norway, Sweden; (4) Belgium, France,
Germany, the Netherlands; (5) Ireland, the United Kingdom; (6) Austria,
Switzerland; (7) Italy, Spain.

To formally test for contemporaneous residual correlation, we use
a Lagrange multiplier (LM) statistic proposed by Breusch and Pagan
(1980) for testing the null hypothesis of a diagonal Σ . Under H0, λLM =
T

∑N
i=2

∑i−1
j=1 r 2

i j , with ri j being the sample correlation coefficients be-
tween the residuals of the OLS estimates for countries i and j, has an
asymptotic X 2[N(N − 1)/2] distribution. The results for the LM test are
given in table 18.3.

The X 2 statistics reported in table 18.3 clearly indicate that the diag-
onality of Σ is not rejected for the AR(3)LI model for the observation
period 1961–80 when tested against an unrestricted Σ matrix. When
tested against a block-diagonal matrix, diagonality is rejected. For the
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longer period 1961–90, we reject the null hypothesis of a diagonal Σ

matrix. This is possibly due to small sample size or structural changes
that occurred in the 1980s. For this latter period, the block-diagonal
structure is not rejected for the AR(3)LI model. For the AR(3) model
the null hypothesis has to be rejected in all instances. This is not sur-
prising because the common leading indicator W Rt−1, which is approx-
imately white noise, accounts for interdependencies among the white-
noise disturbances of the countries. Note that Chib and Greenberg (1995)
reported that, when a time-varying parameter version of the AR(3)LI
model is employed for the output growth rate of five countries (Australia,
Canada, Germany, Japan, and the United States) in the period 1960–87,
the matrix Σ is found to be diagonal.

2.2 Properties of pooling restriction tests

Before we check the appropriateness of pooling in a system of eighteen
equations, we investigate the small-sample properties of the F-statistic
given in (1.13) for testing the pooling restriction H0 : Rβa = 0 against
H1 : Rβa 	= 0 and of McElroy’s strong and weak pooling criteria allowing
for a block-diagonal matrix Σ . The simulation results have been obtained
using models for the following sets of countries – Belgium, Germany
France, and the Netherlands, and Canada and the United States. The
general model consists of a set of six third order autoregressions with two
leading indicators:

Φ(L)
(6×6)

yt
(6×1)

= B
(6×6)

x1t
(6×1)

+ γ
6×1

x2t + εt
6×1

, (2.2)

where Φ(L) is a diagonal lag polynomial matrix with a third-degree poly-
nomial on the main diagonal and where B and γ denote, respectively, a
matrix and a vector of coefficients. The leading indicators x1t and x2t and
the disturbance vector εt satisfy the following properties:

x1t ∼ IIN(0, Σ1), x2t ∼ IIN
(
0, σ 2

2

)
, εt ∼ IIN(0, Σ3), (2.3)

with Σ1 being diagonal and Σ3 being a block-diagonal covariance matrix.
The variables x1t, x2t, and εt are mutually independent. The vector x1t
can be interpreted as a country-specific leading indicator. The variable
x2t can be interpreted as a common leading indicator (e.g., WRt−1). The
block-diagonal structure of Σ3 reflects the finding that the disturbances
within European and North American subgroups are correlated and that
the between-subgroup correlations are 0. The model (2.2)–(2.3) implies a
third order vector autoregressive (VAR) model for yt with a diagonal VAR
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Table 18.4 Testing for pooling for a subset of six countries (Canada,
the United States, Belgium, France, Germany, the Netherlands)

Model Σ F-value p-value λ = 0 p-value λ = q/2

AR(3) σ 2I 0.5763 0.9244 0.9944
AR(3) Full 1.0532 0.4032 0.8839
AR(3)LI σ 2I 1.2580 0.2156 0.6772
AR(3)LI Block 1.1099 0.3320 0.8453

matrix and a full-disturbance covariance matrix Σ = BΣ1 B ′ + σ 2
2 γ γ ′ +

Σ3. The error-component structure of the disturbance term of the AR(3)
model will be ignored in the sequel.

Both the RA(3)LI model (2.2) and the implied VAR(3) model have
been simulated. The models have been simulated under parameter het-
erogeneity across countries and under regression parameter homogeneity.
The parameter values used in the simulations for the AR(3)LI model are
set equal to the OLS estimates of model (2.2), taking x1t to be the vector of
observed GMit−1 and x2t = WRt−1. Under parameter homogeneity, OLS
estimates of the equation in (2.2) for the United States are used for all
six countries. The parameter values of the AR(3) model are derived from
those of the AR(3)LI model under, respectively, parameter heterogeneity
and homogeneity. On the basis of the data for the six countries, param-
eter homogeneity is not rejected for model (2.1) when testing regression
parameter equality across countries using an F-test. Obviously, McEl-
roy’s criteria do not reject pooling either. The details for these tests are
given in table 18.4.

The empirical distribution of the F-statistic in (1.13) and rejection
frequencies were obtained by simulation. The number of runs is 1,000.
Results on the empirical distributions of the F-statistic in (1.13) are not
reported here. In most instances, the empirical distributions resemble an
F-distribution. Rejection frequencies when the test statistic is compared
with the critical value of, respectively, a central F-distribution with q and
n − q df and that of a non-central F(q, n − q, λT) with λT = q/2 are
reported in table 18.5. A nominal significance level of 5 percent is used.

Under parameter homogeneity, the rejection frequencies are very small
when McElroy’s second weak criterion is tested. With the exception of the
AR(3) model with unrestricted disturbance covariance matrix, the rejec-
tion frequencies when a central F-distribution is used are also substan-
tially smaller than 5 percent for the model under parameter homogeneity.
An F-test appears to be too conservative whether the correct disturbance
covariance is assumed or not.
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Table 18.5 Rejection frequencies for the F-test at a nominal
significance level of 5 percent

Homogeneous Heterogeneous

T Estimator Σ λ = 0 λ = q/2 λ = 0 λ = q/2

25 AR(3)LI σ 2I 0.024 0.000 0.722 0.251
50 AR(3)LI σ 2I 0.010 0.000 0.996 0.871
100 AR(3)LI σ 2I 0.023 0.000 1.000 1.000
25 AR(3) σ 2I 0.017 0.000 0.270 0.038
50 AR(3) σ 2I 0.019 0.001 0.672 0.207
100 AR(3) σ 2I 0.032 0.000 0.984 0.810
25 AR(3)LI Block 0.019 0.000 0.369 0.095
50 AR(3)LI Block 0.007 0.000 0.821 0.354
100 AR(3)LI Block 0.005 0.000 1.000 0.950
25 AR(3) Full 0.254 0.026 0.623 0.266
50 AR(3) Full 0.160 0.011 0.824 0.388
100 AR(3) Full 0.112 0.002 0.983 0.829

Under parameter heterogeneity, as expected, the power is found to
increase as the sample size increases. For values of T equal to or larger
than 50, the rejection frequency is found to be fairly large (larger than
80 percent). For T = 25, McElroy’s second weak criterion rejects rather
infrequently the incorrect parameter restrictions. As T increases, the gain
resulting from trading off some bias against a decrease in the variance of
the estimates decreases as expected on the basis of asymptotic theory.

Next, information on distributions of the mean and median RMSFE
using, respectively, unrestricted and pooled parameter estimates is given
in table 18.6. As expected, as T increases, the distributions become more
concentrated. Left-skewness of a distribution means that the median
(across countries) RMSFE of the pooled forecasts is larger than that of
the forecasts based on unpooled estimates. In column (4) and (9) of table
18.6, we report the [proportion] of the number of times forecasts using
unpooled estimates outperformed those based on pooled estimates. For
T = 25, the simulations indicate that pooling is appropriate even under
parameter heterogeneity. For T = 50, under parameter heterogeneity, it
seems to be advisable to use pooled forecasts, based on a VAR model,
which leaves a major part of the contemporaneous correlation in the dis-
turbances and therefore yields forecasts that are genuinely less accurate
than those for the AR(3)LI model. These findings are in line with the
theoretical results presented in section 2 and the conclusions drawn pre-
viously for the F-tests.
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2.3 Analyzes of international data

In this section the results of an empirical analysis of the pooling restric-
tions for model (2.1) and the associated VAR(3) model using interna-
tional data for eighteen countries are presented.

Tests of the pooling restrictions H0 : Rβa = 0 against the alternative
H1 : Rβa 	= 0 are reported in table 18.7 for the AR(3)LI model and the
AR(3) model, respectively, for estimation periods varying from 1961–
80 to 1961–90. We report the values of the test-statistic F ∗ given in
(1.13) and the p-values for the asymptotically justified tests of exact linear
restrictions Rβa = 0 and of the MSE criterion for these linear restrictions.
The matrix Σ is assumed to be, respectively, Σ = σ 2IN, diagonal, and
block-diagonal (as explained previously).

The values of the F-statistic are given in column (2) of table 18.7.
Column (3) contains the value of the non-centrality parameter θn given
in (1.13). In columns (4)–(6), the p-values are reported for the tests of
H0 : λ = 0 versus H1 : λ 	= 0, and H0 : λ ≤ λ ∗ against H1 : λ > λ ∗ for λ ∗

being equal to q/2. The two criteria correspond to the tests of McElroy’s
strong criterion and second weak criterion, respectively. For the AR(3)LI
and the AR(3) models, under the assumption that Σ = σ 2IN or that Σ

is diagonal, an F-test usually does not lead to rejection of the pooling
restrictions Rβa = 0. Consequently, the less stringent restrictions of the
second weak MSE test for pooling given by McElroy (1977) are not
rejected either in these two cases. A similar conclusion is reached if the
first weak criterion is used to test for pooling. The p-values are never lower
than 0.64 when the estimation period is varied from 1961–80 to 1961–90.
McElroy’s second weak pooling criterion is not rejected in general, except
for the AR(3) model using an unrestricted covariance matrix Σ . Notice
that a similar conclusion holds for the first weak criterion. Moreover, the
pooled AR(3) model has to be rejected when compared with the pooled
AR(3)LI model.

The true size of a test based on an “F-statistic” using a spherical Σ will
be different from the assumed size when the true Σ is non-spherical. The
evidence for the F-test in table 18.7 for Σ = σ 2IN or Σ being diagonal
supports the null hypothesis because neglecting residual correlation in
estimation generally leads to rejection frequencies for the null hypothesis
that are much lower than the nominal size of the test (e.g. see Palm and
Sneek 1984 for results on the F-test in a regression model when neglecting
serial correlation in the disturbance).

When Σ is estimated as a block-diagonal matrix in the AR(3)LI model,
H0 : Rβa = 0 usually has to be rejected at conventional significance lev-
els. The less restrictive second weak MSE tests do not lead to rejecting
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Table 18.7 Testing for pooling in the AR(3)LI and AR(3) model

AR(3)LI AR(3)

p-value p-value p-value p-value
Year F-value θ λ = 0 λ = 68 F-value θ λ = 0 λ = 34

Σ : σ 2I Σ : σ 2I
1981 1.11 4.14 0.24 0.98 0.92 5.97 0.66 0.99
1982 1.06 3.81 0.35 0.99 0.78 5.52 0.89 1.00
1983 1.10 7.89 0.26 0.98 0.75 7.59 0.92 1.00
1984 0.97 6.97 0.57 1.00 0.78 7.74 0.90 1.00
1985 0.97 7.04 0.57 1.00 0.78 7.51 0.89 1.00
1986 0.97 6.79 0.58 1.00 0.79 7.38 0.88 1.00
1987 0.94 6.53 0.66 1.00 0.82 7.23 0.84 1.00
1988 1.01 7.03 0.46 1.00 0.81 7.55 0.86 1.00
1989 1.03 8.35 0.42 1.00 0.84 7.48 0.81 1.00
1990 1.04 8.11 0.38 1.00 0.86 7.42 0.78 1.00

Σ : diagonal Σ : diagonal
1981 1.39 10.35 0.01 0.70 1.21 10.27 0.14 0.87
1982 1.20 9.87 0.10 0.93 0.98 10.68 0.52 0.99
1983 1.28 9.64 0.05 0.86 0.88 10.04 0.73 1.00
1984 1.20 12.46 0.10 0.94 0.94 9.67 0.62 0.99
1985 1.15 11.85 0.16 0.97 0.94 9.33 0.61 0.99
1986 1.13 10.14 0.18 0.97 0.87 9.60 0.76 1.00
1987 1.06 9.46 0.34 0.99 0.87 9.10 0.75 1.00
1988 1.10 8.59 0.24 0.99 0.82 9.73 0.84 1.00
1989 1.11 10.04 0.23 0.98 0.86 9.49 0.78 1.00
1990 1.15 10.12 0.15 0.97 0.86 9.49 0.77 1.00

Σ : block Σ : full
1981 1.63 4.89 0.00 0.29 4.55 4.38 0.00 0.00
1982 1.34 4.75 0.02 0.78 3.80 5.10 0.00 0.00
1983 1.63 5.32 0.00 0.28 2.40 4.98 0.00 0.00
1984 1.52 2.24 0.00 0.45 1.75 4.80 0.00 0.18
1985 1.35 5.22 0.02 0.77 1.61 4.67 0.00 0.32
1986 1.41 5.81 0.00 0.66 2.49 5.37 0.00 0.00
1987 1.16 5.58 0.14 0.96 2.16 5.59 0.00 0.01
1988 1.04 6.05 0.38 1.00 2.01 5.72 0.00 0.04
1989 0.95 7.44 0.64 1.00 2.12 5.72 0.00 0.02
1990 0.95 7.34 0.63 1.00 2.17 5.53 0.00 0.01

H0 in this case. For the AR(3) model, with full disturbance covariance
matrix, the p-values for the pooling restrictions are very small. In this
case, the second weak MSE criterion also leads to rejecting pooling (see
table 18.7). Note that we are using asymptotically justified procedures
in relatively small samples. The procedures are asymptotically justified
because Σ has to be estimated and because of the presence of lagged
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dependent variables among regressors. There is an earlier literature on
the incorrect sizes of asymptotic tests indicating that these tests reject the
null hypothesis too often in finite samples. The simulations in subsec-
tion 2.2, however, indicate that asymptotic theory provides rather good
guidance in small samples. F-statistics neglecting the presence of residual
correlation are expected to reject the null hypothesis less often than they
should according to the nominal size. Therefore, we conclude that, on
the whole, the evidence from table 18.7 supports the pooling restrictions.

This conclusion is supported by the results given in table 18.8. For the
forecast period 1983–90, pooling leads to a substantial reduction in the
RMSFE for the AR(3) and the AR(3)LI model when a pooled GLS esti-
mator is used with, respectively, estimated full and block-diagonal covari-
ance matrices. For the forecast period 1983–90, GLS-based unpooled
forecasts perform slightly less [well] than OLS-based unpooled forecasts.

3 Conclusions

In this chapter, we studied the problem of whether forecasts of a set of
panel data generated by models with similar but not necessarily iden-
tical parameter structures can be improved by using pooled parameter
estimates. Results obtained by McElroy (1977) for a regression model
with non-spherical disturbances can be generalized in a straightforward
way to apply to systems of regression models used to study panel data
with large T and fixed N. The gain in forecast and estimator performance
measured by the reduction in MSFE or MSE results from a trade-off
between the bias implied by the use of (slightly) false pooling restric-
tions and the reduction in the covariance matrix of the estimators due to
imposing these restrictions. Moreover, as the sample size increases, the
covariance matrices of restricted and unrestricted estimates converge to
constant matrices but the bias of the restricted estimator (multiplied by√

n) increases without bound. Therefore, beyond some given sample size,
the forecasts based on unrestricted estimates will outperform the pooled
forecasts.

Our simulation results show that for small and moderate values of T,
reductions in MSFE can be achieved through pooling, even under param-
eter heterogeneity. The asymptotic properties of the pooling criteria put
forward by McElroy (1977) provide a fairly accurate insight into their
properties for finite T.

We applied these results to growth rates for eighteen OECD countries
for the periods starting in the 1950s until 1991 using models put for-
ward by Garcia-Ferrer et al. (1987) and Zellner and Hong (1989). Our
empirical findings can be summarized as follows.
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First, there is contemporaneous residual correlation in the form of a
block-diagonal structure corresponding to regional groups present in the
models for the eighteen countries.

Second, when formally tested using an estimated residual covariance
matrix, the pooling restrictions and the MSE criteria for pooling put for-
ward by McElroy (1977) are rejected only for the AR(3) model. They are
not rejected when a diagonal or an identity residual covariance matrix is
used. We should bear in mind that asymptotically justified F-test criteria
tend to reject too often in finite samples. Moreover, the pooling restric-
tions and MSE criteria for eighteen countries were jointly tested even not
allowing for individual fixed effects in the form of country-specific inter-
cepts. Comparing pooled and unpooled models using posterior odds is
probably a sensible alternative in relatively small samples to asymptoti-
cally justified test criteria.

Third, in actual forecasting, the median MSFE of OLS-based pooled
forecasts is found to be smaller than that of OLS-based individual fore-
casts. A fairly large sample size is needed for the OLS-based pooled fore-
casts to be outperformed by a forecast based on unrestricted estimates.
Using unpooled GLS with an estimated residual covariance matrix leads
to slightly improved forecast performance. Pooled GLS-based forecasts
have a much lower median MSFE than pooled OLS-based forecasts.
Although we did not present results for shrinkage procedures, we like to
note that shrinkage forecasts are convex combinations of individual and
pooled forecasts. Therefore, results for shrinkage forecasts lie between
the two polar cases of forecasts based on unrestricted estimates and
those based on pooled estimates. Our findings parallel results obtained by
Blattberg and George (1991). When modeling sales using a chain-brand
model, they found that GLS added little to their data, whereas pool-
ing and shrinkage estimation procedures provided superior estimates to
OLS. Finally, the question of whether restricting the contemporaneous
residual correlations to be the same within groups of countries and pos-
sibly across groups leads to further improvement of GLS-based pooled
forecasts remains to be investigated.

APPENDIX DATA

The data set used is an updated set as used by Min and Zellner (1993)
and consists of annual postwar data for eighteen OECD countries for the
period 1948–1990. The data are obtained from the main IMF Interna-
tional Financial Statistics Data Base and contain the following four vari-
ables – (1) real stock prices, (2) an index of nominal stock prices as price
index, (3) nominal money M1, and (4) GDP. Because of missing values
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and to make a fair comparison between the AR(3) model and the AR(3)LI
model, we included only those years that could be used to estimate both
models. The countries, with starting year given between parentheses,
are Australia (1956), Austria (1949), Belgium (1953), Canada (1955),
Denmark (1950), Finland (1950), France (1950), Germany (1950), Ire-
land (1948), Italy (1951), Japan (1953), the Netherlands (1950), Norway
(1949), Spain (1954), Sweden (1950), Switzerland (1953), the United
Kingdom (1957), and the United States (1955).
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19 Forecasting turning points in countries’
output growth rates: a response to Milton
Friedman (1999)

Arnold Zellner and Chung-ki Min

In our past work (Zellner, Hong, and Min, 1991), we used variants of
a simple autoregressive-leading indicator (ARLI) model and a Bayesian
decision theoretic method to obtain correct forecasts in about 70 per
cent of 158 turning point forecasts for eighteen industrialized countries’
annual output growth rates during the period 1974–86. IMF data for
1951–73 were employed to estimate our models that were then employed
to forecast downturns and upturns in annual growth rates for the period
1974–86. When Milton Friedman learned of our positive results, in a
personal communication he challenged us to check our methods with an
extended data set. This is indeed an important challenge since it is possi-
ble that we were just “lucky” in getting the positive results reported above.
Earlier, we recognized such problems in that we began our forecasting
experiments with just nine countries’ data and forecasted for the period
1974–81. Later, in Zellner and Hong (1989) and in Zellner, Hong, and
Min (1991), we expanded the number of countries from nine to eighteen
and extended the forecast period to 1974–86 to check that the earlier
positive results held up with an expanded sample of countries and data.
Fortunately, results were positive and now we report such new results
for eighteen countries’ revised data involving 211 turning point episodes
during the forecast period 1974–90.

In table 19.1, the results of forecasting 211 possible turning points in
eighteen countries’ growth rates for the period 1974–90 are compared
with earlier results for 158 turning point episodes in the same eighteen
countries’ growth rates for the period 1974–86. An upper turning point
episode is defined as two successive annual growth rates below a third
and the fourth either below the third, a downturn, or not below the third,
no downturn. In a lower turning point episode, two successive annual
growth rates are above the third and the fourth is either above the third,

Originally published in the Journal of Econometrics 88 (1999) 203–6. 0304-4076/99/$.
C© 1999 Elsevier Science SA. All rights reserved.
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Table 19.1 Forecasting turning points in rates of growth of real
output growth rates for eighteen industrialized countriesa

Model

Forecasts of 211 turning points,
rev. data, 1974–90b (percentage
of correct turning point forecasts)

Forecasts of 158
turning points,
1974–86c

A No pooling
1 TVP/ARLI 64 77
2 TVP/ARLI/WI 69 82
3 EW/ARLI 66 72
4 EW/ARLI/WI 67 76
5 FP/ARLI 64 74
6 FP/ARLI/WI 72 72

B With pooling
1 TVP/ARLI 74 74
2 TVP/ARLI/WI 78 80
3 EW/ARLI 73 76
4 EW/ARLI/WI 79 81
5 FP/ARLI 74 75
6 FP/ARLI/WI 80 79

Notes:
a The countries are: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Ireland, Italy, Japan, the Netherlands, Norway, Spain,
Sweden, Switzerland, the United Kingdom and the United States. A down-
turn is defined to occur when two successive growth rates are below the third
and the fourth in below the third while an upturn is defined to occur when two
successive growth rates are above the third and the fourth is above the third.
b See Zellner, Hong, and Min (1991) for information about models and fore-
casting technique.
c Taken from Zellner, Hong, and Min (1991, table 2, p. 288).

an upturn, or not above the third, no upturn. In part A of . . . table [19.1],
results for six different models estimated without pooling data across
countries are presented. It is seen that for the current case of 211 turning
point forecasts, the percentage of correct forecasts ranges from 64 to 72
while for the earlier case of 158 turning point forecasts, the percentage
correct ranges from 72 to 82. Thus for the relations fitted individually
without pooling, there appears to be a slight deterioration in performance.
However, when the countries’ relationships are fitted using pooling, the
percentages of correct forecasts shown in part B of table 19.1 are very
similar for cases of 211 and 158 turning point forecasts, namely 73–80
percent and 74–81 percent correct, respectively, for the earlier period
and data and for the latter period and revised data. As found in previous
work, use of Bayesian pooling techniques, here complete “shrinkage,”
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Table 19.2 Performance of naive forecasters and ARLI models in forecasting
211 turning points in eighteen countries’ output growth rates, 1974–1990

Forecastera

116 down turn/no down
turn forecasts (percentage
of correct forecasts)

95 up turn/no
up turn forecasts

211 turning
point forecasts

1 Eternal optimist 36 64 49
2 Eternal pessimist 64 36 51
3 Deterministic 64 64 64

four-year cycle
4 TVP/ARLI/WI 66 73 69
5 TVP/ARLI/WI 77 79 78

pooled

Notes:
a See text for descriptions of the forecast procedures used by the eternal optimist,
the eternal pessimist and the deterministic four-year cycle forecasters. TVP/ARLI/WI
denotes a time-varying parameter autoregressive leading indicator variable model that
includes a world income variable.

produces results that are better than those obtained from individually
fitted relations.

