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Preface

Scattered data approximation is a recent, fast growing research area. It deals with the
problem of reconstructing an unknown function from given scattered data. Naturally, it
has many applications, such as terrain modeling, surface reconstruction, fluid—structure
interaction, the numerical solution of partial differential equations, kernel learning, and
parameter estimation, to name a few. Moreover, these applications come from such different
fields as applied mathematics, computer science, geology, biology, engineering, and even
business studies.

This book is designed to give a thorough, self-contained introduction to the field of
multivariate scattered data approximation without neglecting the most recent results.

Having the above-mentioned applications in mind, it immediately follows that any com-
peting method has to be capable of dealing with a very large number of data points in an
arbitrary number of space dimensions, which might bear no regularity at all and which
might even change position with time.

Hence, in my personal opinion a true scattered data method has to be meshless. This is an
assumption that might be challenged but it will be the fundamental assumption throughout
this book. Consequently, certain methods, that generally require a mesh, such as those using
wavelets, multivariate splines, finite elements, box splines, etc. are immediately ruled out.
This does not at all mean that such methods cannot sometimes be used successfully in the
context of scattered data approximation; on the contrary, it just explains why these methods
are not discussed in this book. The requirement of being truly meshless reduces the number
of efficient multivariate methods dramatically. Amongst them, radial basis functions, or,
more generally, approximation by (conditionally) positive definite kernels, the moving least
squares approximation, and, to a certain extent, partition-of-unity methods, appear to be the
most promising. Because of this, they will be given a thorough treatment.

A brief outline of the book is as follows. In Chapter 1 we discuss a few typical appli-
cations and then turn to natural cubic splines as a motivation for (conditionally) positive
definite kernels. The following two chapters can be seen as an introduction to the problems
of multivariate approximation theory. Chapter 4 is devoted to the moving least squares ap-
proximation. In Chapter 5 we collect certain auxiliary results necessary for the rest of the
book, and the impatient or advanced reader might skip the details and come back to this

ix



X Preface

chapter whenever necessary. The theory of radial basis functions starts with the discussion
of positive definite and completely monotone functions in Chapters 6 and 7 and continues
with conditionally positive definite and compactly supported functions. In Chapters 10 and
11 we deal with the error analysis of the approximation process. In the following chapter
we start the numerical part of this book by discussing the stability of the process. After a
short interplay on optimal recovery in Chapter 13, we continue the numerical treatment with
chapters on data structures and efficient algorithms, where partition-of-unity methods are
investigated also. In Chapter 16 we deal with generalized interpolation, which is important
if, for example, partial differential equations are to be solved numerically using scattered
data methods, and in Chapter 17 we consider applications to the sphere.

It is impossible to thank everyone who has helped me in the writing of this book. But it is
my pleasure to point out at least a few of those persons without diminishing the respect and
gratitude I owe to those not mentioned. First of all, I have to thank R. Schaback from the
University of Gottingen and J. D. Ward and F. J. Narcowich from Texas A&M University.
It was they who first attracted my attention to the field of scattered data approximation, and
they have had a great influence on my point of view. Further help either by discussion or by
proofreading parts of the text has been provided by A. Beckert, R. Brownlee, G. Fasshauer,
P.Héhner, J. Miranda, and R. Opfer. Finally, I am more than grateful to Cambridge University
Press, in particular to David Tranah and Ken Blake for their kind and efficient support.
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Applications and motivations

In practical applications over a wide field of study one often faces the problem of recon-
structing an unknown function f from a finite set of discrete data. These data consist of data
sites X = {x1, ..., xy} and data values f; = f(x;),1 < j < N, and the reconstruction has
to approximate the data values at the data sites. In other words, a function s is sought that ei-
ther interpolates the data, i.e. that satisfies s(x;) = f;, 1 < j < N, or at least approximates
the data, s(x;) ~ f;. The latter case is in particular important if the data contain noise.

In many cases the data sites are scattered, i.e. they bear no regular structure at all, and there
is a very large number of them, easily up to several million. In some applications, the data
sites also exist in a space of very high dimensions. Hence, for a unifying approach methods
have to be developed which are capable of meeting this situation. But before pursuing this
any further let us have a closer look at some possible applications.

1.1 Surface reconstruction

Probably the most obvious application of scattered data interpolation and approximation
is the reconstruction of a surface S. Here, it is crucial to distinguish between explicit and
implicit surfaces. Explicit surfaces play an important role in terrain modeling, for example.
They can be represented as the graph of a function f : & — R defined on some region
Q C RY, where d is in general given by d = 2. Staying with the terminology of terrain
modeling, the data sites X C 2 depict certain points on amap, while adata value f; = f(x;)
describes the height at the point x;. The data sites might form a regular grid, they might
be situated on isolines (as in Figure 1.1), or they might have no structure at all. The region
Q itself might also carry some additional information; for example, it could represent the
earth. Such additional information should be taken into account during the reconstruction
process.

The reconstruction of an implicit surface, or more precisely of a compact, orientable
manifold, is even more demanding. Such surfaces appear for example as sculptures, machine
parts, and archaeological artifacts. They are often digitized using laser scanners, which easily
produce huge point clouds X = {xy, ..., xy} S S consisting of several million points in
R3. In this situation, the surface S can no longer be represented as the graph of a single
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Fig. 1.2 Reconstruction (on the right) of the Stanford dragon (on the left).

function f. There are in the main two different approaches to building accurate models
for implicit surfaces. In the first approach, one tries to find local parameterizations of the
object that allow an efficient rendering. However, for complicated models (such as the
dragon shown in Figure 1.2) this approach is limited. In the second approach, one tries
to describe S as the zero-level set of a function F, i.e. S = {x € Q: F(x) = 0}. Such
an implicit representation easily delivers function-based operations, for example shape
blending or deformation or any other constructive solid geometry (CSG) operation such as
the union, difference, or intersection of two or more objects.

The function F can be evaluated everywhere, which allows stepless zooming and smooth
detail-extraction. Furthermore, it gives, to a certain extent, a measure of how far away a
point x € Q2 is from the surface. Moreover, the surface normal is determined by the gradient
of F whenever the representation is smooth enough.

The price we have to pay for such flexibility is that an implicit surface does not auto-
matically lead to a fast visualization. An additional step is necessary, which is normally
provided by either a ray-tracer or a polygonizer. But, for both, sufficiently good and ap-
propriate solutions exist. Since our measured point cloud X is a subset of the surface S we
are looking for an approximate solution s that satisfies s(x;) = 0 for all x; € X. Obviously
these interpolation conditions do not suffice to determine an accurate approximation to the
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surface, since, for example, the zero function satisfies them. The remedy for this problem
is to add additional off-surface points. To make this approach work, we assume that our
surface is the boundary of a compact set and that the function F can be chosen such that F is
positive inside and negative outside that set. We also need surface normals to the unknown
surface. If the data comes from a mesh or from a laser scanner that provides also normal
information via its position during the scanning process these normals are immediately
to hand. Otherwise, they have to be estimated from the point cloud itself, which can be
done in two steps. In the first step, for each point x; € X we search its K < N nearest
neighbors in X and try to determine a local tangent plane. This can be done by a principal
component analysis. Let us assume that A/ (x ;) contains the indices of these neighbors. Then
we compute the center of gravity of {x : k € N(x;)}, i.e. £; := K~ 2_kenx)) Xk» and the
associated covariance matrix

Cov (x)) 1= Z (X — X)) — £))T e R¥.
keN(x;j)

The eigenvalues of this positive semi-definite matrix can be computed numerically or even
analytically. They indicate how closely the neighborhood {x : k € A(x;)} of x; determines
a plane. To be more precise, if we have two eigenvalues that are close together and a
third one, which is significantly smaller than the others, then the eigenvectors for the first
two eigenvalues determine the plane, while the eigenvector for the smallest eigenvalue
determines the normal to this plane. Hence, we have a tool for not only determining the
normal but also deciding whether a normal can be fitted at all.

The second step deals with orienting consistently the normals just created. If two data
points x; and x; are close then their associated normalized normals 1; and 7; must point
in nearly the same direction, which means that ’I,T nx ~ 1. This relation should hold for all
points that are sufficiently close. To make this more precise, we use graph theory. First,
we build a Riemann graph. This graph has a vertex for every normal ; and an edge ¢; x
between the vertices of n; and ny if and only if j € N(x;) ork € N(x;). The cost or weight
w(ej ) of such an edge measures the deviation of the normals n; and n;; for example,
we could choose w(e;) =1— |n_IT nx|. Hence, the normals are taken to be consistently
oriented if we can find directions b; € {—1, 1} such that ) e bjbyw(e; ) is minimized.
Unfortunately, it is possible to show that this problem is NP-hard and hence that we can only
find an approximate solution. The idea is simply to start with an arbitrary normal and then
to propagate the orientation to neighboring normals. To this end, we compute the minimal
spanning tree or forest for the Riemann graph. Since the number of edges in this graph
is proportional to N, any reasonable algorithm for this problem, for example Kruskal’s
algorithm, will work fine in an acceptable amount of time. After that, we propagate the
orientations by traversing the minimal spanning tree.

Once we have oriented the normals, this allows us to extend the given data sets by off-
surface points. This can be done by for example adding one point along each normal on
the outside and one on the inside of the surface. Special care is necessary to avoid the
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situation where an outside point belonging to one normal is actually an interior point in
another part of the surface or that a supposedly interior point is so far away from its associated
surface point that it is actually outside the surface at another place. The associated function
values that s should attain are chosen to be proportional to the signed distance of the point
from the surface.

Another possible way of adding off-surface points is based on the following fact. Suppose
that x is a point which should be added. If x; denotes its nearest neighbor in X and if X is
a sufficiently dense sample of S, then x; comes close to the projection of x onto S. Hence
if x; is approximately equal to x then the latter is a point of S itself. Otherwise, if the angle
between the line through x; and x on the one hand and the normal 1; (pointing outwards)
on the other hand is less than 90 degrees then the point is outside the surface; if the angle
is greater than 90 degrees then it is inside the surface.

After augmenting our initial data set by off-surface points, we are now back to a classical
interpolation or approximation problem.

1.2 Fluid-structure interaction in aeroelasticity

Aereolasticity is the science that studies, among other things, the behavior of an elastic
aircraft during flight. This behavior is influenced by the interaction between the deforma-
tions of the elastic structure caused by the fluid flow, and the impact that the aerodynamic
forces would have on a rigid structural framework. To model these different aspects in a
physically correct manner, different models have been developed, adapted to the specific
problems.

The related aeroelastic problem can be described in a coupled-field formulation, where the
interaction between the fluid and structural models is limited to the exchange of boundary
conditions. This loose coupling has the advantage that each component of the coupled
problem can be handled as an isolated entity. However, the challenging task is to reconcile
the benefits of this isolated view with a realistic treatment of the new physical effects arising
from the interaction.

Let us make this more precise. Suppose at first that we are interested only in computing
the flow field around a given aircraft. This can be modeled mathematically by the Navier—
Stokes or the Euler equations, which can be solved numerically using for example a finite-
volume code. Such a solver requires a detailed model of the aircraft and its surroundings.
In particular, the surface of the aircraft has to be rendered with a very high resolution, as
indicated in the right-hand part of Figure 1.3. Let us suppose that our solver has computed
a solution, which consists of a velocity field and a pressure distribution. For the time being,
we are not interested in the problem of how such a solution can be computed. For us, it is
crucial that the pressure distribution creates loads on the aircraft, which might and probably
will lead to a deformation. So the next step is to compute the deformation from the loads
or forces acting on the aircraft.

Obviously, though, a model having a fine resolution of the surface of the aircraft is not
necessary for describing its structure; this might even impede the numerical stability. Hence,
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Fig. 1.3 The structural and aerodynamical model of a modern aircraft.

another model is required which is better suited to describing the structural deformation,
for example the one shown in Figure 1.3 on the left. Again, along with the model comes a
partial differential equation, this time from elasticity theory, which can again be solved, for
example by finite elements. But before this can be done, the loads have to be transferred
from one mesh to the other in a physically reasonable way. If this has been done and the
deformation has been computed then we are confronted with another coupling problem.
This time, the deformations have to be transferred from the structural to the aerodynamical
model. If all these problems can be solved we can start to iterate the process until we find
a steady state, which presumably exists.

Since we have the aerodynamical model, the structural model, and the coupling problem,
one usually speaks in this context of a three-field formulation. As we said earlier, here
we are interested only in the coupling process, which can be described as a scattered data
approximation problem, as follows. Suppose that X denotes the nodes of the structural
mesh and Y the nodes of the aerodynamical mesh (neither actually has to be a mesh).
To transfer the deformations u(x;) € R3? from X to Y we need to find a vector-valued
interpolant s, x satisfying s, x(x;) = u(x;). Then the deformations of Y are given simply
by su.x(y;), yj € Y. Conversely, if f(y;) € R denotes the load at y; € Y then we need
another function sy to interpolate f in Y. The loads on the mesh X are again simply given
by evaluation at X. A few more things have to be said. First of all, if the loads are constant or
if the displacements come from a linear transformation, this situation should be recovered
exactly, which means that our interpolation process has to be exact for linear polynomials.
Furthermore, certain physical entities such as energy and work should be conserved. This
means at least that

SF0 = spr)

yey xeX

and

D FOsux() =Y spr(nulx),

yeY xeX
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Fig. 1.4 Steady state of the deformed aircraft.

where the last equation is to be taken component-wise. If the models differ too much then
both equations have to be understood in a more local sense. However, these equations
make it obvious that in certain applications more has to be satisfied than just simple point
evaluations. It is important to note that interpolation is crucial in this process since otherwise
each coupling step would result in a loss of energy.

The advantage of this scattered data approach is that it allows us to couple any two
models that have at least some node information. There is no additional information such as
the elements or connectivity of the nodes involved. Moreover, the two models can be quite
different. It often happens that the boundary of the aerodynamical aircraft has no joint node
with the structural model. The latter might even degenerate into a two-dimensional object.

Figure 1.4 shows a typical result for the example from Figure 1.3 based on a speed
M = 0.8, an angle of attack « = —0.087°, and an altitude 7 =10498 meters. On the left
the deformation of a wing is shown, while the right-hand graph gives the negative pressure
distribution at 77% wing span, for a static and an elastic computation. The difference
between the two pressure distributions indicates that elasticity causes a loss of buoyancy,
which can become critical for highly flexible structures, as found for example in the case
of a large civil aircraft.

It should, be clear that the coupling process described here is not limited to the field of
aeroelasticity. It can be applied in any situation where a given problem is decomposed into
several subproblems, provided that these subproblems exchange data over specified nodes.

1.3 Grid-free semi-Lagrangian advection

In this section we will discuss briefly how the scattered data approximation can be used to
solve advection equations. For simplicity, we restrict ourselves here to the two-dimensional
case and to the transport equation, which is given by

0 ] a
0= —ulx,y,0)+ai(x, y)-ulx, y, 1) +ax(x, y)—ulx, y, 1). (1.1
ot dx dy
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It describes, for example, the advection of a fluid with velocity field a = (a;, a,) and it
will serve us as a model problem straight away. Suppose that (x(¢), y(¢)) describes a curve
for which the function %(¢) := u(x(t), y(¢), t) is constant, i.e. #(¢) = const. Such a curve is
called a characteristic curve for (1.1). Differentiating u yields
0 ou . Ou . Ou
= o + x(l‘)a + }’(f)gv

where X = dx/dt. The similarity to (1.1) allows us to formulate the following approximation
scheme for solving the transport equation (1.1) with initial data given by a known function u.
Suppose that we know the distribution u at time 7, and at sites X = {(x1, y1), ..., (xy, Yn)}
approximately, meaning that we have a vector u™ € R with ui.") ~ u(xj, yj, ty). To find
the values of u at site (x;, y;) and time #,, we first have to find the upstream point &5y
with ¢ := u(x;, y;, t,) = u(x;, y;, t,4+1) and then have to estimate the value ¢ from the
values of u# at X and time #,. Hence, in the first step we have to solve N ordinary differential
equations

&, n) =a;.n)), Il<j<N,

with initial value (& (t,11), n(f,4+1)) = (x;, ¥;). The upstream point is the solution at #,, i.e.
(xj_, yj_) = (£(y), n(ty)). Since this point will in general not be contained in X, the value
u(xy, y; , ty) has to be estimated from u™. This can be written as an interpolation problem.
We need to find a function s, that satisfies s,(x;) = uy’) forl <j<N.

The method just described is called a semi-Lagrangian method. 1t is obviously not re-
stricted to a two-dimensional setting. It also applies to advection equations other than the
transport problem (even nonlinear ones), but then an interpolatory step might also be nec-
essary when solving the ordinary differential equations.

Moreover, it is not necessary at all to use the same set of sites X in each time step. It is
much more appropriate to adapt the set X as required.

Finally, if the concept of scattered data approximation is generalized to allow also func-
tionals other than pure point-evaluation functionals, there are plenty of other possibili-
ties for solving partial differential equations. We will discuss some of them later in this
book.

1.4 Learning from splines

The previous sections should have given some insight into the application of scattered data
interpolation and approximation in the multivariate case.

To derive some concepts, we will now have a closer look at the univariate setting. Hence
we will suppose that the data sites are ordered as follows,

X:a<xi<xx<...<xy<b, (1.2)

and that we have certain data values fi, ..., fy to be interpolated at the data sites. In other
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words, we are interested in finding a continuous function s : [a, b] — R with

At this point it is not necessary that the data values { f;} actually stem from a function f,
but we will keep this possibility in mind for reasons that will become clear later.

In the univariate case it is well known that s can be chosen to be a polynomial p of degree at
most N — 1,i.e. p € wy_1(R). Or, more generally, if a Haar space S € C(R) of dimension
N is fixed then it is always possible to find a unique interpolant s € S. In this context the
space S has the remarkable property that it depends only on the number of points in X
and not on any other information about the data sites, let alone about the data values. Thus
it would be reasonable to look for such spaces also in higher dimensions. Unfortunately,
a famous theorem of Mairhuber and Curtis (Mairhuber [115], see also Chapter 2) states
that this is impossible. Thus if working in space dimension d > 2 it is impossible to fix an
N-dimensional function space beforehand that is appropriate for all sets of N distinct data
sites. However, probably no one with any experience in approximation theory would, even
in the univariate case, try to interpolate a hundred thousand points with a polynomial.

The bottom line here is that for a successful interpolation scheme in R¢ either conditions
on the involved points have to be worked out, in such a way that a stable interpolation with
polynomials is still possible, or the function space has to depend on the data sites. The last
concept is also well known in the univariate case. It is a well-established fact that a large
data set is better dealt with by splines than by polynomials. In contrast to polynomials, the
accuracy of the interpolation process using splines is not based on the polynomial degree
but on the spacing of the data sites. Let us review briefly properties of univariate splines in
the special case of cubic splines. The set of cubic splines corresponding to a decomposition
(1.2) is given by

S3(X) = {s € C*[a, b] : s][x;, xi1] € W3(R), 0 < i < N}, (1.3)

where xo := a, xy+1 := b. It consists of all twice differentiable functions that coincide
with cubic polynomials on the intervals given by X. The space S3(X) has dimension
dim(S3(X)) = N + 4, so that the interpolation conditions s(x;) = f;, 1 <i < N, do not
suffice to guarantee a unique interpolant. Different strategies are possible to enforce unique-
ness and one of these is given by the concept of natural cubic splines. The set of natural
cubic splines

NS3(X) = {s € S3(X) : s|[a, x1], s|[xy, b] € 7 (R)}

consists of all cubic splines that are linear polynomials on the outer intervals [a, x;] and
[xn, b]. Itis easy to see that a cubic spline s is a natural cubic spline if and only if it satisfies
s"(x1) = 5P (x;) = 0 and 5" (xy) = s (xy) = 0. Since we have imposed four additional
conditions it is natural to assume that the dimension of N S3(X) is dim(NV S3(X)) = N,
which is indeed true. Even more, it can be shown that the initial interpolation problem has a
unique solution in A/S3(X). For this and all the other results on splines we refer the reader
to Greville’s article [75] or to the books by Schumaker [175] and de Boor [43].
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This is not the end of the story, however; splines have several important properties and
we state some of them for the cubic case.

(1) They are piecewise polynomials.

(2) An interpolating natural cubic spline satisfies a minimal norm property. This can be
formulated as follows. Suppose f comes from the Sobolev space H 2[a, b], i.e. fe
Cla, b] has weak first- and second-order derivatives also in L,[a, b]. (We will give a
precise definition of this later on). Assume further that f satisfies f(x;) = f;, 1 < j <
N.1If 54 x denotes the natural cubic spline interpolant then

f" = s},Xv S}_x)Lg[a,b] =0.

This leads immediately to the Pythagorean equation

"

" 2 " 2 "2
D sf,x”LZ[g,b] + ||sf,x||L2[g,b] =/l »la,b]’

which means that the natural cubic spline interpolant is that function from H?[a, b] that
minimizes the semi-norm || f”|| 1,4, under the conditions f(x;) = f;,1 < j < N.

(3) They possess a local basis (B-splines). These basis functions can be defined in various
ways: by recursion, by divided differences, or by convolution.

Of course, this list gives only a few properties of splines. For more information, we refer
the interested reader to the previously cited sources on splines.

The most dominant feature of splines, which has contributed most to their success,
is that they are piecewise polynomials. This feature together with a local basis not only
allows the efficient computation and evaluation of spline functions but also is the key
ingredient for a simple error analysis. Hence, the natural way of extending splines to the
multivariate setting is based on this property. To this end, a bounded region € R? is
partitioned into essentially disjoint subregions {2 j}?’:]. Then the spline space consists
simply of those functions s that are piecewise polynomials on each patch €2; and that have
smooth connections on the boundaries of two adjacent patches. In two dimensions the most
popular partition of a polygonal region is based on a triangulation. Even in this simplest case,
however, the dimension of the spline space is in general unknown (see Schumaker [176]).
Moreover, when coming to higher dimensions it is not at all clear what an appropriate
replacement for the triangulation would be. Hence, even if substantial progress has been
made in the two-dimensional setting, the method is not suited for general dimensions.
Another possible generalization to the multivariate setting is based on the third property.
In particular a construction based on convolution has led to the theory of Box splines (see
de Boor et al. [44]). Again, even the two-dimensional setting is tough to handle, not to speak
of higher-dimensional cases.

Hence, we want to take the second property as the motivation for a framework in higher
dimensions. This approach leads to a remarkably beautiful theory, where all space dimen-
sions can be handled in the same way. Since the resulting approximation spaces no longer
consist of piecewise polynomials, we do not want to call the functions splines. The buzz
phrase, which has become popular in this field, is radial basis functions.
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To get an idea of radial basis functions let us stick a little longer with natural cubic splines.
It is well known that the set S3(X) has the basis (- — x; +, 1 < j < N, plus an arbitrary
basis for 3(R). Here, x takes the value of x for nonnegative x and zero in the other case.
Hence, every s € N S3(X) has a representation of the form

N 3
s =Y ajx—xpi + Y Bix/.  xelabl. (1.4)
j=1 j=0

Because s is a natural spline we have the additional information that s is linear on the two
outer intervals. On [a, x;] it has the representation s(x) = Z;=0 B jxf so that necessarily
B> = B3 = 0. Thus, (1.4) becomes

N
s() =Y ajx —x)} +Po+pix.  x€elabl. (1.5)
j=1

To derive the representation of s on [xy, b] we simply have to remove all subscripts + on
the functions (- — x; 3+ in (1.5). Expanding these cubics and rearranging the sums leads to

3 N
s(x) = Z (2)(—1)3‘[ (Zajx;[) xt 4 Bo + Bix, x € [xy, b].
=0 =

Thus, for s to be a natural spline, the coefficients of s have to satisfy

N N
D= ax;=0. (1.6)
= j=1

This is a first characterization of natural cubic splines. But we can do more. Using the
identity xi = (x> + x3)/2 leads, because of (1.6), to

N

s(x)=27x—x K +Z—<x—x,)3+ﬂo+ﬁ1x

N
Z%x—x |3+Z ()( D ‘Za 237+ o+ i

N
Z |x = x;1° + Bo + Bux,

with & = %aj, 1<j< N,andB;) = Bo — %Zajx;,ﬁl = B +%Zajx12
Proposition 1.1 Every natural cubic spline s has a representation of the form
N
s =Y ajpllx —xjD+plx),  xeR, (1.7)
=1

where ¢(r) =13, r > 0, and p € m;(R). The coefficients {a;} have to satisfy (1.6). Vice
versa, for every set X = {x, ..., xny} C Rofpairwise distinct points and for every f € RV
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there exists a function s of the form (1.7) with (1.6) that interpolates the data, i.e. s(x;) = f;,
l<j=<N.

This is our first result on radial basis functions. The resulting interpolant is up to a
low-degree polynomial a linear combination of shifts of a radial function ® = ¢(| - |). The
function is called radial because it is the composition of a univariate function with the
Euclidean norm on R. In this sense it generalizes to RY, where the name “radial” becomes
even more apparent. A radial function is constant on spheres in RY. A straightforward
generalization is to build interpolants of the form

N
s =Y aipllx —x;ll) + p(x), xR, (1.8)
j=1

where ¢ : [0, 00) — R is a univariate fixed function and p € 7, (R?) is a low-degree
d-variate polynomial. The additional conditions on the coefficients now become

N
Y ajqxj)=0  forallg € m,_1(R?). (1.9)
j=1

In many cases it is possible to get along without the additional polynomial in (1.8), so that
one does not need the additional conditions (1.9). In this particular case the interpolation
problem boils down to the question whether the matrix Ay x = (¢(|lxx — x;l12))1<k, j<n is
nonsingular. To be more precise we could even ask:

Does there exist a function ¢ : [0, 00) — R such that for alld € N, for all N € N, and for
all pairwise distinct x1, ..., xy € R? the matrix

Ag x = (@(lx; — xjll2)1<i,j<n
is nonsingular?

Astonishingly, the answer is affirmative. Examples are the Gaussians ¢(r) = e™*" o>
0, the inverse multiquadric ¢(r) = 1/4/c? + r2, and the multiquadric ¢(r) = +/c? + r2,
¢ > 0. In the first two cases it is even true that the matrix Ay x is always positive definite.
We will give characterizations for ¢ to ensure this property.

Having the interpolant (1.8) with ahuge N in mind, it would be even more useful to have a
compactly supported basis function in order to reduce the number of necessary evaluations.
Hence, almost impudently we reformulate the previous question as:

Does there exist a function ¢ : [0, 00) — R which satisfies all properties mentioned in the
last question and which has in addition a compact support?

This time the answer is negative. But if we sacrifice the dimension, i.e. if the function
does not have to work for all dimensions but only for a fixed one then there exist also
compactly supported functions yielding a positive definite interpolation matrix Ay x.
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Much of the theory we have to develop to prove the statements just made is independent
of the form of the basis function. Several results hold if we replace ¢(|]|x — x;||2) in (1.8)
by ®(x — x;) with ® : R? — R or even by ®(x, xj)with @ : @ x Q — R. Of course, the
latter case can only work if X € Q.

Even though we started with natural cubic splines, we have not yet used the minimal
norm property. Instead, we have used the idea of shifting or translating a single function,
which is also motivated by splines.

So it remains to shed some light on how the minimal norm property can be carried over to
a multivariate setting. We start by computing the L;[a, b] inner product of the second-order
derivatives of two natural cubic splines. Obviously, the polynomial part does not play a role,
because differentiating it twice annihilates it.

Proposition 1.2 Let ¢(r) = r3, r > 0. Suppose the functions sy = Z;V:l a;p(] - —x;])+
p1and sy = Z;iwzl Bkd(| - — yk|) + p2 are two natural cubic splines on [a, b]. Then

N M
(5% S Latab) =12 Y et Bed(Ix; — xel).

j=1 k=1

Proof Using |x| = 2x4 — x and (1.6) leads to
N N
SR =6 ajlx — x| =12 o;(x; —x)y (1.10)
j=1 j=1

and a corresponding result for sy. Next, on the one hand we can employ Taylor’s formula
for a function f € C?[a, b] in the form

b
f) = fl@)+ fla)x —a) +/ fr@)x —1)4dt.
Setting f(x) = (y — x)3+ with a fixed y € [a, b] yields
b
-0} =0-a'-30-a)’(x—a)+6 / (v = D4 (x = 1)4d1.

On the other hand, we can use the representation (y — x)3 = (ly — x|* + (y — x)*)/2 to
derive

b
ly—xP =2y —a)’ —6(y —a)’(x —a) — (y —x)* + 12/ (y — D(x — 1)4dt,

which leads to

N M
YooY aiBebx; = wh =2 a;Bilye —a) =Y ot Belye — x))°
J.k jik

J=1 k=1

-6 Zajﬂk(xj — a)(y — a)?
Tk

b
+ 12/ D =04 Y flyi — ).
a j k
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All sums on the right-hand side except those under the integral are zero because of
the annihilation effect (1.6) of the coefficients. Hence, recalling (1.10) gives the stated
result. O

This result has the interesting consequence that we can introduce the linear space

N
Fyla,b] := {Zaj¢(| —x;):NeN, aeR X={x;}<la bl

=1

N
with Y " p(x;) =0 forall p € m(R)} )
j=1

This space is linear if the sum of two different functions based on the point sets X and Y is
defined on the refined point set X U Y. Moreover, Fy[a, b] carries the inner product

N M N M
(Zaquu c—xi, > Bl - — yk|)> DY aiBpx —wl). (LD
j=1 k=1

¢ J=lk=l
This reason that this is an inner product is that (s, s)4 = 0 means that the linear spline s”
has to be zero, which is only the case if all coefficients are already zero. Of course, we
assume as usual that the x; are pairwise distinct. Finally, completing the space Fyla, b]
with respect to || - ||, means completing the space of piecewise linear functions with respect
to the classical L,[a, b] inner product. Hence, standard arguments, which we will discuss
thoroughly in Chapter 10, give the following characterization of H?[a, b].

Corollary 1.3 Let ¢(r) = 13, r > 0. The Sobolev space H?[a, b] coincides with
clos., Fyla, b] + w1 (R).
Moreover, (1.11) defines a semi-inner product on H?[a,b).

Now it is clear how a possible generalization can be made. We start with a function @ : Q2 x
Q — R for Q € R? and form the space Fp(£2) in the same way as we formed Fy[a, b]. We
only have to replace ¢(| - — x;|) by ®(:, x;) and the annihilation conditions as appropriate.
Of course this can only work for ®’s that allow us to equip F(£2) with an inner product
(-, -)o. But we can turn things upside down and use this property as a definition for ®. In any
case, if ® gives rise to an inner product on F(£2) we can form the closure Fo(£2) of F(€2)
with respect to this inner product. It will turn out that the new space can be interpreted as
a space of functions again and that the interpolants are minimal semi-norm interpolants
again.

1.5 Approximation and approximation orders

So far, we have only dealt with the concept of interpolation. But especially if the number
of points is large and the data values contain noise it might be reasonable not to interpolate
the given values exactly but to find a smooth function that only nearly fits the values. The
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standard method in this case is to compute a least squares solution. To this end, one chooses
a finite-dimensional space S € C(RY) and determines the function s € S that minimizes

N
D st — £
J=1
This approach has the disadvantage of being global in the sense that every data point has
some influence on the solution function in any point. It would be more interesting to allow
only the nearest neighbors of the evaluation point x to influence the approximate value s(x).
A method that realizes this idea is the moving least squares method. It is a variation on the
classical least squares technique. Here, the dimension of the space S is supposed to be small.
After fixing a weight function w : R? x RY — R one determines for every evaluation point
x the solution s* of

N
min { Y [s(x;) — fiPwx,x;):s €St
j=1
The approximate value is then given by s*(x). If the weight function is of the form w(x, x;) =
wo(x — x;) with a compactly supported function wg having a support centered around zero
this method uses only the data sites in a neighborhood of x to compute the approximate
value. Thus, in this sense it is a local method, though for every evaluation point x a small
linear system has to be solved. Nonetheless, this method turns out to be highly efficient.

After having discussed the concepts involved in reconstructing a function from discrete
values we have to investigate the benefits of the methods. In general, this is done by analyzing
the approximation properties of the approximation process.

Suppose that X € © € RY, where Q is a bounded set. Suppose further that the data values
{fj} come from an unknown function f € C(2),i.e. f(x;) = f;,1 < j < N.Then we are
interested in how well the approximant or interpolant s, x approximates the function f on
2 when the sets of data sites X become denser in 2. This obviously needs a measure of how
dense X is in 2. For example, in case of splines it is usual to define Ax = max(x;;1 — x;)
as such a measure.

In case of natural cubic splines it is well known that there exists a constant ¢ > 0 such
that for all functions f € H?[a, b] the error can be bounded as follows:

3/2
I = srxliadasy < N Wistan-
The d-variate generalization is given by

Definition 1.4 The fill distance of a set of points X = {x1, ..., xy} C Q for a bounded
domain  is defined to be

h :=sup min |lx — x;|2.
X.Q xeg 120y I j Il

The fill distance can be interpreted in various geometrical ways. For example, for any
point x € 2 there exists a data site x; within a distance at most hy q. Another possible
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interpretation is the following. The fill distance /iy g denotes the radius of the largest ball
which is completely contained in €2 and which does not contain a data site. In this sense
hx o describes the largest data-site-free hole in €.

Definition 1.5 An approximation process (f, X) +— sy x has Lo, convergence order k for
the function space F if there exists a constant ¢ > 0 such that for all f € F,

k
If = srxlliee < chy ol fllF.

The process possesses a spectral convergence order if there exists a constant ¢ > 0 and a
constant A € (0, 1) such that, forall f € F,

1/h
lf —srxlliee < cA Mxa | £ .

1.6 Notation

It is time to fix certain items of notations that will be used throughout this book, though
in fact some of them have already been employed. In many cases the symbols will be
introduced where needed but some are important throughout, so that we want to collect
them here.

Our main goal is to work with real-valued functions but sometimes it is necessary to
employ complex-valued ones also. In this sense, the following function spaces contain
real-valued functions if it is not stated otherwise.

We continue to denote the space of d-variate polynomials of absolute degree at most
m by 7,,(R?). The function space C¥(2) is the set of k times continuously differentiable
functions on §2, where we assume £ C R to be open if k > 1. The intersection of all these
spaces is denoted by C*°(£2). The Lebesgue spaces are as usual denoted by L ,(2),1 < p <
00, where  C R? should be measurable, i.e. they consist of all measurable functions f
having a finite L ,-norm. The L ,-norm || - || ) is given by ||f||£p(9) = Jo | f)|Pdx for
1 < p<oocandby | fllL. (@ := esssup,.qlf(x)|. The latter means the following. Every
function f € L, (2) is essentially bounded on €2, i.e. there exists a constant K > 0 such
that | f(x)| < K almost everywhere on 2. The greatest lower bound of such constants K
gives the norm. The space L']‘,’C(Q) consists of all measurable functions f that are locally
in L,, meaning their restriction f|K belongs to L,(K) for every compact set K C Q. If
2 is an interval [a, b] we will write L,[a, b] and C*[a, b] for L,([a, b]) and C*([a, b)),
respectively, and similarly for open and semi-open intervals.

If dealing with several points in R? one runs automatically into problems with indices.
Throughout this book we will use the following notation. For a point x € R? its components
will be givenas xy, ..., x4, whereas xy, . .., xy will denote N points in R?.The components
of x; are thus denoted x s, 1 < k < d. We will use similar notation for y and z. These are
the main critical cases and we will comply strictly with this usage. In the case of other letters
we might sometimes relax the notation when there is no possibility of misunderstanding.
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As usual we denote by ||x||, the discrete p-norm ||x ||, = Z’jzl [x;|P for 1 < p < oo and
xlloc = max [x;.

For a multi-index o € Ng we denote its components by as usual ¢ = (¢, .. ., ag)". The
length of « is given by |¢| = &) + - - - + oy = ||@||; and the factorial ! by a;!- - - ay!. For
two multi-indices «, B, the inequality @ < B is meant component-wise and

((x) _ o!
B)  Bla—p)!

is again defined component-wise. If |o| < k, x € R4, and fe Ck(Q) are given, we denote
the ath derivative of f and the ath power of x by
glel
D'fi=——of and x4 = X

- ay A
8)(_1 X'd

Finally, there is a concept that will accompany us throughout this book. We will often
meet multivariate functions that are constant on spheres around zero, i.e. they are radial.
Hence, such a function depends only on the norm of its argument. We will always use
a capital letter @ to denote the multivariate function and a small letter ¢ to denote the
univariate function, i.e. ® = ¢(|| - ||2).

1.7 Notes and comments

The examples shown in this chapter use data sets that have courteously been provided by
the following persons and institutions. The glacier data set can be found at Richard Franke’s
homepage. The dragon comes from the homepage of Stanford University. The aircraft model
and data is due to the European Aeronautic Defence and Space Company (EADS).

It seems that the implicit reconstruction of a surface from unorganized points goes hand
in hand with radial basis function interpolation and approximation. The first contributions
in this direction dealt with Gaussians and are known under the name blobby surfaces or
metaballs. They were invented independently by Blinn [27] and Hishimura ef al. [84] in
the early eighties. Then Turk and O’Brien together with various coauthors used thin-plate
splines for modeling implicit surfaces; see for example [184—186,206]. Owing to the global
character of these basis functions, however, all these examples were restricted to rather
small data sets. The remedy to this problem has been twofold. On the one hand, Morse
et al. [137] used the compactly supported radial basis functions devised by the present
author [190]. On the other hand, fast evaluation methods based on far-field expansions have
been developed for most of the globally supported radial basis functions. Results based on
these methods can be found in a paper by Carr ef al. [37]. Other more recent contributions
are by Ohtake ez al. [151,152]. The idea of computing and orienting surface normals goes
back to Hoppe; see [86, 87]. In [153], Pasko and Savchenko describe smooth ways for
several CSG operations.

The idea of treating a fluid—structure interaction problem in a coupled-field formula-
tion, so that the interaction is restricted to the exchange of boundary conditions, has been
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employed by Farhat [52] and Kutler [100]. Among others, Farhat and coworkers [51, 52],
Beckert [19], and Cebral and Lohner [38] have used different interpolation strategies to
exchange the boundary conditions in an iterative or staggered procedure. Hounjet and Mei-
jer [88] were the first to use thin-plate splines in this context. Beckert and Wendland [20]
extended their approach to general radial basis functions, in particular to compactly sup-
ported ones.

The theory of semi-Lagrangian methods for the numerical solution of advection schemes
was described and analyzed in [50] by Falcone and Ferretti. Behrens and Iske [21,76] were
the first to use radial basis functions in the spatial reconstruction process. Other methods
based on (generalized) scattered data interpolation for hyperbolic conservation laws have
been investigated by Sonar [179] and Lorentz et al. [109].
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Haar spaces and multivariate polynomials

Every book on numerical analysis has a chapter on univariate polynomial interpolation. For
given data sites x; < x, < --- < xy and function values fi, ..., fx there exists exactly one
polynomial p; € wy_(R!) that interpolates the data at the data sites. One of the interesting
aspects of polynomial interpolation is that the space my_;(R!) depends neither on the
data sites nor on the function values but only on the number of points. While the latter is
intuitively clear, it is quite surprising that the space can also be chosen independently of
the data sites. In approximation theory the concept whereby the space is independent of the
data has been generalized and we will shortly review the necessary results. Unfortunately,
it will turn out that the situation is not as favorable in the multivariate case.

2.1 The Mairhuber—Curtis theorem

Motivated by the univariate polynomials we give

Definition 2.1 Suppose that Q@ € RY contains at least N points. Let V C C(Q) be an N-
dimensional linear space. Then V is called a Haar space of dimension N on 2 if for
arbitrary distinct points x1, ..., xy € Q and arbitrary f1, ..., fn € R there exists exactly
one function s € V with s(x;) = f;, 1 <i < N.

In the sense of this definition, V = my_;(R') is an N-dimensional Haar space for any
subset €2 of R that contains at least N points. Haar spaces, which are sometimes also called
Chebychev spaces, can be characterized in many ways. Let us collect some alternative
characterizations straight away.

Theorem 2.2 Under the conditions of Definition 2.1 the following statements are equiva-
lent.

(1) V is an N-dimensional Haar space.

(2) Everyu € V \ {0} has at most N — 1 zeros.

(3) For any distinct points xy, ..., xy € Q and any basis uy, ..., uy of V we have that

det (u;(x;)) # 0.

18
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Proof Suppose that V is an N-dimensional Haar space and u € V \ {0} has N zeros, say
X1, ...,xy. In this case u and the zero function both interpolate zero on these N points.
From the uniqueness we can conclude that # = 0 in contrast with our assumption.

Next, let us assume that the second property is satisfied. If det A = 0 with A = (u;(x;))
then there exists a vectorae € RY \ {0} with Aa = 0, i.e. Z?;l ajuj(x;) =0forl <i <N.
This means that the function u := ) «;u; has N zeros and must therefore be identically
zero. This is impossible since o # 0.

Finally, if the third property is satisfied then we can make the Ansatz u = ) «;u; for
the interpolant. Obviously, the interpolation conditions become

N
> ajuix) = fi, l<i<N.
j=1

Now the coefficient vector, and hence u, is uniquely determined because A = (u(x;)) is
nonsingular. O

After this characterization of Haar spaces we turn to the question whether Haar spaces
exist in higher space dimensions. The next result shows that this is the case only in simple
situations.

Theorem 2.3 (Mairhuber—Curtis) Suppose that Q C R4, d > 2, contains an interior point.
Then there exists no Haar space on Q2 of dimension N > 2.

Proof Supposethat U = span{u, ..., uy}is a Haar space on 2. As €2 contains an interior
point there exists a ball B(xp, §) € 2 with radius § > 0 and we can fix pairwise distinct
X3, ..., Xy € B(xp, 8). Next we choose two continuous curves x;(t), x,(¢), t € [0, 1], such
that x1(0) = x,(1), x;(1) = x2(0) and such that the curves neither have any other points of
intersection nor have any common points with {x3, ..., xy}. This is possible since d > 2.
Then on the one hand, since U is assumed to be a Haar space on 2, the function

D(t) := det((u;(xi)1<jk<n)

is continuous and does not change sign. On the other hand D(1) = —D(0) because only the
first two rows of the involved matrices are exchanged. Thus D must change signs, which is
a contradiction. O

2.2 Multivariate polynomials

So far we know that, in contrast with their univariate sibling, multivariate polynomials
cannot form a Haar space. Hence, it is impossible to interpolate all kinds of data at any set of
datasites X = {x1,...,xp}, Q = dim . (RY), by polynomials from 7, (R?). Nonetheless,
polynomial interpolation plays an important role even in the multivariate setting. But we
have to restrict the sets of data sites for which interpolation is possible. This together
with some other elementary facts about multivariate polynomials is the subject of this
section.
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Lemma 24 Ford =1,2,3,...andm =0, 1,2, ... we have
i(ker) B <m+1+d)
= d d+1

Proof We use induction on m. For m = 0 there is nothing to prove. Now suppose that we
have proven already the assertion for m and want to conclude it for m + 1. This is done by

writing
"’Z“<k+d>_i(k+d>+(m+1+d)
k=0 d k=0 d d
_(m+1+d N m+1+d
T\ d+1 d
_m+1+d)! (m+1+d)
T omld+ D) d!(m+ 1)!
_(m+1+d)!(m+d+2)
T d+DIm+ 1)

_m+a’+2
"\ d+1 )

This auxiliary result helps us to understand the structure of polynomials in d dimensions
better. The first part of the following result seems to be obvious but requires nevertheless
a proof.

O

Theorem 2.5

(1) The monomials x +— x“, x € R« e Ng, are linearly independent.

(2) dim 7, (RY) = <m;d).

Proof Let us start with the first property. The proof is by induction on d. For d = 1 this
is obvious, since for any polynomial p(x) = Z?:o cjx/ the coefficients are determined by
¢j = p¥(0)/j!. Thusif p is identically zero then all coefficients must be zero. Now suppose
everything has been proven for d — 1. Suppose that J € Nd is finite and 3, ¢ =0.
Define J; := {a € J : @) = k}. Then there exists an n € Ny such that J = JyU---U J,.
This means that

0:5 Cqx® E E CaX{' E Xk E CaXy? - X"
ael =0 aeJ; acdy

Thus we can conclude from the univariate case that

anxgz~v-x‘j"=0, 0<k=<n.

aeJy

By the induction hypothesis we have finally ¢, = 0 fora € J.
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Next we come to the space dimension. From the first part we know that it suffices to show

that
d
Ha e NI : o] <m) = (’”j )

when #J denotes the number of elements of the set J. This is done by induction on d. For
d =1 we have

1
#{aeNo:agm}:m—i-l:(m:_ >

Assuming the correctness of this statement for d — 1 gives us

m d—1
#{aeNg:|oz|§m}:#U{aeNg:ad:k,Zaigm—k}
k=0 i=l1

=Y #HoeNy "t la| <m—k)
k=0

_Z<m k-I—d—l)

_(m+d
= 4 )
where the last equality comes from Lemma 2.4. O

In Definition 2.1 we formulated certain conditions for a function space to guarantee
unique interpolation. Now we are in a situation to interpret these conditions as conditions
for the points.

Definition 2.6 The points X = {x1,...,xy} SR with N > Q = dimx,,(R?) are called
T (RY)-unisolvent if the zero polynomial is the only polynomial from 7,,(R?) that vanishes
on all of them.

For an example take the linear polynomials on R?. From Theorem 2.5 we know
that dim 7, (R?) = 3. Since every bivariate linear polynomial describes a plane in three-
dimensional space this plane is uniquely determined by three points if and only if these
three points are not collinear. Thus three points in R? are 7;(R?)-unisolvent if and only if
they are not collinear.

A generalization of this fact is:

Theorem 2.7 Suppose that {Ly, ..., Ly} is a set of m + 1 distinct lines in R? and that

= {x1,...,xg}isasetof Q = (m + 1)(m + 2)/2 distinct points such that the first point
lies on Ly, the next two points lie on Ly but not on Ly, and so on, so that the last m + 1 points
lie on L,, but not on any of the previous lines Ly, . .., L,,—y. Then X is m, (R?)-unisolvent.
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Proof Use induction on m. For m = 0 the result is trivial. Now take p € m,,(R?) with
pxi) =0, i=1...,0;

then we have to show that p is the zero polynomial.
Foreachi =0, ..., m let the equation of the line L; be given by

aix1 + Bixa =y,

remembering that x is given by (x1, x2)”. Suppose now that p interpolates zero data at all
the points x; as stated above. Since p reduces to a univariate polynomial of degree m on
L,, that vanishes at m + 1 distinct points on L,,, it follows that p vanishes identically on
L,,, and so

P(x) = (amxl + ﬁmXQ - Vm)‘](x),

where ¢ is a polynomial of degree m — 1. But now g satisfies the hypothesis of the theorem
with m replaced by m — 1 and X replaced by an X consisting of the first (m + 1)m /2 points
of U. By induction, therefore, ¢ = 0, and thus p = 0. O

This theorem can be generalized to RY by using hyperplanes in R¢ and induction on d.
Instead of doing so, we restrict ourselves to the following special case. Let

X; =B €Ny 1Bl < m}.
This set contains by earlier considerations exactly Q = dim 7, (R?) points.

Lemma 2.8 The set X,dn is 70, (RY)-unisolvent. Thus polynomial interpolation of degree m
is uniquely possible.

Proof We have to show that the only polynomial p € m,,(R?) with p(a) = 0 for every
o€ Ng with |a| < m is p = 0. This is done by induction on the space dimension d. For
d =1 we have a univariate polynomial of degree m with m + 1 zeros, which can only be
the zero polynomial itself. For the induction step from d — 1 to d let us write the polynomial
as

p() = p(&,xa) =Y p;E)x;

j=0
with polynomials p; € m,,_; (R?1). We are finished if we can show that all the p j are Zero.
This is done by induction on m — j. To be more precise, we will show that p,,_; = 0 for
0<j<mand pm_,-lX‘;_1 =0for j + 1 <i < m. Let us start with j = 0. Setting x =
O,k)forO<k <m we see that 0,k)e X f’" and that the univariate polynomial p(0, -) has
m + 1 zeros. This means that the coefficients p;(0) have to vanish for 0 < i < m, showing
in particular that the constant polynomial p,, is zero. Now assume that our assumption is
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true for j. Then, p,, =--- = p,—; = 0shows that
m—j—1 )
PEx) =Y piEN,
i=0
and that p,-|X‘;’1 =0for0 <i <m — j — 1. Nextfix an arbitrary 8 € X;’;ll \Xj’l. Then
|8] = j + 1 and the data points (8, k) are in X¢ for 0 < k < m — j — 1. Thus the univari-
ate polynomial p(B, -), which is of degree m — j — 1, has m — j zeros and is therefore
identically zero. This means p;(8) = O forall 8 € Xf;ll andall0 <i <m — j — 1, giving
in particular p,,_;_; = 0by our induction assumption on d — 1. This finishes our induction
on j and hence also the induction on d. O

This last proof gives an idea how complicated the situation in more than one dimension
can be. If the data sites are part of a mildly disturbed grid, however, interpolation with
polynomials is always possible.



3

Local polynomial reproduction

One reason for studying polynomials in approximation theory is that they allow a simple
error analysis. For example, if the univariate function f possesses k continuous derivatives
around a point xy € R then the Taylor polynomial

k=1 4(j
_ f(J)(XO) j
P =3 =)
Jj=0
enjoys for |x — xo| < & the local approximation error
L O@I
1 = ol = Lt < et

with & between x and x¢. This local approximation order is inherited by every approximation
process that recovers polynomials at least locally.

In this chapter we will work out these ideas more clearly by introducing the concept of
a local polynomial reproduction and discussing its existence. In the next chapter we will
give a concrete example of a local polynomial reproduction. But even the theoretical results
provided here are useful, since they often allow error estimates for other approximation
methods.

3.1 Definition and basic properties

Given a set X = {xy, ..., xy} of pairwise distinct points in Q2 C R4 and function values
f(x1), ..., f(xy), we are concerned with finding an approximant s to the unknown function
f. One way to form such an approximant is to separate the influence of the data sites and
the data values by choosing functions u; : & — R, 1 < j < N, which depend only on X
and forming

N
s =Y fxpuj(x).

j=1

If the functions u; are cardinal with respect to X, thatis u;(x;) =8, for 1 < j,k <N,
we obviously have an interpolant. The reader might think of Lagrange interpolation with

24
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univariate polynomials as an example. If the functions u ; are not cardinal then s is sometimes
called a quasi-interpolant.

In what follows the fill distance, which has already been introduced in Chapter 1, will play
an important role as it will throughout this book. For convenience we restate its definition
here. For a set of points X = {x, ..., xy} in a bounded domain Q C R the fill distance is
defined to be

hx.q=sup min |x —xj|.
x = sup min flx —x;

Now it is time to come to the basic definition of what we call a local polynomial repro-

duction.

Definition 3.1 A process that defines for every set X = {xy, ..., xy} € Q afamily of func-
tions u; = ui{ :Q — R, 1 <j <N, provides a local polynomial reproduction of degree
£ on Q if there exist constants hgy, Cy, Cy > 0 such that

N
(1) Y pGcju; = p forall p € mRHIQ

=1

N
(2) Zlu/(x)l <Ciforallx € Q,
=
(3) uj(x) =0ifllx — x;lla > Cohx g and x €

is satisfied for all X with hx o < ho.

Sometimes we will also say that {u;} forms a local polynomial reproduction or in a
more sloppy way that the quasi-interpolant s = ) f(x;)u; provides a local polynomial
reproduction.

The crucial point in the definition is that the constants involved are independent of the
data sites. Moreover, so far we have not talked about the data values at all.

The first and the third condition justify the name local polynomial reproduction. The
second condition is important for the approximation property of the associated quasi-
interpolant. So far, we have not specified the functions u; any further. Obviously they
will depend on the set X, but they might not even be continuous. In the next chapter we will
show how to construct such functions having an arbitrary smoothness.

The reason for investigating local polynomial reproductions is that they allow a very
simple error analysis.

Theorem 3.2 Suppose that Q C R? is bounded. Define Q* to be the closure of
UreaB(x, Cahg). Define sz x = Z?]:l f(xj)u;, where {u;} is a local polynomial repro-
duction of order m on Q. If f € C"+1(Q*) then there exists a constant C > 0 depending
only on the constants from Definition 3.1 such that

|f(x) = s7x(0)] < CRY G| flennar

forall X with hx o < ho. The semi-norm on the right-hand side is defined by | f|cn+1 @+ 1=
maxqj=m+1 1D f |l L2
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Proof Let p be an arbitrary polynomial from 7, (R¢). Then, using the properties of a local
polynomial reproduction gives

N

P =Y flxjujx)

j=1

[f(x) = spx()] < | f(x) — p(x)| +

N
< 1fG) = p+ D 1p(x) = fpllu; (o)l
i=1

j
N

S f = PllLaBE.Cohxo) (1 + |Mj(X)|)
=

<A+ COISf — PlLaBe.Cohya)-

Here, B(x, r) denotes the closed ball around x with radius r > 0. Now choose p to be the
Taylor polynomial of f around x. This gives for y € Q a £ € Q* such that

D*f D*
fmn=7 Of,(x)(y -0+ Y f,@)(y —x)".
|| <m : lee|=m—+1 :

Hence, we can conclude that

N
1
F@) =3 w0 < A+C) Y0 D fllp @) (Coh)"!
j=1 la|=m+1 7"
< Ch"™| flemian,s
with h = hy q. O

Let us point out that the result is indeed local. It always gives the approximation order
that can be achieved by polynomial reproduction. Hence, if f is less smooth in a subregion
of 2, say it possesses only £ < m continuous derivatives there, then the approximant still
gives order £ — 1 in that region and this is the best we can hope for.

3.2 Norming sets

After having learnt about the benefits of a local polynomial reproduction, we now want
to prove its existence. The case m = 0 of constant polynomials is easy to handle. If one
chooses for x € 2 an index j such that ||x — x; ||, is minimal, the functions can be defined
pointwise by u;(x) =1 and u(x) = 0 for k # j. These functions obviously satisfy the
conditions of Definition 3.1 with arbitrary hy and C; = C, = 1.

It remains to prove existence in case of polynomials of degree m > 1. This will be done
in a very elegant way, which allows us to state all the involved constants explicitly. The
drawback of this approach is that it is nonconstructive: it will give us no hint how the
functions u ; might look.
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Let V be a finite-dimensional vector space with norm || - ||y and let Z € V* be a finite
set consisting of N functionals. Here, V* denotes the dual space of V consisting of all linear
and continuous functionals defined on V.

Definition 3.3 We will say that Z is a norming set for V if the mapping T : V — T(V) C
RN defined by T (v) = (2(v));cz is injective. We will call T the sampling operator.

If Z is a norming set for V then the inverse of the sampling operator exists on its range,
T-':T(V) — V. Let RY have the norm || - ||g~, and let || - |[gv+ be the dual norm on
RN = RN, Equip 7'(V) with the induced norm. Finally, let || T-!| be the norm defined as

-1
17" xllv _ lvllv

||T_1 | = —_— = _—
xervnfoy  Ixllmy vevv(oy 1T vllrw

This norm will be called the norming constant of the norming set.

We are mainly interested in using the £.,-norm on R¥, so that the dual norm is given by
the £;-norm.

The term norming set comes from the fact that Z allows us to equip V with an equiva-
lent norm via the operator 7. To see this, first note that obviously || Tv|lgy < || T||||v]lv.
Conversely, since T is injective we have [|v||y = [T~ (Tv)|ly < |T~"||||Tv||z~. Hence,
Il - lv and || T(-)||grv are equivalent norms on V.

It is clear that we need at least N > dim V functionals to make the operator T injective.
It is also obvious that we can get along with exactly N = dim V functionals. But what we
have in mind is that a certain family of functionals is given, for example point-evaluation
functionals. Then the natural question is how many of these functionals are necessary not
only to make 7 injective but also to control the norm of 7" and its inverse. In case of point-
evaluation functionals we might also ask for the locus of the points. These questions will
be addressed in the next section. We now come to the main result on norming sets.

Theorem 3.4 Suppose V is afinite-dimensional normed linear spaceand Z = {zy, . .., 2y}
is a norming set for V, T being the corresponding sampling operator. For every ¥ € V*
there exists a vector u € RY depending only on \ such that, for every v € V,

N
Y=Y ujz;(v)

j=1

and

-1
lelmns < 1 llv- 1T

Proof We define the linear functional 1/~f onT(V)by gZNf(x) = (T ~'x).Ithas anorm that is
bounded by [|y]| < || lv+|IT~"|. By the Hahn—Banach theorem, i/ has a norm-preserving
extension ey to RY. On R¥ all linear functionals can be represented by the inner product
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with a fixed vector. Hence, there exists u € RV with

N

1Zexl(x) = Z UjX;

j=1
and |lu|lgvs < ||¥|lv=IT~"||. Finally, we find for an arbitrary v € V, by setting x = T'v,

N N

Y) = YT 750) = Y0) = Yeu¥) = D ujx; = Y u;z;(v).

Jj=1 Jj=1
which finishes the proof. O

It is important to notice that there are two different ingredients in this result. On the one
hand we have the functionals in Z, and they determine the norming set. On the other hand
there is the functional . But the existence of the vector u does not depend on v, it only
depends on Z. Of course, the actual vector u will depend on the specific ¥ but not the
general result on its existence. Hence, if we know that Z is a norming set, we can represent
every functional v in this way.

3.3 Existence for regions with cone condition

To use norming sets in the context of local polynomial reproduction, we choose V =
Tn(RY|Q and Z = {8x,, ..., 6x,}. Here 8, denotes the point-evaluation functional defined
by §:(f) = f(x). A first consequence of this choice is

Proposition 3.5 The functionals Z = {8,,, ..., dx,} form a norming set for m,, (R%) if and
only if X is 7 (R?)-unisolvent.

As mentioned earlier, we equip RY with the £.,-norm. If we additionally choose ¥ to
be 8., Theorem 3.4 gives us a vector u(x) € R that recovers polynomials in the sense of
Definition 3.1 and has a bounded ¢;-norm. Hence, two of the three properties of a local
polynomial reproduction are satisfied, provided that Z = {é,,, ..., d,} iS a norming set
for the polynomial space. The third property will follow by a local argument. But before
that we give conditions on the set of data sites X such that Z forms a norming set. This
is hopeless in the case of a general domain Q2. Hence, we restrict ourselves to the case of
domains satisfying an interior cone condition.

Definition 3.6 A set Q C R? is said to satisfy an interior cone condition if there exists an
angle 6 € (0, 7/2) and a radius r > O such that for every x € Q a unit vector £(x) exists
such that the cone

Cex £(x),0,r):=={x+iy : ye R |lyla=1,y"6(x) > cos0, 2 €[0,7]} (3.1
is contained in Q.

We will often make use of the following elementary geometric fact (see Figure 3.1).
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&

Fig. 3.1 Ball in a cone.

Lemma 3.7 Suppose that C = C(x, &,0,r) is a cone defined as in (3.1). Then for every
h <r/(1 4 sin@) the closed ball B = B(y, hsin®) with center y = x + h& and radius
h sin @ is contained in C(x, &, 0, r). In particular, if z is a point from this ball then the whole
line segment x + t(z — x)/||z — x||2, t € [0, r], is contained in the cone.

Proof Without restriction we can assume x = 0.Ifz € Bthen ||z]; < ||z = yl2 + Iyl <
hsin® + h < r. Thus the ball B is contained in the larger ball around x with radius r and
it remains to show that it is contained in the correct segment. Suppose that this is not the
case. Then we can findaz € B,z & C,i.e. z' &€ < ||zl cos §. This means that

R*sin® 0 > ||z — 5 = llz — h&ll3
= |lzI3 + h* = 2hz"E > ||z1> + h? — 2h]|z]]5 cos 6,
which leads to the contradiction

0 > [lz]13 4+ h*(1 — sin® @) — 2h||z||, cos O
= |Izll5 + A* cos* 6 — 2h|z]|2 cos 6
= (Izll2 — hcos §)* > 0.

O

To prove the norming-set property we will use the fact that a multivariate polynomial
reduces to a univariate polynomial when restricted to a line. Then we want to relate the
Chebychev norm of the univariate polynomial on a line segment to the Chebychev norm
of the multivariate polynomial on €2. To do this we have to ensure that the line segment is
completely contained in €.

Theorem 3.8 Suppose Q@ C R? is compact and satisfies an interior cone condition with
radius r > 0 and angle 6 € (0, w/2). Let m € N be fixed. Suppose h > 0 and the set X =
{x1,...,xn} C Q satisfy

(1) h < rsin@
~ 4(1 4 sin@)m*’

(2) for every B(x, h) C Q there is a center x; € X N B(x, h);
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then Z = {8, : x € X} is a norming set for m,,(R?)|Q and the norm of the inverse of the
associated sampling operator is bounded by 2.

Proof Markov’s inequality for an algebraic polynomial p € m,,(R") is given by
PO < m*|pllgi-1.0- tel[-1,1];

see for example Cheney [41]. A simple scaling argument shows for » > 0 and all p €
7, (RY) that

/ 2 2
Ip'(H)] < ~m 1Pl 20,15 te[0,r].

Choose an arbitrary p € m,,(RY) with || p|| Lo = 1. Since 2 is compact there exists an
x € Q with |[p(x)] = |Ipll . = 1. As Q satisfies an interior cone condition we can find
a £ € R? with ||&]|, = 1 such that the cone C(x) := C(x, £, 0, r) is completely contained
in Q. Because i1/ sinf < r/(1 + sin#) we can use Lemma 3.7 with & replaced by £/ sin 6
to see that B(y, h) € C(x) with y = x + (h/sin6)&. For this y we find an x; € X with
ly —xjll2 < h,ie. x; € B(y, h) € C(x). Thus the whole line segment

Xj—X

x + t €0, r],

[,
llxj — x1l2

lies in C(x) € Q. If we finally apply Markov’s inequality to

p(t) ¢=P<x+txj7_), t€0,r],
llx; —xll2
we see that
[le—=x;ll2 -,
pw-pepis [ 15w
0
2 5.
< llx —xjl2 ;m 1Pl Loro,n
2(1 4 sin@)
<h=————m*|plLoe
rsin6
1
< —
-2
by using [|x — xjll2 < lx = yll2 + lly — xjll2 < h + h/sin6. This shows that |p(x;)| >
1/2 and proves the theorem. O

Note that in the case i = hx o condition (2) is automatically satisfied. However, setting
h = hx q is somewhat too strong for what we have in mind. An immediate consequence of
Theorems 3.4 and 3.8 is

Corollary 3.9 If X = {xy,...,xy} € Q and h > 0 satisfy the conditions of Theorem 3.8
then there exist for every x € Q real numbers uj(x) such that Y |u;(x)| <2 and
Yuj(x)p(x;) = px) forall p € T (RY).
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Our first example of a region satisfying an interior cone condition is given by a ball. It is
an example where the constants are independent of the space dimension.

Lemma 3.10 Every ball with radius § > 0 satisfies an interior cone condition with radius
6 > 0 and angle 6 = 7 /3.

Proof Without restriction we can assume that the ball is centered at zero. For every point x
in the ball we have to find a cone with prescribed radius and angle. For the center x = 0 we
can choose any direction to see that such a cone is indeed contained in the ball. For x # 0
we choose the direction & = —x/||x||,. A typical point on the cone is given by x + Ly with
Iyl =1, y"& > cosm/3 =1/2and 0 < A < . For this point we find

Ix + ay13 = lIx[I3 + 2% = 2Alx &7y < |Ix[3 + A% = Alx]l>.

The last expression equals ||x||2(||x|l2 — A) + A2, which can be bounded by A% < §? in the
case ||x|l2 < A. If A < ||x]||> then we can transform the last expression to A(A — ||x]2) +
[|x ||%, which can be bounded by ||x ||§ < 82. Thus x + Ay is contained in the ball. O

Corollary 3.11 Define form € N
V3
= —""—6#7——.
42 4 /3)m?

IfY ={y1,....yu} € B = B(xp, §) satisfies hy p < ¢, 0 then span{d, : x € Y} is a norm-
ing set for m,(RY)|B with norming constant ¢ = 2. In particular, for every x € Q there
exist real numbers uj(x) such that ) |uj(x)| <2 and ) u;(x)p(y;) = p(x) for all
p € nr?l(Rd)-

(3.2)

While so far everything is still global, which means that we do not have any information
on whether the u ; vanish, we now proceed to a local version. The main idea can be described
as follows. If €2 satisfies an interior cone condition then we can find for every x € €2 a cone
with vertex x that is completely contained in 2. Then we apply the global version given
in Corollary 3.9 to this cone, using the fact that a cone itself satisfies an interior cone
condition. The latter statement seems intuitively clear but its proof is rather technical. We
will restrict ourselves here to cones with angle 8 € (0, 7 /5], which is actually no restriction
at all.

Lemma 3.12 Let C = C(xo, &, 0, r) be a cone with angle 6 € (0, /5] and radius r > 0.
Define

.
i=X+ gt

Then we have, for every x € C,

.
— <
=2l = g
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Proof Without restriction we can assume that xo = 0. Because 0 < 6 < /5 we have
2cos@ > 1+sin6 or2cos6/(1 + sinf) > 1. This means that

2 2 2 T
e —zllz = llxllz + llzll; = 2x" 2

2 r

- -2 -
(1 + sinB)? 1+ sinf
2

= ||lx[3 + £'x

r rcosd
(1 +sin6)2  “1+sin
r2
(1+sin6)?
r2

(1 4 sin0)?

2
= lxllz +

x|l

g Il
2

< xl” = rlixll2 +

= lxla(lixlla = r) +

2

L —
~ (1 +sinf)?

for every x € C. O

Proposition 3.13 Suppose that C = C(xo, &, 0, r) is a cone with angle 6 € (0, w /5] and

radius r > 0. Then C satisfies a cone condition with angle 6 = 6 and radius

3sinf
——F.
4(1 + sin6)

7:

Proof Without restriction we set again xo = 0. Let

sin 6
ro .= ————r,
1 + sin6
and define
= —ro)f = — &
e TS = ine

From Lemma 3.7 we see that the ball B(z, ry) is contained in the cone C. From Lemma 3.10
we know that we can find for every point x € B(z, rp) a cone with angle /3 > 6 and radius
ro > (3/4)ro = 7. This means that we can find a cone for every point inside this ball, and it
remains to show the cone property for points inside the global cone but outside this ball.

Thus, we fix a point x € C with ||x — z||» > ro. Then we define the direction of the small
cone to be { = (z — x)/||z — x||» and we have to show that every point y = x + Aon with
x0 €[0,71, Inll2 =1, and nT¢ > cos@ lies in C. Define

A= llz — x[acos O + [rg + |z — x[3(cos” 6 — 1)]1/2'

Then A is well defined, because Lemma 3.12 gives ||z — x||2 < ro/ sin 6 and this means that

73+ llz — x|3(cos?6 — 1) = g — ||z — x|3 sin*6

2
> 1l — sin® 6 — > =0.
sin” 6
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Furthermore, restricting 6 to (0, /5] gives A > ||z — x|l cos@ > rocost > 3rg/4 =T.
This means that if the point x 4+ A7 is contained in C then the convexity of C shows that
the point x + Agn is also in C, which gives the cone property. This is done by an easy
manipulation:

Iz — @+ a3 = llz — x[3+ 2> = 2An" (2 — x)
= llz = xl34+ 2> =24z — x[n"¢
< llz—x[3 + 2> = 2Allz — x ]2 cos &
= (A —cosfz — x[12)* — Iz — x|* cos? & + ||z — x|*

s
Hence x + An € B(z,r9) € C. O

Now we are able to formulate and prove our local version of Corollary 3.9. Again let us
point out that all the constants are in explicit form.

Theorem 3.14 Suppose that Q@ € R¢ is compact and satisfies an interior cone condi-
tion with angle 0 € (0, w/2) and radius r > 0. Fix m € N. Then there exist constants
ho, C1, C, > 0 depending only on m, 0, r such that for every X = {x1, ..., xy} C Q with
hx.o < ho and every x € Q we can find real numbers i[_,-(x), 1 <j <N, with

(1) Y0, #()p(x)) = px) for all p € m, (R,
2) YV, li(x)l < Cy,
(3) uj(x) = 0 provided that || x — x;|l, > Cahyx .

Proof Without restriction we may assume 6 < /5. We define the constants as

16(1 + sin 8)%*m?
Cl=2 ¢ AT T
3sin“ 0 C,
Let h = hx q. Since Coh < r the region 2 also satisfies an interior cone condition with
angle 0 and radius C,h. Hence, forevery x € Q we can findacone C(x) := C(x, &, 6, C2h),
that is completely contained in 2. By Proposition 3.13, the cone C(x) itself satisfies a cone
condition with angle 6 and radius
~ 3sin6
F = ——F(
4(1 + sin6)
Moreover, by the definition of C,,
~ in 6
por S0
4(1 + sin6)m?

so that we can apply Corollary 3.9 to the cone C(x) and ¥ = X N C(x) with h = hy q.
Hence, we find numbers j(x), for every j with x; € Y, such that

D H(x)px)) = px)

x;€Y
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for all p € m,,(R?%) and

D il <2,

x;eY
By setting 'Jj(x) = Ofor x; € X\Y, we have (1) and (2). For (3), we realize that [ x — x/]|>
> Cyh means that x; is not in the cone C(x), and thus Ej (x) = 0 by construction. O

Note that all constants can be improved if better estimates on the cone condition of a
cone are used. Moreover, if the region €2 is a ball then it is better to use the results on
balls, i.e. instead of using small cones to construct the functions u; one should use small
balls to derive better constants. This philosophy holds for other regions as well. The more
information is known about a region the better are the constants.

Finally, we want to point out that

N
>l <2
j=1

means that the Lebesgue functions of the associated quasi-interpolants are uniformly
bounded by 2. The reader should compare this with the known results on polynomial
interpolation. The price we have to pay for this uniform bound is oversampling: we use
significantly more points than dim(sm,, (R%)).

3.4 Notes and comments

The idea of using local polynomial reproductions in approximation theory is quite an old
one. One could say that even splines are based on this background.

Norming sets have been introduced in the context of interpolation by positive definite
functions on the sphere; see Jetter et al. [89]. With this approach it was for the first time
possible to control the constants involved in the process of bounding certain Lebesgue func-
tions. Since then, norming sets have been used for example to derive results on quadrature
rules on the sphere (Mhaskar et al. [131,132]), approximation with interpolatory constraints
(Mhaskar et al. [130]), the moving least squares approximation (Wendland [196]), and the
determination of explicit constants (Narcowich et al. [148]). The presentation given here is
mainly motivated by Mhaskar et al. [132]. In the next chapter we will have a closer look at
an application in the context of the moving least squares approximation.
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Moving least squares

The crucial point in local polynomial reproduction is the compact support of the basis
functions u ;. To be more precise, all supports have to be of the same size. The local support
of the u; means that data points far away from the current point of interest x have no
influence on the function value at x. This is often a reasonable assumption.

The last chapter did not answer the question how to construct families with local poly-
nomial reproductions efficiently. The moving least squares method provided in this chapter
forms an example of this.

4.1 Definition and characterization

Suppose again that discrete values of a function f are given at certain data sites X =
{x1,...,xy} S Q C R4, Throughout this chapter 2 is supposed to satisfy an interior cone
condition with angle 6 and radius r.

The idea of the moving least squares approximation is to solve for every point x a locally
weighted least squares problem. This appears to be quite expensive at first sight, but it will
turn out to be a very efficient method. Moreover, in many applications one is only interested
in a few evaluations. For such applications the moving least squares approximation is even
more attractive, because it is not necessary to set up and solve a large system.

The influence of the data points is governed by a weight function w : Q x Q — R, which
becomes smaller the further away its arguments are from each other. Ideally, w vanishes for
arguments x, y € Q with ||x — y||, greater than a certain threshold. Such a behavior can
be modeled by using a translation-invariant weight function. This means that w is of the
form w(x, y) = ®s(x — y), Ps = ®(-/3) being the scaled version of a compactly supported
function ® : R — R.

Definition 4.1 For x € Q, the value sy,x(x) of the moving least squares approximant is
given by sy x(x) = p*(x) where p* is the solution of

N
min § Y [f () = pe)Pwlx, xi) : p € mu(R) L. 1)
i=1

35
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In what follows we will assume that w(x, y) = ®s(x — y) uses a nonnegative function
@, with support in the unit ball B(0, 1), which is positive on the ball B(0, 1/2) with radius
1/2. The latter will be important for our error analysis. In many applications it might
be convenient to assume P to be radial as well, meaning that ®(x) = ¢(||x|2), x € R,
with a univariate and nonnegative function ¢ : [0, co) — R that is positive on [0, 1/2] and
supported in [0, 1]. But this is not essential for what we have in mind.

In any case we can reformulate (4.1) more precisely as

min Y [f(x) — pe)PPs(x —x;) : p e m(R")} : 42)

iel(x)

using the set of indices
IxX)=1(x,8,X):={je{l,...,N}:llx —xjll» < 8}.

So far it is not clear at all why moving least squares provides local polynomial reproduc-
tion. It is quite instructive to have a look at the simplest case, namely m = 0. In this situation
only constants are reproduced and the minimization problem has the explicit solution

Ds(x — x;)
Ziel(x) @s(x — x;)
— ——

aj(x):=

spx@) =Y fx)) 43)

Jel(x)

Such an approximant is sometimes also called the Shepard approximant (Shepard [177]).
Obviously, it reproduces constants. The basis functions a; have a support of radius §, so that
8 > Cyhx g is a good choice. Finally, one can immediately see that > jlajl = 1. Hence
we have indeed a local polynomial reproduction for polynomials of degree zero. Moreover,
the smoothness of the approximant is ruled by the smoothness of ®, provided that the
denominator is always nonzero. The latter is always true for a sufficiently large § > 0.

Let us now come back to the case of a general m. We start with a reformulation of the
initial minimization problem. To this end we need a result on quadratic optimization.

Lemmad4.2 Leta e R, b eR", AeR"”™ and P € R"™™ be given. For v € R" define
M, = {x e R" : PTx = v}. Suppose that A = AT is positive definite on My. If M, is not
empty then the quadratic function

fx)=a+ bTx +xT Ax
has a unique minimum on M,,.

Proof Obviously, the set M, is convex and closed. Hence, if f is strictly convex on M, then
we immediately have uniqueness. Since A is positive definite on the subspace My, there
exists a Amin > O such that xT Ax > Amin||x||% for all x € My. Then, an easy calculation
gives, for x,y € M, and A € [0, 1],

(1= fE) +Af() — f((1—Mx +21y) =21 — x — )T Alx — y)
> (1 = MAminllx — ylI3,
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showing that f is indeed strictly convex on M,. To prove existence, we use a method
standard in this context. Since M, is not empty we can fix an xo € M, and restrict the
minimization problem to A7IU ={x € M, : f(x) < f(x0)}. Since f is continuous, 11711, is
also closed. Thus it remains to show thatitis also bounded. Every x € M, canbe represented
by x = xo + z with z € M,. Hence

0> f(x)— f(xo)
= (b+2Ax0)" (x — x0) + (x — x0)" A(x — xo)

> Aminllx = xo0l13 = 116 + 2Ax0ll2[lx — xoll2
shows that || x — xgl|2, and therefore also ||x||2, is uniformly bounded. O

We have formulated Lemma 4.2 more generally than is necessary for our purposes here,
but we will need this more general version in a later chapter. Here, we consider only
minimization problems where A is positive definite on all of R?. Note that setting P = 0
and v = 0 gives the global optimization problem on M, = R¢.

Theorem 4.3 Suppose that for every x € Q the set {x; : j € 1(x)} is 7,,(RY)-unisolvent.
In this situation, problem (4.2) is uniquely solvable and the solution s x(x) = p*(x) can
be represented as

spx(x) = Z a; (x) f(xi),

iel(x)

where the coefficients a}(x) are determined by minimizing the quadratic form

1
i;@axxfi% T @4)
under the constraints
Y aj0)px) =px),  pemuRY. (4.5)
jel)
Proof Denote abasis of 7,,(RY) by p1, ..., po. Suppose our polynomial has the form p =

ZJ'Q:1 b;p;. This reduces the minimization problem (4.2) to finding the optimal coefficient
vector b*.
We use the following notation:

b=(br,....bg)" €R?,
f=0)iel) e RFW,
P =(p;(x:) i e RMWxQ
D = D(x) = diag(®s(x — x;) : i € I(x)) € RH&X#H
R(x) = (p1(x),..., pQ(x))T c RC.
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Then we have to minimize the function

C) = Z |: (x;) — Zb,p](x,i| Ds(x — x;)

icl(x)

= Y Ifi — (PBIP®s(x — x)
iel(x)

= (f = Pb)' D(f — Pb)

= fT'Df —2f"DPb+b" PTDPb

on R2. Since C(b) is a quadratic function in b we can apply Lemma 4.2. We get a unique
solution if PT D P is positive definite. From

b" P"DPb =" PTD'?D'?Pb = | D'*Pb|;

it follows that PT DP is positive semi-definite. Moreover, 5" PT DPb = 0 means that Pb =
0. Thus the polynomial p = ) b; p; vanishes onevery x;,i € I(x). Since this set is assumed
to be 1,,(RY)-unisolvent, p and hence b must be zero.

Now that we know the existence of a unique solution we can use the necessary condition
VC(b*) = 0 to compute it. We find that

0=VC®h*) =-2F"DP+ 20" (PTDP),
which gives (b*)T = #TDP(PTDP)~!, and we obtain the solution
p*(x) = )" R(x) = f'DP(P"DP)™' R(x).
In the final step we treat the problem of minimizing (4.4) under the constraints (4.5). This
means that we have to minimize the function

C(a) := Z a; =a’'D7a
ielx) " D (x i)

on the set

M := la e R¥® Z aipj(xj) =p;x), l=j= Q}

iel(x)
= {a e R"® ;. pTg = R(x)}.

Since we have supposed {x; : i € I(x)} to be m,,(R?)-unisolvent we can always find Q
points that allow unique polynomial interpolation. Hence M is not empty. Moreover, D!
is obviously positive definite. Thus Lemma 4.2 gives us a unique solution to this problem.
To compute this solution we can use Lagrange multipliers. If a* € M is a solution of the
modified problem, there has to be a A € R such that

a=a*"

Y Ti T, _
VC(a*) = A ” [PTa— R()]|
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Fig. 4.1 Basis functions for m = 0 (on the left) and m = 2 (on the right).

