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Preface

This book is written for graduate students in solid mechanics and materials science and
should also be useful to researchers in these fields. The book consists of eight parts. Part 1
covers the mathematical preliminaries used in later chapters. It includes an introduction to
vectors and tensors, basic integral theorems, and Fourier series and integrals. The second
part is an introduction to nonlinear continuum mechanics. This incorporates kinematics,
kinetics, and thermodynamics of a continuum and an application to nonlinear elasticity.
Part 3 is devoted to linear elasticity. The governing equations of the three-dimensional
elasticity with appropriate specifications for the two-dimensional plane stress and plane
strain problems are given. The applications include the analyses of bending of beams
and plates, torsion of prismatic rods, contact problems, semi-infinite media, and three-
dimensional isotropic and anisotropic elastic problems. Part 4 is concerned with microme-
chanics, which includes the analyses of dislocations and cracks in isotropic and anisotropic
media, the well-known Eshelby elastic inclusion problem, energy analyses of imperfections
and configurational forces, and micropolar elasticity. In Part 5 we analyze dislocations in
bimaterials and thin films, with an application to the study of strain relaxation in thin films
and stability of planar interfaces. Part 6 is devoted to mathematical and physical theories
of plasticity and viscoplasticity. The phenomenological or continuum theory of plasticity,
single crystal, polycrystalline, and laminate plasticity are presented. The micromechanics
of crystallographic slip is addressed in detail, with an analysis of the nature of crystalline
deformation, embedded in its tendency toward localized plastic deformation. Part 7 is an
introduction to biomechanics, particularly the formulation of governing equations of the
mechanics of solids with a growing mass and constitutive relations for biological mem-
branes. Part 8 is a collection of 180 solved problems covering all chapters of the book. This
is included to provide additional development of the basic theory and to further illustrate
its application.

The book is transcribed from lecture notes we have used for various courses in solid
mechanics and materials science, as well as from our own published work. We have also
consulted and used major contributions by other authors, their research work and written
books, as cited in the various sections. As such, this book can be used as a textbook for a
sequence of solid mechanics courses at the graduate level within mechanical, structural,
aerospace, and materials science engineering programs. In particular, it can be used for

Xix
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the introduction to continuum mechanics, linear and nonlinear elasticities, theory of dis-
locations, fracture mechanics, theory of plasticity, and selected topics from thin films and
biomechanics. At the end of each chapter we offer a list of recommended references for
additional reading, which aid further study and mastering of the particular subject.

Standard notations and conventions are used throughout the text. Symbols in bold, both
Latin and Greek, denote tensors or vectors, the order of which is indicated by the context.
Typically the magnitude of a vector will be indicated by the name symbol unbolded. Thus,
for example, a or b indicate two vectors or tensors. If a and b are vectors, then the scalar
product, i.e., the dot product between them is indicated by a single dot, as a - b. Since a
and b are vectors in this context, the scalar product is also abcos 6, where 6 is the angle
between them. If A is a higher order tensor, say second-order, then the dot product of
A and a produces another vector, viz., A - a = b. In the index notation this is expressed
as A;ja; = b;. Unless explicitly stated otherwise, the summation convention is adopted
whereby a repeated index implies summation over its full range. This means, accordingly,
that the scalar product of two vectors as written above can also be expressed as a;b; = ¢,
where ¢ is the scalar result. Two additional operations are introduced and defined in the
text involving double dot products. For example, if A and B are two second-rank tensors,
then A : B = A;; Bjjand A - - B = A;; B;;. For higher order tensors, similar principles apply.
If Cis a fourth-rank tensor, then C : e = Cjjyeny = {...};j. .

In finite vector spaces we assume the existence of a convenient set of basis vectors. Most
commonly these are taken to be orthogonal and such that an arbitrary vector, say a, can be
expressed wrt its components along these base vectors as a = aje; + aze; + azes, where
{e1, ez, e3} are the orthogonal set of base vectors in question. Other more or less standard
notations are used, e.g., the left- or right-hand side of an equation is referred to as the /As,
or rhs, respectively. The commonly used phrase with respect is abbreviated as wrt, and so
on.

We are grateful to many colleagues and students who have influenced and contributed
to our work in solid mechanics and materials science over a long period of time and thus
directly or indirectly contributed to our writing of this book. Specifically our experiences at
Stanford University, Brown University, UCSD, Ford Motor Company (RJA), Ohio State
University (RJA), University of Montenegro (VAL), and Arizona State University (VAL)
have involved collaborations that have been of great professional value to us. Research
funding by NSF, the U.S. Army, the U.S. Air Force, the U.S. Navy, DARPA, the U.S. DOE,
Alcoa Corp., and Ford Motor Co. over the past several decades has greatly facilitated our
research in solid mechanics and materials science. We are also most grateful to our families
and friends for their support during the writing of this book

La Jolla, California Robert J. Asaro
July, 2005 Vlado A. Lubarda



PART 1: MATHEMATICAL PRELIMINARIES

1 Vectors and Tensors

This chapter and the next are concerned with establishing some basic properties of vectors
and tensors in real spaces. The first of these is specifically concerned with vector algebra and
introduces the notion of tensors; the next chapter continues the discussion of tensor algebra
and introduces Gauss and Stokes’s integral theorems. The discussion in both chapters is
focused on laying out the algebraic methods needed in developing the concepts that follow
throughout the book. It is, therefore, selective and thus far from inclusive of all vector
and tensor algebra. Selected reading is recommended for additional study as it is for all
subsequent chapters. Chapter 3 is an introduction to Fourier series and Fourier integrals,
added to facilitate the derivation of certain elasticity solutions in later chapters of the book.

1.1 Vector Algebra

We consider three-dimensional Euclidean vector spaces, £, for which to each vector
such as a or b there exists a scalar formed by a scalar product a-b such that a-b =
a real number in R and a vector product that is another vector such that a x b = ¢. Note
the definitions via the operations of the symbols, - and x, respectively. Connections to
common geometric interpretations will be considered shortly.

With @ and B being scalars, the properties of these operations are as follows

a-b=b-a, Vabef, (1.1)
(ea+pBb)-c=af(a-¢c)+B(b-¢c), Vab,cefl, (1.2)
a-a>0, with a-a=0 iff a=0, (1.3)
axb=-bxa, (1.4)
(ea+ Bb) x e=a(axc)+ B(b x ¢). (1.5)

Also,
a-(axb)=0, (1.6)

(axb)-(axb)=(a-a)b-b)—(a-b). (1.7)
]
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Figure 1.1. Geometric meaning of a vector triple product. The triple product
is equal to the volume of the parallelepiped formed from the three defining
vectors, a, b, and ¢.

The magnitude of a is

la| =a = (a-a)/? (1.8)
Two vectors are orthogonal if
a-b=0. (1.9)

From the above expressions it follows thatifa x b = 0, then a and b are linearly dependent,
i.e., a = ab where « is any scalar.
A triple product is defined as

[a,b,c]=a- (b x ¢). (1.10)

It is evident from simple geometry that the triple product is equal to the volume enclosed
by the parallelepiped constructed from the vectors a, b, ¢. This is depicted in Fig. 1.1. Here,
again, the listed vector properties allow us to write

[a,b,c] =[b,c,a] =[c,a,b]

= —[b,a,c] = —[a, ¢, b] (1.11)
= —[c, b, a]
and
[¢a+ Bb, ¢, d] = «[a, ¢, d] + B[b, ¢, d]. (1.12)
Furthermore,
[a,b,c] =0 (1.13)

iff a,b,c are linearly dependent.
Because of the first of the properties (1.3), we can establish an orthonormal basis (Fig. 1.2)
that we designate as {ej, e;, es}, such that
1, if i =7,
e-e; =08, = 1.14
o Y 0, otherwise. ( )

The §;; is referred to as the Kronecker delta. Using the basis {e;}, an arbitrary vector, say
a, can be expressed as

a=ae; +ae, + aze; (1.15)
or

a=age;, (1.16)
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Figure 1.2. A vector v in an orthonormal basis.

where the repeated index i implies summation, i.e.,

3
a=a;e = E a;e;.
i=1

We can use (1.14) to show that
a, =a-e =a,e, -€ = a,0,;.
The properties listed previously allow us to write
e =e; xe3 e =e3xe, e3==e]Xep.
We note that these relations can be expressed as
e X € = €jie,
where the permutation tensor is defined as

+1, ifi j, k are an even permutation of 1, 2, 3,
€jk=1—1, 1ifi j, k are an odd permutation of 1, 2, 3,

0, ifanyofi, j, k are the same.
Some useful results follow. Let a = a,e, and b = b,e,. Then,
a-b=(ape,) - (bre,)=ayb. (e, e)=a,bd,.
Thus, the scalar product is
a-b=a,b, =ab,.

Similarly, the vector product is

axb=uaye, xbe =aybe, x e =a,b.epie; =e€ip(ayb)e.

Finally, the component form of the triple product,
[a,b,c] =[c,a,b] =c¢-(axb),
is

C: (eip,apbrei) = eip,apb,ci = Gpriapbrci = eijkaibjck.

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)
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Figure 1.3. Transformation via rotation of basis.