The results in table 19.1 indicate that our turning point methods work
well in both the old data set, 1974–86, and the revised, extended data
set, 1974–90. Also, in independent calculations for the current chapter,
Zellner, Tobias, and Ryu (1998), we have collected newly revised data
extending to 1995 for the eighteen countries in our sample and found
that our models and techniques for forecasting turning points continue
to perform well.

Regarding other aspects of our turning point forecasting procedure,
in our past work we compared the performance of our procedures with
that of several naive turning point forecasters, namely (1) an “eternal
optimist” who always forecasts “no down turn” and “up turn,” (2) an
“eternal pessimist” who always forecasts “down turn” and “no up turn”
and (3) a “deterministic four-year cycle forecaster” who always forecasts
“down turn” and “up turn”. (See table 19.2 for the performance of these
forecasters compared with the forecast performance of two of our ARLI
models.) As is evident, the ARLI models’ performance is superior to that
of these naive forecasters and also to that of a coin flipper as shown in table
19.3. This use of naive models in evaluating turning point forecasting
procedures parallels that of naive random walk and other such models that
Christ, Friedman, Nelson, Plosser, Cooper, and others have employed to
check the quality of macroeconometric and other models’ point forecasts.
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Table 19.3 Coin-flipper’s and models’ expected numbera

and actual number of turning points, 1974–1990

Unpooled Pooled
Model estimation estimation

1 TVP/ARLI 131 134
2 TVP/ARLI/WI 125 129
3 EW/ARLI 106 136
4 EW/ARLI/WI 106 131
5 FP/ARLI 128 131
6 FP/ARLI/WI 121 122
7 Coin-flipper 105.5 105.5
Actual number of turning points 135 135
Total number of cases 211 211

Note:
a The expected number of turning points for each model is the
sum of that model’s probabilities of turning points for the 211 cases
in which a turning point could occur.

We thank Milton Friedman for his constructive interest in our work
and hope that the results reported herein satisfy his curiosity. Also, that
the lagged rate of growth of real money is one of our important leading
indicator variables is compatible with much of Friedman’s well-known
theoretical and empirical research in monetary economics. Use of this and
other of our leading indicator variables was suggested by the fundamental
empirical research of Burns and Mitchell in their classic work [1946] . . .
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20 Using Bayesian techniques for data pooling
in regional payroll forecasting (1990)

James P. LeSage and Michael Magura

1 Introduction

This chapter adapts to the regional level a multi-country tech-
nique . . . used by Garcia-Ferrer, Highfield, Palm, and Zellner (1987)
(hereafter GHPZ) and extended by Zellner and Hong (1987) (hereafter
ZH) to forecast the growth rates in GNP across nine countries. We apply
this forecasting methodology to a model of payroll formation in seven
Ohio metropolitan areas. The technique applied to our regional set-
ting involves using a Bayesian shrinkage scheme that imposes stochastic
restrictions that shrink the parameters of the individual metropolitan-area
models toward the estimates arising from a pooled model of all areas. This
approach is motivated by the prior belief that all of the individual equa-
tions of the model reflect the same parameter values. Lindley and Smith
(1972) labeled this an “exchangeable” prior.

There are several reasons to believe that the multi-country,
exchangeable-priors forecasting methodology introduced by GHPZ will
be successful in our multi-regional setting. First, it is well known that
dependencies exist among regional economies. Numerous econometric
modeling approaches have been proposed to exploit this information.
Most multi-regional models take a structural approach, employing link-
age variables such as relative cost, adjacent-state demand, and gravity
variables. Ballard and Glickman (1977), Ballard, Glickman, and Gustely
(1980), Milne, Glickman, and Adams (1980), and Baird (1983) pre-
sented multiregional models of this type. LeSage and Magura (1986)
investigated a non-structural approach using statistical time series tech-
niques to link regional models. Second, as evidence for the existence

We thank an associate editor and two anonymous referees for helpful comments. In addition,
Arnold Zellner provided comments on an earlier draft of this chapter. This research was
supported by a grant from the Ohio Board of Regents Urban Universities Research Program
to the Urban Affairs Center at the University of Toledo.

Originally published in the Journal of Business and Economic Statistics 8(1) (1990), 127–
135. C© 1990 American Statistical Association.
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of interdependencies, GHPZ pointed to similar movements in real out-
put growth rates induced by broad business cycle swings across their
nine-country sample. We find similar comovements in payroll variation
across our seven metropolitan areas. The idea of shrinkage toward the
pooled estimates from all metropolitan areas is motivated by these pat-
terns of similar movement, which result in much contemporaneous cor-
relation between the individual time series. Finally, one problem with
many of the previously proposed procedures for linking regions is that
many variables that are highly correlated tend to enter these models. The
collinear relations may degrade the precision of the estimates and result
in poor forecasts. The shrinkage aspect of the exchangeable priors proce-
dure should improve forecasting performance, since our model likewise
exhibits collinear relations among the leading indicator variables used as
explanatory variables.

Our approach, like that of GHPZ, represents a “bottom-up” attempt
to build a simple model based on the time series properties of the pay-
roll data that will forecast well. This is in contrast to the metropolitan
payroll forecasting work of Liu and Stocks (1983), which we would
classify as “top-down.” They attempted to build elaborate models of
individual metropolitan economies to approach the multi-regional fore-
casting problem. One focus of this study then is to determine if the
same exchangeable-priors procedures employed by GHPZ and ZH (in a
multi-country setting) can produce superior forecasts in a multi-regional
setting.

Another focus of this study is to provide a more detailed analysis of
the sources of improvement in the forecasting performance of the GHPZ
approach to estimating the model. This GHPZ procedure can be viewed
as modifying the traditional ordinary least squares (OLS) estimator in
two ways. First, the procedure introduces multi-regional data informa-
tion about the linkages that exist between the regions by using the pooled
estimates as the mean of a Bayesian prior. Introducing this multi-regional
information should provide one source of improved forecasting perfor-
mance. Second, the shrinkage toward the pooled data prior mean pro-
duces a corresponding augmentation of the smallest eigenvalues of the
data matrix during estimation. It is well known (Belsley, Kuh, and Welsch
1980) that collinear relations of the type found among the explanatory
variables in these models will produce a data matrix with very small eigen-
values. Thus this augmentation may help stabilize the estimates and result
in better forecasts. Our analysis attempts to separate out the forecasting
value of these two aspects of the GHPZ procedure. We do this by compar-
ing the forecasting performance of the model estimated with the GHPZ
procedure to that of the model estimated using a simple ridge estimator.
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The ridge estimator allows shrinkage and the corresponding augmenta-
tion of the smallest eigenvalues of the data matrix to take place without
reference to the pooled data information, since this procedure pulls the
least squares estimates toward a prior mean of 0. The experiments car-
ried out here suggest that, for our sample of seven metropolitan payroll
models, the forecasts produced by ridge estimates of the model are equal
to or better than those produced by the GHPZ and ZH estimates.

The article proceeds as follows. Section 2 describes the model that is
based on a leading indicator approach to forecasting payroll. Section 3
briefly describes the techniques proposed by GHPZ and ZH and dis-
cusses their relation to the ridge estimator. Section 4 presents the results
from forecasting experiments based on five alternative approaches to esti-
mating the model. We compare the forecasts produced by the model using
least squares estimation, ridge estimation, and the two exchangeable-
priors Bayesian estimation procedures proposed by GHPZ (1987) and
ZH (1987). [Section 5 briefly concludes.]

2 Analysis of the data

The time series to be forecast represent quarterly total payroll of firms
covered by unemployment insurance in each of seven Ohio metropolitan
areas: Akron, Cincinnati, Cleveland, Columbus, Dayton, Toledo, and
Youngstown. Since all seven local governments collect quarterly payroll
taxes, their budget officials have a great deal of interest in payroll forecasts.
In many cases, the payroll tax revenue represents more than half of the
total budget of these local governments. Metropolitan-area payroll data
are available from the Ohio Bureau of Employment Services (OBES),
Labor Market Information (LMI) Division. One Ohio metropolitan area,
Canton, was excluded from this study because the quality of the sample
data for this region is suspect according to sources at the LMI Division.
The individual parameter estimates for the Canton area were drastically
different from those of all other areas, confirming the suspect nature of
these data. The data cover the period 1978[:1] through 1987[:3], and
are in nominal terms. These data were transformed to payroll growth
rates by taking first differences of the logged data. Following GHPZ,
the use of such transformed data in the estimation of the model results
in parameters for the individual metropolitan payroll equations that are
on the same order of magnitude. The requirement that the parameters
be comparable in magnitude is necessitated by the procedure’s attempt
to shrink the parameters of individual metropolitan relations toward the
pooled value of the parameter estimates for all seven metropolitan areas.



622 James P. LeSage and Michael Magura

0

0.15

0.1

0.05

0

−0.05

−0.1

−0.15
5 10 15

Time in quarters

G
ro

w
th

 r
at

es

20 25 30 35 40

Figure 20.1 Payroll growth rates for the metropolitan areas

Figure 20.1 shows a plot of the growth rates in payroll for the seven
metropolitan areas over the time period 1978:1–1987:3. It seems clear
that these regional economies exhibit similar patterns or comovements.
It is this information concerning common influences from seasonality,
business cycles, and so forth that the procedures proposed by GHPZ
attempt to exploit. The period covering 1979:1–1985:3 was used to esti-
mate the models and the data covering 1985:4–1987:3 was used to pro-
vide eight quarters of out-of-sample forecasting experience. A vertical
grid in the plot separates the forecast period from the period used to fit the
models.

The specification of the payroll model used here is based on a leading
indicator model for Ohio metropolitan-area employment developed by
LeSage and Magura (1987), the results of which [were] . . . published on
a monthly basis by the OBES beginning in 1989. The model is similar to
that of GHPZ in that it includes a number of leading indicator explanatory
variables.

Three different versions of the model to be discussed were used to
generate one-, two-, and three-step-ahead dynamic forecasts during the
out-of-sample period. The model that generated one-step-ahead forecasts
was based on two lags of the dependent variable and a set of leading indi-
cator variables that were lagged one period, the one-step-ahead version
of this model is

Pit = β0 + β1 Pit−1 + β2 Pit−2 + β3Sit−1 + β4Cit−1

+ β5Nit−1 + β6 Hit−1 + β7 At−1 + β8Lt−1 + εi t , (2.1)
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where i = 1, . . . , 7 denotes the seven metropolitan areas, Pit is payroll
in the ith city at time t, Sit is housing starts in the ith city at time t, Cit is
unemployment insurance initial claims in the ith city at time t, Nit is total
metropolitan employment in the ith city at time t, Hit is total metropolitan
average weekly hours in the ith city at time t, At is national domestic auto
sales at time t, Lt is the national index of twelve leading indicators at time
t, and εi t is a Gaussian disturbance term for city i at time t.

The appendix (p. 634) contains a description of the leading indicator
variables and the sources for these data. A detailed description of the
methodology used to determine the variables in the model and the spec-
ification of a second-order autoregression can be found in LeSage and
Magura (1987).

GHPZ and ZH considered only one-step-ahead forecasts. It was of
interest to see how their exchangeable-priors approach would perform
over longer forecast horizons, such as two or three steps ahead. To gen-
erate two-period-ahead forecasts, the same leading indicator explanatory
variables were used as in (2.1), but a two-period lag of these variables was
used. This allowed forecasts extending two steps ahead to be produced
without the need to develop separate equations to forecast the leading
indicator explanatory variables. A similar approach was taken with the
model that generated forecasts extending three steps ahead. These two
models are

Pit = β0 + β1 Pit−1 + β2 Pit−2 + β3Sit−2 + β4Cit−2

+ β5Nit−2 + β6 Hit−2 + β7 At−2 + β8Lt−2 + εi t , (2.2)

and

Pit = β0 + β1 Pit−1 + β2 Pit−2 + β3Sit−3 + β4Cit−3

+ β5Nit−3 + β6 Hit−3 + β7 At−3 + β8Lt−3 + εi t . (2.3)

The models in (2.1)–(2.3) represent an attempt to explain variation in
payroll growth rates by using “suites” of variables denoting national, local,
and autoregressive influences. The index of leading indicators and auto-
mobile sales reflect national influences, and metropolitan employment,
hours, unemployment claims, and housing starts reflect local influences.
The lagged payroll terms capture autoregressive influences.

Following GHPZ, the models in (2.1)–(2.3), along with some sim-
pler variants of these models, were estimated and forecast. The various
versions can be summarized as follows:
1. A naive model that used no change as a forecast; that is, P̂i t = 0

(labeled NM1 in table 20.1)
2. A naive model that used last period’s payroll growth rate as the forecast;

that is, P̂i t = Pit−1 (labeled NM2 in table 20.1)
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Table 20.1 Average root mean-squared error forecast (RMSE) of forecast
over 1985:4–1987:3

Model Akron Cincinnati Cleveland Columbus Dayton Toledo Youngstown

One-step-ahead forecasting model
NM1 3.00 2.93 2.71 2.35 2.62 3.17 2.39
NM2 6.17 5.08 5.06 3.35 4.33 4.75 4.07
AR2 2.97 1.91 2.56 1.96 2.20 3.79 2.43
NAT 2.56 1.27∗ 1.90 1.17∗ 1.39∗ 2.82∗ 2.34∗
Full-1 1.99∗ 1.86 1.77∗ 1.29 1.62 2.85 3.00

Two-step-ahead forecasting model
NM1 2.67 2.69 2.47 2.08 2.39 3.20 2.31∗
NM2 6.04 5.21 4.88 3.27 4.36 4.85 4.22
AR2 2.98 2.34 2.64 2.38 2.29 3.56 2.50
NAT 3.03 2.18 2.60 2.17 2.22 3.71 2.40
Full-2 1.18∗ 1.12∗ 1.49∗ 1.58∗ 1.93∗ 3.11∗ 3.05

Three-step-ahead forecasting model
NM1 2.67 2.76 2.47 2.11 2.48 3.27 2.48
NM2 5.90 5.24 4.76 3.23 4.40 4.67 4.46
AR2 2.98 2.37 2.78 2.17 2.24∗ 3.51 2.59
NAT 3.21 2.67 3.13 1.95∗ 2.33 3.78 2.58
Full-3 1.58∗ 1.50∗ 2.42∗ 2.09 3.11 2.79∗ 2.06∗

Note:
∗ The model with the smallest average RMSE for each forecast horizon.

3. An autoregressive model of order 2 – that is, consisting of a constant
term and two lagged values of payroll (labeled AR2 in table 20.1)

4. An autoregressive order 2 model plus the national index of lead-
ing indicators and domestic automobile production variables (labeled
NAT in table 20.1)

5. The full model from (2.1)–(2.3) (labeled Full-1, Full-2, and Full-3 in
table 20.1).

The simpler models represent an attempt to analyze by decomposition the
information content contained in the “suites” of variables representing
national, local, and autoregressive influences.

Table 20.1 presents a comparison of the forecasting ability of the alter-
native models for one-, two-, and three-step-ahead forecasting horizons.
The forecasts used to produce table 20.1 were generated by estimat-
ing the models with least squares using data from 1979:1 to 1985:3,
calculating a forecast, then updating the estimates with an additional
quarterly observation and calculating another forecast. This process of
updating the estimates before each forecast was continued until the end
of the sample in 1987:3. The one-step-ahead forecast average root-mean
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squared errors (RMSEs) were calculated by averaging eight one-quarter
forecasts extending from 1985:4 through 1987:3. The two-step-ahead
average RMSEs were based on the average of seven two-quarter forecasts,
and the three-step-ahead average RMSEs were calculated as the average
of six sets of three-quarter forecasts. The shorter forecast intervals arose
because the two-step-ahead model arrives at the end of the eight-quarter
forecast period after producing seven two-quarter-ahead forecasts and,
similarly, the three-step-ahead model reaches the end of the eight-quarter
forecast period after only six three-quarter-ahead forecasts.

In table 20.1 the model with the smallest average RMSE for each fore-
cast horizon is denoted by an asterisk. Examining the models that produce
the smallest errors, we see that the addition of national and local informa-
tion to the models greatly reduces the forecast error relative to the naive
and autoregressive models. For the one-step-ahead forecasting model,
the NAT model produced the lowest errors in five of seven cases and the
Full-1 model in the remaining two cases. For the two-step-ahead fore-
casting model, the Full-2 model produced the best forecasts for six of the
seven cities. The three-step-ahead models also demonstrated that better
forecasts were associated with the Full-3 model relative to the simpler
models, producing the best forecasts in five of the seven cities.

The experiments we carry out in section 4 use the forecasting perfor-
mance of the least squares estimated Full models from table 20.1 (along
with the best model when this is different from the Full model) as a
benchmark against which to compare the improvement in forecasting per-
formance produced by models estimated with the ridge and the GHPZ
and ZH techniques. Note that, with regard to any enumeration of which
model is best, some of the average percentage RMSEs are not very dif-
ferent from one model to the next, making any type of counting scheme
somewhat deceptive.

3 The Bayesian pooling technique

This section describes and motivates the exchangeable-priors Bayesian
techniques for pooling data information introduced by GHPZ and mod-
ified by ZH. These procedures are described with reference to our
metropolitan-area payroll models.

The GHPZ estimator is composed of the following formulation. Let
Xi denote the matrix of explanatory variables in the ith metropolitan area
and Yi be the dependent variable vector for payroll in city i. Using this
notation,

β̂GHPZ
i = (X ′

i Xi + λi I)−1(X ′
i Xi β̂ i + λi β̃), (3.1)
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where β̂ i is the least squares estimate for metropolitan area i and β̃ is a
pooled estimate:

β̃ = (X ′
1 X1 + X ′

2 X2 + · · · + X ′
7 X7)−1

× (X ′
1Y1 + X ′

2Y2 + · · · + X ′
7Y7). (3.2)

The expression for β̃ is a matrix-weighted average of the individual
metropolitan data information that compactly summarizes the data vari-
ation occurring at the metropolitan level. This average summary infor-
mation about the rest of the region is then mixed with the data con-
tained in the Xi data matrix and Yi vector for the ith metropolitan area
to achieve the Bayesian estimate for the ith model. Equation (3.1) shows
that the mixing of this information is again a matrix-weighted average
of the information for the individual areas contained in Xi and Yi with
the pooled information contained in β̃. The λi parameter controls the
relative weighting of the two types of information, that pertaining to the
individual metropolitan area and that representing all areas pooled. This
parameter can be given an interpretation as the relative confidence in
the two types of information. Thus, as λi → ∞ , the individual estimates,
β̂GHPZ

i , approach the pooled estimate, β̃; on the other hand, for very small
values of λi the β̂GHPZ

i estimates for city i approach β̂ i, the least squares
estimates based solely on the individual metropolitan-area information.

The value of λi was set for each equation by conditioning on the value
of λi for which the RMSE was at a minimum; that is, we generated fore-
casts for a range of settings of the λi parameter for each metropolitan area
and chose the value of λi that produced the minimum average percent-
age of RMSE over the eight-quarter forecast period. Since our objective
function was to produce a forecasting model, this procedure is not unrea-
sonable. This represents a generalization of the procedure suggested by
GHPZ, since they used a single λ value for all countries in their sample.
The generalization was later incorporated by ZH [1987]. It seems appro-
priate to use this approach because it should provide better forecasts by
lessening the restriction imposed by choosing a single setting for the λ

parameter for all of the metropolitan areas.
One point to note here is that a proper forecasting procedure would

require that the value of λi be determined a priori rather than ex post.
This might be done using forecasted realizations over some time period
near the end of the available data sample. The optimal settings for the
λi parameters determined in this way could then be used in the fore-
casting of future values. Our experience indicates that these parameters
are not overly sensitive to the addition of a small number of observations,
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suggesting that there may be no need to recalibrate the model with respect
to the λi over short time intervals.

If we alter the estimator β̂GHPZ
i to shrink towards a vector of 0 instead

of the β-pooled estimate, we would have the traditional ridge estimator,

β̂
ridge
i = (X ′

i Xi + λi I)−1(X ′
i Xi β̂ i ). (3.3)

The ridge estimator could be given the same Bayesian interpretation as
that of the GHPZ estimator but with a prior mean of 0 for the coeffi-
cient estimates. It is well known that in cases of severe collinearity the
ridge estimator tends to outperform least squares. It does so by arbitrar-
ily increasing the smallest eigenvalues in the data matrix X ′X using the λi
parameter. One aspect of the GHPZ estimator is that it likewise performs
this augmentation with a similar λi parameter. This reduces the ill con-
ditioning associated with the least squares problem and creates estimates
that are more stable and of greater precision.

We believe that an important question concerning the procedures pro-
posed by GHPZ is: To what extent is the augmentation of the small
eigenvalues that occurs in their estimator responsible for the improved
forecasting performance? The importance of this question is that if the
augmentation introduced by ridge estimation can produce forecasts of
equal or better quality than the GHPZ procedure, it would be much sim-
pler to implement computationally. Since ridge would seem to be a simple
cousin of the estimator family in which the GHPZ estimator resides, it is
curious that GHPZ did not explore this issue. In addition, if ridge pro-
duces forecasts of equal or better quality, it is indicative that augmentation
of small eigenvalues without reference to the pooled data prior mean can
accomplish the task of improving forecasting performance.

ZH proposed some modifications to the GHPZ procedure. They fol-
lowed the “g-prior” approach of Zellner (1983, 1986) and arrived at the
modified estimator

βZH
i = (β̂ i + γi β̃)/(1 + γi ). (3.4)

This modification produces an estimator that is a simple weighted average
of the least squares β̂ i and the pooled β̃ estimates with a weighting factor
of γ i.

This estimator does not augment the smallest eigenvalues in the data
matrix and is different from the GHPZ estimator in this regard. This
is an important point, since it suggests that the ZH estimator would
not benefit from the augmentation of small eigenvalues inherent in the
GHPZ or ridge estimators. An examination of the relative forecasting
performance arising from these separate procedures may shed some light
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on the question we address concerning the value of augmenting the small
eigenvalues.

Note that the ZH procedure can be viewed just as the GHPZ in that
the γ i parameter moves the estimate outcomes between the pooled, β̃,
and the least squares, β̂ i, magnitudes, the difference being that the ZH
procedure does not augment the data matrix during this movement.

4 A comparison of the forecasts

In this section, we estimate the models shown in (2.1)–(2.3) in section
2 using five different procedures: GHPZ, ZH, OLS, ridge, and pooling.
The pooled estimates were derived by using (3.2); that is, the data for
each metropolitan area were “stacked” to form a single Y vector and X
matrix containing all observations. A single β̃ vector is estimated using
least squares on this pooled data.