This means that 2(a*)” D! = AT PT or a* = DPA/2, showing in particular that a* is the
unique solution of the modified problem, which makes it also the solution of the initial
problem. From a* € M we can conclude that R(x) = PTa* = PTDP/2, which gives the
representation A = 2(PTDP)~'R(x). Finally, we find

> aifoi)=fTa* = fTDP(PTDP)'R(x) = p*(x).
iel(x)

O

From the proof of the last theorem we can read off interesting properties of the basis
functions a7. The most important of these concern the form of a} and the smoothness of
the approximant.

Corollary 4.4 The basis functions a; are given by

Qo
aj(x) = Ps(x — x;) ;Akpk(xn, (4.6)

where the Ay are the unique solutions of

Q
Dok Y Bl —x)pexpe(x) = pex),  0<L<Q. 47
k=1 jelx)

Figure 4.1 shows two typical basis functions, for m = 0 and m = 2. The data sites form
aregular 100 x 100 grid and the weight function is given by ¢(r) = (1 — r)i(4r + 1) (see
Chapter 9). The support radius 6 = 0.2 was chosen to be large for illustration purposes; in
practical applications such an ideal point placement would lead to a much smaller choice of
8, for example § = 0.05. Note that the basis function for m = 0 is nonnegative as it should
be. The basis function for m = 2, however, becomes negative close to the boundary of its
support. This will make the error analysis for higher-order moving least squares somewhat
harder.

Corollary 4.5 If ® possesses k continuous derivatives then the approximant sy,x is also
in C*,

Proof From the last corollary we know that the smoothness of s/, x is governed by the
smoothness of ® and the smoothness of the A;. Since @ is supported in the unit ball, the
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Fig. 4.2 Influence of the scaling parameter in the moving least squares approximation: from left to
right, § = 0.05,8 = 0.07,8 = 0.1.

Aj are also the solutions of
0 N
D oMY ®sr — xppeeppe(x) = pux),  0<L<Q,
k=1 j=1
and therefore as smooth as ®. O
However, even if the smoothness of the approximant is governed by the smoothness of @,
numerical examples show that the effect of the scaling parameter on the “visual” smoothness

is more important. Too small a scaling parameter leads to a bumpy surface, while too large
a parameter results in a smoothed-out representation; see Figure 4.2.

4.2 Local polynomial reproduction by moving least squares

In the case m = 0 it is easy to bound the approximation error. We know that s x has the
representation (4.3), which shows immediately that the basis functions

Ds(x — x;)
Zjel(x) Ds(x —x;)

satisfy ) |a*(x)| = Y a;(x) = 1. This gives the error bound

af(x) =

[ f(x) = spx()| <201 f = pllLoB,sy-

For general m € N we can draw conclusions on the approximation property by showing
that the moving least squares approximation provides local polynomial reproduction. This
needs a further assumption on the set of data sites. The general concept we are now going
to introduce will be essential in the whole of this book.

So far, we have only measured how well a set of data sites covers the domain €2. This is
done by means of &y o, which guarantees a data site x; within a distance hy o for every
x € Q. Or, in other words, the largest ball in €2 that does not contain a data site has radius
at most hy q.
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However, this covering should be achieved by as few data sites as possible.
Definition 4.6 The separation distance of X = {x1, ..., xn} is defined by
1 .
= > min ||x; — x;||2.
qx 2 oy ” i J ”2
A set X of data sites is said to be quasi-uniform with respect to a constant cq, > 0 if
qx < hx.a < cquqx- (4.8)

The separation distance gives the largest possible radius for two balls centered at different
data sites to be essentially disjoint. The definition of quasi-uniformity has to be seen in the
context of more than one set of data sites. The idea is that a sequence of such sets is
considered such that the region €2 is more and more filled out. Then it is important that
condition (4.8) is satisfied by all sets in this sequence with the same constant cq,. For
example, if Q = [0, 1]¢ is the unit cube and X, = hZ? N Q then obviously the separation
distance is given by gx = h/2 while the fill distance is given by hy, o = (+/d/2)h. Hence,
we have quasi-uniformity with ¢, = /d. We will discuss quasi-uniform sets in more detail
in Chapter 14.

Theorem 4.7 Suppose that @ C R? is compact and satisfies an interior cone condition with
angle 0 € (0, w/2) and radius r > 0. Fix m € N. Let hy, C1, and C, denote the constants
from Theorem 3.14. Suppose that X = {xi, ..., xy} C Q satisfies (4.8) and hx o < hy. Let
8 = 2Cohx,q. Then the basis functions a’(x) from Corollary 4.4 provide local polynomial
reproduction, i.e.

(1) Z]/.V:l aj(x)p(x;) = p(x) forall p € Tn(RY), x € Q,
(2) Y la;nl < Cy,
(3) a5x) =0if lx = xjlla > Cohx.o,

with certain constants C 1s 52 that can be derived explicitly.

Proof The first property follows from the construction process of moving least squares.
The third property is a consequence of the compact support of ®. By Corollary 4.4, a} is
supported in B(x;, §), and & has been chosen as 2C>hx q. This shows that in particular
C> = 2C>. For the second property we have to work harder. We start with

1 172 12
i;(x) la;/(x)] < (ig)la; €3]] Brr —xi)> <Z Ds(x xt))

icl(x)

and bound each factor on the right-hand side separately, beginning with the first.
By Theorem 3.14 we know that there exists a set {it;} providing local polynomial repro-
duction. The function & j(x) vanishes if || x — x;|l2 > C2hx o = §/2. The minimal property
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of {aj} allows us the estimate

> laf <x)|2 e <) M@ (x)|2 5

eyt iel(x)
<1 Z |t ()|
minyep,1/2) P(y) iel(x)
2
P Z [22; ()]
minyep,1/2) () iel(x)

o a
T minyep,1/2) ()
Here, we have used the notation Tl (x) ={j : xj € B(x, §/2)}. To bound the second factor
we first note that obviously

D D5(x = xi) < HI)| Pl re)y-

iel(x)
To bound the number #/(x) of points in /(x) we use a packing argument. Any ball with
radius gy centered at x; is essentially disjoint to a ball centered at x; # x; of the same radius,

and all these balls with j € I(x) are contained in a ball with radius gx + §. Comparing the
volume of the union of the small balls with the volume of the large ball gives

#1(x) vol(B(0, 1)) g% < vol(B(0, 1)) (8 + gx)°.
Using quasi-uniformity finally leads to
#1(x) < (1+8/gx)" < (1 +2Cacq)".
O

It is important to recognize that we have an explicit estimate on the constant C,, because
the latter determines the necessary scale factor §. However, numerical tests show that the
estimate we derived in Theorem 3.14 is rather pessimistic. One can often get away with a
much smaller support radius.

Corollary 4.8 In the situation of Theorem 4.7 define Q* to be the closure of
UseqB(x, 2C3hy). Then there exists a constant ¢ > 0 that can be computed explicitly such
thatforall f € C"*\(Q*) and all quasi-uniform X C Qwithhx q < hq the approximation
error is bounded as follows:

+1
If = spxlo@ < chy gl flomqn.

We end this section with an investigation of the computational complexity of the moving
least squares method and with remarks on its practicability. We restrict our analysis to the
situation of quasi-uniform data sites.
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From Corollary 4.4 we can read off that the computational complexity of the approximant
at a single point x is bounded by O(Q?> + Q*#I(x) + Q#I(x)), if Q denotes the dimension
of 1, (R?) and if the time necessary to evaluate a polynomial is considered to be constant. We
use the classical Landau symbol O to suppress unimportant constants. We know, however,
that #/(x) is bounded by a constant independent of x. Thus the complexity for a single
evaluation is constant if the set of indices /(x) is known in advance. But this can be done
in a preprocessing step that takes O(N) time and is based on a simple boxing strategy. To
be more precise, it is not reasonable to collect the relevant data sites (i.e. /(x)) for each
evaluation point separately. This would lead to an O(N M) complexity, if M denotes the
number of evaluations. Instead, it is better to divide the domain €2 into boxes of side length
h and collect for each box the data sites that it contains using a loop over all points. This
can obviously be done in linear time. After that we can find for every x € € the relevant
boxes in constant time, so that the overall complexity for M evaluations of the approximant
based on N points is O(N + M). A more thorough analysis of data structures for points in
d-dimensional space is made in Chapter 14.

Finally, it is not reasonable to use a fixed polynomial basis such as a set of monomials
for every evaluation point x € 2. Instead, a local monomial basis centered at the evaluation
point x and scaled by the support radius § leads to a more stable method.

4.3 Generalizations

‘We now discuss two different matters. One deals with the assumption of quasi-uniformity;
the other carries the initial problem over to a more general setting.

The assumption that the data sites are quasi-uniform is often violated, for example, if
the data are clustered or if there are more points in regions where it is supposed that the
unknown function has a difficult behavior. In such a situation our analysis fails. The reason
for this is that we have chosen the same support radius é everywhere. In our particular
situation we have two possible ways to resolve this problem. On the one hand we could
assign a different support radius to each basis function aj*.. Even if in general this is a good
idea, it would cause problems in the case of moving least squares. The better choice is to let
8 depend on the current evaluation point. Hence, if x lies in a region with a high data density,
8(x) would be chosen small. If there are only few points around x, one has to choose §(x)
rather large. Of course 8, now considered as a function of x, should vary smoothly in x.

Sometimes one faces a more general approximation problem than the one discussed so
far. For example, if partial differential equations have to be solved numerically, information
is given not on the function itself but on its derivatives. In the case of moving least squares,
most of what was done in the point-evaluation case holds also in a more general setting.

To describe the general problem, we will assume that we are working in a function
space F € C(2). The information we have is represented by a finite number of continuous
and linear functionals Xy, ..., Ay € F* and the information we seek is represented by a
functional 1 € F*. Hence, we are given 11(f), ..., Ax(f) and we want to use these data to
get a good approximation X( f)to A(f). The idea of moving least squares or, more generally
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of local polynomial reproductions requires the reproduction process to be exact on a finite-
dimensional subspace P of F. This has been a set of polynomials so far but we can also
consider other function spaces.

In the spirit of moving least squares we choose a nonnegative weight function w, this
time defined on F* x F*, which measures the correlation of two functionals, and we define
X( f) tobe A(p*), where p* € P is the solution of the minimization problem

N
min § > [ (f) = M(p)PwO, 2) : pePL. 4.9)
i=1

This new problem reduces to the old one by setting A; = Oy 1 < j<N,L=4,, and
w(dy,, 0x) = Ps(x — x;).

A closer look at what we did to prove existence and uniqueness shows that Theorem
4.3 remains true even in this more general situation. We only have to adapt the notion of
unisolvent sets. But it should be clear that A = {Ai, ..., Ay} is P-unisolvent if and only
if Aj(p)=0,1<j <N, implies p = 0. Moreover, we have to replace the set of indices
I(x)by I(A) ={j : w(x;, 1) > O}

Theorem 4.9 Suppose that A = {Ay, ..., Ay} is P-unisolvent. In this situation, problem
(4.9) is uniquely solvable and the solution M(f) = A(p*) can be represented as

N
M=) ainh),

iel())

where the coefficients a; are determined by minimizing the quadratic form

, 1
ai———— 4.10)
TS w(A, A;)
under the constraints
Y ak(p)=ip).  peP. @.11)
icl(h)
It is crucial that A = {Aq, ..., Ay} is P-unisolvent, otherwise there will not be a unique

solution. Hence, it is in general not possible to recover f from its derivatives in the interior
of a domain 2 and its function values at the boundary of €2 as one would do in classical
collocation methods for the numerical solution of partial differential equations. The infor-
mation on the boundary gets lost in the interior because of the compact support of the weight
function. But the compact support is necessary for an efficient evaluation.

4.4 Notes and comments

Approximation by moving least squares has its origin in the early paper [101] by Lancaster
and Salkauskas from 1981 with special cases going back to McLain [120,121] in 1974 and
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1976 and to Shepard [177] in 1968. Other early papers are those by Farwig [53-55], who
mainly concentrated on investigating the approximation order. It is interesting to see that
Farwig remarked in [53] that the “least squares problem . . . varies in x”” and hence “comput-
ing the global approximant . . . is generally very time-consuming”. With the development of
fast computers and efficient data structures for the data sites, this statement no longer holds,
and the moving least squares approximation has in recent times attracted attention again,
in the present context and also for the numerical solution of partial differential equations;
see Belytschko et al. [23].

The equivalence of the two minimization problems given in Theorem 4.3 was first pointed
out by Levin [104,105]. The error estimates given here are based upon the present author’s
paper [196].
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Auxiliary tools from analysis and measure theory

For our investigations on radial basis functions in the following chapters it is crucial to
collect several results from different branches of mathematics. Hence, this chapter is a
repository of such results. In particular, we are concerned with special functions such as
Bessel functions and the I"-function. We discuss the features of Fourier transforms and give
an introduction to the aspects of measure theory that are relevant for our purposes. The
reader who is not interested in these technical matters could skip this chapter and come
back to it whenever necessary. Nonetheless, it is strongly recommended that one should at
least have a look at the definition of Fourier transforms to become familiar with the notation
we use. Because of the diversity of results presented here, we cannot give proofs in every
case.

5.1 Bessel functions

Bessel functions will play an important role in what follows. Most of what we discuss here
can be found in the fundamental book [187] by Watson.

The starting point for introducing Bessel functions is to remind the reader of the classical
I'-function and some of its features.

Definition 5.1 The I'-function is defined by

. nln®
re:= lim ———
n—>o0 z(z +1)...(z 4+ n)

forz e C.

It is a meromorphic function, well investigated in classical analysis. Some of its relevant
properties are collected in the next proposition:

Proposition 5.2 The I'-function has the following properties:
(1) 1/T'(z) is an entire function;

(2) T() =1,T(1/2) = /7;

(3) I'(z) = fooo e"tz’ldtfor N(z) > O (Euler’s representation);

(4) T'(z + 1) = zI'(2) (recurrence relation);

46
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(5) T'(@)I'(1 — z) = 7/ sin(rwz) (reflection formula);

r 1
(6) 1< L+ < 129 x > 0 (Stirling’s formula);
2w x x¥e™*
921
(7) T'(2z) = I'(2)['(z + 1/2) (Legendre’s duplication formula).

JT

The I'-function and its properties are well known. Proofs of the formulas just stated can
be found in any book on special functions. A particular choice would be the book [102] by
Lebedev. Now, we continue by introducing Bessel functions.

Definition 5.3 The Bessel function of the first kind of order v € C is defined by

. o) (_l)m(Z/2)2m+u
I(@) = ;)m' Tw+m+1)

forz € C\ {0}

The power z" in this definition is defined by exp[v log(z)], where log is the principal branch
of the logarithm, i.e. —7 < arg(z) < m.

The Bessel function can be seen as a function of z and also as a function of v and
the following remarks are easily verified. Obviously, J,(z) is holomorphic in C \ [0, co)
as a function of z for every v € C. Moreover, the expansion converges pointwise also
for z < 0. If v € N then J, has an analytic extension to C. If R(v) > 0 then we have
a continuous extension of J,(z) to z = 0. Finally, if z € C\ {0} is fixed then J,(z) is a
holomorphic function in C as a function of v. We state further elementary properties in the
next proposition.

Proposition 5.4 The Bessel function of the first kind has the following properties:
(]) Jon= (_l)n‘]n l.fi’l e N;

d
(2) ?{Z”Jv(z)} =2"Jm1(2);
Z

3) di{z_”Ju(Z)} =—2"J1(@)
z

[2 [2
(4) Jip(z) =,/ —sing, J_12(z) =,/ —cosz.
nz bi84

Proof For the first property we simply use that 1/T'(n) =0 forn =0, —1, -2, .... The
second and the third property follow by differentiation under the sum using also the recur-
rence formula for the I'-function. The latter together with ['(1/2) = /7 demonstrates the
last item. O

There exist many integral representations for Bessel functions. The one that matters here
is given in the next proposition.
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Proposition 5.5 [f we denote for d > 2 the unit sphere by S9! = {x e R? : ||x|, = 1}
then we have, for x € R4,

/ s ) = o Rl (). G.1)
§d—

Proof Obviously, both sides of (5.1) are radially symmetric. Hence with spherical coordi-
nates and r = ||x||> we can derive

. ) 27 d=1)/2 L
/ e YdS(y) — / e””‘dS(y) — elrws@ Sil‘ld_2 0 do
g1 g1 rad —-1/2) Jo
using that the surface area of S92 is given by
2 d=1/2
YT T@ - DY

The initial and the last integral are obviously restrictions of entire functions tor > 0. Hence,
we can calculate the last integral by expanding the exponent in the integral and integrating
term by term, which gives

T o ikrk
/ etrcos& Sind—Z 0do = Z —
0 = k!
with aq; := ]071 cost 0 sin?2 6 d6. By induction it is possible to show a4, = 0 and
QIT((d—-1)/2)T (1/2)
ary =
* 2%KIT ((k + d)/2)
Collecting everything together gives the stated representation. The exchange of integration

and summation can easily be justified. Since we will give similar arguments in later proofs,
this time we will leave the details to the reader. O

Our next result is concerned with the asymptotic behavior of the Bessel functions of the
first kind.

Proposition 5.6 The Bessel function has the following asymptotic behavior:
(1) JO@) = O/ Jr) forr > ccandv € R, £ € Ny;

(2) J,(r) = \/gcos (r — % — %) i)

forr — coandv € R;

d+2
(3) J3,(r) <

forr > 0andd € N;

1
29T2(d/2 + 1)

rmw

(4) lim, o r~4J7,(r) = ford e N.

Proof The last property is an immediate consequence of the definition of the Bessel func-
tions. The penultimate property is obviously true in the case d = 1, since in this case
Ji2(r) = /2/(wr)sinr. The case d > 2 is more complicated. It is based mainly on Weber’s
“crude” inequality for Hankel functions (see Watson [187], p. 211). The complete proof
needs too many details on Bessel functions to be presented here; it can be found in the
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paper [145] by Narcowich and Ward. To give the proof for the second property would go
beyond the scope of this book; hence, we refer the reader to Watson [187], p. 199 or, alter-
natively, to Lebedev [102], p. 122. In the case £ = 0, the first property is a weaker version
of the second property. For higher derivatives we use repeatedly the recurrence relation
2J,(z) = Jy—1(2) — Jy41(2), which is a consequence of the formulas given in Proposition
5.4, to derive the desired asymptotic behavior. O

We now turn to the Laplace transforms of some specific functions involving Bessel
functions.

Lemma 5.7 Forv > —1 and every r > 0 it is true that
oo 2U+IF 3/2
/ Tt e dr = M
0 ﬁ(rz + ])v+3/2
Proof Let us start by looking at the binomial series. For 0 < r < 1 and u > 0 we have
> (="r
(=S EVTutm ,
m=0 m! F(,LL)
Hence, if we replace r by 1/r? this gives
> (=T
P14+ = Z 7< T+ m) oo
& mTw

for r > 1. Moreover, Legendre’s duplication formula with z = v +m 4 1 > 0 yields

VT Qv +2m +2)
22v+2m+11"(v +m+ 1)'

Thus, setting © = v + 3/2 > 1/2 shows that

20w 4 3/2)r i (—1"TQv+2m+2) 50 00 s
= r .
(2 4+ 12 2n 0 T (v +m + 1)

Now we will have a look at the integral. Using the definition of the Bessel function, and

T +m+3/2) =

m=0

interchanging summation and integration, allows us to make the following derivation:

/ Jv(t)tqu €7rtdl‘ — § 5 t m+2v+ efrrdt
0 = 2mvmI T +m+1) Jo

_ i CD"T@m+2v+2) 22
A2 D(m v+ 1) '

In the last step we used that the integral representation of the I'-function can be expressed
as

00
[ l‘2m+2u+le‘_“dl — r—2m—2v—21-(2m +2v + 2)
0

Moreover, the interchange of summation and integration can be justified as follows. First
note that Stirling’s formula allows the bound I'(v 4+ m + 1) > (1/c,)m!, where the constant
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¢, depends only on v > —1. Then

o] +2 o0 2
Z (t/2)" " ALt < o 2] Z i ot
| =V 2 12
mzom.r’(v—',—m—i—]) m=02m(m.)
2041 i "
< ¢yt v+ e—rt
- |
m=0 (2m)
< Cut2u+le—rtet’

which is clearly in L[0, co) provided that r > 1. Hence, Lebesgue’s convergence theorem
justifies the interchange.

Up to now we have shown that the stated equality holds for all » > 1. But, since both
sides are analytic functions in i(r) > 0 and |J(r)| < 1, the equality extends to all » > 0 by
analytic continuation. g

The following result is in the same spirit.

Lemma 5.8 Forr > 0 it is true that

o0
Joedt = ———.
/0 o()e EEIE

Proof From the duplication formula of the I"-function it follows that

|
Fm +1/2) = 7(22”2’,1'"1{’? .

Hence, as in the proof of Lemma 5.7 we get the representation

_ o (—D)"Tm+1/2) _,,_ o (=D"Cm)!
2-1/2 _ m—1 _ 2m—1
At =3 m T2 =2 2

m=0 m=0

Thus, by interchanging summation and integration we derive

[ee] N o (_1)m [ee] I
rt _ m rt
/0 Jo(t)e "dt = E 722”1(’”!)2/0 tMe "dt

m=0

_ i (=)"T'2m + 1)r_2m_]
- = 22m (jp1)2

= (4712

for r > 1. The interchange of summation and integration can be justified as in Lemma 5.7.
The equality extends to r > 0 by analytic continuation as before. O

Our final result on Bessel functions of the first kind deals with Jy again.
Lemma 5.9 For the Bessel function Jy the following two properties are satisfied:
(1) / Jo(t)dt > O forallr > 0;

0
(2) / Jo(t)dt = 1.
0

The second integral is intended as an improper Riemann integral.



5.1 Bessel functions 51

Proof The first result is known as Cooke’s inequality. The easiest way to prove it is to use
another representation of the Bessel function, namely

_ sin(ut)
Jo(t) = /1 @ _1)1/2

see Watson [187], p. 170. This shows that

/rj(t)dt 2/“’0 l—cos(ru)d 0
= — —_— >
b ) u@ =12

forallr > 0.

Finally, let us discuss the second result. We know by Lemma 5.8 that fooo Jo(t)e "'dt =
(1 +r?)~12 for all r > 0. Hence we want to let » — 0. Unfortunately, since Jy is not in
L (R) we cannot use classical convergence arguments and so we have to be more precise.
The idea is to use the triangle inequality twice to get the bound

R
‘1 —/ Jo(t)dt
0

R
<[ T=a+r)72 + '/ Jo(t)(e™"" = 1)dt
0

—+

o0
f Jo)e "dt
R

for an arbitrary r € (0, 1]. Next suppose that for every € > 0 we can find an Ry > 0 such
that the last integral becomes uniformly less than €/3 for all r € (0, 1] provided R > Ry.
If this is true then we can fix such an R > R( and then choose 0 < r < 1 such that the
first two terms also become small (using that Jy is bounded), which establishes the second
result. Hence it remains to prove this uniform bound on the last integral. To this end we use
the asymptotic expansion of J, from Proposition 5.6, i.e.

o) = \/g L;’“) +50),

with aremainder S(¢) satisfying |S(¢)| < C t=3/2fort > 1. The remainder partof the integral
in question can easily be bounded since | [ S(t)e™"'dt| < C [ 173/*dt = CR™"? witha
generic constant C > 0 thatisindependentofr > 0. The main part is bounded by integration
by parts:

/ (l ﬂ)dt 1 _,,(d+r)cost+(r—1)sinr|>®
—cos(t—— =———c¢
R NI 4 Var 1472 R
e (1+4+r)cost+ (r—1)sint
dt
V8 132 1+ 12

This expansion shows that the integral on the left-hand side can also be bounded uniformly
by a constant times R~'/2 for all r € (0, 1]. ]

After discussing Bessel functions of the first kind we come to another family of Bessel
functions, called Bessel functions of imaginary argument or modified Bessel functions of
the third kind, sometimes also Mcdonald’s functions.
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Definition 5.10 The modified Bessel function of the third kind of order v € C is defined
by
[o¢]
K, (2) ;= / €3N cosh(vr) dt
0

for z € Cwith |arg(z)| < /2, cosht = (e +e7")/2.

It follows immediately from the definition that K,(x) > 0 for x > 0 and v € R. The
modified Bessel functions satisfy recurrence relations similar to the Bessel functions of the
first kind (see Watson [187], p. 79). The only one that matters here is

d v v
7 [2'Ku(2)] = —2"Kio1(2). (5.2)

Moreover, there exist several other representation formulas. The following one is of partic-
ular interest for us. Again, its proof goes beyond the scope of this book, so for this we refer
the reader again to Watson [187], p. 206.

Proposition 5.11 For v > 0 and x > 0 the modified Bessel function of the third kind has
the representation

T\ 1/2 e i u \v-1/2
K, — (= —u, v—1/2 1 - du.
x) <2x> r(v+1/2)/0 et <+2x> "

This representation gives some insight into lower bounds on the decay of the modified
Bessel functions.

Corollary 5.12 For every v € R the function x +— x"K_,(x) is nonincreasing on (0, 00).
Moreover, it has the lower bound

—x
Ku() = ,/%%, x>0,
X

if [v] > 1/2. In the case |v| < 1/2 the lower bound is given by

3\\)\71/2 —x
Kz Y3 ety
2P (Jv] 4 1/2) /x

Proof The recurrence relation (5.2) together with K_, = K, and the fact that K,_; is
positive on (0, co) gives the monotonic property of x"K_,(x). To prove the lower bound
we can restrict ourselves to v > 0 because of K, = K_,. If v > 1/2 then we get from
Proposition 5.11

K( )><T[)l/2 e~ /00 u u—|/2d _(ﬂ)l/Z x
=) tory , ¢ T ¢

However, if 0 < v < 1/2 then we have to be more careful. We use that for u € [0, 1] and
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x > 1itis obviously true thatu < land 1 +u/(2x) < 14 1/(2x) < 3/2, so that
o0 v—1/2 1 v—1/2
/ ey (1 + l) du > / ey (1 + l) du
0 2x 0 2x
3\ V12 g 1 /3\""12
> |z e "du>-|= ,
=(5) [ea=s(3)

which finishes the proof. O

Finally, we derive upper bounds on K,. We will need these bounds for complex-valued
v. We start with their behavior if the argument tends to infinity.

Lemma 5.13 The modified Bessel function K,, v € C, has the asymptotic behavior

2 !
K, ()] < (| e eMWr/en s g, (5.3)
r

Proof With b = |9(v)| we have

1

00
|K,,(r)| 7‘/. efrcoshtlevt 4 efvtldt
0

IA

2

1 )

5/ efrcosht[ebt_'_e—bt]dt
0

= Kh(r).

IA

Furthermore, from e’ > coshz > 1 + 2 /2 for t > 0 we can conclude that
oo
Koy = [ e e
0

00
— e—rebz/(2r)i‘/ e—sz/2ds
N RN

< /zﬂefrebz/(zn\/z
r
O

While the last lemma describes the asymptotic behavior of the modified Bessel functions
for large arguments, the next lemma describes the behavior in a neighborhood of the origin.
Nonetheless, in the case 91(v) # 0 it holds for all » > 0.

Lemma 5.14 For v € C the modified Bessel functions satisfy, for r > 0,

2RO (R@)DF RO R(w) # 0,
Kyl <11 (54)
Z _logl, r<2, R)=0.
e 2
Proof Let us first consider the case R(v) # 0. Again, we set b = |9 (v)| and know already

that | K, (r)| < Kj(r) from the proof of the last lemma.
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From the definition of the modified Bessel function, however, we can conclude for every
a > 0 that

1 o0
K;,(r) — E‘/ e—rcoshtebtdt
—00
1 [ -
— 7/ e—r(e’+e ’)/Zebtdt
2 )

1 oo
— a_b*‘/ e(—r/2)(u/a+a/u)ub—ldu
2 Jo

by substituting u = ae’. By setting a = r/2 we obtain
oo
Ky(r) = 2b_1r_b/ e e Gy b=l gy < 2b7Iryr?.
0

For R(v) = 0 we use coshr > e’ /2 to derive

oo oo .
Ko(r) = f e gy < f e 2 dr
0 0

o] o] 1

! _ 1

e “—du < e "du + —du
r/2 u 1 rj2 U

1 ) r
=——log—.
e g2

5.2 Fourier transform and approximation by convolution

One of the most powerful tools in analysis is the Fourier transform. Not only will it help us
to characterize positive definite functions, it will also be necessary in several other places.
Hence, we will dwell on this subject maybe at first sight longer than necessary. We start
with the classical L, theory.

Definition 5.15 For f € L (R?) we define its Fourier transform by
Fx) := 2m)9? fR ’ fl@e ™ °dw
and its inverse Fourier transform by
FY(x) = 2m) 42 /R 1 f@)e™ “dw.

We will always use this symmetric definition. But the reader should note that there are
other definitions on the market, which differ from each other and this definition only by the
way in which the 27 terms are distributed.

For a function f € L;(R¢) the Fourier transform is continuous. Moreover, the following
rules are easily established. The overstrained reader might have a look at the book [180] by
Stein and Weiss.
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Theorem 5.16 Suppose f, g € Li(R?); then the following is true.
(1) fza Fo)gx)dx = Jra FOOZx)dx.

(2) The Fourier transform of the convolution
fHglx) = /d F(Nglx —y)dy
R

is given by f g = Qm)* f 2.
(3) With J(x) 1= F(=x) we find that f % J = r)"?| fI2.
(4) For T,f(x) := f(x —a),a € R, we have T, f (x) = e f(x).
(5) For S, f(x) := f(x/a), a > 0, we have S, f = 0ld51/af~
(6) 1If, in addition, X; f(x) € Ll(Rd) then f is differentiable with respect to X ; and

Gl
I = i, oW 0.
Xj
Ifof /0x; is also in L(RY) then
F o »
3—){]()() =ix; f(x).

Obviously the last item extends to higher-order derivatives in a natural way. The following
space will turn out to be the natural playground for Fourier transforms.

Definition 5.17 The Schwartz space S consists of all functions y € C®(R?) that satisfy
K DPy()| < Cap,yr  x€R,

for all multi-indices o, B € Ng with a constant C, g, that is independent of x € RY. The
Sfunctions of S are called test functions or good functions.

In other words, a good function and all of its derivatives decay faster than any polynomial.
Of course all functions from Cgc(Rd ) are contained in S but so also are the functions

)y =e @by eRY

for all @ > 0, and we are going to compute their Fourier transforms now. Because of the
scaling property of the Fourier transform it suffices to pick one specific & > 0.

Theorem 5.18 The function G(x) := e~WI3/2 satisfies G = G.

Proof First note that, because

Gx) = (27:)—"/2[ e 2g=ixTy gy
Rd
o0

d
=11 ((27:)*'/2/ e—yf/ze*fwdyj),
j=1 >

the Fourier transform of the d-variate Gaussian G is the product of the univariate Fourier

transforms of the univariate Gaussian g(z) = e’ */2_and it suffices to compute this univariate
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Fourier transform. Cauchy’s integral theorem yields

o0
’g‘(r) — (271,)71/2/ ef(t2/2+irt)dt
—00
o0
— (27r)’1/2e”2/2/ e~ 2 g4
—00
o0
= (2n)71/2e7r2/2/ e Rqy
—00

=e "

O

We need another class of functions. In a certain way they are the opposite of good
functions. Actually, they define continuous linear functionals on S, but this will not really
matter for us.

Definition 5.19 We say that a function f is slowly increasing if there exists a constant
m € Ny such that f(x) = O(||x||5) for || x|l, = oo.

Our next result concerns the approximation of functions by convolution.

Theorem 5.20 Define g, (x) = (m/ﬂ)d/ze*m”'*”%, m €N, x € RY. Then the following hold
true:

(1) fRd gm(-x)d-x =1
(2) Bulx) = Qmy eI/,

(3) Bu(x) = gu(x),
(4) (x) =1lim, . fR‘, D(w)gm(w — x)dw, provided that ® € C(R?) is slowly increasing.

Proof (1) follows from
/ gu(x)dx = 1) f e E2dy = 1.
R4 R4

To prove (2) we remark that g, = (m/rr)d/zS,/m G. Thus Theorems 5.16 and 5.18 lead
to

B = (m/m)PCmy ™28 7 G = 2m) S 13 G
For (3) note that
Zn = Q) HS 3G = )P 2m)' S, 13 G = g
For (4) we first restrict ourselves to the case x = 0. From (1) we see that

/Rd P(w)gm(w)dw — P(0) = /Rd@(w) — 2O)]gn(w)dw.

Now choose an arbitrary € > 0. Then there exists a § > 0 such that |®(w) — (0)| < €/2
for |||l < §. Furthermore, since & is slowly increasing, there exists an £ € Ny and an
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M > 0 such that |®(w)| < M(1 + |wl||2)¢, @ € R?. This means that we can find a generic
constant Cs such that we can bound the integral as follows:

IA

U [P(w) — q>(O)Lg’m(w)a’w‘ / |P(w) — P(0)|gm(w)dw
R leoll2 <8

+Cs / gm(@)|oll5dw
llwll2>8

IA

€ 2
§+Cam_[/2/ e‘”"’”z/zﬂwllgdw
lwlla/~/2m>8

IA

€

for sufficiently large m. The case x # 0 follows immediately by replacing ® by &(- 4 x)
in the previous case. o

The approximation process described in Theorem 5.20, item (4), is a well-known method
of approximating a function. It is sometimes also called approximation by mollification
or regularization. Let us stay a little longer with this process. In particular we are now
interested in replacing the Gaussians by an arbitrary compactly supported C*°-function.
Moreover, we are interested in weaker forms of convergence.

Lemma 5.21 Suppose that f € Lp(Rd), 1<p<oo, is given. Then we have
limeo llf — fC+ )z, =0.

Proof Let us denote f(-+ x) by f,. We start by showing the result for a continuous
function g with compact support. Choose a compact set K C R? such that the support of
g is contained in K for all x € R with ||x|» < 1. Since g is continuous, it is uniformly
continuous on K. Hence for a given € > O we finda § > O such that |g(y) — g(x + y)| < €
forall y € K and all ||x||, < §. This finishes the proof in this case because

lig — gxllL, @) = llg — gl i) < elvol(K)]'/.

Now, for an arbitrary f € L,(R?) and € > 0 we choose a function g € Co(RY) with
Il f — gllr, ey < €/3. By substitution this also means that || fx — gx|lz,®e) < €/3, giving

= fell,mey < 1 — glle, ey + 18 — &xlle, @ + lgx — felle,@e

2¢
< 3 + g — gxllL, @),

and this becomes smaller than € for sufficiently small ||x||,. O

Note that the result is wrong in the case p = oo. In fact, || f — f(- — x)||. ®e) — O as
x — 0 implies that f is almost everywhere uniformly continuous.

The previous result allows us to establish the convergence of approximation by convolu-
tion, not only pointwise butalsoin L ,. The following results are formulated for g € CP(R?),
but the proofs show that for example the second and third items hold even if we have only
g € LiRY).



58 Auxiliary tools from analysis and measure theory

Theorem 5.22 Suppose an even and nonnegative g € CSO(R") is given, normed by
f g(x)dx = 1. Define g,,(x) = m? g(mx). Then the following are true.

(1) If f € LY(RY) then f x g € C*(RY) and D*(f x g) = f * (D*g).

(2) If f € Ly,(RY) with1 < p < cothen f x g € L,(RY) and | f * gl @y < N F @8l @a)-
(3) If f € Ly(RY) with 1 < p < 00 then || f — f % gllwa) — 0for n — oc.

(4) If f € CQRY) then f % g, — f uniformly on every compact subset of R%.

Proof The first property is an immediate consequence of the theory of integrals depending
on an additional parameter. The second property is obviously true for p = 1, co. Moreover,
if 1 < p < co we obtain, withg = p/(p — 1),

If *g()] < /R [fDllgx — »IVP1gx — y)|dy

1/p 1/q
< (/ [fWIP1g(x — y)ldy> (f lg(x — y)ldy>
R4 R4
or in other words

rlq
If*gll} g =< (/ Ig(Y)Idy) / / [fOIP1g(x — y)ldydx
? R4 Rd JRA
e LI

Using Minkowski’s inequality again, we can derive

1 = F 58l = [ 1 = S 3/ )y

in the same fashion as before. But since || f — f(- + y/n)lL,®: — 0 for n — oo by
Lemma 5.21 and since || f — f(- + y/m)lL,®e) < 21 f Iz, e), Lebesgue’s dominated con-
vergence theorem yields the third property.

Finally, let f be a continuous function and € > 0 be given. If K € R? is a compact
set then we have K € B(0, R) for R > 0. Choose § > 0 such that | f(x) — f(y)| < € for
all x,y € B(O, R+ 1) with ||x — y|l» < 8. Without restriction we can assume that g is
supported in B(0, 1). This allows us to conclude, for x € K, that

Lf () = f * gu(x)] S/ )If(X)*f(y)lgn(xfy)dy <e

(x,1/n
whenever 1/n < §, which establishes uniform convergence on K. O

We now come back to the initial form of approximation by convolution, as given in
Theorem 5.20, to prove one of the fundamental theorems in Fourier analysis.

Theorem 5.23 The Fourier transform defines an automorphism on S. The inverse mapping
is given by the inverse Fourier transformation. Furthermore, the Ly(R?)-norms of a function
and its transform coincide: || f | L,rey = Il f 1l 2,®e)-
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Proof From Theorem 5.16 we can conclude that Fourier transformation maps S back
into S and that the same is valid for the inverse transformation. Using Theorem 5.16 and
Theorem 5.20 we obtain, again using Lebesgue’s convergence theorem,

fx) = lim/ f@)gm(w — x)dw
m—>00 Jpa

= lim | f(o+x)3,(@do
Rd

m—00

m— 00

= lim/ ]?(w)eixrwgm(w)dw
RY

= 2x)"? ﬂw)eixr“’dw.
RLI

Finally, we now have for an arbitrary g € S,

30 = @) / , @) dw = Q) / B edw = (),
R4 R

which, together with Theorem 5.16, leads to

/ f(x)gx)dx = / f(0)g)dx = [ FZdx,

R4 R4 R4

so that not only are the norms equal but also the inner products. O
Obviously, the proof can be extended to the following situation.

Corollary 5.24 If f € L (R?) is continuous and has a Fourier transform f e Li(RY) then
f can be recovered from its Fourier transform:

f&x) = Qu)? / fle* “dw,  x eRL
]Rd

Another consequence of Theorem 5.23 is that it allows us to extend the idea of the Fourier
transform to L,(R¢), even for functions that are not integrable and hence do not possess a
classical Fourier transform. Theorem 5.23 asserts that Fourier transformation constitutes a
bounded linear operator defined on the dense subset S of L>(R%). Therefore, there exists
a unique bounded extension T of this operator to all L,(R?), which we will call Fourier
transformation on L,(R¢). We will also use the notation f: T(f) for f € L,(RY). In
general, ffor f e L,(RYis given as the L>(R?)-limit of {ﬁ} if f, € S converges to f in
Ly(RY).

Corollary 5.25 (Plancherel) There exists an isomorphic mapping T : Ly(R?) — L,(R%)
such that:

(1) ”Tf”Lz’(le) = || fllo@er forall f € Ly(R?);
(2) Tf = fforall f € LyRY) N Ly (RY);
(3) T"'g =g forall g € Ly(R") N L (RY).

The isomorphism is uniquely determined by these properties.
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Proof The proof follows from the explanation given in the paragraph above this corollary
and the fact that S € L (R%) N Ly(RY), so that L1 (RY) N L,(RY) is also dense in L,(R?)
with respect to the L,(R¢)-norm. O

Finally, we will take a look at the Fourier transform of a radial function. Surprisingly, it
turns out to be radial as well. This is of enormous importance in the theory to come.

Theorem 5.26 Supposefb e LiRHN C(]Rd)m radial, i.e. ®(x) = ¢(||x||»), x € RY. Then
its Fourier transform ® is also radial, i.e. <I>(a)) Fap(||lwll2) with

Fub(r) = r@-02 / SO T (i),
0

Proof The case d = 1 follows immediately from

2\ 12
J—I/Z(Z)Z(;> cost.

In the case d > 2 we set r = ||x||2. Splitting the Fourier integral and using (5.1) yields

5(x) = (271)_‘1/2/ @(w)e""‘r’“da)
R4
:(2;1)*‘”2/ z"*‘/ d(t|wl)e™ ™ °dS(w)dt
0 §d-1
= (27)"4? / d()d! / e OqS(w)dt
0 Sd—l

o0
= r,(d,z)/z / (b([)ld/z J(d_z)/z(rt)dl.
0

5.3 Measure theory

We assume the reader to have some familiarity with measure and integration theory. The
convergence results of Fatou, Beppo Levi, and Lebesgue for integrals defined by general
measures should be known. Other results like Riesz’ representation theorem and Helly’s
theorem are perhaps not standard knowledge. Hence, we now review the material relevant
to us. The reader should be aware of the fact that terms like Borel measure and Radon
measure have different meanings throughout the literature. Hence, when using results from
measure theory it is crucial to first have a look at the definitions. Here, we will mainly
use the definitions and results of Bauer [9] since his definition of a measure is to a certain
extent constructive. Another good source for the results here is Halmos [78]. We will not
give proofs in this short section. Instead, we refer the reader to the books just mentioned.
Moreover, Helly’s theorem can be found in the book [46] by Donoghue.

Let © be an arbitrary set. We denote the set of all subsets of Q2 by P(£2). We have to
introduce several names and concepts now.
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Definition 5.27 A subset R of P(R2) is called a ring on Q if
(1) eR,

(2) A, B € Rimplies A\ B € R,

(3) A, B € R implies AUB € R.

The name is motivated by the fact that a ring R is indeed a ring in the algebraical sense
if one takes the intersection N as multiplication and the symmetric difference A, defined by
ANAB:=(A\ B)U(B\ A), as addition.

We are concerned with certain functions defined on a ring.

Definition 5.28 Ler R be a ring on a set Q. A function p : R — [0, oo] is called a pre-
measure if

(1) n@) =0,
(2) fordisjoint A; € R, j € N, with UA; € R we have i(UA;) = 3" [1(A;).

The last property is called o -additivity.

Note that for the second property we consider only those sequences {A ;} of disjoint sets
whose union is also contained in R. This property is not automatically satisfied for a ring.
It is different in the situation of a o -algebra.

Definition 5.29 A subset A of P(Q) is called a o-algebra on Q if
(1) Qe A

(2) A € Aimplies Q\ A € A,

(3) A; € A j e N, implies UjenAj € A.

Obviously, each o -algebra is also a ring. Moreover, each ring R, or more generally each
subset R of P(£2), defines a smallest o -algebra that contains R. This o-algebra is denoted
by o(R) and is obviously given by

o(R)=nN{A: Aisao-algebraand R C A}.
We also say that R generates the o -algebra o (R).

Definition 5.30 A pre-measure defined on a o-algebra is called a measure. The sets in the
o -algebra are called measurable with respect to this measure.

Obviously measurability depends actually more on the o-algebra than on the actual
measure.

Since any ring R is contained in o (R) it is natural to ask whether a pre-measure p on
R has an extension [ to o (R), meaning that [{(A) = u(A) for all A € R. The answer is
affirmative.

Proposition 5.31 Each pre-measure w on a ring R on Q has an extension i to o (R).

The measures introduced so far will also be called nonnegative measures in contrast with
signed measures. A signed measure is a function i : A - R = R U {—00, oo} defined on
a o -algebra A, which is o-additive but not necessarily nonnegative.
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A measure is called finite if ©(2) < oo. The total mass of a nonnegative measure is
given by ||u| := n(€2). A signed measure p can be decomposed into u = p — p— with
two nonnegative measures /L, (. In this case the total mass is defined by ||| = ||pu+] +
[le—1l. We will also use the notation ||| = fQ |d ).

In the case where 2 is a topological space, further concepts are usually needed.

Definition 5.32 Let Q be a topological space and O denote its collection of open sets.
The o-algebra generated by O is called the Borel o-algebra and denoted by B(R2). If
is a Hausdorff space then a measure |u defined on B(R2) that satisfies u(K) < oo for all
compact sets K C Q is called a Borel measure. The carrier of a Borel measure | is the set
Q\{U : U is open and w(U) = 0}.

Note that a Borel measure is more than just a measure defined on Borel sets. The as-
sumption that 2 is a Hausdorff space ensures that compact sets are closed and therefore
measurable. A finite measure defined on Borel sets is automatically a Borel measure.

If Q is a subset of a Hausdorff space 2 then B(Q) is given by B(Q) = Q N B(L2), using
the induced topology on Q.

In case of RY, it is well known that B(R?) is also generated by the set of all semi-open
cubes [a, b) ;== {x e R¢: aj < x; < b;}. To be more precise, it is known that the set Fe,
which contains all finite unions of such semi-open cubes, is a ring. Hence, any pre-measure
defined on F? has an extension to B(R?).

After introducing the notation for measures, the next step is to introduce measurable and
integrable functions with respect to a certain measure. Since this is standard again, we omit
the details here and proceed by stating those results that we will need later on.

Theorem 5.33 (Riesz) Let Q be a locally compact metric space. If A is a linear and
continuous functional on Cy(S2), which is nonnegative, meaning that A(f) > 0 forall f €
Co(2) with f > O, then there exists a nonnegative Borel measure . on 2 such that

Mf) = /Q S (x)d p(x)

Sforall f € Co(R2). If Q possesses a countable basis then the measure [ is uniquely deter-
mined.

A metric space £ possesses a countable basis if there exists a sequence {U} jen of open
sets such that each open set U is the union of some of these sets.

Theorem 5.34 (Helly) Let {vi} be a sequence of (signed) Borel measures on the compact
metric space S2 of uniformly bounded total mass. Then there exists a subsequence {vy;} and
a Borel measure v on Q2 such that

tim [ oo, )
J—>00 Q

exists for all f € C(2) and equals fg fx)dv(x).
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Finally, we need to know a result on the uniqueness of measures.

Theorem 5.35 (Uniqueness theorem) Suppose that Q2 is a metric space and | and v are

[ ran= [ sav

for all continuous and bounded functions f, then yu = v.

two finite Borel measures on Q. If

In this book we are mainly confronted with situations where €2 is R, [0, 1], or [0, 00)
endowed with the induced topology. These sets are obviously metric (hence Hausdorff),
locally compact, and possess a countable basis. Moreover, they are complete with respect
to their metric. Such spaces are sometimes called Polish spaces and have some remarkable
properties. For example, every finite Borel measure is regular, meaning inner and outer
regular. This will reassure readers who might have wondered about regularity.

Finally, whenever we work on R? and do not specify a o-algebra or a measure, we will
assume tacitly that we are employing Borel sets and Lebesgue measure.
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Positive definite functions

With moving least squares we have encountered an efficient method for approximating
a multivariate function. The assumption that the weight function is continuous excludes
interpolation as a possible approximation process. If the weight function @ has a pole at the
origin, however, interpolation is possible. Nonetheless, moving least squares is a method
for approximation rather than for interpolation. The rest of this book is devoted to a very
promising method that allows interpolation in an arbitrary number of space dimensions and
for arbitrary choices of data sites.

6.1 Definition and basic properties

From the Mairhuber—Curtis theorem we know that there are no Haar spaces in the mul-
tivariate setting. If we still want to interpolate data values fj, ..., fy at given data sites
X = {x1,..., x5} € R? we have to take this into account. One simple way to do this is to
choose a fixed function ® : RY — R and to form the interpolant as

N
spx() =) a;b(x —x)), (6.1)
Jj=1
where the coefficients {c;} are determined by the interpolation conditions

If we imagine for a moment that ® is a bump function with center at the origin, the shifts
®(- — x;) are functions that are centered at x;. Motivated by this point of view, we will

often call x; a center and X = {x, ..., xy} a set of centers.
It would be nice if ® could be chosen for all kinds of data sets, meaning for any number
N and any possible combination X = {xj, ..., xy}. Obviously, the interpolation conditions

(6.2) imposed on a function s, x of the form (6.1) are equivalent to asking for an invertible
interpolation matrix

Ao x = (P(x; — xik))1<jk<nN-

From the numerical point of view it is desirable to have more conditions on the matrix A, x,

64



6.1 Definition and basic properties 65

for example that it is positive definite. Later on, we will see that this requirement will turn
out quite naturally.

Definition 6.1 A continuous function ® : R¢ — C is called positive semi-definite if, for all

N €N, all sets of pairwise distinct centers X = {xy,...,xy} C RY, and all « € CN, the
quadratic form
N N
2D EPx; = )
J=1 k=1

is nonnegative. The function ® is called positive definite if the quadratic form is positive
foralla € CN \ {0}.

Here, we have used a more general definition for complex-valued functions. The reason
for this is that it allows us to use techniques such as Fourier transforms more naturally.
However, we will see that for even, real-valued functions it suffices to investigate the
quadratic form only for real vectors @ € RV,

The reader should note that we call a function positive definite if the associated interpo-
lation matrices are positive definite and positive semi-definite if the associated matrices are
positive semi-definite. This seems to be natural. Unfortunately, for historical reasons there
is an alternative terminology around in the literature: other authors call a function positive
definite if the associated matrices are positive semi-definite and strictly positive definite if
the matrices are positive definite. We do not follow this historical approach here, but the
reader should always keep this in mind when looking at other texts.

From Definition 6.1 we can read off the elementary properties of a positive definite
function.

Theorem 6.2 Suppose O is a positive semi-definite function. Then the following properties
are satisfied.

(1) ®0)=>0.

(2) ®(—x) = ®(x) forall x € RY.

(3) @ is bounded, i.e. |®(x)| < ®(0) for all x € R?.

(4) ®(0)=0ifandonlyif ® =0.

(5) If @y, ..., @, are positive semi-definite and c; > 0,1 < j < n, then ® := Z'}:l c;®; is also
positive semi-definite. If one of the ®; is positive definite and the corresponding c; is positive
then @ is also positive definite.

(6) The product of two positive definite functions is positive definite.

Proof The first property follows by choosing N = 1 and «; = 1 in the definition.
Next, setting N =2, 01 = 1, ax = ¢, x; = 0, and x, = x gives

(1 + |c>)®(0) + cP(x) + cD(—x) > 0.

If we set ¢ = 1 and ¢ = i, respectively, this means that both ®(x) + ®(—x) and i[P(x) —
®(—x)] must be real. This can only be satisfied if ®(x) = ®(—x), showing property (2).
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To prove the third property we take N =2, o) = |P(x)|, ap = —P(x), x; =0 and
x, = x. Then the condition in the definition and the fact that ® satisfies ®(—x) = P(x)
leads to

2|D(x0))*P(0) — 2| D(x)|* > 0.

Property (4) follows immediately from the third. Property (5) is obvious. Property (6) is a
consequence of a theorem of Schur; we include the proof here. Since the interpolation matrlx
Ag, x 18 positive definite there exists a unitary matrix S € CN*N such that Ap,x =S DS
where D = diag{),, ..., Ay} is the diagonal matrix with the eigenvalues 0 < 1) < --- <
An of Ag, x as diagonal entries. This means that

N

Do(xp — xj) = ZsékSTMk-
=1

As @ is positive definite we have

T —
o Aq)lq)zyx()l =

M=

o D1 (xp — x;)Pr(xp — x;)
1

~.
I

o @ (xg — xj)zsé’ksjk)\k
=

-
I

Il
M= I+ 1
Mz

N
> esudisie®(x — x;)

>
&

M= i

~
I

j=1

1
N N
>0 ) DO — x) Y suE
=1 j=1 (=
N
=11 )l ®1(0).
=1
The last expression is nonnegative for all @ € C" and positive unless & = 0. O

We now come back to the question of real-valued positive definite functions and their
characterization. First of all, it is now clear that a positive semi-definite function is real-
valued if and only if it is even. But we can also restrict ourselves to real coefficient vectors
a € R" in a quadratic form.

Theorem 6.3 Suppose that ® : R? — R is continuous. Then ® is positive definite if and
only if ® is even and we have, for all N € N, for all o € RN \ {0}, and for all pairwise
distinct x1, ..., Xy,

M-

N
Zajakcb(xj —xx) > 0.
1 k=1

J

Proof If @ is positive definite and real-valued then it is even by Theorem 6.2; it obviously
satisfies the second condition.
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If, however, ® satisfies the given conditions then we have with o; = a; +ib;

N N
> @@ —x) = Y (ajar + bib)®(x; — xp)
Jik=1 Jok=1

N
iy arh[D(x; — xp) — Bl — x))].
jok=1

As @ is even the second sum on the right-hand side vanishes. The first sum is nonnegative
because of the assumption and vanishes only if all the a; and b; vanish. O

6.2 Bochner’s characterization

One of the most celebrated results on positive semi-definite functions is their character-
ization in terms of Fourier transforms, which was established by Bochner in 1932 for
d =1, [28], and 1933 for general d, [29]. This result is one of the reasons for introducing
complex-valued positive definite functions. The idea behind it is easily described. Suppose
® € C(RY) N Ly(R?) has an integrable Fourier transform ® € L (R¢). Then by the Fourier
inversion formula we can recover ® from its Fourier transform:

d(x) = 2) /2 / d(w)e* “dw.
R‘/

This means that a quadratic form involving & can be expressed as follows:

N N N
DY@ —x) = Q)Y / D) WV da
j=1 k=1 k=1 Rd

2

= ()42 / d(w) do.
Rd

N T
E ajelxj w
j=1

Hence, if ® is nonnegative then the function & is positive semi-definite. The analysis also
shows that it is unimportant whether we recover @ from its Fourier or its inverse Fourier

transform.

Even though we will see that every positive definite and integrable function has an
integrable Fourier transform, we cannot use this approach in the case of a nonintegrable
function. For a complete characterization we have to replace the measure with Lebesgue
density ) by a more general Borel measure (. We will see that this suffices to characterize
every positive semi-definite function as the Fourier transform of such a measure.

To prove this characterization we need two auxiliary results. The first is a characterization
of positive semi-definite functions as integrally positive semi-definite functions.

Proposition 6.4 A continuous function ® : R? — C is positive semi-definite if and only if
@ is bounded and satisfies

/R , /R O - Yy @)y (y)dxdy >0 (6.3)

for all test functions y from the Schwartz space S.



68 Positive definite functions

Proof Suppose that  is a positive semi-definite function. Since ® is bounded and y € S
decays rapidly, the integral (6.3) is well defined. Moreover, for every € > 0 there exists a
closed cube W € R4 such that

/ / O(x — y)y ()7 Gdxdy - f / @(x_y)y(x>mdxdy‘<§
Rd JRRE wJW

But the double integral over the cubes is the limit of Riemannian sums. Hence, we can find

X1,...,xy € R? and weights wy, ..., wy such that
N
- €
[ [ow = riidsay - 3ot - oy syt < 5.
wJW jok=1

This means that

N
[ [ o6 = maintidsay = ¥ @0~ oy sy - e
Re JR: =
J.k=1
Letting € tend to zero and using that & is positive semi-definite shows indeed that (6.3) is
true for all y € S. As a positive semi-definite function @ is also bounded.
Conversely, let us assume that & is bounded and satisfies (6.3). Because of the assumption
imposed on ¢ and y we can rewrite the double integral as

/ / D(x — y)y )y (y)dxdy = / Q(x)y * Y (x)dx
R JR4 R

using the notation ¥ (x) = y(—x). Next, suppose that x, ..., xy € R?andy,...,ay € C
are given. We choose

N
Y =VYm = Zangm(' _X])
=

where g, (x) = (m/n)d/Ze*meH%

techniques to compute the Fourier transform, we see that

is the function from Theorem 5.20. Then, using standard

N N
o~ T _ i Ty _ 2
(@) =Y ;e g (w) = Q) 2 Y " ajei e M/Em),
j=1 Jj=1

which leads to

W * 7o) (@) = Q) |70 * (@)
N
Za Aefiwrxj
J
j=1

N
— —iT (i —x)~
= Y e Vg, ()

Jk=1

Z o jOrgm(- — (xj — xk))) (w).

2

_ (Zn)’d/z o lloll3/(4m)

/\
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This together with the uniqueness of the Fourier transform on S and Theorem 5.20 allows
us conclude that

N N
> a@ (s —x= ) o fim [ @0ogtr G~
— R[

k=1 jok=1

= lim D(X) Y * P (x)dx,
Rd

m—00

and the last expression is nonnegative by our assumption. O

The second auxiliary result that we need on our way to proving Bochner’s theorem is a
generalization of Riesz’ representation theorem, Theorem 5.33. For applying this theorem
to R?, it is not necessary to have a linear functional that is bounded. It suffices that the
functional is bounded only in a local sense. Moreover, the functional needs only to be
defined on functions from C(?O(R‘I ).

Proposition 6.5 Suppose that ). : CS°(R?) — Cis a linear functional which is nonnegative,
meaning that \(f) > 0 forall f € C(‘)’O(]Rd) with f > 0. Then A has an extension to Co(R?)
and there exists a nonnegative Borel measure | such that

Af)= /Rd f)du(x)

forall f € Co(RY).

Proof The proof is divided into three steps. In the first step we show that a nonnegative
linear functional is locally bounded. Hence, let K be a compact subset of R?. Denote by
C3°(K) the subset of functions from C{°(R?) having support in K. We use the notation
Co(K) similarly. We want to show that |A(f)| < Ckll fllz.x) for all f € C°(K) with a
constant Cx depending only on K. To this end we choose a function ¢ € Cg"(Rd ) with
¥|K =1land ¢ > 0.If f € C3°(K) is real-valued then

ey £ =0
obviously implies that A(f) € R and

AN = AN i)

If f is complex-valued then we choose a @ € R such that ¢!’ A(f) € R. Using A(R(f)) =
R(L(f)), which we have just proven, a simple computation shows that A(i(e’’ f)) =
€' 1(f). Applying the previous result to R(e'? f) gives therefore

IO = 11N = M@ P < AMWDIRE™ )l Lowir)
< MO llLwx)-
Hence we can define Cg to be A().

The second step deals with the local extension of A. Being restricted to Cj°(K), the
functional X is continuous and thus has a unique extension to Co(K). The well-known
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construction starts for f € Co(K) with asequence { f;} € C°(K) that converges uniformly
to f and defines A(f) as the limit of A(f;). Since { f;} can be chosen as the convolution of
f with a family of nonnegative and compactly supported functions, the extension of A to
Co(K) is also nonnegative.

By Theorem 5.33 we can find a unique Borel measure ¢ defined on the Borel sets B(K)
such that

AS) :/ fx)dug(x) forall f € Co(K).
K

Since A when restricted to Co(K) is continuous, the measure g is finite.

In the final step we use this result to define a pre-measure on the ring F¢, which is the
collection of finite unions of semi-open cubes. See the start of Section 5.3 for the notation.

To this end we let K; :={x € R? : |lx|l, < j}. The pre-measure [ is now defined
as follows. For A € F¢ we choose a j € N sufficiently large that A € K ; and define
wA) =pu k,;(A). The function 1 is well defined and indeed a pre-measure if its defini-
tion is independent of the choice of j. But this is the case since ug,  |B(K;) = ug; by
uniqueness.

Hence, by Proposition 5.31 there exists a Borel measure 1 on R? such that

M) = [Rd J(x)d pu(x)

forall f € Co(RY). O

After these preparatory steps we are now in a position to formulate and prove Bochner’s
result.

Theorem 6.6 (Bochner) A continuous function ® : R¢ — C is positive semi-definite if
and only if it is the Fourier transform of a finite nonnegative Borel measure j1 on R, i.e.

O(x) = fix) = 2n) " / e Odu(w), x e RY, (6.4)
Rd

Proof We first assume that ® is the Fourier transform of a finite nonnegative Borel measure
and show that & is positive semi-definite. With the usual xy, ..., xy € R? and @ € CN we
get, as in the introductory part of this section,

N N
> @@ —x) = Qr) Y @ / e O 1 ()
Rd

jhk=1 jk=1

— (271’)7‘1/2 /
Rd

The last inequality holds because of the conditions imposed on the measure (. As it is the
Fourier transform of the finite measure w, the function ® must be continuous.

N 2

—iyT
E a]e IXJ(A)

=1

du(w) > 0.
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Next let us suppose that ® is positive semi-definite. Then we define a functional A on the
Schwartz space S by

AMy) = /Rd D(x)yV(x)dx, y € S.

Ify € Sisoftheformy = |y|> withy € S then we find with f := ¥V and f(x) = f(—x)
that

Ay) = /R () (IF17)” ()dx
= (m)"9? / Q@) f * f(x)dx
Rd

= [ [ ot -y wifGidsy
>0,

where the last inequality follows from Proposition 6.4.

Hence A is nonnegative on the set of all functions y from the Schwartz space S of the
form y = |¢|* with ¢ € S.

We wish to extend this relation to all y € Cgo(]Rd) with y > 0. To this end we form
¥ + 62G, where G is the Gaussian G(x) = ¢~1¥13/2 and ¢ > 0. This function is in S and
positive on RY. Thus it possesses a square root, say y| := /¥ + &2G, which is clearly in
C*. It is also in S because it coincides with eG(-/2) for sufficiently large x. Altogether,
this leads us to

0 < Ay = My) + £2A(G),

which establishes the desired result with ¢ — 0. But we know that A is a nonnegative
linear functional defined on Cg° (R?) and this allows us to use Proposition 6.5 to obtain a
nonnegative Borel measure 1 on RY such that

My) = /}Rd y () p(x), y € CoRY. (6.5)

Next we apply approximation by convolution, as provided in Theorem 5.22, to show that p

is finite and that A can be used to represent ®. Approximation by convolution uses a family

{gm) with g,, = m9g(m-) where g € C(R?) N L{(R) has L;-norm one and is nonnegative.

Here, we need in addition that g also is nonnegative and in Co(R?). This can be achieved

by choosing a nonnegative function gy € C¢° (RY) and defining g via g = (go * go)" with

possible renormalization. Note that this construction even leads to g € S and g € C§° (RY).
Let us show that the measure u has a finite total mass. First of all we have

/‘D(X)gm(X)dx:/ Em(X)dM(X)=/ glx/mydp(x).
R4 R4 RY
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Since g(x/m) tends to (27)~%/> and is nonnegative we can apply Fatou’s lemma to
derive

Q)2 /R duto) = /R lim e/ mduto)

IA

lim [ g0c/mdu(x)

m—>00 Jpd

lim / D(x)gm(x)dx
m—00 Jpa

(0),

since & is bounded. This shows that the total mass of u is indeed bounded by (27 Y42d(0).
Finally, Theorem 5.22 gives

d(x) = lim D(w)gm(x —w)dw
m—>o0 Jpd
= lim | e gu(—w)du(w)
m—>o0 Jpd
= Qm)~"? / e dp(w),
R
since y is finite. This is what we intended to show. O

The advanced reader will certainly have noticed that the functional X in the proof of
Theorem 6.6 is nothing other than the distributional Fourier transform of ®. Moreover,
Proposition 6.5 just states that every nonnegative distribution can be interpreted as a Borel
measure.

With the interpolation problem in mind, we are more interested in positive definite than
in positive semi-definite functions. Unfortunately, a complete characterization of positive
definite functions leads to a very technical discussion of the Borel measures involved. The
interested reader might have a look at the paper [39] by Chang.

But all the important functions @ that we will encounter in this book have either a discrete
measure or a measure with Lebesgue density. In such a situation it is far easier to decide
whether a positive semi-definite function is also positive definite. In fact, it will turn out that
all positive semi-definite functions having a measure with a continuous Lebesgue density
that is not identically zero are positive definite. We will now derive sufficient conditions on
the measure p to ensure that @ is positive definite.

Lemma 6.7 Suppose that U C RY is open. Suppose, further, that x,, ..., xy € R are
pairwise distinct and that ¢ € CV. IijLl c/-ef”‘f[”J =0forallw € U then c = 0.

Proof By successive analytic continuation in each coordinate (or by the identity theorem, to
. . . —ixT
be more precise) we can derive that the assumption actually means that Zjv: Lcje”i =0
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for all w € RY. Now take a test function f € S. Then
N o N A
0= cje™™”flw) = (Z ¢ f(— x_j)) (w)
j=1 j=1

for all @ € RY implies that
N
chf(x—xj)zo, x e R
=1

Now take f to be compactly supported with f(0) = 1 and support contained in the ball
around zero with radius € < minj; [|x; — xi|l2. This gives

N
0= cjflu—x)=cxf(0)=c

j=1
forl <k < N. O

Knowing when the exponentials are linearly independent, we can give a sufficient con-
dition for a function to be positive definite.

Theorem 6.8 A positive semi-definite function ® is positive definite if the carrier of the
measure | in the representation (6.4) contains an open subset.

Proof Denote the open subset by U. Then u(U) # 0 and thus we can conclude from the
proof of Theorem 6.6 that for any pairwise distinct xy, ..., xy € R? and any @ € CV we
must have

—ixT
g aje it =0, xeU.

N
=1

Then Lemma 6.7 leads to o = 0. O

Now we are able to construct positive definite functions just by choosing the measure.
This is even simpler if  has a Lebesgue density.

Corollary 6.9 If f € L(R?) is continuous, nonnegative, and nonvanishing then
d(x) 1= / f@e ™ *dw,  xeRY,
R4

is positive definite.

Proof We use the measure p defined for any Borel set B by

w(B) = [ Jf(x)dx.
B

Then the carrier of w is equal to the support of f. However, since f is nonnegative and



74 Positive definite functions

Fig. 6.1 The Gaussian for ¢ = 1 and @ = 2 (on the left) and the inverse multiquadrics with ¢ = 1 for
B =1/2and B = 3/2 (on the right).

nonvanishing, its support must contain an interior point, and hence the Fourier transform
of f is positive definite by the preceding theorem. O

It is time for our first example. The reader can probably see that the Gaussian is a good
candidate for a positive definite function. We formulate the result more generally using an
additional scale parameter.

Theorem 6.10 The Gaussian (x) = eI o > 0, is positive definite on every RY.

Proof 'Wereduce the proof to that for the function G(x) := e~I¥13/2, which satisfies G = G.
If we introduce G, = G(-/«) then we have & = Gl/m and G, = a?G(a-) by Theorem
5.16. Collecting these results we derive

D(x) = Z’d(na)*dﬂ/ Il =i g
Rd

which means that ® is positive definite. O

The left-hand part of Figure 6.1 shows the univariate function ¢(r) = e fora = 1
and o = 2.

The Gaussian is positive definite for every scaling parameter « > 0. However, the correct
choice of « in a particular interpolation problem is crucial. On the one hand, if the parameter
is too large then the Gaussian becomes a sharp peak, which immediately carries to the surface
and leads to a rather poor representation; the interpolation matrix, however, is then almost
diagonal and has a low condition number. On the other hand, a small value for « leads to
a better surface reconstruction but corresponds to a very large condition number for the
interpolation matrix. We shall come back to this relation between condition number and
approximation property later on. Figure 6.2 demonstrates the effect of the scale parameter
on the reconstruction of a smooth function from a 6 x 6 grid. The picture on the left comes
closest to the original function.

Of course, Corollary 6.9 is useful when constructing positive definite functions. But if a
function & is given it would be useful to have a tool to check whether it is positive definite.
Motivated by the Gaussian we formulate:

Theorem 6.11 Suppose that ® € L(R?) is a continuous function. Then ® is positive defi-
nite if and only if ® is bounded and its Fourier transform is nonnegative and nonvanishing.
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£y by dly

Fig. 6.2 The reconstruction of a smooth function using a Gaussian with scale parameter « = 10, « =
100, o = 1000.

Proof Suppose that @ is bounded and has a nonnegative and nonvanishing Fourier trans-
form. It suffices to show that ® € L(R?) is satisfied. Then the Fourier inversion formula
can be applied and Theorem 6.8 finishes the proof.

As in the proof of Bochner’s theorem we choose g, from Theorem 5.20 and get

Q)2 ®0) = 27)%? lim / D(x)gm(x)dx
m— 00 R4

= @20)"* lim / D(0)g(w)dw
m—>00 Jpa

= / a(w)da),
Rd

since ® is nonnegative. Thus ®isin Li(RY).

If, conversely, & is positive definite then we know from Theorem 6.2 that ¢ is bounded
and from Bochner’s theorem that @ is the inverse Fourier transform of a nonnegative finite
Borel measure p on R?. Furthermore, using Theorem 5.16, Theorem 5.20 and Fubini’s
theorem we find that

@(x) = lim f B(0)gm(® — X)dw
m—00 R4

= lim / D(@)gn(@e ™ “do
m—>00 Jpa

lim (271)“”2/ f e‘iwrndu(n)gm(w)e_ixdew
m—s00 Rd JRa

lim (27) /2 / / Gu(@)e ™" D dwd ()
R4 JRR4

m— 00

m—00

> 0.

= lim gm(—=n — x)du(n)
Rd

Thus ® is nonnegative. Now we can proceed as in the first part of the proof to show that
® e Li(RY) and | D LiRY) = (27)%2®(0). Hence ® cannot vanish identically. O
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The proof of the last theorem shows in particular that it suffices to show that D is
nonnegative when @ is not the zero function, because then @ cannot vanish.

The crucial point in the last proof was to establish that a bounded, continuous, and
integrable function ® with a nonnegative Fourier transform also has its Fourier transform in
L1(R%). The assumptions can be weakened. For an integrable Fourier transform, it suffices
to assume that @ is integrable, continuous at zero, and has a nonnegative Fourier transform
(see Stein & Weiss [180]). But since the functions in which we are interested are always
continuous and bounded we will use these facts to shorten the proofs.

Corollary 6.12 If ® € C(RY) N L(RY) is positive definite then its nonnegative Fourier
transform is in L LR,

Let us provide an additional example and apply Theorem 6.11 to prove the positive
definiteness of another famous class of functions, namely inverse multiquadrics. Their
Fourier transforms involve the modified Bessel functions K.

Theorem 6.13 The function ®(x) = (c> + ||x||§)‘ﬂ, x eRY, withc>0and B> d/2is
positive definite. It possesses the Fourier transform

S < 270 (el
¢<w)=r(ﬁ)(“;2> Kupp(cllol). 6.6)

Proof Since B > d/2 the function ® is in L,(R?). From the representation of the
I'-function for 8 > 0 we see that

oo
r(ﬂ):/ Pl dr
0
o
=s'€/ uP=le™"qu
0

by substituting = su with s > 0. If we set s = 2+ ||x ||§ then we can conclude that

1 o0 B 2
Dd(x) = 7‘/ ublemc e Ixlau gy,
') Jo

Inserting this into the Fourier transform and changing the order of integration, which can
easily be justified, leads to

D(w) = )" / D(x)e ' “dx
]R([

R4 JO

1 o0 2 ! .
= (277)7[1/27/ ub=le=e ”/ eI =iz o g gy,
') Jo Rd
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1 = 1, d/2 3/4
— ub=le—c “(Qu)~ 2= lloly/ @) g,
I'B) Jo

B=d/2=1 g=cu =l /) g,

1 oo
~ 24T (p) /0 !
where we have used Theorems 5.16 and 5.18. Moreover, we know from the proof of Lemma
5.14 that

oo
0

forevery a > 0.If we now setr = c||w||2,a = |w|l2/(2c),and v = B — d /2 for w # 0, we
derive

Lol (% e oy pajr
Kg_ap(cllolz) = A e e /Gy du
0

d/2—B
w _~
=271 (@) (),
c
which leads to the stated Fourier transform for w # O using K_, = K,,. We can use continu-
ity to see that (6.6) also holds for w = 0. Since the modified Bessel function is nonnegative
and nonvanishing, & is positive definite. O

Examples of inverse multiquadrics for 8 = 1/2 and 3/2 and ¢ = 1 are provided on the
right-hand side of Figure 6.1.

We made the restriction 8 > d/2 to ensure that ® is integrable. This restriction makes
the function dependent in a certain way on the space dimension. Later we will see that this
restriction is artificial and that any 8 > 0 leads to a positive definite function on any R¢.

We want to close this section by considering a remarkable property of positive definite
functions concerning their smoothness.

Theorem 6.14 Suppose that ® is a positive definite function that belongs to C* in some
neighborhood of the origin. Then ® is in C** everywhere.

Proof Since ® is positive definite there exists a finite nonnegative Borel measure 1 on R?
such that

®d(x) = (2m)~4? / e Od u(w). 6.7)
R
This means that, for every test function y € Cgo(Rd ),
/ Sx)y(x)dx = / Y (w)du(w). (6.8)
]:R([ Rd

Again, we choose a regularization g,(x) = £?g(£x) with a nonnegative function g €
Cgo(Rd) with |lgllz,e) =1 and support {x € R? : |x]l < 1}. Let A denote the usual
Laplace operator, i.e. A = Z‘;:l az/axﬁ, and AX the iterated Laplacian. By inserting
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(1 — A)gy into (6.8) we find
fR &)1+ lwll3)du(w) = /R o - AY ge(x)dx

= f (1 — A D(x)ge(x)dx,
Rd

since ® possesses 2k continuous derivatives around zero and the integrals are actually only
integrals over {x : ||x|l> < 1/£}. The last integral converges for £ — oo to (1 — A)*®(0).
Hence, by Fatou’s lemma and g;(w) — Q)42 we get

/ (1 + ol duw) < Qo)1 — A)F(0).
le

Thus we can differentiate up to 2k times under the integral in (6.7), which means that & is
in C%* everywhere. O

6.3 Radial functions

Even though we have used it already in several places we will now recall the definition of
a radial function.

Definition 6.15 A function ® : R? — R is said to be radial if there exists a function ¢
[0, 00) = R such that ®(x) = ¢(||x|») for all x € R?.

In the Gaussians and the multiquadrics we have already found examples of radial and
positive definite functions without using the fact that they are radial. Now we want to exploit
radiality in more detail.

A radial function has the advantage of a very simple structure. This is motivation enough
to investigate whether such a univariate function is positive definite in the following sense.

Definition 6.16 We will call a univariate function ¢ : [0, 00) — R positive definite on R?
if the corresponding multivariate function ®(x) 1= ¢(||x|2), x € RY, is positive definite.

The smoothness of the multivariate function @ is determined by the smoothness of the
even extension of the univariate function ¢. This is the reason why we always assume ¢ to
be an even function defined on all of R by even extension.

Any radial function is obviously even. From Theorem 6.3 we know that we can restrict
ourselves to real coefficients in the quadratic form.

Lemma 6.17 Suppose that a univariate function ¢ is positive definite on R?; then it is also
positive definite on R* with k < d.

Proof The proof of this lemma is obvious because R* is a subspace of R¢. O

Theorem 5.26 tells us how to compute the Fourier transform of a radial function. The
Fourier transform is again radial and thus can be expressed as a univariate function. Hence,
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Bochner’s characterization can be reduced to a univariate setting. For example, the radial
version of Theorem 6.11 is given by

Theorem 6.18 Suppose that ¢ € C[0, o0) satisfies r — r~'¢(r) € L[0, 00). Then ¢ is
positive definite on R if and only if ¢ is bounded and

[o0]
Fag)i= 14 [ g sy i
0
is nonnegative and nonvanishing.

Proof From r — r¢=1¢(r) € L]0, 0o) we know that & := ¢(| - ||») is in L(R?). Fur-
thermore, we have ®(x) = F,¢(||x||2)- u

Note that the operator F, defined by F,;¢ = @ acts on univariate functions. Hence, if
working with radial functions we are in a situation where we can do most of the analysis in
a univariate setting, which often makes things easier.

We will demonstrate this concept by giving another example of a positive definite func-
tion. It suffices to show that the univariate function F,¢ is nonnegative in contrast with
having to show that the multivariate function D is nonnegative.

The function that we are now going to investigate differs from all positive definite func-
tions we have encountered so far in two ways. First, it has a compact support. Second, it is
not positive definite on every R as it was the case for Gaussians and inverse multiquadrics
(see the remarks after the proof of Theorem 6.13). We will see that these two features do
not appear together accidentally. On the contrary, the first implies the second.

Lemma 6.19 Define the functions fo(r) = 1 — cosr and

Ju(r) :/o Jo@) fu—r(r — D)dt

forn > 1. Let
B — 21201 (n 4 1)!
n — ﬁ .
Then f, has the representation
/ r = 0" 2 g, p(0)dt = B, fu(r). (6.9)
0

Proof Define the integral on the left-hand side of (6.9) to be g(r). Thus g is the convolution
g(r) = for g1(r — )g2(s)ds of the functions gi(s) := s"*! and ga(s) := s"F1/2J,_ jo(s).
This form of convolution differs slightly from the kind about which we have learnt in
the context of Fourier transforms. This new form of convolution is compatible with the
Laplace transform £ in the sense that Lg(r) = fooo g(t)e™""dt is the product of the Laplace
transforms of g; and g,. These transforms can be computed for » > 0 in the following
manner. The first function g; can be handled by using the integral representation for the
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I'-function:
o ) o 'n+2
Lgi(r) = / s"Hlesds = r’"72/ e dr = 7( )
0 0 rn+2
(£ 1!
- rn+2

The Laplace transform of g, was computed in Lemma 5.7. If wesetv =n — 1/2 > —1,
Lemma 5.7 yields

h 1+1/2 s n! 2;1+1/2r
L = ! o Ty = —————
82(r) /0 s 1/2(s)e™"ds Tz (1 2y
for r > 0. Together these two expressions give
21200 (n 4 1)! 1
Lg(r) = .
ﬁ ,.n+1(1 + r2)n+1

It is easily shown, however, that the function fy(r) =1 — cosr has Laplace transform
1/[r(1 + r?)]. Thus, since f, is the n-fold convolution of this function with itself, we get

1

Lfu(r) = L] 4 2yt
By the uniqueness of the Laplace transform this leads to

2"+ 1251 (n 4 1)!

g(r)= N

as stated. O

Ju(r)

The reason for proving this lemma is provided by the integral in (6.9). Obviously it
represents the Fourier transform of a radial function. And we now know that this Fourier
transform is nonnegative and nonvanishing. To give the associated function ¢ itself, let us
introduce the cutoff function (-),, which is defined by

() = X forx> 0,
7 lo forx <O,

and the notation |x |, which denotes the largest integer less than or equal to x.
Theorem 6.20 The truncated power function

de(r) = (1 =r)
is positive definite on RY provided that £ € N satisfies £ > |d/2] + 1.

Proof Let us start with the case of an odd space dimensiond =2n + 1 and £ = |d /2] +
1 = n + 1. We have to check whether the function F,,¢,+1 is nonnegative and nonvan-
ishing. In this special situation it takes the form

P () = f (r = )" 15", o(s)ds.
0



6.3 Radial functions 81
Thus by (6.9) we see that
r3”+2]:2n+l¢n+l(r) = B, fu(r),

which is clearly nonnegative and nonvanishing. For an even space dimension d = 2n and
the same £ = n + 1 we only need to remark that ¢|2,/2)11 = @|2n+1)/2)+1- Hence @|2,/2)+1
is positive definite on R?"*! and therefore also on R?". The same argument proves the
positive definiteness of ¢¢(]| - ||2) for £ > |d/2] + 1. O

The restriction £ € N is actually not necessary but simplifies the proof. It is also possible
to allow real values for €.