1.2 Coordinate Transformation: Rotation of Axes
Let v be a vector referred to two sets of basis vectors, {e;} and {e/}, i.e.,
U =v;e = ui’e;». (1.27)

We seek to relationship of the v; to the v/. Let the transformation between two bases
(Fig. 1.3) be given by

e =uje;. (1.28)

Then
€ -e; = e e =l = ;. (1.29)
It follows that
Uy =V € =V Qgp€, = Upllsy = UspUp

and thus

U] = ajjvj. (1.30)

For example, in the two-dimensional case, we have

e| = cosfe; + sinde;,

(1.31)
e, = —sinde; + cos ey,
with the corresponding transformation matrix
in
*= [—C(s)isnee cS:osg] ) (132)
Another way to describe the transformation in (1.28) is to set

€ =0 e (1.33)

A straightforward manipulation, however, shows that 8 and « are related by
B=a, (1.34)

where the transpose, o’ , is defined in the sequel.
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1.3 Second-Rank Tensors

A vector assigns to each direction a scalar, viz., the magnitude of the vector. A second-rank
tensor assigns to each vector another (unique) vector, via the operation

A-a=h. (1.35)
More generally,
A - (ca+ fb)=caA-a+ BA-b. (1.36)
Second-rank tensors obey the following additional rules
(A+B)-a=A-a+B-a,
(¢A)-a=caA -a,
(A-B)-a=A-(B-a),
A+B=B+A, (1.37)
a(A-B) =(¢A)-B,
A-B+C)=A-B+A-C,
A-B-C)=(A-B)-C.
Each tensor, A, has a unique transpose, A”, defined such that
a-(AT-b)=b-(A-a). (1.38)
Because of (1.36)—(1.38), we can write
(eA + BB)T = aAT + BB, (1.39)
and

(A-B)Y =B". AT (1.40)

1.4 Symmetric and Antisymmetric Tensors

We call the tensor A symmetric if A = A”. A is said to be antisymmetric if A = —A”.

An arbitrary tensor, A, can be expressed (or decomposed) in terms of its symmetric and
antisymmetric parts, via

1 1
A= E(A+A7)+ E(A—AT), (1.41)
where

sym (A) = %(A + AT,
(1.42)
skew (A) = %(A — A7),
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1.5 Prelude to Invariants of Tensors

Let {f, g, h} and {l, m, n} be two arbitrary bases of £. Then it can be shown that

x1=([A-f.gh]+[fA-gh]+][fg A-h])/[f g h]
=(A-LLm,n]+[l, A -m,n]+ [, m, A -n])/[l, m, n],

x2=((A-£A-ghl+[f,A-g A-h]+[A-f g A h])/[fgh]
=(A-LA-mn]+[l,A-m A -n]+[A-1,m, A -n])/[l, m,n],

x3=[A-f,A-g A -hl/[f,g.h]=[A-1LA-m, A n]/[l,m, n].

In proof of the first of the above, consider the first part of the /As,
[A-f, g h] =[A-(fpep). gs€q. hre/]

(1.43)
- [fP(A ' ep)’ gqeq, hrer] = fpgth[A ’ ePﬂ el]ﬂ er]-
Thus the entire expression for x; becomes
= Lo a A A 1.44
X1 = [f g h] ([ ~ep7 eqy er]+[ep, .eq,e,]—i—[ep,eq, .er]). ( . )

The term in (...) remains unchanged if p, ¢, r undergo an even permutation of 1, 2, 3; it
reverses sign if p, g, r undergo an odd permutation, and is equal to 0 if any of p, g, r are
made equal. Thus set p =1, ¢ =2, r = 3, and multiply the result by €,,, to take care of
the changes in sign or the null results just described. The full expression becomes

hr r
(fl%;"iﬂ ([A -e1,er, e3]+[er, A e, e3] +[er, e, A-es])
[f.g.h] (1.45)

=[A e, e e;3]+[e, A e e3]+ e, e A-es]
Since [e1, 2, e3] = +1, the quantity

is invariant to changes of the basis {f, g, h}.
Given the validity of the expressions for xi, x», and yx3, we thereby discover three
invariants of the tensor A, viz.,

Iy=([A-f g h]+[f A-gh]+][f g A-h])/[f g h]
IIy=(A-£ A ghl+[fA-g A-h]+[A-fg A h])/[fgh] (1.47)

I1HI,=[A-f, A-g A-h]/[f gh]
The commonly held descriptors for two of these are

14 = trace of A =tr(A),

1114 = determinant of A = det(A) = |A|.
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1.6 Inverse of a Tensor
If |A| # 0, A has an inverse, A~!, such that
AAT=AT A=1 (1.48)

where L, the identity tensor, is defined via the relations

a=l-a=a L (1.49)
Useful relations that follow from the above are
Al = o’ |A],
(1.50)
|A - B| = |A[|B].
Thus, it follows that
A A7 =1 =1=|A]A7",
(1.51)

_ 1 _
|A1=m=|A| I

1.7 Additional Proofs

We deferred formal proofs of several lemmas until now in the interest of presentation. We
provide the proofs at this time.

LEMMA 1.1: Ifaand b are two vectors, a x b = 0 iff a and b are linearly dependent.

Proof: If a and b are linearly dependent then there is a scalar such that b = @a. In
this case, if we express the vector product a x b = ¢ in component form, we find that
¢ = €jrajaa; = a€;jra a;. But the summations over the indices j and k will produce pairs
of multiples of aga,, and then again a,ag, for which the permutator tensor alternates
algebraic sign, thus causing such pairs to cancel. Thus, in this case a x b = 0.

Conversely, if a x b = 0, we find from (1.3) to (1.8) that a x b = =%|a||b|. If the plus signs
holds, we have from the second of (1.3)

(Ibla — |a[b) - (Ibla — |a]b) = 2a|*|b|* — 2|a||bja - b = 0. (1.52)

Because of the third property in (1.3) this means that |bja = |alb. When the minus sign
holds, we find that |b|a = —|a|b. In either case this leads to the conclusion that b = «a.

Next we examine the relations defining properties of the triple product when pairs
of the vectors are interchanged. Use (1.26) to calculate the triple product. This yields
[a,b, ¢] = €jra;bjci. Next imagine interchanging, say a with b; we obtain [b, a, c] =
€ijkbiajcy = €;jrajbicy = —e€jira;bick = —€;jra;bjcy, where the last term involved merely
a reassignment of summation indices. Thus [a, b, ¢] = —[b, a, ¢]. Proceeding this way all
members of (1.11) are generated.

We now examine the triple product property expressed in (1.12).

LEMMA 1.2: [fa, b, ¢, and d are arbitrary vectors, and o and B arbitrary scalars, then

[¢a+ Bb,c,d] = «fa,c,d] + B[b,c,d], Vab,c,de&, o,BecR. (1.53)
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Proof: Begin with the property of scalar products between vectors expressed in (1.2)
and replace ¢ with ¢ x d. Then,

(¢a+Bb) - (e xd) =ca-(cxd)+ Bb- (¢ xd) = «[a, c,d] + B[b, ¢, d]. (1.54)

Of course, the first term in the above is the triple product expressed on the /As of the
lemma.

1.8 Additional Lemmas for Vectors

LEMMA 1.3: If
v=caa+pb+yc, (1.55)
where a, b, ¢, v are all vectors, then
_ €ijkvibjcy , _ ijkaivjCk ’ _ €ijkaibjvy ' (1.56)
€parapbycy €parapbqcy €pgrapbqcr

Proof: The three relations that express the connections are
v =aa; + Bby + ycy,
v =aa + Bby+yca, (1.57)
v3 =aaz + b+ ycs.
By Cramer’s rule
U1 b1 C1
1% bz (&)
U3 b3 C3
o= —. (1.58)
a b o«
an b2 (&)
as by c

Thus, the lemma is proved once the two determinants are expressed using the permutation
tensor.
LEMMA 1.4: Given a vector a, then for arbitrary vector X,

axx=aiff a=0. (1.59)

Proof: Express the i" component of a x x as
€ijkaj X, (1.60)
and then form the product a - a to obtain
2

2.2 2
€k Xk€irsArXs = (8jr8ks — 8jsbpr)ajXparas = ax~ — (a-x)" =a”.

The expression just generated is zero as may be seen, for example, by letting x be equal to
e, e, e3, respectively. Note that the third equation of (1.70) below has been used.
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LEMMA 1.5: Suppose that for any vector p, p - q = p - t, then we have

P q=pt = g=t (1.61)

Proof: The relation p - q = p - t can be rewritten as

P-(q—t)=pi(g — 1)+ pa(q2 — ) + pa(qz — 13) = 0. (1.62)
As in the previous lemma, letting p be systematically equal to ey, e, e3 shows that p; =
P> = p3 = 0.

We reexamine now the operation of the cross product between vectors to develop two
additional lemmas of interest.

LEMMA 1.6: Given the vectors p, q, ¥ we have
Px(gxr)=q(p-r)—x(p-q). (1.63)
Proof: The proof is most readily done by expressing the above in component form, i.e.,

€rsi Ps€ijkd Tk = €rsi€ijkPsq Tk = €irs€ijkPsqTk- (1.64)

Use the identity given by the third equation of (1.70) and write

€irs€ijkPsqj 'k = (Zr(psrs) - rr(psQS) (165)

to complete the proof.
A simple extension of the last lemma is that

(pxq) xr=q(p-r)—pr-q). (1.66)

The proof is left as an exercise.

1.9 Coordinate Transformation of Tensors

Consider coordinate transformations prescribed by (1.28). A tensor A can be written
alternatively as

A= Ajeej = A e = A ea;e. (1.67)
Since €/, - A - ¢, = A, , performing this operation on (1.67) gives

A;;q = e;) - Ajee; -e; = apigj Aij. (1.68)

Transformation of higher order tensors can be handled in an identical manner.
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1.10 Some ldentities with Indices

The following identities involving the Kronecker delta are useful and are easily verified
by direct expansion

i =3,
5i18;j = 3.
8ijdikdjx =3, (1.69)
8ij8jk = ik,
8ij Aik = Ajik.