Before presenting the results of these forecasting experiments, we con-
sider the collinearity problem. A collinearity diagnostic procedure sug-
gested by Belsley Kuh, and Welsch (1980) was employed to determine
whether nearlinear dependencies existed between the columns of the
explanatory variables matrix in the metropolitan-area models. This tech-
nique produces a variance-decomposition-proportions table based on a
singular-value decomposition of the data matrix Xi for each metropolitan
area. A necessary condition for a severe collinearity problem is indicated
by a maximum-condition index (which represents the ratio of the largest
eigenvalue to the smallest eigenvalue of the data matrix X) in excess of
30. Since the largest condition index reflects the ratio of the largest to the
smallest eigenvalue in the data matrix, an index in excess of 30 indicates
that the smallest eigenvalue is 1/30th the size of the largest eigenvalue.
For the X ′X matrix of least squares, the eigenvalues would be those of the
X matrix squared, so the relative sizes associated with a condition index
of 30 would indicate that the smallest eigenvalue is 1/900th the size of
the largest. The maximum-condition indexes for our seven metropolitan-
area data sets were in excess of 90 for every metropolitan area, indicating
that the smallest eigenvalue in the X ′X matrix is 1/8,100th the size of the
largest. For the worst-conditioned metropolitan areas, where the con-
dition index is on the order of 175, we have a smallest eigenvalue for
our X ′X least squares matrix that is 1/30,000th the size of the largest.
Thus the use of estimators that augment the small eigenvalues in the X ′X
matrix could be useful in stabilizing the estimates and thereby improving
forecast accuracy. It seems likely that collinearity would present a poten-
tial problem for most models of the type examined here and in GHPZ.
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Table 20.2 Average root mean-squared error forecast (RMSE) of forecast
over 1985:4–1987:3 using pooled and other models

Model Akron Cincinnati Cleveland Columbus Dayton Toledo Youngstown

One-step-ahead forecasting model
Best 1.99 1.27∗ 1.77 1.17∗ 1.39∗ 2.82 2.34
Full 1.99∗ 1.86 1.77 1.29 1.62 2.85 3.00
GHPZ 2.02 1.57 1.73∗ 1.19∗ 1.59 2.87 2.71
ZH 2.00 1.32 1.73∗ 1.29 1.53 2.85 2.78
Pool 2.41 1.56 2.14 1.24 1.65 3.02 2.71
Ridge 1.99 1.37 1.77 1.23 1.47 2.54∗ 2.30∗

Two-step-ahead forecasting model
Best 1.18 1.12 1.49 1.58 1.93 3.11 2.31
Full 1.18 1.12 1.49 1.58 1.93 3.11 3.06
GHPZ 1.15∗ 1.10 1.21 1.09 1.82 2.92 2.46
ZH 1.18 1.09∗ 1.18∗ 1.57 1.90 2.85 2.35
Pool 1.28 1.11 1.45 1.07 1.82 2.96 2.85
Ridge 1.21 1.09∗ 1.19∗ 1.03∗ 1.66∗ 2.43∗ 1.77∗

Three-step-ahead forecasting model
Best 1.59 1.51 2.42 1.95 2.39 2.80 2.06
Full 1.59∗ 1.51 2.42 2.09 3.11 2.80 2.06
GHPZ 1.87 1.29 2.38 1.45 2.35 2.75 2.26
ZH 1.59 1.38 2.03∗ 1.93 2.43 2.69∗ 2.02∗
Pool 2.15 1.29∗ 2.50 1.43 2.31 2.84 2.70
Ridge 1.59 1.38 2.16 1.30∗ 2.04∗ 2.74 2.03∗

Note:
∗ The model with the smallest average RMSE for each forecast horizon.

We now turn to a discussion of the forecasting experiments. These
experiments involved estimating the three models shown in (2.1)–(2.3)
and producing one-step-ahead, two-step-ahead, and three-step-ahead
forecasts with the various estimation procedures. In implementing the
GHPZ and ZH procedures, we varied the value of the individual λi and
γ i parameters for each metropolitan area over a large range of values,
producing forecasts over the entire eight-quarter horizon for each set-
ting of this parameter. The average RMSE of the forecasts were used to
determine an “optimal” setting for these parameters in each city. More
specifically, for the two- and three-step-ahead forecasting models, we
averaged over the error of the two- and three-quarter horizon forecasts
to determine the best value for these parameters.

The average RMSE results of our out-of-sample forecasting experi-
ments are reported in table 20.2. To focus on the relative performance of
the proposed procedures with that of the estimators shown in table 20.1,
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we have replicated the best out-of-sample forecast from table 20.1 in
table 20.2 and labeled it “Best.” In addition, we replicate the Full model
least squares forecast RMSE from table 20.1 in table 20.2 to facilitate a
comparison of how much improvement the alternative procedures yield
relative to this model.

We chose to define a clear-cut advantage as at least an average RMSE
difference of 0.03, which is somewhat arbitrary. Given that all of the aver-
age RMSE magnitudes in table 20.2 lie between 1.0 and 3.06, the 0.03
magnitude reflects a reduction in average RMSE of more than 1 percent
but less than 3 percent. Another point to note when examining table
20.2 is that the ridge, GHPZ, and ZH techniques collapse on the least
squares procedure as λi → 0. When our optimal setting for this parameter
converges to 0, we should, of course, count the least squares estimator
(labeled “Full” in table 20.2) as producing the best forecasts. Similarly,
the GHPZ and ZH techniques collapse on the pooled estimate as λi → ∞,
in which case we should credit the pooled estimator (labeled “Pool” in
table 20.2) with producing the best forecasts. Using these criteria, we
can summarize the table 20.2 results in the following way: In the one-
step-ahead model, ridge was a clear-cut winner in two out of seven cities,
and GHPZ and ZH tied in one out of seven cities. In the two-step-ahead
model, ridge was a clear-cut winner in four out of seven cities, ridge and
ZH tied in two out of seven cities, and GHPZ was a clear-cut winner in
one out of seven cities. In the three-step-ahead model, ridge was a clear-
cut winner in two out of seven cities, ZH was a clear-cut winner in two
out of seven cities, and ZH and ridge tied in one out of seven cities.

Table 20.2 and the preceding summary indicate that the ridge estimator
provided forecasting performance equal to or better than the techniques
of GHPZ and ZH. From these results, it seems clear that there are poten-
tial gains to be had from adopting a technique that arbitrarily augments
the small eigenvalues in these types of models. It is somewhat interesting
that the ZH technique, which does not augment the eigenvalues, pro-
duced forecasting results that equal the ridge technique in three of the
cases summarized. This issue needs further study.

A graphical depiction of the RMSEs for various λi settings for the two-
step-ahead version of the model are shown in figures 20.2–20.8. The
graphs for these models represent only one of the three versions of the
model used to produce the results in table 20.2, but the graphs for the
other versions are similar. Note that the numbers on the horizontal axes
do not reflect the actual values of λi, since the magnitudes of these dif-
fered for each of the estimation procedures. The ticks on the horizontal
axes merely reflect different values of λi, allowing us to track the RMSE
of forecasts on the vertical axes as we vary these values for the different
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Figure 20.2 Forecast performance and the λ settings: Akron
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Figure 20.3 Forecast performance and the λ settings: Cincinnati

estimation procedures. The horizontal solid line in each metropolitan-
area graph represents the average two-step-ahead RMSE for the least
squares model, and the horizontal dashed line represents that for the
pooled model. As we would expect, the GHPZ, ZH, and ridge models
approach the least squares results in each metropolitan area for low set-
tings of λ. Moreover, the GHPZ and ZH models approach the pooled
results for large λ settings; the graph for the Dayton area makes this par-
ticularly clear.
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Figure 20.5 Forecast performance and the λ settings: Columbus

Given the RMSE information in table 20.2, we would expect to see
three patterns emerging in the graphs. One pattern would be that in which
the forecasting performance of ridge is clearly superior. We see this in
three of the seven metropolitan areas, Dayton, Toledo, and Youngstown.
A second pattern would be that where the GHPZ and ZH procedures
produce superior forecasts. This occurs in only one case, Akron. Finally,
there would be a pattern in which ridge, GHPZ, and ZH produce essen-
tially the same forecast. We see this in three metropolitan areas, Cincin-
nati, Cleveland, and Columbus.
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5 Conclusions

The forecasting performance associated with the exchangeable-priors
estimation techniques proposed by GHPZ [1987] and ZH [1987] were
compared with that arising from a simple ridge estimator using a model of
local payroll formation. An important finding was that the ridge estima-
tor produces forecasts equal to or better than the estimators proposed by
GHPZ and ZH. We feel that GHPZ and ZH overlooked ridge estimation,
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which appears to be an important competing technique for these types
of multi-regional or multi-country models in which severe collinearity
exists.

This suggests that the value of the pooled data information may be
limited in some circumstances. GHPZ may have incorrectly attributed the
improved forecasts to the shrinking toward the pooled estimates, when
in fact our findings indicate that, for our data set, shrinkage toward a
vector of zeros (ridge) can produce forecasts equal to or better than those
generated by shrinkage toward the pooled estimate (GHPZ and ZH).

Finally, we believe that the procedures introduced in the original multi-
country studies of GHPZ [1987] and ZH [1987] represent valuable
approaches to compactly summarizing multi-regional information among
national or local regions. We do, however, feel that the findings of this
study suggest an important role for the ridge estimator as a benchmark
against which to judge the relative performance of the new techniques
proposed by GHPZ and ZH.

APPENDIX DATA AND DATA SOURCES

Total payroll

Total payroll for the metropolitan areas of Akron, Cleveland, Cincinnati,
Columbus, Dayton, Toledo, and Youngstown is the product of quar-
terly metropolitan data on non-agricultural employment, quarterly aver-
age hourly earnings, and quarterly average hours. The source is Labor
Market Review, a monthly publication of OBES, LMI Division.
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Average manufacturing workweek (hours)

Average manufacturing workweek measured in hours for the seven areas
is the average weekly hours worked in the manufacturing sector. The
source is Labor Market Review, a monthly publication of OBES, LMI
Division.

Initial claims for unemployment insurance

Initial claims for unemployment insurance is the total initial claims under
Ohio law for each of the metropolitan areas. For purposes of maintaining
consistency in the data, the following claims-office reports were used to
construct the claims in each metropolitan area:
1. Akron: Akron and Barberton
2. Cincinnati: Cincinnati and Cincinnati Roselawn (District 2)
3. Cleveland: Cleveland Downtown, South, and East
4. Columbus: Columbus East, North, and West
5. Dayton: Dayton
6. Toledo: Toledo and Toledo Southwyck
7. Youngstown: Youngstown
The source is “Selected Unemployment Compensation Workload
Items,” form RS 237.1, OBES, LMI Division.

Domestic automobile production

This is the monthly, annualized number of domestic automobiles pro-
duced in the United States. The source is Cambridge Planning Associates
(data base service for RATS econometric package).

Index of 12 leading economic indicators

The national index of 12 leading indicators is the composite index con-
structed by the Bureau of Economic Analysis (BEA), US Department of
Commerce. The source is Business Conditions Digest, a publication of the
BEA.

Housing permits dollar valuation

The dollar value of housing permits is the total value of housing autho-
rized by building permits in each of the metropolitan areas. The source
is Construction Reports: Housing Authorized by Building Permits and Public
Contracts, a monthly publication of the US Department of Commerce.
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Note that since this publication no longer contains housing permit valua-
tion for Akron, Canton, Dayton, Toledo, and Youngstown, Robert Bene-
dict of the Building Permits Branch of the Department of Commerce
was contacted to obtain photocopies of the data for these five areas. Line
109, “Total New Residential,” was used. Further, data for the Cincinnati
and Cleveland metropolitan statistical areas include only Cincinnati and
Cleveland (i.e. they exclude Hamilton and Akron).
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21 Forecasting turning points in metropolitan
employment growth rates using Bayesian
techniques (1990)

James P. LeSage

1 Introduction

Zellner, Hong, and Gulati (1990) and Zellner and Hong (1989) for-
mulated the problem of forecasting turning points in economic time
series using a Bayesian decision theoretic framework. The methodology
was . . . applied by Zellner, Hong, and Min (1990) (hereafter ZHM) to a
host of models to forecast turning points in the international growth rates
of real output for eighteen countries over the period 1974–86. They com-
pared the performance of fixed parameter autoregressive leading indicator
models (FP/ARLI), time-varying parameter autoregressive leading indi-
cator models (TVP/ARLI), exponentially weighted autoregressive lead-
ing indicator models (EW/ARLI), and a version of each of these models
that includes a world income variable – FP/ARLI/WI, TVP/ARLI/WI,
EW/ARLI/WI. In addition, they implemented a pooling scheme for each
of the models. A similar host of models is analysed here in order to assess
whether these techniques hold promise for forecasting turning points in
regional labor markets.

The innovative aspect of the ZHM study is not the models employed,
but the use of the observations along with an explicit definition of a
turning point, either a downturn (DT) or upturn (UT). This allows for a
Bayesian computation of probabilities of a DT or UT given the past data
from a model’s predictive probability density function (pdf) for future
observations. After computing these probabilities from the data, they can
be used in a decision theoretic framework along with a loss structure
in order to produce an optimal turning point forecast. The focus here
is on an analysis of the turning point forecasting performance of the
models given a relatively simple symmetric loss structure. Since ZHM
report results for their model on the basis of this type of loss structure, it
provides a benchmark against which to judge the success of these types
of models in the regional forecasting setting studied here.

Originally published in the Journal of Regional Science 30(4) (1990), 533–48.
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There are a number of reasons to believe that the multi-country fore-
casting methodology, first introduced by Garcia-Ferrer et al. (1987) and
employed in the ZHM study, will be successful in our multi-regional
setting. First, it is well known that dependencies exist among regional
economies. Numerous econometric modeling approaches have been pro-
posed to exploit this information. Most multi-regional models take a
structural approach, employing linkage variables such as relative cost,
adjacent-state demand, and gravity variables (e.g. Ballard and Glickman
1977, Ballard, Glickman, and Gustely 1980, Milne, Glickman, and
Adams 1980 and Baird 1983). Second, as evidence for the existence
of interdependencies, ZHM point to similar movements in real out-
put growth rates induced by broad business cycle swings across their
eighteen-country sample. Similar comovements in metropolitan employ-
ment variation exist across the eight metropolitan areas used here. Finally,
LeSage and Magura (1990) show that the Bayesian shrinkage techniques
employed in Garcia-Ferrer et al. (1987) produce good payroll forecasts
(in terms of RMSE) using a set of metropolitan-area models incorporat-
ing similar variables to those employed here and metropolitan-area data
for seven of the eight areas used in this study.

Our approach, like that of Garcia-Ferrer et al. (1987), represents a
“bottom-up” attempt to build simple models based on the time series
properties of the employment data that will forecast well. This is in con-
trast to the work of Liu and Stocks (1983), which I would classify as
“top-down.” They attempt to build elaborate models of the individual
metropolitan-area economies in order to approach the multi-regional
forecasting problem. One focus of this study, then, is to determine if
the procedures employed by Garcia-Ferrer et al. (1987) and ZHM (in a
multi-country setting) can produce accurate forecasts of turning points
in a multi-regional setting.

The findings indicate that these simple models correctly forecast 70
percent of the downturns and 80 percent of the upturns. In addition,
the comparison of five model specifications and five estimation methods
shows that variation in turning point forecasting accuracy is much greater
across the estimation methods than across the model specifications. This
suggests that from an applied standpoint, the gains from exploring alter-
native methods of estimating regional leading indicator models are much
greater than those from changing the variables used in specifying the
models. Some caveats associated with this inference are mentioned in the
concluding section.

In section 2 of the chapter, I explain the data and models along with
a brief recap of the Bayesian turning point methods of Zellner and
Hong (1989). In section 3, I present the results from the turning point



Forecasting metropolitan turning points 639

forecasting analysis. In addition, I make a comparison between the turn-
ing point forecasting accuracy from the host of models studied here and
a set metropolitan-area leading indicators published by the Ohio Bureau
of Employment Services [OBES], Labor Market Information Division
[LMI] (1989). Finally, in section 4 I provide a summary of the results
and some concluding remarks.

2 Models and methods

In this chapter, I will analyse a host of alternative autoregressive leading
indicator models for explaining variation in the growth rates of employ-
ment over time for each metropolitan area. The models are based on
quarterly data covering the period from . . . 1976[:I] to . . . 1989[:I].1 All
variables are transformed by seasonal differencing to eliminate seasonal-
ity and converted to annual rates of growth as described in the appendix
(p. 652). Figure 21.1 shows a box plot of the employment growth rates
for the eight metropolitan areas in Ohio, demonstrating that a great deal
of comovement in the rates exists across the regions.2 This comovement
is similar to that found by Garcia-Ferrer et al. (1987) for the international
data sample. A vertical bar in figure 21.1 delineates the part of the data
sample used for estimation (1976:I to 1983:I) and the part used for the
forecasting experiments (1983:II to 1989:I).

As explanatory variables for the employment (EMP) growth rates,
two types of leading indicator variables are used in the study: (1)
metropolitan-area-specific leading indicator variables such as housing
permits (HOUSE), average workweek in manufacturing (HOURS), and
initial claims for unemployment insurance (CLAIMS); and national lead-
ing indicator variables: domestic automobile sales (AUTO) and the index
of twelve leading indicators (LEAD). These variables were used in the
development of leading indicator series for employment in the eight Ohio
metropolitan areas published by the Ohio Bureau of Employment Ser-
vices. LeSage and Magura (1987) provide a detailed discussion of the

1 The quarterly data represent averages of monthly values which were available for all of
the time series used here.

2 A box plot shows a box formed by using the 75 percent quartile of the eight time series as
the top of the box and the 25 percentile quartile as the bottom. The median of the series
is used as the middle of the box. The lines extending out of the box at the top (called
“whiskers”) range up to the largest value of the eight time series and that extending from
the bottom range down to the smallest value. The intent of this type of plot is to easily
show the extent to which the time series exhibit similar movements over time. Very small
boxes illustrate a high degree of comovement, whereas large boxes denote a lack of such
comovement.
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development of these composite indices, and the appendix describes these
variables and their sources in detail.3

A simple model which provides a benchmark against which to judge the
improvements arising from the introduction of leading indicator variables
is an autoregressive model of order three (AR3) in employment. Zellner
and Hong (1990) provide a convincing argument for the use of an AR3
model in order to allow for the possibility of having two complex roots
and a real root for the process. They perform calculations that show high
posterior probabilities for the presence of two complex roots and one real

3 It might seem plausible to use the composite leading indices themselves as explanatory
variables in the model. I would advise against this for the following reason. Labeling the
composite leading indicator series ȳt, and the state of the economy variable yt, the relation
between these two variables would be, yt+1 = ȳtγ + ε, where the scalar parameter γ is
included to indicate that the composite index ȳ may not be of the same scale as the variable
y and the error vector ε is included to denote errors in accurately predicting the future
values of y. Given this, it would be inappropriate to include this variable in a model with
lagged (autoregressive) terms for yt unless the composite leading indicators were devised
to reflect the marginal relationship with the state of the economy variable after factoring
out autoregressive influences. The leading indicators used here, developed by LeSage
and Magura (1987), were not developed in such a manner. Moreover, the relationship
expressed in (2.1) most likely reflects the general case for composite leading indicator
series.
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Table 21.1 Leading indicator variables used in the models

Model EMPLAG HOUSE HOURS CLAIMS AUTO LEAD

AR3 (autoregressive order 3) X
LLI (local leading indicator) X X X X
NLI (national leading X X X

indicator)
CLI (combined local/ X X X

national)
ALL (all leading indicator) X X X X X X

root in the fixed parameter autoregressive leading indicator (FP/ARLI)
model for each of the eighteen countries in their sample.

The FP/ARLI model in which the leading indicator variables were used
is shown below

yit = x′
i tβi + uit (t = 1, 2, . . . , T; i = 1, 2, . . . ,), (2.1)

where the index i denotes which of the eight metropolitan areas is mod-
eled. The vector xit in (2.1) contains three lags of the employment growth
rate (EMPLAG) as well as one-quarter lagged values of various combi-
nations of the leading indicator variables: dollar value of housing permits
issued (HOUSE), average workweek in manufacturing (HOURS), ini-
tial claims for unemployment insurance (CLAIMS), domestic auto sales
(AUTO), and the index of twelve national leading indicators (LEAD).
Alternative combinations of these variables were used to form five dif-
ferent specifications shown in table 21.1. The use of one-quarter lagged
values allows the model to produce one-quarter-ahead forecasts, which
will be the focus of our turning-point forecasting analysis.

The alternative specifications were chosen in order to investigate some
issues that seemed of interest. First, the AR3 model will be used as a
benchmark against which to judge the value of the leading indicator vari-
ables in forecasting turning points. Second, the LLI and NLI models
were specified in order to investigate whether local leading indicators
alone or national leading indicators alone could produce adequate fore-
casts. The CLI specification represents a parsimonious version of the
ALL model containing a single national and local leading indicator vari-
able. The choice of the two variables used in the CLI model, CLAIMS
and LEAD, was based on some experimentation in order to find which
two variables produced the best turning point forecasts.

All five specifications of the model were estimated with ordinary least
squares [OLS] and forecasted in order to produce a set of five fixed
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parameter (FP) one-quarter-ahead forecasts, which we label FP/AR3,
FP/LLI, FP/NLI, FP/CLI, and FP/ALL. The approach taken was to
iteratively estimate and calculate one-step-ahead forecasts based on the
updated parameter estimates using the most recently available data. This
iterative scheme of estimation and forecasting was carried out over the
period from . . . 1983[:I] to . . . 1989[:I], producing a total of twenty-four
one-step-ahead forecasts for each of the eight metropolitan areas.4

Following ZHM, the five specifications were also estimated and forecast
using a time-varying parameter (TVP) method taking the form shown in
(2.2). This represents a random-walk scheme for the parameter move-
ment over time in order to investigate whether the turning point forecast-
ing performance of the models is improved by allowing the parameters
to change.

yit = x′
itβi t + uit (t = 1, 2, . . . , T; i = 1, 2, . . . , N)

βi t = βi−1 + vit . (2.2)

In (2.2) the vits are assumed independently and identically normally dis-
tributed with zero mean and covariance matrix φσ 2

i Ik, where 0 < φ < ∞.
Small values of φ reflect very little variation in the parameters over time,
whereas large values allow for rapid adjustments in the β is over time.

The uits in (2.2) are assumed to be independent and normal with a zero
mean and variance σ . ZHM show that, assuming the prior distribution
for β i0 is taken to be a spread out normal distribution with a zero mean,
further assuming that σ has an inverted gamma pdf with small values
for its parameters, ν0 and s0, p(σ |ν0, s 2

0) ∝ σ−(ν0+1) exp[−νs 2
0/2σ 2], the

updating equations shown in (2.3) can be used to estimate the parameters
for the TVP model

β̂ i t = β̂ i t−1 + Vit−1xt(yt − x′
t β̂ i t−1)/(1 + x′

t Vit−1xt)

Vit = Vit−1 − Vit−1xt x′
t Vit−1/(1 + x′

t Vit−1xt) + φ Ik. (2.3)

The TVP estimates were used to produce the one-step-ahead forecasts
based on ŷi t+1 = x′

i t+1β̂ it. The TVP method was applied to all five specifi-
cations of the model, resulting in a set of forecasts which for presentation
purposes we will denote: TVP/AR3, TVP/LLI, TVP/NLI, TVP/CLI, and
TVP/ALL. The value of φ in (2.3) was set in order to produce a minimum
for the median of the eight metropolitan area RMSEs of one-step-ahead
forecasts over the 1983 to 1989 period for each of the five specifications.
The selected values of φ were all between 0.6 and unity, reflecting a fair

4 The first quarter of 1983 represented the last data point used in estimation with the
forecasts beginning in . . . 1983[:II] and extending to . . . 1989[:I], for a total of 24
one-quarter-ahead forecasts.
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degree of parameter variability over time. The values of φ found by ZHM
were all between 0.01 and 0.30, reflecting less parameter variation.

In addition to the least squares and TVP estimation methods, an
exponential-weighting estimation method was employed. This method
downweights or discounts the observations in the data sample that occur
in the distant past. Since the parameter estimates arising from this estima-
tion method place more weight on the recent observations, the estimates
can adapt the values to recent local changes in the data. This method
was suggested by West, Harrison, and Migon (1985) in order to model
situations where the parameters are thought to be changing through time.
This model is shown in (2.4), with the estimation formulas in (2.5). We
designate the forecasts from these procedures as: EW/AR3, EW/LLI,
EW/NLI, EW/CLI, and EW/ALL√

WitYit =
√

Wit Xitβi + εit, (2.4)

where

β̂ it = (X ′
itWt Xit)−1 X ′

itYit Wit =



1 0 0 · · · 0
0 µ 0 · · · 0
0 0 µ2 · · · 0
. . . . .