A general way of constructing positive definite functions is to integrate a fixed posi-
tive definite function against a nonnegative measure. That is exactly the way the Fourier
transform acts in Bochner’s characterization.

Theorem 6.21 Suppose that the continuous function ¢ : [0, o0) — R is given by
oo
@) = / (1 —rof far, (6.10)
0

where f € C[0, 0o) is nonnegative and nonvanishing. Then ¢ is positive definite on R? if
k> 1d/2] +2.

Proof We find, for arbitrary coefficients and centers,

N N oo N
DY ol — xella) = fo > ajoudii(tllx; — xell2) f(H)dt = 0

j=1 ¢=1 =1

because ¢ is positive definite on R? under the given assumptions, by Theorem 6.20.

Furthermore, since f is continuous, nonnegative, and nonvanishing the latter integral can
vanish only if @ = 0. O

A function of the form (6.10) obviously belongs to C¥~2, and the derivatives satisfy
(=) > 0for0 < £ < k — 2. Suchfunctions are called multiply monotone functions.

Definition 6.22 Suppose that k € N satisfies k > 2. A function ¢ : (0, 00) — R is called
k-times monotone if (—1)'¢®© is nonnegative, nonincreasing, and convex. If k = 1 we
require ¢ to be nonnegative and nonincreasing.

As in the case of Bochner’s theorem, the representation in (6.10) is not general enough to
characterize all k-times monotone functions. Again, the solution is to allow a more general
measure. Since this result will not play an important role for us, we just cite it for the
interested reader. The proof can be found in Williamson [201].

Theorem 6.23 A necessary and sufficient condition that ¢ : (0, 00) — R is k-times mono-
tone is that ¢ is of the form

P(r) = fo (1 =r’7 dy (@),

where y is a nonnegative Borel measure.
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6.4 Functions, kernels, and other norms

Our investigation of positive definite functions was motivated by the interpolation problem
in (6.2), using an interpolant of the form (6.1). This particular choice was very convenient
for our analysis, because we could restrict everything to the investigation of a single func-
tion ®. But of course (6.1) is not the only possible approach to the interpolation problem.
More generally, one would start with a function ® : RY x R? — C and try to form the
interpolant as

N
Sf_X = Zoejd)(-,xj).
J=1

If we are interested only in sets of centers X = {xi, ..., xy} that are contained in a certain
subset  C R?, then it even suffices to have a ® :  x Q@ — C. To make the difference
from the previous approach clearer, we will call such a ® a kernel rather than a function.

Definition 6.24 A continuous kernel ® : Q x Q — C is called positive definite on Q@ C R?

ifforall N € N, all pairwise distinct X = {xy,...,xy} € Q,andalla € cN \ {0} we have
N N
Z Zaj@GD(xj, xk) > 0.
j=1 k=1

The definition is in a certain way not precise. Since we have not specified the set €2 it
might as well be a finite set. In that situation it would be impossible to find for all N € N
pairwise distinct points X. It should be clear that, in such a situation, only those N € N
would have to be considered that allow the choice of N pairwise distinct data sites.

Radial basis functions fit into this more general setting by defining ®(x, y) = ¢(||x — y|2)
which leads to real-valued kernels. Most of the kernels we will discuss are radial, but we can
also use tensor products to create multivariate positive definite functions from univariate
ones.

Proposition 6.25 Suppose that ¢y, . . ., ¢4 are positive definite and integrable functions on
R. Then

Dx) == d1(x1) -+ - Pa(xq), x=(xi,....x))" €RY,
is a positive definite function on R?.

Proof  Since the univariate functions {¢; } are integrable, so also is the multivariate function
®. Moreover, its d-variate Fourier transform & is the product of the univariate Fourier
transforms:

B(x) = ¢1(x1) - - Palxa).

If we apply Theorem 6.11 to the univariate functions we see that their Fourier transforms
are nonnegative and nonvanishing. This means that the multivariate Fourier transform &
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Fig. 6.3 The bivariate functions ®(x) = (1 — \lxllz)i (on the left) and ®(x) = (1 — [x¢[)+(1 — [X2])+
(on the right).

also possesses this property. Hence, a final application of Theorem 6.11 shows that & is
positive definite. O

In Figure 6.3 two compactly supported functions are shown. The function on the left hand
side is the radial function ®(x) = (1 — ||x||2)2, which is positive definite on R? by Theorem
6.20. The function on the right is the function ®(x) = (1 — |x{|)+(1 — |X2])+, which is also
positive definite on R? by Theorem 6.20 and Proposition 6.25. We have chosen the smallest
possible exponent in both cases.

If functions @ : 2 x Q — C are considered then one might naturally arrive at the ques-
tion whether there exists an extension of ® defined on a bigger subset of R?. Such a question
was discussed by Rudin in [159, 160] in the situation where the kernel is actually a func-
tion; to be more precise, where ®(x, y) = ®o(x — y) and Py is a function that is defined
on Q2 — Q= {x —y:x,y e Q}. The results are diverse. On the one hand, it was shown by
Rudin [159] that if Q is a closed cube in R? with d > 2 then there always exists a positive
semi-definite kernel of this form that does not have an extension to all of R?. On the other
hand, Rudin [160] proved that every positive semi-definite kernel of this form, defined on a
ball and in addition radial, has an extension to R?. In the case of a univariate setting, balls
and cubes are the same and hence an extension for functions that are positive semi-definite
on intervals to the whole real line exists. Questions about uniqueness in this context were
considered in Akutowicz’ article [1].

One reason for looking at radial functions is that they allow easier computation. Hence,
one might think of investigating also £ ,-radial functions, i.e. functions ® : R? — R of the
form ®(x) = ¢(|lx|l,), x € R?. So far, such functions have not played a role in the theory
of radial basis function interpolation; hence we do not want to discuss them in much detail.
Nonetheless, there might be some applications that would benefit from basis functions of
this particular form. Thus we will give at least a certain amount of information on this
challenging topic. The first thing is that the situation is similar to the ¢, case if the ¢,-norm
is used. In this situation it is also possible to characterize all positive semi-definite functions.

Theorem 6.26 A function ® : RY — R defined by ®(x) = ¢(||x|1), x € RY, is positive
semi-definite if and only if there exists a finite Borel measure o on [0, 00) such that

() = / Go(royda(r),
0
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where ¢o(r) is given by

2:1/2F2(d/2)
V(- 1)/2)

A proof of this result was given by Cambanis et al. [36]. While it characterizes positive
semi-definite functions that are £,-radial, things are worse for £,-radial functions when
p > 2. In this case it can be shown that for space dimension d > 3 the only function
®(x) = ¢(||x|l,) that is positive semi-definite is the trivial function ® = 0. Nonetheless,
there is some hope for space dimensions d < 2 and for p € [1, 2]. Details on the negative
result can be found in Zastavnyi [209].

o0
¢0(r) = r_(d_ZW [ (t2 — 1)(d_3)/2l_(3d_4)/2J(d,z)/z(rl)dl‘.
1

6.5 Notes and comments

Positive (semi-)definite functions play an important role not only in approximation theory
but also in other mathematical areas, for example in probability theory. There, a positive
(semi-)definite function is nothing other than the characteristic function of a probability
distribution. Hence, the basic properties listed at the beginning of this chapter are folklore
nowadays and the reader might find more information in the review article by Stewart [181]
or the book by Lukacs [110]. But in contrast with probability theory, where semi-definite
functions work as well as definite ones, approximation theory has to stick with positive
definite functions, because being positive definite is crucial for interpolation.

The most important result of this chapter is without a question Bochner’s theorem
(Theorem 6.6). But even though nowadays all tribute goes to Bochner for this result, Mathias
[117] had proved already, in 1923, that a univariate positive (semi-)definite function has a
nonnegative Fourier transform. The proof of Bochner’s theorem, given here in the modern
language of measure theory, was motivated by Donoghue’s presentation [46].

The truncated power function in Theorem 6.20 has been investigated by several authors,
for example Askey [6] and Chanysheva [40]. It will play an important role in what follows.



7

Completely monotone functions

At the end of the last chapter we discussed radial positive definite functions. We investigated
whether a univariate function ¢ : [0, co) — R defines a positive definite function ®(x) =
&(llx]l2) on a fixed RY. But we already had examples where the univariate function gives
rise to a positive definite function on every R?. This is of course a very pleasant feature.
The reader should reflect on this property for a moment. It means that we can use the same
univariate function ¢ to interpolate any number of scattered data in any space dimension.
Hence, we now want to discuss such functions in greater detail.

In the last chapter, we also encountered k-times monotone functions and noticed their
connection with positive definite functions on R? where k and d were related in a certain
way.

It will turn out that there is a similar connection between completely monotone functions,
which are the generalization of multiply monotone functions, and radial functions that are
positive definite on every R?. To be more precise, suppose ¢ : [0, c0) — R is given by

o0 2

o) = / e " dv(n), (7.1)
0
with a nonnegative and finite Borel measure v defined on the Borel sets B([0, o0)) =
[0, 00) N B(R). Then, for arbitrary xi, ..., xy and an arbitrary o« € RV, we have
N © N )

Z ajard(|lx; — xkll2) = f Z ajape” THgy(r) > 0, (7.2)

jk=1 0 ji=1

because the Gaussians involved are positive definite and the measure v is nonnegative.
Moreover, ¢ is continuous because v is finite. This means that ¢ is positive semi-definite
on every R?. Furthermore, obviously f(r) := ¢(y/r) satisfies

dn o0 o0
= (- / e "dv(t) = / t"e "dv(t) = 0.
0 0

Differentiation under the integral sign is justified because the measure v is finite. Hence,
if ¢ is a function of the form (7.1) then it is positive semi-definite on every R¢ and the
associated function f = ¢ (/) satisfies (—1)" f® > 0. The goal of this chapter is to prove
that all three properties are actually equivalent.

d"
_1)"

85
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7.1 Definition and first characterization

We start by defining completely monotone functions.

Definition 7.1 A function ¢ is called completely monotone on (0, 00) if it satisfies ¢ €
C>°(0, 00) and

(—De'(r) =0

forall £ € Ny and all r > 0. The function ¢ is called completely monotone on [0, o) if it
is in addition in C[0, 00).

The first equivalent characterization of completely monotone functions can be derived by
using iterated forward differences.

Definition 7.2 Let k € Ny. Suppose that { f;} e, is a sequence of real numbers. The kth-
order iterated forward difference is

j=0

k k
AN = A fy =) (=1 (j)fuj, £ e Ny. (1.3)
For a function ¢ : [0, 0c0) — R we define the kth-order difference by
k [k
Afp(r) ==Y (=1 (J) S + jh). (7.4)
=0

foranyr > 0and h > 0. If ¢ is defined only on (0, 0o) then we restrict r in (7.4) tor > 0.

Obviously, for a fixed r > 0 and a fixed & > 0, we have A’,‘L¢(r) = Ak{fj}(O) with the
sequence { f;} given by f; := ¢(r + jh).

Lemma 7.3 Suppose that ¢ : (0, 00) — R satisfies (—1)"Ay¢(r) >0 for all r,h >0
and n=0,1,2. Then ¢ is nonnegative, nonincreasing, continuous, and convex on
(0, 00).

Proof Ifwesetn = 0andn = 1 inthe assumptions of the lemma, we see immediately that
¢ is nonnegative and nonincreasing. As a nonincreasing function, ¢ possesses limiting values
on the right and on the left for every r € (0, 0o), which satisty ¢(r+) < ¢p(r) < ¢p(r—). If
we set n = 2, we see that ¢ is midpoint convex, meaning that ¢(r + h) < [¢(r) + ¢(r +
2h)]/2 forall r, h > 0. This gives in particular 2¢(r — h) < ¢(r) + ¢(r — 2h) and 2¢(r) <
¢(r + h)+ ¢(r — h) and leads to ¢p(r—) < ¢(r) and 2¢(r) < ¢p(r+) + ¢(r—). But this
shows that ¢ is continuous at 7 > 0. Finally, a continuous and midpoint convex function is
convex. O

After this preparatory step we are able to prove that the condition stated in the lemma
is equivalent to the requirement that ¢ is completely monotone, if it holds for all n € Nj.
This seems to be quite natural, since A" represents the discretization of the nth-order
derivative.
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Theorem 7.4 For ¢ : (0, 00) — R the following statements are equivalent:

(1) ¢ is completely monotone on (0, 00);
(2) ¢ satisfies (—=1)"Ayp(r) > 0 forallr,h > 0 andn € N.

Proof If ¢ is completely monotone on (0, co) then we have
Ajg(r) = A} HO( + 1) — ¢} = KA} ¢'(61)

with & € (r, r + h). Iterating this statement gives for every r, # > 0 and every n € Ny a
&, € (r,r + nh) such that Aj¢(r) = h"¢™(&,). Hence, (1) implies that (—1)" App(r) = 0.
Conversely, if (2) is satisfied we have to show that ¢ € C*°(0, co) and that the alternation
condition is satisfied.
From Lemma 7.3 we know that ¢ is nonnegative and continuous on (0, co). This means
that ¢ satisfies (—1)"¢™ > 0 for n = 0. We also know from Lemma 7.3 that ¢ is nonin-
creasing and convex. Hence, it possesses left- and right-hand derivatives satisfying

¢L(r) <P (r) <P (y)

whenever 0 < r < y < oo.If we can show that g := —¢/, satisfies the alternation condition
in (2), it follows, again from Lemma 7.3, that g is continuous on (0, 00), meaning that ¢ is
in C'(0, 0o) and that (—1)"¢®™ > 0 for n = 1 is satisfied. Moreover, since g satisfies the
alternation condition in (2), we can carry out everything for g instead of ¢. Iterating this
idea finally proves that ¢ is completely monotone on (0, 00).

To see that g satisfies the alternation condition, we start by showing that (—l)kA’,id) isa
nonincreasing function. First of all we have

n—1 i n—1 i+1 i
;AM,@(H#):;P(H - h>—¢<r+;h)}

= ¢(r +h) — o(r)
= N,p(r).

Thus we can expand A’,‘,d)(r) as follows:

n—1

n—1 h
Ay = -y AL (r+<i1 +---+ik>;>.

i=0 =0
If we apply (—l)kA,ll/n to both sides of this equality we get
n—1 n—1 h
(—DFA}ARp() =D Y (—DFAL ¢ (r Gt m;) <o.
i1=0 k=0
The last inequality holds because ¢ satisfies the alternation condition in (2). Hence we know

that (—1)"A,ﬁ¢>(r) > (—l)kA’;qu(r + h/n) for any n € N. Iterating this process gives us

(=DFAhg(r) = (~DF Ak (r - ﬁ) =z (DAl (r 4+ 2h)
n n
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for any n, m € N. As ¢ is continuous this shows that (— l)kA’;,d) is nonincreasing. But this
implies that

(D} AJG(r) — (1AL +8) _
-5 -

for any 6 > 0 and thus that (—DF A’,; ¢!, (r) < 0, which finishes the proof. O

0

For later use we state the following obvious extension for completely monotone functions
on [0, co).

Corollary 7.5 If ¢ is completely monotone on [0, 00) then we have
(=D 2560 = 0
forallh > 0, allr >0, and all £ € Ny.

7.2 The Bernstein—-Hausdorff-Widder characterization

Bochner’s characterization of positive semi-definite functions demonstrated how powerful
anintegral representation can be. Hence, it is now our goal to represent completely monotone
functions in such a way. This can be achieved in different ways. Here, we choose an approach
over completely monotone sequences. In the style of Theorem 7.4, a sequence {1t} jen, is
called completely monotone if (—1)* A¥y,, > 0 for all k, m € Ny.

The Bernstein polynomials will play an important role in this context.

Definition 7.6 For k € Ny we define the Bernstein polynomials by
k
Biw(t) = ( )z"’(l —ofF " 0<m<k
m

Associated with these Bernstein polynomials is the Bernstein operator, defined by

k
B0 =Y f () Bunt®)
m=0

forany f :[0,1] - R.

We will also need an operator that is defined by a sequence of numbers {1 ;} and acts on
polynomials.

Definition 7.7 For a sequence wu = {j1;}jen, of real numbers, a linear operator M, :
7(R) — R is defined by

n n
MM (Za,l-’) = Zajuj.
Jj=0 Jj=0

The operator M|, is defined on polynomials given in the monomial basis. We need to
know how it acts on the Bernstein polynomials.
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Lemma 7.8 Fork € Ny, 0 < m < k, and a sequence {1} jecn, of real numbers we set

k
)"k,m = < >(_1)k_mAk_mMm-
m

Then the operator M, applied to the Bernstein polynomial By, , gives the value M, (By ,,) =
Mi.m- Moreover, we have

k
Z Akam = [o
m=0
forallm € Ny.
Proof Elementary calculus gives
k k—m k — o
Biw(t) = ( )Z( .’")(—1)%/*’".
m) 4= bi
Jj=0
Hence, application of M|, to By ,, leads to the representation

k k—m k — )
M, (Bim) = (m) > ( J.’")(—nwm

j=0
k
— (m) (_l)k—m Ak_mﬂm
= Mem-
Finally, since M, is a linear operator we have

k k k
Z)‘k.m = Z Mu(Bk.m) = Mﬂ <Z Bkm) = M/,L(l) = Ho-
m=0 m=0

m=0

O

Obviously, if {4} is completely monotone then all the A ,, are nonnegative. The next
lemma shows how the coefficients {x;} can be recovered by the operator M, from the A,
if the latter are nonnegative.

Lemma 7.9 Suppose that for i = {j1;} jen, we have Ay, > 0 fork € Ngand 0 <m < k.
Then

MUn = lim M;L(Bk(tn))» n € No.
k—00
Proof First, we prove the statement for n > 1. Note that

Lkt —i
k—i

i=0
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converges uniformly on [0, 1] to #* for k — oo because every factor converges uniformly
to ¢ and the number of factors is finite. Furthermore, we find for k > n

" =" = 1)+ 11"

k—n
§ : (k - n>lm+n(1 _ l‘)k_"_m
m

m=0

Zm(m—l)-u(m—n—l—l)Bk o

k
= kk—1)--(k—n+1)

This means that

k

MHn = Mp.(tn) = Z

m=n

mm—1)---(m—n+1)
ktk—1)---(k—n+1)

k,m -

However, we can conclude from the representation of M, (B,,,) that

MuB) =Y ()

m=0

so that

k — PER —_ n
b My (B = Y [m(m Dem—n+1) (@) ]Ak,m

= k=1 (k—n+1) k
n—1 man
_mX:(:)(;) )“I»m

From the remark at the beginning of the proof and from an=0 [Am| = an:() Mem = o
we know that we can bound the first summand by € for a given € > 0 if k is sufficiently
large. Hence for n > 1 we have

n

< 2€ g,
k) Mo Mo

= M (B < epao+ (

for sufficiently large k. This shows convergence in the case n € N. For n = 0 note that
M, (Bi(1)) = M, (1) = ppo. 0

The proof implies that the condition A, > 0 can be replaced by the condition
an:o [Ak.m| < L for all k € Ny with a uniform constant L > 0 without altering the re-
sult. The same is true for the next proposition if the nonnegative measure therein is replaced
by a signed measure.

This next result shows that every sequence {1 ;} with A, > 0 is actually a moment
sequence, meaning that it can be represented as a sequence of the moments of a certain
measure. This is in particular the case if the sequence is completely monotone.
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Proposition 7.10 Suppose that the sequence p = {ji;}jen, Satisfies Ag, > 0 for k € Ny
and 0 < m < k. Then there exists a finite nonnegative Borel measure o on [0, 1] such that

1
o :/ t"do, n € Np.
0
Proof Let us denote the Dirac measure centered at ¢ € [0, 1] by ¢,. To be more precise,
this measure is defined on the Borel sets B([0, 1]) by

1 ifreA,
0 otherwise,

€(A) = {

for A € B([0, 1]). This allows us to define for k € N the discrete nonnegative measure

k
= Z)»k,mém/k,

m=0

which obviously satisfies

/ "doy = Zm(—) = Mu(B(1")).

Thus, by Lemma 7.9 we get
1
My = lim / t"day.
k—o0 Jo

Moreover, the o have finite total mass and this is also uniformly bounded:

||ak||=/ doy = Zka_uo

Hence, Helly’s theorem (Theorem 5.34) now guarantees the existence of a finite nonnegative
measure o with total mass [la|| < o and a sequence oy, so that

1 1
lim / fday, = / f)da
for all f € CI[O0, 1]. Setting f(¢) = t" finishes the proof. O

After these preparatory steps we are able to prove a characterization that was indepen-

dently treated by Bernstein in 1914 and 1928, by Hausdorff in 1921, and by Widder in
1931.

Theorem 7.11 (Hausdorff-Bernstein-Widder) A function ¢ : [0, 00) — R is com-
pletely monotone on [0, 00) if and only if it is the Laplace transform of a nonnegative
finite Borel measure v, i.e. it is of the form

o(r) = Lv(r) = / e " dv(t).
0
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Proof In the introductory part of this chapter we have seen already that every ¢ that is
the Laplace transform of a nonnegative and finite measure v satisfies (—1)¥¢®(r) > 0 for
r > 0. Moreover, because v is finite, ¢ is also continuous at zero.

Conversely, let us assume that ¢ is completely monotone. For a fixed N € N we consider
the sequences p, = ¢(n/N), n € Ny. Since

we find that

k
M = (m)<—1)k""A’f;&"¢ (5)=0

for0 < m < kand k € Ny, by Corollary 7.5. Proposition 7.10 gives forevery N € N a finite
nonnegative Borel measure oy on [0, 1] such that

o(5)= [ ran. nem

If we define the measurable maps Ty : [0, 1] — [0, 1], £ — ¢V, and S : [0, c0) — (0, 1],
t = e, we can conclude, on the one hand, that

1 1
¢(n) Z/ " day =/ t"dTy(an).
0 0

Since both measures Ty(oy) and «; are finite, we can use the approximation theorem of
Weierstrass to derive

1 1
/ f@®)da =/ S@dTy(ay)
0 0

forall f € C[0, 1], which gives by the uniqueness theorem 7 (ay) = ;. On the other hand,
we have

n 1 1 00 00
¢ (*) =/ t"day :/ t""Nda, :/ e MINGS ::/ e "Ny,
N 0 o0+ 0 0

Since v = S~'a; inherits the properties of «, it is nonnegative and finite. Using that ¢ is
continuous and Lebesgue’s convergence theorem leads finally to

o
o(r) = / e "dv(r)
0
forall r > 0. O

For later reasons we now state the corresponding result for completely monotone func-
tions on (0, 0o). This will play an important role in the theory of conditionally positive
definite functions. The difference from Theorem 7.11 is that the measure does not need to
be finite. Actually, it is finite if and only if ¢ is continuous at zero.
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Corollary 7.12 A function ¢ is completely monotone on (0, 0o) if and only if there exists a
nonnegative Borel measure v on [0, 00) such that

o(r) = /00 e " dv(t)
0
forallr > 0.

Proof The proof of the sufficient part follows as before by successive differentiation, which
can be justified because

tne—rf — tne—rl/2e—r1/2 < Cn re—rl/Z

forall # > 0 and C,, , is uniformly bounded for all  in a fixed compact subset of (0, co).
For the necessary part, note that for each § > 0 the function ¢(- + §) is completely
monotone on [0, 0o). Thus by Theorem 7.11 we find a measure «s such that

S +8) = / " daty(1).
0

If we define the measure v by v(A) = / A e%das for A € B([0, 00)) then we can derive

o(r) = /OO e "dv(t) (7.5)
0

for r > §. But from the uniqueness property of the Laplace transform we can conclude that
v actually does not depend on § > 0, so that (7.5) remains valid for r > 0. O

7.3 Schoenberg’s characterization

After having established that completely monotone functions are nothing other than Laplace
transforms of nonnegative and finite Borel measures, we turn to the connection between
positive semi-definite radial and completely monotone functions, which was first pointed
out by Schoenberg in 1938.

Theorem 7.13 (Schoenberg) A function ¢ is completely monotone on [0, 00) if and only
if®:=¢( - ||%) is positive semi-definite on every RY.

The univariate function ¢ acts here as a d-variate function via ¢(|| - ||§), which differs
from our definition of a radial function. We will reformulate the result from the point of
view of a positive definite function after the proof.

Proof 1f ¢ is completely monotone on [0, co) then it has a representation

() = /oo e~"dv(t)
0
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for some nonnegative finite Borel measure v, by Theorem 7.11. Thus the d-variate function
@ can be represented by

D(x) = ¢(lIxII3) = /oo e I gy (p),
0

and is hence positive semi-definite, as we have already seen in the introductory part of this
chapter.

Next, let us suppose that ¢(]| - ||%) is positive semi-definite on every RY. Since ¢ is
obviously continuous in zero, we know from Theorem 7.4 that it suffices to show that
(=¥ A’,‘lq&(r) > 0 for all k € Ny and all , & > 0. This can be done by induction on k. For
k = O wehave to show that ¢(r) > Oforallr € (0, 00). To thisend we choose x; = /r/2¢;,
1 < j < N, where¢; denotes the jth unit coordinate vector in R¥. Since ¢(| - || %) is positive
semi-definite on every R" we get

N
0= Y dllx; — xll3) = N¢(0) + N(N — D(r),
jt=1

because our special choice of data sites gives [|x; — x,[|3 = r for j # ¢. Dividing by
N(N — 1) and letting N tend to infinity allows us to conclude that ¢(r) > 0.

For the induction step it obviously suffices to show that —A}¢(| - |13) is also positive
semi-definite on every R?, if ¢ (]| - ||§) is positive semi-definite on every R?. To do this,

suppose that x1, ..., xy € R? and @ € R" are given. We take the x; as elements of R**!
and define
R L l<j=<N,
Y \xjn + Vhea, N <j <2N,
and
B = aj, 1<j=<N,
S —Olj_N, N<_]§2N

Since ¢(]| - H%) is also positive semi-definite on R?*! we have

2N
0= ) BiBadly; — wld)

jik=1
N N 2N
2 2
=Y ajmdlx; —xl3) =Y D o ydlx; — xe-wll3 + 1)
jk=1 j=1 k=N+1
2N N
2
= Y ejveud(lxjoy — xill3 + )
j=N+1 k=1

2N

2

+ Y jvoun Xy — iy l3)
jk=N+1
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N
2 ajou [ollx; — xel3) — ¢lllx; — xill3 + )]

Jjk=1

N
23" ajenAbglx; — xilld).

Jik=1

Thus —A},q}(ll . ||§) is positive semi-definite. O

Again, we are more interested in positive definite functions than in positive semi-definite
ones. This time, a complete characterization of radial functions ¢ as being positive definite
on every R? is simpler than in the case of general positive definite functions on a fixed R¢.

Theorem 7.14 For a function ¢ : [0, 00) — R the following three properties are equiva-
lent:

(1) ¢ is positive definite on every R¢;

(2) ¢(J°) is completely monotone on [0, 00) and not constant;

(3) there exists a finite nonnegative Borel measure v on [0, 00) that is not concentrated at zero, such
that

o() = /w e ().

0

Proof From Theorems 7.13 and 7.11 we know already that ¢ is positive semi-definite on
every R? if and only if ¢(+/*) is completely monotone and if and only if it has the stated
integral representation. Hence it only remains to discuss the additional properties. For
pairwise distinct xq, ..., xy € R? and @ € RV \ {0} the quadratic form can be represented
by (7.2). Since the Gaussian is positive definite we see that the function ¢ is not positive
definite (and thus only positive semi-definite) if and only if the measure v is up to a constant
nonnegative factor the Dirac measure centered at zero. This shows the equivalence of the first
and the third property. Finally, the second and the third property are obviously equivalent. O

We finish this chapter by providing a further example, returning to inverse multiquadrics.
We mentioned earlier that the restriction 8 > d/2 in Theorem 6.13 is artificial. The last
result allows us to get rid of this restriction. Moreover, the proof of positive definiteness
becomes much simpler than before.

Theorem 7.15 The inverse multiquadrics ¢(r) := (c> + r>)~F are positive definite func-
tions on every R? provided that > 0 and ¢ > 0. Moreover, ¢ has the representation

0 2
o(r) = / e "dv(),
0
with measure v allowing the representation

dv(t) = %ﬂ)tﬁ_le_cz’dt.
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Proof Set f(r) = ¢(/r). Then f is completely monotone since
DO =ED*BE+ 1 (B = D+ =0,

Since f is not constant ¢ must be positive definite. For the representation, see the proof of
Theorem 6.13. O

7.4 Notes and comments

Completely monotone functions are obviously closely related to absolutely monotone func-
tions, which satisfy £©© > 0 for all £. The latter were introduced by Bernstein [25] in 1914
and characterized as Laplace-Stieltjes integrals in 1928 [26]. Somewhat earlier than the
latter date, namely in 1921 (see [81, 82]), Hausdorff considered completely monotone se-
quences. His work essentially contained the characterization by Bernstein. But Bernstein
was obviously not aware of the work of Hausdorff and gave an independent proof. Later,
in 1931, Widder gave another independent proof [199].

The first two sections of this chapter are based on Widder’s work, as it is represented in
his book [200] but employing a measure-theoretical approach rather than Laplace—Stieltjes
integrals.

Schoenberg proved his characterization (Theorem 7.13) in 1938 [173] by considering
Bochner’s characterization via Fourier transforms in the case of radial functions. He inves-
tigated what happens if the space dimension tends to infinity.

The approach taken here seems to be more elementary and, from a certain point of view,
also more elegant. It originates from work by Wells and Williams [188] and Kuelbs [99].
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Conditionally positive definite functions

The interpolation problem (6.2) led us to the idea of using positive definite functions.
But not all popular choices of radial basis functions that are used fit into this scheme.
The thin-plate spline may serve us as an example. Suppose the basis function is given
by ®(x) = ||x||§ log(J|lx]l2), x € RY. Let N = d + 1 and let the centers be the vertices of
a regular simplex whose edges are all of unit length. Then all entries ®(x; — x;) of the
interpolation matrix are zero.

In this chapter we generalize the notion of positive definite functions in a way that covers
all the relevant possibilities for basis functions. We will derive characterizations that can be
seen as the generalizations of Bochner’s and Schoenberg’s results.

8.1 Definition and basic properties

Asinthe case of positive definite functions we distinguish between real-valued and complex-
valued functions, but we now have to be more careful.

Definition 8.1 A continuous function ® : R¢ — Cis said to be conditionally positive semi-
definite of order m (i.e. to have conditional positive definiteness of order m) if, for all N € N,

all pairwise distinct centers xi, ..., Xy € RY, and all « € CN satisfying
N
> aipx))=0 @.1)
j=1
Sfor all complex-valued polynomials of degree less than m, the quadratic form
N
D o @md(x; — xi) (8.2)
=1

is nonnegative. ® is said to be conditionally positive definite of order m if the quadratic
Sform is positive, unless a is zero.

A first important fact on conditionally positive (semi-)definite functions concerns their
order.

97
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Proposition 8.2 A function that is conditionally positive (semi-)definite of order m is also
conditionally positive (semi-)definite of order £ > m. A function that is conditionally positive
(semi-)definite of order m on R? is also conditionally positive (semi-)definite of order m on
R" withn < d.

This means for example that every positive definite function has also conditional positive
definiteness of any order.

Another consequence is that it is natural to look for the smallest possible order m. Hence,
when speaking of a conditionally positive definite function of order m we give in general
the minimal possible m.

As in the case of positive definite functions the definition reduces to real coefficients
and polynomials if the basis function is real-valued and even. This is in particular the case
whenever @ is radial.

Theorem 8.3 A continuous, even function ® : R — R is conditionally positive definite of
order m if and only if. for all N € N, all pairwise distinct centers x,, ..., xy € R?, and all
a € RV \ {0} satisfying

N
Z ajpx;) =0
j=1
for all real-valued polynomials of degree less than m, the quadratic form
N
Z ajor®(x; — xi)
k=1
is positive.

We cannot conclude from the definition of a conditionally positive semi-definite function
@ alone that ®(x) = ®(—x) is automatically satisfied, as was the case for positive semi-
definite functions. This is a consequence of the following proposition.

Proposition 8.4 Every polynomial q of degree less than 2m is conditionally positive semi-
definite of order m. More precisely, for all sets {x1, ..., xy} € R and alla € CV satisfying
(8.1) for all p € m,_(RY), the quadratic form (8.2) for ® = q is identically zero.

Proof With multi-indices 8, x € Nd and g(x) = > i81<2m cpx? we can use the multino-
mial theorem to derive

N N
Y aig; —x) =Y Y ejakep(x; —x)f

J.k=1 |Bl<2m j,k=1
ﬂ N p N
= > e (F) e Y.
iBl<zm =P K753 k=1

Since |B| < 2m it is impossible that both || > m and |8 — x| > m. Thus either the sum
Z;V:l ajxfﬂ or the sum Z,iv:l o x; must vanish due to (8.1) for all pairs 8, k. O
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It can be shown that every polynomial with a degree greater than 2m cannot be condi-
tionally positive semi-definite of order m (cf. Sun [182]).

The conditional positive definiteness of order m of a function ® can also be interpreted
as the positive definiteness of the matrix A¢ x = (P(x; — xx)) on the space of vectors o
such that

N
D aipx) =0, 1<€<Q=dimm, (R
j=1
Thus, in this sense, A¢ x is positive definite on the space of vectors o “perpendicular” to
polynomials. Let us dwell on this subject a little more. Each pair consisting of a vector
a € CV and a set of pairwise distinct points X = {xi, ..., xy} that together satisfy (8.1)
for all polynomials of degree less than m define a linear functional

N
)"oc,X = E a_jaxjv
Jj=1

where &, denotes point evaluation at x. Define Tm_1(RYL to be the space of all such
functionals. Then « is admissible in the definition of a conditionally positive semi-definite
function if and only if A, x € 7,1 (RY)*.

The case m = 1, which also appears in the linear algebra literature, is usually dealt with
using < and is then referred to as (conditionally or almost) negative definite. In this case
the constraint on the «; is simply Z?’Zl a; =0.

Since the matrix A x is conditionally positive definite of order m, it is positive definite on
a subspace of dimension N — Q, Q = dimx,,_;(R?). Thus it has the interesting property
that at least N — Q of its eigenvalues are positive. This follows immediately from the
Courant—Fischer theorem. In the case m = 1 we can make an even stronger statement.

Theorem 8.5 Suppose that ® is conditionally positive definite of order 1 and that $(0) < 0.
Then the matrix Ag x € RV*N has one negative and N — 1 positive eigenvalues and in
particular it is invertible.

Proof From the Courant—Fischer theorem we conclude that A x has at least N — 1 pos-
itive eigenvalues. But since 0 > N®(0) = tr(Ag x) = ZL, )i, where the A; denote the
eigenvalues of Ag x and tr(Ae, x) its trace, Ap x must also have at least one negative
eigenvalue. O

As in the case of positive semi-definite functions, conditionally positive semi-definite
functions can be characterized to be integrally conditionally positive semi-definite. See
Proposition 6.4 for the corresponding result on positive semi-definite functions.

Proposition 8.6 Ler @ be continuous. Then @ is conditionally positive semi-definite of
order m if and only if

_/Rd /Rd O(x — Yy )y (ydxdy > 0 (8.3)
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forall y € C(‘)’O(Rd) that satisfy

f y@)px)dx =0  forall p e mu_|(RY. (8.4)
Rd

Proof Suppose ® possesses the stated property. If we choose a nonnegative even function
g€ Cgo(Rd) with || gllz,rey = 1 and set g,(x) = 29g(£x) then we know that

fx) = Zl_i{go /Rd SOge(x — y)dy

for every continuous f. If xj,...,xy € R? and o € CV such that Zyzl a;p(x;) =0 for
all p € m,,_1(R?) are given then the functions

N
yex) i= ) @ge(x — x))
j=1

J

are in C(‘)’O(Rd) and satisfy
N
f 7)p(dx = / 2@+ x)g(x)dx =0
R R S

forall p € Tm—1(RY). Thus we find that

0< / / O(x — Yy)7idxdy
R JRE

N
= Z “jOTk/Rd /Rd D —y — (x; — xx))ge(xX)ge(y)dxdy,

Jk=1

which converges for £ — 0o to

N
Z ajar®(x; — xp).
k=1
Conversely, let us suppose that @ is conditionally positive semi-definite of order m. We
want to employ Riemann sums to show that (8.3) is satisfied for all y € Co(R?) with (8.4).
Unfortunately, if m > O then the discretizations gained by Riemann sums will not satisfy
(8.1) in general. Hence, we have to modify the approach. Fix a y € Co(R?) that satisfies
(8.4). Let K be a compact cube that contains the support of . Then we have to discretize
the integral

//V(X)mq’(X—y)dxdy- (8.5)
K JK

A scaling argument shows that without loss of generality we can assume K to be the unit
cube [0, 1]7.

We divide K into N equally sized subcubes of volume 1/N and pick an x;N) from each
of these subcubes. Let Q be the dimension of 7, _1(RY) and py, ..., po be a basis for
Tm—1(R?). Let N > Q. We choose the points {xﬁ»N)} and their ordering in such a way that
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the first Q points are always the same for every N, i.e. xf d=x1,..., x(QN) = x¢ for all

N > Q. Moreover, these points should be chosen to be 7Tm—1(RY)-unisolvent. Then we
discretize the integrals (8.4) to define the numbers

N
AN = Z y(x(N))p (™), l<k<Q and N> Q.
j=|

From the conditions imposed on y we know that Aﬁ(N) tends to zero for N — oo and this
holds for all 1 <k < Q. Since {xi,...,xq} is Tm—1(RY)-unisolvent, we find for every
N > Q aunique vector V) € R? with

[
YA =A%, 1zk=<o.

=
This B is obviously given by V) = P='AM if P = (p(x;)). Hence each coefficient

ﬂ;N) tends to zero as N — oo. Finally let us define the corrected coefficients

(N) (N) .
forl <j <0,
N )— ﬁ orl <j=<0Q

oj =
' i (x(N)) forQ+1<j<N
NVj =J=N.

These coefficients satisfy condition (8.1) by construction:

N Q0
Y aipafV) = Z L Mpa ™) = 3 B i)
j=1 j= Jj=1
(N) (N)
=AY AV =0

for 1 <k < Q. Hence, we can insert them into the quadratic form for ®, obtaining

0< Z Z DS — V)

j=1 k=

N N 1
=2

j=1

7@ e — )

M

~.

MM*

ﬂ(N) Z (ka))QD(xI (N))

Jj=1

l —_—
3 Y e )
j=1 k=1

[9 _
+ 3 VBN o) — x).

Jjk=1

Let us analyze the behavior of these four double sums as N — oo. The first is a Riemann
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sum for f % J, x V(XY (y)@(x — y)dxdy and hence converges to this integral. The second
and third double sums can each be bounded by

1 &
Yl 1@l i 2185
j=1

and they tend to zero as N — oo. The last double sum can be bounded by

0 2
N
1Pl q—1,119) ( |/3;- )|>
—

J

and also tends to zero as N — oo. This proves that the integral in (8.5) is indeed non-
negative. O

We end this section with an interesting construction. A conditionally positive semi-
definite function of order m can easily be used to construct a conditionally positive semi-
definite function of order less than m.

Proposition 8.7 Suppose that ® is conditionally positive semi-definite of order m > 0 and
that € < m is fixed. If yi, ..., yy € R and B € CM \ {0} satisfy 27=1 Bip(y;) =0 forall
p € m_1(R?) then the function

M
W) = ) BiBe®x =y + )

k=1
is conditionally positive semi-definite of order m — L.

Proof We will use the monomials as a basis for the polynomial space. Suppose
X1,...,xy €R? and @ € CV are given so that Z?lzl ajx; =0 for all ve N¢ with
[v] < m — £. Then

N N M
D@V —x) =y D aeBionB®((x — y) — (6 — y)

£,n=1 tn=1 jk=1
=) GG ).
r J

where each of the last sums runs over M N terms, C; = «¢f;, and z; = x; — y;. The last
expression is nonnegative by the assumptions imposed on @, if we can show that the new
centers and new coefficients satisfy the side conditions for polynomials of degree less than
m. But this is true because

N M
D oCizp =) i — )"
I =1 j=1
N M
Do) () )
= m/\= =

=0.
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The last equality holds for all |[v| < m because either |[v — u| <m — £ or |u| < € is
satisfied. O

8.2 An analogue of Bochner’s characterization

In the case of positive definite functions we found the integral characterization by Bochner
to be very helpful. For all relevant basis functions, the version given in Theorem 6.11 for
integrable functions was sufficient.

For a conditionally positive definite function also there exists a characterization compa-
rable to Bochner’s and we will state it at the end of this section. But we want to start with
a version that is, rather, an analogue of the result in Theorem 6.11. Of course, for a con-
ditionally positive definite function we cannot hope for integrability. But the crucial point
in the positive definite case was actually not integrability but the existence of a classical
Fourier transform. If we want to apply this idea here, we have to modify the notion of the
Fourier transform for our purposes. To this end, a special subspace of the Schwartz space
S will be of importance.

Definition 8.8 For m € Ny the set of all functions y € S that satisfy y (w) = O(|w|]) for
lwlla = O will be denoted by S,,.

In what follows, we restrict ourselves to slowly increasing basis functions. The reader
should remember that a function is called slowly increasing if it grows at most like any
particular fixed polynomial. To discuss only such functions is actually not a restriction,
because one can show that every conditionally positive definite function of order m grows
at most like a polynomial of degree 2m (see Madych and Nelson [113]).

Definition 8.9 Suppose that ® : RY — C is continuous and slowly increasing. A measur-
able function ® € LY°(R? \ {0}) is called the generalized Fourier transform of ® if there
exists an integer m € Ny such that

f d()P(x)dx = / D)y (@dw
]Rd R‘[

is satisfied for all y € S,,,. The integer m is called the order of o.

Note that the order m of a generalized Fourier transform corresponds to the space S,,,
and not S,,. Furthermore, if disa generalized Fourier transform of order m then it has also
order £ > m. Hence, in general we will refer to the smallest possible m when speaking of
the order.

Several remarks are necessary. If the generalized Fourier transform exists in this way, it
is uniquely determined up to Lebesgue-zero sets. If ® € L{(R?) then its classical Fourier
transform and its generalized Fourier transform coincide. The order is zero. The same is true
for ® € L,(R?). The generalized Fourier transform and the distributional Fourier transform
coincide on the set S,,;,.

In this chapter, we are concerned only with generalized Fourier transforms @ that are
continuous on R? \ {0} and have an algebraic singularity at the origin. The order of the
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singularity determines the minimal order m of the generalized Fourier transform. Later, we
will need the more general form.

The next result not only gives an example of a generalized Fourier transform, it also
shows in which way the function ® is determined by its generalized Fourier transform.

Proposition 8.10 Suppose ® = p is a polynomial of degree less than m. Then for every
test function y € S,, we have

/ D(x)y(x)dx = 0. (8.6)
Rd

Hence the generalized Fourier transform of p is the zero function and has order m /2.
Conversely, if ® is a continuous function satisfying (8.6) for all y € S,, then ® is a
polynomial of degree less than m.

Proof  For the first part let us assume that @ has the representation ®(x) = 5 _,, cpxb.
Then

/ PP ()dx = Y cpi f (ix)PP(x)dx
R" R‘l

Bl<m
= Z cﬁi_‘ﬁ‘/ D’ﬁ\y(x)dx
1Bl<m B!
=@m)"? Y ¢ PIDPy(0)
Bl<m
=0,

since y € Sp,.

For the second part we choose a fixed test function x € C§° (RY), which is identically
equal to one in a neighborhood of the origin. Then we define for an arbitrary g € S the
function

DPg(0
8 )xﬁx(X), x e RY,

Y =gx)— Y
|Bl<m p!

which is clearly in S, and has Fourier transform

P) =3 - Y X(@).

|Bl<m

Dﬂg'(o)iw Df

Hence (8.6) yields
0= / D(x)y(x)dx
]R([

B
= /R ) P(X)Z(x)dx — Y Dﬂi!(o)i'ﬁ' /R ) ®(x)DPP(x)dx

|Bl<m

181
= /R ) D(x)g(x)dx — Z ’ﬁ—!cﬁDﬂg(Ox

|Bl<m
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the constants cg being defined by ¢ = [ ®(x)D?X(x)dx. If we finally use DPg(0) =
Qm)~4%iP! [ g(x)xPdx we derive

—_1)I8
/R (CD(x) IR %;xﬂ) 3(x)dx =0
d |}3‘<m .

for all g € S. Approximation by convolution from Theorem 5.20 shows that ® is indeed a
polynomial of degree less than m. O

On our way to deriving a Bochner-type result we need to know how to construct functions
from S,,,. A simple trick is to employ centers and coefficients, which satisfy the side
condition for a conditionally positive definite function.

Lemma 8.11 Suppose that pairwise distinct x1, . .., xy € R? and a € CN \ {0} are given
such that (8.1) is satisfied for all p € w,_|(RY). Then

N

T
> e = O(lolly)
j=1

holds for ||w|, — O.

Proof The expansion of the exponential function leads to

N

, 00 i N
ixTw _ (T, Nk
E et = E ' E aj(xja)) .

For fixed w € R? we have p;(x) := (x” w)* € m(R?). Thus (8.1) ensures that the first m
terms vanish:

N , 00 l-k N
ix;ow __ o (T Nk
E e’ = ' E aj(x ] w)",
j=1 k=m " j=1
which gives the stated behavior. O

Now itis time to state and prove our main theorem. It states that the order of the generalized
Fourier transform, which is nothing other than the order of the singularity of the Fourier
transform at the origin, determines the minimal order of a conditionally positive definite
function.

Theorem 8.12 Suppose ® : RY — C is continuous, slowly increasing, and possesses a
generalized Fourier transform ® of order m, which is continuous on R? \ {0}. Then ® is
conditionally positive definite of order m if and only if ® is nonnegative and nonvanishing.

Proof Suppose that D is nonnegative and nonvanishing. Suppose further that pairwise

distinct xq, ..., xy € R and o« € CN \ {0} satisfy (8.1) forall p € 7Tm_1(RY). Define

N
[ =) a0+ (x) — x)

jk=1
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and

2 N

o~ — ixT — o~
Q) =) ajage™ g (x)
J=1

ve(x) :=

N

ixTx
E oje ’
j=1

where g,(x) = (K/Jt)d/ze_"”x”% is the test function from Theorem 5.20. On account of
y¢ € S and Lemma 8.11 we have y; € S,,,. Furthermore, we can compute the Fourier trans-

form:

N
)//E(X) (Zﬂ)_d/z / Z O(joTke"wT(.\’J—Xk)g\z(w)e—ixrwda)
R

jk=1

;o (2m)”? /

g‘z(w)e—in(x—(XJ —xk))dw
R

M= M-

o ge(x — (x; — xi)),
1

because a = g¢. Collecting these facts gives, together with Definition 8.9,

N
/ f(xX)ge(x)dx = / D(x) D oj@ge(x — (xj — xi))dx
R4 R4

k=1

:/ D(x)yp(x)dx

Rd

= / P(@)y(@)dw
R‘{

:/Rd

> 0.

2
G@)P(w)do

N

§ ia)TxJ
(Xjé’

j=1

Thus we have by Theorem 5.20,

N
Z o @ P(x; — ;) = lim f F()ge(x)dx = 0.
—00 ]R‘l

jk=1

2 _~
gv(w)®(w) is nondecreasing in ¢ € N, the Beppo—

. N o' x
Moreover, since ’ijloz,e i
Levi convergence theorem guarantees the integrability of the limit function

12~
(2m)~4/2 ‘Z?;l ozje“"7 Y| ®(w) and also the identity

N 2
D aE P —x) = 2n) / D(w)do.
]Rd

jk=1

N

§ ia)T)c,-
ocje

Jj=1
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The same arguments as in the proof of Theorem 6.11 show that the quadratic form cannot
vanish if ® is nonvanishing.

Now suppose that @ is conditionally positive definite of order m. Because of Proposition
8.6, the function & satisfies (8.3) forall y € Cgc(Rd) with (8.4).

Next choose a nonnegative function k € Cgo(]Rd ) having support B(0, 1) := {x € R¢ :

llxll2 < 1} with ||k|\iz(R‘,) = (27)"92. If we set ke(x) := £9%k(€x), x € R?, and

Ye@) 1= ke(- — y) @) = e k()

for a fixed y #0, we find by application of Theorem 5.16, for every multi-index
o e Nd,

/yg(x)x"‘dx:/ x"‘la(x)efi"rydx
]:Rll R(l

= 2m) i7" (D) (—y)
= 0,

provided that £ > 1/||y|l,. Thus on the one hand y, satisfies (8.4) for these £-values and
can be inserted into (8.3), which gives

/ D(x)yy * Ye(x)dx >0
R4
with Y (x) := y(—x). On the other hand we have

(e * 707 (0) = Qo) Pk (=y)* = 0

if £ > 1/||y|l>. Thus we can conclude that (y, * ;)" lies in S,, and can be inserted into the
definition of the generalized Fourier transform. Using

(Ve % 70" (x) = Q)Y |(ve)¥ () = Q)P ke(x — y)I?

leads to
0 5/ / D(x — 2)ye(x)ye(2)dxdz
R JRY
= /Rd Q(x)(ye * Pe)(x)dx
= A; By * 70" (@)oo
= @n)'”? /R @)k — y)Pdo,
which converges for £ — oo to 5()}). ]

For reasons that will become clear later, we will restate the representation for the quadratic
form we derived in the last proof.
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Corollary 8.13 Suppose that ® : R? — C is continuous and slowly increasing. Suppose
Sfurther that ® possesses a nonnegative, nonvanishing, generalized Fourier transform o of
order m that is continuous on R? \ {0}. Then for all pairwise distinct xi, . .., xy € R? and
all o € CN with (8.1) for all p € m,_(R?), we have

N 2

i
o x;
E aje

j=1

N
3 amd; - x) = (2m) / B(w)do.
R{]

jk=1

Theorem 8.12 will be sufficient for all our goals. Nonetheless, one might be interested
in finding a complete characterization of all conditionally positive semi-definite functions
of a given order m. For completeness, we will state the result here and prove the suf-
ficient part. For the proof of the necessary part, we refer the interested reader to Sun’s
paper [182].

Theorem 8.14 Let @ € C(RY). In order for ® to be conditionally positive semi-definite of
order m it is necessary and sufficient that ® has the following integral representation:

ix)P

_ (-
D(x) =/ iz w du(w) + a
RA\(0) ( 1l<2m ! ) Iﬂém B!

Here 1 is a positive Borel measure on R? \ {0} satisfying

/ lol3"duww) < oo and / d(w) < oo.
O<|lell2=1 [lofla>1

The function k is an analytic function in S such that k(w) — 1 has a zero of order 2m + 1 at
the origin. The numbers ag, |B| = 2m, satisfy Z\m:m,\y\:m agd,ag, > 0 forall ag € C.

Proof As stated previously we want to prove only the sufficient part of this theorem.
Suppose x1, ..., xy € RY anda € CV with (8.1) are given. From Proposition 8.4 we know
that

N
Z o0 Z % —i(x; —x0]?

Jk=1 1B1=2m
=y 2 B Za,ak(x,—xk)
|B|=2m Jj.k=1
N a]xV N —k
=" Y ap Yo WYY =T
iB=2m  yiv=p = Y=Y

= Z Z ay+vAyA7v

lyl=m |v|=m

>0,
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with A, = Z?’:l o jx}’ /v, which vanishes for |y| < m. Thus we have by Proposition 8.4
and Lemma 8.11

N
Z og@@(xj —xk) = [
RA\{0}

k=1

2
dp(w)

N T
E ajefl)(]ﬂ)
=1

N
+ e Y ity -l

!
Jok=1 1Bl=2m B!
> 0.

8.3 Examples of generalized Fourier transforms

In this section we will compute the generalized Fourier transforms of the most popular
basis functions. They can be used to show that the basis functions are conditionally positive
definite. Even if the latter follows in most cases more easily from a characterization given in
the next section, the knowledge of the generalized Fourier transforms is of great importance
for error estimates and for estimates on the stability of the interpolation process to be derived
in the chapters that follow.

Our first example concerns the generalized Fourier transform of the multiquadrics. The
basic idea of the proof is to start with the classical Fourier transform of the inverse mul-
tiquadrics given in Theorem 6.13 and then to use analytic continuation. We will use the
notation [¢] for the smallest integer greater than or equal to ¢ € R.

Theorem 8.15 The function ®(x) = (c*> + ||x||§)ﬁ, x €RY, with ¢ >0 and B e R\ N,
possesses the (generalized) Fourier transform

ol (llwllz
TTEA\ c

of order m = max(0, [B).

D(w)

—B—d)2
) Kapip(cllolb), w #0, 8.7)

Proof Define G = {A € C: %(A) < m} and denote the right-hand side of (8.7) by ¢g(w).
We are going to show by analytic continuation that

/Rd i@y (@)dw = /RI P (w)y (@)do, Y € S (8.8)

is valid for all . € G where @, (w) = (¢* + lel%)‘. First of all, note that (8.8) is valid for
A € GwithA < —d/2by Theorem 6.13 andinthecasem > OalsoforA =0,1,...,m — 1
by Proposition 8.10 and the fact that 1/ I'(—A) is zero in these cases. Analytic continuation
will lead us to our stated result when we can show that both sides of (8.8) exist and are
analytic functions in A. We will do this only for the right-hand side, since it is obvious for



110 Conditionally positive definite functions

the left-hand side. Thus let us define
fo) = /d pr(w)y(w)dow.
R

Suppose C is a closed curve in G. Since ¢; is an analytic function in A € G it has the
representation

1 .
o2 (@) = —— wg(w)d

z
2ni Jo z— A

for X in the interior Int C of the curve C. Now suppose that we have already shown that the
integrand in the definition of f(A) can be bounded uniformly on C by an integrable function.
This ensures that f(X) is well defined in G and by Fubini’s theorem we can conclude
that

F)

/ P @)y ()dw

“wmik L

/ / ¢:(w)y(w)dwdz
~ 2ni czZ—
1 f(z)

T 2ni Cz—k

dzy(w)dw

for A € IntC, which means that f is analytic in G. Thus it remains to bound the integrand
uniformly. Let us first consider the asymptotic behavior in a neighborhood of the origin,
say for |w|l» < min{l/c, 1}. If we set b = N(A) we can use Lemma 5.14 to get, in the case
b+#—dJ/2,

2b+\h+d/2|l—‘(|b+d/2|)cb+d/2 b+4121 |14 ”—b d/2-Ib+d/20+2m

lpr(@)y(w)| < C Ty

and, in the case b = —d/2,

—d/2
@)y (@) < C 27 l—lo ” 12 g2,
gy TE]

Since C is compact and 1/ T is analytic this gives for all A € C and |||, < min{1/c, 1}

—d42e cllella
lps(@)y (@)| < Cymec <1 + llwll;4*% —log > )

with € =m — b > 0. For large arguments the integrand in the definition of f(A) can be
estimated by Lemma 5.13:

2102 cbHd=D2
IYC]

—b=d+D)/2 —cllwl)> ,lb+d/2)* /Celloll)

lpr(@)y (@) < C llwll,
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2 2 1 2 -2 = S ~— 1 F1

Fig. 8.1 The multiquadric ¢(r) = +/1 + 72 (on the left) and the thin-plate spline ¢(r) = |rr|* log(|r|)
(on the right).

using the fact that y € S is certainly bounded. Since C is compact, this can be bounded
independently of A € C by

—cllol

|<Px(w)V(w)| = Cy,C.m,('e
This completes the proof. (]

The left-hand half of Figure 8.1 shows the function ¢(r) = /1 + r2, for which the name
multiquadric has been coined.

Theorem 8.16 The function ®(x) = \|x||2’3, x e RY, with B > 0, B & 2N, has the general-
ized Fourier transform
PR + B)/2)

(@) T(—B/2)

—B—d
lol,”~,  w#0,

of order m = [B/2].

Proof Let us start with the function ®.(x) = (c¢® + [|x[|2)?/2, ¢ > 0. This function pos-
sesses a generalized Fourier transform of order m = [8/2] given by

1+8/2

[(=B/2)
owing to Theorem 8.15. Here we use the subscript ¢ instead of 8, since 8 is fixed and we
want to let ¢ go to zero. Moreover, we can conclude from the proof of Theorem 8.15 that
for y € Sy, the product can be bounded by

2PHET((B+d)/2) | ompd

lpc(w)y (w)] < Cyll_,(_—ﬂ/z)l llewll;

= —B—d
D (@) = p(w) = lolly?~ clloll) PO K g 1aya(clloll),

for ||w|l; — 0 and by

PHRT((B+d)/2) | _pea
[pc(w)y ()| < CVan”z

for |w||; — oo, independently of ¢ > 0. Since |®.(w)7(w)| can also be bounded indepen-
dently of ¢ by an integrable function, we can use the convergence theorem of Lebesgue
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twice to derive

/ Ix157(0)dx = lim / @ ()7 (x)dx
R4 c—0 RY

= iin [ gu(omonx
=0 Jprd

21+ﬂ/2 y( ) o
= B3 Jus 7 N K gl
_ 2PHPI(d 4 B)/2) —p—d
=i / lol;*y (@)de

for y € Sy The last equality follows from

oo
lim r’ K, (r) = lim 2"~! / el =g — -1y,
r—0 r—0 0
see also the proof of Lemma 5.14. O

Our final example deals with the thin-plate or surface splines. The right-hand half of
Figure 8.1 shows the most popular representative of this class.

Theorem 8.17 The function ®(x) = ||x||2k log ||x]l2, x € RY, k € N, possesses the gener-
alized Fourier transform

a;(w) — (_1)k+122k—l+d/21—-(k +d/2)k! ”w”;ddk
of order m =k + 1.

Proof For r > 0 fixed and 8 € (2k, 2k + 1) we expand the function g + r# in a Taylor
series, obtaining

B
P =r* + (B —2k)r* logr +/ (B — Dr' log?(r)dt. (8.9)
2%

From Theorem 8.16 we know the generalized Fourier transform of the function x +— ||x ||2’S
of order m = [B/2] = k + 1. From Proposition 8.10 we see that the generalized Fourier
transform of order m of the function x — ||x H%k equals zero. Thus we can conclude from
(8.9) for any test function y € S,,, that

/ 70)x[13* log x| dx
1 = B 2k
= =3 L, 700 (Il = el ax

3 f / B — D7 lx [ log? ]l drdx

_ 2RI (d + B)/2)
—(B-20T(=/2)

/ o,y (@)do + OB — 2k),
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for B — 2k. Furthermore, we know from Proposition 5.2 that

1 _ sin(zB/2)I'(1 + B/2)
T(—B/2)(B —2k) (B — 2k)

Because

sin(zB/2) _ . ® N

Jm g ok T AW, g cosmh/) = (=D

we see that

lim L (71)“1@.

p~2 T'(=B/2)(B — 2k) 2

Now we can apply the dominated convergence theorem to derive

-~ k! ¥ (w)
/ I3 log lx 2 P ()dx = 2 H42P (k + d/2) (= 1)+ = / T
RY R [oll3
for all y € S,,,, which gives the stated Fourier transform. O

Now it is easy to decide whether the functions just investigated are conditionally positive
definite. As mentioned before we state the minimal m. The case of inverse multiquadrics
was treated in Theorem 7.15.

Corollary 8.18 The following functions ® : R? — R are conditionally positive definite of
order m:

(1) ®x) =D+ |x13)?, B>0, B&N, m=][p],
2) @) = (=DFAx|)}, B>0, BN, m=[B/2],
(3) @) = (=D x| logllxll, k€N m=k+1.

8.4 Radial conditionally positive definite functions

As in case of (unconditionally) positive semi-definite functions it is possible to derive a
characterization of conditionally positive semi-definite and radial functions from Theorem
8.14. We omit the details here and refer the interested reader to the article [77] by Guo
et al. Instead, we turn to univariate functions that are conditionally positive (semi-)definite
on every R? and derive a result along the lines of the characterization of Schoenberg. In
particular, the univariate function ¢ acts again as a multivariate function ® via ¢(|| - H%).

Theorem 8.19 (Micchelli) Suppose that ¢ € C[0, oo) N C*(0, 00) is given. Then the func-
tion ® = ¢(|| - 13) is conditionally positive semi-definite of order m € Ny on every RY if
and only if (=1)"¢"™ is completely monotone on (0, 00).
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Proof Suppose that (—1)" ¢ is completely monotone on (0, co). We know from Theorem
7.11 that it can be represented by

o0
(—1)"’¢('")(r)=/ e "du(r)
0
with a nonnegative Borel measure u on [0, o). As we do not want to assume ¢ to be

continuous in zero, the measure u will not be finite. Hence, we define ¢.(r) = ¢(r + €) for
€ > 0. Using Taylor’s formula gives us

m—1
B ?L0) m—1 4 (m)
¢€(r)—;; T +(m—1)'f(r_l) g
1 g D Y A e
:Z (O) D / _/ (r — )" e T dp(s)dt
(m—l)! 0o Jo
-y + 90(0) o = / [(’—t)'" le™"dtd(s),
2! m—l)'

=0

where we have applied Fubini’s theorem in the last step. A further application of Taylor’s
formula to the function r > e™"* shows that

_Z ( sy + (- 5)1)‘/-( " le oty

Inserting this representation for the inner integral into the representation of ¢, leads finally

to
m—1 0) oo m—1 i
_ ¢£ (0) 14 / —rs (_l)j JoJ —es dﬂ(s)
¢e(r)—; T + A e ]2:(; I rish et ==
Now suppose pairwise distinct x, ..., xy € R? and o € RY satisfying (8.1) for all p

7u—1(RY) are given. Then we can conclude from Proposition 8.4 that

N
il —es A ()
Z oo e[l x; —xk”%) :/ Z ojoge —sllxj—=xcll; p—es 0 >0

jk=1 jk=1

for every € > 0, since the Gaussian is positive definite. Note that the last integral is well
defined by an argument similar to that in the proof of Lemma 8.11. But as the function on
the left-hand side is a continuous function in € we can let € tend to zero, showing that the
quadratic form is nonnegative for ¢ = 0 also.

For the necessary part let us assume that ¢ (|| - || %) is conditionally positive definite of order
m. We want to show by induction on m that in this case (—1)" ¢ is completely monotone.
For m = 0 this is Schoenberg’s result given in Theorem 7.13. For the induction step we
assume that the result is true for m and we want to conclude it for m + 1. Suppose ¢(|| - ||§)
is conditionally positive semi-definite of order m + 1 on every R¢. Fix a dimension d. For
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h > 0 we consider the (d + 1)-variate function
Wy, (x) = 26(Ix13) — (lx + Vhear113) — d(llx — vVheal3),  x € R

where e;41 denotes the (d + 1)-th unit vector. By Proposition 8.7 we know that W is
conditionally positive semi-definite of order m on R**! and hence on R¢. But the restriction
to RY is given by

Wy (x) = 2[p(lIx13) — p(xlI3 + )] =: 29 (Ix[3).  x € R’

. . . (m)
Thus, by the induction hypothesis, (—1)"yr,

h>0,1ie.

is completely monotone on (0, co) for every

(_1)m+ll//]5m+€) — (_l)m+€ [(])(mM)(r) _ ¢(m+£)(r + h)] >0
for r > 0, £ € Ny. But this means in particular that

_])m+£+1 ¢(m+“(r + h}: _ ¢(?n+£)(r) o

(

forall » > 0, £ € Ny, and & > 0. Letting & tend to zero results in
(_1)m+1+€¢(m+l+l)(r) >0
for all » > 0, £ € Ny, which finishes the induction proof. O
An argument similar to that in the proof of Theorem 7.14 yields:

Corollary 8.20 Suppose that the function ¢ of Theorem 8.19 is not a polynomial of degree
at most m; then ¢(|| - ||%) is conditionally positive definite of order m on every R?.

Micchelli’s result (Theorem 8.19) gives a very powerful tool for deciding whether a given
radial function is conditionally positive definite on every R?. To demonstrate its usefulness
we investigate inverse multiquadrics, power functions, and thin-plate splines again.

Example The multiquadrics ¢(r) = =D+ c, 8> 0,8 &N, are conditionally
positive definite of order m = [B] on every R¢.

Proof 1If we define f5(r) = (—1)"f1(c? + r)#, we see that
00 =DPIBB = 1) (B —k+ (e + 1)~

Thus (=D £y = BB — 1)+ (B — TB1 + 1)(c® + r)? "1 is completely monotone
and m = [B] is the smallest possible choice that makes (—1)" fg"” completely mono-
tone. O

Example The functions ¢(r) = (—1)/#/?17# 8 > 0, B & 2N, are conditionally positive
definite of order m = [B/2] on every R?.
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Proof Define fz(r) = (—1)[#/21rP/2 10 see that

B (B B i
f;k)(r) = (—1)D~‘3/21E (5 _ 1) (E —k+ l) B2k

Thus again (—1)#/?1 f;[ﬁ / 2])(r) is completely monotone and m = [B/2] is the smallest
possible choice. O

Example The thin-plate or surface splines ¢(r) = (—1)ktH1p2k log(r) are conditionally
positive definite of order m = k + 1 on every R?.

Proof Since 2¢(r) = (— 1112 log(r?) we set fi(r) = (—1)*"'r* log(r). Then it is easy
to see that

) = (D k(k = 1) - (k — £ 4 Dr* = log(r) + pe(r), 1<¢<k,

where p, is a polynomial of degree k — €. This means in particular that f,fk)(r) =
(=D& log(r) + ¢ and finally that (—1)**! f,ka)(r) = k!r~!, which is obviously com-
pletely monotone on (0, 00). O

8.5 Interpolation by conditionally positive definite functions

The investigation of positive definite functions was motivated by the interpolation problem
(6.2) and the Ansatz (6.1) for the interpolating function. The example mentioned at the
beginning of the present chapter showed that this definition of the interpolating function
does not work in the case of conditionally positive definite functions. But a slight change in
the definition of the interpolation function ensures solvability of the interpolation matrix.
Instead of (6.1) we now define the interpolant to a function f atthe centers X = {x, ..., xy}
as

N 0
spx() =Y o0 —x;)+ Y Bepi(x).
= =1

Here, Q denotes again the dimension of the polynomial space 7, (R?) and py, ..., Po
denote a basis of 77, (R?). To cope with the additional degrees of freedom, the interpolation
conditions

spx(xp) = f(x)), 1<j<N,

are completed by the additional conditions
N
> eipx)=0. 1<k<0Q.
=1

Solvability of this system is therefore equivalent to solvability of the system

(065 e
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where Ag x = (P(x; —x¢)) € R¥*N and P = (pi(x;)) € RV*. This last system is ob-
viously solvable if the matrix on the left-hand side, which we will denote by A x, is
invertible.

Theorem 8.21 Suppose that ® is conditionally positive definite of order m and X is a
T—1(RY)-unisolvent set of centers. Then the system (8.10) is uniquely solvable.

Proof Suppose that (e, 8)7 lies in the null space of the matrix Zq), x. Then we have

Agp xa+ PB =0,
Pl =0.

The second equation means that « satisfies condition (8.1) for all p € m,,_;(R?). Multi-
plying the first equation by a” gives 0 = a7 Ag xa + (PTa)" B = a” Ay xa. Since ® is
conditionally positive definite of order m we can conclude that « = 0 and thus P = 0.
Finally, since X is 7m—1(R?)-unisolvent, this means that B=0. O

For a solution of the system (8.10) it is not necessary to require X to be 1 (RY)-
unisolvent. This is only needed for uniqueness. To see the solvability in the general case
let us set V := P(R?) € RN and A := Ag x. Then the orthogonal complement V- of V
is the null space of P”. The system (8.10) is solvable for every f|X if RN = AV + V.
But this sum is a direct sum, because x € AV NV means that x = Aa = PB with a
certain @ € V* and a 8 € R?; this implies that a” Aa = (PT )" 8 = 0 and hence o = 0
and Ao = 0. Knowing that the intersection of AV and V contains only the zero vector
gives

N > dim(AVY + V) =dim AV +dimV =dimV* +dimV = N,

because A|VL : VI — AV is bijective. But this means solvability.

It is obvious that the addition of polynomial terms of total degree at most m — 1 to the
expansion guarantees polynomial reproduction, i.e. if the data come from a polynomial of
total degree less than m then they are fitted by that polynomial.

The method described in this section can be generalized in a straightforward way by
using arbitrary linearly independent functions py, ..., pp on R? instead of polynomials.
Moreover, the conditionally positive definite function can be replaced by a conditionally
positive definite kernel ® : @ x @ — C.

8.6 Notes and comments

One might say that the whole radial basis function theory started with the practical work of
Hardy in 1971 on multiquadrics (see [79] and also the review article [80]) and with the the-
oretical work of Duchon on thin-plate splines (see [47-49]) in the late 1970s. Shortly there-
after, Meinguet [122-124] popularized thin-plate splines as a practical numerical method
for multivariate interpolation. In the mid 1980s, Micchelli [133] put Hardy’s multiquadrics
on a firm mathematical basis by solving a conjecture, drawn from computational experience,
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of Franke by connecting it with the classical results of Bochner and Schoenberg on positive
definite functions and thereby releasing it from the limitations of the variational perspectives
of thin-plate splines and the specialized form of multiquadrics.

The proof of Micchelli’s theorem, which consists in its original form of only the sufficient
part, was completed in [77] by Guo et al. seven years later in an even stronger version. As
for positive definite and radial functions, it is not necessary to assume ¢ to be in C*°(0, co).
This can be concluded from the fact that ¢ (|| - ||§) is conditionally positive definite on every
R?. The simple proof given here was based upon Sun’s paper [183].

Several results on conditionally positive definite functions employ distribution theory,
pseudo-functions, or both; see for example Madych and Nelson [113] and Gel’fand and
Vilenkin [69]. The approach here tries to avoid the use of such tools even if it sometimes
recovers the ideas behind them. In any case, to introduce straightforwardly the concept that
the generalized Fourier transform of a function with a possible singularity at the origin is
a function itself seems to be a major step in simplifying this theory. It came first up in the
unpublished preprint [111] by Madych and Nelson. Some of the examples of generalized
Fourier transforms can be found in the books by Gel’fand and Vilenkin [69] and by Jones
[95].
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Compactly supported functions

In numerical analysis, the concept of locally supported basis functions is of general im-
portance. Several function spaces used for approximation possess locally supported basis
functions. The most prominent examples in the one-dimensional case are the well-known
B-splines. The general advantages of compactly supported basis functions are a sparse in-
terpolation matrix on the one hand, and the possibility of a fast evaluation of the interpolant
on the other.

Thus, it seems to be natural to look for locally supported functions also in the context
of radial basis function interpolation and we will give an introduction to this field in this
chapter.

At the outset, though, we want to point out one crucial difference from classical spline
theory. While the support radius of the B-splines can be chosen proportional to the max-
imal distance between two neighboring centers, something similar will not lead to a con-
vergent scheme in the theory of radial basis functions. The correct choice of the support
radius is a very delicate question, which we will address in a later chapter on numerical
methods.

9.1 General remarks

Gaussians, (inverse) multiquadrics, powers, and thin-plate splines share two joint features.
They are all globally supported and are positive definite on every R?. The truncated powers
from Theorem 6.20, however, are compactly supported but are also restricted to a finite
number of space dimensions.

We will see that the two features are connected. But let us first comment on conditionally
positive definite functions.

Theorem 9.1 Assume that the function ® : R — C is continuous and compactly sup-
ported. If O is conditionally positive definite of minimal order m € Ny then m is necessarily
zero, i.e. ® is must be positive definite.

Proof Since @ is integrable, it possesses a classical Fourier transform ® thatis continuous.
In this situation the generalized Fourier transform coincides with the classical one. Hence,

119
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by Theorem 8.12 the Fourier transform is nonnegative in R \ {0} and not identically zero.
Since it is continuous we also have ®(0) > 0, and Theorem 6.11 ensures that & is positive
definite. O

Thus we can concentrate on positive definite radial functions with compact support and
use the classical Fourier transform instead of the generalized Fourier transform to handle
them.

The next theorem shows that the Fourier transform is indeed the right tool to handle such
functions, not the Laplace transform, which we have seen to be important in the context of
completely monotone functions.

Theorem 9.2 Suppose the continuous and nonvanishing function ¢ : [0, co) — R is posi-
tive definite on every RY. Then ¢(r) # 0 for all r € [0, o).

Proof Since ¢ is positive definite on every R? there exists a finite nonnegative Borel
measure 1 on [0, o0) such that

o(r) = /O e dpu).

If ¢ had a zero ry, this would mean that
o0 2
0= / e " "du(u).
0

Ase"t > Oforallu > (0, we must have ([0, o)) = 0 and hence ¢ = 0, which contradicts
the fact that ¢ is nonvanishing. O

An immediate consequence of the preceding theorem is that the dimensions d, on which
a compactly supported ¢ is positive definite, are restricted to a finite number. If ¢ is not
positive definite on a fixed R% then it cannot be positive definite on any higher-dimensional
space.

Corollary 9.3 A continuous, univariate, and compactly supported function ¢ cannot be
positive definite on every RY.

9.2 Dimension walk

From the results of the last section we know that if we want to construct locally supported,
radial, and positive definite functions we have to work with a fixed space dimension d. In
this case the Fourier transform is the right tool. Following Bochner, we know that a positive
definite function on R is characterized by a nonnegative d-variate Fourier transform. In the
case of a radial function ® = ¢(| - [») € L(R?) this is a radial function D= Fad(l - 1I2)
again (see Theorem 5.26), where

fd¢(r) = r_(d_z)/2 / (]5(1‘)[‘1/2.](11,2)/2(7‘[) dt.
0
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This operator F,, which acts on univariate functions, can be manipulated by operators that
we now want to introduce.

Definition 9.4
(1) Let ¢ be given such that t — ¢(t)t is in L[0, 00); then we define for r > 0

@ = [ rowar
(2) For even ¢ € C*(R) we define for r > 0

1 /
(De)(r) = —;125 (.
In both cases the resulting functions should be seen as even functions by even extension.

Thus Z and D map even univariate functions to even univariate functions by even exten-
sion. Both operators respect a compact support.

Note that the function D¢ is continuous at zero. Since ¢ € C*(R) is even we have ¢'(t) =
—@'(—t) and in particular ¢’(0) = 0. This means that ¢'(r) = O(¢) for t — 0 and hence
De(t) = O(1) fort — 0. Moreover, the operators Z and D are inverse in the following sense.

Lemma 9.5 If ¢ is continuous and satisfies t — t¢(t) € L]0, oo) then DI¢p = ¢. Con-
versely, if p € C*(R) is even and satisfies ¢’ € L,[0, 00) then TD¢ = ¢.

The interaction between the operators Z, D and F, is given by the next theorem. Re-
member that r > ¢(£)r~! € L,[0, oo) implies in particular that ® = ¢ (| - ||2) € L{(R?).

Theorem 9.6 Suppose that ¢ is continuous.
(1) Ift = ¢! € Li[0, 00) and d > 3 then Fy(¢) = Fy_o(Th).
(2) If ¢ € CX(R) is even and t +> ¢'(1)t? € L1[0, 00) then Fy(¢) = Fura(D).

Proof To prove the first statement, we start by showing that the function r > Z¢(r)ré=3
L,[0, oo) and hence that Z¢(|| - ||2) € Li(R?2). Sinced > 3 the function Z¢ is well defined
and continuous. Moreover, for R > 0 we find that

R R o]
/ I Zp(r)|ri3dr < / / lp()erd3dedr
0 0 r

R R R 00
= f / lp(0)|tr"*dtdr + / f lp(O|tr? 3 dedr
0 r 0 R

and we have to bound each of the last two integrals uniformly in R. For the first of these
we exchange the order of integration to get

/ f |p()|er¢3dedr = / f lp)|rrd3drdt

d 1
d — p()ldr,
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which is obviously bounded by 24 o)l L,10.00)/(d — 2). The second integral is actually
a product of two univariate integrals and allows the bound

ko= Rd-2 oo
/ / lp)tr! 3 dtdr = f 1N ()2
0 R &

d—2
<— oot"“ 1)|dt
=i=2/ [p@@)
1 ood—l
< — t t)|dt.
=7=2) [p@@)

Now that we know about integrability, we can apply F,_, to Z¢. Using integration by parts
and (d/dz)[z" J,(2)] = 2" Jy—1(2) (see Proposition 5.4) leads to

FurorZp)r) =r =92 / M<I¢)(r>z<"*2>/2J(d_4)/z(rr>dz
0

= 2R [(I¢)(r)r<"*2>/2J<d_2>/2(rt>\§°+ / ¢<t>rd/2J<d_z>/z(rr)dr]
0
= Fudp(r).

The boundary terms vanish for the following reasons. Because of the integrability of
t > Tp)r?3 we have at least Zop(r) = O(t~?*?) for t — oco. The asymptotic be-
havior of the Bessel functions gives J,(t) = O(1/+/t) (see Proposition 5.6). Hence,
ZP) D/ J gz p(rt) = O ~“=D/2) for t — oo and vanishes at infinity. For the lower
bound we use the asymptotic behavior of the Bessel functions J,(t) = O(t") for v > 0 and
t — 0 together with the boundedness of Z¢ to derive (Iqb)(t)t(d_z)/zJ(d,z)/z(rt) = 0@¢?)
for t — 0, so that this function also vanishes at zero. This finishes the proof of the first
part.

For the second part, define ¢ := D¢. Then  is well defined, continuous, and satisfies
t = ()t e L[0, 0o). This means in particular that Zyy = ZD¢ = ¢. Finally, we can
apply the first part to v instead of ¢ and d + 1 instead of d to derive

Fa2(DP) = Furo(¥) = Fa(@T) = Fu(d),

and this finishes the proof. O

This interaction between these operators allows us to express the higher-dimensional
Fourier transforms of radial functions by lower-dimensional ones and vice versa. Since
positive definite integrable functions are characterized by a nonnegative and nonvanishing
Fourier transform we can draw the following conclusion.

Corollary 9.7 Suppose that ¢ is continuous. If on the one hand t — ¢(t)t*~" € L,[0, c0)
and d > 3 then ¢ is positive definite on R? if and only if T¢ is positive definite on R4=2. On
the other hand, if ¢ € C*(R) is even andt — ¢'(1)t® € L,[0, 00) then ¢ is positive definite
on R? if and only if D¢ is positive definite on R42,
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Proof This follows immediately from the preceding theorem and Bochner’s characteriza-
tion for radial and integrable functions given in Theorem 6.18. O

The operators 7 and D that we have introduced vary the space dimension in steps of
width 2, which means that one deals with a sequence of either odd-dimensional spaces
or even-dimensional spaces. A generalization of the operators Z and D to a whole family
of operators Z, with v € R where Z; =7 and Z_; = D was made by Schaback and Wu
in [172]. This family allows us to walk through the space dimensions in the Fourier domain
not only in steps of width 2 but also in steps of width 1 and even, in a generalized way, in
steps of arbitrary width. Unfortunately, these operators no longer have a simple form and
thus are difficult to apply.