Useful identities involving the permutation tensor are
€ijk€kpg = dip8jq — digdip,
€pgs€sqr = —28pr, (1.70)

€ijk€ijk = 6.

1.11 Tensor Product

Let u and v be two vectors; then there is a tensor B = uv defined via its action on an
arbitrary vector a, such that

(uv)-a=(v-a)u. (1.71)
Note that there is the commutative property that follows, viz.,

(cu + V)W = auw + Svw,

(1.72)
u(av + pw) = auv + fuw.
By the definition of the transpose as given previously, we also have
(uv)” = vu. (1.73)
The identity tensor, I, can be expressed as
I=epe,, (1.74)
if e, e,, e3 are orthonormal. Indeed,
(epe,)-a=(a-e,)e,=ape,=a=1 a.
LEMMA 1.7: Ifu and v are arbitrary vectors, then
[uv] =0, and tr(uv)=u-v. (1.75)

Proof: Replace A in (1.47) with uv, and use {a, b, ¢} as a basis of £. Then the third
equation from (1.47) becomes

[(uv) - a, (uv) - b, (uv) - ¢] = I11,,[a,b, c],



1.12. Orthonormal Basis 11

where
111, = |uv|.
But,
(uv)-a=(v-a)u | u,
and similarly
(uv)-b=(v-bjulu, (uv)-c=(v-c)u| u
Consequently,
luv| = 0. (1.76)
Next, we note that the first equation from (1.47), with A = uv, leads to
[(uv) -a, b, c] + [a, (uv) - b, c] + [a, b, (uv) - ¢] = [,,[a, b, c], (1.77)
where
L, = tr (uv).
But the /As of the relation (1.77) can be rearranged as
v-alu,b,c]+v-b[a,u, c]+v-c[a, b, u]
Since {a, b, ¢} is a basis of £, u can be expressed as
u=caa+ b+ yc, (1.78)
which, when substituted into the above, yields for the various bracketed terms
[0a+ Bb+ ye, b, ¢] = afa, b, ¢],
[a,ca+ b+ yc, ¢] = B[a, b, c], (1.79)
[a,b,ca+ b+ yc] = y[a, b, c].
But, the first of (1.47) gives
(¢a-v+Bb-v+yc-v)[a,b,c] =tr(uv)a,b,c],
so that

tr(uv) =u-v. (1.80)

1.12 Orthonormal Basis

Let us now refer the tensor A to an orthonormal basis, {e;, e, e3}. The e; are unit vectors
in this context. Let A;; be the components of A relative to this basis. Then

A-ej=A,e, and Aj;=e -A-e;. (1.81)
Now form A = A,,e,e, and look at its operation on a vector a = a,e,. We have

(Apgepe,) - are, = Apa,e e, -, = Ay a,e, =a,Ape,.
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But,
A-a=A qge =aA e =a Aye,. (1.82)

Thus, A can be expressed as
A=A,ee, with A, =e, A-e,. (1.83)

Note if A =uv, then 4;; = u;v;, because A = u;v;e;e; and u = u;e;, v=v,e;.
By using an orthonormal basis {e;}, the invariants of a second-rank tensor A can be
expressed from (1.47) as follows. First, consider

In=[A e, e es]+[e, A ey e3]+[e, e A-es]
=[Apie,, e, €3] + [er, Ase,, e3] + [er, e, Aze]. (1.84)
To evaluate the above, use A,1e, = Ajje; + Aqe; + Azes and, for example,

[Ar1e; + Aey + Asjes, er, e3] = [Ajreq, er, e3] = Ajqfeq, ez, e3] = Ajp.

Likewise,
[e1, Aner, e3] = A, [el, ey, Azes] = As.
Thus,
Ia= A1+ Ap + Az = trA. (1.85)
Similar manipulations yield
Ta= 3(Ay— ApA), (1.86)
11Ty =detA = |A| = €p4r Ap1 App A3 (1.87)

1.13 Eigenvectors and Eigenvalues

Let o be a symmetric tensor, ie., 0;; = 0j; in any orthonormal basis, {e;}. Examine the
“normal components” of o, e.g., 0,,, =n- o -n = n;o;;n;. Look for extremum values for
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onn wrt the orientation of n. Let 6 be the angle between n and e; (Fig. 1.4). We require
that
30,/00 = 0 = 3n; /30 (03;n}) + n;d(oijn;) /0
= dn; /800i;n; + n;o;;n; /90
= 20n,;/860(0;jn;) = 2(dn/30) - T™ =0,

where T" = & -n and 7;(") = o;;n;. Since an/d0 is orthogonal to n, we conclude that
T = & - n must be codirectional with n. Hence, T® = o . n = A™n. This leads to the
homogeneous set of equations

(01j — X8 n; = 0. (1.88)
In dyadic notation these are
o-n—2"n=0 (1.89)
or
An=0, A=o0c—AL (1.90)

Conditions need to be sought whereby (1.89) can have nontrivial solutions.

LEMMA 1.8: Recall (1.5) viz. detA =[A-f, A-g A-h], where {f, g h} is an arbitrary
basis of E. If [A-f,A-g, A-h]| =0, then {A-f, A-g, A -h} must be linearly dependent.
That is, [a, b, ¢] = 0 iff {a, b, ¢} are linearly dependent.

Proof: 1f one of {p, q, r} are zero, [p, q,r] = p - (q x r) = 0. Next, if {a, b, ¢} are linearly
dependent, there exist «, 8, y (not all zero) such that

aa+ b+ ye=0. (1.91)
But, such triple products are
[¢a+ b+ ye,b,¢] =0=«[a,b,c]. (1.92)

The converse result follows from the fact thata x b = 0 iff a and b are linearly depen-
dent.

Return now to the possible solution of the equation A - n = 0. Suppose |A| = 0, then if
{f, g, h} form a basis of &, they are linearly dependent, i.e.,

a(A-f)+B(A-g)+y((A-h)=0,
which leads to
A - (af + pg+yh) =0.
Thus,
n=of+ g+ yh (1.93)

Conversely, if nsatisfies A - n = 0, then we can choose two vectorsl and m that together
with n form a basis of £. Then

detA=[A-LA-m,A -n]=0,
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because A -n = 0.
Thus, if A - n = A™n is to have a solution for n with A", then

det(A — A1) = 0. (1.94)
Using an arbitrary basis {a, b, ¢}, we obtain
[A-a—2Ma, A.-b—21"b,A.c— 1] =0, (1.95)
which becomes
A — A2+ TIgn — [Ty = 0. (1.96)

Equation (1.96), referred to as a characteristic equation, has three solutions.

1.14 Symmetric Tensors

Symmetric tensors, e.g., S, possess real eigenvalues and corresponding eigenvectors,
{A1, A2, A3} and {p,, p,, p3}, respectively. We may write S in the various forms such as
S=S-1=S-(p,p,) =S :p,p, = A")p,p,. Thus the spectral representation of S is

S =2"p.p, (sumonr). (1.97)
The invariants of S are

I1Ig = A3,
IIg = Ady + AoAz + A1A3, (198)

Is = A + A2 + As.

1.15 Positive Definiteness of a Tensor

If for any arbitrary vector a, a- A - a > 0, the tensor A is said to be positive semidefinite. 1
a-A-a> 0, Aissaid to be positive definite.

Let S be a symmetric, positive semidefinite tensor with the associated eigenvectors and
eigenvalues, p; and A;. Then, as before,

S = Ap,p, (sumonr). (1.99)
Now form the double products indicated above and note that
a-S-a=a-Ap,p,-a=xr(a-p,)> >0. (1.100)
Since a is arbitrary, A, > 0 for all r = 1, 2, 3. It follows that
S1/2 = 312p p,. (1.101)
Also,

st =5"pp, (1.102)
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which is readily verified via
S-8' = PP, 25 PPy (sumonrs)
= )‘V)‘;lprpspr Py = )‘YA‘glprPSSN‘
=PpPr= L

15

LEMMA 1.9: If A is an arbitrary tensor, then AT - A and A - AT are positive semidefinite.

Proof: Clearly,
AT -A)T=AT. (AT = AT. A = symmetric,
(A-ADHT = (ADHT. AT =A . AT = symmetric.
Thus,
a-[(AT-A)-a]=a-[AT - (A-a)]=(a-A”) (A a)
=(A-a)-(A-a) =0,
and

a-[(A-AT).a]=(a-A)- (AT -a)=(a-A) (a-A) > 0.

1.16 Antisymmetric Tensors
If
wi=_w,

the tensor W is said to be antisymmetric.
Let a and b be arbitrary vectors, then

b-(W-a)=a-(W!'.b)=—a-(W-b).

Thus, for example, if a = b,

a-W-.a=0.
Furthermore,
0, if i =7,
Wij=e W-e; =1 W, ifi#]j,
Wi, ifi#j.
1.16.1 Eigenvectors of W
Examine
W.p=2ip,

where p is a unit vector. Form the product
p-W-p=x1=0.
Thus A =0and W.p = 0.