. . . . .

. . . . .

0 0 0 · · · µt−1


. (2.5)

The time subscripts on the GLS estimator in (2.5) simply denote that
data through time period t were used in the vector Yit and matrix Xit in
order to estimate the parameters β i t used at time t to produce a one-step-
ahead forecast. The lack of subscript i on the weighting matrix Wt denotes
that a single value of µ was used for all eight metropolitan-area models.
The parameter µ was set at a value of 0.95, since this value produced a
minimum value for the median RSMEs of one-step-ahead forecasts over
the 1983 to 1989 period for the eight metropolitan areas for all five model
specifications.

Finally a simple pooling scheme, where the parameters from all eight
metropolitan-area equations were assumed to be the same, was employed
to estimate and forecast the models. The pooling scheme was applied to
the fixed parameter and exponential weighting estimation methods for all
five specifications, producing sets of forecasts, which I label: FP/AR3/PO,
FP/LLI/PO, FP/NLI/PO, FP/CLI/PO, FP/ALL/PO, and EW/AR3/PO,
EW/LLI/PO, EW/NLI/PO, EW/CLI/PO, EW/ALL/PO, respectively.

As noted above, the innovative aspect of the ZHM study is the use of
the observations along with an explicit definition of a turning point. This
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allows a Bayesian computation of the probability of a turning point for
future observations from a model’s predictive . . . [pdf]. The emphasis
in ZHM is on the ability of a model to forecast turning points as well as
on the role that loss structures play in determining an optimal forecast
in this regard. After computing the probability of a turning point, these
probabilities can be used in a decision theoretic framework to produce an
optimal turning point forecast and to study the impact of the various loss
structures upon this optimal forecast. In this study, we abstract from the
loss structure aspect of the problem by relying upon a simple symmetric
loss function, so that, whenever the probability of a downturn is greater
than 50 percent, we forecast a downturn and, similarly, a probability of an
upturn greater than 50 percent results in an upturn forecast. The empha-
sis here is on a comparison of the turning point forecasting performance
of the models described above with the performance of the ZHM models
for the international growth rates of real output. The comparison between
the international and regional models is made using results reported by
ZHM for the same simple loss structure.

Designating the time-series observations on the employment growth
rates by y′ = (y1, y2, . . . , yt−1, yt) and letting z = yt+1 be the first future
value of the series, we follow ZHM in defining a downturn (DT) and
upturn (UT)

yt−2, yt−1 < yt and
{

z < yt ≡ downturn (DT)
zr yt ≡ no downturn (NDT)

, (2.6)

yt−2, yt−1 < yt and
{

z > yt ≡ upturn (UT)
zb yt ≡ no upturn (NUT)

. (2.7)

Zellner and Hong (1989) show how to employ alternative definitions
of an upturn or downturn in this type of analysis. In order to maintain
comparability with the ZHM study, we employ the definitions in (2.6)
and (2.7). Given these definitions, we turn to the calculation of the prob-
abilities of a DT or UT. ZHM show how the predictive pdf can be used
to compute the probability of a DT for each of the estimation methods
presented above.5

As an example, the predictive pdf for yt+1 can be obtained period by
period for the fixed parameter estimation method and takes the form of
a univariate Student t-distribution shown in (2.8), where I have dropped
the subscript i denoting the metropolitan areas.

tvt = (yt+1 − xt+1β̂ t)/stat . (2.8)

5 Zellner (1971, 72–5) describes the predictive pdf for the simple regression model.
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The β t in (2.8) denotes an estimate based on all data available at time
t and the values of st and at in (2.8) can be found using the recursive
expressions shown in (2.9)

νt = νt−1 + 1

νt s 2
t = νt−1st−1 + (yt − x′

t β̂ t)2 + (β̂ t − β̂ t−1)′X ′
t−1 Xt−1(β̂t − β̂t−1)

a2
t = 1 + x′

t+1(X ′
t Xt)−1xt+1, (2.9)

where Xt represents the explanatory variables matrix containing data
available at time t.

Similar formulas for the predictive pdfs of the other model exist and
can be used to compute the probability of a DT or UT in the following
way. The probability that yt+1 < yt, given information through time t is
Pr[yt+1 < yt|Dt] = Pr[tνt < (yt − x′

t+1β̂ t)/stat |Dt]. This probability can
be evaluated using a Student t-distribution. I label this probability of
a downturn as PDT and, similarly, let PUT denote the probability of an
upturn.

For the simple case of a symmetric loss structure which we rely on here,
it can be shown that the probability of a DT will be larger than 0.5 when-
ever the given value of yt > ŷt+1, the modal value of the predictive pdf.
Of course, this is conditional on yt−2, yt−l < yt. In these cases, I forecast
a downturn which is then compared to the actual occurrence in order
to assess the accuracy of the forecasted turn. Given the definitions of a
turning point in (2.6) and (2.7), the probability of no downturn is sim-
ply PrNDT = (1 − PrDT) and, similarly, the probability of no upturn is
PrNUT = (1 − PrUT). For the simple case considered here, an upturn is
forecast whenever PrUT > 0.5, which is true whenever yt < ŷt+1, given
that yt−2, yt−1 > yt.

3 The results from the forecasting experiments

Table 21.2a presents the results from the turning point forecasting exper-
iments. Using our definitions of turning points from (2.6) and (2.7) and
the employment growth rate series for all eight metropolitan areas over
the period 1983:I to 1989:I, there were 85 actual DT and NDT and 70
UT and NUT points, producing a total of 155 turning points.

Table 21.2a shows both the percentage and the number of correct
turning-point forecasts based on the rules
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Table 21.2a Results from the turning point forecasting experiments

Percentage of correct forecasts Number of correct forecasts

Total Turning point
Downturns Upturns turning DT + NDT UT + NUT events out

Model (DT + NDT) (UT + NUT) point events Out of 85 Out of 70 of 155

FP/AR3 64.7 58.6 61.9 55 41 96
FP/LLI 64.7 60.0 62.6 55 42 97
FP/NLI 74.1 58.6 67.7 63 41 105
FP/CLI 76.5∗ 65.7 71.6 65∗ 46 111
FP/ALL 68.2 55.7 62.6 58 39 97
Mean 69.6 59.7 65.3

TVP/AR3 48.2 44.3 46.5 41 31 72
TVP/LLI 50.6 60.0 54.8 43 42 85
TVP/NLI 48.2 57.1 52.3 41 40 81
TVP/CLI 43.5 67.1 54.2 37 47 84
TVP/ALL 55.3 60.0 57.4 47 42 89
Mean 49.2 57.7 53.0

EW/AR3 68.2 57.1 63.2 58 40 98
EW/LLI 68.2 65.7 67.1 58 46 104
EW/NLI 69.4 51.4 61.3 59 36 95
EW/CLI 65.9 57.1 61.9 56 40 96
EW/ALL 72.9 57.1 65.8 62 40 102
Mean 68.9 57.7 63.9

FP/AR3/PO 70.6 84.3 76.8 60 59 119
FP/LLI/PO 74.1 80.0 76.8 63 56 119
FP/NLI/PO 65.9 80.0 72.3 56 56 112
FP/CLI/PO 51.8 65.7 58.1 44 46 90
FP/ALL/PO 65.9 82.9 73.5 56 58 114
Mean 65.6 78.6 71.5

EW/AR3/PO 70.6 87.1∗ 78.1∗ 60 61∗ 121∗

EW/LLI/PO 72.9 82.9 77.4 62 58 120
EW/NLI/PO 70.6 81.4 75.5 60 57 117
EW/CLI/PO 70.6 77.1 73.5 60 54 114
EW/ALL/PO 70.6 82.9 76.1 60 58 118
Mean 71.1† 82.3† 76.1†
OBES LMI 72.9 74.2 73.5 62 52 114

Notes:
∗ Designates a column maximum showing the most accurate model from all specification and estimation
methods.
† Designates the most accurate estimation method using the mean over all model specifications for
each estimation method.

(1) when PrUT > 0.5 and yt−2, yt−1 > yt, forecast an upturn
(2) when PrDT > 0.5 and yt−2, yt−1 < yt, forecast a downturn
(3) when PrNUT > 0.5 and yt−2, yt−1 > yt, forecast no upturn and
(4) when PrNDT > 0.5 and yt−2, yt−1 < yt, forecast a no downturn.
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Explicitly, in the experiments carried out here, I forecast a downturn
whenever the previous two quarters exhibited values of the employment
growth rate below the current value, (yt−2, yt−1 < yt) and the current
value, yt, is greater than the one-step-ahead forecast, ŷt+1. I then com-
pare this to the actual event by determining if yt+1 is above yt, in which
case there is a no downturn event, or below yt, indicating a downturn.
Similarly, for the upturn events I forecast an upturn whenever the condi-
tions yt−2, yt−1 > yt hold, and our forecast ŷt+1 is above the current value
yt. The actual occurrence is determined by comparing the value of yt+1 to
yt, with yt+1 > yt indicating an upturn and yt+1 ≤ yt a no upturn event.

Table 21.2a is organized according to the five estimation techniques,
FP, TVP, EW, FP/PO, and EW/PO. In addition to the results from
the five estimation techniques, the results from using the Ohio Bureau
of Employment Services, Labor Market Information Division (OBES
LMI), eight metropolitan leading indicator series are reported as the last
line in Table 21.2a. Forecasts of turning points using the OBES leading
indicators were made in the following way. If the change in the indicator
from time t − 1 to t is positive, forecast an upturn and when the change is
negative, forecast a downturn. This is analogous to treating the indicator
as a one-step-ahead forecast series, and consistent with the scheme used
to convert the one-step-ahead forecasts into turning point forecasts.

The motivation for examining the results on the basis of techniques as
well as specifications is that we might expect to have model uncertainty.
Given uncertainty about the precise model specification, we would be
interested in the question of whether a particular estimation technique
outperforms other techniques regardless of the particular specification
we choose. Table 21.2a presents the results for downturn and upturn
forecasts by aggregating the results of DT and NDT forecasts and UT and
NUT forecasts. The mean for each of the five estimation techniques of
the percentage of correct turning points forecast are reported to facilitate
an examination of the five estimation approaches. Using these means,
we see that the pooled exponential-weighting technique produced, on
average across the five specifications, the most accurate turning point
forecasts for both upturns and downturns.

The worst forecasts were produced by the TVP technique, a technique
that worked well in the ZHM study. It is interesting to compare our
results to those of ZHM, shown in Tables 21.2b and 21.3b.6 Table 21.2b
presents the results from the ZHM international study in the same format
as our table 21.2a, and table 21.3b similarly parallels our table 21.3a.

6 It should be noted that ZHM (1987) used annual data in their study in contrast to the
quarterly data used here.
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Table 21.2b ZHM results from turning point forecasting experiments

NT + DT NUT + UT TOTAL of All
Turning-point events Turning-point events Turning-point events

Number 76 82 158
Model % Correct % Correct % Correct
FP/ARLI 71 77 74
TVP/ARLI 76 77 77
EW/ARLI 68 74 72
FP/ARLI/PO 82 68 75
EW/ARLI/PO 86 67 74

The first point to note is that our percentages of total turning points
correct forecasts range between 53 and 76 percent whereas table 21.2b
indicates that the ZHM study found less variation over the estimation
techniques, showing a range of from 72–77 percent. The overall quality
of the best models in forecasting turning points is quite similar with our
best technique, (EW/PO), producing on average 71.1 percent and 82.3
percent correct downturn and upturn forecasts respectively, and the best
ZHM technique (TVP), producing 71 percent and 77 percent correct
downturn and upturn forecasts.

Another interesting comparison with the ZHM results is found in table
21.3b where the individual NDT, DT, NUT, and UT forecasting results
are presented. The ZHM study showed a relatively lower accuracy in
forecasting NDT points than DT points across all estimation techniques.
The ZHM accuracy on NDT points ranges from 39 to 65 percent and is
consistently below the accuracy for the DT points. Our study shows this
same pattern for the TVP, FP/PO, and EW/PO techniques. In contrast,
however, is the FP technique, which shows a relatively equal ability on
these two types of turning points, and the EW technique, which exhibits
more accuracy on the NDT points than the DT points.

With respect to the NUT and UT forecasting results from ZHM, we
see that the pooling reduced the accuracy of the NUT points. This is
in contrast to the results from table 21.3a for this study, where pooling
generally produced an increase in accuracy for the NUT turning point
forecasts.

Finally, the Ohio Bureau of Employment Services, Labor Market Infor-
mation Division, distributes a monthly publication containing composite
leading indicators for employment in the eight Ohio metropolitan areas.7

7 The publication is entitled Leading Indicators and is part of the Labor Market Information
publications produced and distributed monthly by OBES. A description of the model
and its development can be found in LeSage and Magura (1987).
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Table 21.3a Results categorized according to the four types of events forecast

Percentage of events correctly forecast

Model NDT events DT events NUT events UT events All types of events

FP/AR3 61.7 72.0 100.0∗ 0.0 61.9
FP/LLI 68.3 56.0 70.7 44.8 64.7
FP/NLI 76.7 68.0 56.1 62.1 74.1
FP/CLI 78.3 72.0 68.3 62.1 76.5
FP/ALL 68.3 68.0 48.8 65.5 68.2
Mean 70.7 67.2 68.8 46.9 65.3

TVP/AR3 28.3 96.0∗ 7.3 96.6∗ 46.5
TVP/LLI 40.0 76.0 53.7 69.0 54.8
TVP/NLI 28.3 96.0∗ 48.8 69.0 52.3
TVP/CLI 28.3 80.0 61.0 75.9 54.2
TVP/ALL 45.0 80.0 56.1 65.5 57.4
Mean 34.0 85.6 45.4 75.2 53.0

EW/AR3 76.7 48.0 95.1 3.4 63.2
EW/LLI 85.0 28.0 75.6 51.7 67.1
EW/NLI 86.7 28.0 43.9 62.1 61.3
EW/CLI 86.7 16.0 51.2 65.5 61.9
EW/ALL 91.7∗ 28.0 51.2 65.5 65.8
Mean 85.3 29.6 63.4 49.7 63.9

FP/AR3/PO 63.3 88.0 97.6 65.5 76.8
FP/LLI/PO 70.0 84.0 80.5 79.3 76.8
FP/NLI/PO 61.7 76.0 78.0 82.8 72.3
FP/CLI/PO 33.3 88.0 80.5 44.8 58.1
FP/ALL/PO 61.7 76.0 80.5 86.2 73.5
Mean 58.0 82.4 83.4 71.7 71.5

EW/AR3/PO 63.3 88.0 97.6 72.4 78.1
EW/LLI/PO 68.3 84.0 85.4 79.3 77.4
EW/NLI/PO 65.0 84.0 82.9 79.3 75.5
EW/CLI/PO 65.0 84.0 80.5 82.8 73.5
EW/ALL/PO 65.0 84.0 82.9 82.8 76.1
Mean 65.3 84.8 85.9 79.3 76.1†
OBES LMI 64.6 80.0 75.6 72.4 73.5

Notes:
∗ Designates a column maximum showing the most accurate model and estimation method
for this type of event.
† Designates the most accurate estimation method over all specifications using the mean
over model specifications for each estimation method.
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Table 21.3b ZHM results categorized according to the type of event forecast

NDT DT NUT UT
turning-point turning-point turning-point turning-point
events events events events

Number 23 53 23 59
Model % Correct % Correct % Correct % Correct
FP/ARLI 42 93 86 74
TVP/ARLI 48 89 83 75
EW/ARLI 39 89 84 71
FP/ARLI/PO 56 96 68 68
EW/ARLI/PO 65 93 68 65

These monthly indices, which contain seasonal variation, were converted
to quarterly series by averaging, then seasonally differenced, and con-
verted to growth rates to make them comparable with the employment
series used in this study. A set of turning point forecasts were then gen-
erated using the same rules. These forecasts used the value of the leading
indicator series in place of the one-step-ahead forecast in order to calcu-
late PrDT, PrUT, PrNDT, and PrNUT values upon which to base the fore-
casts. The last lines in tables 21.2a and 21.3a show the results from using
these leading indicators to produce the turning point forecasts. As can be
seen from the tables, these composite indices for the eight metropolitan
areas compare favorably with some of the best models from the host of
specifications and estimation techniques studied here.

Turning attention to the results from the perspective of model uncer-
tainty, the table 21.2a and 21.3a results can be considered from the
perspective of movement across the five different model specifications.
Viewed from this perspective, tables 21.2a and 21.3a indicate that there
is a great deal less variation in the accuracy of the forecasts as we vary the
model specification than that encountered when we move across estima-
tion methods. For example, considering the table 21.2a results for the five
model specifications using the FP estimation method, we see a minimum
of 61.9 percent correct total turning point forecasts and a maximum of
71.6 percent. Similarly, for the TVP we have a minimum and maximum
of 46.5 and 57.4 percent, respectively. The EW forecasts range between
61.3 and 67.1 percent, the FP/PO between 58.1 and 76.8 percent, and
the EW/PO between 73.5 and 78.1 percent. With the exception of the
FP/PO, the variation here is around 10 percent or less, quite small by
comparison with that encountered as we alter the estimation method.
Considering the TVP estimation results reported in table 21.2a, we see
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around 55 percent of the total turning point forecasts correct, whereas
the EW/PO produces around 75 percent correct for these same forecasts,
a difference of 20 percent. The implication here is that risk associated
with model uncertainty is less than that from using a non-optimal esti-
mation technique. From the standpoint of a practitioner, the gains from
the time spent exploring alternative estimation methods are likely to be
greater than those from alternative model specifications.

4 Conclusions

This study introduced a set of models to forecast growth rates in
metropolitan employment similar to those used by Zellner, Hong, and
Min (ZHM) (1989) to forecast international growth rates in real output
for a sample of eighteen countries. Five estimation techniques from the
ZHM study were used to estimate and forecast the employment growth
rates for the sample of eight Ohio metropolitan areas using five model
specifications. The focus of the experiments here, as in ZHM, was an
analysis of the accuracy in forecasting turning points. The Bayesian deci-
sion theoretic approach to this problem introduced in Zellner and Hong
(1989) and implemented in the ZHM study was replicated here in order
to study whether these techniques could produce metropolitan-area turn-
ing point forecasts of similar accuracy as that found in ZHM for the
international sample of eighteen countries.

The findings indicate a greater amount of dispersion in the accuracy of
the turning point forecasts associated with the five estimation techniques
than found by ZHM. These findings are important in that the variation
across the five different model specifications examined here was far less
than that associated with the five estimation methods. This indicates that
model uncertainty and the risk from chosing the wrong specification is
small in comparison to that associated with using a suboptimal estimation
technique. Some caution may be required here in drawing this conclusion
since, first, it may be that the quality of the data used here was not as
good as that employed in the ZHM study. A second reason to be cautious
regarding this conclusion is that the variation in model specifications that
would be possible in a multi-equation structural model are much greater
than those examined here in the single-equation model.8

The findings also show that the accuracy of our turning point forecasts
compare favorably with those of ZHM. This suggests that, the relatively
simple leading-indicator models introduced by Garcia-Ferrer et al. (1987)
can produce accurate forecasts of turning points in a multi-regional

8 Both of these points were brought to my attention by an anonymous referee.
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setting as well as [in] the multi-country setting explored by ZHM.
Another finding is that the composite leading-indicator series for
metropolitan employment published by the Ohio Bureau of Employment
Services, Labor Market Information Division, works quite well in fore-
casting turning points.

Finally, the methods employed here are quite general and could be
used to compare the turning point forecasting performance of a host
of alternative regional econometric forecasting models,9 a subject that
has been ignored in the regional forecasting literature where the pri-
mary emphasis has been on the root mean-squared error [RMSE]
criterion.

APPENDIX DATA AND DATA SOURCES

(1) Total employment (EMP)

Total employment for the SMSAs of Akron, Canton, Cleveland, Cincin-
nati, Columbus, Dayton, Toledo, and Youngstown is monthly, non-
agricultural employment, converted to quarterly averages. These quar-
terly data were then seasonal differenced and converted to growth rates
using (Yt − Yt−4)/Yt−4. Where Yt represents quarterly employment.
Source: OBES, LMI Division, Labor Market Review, a monthly publi-
cation.

9 Extending the techniques of ZHM to a monthly situation represents a fairly straightfor-
ward exercise conceptually. Consider that in the context of a monthly model, we need
to change the definition of a turning point to include more past and future observations
because of the increased variation and frequency of the data. We would not define the nec-
essary conditions for a downturn event based on two or three periods of monthly upward
movement as was done for the quarterly series. Suppose we broaden the definition of
a turning point event to include a three-horizon period so that we define the downturn
event to be when yt+1 < yt and yt+2 < yt and yt+3 < yt. This is straightforward enough,
and, so is the analytical expression for the probability of a downturn event

PrDT =
∫ yt

−∞

∫ yt+1

−∞

∫ yt+2

−∞
Pr[yt+1, yt+2, yt+3 | (y, I)],

where (y, I) denotes the past sample and prior information. The problem is that this
involves trivariate numerical integration that must take place at every step in the iterative
estimation-forecast loop during the forecasting experiments. This computational limita-
tion may not be much of a problem in practice since, many regional econometric models
are quarterly even though the data is available on a monthly basis (e.g. Liu and Stocks’
1983 Youngstown model and Shapiro and Fulton’s 1985 Michigan regional models).
This is because the benefits from updating and running the model monthly rather than
quarterly may not outweight the costs.
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(2) Average manufacturing workweek (HOURS)

Average manufacturing workweek measured in hours for the eight
SMSAs is the average weekly hours worked in the manufacturing sec-
tor. These monthly data were converted to quarterly by averaging and
then seasonal differenced and converted to growth rates as described
above. Source: OBES, LMI Division, Labor Market Review, a monthly
publication.

(3) Initial claims for unemployment insurance (CLAIMS)

Initial claims for unemployment insurance is the total initial claims under
Ohio law for each of the SMSAs in Ohio. For purposes of maintaining
consistency in the data, the following were included in each SMSA:

Akron: Akron and Barberton
Canton: Alliance, Canton, Massilon
Cincinnati: Cincinnati, Cincinnati Roselawn (District 2)
Cleveland: Cleveland Downtown, South, East
Columbus: Columbus East, North, West
Dayton: Dayton
Toledo: Toledo, Toledo Southwyck
Youngstown: Youngstown

Source: OBES, LMI Division, “Selected Unemployment Compensation
Work-load Items,” form RS 237.1. These monthly data were also con-
verted to quarterly averages and then seasonal differenced and converted
to growth rates as described above.

(4) Domestic automobile production (AUTO)

This is the monthly, annualized number of domestic automobiles pro-
duced in the United States, converted to quarterly averages and then sea-
sonal differenced and converted to the growth rates as described above.
Source: Citibase Data.

(5) Index of 12 leading economic indicators (LEAD)

National index of twelve leading indicator series, which is the compos-
ite index constructed by the Bureau of Economic Analysis, US Depart-
ment of Commerce. These monthly data were also converted to quarterly
averages and then seasonal differenced and converted to growth rates as
described above. Source: Business Conditions Digest, a publication of the
BEA, Department of Commerce.
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(6) Housing permits dollar valuation (HOUSE)

The dollar value of housing permits, the total value of housing authorized
by building permits in each of the SMSAs. These monthly data were
also converted to quarterly averages and then seasonal differenced and
converted to growth rates as described above. Source: US Department of
Commerce, Construction Reports: Housing Authorized by Building Permits
and Public Contracts, a monthly publication.