9.3 Piecewise polynomial functions with local support

A local support of the basis function is only one step on the way to an efficient numerical
approximation scheme. The next step is to ensure that the basis function is easily evaluated.
This is why from now on we will concentrate on functions of the form

p(r), 0<r=l,

0, r> 1, -

() = {
where p denotes a univariate polynomial. Of course, these functions are extended to the
whole real line, again by even extension. We can restrict ourselves to functions with support
in [0, 1] or [—1, 1], respectively. Other intervals can be obtained by scaling, because this
does not change a function from being positive definite. The d-variate Fourier transform of
¢(-/8), 8 > 0, is 84(F4¢)(8-), which is nonnegative if and only if the Fourier transform of
¢ is nonnegative.

From Theorem 6.20 we already know a positive definite function of the form (9.1): the
function

Ge(r) = (1 —r) 9.2)

is positive definite on R provided that £ > |d/2] + 1.

These functions, when seen as even functions, are only continuous, even for large £. Since
the basis function determines the smoothness of the approximant, it is necessary to have
smoother functions of the form (9.1) as well. Numerical considerations, however, ask for a
polynomial of the lowest possible degree. Hence it is quite natural to look for a function of
the form (9.1) with a polynomial of minimal degree, if its smoothness and space dimension
are prescribed. We will answer this question completely in the next section. But beforehand
we will give certain general results concerning functions of the form (9.1).

It is obvious that every even function ¢ of the form (9.1) possesses an even number
of continuous derivatives around zero and that this number is determined by the first odd
coefficient of the polynomial p that does not vanish. Furthermore ¢ is obviously in C* at
(0, 1) and (1, 00), so that the only critical point is 1.
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The proof of the following lemma, which describes the influence of the operators Z and
D on the smoothness, is straightforward if one takes the special form of ¢ into account.
One only has to integrate and differentiate polynomials.

Lemma 9.8 Suppose that ¢ is an even function of the form (9.1) and that it possesses 2k
continuous derivatives around 0 and £ continuous derivatives around 1. Then T¢ possesses
2k + 2 continuous derivatives around 0 and £ + 1 continuous derivatives around 1. If
k, £ > 1 then D¢ possesses 2k — 2 continuous derivatives around 0 and £ — 1 continuous
derivatives around 1.

The results of Lemma 9.8 remain true for an arbitrary ¢ that is sufficiently smooth
outside 0 and 1 and allows the application of Z and D. In such a situation, the only part that
needs a closer look is the smoothness at zero. For example, if ¢ is continuous at zero then
Z¢ possesses the derivative (Z¢)' (1) = —t¢(t), so that (Z¢)"(0) = —¢(0). Higher orders
are dealt with in the same way. Finally, we have already discussed the fact that an even
¢ € C%(R) leads to a continuous function De.

Itis time for another example, which straight away proves the beauty of the whole concept.
It comes from Wu [203]. Define f;(r) = (1 — r2)?F for £ € N. Then gy := f; * fi(2-) is
positive definite on R, because its Fourier transform is the squared Fourier transform of f;.
Moreover, it is of the form (9.1) with a polynomial of degree 4¢ + 1 and it is in C?¢. Thus
gr.¢ := DFgy is positive definite on R**!  is of the form (9.1) with a polynomial of degree
4¢ — 2k + 1 and is in C*~% if ¢ > k. Later on we will see that these functions do not have
minimal degree for a given smoothness.

The first step in characterizing functions of the form (9.1) with minimal degree by their
smoothness and positive definiteness (i.e. by the space dimension) is to show that none of
them has an odd number of continuous derivatives. To do this we first take a closer look at
the smoothness of ¢ in a neighborhood of 1.

Theorem 9.9 Let ¢ be an even function of the form (9.1) that is positive definite on RY.
Then ¢ satisfies ¢ € C19/2(0, 00).

Proof On account of the form (9.1), the function ® = ¢(|| - ||2) is in L{(R?). Since ¢ is
also positive definite on RY we know from Corollary 6.12 that the Fourier transform & of
® also belongs to L;(R?). This means in other words that

/ |Fap@)|t¢ dt < 0.
0

Since both ® and & are in L1 (R%) we can recover ® from its Fourier transform ®. But as
both functions are radial this can be written in the form

() = r~4=2/2 / ” Fa(Ot2 Jg_ayp(re)dt. 9.3)
0

Using Leibniz’ formula and the fact that the Bessel functions and their derivatives possess the
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asymptotic behavior J"(r) = O(r~'/2) for r — oo (see Proposition 5.6), we can conclude
for r > 0 that

d* d-2)/2 —1/2

e (r’( —2/ J(d,z)/z(rl)) <c(rt— / fort — oo.
Thus we can differentiate £ times under the integral in (9.3) as long as £ < [(d — 1)/2]. In
this case the integral in the representation of ¢© can be bounded by a constant factor times

o0
/ Fad(t)pd/H=124;.
0

This means that we can form up to [(d — 1)/2] derivatives of ¢. This finishes the proof for
odd d because then |d/2| = |(d — 1)/2].

For even space dimension d = 2¢ it remains to show that the £th derivative of p vanishes
at 1. Therefore, suppose that p(r) = Z?:o c;jr; then, for r > 0 the d-variate Fourier
transform of ¢ is given by

r

Fap(r) = r¢ / p (f) 172 Ja—oyp(t)dt

0
r

= r"’chr’-"/z-f”Jg,l(t)dz
=0

0
= r7I@).

Since & is positive definite on R? we have I >0,%0. Now, making use of
d/dnt="J,(t)] = —t~"J,41(¢t) we obtain via integration by parts

n r
1(r)=Zc,r*-"/ g1 ()dt
j=0 0
n r
= chr*// P22 g, (e
Jj=0 0

n

= Z cjr (zf+‘1e_2(t)!f +(j+20— 2)/ zf”*‘J(_z(t)dt>
0

j=0
=) c;r' )+ chr—f(j +20— 2)/ N o (dt
j=0 j=0 0
n . r .
= Zc.,-rff(j +20— 2)/ N, dt
=0 0

because p(1) =Y c¢; =0. Knowing that p(1)=p'(1)=--- = p“D) =0, we can
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iterate this process to derive finally

1) ==Y cj(j+20=2)(j +20—4)...jIo(r)

J=1

Jj=1

+Y 2= 2 -4 .. (- 2)r’j/tj’1l_2(t)dt.
0

The asymptotic behavior of the first summand is determined by

_ 2 Vw7 ey
J(r) =,/ p— cos (r 2 4) + O(r )

(see Proposition 5.6), which means that it decays as O(1/4/r) for r — oo, with varying
sign unless the sum

n

D (A2 =2 20—y (9.4)

=1

is equal to zero. We are now going to prove that the second summand in the last represen-
tation of 1(r) decays as O(1/r) for r — oo. This means that the second summand cannot
compensate the change in sign of the first summand for large » and thus the sum (9.4) must
equal zero.

Using J, = (—1)"J_,,n € N,and (d/dt)[t" J,(¢)] = t'J,_(t) we obtain, via integration
by parts,

r’-"/ tf’ll_z(t)dtzr’f/ = L(dt
0 0

=r_j/ 4B L(de

0
=rJ tf*‘J3(t)|gf(j74)r*f/‘ 72 I5(t)dt
0
=r*'J3(r)—(j—4)r*f/ 72 I(t)dt.
0

Since J,(r) decays as O(1/4/r) we can bound the integral term in the last expression:

ri f 72 I (Hdt
0

,
<cir™/ +czr’f/‘ =212
Fo

3/2 1

<cyr e <cor”

for every j > 1. Knowing that the sum (9.4) is zero leads us finally to

- [4
0= (i +26=2) j = (D! DL 2pelh) = 3y p(1)

Jj=1 j=0
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with certain constants y;, 0 < j < £, y, = 1. But as the first £ — 1 derivatives of p vanish
at 1, we derive p©©@(1) = 0. O

Obviously, the result of Theorem 9.9 remains true for odd space dimensions and general
functions ¢ with t > ¢(¢)t*~" € L,[0, 00) and is simply a consequence of the radiality. For
even space dimensions the result is in this generality wrong; see Gneiting [70]. Hence, for
arbitrary space dimensions and functions the generalization becomes ¢ € CL@=1/21(0, o0).

Theorem 9.10 Suppose that ¢ is a continuous and even function of the form (9.1) that
is positive definite on R?. Then there exist integers k, £ € Ny such that ¢ possesses 2k
continuous derivatives around 0 and 2k + € + |d /2] continuous derivatives around 1.

Proof For brevity we will use the following abbreviations. If ¢ is positive definite on R?
we will denote this by ¢ € PD,. Furthermore ¢ € C*(x) will mean that there is an open
neighborhood U of xy with ¢ € clu).

For k = 0 this is simply Theorem 9.9. The case where the space dimension d = 1 gives
a special version of Theorem 6.14.

Hence, it remains to prove this theorem for d > 2. Assume that the function ¢ satisfies

¢ € C*0)N C"(1) NPDy,

with k£ and m chosen maximal. Then we have m > |d/2] by Theorem 9.9. We will discuss
the cases m > k and m < k separately. If m > k is satisfied then we have

¥ := D¢ e C°0) N C™F(1) N PDyox,

which implies by Theorem 9.9 that v possesses at least |d /2| 4 k continuous derivatives
around 1, i.e.

¥ e CHRIH.

This means thatm — k > |d/2] + k,i.e.m > |d/2] + 2k.
We are finished as soon as we have shown that 0 < m < k is impossible. So let us take
m < k; this implies that

Y i=D"¢p € C**™(0) N C°(1) N PDyyom;

but this means that 0 > |d/2] + m by the same arguments as before. The last inequality
cannot be satisfied because we have d > 2. Hence m < k is impossible and this concludes
the proof. O

9.4 Compactly supported functions of minimal degree

Knowing that functions of the form (9.1) must necessarily have an even number of con-
tinuous derivatives, it is our aim in this section to find those functions that are of minimal
degree with respect to a given space dimension d and a given smoothness 2k. Of course,
we mean by the degree of the function ¢ the degree of the polynomial p.
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Definition 9.11 With ¢,(r) = (1 — r)’, we define
bak =T Plajo)rit1- 9.5)

As the operator 7 respects a compact support and maps polynomials to polynomials, the
functions ¢, x are of the form (9.1). A possible iterative scheme to compute the polynomials
is stated in the next theorem. A proof can be easily achieved by induction.

Theorem 9.12 Within its support [0, 1] the function ¢g4 . has the representation

£+2k

Pax(r) = Z ) ri

=0

with £ = |d /2] + k + 1. The coefficients can be computed recursively for 0 < s < k — 1:

©) it .
© 25 g0 ©
d = JS , d = O7 § > 0’
0,541 ; ] + 2 1,s+1 =
a0
dﬁﬂz_%z’sv s >0, 2<j<{l+25+2.

Furthermore, precisely the first k odd coefficients dje]l vanish.

These functions are not only of the form (9.1) but also of minimal degree and hence the
answer to our initial question.

Theorem 9.13 The functions ¢q ;. are positive definite on RY and are of the form

Pax(r), 0<r=<l,

¢d,k(r):io ro 1

with a univariate polynomial py ) of degree |d/2] + 3k + 1. They possess continuous
derivatives up to order 2k. They are of minimal degree for given space dimension d and
smoothness 2k and are up to a constant factor uniquely determined by this setting.

Proof We already know that these functions are of the specific form. They are posi-
tive definite on R, because we have for the Fourier transform Fabax = Far2kPla/2j+k+1
by Theorem 9.6. Moreover, the function ¢4/j4k+1 is positive definite on R4 by
Theorem 6.20.

From Lemma 9.8 we know that ¢, , possesses 2k continuous derivatives, which is the
stated smoothness. The degree is given by Theorem 9.12.

Finally, suppose that there is a function ¥ which is positive definite on R?, is of the
form (9.1), and possesses 2k continuous derivatives. Assume further that v is of minimal
degree. Then we can form the function v/ := D¢, which is still of the form (9.1) and
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Table 9.1 Compactly supported functions of minimal degree
Space dimension Function Smoothness
dro(r) =0 —r)4 C
d=1 i) = —r3Gr+1) C?
G120r) =1 —r)@r+5r+1) ct
$300r) =1 —r)3 c
d<3 $3a(r) =1 —r)i¢4r+1) c?
<
B $320r) = (1 — S35 + 18r +3) c*
$33(r) = (1 — 8 (32r3 + 25,2 + 8r + 1) o
¢sor) =1 —r)} C
d=<5 ¢51(r) = (1 =r3(5r +1) C?
Gs2(r) = (1 — ) (16r* + 7r + 1) c4

is at least continuous by Lemma 9.8. Furthermore, ' is positive definite on R?+%. Thus
¥ must possess at least |d/2] + k continuous derivatives at 1, which means that Y(r) =

d/2]|+k+1
(l_r)Er/J‘F-f-

constant. Thus ¥ = I* and ¢, can differ only by a constant factor.

q(r) with a polynomial ¢. But, because of the minimal degree, ¢ must be a

O

For convenience, we list the simplest cases in Table 9.1, where = denotes equality up to
a positive constant factor. We use this notation also in the next corollary, in which we give
the explicit form for the most important cases.

Corollary 9.14 The functions ¢4, k = 0, 1, 2, 3 have the following form:
Gao(r) =1 —

Ga1(r) =1 —

r)l_d/2j+l

i

NEE+ Dr+ 11,

Ga2(r) = (1 — )21 + 4+ 3)r* + 3¢+ 6)r + 3],

Ga3(r) =(1—

where we have used { :=

PP + 962 + 23¢ + 15)°

+ (602 4 360 4 45)r? + (15€ + 45)r + 15],

ld/2) +k+ 1.

Proof The form for k = 0 is obvious. For k = 1 we have to apply Z once. A simple
computation shows for r € [0, 1] that

1
Ga1(r) = Ie(r) =/ t(1 — 0)'dr =

(1 _ r)ZJrl
€+ D+2)

The other cases are dealt with in the same spirit.

[(£+ Dr+1].



130 Compactly supported functions

Fig. 9.1 The C’-, C%-, and C*-function for R? (on the left) and the C?-, function in R? (on the right).

The left-hand part of Figure 9.1 shows the univariate functions ¢s o, ¢3,1, and ¢3 », which
are positive definite on R¢ for d < 3; the right-hand part shows the C2-function ¢3 1 (r) =
(1 —r)*@r +1)in R2,

9.5 Generalizations

In the example following Lemma 9.8 we have already seen another class of compactly
supported radial basis functions. While these basis functions are still of the form (9.1),
one can also consider basis functions that do not have a polynomial representation within
their support. The reason for choosing univariate polynomials was to get a simple evalu-
ation. But obviously a simple evaluation can be achieved by other (univariate) functions
also.

While it took rather a long time for the first compactly supported radial basis functions
to be found, it is now quite simple to construct a variety of them by different tools. Besides
the operators Z and D we want to discuss two further techniques here. Both use existing
positive definite functions to construct new ones.

The first idea is to apply an operator T to the basis function ®. This operator has to be
nonnegative in the Fourier domain, i.e. it has to satisfy T® > 0if ® > 0. Then the resulting
function is also positive definite. If we are interested in compactly supported functions then
we have to make sure that 7' respects the compact support of a function. The most important
example is the classical Laplace operator.

Lemma 9.15 Suppose that ® € C*(RY) N L(RY) is positive definite. Denote by A the
Laplace operator A = Z‘;:] 82/8x§ . If —A® is integrable then it is also positive definite.
If © is radial, so is A®. If & has compact support, so has AP.

Proof Since all involved functions are integrable, the Fourier transform of A® is given
by A® = —| - ||§d>. This proves the positive definiteness of —A®. The Laplace operator
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applied to a radial function is a radial operator. If ® = ¢(|| - ||2) then

d—1
A®(x) = ¢"(lIxll2) + ———¢'(IIx]]2).
llx 12

The statement about the support is obvious. O

The second possible construction technique we want to mention is a specialization of the
first one and is crucial to Bochner’s and Schoenberg’s characterizations. It uses the fact that
if a positive definite function is integrated against a nonnegative measure then the result is
also positive definite.

Proposition 9.16 Suppose that f € L[0, 00) is nonnegative and positive on a set U of
positive Lebesgue measure. Suppose further that a bounded kernel K : [0, 0o) x [0, o0) —
R is given satisfying

(1) K(-,r)is measurable for all r > 0,
(2) K(t,-) is positive semi-definite on R? for all t > 0 and positive definite on R fort € U.

Then
o@r) = / K(t,r)f(t)dt (9.6)
0

is positive definite on R.

Proof Since K (t, -) is positive semi-definite for every ¢ > 0, it is in particular continuous.
Standard arguments yield that ¢ is also continuous. Finally, if pairwise distinct xy, ..., xy €
R? and « € RV \ {0} are given, we can see at once that

N 0 N

> wanpy —xil = [ Y wek, Iy~ ul) f0dr = 0

Jik=1 0 jk=1

Actually, the quadratic form must be positive because otherwise the set of points where the
integrand does not vanish must have measure zero. This is impossible since it contains the
set U. O

A typical choice for K is K(t,r) = vy (r/t) with a compactly supported function .
The compact support makes K well defined. For example, one could use the compactly
supported functions ¢ k.

Proposition 9.16 does not work only for kernels K such that K (¢, -) is positive definite.
It is also possible to relax this condition if the choices for the function f are further
restricted. For example, in [34,35] Buhmann makes the choices K (¢, r) = (1 — r?/ t)ﬁ and
f@) =11 — t‘s)f_. He discusses thoroughly all choices of the parameters «, §, A, and p
such that ¢ from (9.6), which now takes the form

o) = /00(1 — /(1 — 1Y, dt, 9.7)
0

becomes positive definite. The result is
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Theorem 9.17 Let 0 < § < % p > 1 be real numbers, and suppose that A # 0 and «a are
real quantities with

(=3, 00), —1 <o <min{ir—1} ifd=1
[1, c0), —1<a<in, ifd=1
A€ {(—3.00), —l<a<mn{id-DH.r-1}, ifd=2
[0, 00), “l<a<i(r-1, ifd =3,
(3d—5),00), —1<a<i[r—1d-D], ifd > 3.

Then the radial basis function (9.7) gives rise to a positive definite function on R,

9.6 Notes and comments

Astonishingly, it needed quite some time for compactly supported radial basis functions to
be found. Everything started with the explicit construction of ‘Euclid’s hat’ in the present
author’s thesis [189], see also Schaback [162]; this is nothing other than the d-variate con-
volution of the characteristic function of the unit ball with itself. A little earlier, Narcowich
and Ward had used this function in [145] in a different context and without an explicit form.
The construction of the compactly supported functions of minimal degree was done
initially by the present author in [191] and partially published afterwards in [190, 192].
Nowadays, they are often simply called “Wendland’s functions”. A basis for these results
was given by the earlier publications by Chanysheva [40], Askey [6], and Gasper [68].
The operators 7 and D have become known to the radial basis function community
through Wu’s paper [203], but it seems that these operators have been known longer in the
field of probability theory. In particular, Matheron [116] called them montée and descentée.
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Native spaces

So far we have encountered positive definite functions in the context of a scattered data
interpolation problem in R?. In this chapter we want to take another point of view, which
also prepares us for the error analysis of the interpolation process. Our approach is motivated
by the following example. The Sobolev spaces on R? can be defined by

H' R = {f € LL®Y) : FOA+ - 137 € LR},

They can be equipped with an inner product
(f. sty = 2m) ™2 / T @R@)1 + o]3) do.
R

By the Sobolev embedding theorem it is well known that for s > d/2 the inclusion
H*(R?) € C(R?) holds, or, to be more precise, that every equivalence class in H*® (R%)
contains a continuous representer. We will always interpret H*(R?) as a set of continuous
functions in this way. A closer look at the inner product shows that it contains a nonnegative
weight function. In the case s > d/2 this weight function can be used to define a positive
definite function ¢ by 6((0) =1+ ||a)||%)_s. Actually, we know by Theorem 6.13 that ®
is given by
O(x) = £nx||§“‘/21<d/2_5(||x||z).
I'(s)

Formal computations, which will be justified later on, give
F@d@)e
RA 6(0))

This reproducing property emphasizes the role of the function & for the Sobolev space and
we will focus on it in the next section.

(f. @C = X)peey = Q)™ do = f(x).

10.1 Reproducing-kernel Hilbert spaces

We are interested in vector spaces J consisting of functions f : & — R defined on a
region  C R?. The region 2 can be quite arbitrary except that it should contain at least
one point. We consider only real vector spaces of real-valued functions. Very soon we will

133



134 Native spaces

see that on the one hand they correspond to real-valued positive semi-definite kernels and
that on the other hand every real-valued positive definite kernel leads naturally to a real
Hilbert space of real-valued functions. To include complex-valued kernels also, we would
have to discuss complex-valued function spaces. There are three reasons for not doing so.
First, both cases can be handled in a very similar way. The only difference is that in the
complex case special care has to be taken with the complex conjugate sign. Second, this
time there is no fundamental gain in a complex setting. While complex-valued functions
were indeed useful to derive Bochner’s and related results, the theory of reproducing-
kernel Hilbert spaces does not benefit from them. The main reason, however, is that all
relevant positive definite functions are real-valued (because they are radial) and hence their
associated function spaces are also real spaces of real-valued functions. Nonetheless, we
will comment on the complex situation when appropriate and the capable reader will have
no problem in stating and proving the corresponding results.

Definition 10.1 Let F be a real Hilbert space of functions f : Q — R. A function ® :
Q x Q — Ris called a reproducing kernel for F if

(1) ®(-,y) e Fforally e Q,

(2) f)=(f, P, y)rforall f € Fandally € Q.

The reproducing kernel of a Hilbert space is uniquely determined. Suppose there are two
reproducing kernels ®; and ®,. Then property (2) gives (f, ®1(-, y) — ®2(-, ¥))r = O for
all f € Fandall y € Q.Setting f = ®,(-, y) — Pa(:, y) forafixed y shows the uniqueness.

Let us give a first characterization of a Hilbert function space with a reproducing kernel.

Theorem 10.2 Suppose that F is a Hilbert space of functions f : Q — R. Then the fol-
lowing statements are equivalent:

(1) the point evaluation functionals are continuous, i.e. 8, € F* forall y € Q;
(2) F has a reproducing kernel.

Proof Suppose that the point evaluation functionals are continuous. By Riesz’ representa-
tion theorem we find, forevery y € Q,a ®, € F suchthat§,(f) = (f, ®,)r forall f € F.
Thus, ®(x, y) := ®,(x) is the reproducing kernel of F. Now suppose that F has a repro-
ducing kernel ®. This means that §, = (-, ®(-, y))# for y € Q. Since the inner product is
continuous, so is dy. O

A reproducing-kernel Hilbert space has many special features. We collect some of them
now.

Theorem 10.3 Suppose F is a Hilbert space of functions f : Q — R with reproducing

kernel ®. Then we have

(1) @(x,y) = (P, x), P(, ))r = 8y, y)r+ forx, y € Q,

(2) ®(x,y) =Py, x)forx,y €Q,

(3) if f, fu € F, n €N, are given such that f, converges to f in the Hilbert space norm then f, also
converges pointwise to f.
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Proof The Riesz’ representation F : F* — F reduces for point evaluations to F(§,) =
®(-, y) because of the reproducing-kernel properties. This means that

By, 8y) = (F(8x), F(8y))F = (®(, x), D, y))r.
Furthermore,
D(x, y) = 8:(P(, y)) = (D, y), BC, x))F = (P(, x), P(, ¥)F.

Hence, property (1) is proven. Property (2) follows immediately from Property (1). Property
(3) is a consequence of

Lfu@) = fOOI =1(fa = f @C, DAl < N fu = FUFINPC, )N F
O

Our next result discloses the connection between reproducing-kernel Hilbert spaces and
positive definite kernels.

Theorem 10.4 Suppose that F is a reproducing-kernel Hilbert function space with re-
producing kernel ® : Q x Q — R. Then ® is positive semi-definite. Moreover, ® is pos-
itive definite if and only if the point evaluation functionals are linearly independent

in F*.

Proof Since the kernel @ is real-valued and symmetric, we can restrict ourselves to real

coefficients in the quadratic form. For pairwise distinct x;, ..., xy and o € RY \ {0} we
have

N N N N 2

> S et w = (Yod, Y, -0

j=1 k=1 j=1 k=1 P P

The last expression can and will only be zero if the point evaluation functionals are linearly
dependent. O

Hence, the reproducing kernel of a function space F leads to a real-valued positive semi-
definite kernel. Obviously, if the function space F is a complex vector space containing
complex-valued functions then everything said so far remains true with mild modifica-
tions. In particular the reproducing-kernel is now a complex-valued positive semi-definite
function.

From the first property of Definition 10.1 we know that F contains all functions of the
form f = Zf;] a;®(-, x;) if x; € Q. Furthermore, we know that

N N

N N
LFI5 =D o @, x)), C, xe)r = Y Y ajou®lx;, xi).

j=1 k=1 j=1 k=1

This feature will be used to construct a reproducing-kernel Hilbert space for a given positive
definite kernel in the next section.
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But before this we want to have a look at how invariance properties of the space influence
the kernel.

Definition 10.5 Let T be a group of transformations T : Q@ — Q. We say F is invariant
under the group T if

(1) foT € Fforall f €e FandT €T,
(2) (foT,goT)r=(f,g)rforal f,ge FandallT € T.

The invariance of the function space is inherited by the kernel.

Theorem 10.6 Suppose that the reproducing-kernel Hilbert function space F is invariant
under the transformations of T ; then the reproducing kernel ® satisfies

O(Tx, Ty) = P(x,y)
forallx,y € QandallT € T.

Proof From the reproducing-kernel properties and the invariance properties we can read
off

) =foT '@ =(foT ", ®C,Ty)r=(f. T, Ty)r, yeQ.

Of course, we also have f(y) = (f, ®(-, y))r, and hence the uniqueness of the reproducing
kernel gives ®(-, y) = &(T-, Ty) forall y € Q. O

The following examples show that radial basis functions arise quite naturally within the
concept of reproducing kernels. For our first example suppose that = R?. Let 7 be the
group of translations on RY. If we choose the translation T& = x — £ for a fixed x € R?
then Theorem 10.6 shows that

O(x, y) = ®(0, x — y) =: Po(x — y),

i.e. the kernel is translation invariant.

For our second example suppose that € is still R? but 7 consists now of the translations
and the orthogonal transformations. Then we can choose an orthogonal transformation
A € R¥*¢ such that A& = ||&||»e;, where e, is the first unit vector in R? and & = x — y.
Hence

®(x, y) = ©(Ax, Ay) = Po(A(x — y)) = Po(llx — yll2e1) =: d(llx — yl2),

i.e. @ is radial.

10.2 Native spaces for positive definite kernels

So far, we have seen that a positive definite function or kernel appears naturally as the
reproducing kernel of a Hilbert function space. But since we normally do not start with
a function space but with a positive definite kernel we are confronted by the problem of
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finding the associated function space that has this kernel as its reproducing kernel. In this
section we want to solve this problem by constructing the corresponding Hilbert function
space. Hence, assume that ® : Q x Q — R is a symmetric positive definite kernel.

Motivated by the second remark after the proof of Theorem 10.4 we define the R-linear
space

Fo(R2) :=span{®(-,y) : y € Q}

and equip this space with the bilinear form

N M N M
<Za_i<b(-,x]'), Zﬂk@(-,)’k)) ZZO{ Be®(x;j, yi).
j=1 k=1

o J=lk=1

Theorem 10.7 If® : Q x Q — Risasymmetric positive definite kernel then (-, -)o defines
an inner product on Fe(2). Furthermore, Fg(S2) is a pre-Hilbert space with reproducing
kernel ®.

Proof Obviously (-, -)¢ is bilinear and symmetric because ® is symmetric. Moreover, if
we choose an arbitrary function f = Zjvz 1o P(, x;) # 0 from Fe(2) we find that

(f. o = Z Za,akcb(x,, ) > 0,

j=1 k=

because P is positive definite. Finally, we obtain for this f

N
(fs @ yDo = Y _a;®(x;,y) = f(),

=1

which establishes also the reproducing kernel. O
The completion F4(£2) of this pre-Hilbert space with respect to the || - ||p-norm is the

first candidate for a Hilbert function space with reproducing kernel ®. But the elements of

the completion are abstract elements and we have to interpret them as functions. Since the

point-evaluation functionals are continuous on Fg(£2), their extensions to the completion

remain continuous. This can be used to define function values for elements of the completion.
To represent this connection we could use the sloppy notation

S&) = (f, D¢, X))o

forevery f € Fo(2). But we want to repeat these arguments in the more technical situation
of conditionally positive definite kernels and will therefore be more precise. Thus we define
the linear mapping

R: Fo(2) > C(Q), R(f)(x) == (f, P, X))o
The resulting functions are indeed continuous because

[Rf(x) = R = (f, ®C,x) = B¢, Mo < [ o PC, x) = PC, ylle
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and

19C, %) = PC G = P, x) + By, y) = 2®(x, y).
Furthermore, we have Rf(x) = f(x) forall x € Q and all f € Fg(S2).
Lemma 10.8 The linear mapping R : Fo(2) — C(K2) is injective.

Proof Rf =0 for an f € Fp(2) would mean that (f, ®(-, x))e = 0 for all x € Q or
fLFe(S2). But F(£2) is the completion of Fg(€2). Hence, the only element from Fo,(€2)
perpendicular to F(2)is f = 0. O

After this technical interlude we are able to define the native Hilbert space of a positive
definite kernel ®.

Definition 10.9 The native Hilbert function space corresponding to the symmetric positive
definite kernel @ : Q x Q — R is defined by

No(Q) := R(Fo(R)).
It carries the inner product

(f, Ono@ = (R f, R 9)o.

Indeed, the space so defined is a Hilbert space of continuous functions on 2 with repro-
ducing kernel ®. Since ®(-, x) is an element of Fp(2) for x € € it is unchanged under R
and hence

F) =R f, @, x)o = (f, P(, )N (10.1)
forall f € No(R) and x € Q.

Theorem 10.10 Suppose that @ : Q x Q — Risasymmetric positive definite kernel. Then
its associated native space N () is a Hilbert function space with reproducing kernel ®.

Hence, positive (semi-)definite kernels and reproducing kernels of Hilbert function spaces
are the same thing. In the rest of this section we will discuss the uniqueness of the native
space and will give a special characterization that is handier than the abstract definition
given so far.

We already know by construction that Fg(2) € N () is dense in Ng(2) and that

Ifle = 1fllve forall f € Fo(£2).
These last two properties make the native space unique in the following sense.

Theorem 10.11 Suppose that ® is a symmetric positive definite kernel. Suppose further
that G is a Hilbert space of functions f : Q@ — R with reproducing kernel ®. Then G is the
native space No(2) and the inner products are the same.

Proof From the second remark after the proof of Theorem 10.4 we know that Fe(2) €
Gand || fllg = | fllnp for all f € Fp(S2). Now take f € No(2). Then there exists a
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Cauchy sequence { f,} € Fo(S2) converging to f in Ng(S2) (remember that R~! £, = £,).
By Theorem 10.3 we know that f is given pointwise by f(y) = lim,_~ f,(y). However,
fu s also a Cauchy sequence in G that converges toa g € G. But now the reproducing-kernel
property of G gives g(x) = lim,_, » f,(x). Thus f = g € G, which means that No(2) € G
with || fllve@ = I fllg for all f € Ng(€2). Next, suppose that Ny (€2) does not equal G.
Since N3(2) is closed we can then find an element g € G \ {0} orthogonal to Ng(£2). But
this means that g(y) = (g, ®(-, y))¢ = 0 for all y € @, which contradicts g # 0. Finally,
because the norms are the same so are the inner products, by polarization. O

This uniqueness result allows us to give another characterization of the native space in
the case where 2 = R¢ and ® is translation invariant. This result uses Fourier transforms
and shows that the native space actually consists of smooth functions.

Theorem 10.12 Suppose that ® € C(R?) N L1(R?) is a real-valued positive definite func-
tion. Define

G = {f € LyRY) N CRY) - f/\/g c LZ(R"’)}

and equip this space with the bilinear form

P N P - [(@)E)
| =2 d/z( \/5 \/5) = (27)"4? f,\ida).
(99 = Qo E(f Ve g/Ve) L =00 |
Then G is a real Hilbert space with inner product (-, -)g and reproducing kernel ®(- — -).
Hence G is the native space of ® on RY ie. G =Ny (Rd), and both inner products coincide.
In particular, every f € Ng(R?) can be recovered from its Fourier transform f € Li(R%) N
Ly(RY).

Note that we use the sloppy notation Ny (R?) instead of the precise notation N q;(._.)(Rd),
for simplicity. This should cause no misunderstandings.

Proof From Corollary 6.12 we know that del 1(RY). For f € G this means in particular
that f € L;(R?) because

~ 172 12
| Flw)ldo < ( / |/ (@) dw) ( f 6(w)dw> .
Rd R4 CD(w) Rd

Hence Plancherel’s theorem and the continuity of f and (]"\)v allow us torecover f pointwise
from its Fourier transform via

fx) = Q)" 4> / Flw)e™ “dw.
Rd

Since (-, -)g is obviously R-bilinear, it is an inner product if it is real-valued and posi-
tive definite. For a real-valued f the L,-Fourier transform satisfies f(x) = f(—x) almost
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everywhere, so that

i (w)g(w) _ w)g(w) f= w)g( w)
) w.>0 <I>(w) (—w)

3 / flo )g(w)+f(w)g(w)
T Jos0 D(w)
/ ‘h[f(w)g(w)]
>0 )

w € R,

proving that the bilinear form is indeed real-valued. As a weighted L,-inner product, (-, -)g
is also positive definite.

Thus far we know that G is a pre-Hilbert space, and our next step is to prove that it
is complete. For this reason suppose that {f,} is a Cauchy sequence in G. This means

that {f; / NES } is a Cauchy sequence in L>(R%). Thus there exists a function g € Lo(R%)

with f; / Vo - g in Ly(RY). From our initial assumptions we can conclude that g\/g €
Li(RY) N Ly(RY). Namely,

1/2 1/2
/ ‘g(w)\/5(w>'dws( f |g<w)|2dw) (/ $<w)dw)
Rd R4 R

and
2
Y 2
do < Bl @ Ig12, g

f ‘g(w) D(w)
R4
Thus
fx):= (271)7‘1/2/ g(w) 5(w)eixr“’dw, x € Q,
Rd

is well defined, continuous, an element of L,(R?), and satisfies f/x/g =g € L,(RY).
Furthermore we have

|f() = fuo)] < @)~ / 'g(w) 6<w>—ﬁ(w>‘dw
=am*fe-7/Vol

which means that f is also real-valued and hence that f € G. Finally,
5k .
NG NG

for n — oo. Thus G is complete. It remains to show that ®(- — -) is the reproducing kernel
of G. First of all, ® is bounded by ®(0) and in L, (R%), so that it is also in L,(R¢). Moreover,

foc a1/ 8]

N o e

=@m)y g -0

If = fullg = @m)~"*

La(R) Ly(R)

= Dl @)
ey = 1@
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so that ®(- — y) € G for every y € G. The reproduction follows immediately from

(f, ®( = y))g = Q@m)™* 9 %‘Zfﬂmm
= @) | J@edo
= f. )
O

Because of the previous result, native spaces are in one way a generalization of Sobolev
spaces. Let us clarify this. Remember that for s > d/2 the Sobolev space of order s is
defined as

H'RY) = {f € LRYNCRY) : FOA+ - 132 € La®RD} .

Hence, if ® has a Fourier transform that decays only algebraically then its native space is
a Sobolev space.

Corollary 10.13 Suppose that ® € L{(RY) N C(RY) satisfies
a(l+ o) < B <ol + o}, wek?

with s > d/2 and two positive constants c; < c;. Then the native space Ngo(R?) corre-
sponding to ® coincides with the Sobolev space H*(R?), and the native space norm and
the Sobolev norm are equivalent.

10.3 Native spaces for conditionally positive definite kernels

As in the case of positive definite functions we generalize the notion of a conditionally
positive definite function to a conditionally positive definite kernel.

Definition 10.14 Suppose that P is a finite-dimensional subspace of C(Q), Q CR?. A
continuous symmetric kernel ® : Q x Q — R is said to be conditionally positive definite
on Q2 with respect to P if, for any N pairwise distinct centers xi,...,xy € Q2 and all
a € RN\ {0} with

N
D aipx)=0 (10.2)
j=1
for all p € P, the quadratic form
N N
DO wjeud(x), xi) (10.3)
j=1 k=1

is positive.
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The domain © € RY can still be quite arbitrary, except that now it should contain at
least one P-unisolvent subset. In contrast with the definition of a conditionally positive
definite function we will allow a more general space P. A conditionally positive definite
function of order m is therefore a conditionally positive definite kernel with respect to
P = m,,_1(R?). Again, we restrict ourselves here to real-valued kernels. Everything said
about complex-valued kernels in the last section remains true.

We can proceed as in the case of a positive definite kernel to construct the native space
of a conditionally positive kernel. Hence, we start with the linear space

N
Fo(R2) := {Zajd>(~,xj) s NeN aeRY x,...,xy € Q,

j=1

N
with Y "a;p(x;) =0 forall p P} ,

=
which becomes a pre-Hilbert space by introduction of the inner product

N M N M
(Za,~¢(-, X, Y B, yk)) =D aiBe®(xj, o)
j=1 k=1 ® j=1 k=1
Note that the additional conditions in the definition of F(£2) ensure the definiteness of the
inner product.

Continuing as in the case of positive definite kernels, we can form the Hilbert-space
completion Fq(S2) of Fe(€2) with respect to (-, -)¢. But since ®(-, x) is in general not
included in Fg(€2), we cannot use f(x) = (f, ®(-, x))o as in the case of positive definite
kernels to derive that point evaluation functionals are continuous on Fg(€2) and thus on
Fo(S2). Hence we cannot interpret the abstract elements of F(€2) as functions in this way.
To arrive at an interpretation of the elements of F¢(£2) as functions we have to make a
detour.

To this end we choose a P-unisolvent subset & = {£;,...,&p} C Qwith |E| =dimP =
Q elements and a Lagrange basis p;, 1 < j < Q, of P with respect to this set of centers.
This choice will be fixed for the rest of this section. Next, we define a functional

Q

8y 1= 08¢ — Zpk(X)ng, xeq,
k=1

and a function

Q
G(,x):= Sé)d)(g y)=d(, x) — Z Pr(x)P(-, &), x € Q. (10.4)
=1

The functional obviously satisfies 8,)(p) = 0 for all p € P; therefore it lies in Fp(2)* and

so has a continuous extension to F¢(£2). The function is obviously an element of Fg(€2).
Furthermore, for x € 2 we have the representation

3w (f) = (f, G, ), [ € Fo(8),
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which extends to F(£2) by continuity. Hence, if §(y) is now to play the role of §, we have
to define the mapping

R : Fo(Q) — C(Q), R(f)(x) == (f. G, x)eo.
The range of R is indeed a subset of C(£2). By Cauchy—Schwarz we have again
[Rf(x) = RFDI < If o IGC %) — GG, Mo
but this time with
IGC.x) = GC WG = Px,x) + Dy, y) = 20(x, y)

Qo
=2 ;) = piMI[®(x, &) — B(y, §))]

j=1

0
+ D 1p) = P () = p (YO, £

k=1

Following the lines of the previous section, the next step is to show that R is injective.
Lemma 10.15 The linear mapping R : Fo(2) — C(R) is injective.

Proof Rf = 0for f € F¢(2) means that (f, G(-, x))e = Oforallx € Q. Now, we choose
an arbitrary h = Z?’:l a;®(-, x;) from Fp(£2). For the coefficients of this element we
have

N N N Qo
D aiGex) =Y ;¢ x) = Y oy Y B EDpilx;)
j=1 j=1 j=1 k=1

Q N
=h—Y OC.&) Y a;px))
k=1

Jj=1
=h,

showing that (f, h)e = Oforallh € Fp(R2). Butbecause F(£2) is the completion of Fg(€2)
this means that f = 0. O

This allows us to interpret F¢(2) as a space of functions. But since G(-, x) and &)
have the dispensable property G(-, &) =8¢,y =0, 1 <k < Q, we find that Rf (&) =0,
1 <k < Q,forall f € Fp(2). However, f (&) does not vanish for all f € Fp(S2), so that
it is not reasonable to take R(F¢(€2)) as the definition of the native space. The right choice
comes from a closer look at how R acts on Fo(2). Here, we find for f =) 8, ®(:, x;)
that

0
Rf(x)=(f,G(, x)o = f(x) — Zpk(X)f(ék) = f(x) —pf(x),
k=1
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introducing the projection operator

0
[p : C(Q) — P, Mp(f) =Y fEps- 10.5)
k=1

Note that, with this operator, G(-, x) can also be written as G(-, x) = ®(-, x) — [T O, x).

Definition 10.16 The native space corresponding to a symmetric kernel ® that is condi-
tionally positive definite on Q2 with respect to P is defined by

No(Q) := R(Fo(2)) + P.
The space is equipped with a semi-inner product via

(f e = (RTI(f —TIpf), R7'(g — TIpg))o.

Let us investigate this definition in more detail. First of all, the sum R(F¢(2)) + P is direct
because any element of R(F¢(£2)) vanishes on E and this set is P-unisolvent, which means
that zero is the only element from P that vanishes there. From this fact we can also deduce
that a general element f = R(g) + p satisfies f(&) = p(&), 1 <k < Q, and hence can
be written as f = R(g) + I1p(f). This, again, means that f — [1p(f) is an element of
R(F4(2)) and that the semi-inner product is well defined. Obviously its null space is given
by P. Moreover, if f € Fe(2) then the definition ensures that | f |y, = || fllo.

Finally, we have the following Taylor expansion of f € Ng(£2), which can also be seen
as the generalization of the reproducing-kernel property of positive definite kernels.

Theorem 10.17 Suppose that ® : Q x Q — R is a symmetric kernel that is conditionally
positive definite on Q2 with respect to P C C(RQ). Every f € No(RQ2) can be written as

Sy =Tp fx)+(f, G Xnvwe
with the function G from (10.4) and the projector Tlp from (10.5).

Proof Since G(-, x) € Fg(S2) for every x € Q we have, as remarked earlier, G(-, x) =
R™YG(-, x) — TIpG(-, x)). From the definitions we can derive that

f@) =Tpf)+ @R (f —pf), GG X))o
=Ipfx)+ R'(f —Tpf), RGC, x) — TpG(, x)o
= p f(X) + (f. G, )Ny

O

Note that in the case of a positive definite kernel both the definition of the native space in
Definition 10.16 and the representation formula from Theorem 10.17 reduce to the definition
and the reproducing-kernel formula given in Definition 10.9 and formula (10.1) since in
this case G(-, x) reduces to ® and N (2) to R(Fo(R)).
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The next theorem gives some more information on the connection with reproducing
kernels. Even if Ng(£2) does not have a reproducing kernel, the main part R(Fe(£2)) will
do so.

Theorem 10.18 The bilinear form (-, -)n, ) is, on the space
Xo(Q) ={f e No(Q): f(6) =0,1 <k < 0} = R(Fo()),

an inner product, which makes this space a Hilbert space. Moreover; this space has the
reproducing kernel

Q Q
K(x, y) o= X, y) = D prx) &, ) — D pe(»)D(x, &)

k=1 =1

[
30 PP D £,

k=1 t=1

i.e. every f € X¢(S2) has the representation

F&) = (f, k(DN @)-

Proof We know that the linear mapping R : F¢(2) — X (S2) is isometric and bijective.
Since Fo(£2) is a Hilbert space, so is X¢(2). In particular the bilinear form (-, ), @)
becomes an inner product on X ¢(£2).

The kernel « is a symmetric function and satisfies k (-, y) = RG(-, y) for all y € Q. This
shows that k (-, y) is indeed an element of X ¢(2) for every y € Q. Finally, for f € X¢(2)
and x € 2 we obtain

(fo kG XN = (R, G, X))o
=Ipf(x)+ (R'(f —pf), TG, x) — MpG(, X))o
= f(x)

by Theorem 10.17. u

The previous theorem allows us to characterize native spaces for conditionally positive
definite kernels in a way similar to the positive definite result in Theorem 10.11. As a
consequence, we can derive a characterization based on (generalized) Fourier transforms
comparable to the one in Theorem 10.12.

Proposition 10.19 Suppose that G € C(2) carries a semi-inner product (-, -)g with null
space P C G such that Gy :={g € G : g(&) = 0,1 <k < Q} is a Hilbert space with re-
producing kernel k. Then G is the native space corresponding to ® on Q.

Proof Since obviously G = Gy @ P and No(2) = R(Fo(R2)) @ P it suffices to show that
R(F3(2)) = Gp. This can be done in a way similar to that in the proof of Theorem 10.11.
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First of all, for f = Y"1 a;®(-, x;) € F(Q) we have

N N
RF() = f(x) = Tlpf(x) = Y a;G(x,x)) = Y aj(x, x;),
j=1 j=1

showing that R(Fe(2)) € Go. Moreover, for fi, f» € R(Fp(2)) it is true that
(15 2ne@ = (f1, f2)g-

For every f € Fp(R2) there exists a Cauchy sequence (f,) € R(Fe(£2)) satisfying in
particular f(x) = lim,_,» f,(x) forallx € Q. However, since f, is also a Cauchy sequence
in Gy there exists alimit g € Gy. From the continuity of the inner product we can derive again
that g(x) = lim, . f,(x). Hence, f = g. Finally, if g € Gy is perpendicular to R(F¢(£2))
then all inner products (g, « (-, x))g, X € 2, have to vanish. But this means that g = 0. O

The native space carries only a semi-inner product. This semi-inner product has the null
space P. The following simple trick defines an inner product on Ng(2) and makes the
native space a reproducing-kernel Hilbert space.

Theorem 10.20 The native space No(2) corresponding to a conditionally positive definite
kernel ® carries the inner product

0
(£, 8) = (f: Onwe + Y, FEDZED).
k=1

With this inner product N(Q2) becomes a reproducing-kernel Hilbert space with reproduc-
ing kernel

0
K(x,y) =6, y)+ > pel)pe(y),
k=1

where K is the kernel from Theorem 10.18.

Proof Obviously, the new inner product is symmetric, bilinear, and nonnegative. If

Qo
0=(f )= Dva + D_IFEI
k=1

for an f € Ng(S2) then each summand has to be zero. But (f, f)n,«) = 0 means that
f € P, and the additional information f(&) = Ofor 1 < k < Q coupled with the choice of
the set E leads to f = 0. Hence, (-, -) is positive definite. Let us come to the reproducing-
kernel property. Since p, is a Lagrangian basis for E and since « (&, -) = 0, we have

Q Q Q Q
D FEIKEGx) =) fEKES )+ Y fE D pex)pe(Eo)
k=1 k=1 k=

1 =1

Qo
=" FEIp).
k=1
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Moreover, since G(-, x), k(-, x), and K(-, x) differ only by a polynomial, Theorem 10.17
gives the representation

S&) = Tp f(x) + (f, k¢, XN
[
=Y FEKEL )+ (f KCo)va@

k=1

= (f7 K(7 .X)).
O

In the case of positive definite functions, we have seen that the native space on R? can
be characterized by using Fourier transforms. Something similar is possible in the case of
conditionally positive definite functions if we use generalized Fourier transforms instead.

Theorem 10.21 Suppose that ® € C(R?) is an even conditionally positive definite function
of order m € Ny. Suppose further that ® has a generalized Fourier transform ) of order
m that is continuous on R? \ {0}. Let G be the real vector space consisting of all functions
f € C(RY) that are slowly increasing and have a generalized Fourier transform ]/‘\of order
m/2 that satisfies f/ Vo e Ly(RY). Equip G with the symmetric bilinear form

f (w)g(w)

— (27)~4/2
(f. 8)g = 2m) o)

Then G is the native space corresponding to ®, i.e. G = No(R?), and the semi-inner product
(-, )Ny coincides with the semi-inner product (-, -)g. Furthermore, every f € No(2) has
the representation

[
) =Tpfx)+Qn)*? f f(®) (Ww -y pk<x>efs[w) do
R =

Proof Obviously (-, -)g is R-bilinear. It is also symmetric if it is real-valued. This can be
shown in the same way as in the proof of Theorem 10.12 as long as we know that the
generalized Fourier transform f satisfies f (w) = f (—w) almost everywhere. Since this
relation is satisfied for all real-valued test functions y € S,,, the definition of a generalized
Fourier transform and y/(—\~)(a)) = Y(—w) for such test functions ensures that

/R dfTo)y(w)dw / fF(@do = f f@P(—w)deo

Floy (- w)dw—/ foy@do.

R
The uniqueness of the generalized Fourier transform gives the stated relation.

Note that 7, (R?) C G is the null space of (-, -)g by Proposition 8.10. With regard to
Proposition 10.19 it remains to show that the space Go = {g € G: g(&) =0,1 <k < Q}
is a Hilbert space of functions with reproducing kernel «. This is done in three steps.
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Step 1 k(-, y) is an element of G, for all y € R,
Obviously k(§,y)=0foralll <k<Qand y € R?. Next, «(-, y) has the generalized
Fourier transform

Q
k(- 1)\ (@) = D(w) (e“"’” =3 e ”’)
k=1
of order m /2. To see this we have to show that

/}Rd k(@ y)y(@)dw = fRd k(- ) @)y (@)do

for every y € S,,. By setting &g = y, 09 = 1, and oy = —pi(y), 1 <k < Q, Lemma 8.11
yields

0 0
8() =y () <e"’y v =Y pye ™ ”’) = 7@ ) e e Sy,
k=1

k=0

forall y € S,,. Moreover,

Y]
Bo)=7@+y) =Y (7@ +&).
k=1
Since k (-, y) = G(-, y) — [IpG(-, y) this gives
[
/}R K(w, Y)Y ()do = /}R <<I>(w -y - Z Pe(y)P(w — «’Ek)) Y(w)dw
d d =l

- / d(w)g(w)dw = / d(w)g(w)dw
[RLI Rd

Q
- /}R d(w) (e—"f’w -2 m(y)e"'ﬁ’w) y(@do.
3 k=1

Finally, k(-, )" /~/® € L,(R?) because

2
. A 2 e o Q0 .
/ de:/ P(w) ef""l“’—ZPk()’)f’Ekrw dw
RY O (w) R? =1
0 2
:/ D(w) Zakeﬂf{"’ dw
Rd o
Qo

= Q)7 Y o D(E — &) < 00

£,k=0

by Corollary 8.13.
Step 2 k is the reproducing kernel of Gy.



10.3 Native spaces for conditionally positive definite kernels 149

To show this we use the test functions g,(x) = (E/z‘[)d/2 e~%I3 from Theorem 5.20 again.
From our previous observations we know that the function

L o\
y(w) = (e"y 2= e W> 2u(w)
k=1

belongs to S,,.. Since |g¢(w)| < 27)~%? for all w € R? and gp(w) — 2m)~4? for £ — oo
we can conclude that

(f, k(- ¥))g = lim M?g(w)dw

=00 JRd 6((1))

Q .
Jlim | Flw) (e”’ v =3 Py ) T@)do
—o00 JRd et

lim f Flo)ye(w)dw
£—>00 Rd

lim/ f@)P(w)dw
t—00 Jpa

Y
jim [ f) (gz(w —9 =Y g su) do
d k=1

4

=) =Y PO E)
k=1

=f»

forall f € Gy.
Step 3 Gy is complete.
Suppose that { f,,} € Gy is a Cauchy sequence. Because

| 1(6) = fuO] < N1 fu = Fnllgre(x, )2, (10.6)

the sequence { f,,(x)} is a Cauchy sequence in R and we can define a function f by f(x) :=
lim,— o fu(x). On account of (10.6) the sequence f, converges uniformly on compact
subsets of R? and hence the function f is continuous. Next, note that || f, llg is bounded
since f, is a Cauchy sequence in Gy. From the fact that ® is slowly increasing and from

L O < 1 fullgr (e, x)

0 4
<c (q><0> 23 PG — )+ D pro)p (0)D(E — &)) ,

k=1 k=1

we can deduce that f is also slowly increasing. Obviously f satisfies f(&) = O0forl < k <
Q. Finally, since { f,,} is a Cauchy sequence in Gy, { f,,/ NES } must be a Cauchy sequence in
L>(R?) and must converge to a function g € L,(R?). It remains to show that g«/g is the
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generalized Fourier transform of f. To this end, choose y € S,,. From

AL

= /RI j%% ‘\/%y(w)‘dw
H Jn

. 1/2
75 8l ( /R ) d><w)|y(w)|2dw)

-0 forn — oo,

— g(w)

IA

we see that

/R f@P@do = lim /R @ do

lim / Fo(@)y (@)do
R4

n—o00

/}R d\/ D(w)g(@)y (@)dw.

This, together with the obvious fact v® g € LY°(R?\ {0}) shows that the generalized
Fourier transform of f is indeed «/gg Obviously f/ Vo = g € Ly(R%). Thus we have
shown that f € Gy and hence that G is complete. The given representation formula follows
from the reproducing-kernel property and the Fourier transform of « (-, y). O

10.4 Further characterizations of native spaces

With Theorems 10.12 and 10.21 we have already had two examples of equivalent repre-
sentations of the native Hilbert space. In this section we want to give several other charac-
terizations. We start with two characterizations for conditionally positive definite kernels,
continuing to use the notation of the previous section. After that we will give a characteri-
zation valid only for positive definite kernels.

The first equivalent formulation we want to give is based on finitely supported linear
functionals on C(£2) that vanish on P. To be more precise we form the set

N
Lp(Q) = {Avax = a8, : NeNweR" . x,... .2y e Q,
j=1

with Ay o x(p) =0forall p e P

and equip it with the inner product

N M
Ovaxs Marpr)o = D Y aiBe®(x;. yi).

j=1 k=1
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Obviously there is a one-to-one relation between Lp(2) and Fg(£2), given simply by
Lp(€2) = Fo(R), A= MO, ),

where A* means action with respect to the variable x. This shows in particular that A(f) =
WD, x), floforallA € Lp(R2)and all f € Fp(2), so that the norm defined on Lp gives
the operator norm if Lp(€2) is interpreted as a subspace of the dual space of Fg(2).

However, we do not want to exploit this relation explicitly any further; we shall use it
whenever it is appropriate. Instead, we will look at the space of all functions on which these
functionals are continuous.

Theorem 10.22 Suppose that ® is conditionally positive definite on Q with respect to P.
Define

G={feCE): IMNI = Crlrlle forall x € Lp(2)}.

This space carries the semi-norm

A
flo= sup [AC)]

rep@ Mo
A#0

Then we have No(2) = G and both semi-norms are equal.

Proof Suppose that f € Ng(R2). To show that f € G we first remark that for

Q
G(,x) = @(,x) = Y D(, &)pilx)
k=1

and a general A € Lp(€2) we have

0
A(G(, x) = A P(, x) — Z O, EOMp) = 1 (., x).
k=1

Using the reproduction formula f(x) = Ilp f(x) + (f, G(:, X)), given in Theorem
10.17 we find that
MS) = 2MTp f) + A (f, GG, X))Nae
= (f, MO0, )np@
= I flve@lr o,

and thus f is an element of G. Furthermore we have established that | flg < | f|n,@)-
Now let us assume that f is an element of G and that we want to prove that f belongs to
the native space. This f allows us to define a linear functional

Ff : Fo(2) —> R, )»XCD(', X) )“(f)v

which is continuous because of the definition of G. Hence Fy has a continuous extension
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to F(€2) and we can use Riesz’ representation theorem to represent this extension by
Fr(g) =(8, 5o forall g € Fo(S2).

Here Sf is the Riesz representer for this functional F . For proving f € N (€2) it suffices
to show that f and R(Sf) differ only by an element of P. To see this, we use the definition
R(Sf)(x) = (Sf, G(-, x))e and that for every i € Lp(2) we have u*G(-, x) = u* (-, x).
This gives
u(f — RSf) = u(f) — (Sf, W G(, X))o

= u(f) = Fr(w*G(, x))

= u(f) = Fr(w* @(-, x))

= u(f) — n(f)

=0.

If we specify that u = §,) then we end up with

Q
F@) = REHE + Y FEIPe().
k=1

Finally, since Sf € F¢(£2) we can choose a sequence A; € Lp(2) such that kdi(-, X) —>

Sf in Fo(R2). Hence A,;(f) = (Sf, AP, x))o = ISf (15 and [[A;lle = 1SS |lo for j —
00. This allows us to make the bound

Y Sf112

flg > lim 14,1 _ I1Sf e

imoo Aille  ISflle

= |f|/\/®(9)~
|

The previous result is not only interesting in its own right; it has also the following
consequence.

Corollary 10.23 The space No(S2) is independent of the particular choice of E =
{&1, ..., &0} The semi-norms for any two different choices are equal.

Our next characterization allows us to determine whether a function belongs to the native
space, simply by looking at sequences of interpolants. Thus it is numerically applicable
because it is based only on function values. For its proof we need a result that will also play
an important role in a later chapter.

Lemma 10.24 Suppose that X = {xy, ..., xy} € Q is P-unisolvent. Denote the unique
interpolant, based on a conditionally positive definite kernel ® and the set X, of a function
f € No(2) by sy x. Then we have

(f —S£Xs S)/\/m(Q) =0

or every s € span{®(-, x;) : x; € X} N Fo(R) + P. In particular, this gives
. p J J 8

(f = spxs Spx)Np = 0.
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Proof Any such function s can be written in the forms = A* (-, x) 4+ [1p(s) with a certain
linear functional A = Z?’:l a;8y; € Lp(S2). The reproduction formula of Theorem 10.17
gives

(f = s£0)) = p(f —srx)x) + (f —sr.xs GG, XN x € Q.
If we use A*G (-, x) = A*®(-, x), the fact that A vanishes on elements of P, and the fact that
sy, x interpolates f in x;, yielding A(f — s7,x) = 0, we can conclude that
0=2x(f—s£x)
= MIp(f —s5x) +(f —spx, AP, X))@
=(f —55x, Np©@)-
Finally, s, x satisfies the conditions imposed on s. O

For later reasons we state an immediate consequence.

Corollary 10.25 In the situation of Lemma 10.24 we have the estimates |5 x |ny@) <
[flno@ and | | = sgxIne@ < 1 INe@-

Proof According to Lemma 10.24 the functions f — s7,x and s s, x are mutually orthogonal.
As a consequence we can deduce the Pythagorean law

2 2 2
If = spxlva@ + 15xNe@ = 1 INa@»

which gives immediately both bounds. O

Theorem 10.26 Let ® be a conditionally positive definite kernel on Q with respect to P.

Denote by sy x the interpolant to a function f € C(2) based on a P-unisolvent X using

®. Then f belongs to the native space No(2) if and only if there exists a constant c ; such

that |s 7, x| ny@) < ¢y for all P-unisolvent X C Q. Moreover, in the case f € No(R2) the
smallest possible constant cy is given by | f |-

Proof If f € Ng(2), Corollary 10.25 shows that s £.x Vo) =< | fINp(), Which gives for
such an f the upper bound ¢y < | f|n;, (@) if ¢ is the minimal choice. Next, let us assume
s 7. xnp(@) < cy for all P-unisolvent X C . For an arbitrary

N
Avax = Y ;8 € Lp(),
j=1

we choose a P-unisolvent set ¥ © X and let s y be the interpolant on this set Y to f. Then
sr,y belongs to Na(Q2) and we have Ay 4 x(f — sfy) = 0. Thus we can make the estimate
ANex(O < AN ax(f = sp)l + AN x(syy)l
S MAvaxllo Isgyivee

< crllinvexllo-

As this holds for all Ay o x We have f € Ng(R2) and | fINe@ < ¢y by Theorem10.22. O
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Our next characterization is only for positive definite and not for conditionally positive
definite kernels. Moreover, we assume the set Q@ € R to be compact. We need some
preparatory results on embeddings.

Lemma 10.27 Suppose that Q@ € R? is compact and ® is a symmetric positive definite
kernel on Q. Then the native space Ng(R2) has a continuous linear embedding into L;(S2).

Proof Since @ is the reproducing kernel of its native space we have

Lf P =1(f, @C D)@ = 1 IR @ 1 PC D@ =1 13 @ P, x)

for every f € Ng(2) and x € Q. This implies that || /|1, < Cllfllrec with C? =
fQ ®(x, x)dx. The latter integral is finite because & is continuous and €2 is compact. O

Now we introduce the integral operator 7' : L»(§2) — L2(2), defined by
Tv(x) := / d(x, y)v(y)dy, veL)RQ), xe. (10.7)
Q

Obviously T v is continuous. But it is also an element of the native space.

Proposition 10.28 Suppose that ® is a symmetric positive definite kernel of the compact
set Q C R?. Then the integral operator T maps L(Q) continuously into the native space
No (). It is the adjoint of the embedding operator of the native space Ng(2) into Lr(S2),
i.e. it satisfies

(fs V@ = (fs TN feNs(Q), velLy). (10.8)
The range of T is dense in No(S2).

Proof We use the characterization of Theorem 10.22 to show that Tv € N (£2). Hence
we will pick an arbitrary A € L(€2) (recall that we do not have any side conditions), and we
see that

IMT V)| < V]l 1A PG, DLy < Clivliye 1Mo,

by Lemma 10.27. This gives |Tv|n, @) < CllvllL,@)- To prove (10.8) we start with an
f € Fe(2) and find, by the reproducing-kernel property, that

N N
(fi V@ = Zoej /Q D(x, xj)v(x)dx = Zaij(xj)
j=1 j=1

N
=Y a;(Tv, O, x)wa@ = (f: TON@
j=1

for all v € Ly(R2). Since F(2) is dense in No(£2) and Ny (S2) is continuously embedded
into L,(£2) the general case follows by continuous extension. The final statement is a
consequence of the general properties of adjoint mappings. The closure of the range of the
operator T is the orthogonal complement of the kernel of its adjoint operator. But this is the
whole space. O
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It is well known that in our situation the operator T : L,(2) — L,(2) is a compact
operator. Moreover, it satisfies

(Tv, V)1 = (Tv, TNy =0

for all v € L,(S2). For such an operator, Mercer’s theorem (see Pogorzelski [154] for exam-
ple) guarantees the existence of a countable set of positive eigenvalues p; > py > --- > 0
and continuous eigenfunctions {¢, },en S L2(€2) such that T'¢, = p,¢,. Furthermore, {¢, }
is an orthonormal basis for L,(£2) and the kernel ® possesses the absolutely and uniformly
convergent representation

D(x, ¥) = ) ouu(X)Pn(y)-

n=1

This allows us to derive our final characterization for native spaces.

Theorem 10.29 Suppose ® is a symmetric positive definite kernel on a compact set
Q C RY. Then its native space is given by

o0
1
No(@) =1feLy): )Y —I(f el <0 (10.9)
n=1 1"
and the inner product has the representation
21
(fowa= L@@ e f.8 € No(@). (10.10)
n=1 "

Proof Denote the set on the right-hand side of (10.9) by G and the inner product on the right-
hand side of (10.10) by (-, -)g. We start by showing that G € Ne(2) and || f v < I fllg
forall f € G. If f € G is given, f is continuous because

o =l ([ N\
DI ea@ea®] < (D =) (D palgn(x)]
n=1

n=1 n=1 Pn

Ifllgy ®(x, x).

Moreover, for A = Z;\/:] a8y, € L(R2) we find that

1/2 1/2
o0 ] o0
Ml < (Z P son)Lz(mV) (Z Pn |A<<pn)|2)

n=1 1" n=1

A

¥ e 12
=fllg (Z ooty pn%(x_/)%(xk))

k=1 n=1
N 12
= fllg (Z ajakcb(xj»xk))
k=1
= flgltle,

which leads to the desired result by Theorem 10.22.
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It remains to show that No(Q2) € G and that | fllg < || fllaw for all f € No(R).
To achieve this, we start by looking at the dense subset 7T(L»(2)) € No(2). For an
element f = Tv, v € Ly(2), we can conclude from the L, expansion of v that f =
Z:il Pn(V, @)Ly )@Pns S0 that (f, @), = n(V, @u)r,)- This allows us to calculate
its native space norm:

oo
”f”?\/‘a(g) =, Tv),@ = Z(M O (fs o)Ly

n=1

= Z —I(fs el

n=1 N

so that || - ||, and || - ||g are the same on T(L,(£2)). For an arbitrary f € Ng(2) we
choose a sequence { f;} C T(L»(2)) with || f — fjllxp@ — Ofor j — co.For N, j e N
we have the bound

N

1
Z —I(fj, e < 1 £ill v ()-
n=1 pn

Since f; converges to f the sum is uniformly bounded in j and N. Using the fact that the
native space is continuously embedded in L,(£2) and letting j tend to infinity gives therefore

N

1
Z ;|(f, o)ra* < 1 f v,

n=1 "1

Hence, we can let N tend to infinity also, which shows that f € G and || fllg < || fllnvp)s
this actually establishes norm equality. O

Picard’s theorem on the range of a compact integral operator gives also

Corollary 10.30 Suppose that © is a symmetric positive definite kernel on a compact set
Q C RY. Then the range of the integral operator (10.7) is given by

00 2
T(Ly(RQ)) = {f €LyQ): )y % < oo} .
n=1 n

This space will play a particular role in the context of improved error estimates for radial
basis function interpolants in Section 11.5.

10.5 Special cases of native spaces

In this section we want to take a closer look at the native spaces of two instances of basis
functions. In the first instance we investigate the compactly supported functions of Section
9.4. The other class of functions is provided by certain thin-plate splines and powers. It will
turn out that the native spaces are Sobolev and Beppo Levi spaces, respectively.

Let us start with the compactly supported functions @, x = ¢4 (|l - |2) from Chapter 9.
We know that such a function has a classical radial Fourier transform 6,1, x = Fabar(ll - l2)-
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It is our goal to show that this Fourier transform decays as (1 + || - ||2)~¢~%~!, which
means by Corollary 10.13 that the associated native space is the Sobolev space H*(R?)
withs =k +d/2+4+1/2.

We start our investigation by restricting ourselves to the odd-dimensional case. To this
end let us set d = 2n + 1 and m = n + k. With this we derive

Fabax(r) = Faraudiap) i1 () = Fomp1Gmy1(r)

’
— r—3m—2/ (r _ t)m+1tm+l/2‘]m71/2(l‘)df.
0

Thus we can use the representation (6.9) for bounding the Fourier transform.

Lemma 10.31 For every m € Ny there exists a constant C,, such that
Fomi1Gmi1(r) < Cpur ™72

forallr > 0.

Proof By Lemma 6.19 we know that 5, +1¢m+1(r) = By, fm(r)r_3”"2 with a certain
constant B,, and a nonnegative function f,, defined in that lemma. Thus, it suffices to show
that f,,(r) < Cr™. We now show by induction that, more precisely, f,,(r) < 2"+ /m!.
In the case m = 0 we have fy(r) = 1 — cosr, which obviously satisfies fo(r) < 2. Now
suppose that everything is settled for m > 0. Then

2m+l 2m+2

t"2dt = ———
m! (m+1)!

which completes our proof. O

m+1

’

Fur () = fo FulO folr — dr < /0

We want to point out that the constant C,, of the last lemma is given explicitly. Moreover,
even if this bound is valid for r > 0 it is only of interest for large r. For r close to zero we
know that F>,,1+1¢,+1 is bounded by a constant.

Next we turn to the lower bounds on F,,,4+1¢.,+1. Since F|¢; coincides, up to a constant,
with (1 — cos r)/r? there is no chance of getting a lower bound for this function. But in all
other cases, i.e. m > 1, it is possible.

Lemma 10.32 For every m € N there exist constants ry,, ¢, > 0 such that
—2m—2
]:2m+l¢m+1(r) > Cpl "

forall r > r,,. Moreover, Fp,1¢m+1 is strictly positive on [0, 00).

Proof The proof is by induction on m. Again we use the representation ;1111 (r) =
By fn (r)r—3"=2 of Lemma 6.19 and concentrate on showing that f,,(r) > ¢, forr > r,.
If m = 1itis easy to compute that

Si(r) :/0 Jo@®) for —t)dt =r + %rcosr — %sinr > %r — % > %r
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if r > 6. Hence we have found r; and c;. Now suppose that our statement is true for m > 1.
Then for m 4 1 we have

Jna1(r) = / S — cos(r — 1)l dt
0

2/ cmt™[1 — cos(r — t)]dt

'm

c ¢ "
m___m+1 _ m r;':Jrl — Cm / t" cos(r — r)dt
m+1 m+1 .

for r > r,,. We use integration by parts to bound the last integral via

IA

[ sin(r — ry)| +m

/ "V sin(r — t) dt

'm

,
/ t" cos(r —t)dt
rm

.

<rm"+ m/ "y

Tm

_.m m __ m __ .m

=r, tr r, =r".
Hence

Cm m+1 m Cm m+1 Cm m+1
S (r) = ——r"" —cpr™ — > r
m+ 1 m+ 1 2(m+ 1)

for sufficiently large r > 7,41

Since ¢,,41 is nonnegative and nonvanishing, F,, 1@+ is positive definite on R?"+!
according to Corollary 6.9. This means in particular that Fy,,+1¢,+1(0) > 0 by Theorem
6.2. Furthermore, the function f; is the (Laplace-)convolution of two nonnegative func-
tions with isolated zeros. Thus it has to be positive on (0, co). Finally f,, m > 2, is the
(Laplace-)convolution of a positive function with 1 — cos r and, therefore, also positive on
(0, 00). O

This finishes our investigations in the odd-dimensional case. Next we turn to even space
dimensions. To this end we setd = 2n, m = n + k, to get

,
Fabai(r) = Fantua(r) = r ="~ / =0 " gy () dr.
0
In the odd-dimensional case the functions f, defined by Laplace-transform conform-

ing convolution were an appropriate tool for determining the Fourier transform of ¢y, .
Something similar is true in the even-dimensional case. Let us define

go(’)=/ Jo(t)dt,
0

&m(r) :/ Sm—1(r = D)go(®)dt, m>1,
0

with f,, from Lemma 6.19. Then the result analogous to Lemma 6.19 becomes
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Lemma 10.33 Ler A,, = 2" (m + 1)!T'(m + 1/2)//7 for m € N. Then
-7:2m¢m+1(r) = Amrismilgm(r)-

Proof The proof is similar to the proof of Lemma 6.19. On the one hand, the Fourier
transform can be written as Fop@pi1(r) = r " h(r) with h(r) = f; hi(r — Dha() dt,
hi(0) = " and hy(t) = t" J,,_1(¢). The Laplace transform of 4, is given by Lh(r) =
(m + 1)1 r~™=2 Setting v = m — 1 > 0 in Lemma 5.7 yields

2"T'(m + 1/2)r

so that the Laplace transform of 4 becomes

Lhz(}’) =

Am

Lh(r) = pmL(] f p2ynti2

On the other hand, we know by Lemma 5.8 that

0 1
/0 Jo(t)e™"dt = A+
so that
oo t 1 Sy 1
Lgo(r) =/0 /0 Jo(s)ds e™"dr = ;/O Jo(s)e™"ds = rd+ )12

Moreover, f,,— has Laplace transform L f,,,_1(r) = r7"(1 + r2)~"™", as shown in the proof
of Lemma 6.19. This gives

1

l:gm(r) = —rm+l(1 n r2)m+1/2
and h = A,,gm by uniqueness, which completes the proof. O

This iterative representation of the Fourier transform F5,,¢,,+1 together with the bounds
on f,, allow us to find upper and lower bounds for F,, ¢, +1.

Lemma 10.34 For every m € N there exists a constant C,, > 0 such that
Fom@mi1(r) < Cpur 2"~

forall r > 0. Moreover, for m > 2 there exist an r,, > 0 and a c,, > 0 such that
Fom@mr1(r) = cpur 2"

forall r > ry,. Finally, Fom@m1 is strictly positive on [0, 00).

Proof By Lemma 5.9 we know that lim,_, o, go(#) = 1. Thus there exists a o > 0 such that
1/2 < go(t) < 3/2 for all t > ty. Since g is also continuous this means in particular that
go is bounded. Moreover, from the proof of Lemma 10.31 we know that f,,_;(t) < Ct"~ I



160 Native spaces

which gives
[gm ()| S/ [ fn—1(l|go(r — Dldt < C[ " ldt = Ccrm,
0 0

Since FopPu+1(r) = Amr_3”’_'g,,, (r) this proves the upper bound.

For the lower bound we first choose an ry > 0 such that go(r) > 1/2 and f,,_;(r) >
Cr™~! for all r > rq/2. The latter was done in the proof of Lemma 10.32. Since both go
and f,_; are nonnegative we can obtain the estimate

r/2 r/2
gm(r) > / fmfl(t)go(r —tydt > C/ tmildl‘ >Cr"
ro/2 ro/2
for sufficiently large r > ry. The use of Fay i1 () = A,ur " g, (r) finishes the proof
for this part.

Finally, since go(r) > Oforallr > Oand f,,—;(r) > Oor f,,—1(r) =1 —cosrifm > 2or
m = 1 respectively, g,, has to be positive on (0, 00). Since ¢, is nonnegative, F, P41
is positive definite on R>", showing that F»,,¢,,+ has to be positive at zero and hence
everywhere. O

Now that we have complete control over the Fourier transform of ¢, we can state and
proof our main result.

Theorem 10.35 Let ®; 1 = ¢pa (|| - ||2) denote the compactly supported radial basis func-
tion of minimal degree that is positive definite on R? and in C**. Let d > 3 ifk = 0. Then
there exist constants cy, ¢ > 0 depending only on d and k such that

i1+ [loll) ™ < Dy (@) < (1 + o]
for all v € RY. This means in particular that
N¢‘1,k(Rd) — Hd/2+k+l/2(]Rd)’
i.e. the native space for these basis functions is a classical Sobolev space.

Proof The preceding results show that both upper and lower bounds are valid for suffi-
ciently large arguments r = ||w|2, say [|w|2 > ro. But as 5,”( is a continuous and positive
function on R¢ the bounds have to hold with possibly worse constants on the whole of R¢.
Finally, the native space is the Sobolev space by Corollary 10.13. O

After investigating the native spaces for the compactly supported functions of mini-
mal degree we now turn to another famous class of radial basis functions, the thin-plate
splines. To be more precise we want to characterize the native spaces of the functions
Dy = pae(]l - l2) with € > d/2 and

rd/2—1¢
MHH, for d odd,
22d/2(¢ — 1)!
¢d,€(r) = (_1)Z+(d—2)/2 (1011)

2-d
220 17d2(f — I(E — d/2)!r logr for d even.
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From Theorems 8.16 and 8.17 we know that ®, , has a generalized Fourier transform
Dy (@) = 2n) o)

of order m = ¢ — [d/2] + 1, so that ®,, is conditionally positive definite of order m.
In contrast with our earlier convention but in accordance with Proposition 8.2 we will
consider @, as a conditionally positive definite function of order ¢ and its generalized
Fourier transform as of order ¢ for the rest of this section.

The reason for choosing the constant factor in this way is given by the simple structure of
the Fourier transform, which leads to the fact that ®, , is a fundamental solution of the iter-
ated Laplacian. Remember that the Laplacian operator is defined to be A := Z;’:, 8%/ 8x§
and the iterated Laplacian to be A := AA*!,

Theorem 10.36 Letd, ¢ € Nwitht > d/2.If ©4¢ 1= ¢a.¢(| - |2) with the univariate func-
tion ¢4 from (10.11) then

(-1)* fR , Py (@Ag(x — w)do = g(x)

forallg € S and x € RY.

Proof Define y by its Fourier transform () := A‘g(x — w). Then y is given by

y(w) = 2r)"? / Algx — e @dy
R
— eiXTw(AZg)/\(w)
= (=D ™ |w]3 F(w),

showing that y € S,; for every g € S and x € R?. Hence, we can invoke the theory on
generalized Fourier transforms to derive

(1) / Gy (@A g(x — w)do = 2r) 2 / ¥ g (w)dw = g(x),
R4 R4

using the special form of the Fourier transform of &, , mentioned earlier. O

Next we introduce Beppo Levi spaces. To this end we have to define the generalized
derivative of a continuous function.

Definition 10.37 Ler f € L11°°(Rd) and a € N? be given. A function f, € L11°°(Rd) is the
generalized (or weak) derivative of f of order « if

/ F@)D*y(x)dx = (-1 f JaX)y (x)dx (10.12)
R4 Rd

is satisfied for all y € C°(R?). We will use the notation D* f := £, again.
For £ > d /2, the linear space

BL((R?) :={f € C(RY) : D*f € Ly(R?) for all |a| = £}
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equipped with the inner product

. e "
(f, &)BL,(R?) = Z J(D £ D),y
la=¢ &*

is called the Beppo Levi space on R? of order £.

Beppo Levi spaces can be introduced in a much more general way. The most general
version starts with Do = C3°(82), 2 S R4, and its dual D&, the set of distributions. The
advanced reader will know what type of continuity is meant in the definition of the dual
space. Next, one chooses a separable complete space E of functions defined on €2 and
defines the Beppo Levi space to be

BL(E) :={f € Dy : D*f € E forall || = ¢}.

Inour specific situation it is possible to show that the two definitions coincide, i.e. BL, R =
BL,(L>(R%)). Details may be found in the papers by Deny and Lions [45], Duchon [47],
and Light and Wayne [108] and the other sources on Beppo Levi spaces cited in the
references.

The choice of weights £!/«! in the definition is motivated by expressing ||x ||§‘Z as ||x H%Z =
le:l £1x%* /. This also means that we can express the iterated Laplacian by A¢ =
Zla\:l £!D* /!, Both will be important later on.

The rest of this section is devoted to showing that the native space of &, is the Beppo
Levi space BL,;(R?). We start by showing that the null space of the semi-inner product is
the space of polynomials of degree less than £. Clearly, ¢_;(R%) is in the null space of
(-, )BL(r¢- It remains to prove that they are actually the same.

Lemma 10.38 Suppose that f € BL,(R?), £ > d/2, satisfies D* f =0 for all |a| = £.
Then f is a polynomial of degree less than £.