(1.103)

(1.104)

(1.105)

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)
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Let {q, r, p} be a unit orthonormal basis; then

P=qXr, q=1rXp,

(1.111)
r=pxgq, [p.qr]=1
Recall that if {i, j} is a pair of unit vectors from the set {q, r}, then
Wij=i-W-j, W= W;ij. (1.112)
Thus
W = w(rq — qr), (1.113)
which is readily verified via
W.-p=w(lq—qr) -p=0. (1.114)
The scalar w is then obtained as
wo=r-W-q=—q-W-r. (1.115)
Now set w = wp, and let a be an arbitrary vector. We have
W-a—wxa=ow(q—qr)-a—op X a. (1.116)
Next, write
a=(a-pp+(@ qq+(@-nr (1.117)
and form
W.-a—wxa
=o[(rq)-a—(qr)-a—px(a-p)p—px(a-q)q—px(a-nr]
=[(q-a){r—pxq}—(r-a){qg+pxrj].
But the two terms in the {...} above are equal to zero, and so
W.a—wxa=0. (1.118)
So associated with W there is an axial vector w = wp such that
W.a=wxa, (1.119)
where
W-p=0. (1.120)
It is readily deduced from the above that
Iy =trW =0,
Iy = o?, (1.121)

Iy =detW =0.
Also, if u and v are arbitrary vectors, then the tensor L defined as

L=uv—vu (1.122)
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is an antisymmetric tensor and
w=vxu (1.123)

is its axial vector.

1.17 Orthogonal Tensors
An orthogonal tensor Q has the property of preserving scalar products, i.e.,
(Q-a)-(Q-b)=a-b. (1.124)
This property has the following effect
(Q-2)-(Q-b)=(a-Q")-(Q-b)=2a-(Q"-Q)-b=a-b.
Thus, we deduce that

Q7.Q=1 or Q'=Q". (1.125)
Note that
Q- (Q-n=-(Q-1n". (1.126)
Since Q7 - Q = I and det Q7 = det Q, we have
(detQ)? = 1. (1.127)

Thus, for a proper orthogonal (rotation) tensor,
detQ =1. (1.128)

The proper orthogonal tensor has one real eigenvalue, which is equal to 1. The correspond-
ing eigenvector, p, is parallel to the axis of rotation associated with Q, i.e.,

Q- p—-1p=0. (1.129)

Now introduce q and r as before, viz.,

P=qXr, q=rxp, r=pxgq. (1.130)
Then,
Qp=p=Q" p. (becauseQ"=Q™"). (1.131)
In addition, we may deduce
q-(Q-p)=0=r-(Q-p=p-(Q-q9=p-(Q-1) (1.132)
and
p-Qp=1 (1.133)

Some other results that may be straightforwardly deduced are
Qg9 - Qr=q-r
Q9 (Qq9=(q- Q) (Q-q=q-q=1, (1.134)
Q-q/=1Q-r=1
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Figure 1.5. Geometric interpretation of an orthogonal tensor in terms of the
rotation of a material fiber.

Thus, the pairs (g, r) and (Q - q, Q - r) are orthogonal to p. Because of this property, we
then can write

Q. q=aq+pr, Q-r=yq+ir, (1.135)
and
?+ =1, Y 4+8=1 (1.136)
The determinant of Q is
det(Q) =[Q-p.Q-q. Q-] = [p.aq+ Br. yq + dr]
=ad— By =1. (1.137)
Note also, since (Q - q) - (Q -r) = 0, that
ay + ps =0. (1.138)
In addition,

CK2+,32=1, V2+52:1,

(1.139)
as—By =1, ay+pB5=0.
These are satisfied by the following assignments
a=§8=cosf, B=—y=sinb. (1.140)
Therefore,
—q-Q-r=r-Q-q=sind, (L.141)
q-Q-q=r-Q-r=cosb,
and thus
Q = pp + cos6(qq + rr) — sin O (qr — rq). (1.142)

This last result is depicted in Fig. 1.5, which shows the result of operating on a typical
vector, x. As shown, the effect of the tensor operation is to rotate x about the eigenvector
p by the angle 0. That is, the result of operating with Q is to produce a rotated vector,
x' = Q - x, as shown in the figure.

As expected, orthogonal tensors enter the discussion of material motion prominently
with respect to describing rotations of bodies and material fibers. This will, for example,
appear explicitly in our consideration of the the polar decomposition theorem introduced
in the next section.



1.18. Polar Decomposition 19

As an example, with respect to the basis e = {e}, e, e3}, let Q11 = Ox»n = cosf, O =
— Oy = —siné, O3 =1, and Q;; = 0 otherwise. Equations (1.129) then become

cosOp; +sinbp, = py,
—sinép; +cosbp, = pa, (1.143)
pP3 = D3,

with p = p;e;. The solution to this set is trivially p; = p, = 0 and p; = 1; thus p = es.

Next choose q = e; and r = e; to satisfy the requirement of a right-handed triad basis,
{p, q.r}. Clearly then Oy =q-Q-q=cos0 =r-Q-r=0,, Oy =r-Q -q=5sinb =
—(q-Q-r) = -0y, and hence

Q = pp + cos0(qq + rr) — sinO(qr — rq). (1.144)

But x = x,e, = (x- &,)&,, where & = {p. q, r} and where x; = cosa, x, = sina and x3 =
0. The relationship x’ = Q - x leads to

x = [pp + cosd(qq + rr) — sinO(qr — rq)] - (cos aq + sinar)
= cos(0 + a)q + sin(f + o)r.

The result is exactly what was expected, namely that the fiber x inclined by 6 to the e; base
vector is now rotated by « so that its total inclination is 6 + «.

1.18 Polar Decomposition Theorem

Let A be an arbitrary tensor that possesses an inverse A~L. The following theorem, known
as the polar decomposition theorem, will be useful in the analysis of finite deformations
and the development of constitutive relations.

THEOREM 1.1: An invertible second-order tensor A can be uniquely decomposed as
A=Q-U=V.Q, (1.145)

where Q is an orthogonal tensor and U and V are symmetric, positive definite tensors.

Proof: Recall that the forms A’ - A and A - A” are positive semidefinite, symmetric
tensors. If A is invertible, i.e., A~! exists, then det A # 0 and A - n # 0if n # 0; also by this
AT .n # 0. Recall also, that A” - A and A - AT have unique, positive square roots.

Let U be the square root of A” - A and V be the square root of A - A”. But then U and
V have unique inverses, U~ and V~!. Consequently, if

A=Q-U, then Q=A-U", (1.146)
and if

A=V-R, then R=V . A (1.147)
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T
_ — >
dax A’ dx Figure 1.6. Decomposition of motions into a rotation and translation
\/ followed by a deformation.
7\ A

Q"-Q=A-UH" (AU
=UuH.AT.A.U!
=Uu'.v*.u!
=1-1=L

Similarly, we find that R’ .R =1, and thus that Q and R are orthogonal tensors. With
U= (A"-A)/2and V = (A - AT)!/2 we have established that

A=Q.U=V-.R (1.148)

The question is now, are Q and R unique? Suppose we proposed another decomposition,
A = Q' -U'. Then

AT A= (Q/ . U/)T . (Q/ . U/) — (U/ . Q/T) . (Q/ . U/) — (U/)Z.
But (U')? = U? and thus U’ = U. This means that
Q=A-U'=0Q (1.149)

is unique! A similar consideration establishes the uniqueness of R.
Finally, we ask if Q = R? To address this, write

A=Q.-U=R-R")-(V.R)=R-(R".V.R)
=R-[(V1/2~R)T-(V1/2~R)]=R-(RT-V-R)
=Q-U.

Therefore, R=Q and U=R’ . V.R.

COROLLARY 1.1: If A is an invertible tensor and A = Q - U =V - Q, then
U has eigenvectors p; and eigenvalues 1; ,
V has eigenvectors q; and eigenvalues ; ,

where

Ai=pi and q; =Q-p;.

1.19 Polar Decomposition: Physical Approach

It is illustrative to view the motions involved in the polar decomposition discussed above
as a sequential set of motions. This is schematically shown in Fig. 1.6.
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1.19.1 Left and Right Stretch Tensors
In the first motion the element dX — dX, such that
dX=R-dX+T, (1.150)

where T is a translation vector and R is an orthogonal tensor representing a rotation. This
gives for a deformation gradient,

F=0%/0X =R. (1.151)
Since there is no deformation in this first step, we have
C=F" . F=1=R”.R = Ris orthogonal. (1.152)
Next, let dk be deformed into the element dx via a pure deformation,
dx=V.-dk=V.-(R-dX+T)=(V-R)-dX+V.T,
which yields
F=V.R (1.153)

This is the left form of the polar decomposition. The tensor V is the left stretch tensor.
Note that

C=F . F=(V-R)T.V.R=R".VI.V.R=R".V>.R. (1.154)

Alternatively, the total motion may be viewed as occurring first via a pure deformation
given so that

d¥ =U-dX, (1.155)
followed by a rotation, R, and a translation, T. Theses motions result in
dx=R-d¥ +T=R-U)-dX+T, (1.156)
and
F=R-U. (1.157)

The tensor U is the right stretch tensor.

1.19.2 Principal Stretches
Write, again,
dx =F-dX, dX=NdS, dx=nds, (1.158)

where all quantities should have obvious meanings. Then the principal stretches can be
expressed as

ANn=F-N or A(m)n=F-N, (1.159)
where A(N) = x(n) = ds/dS. Since N and n are unit vectors, N is transformed into n via

n=R-N. (1.160)
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This relation implies that
R =nN. (1.161)
Thus, noting that F =R - U = V - R, we have
AN R-N=(R-U)-N=F-N
or
R-[U-AMN)I]-N=0. (1.162)
For arbitrary R this leads to
[U-AMNI]-N=0 (1.163)

for the principal stretch ratios, A(N), in the unrotated principal directions, N.
Similarly, we find that

AMnn=(V-R)-N=V.n, (1.164)
which yields
[V=2(m)I] - n=0 (1.165)

for the principal stretch ratios in the rotated principal directions, n.