Note: Since this publication no longer contains housing permit valua-
tion for Akron, Canton, Dayton, Toledo, and Youngstown, the Building
Permits Branch of the Department of Commerce was contacted to obtain
photocopies of the recent data for these five SMSAs.
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22 A note on aggregation, disaggregation, and
forecasting performance (2000)

Arnold Zellner and Justin Tobias

1 Models

In this chapter we report the results of an experiment to determine
the effects of aggregation and disaggregation in forecasting the median
growth rate of eighteen industrialized countries’ annual output (GDP)
growth rates; see figure 22.1 for a plot of our data and table 22A.3 (p. 665)
for the names of the countries in our sample. In one approach, follow-
ing Zellner and Hong (1989), we model the aggregative annual median
growth rate, wt, as an autoregression of order 3 with lagged leading indi-
cator input variables, denoted by AR(3)LI, as follows:

wt = α0 + β1wt−1 + β2wt−2 + β3wt−3 + β4MGMt−1

+ β5MSRt−1 + εt , (1.1)

where MGMt is the median annual growth rate of real money in year t,
MSRt denotes the median annual growth rate in real stock prices in year t,
and εt is a zero mean, non-autocorrelated, constant variance error term.
Given data on eighteen industrialized countries’ annual output growth
rates, it is possible to compute annual median growth rates, and use them
and data on the other input variables appearing in (1.1) to obtain point
and turning point forecasts for future median annual growth rates of the
eighteen countries. The results of such calculations will be reported below
after describing alternative approaches to forecasting the median growth
rate using disaggregated data and disaggregated forecasting models.
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Figure 22.1a Medians and interquartile ranges for growth rates of real
output for eighteen industrialized countries 1954–1995; the dashed line
connects the annual median growth rates (the wts) and the vertical lines
give the interquartile ranges. See table 22A.3 for a list of the eighteen
countries included in our sample.

As an alternative to (1.1), we can employ the disaggregated ARLI rela-
tionships.

yit = γi + δ1i yi t−1 + δ2i yi t−2 + δ3i yi t−3 + δ4i GMit−1 + δ5i SRit−1

+ δ6i SRit−2 + δ7i MSRt−1 + uit , (1.2)

where the subscripts i and t denote the value of a variable for the ith
country in the ith year, uit is an error term, and y, GM, SR, and MSR
denote the annual growth rates of real GDP, real money, real stock prices
and the median growth rate of real stock prices, respectively. See Garcia-
Ferrer et al. (1987) and Zellner and Hong (1989) for discussions and
uses of (1.2) in forecasting. In (1.2) we allow the regression coefficients
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(B) Growth rates of  real money
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Figure 22.1b Medians and interquartile ranges for growth rates of real
money for eighteen industrialized countries 1954–1995; the dashed line
connects the annual median growth rates (the wts) and the vertical lines
give the interquartile ranges. See table 22A.3 for a list of the eighteen
countries included in our sample.

to vary in value across countries. We also consider two variants of (1.2)
which involve restrictions on the regression coefficients. In the first model,
the coefficients are restricted to be the same across countries; that is,
γi = γ , δ j i = δ j , j = 1, 2, . . . 7. In the second model, we assume that the
coefficients associated with the leading indicators are the same across
countries while the AR and intercept coefficients vary across countries;
that is, δji = δj j = 4, 5, 6, 7.1 Then, given forecasts of eighteen countries’
annual output growth rates from (1.2) and its variants, it is clearly possible
to compute the medians of the eighteen forecasts year by year and use
them as forecasts of the median output growth rates and compare them
to the forecasts obtained by use of (1.1), as will be done below.2

1 We thank a referee for suggesting these alternative models.
2 For the model in (1.2), we also estimated a random effects specification: yit = Xitθ + αi +

uit, where uit = αi + εit, and Xit denotes all the input variables in (1.2), including lagged
ys, and θ denotes the associated regression parameters. Unlike the model in (1.2), this
specification does not assume that the error terms for the same country are uncorrelated
over time. We made the standard assumptions that the αs are uncorrelated across countries
with common variance σ 2

α , and E(ε2
i t ) = σ 2

i t , E(εi tε
′
i t

′) = 0∀i �= i ′, t �= t ′. We found that
predictive RMSEs and MAEs are often lower using least squares forecasts from (1.2) than
results obtained using the above random effects specification. For example, updating the
one-year-ahead forecasts through the hold-out period 1985–95, least squares on (1.2)
gives RMSE and MAE of 1.55 and 1.37, while forecasts from the random effects model
above give 1.68 and 1.44 for RMSE and MAE, respectively.
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(C) Growth rates of real stock prices
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Figure 22.1c Medians and interquartile ranges for growth rates of real
stock prices for eighteen industrialized countries 1954–1995; the dashed
line connects the annual median growth rates (the wts) and the verti-
cal lines give the interquartile ranges. See table 22A.3 for a list of the
eighteen countries included in our sample.

Further, (1.2) can be expanded to include the current median output
growth variable to obtain the following equation:

yit = φi wt + γi + δ1i yi t−1 + δ2i yi t−2 + δ3i yi t−3 + δ4i GMit−1

+ δ5i SRit−1 + δ6i SRit−2 + δ7i MSRt−1 + uit . (1.3)

As Zellner and Hong (1989) do, we use (1.1) to obtain forecasts of the w ′
ts

and use them and (1.3) to forecast the output growth rates of the eighteen
countries year by year. As described above, we analyse two additional
variants of (1.3). In the first case all coefficients are restricted to be equal
across countries (i.e. φi = φ, γ i = γ , δji = δj, j = 1, 2, . . . 7), and in the
second case only the coefficients of the current median growth rate and
the leading indicator variables are restricted to be equal across countries
(i.e. φi = φ, δji = δ j , j = 4, 5, 6, 7). Thus, we analyse the performance of
seven different models: the aggregate specification in (1.1), and models
for each of the specifications in (1.2) and (1.3).

2 Experiments

In the first experiment, we use annual data for 1954–73 to fit our three
models (see the appendix, p. 663 for estimation results) and then employ
them to forecast the median of the annual output growth rates year by year
for the period 1974–84, updating our parameter estimates as we move
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Table 22.1 Root mean-squared errors (RMSEs) and mean absolute errors
(MAEs) of one-year-ahead aggregate and disaggregate forecasts of the
median of eighteen countries’ annual real GDP growth ratesa

A: 1974–84
Disaggregated AR(3) LI
with ŵt ((1.3))

Aggregate AR (3)LI for
wt ((1.1))

Disaggregated AR(3)
LI ((1.2))

RMSE 1.30 1.60 1.66
MAE 1.21 1.43 1.44
B: 1980–95

Aggregate AR(3) LI for
wt ((1.1))

RMSE 1.60
MAE 1.42

Disaggregated AR(3) LI
with γ i = γ , δji = δj

((1.2))

Disaggregated AR(3) LI
with δji = δj, j = 4, 5, 6, 7
((1.2))

Disaggregated AR(3)
LI ((1.2))

RMSE 1.61 1.76 1.84
MAE 1.35 1.46 1.56

Disaggregated AR(3) LI
with ŵtφi = φ, γ i = γ ,
δji = δj ((1.3))

Disaggregated AR(3) LI
with ŵiφi = φ, δji = δj,
j = 4, 5, 6, 7((1.3))

Disaggregated AR(3)
LI with ŵt ((1.3))

RMSE 1.42 1.46 1.52
MAE 1.25 1.28 1.35

Note:
a The data are taken from the IMF computerized data base at the University of Chicago.
We use data for the following eighteen countries: Australia, Austria, Belgium, Canada,
Denmark, Finland, France, Germany, Ireland, Italy, Japan, the Netherlands, Norway,
Spain, Sweden, Switzerland, the United Kingdom and the United States. Observations
are available from 1954 to 1995 (with some countries data dating back to 1948) for
most countries, but begin in 1971 for Germany. Omitting Germany from the analysis

produced similar results. We define RMSE =
√∑T

t=1(ŵt − wt )2/T, and similarly MAE =
(
∑T

t=1 |ŵt − wt |)/T.

through the forecast period. This time period was chosen to be similar
to the forecasting period used in previous work by Zellner and Hong
(1989). For this time period, we present results only for the aggregate
model in (1.1) and the models in (1.2) and (1.3) with all coefficient
vectors restricted to be the same across countries. Forecasting results are
shown in table 22.1, panel A. It is seen that use of the disaggregated
equations in (1.3) which include the aggregate variable wt, perform the
best with a [root mean-squared error] (RMSE) and [mean absolute error]
(MAE) of prediction of 1.30 and 1.21, respectively. Second best is the
performance of the aggregate relation in (1.1), with RMSE = 1.60 and
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MAE = 1.43. Last in performance are the disaggregated relations in (1.2)
that do not include the variable wt with RMSE = 1.78 and MAE = 1.44.
The empirical results for (1.1) using revised data are very similar to those
reported in Zellner and Hong (1989) using unrevised data and which are
better than those using just an AR(3) for wt without leading indicator
variables.

As a second experiment, we employed annual data for 1954–79 to fit
our models and forecasted the median growth rate of the eighteen coun-
tries year by year for the period 1980–95 with results shown in table 22.1,
panel B. For this experiment, we obtain results using the seven models
based on equations (1.1), (1.2), and (1.3) described above. Again it is
the case that use of the disaggregated equations in (1.3) with coefficients
pooled over countries including the aggregate variable wt, performed best
with RMSE = 1.42 and MAE = 1.25. The results also indicate that
RMSEs and MAEs increase as we add extra parameters to the models and
allow some or all of the regression coefficients to vary across countries.
Further, RMSEs and MAEs using the model in (1.3) that includes the
forecasted current median growth rate are smaller than the RMSEs and
MSEs associated with the corresponding models based on (1.2) which
do not include the current median growth rate. These results also show
improvement over some naive forecasting rules. For example, forecasting
0 percent as the median growth rate in each year yields RMSE = 2.69,
while a 3 percent forecasting rule yields RMSE = 1.66.

Using the same data, we also performed calculations to determine
which of the three models performed best in forecasting turning points in
the median growth rate of the eighteen countries over the period 1980–
95. As in previous work, we define a downturn (DT) in period T + 1 as
occurring if the following median output growth rate sequence occurs:

wT−2, wT−1 < wT > wT+1.

Also, by definition, no downturn (NDT) occurs when the following
sequence is observed:

wT−2, wT−1 < wT ≤ wT+1.

Similarly, an upturn (UT) is said to occur in period T + 1 if the following
sequence of observations occurs:

wT−2, wT−1 > wT < wT+1.

No upturn (NUT) occurs in period T + 1 if the following sequence is
observed :

wT−2, wT−1 > wT ≥ wT+1.
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Table 22.2 Results of forecasting turning points in the median
output growth rate of eighteen countries, 1980–1995, number of
correct forecasts for alternative models

DT NDT UT NUT
Observed outcomes

3 4 2 3
Model Number correctly forecasted

Aggregate AR(3)LI for wt. ((1.1)) 1 4 1 1
Disaggregated AR(3)LI ((1.2)) with 1 4 2 0
γ i = γ , δji = δj∀ j – – – –
Disaggregated AR(3)LI ((1.2)) with 2 3 2 0
δji = δj, j = 4, 5, 6, 7 – – – –
Disaggregated AR(3)LI ((1.2)) 1 3 2 0
Disaggregated AR(3)LI ((1.3)) with ŵt 1 4 1 1
φi = φ, γ i = γ , δji = δj, ∀ j – – – –
Disaggregated AR(3)LI ((1.3)) with ŵt 1 4 1 0
φi = φ, δji = δj, j = 4, 5, 6, 7 – – – –
Disaggregated AR(3)LI ((1.3)) with ŵt 1 4 2 0

Given that we have a predictive density for wT+1, we can easily compute
the probability of DT and of NDT and use these probabilities along with
a 2 × 2 loss structure to determine the forecast that minimizes expected
loss. If the 2 × 2 loss structure is symmetric, a DT is the optimal forecast
given that the probability of a DT is greater than 1/2.3 If the probability
of a DT is less than 1/2, then the optimal forecast is NDT. Similar
considerations relate to forecasting UTs and NUTs. See LeSage (1996),
Zellner, Hong, and Min (1991) and Zellner, Tobias, and Ryu (1998)
for further discussion and applications of this turning point forecasting
methodology.

In table 22.2 are the number of DT, NDT, UT, and NUT events that
actually occurred in our sample and the number of correct forecasts using
the procedure described above with each of our three models, shown in
(1.1), (1.2), and (1.3). As regards the poor NUT forecasts, in Zellner,
Tobias, and Ryu (1998), it was found that use of “trend” add factors that
represent inertia effects produced improved NUT forecasts for individual
countries’ annual output growth rates. It is important to note that the
restricted version of (1.3) with ωt which had the lowest RMSE and MAE

3 We use the forecasted median from the alternative models as an approximation to the
posterior predictive mean of wT+1, and assume the predictive density is symmetric about
the forecasted median.
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Table 22A.1 Diffuse prior posterior means and standard deviations for
coefficients of AR(3)LI model for the annual median output growth rate
((1.1)), R2 = 0.68a

Constant w−1 w−2 w−3 MGM−1 MSR−1

Coefficient mean 1.10 0.278 0.081 0.011 0.012 0.409
Posterior std dev. (0.527) (0.145) (0.152) (0.142) (0.0220) (0.080)

Note:
a With use of diffuse priors and an i.i.d. normal likelihood function, coefficients’ posterior
means are equal to least squares estimates. Posterior standard deviations are equal to usual
least squares asymptotic standard error times

√
vi /(vi − 2) where vi = ni − ki. Estimation

results are computed using the full sample, 1954–95. R2 is an approximate mean of the
posterior density of the population R2 parameter.

is also among the five models which correctly forecast seven of twelve
turning points in the median output growth rate.

3 Conclusion

In summary, our forecasting experiments provide some evidence that
improved forecasting results can be obtained by disaggregation given
that an aggregate variable, wt, appears in the disaggregated relations,
as shown in (1.3). With disaggregation, there are more observations to
estimate parameters and given that the disaggregated relations are reason-
ably specified, it is possible to obtain improved forecasts of an aggregate
variable, here wt, the median growth rate, a result that is in accord with
some views expressed in the literature (see, e.g., Espasa (1994) and Palm
and Zellner (1992)).

APPENDIX ESTIMATION RESULTS

The output, money, and stock price variables used in this chapter are
first converted to real quantities by dividing each variable by a country-
specific price index. The variables are then logged, first-differenced, and
multiplied by 100 to convert to growth rates. Estimation results for the
AR(3)LI model in (1.1) are presented in table 22A.1, and coefficient pos-
terior means and standard deviations for the models in (1.2) and (1.3)
with coefficients restricted to be equal across countries are presented
in table 22A.2. On computing the roots of the AR(3) process for the
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Table 22A.2 Diffuse prior posterior means and standard deviations
for coefficients of (1.2) and (1.3) with coefficients restricted to be the
same across countries

Disaggregated AR(3)LI Disaggregated
with ŵt ((1.3)) AR(3)LI ((1.2))

Variable Coeff. mean Std dev. Coeff. mean Std dev.

ŵt 0.863 (0.055) – –
Constant −0.400 (0.211) 1.53 (0.200)
y−1 0.228 (0.035) 0.373 (0.039)
y−2 −0.103 (0.037) −0.048 (0.042)
y−3 0.080 (0.031) 0.157 (0.036)
SR−1 0.033 (0.007) 0.025 (0.008)
SR−2 −0.008 (0.006) −0.021 (0.006)
GM−1 0.045 (0.012) 0.077 (0.014)
MSR−1 −0.043 (0.011) 0.016 (0.012)
R2 0.48 0.29

countries’ output growth rates from (1.2),4 we obtain one real root equal
to 0.6646, and two complex conjugate roots, 0.1488 ± 0.4676i, associ-
ated with a damped oscillatory component with estimated amplitude =
0.491 and estimated period = 4.98. See Geweke (1986) and Hong (1989)
for Bayesian procedures for making posterior inferences about the proper-
ties of roots of an AR(3) process. Using earlier data for eighteen countries
included in our sample, Hong found that there is a high posterior proba-
bility that: (a) there are two complex roots and one real root, (b) the real
root has amplitude less than one, and (c) the complex roots are associ-
ated with a damped oscillatory component with a period of about four–
six years. We arrive at similar conclusions using updated and expanded
data.

The addition of the “world return” variable, MSRt, has been shown
in past work to reduce contemporaneous correlation among the error
terms. See also Zellner, Hong and Gulati (1990) and Min and Zellner
(1993) for discussions of time-varying parameter models and shrinkage
techniques for obtaining point and turning point forecasts, and the uses

4 Estimation results are obtained by including the leading indicators in (1.2). The roots,
amplitude, and period are then computed from the AR(3) relationship using the posterior
mean as a point estimate of the regression parameters. By drawing from the multivariate
Student-t distribution (the posterior distribution for the regression coefficients), we can
also compute the probability that the AR(3) will have one real root associated with a cycle
and two complex conjugate roots associated with a trend. Posterior distributions of the
amplitude and period can also be obtained. See Hong (1989) for discussions.
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Table 22A.3 Diffuse prior posterior means and standard deviations allowing
regression coefficients to vary across countriesa

φ̂i γ i δ1 i δ2 i δ3 i δ4 i δ5 i δ6 i δ7 i R2

Country ŵt Const y−1 y−2 y−3 GM−1 SR−1 SR−2 MSR−1

Australia 0.873
(0.316)

0.497
(1.20)

−0.131
(0.179)

−0.090
(0.177)

0.179
(0.170)

0.146
(0.082)

0.021
(0.040)

−0.014
(0.029)

−0.058
(0.058)

0.62

Austria 0.807
(0.194)

−0.016
(0.829)

0.199
(0.141)

−0.070
(0.145)

0.103
(0.128)

0.059
(0.069)

0.025
(0.019)

−0.003
(0.017)

−0.004
(0.034)

0.43

Belgium 0.916
(0.117)

− 1.21
(0.434)

0.123
(0.104)

0.110
(0.105)

0.053
(0.100)

0.038
(0.049)

−0.002
(0.025)

−0.009
(0.016)

0.025
(0.029)

0.86

Canada 0.844
(0.274)

−0.254
(0.914)

0.244
(0.185)

−0.003
(0.201)

−0.068
(0.171)

0.052
(0.048)

0.057
(0.044)

−0.036
(0.037)

−0.071
(0.054)

0.57

Denmark 1.34
(0.316)

−0.702
(0.886)

0.047
(0.164)

−0.461
(0.174)

−0.044
(0.145)

0.079
(0.078)

−0.014
(0.028)

0.039
(0.025)

−0.071
(0.039)

0.52

Finland 1.29
(0.319)

−1.00
(1.16)

0.242
(0.163)

−0.407
(0.145)

0.109
(0.116)

−0.002
(0.032)

0.060
(0.033)

−0.008
(0.031)

−0.022
(0.059)

0.63

France 0.868
(0.202)

−0.152
(0.655)

0.154
(0.130)

−0.172
(0.143)

0.139
(0.130)

0.080
(0.061)

−0.043
(0.028)

0.027
(0.016)

0.023
(0.046)

0.70

Germany 0.450
(0.432)

−0.255
(1.41)

0.286
(0.193)

−0.170
(0.203)

0.098
(0.201)

0.261
(0.124)

0.080
(0.060)

0.016
(0.048)

−0.053
(0.074)

0.75

Ireland 0.541
(0.269)

2.56
(1.39)

0.014
(0.189)

−0.091
(0.187)

−0.073
(0.150)

0.057
(0.094)

0.068
(0.048)

−0.024
(0.031)

−0.171
(0.058)

0.36

Italy 1.02
(0.246)

0.594
(0.949)

−0.013
(0.131)

−0.028
(0.137)

0.017
(0.130)

0.088
(0.041)

0.028
(0.021)

−0.014
(0.016)

0.012
(0.046)

0.67

Japan 0.812
(0.408)

−0.646
(1.07)

0.378
(0.173)

0.190
(0.199)

0.020
(0.166)

−0.027
(0.119)

0.116
(0.052)

−0.083
(0.039)

−0.113
(0.064)

0.70

Netherlands 1.41
(0.220)

− 1.14
(0.670)

0.108
(0.118)

−0.099
(0.122)

0.014
(0.117)

−0.093
(0.081)

0.018
(0.027)

−0.008
(0.019)

−0.037
(0.038)

0.74

Norway 0.364
(0.220)

2.48
(1.32)

0.275
(0.170)

−0.398
(0.153)

0.017
(0.168)

0.011
(0.057)

−0.002
(0.028)

−0.031
(0.020)

−0.002
(0.049)

0.45

Spain 1.10
(0.272)

−0.269
(1.03)

0.219
(0.173)

−0.053
(0.172)

−0.107
(0.154)

0.104
(0.118)

0.032
(0.034)

−0.001
(0.028)

−0.036
(0.060)

0.66

Sweden 0.988
(0.208)

−0.678
(0.690)

0.085
(0.178)

−0.179
(0.168)

−0.076
(0.175)

0.119
(0.100)

0.034
(0.022)

0.023
(0.021)

−0.082
(0.038)

0.60

Switzerland 0.967
(0.246)

− 1.22
(0.757)

0.389
(0.167)

−0.081
(0.192)

−0.059
(0.159)

−0.014
(0.064)

0.034
(0.034)

0.008
(0.025)

−0.017
(0.044)

0.75

United Kingdom 0.720
(0.242)

0.900
(0.766)

−0.133
(0.231)

−0.174
(0.202)

−0.265
(0.187)

0.060
(0.035)

0.041
(0.035)

0.018
(0.026)

−0.094
(0.049)

0.54

United States 0.798
(0.184)

1.13
(0.756)

−0.277
(0.315)

−0.050
(0.118)

−0.161
(0.095)

0.215
(0.075)

0.140
(0.038)

−0.001
(0.030)

−0.145
(0.039)

0.63

Note:
a The coefficient posterior means presented above are numerically equivalent to least squares estimates.
The posterior standard deviations equal least squares asymptotic standard errors times

√
vi /(vi − 2)

where vi = ni − k. Estimation results are computed using the full sample, 1954–95.

of posterior odds for comparing, choosing between and/or combining
alternative forecasting models.
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23 The Marshallian macroeconomic
model (2000)

Arnold Zellner

In this paper, background information on the origins and features
of the Marshallian Macroeconomic Model (MMM) are presented.
MMMs based on two alternative production functions are presented
and compared. In addition, some empirical forecasting results for one
of them are reviewed. Last, attention is focused on further
development and implementation of the MMM.

1 Introduction

It is an honor and a pleasure to present my paper at this research con-
ference honoring Professor Ryuzo Sato, a superb colleague and most
productive scholar. His outstanding research analyzing production and
technological change, Sato (1999a, 1999b) has been appreciated world-
wide. Indeed, these topics play a central role in almost all models of
industrial sectors and economies, including the models to be discussed
below.

On the origins of the [Marshallian Macroeconomic Model] (MMM),
in my experience it was a pleasure teaching undergraduate and graduate
students the properties and uses of the Marshallian model of a competi-
tive industry. On the other hand, teaching students macroeconomics was
quite a different matter since there was no such comparable, operationally
successful model available (See, e.g., Belongia and Garfinkel 1992 for an
excellent review of alternative macroeconomic models, including mon-
etarist, neo-monetarist, Keynesian, post-Keynesian, and real business
cycle models and Fair 1992 and Zellner 1992, who pointed out that
not enough empirical testing of alternative models had been done and
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more is needed to produce macroeconomic models that explain the past,
predict well, and are useful in making policy.)