Proof We use approximation by convolution. Let g € CS°(R?) be nonnegative and even,
having integral one. Set g, := n?g(n -) as usual. Then we know from Theorem 5.22 that
f * g, € C®(RY) and D(f * g,) = f * (Dg,). An application of the definition of the
generalized derivative gives immediately D*(f * g,) = (D“ f) * g, = Ofor || = £.Hence
foralln € Nand all |«| = € the C*°-functions D*(f * g,) are zero, implying that f % g, €
o—1(R?) for all n. Moreover, f * g,(x) tends to f(x)asn — ooforallx € R?. Butif we fix
x € R the latter convergence means the convergence of the coefficients of the polynomials
f * g, € m_1(R?). Thus f is also a polynomial of degree less than ¢. O

The next step is to show that the native space of the thin-plate splines &  is contained in
the Beppo Levi space BL,(R?), and that on No,, (R?) both semi-inner products are equal.
To this end we will use the Fourier transform representation of Mg, ,(R?) given in Theorem
10.21.

Proposition 10.39 For ¢ > d/2 let 44 = ¢a (|| - ||l2) be the thin-plate spline defined in
(10.11). If ®44 is considered to be a conditionally positive definite function of order £
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then the associated native space is contained in the Beppo Levi space of order ¢, i.e.
No,,(RY) = No, iz, @ey(RT) € BLo(RY), and the semi-inner products are the same on
this subspace.

Proof Let g, be the monomial g,(x) = x%, o € Ng. Suppose that f € ./\/'(p‘,j(R“' ) is given.
Then f possesses a generalized Fourier transform f of order £/2 with w > f (w)llwllﬁ €
L,(R?). This means that the function fg, is in L,(R?) for all || = £. Hence we can define

fu@) == (Fgu(i))" (@) € Ly(R?)

for |a| = £, using the inverse L,-Fourier transform. Since f is real-valued, so is f,. Since
quy" € S¢ for y € CZ(RY) we find that

/R @) = /R (Fauli) @y (@)do
= /R ) o) io) 'y ()do
= (=1 /R , Flo(D*y)Y (o

= (=D fR fDDy(x)dx,

showing that f, is the generalized derivative of f. Hence, the native space is contained in
the Beppo Levi space.
Finally, for f, g € Ng,,(R?) we have

1l
(f, L = Y — |, faga()dx

la]=¢

=3 = | M@z@do
ol JRd

la]=¢

O e
=Y — | foz@)iof (-iv)fds
ol JRrd

Ja|=¢
= fR J@g@)lo|3 de

f@g) ,
—_—dadw
R DPg(w)

= ([, 8N, ,®).-

= (2m)™"?

O

It remains to show that the inclusion is actually an identity. One might be tempted to
define a generalized Fourier transform f for a function f from the Beppo Levi space by

o Ju()
flo):= oy
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Unfortunately, it is not at all simple to prove that this is indeed the generalized Fourier
transform in our sense. The reason for this is that y (w)/(iw)* is not even continuous at zero
fory € S,.

Hence, instead of proving that the Beppo Levi space is a subspace of the native space we
will show that every function from the Beppo Levi space that is orthogonal to all functions
from the native space with respect to the semi-inner product of the Beppo Levi space is
actually a polynomial of degree less than £.

The first step in this direction is to reformulate Theorem 10.36 in a way appropriate for
Beppo Levi functions. To this end we want to employ density results. But since the Beppo
Levi space is only equipped with a semi-inner product, we have to be more precise about
what we understand by density.

Theorem 10.40 Let ¢ > d /2. Then the set C(C)’O(Rd) is dense in BLy(R?). To be more precise,
for every f € BLy(R?), every compact subset K of R?, and every € > 0 there exists a
function g € CS°(R?) such that

(D) If =8l <€
(2) 1D*f — Dgll L ey < € forall |a| = ¢.

Proof 1In the first step we will show that the set C®°(R?) N BL,(R?) is dense in BL,(R?)
in the sense specified in the theorem. This follows immediately from approximation by
convolution. If we use f * g,, where {g,} is a sequence from Theorem 5.22 then we know
from this theorem that f * g, € C®(R?) and that property (1) is satisfied for sufficiently
large n. Moreover, since D¥(f * g,) = (D% f) * g, and D f € L,(R?) for |a| = ¢, the
same theorem tells us that f * g, € BL,(R) and that the second property is also satisfied
for sufficiently large n.

Hence, it remains to show that the functions of C*°(R?¢) N BL,(R?) can be approximated
by CS°(R?) functions in the stated way. Let us assume that f € C®(R?) N BLy(RY) is
given. We choose a function ¥ € C§° (R?), which is identically one on ||x|[» < 1,identically
zeroon ||x||; > 2, and has maximum absolute value one, and set f; := ¥ (-/k) f € Cgo(]Rd).
Then Leibniz’ rule gives

1

D°fix)= ) (Z) 7 DY/ D f () + Y (x /D f (),
0#£B<a

so that

o
kK 0#£B=a B

1/2
+ (/ |D°‘f(x)|2dx> )
[lx N2>k

The last expression clearly tends to zero as k — oo, which settles the second property,
while the first one is obvious. O

o o 1 o—
ID*f = D* fill wey < = Y ( )||Dﬂx/f||Lw(Rd>||D 2 FllLawe
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This density result allows us to draw some very important conclusions.

Theorem 10.41 Suppose that A = Z;V:l A8y, is an element of L,  (wa), i.e. M(p) =10
for all p e o1 (RY). Set =2 (- —y)= Z}\jd)d,l(' —x;). Then for every f €
BL¢(RY), £ > d/2, and every x € R? we have the representation

N
Z)»jf(x —x;) = (fs falx = ))BL,RY) (10.13)
=

2!
= > o [ Do s = .

|a|=¢

Proof One consequence of Proposition 10.39 is that f;, which is an element of the native
space, is contained in the Beppo Levi space. Hence D f;, is an element of L,(RY). Since
also D* f € L,(R?) by definition, it follows easily from Lemma 5.21 that the right-hand
side of (10.13) is a continuous function.

Next, let us first assume that f € Cg° (R?). Then the definition of generalized derivatives,
the choice of coefficients in the semi-inner product, and Theorem 10.36 give

2!
DS f = DpLen = Y o} /d D® f(x — y)D® fi(y)dy

la|=¢

¢!
= > o [ = npma

ee|=t

= [ a' e = s

N
= ijf Dg0(y — xj)Alf(x = y)dy
=1 IR

N
=(=D" ) hflx—xp),

Jj=1

proving the result in this case. For a general f € BLy(R¢) we fix x € R and choose a
compact set K C R? such that x — xj € K for 1 < j < N. For an arbitrary € > 0 we
choose a g € CS°(R?) according to Theorem 10.40. Then two applications of the triangle
inequality show that the absolute value of the difference in the two sides of (10.13) can be

bounded by € (Zyzl [Aj]+ |fA|BLk(R¢:)), which tends to zero with € — 0. O

This is the major step in proving several things. For example we can now readily conclude
that every function f from the Beppo Levi space is slowly increasing; we will derive a
representation formula for f and finally we will show that such a function has to be in the
native space of the thin-plate splines.

To achieve all these goals we use a now familiar concept. Suppose that E =
{&1,...,80} C R? is 7ro_ (RY)-unisolvent and p, . . ., Po is a Lagrange basis of o1 (RY)
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with respect to E. Next we define for a fixed x € R? the functional

0
Ai=8_, — Z Pr(x)d_g,,
k=1

which is very similar to the functional () employed earlier. To see that A annihilates
polynomials we can simply apply it to the basis g := pi(—-). Denote by I, the projection
M =z, @)

Theorem 10.42 Let ¢ > d/2. Every function f € BLy(R?) has the representation
@) =Tef() +(f, GC gL, x €RY

Here G is the function (10.4) for the basis functions specified in (10.11). This representation
means in particular that f is slowly increasing.

Proof The special choice of A made in the paragraph before this theorem together with
Theorem 10.41 shows that, for w € R?,

Qo
flo+x)=Y " pi0)f@+E)+(f fil® = DpL,e (10.14)

j=1

with

Q
fil@) = @gp(@+x) = Y pi(x)Pa (@ +E;).
j=1

But the definition of G, the fact that @, , is even, and the fact that the generalized derivative
of @4, coincides with the usual one outside zero allow us to conclude that DY G(w, x) =
(=) D £, (—w). Hence setting w = 0 in (10.14) gives the stated representation.

Finally, since the Beppo Levi semi-norm and the native space semi-norm coincide on the
native space we see that the Beppo Levi semi-norm of G(-, x) grows at most as a polynomial
in x and so does f. U

Theorem 10.43 For £ > d/2 let ®4 ¢ = ¢a(|| - ll2) be the thin-plate spline defined in
(10.11). If ®44 is considered to be a conditionally positive definite function of order £
then the associated native space is the Beppo Levi space of order €, i.e. Ny M(R") =
Noyy e @iy(RY) = BLy(RY) and the semi-inner products are the same.

Proof We know already that the native space is contained in the Beppo Levi space. More-
over, since the semi-norms coincide on this subspace the native space is a complete subspace,
meaning that every Cauchy sequence has a (not necessarily unique) limit. This in turn means
that if the native space is not the whole Beppo Levi space then there must be an element
f € BLy(R?) that is orthogonal to the native space. The representation formula stated in
Theorem 10.42 now gives f € o1 (RY). O



10.6 An embedding theorem 167

10.6 An embedding theorem

Since in several cases the native space of a conditionally positive definite kernel does not
coincide with a classical function space, it is important to know properties such as the
smoothness of the functions in the native space in advance, given only information about
the kernel itself. By construction we know already that N(Q2) € C(R2). Now we want to
see how the smoothness of the kernel is inherited by the native space.

To this end, we use the forward differences already introduced in (7.4), with a slightly
different notation,

k (k
A fr)i=Y (=D (;) [+ jh),
Jj=0

and their multivariate versions
X X,
Aa,hf(x) = Aa]"h ce Aadlyhf(x)

for @ = (a1, ..., 09)" € Nd and x = (x1, ..., %s)" € R?. Here A%/ means that A acts
with respect to the x;-variable. From the property of the univariate forward difference, it
obviously follows that

tim b= Ay f () = D*(x)
if f is |a|-times continuously differentiable around x.

Lemma 10.44 Suppose that @ € RY is open and that ® € C*(Q x Q) is a conditionally
positive definite symmetric kernel with respect to P € CX(Q). Then the function G(-, -) from
(10.4) is k-times continuously differentiable with respect to the second argument, and for
every x € Q and every a € Ng with |a| < k the function DS G(-, x) is in N (). Here D3
means that we differentiate with respect to the second argument.

Proof Obviously G possesses k continuous derivatives with respect to its second argument.
Moreover, DSG(:, x) isin C K(€2) as a function of the first argument for all |«| < k and all
x € Q.

Fix a € Ng with || <k and x € Q. Define the function ¢, := Ay 1/,2G(:, x). Here,
the additional 2 in the subscript means that A acts with respect to the second argument of
G. Since G(-, x) € Fp(R2) for every x € Q, we also have ¢, € Fp(2). Hence we have a
representation of the form ¢, = A}, ®(-, y) with A, € Lp(S). The definition also ensures
that ¢,(y) = A, ®(y, u) — D5G(y, x). Now, ¢, is a Cauchy sequence in F(£2). Because

(@ns Om)o = Ak, @(u, v) - DYD;G(x,x) =: ¢
for m, n — oo, we have

I@n — @nlle = l@alld + 10ml% — 2(@n, @u)o — c+c—2¢=0
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for m, n — oo. Thus there exists a ¢ € F¢(€2) with ||¢ — ¢,|l¢ — 0 for n — oo. For this
element we make the computation

Ro(y) = (9, G, Mo
nll)nolc(gan’ G(’ y))<1>

nlinolo(w”(y) - H7’§0/1(y))
DYG(y, x) — T (DS G(u, X)) lumss

showing that D§ G (-, x) indeed belongs to N (£2). O

With this lemma at hand it is easy to prove the smoothness of the functions belonging to
the native space of a smooth basis function.

Theorem 10.45 Suppose that Q € R? is open and that & € C*(Q x Q) is a conditionally
positive definite kernel with respect to P C CH(Q); then Np(Q) C CHRQ) and, for every
f € No(RQ), everya € N‘é with |o| < k, and every x € Q, we have the representation

D f(x) = D*Tlp f(x) + (f. D3G(. X)) ) - (10.15)

Proof We will show (10.15) by induction on |«|. This will obviously prove the existence
and continuity of the derivatives. For |¢| = 0, formula (10.15) obviously coincides with
the representation in Theorem 10.17. For |«¢| > 0 we can assume that «; > 0. Hence, with
B=(a;—1, a, ..., az)T we find that

1
D f(x) = lim o [D” f(x + her) — DP f(x)]

1
= lim [DP(Tp f)(x + hey) — DP(TTp f)(x)]
: Lrs 8
+ lim <f, = [DLGC.x +hen - DEGC. X)D,v@m)
= D*(Mp ) + (£, DIGC X)) 0

using the fact that the derivatives of G(-, x) exist by Lemma 10.44. As usual ¢; denotes the
first unit vector in R¥. O

In the situation where @ is a positive definite function (i.e. a translation-invariant kernel)
which is in L;(R?) and which has a Fourier transform that decays like (1 4 | - ||%)"" we
know by Corollary 10.13 that the native space is actually the Sobolev space H*(R?). If
s > k + d /2 then the Fourier inversion formula guarantees that ® € C 2k(R%) and Theorem
10.45 shows that H*(R?) € C*¥(R?), which is Sobolev’s embedding theorem.

10.7 Restriction and extension

In this section we want to investigate how the native space N (£2) depends on the region
Q. To do this we have to be more careful about the notation, even if sometimes it seems
excessive.
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Let us assume that we are dealing with two regions that satisfy Q; € Q, C RY. We are
now interested in the questions whether the functions from Ng(£21) have an extension to 2,
and whether the restrictions of the functions from N (25) to € lie in Np(S2;). Of course,
both should be true and we shall prove the results in this section.

The crucial point in everything we do here is that we assume that the set E is already
contained in 2, that P € C(£2,), and that ® € C(2; x 2,) is a conditionally positive
definite kernel with respect to P on 2. In the case of a positive definite kernel we need
only the last assumption, that ® is positive definite on the larger set.

Theorem 10.46 Each function f € No(21) has a natural extension to a function Ef €
N@(Qz). Furthermore, |Ef|/\/’®(gz) = |f|/\/‘®(91).

Proof Since Q) C 2, we have a natural extension € : Fg(21) — Fp(£2;), simply by eval-
uation of a function f € Fe(£2;) at points from €2, also. Since the norm || f||¢,o, depends
only on the centers and coefficients of f, we have obviously |l€f|lo.o, = || fllo.o,. Hence
€ is an isometric embedding that has an continuous extension € : F¢(21) — Fo(22).
This allows us to construct the extension operator E : No(221) — No(2») in the follow-
ing way. Every f € N(2;) has the representation f(x) = Ip f(x) + Rg,(f)(x), with
f € Fo(21). For this f and x € Q; we define

Ef(x) = lp f(x) + Ro,(e /)(x).

The function ITp f has an obvious extension to €2,. This is why we did not use different
notation. Moreover, for x € €, we have

Ro,(€ /)(x) = (ef, Ga,(-,x)o.0, = (€f, €Ga,(-,x)o.q,
= (fs GQ,('s X))cb,sz,,

showing that Ef(x) = f(x) for f € No(21) and x € Q1. Finally, for two functions f, g €
No(R2)) the identities

(Ef, EDnp) = €F, D)oo, = (f, Doa, = (fs ©Nacr)
show that E is isometric. O

Now let us turn to the restriction of a function f € Ng(€2,) to Q. By Theorem 10.26,
f1821 € No(£2)) if there exists a constant cy such that [A(f|21)| < cslA||le,q, for all
A € Lp(£21). Since obviously Lp(£21) € Lp(2) it is true that there exists a constant ¢ ¢
with

AFI2D] < crlMllen, = crllillo.q,,

giving f|Q2) € No(q,). Finally,

A A
1@y = sup oL~ A

= Sup = 1/ Ine2)
repen Mo, — retpen Ao, o
2£0 1#0

finishes the proof of our next theorem.
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Theorem 10.47 The restriction f|Q2 of any function f € Ng(S2,) is contained in No (1)
with a semi-norm that is less than or equal to the semi-norm of f.

The concept of restriction and extension has an interesting implication in the case of
Sobolev spaces. We already know that the native space over the entire R? of a basis function
with algebraically decaying Fourier transform is a Sobolev space. Now we are able to show
that this is also true for “nice” regions 2 C R4, To this end, let us recall that the Sobolev
space H¥(Q), k € N, for a measurable set  can be introduced using weak derivatives. It
consists of all functions f € L,(€2) having weak derivatives in L,(€2) of order || < k. The
norm on H¥(Q) is then given by ””Ilzk(ﬂ) =" <k 1D“ull7,q)- In the case @ = R it is
known that this norm is equivalent to the norm previously defined by Fourier transformation.

Corollary 10.48 Suppose that ® € L(R?) has a Fourier transform that decays as (1 +
Il - I|%)*k, k e N, k > d/2. Suppose that @ C R? has a Lipschitz boundary. Then Ng(Q2) =
H*(Q) with equivalent norms.

Proof Every f € Ng(R) has an extension Ef € Ngp(R?Y) = H*(RY). Thus we have f =
EfIQ e HXQ) and | fll g ) < 1Ef lnt@e < clESf |ny@e) = cll £l vy ). However, for
a Lipschitz-bounded region it is well known (see Brenner and Scott [31]) that every
function f € H*(2) has an extension E f € H*(RY) = Np(R?) satisfying ||Ef||Hk(Rd) <
Cllflla+- Thus f = E f|Q € No(R2) and

I f N < ||Ef||/\/q,(]Rd) = C”Ef”H"(]R“) < cll fllaxg)-
O

Note that we also have extensions for functions from N (£2) for more general regions €,
including regions with corners and even finite regions. This stands in sharp contrast with
the Sobolev case, where regions exists that do not allow an extension to R?. In this sense
we have found another reason why native spaces are generalizations of classical Sobolev
spaces.

10.8 Notes and comments

The concept of reproducing-kernel Hilbert spaces is well established in numerical analysis.
Apparently the first deep investigation goes back to Aronszajn [2] in 1950. Another good
source is the book [129] of Meschkowski from 1962. More recently, in particular in the
context of radial basis functions, the overview articles [167, 168] from Schaback and the
inventive work [112, 113] by Madych and Nelson have given much help in clarifying
the theory. Another valuable resource on native spaces is the diploma thesis [98] by Klein.

The results on the native spaces of compactly supported functions were initially given
by the present author [191, 192].

There is a huge number of publications on Beppo Levi spaces, which turn out to be the
native spaces for thin-plate splines. The interested reader might have a look at the work of
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Duchon [47-49], of Meinguet [122-126], of Deny and Lions [45], and of Mizuta [135,136].
Despite these numerous publications, the approach given in the present text seems to be
new.

The fact that the smoothness of a given kernel is inherited by its native space, as pointed
out in the Section 10.6, will be of some importance later on, when we try to solve partial
differential equations using radial basis functions. We will also see that the radial basis
function interpolant approximates not only the function but also its derivatives.

The extension theorems presented here are rather simple but sufficient in many situations.
But when the best approximation order has to be found, it seems that deeper results are
necessary. First steps in this direction can be found in Light and Vail [107].
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Error estimates for radial basis function interpolation

The goal of this chapter is to derive error estimates for the interpolation process based on
(conditionally) positive definite kernels. As in the case of classical univariate spline interpo-
lation, it is possible to show that convergence takes place not only for the function itself but
also for its derivatives. The error estimates are again expressed in terms of the fill distance
hx,@ = sup min ||x — x;|l2,
xeQ¥j€X

so that convergence is studied for iy o — 0. We will concentrate on error estimates for
functions coming from the associated native space of the basis function of interest.

11.1 Power function and first estimates

In this section we will be concerned with estimating the difference or error between an
(unknown) function f coming from the native Hilbert space N (£2) of a (conditionally)
positive definite kernel ® and its interpolant sz, x. Once again, we will assume the ker-
nel to be real-valued and symmetric throughout the entire chapter. The starting point
for error estimates is to rewrite the interpolant in its Lagrangian form. To this end we
use the following notation. Let A = (®(x;, x;)) € R¥*N and P = (p;(x;)) € RV*2 where

D1, ..., po form a basis of P. Furthermore, let R(x) = (®(x, x1), ..., Plx, xy)T € RY
and S(x) = (p1(x), ..., po(x))T € RC. Finally, let ¢/’ € R" denote the jth unit vector.
If X = {x1, ..., xy} is P-unisolvent then the linear system

A P\ [aW po)
(rr 0) ()= ()
is uniquely solvable. The associated functions
N o
= ot x)+ Y B pi
i=1 k=1

obviously satisfy u;‘-(xi) = §;; and belong to the space

N N
Vy =P+ {Zaj®(~,xj) Y aipx)=0.pe 73} )

j=1 j=1

172
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Since every function f from Vy is uniquely determined by f|X, we must have f =
3 flx j)u’; for such a function. This gives the first part of the following theorem.

Theorem 11.1 Suppose that @ is a conditionally positive definite kernel with respect to P
onQ C RY Supposethat X = {xi, ..., xy} C Qis P-unisolvent. Then there exist functions
u;‘ € Vyx such that ujf(xk) = 8 jk. Moreover, there exist functions v;f, 1 <j < Q, such that

*
(AT P> (u (x)) _ (R(x)). (1.1
P" 0 v*(x) S(x)
Proof 1t remains to prove the existence of v*(x), so that u*(x) and v*(x) together sat-
isfy (11.1). Since P C Vy, we must have p = Y p(x;)u; for all p € P, or equivalently
PTu*(x) = S(x). Hence we are left with showing that Au*(x) — R(x) € P(R?), because
this guarantees the existence of v*(x). As (11.1) has a unique solution, this finishes the
proof. Since the orthogonal complement of P(R?) is given by the null space of P7, it
suffices to show that y 7 (Au*(x) — R(x)) = Oforall y € R with PTy =0.But PTy =0
means that y is admissible, i.e. y” R(x) € Vx. This means in particular that

N N N
Y R =Y w5y R =Y ui(x) Yy @i, x;) = y" Au*(x)
j=1 j=1 i=1

or, equivalently, that y T (Au*(x) — R(x)) = 0. O

Note that the functions v’;(x) have the remarkable property vj/(x;) = 0. As a consequence
of Theorem 11.1, we are now able to rewrite an interpolant as

N
spx(x) =Y faux), (11.2)
j=1
which will be very useful later on. Furthermore, we see that the function s, x is as smooth
as the functions 7 and these functions inherit by (11.1) the smoothness of ® with respect
to the first argument and that of . Thus if ® is in C* with respect to the first argument
and P € CK(Q) then so is 54, x. Of course, this also follows immediately from the standard
representation of s x.

In what follows, we will write D* R(x) for (DY ®(x, x1), ..., DY ®(x, xn)T, where DY
again denotes the derivative with respect to the first argument. We use D* S(x) in the same
way, component-wise.

A formal differentiation of (11.1) then gives

A P D*u*(x) D*R(x)
T = . (11.3)
P 0 D*v*(x) D*S(x)
Under the assumptions that ® € Czk(Q x ), that P C C"(Q), and that @ € R¥ is open,

we know that both f € Ng(2) and s/ x are in C k(€2). Thus it seems to be natural to ask for
error bounds not only on f — s, x but also on the derivatives D*(f — s x) for |a| < k.
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Definition 11.2 Suppose that Q@ C R? is open and that ® € C**(Q x Q) is a conditionally
positive definite kernel on Q with respect to P € CK(Q). If X = {x1, ..., xy} C Q is P-
unisolvent then for every x € Q and a € Nﬁ with |a| < k the power function is defined by
) N
[P;;f}((x)} = DYDY D(x,x) — 2 DU (x) DY D(x, x,)
j=1

N
+ Y D uf () DU (x)(x;, x;).
ij=1

This function plays an important role in our estimates, as we shall see very soon, but first
we will have another look at the power function. If then we keep x, X, ®, and « fixed then
we can replace the constant vector D%u*(x) € RY by an arbitrary vector u € R". Thus let
us define the quadratic form Q : R¥ — R by

N
Q) = DYDS®(x,x) —2 Y u;DyP(x, x;)

Jj=1
N
+ > uiu i P(x;, x;), ueRV,
i,j=1
If necessary, we will also write Q4 (u) = Q(u). With this definition the power function
becomes

[Pe)] = apu .

and we will exploit this fact later on. But to do this we need a different representation of
the quadratic form Q.

Lemma 11.3 Suppose that ® € C**(Q x Q) is a conditionally positive definite kernel with
respect to P C CK(Q). Fix x € Q. Now suppose that u® € R" is a vector that satisfies
> ; u;a) p(x;) = D*p(x) for all p € P. Then the quadratic form Q has the representation

N 2

DYG(-, x) — Zu;’)‘)G(-, X;)
J=1

Q) = , (11.4)

No ()

where G is the modified kernel from (10.4).
Proof The proof involves some simple, straightforward, but unfortunately also lengthy
and tedious computations. The right-hand side of (11.4) can be expressed as

N
|DSGC. 03 @ — 2 Do (DSGC. ). G x))

Jj=1

N
+ ) u®u (G x). G, ) e -

ij=1

Thus we have to compute these three types of inner products. Since G(-, x) =
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O, x) — Zanl Pn(X)D(-, &,) we have immediately

Qo
(GC. 3. GC.x)) iy = P X))+ Y Paa)pelxYP(Er. &)
nt=1

Qo Qo
=Y oaGDPCxj, E) = Y pex)P(EL ).
n=1 (=1

(o)

Moreover, using > u;" p(x;) = D*p(x) gives

Z u®u§? (GG, %), G, X)) v

N ©
= Z u U ) =23 D" pau O )

Jj=1 n=1

Q
+ Y DO pa(0) D pe(0) (e, &)

n =1
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Next, from Lemma 10.44 we know that DY G(-, x) is in the native space and has therefore

a representation

Qo
DSG(y,x) =Y _ D§G&, )pu(y) + (DSG(-, x), G, Ynac@
(=1

by Theorem 10.17. This allows us to compute the second term in our initial sum. The

()

definition of G(-, -) and the reproduction property of the coefficients u; " yield

N
Do (DSGC ), G x) vy

=

N N 0
Zu )D"‘tb(xj,x) ZZM?)DQM(X)‘D(X/,&)

Jj=1 j=1 n=1

Q [
=Y DUpux)D§BE, x) + Y D pe(x)D* pu(x)D(Er, &),
=1

nt=1
Finally, since D G(-, x) € No(R) € C¥(RQ), Theorem 10.45 allows the representation

DYDYG(y, x) = D*(TpDE G, ))(y) + (DSGC. x). DIGC. 7)) . -

Hence, after some manipulation we get

(DSG(, x), DG, %)) v,

Q
= D D5 d(x, x) — Z D* p(x)DYD(x, &) — Y D pe(x)D§ (&, x)
n=1 (=1

Qo
+ ) D pe)D pu () D Ee, En).

nt=1
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Summing up all the terms and using Df®(x,y) = D§®P(y, x), we derive the stated
result. -

The reader should have noticed that the technical intrincacy in the proof of the preceding
lemma was caused by two things. If, however, one uses a positive definite kernel and is only
interested in the error of the pure function and not its derivatives, one immediately has the
representation

N 2

O, x) = Y u; b, x))

=1

Qu) =

No(Q)

N N
=D, x) =2 ) u; 0, x) + Y win;d(xy, xj).
j=1

j= i,j=1

After this preparatory step it is easy to show how the power function is involved in finding
error estimates for our approximation scheme.

Theorem 11.4 Let Q C R? be open. Suppose that ® € C*(Q x Q) is a conditionally
positive definite kernel on Q with respect to P C C¥(Q). Suppose further that X =
{x1,...,xy} € Q is P-unisolvent. Denote the interpolant of f € No(Q2) by sfx. Then
foreveryx € Q and everya € Ng with || < k the error between f and its interpolant can
be bounded by

|D® f(x) — Ds 1 x(X)] < PSYCOIfIna()-

Proof Using representation (11.2), the Taylor formula from Theorem 10.17, and the re-
production property of the coefficients, which follows from (11.3), we see that

N
Dspx(x) =Y f(x)D"u}(x)

~

Il
M=

D (x) [Tp £ (x) + (f, GG, X))
1

~.
Il

N
= D*(Mp f)(x) + (f, Y DG, x,-))
J= Na(@)

However, Theorem 10.45 allows us to write
D* f(x) = D*(TTp f)(x) + (f, DY G-, X))Np()

which, together with the previous equation, yields

j=I1

N
IDY(f — sp.x)(X0)| = <f, DSG(,x) = Y D*ui(x)G(, xj)>
No(@)

IA

| f Ino() Py ()

by Lemma 11.3. O



11.2 Error estimates in terms of the fill distance 177

This theorem allows us to split the error between the unknown function f from the native
space and its interpolant into two terms, one term (the power function) being independent
of f and the other independent of the centers X. Our further investigation of the error will
be done by bounding the power function in an appropriate way. Therefore, we regard the
power function again as a function of the coefficients 7 (x).

Theorem 11.5 Let Q € R? be open. Suppose that ® € C**(Q x Q) is a conditionally
positive definite kernel on Q with respect to P C CX(Q). Suppose further that X =
{x1,...,xn} € Q is P-unisolvent. Define for x € Q and o € Ng with |a| < k the func-
tion @ : RN — R:

N N N
Q(u) := DY DS d(x, x) — 22 u;jDY®(x, x;) + Z Zu,-u_,-d)(x,-, xj).

j=1 i=1 j=1

The minimum of this function on the set

N
M = {u eRY: Zujp(xj) = D%p(x) forall p € 73}

j=1
is given by the vector D*u*(x), where u*(x) is found in Theorem 11.1:
QA(D*u*(x)) < Qu) forallu e M.

Proof 1f we adopt the notation of the paragraph before Theorem 11.1 we see that the
function Q takes the form Q(u) = D} D5 ®(x, x) — 2uT"D?R(x) + u” Au and has to be
minimized over M = {u : PTu = D*S(x)}. Since M is nonempty and A is positive definite
on My := {u : PTu = 0}, Lemma 4.2 yields that this quadratic minimization problem has
a unique solution that can be computed using Lagrange multipliers. Doing so, we derive
the equations

Au + Pv = D*R(x),
PTu = D*S(x),

where v denotes the Lagrange multiplier. This system is uniquely solved by the functions
u = D*u*(x) and v = D*v*(x). O

Having this minimal property in mind, the idea is to bounding the power function by
plugging into Q an appropriate vector #® (x) instead of the optimal vector D*u*(x).

11.2 Error estimates in terms of the fill distance

As indicated in the last section we now want to bound the power function by replacing the
optimal vector D“u*(x) appropriately.

We will do this first for conditionally positive definite functions and then for arbitrary
symmetric conditionally positive definite kernels ® € C?*(Q x ). In both situations we
assume the general finite-dimensional subspace P to be Tm_1(RY).
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In the following, the region © € R? is always assumed to be open. But this is only
necessary for estimates on the derivatives. In the non-derivative case €2 has only to satisfy
an interior cone condition. Moreover, if €2 is not open, the estimates on the derivatives hold
in every interior point.

For our estimates we will employ local polynomial reproductions as we have studied
them in Chapter 4, in particular in the form of Theorem 3.14. But here we need a more
general version covering also derivatives. Again, norming sets are the key ingredient. To
use them, we first have to derive a Bernstein inequality for multivariate polynomials.

Proposition 11.6 Suppose that Q@ € R? is bounded and satisfies an interior cone condition
with radius r > 0 and angle . If p € my(RY) and a € Ny is a multi-index for which || < £
then

2 x|
1D Pl < (rsin@) IpllLo)-

Proof Obviously the result is true if « = 0 or D* p = 0. Hence let us assume that Vp
is not identically zero. The maximum of ||V p(x)||» over € occurs at some point x; € Q.
Obviously, the maximum is positive. Let n = V p(xp)/ |V p(xy)ll2. Because x); € , the
cone condition, which holds for Q as well as 2, implies that x,, is the vertex of a cone
C C Q having radius r, axis along a direction &, and angle §. We may adjust the sign of
p so that n”& > 0. By looking at the intersection of the cone C with a plane containing
& and 7, we see that there is a unit vector ¢ pointing into the cone and satisfying n”¢ >
cos(r/2 — 6) = sin . It follows that

ap ap
IVl = —(xar) < cscO—(xp).
an ke

However, fort € R, p(t) := p(xp + t¢) is in wy(R). In particular, it obeys the usual Bern-
stein inequality on 0 <t <r:

L 202 _ 202
PO = — max |p(1)] = —IpllL@-
r o tel0.r] r

Since §'(0) = (8p/d¢)(xp), we have for all x € Q
2

ap
IVl < VPGl < CSCQ&(XM) < 1Pl

rsinf

Noting that [(dp/9x;)(x)| < ||V p(x)|l> and, keeping track of polynomial degrees as we
differentiate, we obtain the stated result. O

With this result, Theorem 3.4 together with Theorem 3.8 immediately yields the global
version of a polynomial reproduction.

Proposition 11.7 Let p € m:(R?) and let Q be bounded, satisfying an interior cone condi-
tion with radius r > 0 and angle 6. Suppose that h > 0 and the set X = {x1,...,xny} S Q
satisfy
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rsinf
1) h < ————,
(1) b= 4(1 + sin 6)¢?

(2) for every B(x, h) C Q there is a center x; € X N B(x, h);
then for any multi-index a with || < £ there exist real numbers af (x) such that
N
D*p(x) =Y at(x)p(x))
j=1
for all p € my(R?Y). Moreover;

N 2{2 x|
Da;‘(xnsz( : ) .
= rsin6

As pointed out after the proof of Theorem 3.8, the second condition is automatically
satisfied if & is the fill distance hx . Using again the fact that a cone satisfies a cone
condition itself, we can proceed as in Section 3.3 to derive the following local version.

Theorem 11.8 Suppose that Q@ C R is bounded and satisfies an interior cone condition.

Let £ € Ny and o € Ng with |a| < €. Then there exist constants h, c(la) , c;a) > 0 such
that for all X = {x1, ..., xn} € Q with hx o < ho and every x € Q there exist numbers

30, T (x) with

(1) YL @90)p(x;) = D p(x) for all p € m(RY,
2) Y @0 < o”hy's,
(3) @) =0 if Ilx = x;ll > 5" hx.a

Note that the construction ensures also the following important property. Given x € €2,
at most those ﬁ'(jo’) (x) that belong to a center x; in the cone associated with x are nonzero.
Hence all line segments that connect one of these x; with either x or another x; are also
contained in 2. This allows us to apply Taylor’s formula later on.

Our first main result deals with (conditionally) positive definite functions. After it, we will
also deal with (conditionally) positive definite kernels. To treat the case of a (conditionally)
positive definite function we have to remark that an even function ® : R? — R that is in
C*(R?) gives rise to a symmetric kernel ®(- — -) that is in C2*/2/(R? x R?). Moreover, we
do not have to restrict ourselves to open regions €2, even in the case of derivatives, because
any function f € Ng(R) is the restriction of a function from Ng(R?) € C¥/2/(RY).

Theorem 11.9 Suppose that ® € CK(R?) is conditionally positive definite of order m. Sup-
pose further that Q@ € RY is bounded and satisfies an interior cone condition. Fix € > m — 1.
For a € Ng with lo| < k/2 and X = {x1, ..., xn} C Q satisfying hx .o < hy the power
Sfunction can be bounded:

2
[Pi@)] = 10200 - D* p(0)]

(@) —la| ) o o
+ 2¢, hX,Q”D ®—-D p”Lm(B(O, ©hy.a)

a 2]
+ I:C(l )]zhx,s“z ‘”d) - P”LM(B(O, ZC(“‘hX,Q))’ (115)

2
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where p is an arbitrary polynomial from ;(R?) and the constants h, c(l ), cg *) come from

Theorem 11.8.
Proof Let us introduce the notation

Ag = [D*®(0) = D* p(0)],
1= 1D = Dl (50, iy.a)
A2 =P = Pl 50, 2600
The polynomial reproduction property of the functions #® from Theorem 11.8 gives
27 ) u(a)D“p(x —x;) = (=) D* p(0) and, when applied twice,

3 EPTE0ps — 1) = (-1 ZL’?‘”@“)D“P(X -
ij=l

= (—1>'“'D2“p<0>.
Hence, if we rewrite the quadratic form Q with ® replaced by p, we find that Q, @@y = 0.
Thus we can bound the power function:

[Pix@] = Qu@®) — Q@) = Q@)

< Ao+ A Z 0] + Az Z [ 0o |14 )|

ij=
< Ao+ 2c5“>h;‘°“ + [P hy s A,
This holds for any p € my(R¢). In the preceding estimates we have in particular employed

the other two features of the coefficients. O

Note that if one is interested only in function values, the error estimate of the last theorem
becomes

(0)
Pd> x(¥) = (1 +c ) 1®— Pl (zo. 260y 0))"
Furthermore, in the case of a radial function ® = ¢(|| - ||») one can use univariate polyno-
mials p € m,(R) as multivariate polynomials via p(|| - ||§) € m2,(R?), which leads to the
estimates

PLy) < (1477 max  160) — ptr)

0<r520(20)hx_9

=(1+)°  max 1) = p(s)l. (11.6)

0<s<[2¢)Ph} o
Theorem 11.9 allows us to state our first generic error estimate.

Definition 11.10 The space C \’j (RY) is defined to consist of all functions f € CK(RY) whose
derivatives of order k satisfy D* f (x) = O(||x||3) for ||x]l» — O.
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Theorem 11.11 Suppose that ® € Cl’j(Rd) is conditionally positive definite of order m.
Suppose further that Q € R? is bounded and satisfies an interior cone condition. For
o€ Ng with |a| < k/2and X = {x1, ..., xn} € Q satisfying hx o < ho we have the error
bound

(k+v)/2—
ID*f — D% pxllio@) < ChX’QV/ ‘a‘|f|/\/q,(sz>-

Proof We fix £ > max{m — 1, k — 1} and take p as the Taylor polynomial of ® of degree
k—1,ie px) =35 D ®0)xP/B!. Since ® € CK(R?), we immediately get for any
vl <k

|DPY B (&) Kyt
——xP| < Chy ',

y _ pv
|DY ®(x) = D" p(x)| < 5
|Bl=k—ly| :
provided that ||x || < chy q.Inserting the corresponding results for y = 0, «, 2 into (11.5)
gives the desired result. O

Remark 11.12 [t is worthwhile to note that the error estimate of the preceeding theorem
holds for every h < hy which satisfies the condition that every ball B(x, h) C Q contains
at least one point from X. Moreover, hy = r/C, with C, from Theorem 3.14. Finally, the
constant C depends on Q2 only via its cone condition angle 6.

We end this section by discussing the kernel case.

Theorem 11.13 Let Q@ C RY be open and bounded, satisfying an interior cone condition.
Suppose that & € C*(Q x Q) is conditionally positive definite with respect to 1,,_(R?).
Denote the interpolant to f € No(Q) that is based on the 1,,_;(R?)-unisolvent set X =
{xi,...,xn} by syx. Fixa € Ng with |a| < k. Then there exist constants hy, C > 0 such
that

ID” f(x) — D% x(0)] < CCo()' PR E flany ¥ €,

if hx.q < ho. The number Cq(x) is defined by

Co(x) := max max |DfD;<I>(z, w)|.
Wﬂ.v‘eNgM Z,weQNB(x, C;’z)hx‘g)
[ +Ivl=

and the constant C is independent of x, f, and .

Proof We will make use in the following of two Taylor expansions. In both cases we keep
the first argument w € €2 fixed and expand the function with respect to its second argument
around w. Moreover, we have to ensure that the line segment between w € Q and z € Q is
also contained in 2. Fix v € Ng with |v| < k. The first expansion is

DYDY d(w, w)(

Did(w, 7) = z—w) + R(w, z, ),

|
|B1<2k—|v| B!
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with remainder
ﬁ v v
Dy Di®(w, §,, )
R ¥4 _ B
R(w, z,v) := Z 7/3! (z —w)”.
1B1=2k—||

Here, 5,‘;12 is a point on the line segment between w and z. Similarly, we have the second
expansion,

DEY o (w, w)
Dy ®(w, z) = Z 27’(2 —w)’ + Sw, z,v).
|Bl<2k—]|v]| B!

This time the remainder takes the form

B+v v
S(w, z,v) ;= W(z —w)?
|Bl=2k—|v]| :
with iy, on the line segment between w and z.

We have to bound the power function to achieve the desired result. To this end we use
the vector u := %®(x) from Theorem 11.8 with an £ > max{2k — 1, m — 1}. Moreover, by
the remarks made after Theorem 11.8, we know that for a fixed x € €2 all x; relevant to the
construction are contained in the cone associated with x. Hence all line segments between
x; and x or x; and another x; for these x; are contained in 2. The power function can be

bounded by [Péff;((x)]2 < Q(u), and the latter is given by
Q(u) = DY DYD(x, x) =2 ) " u; DFD(x, x;) + it B(x;, x).
i iJj
The summation is always over only those indices j with u; # 0. The first Taylor expansion
used twice gives

Q) = Dy D3 ®(x, x)

DD
—ZZuJ-< Z “m(xj—x)ﬁ-i-R(X,xj,a))
J

|
1Bl<2k—la| B!
8
Dy O(x;, x;)
+) wiu; ( > ZT(x, —x)f + R(x,-,xj,O)) .
ij 181<2k :

An application of the reproduction property of the coefficient vector u together with an
application of the second Taylor expansion yields

Q(u) = DYD5®(x, x) —2D5 DY P(x, x) —2 Z ujR(x, xj, o)
J

D5 (i, x1)
+Zui Z 27()6—)6[)64'2“;'”/'1?(%7%,0)

!
i |Bl<2k—|e| ’8 i,j

= —D{D§d(x,x)— » u; (2R(x,xj,a) - Zu,-R(x,-,xj,O))

J i

+ ) ui [D§ (. x) — S(xi, x,0)].
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Since D§ ®(x;, x) = DY ®(x, x;), a final application of the first Taylor formula and another
application of the reproduction property of the coefficient vector leads finally to

J

1

Qu) = — Zu.,- (R(x,xj, o)+ S(xj, x, o) — Zu,—R(x,-,xj,O)).

However, we know that 3 ; u;| < c(la)h;g. Moreover, because [|x — x;l, < hy o and
lxi —x;ll2 < ZC;a)h x.o we see that the first two remainder terms can be bounded by
CCq,(x)hilfgal and the last term also by CC¢(x)h§é;2‘a|, using the bound on the ¢;-norm of
the coefficients again. This gives for the power function Péf;((x) < CCo(x)Y 2h§}'§‘ I'and
hence the desired result. O

The reason for the special treatment of the number Cq is that in many cases it al-
lows an improvement over the O(h*~1%!) order, as we will see very soon. Moreover, if all
derivatives of ® of order 2k are continuous on € x Q then Ce(x) is uniformly bounded
on .

Moreover, the assumption that X is 7m—1(R?)-unisolvent is automatically satisfied if
hx.q < ho. The latter condition was mainly made to allow unique polynomial interpolation
in a subset of X for polynomials of degree at most £ > m — 1.

Finally, in the case of a function ®, the number C4(x) has the form

Co(x) = max ||D/3<1>||Lm(3(01 2@ (11.7)

¢y hx.e))

and is obviously independent of x.

11.3 Estimates for popular basis functions

It is time to apply the general result of Theorem 11.11 to those basis functions that have
accompanied us so far. Our first application deals with basis functions of infinite smoothness.
Without a closer look at the involved constants we immediately get an arbitrary convergence
order.

Theorem 11.14 Let ® be one of the Gaussians or the (inverse) multiquadrics. Suppose that
® is conditionally positive definite of order m. Suppose further that Q@ € R? is bounded
and satisfies an interior cone condition. Denote the radial basis function interpolant to
f € No(Q) based on ® and X = {x1, ..., xy} by spx. Fixa € Ng. For every £ € N with
£ > max{|a|, m — 1} there exist constants ho(£), C; > 0 such that

D f(x) = Dspx()] < Celty &1 fInace)
for all x € Q, provided that hx o < ho(£).
To derive spectral convergence orders it is crucial to study how the constants sy(¢) and
C, depend on £. We will discuss this in more detail in Section 11.4.

In the case of basis functions with a finite number of continuous derivatives it is important
to know the exact Holder class C¥(R¢) to which they belong.
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Lemma 11.15 Ler O(x) = ||x||§ with B > 0, B & 2N. For every a € Ng there exists a
homogenous polynomial py g € 7o /(R?) such that
D®(x) = pap(x)lx]5~
for every x # 0. In particular, there exists a constant c,, such that |D* ®(x)| < ¢y ||)c|\§7|0t|

for every x # 0, showing that ® € Cffﬂw l(]R").

Proof The proof is by induction on the length of «. For |a| = O there is nothing to show.
Now assume that |o| > 1. Without restriction we can assume «; > 1. Define y = (o) —
1, ay, ..., )T Then there exists a homogeneous polynomial p, g of degree |y| such that

D®(x) = %DV@()C)

a _
= 5 [Prsles ]

d
( ””’(x)||x||2+<ﬂ 2|y|>xlpyﬂ(x)) g5~

2]a
= pa.,s(x>||x||§ e,

The polynomial p,, g is indeed a homogenous polynomial of degree |«|, because the deriva-
tive of a homogenous polynomial of degree ¢ is a homogenous polynomial of degree ¢ — 1,
and the product of two homogenous polynomials of degree ¢ and k is a homogenous poly-
nomial of degree £ + k. O

The following theorem is an immediate consequence.

Theorem 11.16 Suppose that @ € R? is bounded and satisfies an interior cone con-
dition. Let ®(x) = (—1)8/?] ||x||§, B > 0, 8 &€ 2N. Denote the interpolant of a function
f € No(RQ) based on this basis function and the set of centers X = {x1,...,xy} € Q by
sf,x. Then there exist constants hy, C > 0 such that

1D f(x) — D% x| < ChY & flans ¥ €9,
Jor all a with |a| < ([B] — 1)/2 provided that hx o < hy.

The next family of functions at which we want to look are the compactly supported functions
D45 = ¢ax(ll - |l2) constructed in Chapter 9.

Theorem 11.17 Let ®4; = ¢q (|l - ||2) be the functions from Theorem 9.13. Suppose that
Q C R is bounded and satisfies an interior cone condition. Denote the radial basis function
interpolant of f € /\/}p‘,vk(Q) based on @4 and X = {xy,...,xn} S Qby sy x. Then there
exist constants C, hy > 0 such that

|D® f(x) — D% rx(0) < CH S fllwco

for every a € Ng with |a| < k and every x € Q, provided that hx o < hy.
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Proof From the estimates on the Fourier transform of ®,; we already know that ®,; €
C?(R9). Moreover, we know that ¢, ; € C*(R) by construction. Hence, since ¢, 4 is also
apolynomial on 0 < r < 1 of degree ¢ := |d/2] 4 3k + 1, this means that exactly the first
k odd coefficients of this polynomial must vanish. Thus we have

2 % 241 ¢
Gax(r) =ag+ axr® + -+ + ayr™ + ayr* T 4+ ar

for 0 < r <1 with certain coefficients a;. Taking p(k) = ao + azllxllg +--- 4 a2k||x||§k
shows | DF(Dyx — p)x)| < Cpllx [ ! for |8] < 2k by Lemma 11.15. Thus Theo-
rem 11.9 gives the stated result. O

Once again, we point out that convergence for the compactly supported basis functions is
gained by keeping the support radius fixed while the fill distance tends to zero. This means
in particular that the advantage of the compact support gets more and more lost. In the
end, the compactly supported basis functions act like globally supported ones. In contrast
with this nonstationary setting, one could be tempted to use a stationary approach, i.e. to
choose the support radius proportional to the fill distance. In this setting the bandwidth of
the interpolation matrices is approximately constant, at least for quasi-uniform data sets.
The price for this stationary setting is that we cannot conclude convergence from estimates
on the power function. To be more precise, suppose we scale a basis function ® with support
in the unit ball B(0, 1) by &5 = ®(-/§). Then it is easy to see that the power function scales
as Py, x(x) = Po x/5(x/8) with X/6 = {x1/8, ..., xn/8}. Since obviously we also have
hxs,0 = hx sa/8 we can see that

PN
P%,x(X)SC( 8 ) ,

which will not tend to zero if § is chosen proportional to 4. Of course, we have to take
into account that the native space norm to ®; varies also with §. But numerical examples
show that the interpolation error does not tend to zero for 4 — 0. Nonetheless, the error
goes down to a certain threshold and remains constant afterwards. This effect is sometimes
called approximate approximation (see for example Maz’ya and Schmidt [119]) and needs
further investigation in this context.

The distinction between stationary and nonstationary settings plays a particularly impor-
tant role for interpolation on a grid. For example, in [155] Powell takes the stationary point of
view and shows that the “Gaussian fares badly”, since Gaussian interpolation does not even
provide uniform convergence. However, in [156] Ron makes a more general investigation,
which covers the nonstationary setting also, and he concludes that spectral convergence
holds for Gaussian interpolation. Hence when reading articles on approximation on a grid
one should always keep this distinction in mind.

If only one interpolant has to be computed, which in general will be the case in applications
(in contrast with numerical testing), the choice of the right support radius of a compactly
supported basis function is thus a delicate question. In a later chapter we will introduce
numerical methods that try to take advantage of the compact support and yield convergence
nonetheless.
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Our final example deals with the approximation power of thin-plate splines.

Lemma 11.18 Ler ®(x) = ||x||%k log ||x || with k € N. For every o € N‘é there exist ho-
mogenous polynomials py i, qax € rr|a‘(Rd) such that

DUD(x) = (Do s (X) + Gop(x) log [lx[|2) 13>

for every x #0. In particular, there exists a constant c, such that |D*®(x)|
< ca(1 4+ 10g X [)Nx[5" for every x # 0, showing that & € C*~'(R?).

Proof The proof is again by induction on the length of «. For || = O there is nothing
to show. Now assume || > 1. Without restriction we assume again «; > 1. Define y =

(@1 — 1,2, ..., q)". Then there exist homogeneous polynomials p, x, g, of degree |y |
such that
)
DY®(x) = —— D’ d(x)
3X1
3 —
= Bixl [(Py.k(x) + gy (x)log ||x||2) ”x”;k 2|y|]
Opy.k
= ( 8; ONIx113 + gy x()xs + 2k — |V|)Py,k(x)x1>
1

a —la
+ ( ;}:lk Ollxl5 + 2(k — |V|)X16]y,k(x)> log ||xH2:| ||x||§(k lal)

= (Pak() + qax () log [lxl2) llx 3.
The polynomials pq «, gux are homogenous by the same arguments as those given in the
proof of Lemma 11.15. ]

If we proceed as in the case ¢(r) = r? to get estimates for thin-plate splines, we could
bound the derivatives of order 2k — 1 by
C -
ID*®@)| = € +log ¥ I1xll2 = —llxl;™
for every € > 0. This gives the bound
2
[ng((x)] < &hzk—e—ﬂfx\’
' €

which is not the full order we have in mind. Hence the obvious application of Theorem
11.11 is not appropriate in this case. The reason for this is mainly the use of the Taylor
polynomials. Instead, we have to use Theorem 11.9 directly.

Theorem 11.19 Suppose that @ C RY is bounded and satisfies an interior cone condition.
Let ®(x) = (—1)k+! ||x||%k log ||x ||2. Denote the interpolant of a function f € Ng(2) based
on this basis function and the set of centers X = {xy, ..., xn} € Q by sy x. Then there exist
constants hy, C > 0 such that

D f(x) = D*s 1 x ()] < Chy g fInace)

forall x € Q and all a with |a| < k — 1, provided that hx o < ho.
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Proof Seth = hx q.Letus denote the right-hand side of (11.5) by F(p, h). Next we define
the bijective map T : mp(R?) — w5 (R?) by

Tp(x) = h™* p(hx) — |x|3* log h.

Since ®(x/h) = h*d(x) — h=2* ||x||§k log h we have

O(x) = p(x) = h* (@(x/h) = Tp(x/h)
for every p € myu(R?), giving

DP®(x) — DP p(x) = h* 71 (DP d(x/h) — DP Tp(x/h))
for every 8 € N‘é with | 8| < 2k — 1. This means in particular that
D¥®(0) — D* p(0) = h*29(D**(0) — D**Tp(0))

and, moreover,

1D*® — Dap”Lw(B(O,c;”'h))
= sup [D®(x)— D*px)|
llxllz<cs”h
= p¥*ll sup  |DY®(x/h) — DTp(x/h)|
lIxlla<cs”n

= h%*-ll qup | D*®(x) — D*Tp(x)|

llxlla<c5”

_ 1, 2k—|af o a
= WD D — DTpll, g 0

Finally, by setting £ = max{m — 1, 2k} in Theorem 11.9 we obtain

2
[Péf_‘;((x)] < inf F(p.h)

pemy(RY)

= p#2elnf  F(Tp, 1)
pemy(RY)

= p2%=2einf  F(p, 1).
pemy(RY)

The last infimum is a constant, which proves the stated bound. O

Let us summarize our results on bounding the power function in the following way. For
every basis function we have found a function F such that

P3 ¢(x) < F(hy.g), x € Q.

The basis functions together with their functions F are collected in Table 11.1. The function
F is given only up to a constant that may depend on €2, d, and & but not on X. The
spectral convergence results for Gaussians and (inverse) multiquadrics will be obtained in
Section 11.4.
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Table 11.1 Upper bounds on qu,’ x interms of h

P(x) = ¢(r), r = x| F(h)
Gaussians e a>0 e—clloghl/h
multiquadrics (MQs) (=D 4+, B>0,B&N oh
inverse MQs @+, B <0 o/
powers (=DP2P B >0,8 ¢2N b
thin-plate splines (—=D)*'r*logr, keN h2
compactly supported bak(r) J2k+1

functons

11.4 Spectral convergence for Gaussians and (inverse) multiquadrics

In Theorem 11.14 we saw that interpolation by Gaussians and (inverse) multiquadrics leads
to arbitrarily high algebraic approximation orders for functions from the associated native
space, i.e.

¢
If = srxllie@ < Cehy ol flne@

holds for every £ € N. Itis now our goal to conclude also even spectral convergence orders,
ie.

1f = spxliee < e " flaa@ (11.8)

with a certain constant ¢ > 0. To this end we have to study how the constants g, ¢y, ¢2
depend on the polynomial degree £. For example, if we use the result on local polynomial
reproduction given in Theorem 3.14, which was based on norming sets, we know that a
possible choice is hy = ¢g /Ez, ¢ =2, co = 302, where ¢, ¢3 are constants independent of
£. The analysis to come will show that this allows error estimates of the form

If = srxllae < Ce VM| o). (11.9)

To gain the full spectral order given in (11.8), however, we need a local polynomial repro-
duction that allows /¢ and ¢, to depend linearly on 1/¢ and ¢, respectively. To achieve this
we have to sacrifice something, namely the uniform bound on ¢;. We will see that it does
not really matter if this constant grows even exponentially in €.

The following result specifies what we have just stated. Unfortunately, it does not seem to
have such an elegant proof as the other results on local polynomial reproduction that we have
encountered so far. The only known proof is based on some deeper results from algebraic
geometry and the theory of nondegenerate points. To give the proof here would exceed the
scope of this text. The interested reader should have a look at Madych and Nelson [114]
for details. But let us point out again that the somewhat weaker estimates given in (11.9)
follow easily from Theorem 3.14 and the proof of Theorem 11.22 below.
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Proposition 11.20 Define y; =2 and y; = 2d(1 + y4—1) ford = 2,3, .... Let £ and q be
positive integers with g > y4(£ + 1). Let Q be a cube in RY. Subdivide Q into q¢ identical
subcubes. If X € Q is a set of N > q¢ points such that each subcube contains at least one
of these points then, for all p € m,(RY),

2dya(e+1
Il < 7V pllL. -

This result allows us to state a new version of a local polynomial reproducing process.
For simplicity we restrict ourselves to cubes W (xp, R) = {x € R? : ||x — x¢lloo < R}.

Theorem 11.21 Let Q = W(xg, R) be a cube in R?. There exist constants cy, c; > 0
depending only on Q such that for every £ € N and every X = {xy,...,xy} € Q with
hx o < co/t we can find functions u; : Q2 — R satisfying

(1) Z;.V:] uj(x)p(x;) = p(x) forall x € Qandall p € e (RY),
(2) Y0, luj(x)| < D forall x € Q,
(3) uj(x) =0ifllx — xjll2 > calhx .

The constant yy is defined in Proposition 11.20.

Proof Letq := ys(£ + 1)and h := hx q. Define

2R _ 2R . Co

3 Bpe+1) e

If h < hy then we can find for every x € 2 a cube W, of side length 3h¢g that is completely
contained in © and has x as one of its corners. This cube can be divided into ¢g¢ subcubes
of side length 34. Hence, the interior of each of these subcubes contains a ball with radius
h, namely the ball centered at the center of the subcube. But this means that each of the
subcubes contains at least one point from X. Proposition 11.20 gives, withY = X N W, =
{y-oym)s

]’lo =

IPlzwowy < 7 HVlplliiiey,  pem@®?).
This allows us to invoke Theorem 3.4 to find functions u}‘ W, >R, 1<j <M, such
that
M
> wmp) =pG»),  yeW., pem®R),
Jj=1

and
M
Dl <, ye W,
=1

Hence, if we define the functions u; : @ - R, 1 <k < N, by

W@, ifxo=
0 otherwise,

up(x) := {
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we see that the first two stated properties are satisfied. For the third property we only have
to remark that u;(x) # 0 means that x; = y; for a certain index j. But since x and y; lie
both in the cube W, they have a separation at most /dg3h =: ¢,Ch. O

With this result at hand it is easy to establish spectral convergence for Gaussians and
multiquadric-like functions.

Theorem 11.22 Let Q be a cube in RY. Suppose that ® = ¢(|| - ||2) is a conditionally
positive definite function such that f := ¢(/~) satisfies | fO(r)| < £!M* for all integers
> YLy and all r € [0, 00), where M > 0 is a fixed constant. Then there exists a constant
¢ > 0 such that the error between a function f € No() and its interpolant s x can be
bounded by

I —spxliae < e "2 flnvu@ (11.10)

for all data sites X with sufficiently small hy g.
Moreover, if f satisfies even | fO(r)] < MY, the error bound can be improved to

If = spxlla@ < et £y q), (11.11)
whenever hx q is sufficiently small.

Proof From the estimate (11.6) we have the bound

Pq%,x(x) <[ +ca@nPIf = pllioo, seeari

forx € Qif h = hy o and p € m,(R). We have already indicated that the constants ¢y, ¢,
from the local polynomial reproduction depend on £ = 2n. If h < ¢(/(2n) then we can use
the constants ¢;(2n) = €247 +D and ¢,(2n) = 2c,n from Theorem 11.21. Moreover, if
we take p to be the Taylor polynomial of f around zero of degree n then the first assumption
made on f gives

If("“)(f)lt

n+l1 < (Mt)n+1.
(n+ D!

[f() — p@)| <
Hence, we can further estimate that

2 2dyq(2n+1)\2
Py x(x) < (14707 f — PliLoo.163m202
< 4D (C 22y
< (logdtddynt (o, p2 2yt
+1
(eCz)n (C1n2h2)n+l
= (Csn2h2)™H,

IA

where the C; denote the appropriate constants. The latter estimate holds uniformly of course,
for x € Q. Next, define ¢4 := min{cy/2, 1/+/eC3}. Then we choose n so that ¢4 /(n + 1) <
h < c4/n, which gives

Pd%,X(x) < e—(n+l) < e—u/h.
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This establishes (11.10) with ¢ = ¢4/2. Tosee (11.11) we just have to remark that the second
assumption on f now leads to

(C3n2h2)n+l

Pix() < (n+ D!

Stirling’s formula from Proposition 5.2 yields
1 e n+l
< 1 )
e = (57)

Pg x(x) < (eC3nh?)"*!.

so that

Hence, if we now define ¢4 := min{cy/2, 1/(eC3)} and choose n in the same manner as
before we see that

Pq2> X(x) < hn+l < hq/h’
which finishes the proof in this case. O

It is easy to apply this theorem to Gaussians and multiquadrics. For example, if ¢(r) =
e’ a > 0, wehave f(r) = ¢~ and fO() = (—Dfate", £ € Ny, so that the second
assumption on f holds with M = « in this case. Thus, for Gaussians we have error bounds
of the form (11.11).

In the case ¢(r) = (1 +r2)# with 8 < Oor B > 0, B € N, we have f(r) = (1 + )P, so
that

PP =BB -1 (B—t+ DA +r)f "

From
- i+ 1— 1 1
P JH” i )‘§l+|ﬂ.+ citprt=m
j+1 j+1 j+1
we can conclude that
-1 —2+1
|f(e)(r)\=5!@|ﬁ2 | 1B E+ lSE!M[

provided £ > [B71. Hence, (inverse) multiquadrics satisfy the first assumption on f, which
leads to error bounds of the form (11.10).

11.5 Improved error estimates

After establishing the basic theory on error estimates for interpolation by radial basis func-
tions we now turn to the question how the previously derived approximation orders can be
improved. There are at least two ways. The first way restricts the space of functions to be
interpolated by assuming more smoothness than the native space provides. This is rather
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natural and the reader might think of the theory on univariate splines. The second way
weakens the norm in which the error is estimated. Replacing the L,-norm by a weaker
L ,-norm should result in a better approximation order. The methods we have in mind lead
to an algebraic improvement of this order; hence they are only interesting in the case of
basis kernels that have finite smoothness. For basis functions such as multiquadrics and
Gaussians, where the convergence order is spectral, they are almost pointless. The latter
improvement type will be discussed in the next section.

The basic idea of the first improvement technique is the following. If f € N(RQ) is
given and sy, x denotes its interpolant then the function g := f — s, is also a member of
the native space. Moreover, since it vanishes on X it has the zero function as its unique
interpolant. This means that the standard error estimate from Theorem 11.4 becomes

[f(x) = spx(XO)| < Pox (O f —srxIne@ (11.12)

and we will squeeze out the additional hy o terms of | f — s x|, @) by means of certain
assumptions on f.

The easiest way to achieve this is for positive definite kernels ® : Q@ x 2 — R defined
on a compact set @ C R, In (10.7) we introduced an integral operator

Tv(x) = [ D(x, y)v(y)dy
Q

that maps L,(€2)-functions to functions from the native space. In Corollary 10.30 we de-
scribed its range in terms of its eigenfunctions, when considered as an operator from L,(£2)
to Lo(2).

Theorem 11.23 Suppose that ® is a symmetric positive definite kernel on a compact set
Q C R4 Then for every f € T(L2(RQ)) we have

|f ) = 57x(0)] < Po x| Poxl@lT " fllie,  x €.

Proof Let f =Tv,v € Ly(S2). Taking the L,(€2)-norm of (11.12) yields

If = sgxlleae < 1PoxlL@llf —srxlnee-

Using the orthogonality relation from Lemma 10.24 together with (10.8) leads to

I =spxIXp@ = (f =555 Fva@
=(f- SfX> TU)N¢<Q)
=(f —s55x, Vi@
< If = sgxll@lviiLe
< PoxllLyllf — sgxlIve@llvlly@)-

Canceling one || f — s, x|lx, () factor and inserting the result back into (11.12) proves the
result. O
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This result means for example in the case of the compactly supported functions ¢, x that
the Lo-order can be improved to 2k + 1 from k + 1/2 provided that the functions come
from the restricted space. But techniques that we that will learn soon allow an additional
improvement to 2k + 1 + d /2.

Instead of treating the general case of conditionally positive definite kernels we will
discuss only the most important example, namely the thin-plate splines ¢, , defined in
(10.11). This time, the approximated functions come from the Sobolev space H>‘(R%),
which is the intersection of all Beppo Levi spaces BL;(R?) with k < 2¢.

Theorem 11.24 Suppose that & = ®, , denotes the thin-plate spline with £ > d /2, con-
sidered as being conditionally positive definite of order £. Let Q@ C R¢ be bounded and
satisfy an interior cone condition. Then for every f € H*(R?) with support in Q we have

[f(x) —spx(x)] < Po x| Po x| Lo@ | A fll Loceys x e,
Chy S NA flla@)s

IA

where the last inequality holds for all sufficiently dense sets X.

Proof The proof is based on the same ideas as the previous one. We only have to replace
the estimate on the native space norm. Remember that if we use the thin-plate splines as
conditionally positive definite functions of order ¢, their native space is the Beppo Levi
space BL,(R?). This time we use

lf - Sf,Xllszt(Rd) =(f —ssx, )BLRY

=2 a'/ D*(f — s7x)(x)D f(x)dx

la|=

= Z —(—1)“ f (f = 57.)(xX)D* f(x)dx

lor|=

= (-1 /R (- s x)()A" f(x)dx
= (-1 /Q (f = spx0)@)AL f(x)dx,
so that

2 ¢
If = spxlpr,@e = I = Sexll@ A" fllLw)-

The partial integration we have just carried out can be justified using density arguments
similar to those employed in the proof of Theorem 10.40. Remember that f is compactly
supported with support in €2. O

This result can further be improved if the L,(2)-error is estimated more dexterously. To
this end a localization is necessary, which we will describe in the next section in a more
general setting.
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11.6 Sobolev bounds for functions with scattered zeros

Suppose that the native space Ng(£2) of a radial basis function & is a Sobolev space H*(Q)
or that it is continuously embedded into such a Sobolev space. In this situation, we can
derive more accurate error estimates than before. These estimates use the whole range of
L ,-norms and do not need the power function approach at all. They are based only upon
the fact that the error u := f — s x is a function from the Sobolev space which has zeros at
X and which is, by Corollary 10.25, bounded in the native space norm by the native space
norm of f.

Since these results hold in a more general setting, we first introduce for 1 < p < oo the
Sobolev space W]’ﬁ (£2) as the set of all functions f € L,(£2) having weak derivatives D* f
also in L ,(€2) for all |a| < k. We will then use the Sobolev semi-norms (which we have
also called Beppo Levi semi-norms)

p —— o p
lulfs ) = HZ]{ IDullf (  keNo, 1<p<oo.
=

The case p = oo is defined in an obvious manner, replacing the sum by the maximum.
The full norm on WS(Q) is then given by summing up all semi-norms, i.e. ””“pwf, @ =
Z’;:o lu| Cv; @ For an application to the compactly supported basis functions from Chapter 9
we also have to deal with fractional Sobolev spaces. One way to introduce them is by
interpolation theory. Here, we use the direct approach and define for 1 < p < o0, k € Ny,
and0) <s < 1,

1/p
|D%u(x) — D*u(y)|?
|ut| s (o 1= // dxdy
W™ () Z o Ja ||x_y||121+ps

|a|=k

1/p
. P P
gy = (g + el gogy)

Now suppose that u € W;“(SZ) vanishes on X € @ and that kK > d/p —m, so that
W;f(Q) C C™(R2) by Sobolev’s embedding theorem. We wish to establish the following
result:

|M|WZ,"(Q) < Ch’;('i:gz—lot\—d(1/17—1/11)4r |u|W,k,+"(Q)’ (11.13)
which can be used immediately for our radial basis function interpolation process. Since the
proof of (11.13) involves a certain technicality, we will now outline its ideas for the special
case p = g = 2. The first step is to cover 2 by “nice” local patches D of diameter O(hy q).
The term “nice” will be explained very soon. Then on each patch D we approximate u by
a polynomial p € m;(R?) that is an averaged Taylor polynomial:

[ulwpoy < lu— plwpo) + |Plwpo)- (11.14)
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The derivatives D* p, |a| = m, of p can be expressed using Proposition 11.7 as

N N

Dp(x) =Y _af()p(xp) = Y af (0)p(x;) — ulx)),

j=1 j=1
since u|X = 0. Moreover, we know that the coefficient vector in this representation can
be bounded by C h;“é‘ with a constant that depends only on the region geometry and
the polynomial degree (and the constant factor between the local cone radius and hy q).
Inserting this into (11.14) yields

lulwgo) < lu = plwg) + Chy'e™*lu = plio),
where the additional h‘j(/ é comes from the volume of D. Hence we have reduced everything
to a local polynomial approximation problem. When this is solved, the local estimates are
put together to form a global one. If the patches do not overlap too much, the sum of the
local Sobolev norms is equivalent to the Sobolev norm on 2. We now start the detailed
discussion.

Definition 11.25 A domain D is said to be star-shaped with respect to a ball B(x., p) :=
{x e R |lx — xc|l2 < p) if. for every x € D, the closed convex hull of {x} U B is contained
in D. If D is bounded then the chunkiness parameter y is defined to be the ratio of the
diameter dp of D to the radius pmax of the largest ball relative to which D is star-shaped.

A bounded domain D is contained in a ball B(x., R). Throughout the rest of this section
we want to assume that pp,x /2 < p < Pmax, S0 that we have the obvious chain of inequalities
Pmax/2 < p < Pmax < dp < 2R. Hence, the chunkiness parameter satisfies

1 dp dp 2R
< —=vy= <—.
27 2 Pmax P

Such domains satisfy a simple interior cone condition.

(11.15)

Proposition 11.26 If D is bounded, star-shaped with respect to B(x., p), and con-
tained in B(x., R) then D satisfies an interior cone condition with radius p and angle
¥ = 2arcsin[p/(2R)].

Proof 1Itiseasy to check that when x € B(x., p) the cone condition is satisfied if the central
axis of the cone is directed along a diameter of the ball B(x,, p). If x is outside that ball
then we consider the convex hull of x and the intersection of the sphere S(x, ||x — x.|2) =
{y e R |ly — x|l2 = llxc — x||»} with B(x,, p). This is a cone and, because D is star-
shaped with respect to B(x,, p), it is contained in D. Its radius is the distance from x to
x.. To find its angle ¥, we consider a triangle formed by x, x., and any point on y in the
intersection of S(x, ||x — x.||2) and the sphere S(x., p). This is an isosceles triangle, since
lxc — x|l2 = |lly — x|l2. The angle Zx.xy = ©; the side opposite this angle has length p.
A little trigonometry then gives us ||x, — x ||, sin(¥9/2) = p/2. Consequently, we have ¢ =
2 arcsin [p/(2]|x. — x]|2)]. Moreover, since D C B(x., R), we also have |x. — x| < R.
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Thus ¥ > 2 arcsin [p/(2R)]. Finally, p < ||x — x.||» implies that the cone with vertex x,
axis along x, — x, and angle ¥ = 2 arcsin [p/(2R)] is contained in D. O

After setting up the geometry of our local patches we introduce the approximating poly-
nomial. As stated before, this is an averaged Taylor polynomial:

1
Ouite)i= Y - [ Drute -y, 00dy.
. B})

la|<k

where ¢ € CSC(R") is chosen such that ¢, = p~4¢(-/p) is supported in B, = B(0, p) and
forms an approximation of the identity.

Our first result deals with the case of integer-order Sobolev spaces. We will omit the
proof here; it can be found in the book [31] of Brenner and Scott.

Proposition 11.27 Let1 < p < ocoandk > d/p or p = 1 andk > d/p. Then there exists
a constant C > 0 depending only on k, d, p such that, for every u € W;f(D),

k—d
e — Quttll Loy < CA + y)dyy P ulwip).-
Here y denotes the chunkiness parameter for D.

We are now going to extend this result to fractional-order Sobolev spaces W;‘*X(D). To
this end, we first investigate the action of Q4 on a function from W]’§ (D), which is at least
well defined.

Lemma 11.28 For1 < p <oocandk > d/porp =1andk > d, ifu € W};(D)andP €
7 (R?) then

It = Qusrullomy < CU+ y)dy "lu = Plys), (11.16)
where C depends only on k, d, p.
Proof Since P € m(R) we have Qi1 P = P. Hence, if we set v := u — P then we get

U — Qrpiu =v— Qpy1v

1
=v—Qw-) — / D*v(y)(- — )", (y)dy.
. B/J

la|=k

The term v — Qv can be bounded using Proposition 11.27, while the rest enjoys the upper
bound

Cdpp™ max [ |D“v(y)ldy < Cdpp~* vol(B,)'~V/7 vl wip)
%)
< C(dp/p)"'"dyy ‘" vlwip).

Finally, dp/p < 2y and y%/? < (1 4 y)? give the desired result. O
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Now we are able to derive our result for fractional-order Sobolev spaces. Such a result could
also be proved by using interpolation theory on the operator Qy.;, but here we will prove
it directly.

Proposition 11.29 LetO <s < landm € N. Let1 < p < occandk > m +d/p,orp =1
andk > m +d. Foru € W;“(D) we have

k+s—m—d
e — Qurttllwgmy < CA+ )" EPET=P y| s )
with a constant C > 0 depending only on k, d, p.

Proof We start with the situation m = 0. The case s = 1 follows immediately from Propo-
sition 11.27. Hence, we might assume that 0 < s < 1. In Lemma 11.28 let P = Q4 u €
mr(RY). The identity

D Oyt = Qryi—je Du, (11.17)
which is easily established, holds for |«| < k. In particular, if we take |«| = k then we have

D*Qyyiu = Q1D =/ ¢, (M) D*u(y)dy,
B,

which is of course a constant. Since |, 5 ®p(¥)dy =1, we can use standard arguments,
P
lx — yll2 < dp, bounds on ¢,, and Holder’s inequality, to obtain the estimate

ID*(u — Qrp1)X)| < [ ¢,(y) ID"u(x) — D*u(y)| dy

By
f bp(Mllx — y”‘*"/l’ wd

e =yl
D*u(x) — D%u
< Cpfdd;vD#»d/p/‘ | ( ) S+d/p(y)|d
B, lx—yl;
; D%u(x) — D%u
s+d/p —d
< cay i | PO
e — 113 o)

Raising both sides to the power p, integrating over D, and summing over all |«| = k gives

P 517+d —d
‘ PlW"(D) <C d |M|W"+‘(D)

A final application of dp/p < 2y and taking the pth root of both sides gives
u = Plwipy < Cdpy /P lulyissp).

Inserting this into the bound of Lemma 11.28 yields the result for m = 0. The gen-
eral case m > 0 follows from this, from (11.17), and from the relation |D* lek “l(p)
< lulwi ). u

So far we have been concerned with polynomial approximation in Sobolev spaces over
small regions. We have not used the fact that our functions vanish on a discrete subset X at
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all. We will employ this now in the way that we have already pointed out in the introductory
part of this section. Hence, our first estimate is
[ulwnpy < [ — Qrr1ulwn ) + | Qrt1ulwn D). (11.18)

Our star-shaped domain D satisfies a cone condition with radius p > 0 and angle ¥ =
2 arcsin [p/(2R)]. Thus, by Proposition 11.29 and the fact that the chunkiness parameter
satisfies y < dp/r < csc(¥/2), the first term can be bounded by

k+s—m—d/p
lu — Qrt1ttlwny < Cdp lutl s )

with a constant C depending only on k, d, p, and . To bound the second term in (11.18)
we assume that the conditions in Proposition 11.7 are satisfied, so that by that proposition
we have the representation

N
D%p(x) = Za]”-‘(x)p(xj), xeD,
J=1

for all p € my(R?), with certain coefficients satisfying

N 2 Jer]

2k
Ela}*(x)|§2< - ) , x €D.
= p sin ¥

This together with | X = 0 allows us to estimate for || = m

N
|D*(Qrr1u)(x0)| < Z la Collu(x;) — Qurru(x;)]

=1
—m jk+s—d/p
< Cp"dp™ P ulyros )

k+s—m—d/p
< cdy lulyios -

with a generic constant C > 0 that depends only on d, p, k, m, and . To derive the last
estimate we have once again used the upper bound dp/p < csc(¥¥/2). Putting these two
bounds together gives the first part of the following proposition.

Proposition 11.30 Let k be a positive integer, 1 < p < 00,0 <5 < 1,1 < g < o0, and let
m € Ny satisfy k > m +d/p, or, for p =1, k > m + d. Also, let X C D be a discrete set
that satisfies the two conditions in Proposition 11.7 withan h > 0. Ifu € Wﬁ‘” (D) satisfies
ulx =0 then

k+s—m~+d(1/q—1/p)
|M|W;'(D) < CdD s K P |M|W,I‘{+‘(D)'

Here, the constant C depends onlyonk, d, p, m, and the angle ¥ corresponding to the cone
condition that D satisfies.

Proof The remaining case g < oo follows from

1 d
lulwypy < € vol(D)"|ulyy ) = Cdiy? ulwa o).
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where the first C is #{a € N‘é a] = m} = O@m?~") and the second involves also the
volume of the unit ball in R?. O

This concludes our local estimates. It is important to notice that the constants depend on
the local domain D only via the angle ¢+ and the radius p of the cone condition.

The next step is to cover our global region €2, which is supposed to be bounded and to
satisfy a cone condition with radius r and angle 8, using domains that are star-shaped. To
this end, we introduce the following quantities. Let h = hy ¢ be the fill distance and

. sin @
¥ :=2arcsin| ——— |,
4(1 + sinB)

0k, 6) = sin @ sin ¥
T 8k2(1 + sinO)(1 + sin®)’
R:= Q(k,0)"'h,
sin 6
pi=—
2(1 + sin )

With these settings we define the sets
T, = {z € 2p/VA)Z : B, p) C sz}
and
D, ={x € Q:co({x}U B(t, p)) C Q2N B(t, R)}, teT,,
where co(A) denotes the closed convex hull of the set A.

Lemma 11.31 With the quantities just introduced, suppose that the fill distance h = hx o
satisfies h < Q(k, 0)r. Then the following hold true:

(1) each D, is star-shaped with respect to the ball B(t, p) and satisfies B(t, p) € D, € QN B(t, R);
(2) each D, satisfies a cone condition with angle ¥ and radius p;

3) Q= U,ETﬂ D, and dp, <2R =2h/Q(k, 0);

(4) ZteTp X, = M;

(5) #T, < Myp™.

Here xp denotes the characteristic function of the set B and M\, M, are constants depending
onlyonk, 6, d.

Proof Obviously the first property is automatically satisfied for all p > 0. Hence, by
Proposition 11.26, D; satisfies a cone condition with radius p and angle

Rsinf 1 )_

2 arcsin (L) =2arcsin| ———m — —
2R 2(1 +sin6) 2R

Moreover, its diameter is bounded by dp, < 2R = 2h/Q(k, 0). Next note that our assump-
tion on & gives R < r, so that Q also satisfies a cone condition with radius R and angle 6.
Hence, if an arbitrary x € Qis given then we canfindacone C(x) = C(x, &, 60, R) C Q.The
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definition of p and Lemma 3.7 ensure that the ball B(y, 2p) centeredaty = x 4+ (2p/sin )&
is contained in €. For y we can choose a point ¢ € (2p/+/d)Z¢ with ||y — t]» < p which
gives that the ball B(z, p) € B(y, 2p) is also contained in 2. Hence t € T, and, since C(x)
is convex and since ||x — #||» < R, we additionally have co({x} U B(z, p)) € 2 N B(¢, R),
so that x € D,. This shows the third property.