1.20 The Cayley-Hamilton Theorem

LEMMA 1.10: Let f(A) be a real polynomial and A an arbitrary tensor, and let ). be an
eigenvalue of A. Then if f(A) is the tensor obtained from the polynomial function of
A constructed from the appropriate multiples (i.e., dot products) of A, then f()) is an
eigenvalue of f(A). Also an eigenvector of f(A) associated with eigenvalue f(1) is an
eigenvector of A associated with A.

Proof: The proof is obtained using simple induction. Let p be an eigenvector of A
associated with A via the equation A - p = Ap. Then,

A" -p=\p (1.166)

holds for r = 1. Assume that this relation holds for » = n. If we prove that it also holds for
r = n+ 1, we would have shown that it holds by induction for all r. Therefore,

A p=A.(A".-p)=A.(1"p) = 1"p, (1.167)

and thus the relation holds for all r. Further, since f(A) is a linear combination of pow-
ers of A, it follows that f(A) will be an eigenvalue of f(A) and p will be its associated
eigenvector.

THEOREM 1.2: Let A be an arbitrary tensor and the set of three )’s be its associated eigen-
values. Then, since the 1’s satisfy (1.96), we have

2 — D4 Iy — 111, = 0. (1.168)
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Apply Lemma 1.10 to this characteristic polynomial. This leads to the result that the ten-
sor A3 — IsA? + TI4A — 11141 = 0 has three eigenvalues each equal to 0. The Cayley—
Hamilton theorem states that for arbitrary A this tensor is 0. This means that the tensor, A,
satisfies its own characteristic equation, i.e., (1.96).

1.21 Additional Lemmas for Tensors

LEMMA 1.11: Consider the quadratic form

A=A (xx) = Ajxix;. (1.169)
Then
9r/0x =2sym (A) - x,
(1.170)
3%1/0x 9x = 2sym (A),
or, in component form,
ar/ax; = (Aj + Aji)x;,
’ P (1.171)
Ox/0x;0x; = Aij + Aji.
Proof: Consider
ON/0x = Aij(0x;/dxk)xj + Aijxi(0x)/9xk). (1.172)

Since dx; /dx; = 8ix, the substitution into the above, proves the first assertion. The rest is
proved simply by continuing the argument.

LEMMA 1.12: Ifr> =x-x = x;x; and f(r) is an arbitrary function of r, then
V@)= f'(r)x/r. (1.173)

Proof: The components of V f(r) are 3 f/dx;. Thus,

af _of o

= = 1.174
0x; ar dx; ( )

and since r* = x;x; and 9r?/dx; = 2rdr/dx; = 2x;, it follows that dr/dx; = x;/r. Thus,

o) _of or _f x

= = . (1.175)
0x; ar dx; or r

1.22 Identities and Relations Involving V Operator

In this section several useful and illustrative results involving the gradient, and divergence,
operation are given. They are listed as a collection of lemmas as follows.
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LEMMA 1.13: Letr be a position vector and thus ¥ = x1e1 + x,e; + x3e3. Then
V. .r=3,
V xr=0, (1.176)

r
v. (—) —0.
3
Proof: The proof of the first assertion is straightforward, since dx; /0x; = §;; and

- Bxi
- axi

r = 3. (1.177)

The curl of r is taken so that its i™ component is €;;0x;/dx;. But dx;/dx; = 8;; and this

leads to €6k = 0, because €;;x = —e€;x; and 8;; = 6. This proves the second assertion.
The third equation is expressed as

=3 45— (1.178)

( r ) . 0 X; 1 ar—3
Tax; 13 r3 ox;

73

2

Since r< = x;x;, we find

ar ar—3 or
r =X, =3

= —3r7x;. (1.179)
x; ax; 0x;

Substituting this result in the expression for V - (r/r?) given above proves the lemma.

LEMMA 1.14: Let f(u,v) be a scalar function of u and v, where u = u(x) and v = v(x).
Then the gradient of f may be expressed as

V f(x) = % Vu+ g V. (1.180)

Proof: First write the gradient of f as

0
Vf= of e;. (1.181)
ax,-
By the chain rule of calculus,
0 af o af d
OF o — (3L 2u  3F v (1.182)
0X; ou 0x; dv dx;
When this expression is expanded, and its terms reassembled, it is found that
0 0
Vf(x) = 3f Vu+ df Vo, (1.183)
au av

as desired.

LEMMA 1.15: Let f(x) be a scalar field and G a vector field. Then

VA(fG)=Vf-G+fV- G (1.184)
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Proof: We again use the chain rule of calculus to write

_A(fG) of 3G
V-9 =" T it ey (1.185)
=Vf-G+fV.-G.

LEMMA 1.16: [fu is a vector field then,
V- (Vxu)=0, (1.186)

or, in other words, the divergence of the curl vanishes.

Proof: When expressed in component form, this is

9 Ay 92wy,

ik = €k
! 8Xj ! axiaxj

1.187
5% (1.187)

But this will vanish because the second derivatives of u are symmetric, whereas ¢;j is
antisymmetric in ij, so that €;xuy;; = 0.

1.23 Suggested Reading

There are a number of excellent texts and reference books concerned with vector and
tensor algebra in physics and applied mathematics. Those that are specifically concerned
with or provide a framework directly relevant to applications to solid mechanics include
Synge and Shild (1949), Ericksen (1960), Brillouin (1964), Wrede (1972), and Boehler
(1987). The reader is also directed to Chadwick (1999) for an excellent summary of such
results as applied to the analysis of deformation and forces. The following is a list of books
recommended for additional reading.

Boehler, J. P. (1987), Application of Tensor Functions in Solid Mechanics, Springer-Verlag,
Wien.

Brillouin, L. (1964), Tensors in Mechanics and Elasticity, Academic Press, New York.

Chadwick, P. (1999), Continuum Mechanics: Concise Theory and Problems, Dover Publi-
cations, Mineola, New York.

Ericksen, J. L. (1960), Tensor Fields. In Hanbuch der Physik (S. Flugge, ed.), Band III/1,
Springer-Verlag, Berlin.

Eringen, A. C. (1971), Tensor Analysis. In Continuum Physics (A. C. Eringen, ed.), Vol. 1,
Academic Press, New York.

Spencer, A. J. M. (1971), Theory of Invariants. In Continuum Physics (A. C. Eringen, ed.),
Vol. 1, Academic Press, New York.

Synge, J. L., and Schild, A. (1949), Tensor Calculus, University Press, Toronto.

Wrede, R. C. (1972), Introduction to Vector and Tensor Analysis, Dover Publications,
New York.



2 Basic Integral Theorems

2.1 Gauss and Stokes’s Theorems

The divergence theorem of Gauss may be expressed as follows:

THEOREM 2.1: [fV is a volume bounded by the closed surface S and A is a vector field that
possesses continuous derivatives (and is singled valued in V), then

/V-AdV:/A-ndS:/A-dS, (2.1)
1% S S

where n is the outward pointing unit normal vector to S. Note that we may extend this result
to the case where A is a tensor field with the same proviso’s. The basic theorem is proven
below.

Stokes’s theorem takes the following form:

THEOREM 2.2: If S is an open, two-sided surface bounded by a closed, nonintersecting
curve C, and if A again has continuous derivatives, then

fCA.dr:/S(VxA).ndsz/;(vXA).ds, (2.2)

where C is measured positive if the motion along it is counterclockwise (then S would be on
the left).

A special case of Stokes’s theorem for the plane is

THEOREM 2.3: [If Sis a closed region of the x — y plane bounded by a closed curve S, and if
M(x, y) and N(x, y) are two continuous functions having continuous derivatives in S, then

?ch(x, y)dx + N(x, y)dy = /s (38%:7 - %4) ds, (2.3)

where C is traversed in the same positive direction.

26
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2.1.1 Applications of Divergence Theorem

A useful application of the divergence theorem involves the computation of the volume
of a solid. Consider the integral

/ r-nds, (2.4)
S

where r is the position vector and all other quantities have their obvious meanings as
above. The divergence theorem states that

/r-ndS:/V-rdV
s v

0x;
:/V~(x,~ei)dV=/ Yy = 3v.
v v

Xi

(2.5)

Next, consider the integral

/ VedV, (2.6)
y

where ¢ is a scalar function of position. To interpret this, define a vector a = ¢by where by
is an arbitrary constant vector. Then,

/V~(<pb0)dV=/<pbo~ndS
14 S
- / by - Ve dV 2.7)
14

= /bo : (gon) ds.
N

Now take the constant vector, by, out of the integrals and note that it was indeed arbitrary.
Thus, what is established is

f VedV = / onds. 2.8)
14 S

Clearly other useful integral lemmas may be derived by similar manipulations of the
Gauss or Stokes theorems.

2.2 Vector and Tensor Fields: Physical Approach

Consider, as an example, fields that arise from electrostatics and Coulomb’s law. If f is the
force between two charged points at distance r with charges g and ¢, its representation is
given as

1 qqo

f= =
ey 12

i (2.9)

The permeability of the vacuum is €. As shown in Fig. 2.1, @ is the unit vector from charge
q to charge qo and r is the distance between them.
Now introduce a vector field E(x1, x,, x3) such that
1

4 e

E(x1. X2, x3) = E(r) = r%ﬁ. (2.10)
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Figure 2.1. Interaction of point charges.