To help achieve these objectives, the structural econometric time series
analysis approach, described and applied in Zellner and Palm (1974,
1975), Palm (1976, 1977, 1983), Zellner (1979, 1994, 1997), Garcia-
Ferrer et al. (1987), and Hong (1989), Min (1992), was used to generate
an equation, a third order autoregression with lagged leading indicator
variables (ARLI) for the annual rate of growth of real GDP that worked
fairly well in point forecasting one year ahead and forecasting downturns
and upturns in rates of growth with about 70 percent correct turning point
forecasts in 211 turning point episodes for eighteen industrialized coun-
tries (see, e.g., Zellner and Min 1999 and references therein). While Hong
(1989), Min (1992), and Zellner (1999) showed that this ARLI equa-
tion is mathematically implied by variants of a Hicksian IS-LM macro
model, a generalized real business cycle model and an aggregate demand
and supply model, respectively, it is not clear that these macroeconomic
models are entirely adequate. In particular, they abstract from important
phenomena involved in business cycles and growth, namely, industrial
sectors with different cyclical properties, entry and exit of firms, sec-
tor linkages, etc. The challenge is to formulate a relatively simple model
that accommodates such characteristics, works well in forecasting and is
flexible enough to elaborate in various dimensions if needed.

One morning while shaving, the idea came to me to go back to my
favorite Marshallian demand, supply AND entry model (see Veloce and
Zellner 1985 for a formulation of such a model with an application to
a Canadian industry) and use one for each sector of an economy. Note
that many macroeconomic, general equilibrium and demand and supply
models do not include an entry equation. Indeed, in some models, there is
just a representative firm and one wonders what happens if this firm shuts
down. Also, in many rational expectation models of competitive industries
(see, e.g., Muth 1961) the number of firms is assumed constant. On
aggregating supply functions over firms, the number of firms in operation,
N, appears in the industry supply equation and thus an entry equation
is needed, along with demand and supply functions, to close the model.
Indeed, when the N variable is omitted from the supply function, very
strange estimation results are obtained (see some examples in Veloce and
Zellner 1985).

In the MMM model, we utilize industrial sectors, each with consumer
demand, sector supply and entry equations, and productive units that buy
factors of production, labor, capital and money services, and other inputs
to production in national factor markets. With the addition of demand
and supply models for factor markets and a foreign sector, we have a
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MMM model. Of course such a model can be elaborated in many ways.
However, consistent with the SEMTSA approach, we start simply and
complicate if necessary, in contrast to the “general to specific” approach
used by many. Note that there are many general models, including VAR,
MVARMA, non-linear VARs, etc. and if the wrong one is chosen, users
of the general to specific approach will be disappointed.

In what follows, in section 2, the Veloce–Zellner sector model, based
on use of Cobb–Douglas production functions, will be reviewed and
extended to include technical change and factor augmentation effects. It
will be shown how the model has been used in Zellner and Chen (2000)
to forecast growth rates of sectors’ real sales and of total real GDP of the
US economy. Then in section 3, another production function, a “gen-
eralized production function,” will be utilized and the model resulting
from its use will be compared with that based on the Cobb–Douglas pro-
duction function with neutral technical change and factor augmentation.
Last, in section 4 consideration is given to several properties of the mod-
els considered in this chapter that can be relaxed or modified. Also, as
is apparent, it will be pointed out that factor markets for labor, capital,
money, and bonds can be added to the sector models to complete the
MMM. Last, it is noted that the MMM can accommodate the birth of
new and the death of old sectors.

2 A competitive Marshallian sector model of an economy

In this section, a slightly modified version of the competitive demand,
supply and entry model put forward and estimated in Veloce and Zellner
(1985) is presented. We assume a competitive industry with N(t) firms in
operation at time t, each with a Cobb–Douglas production function, q =
ALα Kβ , where A = A(t) = AN(t)AL(t)α AK(t)β , the product of a neutral
technological change factor and labor and capital augmentation factors
that reflect changes in the quality of labor and capital inputs. Additional
inputs, e.g. services of money, inventories and raw materials, can be added
without much difficulty. On assuming profit maximization with respect
to inputs given factor prices, w = w(t), the real wage rate and r = r(t),
the real price of capital services and given real product price, p = p(t),
the sector’s real sales supply function is S = Npq = NA∗ p1/θw−α/θr −β/θ ,
where A∗ = (Aαββ)1/θ , and 0 < θ = 1 − α − β < 1. On logging both
sides of the equation for S, real sales, and differentiating with respect to
time, we obtain the industry real sales supply equation:

Ṡ/S = Ṅ/N + Ȧ∗/A∗ + (1/θ) ṗ/p − (α/θ)ẇ/w − (β/θ)ṙ /r SUPPLY,

(2.1)
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where ẋ/x = (1/x)dx/dt. Further if we multiply both sides of the industry
demand function by p, we obtain real sales = S = pQ =
Bp1−ηxη1

1 xη2
2 . . . xηk

k , where the x variables are demand shifters such as real
income, real money balances, number of consumers, etc. On logging and
differentiating this last equation with respect to time, the result is:

Ṡ/S = (1 − η) ṗ/p +
k∑

i=1

ηi ẋi/xi DEMAND, (2.2)

Finally, the following entry equation will be utilized to complete the
model for the three variables, price, p, real sales, S, and number of firms
in operation, N:

Ṅ/N = γ ′(Π − Fe) = γ (S − F), ENTRY (2.3)

where profits Π = θS, γ = γ ′θ , with 0 < γ < 1, and F = Fe / θ , with Fe

the equilibrium level of profits taking account of discounted entry costs.
In Veloce and Zellner (1985), data for the Canadian furniture indus-

try were employed to estimate discrete versions of (2.1) and (2.3) taking
factor prices and demand shift variables as exogenous variables. If it is
assumed that all sectors sell in the final product market, similar analysis
provides supply, demand, and entry equations for each sector. Note that
the above demand equations can be elaborated to take account of substi-
tution and complementarity effects. Also, parameters’ values will usually
differ over sectors.

When (2.1)–(2.3) are solved for Ṡ/S by substituting from (2.3) in (2.1)
and then eliminating the ṗ/p variable, the result is

Ṡ/S = (a + g)[1 − S/(a + g)F], (2.4)

where a = γ θF/(α + β − η) and g = a linear function of rates of change
of A∗, w, r, and the xs, the demand shifters. If in (2.4), g = 0 or g = const.,
it is seen that the differential equation for S has a solution in the form
of the well-known logistic function. Further, if g = g(t), a given function
of t, the equation is in the form of Bernoulli’s differential equation (see
Veloce and Zellner 1985, p. 463, for its general solution). Note that g may
change through time because of changes in the rate of growth of neutral
technical change, factor augmentation and/or in the rates of change of
exogenous variables affecting demand and supply, say real money bal-
ances, real income, the real wage rate, etc.

In the SEMSTA approach, mentioned above, it is considered impor-
tant to test the forecasting performance of equations derived from the-
oretical models, such as that in (2.4). In Zellner and Chen (2000) we
employed, among others, the following discrete approximation to (2.4)
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in analyzing real GDP of eleven sectors of the US economy including
agriculture, mining, construction, etc.

(1 − L) log St = αo + α1St−1 + α2St−2 + α3St−3 + β1(1 − L) log Yt

+ β2(1 − L) log Mt−1 + β3(1 − L) log wt

+ β4(1 − L) log SRt−1 + ut , (2.5)

where L is the lag operator, S sector real GDP, Y aggregate real GDP,
M real money balances, w the real wage rate, SR a real stock price index,
and u an error term. Lagged values of S were employed to reflect lags
in the entry equation. Note that the rate of change of S is related to
lagged levels of S, a “cointegration” effect that flows from the model.
With w and Y assumed exogenous relative to eleven individual sectors
of the US economy, equations in the form of (2.5), and variants of it,
with sector-specific parameters, were fitted as a set of seemingly unre-
lated regressions, using US annual data, 1949–79, and then employed to
produce one-year-ahead forecasts, with estimates updated year by year
for the period, 1980–97. While the models for certain sectors, namely
agriculture, mining, and construction did not perform very well given
the great variability of these sectors’ outputs, when the annual sector
real GDP forecasts were added to provide a one-year-ahead forecast of
total US real GDP and its growth rate, it was found that such forecasts
are better than those of benchmark models implemented with aggre-
gate annual data including an AR(3) model for the rate of change of Y,
the AR(3) model with added lagged leading indicator variables, and the
same model with lagged levels of Y and a time trend variable. Thus, in
this case it appears that it pays to disaggregate, mainly because sector-
specific variables can be employed along with many more observations
than in an aggregate, one-equation approach utilizing aggregate data.
Similar results were obtained using (2.5), with Y and w assumed to be
endogenous variables and various estimation techniques including OLS,
2SLS, Bayesian minimum expected loss (MELO), and shrinkage tech-
niques. Results using a real currency variable were somewhat better than
using a real M1 variable in sectors’ demand equations. For the one-year-
ahead forecasts of the annual growth rates of real US GDP, 1980–97,
the mean absolute errors (MAEs) ranged from 1.17 to 1.38 percentage
points for the alternative approaches mentioned above applied to (1.5).
For a benchmark AR(3) model that missed all the turning points, the
MAE = 1.71, about 24–46 percent larger than the MAEs for the disag-
gregate forecasts. With improvement of the models for certain sectors,
e.g. the highly variable agricultural, mining, and construction sectors,
it may be that additional improvements in forecasting performance, etc.
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can be realized. Last, joint estimation and forecasting using the three
equations (1.3)–(1.5) for each sector, may produce even better results.

Thus in terms of aggregate forecasting, the disaggregate approach
described above seems worthwhile. Further, it not only yields forecasts
of aggregate output but, obviously, of its components sector by sector.
In addition, the possibility of pooling data of various countries’ sector
models in estimation and prediction may result in further improvement
in forecasting results. (See, e.g., Garcia-Ferrer et al. 1987, Zellner and
Hong 1989, Zellner 1994, 1997, and Quintana, Chopra, and Putnam
1995 for empirical results showing that use of pooling or shrinkage tech-
niques results in improved forecasts.)

3 Sector model based on a generalized production function

While the results above are useful, it is of interest to see how the sector
models’ form is affected by use of a “generalized production function,”
(GPF) rather than a Cobb–Douglas production function. In general a
GPF is a monotonic function of homogeneous function, say a Cobb–
Douglas function. That is, GPFs are in the class of homothetic production
functions with prespecified forms for the returns to scale function (see,
e.g., Zellner and Revanker 1969, Greene 1993, pp. 324–8), and Zellner
and Ryu 1998. GPFs, in contrast to the Cobb–Douglas function have
associated long-run average cost curves that are U- or L-shaped with a
unique minimum. Further, the profit-maximizing labor’s share is not a
constant but varies with the level of output. A simple GPF that will be
employed below is given by log q + αq = βo + β1 log L + β2 log K +
log A, with α and the βs strictly positive parameters and where A =
A(t) denotes both general and factor augmenting technical change. This
function has an elasticity of substitution = 1. In Zellner and Ryu (1998)
many GPFs are presented and estimated, some with variable elasticity
of substitution parameters, etc. Assuming competitive conditions and
profit maximization on the part of firms in a sector yields the following
expression for labor’s share, wL/pq = β1/(1 + αq). Thus labor’s share is
not constant but varies as q varies, say over the business cycle. Further,
the supply function for an individual firm is given by:

ln Q/N = co + c1 Q/N + c2 ln(1 + αQ/N) + c3 ln p

+ c4 ln w + c5 ln r + c6 ln A, (3.1)

where Q/N = q, with N = number of identical firms in operation and the
cs are parameters. A sector demand function is given by:

ln p = αo + α1 ln Q + α′
3x, (3.2)
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where α3 is a vector of parameters and x is a vector of demand shifters
including real income, money balances, etc. Last the entry equation is
given by:

Ṅ/N = δ(π/pq ) = δα(q − qm)/(1 + αq ), (3.3)

where δ is a positive adjustment coefficient and qm is the output level asso-
ciated with the minimum of the long-run average cost function associated
with the GPF shown above. When q = Q/N = qm, there is no change in
the number of firms in operation, when q > qm, there is entry and when
q < qm there is exit of firms.

After differentiating (3.1) and (3.2) with respect to t, we can solve
(3.1)–(3.3) for a differential equation for q with the exogenous variables
as inputs, namely,

q̇/q = [v1(q − qm) + (1 + αq )g]/[(1 + αq )2 + v2(1 + αq ) + v3].

(3.4)

In (3.4), the vs are parameters, g denotes a linear combination of the
rates of change of demand and supply shift variables (e.g. real income,
real money, real wage rate, etc.), and α is the parameter of the GPF
given above. Note that the effect of a change in g on the growth rate is
dependent on the level of output. If g = 0 or a constant, it is seen that the
proportionate rate of growth of q = Q/N is given by the ratio of a linear
function of q divided by a quadratic function. It is possible to solve the
differential equation in (3.4), and variants of it, and study their properties.
Also solutions for the paths of p and N can be obtained, analytically or
numerically.

As regards empirical work, if data are available on Q and N, then q
= Q/N can be formed and used to fit discrete approximations to (3.4)
that can be implemented sector by sector and tested in forecasting exper-
iments. If these results are satisfactory, further work on the structural
equations (3.1)–(3.3) can be undertaken. Given data on N, Q, and p,
discrete approximations to the structural equations in (3.1)–(3.3) can be
estimated and checked for reasonableness and performance in prediction.
On obtaining a joint predictive density for p, Q, and N, it can be employed
to compute the density of S = pQ, real sales for each sector. Forecasts of
S so obtained can be compared to those provided by the Cobb–Douglas
model, described above, and actual outcomes. Simulation experiments
can be performed to study dynamic properties of the two models and
their responses to various policy changes, structural breaks, etc.
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4 Concluding remarks

In this chapter, two sector models have been presented that are in the
form of a Marshallian demand, supply, and entry model for competitive
sectors or industries that sell in a final product market. Of course such
models can be modified in many different ways. For example, it is possible
to take account of many additional elements, namely substitution effects
in demand, additional factor inputs, monopolistic competition, expecta-
tions, inventories and inventory investment, birth and death of sectors,
different forms for the entry equation, etc. Indeed, much work on these
topics has appeared in the literature over the years. It is thought that
integration of such research results in the MMM will provide improved
explanatory and predictive performance. Further, by adding labor, cap-
ital, and money service factor demands over the sectors and introduc-
ing supply functions for labor, capital, and money services along with
export and government sectors, a complete MMM is obtained. As men-
tioned above, new sectors can be introduced, e.g. using available models
for new products and services, and thus make the model sensitive to
Schumpeterian-like waves of innovation associated with new industries
such as the computer industry, etc.

The starting point for this modeling work is not a very general model
but relatively simple sector models that perform reasonably well in expla-
nation and prediction. These tested components can then be improved
step by step to accommodate the additional features mentioned above.
In this way, in accordance with the SEMTSA approach, we shall have
valuable components that work well empirically and when combined will
result in a sensible, satisfactory MMM that has good explanatory and
predictive properties and will probably be useful to policy-makers.
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24 Bayesian modeling of economies and data
requirements (2000)

Arnold Zellner and Bin Chen

1 Introduction

For many years, theoretical and empirical workers have tried to model
national economies in order to (1) understand how they operate, (2)
forecast future outcomes, and (3) evaluate alternative economic policies.
While much progress has been made in the decades since Tinbergen’s pio-
neering work [1940], it is the case that no generally accepted model has as
yet appeared. On the theoretical side, there are monetary, neo-monetary,
Keynesian, neo-Keynesian, real business cycle, generalized real business
cycle, and other theoretical models (see, Belongia and Garfinkel 1992 for
an excellent review of many of these models and Min 1992 for a descrip-
tion of a generalized real business cycle model). Some empirical testing
of alternative models has appeared in the literature. However, in Fair
(1992) and Zellner (1992) (invited contributions to a St. Louis Federal
Reserve Bank conference on alternative macroeconomic models), it was
concluded that there is a great need for additional empirical testing of
alternative macroeconomic models and production of improved models.

Over the years many structural econometric and empirical statistical
models have been constructed and used. These include large structural
econometric models (e.g. the Tinbergen, Klein, Brookings–SSRC, Fed-
eral Reserve–MIT–PENN, OECD, Project Link, and other models).
While progress has been made, there does not yet appear to be a structural
model that performs satisfactorily in point and turning point forecasting.
Indeed, the forecasting performance of some of these models is not as
good as that of simple benchmark models, e.g., random-walk, autoregres-
sive, Box–Jenkins univariate ARIMA, and autoregressive leading indica-
tor (ARLI) models (see, e.g., Cooper 1972, Garcia-Ferrer et al. 1987,
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ment Fund, Graduate School of Business, University of Chicago, and the CDC Investment
Management Corp. Originally presented as an invited keynote address at the June 2000
meeting of the International Institute of Forecasters and the International Journal of Fore-
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Hong 1989, and Nelson and Plosser 1982). Further, some have imple-
mented vector autoregressive (VAR) and Bayesian VAR models in efforts
to obtain improved forecasts (see, e.g., Litterman 1986 and McNees
1986). However these VARs have not in general been successful in point
and turning point forecasting performance as noted by Zarnowitz (1986)
and McNees (1986). See also the simulation experiments performed by
Adelman and Adelman (1959) and Zellner and Peck (1973) that revealed
some rather unusual properties of two large-scale econometric models.

Given the need for improved models, in Garcia-Ferrer et al. (1987)
an empirical implementation of the structural econometric time series
analysis (SEMTSA) approach of Zellner and Palm (1974, 1975), Palm
(1976, 1977, 1983), and Zellner (1979, 1994) was reported. In line with
the SEMTSA general approach, relatively simple forecasting equations,
autoregressive leading indicator (ARLI) models were formulated and
tested in forecasting output growth rates for nine industrialized countries
with some success. In later work, the sample of countries was expanded to
eighteen and the forecast period extended to include more out-of-sample
growth rates of real GDP to be forecast. Building on the work of Wecker
(1979) and Kling (1987), a Bayesian decision theoretic procedure for
forecasting turning points was formulated and applied that yielded cor-
rect forecasts in about 70 percent of 211 turning point episodes (see
Zellner and Min 1999, Zellner, Tobias, and Ryu 1999, and the refer-
ences cited in these papers). Further, the ARLI models were shown to
be compatible with certain aggregate supply and demand, Hicksian “IS-
LM,” and generalized real business cycle models in Hong (1989), Min
(1992), and Zellner (1999).

In a continuing effort to improve our models, in the present chapter,
we use a relatively simple, Marshallian model in section 2 that features
demand, supply, and entry equations for each sector of an economy (see
Veloce and Zellner 1985 for a derivation of this model and an application
of it in the analysis of data for a Canadian industry). The model is solved
to produce a sectoral relation that can be employed to forecast sectoral
output. These sectoral output forecasts are summed to produce fore-
casts of total output that are compared to forecasts derived from models
implemented with aggregate data. Some possible advantages of disaggre-
gation have been discussed earlier by Orcutt et al. (1961), Espasa and
Matea (1990), de Alba and Zellner (1991), and Espasa (1994), among
others. Actual comparisons of such forecasts for US annual real GDP
growth rates, 1980–97 will be reported in section 4 after statistical esti-
mation and forecasting techniques, employed to implement the MMM,
are presented in section 3. In section 4, the data used in our empirical
forecasting work are described and forecasting results using the MMM
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and other models with no disaggregation and with disaggregation are
reported. Also, MMM models’ forecast performance is compared to that
of various benchmark and ARLI models. In section 5, some comments
on data requirements, a summary of conclusions, and remarks on future
research, are presented.

2 The Marshallian macroeconomic model (MMM)

In the MMM, we have three basic rather well-known equations, described
and applied in Veloce and Zellner (1985), namely the usual (1) demand
for output, (2) supply of output, and (3) entry equations encountered in
Marshall’s famous economic analyses of the behavior of industries. While
many macro models have included demand and supply equations, they
have not included an entry equation. For example, in some models there
is just a representative firm and one wonders what happens when the
representative firm shuts down. In our MMM model, supply depends
on the number of firms in operation and thus an equation governing the
number of firms in operation, an entry equation, is introduced.

We shall use two variants of the MMM model, namely an aggregate,
reduced form variant, and a disaggregated structural equation variant. In
the aggregate variant, we shall adopt a “one-sector” view of an economy
while in the disaggregated variant, we adopt a multi-sector view of an
economy. As regards the multi-sectoral view, many assumed structures
are possible, all the way from the multi-sectoral view of traditional Leonti-
eff input–output analysis to the simple view that we shall employ, namely
an economy in which each sector sells in a final product market. Herein,
we do not take up the interesting problem of classifying economies by
the nature of their sectoral interrelations. However, we shall show that
by adopting our sectoral view, we are able to improve forecasts of aggre-
gate output growth rates since disaggregation provides more observations
to estimate relationships and permits use of sectoral-specific variables to
help improve forecasts. Of course, if the disaggregated relations are mis-
specified and/or the disaggregated data are faulty, then there may be no
advantages, and perhaps some disadvantages, in using disagregated data,
as is evident. Also, there are some circumstances even when data are good
and relations are well formulated when disaggregation does not lead to
improved forecasts. However the issue can not be completely settled the-
oretically and hence our current empirical work.

As explained in Veloce and Zellner (1985), the equations for a sector
that we use are a demand equation for output, an industry supply equation
for output, and a firm entry equation. While we could elaborate the system
in many ways, we shall go forward to determine how well this simplest
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system peforms empirically, our “Model T” that can be improved in many
different ways in the future. When these three equations are solved for
the implied equation for the sectoral output growth rate (see Veloce and
Zellner 1985 for details), the result is the following differential equation
for total industry sales, denoted by S = S(t):

(1/S)dS/dt = a(1 − S/F) + g (2.1)

where a and F are postive parameters and g is a linear function of the
growth rates of the wage rate, the price of capital, and of demand shifters
such as real income, real money balances, etc. If g = 0 or g = c, a positive
constant, it is the case that (2.1) is the differential equation with a logistic
curve solution that is employed in many sciences, including economics.
Also, note that (2.1) incorporates both the rate of change of S and the
level of S, a “cointegration” effect. Also, see Veloce and Zellner (1985,
p. 463), for analysis of (2.1) when g = g(t), a special form of Bernouilli’s
differential equation and its solution.

In our empirical work we shall use the discrete approximations to (2.1)
shown in table 24.1 and denoted by MMM(DA)I–IV. In these equations,
the rate of growth of S, real output, is related to lagged levels of S, lagged
rates of change of real stock prices, SR, and real money, m, and current
rates of change of real wage rates, W, and real GDP, Y. The variables m
and Y are “demand shifters” while W is the price of labor and SR is related
to the price of capital. As noted in the literature and in our past work,
the rates of change of m and SR are effective leading indicator variables
in a forecasting context and their use has led to improved forecasts in our
past work; see, references cited above for empirical evidence.

Shown under Sectoral forecast equations in table 24.1 are three bench-
mark models that will be used to produce sectoral one-year-ahead fore-
casts of the rates of change of output for each of our eleven sectors. The
first is an AR(3) that has been used in many earlier studies as a bench-
mark model. The second is an AR(3) that incorporates lagged leading
indicator variables and current values of W and Y but no lagged level
variables. The third “Distributed lag” model is like the second except for
the inclusion of lagged rates of change of W and of Y.