For the fourth property note that D, C B(t, R) is contained in the cube W (¢, R) and that

this cube contains at most
d
24/d(1 in6
M (msn) N 1)
sin @

points from (2p/+/d)Z¢. The last property is justified in the same way, since € is
bounded. O

Now that we have the local sets we can formulate and proof our main result of this section.

Theorem 11.32 Suppose 2 is bounded and satisfies an interior cone condition. Let k be a
positiveinteger,0 < s < 1,1 < p < 00,1 < g < o0o,andletm € Nysatisfyk >m+d/p,
for p > 1orn for p=1,k>m+d. Also, let X C Q be a discrete set with mesh norm h
satisfying h < Q(k,0)r. Ifu € Wﬁ*"(Q) satisfies u|xy = 0 then

|M|W/’"(Q) < Chk+s_m_d(]/p_]/q)+|M|W,’§H(Q)’ (11.19)
where (x)4+ = x if x > 0 and is 0 otherwise.

Proof We will use the notation introduced in the paragraph before Lemma 11.31. First of
all note that, since & < Q(k, 6)r, Lemma 11.31 is applicable. Furthermore, our definition
of p, R, and Q(k, 0) establish

_ psin®
T 4k2(1 4 sinw)’
which allows us to employ Proposition 11.30. The lemma and proposition just mentioned

immediately establish the result in the case ¢ = 0o. For 1 < g < 0o, however, the decom-
position of €2 implies that we have

ulfymiey = D / | D u(x)|?dx
Q

|a|=m
=2 3 [ ipuords = 3l
tel, la|=m D, tel,
q/p
q(1/q=1/p) p
= (#T) ' (Z ”'W;l(&)) ,
1T,

where the last bound follows from standard inequalities relating the p-norm and the g-norm
on finite-dimensional spaces. Proposition 11.30 together with dp, < 2R =2Q(k,0)"'h
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gives the bound

1/p 1/p
4 k+s—m+d(1/q—1/p)
(Zhitem) e (Ztiom)

teT, teT,

Here, it has been essential that all involved constants depend only on the cone condition,
which is the same for all D,. Now using Lemma 11.31 again yields

D* D* P
Z|M|WW(D)_ 3 / 3 0, @) / | u(x) ,Hf’,fy)' dydx
2

la|=k V2 1€T,

- / / |D“u(x)—D“u(y)|P i
|la|=k

c/+sp

= Mifull -

A final application of Lemma 11.31 together with
sinf "
2Q(k, 0)(1 + sin6)
shows that #7, < Ch~. Putting all these things together and taking

((G-D-4G-D). G-,

into account establishes the desired result. O

p =

We end this section by applying the last theorem to radial basis functions of compact
support and to thin-plate splines.

Let 4% = ¢ax(|l - |l2) be the compactly supported basis functions from Definition 9.11.
If @ € R? has a Lipschitz boundary, we know by Theorem 10.35 and Corollary 10.48,
which can be extended to the case of fractional Sobolev spaces (see the discussion in [31]),
that the associated native space is norm-equivalent to the Sobolev space H*+@+1/2(Q) =
Wé‘ Hd+D/ 2(SZ). We treat this case in the more general situation where ¢ € Li(R?) has a
Fourier transform that satisfies

al+ o)) < d@) <ol +lold)™  weRY (11.20)
with T > d/2.

Corollary 11.33 Suppose that @ C R? is bounded, has a Lipschitz boundary, and satisfies
an interior cone condition with radius r and angle 0. Let X C Q be a given discrete set
of centers and sy, x be the interpolant. Suppose that ® satisfies (11.20) with T =k + s,
where k is a positive integer and 0 < s < 1. If m € Ny satisfies k > m + d /2 then the error
between f € W; () and its interpolant sy,x can be bounded by

d1/2-1/q)
Lf = srxlwme < Chr m—d(lf /q+||f||wg(sz)

for all sufficiently dense sets X.
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Next, we want to apply these results to the thin-plate splines 4 ¢ = ¢4¢(] - ||2) from
(10.11). We know by Theorem 10.43 that the global native space N, ,(R?) is the Beppo
Levi space BL,(R?). To apply Theorem 11.32, we need an extension operator from BL(2)
to BL,(RY).

Lemma 11.34 Suppose that Q € R? is open and bounded and satisfies an interior cone
condition. For every f € BLy(RY), £ > d/2, there exists a unique function < € BLy(R?)
with f@|Q = f and

|fQ|BL[(]Rf1) = min{'ngLt(R‘l) -8 € BLZ(Rd) and g|Q = f|Q}.

Proof Fix a my(R%)-unisolvent set & = {£, ..., £p} € Q and introduce the inner product

Q0
(f )re = (f. @by + ), FENLE)).
=1

J

With this inner product, BL;(R?) becomes a reproducing-kernel Hilbert space (see Theorem
10.20). Moreover, since all relevant functions coincide with f when restricted to E, the
minimization problem is equivalent to minimizing the norm || - ||z« on

V; = {g € BL(RY): g|Q = |}

But this set is obviously nonempty since it contains f, it is convex, and it is closed. The
last follows from the reproducing-kernel property. If {g,} € V; converges to g € BL,(R?)
then the reproducing kernel gives also pointwise convergence, i.e. g,(x) — g(x), x € R?.
This means g|Q2 = f.

Moreover, the minimization problem amounts to nothing other than finding the best
approximation from Vy to 0. Because of the properties of V just stated, this is uniquely
solvable. O

Lemma 11.35 Ler £ > d /2 and Q C RY be open and bounded, satisfying an interior cone
condition. For every f € HY(Q) there exists a unique | - |BL,(R¢y minimal extension f Qe
BL[(Rd). Moreover, this extension is continuous, i.e. there exists a constant K > 0 such
that

Q
[ f*IBL, ) < K| flBLAD)-

Proof Since Q C R satisfies the cone condition there is a continuous extension operator
from H'(Q) to H‘(R?), meaning that there exists a constant C > 0 such that we can find
for every f € H'() a function f € HY(RY) with f| = f and || fll ey < CIl f |l ecen-
Since obviously H f(RY) € BL¢(R%), Lemma 11.34 gives us a function f £ e BLy(RY)
which coincides on 2 with f and which has a minimal Beppo Levi semi-norm amongst all
such functions. The uniqueness follows from Lemma 11.34 and the fact that all possible
extensions f of f coincide with f on .
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By the proof of that lemma we even know that f £ has minimal || - ||ge-norm with
If ||§§d =|f |23u(R“) +21f( /-)Iz. Hence, using the Sobolev embedding theorem, we have

o - ~
1/ e < N fllre < Cll fllewsy < CIf laee

with some generic constant C > 0. If we can show that | - |lo defined by || f|3 =
| flBL.o) + 2 |f($j)|2 isequivalentto || - || g¢(q) on HY(2) then we can immediately derive
| F%llre < C|l flle and hence, since & C €, also |fQ|BLK(Rd) < C|fIBL,()- To show norm
equivalence we use standard arguments from the theory of Sobolev spaces. Firstofall, || - | o
can obviously be bounded by a constant times || - || z¢(q), again by the Sobolev embedding
theorem. Unfortunately this is not the inequality we need. To prove the other inequality let
us assume that it is wrong. Then we can find a sequence {@,},en With ||@, || g¢o) = 1 and

14 Q
1= llgnlly > n (Z DGl o+ 3 |<pn<s,-)|2) : (11.21)
' Jj=1

la|=¢C

From this we can deduce that || D*@, | 1, — 0 for n — oo provided that |a| = £.

Since Q satisfies an interior cone condition, H¢(£2) must be compactly embedded in
H“ (). This means that {¢,} is relatively compact in H*~!($2). Hence there exists a
convergent subsequence. For simplicity we call this subsequence {¢,} again, i.e. ¢, — ¢
in H'=1(Q) with ¢ € H*1(Q). But since || D@, |1, — O if || = £, {g,} is a Cauchy
sequence, even in H‘(R), that converges to an element, say ¢ € H(RQ). Since it also
convergesin H*~'(Q)to g wemusthave p = ¢ € H(Q)and ¢, — ¢ in H*(2). Moreover,
we can conclude that D*¢ = 0O for all || = £. As in the proof of Lemma 10.38 we see
that ¢ coincides on Q with a polynomial from ,_; (R?). By Sobolev’s embedding theorem
again, we find that ¢,(x) — ¢(x), x € Q. This means in conjunction with (11.21) that
> |<,0(§,-)|2 = 0 and thus p(¢§;) = Oforall 1 < j < Q. Since E is 71 (RY)-unisolvent, we
can conclude that ¢ = 0, which contradicts [|@|| gy = lim,— o0 @l He) = 1. O

Theorem 11.36 Let £ > m + d /2. Suppose that @ C R? is open and bounded and satisfies
an interior cone condition. Consider the thin-plate splines ®,, as conditionally positive
definite of order £. Then the error between f € H(Q) and its interpolant syx can be
bounded by

e—m—d(1/2-1/p)
) < Chy g ’

Lf = srxlwme | fIBL.(9)

for 1 < p < oco. Finally, if f € H*(Q) has compact support in Q, then we have the im-
proved bound
1f() = s7x(O] < ChY G IA flliye),  xeQ

Proof The first estimate is obviously true in the case p = oo. Hence we can assume that
1 < p < oo for the first two estimates.

According to Lemma 11.35 we can extend f € HY(Q) to ¢ € BL,(R?). Then the
interpolant to f based on X €  coincides with the interpolant to f2. The density result
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in Theorem 10.40 allows us to apply Theorem 11.32 in this situation also, yielding

t—m—d(1/2—1/p)s | +Q
Q “f

If —srxlwpe < Chy, — sre x[BL.(@)-

Moreover, by Corollary 10.25 we have | f? — 52 x|pLy) < | f®sL) and, following
Lemma 11.35, the latter may be bounded by K| f|sr,()-

Finally, if f € H?*($2) has compact supportin 2 then we obviously have £ = f.Hence,
the error estimate just established gives for p = 2

|f = spxliamey < Ch ol f = r.xIBL.RY)-
Using this in the proof of Theorem 11.24 yields the final error bound. O

Note that the condition for f € H?‘(S2) to have compact support in £ can be weakened
by assuming that certain normal derivatives vanish.

Thin-plate splines are probably the most examined and best understood basis functions.
Nonetheless, there are still some important open problems. More details about this are given,
among other things, in the next section.

11.7 Notes and comments

Nowadays there is common agreement upon the fact that error estimates of the interpolation
process using radial basis functions should first of all take place in the native space. The
material presented in the first three sections of this chapter is based upon the pioneering
work of Duchon [49], Madych and Nelson [111-113], and Wu and Schaback [204]. But
the number of publications in this particular field is steadily increasing and the interested
reader should have a look at the bibliography. Theorem 11.13 borrows ideas from Levesley
and Ragozin [103].

Let us point out that the seminal paper [114] by Madych and Nelson is so far the
only one (except the somewhat weaker version [195] by the present author, which is
based on the same ideas) that establishes spectral convergence orders for Gaussians and
(inverse) multiquadrics. But we also want to emphasize that this paper does not prove a
spectral order of the form e~/ " for the Gaussians, as is sometimes suggested in other
publications.

The experienced reader has probably noticed that the improved estimates derived in
Section 11.5 borrow ideas from classical spline theory. As in that case, rather simple Hilbert
space arguments are used in Theorem 11.23 to double the approximation order; see also
Schaback [166, 168]. The estimates on the L,-norm use a trick that has become known
as Duchon’s localization trick [49], where they appear in the context of thin-plate spline
approximation for the first time. The general version given here comes from Narcowich
et al. [149]. However, in the case of spline approximation it is well known that the optimal
order cannot be achieved using only Hilbert space arguments; this should also be true
in the case of radial basis function approximation. Moreover, there is quite a gap in the
approximation orders that can be realized if the data sites form a regular grid or if they are
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truly scattered and finitely many. Let us discuss this in more detail in the case of thin-plate
splines. Let y, = min{¢, £ — d/2 + d/p} be the L ,-approximation order as derived in the
first case mentioned in Theorem 11.36. It is known (see Buhmann [33]) that for sufficiently
smooth functions the L..-order is 2¢, if the data sites form a regular infinite grid of grid
size h. The same is true if the data sites are a finite grid on [0, 1]¢ and the error is measured
in any compact subset of (0, 1)? (see Bejancu [22]). However, it is also known that if the
L «-order is larger than 2¢ then the approximated function f becomes “trivial” in the sense
that it has to satisfy of A® f = 0 on £, so that the saturation order for these functions is 2¢
(see Schaback and Wendland [171]).

In the papers [90-94] Johnson showed that the L ,-order for smooth functions does not
exceed ¢ 4 1/pfor1 < p < ooand heimprovedittoy, + 1/pfor1 < p < 2,so that most
is known about this case. He also showed that the L.,-order is 2¢ except for a boundary
layer of size O(h|loghl).

Some people still argue that, on the one hand, the native space, particularly for Gaussians
and (inverse) multiqadrics, is rather small since the Fourier transform of a function from
one of these spaces has to decay exponentially fast. This is beyond doubt true but, on the
other hand, Shannon’s famous sampling theorem holds in its original form for an even
smaller class of functions, namely only band-limited ones, and nobody would argue the
importance of this theorem. Nonetheless, there is some progress in escaping the native
space and extending the error estimates to larger function spaces. The first result in this
direction came from Schaback [165], where interpolation was replaced by approximation.
Yoon [207,208] approached interpolation using Schaback’s ideas but had to work with
scaled functions. The most recent results are those of Brownlee and Light [32] for thin-
plate splines and Narcowich and Ward [144] for more general basis functions.
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Stability

In this chapter we will be concerned with the stability of the radial basis function interpo-
lation process. Let us introduce the subject with an example.

We consider the following one-dimensional interpolation problem. The data sites are
given by x; = j/n € [0, 1],0 < j < n, and the basis function is the inverse multiquadric
¢(r) = 1/4/1 + r2. From the previous chapter we know that the sequence of interpolants
s, to a function from the native space of ¢ converges to f as e~ and this convergence
comes from estimates on the power function.

To compute the interpolant, however, we have to invert the interpolation matrices
A, = (¢((i — j)/n)). Unfortunately, the smallest eigenvalue Ay, () tends to zero as fast as
qu,. x- To illustrate this behavior we have plotted both — log Anin (1), the negative logarithm
of the smallest eigenvalue of A,,, and — log || P<12>‘x lz..0.17 in Figure 12.1. For a more math-
ematical investigation let us make the following definition. Assume that ® : 2 x Q@ — R
is a conditionally positive definite kernel with respect to P. For X = {xy, ..., xy} € Q and
abasis p1, ..., pgpof Pweset P = Px = (p;(x;)) € RN*Q_ This allows us to express the
side conditions (10.2) from Definition 10.14 by P; o = 0. With this notation we define

T

. o Aq).XOl

min(Aoy) = inf  ——2E=
a€RN\{0}, PLa=0 oo

(12.1)

where Ag x denotes the usual interpolation matrix. Since the quadratic form (10.3) is
positive on the set of all @ € RY with PTa = 0 we necessarily have Amin(Ae x) > 0.

Now why is Amin(A ¢, x) important for the stability of the interpolation process? Obviously,
if @ is an unconditionally positive definite kernel then Ag x is a positive definite matrix
and Anmin(Ag x) i its smallest eigenvalue. But even in the case of a conditionally positive
definite kernel this number is crucial. For example, for the interpolation of data f|X we
have to solve a system like (8.10). This shows that a” Ag xae = a7 (f|X) and hence

lell2 <
A

X|2-
)Ilfl 2

min(Ao, x

So, we know more about the accuracy of our solution vector « if we know more about lower
bounds for Apin(Awe, x).

206
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Fig. 12.1 The power function (dotted line) and the smallest eigenvalue (solid line) for integer n,
1 <n<20.

Moreover let us briefly discuss the condition number as a whole. If ® is a symmetric
positive definite kernel, Amin(A¢ x) coincides with the norm ||A;.1X||2 and the condition
number of Ag x is given by
)"max(Ad),X )

)\min(A<D,X ) ’

where Anax denotes the maximum eigenvalue. The condition number of an interpolation

cond(Ag.x) = [[Aoxll2l Az ll2 =

matrix gives information on the numerical stability of the interpolation process. Hence we
actually have to investigate both the maximum and the minimum eigenvalue. Fortunately
Amax behaves nicely compared to the smallest eigenvalue; to see this, we invoke Gershgorin’s
theorem, which gives for our matrix an index j € {1,..., N} with

N
[Amax(Ao,x) — P(x;, x;)| < E [D(x;, xi)l,s
k=1
ki

so that
Amax(Ag, x) < N DPC, Il Looxxx)s
which becomes, in the case of a positive definite function,
Amax(Ao,x) = NP(0).

Hence if X is quasi-uniformly distributed then Any.x(Ae x) grows at most like h},dg, and
this upper bound can also be established, in the case of the Gaussians and the compactly
supported radial functions, for non-quasi-uniform data sets. Even if this upper bound appears
already to be worse than expected, numerical tests show that the maximum eigenvalue
indeed causes no problems. The same is true in the case of a conditionally positive definite
function.



208 Stability

We will see that the minimum eigenvalue, as a function of the number of data sites or
their separation distance, grows much faster, in the case of multiquadrics and Gaussians
even exponentially. This is the reason for the badly conditioned interpolation matrices.
But before we deal with this problem let us return to the connection with the power
function mentioned in the opening example. This connection will be made in the next
section.

12.1 Trade-off principle

Our main result in this section can be formulated for general conditionally positive def-
inite kernels. As pointed out in the introduction to the chapter, there is a connection
between the smallest eigenvalue of the main part of the interpolation matrix given by
Ao x = (P(xi, x;))i<i j<n and the squared power function P%X(x). But since the power
function depends on the point x € € at which it is evaluated, and the smallest eigenvalue
of Ag x does not, the setting has to be slightly modified. This is done by adding the point
x to the set of centers X. Let us define xo = x.

Theorem 12.1 If u;‘-(x), 1 < j < N, denotes the cardinal functions from Theorem 11.1 then
we have for all x & X

N
Demin(Aw xup)] ™ Pa x(¥) = 1+ Y [u5(0)).
j=1

Proof Define uj(x) = —1 and xo = x. Then, the definition of the power function imme-
diately gives

N N
Py ()= Y wiup() ;. %) = Amin(Aw xup) Y i),
Jk=0 j=0

O

This theorem can be interpreted in at least two different ways. On the one hand we
have

: 2
}\min(A<1>,X) =< lgllclgnN P@yx\(xk)(xk),

giving both lower bounds for the power function and upper bounds for the eigenvalue. On
the other hand we have

(x)
HZ'” Ol —Amm(qjaixu Y vEx

which is an upper bound for the Lebesgue functions.
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12.2 Lower bounds for Xy,

For Amin we use the following idea. Suppose that @ is the conditionally positive definite
kernel of interest. Suppose further that there exists a positive definite kernel ¥ such that

N N
Y ajou®x,x) = Y ajeWixg, x) = Al
Jik=1 Jik=1

Then A is obviously a lower bound for Ayi,. But what do we gain from this? Now we have
to do the estimates for W instead of ® and of course W has to depend on ®. So how does
W depend on ®? Before we answer these questions, we want to discuss the terms in which
the lower bounds have to be expressed.

The approximation error between function and interpolant was expressed in terms of the
fill distance hy ¢, because the fill distance is a measure of how well the centers X cover
the region 2. But it is not a good measure of the stability. A point set X might have quite a
big fill distance and the interpolation process is nonetheless badly conditioned. The reason
for this is simply that only two points from X have to be very close. Thus it would seem to
be more natural to express lower bounds on A, in terms of the separation distance, which
has already been defined to be

1 .
= smin|x; — Xj|f2.
qx 2 oy [lx; 1”2

The separation distance gives the maximum radius r > 0 such that all balls {x € R? :
lx — x;ll2 < r} are disjoint.

From now on our analysis will concentrate on real-valued conditionally positive definite
functions that possess a positive generalized Fourier transform. Then by Corollary 8.13 we
can express a typical quadratic form via

N
D ajod(x; —x) = (2n)*d/2/1
Rt

Jik=1

2/\
d(w)dw.

N
Z Oljeinxj
j=1

Thus an appropriate W is given if its Fourier transform U satisfies a(w) > @(w) and is of

order less than or equal to the order of P.

Lemma 12.2 Let xy; be the characteristic function of B(0, M), M > 0, i.e. xy(x) =1 if
lxll2 < M and xp(x) = O otherwise. Then

() = OV (x) = M2 )x 157 Japp(M |1x 1),

where J, is a Bessel function of the first kind.

Proof As xp is a radial function, its Fourier transform and inverse Fourier transform
coincide and can be computed via Theorem 5.26 as

M

—~ —(d-2)/2

) =[x, f 192 Ja—y 2 (x|l2t)d.
0



210 Stability

Using the definition of J,, the dominated convergence theorem and the multiplication
property of the I'-function give

M oo m 2m—+(d—2)/2
~ —(d-2))2 (=D" (llx122/2) a2
= t dt
xm(x) = |Ix]l, /0 mE:O T a72)

e g G /2R M
= |lxll; Y T ! t
m!T(m+d/2) 0

m=0
— e i (=1 (x|l /22" @22
2 m!T(m +d/2) d+2m

m=0

—d/2
= M2\ x |13 g p(M X 12).

2m+d

This function is the key ingredient in finding the function W.

Theorem 12.3 Let ® be an even conditionally positive definite function that possesses a
positive Fourier transform ® € C(R? \ {0}). With the function

M) := inf ®(w
wo(M) oty (@)

a lower bound on Ay, is given by

po(M) ([ M\
Amin(Ae,x) > W <W>

forany M > 0 satisfying

5 1/(d+1)
w2 (Fd2ED (12.2)
T gx 9
or, a fortiori,
M= 6.38d. (12.3)
qx

Proof Let us define W by its Fourier transform as

~ ~ QoML (d/2+ 1)
V() = Uy (@) = =m0 * x)(@),

where f x g denotes the convolution from Theorem 5.16. Then U > 0 has support in

B(0, 2M), which shows that ®(w) > V(w) for ||w|, > 2M. For ||w||, < 2M note that

po(M)I'(d/2+1)

2d pd 7 d]2 vol(B(0, 2M)) < go(M) < ().

V(o) <
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This shows that W is a good candidate and that we have to bound the quadratic form for W.
This is done directly. First note that

@o(M)C(d/2+ 1)
2d Mdpd/2

(MT@/2+1)
= WO D ony P P

po(MI(d/2+1)

= T”x”;dﬁ/z(”f”x”z)-

Wy (x) = Otm * xm)Y (x)

Next we use

N
> oW (x; — xe) = el 3Wan(0) — Y lo o[ W (xj — i)
Jok=1 Jj#k

1
> lel39m(0) = 2 D (s + lowl) 1 Was (= x0)]
J#k

N
= oz | War(0) = max > W (¥ — %0
-
By Proposition 5.6 we know that
M) (M
rd/2+1)\2¥
Hence, the stated bound on Ay, is Wy,(0)/2 and it remains to show that
i 1
max v P — < -y
max, D W = 3] < 5 W (0)
k#j
for the chosen M. To this end we can assume that the maximum is taken for x; = 0, i.e. that

N N

max E W (x; — x0)| = E [War (xe)].
1=j=N 43 k=
k#j

Now the trick is to count the points in a different way. If we define
E,={x € R :ngx < |lxll2 < (n + Dgx}

then we see thatevery x;,2 < j < N,iscontained in exactly one of the E,,,n > 1. Moreover,

since every ball B(x;, gx) around x; with radius g is essentially disjoint from a ball around

Xx # x; with the same radius and since all these balls with center in E, are contained in
fx € R :(n = Dgx < lIxll2 < (n + 2)gx},

we can estimate the number of centers in E, by comparing the volumes to get

#{xj € En} < (l’l + Z)d — (n — l)d < 3dl’ld_l,
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where the last inequality is easily shown by induction on d. From Proposition 5.6 we find

@o(MT(d/2 + 124772 1))
e llx 1l
r2d/2+1) 4\
(MIIXIIz)

Wy (x)| <

= ¥u(0)

which allows us to bound Wy, (x) on E,;:

r2d/2 +1 4 \4t!
Wa@)] < Wy (0) ”ﬂ* )(anx) . xcE,

Thus if we use Y oo, n=2 = 2 /6 we get the bound

N o]
D 1wl < ) #(xj € Ey) sup [Wy(x)|
n=1

k=2 xek,
r2d2+1) ( 4 \*"*' &,
< Uy 0)——L= 2 —— 3 -
< ¥y (0) . (qu> Zn
l"2(d/2+1):rr< 12 )"“

= Yy, (0
w0 —= T

1
< —Wy(0),
= 5%

where the last inequality obviously holds for all M satisfying (12.2). To see that (12.3)
implies (12.2), remember Stirling’s formula from Proposition 5.2, which gives us here

T n? d d d
5F’L’(d/2+ < ?d 1(2e)7de!/GD

and
1/@d+1) 2 /D
(%Fz(d/z + 1)) <d (%) (2e)~d/(@+D) g1/13d(d+D)]
<d el/® <0.531d,
T 34/2e -
so that (12.3) is indeed sufficient. O

Our next step is to apply this result to our collection of different basis functions. To this
end let us introduce the constants

T2(d/2 + 1)\ /e 1 M\
M; =12 M and Cj=— Md
9 2I(d/2 + 1) \ 2372

so that the bound becomes

Amin(Aa x) > Cago(Ma/qx)qx".
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Of course, instead of using the exact bound for M in the definition above we could also
define M, = 6.38d.

Our first example will be the Gaussian ®(x) = e“"”x”g, o > 0. From Theorems 5.18 and
5.16 we know that the Fourier transform of the Gaussian is given by

B(w) = o) 2 IxIB/a),
which is clearly decreasing. Thus the infimum takes the value

go(M) = Qay /e /e,
giving
Corollary 12.4 For interpolation with ®(x) = e the minimal eigenvalue of the in-
terpolation matrix can be bounded by

hmin( A, x) = Cy(2a) /2= MilGie0g
> Cd(za)fd/zefztm1d2/(q§a)q;d.

Next let us have a look at (inverse) multiquadrics. We know from Theorem 8.15 that
D(x) = (c* + ||x I|§)ﬂ, B € R\ Ny, has up to a sign the generalized Fourier transform

_2Mp <||w||2
T I(-p)

Moreover, we know from Corollary 5.12 that r +> r~#~4/2K ; >, g(r) is nonincreasing and
that

D(w)

—B—d/2
; ) Kiprpelol), @ #0.

—r

Kipip(r) = Cd, ﬂ)%

7

forr > 1 with an explicitly known constant C(d, 8). The restriction » > 1 is only necessary
if |d + 28| < 1. In any case we have

- —2cM
wo(M) > Cd, c, ﬁ)m'

Corollary 12.5 Using ®(x) = (c> + ||x||§)ﬂ, B € R\Ny, as the basis function results in
Amin(Aa x) = C(d, B, c)qly >+ e72eMalax
with an explicitly known constant C(d, B, c).

After this more complicated example we turn to functions of finite smoothness. Thin-
plate splines, powers, and compactly supported functions of minimal degree can all be
treated in the same way. Let us start with thin-plate splines ®(x) = (—1)¥*!||x ||§k log [|x|2-
According to Theorem 8.17 they have the generalized Fourier transform

3 —d—2%
D(w) = crlloll;

with a constant ¢, specified in that theorem. Hence our theory yields for thin-plate splines
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Corollary 12.6 In the case where ®(x) = (—1)¥1||x||% log |lx |2, we can bound the min-
imum eigenvalue hyin(Ae, x) as follows:

Amin(Aw x) > Cacr(2Myg) "> ¢3¢,

Next, the powers ®(x) = (—1)[#/21 ||x|\2ﬂ, x € RY, with 8 > 0, B & 2N, have the gener-
alized Fourier transform ®(w) = cgllwll;’ a-p by Theorem 8.16. Again, the constant cg is

specified in the theorem. This Fourier transform leads to
Corollary 12.7 In the case where ®(x) = (—1)[/#/21||x Hg, B> 0,8 &2N, we have
Jmin(Aw.x) = Cacp2Ma) 5.

Finally, let us have a look at the compactly supported radial basis functions ®4; =
dax(ll - I2) of minimal degree defined in Definition 9.11. Even if we do not know the
Fourier transform of these functions explicitly, we know from Theorem 10.35 that

(@) = Cllofy %!

for sufficiently large ||w||», with the possible exception of d = 1, 2 in the case k = 0. The
constant C depends only on d and k. Since @ is continuous and positive on R? we obtain

Corollary 12.8 In the case of the compactly supported radial basis functions of minimal
degree of Section 9.4, the smallest eigenvalue of the interpolation matrix can be bounded
as follows:

)‘-min(A<I>,X) = Cq}Z(k+1 .

As in the case of error estimates we summarize our results in the following form. For
every basis function we have found a function G such that

)‘min(AdxX) = G(qX)

Table 12.1 contains the functions G for the various basis functions & up to a constant factor
that depends only on & and d but not on X.

Let us come back to the trade-off principle. If we use the function G that we have just
introduced and the function F from Table 11.1, which gave a bound on the squared power
function, we see that

G(gx) < hmin(Ax,0) < Pg x\(x) (%)) < Fhx\px),0)

for every x; € X. Hence, if X and X \ {x;} are quasi-uniform then the separation distance
qx and the fill distance hx\(y,) o are the same size. Since in the case of basis functions of
finite smoothness the functions F' and G differ only by a constant factor and have the same
exponent, this means in particular that the estimates of both the upper bounds for the power
function and the lower bounds for the smallest eigenvalue are sharp concerning the order.
We see also that in the case of Gaussians there is a substantial gap between G and F, while
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Table 12.1 Lower bounds on Amiy in terms of q

Q(x) = ¢(r), r = lIx|l2 G(@)

Gaussians e’ a>0 q*defMﬁ/(aqz)
q—de—40.71112/(mq2)

multiquadrics (=D 4 r2)P, gP=d=D/2=2Maclq
inverse MQ B € R\Ny gh—@=/2¢=12.76dc/q
powers (—1)B21p8, qﬁ

B>0,B8¢&2N
thin-plate splines (=D 1r%* logr, g%

keN
compactly supported functions Gax(r) g2+

in the case of the (inverse) multiquadrics, better results concerning the involved constants
are all that is necessary.

12.3 Change of basis

We have seen that expressing the radial basis function interpolant s ; x of a function f in the
standard basis can lead to badly conditioned interpolation matrices. The condition number
depends more on the separation distance than on the number N of centers.

Of course, if in particular the basis function is positive definite, leading to a positive
definite interpolation matrix, we have all the preconditioning methods known from classical
linear algebra to hand. The most promising methods seem to be the preconditioned conjugate
gradient method and the incomplete Cholesky factorization. But since these methods are
described in good books on numerical linear algebra we will skip the details here. There is
a lack of preconditioning methods specially tailored to the radial basis function situation.
The few existing methods seem to be inferior even to the classical preconditioner just
mentioned.

In the first place, a bad condition number is a result of the naturally chosen basis, namely
(-, x1), ..., D(-, xy) (plus a basis for P), and we might be interested in finding a better
basis for the subspace

Vx = span{®(-, x;) : x; € X} + P.

This is a well-known idea in approximation theory. For example, the success of using splines
in the univariate setting goes hand in hand with finding the B-spline basis. Obviously, if we
choose the cardinal basis {u;‘.} as a basis for Vy then the interpolation matrix becomes the
identity matrix. Unfortunately, finding the cardinal basis is at least as difficult as solving
the linear problem itself.
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In this section we want to discuss other bases for this finite-dimensional space. Particularly
in the case of thin-plate splines we will see that it is possible to find a basis which leads to
an interpolation matrix that is independent of the separation distance gx but dependent on
the number of centers.

We will restrict ourselves here to the case of conditionally positive definite kernels. But
the reader should keep in mind that a positive definite kernel can also act as a conditionally
positive definite kernel.

In Section 10.3 we introduced two further kernels associated with the initial kernel .

Remember that we had previously chosen aset E = {&;, ..., &p} € Q that is P-unisolvent
and a cardinal basis py, ..., pg for P satisfying py(&x) = 8¢ x. Then we defined the kernels
Qo Qo
K(x,y) 1= 006, y) = Y pe)PE ¥) = Y pe(0Dx, &)
k=1 =1
[
3 PP P £2) (12.4)
(=1 k=1
and

0
K(x,y) = (e, )+ ) pex)pe(y)-
(=1

Another way of describing the relation between K and « is by the projection operator
Mpf =YL fEpe:

0 [ 0
TpK(,y) =Y kG pe+ Y Y pEOppe =Y pe¥pe,
=1

=1 =1 k=1

which implies that
k(- y)=K(,y)—pK(, y). (12.5)

Note thatif € C X thenitis true that K (-, x;) and « (-, x;) bothlie in V. Thus the question to
be answered here is whether we canuse {K (-, x1), ..., K(-, xy)} or {x (-, x1), ..., k(-, xny)}
as a basis for Vyx. Obviously, the second family is doomed to fail since (-, &) = 0 for
1 <k < Q. Thus in this situation we have at least to add P again.

Theorem 12.9 The kernel K : Q x Q — R is positive definite on Q2. Moreover; if Q=
Q\Ethenk : Q x Q — Ris positive definite on Q. Both kernels are conditionally positive
definite with respect to P on Q.

Proof First of all, if a set of distinct points X = {x1, ..., xy} € Qs given and if we have
an a € RY that satisfies

N
> aipx) =0 forp e P (12.6)
j=1



12.3 Change of basis 217

then obviously
N N N
o K(xi, x;) = Z ok (x;, x;) = Z a;a; P(x;, x;),

1 ij=1 ij=1

iJ

showing that both K and « are conditionally positive definite on €2 with respect to P. Let
us have a closer look at K for arbitrary @ € R". From Theorem 10.20 we know that K is
the reproducing kernel for the native space N(2) with respect to the inner product

Y]
(£ ) = (s Owaie + ) fEDRED.

=1
Together with Theorem 10.3 this means that

N 2
Z oo K(x;, x;) = >0,

i.j=1

N
Y aiK(.x))
=

showing K to be at least positive semi-definite. But since we have a norm now the quadratic
form is zero if and only if Z?’Zl a;jK(x,x;)=0forall x € Q. Setting x = &, and using
k(&¢, -) = 0 shows that actually « satisfies (12.6). Thus the first part of our proof gives
a=0.

Now let us look at k. We start with centers X = {x;,...,xy} C 5 which means that
XNE=0.Thus Y = X U E consists of N + Q distinct points. Let y; = x; for 1 < j <
N and yy4; = &; for 1 < j < Q. Next suppose that « € RV\{0} is given. If we define
BeRN by B =a;for1 <j<NandByrj=—Y 1, ap;x)forl <j<Q then
we have

N+Q N QO N

DB =Y aipee) = Y Y aipexi)pi(E) =0

j=1 j=1 =1 i=1

for 1 <k < Q. Thus B satisfies (12.6) for Y instead of X. Moreover, it is now easy to see
that

N N+Q
Z ;oK (x;, xj) = Z BiB;i®(yi,y;) >0,
i,j=1 i.j=1
which proves the result for «. O

Thus we can restate our initial interpolation problem in two new ways. Let us start with
the simpler one.

Corollary 12.10 If E C X then the interpolant s ;s x can be written as
N
Sf.X = Zole(',Xj),
j=1

where the coefficients are determined by sy x(x;) = fj, 1 < j < N.
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When using « we have to be more careful, since & € X does not lead to linearly inde-
pendent functions (-, x;). But we need 8 C X to ensure that we get the same interpolant.
So assume that x; = &; for 1 < j < Q. Then we know at least that the matrix

C = (k(xi, Xj))o+1<i,j<N

is positive definite. Or, in other words, the family {« (-, x;) : @ +1 < j < N} is linearly
independent. Since k(x;,-) = 0 for I < j < Q, we immediately have that {x(-, x;) : O +
1 <j<N}U{pr:1<k< Q}isabasis for Vy.

Thus we can restate the interpolation problem using this basis.

Corollary 12.11 If E C X satisfies x; = §&; for 1 < j < Q then the interpolant can be
written as

N

0
sf.x(X)=Z/3kpk(x)+ Z ajr(x, x;)
=1

j=0+1

and the coefficients are again determined by sy, x(x;) = f(x;), 1 < j < N.

Since the {p,} form a Lagrangian basis for E and since x vanishes if one of its arguments
is an element from E, the interpolation conditions lead to the matrix equation

G )

with the R2* € identity matrix I and the RN ~*€ matrix P = p;(x:)), where i runs over
the indices starting withi = Q + 1.

Note that the first row means that 8 = (f(x1), ..., f (xQ))T and so solving the system
reduces to solving

Ca:f— Fﬁ

with ]7 =(f(xg41) -+ FGea))T, which can be solved using a solver for positive definite
matrices.

Let us do an example to see how the three different approaches work. To this end we
choose the basis function to be ®(x, y) = ||x — yllg log ||x — y|l2, which is conditionally
positive definite on R4 x R? of order m = 2. Thus if we treat the two-dimensional case, P
is the space of linear polynomials in R? having dimension Q = 3.

Our simple example uses lattice points on [0, 1]?, and we will choose E =
{0,007, (1,07, (0, 1)} with the associated Lagrange basis p;(x) = 1 — x| — X2, p2(x) =
X1, and p3(x) = x,. Table 12.2 contains the results for different spacings. The matrix Ais
the standard matrix using the standard basis for Vy as it appears for example in (8.10).

It can be seen that the condition numbers are roughly of the same size, even slightly worse,
in the case of the new kernels. But in this example we changed the separation distance and
the number of points. If we are only interested in the effect of the separation distance we
have to keep the number of points fixed. This is of interest in itself, for reasons that will
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Table 12.2 Condition numbers in the £,-norm

Spacing Conventional Reproducing-kernel Homogeneous
h matrix A matrix K matrix C

1/8 3.5158 x 10° 1.8390 x 10* 7.5838 x 10°
1/16 3.8938 x 10* 2.6514 x 10° 1.1086 x 10°
1/32 5.1363 x 10° 4.0007 x 10° 1.6864 x 10°
1/64 7.6183 x 10° 6.2029 x 107 2.6264 x 107

Table 12.3 Condition numbers for a fixed number of centers

Scale parameter Conventional Reproducing-kernel Homogeneous
o matrix A matrix K matrix C

0.001 2.4349 x 10® 8.4635 x 10® 5.4938 x 10°
0.01 2.4364 x 10° 8.4640 x 10° 5.4938 x 10°
0.1 2.5179 x 10* 8.5134 x 10* 5.4938 x 10°
1.0 3.6458 x 107 1.3660 x 10° 5.4938 x 10°
10 1.8742 x 10° 1.2609 x 10° 5.4938 x 10°
100 1.1520 x 10" 1.1396 x 10° 5.4938 x 10°
1000 3.5478 x 10" 1.1386 x 107 5.4938 x 10°

become clear later, when we want to solve a large RBF system by splitting it up into a
couple of smaller systems.

Thus our next model problem is again thin-plate spline interpolation, but this time on a
uniform 5 x 5 grid in [0, @]? with spacing gx = a/4. Table 12.3 shows the results.

Now the situation has completely changed. The condition number of the matrix C is
independent of the scaling . We will spend the rest of this section explaining this behavior.

We start with a lemma that is an improved version of a technique we have already used,
in the proof of Theorem 11.9.

Lemma 12.12 Let E = {&, ..., &g} be a m,—1(RY)-unisolvent set and let py, ..., pg €
T—1(R?) be such that py(&;) = 8k,¢. Then for any p € Tom—1(RY) it is true that

Qo Qo
0=px ==Y ppx—&)— Y px)p&E — )
k=1 =1

Q
+ ) PO p)pE — &)

k.t=1

Proof Obviously it suffices to prove the identity for the monomials g,(x) = x%, o € Ng,
|| < 2m — 1. The binomial theorem allows us to write

G@ux =)= D apgp(y)qa—p(x).

0<p=e
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Thus to investigate the expression on the right-hand side of the statement in the lemma for
P = g4, We have to investigate

0 0
Qupap() = Y PkNapENGa—p(¥) = Y pe()qu—pEqp(y)
k=1 (=1

Y]
+ Y pe@)p()ga-pEDapER)

£k=1

Y
= Gu-p()qp(y) — Y pe(3)qp(E)Ga—p(x)
k=1

Q Qo
=3 pe)ga—p(ED) (qﬂ(w -3 m(y)qﬂ(su)
=1 k=1

0
= qu—p() [gp(y) — Tgg(M] = Y pe(x) [gp() — Tgp(»)] qu—p(&)
k=1

= [qa—p(x) — Mga—p(0)] [g5(») — Tgs(»)] .

where we have utilized the projection operator [1f = 219:1 f (&) px again. Now, since || <
2m — 1, either | — B| <m — 1 or |B| <m — 1 for every B. Hence, the last expression is
zero for all B € Ng with B < «. But this means that the expression given in the lemma
becomes

> " ap (qu-p(x) — Tga—p(x)) (gp(y) — Tgp(y)) = 0

B=a

for p = g4, thus proving the lemma. O

This lemma was needed to show that under certain circumstances the kernel « is in a
certain way homogeneous.

Theorem 12.13 Suppose that the symmetric function ® € C(R? x R?Y) satisfies
O(hx, hy) = W ®(x, y) + qn(x — y) forall h > 0 and x, y € R?, where ). € R and gq;, €

Tom—1(RY). Let B = {&,...,&q} be unisolvent for Tn—1(R?Y) with associated Lagrange
basis pi, ..., po. Let k be the kernel (12.4) and «" for h > 0 be the kernel i for the
set hE = {h&, ..., h&p} and the Lagrange functions p{', ey p'é associated with this set.

Then k" (hx, hy) = W'k (x, y) forall x, y € R.

Proof Since obviously p,’(’(x) = pi(x/h), we have

Q 0
«"(hx, hy) = ®(hx, hy) = Y p{(hx)D(héx, hy) = Y pi(hy)D(hx, h)
k=1 =1

[
+ Y plhy)pi(hx)D(h&, he,)
k=1
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Qo Qo
= (eb(x, M = Y pOPES Y) = Y pe()P(x, &)
k=1 (=1

Qo
+ pz<y)pk(x)d><sk,a))

k=1

0 4
Fante =) = Y pe@)gnE — y) = > pe3)an(x — &)
k=1 =1

[
+ Y PO pey)an(E — &)

k=1
= hl/c(x, y).

O

This theorem gives the reason why the condition number of the matrix C is independent
of the scaling parameter. To see this we only have to show that the conditions of the theorem
are met by thin-plate splines. But before that let us record

Corollary 12.14 Suppose that ® € C(RY x R?) is a conditionally positive definite kernel
with respect to m,_\(R?) and satisfies the assumptions of the last theorem. Sup-
pose further that X = {xi, ..., xy} is disjoint with 8. Let C = (k(x;, x¢)) and ch =
(k" (hx i» hxy)); then both matrices have the same condition number with respect to the
£y-norm.

Proof Since both C and C” are positive definite matrices, we can compute their minimal
and maximal eigenvalues:

flell2=1"

N
Amin(C") = min Z ajozk/ch(hxj,hxk)
J.k=1

N
= h* min E ajogk (X, xi)
lela=1 4=

= hk)bmin(cl

Replacing “min” by “max” shows that Amax(C™") = h*Amax (C). Hence both matrices have
the same condition number. O

As mentioned before we will conclude this section by giving two examples.

Proposition 12.15 The kernel ®(x, y) = (—1)#/?1||x — y||§, B >0, B &2N,isafunction
that is conditionally positive definite of order m = [/2] and satisfies the condition of The-
orem 12.13 with A = B and g, = 0. The kernel ®(x, y) = (—1)**!||lx — y||¥ log [x — vl
is conditionally positive definite of order m =k + 1 and satisfies the condition of
Theorem 12.13 with . = 2k and a polynomial q; € 7y (R?) C mp_1(RY).
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Proof Everything said about the first kernel is obviously true, so let us turn to the second
kernel, the thin-plate splines. There we have

®(hx, hy) = (—=D""'h*|lx — y|13* dogh +log ||lx — y|)
= h*®(x, y) + (=D h* loghllx — y|I3.

12.4 Notes and comments

The idea of expressing the condition number in terms of the so-called separation distance
was initiated by Ball [8] and extended by Narcowich and Ward in [143-145, 147]. Their
approach is based on the Schoenberg and Bernstein—-Hausdorff—~Widder theory on the one
hand and on Micchelli’s theorem on the other, so that it is restricted to radial functions
that are (conditionally) positive definite on every R¢. But their idea was so powerful that
Schaback [163] could easily extend it to the general case of conditionally positive definite
functions by using representations of Bochner’s type.

The trade-off principle, also sometimes called the uncertainty relation, was first discov-
ered in this field by Schaback [163]. The third section of the chapter was based on ideas of
Beatson et al. [15].
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Optimal recovery

So far, we have dealt with the following simple interpolation or approximation problem. An
in general unknown function f is specified only at certain points X = {x, ..., xx}, and we
are interested in recovering the function f on a region €2 that is well covered by the centers
X. In a later chapter we will concentrate on more general problems. But let us stick to this
particular one a little longer. Why should we use (conditionally) positive definite kernels
for recovering f?

We have already learnt that recovering f is a difficult task and that radial basis functions
are a powerful tool for doing this. In particular, they can be used (at least theoretically —
we come back to the numerical treatment in a later chapter) with truly scattered data and
in every dimension. Moreover, positive definite functions appeared quite naturally in the
context of reproducing-kernel Hilbert spaces.

But this is not the end of the story. Interpolants based on (conditionally) positive def-
inite kernels are optimal in several other ways and the present chapter is devoted to this
subject.

13.1 Minimal properties of radial basis functions

Let us start with best approximation. We have seen that the native space Ng(S2) corre-
sponding to a (conditionally) positive definite kernel ® is an adequate function space. The
interpolant s s x is one candidate that uses the given information about f on X, but of course
not the only one. More precisely, any function s from the space

N N
Vi=1s=) a;®C.x)+p:pePand ¥ a;qx;)=0forallgePt (13.1)

j=1 j=1
can be considered.
Theorem 13.1 Suppose that ® € C(2 x 2) is a conditionally positive definite kernel
with respect to the finite-dimensional space P S C(S2). Suppose further that X is P-

unisolvent and that f € No(2) is known only at X = {x1,...,xn} C Q. Then the in-
terpolant sy, x is the best approximation to f from (13.1) with respect to the native space

223
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(semi-)norm, i.e.

If = srxlvee < 1 — slvee
forall s € Vx. Hence, sy x is the orthogonal projection of f onto Vx.

Proof By Lemma 10.24 we know that (f — s/, x, $)n, (@) = 0 for all s € Vx. But this is
the characterization of the best approximation in Hilbert spaces. The argument also holds
in the case of a symmetric bilinear form with nonzero kernel. O

Note that in the case of a conditionally positive definite function the best approximation
is uniquely determined only up to an element from 7. We can avoid this nonuniqueness by
going over to the inner product

Qo
(f,8) =Y fEIZE) + (f, Onic)
k=1

with a P-unisolvent subset E = {£, ..., &p} € ©; see Theorem 10.20.

But this is not yet the whole story. Recalling the minimal properties of splines, we know
that they minimize an energy functional under all interpolatory functions from a Sobolev
space. The same is true here.

Theorem 13.2 Suppose that ® € C(Q2 x Q) is a conditionally positive definite kernel
with respect to the finite-dimensional space P < C(2). Suppose further that X is P-
unisolvent and that values f, ..., fn are given. Then the interpolant sy x has minimal
(semi-)norm | - |, under all functions s € No(S2) that interpolate the data {f;} at the
centers X, i.e.

|Sfyx|/\/®(g) = min{|s|_/\/¢(g) S Nm(Q) with s(xj) = fja 1 < j < N}

Proof The interpolant has a representation s, x = A*®(:, x) + ¢, where A = Z?’Zl a;dy;
satisfies A(p) = O for all p € P and where ¢ € P. Moreover, any s € Ng(2) can be ex-
pressed by

s(x) = l_[pS(X) + (S, G(, x))./\fm(Q)’

where G is the function from (10.4). Since A* ®(-, x) = A*G(-, x) we have

N
W, 87N = (U» Zajq’(‘, x))
=

= (U, VO, ns@
= AMITpv) + (v, A" G (-, )N

No(2)

N
= AMv) = Zajv(xj) =0
j=1
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for every v € Ng(Q2) with v(x;) =0for 1 < j < N.But this means that

2
[srxnp@ = Grx:Srx =+ SNo@ = (S£.X SNo(@

< Ispx|ve@ s Vo
forall s € No(2) withs(x;) = f;for1 < j < N. O

It is interesting to see what this implies for the thin-plate splines, in particular for those
specified in (10.11). For example, in the bivariate case we could consider the function
¢(r) = r*log r, which is conditionally positive definite of order 2. Hence, the radial basis
function interpolant

N
spx() =Y c;p(lx — x;jl2) + plx),

=

where p is a bivariate linear polynomial, minimizes the semi-norm

2 1/2
|f|BL2(R2) = (f dx)
R4

under all interpolants from the Beppo Levi space BL,(R?). This was the initial starting
point for investigating thin-plate splines. Note that for space dimensions d > 3 one actually
has to consider the thin-plate splines (10.11) as functions of order £ instead of order m =
£ — [d/2] + 1,in order to state the minimization problem in the Beppo Levi space BL;(R?).
For example, the function ¢(r) = r is conditionally positive definite of order m = 1. Hence,
only a constant has to be added to the radial sum to guarantee a unique interpolant. But
if the interpolant should minimize the Beppo Levi semi-norm | - |g;,(r3) under all Beppo
Levi functions it has to be formed with an additional linear polynomial.

Finally, let us come to the third minimal property of the radial basis function interpolant.
This one is connected with the power function.

2
+2

2

32
n f

3 f
TX%(X)

0X10Xp

9 f
Tx%(x)

(x)

Remember that we can rewrite the interpolant s 7 x using the cardinal functions {uj} as

N
spx(x) =Y W) fx)).
j=1
Thus we could ask the question whether these coefficients {uj(x)} are the best possible, or,
equivalently, what is the solution of

N
FO) =) ujfx))

Jj=1

sup . (13.2)

inf
u€RN:3 T plxj)=p(x). peP SeNw@): | fIng@=1

Theorem 13.3 Suppose that ® € C(Q2 x 2) is a conditionally positive definite kernel with
respect to the finite-dimensional space P C C(R2). Suppose further that X is P-unisolvent
and x € Q is fixed. Then the solution vector to (13.2) is given by the cardinal functions
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u;‘.(x), 1 <j<N,ie for f € No(Q) we have

[f(x) —spx(xX)] <

N
f@ = i fx)
Jj=1

for all choices uy, ..., uy € Rwith ) u;p(x;) = p(x), p € P.

Proof Using again the representation for f € Ng(2) from Theorem 10.17 leads us to

N

fx) - Zujf(xj) =Tlpf(x) + (f, GG XDne@

=
N

N
= 2wl ) = D w(f, GG 2w

j=1 j=1
N
=Gt =) uGe, x,,-)) :
J=l No(®)
This shows that the norm of the pointwise error functional is given by

N
FO) =) ;i fx))

j=1

N
G(x) =y u;G(,x))

j=1

= Q")
Na()

sup
FeNa@) | flvp@=1

where Q is the quadratic form (here for @ = 0) from Lemma 11.3 and Theorem 11.5. But
Theorem 11.5 simply states that Q(u*(x)) < Q(u) for all admissible u € RV, O

Obviously, a stronger result holds as well when derivatives are included. We leave the
details, which are simple, to the reader.

Later on, the results of this section will be generalized to a setting where functionals
other than point evaluations are involved. The more general setting can be described as
follows. Suppose that we know of an unknown function f € Ng(£2) only the values A ;(f),
1 < j < N, where 1, is a continuous linear functional on the native space. Suppose further
that we have another functional A and that we are interested in finding an unknown value
A(f) using only the values X ;( f). We will call such a problem a generalized interpolation
problem. It will be discussed extensively in Chapter 16.

13.2 Abstract optimal recovery

The idea of optimally reconstructing functions can be put in a much more general framework,
which we will now describe. Moreover, we will show how this general framework applies
to radial basis function interpolation.

LetU, V, and W be three normed linear spaces. Let K be a subset of U. We assume that we
have some information on the elements of K, given by the linear mapping 7 : U — V. The
mapping J is called the information operator. Moreover, we have another linear operator
T : U — W, which we want to call the target operator.
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Our task is to reconstruct for every x € K the target Tx € W from the information
Jx € V. This can be done by a mapping A : J(K) €V — W, which cannot be linear.
Such a mapping A is in this context called an algorithm. The whole situation can be
visualized in the following diagram.

Kcu-de 5(K)CV

T
A

W

To determine the usefulness of an algorithm A we measure its error by

E(A) :=sup [[A(Tx) — Txllw,
xek

and the entire problem has an intrinsic error defined by
E* = inf E(A).
A
Now it should be clear what an optimal algorithm has to do.

Definition 13.4 A mapping A : J(K) — W is called an optimal algorithm for the problem
Jjust described, if E(A) = E*.

Next, we derive a sufficient condition for an optimal algorithm. To this end we assume
that K is symmetric, i.e. x € K implies —x € K.

Theorem 13.5 Suppose that K is symmetric. If there exists a mapping F : J(K) — U
such that for x € K

(1) x—FJx €K,
(2) Jx-FJx)=0

then TF : J(K) — W is optimal.

Proof First of all, the symmetry of K and the linearity of 7 show that we have for x € K
with Jx = 0 also J(—x) = —J(x) = 0. This gives, for an arbitrary algorithm A and such
an x,

I7xll

Tx — A) + Tx + AO)|

s[ITx — A + 1 Tx + AO)]]

max{||A(0) — Tx||, |A0) + Tx|}
max{[|A(Jx) — Tx|l, AT (=x)) = T(=x)ll}
< E(A).

INIA
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Hence we have established on the one hand the inequality
sup{|Tx|| : x € K, Jx =0} < E*.
On the other hand, the existence of an F' with the stated properties now shows that

E(TF)=sup|T(FJx — )| <sup{[|Tz]:z€ K,Jz=0} < E*,
xek

which means that 7' F is indeed an optimal algorithm. O

At first sight the previous result seems to be of only limited use, since the optimal
algorithm 7 F includes the target operator. The following two examples show that this is in
fact not the case.

In the first example, we choose U = W = N4(2) as the native space of a (condition-
ally) positive definite kernel ® and T : No(R2) — No(R) as the identity mapping T = id.
Moreover, we set V.= R and define J : No(Q) — RY by T f = (f(x1), ..., fxa)T
for a given fixed set {xy, ..., xy} C . Finally, K is chosen to be the unit ball in N¢(£2),
ie. K ={f € No(Q) : | flnu@ = 1}. In this setting an algorithm A : J(K) — Np(Q) is
optimal if it minimizes

E(A) = sup [A(fIX) = flve@- (13.3)

[fIng@=1

To apply Theorem 13.5, we define F : RN — Ng () to be the interpolation mapping, i.e.
F(fi, ... fn) = s{s,;.x- Then the interpolation condition is equivalent to 7 F J f = J f for
all f € Ng(2), which is the second condition in Theorem 13.5. The first condition can be
concluded from Theorem 13.1. Since s x is the best approximation to f, we in particularly
have

If = FIT flva@ < |flva@ = 1.
Hence by Theorem 13.5 interpolation is in this sense optimal.

Corollary 13.6 Among all mappings A : No()|X — No (), interpolation in X is opti-
mal in the sense that it minimizes (13.3).

The result obviously remains true in the following more general setting. Whenever an
interpolatory operator provides a best-approximation property, it gives an optimal algorithm
to the associated problem.

Our second example goes in the same direction. This time we choose U, K € U, V, and
J asin the last example, but we let W be R and T : No(2) — Rbe definedby Tf = f(x)
for a fixed x € Q. This means that we now want to minimize

E(A) = sup |A(f]X)— f(x)I. 13.4)

[fIvg@=1
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Since the setting is almost the same as in the first example, we have in particular again that
with F(f]X) = sy, x the conditions of Theorem 13.5 are satisfied. Hence, interpolation is
again optimal.

Corollary 13.7 Among all mappings A : No(2)|X — R the one that evaluates the inter-
polant s ¢ x at x is optimal in the sense that it minimizes (13.4).

Obviously, one can easily think of several other examples and we encourage the reader to
do so.

For simplicity, we have restricted ourselves here to a situation of exact information. It is
possible to include the fact that Jx is known only up to an error of magnitude € > 0 by
redefining the error of an algorithm as

E(A,€) :=sup sup |Ay — Tx]||,
xeK yeV:|Jx—yll<e

but this would lead us beyond the scope of this book.

13.3 Notes and comments

In this chapter we have recovered many of the striking properties of univariate splines in

the context of multivariate approximation by (conditionally) positive definite kernels.
Deeper insights into the theory of optimal recovery can be gained from the review articles

[73] by Golomb and Weinberger and [ 134] by Micchelli and Rivlin and the literature therein.
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Data structures

So far we have dealt mainly with the theoretical background of scattered data approximation
and interpolation. Except for the moving least squares approximation we have not discussed
an efficient implementation of our theory. But from the investigation of the condition num-
ber of straightforward interpolation matrices we know that special techniques have to be
developed to get an efficient but still accurate approximation method. Several approaches
will be discussed in the next chapter.

Crucial to all these methods is the choice of the underlying data structure. It is worth
reflecting for a while on how the centers can be stored in a computer most success-
fully. Thus, in this chapter we will discuss different ways of representing the centers
X={X1,...,XN} g Qng

Let us start by collecting possible requests about the set of points X that the data structure
should be able to answer efficiently.

The first question every user has to answer is whether all points should be kept in the main
memory of the computer or whether the number of points is so large that it has to be stored
on a hard disk or other external device. The difference is that in the latter case a reasonable
ordering of the data points reduces the number of disk accesses, resulting in a dramatic
reduction in run time. There is also an improvement in the first situation by a reasonable
ordering, because of the cache of the computer, but it is not dramatic. We will concentrate
on the situation where all points can be kept in the main memory of the computer.

The second question the user has to answer is whether all points are given in advance,
which would allow us to build the data structure using the knowledge of all the points, or
whether the points are given one by one, which would force us to build the data structure
point by point. We will concentrate here on the former case. Nevertheless, each of our
data structures allows us to add points after the initial build-up. But adding too many
points in this way might lead to a degenerate data structure that in turn results in bad
performance. In this situation it might be better to rebuild the whole data structure if more
than a certain number of points has been inserted afterwards. We want to point out that there
are certain applications for which a point-by-point insertion is necessary, for example, if
greedy methods for solving partial differential equations numerically are employed. But,
as said before, we will concentrate in the following on the most important case, where all
points are given in advance.

230
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Here, then, are the queries that the data structure should at least be able to answer
efficiently.

¢ Nearest neighbor search Given a point x € Q, what is the nearest neighbor of x from X? The
nearest neighbor is defined to be the point from X that has minimal distance to x among all points
from X. Of course, the nearest neighbor does not need to be unique.

¢ ¢ nearest neighbors search More generally, given a point x € € and a number ¢ € N, what are
the ¢ nearest neighbors of x from X?

¢ Range search Given a region R, what are the points X N R? We have to answer this question in
particular in the situation where R is a rectangle or a ball. In this situation we can hope for better
results than in general.

While a range search has already appeared in the context of the moving least squares
approximation, the nearest-neighbor problem comes into play naturally if we want to com-
pute the separation distance gx for a given data set. If it is possible to compute the nearest
neighbor of a point x in constant time then we can compute gx in O(N), which is favor-
ably cheap when compared with the naive approach of computing all distances [lx; — xx||»
having O(N?) complexity.

Some algorithms introduced in the next chapter cover the region 2 by a finite number
of overlapping regions Q;,i.e. 2 = Uy:IQj such that every point x € €2 is contained in at
most K > Oregions ;. Here, K > 0is an integer independent of x but depending on €2 and
on the covering {€2;}. This is a kind of a dual problem to the problems we have encountered
so far. Thus we need a data structure that is able to solve the problem, as follows.

¢ Containment query Given x € 2 report all regions €2; such that x € ;.

Before we start looking at specific data structures let us discuss the brute force method. The
naive approach would simply store the points X in an N-dimensional array of d-dimensional
vectors and try to manage with that. Obviously, this would need O(d N) space and O(dN)
time to built the “data structure”; these are the minimum necessary. Unfortunately, it is also
obvious that a nearest-neighbor query can only be answered by testing all points in X, which
costs O(N) time. The same is true for range search and containment query; both have an
O(N) complexity in time. We have already seen in the context of moving least squares that
this is unacceptable.

14.1 The fixed-grid method

Our first data structure is based on the simple idea of covering the region Q2 by disjoint
cubes of equal side length. For every cube we list the indices of the centers contained in
it. It turns out that this method is very efficient for quasi-uniform data sets. Before we go
more into details let us review some important properties of quasi-uniform data sets.

Let Q C R be bounded. Fix a quasi-uniformity constant cqu > 0. Then we say that a set
of pairwise distinct centers X = {xy, ..., xy} C Q is quasi-uniform with respect to cg, if

qx < hx.e < cquqx,
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where gx and h g are the usual separation and fill distance, respectively. To require gx <
hx.q instead of c;gx < hx q is not a restriction if 2 satisfies an interior cone condition
withradius r > 0.If gy < r wecan find foranx; € X apointy € Q with ||y — x;|» = gx.
Hence

ly —xjll2 = llx; — x1ll2 = llx1 — yll2 = 2gx — gx = gx

for any other x; € X. But this means that hx o > gx.

The nice thing about quasi-uniform sets is that not only are gx and hy o equivalent in
the sense that their fractions can be bounded from above and below by constants but also
both are equivalent to N~1/4,

Proposition 14.1 Let Q CRY be bounded and measurable. Suppose that X =
{x1,...,xy} € Q is quasi-uniform with respect to cq > 0. Then there exist constants
c1, ¢a > 0 depending only on the space dimension d, on 2, and on cqy such that

ClNil/d < hX_Q < CzNil/d.

Proof By definition of h = hy g we have

N
Q< B h).

j=1
hence a comparison of the volumes gives
/2

vol(Q) < Nhd ———
rd/2+1)

or h > ¢y N4, For the second inequality note that since 2 is bounded there exists a ball
B(xp, R) with  C B(xg, R). Thus we have

N
U B(x;. gx) S B(xo. R + qx).
j=1

The balls B(x;, gx) are essentially disjoint by definition of gx. Hence N q§ < (R +gx ¥ or
N <1+ R/qx)d < (2R)dq;d, if gx < R.Note thatgx > R does not make sense because
in that situation X consists only of one point. The quasi-uniformity of X now leads to
N < (2chu)dh‘d, showing also that 1 < N~/ O

Obviously, the equivalence of gx and hy o and the equivalence of hy o and N —1/d 1ead
to the equivalence of gx and N~'/¢. The next result is similar to a result that we achieved
for moving least squares.

Corollary 14.2 Suppose that X = {xy, ..., xy} C Q is quasi-uniform. For any cube W =
W(y, cs N~Y) of side length 2c,N~"/? the number of centers in X N W is bounded by a
constant that is independent of N.
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Proof We argue as in the second part of the proof of Proposition 14.1. Let Y =
{y1,...yu} = X N W. Then the inclusion

M
U BG). gx) € B(y. Vde,N~ + gx) € B(y. cqx)
j=1

shows that M < ¢4, where ¢ depends only on cgy, £2, d. O

Let us come back to the initial problem of defining a good data structure. The first step is
to find the bounding box for €2. In many applications €2 is not known in advance. Moreover,
building the data structure is a problem relating just to the point set X and not to 2. Hence,
we will look for the bounding box BB for X instead 2. Let us denote the coordinates of
the points by x; = (X1, ..., %;.4).

Algorithm 1 Building the grid structure

Input:  Datasites xq, ..., xy € R%.
Output: For each grid cell a list of those points contained in it.

Find the bounding box B B for the data points.
Define a grid consisting of | N'/? |4 equally sized cells on Q.
for every grid cell do

| Initialize a list of indices for the points contained in that cell.

for 1 < j <Ndo
Determine the cell C with x; € C.
Store j in the list for cell C.

Algorithm 1 describes how the grid structure can be built. The most difficult part is to
organize the indices for the grid. This can be done in the following way. Choose a small
€ > 0 and let

oy = lg;iSnN Xjk—€ and B = 1rSnjanN Xjk
forevery 1 < k < d. These numbers essentially describe the bounding box B B for the data
set X. The lower bound is slightly smaller than expected, to ensure that in what follows all
indices are between 1 and [N'/?].
To find out in which box a point x = (x4, ..., x4)7 € R? is contained, we compute the
index vector (I(x1), ..., I(xz))" with

I (x0) = {u LN””’J—‘.
Br — ay
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Then this index vector has to be mapped to a unique index, which can be done by defining

d
I(x) =) () — 11NV
k=1

Let us analyze the resources needed by this algorithm. We need O(dN) space to store
N points from R¢. The list of cells needs another O(N) space for the pointers to the lists
of indices. Finally, since every point is reported only once in the lists of indices, we need
O(N) space for storing all indices. Thus, summing up, we need O(d N) space to build the
entire data structure.

Next, let us turn to the computational complexity. In the first step of the algorithm we have
to compute the maximum and minimum of each coordinate. This can be done in O(dN)
time. In the second step we have to build the data structure for the cells. This means we
have to define an array of size | N 1/d 14 whose entries are lists of indices. Hence this can be
done in O(N) time. Finally, in the third step we have to find for each center x; its box. The
computation of its index costs O(d) time, so that we need O(d N) time for the third step.

Note that we have not made use of the fact that X is quasi-uniform at all. We have derived
the following result.

Theorem 14.3 Algorithm 1 needs O(dN) time and O(dN) space to build a grid data
structure for N points in R?.

The left-hand part of Figure 14.1 shows a typical example of a gridded set of centers.

With this data structure given, it is now time to see how it helps to answer our requests.
Let us start with the range query. In Figure 14.1 the algorithm for an ellipsoidal region is
demonstrated. The precise formulation of the procedure is given in Algorithm 2.

Any analysis of the computational complexity has to consider the size of the query
region. In general, bounds on the necessary time are given in terms of N and of the number
of points in the query region. Here, we want to take a different point of view. We are
mainly interested in query regions R that have size O(N ~!/¢). If this is the case then there

Fig. 14.1 Grid structure for points (on the left) and for a range query (on the right).
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Algorithm 2 Range query

Input: Query region R € RY.

Output: All points that lie in R.

Compute the indices of all cells W with RN W # §.

If this is too expensive then compute first the bounding box B of R and then all indices of

cells W with BN W #£ .
Traverse all cells found and report those points contained in R.

exists a cube W = W(y, ¢; N~'/?) containing R. Since our cells are cubes with side length
O(N~4), the number of cells that have common points with W and hence with R is
bounded by O(c?), i.e. it is constant in terms of the number N of points but exponential
in terms of space dimension. Moreover, if X is quasi-uniform then the number of points in
each cell is also bounded by O(c) by Corollary 14.2. Hence we have

Proposition 14.4 Let X = {xy,...,xy} C Q be quasi-uniform. Suppose that the query
region R is of size O(N~'/?). If its bounding box can be computed in constant time and if
it is also possible to decide in constant time whether a point belongs to R, then Algorithm
2 needs constant time in terms of N and exponential time in terms of d to report all points
contained in R.

We finish this section by investigating the nearest neighbor problem. To look for the
nearest neighbor of x, we simply locate the box that contains x and compute the distance of
all points x; in that box. Moreover, we have to check the points in the neighboring boxes.
To make this procedure more precise, we will introduce the concept of surrounding boxes.
For a given box

B ={[y1,81] x -++ X [ya, 84]
we define the kth surrounding box to be
Sk(B) = {[y1 + hioy, 81 + hyar] X -+ X [ya + haota, 8a + haota]  llotlloo = K},

where hj =48; —y; and « is in Z4. In particular, So(B) contains only B itself. See
Figure 14.2 for an illustration.

With this definition we can formulate the algorithm for the nearest neighbor search as in
Algorithm 3. Remember, that we already have the bounding box BB of X.

If X is quasi-uniform then we know that each box of the grid contains only a constant
number of centers. Moreover, the size of the grid boxes is proportional to iy . Hence the
algorithm terminates after a constant number of steps.

Proposition 14.5 Let X = {xy, ..., xy} C Q be quasi-uniform. For every x € R?, Algo-
rithm 3 reports the nearest neighbor from X to x in constant time in terms of N.
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Fig. 14.2 Typical surroundings of a two-dimensional box.

Algorithm 3 Nearest neighbor search

Input: x € R¢ query point.
Output: A point x; € X closest to x.

Find the box B with x € B.
Initialize dist by infinity.
fork =0,1,2,...do
for every W € Si(B) do
Compute the distance of each x; € W N BB to x, store the closest so far, and update
dist.
Stopif dist < kminj<j<qhj.

A generalization to the £ nearest neighbors problem is obvious. The time taken to report
those neighbors depends also on the number €.

The fixed-grid method can also be seen in a different light. It turns out to be an efficient
data structure for the containment query. Let us describe this in more detail. Suppose that 2
is an axis-parallel cube. Then we take the covering {§2,} to be cubes centered at a grid hZ4
of side length ¢,/ that have common points with 2. On the boundary of €2 we might not
need all the small cubes. Hence, an offset 1 < k < ¢y determines how much our covering
overlaps Q. Figure 14.3 demonstrates the idea. It shows the fine #Z? grid on © and some
of the macro-boxes €2;.

Obviously, for every x € €2 those boxes 2; that contain x can be determined in constant
time. Moreover, only a constant number of these boxes overlap, i.e. each x is contained
only in a constant number of boxes and the constant is independent of x. Finally, if X is a
quasi-uniform data set with fill distance 4 then the number of points from X in one of the
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Fig. 14.3 Covering a region with boxes.

boxes 2; is bounded by a uniform constant. If €2 is not a box, then the general idea still
holds. Only at the boundary do the boxes have to be adjusted.

14.2 kd-Trees

In the last section we divided the bounding box of the centers X into equally sized subboxes
and collected all points for each of these subboxes. If the centers fail to be quasi-uniform
(which means numerically that the quasi-uniformity constant cy, is huge), we have a large
number of empty boxes, or boxes that contain a large number of points, or both. In this
situation it seems to be favorable to divide the bounding box in a different way. One
possibility is to use kd-trees. The name initiated from work in a k-dimensional space,
hence, in our setting these trees should be called dd-trees. But we will keep the commonly
used name.

The kd-tree data structure is based on a recursive subdivision of space into disjoint
rectangular regions called boxes. Each node of the tree is associated with such a box B
and with a set of data points that are contained in this box. The root node of the tree is
associated with the bounding box that contains all the data points. Consider an arbitrary
node in the tree. As long as the number of data points associated with this node is greater
than a small quantity, called the bucket size, the box is split into two boxes by an axis-
orthogonal hyperplane that intersects this box. There are a number of different splitting
rules, which determine how this hyperplane might be selected. We will discuss them in
detail later on. The two resulting boxes are the cells associated with the two children of
this node. The data points lying in the original box are split between these two children,
depending on which side of the splitting hyperplane they are. Points lying on the hyperplane
itself may be associated with either child (according to the dictates of the splitting rule).
When the number of points associated with the current box falls below the bucket size then
the resulting node is declared a leaf, and these points are stored with the node.

Thus, in addition to the data points themselves, a kd-tree is specified by two additional
parameters, the bucket size and a splitting rule. The tree itself is a binary tree with two
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different types of nodes, splitting nodes and leaves. The root node, is in principle a splitting
node (unless the number of points is less than the bucket size), which contains additional
information such as the number of points, the space dimension, and the bucket size. A
splitting node stores the integer splitting dimension indicating the coordinate axis orthogonal
to the cutting hyperplane. It also stores the splitting value where the hyperplane intersects
the axis of the splitting dimension. Moreover, it contains two pointers, one for each child
(corresponding to the low and high sides of the cutting plane). A leaf node stores the number
of points that are associated with this node and an array of the indices of the points lying in
the associated box.

Next, let us discuss possible splitting rules. To this end we denote by Y the current subset
of data points in the current box B. Let B(Y) € B be the bounding box of Y. For the root
node, Y is equal to X, the set of all points, and B = B(X) is the bounding box of the
centers. The aspect ratio of a box is the ratio of its longest and shortest side lengths. Given a
dimension, the point spread of Y along this dimension is the difference between the largest
and the smallest coordinate of all points in Y for this dimension. Finally, for a set A of n
numbers, the median is the number m that partitions A into two subsets, one with [n/2]
elements that are not greater than m and the other with [n/2] elements that are not less than
m. Typical splitting rules are as follows.

¢ Standard kd-tree splitting rule The splitting dimension is the dimension of the maximum spread
of Y. The splitting value is the median of the coordinates of Y along this dimension.

¢ Cyclic splitting rule This splitting rule works in the same way as the standard rule, but the splitting
dimension is not chosen by the maximum spread. Instead all coordinates are chosen one after the
other in a cyclic way.

¢ Midpoint splitting rule The splitting dimension is the dimension of the longest side of B. The
splitting value is the midpoint of this side of the box. If there is more than one dimension with the
longest side choose the dimension with the widest point spread.

¢ Sliding midpoint rule The splitting dimension and splitting value are chosen as in the case of the
midpoint splitting rule, provided that points from Y lie on both sides of the cutting plane. If this
is not the case then the cutting plane is moved from the empty side towards the first point of Y.
The coordinate along the splitting dimension of this point now determines the splitting value. The
point itself is put into the former empty (child-)box while all other points from Y remain in the
other box.

Obviously, several other splitting rules are possible, but those mentioned above are com-
monly used. Before we analyze the complexity of building a kd-tree using the standard
splitting rule, we want to point out that on the one hand this rule may lead to boxes with
arbitrarily high aspect ratios. On the other hand, the midpoint splitting rule produces boxes
with bounded aspect ratios but it may lead to trivial splits. These are splits where one of
the child boxes does not contain a point at all. Hence the depth and size of a tree can be
arbitrarily large, even exceeding O(N). A possible way out is the sliding midpoint rule. It
cannot produce trivial splits and therefore both depth and size are bounded by O(N). It may
also produce boxes of high aspect ratio but this seems to be less likely. A more thorough
analysis of the complexity will follow. Figure 14.4 shows a decomposition of space using
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Fig. 14.4 A kd-tree decomposition with standard splitting rule (on the left) and sliding midpoint
splitting rule (on the right).

the standard splitting rule (on the left) and the sliding midpoint rule (on the right). In both
cases the bucket size has been chosen as one.

Assuming that the splitting rule is chosen, that the bounding box B B of X is at hand, and
that b denotes the bucket size, Algorithm 4 describes the procedure of building a kd-tree.

Algorithm 4 Build kd-tree

Input: Data points X = {x, ..., xy} € R?, box B.
Output: Root of a kd-tree.

if X contains at most b points then
| Return a leaf storing the indices of these points.

else

Determine splitting dimension and value and split the current bounding box B and its
points into two subboxes Bj, B, and two subsets of points Y}, Y5, respectively.

Apply this algorithm to Y;, By, resulting in a pointer v;.

Apply this algorithm to Y,, B;, resulting in a pointer v,.

Create a splitting node v storing the splitting dimension, the splitting value, the left
child vy, and the right child v,.

Return v.

Let us analyze this algorithm when the standard splitting rule is employed. The most
expensive step in each recursive call is to find the splitting value. Median finding can be
done in linear time but the necessary algorithms are rather complicated. It appears to be
easier to presort the set of points on each coordinate in a preprocessing step, which can be
done in O(dN log N) time and needs additional O(d N) space at least temporarily to keep
the sorted lists. Then it is easy to find the median in linear time. It is also easy to construct
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the two sorted lists for the recursive calls from the given list in linear time. Hence, the time
T (N) needed to build the tree satisfies

o) if N <b,

W)= O(N)+2T([N/2]) ifN>b

which on solving the equation turns out to be O(N log N). Finally, because a kd-tree is a
binary tree with O(N) leaves and because every internal node uses (1) space the total
amount of space is O(N). Thus we have proven

Theorem 14.6 To construct the kd-tree for N points in R? using the standard splitting
rule, Algorithm 4 needs O(dN log N) time and O(dN) space.

A consequence of this result is that a kd-tree built with the standard splitting rule has
O(log N) depth. As pointed out earlier, the other splitting rules do not guarantee this feature.
Nonetheless, if the points are quasi-uniformly distributed then all splitting rules have roughly
the same complexity and need the same space.

Algorithm 5 Range query

Input: Query region R € R? and root v of kd-tree.
Output: All points contained in R.

if v is a leaf then
| Report all points stored at v that are in R.

else
Let v; and v, denote the left and right child of v, respectively and let B; and B, denote
their associated boxes.
fori =1,2do
if B; is fully contained in R then
| Report all points in the tree rooted at v;.

else
if R intersects B; then
| Apply this algorithm to R and v;.

Let us now turn to the range query problem. A possible solution is described in
Algorithm 5. The main test in this algorithm is whether R intersects the box B(v) as-
sociated with a node v. If this is rather complicated then it is better to replace R by its
bounding box, to apply Algorithm 5 to the bounding box, and to test the reported points
again in a final step.
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Note that it is not necessary to compute the associated cell B(v) each time. The current
cell is maintained through the recursive calls using only the information on the splitting
value s(v) and the splitting dimension d(v). For example, the cell for the left child v; of a
node v is

B(v)) = Bw) N {x € R : x40y < s(W)}.

The complexity analysis of the range query shows that Algorithm 5 needs slightly more
time to answer a range query problem than Algorithm 2, if the data points are quasi-uniform
and if the range has size O(h). This is a natural consequence of the tree structure.

Proposition 14.7 Let X = {xi, ..., xy} € R? be quasi-uniform in its bounding box BB.
Suppose that the query region R is of size O(N~'/4). If its bounding box can be computed
in constant time and if it is also possible to decide in constant time whether a point belongs
to R, then Algorithm 5 needs O(log N) time to report all points contained in R.

Proof 1f X is quasi-uniform in its bounding box then each splitting rule divides the current
box into two boxes that have a side length in the direction of the spitting dimension that
is roughly half the side length of the original box. Hence no coordinate is preferred by the
splitting rule and the boxes associated with the leaves have side lengths O(hx pg) in each
coordinate. Since the query region has also size O(hx pg), only a constant number of leaf
boxes has to be investigated. Finally, since the depth of the tree is O(log N), the complexity
for reporting all points contained in R is O(log N). O

Next, let us have a look at the nearest-neighbor problem. There are different ways of
implementing a strategy for this problem using a kd-data structure. The standard procedure
is given in Algorithm 6.