Thus the force exerted on charge go from the field of charge g can be expressed as
f=Eqo. (2.11)

Now let there be as many as n charges, each with a net charge ¢g;. The force they exert
on the test charge ¢y is given by the linear superposition,

n
qi N
f(r) = STt . 212
® (Z 4neo|r—ri|2“> @ @12)
Thus, we define the field arising from this distribution of charges as
n
qi N

E(r) = —— 1. 213
®) ;4neolr—ri|2u @13)

Finally, if we define a continuous charge density by the limit p = lima, ¢ %, the total
charge in volume V is

0= / p(x1, X2, x3)dV. (2.14)
\%4

The total field arising from this continuous distribution of charge is, therefore,

1 p(x1, X2, x3)0
E®x) = dv. 2.15
®) 4r e /V Ir —r/|? 215

Such is an example of a simple vector field.

2.3 Surface Integrals: Gauss Law

We will be interested in integrals evaluated over a surface of the general form, such as
arises in the Gauss law

/E(x) -ndS =gq/e, (2.16)
s

where n is the outward pointing unit normal vector to the surface S. The normal to the
surface can be defined as

n=1uxyv, (2.17)

where u and v are locally unit vectors, tangent to the surface element as sketched in Fig. 2.2.
If w and v are not unit vectors, then

uxyv
= (2.18)
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Figure 2.2. Defining the local normal to a surface.

Let the surface be given by

gx1, x0,x3) =0 = x3= f(x1,x). (2.19)

Imagine following the curve over an arc C, along x;. The corresponding displacement
undergone would be

u=ue; + (3f/9x1)u;es. (2.20)
Similarly, on an arc C’, along x,, we obtain
vV =18, + (3f/0x2)vs€3. (2.21)
Thus,
N=uxv=(-0f/0xie; — 3f/dxe; + e3)uqvy,

L _uxv _ —df/oxier —of/dxser + e (2.22)
Cuxyl [T+ (0f/0x1)% + (3f/0x2)?] 2

2.4 Evaluating Surface Integrals
Examine the integral
/ G(xl, X2, X3) dS, (223)
S

where G may be either a scalar or tensor field. Such integrals may be considered as the limit
of a summation over an infinite number of infinitesimal surface elements (Fig. 2.3), i.e.,

N
/G(xl,xz,xg)dSz lim ZG(xi,xé,xé)AS,-. (2.24)
s N—>oo b=
AS—0 i=1
ni .
As?t

Figure 2.3. Limiting approach to evaluating surface integrals.
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We want to relate these surface elements to the projections they make on the x; — x;
coordinate plane. Note that if AR; is the projection of AS;, then

AS; = AR/ /(n - e3). (2.25)
Thus,
/ G(x1, x2,03)dS = lim ZG(xl,xz,x3)AR /(n-e3), (2.26)
AR,—)OI 1
which in the limit becomes
G b b
f / G %2, %) 4y (2.27)
n-es

Since on S, x3 = f(x1, x2), and recalling the result from (2.22) for n, (2.26) becomes

/ G(x1. x5, x3) dS = / / G, F)[1+ (f/am ) + (0f /)] dn du. (2.28)
s R
If, instead, we had used projections on the x; — x3 plane, we would have
12
/ G(x1, X, x3)dS = // Glx1, g(x1, x2), x3] [1 + (3g/dx1)* + (3g/9x2)*] ? dx; dxs,
s R
(2.29)

where

= g(x1, x3). (2.30)

Alternatively, on the x, — x3 plane,

/ G(xl, X2, X3) ds = f f G[h(xz, )C3), X2, X3] [1 + (8h/8x2)2 + (8h/8)C3)2]1/2 dX2 d)C3,
S R

(2.31)
where
x = h(xy, x3). (2.32)
We are, however, even more interested in integrals of the form,
/SF -ndS, (2.33)
such as appears in (2.16). Replace G with F - n in (2.28) to obtain
fs Fonds— / /R Fon[l+(0f/0x ) + (3f/0x2)?]" dxy dus. (2.34)

The substitution of (2.22) into the above gives

/F~ndS = // {=F(3f/9x1) = B(3f/0x2) + F[x1, %2, f(x1, %2)]} dxy doea,
s R

or
/F . IldS = f / {—Fl [Xl, X2, f(X], xz)](af/axl) — Fz[xl, X2, f(X1, x2)](8f/3x2)
S R

+Fs[x1, %2, f(x1, %2)]} dxy dx,
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where

F = Fie| + Fe; + Fes.

2.4.1 Application of the Concept of Flux
The flux of the vector field F through the surface S is defined by

/F~ndS,
S

Figure 2.4. Flux of fluid through a cylinder.
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(2.35)

(2.36)

where n is a unit outward normal to S. For example, consider the flow of fluid through
a cylinder, during a time increment At, as depicted in Fig. 2.4. With v as the velocity,
the distance travelled in time At is vAt, where v is the magnitude of v. The volume of
fluid flowing through the surface inclined as shown is equal to vAtcos 8. The mass of fluid
flowing through the inclined surface is, with p as the mass density, pvAtcos6 = pAtv - n,
and thus the rate of mass flow through the inclined surface is pv - nAS. As shown in the

sketch, AS is the area of the inclined surface element. Thus, if we define
F = pv(x1, x2, X3),
we find that

Rate of mass flow through S = /F -ndS.
s

2.5 The Divergence

Recall the Gauss law
/E(x) -ndS = gq/ep.
S

Let g = pay AV, where pay is the average charge density in AV. Then,

/E(X) -ndS = pavAV/e,
s

1
W/SE(X)‘“dS= Pav/€o.

Taking an appropriate limit, there follows

) 1
Al‘1/n_'1)0 NG /;E(X) -ndS = p(x1, X2, x3)/€o.

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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Figure 2.5. A cuboid with edges aligned with the coordinate axes.

Now, define the divergence of F to be

. . 1
divF = Al‘l/ng0 AV /SF -ndS. (2.42)

The Gauss law then becomes
divF = p/ep. (2.43)

We next calculate divF over a cuboid whose volume shrinks to zero (Fig. 2.5). Calculate
first

/ F.nds, (2.44)
st

on S, where F-n=F - e = Fi(x1, x2, x3). Take the centroid of the cuboid at (x1, x2, x3).
On S} we have

F-n=F~r Fl(xl,xz,x3)+(3F1/8x1)dx1/2, (245)
while on S,
F-n=-F~-F (X] , X2, X3) + (8F1/3)C1)d)€]/2. (2.46)

Thus, we obtain
/ +/ == [aFl(xl,xz,x3)/8x1]dx1 de d)Cj, = [E)Fl(x1,xz,x3)/8x1]dx1ASi,
St T

where ASljE = dx; dxz. This also shows that

, 1
Al‘l/n_}0 NG /sli F-ndS=0F/0x. (2.47)

By the same sort of argument we have

. 1
A1‘1/nl0 NG . F-ndS=0F,/0x,, (2.48)

and

: 1
AI‘I/IEO NG . F-ndS =0F;/0x;. (2.49)
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S
Sl
-1 [V Vl >
nz nl

Figure 2.6. Limiting approach to evaluating surface integrals.

Consequently,
div(F) =0F,/0x) + 0F,/0x; + 0 F3/0x3.
Letting
V =09/0x1e1 + d/0xze; 4+ 0/dx3es,
we can write
V -F=(9/0x1e; + 3/dxre; + 3/0x3e3) - (Fie1 + [re; + Fies3)
=0F/0x1 + 0F,/0xy + 0 F3/0x3.
This yields another expression of the Gauss law, namely

V -E = p/e.

2.6 Divergence Theorem: Relation of Surface to Volume Integrals

Assume that

N
/F-ndS:Z/ F-nds.
S i=1 7S

33

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

as sketched in Fig. 2.6. The two subsurface integrals over S} and $; include the integrals
over the subsurface facet common to both small subelements. The value of F is the same
at each point on this common facet (if F is continuous). But the outward pointing normals
n on such a common facet are such that at each point, n; = —n,. Thus, the integrals over

the facet cancel. With this in mind, rewrite (2.54) as

N
1
F-ndS = F-ndS ) AV,.
/s " Zi=1<AVi/s, " )

Taking the limit as N — oo, or as AV, — 0, we have

N
1
F-ndS= 1l F-ndS | AV,.
Jipenas= pm 325 )

AVi—0 i=1

(2.55)

(2.56)



34 2. Basic Integral Theorems
But the term within (.. .) in (2.56) is in fact V - F and thus

/F~ndS=f Vv -Fdv. (2.57)
S 14

This is the Gauss divergence theorem.
To illustrate its application, consider the rate of flow of mass through a surface S, i.e.,

flow rate = /,o'u -ndS. (2.58)
s
Let the surface S be closed. Then we can write
amount of mass in V = / pdV, (2.59)
14
and
change of fna.ss within V _ / ap/otdV. (2.60)
unit time %
The conservation of mass requires that
/ op/otdV = —/pv-ndS. (2.61)
14 s
Applying the divergence theorem to the second integral in (2.61), we obtain
/(pv) -ndS = / V - (pv)dV. (2.62)
s v
Consequently,
/ dp/otdV = —/ V - (pv)dV. (2.63)
v 1%

Since this is true for all V, we conclude that
dp/dt = —V - (pv), (2.64)

which is known as a continuity equation.