At the top of table 24.1, under Reduced form equations, are shown
reduced form equations for the rate of change of Y, annual real GDP.
The first is a benchmark AR(3) model. The second is an AR(3) with
lagged leading indicator variables that is denoted by AR(3)LI. The third
model, denoted MMM(A) is the same as the AR(3)LI model except for
the inclusion of two lagged Y variables, where Y = real GDP, and a time
trend, t.



T
ab

le
24

.1
Fo

re
ca

st
in

g
eq

ua
tio

ns

R
ed

u
ce

d
fo

rm
eq

u
at

io
n

s:
R

ea
lU

S
G

D
P

:
A

R
(3

)(
A

)
(1

−L
)l

og
Y

t
=

α
0

+
α

1
(1

−L
)l

og
Y

t−
1

+
α

2
(1

−L
)l

og
Y

t−
2

+
α

3
(1

−L
)l

og
Y

t−
3

+
u t

A
R

(3
)L

I(
A

)
(1

−L
)l

og
Y

t
=

α
0

+
α

1
(1

−L
)l

og
Y

t−
1

+
α

2
(1

−L
)l

og
Y

t−
2

+
α

3
(1

−L
)l

og
Y

t−
3

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
u t

M
M

M
(A

):
(1

−L
)l

og
Y

t
=

α
0

+
α

1
(1

−L
)l

og
Y

t−
1

+
α

2
(1

−L
)l

og
Y

t−
2

+
α

3
(1

−L
)l

og
Y

t−
3

+
α

4
Y

t−
1

+
α

5
Y

t−
2

+
α

6
t+

β
1
(1

−L
)l

og
S

R
t−

1

+
β

2
(1

−L
)l

og
m

t−
1

+
u t

R
ea

lw
ag

e:
A

R
(3

)
(A

)
(1

−L
)l

og
W

t
=

α
0

+
α

1
(1

−L
)l

og
W

t−
1

+
α

2
(1

−L
)l

og
W

t−
2

+
α

3
(1

−L
)l

og
W

t−
3

+
u t

A
R

(3
)L

I
(A

)
(1

−L
)l

og
W

t
=

α
0

+
α

1
(1

−L
)l

og
W

t−
1

+
α

2
(1

−L
)l

og
W

t−
2

+
α

3
(1

−L
)l

og
W

t−
3

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
u t

M
M

M
(A

):
(1

−L
)l

og
W

t
=

α
0

+
α

1
(1

−L
)l

og
W

t−
1

+
α

2
(1

−L
)l

og
W

t−
2

+
α

3
(1

−L
)l

og
W

t−
3

+
γ

1
W

t−
1

+
γ

2
W

t−
2

+
γ

3
t

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
u t

S
ec

to
r

fo
re

ca
st

eq
u

at
io

n
s:

A
R

(3
)(

D
A

)
(1

−L
)l

og
S

t
=

α
0

+
α

1
(1

−L
)l

og
S

t−
1

+
α

2
(1

−L
)l

og
S

t−
2

+
α

3
(1

−L
)l

og
S

t−
3

+
u t

A
R

(3
)L

I(
D

A
)

(1
−L

)l
og

S
t
=

α
0

+
α

1
(1

−L
)l

og
S

t−
1

+
α

2
(1

−L
)l

og
S

t−
2

+
α

3
(1

−L
)l

og
S

t−
3

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
β

3
(1

−L
)l

og
W

t
+

β
4
(1

−L
)l

og
Y

t
+

u t
D

is
tr

ib
.

L
ag

(D
A

)
(1

−L
)l

og
S

t
=

α
0

+
α

1
(1

−L
)l

og
S

t−
1

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
β

3
(1

−L
)l

og
W

t
+

β
4
(1

−L
)l

og
Y

t

+
β

5
(1

−L
)l

og
W

t−
1

+
β

6
(1

−L
)l

og
Y

t−
1

+
u t

M
M

M
(D

A
)I

:
(1

−L
)l

og
S

t
=

α
0

+
α

1
S

t−
1

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
β

3
(1

−L
)l

og
W

t
+

β
4
(1

−L
)l

og
Y

t
+

u t
M

M
M

(D
A

)I
I:

(1
−L

)l
og

S
t
=

α
0

+
α

1
S

t−
1

+
α

2
S

t−
2

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
β

3
(1

−L
)l

og
W

t
+

β
4
(1

−L
)l

og
Y

t
+

u t
M

M
M

(D
A

)I
II

:
(1

−L
)l

og
S

t
=

α
0

+
α

1
S

t−
1

+
α

2
S

t−
2

+
α

3
S

t−
3

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
β

3
(1

−L
)l

og
W

t

+
β

4
(1

−L
)l

og
Y

t
+

u t
M

M
M

(D
A

)I
V

:
(1

−L
)l

og
S

t
=

α
0

+
α

1
S

t−
1

+
+

α
2
S

2 t−
1

+
β

1
(1

−L
)l

og
S

R
t−

1
+

β
2
(1

−L
)l

og
m

t−
1

+
β

3
(1

−L
)l

og
W

t
+

β
4
(1

−L
)l

og
Y

t
+

u t



682 Arnold Zellner and Bin Chen

For our aggregate analyses, we use the Reduced form equations in
table 24.1 to produce one-year-ahead forecasts of the rate of change of
real GDP, Y, that we refer to as “aggregate forecasts.” These are means
of diffuse prior Bayesian predictive densities for each model that are
simple one-year-ahead least squares forecasts. As explained below, the
MMM(A) reduced form equations for the rates of change of Y and of W
will be employed in the estimation of the Sectoral forecast equations and
in computing one-year-ahead forecasts of sectoral outputs growth rates.
These sectoral growth rate forecasts are transformed into forecasts of lev-
els, added across the sectors and converted into a forecast of the rate of
change of real GDP, Y. Root mean-squared errors (RMSEs) and mean
absolute errors (MAEs) are computed for each forecasting procedure and
are shown in the table below.

3 Estimation and forecasting methods

3.1 Notation and equations

In what follows, we shall use the following notation. For each sector, we
have:
1. Endogenous or random current exogenous variables:

y1t = (1 − L) log St ; y2t = (1 − L) log Wt ; y3t = (1 − L) log Yt ,

where St = sectoral real output, Wt = national real wage rate, and Yt

= real GDP.
2. Predetermined variables:

x′
1t = (1, St−1, St−2, St−3, (1 − L) log SRt−1, (1 − L) log mt−1),

where SRt = real stock price and mt = real money.
We use these variables to form the following structural equation for

each sector:

y1t = y2tγ21 + y3tγ31 + x′
1tβ1 + u1t t = 1, 2, . . . , T,

or

y1 = Y1γ1 + X1β1 + u1, (3.1)

where the vectors y1 and u1 are Tx1, Y1 is Tx2 and X1 is Tx5 and δ1
′ =

(γ 1
′, β1

′) is a vector of structural parameters.
The MMM unrestricted reduced form equations, shown in table 24.1,

are denoted by:

y1 = Xπ1 + v1, (3.2a)
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and

Y1 = XΠ1 + V1, (3.2b)

where X = (X1, X0) with X0 containing predetermined variables in the
system that are not included in (3.1).

By substituting from (3.2b) in (3.1), we obtain the following well-
known restricted reduced form equation for y1:

y1 = XΠ1γ1 + X1β1 + v1 (3.3a)

= Zδ1 + v1, (3.3b)

where Z = (XΠ1, X1), that is assumed of full column rank.
Further, if we consider the regression of v1 on V1,

v1 = Vη1 + e1 = (Y − XΠ1)η1 + e1, (3.4)

we can substitute for v1 in (3.3) to obtain:

y1 = XΠ1γ1 + X1β1 + (Y1 − XΠ1)η1 + e1. (3.5)

In (3.5), for given Π1, we have a regression of y1 on XΠ1, X1 and Y1 −
XΠ1. Given that e1 is uncorrelated with the the elements of V1, the system
(3.2b) and (3.5) is a non-linear in the parameters SUR system with an
error covariance matrix restriction. Pagan (1979) has earlier recognized a
connection of the above model in (3.1) and (3.2b) to the SUR model given
the “triangularity” of the system and reported an iterative computational
procedure for obtaining maximum likelihood estimates of the structural
coefficients. In our case, we shall use (3.2b) and (3.5) as a basis for
producing a convenient algorithm for computing posterior and predictive
densities.

Note further that if γ 1 = η1, (3.5) becomes:

y1 = Y1γ1 + X1β1 + e1, (3.6)

the same as (3.1) except for the error term. It is possible to view (3.6) as
a regression with Y1 containing observations on stochastic independent
variables given that the elements of e1 and V1 are uncorrelated. The above
restriction however may not hold in general. Another interpretation that
permits (3.6) to be viewed as a regression with stochastic input variables
is that the variables y2t and y3t are stochastic exogenous variables vis-à-vis
the sectoral model. In such a situation, (3.1) can be treated as a regres-
sion equation with stochastic independent variables. However, we are not
sure that this exogeneity assumption is valid and thus will use not only
least squares techniques to estimate (3.1) but also special simultaneous
equations techniques.
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3.2 Estimation techniques

The sampling theory estimation techniques that we shall employ in
estimating the parameters of (3.1) are the well-known “ordinary least
squares” (OLS) and “two-stage least squares” (2SLS) methods. As shown
in Zellner (1998), in very small samples, but not in large samples, the
OLS estimate is an optimal Bayesian estimate relative to a generalized
quadratic “precision of estimation” loss function when diffuse priors
are employed. Also, the 2SLS estimate has been given an interpreta-
tion as a conditional Bayesian posterior mean using (3.3) conditional on
Π1 = Π̂1 = (X ′X)−1 X ′Y, a normal likelihood function and diffuse priors
for the other parameters of (3.3). A similar conditional result is obtained
without the normality assumption using the assumptions of the Bayesian
method of moments (BMOM) approach (see, e.g., Zellner 1997b, 1998).
Since the “plug in” assumption Π1 = Π̂1, does not allow appropriately
for the uncertainty regarding Π1’s value, the 2SLS estimate will not be
optimal in small samples (see, e.g., Monte Carlo experiments reported
by Park 1982, Tsurumi 1990, and Gao and Lahiri 1999). However, since
OLS and 2SLS are widely employed methods, we shall employ them in
our analyzes of the models for individual sectors.

In the Bayesian approach, we decided to use the “Extended Mini-
mum Expected Loss” (EMELO) optimal estimate put forward in Zell-
ner (1986, 1998) that has performed well in Monte Carlo experiments of
Tsurumi (1990) and Gao and Lahiri (1999). It is the estimate that min-
imizes the posterior expectation of the following extended or balanced
loss function:

L(δ1, δ̂1) = w(y1 − Zδ̂1)′(y1 − Zδ̂1) + (1 − w)(δ1 − δ̂1)′Z′ Z(δ1 − δ̂1)

= w(y1 − Zδ̂1)′(y1 − Zδ̂1) + (1 − w)(Xπ1 − Zδ̂1)′(Xπ1 − Zδ̂1),

(3.7)

where w has a given value in the closed interval 0 to 1, δ̂1 is some estimate
of δ1, and in going from the first line of (3.7) to the second, the identifying
restrictions, multiplied on the left by X, namely Xπ1 = Zδ1 have been
employed.

Relative to (3.3), the first term on the r.h.s. of (3.7) reflects goodness
of fit while the second reflects precision of estimation or, from the second
line of (3.7), the extent to which the identifying restrictions are satisfied
when an estimate of δ1 is employed. When the posterior expectation of
the loss function in (3.7) is minimized with respect to δ̂1 the minimizing
value is:

δ̂1 = (EZ′ Z)−1[wEZ′y1 + (1 − w)EZ′Xπ1]. (3.8)
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On evaluation of the moments on the r.h.s. of (3.8), we have explicit
value for the optimal estimate. For example, with the assumption that for
the unrestricted reduced form system in (3.2), the rows of (v1,V1), are
iid N(0, Ω), where Ω is a pds covariance matrix, combining a standard
diffuse prior for the reduced form parameters with the normal likelihood
function yields a marginal matrix t-density for the reduced form coeffi-
cients. Thus the moments needed to evaluate (3.8) are readily available
(see Zellner 1986 for details), and the result is surprisingly in the form
of a double K-class estimate shown in (3.9):

δ̂1 =
[

γ̂1

β̂1

]
=

[
Y ′

1Y1 − K1V̂ ′
1V̂1 Y′

1 X1

X ′
1Y X′

1 X1

]−1
 (Y1 − K2V̂) ′y1

X ′
1y1

 ,

(3.9)

with V̂1 = Y1 − XΠ1, Π̂1 = (X ′X)−1X ′Y1 and

K1 = 1 − k/(T − k − m − 2) and K2 = K1 + wk/(T − k − m − 2).

(3.10)

K-class and double K-class estimates are discussed in most econometrics
texts (see, e.g., Judge, et al. 1987) and the choice of optimal values for the
Ks has been the subject of much sampling theory research. The Bayesian
approach provides optimal values of these parameters quite directly on
use of goodness of fit, precision of estimation, or balanced loss functions.

When the form of the likelihood function is unknown and thus a tra-
ditional Bayesian analysis is impossible, we used the Bayesian method of
moments (BMOM) approach in Zellner (1998) to obtain a postdata max-
ent density for the elements of Π = (Π1, π1) that was used to evaluate
the expectation of the balanced loss function in (3.7) and derive an opti-
mal value of δ̂1 that is also in form of a double K-class estimate, shown
in (3.9) but with slightly different values of the K-parameters, namely
K1 = 1 − k/(T − k) and K2 = K1 + wk/(T − k). In our calculations based
on the extended MELO estimate, we used the BMOM K-values and
w = 0.75, the value used by Tsurumi (1990) in his Monte Carlo
experiments.

SUR estimates for the system were computed by assuming that the
y2 and y3 variables in (3.1) are stochastic exogenous variables for each
sector and treating the eleven sectoral equations as a set of seemingly
unrelated regression equations. We estimated the parameters by “fea-
sible” generalized least squares. The parameter estimates so obtained
are means of conditional posterior densities in traditional Bayesian and
BMOM approaches.



686 Arnold Zellner and Bin Chen

Complete shrinkage estimation utilized the assumption that all sectors’
parameter vectors are the same. Under this assumption and the assump-
tion that the y2 and y3 variables are stochastic exogenous variables, esti-
mates of the restricted parameter vector were obtained by least squares
that are also posterior means in Bayesian and BMOM approaches.

Exact posterior densities for the structural parameters in (3.5) can
readily be calculated in the Bayesian approach by using diffuse priors for
the parameters of (3.5) given Π1, that is, a uniform prior on elements of
δ1, β1, η1, and log σ e, where σ e is the standard deviation of each element
of e. Further, the usual diffuse priors are employed for Π1 and Ω1, a
marginal uniform prior on the elements of the reduced form matrix Π1 in
(3.2) and a diffuse prior on Ω1, the covariance matrix for the independent,
zero mean, normal rows of V1. With use of these priors, the usual normal
likelihood function for the system and Bayes’ Theorem, we obtain the
following joint posterior density for the parameters, where D denotes the
given data (see Zellner et al. 1994 and Currie 1996):

f (γ1, β1, η1 | σe , Π1, D) g(σe | Π1, D) h(Π1 | Ω1, D) j (Ω1 | D)
MVN IG MVN IW

(3.11)

where MVN denotes a multivariate normal density, IG an inverted
gamma density, and IW an inverted Wishart density. A similar factoriza-
tion of the joint BMOM postdata density is available (see Zellner 1997a).

Given (3.11), we can draw from the IW density and insert the drawn
values in h and make a draw from it. The Π1 value so drawn is then
inserted in g and a draw from it and the drawn values of σ e and Π1

are inserted in f and a draw of the structural coefficients in f is made.
This direct Monte Carlo procedure can be repeated many times to yield
moments, fractiles, and marginal densities for all parameters appearing
in (3.11). Also, a similar approach, described below, can be employed
to compute predictive densities. Some of these calculations have been
performed using sectoral models and data that will be reported in a future
paper.

3.3 Forecasting techniques

For one-year-ahead forecasts of the rates of growth of real GDP using
the aggregate models in table 24.1, we employed least squares forecasts
that are means of Bayesian predictive densities when diffuse priors are
employed and the usual normal likelihood functions are employed. Pre-
dictive means are optimal in terms of providing minimal expected loss
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vis-à-vis squared error predictive loss functions. Further, since these pre-
dictive densities are symmetric, the predictive mean is equal to the pre-
dictive median that is optimal relative to an absolute error predictive loss
function.

One-year-ahead forecasts for the sectoral models in table 24.1 were
made using one-year-ahead MMM(A) reduced form forecasts of the
y2T+1 and y3T+1 variables on the r.h.s. of (3.1) and using the param-
eter estimates provided by the methods described above. That is, the
one-year-ahead forecast is given by:

ŷ1T+1 = ŷ2T+1γ̂21 + ŷ3T+1γ̂31 + x′
1T+1β̂1. (3.12)

The “eta” shrinkage technique, derived and utilized in Zellner and Hong
(1989) involves shrinking a sector’s forecast toward the mean of all eleven
sectors’ forecasts by averaging a sector’s forecast with the mean of all
sectors’ forecasts as follows:

ŷ1t+1 = η ŷ1t+1 + (1 − η)ȳt+1,

where ŷ1t+1 is the sector forecast, ȳt+1 is the mean of all the sectors’
forecasts, and η is assigned a value in the closed interval zero to 1.

Gamma shrinkage, discussed and applied in Zellner and Hong (1989),
involves assuming that the individual sector’s coefficient vectors are dis-
tributed about a mean, say θ , and then using an average of an estimate
of the sector’s coefficient vector with an estimate of the mean θ of the
parameter vectors. That is,

δ̂η = (δ̂1 + γ θ̂)/(1 + γ θ̂), (3.13)

with 0 < γ < ∞. This coefficient estimate can be employed to produce
one-year-ahead forecasts using the structural equations for each sec-
tor and MMM(A) reduced form forecasts of the endogenous variables
(1 − L)log Wt+1 and (1 − L) log Yt+1. Various values of η and γ will be
employed in forecasting sectoral growth rates that are used to construct
an aggregate forecast of the growth rate of real GDP.

We can also compute a predictive density for a sector’s one-year-ahead
growth rate as follows. From (3.5), we can form the conditional density
q(y1T+1 | Π1, γ 1, β1, η1, σ e, y2T+1, y3T+1, D), that will be in a normal
form given error term normality. Thus, each draw from (3.11) and a
draw from the predictive density for (y2T+1, y3T+1) can be inserted in
q and and a value of y1T+1 drawn from q. Repeating the process will
produce a sample of draws from q from which the complete predictive
density, its moments, etc. can be computed. Shown in figure 24.4 (p. 701)
are two such predictive densities, one for the durables sector and the other
for the services sector. The densities are slightly skewed to the left and
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rather spread out. However, the means that are optimal relative to squared
error loss are not too far from the actual values being forecasted. Also,
these densities are valuable in making probability statements about future
outcomes, including turning point forecasts.

With this said about estimation and forecasting methods, we now turn
to consider plots of the data and reports of forecasting results in the next
section.

4 Discussion of data and forecasting results

In figure 24.1a are shown plots of the rates of growth of real GDP, real
M1, real currency, real stock prices, and real wage rates, 1949–97. Peaks
and troughs in the plots occur roughly at about four–six-year intervals.
Note the sharp declines in real GDP growth rates in 1974 and 1982
and a less severe drop in 1991. The money and stock price growth rate
variables tend to lead the real GDP growth rate variable, as observed in
earlier work of many. While the two money growth rate variables show
similar patterns before the 1990s, in the 1990s their behavior is somewhat
different for some unknown (to us) reason. In our forecasting results, we
find that use of the currency variable yields somewhat better results than
use of the M1 variable.

Figure 24.1b presents a plot of the output growth rates for eleven sec-
tors of the US economy. It is seen that except for the agriculture and min-
ing sectors, the sectoral output growth rates tend to move together over
the business cycle, while the agricultural and mining sectors show extreme
variation. In contrast, the other sectors have much smaller interquartile
ranges and fewer outlying growth rates. See also the boxplot for the sec-
toral growth rates in figure 24.1c.

In figure 24.2a are shown the one-year-ahead, aggregate forecasts plot-
ted as solid lines and the actually observed rates of growth plotted as cir-
cles. In the first panel of figure 24.2a, labeled AR(3), an aggregate AR(3)
model for the real GDP growth rates (see table 24.1) was employed
to generate one-year-ahead forecasts year by year, 1980–97, with esti-
mates being updated each year. The plot shows dramatically the failure
of the AR(3) model to forecast turning points successfully. Very large
errors occurred in 1982 and 1991. Use of the AR(3)LI model (see table
24.1) that incorporates two lagged leading indicator variables, the rates
of growth of real currency and of real stock prices, produced the forecasts
shown by the solid lines in the second panel of figure 24.2a. There are
improvements in forecasts for 1982 and 1984 vis-à-vis use of the AR(3)
model. However, there is still a large error in the 1991 forecast. Use of
the MMM(A) model (see table 24.1) that incorporates two lagged level
GDP variables and a linear time trend in the AR(3)LI model produced
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1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

AR(3)

AR(3)LI

MMM(A)

Percent
0 = actual and solid line = forecast

Figure 24.2a Aggregate GDP growth rate forecasts using the currency
variable, 1980–1997

the forecasts shown in the third panel of figure 24.2a. Here there are
improvements, as compared to the use of the AR(3) model in most years,
especially 1982, 1990, and 1991. Similar use of the MMM(A) model led
to improved forecasts as compared to those provided by the AR(3)LI,
especially in the 1990s.

In figure 24.2b are shown the disaggregated, one-year-ahead forecasts,
plotted as solid lines and the observed real GDP growth rate data, plotted
as circles. Here, for each year, the eleven sectoral forecasts are employed
to generate a forecast of the growth rate of aggregate real GDP using
annually updated estimates of relations. Again, even though the sectoral
AR(3) forecasts were employed, there is little improvement as compared
with the aggregate AR(3) forecasts, shown in figure 24.2a. The AR(3)LI
and Distributed lag(DL) models were used to generate forecasts for each
of the eleven sectors and these were employed to calculate a forecast of
the annual growth rates of real GDP with results shown in the second
panel of the first column of figure 24.2b. The forecast performance of the
DL model is seen to be better than that of the AR(3) model and about
the same as that of the AR(3)LI model. With use of disaggregation and
of the MMM(DA) models, I–IV (see table 24.1 for their definitions) that
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0 = actual and solid line = forecast 

Figure 24.3a Aggregate GDP growth rate forecasts using the M1 vari-
able, 1980–1997

include lagged level variables, the forecasting results shown in figure 24.2b
were obtained. The MMM(DA) models outperformed the AR(3) model
by a wide margin and the disaggregated Distributed lag and AR(3)LI
models by smaller margins. Also, from a comparison of figures 24.2a and
24.2b, the MMM(DA) models performed better than all the aggregate
models.

With respect to the four MMM(DA) models, it appears that
MMM(DA)III has a slight edge on the other three MMM(DA) mod-
els. It caught the 1982 downturn and subsequent upturn rather well and
its performance in later years, particularly the 1990s, is slightly better
than that of the alternative models considered in figures 24.2a–24.2b.
However, it missed the 1991 trough growth rate.