Algorithm 6 Nearest neighbor search

Input: Query point x and root v of kd-tree.
Output: A point x; € X that is closest to x.

Initialize the distance dist as infinity and reserve space to store the nearest neighbor nn.
if v is a leaf then
Compute the distance of each point stored in v to x.
if the current distance is less than dist then
| Update dist and nn.

if v is a splitting node then

Visit that child of v whose associated box contains x.

The other child has only to be visited if its associated box has a distance to x that is less
than the current distance dist.

Return nn.
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The generalization to the £ nearest neighbors problem is obvious again. The same is
true for the analysis in the case of quasi-uniform points. In view of the facts that each
box associated with a leaf has size O(h) and that two parallel splitting hyperplanes have
separation distance at least O(h), only a constant number of leaves will be visited. Since
the tree has depth O(log N), we can make the following proposition:

Proposition 14.8 Let X = {x,...,xy} C R4 be quasi-uniform in its bounding box BB.
For every x € R?, Algorithm 6 needs O(logN) time to find the nearest neighbor of x.

Since our result on building the kd-tree does not depend on quasi-uniformity it is inter-
esting to see how our algorithms behave if X is not quasi-uniform. There is a very large
number of results addressing this problem. Here, we want to give only one of them. To this
end we assume that the kd-tree has been built using the cyclic splitting rule.

Proposition 14.9 A range query with an axis-parallel rectangle R can be performed in
O(N'=Y4 4 k) time, where N is the number of points in the kd-tree and k is the number of
reported points.

Proof Since each point contained in the query region is dealt with exactly once in a “report
all points” call of Algorithm 5, the time necessary to report all relevant points is linear in
the number k of reported points.

Hence, it remains to estimate the time spent in nodes that are not traversed by “report all
points” calls. To this end we investigate the number of associated boxes that are intersected
by a hyperplane orthogonal to the first coordinate. This gives an upper bound on the boxes
intersected by the two side faces of the query box that are orthogonal to the first coordinate.
The number of regions intersected by the other faces can be bounded in the same way. Let
Q(N) denote the number of intersected regions in a kd-tree with N points, whose root has
splitting dimension 1. Let H be the hyperplane orthogonal to the first coordinate in question.
Since the root has splitting dimension 1, H intersects one of its two children but not both.
However, it intersects both children of this child because both have splitting dimension 2.
Continuing this argument we arrive after d splitting steps at nodes that again have splitting
dimension 1. Hence, the recursion for Q(N) is given by

O(N) = 2471 + 2471 (N 2,

because in each splitting step the number of points in the new boxes is reduced by a factor
2. As Q(1) = O(1) this recursion solves to give Q(N) = O(N'~1/4), O

In most numerical examples the range query behaves much better than is predicted by
the last proposition. Nonetheless, an improvement can be achieved, at least theoretically,
by using the following bd-trees.

If working with cyclic splitting then it is sometimes favorable to subsume one complete
cycle into one node. This means that in each step the associated box is divided into 2¢
subboxes and that each node has 2¢ children. Special cases of the resulting trees are quadtrees
in a two-dimensional setting and octrees in a three-dimensional setting.
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Finally, kd-trees can also be used to construct an overlapping domain decomposition,
which is useful for a containment query. The only thing that has to be changed is that instead
of one cutting hyperplane there now have to be two. All points on the left of the right cutting
plane are assigned to the left child and all points on the right of the left cutting plane to the
right child.

14.3 bd-Trees

While kd-trees work efficiently in moderate space dimensions and if the data points do not
deviate too much from quasi-uniformity, something more elaborate has to be done in other
cases. In particular, when the points are highly clustered, either it may take many splits to
partition them or the splits may result in arbitrary long boxes, which might cause problems
when searching is performed.

One possible way of avoiding such problems is to use bd-trees. The name stands for box
decomposition trees.

A bd-tree is a generalization of a kd-tree. It is still a binary tree but in addition to leaves
and splitting nodes a third type of node is introduced. The new type of node represents an
additional operation called shrinking. Consider a node whose associated box B contains
more points than the bucket size. Then, a shrinking rule is invoked. This rule may either
perform a split according to the chosen splitting rule or select an axis-parallel box B;
contained inside B. The points lying in B; are assigned to one child and the points lying
in B, = B\ Bj are assigned to the other child. Points on the boundary may be assigned to
one or both children. We will describe possible shrinking rules by employing the notation
already used in the kd-trees setting.

¢ No shrink Do not perform any shrinking at all, only splitting.

¢ Simple shrink This rule depends on two constants: ¢z (for example this could equal 2) and thresh
(for example this could equal 0.5). It first computes the 2d distances between each side of the
bounding box B(Y) of the current data set ¥ and the corresponding side of the box B associated
with the current node. If at least tn of these distances are larger than the length of the longest side of
B(Y) times thresh then it shrinks all affected sides. After the shrink, Y is completely contained in
the inner box while the outer box contains no point at all. If the criterion is not met then a classical
split is performed.

¢ Centroid shrink This rule also depends on two constants: ms (for example 4) and fr
(for example 0.5). Theoretically speaking, it applies the splitting rule, without actually gener-
ating a splitting node, to find the half space that contains the larger number of points, and it goes
on splitting this part until the actual number of points is less than fr times the initial number. If
more than ms splits are necessary then a shrinking node corresponding to the final inner box is
created; all other points are placed in the outer box. Otherwise, splitting is performed.

While the “no shrink” choice leads to a kd-tree, the other shrinking rules may lead to a
different decomposition of space. Figure 14.5 shows the data points of Figure 4.4 but now
for a bd-tree with simple shrink and sliding midpoint split. The centroid shrink would lead
here to the same decomposition as the splitting rule alone.
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Fig. 14.5 A bd-tree decomposition with simple shrinking rule.

Building a bd-tree structure is very similar to building a kd-tree structure. The necessary
modifications of Algorithm 4 should cause no problem. Hence we leave the details to the
reader.

We will still call the outer box a box, even if it is not a box in the literal sense any more.
The concerned reader might replace the word box by “cell” and define a cell to be either a
box or the set-theoretical difference of two boxes.

Note that every splitting operation can be seen as a special case of a shrinking operation,
with the inner box as (for example) the left-hand box and the outer box as the original box.
But this is not optimal because it needs more comparisons to decide whether a point is in a
box than to decide on which side of a hyperplane it is situated.

Range queries and a nearest neighbor search can be performed in just the same way as
in the case of kd-trees, but modifying the algorithms for the additional nodes. Instead of
spelling out these changes, however, we want to point out another possible modification.

For an efficient implementation of the moving least squares method, we need for a given
x all points from X that are in the ball B(x, §) around x with radius é. This is clearly a
range query problem. But since the weight function has compact support, additional points
from X not contained in the ball B(x, §) would do no harm. Thus we could also relax our
request in the following sense, hoping for faster answers.

¢ Approximate range search Given a region R and € > 0, define the region R, = U,cgB(x, €). A
legal answer is an answer that reports all points X N R together with some (not necessarily all)
points from X N (R, \ R).

* Approximate nearest neighbor search Given x € Q2 and € > 0, report a point x; € X whose
distance from x is at most 1 + € times that of a true nearest neighbor. Obviously, an approximate
£ nearest neighbors query can be introduced in a similar fashion.

The algorithms corresponding to these modified problems in the setting of bd-trees are
presented in Algorithms 7 and 8, where the latter is based upon a priority queue.

The analysis of these algorithms is beyond the scope of this book. We will collect the
necessary results in the next theorem, where midpoint splitting and the centroid shrinking
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Algorithm 7 Range query

Input: Query region R € RY, an outer range Ro and the root v of the bd-tree.
Output: All points that lie in R, no point outside Ro.

if B(v) € Ry then Report all points in B(v).
if B(v) N R = {} then Return ¢.
if v is a leaf then

| Return all points assigned to v that lie in R.

else
| Apply this algorithm to both children of v.

Algorithm 8 Approximate nearest neighbor search

Input: Query point x € R?, € > 0, and the root v of the bd-tree.
Output: A point g € X with distance from x that is at most 1 4 € times the distance of a
nearest neighbor from x.

Initialize the distance dist as infinity. Initialize the priority queue by the root node v.
while the priority queue is not empty do
Take the first node from the priority queue.
if the distance of its associated cell from x exceeds dist/(1 + €)
then
|_ Stop and report the current q.

if v is a leaf then
L Compute the distances from the points stored in this node to x and update dist and
q.
else
Compute the distance from both children of v and enqueue first the further and then
the closer one.

rule are employed to build the data structure. For a proof, we refer the interested reader to
the articles of Arya and Mount [3-4] and Arya et al. [5].

Theorem 14.10 For N given points in R¢ the bd-tree can be built in O(dN log N) time
and O(dN) space. The tree has depth O(log N).

(1) For e > 0 there is a constant c; . < d[1+ 6d/€1? such that for every x € R a (1 4 €)-nearest
neighbor of x can be reported in O(c, . log N) time.

(2) Given e > 0and a range R, the m points in R, can be reported in O(m + 2% log N + (3+/d /e€)*)
time.
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It remains to remark that the data structure itself is independent of €. Hence different
accuracies can be tested without rebuilding the data structure. Moreover, the constants
are worst-case constants. We know already that in the case of quasi-uniform data sets the
behavior is much better. This is also true if an average time analysis based on a uniform
distribution is performed.

14.4 Range trees

We come finally to a data structure that has been designed for answering rectangular range
queries in particular. It is based on ideas from the univariate case, which we will hence
investigate first. If X = {x;, ..., xy} € R consists of N pairwise distinct real numbers and
[x, x'] is a given interval then we want to report all points from X inside [x, x"]. This can
be done by employing either a sorted array or a balanced binary search tree. Let us use the
latter. We will store the points of X in the leaves of our tree 7. The internal nodes of 7°
store certain splitting values to guide the search; let us denote the splitting value stored at
node v by v(v). Now, that 7 is a search tree means that for every internal node v its left
subtree contains all the points smaller than or equal to v(v) and its right subtree contains all
the points greater than v(v). It is well known that a balanced search tree can be built with
O(N) space and O(N log N) time and having O(log N) depth.

To report all points in [x, x'] we can do the following. First, we search in 7 for x and x’.
This gives us two leaves u and p’ at which the searches end. Then, all points in [x, x'] are
those points stored in leaves between p and p’ plus, possibly, the points stored at p and p’
themselves. The leaves between w and i are the leaves of certain subtrees, rooted at nodes
v between the search paths for x and x’, whose parents are on one of the search paths. To
find these nodes we first find the node vy, at which the two search paths for x and x’ split.
This is achieved using Algorithm 9.

Algorithm 9 Find split node

Input: A binary search tree 7 and a query region [x, x'].
Output: The node v where the search paths to x and x’ split, or the leaf where both end.
Set v = root(7).
while v is not a leaf and (x' < v(v) or x > v(v)) do
if x’ < v(v) then
| Apply this algorithm to the left child of v.
else Apply it to the right child.

Starting from this splitting node we follow the search path for x. At each node where the
search path goes left, we report all leaves in the right subtree. Then we follow the path to
x" and report the leaves in the left subtree of nodes where the path goes right. Finally, we



14.4 Range trees 247

have to check the points stored at the leaves where the paths end. Details may be found in
Algorithm 10.

Algorithm 10 One-dimensional range query

Input: A binary search tree 7 and a query region [x, x’].
Output: All points from X in [x, x'].

Use Algorithm 9 to determine the splitting node v.
if v is a leaf then
| Report the point stored there if necessary.

else
Set v to be its left child.
while v is not a leaf do
if x < v(v) then
Report all points in the subtree of the right child of v.
Set v to be its left child.
else
| Set v to be its right child.

Report the point stored at the leaf v if necessary.
Similarly, follow the path to x” and report the points in the subtrees left of the path.
|_ Check whether the point stored at the leaf where the path ends has to be reported.

Lemma 14.11 Algorithm 10 reports exactly those points x; that lie in [x, x'].

Proof First we show that each point reported by the algorithm is contained in [x, x'].
Suppose that x; is one of the reported points. If x; is stored at one of the leaves where
the search paths end then we check explicitly whether x; € [x, x"]. Otherwise it must have
been reported inside the ‘while’ loop. Assume that it was reported on the way to x. Let v
denote the node on the path such that, on the one hand, x; is in the subtree of v’s right child.
Since v and hence its right child and hence x; are in the left subtree of the splitting node,
we have x; < v(vgpii) < x’. On the other hand, the search path to x goes left at v, giving
x <v(v) < x;. If x; is reported while we are on our way to x’ then a similar argument
holds.

Finally, we have to check whether all points x; € [x, x'] have been reported. Let x; € X
be any point in [x, x'] and assume that x; has not been reported. Let y be the leaf where x;
is stored. Denote by v the lowest ancestor to p that has been visited by the query algorithm.
Such a v must exist because the query algorithm starts at the root of the tree. Note that
v cannot be the root of a subtree whose points have been completely reported, because
otherwise x; would also have been reported. Hence, v must be on the path to x or the path
to x’ or the path to both. All three cases can be dealt with in a similar manner. Thus, we
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will investigate only the first. If v is on the way to x then the search path has to go to the
right at v, because otherwise x < v(v) and all points in the right subtree of v have been
reported, including x ;. But if the search path turns to the right then this means thatx > v(v).
Moreover, since v is the lowest ancestor of 1 on the search path, i« must lie in the left subtree
of v in this situation, which shows that x; < v(v) < x. This contradicts x; € [x, x']. O

Let us analyze the computational complexity. Because our data structure is a balanced
binary search tree it needs O(N) space and O(N log N) time to be built. Assume that k
points are contained in [x, x’]. The number of non-leaf nodes in a balanced binary tree
is bounded by the number of leaves, so each report-call in the while-loop can be done in
O(#(reported points)) time. Since altogether we report k points, all report calls can be done
in O(k) time.

The remaining time is spent in nodes on the two search paths. Since we have a balanced
binary tree, each search path has length O(log N). Hence, Algorithm 10 needs O(k + log N)
time to answer a one-dimensional range query. Note also that the number of subtrees that
are reported is bounded by the number of nodes on the search paths and hence by O(log N).

Proposition 14.12 Given N points xy, ..., xy € R, a balanced binary search tree can be
built in O(N) space and O(N log N) time, so that every range query yielding k points can
be answered in O(log N + k) time.

How can we use these ideas in the multivariate setting? We have already encountered a
possible generalization, in form of the kd-tree, that did not lead to the desired result (cf.
Proposition 14.9).

Now we want to trade space for time. If we allow the data structure to use more space than
O(N) itis possible to achieve better results even in the worst case. The nature of a range tree
needs the additional assumption that all points are pairwise different in every coordinate.
One possibility for matching this assumption is cyclic concatenation. In other words, we
introduce for every coordinate j a new order that allows us to distinguish pairwise-different
points x # y € R having the same j-coordinate.

Definition 14.13 A d-dimensional range tree is defined recursively. For d = 1, we have a
one-dimensional range tree, which is simply a balanced binary search tree. Ford > 2, a d-
dimensional range tree is a balanced binary search tree with respect to the first coordinate.
The leaves of this tree contain the d-variate points. The points stored in the leaves of
the subtree rooted in node v are called the canonical subset of v. We denote this set by
P(v). Each node contains an additional pointer to a (d — 1)-dimensional range tree, the
associated tree Tyssoc(v). This associated range tree Tyssoc (V) is built on the points in P(v)
that are restricted to the last d — 1 coordinates.

Algorithm 11 describes how a d-dimensional range tree can be built. However, the al-
gorithm has to be modified to get the optimal construction time, because the construc-
tion of a balanced binary search tree from unsorted data costs O(N log N) time. In the
one-dimensional setting this is optimal, but using it in the multivariate setting leads to a
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complexity that is too high. Instead, we sort the data points with respect to each coordinate,
which costs additional O(d N) space and O(d N log N) time. With presorted points a bal-
anced binary search tree can be constructed bottom-up in linear time. We will use this in
the following analysis.

Algorithm 11 Build range tree

Input: Data points X = {x;,...,xny} C R4 and current working dimension j.
Output: The root of a d-dimensional range tree.

if j = d then
Create a balanced binary search tree at the last coordinate.
Store pointers to the points at the leaves.
L Return the root.
else
Apply this algorithm to the current set of centers and dimension j + 1. This yields a
pointer vy to the associated data structure.
if X contains only one point then
Create a leaf v, store a pointer to this point at v, and make v the pointer to the
associated data structure.
else
Split X into two subsets. P, shall contain the points having jth coordinate less than or
equal to the median of X with respect to this coordinate; P; shall contain the rest.
Apply this algorithm to P, for dimension j. This gives a pointer .
Apply this algorithm to P; for dimension j. This gives a pointer v.
Create a node v storing the splitting value and having v as its left child and v, as
its right child. Let vy be the pointer to the associated data structure of v.

Return v.

Let us discuss the time and space necessary for building a d-dimensional range tree. As
mentioned before, the preprocessing step of sorting takes O(d N) space and O(d N log N)
time. Let us denote the time and space necessary after the preprocessing step by 7;(N)
and S;(N), respectively. The construction consists of constructing a binary search tree,
which takes O(N) time and space. For each node of this first-level tree we have to build the
associated tree. At any depth of the first-level tree every point x € X belongs to exactly one
associated tree. Hence, the time and space needed to build the associated trees for all nodes
at a given depth of the first-level tree is at most O(T,_1(N)) and O(S,_1(N)), respectively.
Since the depth of the first-level tree is O(log N), we derive the recurrence relations

Ta(N) = O(N) + O(Ty-1(N) log N),
Sa(N) = O(N) + O(Sq—1(N)log N).
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With the initial values T;(N) = S;(N) = O(N), this reduces to Ty(N) = S;(N) =
O(N(log N)*~1), which overrules in magnitude the time and space necessary for presorting
the data.

Proposition 14.14 A d-dimensional range tree for N data points in R? can be built in
O(N(log N)*~1) space and time.

This is significantly higher than for building kd-trees. Hence, the price we have to pay
for a better worst-case range query algorithm, which we will discuss now, is a higher
requirement on space and time in building the data structure.

Algorithm 12 Range query

Input: A d-dimensional range tree 7, a query range B = [x, x'], and the current depth
Jj-
Output: All points from 7 that lie inside B.
Apply Algorithm 9 to the jth coordinate to determine the splitting node v.
if v is a leaf then
| Report the point stored there if necessary.

else
Set v to be its left child.
while v is not a leaf do
if x; < v(v) then
if j < d then
Apply this algorithm to B, the associated data structure of the right child of
L v, and dimension j + 1.
else
| Report all points in the subtree of the right child of v.

Set v to be its left child.
else
| Set v to be its right child.

Report the point stored at the leaf v if necessary.

Similarly, follow the path to x’, apply this algorithm to B, the associated structures of
subtrees to the left of the path, and dimension j + 1. Check whether the point stored
at the leaf at which the path ends has to be reported.

The idea of the range query algorithm is quite simple. It first selects the O(log N) canonical
subsets that together contain those points of X having a first coordinate within the interval
of the first coordinate of the query box. This can be done with the one-dimensional range
query algorithm, if it is modified in such a way that it can distinguish different points in
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R¢ with the same first coordinate. These subsets are queried further by performing a range
query on their second-level data structure, which is in each case arange tree on the lastd — 1
coordinates built on the canonical subset. Hence the algorithm uses again the current depth
J» which ensures termination in dimension. It is initially called with j = 1. Furthermore, it
uses Algorithm 9 in an appropriate way. It obviously resembles Algorithm 10, except that
where all points in a subtree are reported, we now call the algorithm again for the associated
data structure as long as we have not reached the final depth. Algorithm 12 gives the
details.

Finally, let us analyze the computational complexity of this algorithm. To this end let
T;(N) denote the query time, not including the time to report the points. This time is
determined by searching a first-level tree, which takes O(log N) time, and querying a
logarithmic number of (d — 1)-dimensional range trees. Hence, it satisfies

T4(N) = O(log N) + O(T;_1(N) log N).

Since T1(N) = O(log N) this solves to give O(log? N). Adding the time for reporting the
points contained yields the following result.

Theorem 14.15 The range query algorithm for range trees needs, for rectangular query
ranges, O((log N)? + k) time, where k denotes the number of points reported.

This query time can be improved further to O((log N)¥~! + k) if a technique called
fractional cascading is used. Details may be found in the book [42] by de Berg et al.

14.5 Notes and comments

This chapter differs from all the others since it is related more to computer science than
mathematics. But the results are crucial for the development of efficient algorithms for
radial basis functions, which are the subject of Chapter 15. Moreover, it becomes in general
more and more obvious that the success of any numerical method depends strongly on
an efficient implementation and hence on the underlying data structure and the associated
algorithms. This chapter gives further strong arguments for scattered data methods that are
based merely upon point sets.

In computer science, a run-time analysis of an algorithm is in general done in the worst-
case or average case-setting. Here, however, the distribution of the points was taken more
into account and most of the analysis was done for quasi-uniform data sets.

The kd-trees that were the subject of the second section were created by Bentley (see for
example [24,67]) in 1975 for nearest-neighbor searching. They are an improvement over the
classical quadtrees and octrees since they allow a dimensional-independent implementation.

A good source for all kinds of multidimensional tree is the book by Samet [161]. The
presentation here borrows from the book [42] of de Berg et al. and especially from the
work of Mount, Arya and others [3-5, 139]. The examples in the cases of the kd- and bd-
trees have been produced by using their approximate nearest neighbors (ANN) library. The
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description of the bd-trees in the third section is based on these papers just mentioned of
Arya and Mount, who also created the bd-trees in the context of approximate range queries
and nearest-neighbor searching.

Finally, range trees were independently discovered by various authors around 1980. For
more details on them we refer the reader to the book by de Berg et al. [42] that has already
been mentioned and the comments and references therein.
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Numerical methods

Now it is time to discuss efficient numerical methods for scattered data interpolation and
approximation. So far, we have encountered the moving least squares approximation scheme
as one of them. Combined with the data structures of the last chapter, it needs O(d N) space
and time to build a data structure of N points in R provided that the points are uniformly
distributed. Moreover, it takes a constant time to evaluate the approximant at a single
point.

But what about radial basis functions? The naive approach leads to the problem of solving
an N x N system that costs O(N?) time and O(N?) space. Furthermore, every evaluation
needs another O(N) time. For a very large N this is definitely too expensive. Thus more
efficient methods are necessary. We will review some of the most promising approaches in
this chapter.

15.1 Fast multipole methods

In the case of a globally supported basis function and a large number of centers it is
impossible to use direct methods for solving the interpolation equations. Instead, iterative
methods have to be employed. A popular choice would be the conjugate gradient method,
or more generally a generalized minimum residual (GMRES) method. We will not describe
these standard algorithms here explicitly; It is only necessary to note that the main operation
in these methods is a matrix-by-vector multiplication that takes in general O(N?) operations.
In our situation, the matrix—vector multiplication boils down to the evaluation of N sums
of the form

N
s() =Y a;0(x, x;) 15.1)
j=1

and we have to find efficient algorithms that are able to perform this evaluation in less than
O(N) time, preferably in O(log N) or even constant time. This is the subject of this section.
Obviously we cannot achieve this goal if we want to reproduce the exact value of s at x.
But since s is already an approximation to an unknown function, an additional error might
be acceptable. Hence, we try only to approximate s up to a certain accuracy, say € > 0.

253
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Source region
- -
* .

. ol

Evaluation region
” \

X

Fig. 15.1 Evaluation and source regions.

In the following, we will call ¢ in ®(x, t) a source point and x an evaluation point. The
idea of multipole expansions is based on a far-field expansion of ®. Suppose that all sources
are situated in a certain region, called a panel, which is centered at a point #y. Suppose further
that we want to evaluate the function (15.1) at a point x that is sufficiently far from the source
panel. Figure 15.1 illustrates the situation.

If we can expand @ in the form

P
O(x, 1) = Y $ulx)ult) + R(x, 1) (15.2)

k=1
with a remainder R that tends to zero for ||x — ty||» — oo, or for p — oo if ||x — fy]2 is

sufficiently large, then we call (15.2) a far-field expansion for @ around the source fy. If we
use (15.2) to evaluate (15.1) then we can compute

N
s(x) = Z i Ox, x;)

P N
@ Y e + Y @R, x))

k=1 j=1

Mz ¥

~.
I

TTM@ M-

N
¢i(x) Za_fwk(x,f) - Za,»R(x, X))

j=1

ﬂkqsk(x) + Za,R(x x)).

Jj=

Hence, if we use the approximation 5(x) = Z,‘:=1 Brdi(x) we have an error bound

[s(x) =5(0)] < llelly max |R(x, x;)l,
1<j=<N

which is small if x is far enough away from the sources x;. Moreover, each coefficient
can be computed in advance in linear time. Hence if p is much smaller than N, we can
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0,1]
/ \
[0,1/2) [1/2,1]
[0,1/2) [1/4,1/2) (1/2,3/4] (3/4,1]
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[0,1/8) [1/8,1/4) [1/4, 3/8) [3/8,1/2) [1/2,5/8) [5/8, 3/4) [3/4,7/8) [7/8, 1)

Fig. 15.2 Hierarchical decomposition of the panel [0, 1] into smaller panels. Four levels of the hier-
archy are shown.

consider it as constant and we need therefore O(N) time to compute the coefficients {8}
and constant time for each evaluation of 5.

One could say that we have averaged the information given at the sources x; to one single
information given at the center 7y of the panel. In this sense, (15.2) is a unipole expansion
of ®. Note that in the case of translation-invariant kernels it is easy to obtain the far-field
expansion of ¢ around any ¢ if the far-field expansion around zero is known. To see this,
suppose that (15.2) is the far field expansion of ®(x, r) = ®(x — t) around zero. Then we
can write

P
D(x — 1) = O((x — 1) — (t — 1p)) = Z¢k(x —to)Yi(t —to) + R(x — to, t — to)
=

to derive the far-field expansion around #,.

In general, the evaluation points are close to at least a few of the centers. In the next step
we will refine our approach to fit to this situation. The solution is an hierarchical subdivision
of the region 2 of interest into panels or cells of sources. This is not new to us, since we
encountered this concept in the last chapter. The reader should be reminded in particular
of kd-trees and bd-trees. Now, how can we use this concept here? Let us explain the idea
by an example. Suppose that all data points are contained in the interval [0, 1] and that we
divide this interval hierarchically, into “panels” as shown in Figure 15.2. With every source
panel T we associate the part of the function s that corresponds to the sources in that panel,
by setting

St = Z 01,-<I>(~,xj).

x; €T

Moreover, we also assign the far-field expansion 57 of s7 to the panel T.

Then the approximation s to the function s at an evaluation point x is computed by adding
the associated functions sy for the panel that contains x itself and all neighboring panels.
Those panels that are well separated from x contribute only by their far-field expansion 57
to 5. Here, we say that a point x is well separated from a panel T if it has distance at least
diam(7') from T'. A panel U is called well separated from a panel 7 if all points in U are
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well separated from 7. Since we want to avoid floating-point operations, we always use the
largest possible source panel for the far-field series.

Let us return to the example given in Figure 15.2. If we want to approximate s(x) at a
point x in the panel [0, 1/8) we form

S(x) = 510,1/8)(X) + 8p1/8,1/4)(X) + S1174.3/8) () + 5[3/8,1/2)(X) + S(1/2,3/) (%) + S(374,17(%).

Note, that we use the two level-2 approximants s} /2,3/4) and e /4,1] instead of the four
level-3 approximants 5 J2.5/8)s -+ s S /8,11 This halves the computational complexity in this
case. We can do this because the panels [1/2, 3/4) and [3/4, 1] are well separated from
[0, 1/4), the panel containing x on the same level as them. However, we could not use the
approximant 5[y ,1] because its panel [1/2, 1] is not well separated from the panel [0, 1/2],
which is the panel containing x on the same level.

Similarly, to evaluate s(x) approximately in the panel [3/8, 1/2) we would use

S(x) = sp3/8,1/2)(X) + S1174,3/8)(X) + 511/2,5/8) (%)
+570,1/8)(X) 4 S11/8,1/4)(X) + 515/8,3/4) (%) + Sp3/4,17 ().

Having considered this example, we now return to the general situation and describe how
to set up the data structure and how to evaluate the approximant.

Since we discussed several kinds of tree in the previous chapter, we do not need to go
into the details of setting up the data structure. If we are using kd-trees or bd-trees to
decompose space then we have to use a bucket size greater than 1, which is nonetheless
small when compared to N. The same is true if quadtrees and their higher-dimensional
relatives are used. Another approach would be to fix the maximum depth of the resulting
tree. Obviously, for computational reasons this should be O(log N) if N is the number of
source points, which is always satisfied for certain splitting rules in the case of kd-trees.

Now, to set up the data structure we first choose the accuracy € and from this the number
p of necessary terms in the far-field expansion. Then we build the tree as usual, assigning
the points to the panels. For the leaf panels we also store the coefficients of the interpolant.
After this, we compute the far-field expansions bottom-up. The reason for this is that we
can use the results from lower levels to compute the expansions for higher levels. For each
panel we have to compute the coefficients B, 1 < k < p.If we do this bottom-up then every
source x; is considered only once so that all coefficients can be computed in O(N) time.
But even if we do it top-down then the complexity is bounded by O(N log N) and this is
the time we need in any case to build the tree. Hence, building the structure takes O(N log N)
time.

The evaluation of the approximation 5 to the radial basis sum s can be done recursively,
as will be described in Algorithm 13, and we are going to estimate the computational cost
of a single evaluation of 5. The far-field part of the work involves the evaluation of only
a constant number of far-field expansions on every level of the tree, each consisting of p
coefficients. Hence the time needed to sum up the far-field expansion is O(p log N). The
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direct part consists of a finite number (this number, as well as the finite number mentioned
in the case of the far-field expansion, depends only upon the space dimension) of panels;
thus, this takes only O(1) time, so that the time needed for one evaluation is O(log N).

Algorithm 13 Recursive evaluation of a multipole method

Input: Panel T and evaluation point x.
Output: Approximate value 5(x).

if T is well separated from x then
| Return 57(x).

else
if T is a leaf then
| Return s7(x).

else
Apply this algorithm to x and the children of T'.
Return the sum of their results.

Lemma 15.1 The data structure for a fast multipole algorithm can be built in O(N log N)
time. One evaluation takes O(log N) time.

In several cases the evaluation time can be further reduced to (O(1), but this will not
bother us any further.

The rest of this section is devoted to giving far-field expansions for some of the most
interesting kernels. Unfortunately, for optimal results this has to be done explicitly for each
kernel and even for each space dimension. In many cases these far-field expansions are
truncated Taylor or Laurent expansions. We will give an example for the case of thin-plate
splines in two dimensions. After this we will show how the fast Gauss transform gives
not only a multipole expansion for the Gaussian but also a general framework for deriving
far-field expansions for other conditionally positive definite functions.

The idea of expanding thin-plate splines in two dimensions is based upon identifying R?
with C. Hence, the Euclidean norm in R? is the usual norm in C and for the moment we will
denote it by | - |. Let us use the notation ¢,(z) = |z — t? log |z — t] for z, t € C. The idea
of the far-field expansion is based upon the simple equation ¢,(z) = |z — ¢|*R[log(z — 1)]
and the Taylor expansion for log(1 — z). This gives the Laurent-type expansion

00 1 4k
10g(z—t)=log|:z (1—£>:| =10gz+10g(1 —5) =10gZ—ZlL
z z kz*’

k=1

which holds whenever |¢| < |z|. This proves the first part of
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Proposition 15.2 Let z,t € C and ¢,(z) = |z —t|*log|z —t|. Then for |z| > |t| we

have
o) =R|lz—1t*(lo ffo 1
1(Z) = ¢ z g Z kz"

k=1

= [IzI* = 2%(@2) + |t]*] log |z] + % (Z(akw bk)z"> :

k=0

where by = —tay, k > 0, and agp = —t, a; = t"“/[k(k + 1], kK > 1. Moreover, if the ap-
proximant ¢, is defined for p > 1 by

o P
$i(2) == [IzI* — 208(2) + 1] log |z| + 0 (Z(akH m)z"‘)
k=0

then the approximation error can be bounded for t # 0 by

~ 2 1
I61(2) — et

L
P et

where ¢ = |z/t] > 1.

Proof In the paragraph before this proposition we discussed the first representation for ¢;,.
To derive the second representation, we write

0tk
$i(z) =N [Iz — 1t <log(z) - Z k;)i|

k=1

X1 tk
_ 2 =
= |z — 1] log|z| — % ((z—z)Zku—t)zk)

k=1

Ny |
=|17t|210 |Z|7m (Zil‘) - tsz(kfl)ilk#»lsz
e 2 )
o0

= |z —t*logz| + % (Z(akz + bk)zk) :

k=0

To obtain the stated error bound, we note that

lawzz ™| < L = e .
g = kk+ D)zt T kk+ D \e

and

» 22 1\
bz ™| < = - .
k(k+ Diz|F ~ k(k+1) \c
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This enables us to bound the error as follows:

62— @ < Y (lazz ™| + 1z ™)
k=p+1
£]? o0 1 1
=T, (F i ?)
t]? c+1

-p

T+ Dpte—1°
O

For t = 0 the approximation $, coincides with ¢,. Moreover, the error bound is increasing
in |¢| and decreasing in ¢ > 1.

Having the far-field expansion for ¢, we can proceed as in the model case to approximate
the radial basis sum

N N
s@ =Y aip, ()= Y alz -z, loglz -zl (15.3)
j=1

j=1
with real coefficients {«;}, provided that all z; are close to zero. We only have to replace
¢, by ¢, and to exchange the order of summation to obtain the following result.

Corollary 15.3 If ¢, in (15.3) is replaced by 5, then the resulting function's takes the form

p
3() = [AlzP — 2(B2) + C]log ] + % (Z(Akw Bkw) :

k=0

where the coefficients are defined by

N N N
A :Zaj, B::Zajz,-, C =Z 1z
Jj=1 j=1 j=1
and
—B fork =0,
N k41
A = > 4% fork > 1,
= k(k+1)
C fork =0
k+1
Bii= 3 ajZ]ZjJr fork =1
= k(k+1) -

Finally, if all the centers satisfy |z;| < r, we have the error bound

lalir*  c41

_ P
SOl = D=1

|s(2)

with c = |z]/r.
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This shows how a far-field expansion around zero can be derived for thin-plate splines
in two dimensions. Unfortunately, in higher dimensions we can no longer use the trick
of identifying R? with C. Nonetheless, it is possible to develop expansions for higher-
dimensional spaces and other basis functions by employing Taylor and Laurent expansions.
Here, however, we choose a different approach. We will give a general framework that
works for all functions that are (conditionally) positive definite on every R?. The starting
point is the fast Gauss transform, which is based on a Hermite expansion of the Gaussian
kernel.

Definition 15.4 The Hermite polynomials H, are defined by

'_’dn 2
H,(t) = (—=1)"¢ -,
@) :=( )edz"e

The Hermite functions h,, are defined by h,(t) := e"an(t).

We need two results on Hermite polynomials. The first is the generating function for
Hermite polynomials and the second is Cramer’s inequality.

Lemma 15.5 (1) The generating function for Hermite polynomials is given by

X n

2ts—s> __ L
e _;n!Hn(z), s,teR.

(2) For every n € Ny and every t € R the Hermite polynomials can be bounded by
|H, ()| <2"*Vnle".

Proof The first property is easily shown if we regard w(s, t) := e>'~* * as a function of the
first variable. For complex s this is an entire function having Taylor expansion

w(s [) — eZst—s2 — ii 0"w §"
’ nt\as" )’

n=0

which immediately implies the stated representation since

a" t 2 f 0" ) a" 2
(*£§?2> =e’(476*“”) =<—D%“( nf“) = H,(0).
ds s=0 ds 5s=0 du u=t

For the second property we start with the representation

e—tz — L /oo e—r2/4eirtdr.
2J7 J o ’
see Theorem 6.10. Differentiating under the integral sign leads to a first bound
|&ﬁ»saﬂi—/we“MMWr
27 Jo

2 1 *® —r2/4. n
=e¢ — e r'dr
VT Jo
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on =)
— et' / e—xs(n—l)/st
NE

:1[‘ L_H elz_
Jr \ 2

To derive the stated result it remains to prove that

r (” er 1) < 72" /nl.

This is done as follows. Legendre’s duplication formula from Proposition 5.2 gives

n!:%F(nT—H)F<g+l>.

By induction we can easily establish that

()= e (5)

so this finishes the proof. O

These two ingredients would allow us to develop a far-field expansion in the one-
dimensional setting straight away. But since the multivariate case is no more difficult we im-
mediately proceed to it by introducing the multivariate Hermite polynomials and functions.
This is straightforward using tensor products. Hence for o € Ng and x = (xq, ..., xq)" we
set

d
Ho(x) = [ [ Hojxp).  x e R
j=1

and
d 2
ho@) i= [T hoy ) = e M B ), xR
j=1

With these definitions we can find the far-field expansion of the Gaussian around zero
easily. Remember that « < p means ||a|| < p forall « € Ng.

Theorem 15.6 Let ®(x) = e X2, Suppose that the sources xj, 1< j <N, satisfy
Ixjlloc < r/~/2,r < 1. Then the sum

N
s(x) = chd>(x —Xj)
j=1

can be expressed as

S(x) =Y Aghq(x)

d
aeNj
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with
1 N
o= o

Moreover, if 5 denotes the approximation 5(x) = Zag » Aghy(x) for a p € N then the
approximation error can be bounded as follows:

- ||C||1 d—1 d + X r[l+l d—k
's(")_s(x)lf(l—r)dkzz(;(k> (=) (W) '

Proof The alternative representation for s(x) is an immediate consequence of (1) in Lemma
15.5. By definition we have

2 e s"
—(=s)" _
e = E n!hn(t)

n=0
and the multivariate version gives
x—vl2 1
e = Y T~y ha (),
‘ol
aeNj

so that the stated identity follows by exchanging summations.
To derive the approximation error we first split the Hermite representation of e =~ into
two terms:

1= — Z hn(l)+ Z h (1) =: Ap(t,5) + Ry(t, 5).

n= p+1

Cramer’s inequality gives us a bound on each term for # € R and |s|v/2 < r < 1:

)4 |s\/§|n p 1 —pptl
[Ap(t, s)| < <) r=—-,
p ; Jn! HZ(:) 1—r

1
R,(t, )| < sv/2 PPN
[Ry(1,9)| < <p+1>!n;1| A = =y +1), 2{;

1 rptl

BN E T
Since we have
d

7Hx }‘ 1_[ p(Xj,y])"l‘Rp(xj,yl)]
j=1
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for arbitrary x, y € R? we can conclude for x € R and «/§||y||o<J <r < 1that

T 1
P30 Ly

d
e yIE _ l_[ Ap(xj,Y))
j=1

a=p
d—1 1 d—k
< (d)u — PP (’7> :
(I =r)y = \k J(p+ D!
which in turn establishes the stated estimate on s — . ]

This finishes our discussion of the far-field expansion of the Gaussian around zero.
Shifting and scaling give us far-field expansions around other centers and with different
stretch parameters.

Moreover, as mentioned before, we can use the far-field expansion of the Gaussian and
the fast Gauss transform to derive far-field expansions for most of the basis functions in
use. The key idea here is to exploit the fact that a radial function ¢ : [0, 00) — R is often
(conditionally) positive definite on every R?. First, if ¢ is positive definite on every R¢ then
we know from the theory of completely monotone functions that it has a representation

o(r) = / " e da(r)
0

with a nonnegative Borel measure o, which has a Lebesgue density in all relevant cases.
Hence, the radial sum becomes

N

oo N
et =il = [ D e )
=1

j=1
and we can use a quadrature rule to boil this down to a finite sum of far-field expansions of
the Gaussians.

Second, if ¢ is conditionally positive definite of orderm > 0 then we have such arepresen-
tation for the mth-order derivative of ¢. Integrating this representation gives a representation
of ¢ itself. Let us explain this in more detail using two examples.

Proposition 15.7 The inverse multiquadric ¢iny(r) = 1/+/1 + r? has the representation

¢ ( ) 1 mt71/2 —r?t 7tdt
invl7’) = —= e e .
e

Hence, the associated radial sum can be written as

¢ pim(Ilx — xjl12) = —= / ¢ eItV 21 gy
j=1 ﬁ 0 j=1
The multiquadric ¢mu(r) = ~/1 + r? has the representation

1 o 2
¢mul(r) =1+ ﬁ/o (1 —e " t)l‘_3/ze_1dl.
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The associated radial sum can be written as
N 00 N ,
ch¢mu1(||x —xjll) =1 +f 1- Zc_,-e_”“"/”f 17327 dst,
=1 0 j=1
provided that the coefficients satisfy Y c; = 1.
Proof The representation for the inverse multquadric has already been proven in a more

general form in Theorem 7.15. The representation for the radial sum follows immediately.
For the multiquadric note that

d p—
d7¢mul(r) = r¢inv(r)~

Hence, using the integral form of ¢;,, yields

() = 1+ / SPm(s)ds

1+—/ (/ *”m) =27 dt

(o] 1 —e —r’t 12
=14+ — ——— %7 dt,
24/ t
where the exchange of integration order can be justified by Fubini’s theorem. Again, it is
easy to see that the radial sum has the stated form, taking into account this time the side

condition on the coefficients. O

Similar results can be derived for more general (inverse) multiquadrics and thin-plate
splines and related functions.

Both representations of the radial sum in Proposition 15.7 make it necessary to discretize
an integral of the form

/oo fOte dt
0

witha = —1/2 and a = —3/2, respectively. Hence, a generalized Gauss—Laguerre quadra-
ture rule is the preferred choice. From classical numerical analysis it is well known that the
generalized Laguerre formula gives

® _ - n!Tm+a+1)
/0 e f(t)dt = ;wkﬂzmi(z”)! @)

with & € (0, oo0). Here, the 1, are the zeros of the Laguerre polynomials L. These poly-
nomials are the orthonormal polynomials with respect to the weight function ¢ > t“¢~" on
[0, 00). The weights are given by
_T'n+a+ Dty
= 2
n![L;,(0)]
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This completes the general framework for deriving a far-field expansion for a radial
function that is (conditionally) positive definite on every R¢. For special functions there
might be better expansions. In any case, the accuracy of the approximate radial sum depends
on the ¢;-norm of the coefficient vector c. Unfortunately, we know that this can become
arbitrarily high.

15.2 Approximation of Lagrange functions

The idea of this iterative method is that every interpolant s x to a function f based on a
(conditionally) positive definite kernel ®(-, -) and a set of centers X = {x1, ..., xy} canbe
written as

N
spx(x) =Y fuu(x)
k=1

with the cardinal functions {u}} from Theorem 11.1 and fi = f(xt), 1 <k < N. The
cardinal or Lagrange functions come from the space

span{®(-, xz) : 1 <k <N}+P

and satisfy uj(x;) = 8z, 1 < j, k < N.They can be found by solving system (11.1). Now,
the idea is to replace the cardinal functions by approximations i that are more easily
computed and to form the approximation

N
Frx(0) =) fill(x).
k=1

A possible way to do this is to fix a nonnegative integer ¢ that is substantially smaller than
N. Then for every k we choose a set of exactly g indices £; and force u; to satisfy the
Lagrange conditions u(x;) = 8¢ for j € L. Each of these new cardinal functions can
be computed in constant time (if ¢ is considered constant). But even if in many cases i,
is a good approximation to uj this will not be true in general and is highly dependent on
the choice of L. Therefore an iteration on the residuals might be useful. A first possible
iterative scheme is given by

s

N
ka;ik,
k= N (15.4)
sUTD — gD 4 Z [fk _ s(j)(xk)] e, j=>1
k=1

The iteration stops when all the residuals f; — s“(x;), 1 < k < N, are sufficiently close
to zero.
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The iterative definition gives that the residuals of level j + 1 are connected to the residuals
of level j by

i+1) . j+1
r’.(/ = f; — sV

N
= fi = sV0) = D [ = sV 0] xi)

k=1

N
= rl.(]) - Z’lik(x,-)r,g’).

k=1

Using the N x N identity matrix I and the matrix R defined by R;; = u(x;) this can be
expressed as

r(/+1) — (1 _ R)r(j).

Hence, the method converges if / — R has norm less than one. To ensure this condition,
special care has to be taken in choosing the sets £;. Before we discuss this in more detail,
we will change the method slightly, in a way that allows us to prove convergence almost
independently of the particular choice of the sets of centers.

Fork =1,..., N — g let us choose the set of indices such that £; € {k,k+1,..., N}.
Let us further assume that k € £; and that {x; : j € £} is P-unisolvent. Finally, we
assume that the remaining points, i.e. the points corresponding to the indices in £* =
{N —q+1,..., N}, arealso P-unisolvent. This can be achieved by rearranging the points.
The difference from the iteration (15.4) is that now we do not add all the local cardinal func-
tions in one step to obtain the next iteration of our approximation. Instead, each iteration

is divided into three steps. Let us suppose that s¢) =: (()j ) is the current approximation
tosyx.
The first step consists of N — ¢ stages. Fork = 1,..., N — ¢, we want to add % times

a certain factor to the current approximant, i.e. we want to form sij ) = s,E’j L+ Qk(j '%ii. The
value of e,if ) will be chosen such that the error decreases in a certain way.

In the second step we interpolate in the remaining points. Hence we compute an inter-
polant o) such that ¥ (x;) = f; — sl(\ﬁ ,(xi) for i € £*. Then the new iteration is given
by sUtD = S;f)_q +oW, . .

In the final step we update the residuals, i.e. we compute rUth = Lfi — s(/+l)(xi)]1§,~§N
and stop when |rU || < € fora prescribed accuracy € > 0.

Our choice of o/ in the second step forces each iteration s/ to interpolate the data in
the remaining points, i.e. s¥)(x;) = f; for N —g 4+ 1 <i < N and all j.

As mentioned before, the coefficient O,fj ) should cause a decrease in the residual. It is easy
to compute the optimal value for this coefficient if the residual is measured in the native

space (semi-)norm.

Lemma 15.8 Suppose that s and u are both functions from the native space N¢(S2). Suppose
further that u is not in the null space of the semi-norm. Then 6 +— |s — 9"‘6\[0(9) attains its
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minimum for

G DI

2
11, ()

Proof We have to minimize the parabola ©():=|s — 9M|3\/®(Q) = |s|/2\/¢<9) —
20(s, u)ny@) + 92|“|J2\/¢(sz)' The minimum is found by solving ®'(9) = 0. O
J)

We will apply this lemma to our situation by setting s = s x — s,f , and u = . The

numbers involved can be computed explicitly. Let us assume that iz has the representation

U = Z M DC, x;) + pr-
JELy

Then, elementary properties of the semi-inner product yield

(W, W Np2) = Z Mt (xi) = A
iely
and this is positive because {x; : i € Ly} was assumed to be P-unisolvent. Moreover, we
have by the same arguments

rx = s TN = dos- s ) .

iely
Hence, if we choose

1 .
— > [ = 5160

) _
0, = X
kk jer,

then Lemma 15.8 tells us that

) ()
SEX TSk N = Srx TS Na(Q)

forl <k <N —gq.

After discussing the choice of O,f,j ) we formulate the technique completely in Algorithm 14.
We assume that the sets £; are already chosen and that the coefficients A;; are known.

It is astonishing that even in this weak setting the method converges. But obviously the
convergence rate depends on the choice of the sets L. In general, one should not expect
too much.

Theorem 15.9 The sequence s generated by Algorithm 14 converges in the native space
(semi-)norm to the radial basis function interpolant sy x.

Proof We already know that [s;.x — st [\ < Is5x — 52\ [N forall l <k < N —
g. Moreover, o) interpolates s X — s,(\ﬁ , for the remaining points. Hence, by Theorem
13.1, we find also that

G+D )N ¢) <

. e )
Sfx —S No(@ = IS£X TSN~ No@ = 15X T SN—¢Inp (@)
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Algorithm 14 Iterative method based on approximate Lagrange functions

Set j =0and sV = si = 0.
Compute the residuals ri(j ) = fi — sU )(x,-), 1 <i < N, and the maximum error
e = max; |r(’)|
while ¢ > ¢ do
for]l <k <N-—gdo
Replace s;”| by s\’ according to

s¢' =5, T Z il fi = S}EQ](xi)]”Zk-

lECk

Generate sU) =: s/*" by adding to sf\{)_q the solution o) of the interpolation

problem

o) = fi —sy ,(x),  N—g+1<i<N.

Compute the new residuals r/*1 and the new error e.
| Setj=j+1.

showing that the sequence {|s;x — s,({"— )|/\/®(Q)} j.k is decreasing. Since obviously this se-
quence is also bounded from below, it has to converge and we want to show that s/ = s
converges to sy, x.

G

All the functions s ) and also s r.x come from the finite-dimensional subspace

N N
Vx = ZakQ(-,xk) cap € R with Zakp(xk) =0forallpe P} +P.
k=1 k=1

Hence, all norms on Vy are equivalent to the native space norm restricted to Vx and it
suffices to show convergence to zero in any of these norms. For this purpose we choose

sz := max{|s(x;)| : 1 <i < N}, s € Vy.

This means that we have to show that s (x;) tends to spx(x)forl <i <N.
The choice of 6 gives us

0 _ 9(1)

(|2
spx = s No(@) — ’Sf-X_S !’\/(Q)

~\2
= |spx — s — (s = 5% W)@
= |57 k=1

~ 2
1ty |j\/®(Q)
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This means for every 1 <k < N — ¢ that (s X — s,ﬁ’j L i?k) tends to zero as j — oo.

; No(®@)
Hence for k = 1 we have (sf’X — s, iZl) — 0as j — oo. Next, for k = 2, we find

1 o~
0= jll)rgo (Sf,x s ’“Z)NQ,(Q)

— 7
. ) (Sf.X s ’“1)/\/’@(9)~ ~
= lim (spx — s — ) U, U .
Jj—00 |u1|_,\/®(9) /\/q,(Q)

Since we already know that (s;x — s, i) N tends to zero, this shows that
(syx — 59, EZ)NQ, (o also tends to zero for j — oo. Proceeding in the same way, we can

deduce that (s;,x — s, i)) tends to zero as j tends to infinity for every 1 <k < N —g.
However, these inner products can be written as

(s =89 80) o @ = D 2 [sx ) — sV ()]

€Ly
so that we now have
lim Y [fi = s9(x)] =0, 1<k<N-—gq. (15.5)
J_)OOlEEk

Finally we consider the equations (15.5) in reverse order, remembering that s‘)(x;) = f;,
N —qg+1<i <N and that A;; > 0. By induction on k, we conclude that s, x(x;) —
s (x;) tends to zero as j tends to infinity fork =N —g, N —g—1,..., 1. O

We will end this section by analyzing the computational complexity of this method and
giving some hints about choosing the index sets L. To start with the latter, we first sort our
points in such a way that the last Q = dim P points are P-unisolvent. For example, in the
case of thin-plate splines in R?, we would need three noncollinear points. Here, we could
choose the two points having the greatest and least first coordinate. The third point would
then be the point whose perpendicular distance from the infinite straight line through the
other two points is greatest.

Every set £; should contain these last Q points. Apart from these Q points, it will
contain the data point x; and the ¢ — Q — 1 data points in {x; : j > k} nearest to x;. With
one of the data structures from the last chapter, we can expect that this will be done in
O(N(g + log N)) time.

To analyze the complexity of the entire algorithm, we first have to say a few words about
its realization. The main idea is to store and update only the coefficients of the current
approximant

N
() =Y m®(x, xi) + p(x) (15.6)
k=1
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and the current residual vector r. Moreover, we solve the local problems for the local
cardinal functions in advance. This can be done in constant time for each cardinal function
and hence in linear time for all of them.

Since we have an iterative algorithm we restrict ourselves here to estimating the com-
plexity for one iteration. Each iteration consists of O(N) steps. In each step we have to
update the coefficients A;, which can be done in O(1) time since at most Q coefficients are
affected. More complicated is the update of the residual vector. An update of each entry
would cost O(N) time, so that one iteration sums up to O(N 2) time. This is comparable to
the time needed for one iteration in the C G-algorithm. However, a combination with the
multipole expansions of the last section improves the results. If we present the approxi-
mant not in the form (15.6) but using a multipole data structure based upon a tree of depth
O(log N) then updating the coefficients will cost us O(log N) since the constant number
of points is contained in a constant number of leaf panels and thus only a constant number
of coefficients in a constant number of panels on each level of the tree have to be updated.
This gives us O(log N) complexity, which is slightly worse than the complexity in the direct
representation. But the efficiency in updating the residual vector is much greater. The ar-
gument just given shows that the new iteration is concentrated on O(log N) panels. Hence,
its value is zero apart from these panels. This shows that only O(log N) residuals have to
be updated. Hence, the time necessary for one complete iteration reduces to O(N log N).
Finally, we have to mention that an additional O(N log N) time is necessary for initializing
the data structure, but since this is a one-off problem, it is more than compensated by what
we gain in the updating phases.

15.3 Alternating projections

In the last section we investigated one possible way of using the far-field expansion theory
to derive an efficient method for solving the interpolation equations iteratively. Now we
want to discuss another approach, which again exploits the fact that a radial basis function
interpolant is also an orthogonal projection.

In the following, we will use only positive definite kernels. This is no restriction, since
every conditionally positive definite kernel has an associated positive definite kernel by
Theorem 10.20.

Remember that we have assigned to a set X C 2 of centers the subspace

Vx = span{®(-, x) : x € X}

of the native space Ng(R2). By Theorem 13.1 we know that the orthogonal projection
P : No(Q) — Vy is given by the interpolation process, i.e. Pf = s;x. In addition, we
need the following simple result on the orthogonal complement of Vy.

Lemma 15.10 The orthogonal complement of Vx in No(S2) is given by

Vi ={s € No(Q) : s(x) = 0 forall x € X}.
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Proof An arbitrary element of Vx has the form g = ijzlajd>(~,xj). Using the
reproducing-kernel property, the inner product can be computed via

N
(8, ©Na(@) = Zajs(xj)~
=

Hence, on the one hand, if s vanishes on X then it is orthogonal to Vx. On the other hand,
if s is orthogonal to Vx then we can choose g = ®(, x;), to see that s(x;) = 0. ]

The idea of the algorithm starts with a decomposition of the set X of data sites into subsets
X1, ..., X. These subsets need not be disjoint but their union must be X. The algorithm
starts to interpolate on the first set X, forms the residual, interpolates this on X5, and so on.
After k steps, one cycle of the algorithm is complete and it starts over again. A more formal
description is given in Algorithm 15. The algorithm terminates if a prescribed error bound
€ > 0 is achieved. Again, we use the notation P; f = sy,x, to emphasize the projectional
character of the interpolant. We denote the sequence of residuals by f; and the sequence of
interpolants by s ;.

Algorithm 15 Alternating projection

Input: Set of centers X, accuracy € > 0, right-hand side f|X.
Output: Approximate interpolant.
Set fo = f,s0=0.
forn=0,1,2,...do
forr =1,...,kdo
L Juktr = fakrr—1 — Pr frkr-1
Snk+r = Snk+r—1 + Pr fuktr—1
if || fut il o) < € then
| stop.

The rest of this section is devoted to showing the convergence of this algorithm. The
idea of alternating projections is quite old and convergence results can be established in a
general form. To this end we have to introduce the angle between two subspaces of a Hilbert
space.

Definition 15.11 Let U, and U, be two closed subspaces of a Hilbert space H and denote
their intersection by U. The angle o between U, and U, is defined by

cosa = sup{(u,v):u U N Ut,velU,NUL, and lluell, V]| < 1}.

With this definition we can prove the main result on alternating projections. This is the
major part of proving the convergence of Algorithm 15.
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Theorem 15.12 Suppose that Q,, ..., Qi are orthogonal projections onto closed sub-
spaces Uy, . ..Uy of a Hilbert space H. Let U = ﬁ’;.lej and let Q : H — U be the or-
thogonal projection onto U. Finally, let o; be the angle between U; and A := ﬂf.‘:jHUi.
Then, forany f € H,

lcoi--0n'f —of|* < if — of I,

where
k=1
2 <1 —Hsinzaj.
j=1
Proof Letusset R := Qy--- Q. Qf € U implies that RQf = Qf. Hence we have
Q- QD' f = Of =R'f = Of = R(f = Of).
Furthermore,

(Rv,u) = (Qx Qk—1--- Q1v,u) = (Qp—1--- Qrv,u) =--- = (v, u)

forallv € H and u € U implies that Rv € U+ whenever v € U~. Since f — Qf € U+ it
suffices to show that

k—1
IRv|? < (1 —[]sin® a,) lv]>  forallve U*.
j=1

This will be done by induction on k. If k = 1 then we have only one subspace and R is
the projection onto U = U;. Hence v € U+ implies that Rv = 0 and ||Rv|| < [lv]. Now,
for the induction step we set R:= Qi - -- 0». We decompose an arbitrary v € U into
v=w+ v, withw € Uy and v, € UIL. This gives in particular Rv = Rw + Rv; = Rw.
Nextwe set w = wy + wy, withw; € Ay =U,N---NU;and w; € Af- and conclude that
Rw = ﬁwl + R wy = w; + sz. Since the last two elements are orthogonal we obtain

IRw* = [[w 1> + IIRwa >

Moreover, induction gives
k=1
52 .2 2
IRwa > < (1= ]sin® e | llwall®.
=2
From the last two equations and from ||w]|> = |lw, ||> + ||w;]|> we can conclude that
_ k=1 k=1
IRw? < (1= [Tsin®a; ) lhwl® + fhwi | [ ] sin® e;.
j=2 j=2

Now, w lies in U; and is orthogonal to U = U; N A and w; liesin A} and is also orthogonal
to U. Since the angle between U; and A is ¢}, we have

2
lwilI” = (wi, w) < cosayl|w|lfwll,
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giving ||lw;|| < cosay||w]|. Finally, ||w| < ||v]| allows us to derive

IRv|> = |IR

(I—Hsm a,) )2 + [lv]|? cos all_[sm a
= (l—l_[sm a,) vl

IA

O

Itis time to see how this general result applies to our specific situation. We need to choose
Q; := I — P;, the projection from Ny (£2) onto V;—j . Then we can express complete cycles
of Algorithm 15 for the residuals as

f™ = fu=(Qk... Q)" f,

which has the desired form. Moreover, since the residuals and approximants are connected
by f —s; = fj, j = nk + r, convergence for the approximants follows by convergence of
the residuals. It is not our goal to recover the function f € No(R2), however; this would be
doomed to failure. Instead we hope that the sequence {s; } converges to the unique interpolant
SfX-

Finally, we have to make sure that the constant ¢ in Theorem 15.12 is strictly less than
one, meaning that all angles «; have to be positive. This is in general obviously wrong and
we have to make an additional assumption on the choice of the subsets X of X. Fortunately
this additional assumption turns out to be very modest.

Definition 15.13 Let Xy, ..., X be nonempty subsets of R? and letY; = Uk X 1=j =<k
The sets Xy, ..., Xy will be called weakly distinct if X; #Y; and Y4, 75 Y; for each
1<j<k—-1

If each set X ; contains a point that is not contained in any of the other sets, the collection
of sets is obviously weakly distinct.

Lemma 15.14 Let X1, ..., X be finite subsets af]R‘{ andletY; = Uf-‘:jX,'. Then we have
the following.

(1) Vi =0l Vi forl < j <k
(2) Ifthe sets Xy, ..., X, are weakly distinct then the subspaces V)?'j al Vyj and V,fl'+l al Vyj contain
nonzero functions for1 < j <k — 1.

Proof First, V)ﬂ-j contains exactly those functions that vanish on X ;. Hence, ﬂf.‘= y V;; con-
sists exactly of those functions that vanishon Y; = Uf.‘= ;Xi. But this subspace is Vﬁ. Now
for the second claim. Since X1, ..., X are weakly distinct, there has to be a point z € Y;
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that is not contained in X ;. Let us consider an element of Vy, of the form
s= Y ;O x))+ B(, 2).
xX;€X;
This element is in VXL] if
> ¢®lx,x)) = —®(x.2) forall x € X,

xjeX;

and this system has a unique solution because & is positive definite. Hence s is a nontrivial

element in Vy, N VXLJ . The result for VYLJ+I N Vy, can be established in a similar way. O

With these preparatory steps we are able to show that the projection algorithm described
earlier converges at least linearly.

Theorem 15.15 Let f € No(R2) be given. Suppose that Xy, ..., X; are weakly distinct
subsets of 2 C RY. Set Y, = Uf.‘=jX,-, 1 < j < k. Denote by sV the approximant after j
completed cycles. Then there exists a constant ¢ € (0, 1) such that

llsry, — S(")“No(n) < "I fllne)-

Proof We start our iteration with fy = 57y, instead of fo = f and set £ = f,;. In the
notation of Theorem 15.12 we then find that U; = V;—j and

k
U=V =V
j=I
or, more generally, A; = V)%H. This means in particular that the orthogonal projection of
sfy, € Vy,toU = VYL] is given by Qs y, = 0. Hence we have

£ = Osry v
2n
|

sy, — 5™ vp)

IA

Ity — Osry lIne
2i
' f lIvw

IA

by Theorem 15.12, taking [Is 1.y, Invp@) =< Il fllns@) (cf. Theorem 10.26) into account also.
It remains to show that c is strictly less than one or in other words that all angles «; are
different from zero. « is the angle between U; = VXLJ_ andA; = VYLJH and from its definition
we have to consider the intersection space

Bj:==U;NA)" =g NVy )" =Vy,.
A zero angle means that cosa; = 1 or
1 =sup {(u, VNp(@) U € V)}i NVy,ve VYLH] N Vy,,
el N IV lva@) < 1}-

Since we are working entirely in the space Vy, we can use compactness to find two elements
u* e VXL/ N Vy, and v* € VYL/+I N Vy, both with norm one and (u*, v*) 7, = 1. Equality in
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Fig. 15.3 Alternating-projection reconstruction of a relief of Beethoven.

the Cauchy—Schwarz inequality is only achieved if the two elements are linearly dependent,
in fact meaning here that u* = v*. Thus u* € Vi, NV; = V;. However, u* is also in
Vy,. Hence it has to be zero, which contradicts the fact that it has norm unity. This means
that all the angles have to be different from zero and therefore that ¢ < 1. O

The analysis of the complexity of this algorithm is very similar to the analysis for the
method of approximated Lagrange functions. We will leave the details to the reader.

Figure 15.3 shows some results of the alternating-projection method when applied to a
data set representing a Beethoven relief. This moderate data set consists of about 30 000
regularly distributed points and will serve us as a model in the rest of this chapter. Here we
have subdivided the data set into equal-sized slightly overlapping boxes, so that each box
contains at most 200 centers. The first picture in Figure 15.3 shows the reconstruction after
a half cycle. The next shows the reconstruction after one complete cycle. Here, the sum of
residuals has already dropped from 57 708 to 1654.63 and the reconstruction already looks
authentic. However, a side view, which is presented in the middle picture, reveals that it is
still far from a satisfactory reconstruction. The last two pictures show the final result after
20 cycles. The error has dropped to below 107°.

15.4 Partition of unity

The idea of the partition-of-unity method is the following. We start with a mildly overlapping
covering {Q j}§4= , of the region Q; we will make the term “mildly overlapping” more
precise in just a moment. For this covering we choose a partition of unity, i.e. a family of
compactly supported, nonnegative, continuous functions {w,} with 27:1 w; = 1 on$and
supp(w;) € 2;. Moreover, we choose for every cell 2; an approximation space V;. Then
a function f is approximated on each cell by a local approximant s; € V;, and the local
approximants are joined by forming

M
Sp= ) sjw). (15.7)
j=1

To be more precise, we make the following definition.



276 Numerical methods

Definition 15.16 Let Q C R? be a bounded set. Let {2 j}§’1= | be an open and bounded
covering of Q2. This means that all Q; are open and bounded and that Q is contained
in their union. Set §; = diam(Q2;) = SUP, yeq, lx — yl|lo. We call a family of nonnegative
functions{wj}M withw; € C*(R?) a k-stable partition of unity with respect to the covering

Jj=1
Q1 i
(1) supp(w;) < 2,
(2) iwj =1long,
(3) ]ﬁozrl every o € Nﬁ with |a| < k there exists a constant C, > 0 such that
1 Dw;ll Loy < Cd/sl/'u‘

foralll < j <M.

So far, we have not made further assumptions about the covering €2, but for efficiency it
is necessary that

I(x) :=#{j : x € Q;} (15.8)

is uniformly bounded on 2. Nonetheless, even without this assumption we can give a first
convergence result.

Theorem 15.17 Let Q@ C R? be bounded. Suppose that {Qj}y:l is an open and bounded
covering of Q2 and {wj}.’;"':1 is a k-stable partition of unity. Let f € C*(Q) be the function to
be approximated. Let V; C CX(Q;) be given. Assume that the local approximation spaces V;
have the following approximation property. In each region Q; N Q, f can be approximated
by a function s; € V; such that

| D¥ f — D%l Lo@ne) < &j(@).
Then the function sy from (15.7) is in C k(Q) and satisfies

I(D“f =D sl < Y (z>ca,ﬁa_‘,."’“‘“‘sj(ﬂ), xeQ, (15.9)

Jjel(x) B=a
forall |a| < k.

Proof The proof is straightforward. We simply use Leibniz’ rule and the fact that the {w}
form a partition of unity to derive

M
(D* f — Dsy)(x) = D* <Z w; (L (x) — s,-(x)])

j=1
=y (2) D*Pu;(0)DP(f — 5,)().
Jjel(x) B<a

The assumed bounds on the derivatives of w; and on the derivatives of DA(f —s /) now
yield the stated result. O
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It is our goal to use this general result in the context of radial basis functions. Hence, we
start with a set of points X = {xy, ..., xy} and set X; = X N ;. The local approximation
spaces are given by

V; i=span{®(-,x) : x € X;)} + P,

where @ is a conditionally positive definite kernel with respect to P on Q=uQ ;- The local
approximant s; is then given by the interpolant sy, x;. It is interesting to see that the global
approximant inherits the interpolation property of the local interpolants, i.e. s s (xx) = f(xz),
1 < k < N; this is a consequence of the partition of unity:

N

spea) =Y spx, w0 = Y frow; () = fx).

j=1 JEI(x)

In order to use the convergence result from Chapter 11 we have to make some more
assumptions on the covering {$2;}.

Definition 15.18 Suppose that Q@ € RY is bounded and X = {x, ..., xy} C Q are given.
An open and bounded covering {Qj}jyzl is called regular for (2, X) if the following prop-
erties are satisfied.

(1) For every x € Q2 the number of cells Q; with x € Q; is bounded by a global constant K, i.e.
ngj(x) < K forall x € Q.

(2) There exists a constant C, > C, and an angle 6 € (0, 7t /2) such that every patch Q; N Q satisfies
an interior cone condition with angle 6 and radius r = C,hy . Here C, is the constant from
Theorem 3.14.

This looks technical at first sight. But a closer look at each property shows that these
requirements are more or less natural. For example, the first property is necessary to make
sure that the outer sum in (15.9) is actually a sum over at most K summands. Since K is
independent of N, in contrast with M, which should be proportional to N, this is essential
to avoid losing convergence orders. Moreover, it is crucial for an efficient evaluation of
the global approximant that only a constant number of local approximants have to be
evaluated. To this end, it also has to be possible to locate those K indices in constant time.
The second property is important for employing our estimates on radial basis function
interpolants.

We will state our convergence results only for (conditionally) positive definite functions
with a finite number of continuous derivatives. But it should be clear from the proof that
everything works for kernels also. Moreover, if Gaussians or multiquadrics are used then
the convergence orders are again spectral.

Theorem 15.19 Let Q@ € R? be open and bounded and suppose that X = (x|, ..., xy} C
Q. Let ® € CKRY) be conditionally positive definite of order m. Let {Q;} be a regular
covering for (2, X) and let {w;} be k-stable for {2;}. The error between f € N () and
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its partition-of-unity interpolant sy = Zj sg.x,;w; is bounded as follows:
k4v)/2—
1D f(x) = D*s ()] < ChE "™ | flnco
forall x € Q and all |a| < k/2.

Proof On the one hand, by Theorem 10.46 the function f has a norm-preserving ex-
tension Ef € Ng(RY). On the other hand, the restriction fi = EfI(; N Q) satisfies
|filnvw@,ne < 1EfIny@: = | fne@ by Theorem 10.47. Hence, if we denote all these
functions by f then we have again | f|x,,n2) < |f|Ne@)-

Referring to the constants from Theorem 3.14 we can see that C, > C, implies h =
hx.q < C,h/C,. Hence, by Remark 11.12 we can apply Theorem 11.11 to the local setting
Q;NQX; =Q;NX,and h = hy g to get

ID*(f —s7x)®)] < CREE £l g x € Q;NQ.

Furthermore, the constant C depends on €2; N €2 only via §, which is the same for all ;.

To apply (15.9) we need two more ingredients. Since every patch Q; satisfies an interior
cone condition with radius C,hxq we have §; = diam(2;) > C,hx o. Moreover, every
x € Qis contained in at most K patches €2;. Hence, the error bound (15.9) leads to

o —|a
ID*(f sl < Y Z( )Ca,ﬂs‘j’s' “le i (B)
jeit hea \P
a —la v -
= K% (9)Cu s

B=w
(k+v)/2-la|
= Chy o “Iflvae

forall x € Q and all |«| < k/2. O

Next let us have a closer look at the computational complexity. Here, it is easily seen
that it is not enough to require {€2;} to be regular for (€2, X) to reduce the complexity. For
example, if € itself satisfied a cone condition we could simply choose Q2; = £, yielding
a regular covering but also the global interpolation problem. Hence, we have to make sure
that the cells are small and the covering is local.

Definition 15.20 Suppose that Q C R? is bounded and X = {x1,...,xn} C Q is given.
An open and bounded covering {2} f’=1 is called local for (2, X) if there exists a constant
Cioc > 0 such that diam(2;) < Ciochx .

If {©} is local and regular for (2, X) and X is quasi-uniform then we know by Corollary
14.2 that the number of centers from X in each 2; is bounded by a constant that is inde-
pendent of the total number of centers in X. Moreover, for every 2; we can choose a ball
B; of radius hy q that is completely contained in N €2;. This ball B; can be contained
in at most K — 1 other cells Q2 N ;. Hence, we can use our standard volume argument to
conclude from UM B; € Q that M < Chy, < CN.
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Theorem 15.21 Let X = {xy, ..., xy} € Q be quasi-uniform and {2} a regular and local
covering for (2, X). Suppose that {2} can be built in O(N) time and O(N) space and that
foreveryx € Qatthemost K patches Qj withx € Q; can be reported in constant time. Then
the partition-of-unity method based on radial basis functions can be implemented in O(N)
space with O(N) time needed for the preprocessing step. Furthermore, each evaluation of
the global interpolant needs O(1) time.

Proof Using the fixed-grid strategy to build our data structure for X, we know that this
can be done in O(N) time, and space. Since the number of centers in each patch is bounded
by a constant, we need constant space and constant time for each patch to solve the local
interpolation problems. Furthermore, the points in each patch can be reported in constant
time. Since the number M of patches €2; is bounded by O(N) this adds up to O(N) space
and time for solving all of them. By assumption we can determine /(x) = {j : x € Q;} in
constant time, and the cardinality of /(x) is also bounded by a constant. Thus we have to
add up a constant number of local interpolants to get the value of the global interpolant.
This can be done in constant time. O

Unfortunately, some of the constants depend exponentially on the space dimension. Thus,
in higher dimensions and also for non-quasi-uniform data sets, kd-trees and their extension,
bd-trees, seem to have better properties than the fixed-grid strategy.

‘What about the stability of the process? Our results from Chapter 12 show that the condi-
tion number does not depend on the number of centers but on the separation distance. The
separation distance of the local center sets X ; is in general of the same size as the separation
distance of the whole set of centers X. So we run into the same problem. Fortunately, for
basis functions with a finite number of continuous derivatives the problems seem to give
much less difficulty than predicted. Moreover, if we are working with thin-plate splines
or any other basis function that satisfies the conditions of Theorem 12.13 we know that in
fact we could instead work with the kernel « (-, -). Then, by Corollary 12.14 the condition
number of the local problems turns out to be constant, i.e. independent of the separation
distance.

Figure 15.4 shows the reconstruction of the Beethoven relief using two different partition
techniques in the partition-of-unity approach. The reconstruction on the left uses a regularly
sized local covering. Owing to this local nature, the interpolant becomes zero when the

Fig. 15.4 Partition-of-unity reconstruction of the Beethoven relief.
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evaluation points are far from the initial data. The second reconstruction (middle picture)
is based on an overlapping kd-tree decomposition of the bounding box (see the right-
hand picture of Figure 15.4). This reconstruction is better adapted to nonuniform data. For
example, it was used for the reconstructions of the glacier and the dragon in the first chapter.
However, the background in the middle picture of Figure 15.4 indicates that problems may
come up when different parts of the surface are merged together.

15.5 Multilevel methods

All the numerical methods discussed so far are for globally supported radial basis functions.
In particular all methods except the partition-of-unity technique need a far-field expansion.
Even though compactly supported basis functions can be used in the same way as globally
supported ones, this does not take the local character of these functions into account. Hence,
it is time to discuss ideas for the efficient use of compactly supported functions.

As mentioned earlier, one possibility is to adjust the support radius as a function of the
data density. Instead of using the function ®, it is better to employ the function &5 = ®(-/§)
and to choose § as a function of the fill distance iy . The choice § = chy o would always
lead to a sparse matrix and we know that its condition number would be independent of the
number N of centers and of /1y o. Unfortunately, we also know, by the trade-off principle,
that we cannot then expect convergence for iy o — 0. Hence, the right choice of the support
radius is a delicate problem and we now want to describe a possible solution.

The idea of a multilevel method is again based an a decomposition of the set of centers
X, but this time in a nested sequence of subsets,

X, CX,C--CXe=X. (15.10)

If X is quasi-uniform then the subsets X ; should also be quasi-uniform. Moreover, they
should satisfy gx,,, &~ c.qx; and hy,,, o = c,hx; o with a fixed constant c,. A good choice
for ¢, would be 1/2.

Now, the multilevel method is simply one cycle of the alternating-projection method
discussed earlier, but this time we use compactly supported basis functions with a different
support radius at each level. We could even use different basis functions at the different
levels. Hence, we need to formulate the algorithm more generally. For every 1 < j < k we
choose a basis function @ ;. As in Section 15.3 we denote the interpolation operator by

Pif =Y c()®i(—x)),

x;€X;

but using now the basis function ®; at level j. We will take ®; as ®(-/6;) with a compactly
supported basis function ® and scaling parameter §; proportional to & x; o. A more thorough
discussion will follow.

The idea behind this algorithm is that one starts with a very thin, widely spread, set of
points and uses a smooth basis function to recover the global behavior of the function f. In
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Fig. 15.5 Multilevel reconstruction of the Beethoven relief.

the next level a finer set of points is used and a less smooth function possibly with a smaller
support is employed to resolve more details, and so on.

As was said before, the algorithm performs one cycle of the alternating-projection algo-
rithm. This means that we set fo = f and sy = 0 and compute

sj = s8j-1+ Pjfj-1,
fi=Ffi-i=Pjfin

forl < j <k.

Even though the multilevel algorithm resembles the alternating-projection algorithm, the
idea behind it is completely different. The most obvious differences are that we use different
basis functions at each level and that we perform only one cycle. The latter is reasonable
since any further cycle would not change our approximant because the data sets are nested.

Figure 15.5 demonstrates the multilevel algorithm in the case of the Beethoven-relief data
set. We set up five levels and the support radius on each level was chosen so that on each
level the interpolation matrices had a bandwidth of roughly 70-80 points. The interpolation
equations were solved using an unpreconditioned conjugate gradient method. The first row
of Figure 15.5 shows the accumulated interpolants s; while the second row shows the level
interpolants P; f;_i.

Lemma 15.22 The function sy interpolates f on X.

Proof We first remark that f;|X; =0 for 1 < j < k by definition. Next, we have again
the relation f —s; = f; for 1 < j < k between the interpolants and the residuals. Hence,
skl X = sel X = f1 Xk — fel Xie = f1Xe = fIX. O
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Since f; is zero on X it is also zero on X; € X, and thus the interpolant to f; on X
is zero and would add nothing to the new approximant. A consequence of this is that we
cannot use the technique of Section 15.3 to prove convergence. Another reason why we
cannot use those ideas is that we are now using different basis functions, meaning that the
interpolation operators are orthogonal projections in different Hilbert spaces with different
norms. When scaling a fixed basis function the latter problem can be avoided if the scaling
factor is absorbed into the function that is interpolated. But the first problem still remains.

Let us have a closer look at the idea of scaling a compactly supported function. We
assume that the decomposition (15.10) of X is such that

hx”hg %Cahxj‘g and qx; %hX,,Q (15.11)

forall 1 < j < k. This gives hy, o =~ C,{l._lhxl,g. Hence, if we choose as the support radius
8 = )™ then the classical volume trick shows that the number of centers in the support of
@5, is bounded by a constant. Thus the interpolation matrix associated with the interpolation
operator on level j has only a constant number of nonzero entries in each row, the constant
being independent of the level j and of the current number of centers. This means that
matrix—vector multiplication can be done in linear time. Moreover, we can interpret inter-
polation on X with ®; as interpolation on X /6 = {x;/4, ..., xy/8} with ®. The separation
distance of X /§ is obviously given by gx,s = qx /8, showing that the condition number of
the interpolation matrices is uniformly bounded and independent of the level. Hence, on
each level a conjugate gradient method would need only a constant number of iterations to

converge.

Proposition 15.23 Suppose that the decomposition (15.10) of the set X = {x1, ..., xn}
satisfies (15.11) for 1 < j < k. If we choose a compactly supported radial basis function
and set the support on level j as§; = c 17" then the multilevel algorithm needs O(kN) time
to determine the interpolant sy.