2.7 More on Divergence Theorem

Another form of the divergence theorem of interest for later application can be stated as
follows.

LEMMA 2.1: If S is the surface bounding the volume V, and n is its unit outward pointing
normal, and u(x) and T(x) are arbitrary vector and tensor fields in V, then

/u(TT.n) dS:/ [WV T+ (Vu)-T]dV. (2.65)
S |4

Some special cases immediately follow. For example, if u is a fixed vector, then

u/TT-ndSzu/ VvV .-TdV. (2.66)
S |4
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Because u is arbitrary, (2.66) implies that

/TT-ndS:/V-TdV. (2.67)
s 14
Suppose further that T = I. Then (2.66) becomes
/un ds :/ VudV. (2.68)
s v
By taking the trace of both sides of (2.68), we obtain
/u~ndS=/V~udV. (2.69)
s v

It should be noted that (2.65) can, in fact, be derived from (2.69) by setting u to be
(u-a)(T -b), where a and b are arbitrary vectors.

2.8 Suggested Reading

Malvern, L. E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice
Hall, Englewood Cliffs, New Jersey.

Marsden, J. E., and Tromba, A. J. (2003), Vector Calculus, S5th ed., W. H. Freeman and
Company, New York.

Truesdell, C., and Toupin, R. (1960), The Classical Field Theories. In Handbuch der Physik
(S. Fligge, ed.), Band I11/1, Springer-Verlag, Berlin.

Wrede, R. C. (1972), Introduction to Vector and Tensor Analysis, Dover, New York.



3 Fourier Series and Fourier Integrals

3.1 Fourier Series

Let f(x) be a continuous, integrable function defined on the interval [—c, ¢]. Consider the
Fourier series of f(x), viz.,

f(x) = (ao/2) + i[ak cos(kmx/c) + bysin(kmx/c)]. (3.1)
k=1

The coefficients, a; and b, indexed by the integers k, can be identified as follows. Mul-
tiply each side of (3.1) by cos(nmx/c), n being an integer, and integrate over [—c, c] to
obtain

' f(x)cos(nmx/c)dx = /C (ao/2) cos(nmx/c)dx

+ ' i[ak cos(kmx/c)cos(nmx/c)
€ k=1

+ by sin(krx/c) cos(nmx/c)] dx.

To proceed, we note that

fc cos(kmx/c)cos(nmx/c)dx = c/m /n cos(kir) cos(nr) da, (3.2)

where
rAr=mx/c, dr=(m/c)dx. (3.3)

Thus,

. 0, k#n,
/n cos(ki)cos(nr)dr =137, k=n, (3.4)
2w, k=n=20,
and

/ " sin(kr) cos(ni) di = 0. (3.5)

36
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Similarly,
™ 0, k ,
f sin(i.) sin(n.) di — 7n (3.6)
- w, k=n,
as long as k # 0 and n # 0. Consequently,

fc cos(kmx/c)cos(nmx/c)dx = y¢, k=n, (3.7)
- 2, k=n=0,
and
/C cos(krmx/c)sin(nwx/c)dx = 0. (3.8)
Therefore, we obtain
a, = % ' f(x)cos(nwx/c)dx. n=0,1,2,.... (3.9)

Likewise, if (3.1) were multiplied by sin(nx x/c) and integrated over the interval [—c, c],
it would be found that

c

1
b, = - f(x)sin(nwx/c)dx, n=1,2,.... (3.10)

It is noted in passing that if f(x) were an odd function of x, such that f(—x) = — f(x),
then a,, = 0 for all n. Likewise if f(—x) = f(x), thatisif f(x) were an even function of x,
then b, = 0.

3.2 Double Fourier Series

Let R be a rectangle defined by the region —a <« <a, —b < B < b, and let ¢,(«, B) be
a set of continuous functions, none of which vanishes identically in R. Such a set is said to
be orthogonal if

// on(a, B)pm(a, B)dadB =0, if n#m. (3.11)
R
The number
1/2
oot = | [[ it pydoas] G.12)
is called the norm of ¢,. The set is said to be normalized if ||¢,|| = 1,forn =0,1,2,....1t
is equivalent for normalization that
// ¢X(a, B)dadp =1, forn=0,1,2,.... (3.13)
R
Of course, it is always possible to define constants, say u,, such that
1
Mp = 7, (3.14)
llnll

which can be used to normalize the members of the set ¢,.



38 3. Fourier Series and Fourier Integrals

As was done for a function of a single variable, it is possible to expand a function of two
variables in terms of these orthogonal functions as

f(a, B) = copola, B) + cror(ee, B) + ... + cnnla, B) + . ... (3.15)

The coefficients are obtained by using the orthogonality property. This gives

_ JJg [, B)gu(a, B) da dp ’

IS 3.16
[T (@, B da 0 (310
If it is assumed that the equality holds in (3.15), the series will converge uniformly.
3.2.1 Double Trigonometric Series
Consider the orthogonal set consisting of the functions
1, cos(mx), sin(mx), cos(ny), sin(ny),
cos(mx) cos(ny), sin(mx) cos(ny), (3.17)

cos(mx) sin(ny), sin(mx)sin(ny), ..., (n,m=1,2,3,...).

These are clearly orthogonal on the square defined by —7 < x <7 and —7 <y <. For
reference we note that the norms are

”1” = 27[7 ” COS(mx)|| = ” Sin(mx)” — ﬁn ,

(3.18)
|| cos(mx) cos(ny)| = | sin(mx) sin(ny)| = || cos(mx) sin(ny)| = 7.
The above leads to the following system
1
U = — // f(x, y)cos(mx) cos(ny) dx dy,
T R
1 .
b = — // f(x, y)sin(mx) cos(ny) dx dy,
7T
R (3.19)

Con = % //R f(x, y)cos(mx)sin(ny)dx dy,
Ay = % //R f(x, y)sin(mx) sin(ny) dx dy,

form,n=1,2,....For the cases where either m = 0 or n = 0, we have

_ ffR f(x, y)cos(mx)dx dy
B | cos(mx)||?

[/R f(x, y)cos(mx)dxdy, (m=1,2,...), (3.20)

Ao

_ 1
T 2x2
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ffR f(x,y)cos(ny)dxdy
Il cos(ny)|I*

=352 / f(x,y)cos(ny)dxdy, (n=1,2,...), (3.21)

AOn:

ffR f(x, y)sin(mx)dxdy
|| sin(mx)||2

// f(x, y)sin(mx)dxdy, (m=1,2,...), (3.22)

BmO =

T2

[fx f(x, y)sin(ny) dxdy
| sin(ny)|1?

=52 // f(x, y)sin(ny)dxdy, (n=1,2,...). (3.23)

B()n:

Note that for symmetry of expression we may define A,y = amo, with similar definitions
for the other Aand B terms. Finally note that

[fg f(x,y)dxdy

Ao = Il

=i / f(x,y)dxdy, (3.24)

whereby we may define Ay = aoo
When this is assembled, the serles expansion may be written as

flx,y)= Z | @mn €OS(mx) cos(ny) + by, sin(mx) cos(ny)

m,n=0 (325)
+Cpn cos(mx) sin(ny) + dyp sin(mx) sin(ny)],
with
Ao = ! f =n=0
mn = 4 or m=n=\=u,
1
)»mnzi, form>0,n=0o0or m=0, n>0, (3.26)
1

, for m,n> 0.

The rectangular domain of interest is easily transformed into the area defined by —a <
a <aand —b < B < b by the change in variables, x = ra/a, y = n8/b.

3.3 Integral Transforms

Let f(x) be a function that has a convergent integral over the domain [0, co]. Also let
K(ax) define a function of («, x). Then, if the integral

I1(a) = /0 ) K (ax) dx (3.27)
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is convergent, then /() is the integral transform of f(x) by the kernel K(ax). If for each

I¢(a), (3.27) is satisfied by only one f(x), then (3.27) has an inverse

flx) = /:O I(a)H(ax) da.

If H(ax) = K(ax), then K(ax) is a Fourier kernel.
A Mellin transform of K(x) is defined as

K(s) = / K(x)x*~!dx.
0
LEMMA 3.1: If K(ax) is a Fourier kernel then K(s)K(1 —s) = 1.

Proof: By definition,

K(s) = /000 K(x)x*~'dx,

and thus, by implication,

/Uooofllf(a) da = /Oooa31 /:O f(x)K(ax)dx da

_ /O ) dx /0 " 1K (x) da.

Now let n = ax, and write

/ K(ax)o' ' da = x“/ K(n)n*tdn = xK(s).
0 0

Then,

/ Y (@) da = I(s) = / ¥ Flx) de K(s)
0 0
_ K(s)F(1—s).
Furthermore, if
£ = [ (K@) dor

we have

/OOO FOox dx = /Oooxs—l /OOO I;(a)K(ax) do dx

= /Ooo I¢(o) da fooox“_lK(ozx) dx.