When the lagged rate of growth of real M1 is used as a leading indi-
cator variable, rather than the lagged rate of growth of real currency, the
results in figures 24.3a–b were obtained. The results in figure 24.3a are
similar to those in figure 24.2a, in that both the AR(3)LI and MMM(A)
models’ forecasting performance was much better than that of the AR(3)
model. Use of the M1 variable rather than the currency variable led to
a slight deterioration of the forecasting performance of the MMM(A).
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Table 24.2 Forecast root mean-squared errors(RMSEs) and mean absolute
errors(MAEs) for aggregate and disaggregated models using currency as the
money variable (percentage points)

Money variable using currency:
Aggregate forecast: 1952–79 ⇒ 1980–97

AR(3) AR(3)LI MMM(A)

Income Yt (Real GDP)
RMSE 2.32 2.61 1.72
MAE 1.71 2.19 1.48

Real wage rate Wt
RMSE 1.43 1.71 1.49
MAE 0.98 1.10 1.11

Disaggregated forecast: 1952–79 ⇒ 1980–97
∗Using MMM reduced form equation to forecast real income and real wage rate growth

MMM(DA)

AR(3) AR(3)LI Distributed lag I II III IV

OLS
RMSE 2.26 1.62 1.61 1.61 1.52 1.47 1.80
MAE 1.65 1.32 1.35 1.31 1.28 1.25 1.47

Extended MELO
RMSE 2.26 1.58 1.62 1.55 1.55 1.50 1.80
MAE 1.65 1.23 1.34 1.26 1.31 1.26 1.46

2SLS
RMSE 2.26 1.60 1.63 1.63 1.49 1.48 1.78
MAE 1.65 1.31 1.38 1.33 1.25 1.24 1.45

SUR
RMSE 2.21 1.70 1.66 1.68 1.61 1.40 1.92
MAE 1.52 1.41 1.36 1.39 1.38 1.17 1.60

Complete shrinkage
RMSE 2.11 1.73 1.82 1.76 1.57 1.59 1.70
MAE 1.45 1.57 1.60 1.46 1.37 1.38 1.43

γ-Shrinkage
γ = 0 (same as OLS)
γ = 0.25
RMSE 2.21 1.62 1.61 1.61 1.49 1.46 1.74
MAE 1.59 1.36 1.38 1.34 1.26 1.25 1.41

γ = 0.5
RMSE 2.18 1.62 1.63 1.62 1.49 1.46 1.71
MAE 1.56 1.39 1.42 1.36 1.27 1.27 1.38

γ = 1
RMSE 2.15 1.64 1.66 1.64 1.49 1.48 1.69
MAE 1.52 1.44 1.46 1.38 1.29 1.29 1.39
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Table 24.2 (cont.)

MMM(DA)

AR(3) AR(3)LI Distributed lag I II III IV

γ = 2
RMSE 2.13 1.66 1.70 1.67 1.51 1.50 1.68
MAE 1.49 1.48 1.51 1.41 1.32 1.32 1.40

γ = 5
RMSE 2.11 1.69 1.75 1.71 1.53 1.54 1.68
MAE 1.47 1.52 1.56 1.44 1.34 1.35 1.41

γ = 106 (same as complete shrinkage)

η-Shrinkage
η = 0 (same as OLS)
η = 0.25
RMSE 2.26 1.66 1.62 1.59 1.49 1.44 1.77
MAE 1.63 1.36 1.40 1.34 1.25 1.24 1.48

η = 0.5
RMSE 2.28 1.73 1.70 1.60 1.48 1.42 1.76
MAE 1.63 1.43 1.50 1.37 1.23 1.23 1.52

η = 0.75
RMSE 2.33 1.82 1.82 1.62 1.48 1.42 1.79
MAE 1.68 1.55 1.64 1.41 1.21 1.23 1.57

η = 1
RMSE 2.40 1.93 1.98 1.65 1.49 1.44 1.83
MAE 1.76 1.67 1.79 1.44 1.22 1.25 1.62

To a lesser degree, the same conclusion holds for the AR(3)LI models’s
performance. In figure 24.3b, the use of the M1 variable produced results
similar to those reported in figure 24.2b. Note, however, that use of M1
and the models other than the AR(3) led to better forecasts of the low
1991 real GDP growth rate and slightly worse forecasts of the low 1982
growth rate.

Shown in table 24.2 are the RMSEs and MAEs associated with various
models’ one-year-ahead forecasts of annual real GDP growth rates, 1980–
97, using data 1952–79 to estimate models which were then re-estimated
year by year in the forecast period. Currency was used as the money
variable. From the Aggregate forecast part of the table, it is seen that
the MMM(A) model has a RMSE = 1.72 and a MAE = 1.48, lower
than those associated with the AR(3) and AR(3)LI models. For the rates
of change of the real wage rate, the AR(3) model’s RMSE = 1.43 and
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MAE = 0.98 are somewhat smaller than those of the MMM(A) and
AR(3)LI models. These results indicate that the MMM(A) model for the
growth rate of the real wage needs improvement, perhaps by inclusion of
demographic and other variables.

As regards the disaggregated forecasts for the rate of growth of real
GDP, shown in the second part of table 24.2, it is seen that all the
disaggregated forecasts have smaller RMSEs and MAEs than those
for the aggregate and disaggregated AR(3) model. For example, the
disaggregated AR(3) model has RMSE = 2.26 and MAE = 1.65, whereas
the disaggregated AR(3)LI, Distributed lag, and MMM(DA) models
have RMSEs ranging from 1.40 to 1.98 and MAEs ranging from 1.17
to 1.62. As regards just the MMM(DA) models shown in table 24.2,
their associated RMSEs and MAEs ranged from 1.40 to 1.92 and 1.17
to 1.62, respectively. The lowest RMSE and MAE are encountered
for the MMM(DA) III model fitted using the SUR approach, namely
RMSE = 1.40 and MAE = 1.17. However, quite a few other MMM(DA)
models had RMSEs in the 1.4–1.5 range and MAEs in the 1.2–1.4
range.

In table 24.3 results similar to those presented in table 24.2 are shown
for models incorporating a lagged rate of change of real M1 rather than
the real currency variable. In general the use of the M1 variable resulted in
a generally small deterioration in forecasting precision for all the models.
However, again disaggregation led to improved forecasting precision for
the AR(3)LI and MMM models in all cases. Use of the MMM(DA)III
model generally led to slightly lower RMSEs and MAEs than other
MMM(DA) models. The lowest RMSE and MAE, namely 1.84 and
1.52, respectively, are associated with the use of MMM(DA)III and η

shrinkage with a value of η = 0.50 that can be compared to the aggregate
MMM(A) model’s RMSE = 2.23 and MAE = 1.90 and the aggregate
AR(3)LI model’s RMSE = 2.32 and MAE = 1.98. The RMSE and MAE
for the aggregate AR(3) benchmark model are 2.32 and 1.71. Clearly use
of disaggregation has led to improved forecasting performance again,
about a 20 percent reduction in both RMSE and MAE.

In tables 24.2 and 24.3, use of alternative methods of estimation, OLS,
Extended MELO, and 2SLS did not have much influence on the precision
of forecasts. It may be that, for the present model, the rates of change
of real income and of the real wage rate are stochastic exogenous or
independent variables in the sector models and thus endogeneity is not
a problem. However, these two variables must be forecast in order to
forecast sectoral output growth rates and thus there is a need for the
reduced form equations shown in table 24.1 whether these variables are
stochastic exogenous or endogenous variables.
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Table 24.3 Forecast root mean-squared errors(RMSEs) and mean absolute
errors(MAEs) for aggregate and disaggregated models using M1 as the
money variable (percentage points)

Money variable using M1:
Aggregated forecast: 1952–79 ⇒ 1980–97

AR(3) AR(3)LI MMM(A)

Income Yt (Real GDP)

RMSE 2.32 2.57 2.23
MAE 1.71 1.98 1.90

Real wage rate Wt
RMSE 1.43 1.73 1.66
MAE 0.98 1.07 1.29
Disaggregated forecast: 1952–79 ⇒ 1980–97
∗Using MMM reduced form equation to forecast real income and real wage rate growth

MMM(DA)

AR(3) AR(3)LI Distributed lag I II III IV

OLS
RMSE 2.26 2.03 2.01 2.04 1.96 1.89 2.17
MAE 1.65 1.77 1.74 1.78 1.76 1.67 1.88

Extended MELO
RMSE 2.26 1.97 2.07 1.95 2.00 1.93 2.14
MAE 1.65 1.74 1.81 1.73 1.83 1.76 1.89

2SLS
RMSE 2.26 2.06 2.06 2.07 1.91 1.89 2.12
MAE 1.65 1.78 1.76 1.77 1.73 1.69 1.85

SUR
RMSE 2.21 2.21 2.07 2.14 2.01 2.00 2.30
MAE 1.52 1.87 1.74 1.87 1.79 1.75 1.96

Complete Shrinkage
RMSE 2.11 2.21 2.34 2.05 1.94 1.93 1.89
MAE 1.45 1.81 2.02 1.70 1.55 1.56 1.63

γ-Shrinkage
γ = 0 (same as OLS)

γ = 0.25
RMSE 2.21 2.04 2.02 2.01 1.91 1.85 2.06
MAE 1.59 1.75 1.67 1.74 1.68 1.60 1.78
γ = 0.5
RMSE 2.18 2.06 2.04 1.99 1.89 1.84 2.01
MAE 1.56 1.73 1.65 1.71 1.62 1.55 1.71
γ = 1
RMSE 2.15 2.08 2.09 1.99 1.88 1.84 1.95
MAE 1.52 1.74 1.71 1.69 1.56 1.52 1.66



700 Arnold Zellner and Bin Chen

Table 24.3 (cont.)

MMM(DA)

AR(3) AR(3)LI Distributed lag I II III IV

γ = 2
RMSE 2.13 2.12 2.16 2.00 1.88 1.85 1.91
MAE 1.49 1.75 1.80 1.69 1.53 1.53 1.65

γ = 5
RMSE 2.11 2.16 2.24 2.02 1.90 1.89 1.89
MAE 1.47 1.76 1.91 1.69 1.53 1.54 1.64

γ = 106 (same as complete shrinkage)

η-Shrinkage
η = 0 (same as OLS)

η = 0.25
RMSE 2.26 2.04 2.03 2.00 1.93 1.85 2.13
MAE 1.63 1.73 1.70 1.72 1.70 1.60 1.82

η = 0.5
RMSE 2.28 2.07 2.15 1.99 1.92 1.84 2.13
MAE 1.63 1.71 1.82 1.66 1.63 1.52 1.79

η = 0.75
RMSE 2.33 2.14 2.33 2.00 1.92 1.86 2.16
MAE 1.68 1.74 2.00 1.64 1.61 1.53 1.78

η = 1
RMSE 2.40 2.23 2.57 2.03 1.95 1.89 2.22
MAE 1.76 1.82 2.19 1.70 1.65 1.61 1.86

For the MMM(DA)III model, predictive densities for the sectoral out-
put growth rates for the Services and durables sectors were calculated
for 1980 and are shown in figure 24.4. Plotted are 1,000 draws from the
BMOM predictive density made using the methods described in section
3. The Services predictive density has a mean equal to 3.14 percent-
age points and a standard deviation equal to 2.05 percentage points. The
actual growth rate for the Services sector’s output in 1980 is 3.57 percent-
age points. For the Durables sector, the 1980 predictive mean is 6.31 per-
centage points with a standard deviation of 8.06. The actual 1980 growth
rate for this sector is 7.33. Both predictive densities appear to be slightly
skewed to the left and rather spread out. As is well known, such densities
can be employed in making probability statements regarding possible out-
comes, for example a downturn in the growth rate and in implementing a
decision theoretic approach for making optimal turning point forecasts.
Also, these predictive densities and predictive densities for other models
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Posterior predictive densities: services, 1980
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Figure 24.4 Posterior predictive densities: services and durables, 1980

can be used to form Bayes’ factors for model comparison and/or model
combining. That these predictive densities can be computed relatively
easily using the “direct” Monte Carlo approach described in section 3 is
fortunate.

Last in table 24.4, we present some MAEs of forecast for various
types of forecasts of one-year-ahead growth rates of real GDP for the
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Table 24.4 Mean absolute errors (MAEs) for annual forecasts
of growth rates of real GNP made by various forecasters

Period MAEs Average

1953–67 1.3e , 1.0d 1.2
1962–76 1.1a, 1.4d 1.2
1969–76 1.2a, 1.0b , 1.6d , 0.9c 1.2
1977–84 1.2a, 1.0b , 1.0d , 1.0c 1.0

Notes:
The forecasts are those of a Council of Economic Advisers, b ASA
& NBER Surveys, c Wharton Newsletter, University of Pennsylvania,
d University of Michigan and e An average of forecasts from the following
sources: Fortune Magazine, Harris Bank, IBM, NICB, National Securities
and Research Corp., University of Missouri, Prudential Insurance Co. and
University of California at Los Angeles.
Source: Zarnowitz (1986), Table 24.1, p. 23.

United States compiled by Zarnowitz (1986). For several different peri-
ods and forecasting units, the average of their MAEs associated with
annual forecasts of the growth rate of real GNP in 1972 dollars are given in
table 24.4.

Many of the MAEs in table 24.4 are of magnitude comparable to those
associated with the MMM(DA) annual one-year-ahead, reproducible
forecasts for the period 1980–97 shown in table 24.2. Some forecasters
use informal judgment along with models and data to produce forecasts.
Adding “outside” information through the use of informative prior dis-
tributions may possibly improve the precision or MMM(DA) forecasts.
See Zellner, Tobias, and Ryu (1999) for some examples of the use of
judgmental information in forecasting turning points in output growth
rates. Also, averaging forecasts from different sources may improve fore-
cast precision, as many have pointed out. Note that the MAEs labeled b
and d in table 24.4 are such averages. On the other hand, on-line fore-
casters have problems associated with the use of preliminary estimates of
economic variables that we do not have in our forecasting experiments
using revised data throughout. The results of some on-line forecasting
experiments would be of great value in assessing the importance the
“preliminary data” problem.

5 Summary and conclusions

In the present research, we found that several disaggregated MMM fore-
casting equations performed the best in our forecasting experiments.



Bayesian modeling of economies and data requirements 703

Given the theoretical appeal of the Marshallian sector models, it is indeed
satisfying that they yielded forecasts of the growth rates of aggregate real
GDP, 1980–7, that were quite a bit better than those yielded by sev-
eral aggregate benchmark models and competitive with other forecast-
ing models and techniques. Shrinkage techniques and use of currency
as the money variable in our models led to improved forecasts. How-
ever, the performance of various of our sector models, particularly those
for the agricultural and mining sectors, has to be improved. In addi-
tion, factor market models for labor, capital, money and bonds as well as
other equations are in the process of being formulated to complete our
MMM.

Bayesian and certain non-Bayesian point forecasts performed about
equally well for our disaggregated MMM models. However, the Bayesian
approach provides exact finite sample posterior densities for parame-
ters and predictive densities. The latter are very useful for forecasting
turning points and making probabilistic statements about various future
outcomes. The “direct” Monte Carlo numerical procedure for comput-
ing finite sample Bayesian posterior densities for parameters and predic-
tive densities for simultaneous equations models appears convenient and
useful.

We recognize that writing a single structural equation in restricted
reduced form and allowing for error term effects in the equation, along
with other unrestricted reduced form equations, yields a non-linear SUR
system with an important restriction on the error term covariance matrix.
This form for the system is very useful in terms of understanding it, ana-
lyzing it, and computing posterior and predictive densities.

While much can be said about the topic of data improvement, here we
shall just remark that better data on (1) the numbers of firms and plants in
operation within sectors, (2) sectoral stock price and wage rate indices, (3)
weather variables, and (4) quality corrected output price data would be
very useful and might lead to improved forecasts. Further, having monthly
or quarterly data for individual sectors would be useful in dealing with
temporal aggregation problems. However, seasonality must be treated
carefully. Mechanical seasonal adjustment procedures may not be the
best alternative. Improvement of preliminary estimates of variables is
another important issue in “on-line” forecasting. Preliminary estimates
of variables that are contaminated with large errors can obviously lead to
poor forecasts.

Last, with better data for sectors of a number of economies and reason-
ably formulated MMMs, past work on use of Bayesian shrinkage forecast-
ing and combining techniques can be extended in an effort to produce
improved point and turning point forecasts for many countries.
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Scheffé procedure 161
score test (ES), efficient 213
seasonal (economic) model 337–41, 343,

394, 506
seasonality 68, 306, 332, 341–7, 375,

388
second weak MSE criterion 595
seemingly unrelated regression

(SUR) 230, 468, 685
separated form 7, 9
shrinkage

estimation 686
forecasting 485, 488–91, 496–8, 593,

609
techniques 150, 494

simple weighted average of least
squares 627

simultaneity 173
simultaneous equation 3, 6, 170
simultaneous equation model (SEM) 3,

54–5, 59, 338
single

equation 58
structural equation 237–9

single-equation estimation 40, 219–22
smoothing 387
smoothness restrictions 150, 152
specific to general 102
spectral density 291
standard deviations 663, 664, 665
Stein estimator 81
stochastic specification 305
strong MSE criterion 594, 595
structural econometric

model xiii, 49
modeling 101–6, 168
time series analysis (SEMTSA)

approach xiv, xv, 45, 62–71, 80, 81,
82, 83, 84, 86, 89, 104, 106, 107,
160, 161, 175, 176–89, 196, 197,
397, 398, 457, 504, 674, 678

structural
equation (SE) 6, 9, 36–8, 56–7, 201,

219–29, 276
model 288

subjectively adjusted forecasts 72
system of dynamic equations 4
system of seemingly unrelated regressions

(SUR) 592

test
for common roots 437
procedure 436–9



Subject index 711

testing 201, 233
for cointegration 426
restrictions 101–23

time series 175
analysis 3, 315, 321–5, 332
identification 55, 64, 65, 98–100, 171,

364
model 293, 298

time-varying autoregressive leading
indicator (TVP/ARLI)
model 537–52, 637

time-varying parameter (TVP) model 189,
465–6, 481, 528, 530, 555–7, 559,
562, 568, 642–3

autoregressive leading indicator
world income (TVP/ARLI/WI)
model 537–52, 637

traditional
approach to econometric

modeling 45–8, 97–8
Bayesian and BMOM approaches

685
transfer function (TF) i, 3, 7, 8, 9,

13–14, 28–36, 38, 63, 67, 70,
93, 178, 201, 214–19, 246–8,
277–84, 340–1, 351–3, 371–3,
376–9

form 7
model 37

trend-stationary (TS) 182
triangular system 492
triangularity of the system 683

turning-point 506, 507–17
forecasting 512–14, 612, 614
forecasting experiments 646, 648

two-step LIML 226–9

univariate
ARIMA models 445–7
models 420–1

unpooled
TVP/ARLI model 569
TVP/ARLI/WI models 570

unrestricted reduced form (URF) 55, 57,
61, 124, 128

upturn (UT), definition 532, 644, 661

values for hyperparameters 587
vector autoregressive (VAR) model i, xiii,

xiv, 97, 107, 122, 133, 143, 156, 157,
160, 176, 179

Wald test (W) 213
Wiener–Granger causality 99, 100, 142,

156, 157, 427–9
Wold representation 439

Youngstown model 652
Yule–Walker equations 29

Zellner–Hong shrinkage 185
Zellner–Palm

consistency constraints 397, 398–401
methodology 414



Author index

Abel, A. 413, 415
Abowd, J. M. 332–9
Abramovitz, M. 305, 313
Adams, F. G. 619, 636, 638, 654
Adelman, F. L. 197, 678, 704
Adelman, I. 197, 678, 704
Ahking, F. W. xiv, 405, 409, 410, 411,

415
Aigner, D. J. 67, 73, 202, 230, 523
Akahira, M. 92
Akaike, H. 6, 42, 202, 230
Alavi, A. S. 98, 99, 163
Alba, de E. 678, 704
Allen, P. R. 405
Almon, S. 218, 230
Amemiya, T. 230
Anderson, A. 458, 484
Anderson, O. D. 453
Anderson, T. W. 51, 73, 88, 102, 162,

202, 230, 317, 330, 355, 364, 381, 421,
453

Ansley, C. F. 204, 231
Artis, G. J. 163
Aström, K. J. 202, 231

Bachelier, L. 397, 398, 403
Baird, C. A. 619, 636, 638, 654
Ballard, K. P. 619, 636, 638, 654
Baltagi, B. H. 590, 610
Barnard, G. A. 94, 95, 506, 523
Barnett, W. A. 114, 162
Barro, R. J. 185, 197
Bartlett, M. S. 16, 42, 88, 91
Bates, J. M. 560, 561, 588
Belgonia, M. 667, 674, 677, 704
Belsley, D. A. 79, 82, 94, 292, 301, 313,

620, 628, 636
Bergstrom, A. R. 232
Bernard, A. B. 591, 610
Bernardo, J. M. 200
Berndt, E. 59, 73
Beveridge, S. 16, 365, 405, 414, 415, 416

Bhandari, J. S. 416
Bilson, J. F. O. 405, 406, 408, 416, 591,

610
Black, F. 399, 403
Blanchard, O. J. 611
Blattberg, R. C. 559, 588, 609, 610
Blommestein, H. J. 113, 162
Bohlin, T. 202, 231
Boot, J. C. D. 7, 42
Booth, G. G. 406, 416
Bowman, H. W. 492, 505, 555, 557
Box, G. E. P. 3, 7, 14–19, 29, 42, 53, 62,

63, 64, 67, 68, 69, 73, 74, 75, 77, 80,
82, 88, 91, 98, 99, 104, 105, 108, 161,
162, 163, 164, 176, 202, 206, 209, 231,
237, 240, 249, 250, 277, 286, 288, 293,
296, 313, 317, 321, 322, 327, 334, 339,
340, 341, 342, 343, 371, 381, 383, 388,
399, 401, 403, 409, 412–13, 416, 419,
429, 453, 454, 478, 483

Breusch, T. S. 600, 610
Brundy, J. M. 238, 240
Brunner, K. 416, 417
Burns, A. F. 181, 197, 457, 483, 517,

523, 615
Burt, J. 406, 416
Byron, R. P. 38, 42, 122, 162, 202,

231

Cagan, P. 286, 315, 316, 321, 322, 324,
325, 327, 328, 330

Caines, P. E. 427, 453
Campbell, J. Y. 440, 453
Canto, V. A. 397
Carbone, R. 458, 484
Catt, A. J. L. 232
Chau, L. C. 568, 589
Chen, B. xv, 669, 670, 675, 677
Chetty, V. K. 10, 42
Chib, S. 592, 601, 610
Childs, G. L. 301, 303, 313
Chopra, V. 672, 675

712



Author index 713

Chow, G. C. 62, 73, 210, 231, 382, 394,
395

Christ, C. F. 62, 71, 72, 73, 74, 82, 84,
96, 105, 162, 172, 176, 179, 197, 460,
483

Clemen, R. T. 560, 567, 588
Clements, M. P. 418, 453
Cleveland, W. P. 343, 358, 362, 381
Cooper, R. L. 62, 74, 179, 181, 197, 677,

704
Courchene, T. J. 288, 292, 305, 313
Crutchfield, J. 333, 382
Currie, J. 686, 704, 706

Dallaire, D. 686, 706
Darling, P. G. 306, 313
Darroch, J. 234, 238, 239, 240
Darroch, J. N. 106, 162
Davidson, J. E. H. 101, 113, 162
Deistler, M. 202, 231
Den Butter, F. A. G. 114, 162
Deniau, C. 421, 427, 429, 453
Dhrymes, P. J. 7, 42, 61, 67, 74, 106, 162,

201, 207, 218, 229, 231, 340, 381
Diebold, F. X. 189, 197, 560, 562, 563,

567, 588
Doan, T. 465, 483
Dornbusch, R. 405, 406, 408, 411, 413,

416
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