Practical tests show that the first step is crucial for a successful interpolant. They also
show that the number of levels k can in general be chosen much smaller than the number
of data sites N, making the multilevel algorithm very efficient. Nonetheless, for proving
convergence theoretically, k has to tend to infinity. By setting Q; := I — P; again, we see
that the error has the representation

f=sc=fi=0k0Qk-1--01f

Hence, the method converges if for example all the Q; have norms less than a constant
¢ < 1. Unfortunately, convergence has not yet been proven in the general case and we finish
this section by discussing some ideas on how to prove it. But before we do this we want
to point out that an improvement can be achieved if a preconditioning technique is used,
meaning that Q; is replaced by Q; := R;(I — P;) with a smoothing operator R;. But so
far it is not really clear which smoothing operator is a good choice.
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As pointed out earlier, even though the multilevel algorithm resembles the alternating-
projection algorithm we cannot use the ideas developed in Section 15.3 to prove con-
vergence. But we can use the fact that P; f denotes the best approximation to f from
Vx,; = span{®;,(- — x) : x € X;} with respect to the native space norm || - ”_/\/'QB,_(Q). This
gives for level j

2 2 2
1fi-t = Pifimillve, @ + 12 fi-tlli,, @ = Ifi-tln,, @
J J J

or

I f ||N¢,5j(sz> < ”fj—l”/\/'@a] (@

and we have to bound this expression by a constant, smaller than one, times || fj—1llx,  (@-
-1
Hence everything reduces to the problem of finding a constant ¢ < 1 such that

I f vy @ = cll fllvae (15.12)

forall f € Ngo(R2) witha given 0 < § < 1. Note that in most cases scaling does not change
the native space, only the norm. Things are different if different basis functions are used.
The constant ¢ in equation (15.12) is easily determined if & is a thin-plate spline ®(x) =
||x|\%k log ||x||2 or if ®(x) = ||x||§. For example, in the first case we know from Theorem
8.17 that ® has a generalized Fourier transform 6(&)) =Cak ||a)||27‘172k, with a constant ¢, ¢
that does not play a role in what we intend to do now. Next, Theorem 10.21 tells us that the

native space of ® on R¢ has the semi-norm

1 ~
2 [ 2 d+2k
e = Gy fR Nf@P o] do

so that the semi-norm for the scaled basis function becomes
2 5 R d+2k 2%\ g2
= — o)|*|18w]| " dw = 8 .
1 By = Gy /R APl e

Since § < 1, the constant ¢ can be chosen to be 8%. Using thin-plate splines in the multilevel
algorithm is of course possible and we have just seen that it results in a convergent method.
But the multilevel algorithm was tailored for compactly supported functions and hence
it is not very surprising that in fact the numerical benefit of using thin-plate splines here
is limited. Nonetheless, the success of proving convergence for thin-plate splines might
encourage the reader to establish convergence results for other basis functions.

15.6 A greedy algorithm

All the numerical methods we have investigated up to now try to use all the data points.
This is of course reasonable since the data often result from expensive experiments and it
is hard to explain to the user why some of these measured values should not be used.
Nonetheless, building the approximant on only a subset of the centers might lead to a
more efficient way of representing the unknown function. In that situation one has to decide
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which centers are to be used and to think about strategies to employ all the information
given.

In this context one often faces so-called adaptive greedy algorithms. We do not want to
discuss the general idea of an adaptive greedy method but we want to explain how it can
work in the context of compactly supported radial basis functions. As for the alternating-
projection and multilevel methods, the idea is to interpolate on subsets X ; of the original data
sets X and to form residuals. But this time the data sets X ; are not chosen in advance. Instead,
the choice of data set X ; depends on the residuum of the previous level. As well as the data
set X ;, itis also possible to choose the basis function or at least its support radius differently.

In what follows we will use the notation of the previous sections. In particular, we will
denote the interpolation operator based on X ; and on a general positive definite kernel ®;
by P;. The residuals are denoted by f; and the accumulated approximants by s;.

The following proposition is a rephrasing of the thoughts expressed at the end of the last
section, but it is the crucial point in what we want to do in this section.

Proposition 15.24 Suppose that the positive definite kernel © is used for all levels j, i.e.
®; = P. If there exists a constant y € (0, 1) such that

1P fi—tlne@ = VI fi-tllne@
forall j > 1 then s; converges linearly to f in the native space.
Proof The proof simply follows from f —s; = f; and

2 2
I fillje = 1fi-1 = Pi fi-1tlnu @
2 2
= ”fj—l H,/\/q,(sz) - ||ijj—1||/\/’q,(9)
2 2
= A =)=l @)-
O
Since we want to choose the sets X ; at each step we have to do this in such a way that the
condition || P; fi_1llnp@) = VI fi—1llna(e is satisfied. This might seem to be problematic
at first sight, but things become easier if we concentrate on approximating s x instead of
f itself. This means that we want to compute an approximation to an interpolant based on
a large data set, and this is actually what we have already done several times before.

Thus, we will work in a finite-dimensional space, and we can replace the native space
norm by a suitable norm.

Corollary 15.25 Suppose that the subset X ; of X is chosen such that

I fi-tll, ) = VI fi=tllL, ) (15.13)

forall j > 1 and for a fixed y € (0, 1). Then the sequence s; converges to sy x linearly in
the native space and in the L ,(X)-norm.
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Proof Since we are working in the finite-dimensional space Vy, all norms are equivalent.
In particular, there exist two constants 0 < ¢; < C; depending on @, X, and p such that

cillgle, o < lglvee < Ciliglie,w
holds for all g € V. This relation gives us the bound

I1P; fi-tllve = cill P fi-1llL,x) = cill P fi-1llL,x))

= cill fi-ill,x;) = eyl fi-illL, o0

A%

cy
e i—1 Q).
C, Il fi=1llnm

Since c1y/C; € (0, 1) we can apply Proposition 15.24 to get linear convergence in the
native space norm and, because of norm equivalence, in the L ,(X)-norm also. O

Hence, if we fix a y € (0, 1) and use the Chebychev norm on X we then have to choose
X in such a way that the maximum of f;_; on X; is at least y times the maximum of
fj—1 on the whole set X. Unfortunately, convergence is not linear in this y but rather in
¥ =+/1 —(c1y/C))?, and the values of ¢, and C; can cause this constant to be rather close
to one, making convergence quite slow, at least theoretically.

But if we use orthogonality again, we find

2 2 2 2
I ) — il (I fi-113e@ = 1 13a@)
|

k
) = Z
=1
k
=D 1P fi-il}
JJi=1INg(Q)
j=1
. 2 .
showng that || P; fi—1|l Ao (@ converges o zero at least as fast as 1/j, and thus also
Il fiz1 H_j\/q,(sz) and | fj-1 ”Lp({f)' This does not amount to much, but it doc‘:s at least allow
us to give more accurate estimates on the number of steps necessary to bring the approxi-
mation error below a certain level.

Since we have to solve a linear system at each step we want to keep the number of
points in X ; small. It is interesting to see that Proposition 15.24 and its corollary give linear
convergence, even if we choose X; = {x;,} to consist of only one point, if we simply make
sure that

[ fi—1Ga )l = Y1 fi=1ll L)

For example, we can choose Xy; to be the point where f;_; attains its maximum. Moreover,
in this situation we do not have even a linear system to solve; the new interpolant is known
explicitly from

fi1(xx;)

Pjfi-1=®C, xx,) .
o O (g, Xx;)
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We summarize this simple approach in Algorithm 16. Our analysis made so far ensures
linear convergence and we are going to investigate the complexity of Algorithm 16.

Algorithm 16 Greedy one-point algorithm

Input: Set X of centers, data values f|X, accuracy € > 0.
Output: Approximation .

Set fo = f1X,s0 =0, max = o0, j = 1.
Choose x;, € X.
while max > € do
Set B = fj-10x;)/ P(xy;, xx;)-
for1 <i < Ndo
Replace fj_1(x;) by fi(xi) = fi—1(xi) — BD(xi, i)
Replace s;_1 by s; = 51 + BO(, xy,)-
Keep track of the maximum max of the new residual f; and the data site x;,,, where
it is attained.
| Replace j by j + 1.

It is obvious that one iteration of the “while” loop takes O(N) time if no additional
information such as compact support or a far-field expansion is used. With this information,
however, we can reduce the time needed to O(1) or O(log N), making the algorithm very
fast. Examples show that it produces reasonable approximations even when the number of
points is much less than the initial number N. Hence, the algorithm can also be used for
compressing data.

We end this section with a short discussion on how additional benefit can be drawn from
using a compactly supported basis function with different support radii.

To this end we fix a radial function ® = ¢(|| - ||») having support in the unit ball and
scale it via &5 = P(-/§). Next we fix certain constants «, € > 0 for recording the accuracy,
further constants 0 < y < B < 1 for influencing the support radius, and a constant o > 0
for counting points. Finally, we fix a discrete norm on X.

In what follows, a successful try in K steps is defined as a run of K steps of Algorithm
16 at a fixed scale § such that the discrete norm is reduced by a factor of at least .

The new algorithm can be described as follows. There is an outer loop that runs over suc-
cessful tries until the norm of the residuals falls under €. The middle loop uses larger
and larger numbers of iterations K = o, o2, ... and the inner loop uses support radii
c, cB, cﬂz, ..., cy until a successful try is found.

Since we know that Algorithm 16 converges, a sufficiently large number K will lead
to a successful try. Hence the new algorithm has to converge. Note that it aims to use as
few points as possible in each successful try. Moreover, it uses the largest possible support
radius.
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Fig. 15.6 Greedy reconstruction of the Beethoven relief.

Using a large initial radius ¢ and small values for 1 — 8 and 1 — o leads to a time-
consuming optimization, which tries to reconstruct the data with as few centers as possible.
Hence, to speed up the procedure certain improvements have to be implemented. Numerical
tests show that often the sequence of support radii is decreasing while at the same time the
number of necessary iterations is increasing. Hence, instead of starting with the initial values
for each middle and inner loop one could start the new outer loop with the successful values
for ¢ and K from the previous step.

Figure 15.6 shows some results for the Beethoven data set. The initial support radius was
the diameter of the data set. From left to right we show reconstructions using 10, 100, 1000,
and 10000 points. The final picture shows the distribution of the 10 000 points employed.

15.7 Concluding remarks

The right choice of basis function depends mainly on additional information on the target
function, such as its smoothness. The right choice of reconstruction method depends also
upon the application. For example, if on the one hand exact interpolation is necessary then
any method based on a far-field expansion is of only limited use, since such a method has
only an approximate character in the far-field. On the other hand, if the data set has holes
which have to be filled (e.g. for mesh repair) then any purely local method would be the
wrong choice; even the partition-of-unity approach would have to be handled with care here.
A global method such as the approximate-Lagrangian method, the alternating-projection
method, or the multilevel method would be more suitable in this case. In all other cases, it
seems that, particularly for very large data sets, the partition-of-unity method is fastest.

15.8 Notes and comments

Fast multipole methods have been promulgated mainly by Beatson and various collabora-
tors; see for example [11-14, 16, 17]. They are crucial for almost every efficient algorithm
employing globally supported basis functions. The representation given here is based par-
ticularly upon [13, 16]. The idea of using the fast Gauss transform for other basis func-
tions comes from Roussos [158], whereas the fast Gauss transform itself was devised by
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Greengard and Strain [74] in 1991. Unfortunately the estimate on the truncation error given
in that paper is erroneous, as was recently pointed out by Roussos [158] and Baxter and Rous-
sos [10]. In Theorem 15.6 we give the corrected version. The actual inequality of Cramer
can be stated in a stronger version; see for example Hille [83] and, for a thorough discussion,
Roussos [158]. However, the stronger version has not been necessary in our analysis.

The method of approximation of Lagrange functions goes back to Beatson and Powell
[18]. The theoretical background was provided later, by Faul and Powell [59] and Faul [58].

The alternating-projection method given in the third section is based on a general result by
Smith et al. [178], given here in Theorem 15.12. The adaptation to the radial basis function
setting comes from Beatson et al. [15]. They also call their method a domain decomposition
method, even if actually not a domain but the set of centers is decomposed.

The partition-of-unity idea is also quite old. Possibly Maude [118] was the first to use
this idea, in 1973, in the context of interpolation, at least in the univariate case. Franke [63]
extended the method in 1977 to the multivariate case. He also tested different weight
functions and different local approximation processes. One of these local approximation
schemes was thin-plate spline interpolation (see [64]). Convergence investigation for the
general class of radial basis functions was done by the present author in 2002 [198]. Partition-
of-unity methods have recently gained attention again, in the context of meshless methods
for partial differential equations; see Babuska and Melenk [7].

One can find the idea of the multilevel method in Schaback’s paper [164] but it became
publicly known through the work of Floater and Iske [60].

Finally, the greedy algorithm of the last section was initiated by Schaback and Wendland
in [169,170].
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Generalized interpolation

Up to now we have dealt only with the problem of recovering an unknown function from
certain known function values. But sometimes it might be desirable to recover the function
also from other types of data. For example, the function’s derivatives might be known at
certain points, but not the function itself. This becomes interesting if partial differential
equations are considered.

In this chapter we deal with a more general problem than those we have discussed so far.
Our approach includes in particular collocation and Galerkin methods for solving partial
differential equations. But the methods we will derive are at the present time only able to
compete with classical methods to a certain extent. In any case, whenever large data sets
are considered one has to combine the methods introduced below with the fast-evaluation
ideas of Chapter 15.

In this sense, this chapter should be seen as a unified introduction to a general class of
recovery problems.

16.1 Optimal recovery in Hilbert spaces

We start by generalizing results from Chapters 11 and 13. In this section we restrict ourselves
for simplicity to the Hilbert space setting, even though everything works in the case of semi-
Hilbert function spaces also.

Let H be a Hilbert space and denote its dual by H*. Supposethat A = {A, ..., Ay} € H*
is a set of linearly independent functionals on H and that fi, ..., fy € R are certain given
values. Then a generalized recovery problem would seek to find a function s € H such that
Aj(s) = fj, 1 =< j < N.Wewill call s a generalized interpolant.

The optimal-recovery problem searches for the norm-minimal generalized interpolant,
i.e. we have to find s* € H such that

Is*|l = min{||s|| : s € H, A;(s) = fj, 1 < j < N}. (16.1)

Obviously, this problem is a straightforward generalization of the recovery problem dealt
within Theorem 13.2. There, the solution was given by the (radial) basis function interpolant.
Here, the solution can also be given explicitly. To this end let us recall Riesz’ representation
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theorem, which allows us to represent each functional A; by a unique element v; € H via
A j = (’, v j).

Theorem 16.1 Let H be a Hilbert space, My, ..., Ay € H* linearly independent function-
als with Riesz representers vj, 1, < j < N, and let fi, ..., fn € R be given. The unique
solution of (16.1) is given by

N
s*:Zajvj, (16.2)
=1

where the coefficients {a;} are determined by the interpolation conditions
ri(s™) = fj, 1<j<N. (16.3)

Proof The proof is very similar to the proof of Theorem 13.2. First of all note that s*
from (16.2) is well defined, by the conditions (16.3). Since the A; are supposed to be
linearly independent so also are the v;, showing that the interpolation matrix with entries
(Ai(v))) = ((vi, vj)) = ((Ai, Aj)g=) is positive definite. Next, s* thus defined is indeed a
solution of the optimal-recovery problem (16.1). To see this, assume that v € H satisfies
Aj(v) =0,1 < j < N, which implies

N N
(s*,v) = Zaj(v, vj) = Zaj)»j(v) =0.
i=1 =1

This shows that
Is*[> = (s*, s* = s +5) = (s*,5) < Is*[llIs]]

forevery s € H with A;(s) = f;,1 < j < N.

The solution of our optimal-recovery problem is unique by a classical argument from
approximation theory. If 5 is any solution of (16.1) then necessarily (5, s) = 0 for all
s € H with 1;(s) =0 for 1 < j < N; otherwise we could form ¢ = 5+ as and would
see that ||7]|> = |[5]1® 4+ o2||s]|> + 2(5, s) < ||5]|* for an appropriate choice of «. Thus, if
s1 and s, are both solutions to the recovery problem then we have (s;, s; — s2) = 0 and
(52, 51 — $2) = 0, showing that ||s; — s2|| = 0 or s; = 5. O

Now let us assume that the data values { f;} come from an unknown function f € H,i.e.
fi=x;j(f), 1 <j < N (it might also be possible to assume that other functionals define
the values, i.e. f; = p;(f), but we do not want to pursue this any further).

Corollary 16.2 If in addition f; = 1;(f), 1 < j < N, for an f € H, then s* is the best
approximation from V = span{v,, ..., vy} to f, i.e.

If = sl = min{| f —s]l : s € V}.

Proof This follows directly from 0 = A;(f) — A;(s*) = (f — 5%, v;). O
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So far, we have restated two of the three optimal properties of the (radial) basis function
interpolant in this more general setting. The third was a reformulation of error estimates
with power functions or, to be more precise, of the optimality of the power function and
we will generalize this reformulation now. It answers the question how well the optimal
recovery s* matches the initial function f.

Theorem 16.3 Set A := span{Ay, ..., Ay}andV :=spanf{vy, ..., vy}. Then forevery lin-
ear and continuous functional A : H — R the estimate

ACf =T < ,122 12 = plg- infllf — sl (16.4)
is satisfied.
Proof Since every A ; obviously satisfies A;(f — s*) = 0 so does every u € A. Thus
ACf =8O =100 = w(f =D < A = plla=llf — 5™
The rest follows from Corollary 16.2. O
It is interesting to analyze the term on the right-hand side of (16.4). The first factor,

Py(d) = inf [[A — plla-,
HEA

is a generalized power function that describes how well the evaluation functional A can be
approximated by the given functionals from A. Furthermore, the second factor in (16.4)
describes how well the unknown function f can be approximated by the functions from V,
and it is obviously bounded by || f|.

We end this general section by showing that in the case of interpolation by positive
definite kernels we have done nothing new.

Suppose that ® € C(2 x ) is a positive definite kernel. For the set of distinct points
X={x1,...,xn} S Qlet A ={4,, : x; € X} and for x € Q2 let A = §,. Finally let H be
the native Hilbert space No(£2). Since this space is a reproducing-kernel Hilbert space, the
functionals 8, have the Riesz representer ®(:, x;). Thus the optimal-recovery problems
and their solutions from Theorems 13.2 and 16.1, respectively, coincide. Moreover, since
any 4 € A has a representation 4 = ) u;8,,, the new power function

N
8o — Y ujdy,
j=1

coincides with the old one, Py x(x), by Section 11.1.

Let us point out once more what we have to do to recover a function f that is known
only from A;(f), 1 < j < N, in the case where we are given a positive definite kernel
® € C(2 x ) and where A; € N (2)*. We start by assuming an interpolant of the form

N
O(,x) = Y u P, x))

=

Px()) = min = min
ueRN ueRM
H*

No ()

N
Sp = Zaj)»§¢(~, y).
j=1
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Then, the interpolation conditions A¢(s5) = fx, 1 < k < N, lead to the interpolation matrix
Ap.n = (Aik.),ftb(x, y))lgj,ng,

which is symmetric and positive definite whenever the functionals {A;} are linearly inde-
pendent over N (£2), because

AT O, y) = AP, x), AT P(, Mg

holds (see Theorem 16.7).

16.2 Hermite-Birkhoff interpolation

In this section we apply the general results of the last section to the specific situation where
we are reconstructing a function from Hermite—Birkhoff data.

To be more precise, suppose that oV, ... o™ ¢ Ng are (not necessarily differ-
ent) multi-indices with |« < k. Suppose further that we are given certain points
X1, ..., Xy € Q from an open set Q2 C R<. Then we form the functionals Aj = SXJ. o D“(“,

ie. A;(f) = D"‘(”f(xj ), 1 < j < N. To make these functionals pairwise different we
assume that for two different indices j # € we have either x; # x, or a/) # o(©.

If & € C%*(Q x Q) is a positive definite kernel on €2 then we know from Theorem 10.45
that A; € No(Q)* and that A ; has the Riesz representer

v, =D§"o(,x;)), 1<j<N,

where the additional index 2 on the D-operator again denotes differentiation with respect
to the second argument. Hence, our interpolant takes the form

N -
s=Y ¢;D5" o, x;) (16.5)
j=1

and the interpolation matrix has entries of the form
DY D" ®(xy, x)). (16.6)

This matrix is invertible whenever the functionals are linearly independent, and this depends
on how “rich” the native space of the underlying kernel is. Fortunately, all relevant basis
functions have a sufficiently rich native space. In accordance to the philosophy of this
chapter we give details only for positive definite functions but it should become apparent
that the next theorem can also be adapted to the situation of conditionally positive definite
functions.

Theorem 16.4 Suppose that ® € L(R?) N C**(R?) is positive definite. If the functionals
Aji=18 0 D”‘w, 1 <j<N,with laP| < k are pairwise distinct, meaning that o) #* a®
if xj = x¢ for two different j # (, then they are also linearly independent over No(RY).
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Proof Suppose we have real numbers c; such that Zj\;l ¢jrj = 0on Ng(R?). This means
in particular that

N
Dk —y)

=

N
E cjkj
=

By Theorem 10.12 we know that we can evaluate the last norm via Fourier transforms. To
this end we compute

No(Ry* No(RY)

Ko —y) = (=D (D ®)(- — x))
and

WO — M)\ (@) = (=i e D) = (e ) D(w).

= (271)*””2/
R4 j=1

No(R?)

This yields
2
$(w)dw.

20 - y) (e )

Since @ is positive definite there exists an open set U C R4 where 6((1)) > 0. Hence, we
must necessarily have

N -
Y i) e =0 (16.7)
j=1

for all w with —w € U.

Now we can proceed as in Lemma 6.7. Thus by analytic continuation we can see that
(16.7) is true for all € R?, not only for the w with —w € U. Then we can choose a test
function f € S and get

N N A
0= ch(iw)“me[xfr“’]/‘\(w) = <Z C, ( +x1)> (o)
j=1 j=1
for all @ € RY, which implies
ul (.
D e D f(x +x;) =0, x eR?,
Jj=1
and in particular, setting x = 0,
N
Y (=0
j=1

Finally, we have to choose the test function f appropriately. We let f; be a compactly
supported test function having support contained in the ball around zero with radius
0 < e <minj [|x; — x¢ll2 and fo(x) = 1if ||x||> < €/2. The latter means in particular
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that D* fy(0) = 0 for all @ # 0. For 1 < ¢ < N we then define the function f = f; to be

(x — xp)" J
Sfe(x) = —————— folx — x¢), x e R%
2O
Leibniz’ rule for multivariate functions now gives A ;( f¢) = §; ¢, showing that all coefficients
cj are zero. 0

Our approach differs crucially from the following naive, unsymmetric, approach. Since
at first sight it might seem undesirable that the functionals {A;} are applied twice to the
kernel to form the generalized interpolation matrix, one could be tempted to start instead
with a function of the form

N
s = chd>(~, Xj).
j=1

The interpolation condition would then lead to an interpolation matrix with entries of the
form

DY d(xy, x)).

This matrix is obviously not symmetric; moreover, it may not be invertible. It is possible
to construct a counter-example that leads to a singular matrix; interestingly, though such
counter examples are found rather seldom and with difficulty. Nonetheless, this easier
approach is doomed to fail in the general setting. To save it, one could start to discuss
conditions for the functionals to ensure invertibility of the generalized interpolation matrix,
but we do not want to pursue this further here.

Instead, we want to discuss the use of conditionally positive definite kernels. As mentioned
earlier we could use the kernel K (-, -) from Theorem 10.20 instead of the initial kernel ®(-, ).
Since K is positive definite we can form an interpolant using (16.5) with interpolation matrix
(16.6), simply by replacing ® by K.

But in the case of these specific functionals we want to introduce another possibility,
which might be more natural. We start by forming an interpolant of the form

N ) 4
s=Y ;D8 0C. x)+ Y dipe. (16.8)
=1 (=1
where {p1, ..., po} denotes the usual basis of P. The interpolation conditions
D*s(x;)) = fi. 1<i<N, (16.9)
together with the additional conditions
N ;
YD px) =0,  1=t=Q, (16.10)
j=1

lead to a system

Aon AP\ [(c\ _(f
(e ¢7) (@)= 6) sy
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with matrices Ag A = (AjA; (x, y)) € RV*¥ and A(P) = (A;(pe)) € RY*C. This system
is very similar to the classical interpolation system (8.10) and we have to check whether or
when it is uniquely solvable.

Theorem 16.5 Suppose that ® € C*(Q x Q) is a conditionally positive definite kernel
withrespecttoP C C*(Q). Suppose further that the functionals A ; = dy; 0 D are linearly
independent and that A;j(p) =0 for all 1 < j < N and p € P implies that p = 0. Then
there exists exactly one interpolant of the form (16.8) that satisfies the conditions (16.9)
and (16.10).

Proof Since we are working in a finite-dimensional setting it suffices to prove that the
matrix in (16.11) is injective. So let us assume that
A‘p,AC + A(P)d = 0,
AP)'c=0.
Multiplying the first equation by ¢’ and using the second yields ¢’ Agp ac + cT A(P) =
cT A ac = 0. Now it is easy to see that

N

T a ) ~a®

c Ap paCc = E cicy DY D5 ®(xj, x¢)
j.e=1

N
) al®
= E cjeeDY DY K(xj, x¢)
=1

for all ¢ with ¢” A(P) = 0. But we already know that the last quadratic form is positive
definite and hence equals zero if and only if ¢ = 0. The additional conditions imposed on
the A; lead now to d = 0 also. O

In the case of pure interpolation (i.e. all /> = 0) we know that the classical interpolant
and the interpolant formed using the kernel K are the same if & C X (see Corollary 12.10).
This is no longer true if derivatives come into play. Since

0 0
K(x,y) = ®(x,y) = Y p;()®E}, ) — Y pe(»)®(x, &)
j=1 =1

J

Qo 4
+ ) pi@pPELE) + Y pi(0)p;()
=1

jiol=1 J
the interpolant built from the basis functions DS K (-, y) is contained in
span{{D§" @, x;)) 1 1 < j < NYU{®(.&): 1 <L < Q) +P

whereas the interpolant (16.8) obviously comes from the space

span{ngdJ(~,x_,-) 1< j<N}+P.
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16.3 Solving PDEs by collocation

The previous section allows us to consider a general class of boundary-value problems.
Suppose that @ € R? is an open and bounded region. We want to solve a problem of the

type

Lu=f in €,
Bu=g on 0.

Here, the right-hand sides f, g, the partial differential operator L, and the boundary
operator B are given and we are looking for the unknown solution u.

Definition 16.6 An operator L : CK(Q) — C() is called a linear differential operator of
order k if it has the the form

L= c,D"

| <k

with ¢, € C(2). L is said to be a linear differential operator with constant coefficients if
additionally all the functions c, are constant.

Note that a linear differential operator is indeed linear by definition.

The ideas of the last section suggest the following approach. Suppose that L is a linear
differential operator of order k; then we choose a positive definite function ® € C?*(Q x Q)
such that L : No(2) — C(£2). We choose points X = X; U X, with X; = {x1,...,x,} C
Qand X; = {x,4+1,...,xn} € 02 and use the functionals

Lo 8oL 1sjsn,
77 |8, 0B, n+1<j<N.

Even if this has not been specified so far, we are assuming that the boundary operator
B behaves nicely in the sense that it is well defined on N (£2). The reader might think of
Dirichlet boundary conditions, i.e. Bu = u, as a prototype. But more complicated boundary
operators given by Neumann or mixed boundary conditions are possible.

Under the assumption that the functionals A = {A;, ..., Ay} are linearly independent,
we know that an interpolant of the form

N
Sun = Y M O(,y)
j=1

v (16.12)
=D @ La®C.x)+ Y @ BdC,x))
j=1 j=n+1
uniquely exists that satisfies
LSILA(xj):f(xj)v 1 S] <n,

Bs, a(x;) = g(x)), n+1<j<N.
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The subscripts 2 on B and L denote again the fact that these operators act with respect to
the second argument.

In the rest of this section we want to analyze the error for our approximation by giving
bounds on both L(u — s,,4)(x), x € 2, and B(u — 5,,2)(x), x € 92. In the case of an
elliptic problem with Dirichlet boundary conditions these two bounds lead to a bound for
u — 5,5 on Q. We will end the section with such an example.

To derive our estimates we have to prove a couple of results that are interesting in
themselves. Even if we have a differential operator L in mind, all results hold in the more
general case of a linear operator L with 8, o L € Ng(2)*, x € Q. Thus L could be for
example an integral operator of Volterra type. We will concentrate mainly on the analysis
for L. Similar steps have to be undertaken for B.

Theorem 16.7 Suppose that H is a real Hilbert space with reproducing kernel ®. Let
A, € H*. Then A ®(-, y) € H and

M) = (fi M O(, y)
forall f € H. Moreover
s Was = X d(x, y).

Proof Riesz’ representation theorem guarantees the existence of an h; such that (f, h;) =
A(f) forall f € H. Since f, := ®(-, x) is an element of H we find that

Afe) = (fe, ha) = (hy, fo) = (ha, (-, x)) = hy(x)

by the reproducing property of the kernel. This establishes AY®(-, y) = h;, € H and the
first property. For the second, note that

W e = (hy, hy) = (hy, ) = Mhy) = 2 O, y).
O

Under our assumptions on L (or B) and & the functionals 8, o L are in No(2)*. Thus
we can define

Dr(x,y) = (8 0 L)(8y o L)' ®(u, v), x,y € Q. (16.13)

By Theorem 16.7 we know that & is symmetric. It is also positive definite under the
following mild condition: from now on we will assume that

{8x o L : x € Q} is linearly independent over Ng(S2). (16.14)

Theorem 16.8 Suppose that ® € C(Q2 x ) is positive definite. Suppose further that the
linear operator L satisfies 8, o L € No(Q)* for x € Q. Finally, assume that L satisfies
(16.14). Then ® is positive definite on 2.
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Proof Leti =) 520y, with pairwise distinct y; € 2 be given. Then
D o ®i(y;, v = Y ajo(8y, 0 LY (8y, o L)' ®(u, v)
jik jok

= (Ao L) (Ao L)’®(u,v)
= [|A o Ll ny*»

which is clearly nonnegative and vanishes only if « =0, by the conditions imposed
on L. O

Our next result enlightens the connection between the kernels ® and ®,. Now that we
know that @, is also a positive definite function we have the whole machinery of native
spaces, power functions, etc. at hand.

Theorem 16.9 Suppose that ® € C(2 x Q) is a positive definite kernel and that
L : No(Q) — C(Q) satisfies (16.14). Then L(No(RQ) = No, (), and the following
mappings,
L: No(Q) — No, (). [ Lf,
No, () = No(Q)*, At AolL,
are isometric isomorphisms. In particular, if f € No(Q2) and ) € Ng,(Q)* then Lf €
No, (Q) and L o L € Ng(2)* with
ILf e, @ = I flne@  and  lIMn, @ = A o Lllny @

Proof The proof will be given in several steps. First of all let us introduce the following
spaces:

Lo := span{s, : x € Q},

L9 :={roL:xe L) S Ne(Q),

Fo(Q) = (M O(, y): & € Lo} S Na(Q),

Fpi={Go LY ®(,y) 1 & € Lo} € No().
When equipped with the inner product of the space N (£2)*, the linear space £ becomes
a subspace of N (2)*; we will use the notation £y ¢ to make this clear. Each of the other
spaces is assumed to carry the inner product of the space of which it is a subspace. The
space Fg(S2) is not new to us at all. We have already used this space to construct the native
space No(£2). We now proceed as follows.

(1) Since Fg(S2) is dense in N (S2) by construction, Riesz’ representation theorem en-
sures that Lo ¢ is dense in No(2)*. One of our goals here is to show that f? is also dense
in N@(Q)

(2) Let us introduce the isometric isomorphism

T:Fe,(Q)— F2 MO, y) > (o LY, ),
T*:E0’¢L—>£(}, A AoL,
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induced by the operator L. Both mappings are indeed isometric, because
(Ao L) (Ao L) ®(x, y) = A"A"(8, 0 L)' (8y 0 L) (x, y) = A“A" P p(u, v)

forall A € L. Theorem 16.7 and the norm-preserving property of the Riesz representer are
also helpful. Moreover, both mappings are surjective by construction.
(3) The restriction of the Riesz mapping

Ro|LY 1 LS — F2, AoL > (hoL)Y®(,y)
is also an isomorphic isomorphism. Thus we can describe the situation so far by the following

commutative diagram:

%

£0v‘DL »6(7)"
Ro, |Los 0, Ro|LY
FCDL (Q) ]:%

4) T7': F) — Fo,(Q) coincides with L. To see this, choose an arbitrary f = (A o
LY ®(, y) € F2, with > € Lo. Then we have T~! f = 2@, (-, y), leading to
T f(x) =2 0(x, y)
= M (8, o L)' (8y 0 L)*®(u, v)
= (8, 0 L)'(A o L)' ®(u, v)
= (6 o L)" f(u)
= Lf(x).

(5) Since both T" and T* map dense subspaces of Hilbert spaces, into Hilbert spaces, they
possess unique isometric extensions

T% 1 Noy () — L1 = T*WNa, () € Na(Q)*,
T : No, () — Fr = T(Na, () € No(R).

. ~ ~ -1 . . .
Since both T o Ry, o T*  and Re|L7, are isometric extensions of Re|LY, they have to
coincide. Thus, the following diagram has to be commutative also:

*

No, ()

Ly

Ro, Ro ‘ﬁT

No, () —— 7,

The next step is to show that both the extensions T and T* are surjective, i.e. that
L7 = No(Q)* and Fr = No(RQ), respectively.
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(6) Since Ng, (€2) is complete and since T: No, () > Fr € No(RQ) is an isometric
isomorphism, Fr has also to be complete. But this means that Fr is a reproducing-
kernel Hilbert function space with reproducing kernel ®. Thus, by Theorem 10.11 we
have Fr = Ng(R2). Moreover, if we have an arbitrary A € Ng(2)* then the Riesz mapping
gives Rop(A) = M ®(-, y) € No(R) = Fr and therefore (Ro|L7)™' Re(X) € L7, showing
that Rey|Lr = Rg or, in other words, L7 = N (Q)*.

The equality Fr = N(£2) has an important side effect. The space Fr is the image of
N, (€2) under the mapping T, which is the extension of the mapping 7' from the dense
subspace Fo, () of Ny, (). Hence, T(Fs, (Q2)) = F? is dense in No(Q).

(7) The density mentioned in the last point allows us to show that T-! = L, as follows. If
f € No(RQ) is given then we can choose a sequence f,, = (A, o L)Y ®(-, y) € .7-'? M € Lo,
with || f — fullnve@ — 0 for n — oo. Since §; o L € Ng(S2)* this means that on the one
hand

ILf(x) = Lfn(O)] < 118x © Lllwvgr ILf = fullvo = 0, n — oo.

On the other hand, we know by step (4) that 7! f,(x) = Lf,(x), giving

T~ f(0) = LE)] < 18 0 T gy I f = fullw@y = 0, n— oo.

This establishes the identity L = T-!. Thus for every f € No(Q2) we have Lf = f*'f €
No, (@) and | Lf lIns, @ = IfIvae- _

(8) Similarly, we can establish the identity T*(A) = A o L for all A € N, (2)*. Namely,
forany A € No, (Q2)* there exists owing to step (1) a sequence {A,} € Lo ¢, approximating
A for n — oo. Thus if f € Np(R) is given then we know by step (7) that Lf € N, (),
showing that

(Ao L(f) = Ao LI = A = Anlne, @ I LS e, @ — O, n— 0o.

By definition we have T*(A) = A o L so that

IT*G)(f) = hn 0 LA < IT* = A)llnser L s
= A = Mllve@ | fllvpe = 0, n— oo

This allows us to conclude the proof. For A € Ny, (2)* we now know that Ao L =
T*(}) € No(Q)* and [|A o Llng@r = I1AlIne, @) .

After discussing the relations between the native spaces of ® and ®; we now investigate
the connection between their power functions.

Theorem 16.10 Suppose that A = {A1, ..., Ay} € No, ()* and L € Ny, (Q)* are given.
Then

Py, A(A) = Po por(Ao L).
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Proof By definition and by Theorem 16.9 we have that

Ppror(AoL)= inf [[AoL — ulln@y
pespan{AoL}

= inf ||)\. oL — no L”N‘w(ﬂ)’k
pespan{A}

= inf |A— «
et o 1A — illn, @
= Py, (D).

O

Our next result also deals with the power function. This time we want to investigate what
happens if we drop some of the functionals. The result should no longer astonish us.

Theorem 16.11 Suppose that A = {1, ..., Ay} € No(Q)* and A’ C A are given. Then
Po a(A) < Po ar(2)
Sforall A € No(Q)*.
Proof This simply follows from the definition of the power function,
Poa() = inf A —plager < inf A — plinve@r
pespan{A} pespan{A’}
= Po n(X).

O

We now come back to our initial boundary-value problem, described at the beginning
of this section. Suppose that on the one hand condition (16.14) is satisfied. Then we know
that @, is positive definite, and the theory derived so far allows us to bound the error in the
interior simply by dropping all boundary functionals in the power function. On the other
hand, to derive estimates on the boundary we drop all interior functionals. As a consequence
the power function is reduced to the well-investigated power function for point evaluations.
Introducing the following additional notation,

Ay = {8y, ..., 61,

Dy = {8y, 05 -0 Oxy )

Ay ={6y0L,...,8,, 0L} =A10L,
Ay =1{b;, 0B,...,8,, 0B} =Ar0B,

we can give an estimate of the error bound in the interior:

[Lu(x) — Lsy, a(x)| < Po,a(8x o L)l
< Poa,(8x o D|lu vy

Po a0 (8 o L)l w2

= Po, a8 ull Ny
= Po, x, ()l np@)-
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The same is possible on the boundary, leading to
[Bu(x) — Bsy,a(X)| < Po,x, ()l Nop(2)-

Let us demonstrate in more detail how this works in the case of positive definite functions
in L{(RY). Since L is a differential operator and also since B contains in general at most
also certain derivatives, the first step is to answer the question when are the functionals
linearly independent. But this has already been done in Theorem 16.4. A consequence for
a linear differential operator is

Corollary 16.12 Let ® € L;(R?Y) N C*(R?) be a positive definite function. Suppose that
L : CKR?Y) — CRY)is alinear differential operator of orderk, i.e. L = Z\a\sk co D¥ with
¢y € C(2). Suppose further that either ¢, = 0 or ¢, is nonzero everywhere and that not all
the ¢y, vanish. Then @ is also a positive definite kernel.

Proof Let a®, ... a®™ be a numeration of all « € Ng with |«| < k and ¢, nonzero, so
that the operator L takes the form L = Z?":l & D* and the coefficient functions satisfy
Ce(x) = cuo(x) # Oforallx € Qandall 1 < £ < M. We want to apply Theorem 16.8. Thus
we have to show that for arbitrary but distinct xy, . .., xy € R? andarbitrary by, ..., by € R
the assumption

N N
0= "biLfap = b;&x)D* f(x)) (16.15)

j=1 j=1 =1
for all f € No@R?) leads to by = --- = by = 0. To this end, let us set V(-1)M+t = Xj,

BUDMHO = o O and d(;_1\m+e = b;&(x;), each time for 1 < j < N and 1 <€ < M.
Then assumption (16.15) becomes

NM (k
D dD f(y)=0
k=1

for all f € Nop(R9). But the functionals A, = dy o D/’m, 1 <k < NM, are pairwise dis-
tinct in the sense of Theorem 16.4. Hence dy = 0, 1 < k < NM, by that theorem. Since
¢¢(x;) # 0 this means that all the b; are zero. O

Thus the kernel @, is also positive definite. But since it has the form

DL, ) =L LD —y)= Y gD DH D) (x —y)
], |1B1<k

it is no longer a translation-invariant kernel; the property of translation invariance is only
guaranteed if L has constant coefficients.

For the rest of this section we will assume Dirichlet boundary values, i.e. B = I, to make
life easier. Moreover, we restrict ourselves to polygonal regions, which is standard in finite-
element theory. More general regions need interpolation by positive definite functions on
(d — 1)-dimensional manifolds, which is the subject of the next chapter.
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Definition 16.13 A bounded region Q@ C R is said to be a simple polygonal region if it is
the intersection of a finite number of half spaces. A half space in R? is a set H,, = {x €
R? :aTx < b} with a € R\ {0} and b € R. A region Q@ C R? is said to be a polygonal
region if it is the union of a finite number of simple polygonal regions.

A polygonal region is therefore bounded and obviously satisfies an interior cone condition.
Moreover, its boundary is the union of a finite number of (d — 2)-variate simple polygonal
regions.

To bound the error on the boundary, we need the following lemma.

Lemma 16.14 Suppose that ® € C(R?) is a positive definite function and that X =
{x1,..., xy} € R? is a set of pairwise distinct points. Suppose further that T : R¢ — R?
is a bijective affine mapping, i.e. Tx = Sx + ¢, x € R?, with an invertible matrix § € R4*¢
and a constant ¢ € R?. Then the the following relation for the power function holds:

Py x(x) = Poos—1,7(x)(Tx), x € RY.
Here T (X) denotes the set {Txy, ..., Txy}.

Proof Let u’]’f(x; ®, X), 1 < j < N, denote the cardinal functions with respect to ¢ and
X, i.e. u*(x; d), X) = A;}XRQ).X(X) with Aq;‘X = (CD(XJ' - Xk)) € RNXN and R¢,X(x) =
(P(x —x;))) € RV. Set Z = T(X), z = T(x). Because zj—z=Tx; —Txx =Skx; —
Xx), we have obviously Ap x = Agos-1,z and Re x(x) = Reos-1,2(2) or, in other words,
W, X) = Agle Reos 1 2(2) =u*(z; @0 57", 2)
=u*(Tx; P o0 S, T(X)).

This means that the power function is found from

N
Py x(x) = ®(0) =2 ui(x; @, X)®(x — x))
j=1

N
+ 3w @, Xup(x: @, X)D(x; — xp)
Jok=1

N
oS0 —2) wiz®oS™ . )@ oSz —z))
j=1

N
+ ) W@ ®o ST, iz @0 ST, )P0 Sz — w)
jik=1

= ,PLDOS*'.T(X)(TX)s
finishing the proof. O

After this preparatory result, we can state and prove our convergence estimates for the
solution of a partial differential equation by collocation with positive definite functions.
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Theorem 16.15 Ler Q C R? be a polygonal and open region. Let L # 0 be a linear dif-
ferential operator of order £ < k, with coefficients c, € C**=9(Q) that either vanish on Q
or have no zero there. Suppose that ® € C**(R?) is a positive definite function. Suppose
further that the boundary-value problem

Lu=f in Q,
u=g on 0J9

has a unique solution u € Ng(2) for given f € C(Q) and g € C(3Q). Let s, 5 be the
interpolant (16.12) based on ®. Then the following error estimates,

|Lu(x) = Ls, a(0)] < Chy SGllulvuey — x €2, (16.16)
|u(x) = sua(X)] < Ch, sollullvy@), x €982, (16.17)
are satisfied for all sufficiently dense sets of data sites. Here C denotes a generic constant.

Proof We use the notation from the beginning of this section and that introduced in the
paragraph following the proof of Theorem 16.11. By Theorem 10.46 the function u has a
natural extension to the whole of R?, and the extended function has the same norm as the
original one. Thus we can assume that u € No@®RY).

The function &, corresponding to the linear operator L = Z‘ Bl<t cpDP is a positive
definite kernel in C*~2¢(Q x ). Moreover, the assumptions imposed on the coefficient
functions of L and on & itself show that the number C, (x) from Theorem 11.13 is uniformly
bounded on Q, if we replace k by k — £ in that theorem. Hence, our analysis made so far
together with the theorem just cited yields

|Lu(x) — Lsy ()] < Po, x,(0)llullnp@ < ChY Gllullvye. x €L,

which is (16.16).
Let us now turn to the estimate on the boundary. First of all, our general theory leads
us to

[u(x) — su, A ()| < Po,x, )|l Ap(2)» x € 0R2.

Unfortunately, we cannot apply either Theorem 11.13 or Theorem 11.11 directly. Why is
this so? The estimates on the power function require that the region where x comes from
has to satisfy an interior cone condition in R?. But our region of interest is d§2, which
definitely does not satisfy an interior cone condition. It does not even contain an interior
point. The remedy to this problem is to use the fact that <2 is locally a hyperplane, which
can be mapped affinely to R?~!'. The image of this mapping satisfies an interior cone
condition in R?~!: thus we can use this to work in R?~!. Let us make this more precise. The
boundary d<2 is the union of a finite number of surfaces H € H = {y e R : a”y = b}.
Each surface H is a simple polygonal region in R?~!, in the sense that there exists an affine
bijective mapping Ty = Sy + csuchthat T(H) = {z € R? : z; = 0} = R?"! where T(H)
is a simple polygonal region in R?~! satisfying therefore an interior cone condition in R~
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Since we have only a finite number of these regions, we can assume that the angles and
radii of all the cone conditions are the same.

We will bound the error now for one of these surfaces, say H. Let Y = {y;, ..., yy} =
XoNH. Let Z=TX)=1{z1,...,zu} and z = Tx for x € H. If hy, 3 is sufficiently
small then we can find for x € H an y;, € X, N H with ||x — y; [l < 2hx, se. Hence we
have

Iz = zjoll2 = IS1llx = yjoll2 = Chx, 90,

which means that hz 7y < Chyx, sq. Since ® o Slisa positive definite function even
when restricted to R?~!, which has the same smoothness properties as ®, we can now apply
Theorem 11.11 to T(H) C R and Z = H(Y) to get

Poos-1,2(2) < ChY 1y < ChY g, z € T(H),

provided that Ay, jq is sufficiently small. By Lemma 16.14 and Theorem 16.11 we can
estimate, for x € H,

lu(x) = 50,40 < Po x, ()l vp@) < Poy (O llullve
k
< Poos—1,z(Dullnvg@) < Chy, sollullve@-
Since this can be done for every surface and since the number of surfaces is finite, this

completes our proof. O

Theorem 16.15 shows that in order to get good approximation results the interior
should be discretized more finely than the boundary. A good choice is obviously

k=0 . 1k
hxl.sz ~ hxz,m-

Moreover, more information on L and ¢ might lead to a better estimate on Cq, (x), yielding
additional approximation orders.

As stated before, in the case of an elliptic second-order operator estimates (16.16) and
(16.17) together lead to an estimate of u — s, 5 on .

Definition 16.16 A linear operator L : C*(Q2) — C() of the form

d

a
Lu(x)=—- )" poos ( ajx(x) 5~ <x>) - Zb <x> (x)+bo<x)u<x>

Jjk=1

with a;y € CY(Q) and bj € C(R) is called an elliptic differential operator of the second
order if the matrix A(x) = (a;i(x)) € R4 js uniformly positive definite on Q. This means
that there exists an o > 0 such that

cTA(x)c > aclc

forallc e R? and all x € Q.
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If all the functions a; ; are bounded on 2 by a constant C > 0, the maximum principle
for elliptic operators gives

c
lu = suallio@ < i — SuallLooe + EHLM — Lsuallo@-
Hence we have the following corollary to Theorem 16.15:

Corollary 16.17 If in addition to the assumptions of Theorem 16.15 the operator L is of
second order and elliptic and if

h = max{hy, q,hx, 0}
then
k-2
lu = suallLo@ < CR ullvpe

for all sufficiently small h.

16.4 Notes and comments

In this chapter we have aimed to demonstrate the potential of (generalized) scattered data
approximation. The ultimate goal is the solution of time-dependent partial differential equa-
tions with moving boundaries, where classical methods such as finite elements encounter
severe problems because of the necessary remeshing. As already mentioned in Chapter 1,
first promising steps can be found in Lorentz et al. [109] and Behrens and Iske [21]. Other
possible applications come from the financial sciences, where differential equations in
high-dimensional spaces have to be solved.

The crucial point in the first section was showing that the use of positive definite kernels is
so flexible that it essentially makes no difference whether pure interpolation or more general
functionals are investigated. The Hermite—Birkhoft interpolation served as an example here.
It was initially investigated by Wu [202] and Narcowich and Ward [146].

Besides the collocation method introduced here, which obviously produces symmetric
coefficient matrices and which was introduced by Fasshauer [56] and investigated by Franke
and Schaback [61,62], there is another method on the market that is often used. This method
was introduced by Kansa [96,97] in 1990 and simply uses the Ansatz from pure interpolation,

N
s= )0, x)),
j=1

but determines the coefficients via general functionals A ;(s) = 1;(f), 1 < j < N. Unless
the functionals A ; are point evaluation functionals at the sites x;, this method produces a
nonsymmetric coefficient matrix, which might even become singular; see Hon and Schaback
[85]. But these cases seem to be rare, and in all other cases Kansa’s method often behaves
better than the symmetric one.
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Collocation is not the only method that has been investigated for solving partial dif-
ferential equations, however. The present author studied in [193, 194] Galerkin methods.
In applications, the so-called dual reciprocity method combined with a boundary-element
method has often been used. The dual reciprocity method was introduced by Nardini and
Brebbia [150] in 1982 and brought into the context of radial basis functions by Golberg [71].
The idea behind this method is to homogenize the differential equation, for example by radial
basis functions, and then to use specific boundary-element methods to solve the remaining
problem.
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Interpolation on spheres and other manifolds

So far w have been concerned with interpolation on an arbitrary domain 2 € R4. However,
we have not used any topological information about 2. Instead, we have employed only
the fact that it is a subset of RY. As a matter of fact, without having more information on
this is the only way. But many applications provide us with additional information on the
underlying domain. For example, problems coming from geology often relate to the entire
earth, so that the unit sphere would be an appropriate model and the additional information
should lead to a better approximant.

Hence, in this chapter, we want to give an introduction to the theory of scattered data
interpolation on spheres and other compact manifolds by radial or zonal functions.

17.1 Spherical harmonics

Generally, functions on the sphere are expressed as Fourier series with respect to an or-
thonormal family called spherical harmonics. In this section we will review the results on
these functions. Since this material is only necessary for the present chapter we did not in-
corporate it into Chapter 5. Moreover, we have to skip the proofs once again. The interested
reader is referred to Miiller’s book [140].

The domain of interest is the d-variate unit sphere $~! := {x e R? : ||x||, = 1} € R?.
It has surface area

27Td/2

T Ty

On S9!, we will employ the usual inner product
(fs Oraesiny = /d S (x)g(x)dS(x), (17.1)
S -1
where d S(x) is given by the standard measure on the sphere.
The distance between two points x, y € S*~! is the geodesic distance, which is the
length of the shorter part of the great circle joining x and y or, in other words, dist(x, y) =

arccos(x” y).

308
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There are different ways of introducing spherical harmonics. We start by defining the
set of spherical polynomials of degree £, m;(S?""), as the restriction of the classical
d-variate polynomials of degree £ to the sphere, i.e. m,(S9") := 7, (R?)|S?~!. Note that
a basis of ,(R?) is no longer a basis for my (S4-1) because of the additional requirement
X2 =x3+---+ x(zi = 1. A possible basis for 7,(S?"!) is given by the set of spherical
harmonics.

Definition 17.1 The orthogonal complement of wy_1(S4™1) in m,(S9~") with respect to the
inner product (17.1) is denoted by 712{1(5‘1_1). The spherical harmonics {Yoi 11 <k <
N(d, )} are an orthonormal basis for 712{1(5‘1_]).

Here, we use _;(S¢~1) = {0}, so that v fl (591 is the one-dimensional space of constants.
It is known that
1 if £ =0,
N(d,z):dimn;_](sd—l):{26+d2<£+d3> 2> 1
l -1 -

and that N(d, £) = O(??) for £ — oo. Since m(S?"") is the disjoint union of the
nﬁI(Sd") for 0 < j < £, the dimension of the space 7,(S¢~!) is given by

14
dimmy (S~ =Y N, j)=N@d+1.0),
=0

which is easily established by induction on £.

Another way of introducing spherical harmonics explains the name better. Remember
that a harmonic function f satisfies Af = 0. A spherical harmonic of order ¢ is in this
definition the restriction of a homogeneous harmonic polynomial of degree ¢ to the sphere.

Since the spherical harmonics form an orthonormal basis for L>(S?~"), every function
f € Ly(S4") has a Fourier representation of the form

o N@.0) R
f= Z o with Sfex = (s Yo i) a(si-1y,
=0 k=1
and we will discuss in particular expansions of this form for the basis functions. But before
we do this we have to introduce another class of polynomials, which are important for
introducing the analogues of radial functions.

Definition 17.2 The (generalized) Legendre polynomial of degree £ in d > 2 dimensions
is denoted by P, = Py(d;-). It is normalized by Py(d; 1) = 1 and satisfies

1
Put)Pu(t)(1 — )42y = — L5,
./—1 e (1) Pr(t)( ) or AN D2

There exists an intrinsic relation between generalized Legendre polynomials and spherical
harmonics.
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Lemma 17.3 (Addition theorem) Between the spherical harmonics of order € and the
Legendre polynomial of degree £ there exists the relation

N(.0) N
Z Ye ()Y r(y) =
=

0
)Pz(d;xTy), x,yesth
W4—1

We need another result concerning the asymptotic behavior of both the Legendre functions
and the spherical harmonics.

Lemma 17.4 Let Y € w5 (S97!) = span{Yy; : | <k < N(d, £)}; then

Y (x)] < 1Y Iy, x €S

N, )
d

W4-1

Moreover, the Legendre polynomials satisfy | Py(d;t)| < 1 fort € [—1, 1].

17.2 Positive definite functions on the sphere

In this section, we discuss and characterize positive definite functions on the sphere. Of
course, the restriction of a positive definite function on R to S¢~! forms a positive definite
function on the sphere, and we will use this as a standard example. However, this does not
take the special situation of points on the sphere into account. Hence, we will investigate
positive definite kernels of the form

oo N(d,0)
Q. y) =Y Y anYeu®Ye(y).  x.yesh (17.2)

=0 k=1

As in the R? case, radial kernels will play an important role. Note that radial now means
with respect to the geodesic distance.

Definition 17.5 A kernel ® : S9! x S9! is called radial or zonal if ®(x,y)=
o(dist(x, ) = ¥ (xTy) with univariate functions ¢, 1. The function v is called the shape
function of the kernel ®.

A first example of zonal functions comes from the R4 case. Suppose that ® = ¢(]| - |12) :
RY - Risa positive definite and radial function on R. Since we have, for x, y € S4-1 that
lx — ylI3 =2 —2xTy, we can see that the restriction of ® to S*~! has the representation
D(x —y) = ¢(Jlx — yll2) = ¢(/2 — 2xTy). Thus it is indeed a zonal function with shape
function ¥ = ¢(+/2 — 2 -). Note that the function ¢ here does not coincide with the function
¢ in Definition 17.5. That function is given by ¥ o cos = ¢(+/2 — 2cos-).

Zonal functions have the remarkable property that all the Fourier coefficients at a given
£-level are the same.

Proposition 17.6 A kernel ® of the form (17.2) is radial if and only if g, = ag, 1 <k <
N, 0).
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Proof Suppose that agx = ag, 1 < k < N(d, £). Then by the addition theorem we have

> 4,N(d, £)
O(x,y) =y ———=Pid:x"y),
=0 @d-1

which shows that & is radial. Conversely, if @ is radial then we can expand the shape
function v using the orthogonal basis P,(d;-) for Ly[—1, 1] to get

O(x,y) = Y bPud;x"y).
=0

The addition theorem and the uniqueness of the Fourier series give the rest. O

Given an expansion of the form (17.2), it is natural to characterize a positive definite
function by its Fourier coefficients. To allow point evaluations — so far all expansions have
been in the L,-sense — we have to assume that the coefficients decay fast enough. In the
case of a zonal kernel it obviously suffices to require that

o0

la;IN(d, £) < oo,
=0

since then
o0
lacIN(d, 0)
|0(x, y)| < Y | Pu(d;x"y)| < 00,
=0 @d-1

because of the bound on the Legendre polynomials from Lemma 17.4. The Weierstrass
M-test proves continuity. To state the corresponding assumption in the case of nonzonal
kernels we first define

ag = 15/212\11)5(1,5)'“[’1" (17.3)
and assume that
(o]
> @NW. £) < oo. (17.4)
=0

Since N(d, £) grows as O(£472) we see that (17.4) is satisfied if, for example,
dp = O~ @=D=ey, £ — oo, 17.5)
with an € > 0.

Lemma 17.7 Suppose that the coefficients of the kernel (17.2) satisfy (17.4); then ® is a
continuous function in both arguments.
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Proof Letusfixy € S9! and define S, := ,i\]:(‘f'e) ae kYo x(y)Ye r. The norm of this func-
tion satisfies

5 N, b) 5 5 N, 0) 5 N(d K)
ISl sy = Y @b Yo <@ Z [Yer()PP =@
k=1

by Lemma 17.3. Hence, from Lemma 17.4 we can conclude that

N, ) N, E)

[Se(x)] < I Sell Lyse-1) < de € 5471,
'd—1 d—1
so that
~ N , E)
|D(x, y)| < Z 1S(0)] <
=0 d—1
by assumption (17.4). Continuity now follows by the Weierstrass M-test again. O

Next, we come to the problem of finding positive definite kernels. Remember that a
positive definite kernel is by definition continuous and symmetric. Because of the results in
the RY case the following theorem should not be a surprise. Since the kernel is symmetric
and real-valued we can restrict ourselves to real coefficient vectors in the quadratic form.

Theorem 17.8 Suppose that the kernel (17.2) is continuous. Then it is positive semi-definite
if and only if all coefficients are nonnegative. Moreover, if all coefficients are positive then
® is positive definite.

Proof For given pairwise distinct points X = {xy, ..., xy} € $9"! and a vector & € R",
we can express the quadratic form as follows:

oo N(d,b)

Za,a]<1>(xl,x])— Z Z gk Z%Yu(x]

Hence, if all coefficients are nonnegative then clearly the quadratic form is nonnegative.
Moreover, if the quadratic form vanishes and if all coefficients are positive we must have

N
> a¥(x;) =0,
j=1

for every spherical polynomial Y. Since N is finite, we can find foreach 1 < j <N a
spherical polynomial Y; with Y;(x;) = §;;, which shows that o; = 0.

It remains to demonstrate that a positive semi-definite function has nonnegative Fourier
coefficients. The easiest way to do this is to use an equivalent characterization of positive
semi-definite functions, namely integrally positive semi-definite functions. Even though we
cannot apply Proposition 6.4 directly, its proof implies that

/ / Y@y (MP(x, y)dS(x)dS(y) = 0
gd—1 gd—1
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forall y € C(S§9"). Inserting the expansion (17.2) for ® and setting y = Y, , shows that
e = 0. O

In the case of radial functions this reduces to the following result by Schoenberg [174].

Corollary 17.9 (Schoenberg) A radial function ®(x, y) = ¢(dist(x, ), x,y € S\, is
positive semi-definite if and only if

¢(r) =Y by Pi(d;cosr)

=0

with
by > 0forall £ € Ny and Zbl < o0. (17.6)
£=0

Moreover; if all coefficients b, are positive then ® is positive definite.

Proof Since @ is radial, its shape function y has the representation ¥ (r) =
Zf:o be Py(d;r). The coefficients are given by by = a;N(d, £)/w,—1. Hence, from The-
orem 17.8 we have immediately that on the one hand (17.6) implies that & is positive
semi-definite and that ® is positive definite if all coefficients are positive.

On the other hand, in the case of a positive semi-definite kernel, Theorem 17.8 shows that
all coefficients b, have to be nonnegative. But then, since ® is continuous, we can conclude
that ¢(0) = Y _j2 by < o0. ]

Considering radial or zonal basis functions, one can start with a univariate function ¢
and ask the question whether it is positive definite on every sphere S¢~!. Such functions
must exist because every radial function that is positive definite on every R? is one of them.
Moreover, the function ¢(r) = cos r is positive semi-definite on every sphere S?~! since
the quadratic form becomes simply

N N
Z ajop(dist(x;, x)) = Z ozjakxjrxk =

Jik=1 Jik=1

> 0.

2
2

N
2 :ajxj
=

Furthermore, the product of two positive semi-definite functions is in turn positive semi-

definite and the same is true if we form linear combinations with nonnegative coefficients.
This establishes the sufficient part of the next result. For the necessary part, we refer the
interested reader again to Schoenberg’s paper [174].

Theorem 17.10 (Schoenberg) A function ¢ is positive definite on every sphere S, d > 2,
if it has the representation

o(r) = Z bycostr,
=0

with nonnegative coefficients by that satisfy Y by < 00.
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17.3 Error estimates

The investigation of the interpolation error follows the lines of the R¢ case. This means that
we employ the native Hilbert space N(S¢~") for a positive definite kernel ® € C(S¢~!
x 891y and bound the interpolation error f — s, x for a function f € No(5%1) in terms
of the fill distance.

Throughout this section we will assume that the Fourier coefficients a; ;. of the kernel
® are positive and that they satisfy the decay condition (17.4). From our general theory
on native spaces it should be clear what they are in this case. In particular, Theorem 10.29
gives the characterization

N(d,0) N(d,0) |ﬁk|2

<ooy,

No(s"™h=1f=)" fea¥er:y

=0 k=1 =0 k=1 Gtk

and the inner product takes the form

(fr sy =y ) =,
=0 k=1 9k

To derive error estimates, we split the error into a product of two terms, the power function
and the native space normof f, as we did in Theorem 11.4. The condition that €2 is open was
only necessary for deriving estimates on the derivatives. Here, we want to restrict ourselves
to the case of a pure interpolation error, so we do not need to incorporate this condition.

The next step is to bound the power function in terms of the fill distance, which now
takes the form

hx := sup inf dist(x, x;),
xesd-1%j €X
paying tribute to the special topology of the sphere. For /1 x we have dropped the additional
index that indicated the domain, since we are now just working on the sphere.

The original idea behind bounding the power function was to use its minimization property
with respect to its coefficients and to construct a local polynomial reproduction. The same is
possible here, but the compactness of the sphere makes the locality unnecessary. Hence, we
only have to construct a family of functions that reproduces polynomials and has a uniformly
bounded Lebesgue function. This is done by employing norming sets once again.

Lemma 17.11 Suppose that the knot set X = {x1,...,xy} C Sd-1 has fill distance hx <
1/(2m). Then, Z = span{8, : x € X} is a norming set for 7,,(S~") with norming constant
c=1/2

Proof The proof uses the same ideas as the proof of the corresponding result in R?. Since
the restriction of any spherical polynomial ¥ € m,,(S4~!) to a great circle is a univariate
trigonometric polynomial of degree less than or equal to m, we can apply the classical
Bernstein inequality to get

[Y(x) — YOI < m dist(x, y) [Vl s, x,y €8N
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Hence, if Y € m,(S4 ") satisfies ||Y || (si-1) = 1 thenthere existsapointx € S?~! suchthat
|Y (x)| = 1. By the condition imposed on X we can find a data site x; such that dist(x, x;) <
hx < 1/(2m). This, together with Bernstein’s inequality, shows that |Y (x) — Y (x;)| < 1/2
or |Y(x;)| > 1/2. O

From the general theory on norming sets, in particular Theorem 3.4, we can immediately
conclude

Corollary 17.12 Suppose the knot set X = {xy, ..., xy} € S*! has fill distance hx <
1/(2m). Then there exist functions u; : S*~' — R such that

(1) Zyzl u;(x)Y(x;)=Y(x)forall Y € m,,(S4") and x € S,
(2) Y01, luj(0)| <2 forall x € S,

We will use this “global” (if compared to the R? case) result to derive our first bound on
the interpolation error. We express the error in terms of the Fourier coefficients of the basis
kernel.

Theorem 17.13 Suppose that the kernel ® has only positive Fourier coefficients ay i, which
satisfy the decay condition (17.4). Suppose further that X = {xy, ..., xy} C S9! has fill
distance 1/(2m + 2) < hx < 1/(2m). Then the error between f € No(S9™") and its inter-
polant s s x can be bounded by

[ee]
1) —syx(0)f < Y @N@ Olf I3 ey x €S
d=1 ¢Zm+1

Proof As usual, at the start we bound the interpolation error by |f(x) — sz x(x)| <
Po x ()| fllve@)- Next, also as usual, we use the cardinal functions {u_’;} from Theorem
11.1 and the kernel expansion (17.2) to express the power function as

0o N(d.0) 2

P;X(x) Z Z Qg k

In the final step we employ the minimal property of the power function from Theorem 11.5
and replace the functions {uj} by the functions {u ;} from Corollary 17.12. Furthermore, we
set ug(x) := —1 and x¢ = x, to derive

Yer(x) — Zu}f(xm,k(xj)

2

0o N@.b) N
Py x(x) < Z Z agk [Yor(x) — ZMJ(X)Y(J(()CJ)
l=m+1 k=1 j=I1
o] Nd,t) N
< a Y. Z Wi (O () Yok () Ve (x))
=m+1 k=1 j=0
[e] N é
Z Z (x)uj(x) N, )P[(d;xiij')‘

t=m+1  i.j=0 -
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The last equality follows from Lemma 17.3. If finally we take into account that the gener-
alized Legendre polynomial P, is bounded by one and that

N N 2
D luiou; 0l < (1 +Z|u,~(x>|> <9,
j=1

i,j=0 j=
then by Corollary 17.12 we have completed the proof. O

It is now easy to express the error estimates in terms of the fill distance if additional
assumptions on the decay of the Fourier coefficients are made.

Corollary 17.14 Suppose that the assumptions of Theorem 17.13 hold.
(1) If a;N(d, £) < c(1 + €)~% with o > 1 then

@=1/2) ¢
h;(x I/ “4‘\“‘@(5“171)'

If = spxllgisen =C
(2) If ayN(d, £) < ce™*9 with o > 0 then
—a/4h
If = spxllpacsi-ty < Ce O £y simty.

Proof 1In the first case, the assumption imposed on d; gives

2 0 c c2e!
> @Nd. 0 < c/ (146 = ——1 +m) " = ——po!
= m l -« a—1
=m+1
In the second case, the same argument yields
o0 o0 ~ -
Z GNW, ) < c/ o140 gp — € —altem) _ € —a/Chy)
e=mt1 I @ @

O

By now, it should be clear that other results, for example those on doubling the approxi-
mation order, can be carried over to the sphere in the same way. We leave the details to the
reader.

17.4 Interpolation on compact manifolds

The sphere is one possible example of a compact smooth manifold. In this short section we
will point out some ideas on how the results that we have reached so far can be extended
to other manifolds. As in the last two sections we will concentrate on positive definiteness
and error estimates.

For the convenience of the reader we review the necessary material on manifolds. A good
source for this is the book [30] by Boothby.

Definition 17.15 A set M C R? is called a topological manifold of dimension n if it is a
Hausdorff space with a countable basis of open sets such that for every x € M there exist an
open set U € M with x € U and a mapping ¢ : U — R" that maps U homeomorphically
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to the open set V := @(U) C R". The pair (U, ¢) is called a coordinate neighborhood of
X or a chart. A chart is of class C* if 9™' € C¥(p(U)). A collection A = {(Uy, ¢4)} of
Ck-charts is called a C*-atlas of M if

(1) the sets U, cover M,
(2) forany Uy, Ug with Uy N Ug # ¥ the functions gg o ¢, and ¢, o %;1 are in C* on ¢, (Uy N Up)
and (U, N Uy), respectively.

Finally, a manifold M is called a C*-manifold if it possesses a C*-atlas.

The smoothness of a function f : M — R is defined by the smoothness of f o ¢~! with
a chart (U, ¢). To be more precise, we will say that f is k times differentiable on M, or
f e CK(M), if f o™ € CK((U)) for every chart (U, ¢) of M. In what follows we will
assume that the underlying manifold is sufficiently smooth.

Most relevant examples such as the sphere and the torus are submanifolds of R?. This
means in particular that they inherit the standard metric of R¢, which is induced by the
Euclidean norm. However, everything we have in mind works in the more general setting
of Riemannian manifolds. To introduce them, we have to recall concepts regarding curves
on manifolds and tangent spaces.

For x € M, the tangent space T, (M) consists of all tangent vectors v to M in x. Here,
a vector v is a tangent vector if there exists a differentiable curve y : [—€, €] — M with
y(0) = x and y’(0) = v. It turns out that T(M) is an n-dimensional subspace of R? and
that a basis is given by

-1 -1

d
@), ..., a"; :

¢

8\11
Definition 17.16 A C*-manifold is called a C* Riemannian manifold if for every x € M
there exists an inner product g, : T,(M) x T,(M) — R such that for every coordinate
neighborhood (U, @) the n* functions

(p(x)).

—1

dp dgp~
g:-_’;-(v) = 8p(v) <Tvi(v)

s
8Vj

1
(v)), veV=gU),

are in CK(V).
Finally, we use the Riemannian metric to define the length of a curve on M.

Definition 17.17 Suppose that M is a C* Riemannian manifold. Let x,y € M be two
distinct points and let y : [a, b] — M be a piecewise C' curve that connects these points,
i.e. y(a) = x, y(b) = y. Then the length of y is

b d d 1/2
Ly)=L(y;a,b) := / [gym (d—?a), d—f(r))] di.

Finally, we set dist(x, y) to be the infimum over the length of all such curves connecting x
and y. The shortest such curve is called the shortest path for x and y, and dist(x, y) is their
geodesic or Riemannian distance.
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Several remarks are necessary. First of all, if M = R" and if g, is the canonical inner
product on R” then our definition of the length of a curve coincides with the classical
definition. In this case dist(x, y) = ||x — y||2, i.e the shortest curve between two points
in R” is the straight line between them. In general, dist defines a metric on M, if M is
connected. The latter assumption is obviously necessary to make dist always well defined.
Even more, the topology induced by dist is equivalent to the initial topology on M. We will
come back to this later. On the sphere, our new definition of dist coincides with the old one,
since both denote the length of the shorter portion of the great circle connecting the two
points.

The inner products g,, x € M, are necessary for introducing the concept of integration
on M. Suppose M is a compact C*¥ Riemannian manifold with C¥-atlas A = {w;, (pj)}/L-:l.
For this atlas one can choose a partition of unity, i.e. a family of functions {x;} such
that 3~ x; = 1 on M and supp(x;) € U;. Moreover, a reasonable choice makes x; o (pj_l
integrable over ¢;(U). Then the integral for a measurable function f on M is defined by

L
f fEdSe) =y f (xf) o w7 (g w)av,
M i=1Yo;Uj)

with g;(v) 1= det(gf,f (v)). Of course, one has to show that the integral is independent of the
chosen atlas and the chosen partition of unity. In this sense, spaces of integrable functions
can be introduced.

After reviewing the basic concepts of Riemannian manifolds, we return to the study
of positive definite kernels on them. A first obvious but also intrinsic observation is the
following.

Proposition 17.18 Suppose that M is a differentiable manifold and (U, ¢) is a chart. If
O : M x M — R is a positive definite kernel on M then

W, v) =0 W), ¢ W), uvep),
is a positive definite kernel on o(U).

Reversing the argument, one could use this result to prove the positive definiteness of a
kernel defined on M. But since everything depends on the charts that are chosen, the use of
Proposition 17.18 in this context is restricted. However, in providing error estimates it will
be very helpful.

On the sphere, we used the expansion (17.2) of ® in terms of spherical harmonics to
characterize positive definite kernels. Spherical harmonics can also be interpreted as the
system of eigenfunctions of the Laplace-Beltrami operator on S°~!. Hence, a possible way
of generalizing (17.2) would be to use the eigenfunctions of the Laplace—Beltrami operator
on M; these form an orthonormal basis of L,(M). But any other orthonormal basis of
L,(M), which is also dense in C(M), will do.
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Theorem 17.19 Let M be a compact C* Riemannian manifold and let {Ye)2, be an or-
thonormal basis for Lo(M), which is also dense in C(M). Suppose that

o0

(x, y) =Y ar¥i(0)Ye(y)
=1
isin C(M x M). Then ® is positive semi-definite on M if and only if all the coefficients a,
are nonnegative. Moreover, if they are all positive then ® is positive definite.

Proof The proof is more or less the same as the proof for Theorem 17.8. Hence, we leave
the details for the reader. O

After having characterized positive definite kernels on manifolds, we come to error
estimates. Of course, we could split the interpolation error again, using the power function;
then the next step would be to use the optimality of the power function with respect to its
coefficients. Hence, if we wanted to follow this path we would have to construct a better-
suited family of functions, which reproduce polynomials and have uniformly bounded
Lebesgue functions. In fact, though, we want to use a different approach based on Proposition
17.18. To this end we need to relate the distance measure on the manifold to that in the range
of the charts. As pointed out earlier, the main implication of this is that the dist topology is
equivalent to the initial topology.

Lemma 17.20 Let M be a C* Riemannian manifold with k > 1. For every x € M there
exists a chart (Uy, ¢,) with x € U, and constants 0 < m, < M, such that

myllox(y) — @x (D)2 < dist(y, 2) < My |lox(y) — @x(2)ll2, v,z € U,.

Moreover, (Uy) can be chosen as {v € R" : |v||la < r} withr = r, > 0. Finally, ¢! is in
C* up to the boundary of ¢, (U,).

Proof Let (U, ¢) be a chart with x € U. Without restriction we can assume that ¢(x) = 0.

Moreover, there exists an » > 0 such that the closed ball B(0, 3r) = {v € R" : ||v|, < 3r}

is contained in V := ¢(U). We define V= {fveR":|lvl, <r}and U:= (p’l(\7).
Next, we note that the function

- dgp! ad
e Y aeng, (a‘”—(w(y», -
Vv a

Jk=1

v,

—1
(sﬂ(y)))
k

is continuous on the compact set ¢~ 1(B(0, 3r)) x §"~! and hence attains a minimum and a
maximum. Moreover, since g, is positive definite, the minimum is positive. In other words,
there exist constants 0 < m, < M, < oo such that

- dp~! gt )
= iFkey \ "5y T < M., 17.7
EEPILE ( B WO o) ) < 17.7)

holds for all y € ¢~ '(B(0, 3r)), « € §"~'.
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Now suppose that y, z € U are given and that y : [a, b] — M is a connecting piecewise
differentiable curve. We are going to bound its length from below.

For the moment, we will suppose that y stays completely within the set ¢~'(B(0, 3r)).
Then v := ¢ o y denotes a piecewise differentiable curve that connects ¢(y) with ¢(z) and

is completely contained in B(0, 3r). Moreover, y = ¢~! o v gives

dy andvj dp~!
=" ov

dr 4 dt 9y,
so that
dy dy "~ dv; dvy dp~! dp~!
—, = —— ——(v(t)), t
gm( o dt) ,; ar ar &0 oy VO om0
- dv
m —_— .
- X dl 5

But this means in particular that

b
L(y) = mx/

where the last inequality follows from the fact that the shortest curve between two points
in R” is the connecting line segment.

If y leaves ¢~ (B(0, 3r)) then there exists a pointZ = ¢~ (¢), ||c|l» = 37, on the curve.
But since ¢(y) and ¢(z) are contained in the ball around zero with radius r, the computations
just made show that

> my||b—all,
dt *

2

L(y) = L(y;a,c) = myllc —allz = 2rmy = my||lb — all.
Since y is an arbitrary curve, we have proven that

dist(y, z) = myllo(y) — ¢(@)ll2-

For the upper bound, we can choose an arbitrary curve that connects y and z, for exam-
ple, y(t) = o7 ' (to(y) + (1 — )@(2)), t € [0, 1]. Since this particular curve is everywhere
contained within ¢~!(B(0, 3r)), we can conclude from (17.7) that

dist(y, z) < L(y) < My[lo(y) — ¢(2)l2.
O

The preceding result makes it easy to reduce the error estimates to those of the R¢ case.
As usual, we give the error estimates for functions from the native space NVg, (M) and express
them in terms of the fill distance Ay 5, which is now defined using the geodesic distance
dist(-, -). In the proof, we will also use the fill distance for sets in R”, which will be defined
using the Euclidean norm. The reader should notice where each definition is employed.
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Theorem 17.21 Let M be a compact C' Riemannian manifold. Suppose that ® e
C?(M x M) is positive definite and we have £ > 2k. Then there exist hy > 0 and C > 0
such that for all f € No(M) and all X € M with hy < hq the error between f and its
interpolant sy x can be bounded by

| () = 7500 < CRY 1 f o) xeM.

Proof Forevery x € M we choose a chart (U, ¢,) according to Lemma 17.20. Since M is
compact we need only a finite number of them to cover M, say (Uy,, ¢y )1<j<r-Let(U, ) be
one of these. By Proposition 17.18, the kernel W (u, v) := <I>((p*1(u), (pfl(v)), u,vev.=
@(U), is positive definite on V. Moreover, because of the smoothness assumptions, we have
W e C?*(V x V). As in Lemma 16.14, one sees that the power functions are related by

Py xnu(x) = Py gxnu)(@(x)), xeU,

and we can study the power function on the right-hand side, which now exists on an open
ball in R". Hence, Theorem 11.13 and Lemma 17.20 give

Py pxnu(@(x)) < CCu(@(x)' o0 o)

< CCy(p(x)'hy -

is in C* up to the boundary of

The number Cy(¢(x)) can be uniformly bounded since ¢~
@(U). Moreover, hxny v can be bounded by a constant times A x js for sufficiently small

hx m. Since we have only a finite number of such charts, this completes the proof. O

17.5 Notes and comments

Schoenberg [174] was the first to study positive semi-definite, and in particular zonal, func-
tions on the sphere. Almost every other paper concerned with this subject is based on his
work. Since Schoenberg was interested in positive semi-definite rather than positive definite
functions, this has left plenty of room for other authors. Interestingly, besides the confusion
already mentioned about the term positive definiteness, in the context of the sphere there are
two different definitions of positive definite functions on the market. While some authors
define this as we have done, others, for example Narcowich [141], use an integral characteri-
zation. The latter approach is more restrictive than ours, as pointed out by Ron and Sun [157].

The first papers concerned with conditions for positive definiteness were by Light and
Cheney [106] and by Xu and Cheney [205]. In the first paper, the authors restricted them-
selves to the unit sphere in R? or, in other words, to periodic basis functions. In these two
papers, positive definiteness for a finite number N of centers was first considered: rather
than formulating conditions on & that give rise to positive definite interpolation matrices
for all N, the authors were looking for conditions only for a fixed N. Most of the subsequent
papers followed this approach. Besides the authors already mentioned, Menegatto has done
most of the investigations on positive definiteness; see for example [127, 128].



322 Interpolation on spheres and other manifolds

There are in the main three different approaches for providing error estimates for interpo-
lation by positive definite functions on the sphere. The first, which we presented in Section
17.3, is due to Jetter et al. [89] with recent improvements by Morton and Neamtu [138].
The second mimics the R? ideas of a local polynomial reproduction; details can be found in
the paper [72] by Golitschek and Light. Finally, the third approach is the one that works for
arbitrary smooth Riemannian manifolds. The idea of using local coordinates was employed
for radial basis functions by Levesley and Ragozin [103], even if their arguments differ
slightly from ours. The present author [197] has used the local coordinate argument in the
case of moving least squares approximation on the sphere.

A thorough general discussion of positive definite functions on arbitrary manifolds started
with the paper [141] by Narcowich, that has been mentioned already.

Recent overviews of other approximation methods on the sphere were given by Freden
et al. in [65,66] and by Fasshauer and Schumaker in [57].
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