Thus, when compared with (3.33),

F(s) = /OOO I(a)a™ da /000 ' K(n)dn = I(1 — s)K(s),

which shows that

F(l—s)=1I()K(1 —ys),

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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and, therefore,

K(s)K(1—s)=1, (3.38)
as desired.
For example, if
K(ax) = /2/7 cos(ax), (3.39)
the Fourier cosine transform of a function f(x) is
F.(a) =2/7 /0 h f(x)cos(ax) dx, (3.40)
with its inverse
f(x)=2/m /0 h F.(a) cos(ax) da. (3.41)
As another example, let K(ax) be defined as
K(ax) = \/2/7 sin(ax). (3.42)
The corresponding set of transform and inverse is
Fy(a) =2/ fo h f(x)sin(ax) dx, (3.43)
and
f(x) =V2/7 /0 ” Fy () sin(ax) de. (3.44)
By the lemma proved above, if
If() = /Ooo f(x)K(ax)dx, (3.45)
then
flx) = /Ooo I(a)H(ax) da, (3.46)
and
K(s)H(1 —5) =1, (3.47)

where K(s) and H(s) are the Mellin transforms of K(x) and H(x), respectively.
In short, what is desired is to show that if f(x) is defined on [0, co], then it is possible
that

Flx) = % /0 " da /0 " f(n) cos(an) cos(ax) dn. (3.43)
or, more generally,
Flx) = % f_ " da /_ " F(n) cos(an) cos(ax) di. (3.49)

Before exploring this, it is necessary to establish some integrability properties of f(x). This
is done next.
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I I
f ( X) : : I [
: : \:./: : : Figure 3.1. Function with finite number of extrema and
|/—:\J| | o | discontinuities.
1 [ 1 L1 1y
X
a a;a; ..... ap b
a9 ap+1

3.4 Dirichlet’s Conditions

We say that the function f(x) satisfies Dirichlet’s conditions if

(1) f(x) has only a finite number of extrema in an interval [a, b], and
(2) f(x) has only a finite number of discontinuities in the interval [a, b] and no infinite
discontinuities.

Letag =a,apy1 =banda;,i =1,2, ..., p be the points where f(x) has either an extrema
or a discontinuity, as depicted in Fig. 3.1. The satisfaction of Dirichelet’s conditions leads
to the following lemmas.

LEMMA 3.2: If f(x) satisfies Dirichlet’s conditions in the interval [a, b], then

lim ’ f(x)sin(wx)dx =0,

w—> 00 a

(3.50)
b
wh_)rglo/ f(x)cos(wx)dx = 0.

Proof: From the definition of the a; above we may rewrite the first of the integrals as
b p Afey1
/ f(x)sin(wx)dx =) f(x)sin(wx) dx. (3.51)
a k=0 v ax

In each subinterval f(x) is monotone, either increasing or decreasing, and by the second
mean value theorem of calculus we have

Aje+1

f(x)sin(wx) dx = f(ax + 0) /Z sin(wx) dx

o (3.52)
+ flags — 0)/{ sin(wx) dx,

where ¢ is a point in the subinterval [ay, aiy1]. When the integrations are performed, there
results

- f(x) sin(wx) dx = f(ax + 0) cos(way) — cos(wt)

“* (3.53)
+ f(ars — 0) cos(w¢) — cos(wagy1) .
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f(x)

f (x+0)

Figure 3.2. Values of a discontinuous function.

f (x-0)

Thus,
b
lim / f(x)sin(wx)dx = 0. (3.54)
Since p is finite, we obtain
b )4 Afey 1
lim [ f(x)sin(wx)dx =" lim f(x)sin(wx)dx =0, (3.55)
w—o00 [, P 0—>00 [

as proposed above. The proposal in the second of (3.50) is proved by a similar procedure.
The same considerations lead to the following additional results that are proved in
standard textbooks on integral transforms.

LEMMA 3.3: If f(x) satisfies the Dirichlet conditions on the interval [a, b], then

lim f()

w—> 00

s1n(wx) A = {0, if a >0, (3.56)

%nf(O*), if a=0.
More generally,

LEMMA 3.4: If f(x) satisfies Dirichlet’s conditions on the interval [a, b], then

fx+0)+ f(x—0), ifa<0<b,
/f( N )sm(wu) _ f(x+0), t:fa=0<b,

f(x—=0), ifa<0=hb,

0, if0<a<bora<b<0.

Iim —
w—>00 IT

Proof: The proof of this lemma requires the following identity, which is demonstrated
first, viz.,

sm(n+1/2)u _ fx+0)+ f(x—=0)
nlimw — / flx+ 35in(1/2) du = > . (3.57)
It is, for this purpose, sufficient to show that (Fig. 3.2)
Y sin(n+1/2)u . f(x+0)
nlem — f(x+uw) 25in(1/2) u= 5 (3.58)
sm(n +1/2u  f(x—0)
nll)moo - / flx+ 2sin(/2) du = R (3.59)
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Focus on the demonstration of the first of these, as the proof of the second follows similar
lines. It is readily shown that

s1n(n +1/2)u

© 2sin(u/2) du, (3.60)

1
3 fer0 =2 ["pees

which leads to the strategy of proving that

sin(n 4+ 1/2)u

Ysin(uyy d=" (3.61)

lim ! /n[f(x—i-u)— fx+0)]
0

n— oo Jr
Consider the function of u defined by

fx+u)— f(x+0)  flx+u)— f(x+0) u
2sin(u/2) N u 2sin(u/2)’

p(u) = (3.62)

Since this function has a derivative at x 4+ 0, the ratio f(x + u) — f(x + 0)/u exists as
u — 0. This means that this same ratio is absolutely integrable on the interval 0 < x < 7.
But the function u/2 sin(1/2) is bounded, and so the function defined as ¢(u) is integrable
on 0 < x < w. We furthermore have that

sin(n+1/2)u

Aﬂﬂmw»fu+m s

u= /n e(u)sin(n + 1/2)udu. (3.63)
0

To continue with the proof, note that for any € > 0, the inequality

5
% /slf(x+u)|du<%e (3.64)

holds for sufficiently small §. The function (1/u) f(x + u) is absolutely integrable over
—00 < u < —§ and § < u < oo. Therefore, by the previous lemma we have

lim _/ e )sm(ﬁu) _ lm _/ [ )sm(ﬁu) _o.

Next consider the equality

sm(mu) f(x +0)+ f(x — 0)
/ fletu) 5= (u/z) 5 (3.65)

lim —
m-— oo Jr

which has already been demonstrated, and where m = n + 1/2 for integer n. This can be
rewritten as

lim —
m— oo Jr

sm(mu) f x+0)+ f(x— 0)
/ e e o 2 (366)

because the integrals on the intervals —7 <u < —§ and § < u < 7 vanish asm — oo.
Note that the integral on the /As of (3.660) differs from

1 /a et u) sin(mu) du (3.67)
T )5 u

by the quantity

1 1 1
- /—a f(x+uw) [m - ﬂ sin(mu) du, (3.68)
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where the function in [...] is continuous and where it is seen to be zero at u =0 (by
appropriate limits). But the integral in (3.68) vanishes in the limit as m — oo, and (3.66)
can be replaced by

lim —
m— 00 JT

/ ot sm(mu) du — f(x+0) "; flx — 0), (3.69)

Now, letm < ¢ <m+1,sothat £ = m+ &, where 0 < & < 1. The mean value theorem
of calculus gives

sin(fu) — sin(mu)

; = (£ — m) cos(hu), (3.70)

where m < h < {. Therefore, for any ¢,
1 6 . g 6 .
_’ / flx+u) sin(éu) du — / flx+u) sin(mu) du
T =5 u =5 u

= % ’ /_i f(x + u)é cos(hu) du‘ (3.71)

=

s €
/ [f(x4+u)|du < =.
s 2

EREE

For large ¢ and m, we have

B 3 i €
o404 fe-0) L / et ) g | < £ (3.72)

Thus, combining the last two inequalities, we find that

0 -0
fx+ );L fx—=0) f [ Sln(ﬁu) u‘ - % (3.73)
for all sufficiently large ¢. Finally, by (3.4),
0 -0
[+ )er fx-0) / e Sln(ﬁu) u‘ - % (374)

for sufficiently large €. This proves the lemma in question.
LEMMA 3.5: If f(x) satisfies the Dirichlet conditions on the interval [a, b], then

1 1 [o.¢] [o.¢]

S +0)+ fx—0)] = — A da | f(n)cos[a(n — x)]dn, (3.75)
and, if f(x) is continuous,

f0) = [ da [ seostatn - xan (376)

This last lemma will be used below to demonstrate an integral inversion theorem.
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Proof: We again suppose that f(x) is absolutely integrable on the entire x axis. Then,
by the definition of an improper integral, we have

% /000 da [ : f(ueosh(u —x)du = lim % /0 “ar [ : Fu)cosi(u —x)du.  (3.77)

The integral
f f(u)cosA(u —x)du (3.78)

is convergent for —oo < A < oo, because

| f(u) cos AM(u — x)| < | f(u)l, (3.79)

and f(u) is, as already stipulated, absolutely integrable on the entire axis. It follows from
the previous lemmas that

/Zf_oo f(u)cos)»(u—x)duzf_oo du/z f(u)cosr(u — x)dr

/ fu )sm E(u / on sm(ﬁu) du,

where an obvious substitution of variables has been made. But, from (3.77) we have

(3.80)

siniﬁu) d (3.81)

%/Ooodk/:f(u)cos)»(u—x)du:elimoo%/:f(x—i-u)

If the function f(x) has left- hand and right-hand derivatives at the point x, then the limit
on the rhs exists and is equal to 5 [ f(x +0)+ f(x —0)]. Thus, the integral on the //s exists
and is

% /OoodA/_Z f(w)cos A(u — x)du = % [f(x+0)+ f(x—0)], (3.82)

which proves the lemma.

3.5 Integral Theorems

Let f(x) have a convergent integral over the interval [0, co] and satisfy the Dirichlet
conditions described above. As f(x)isdefined for x > 0, define f(x)in theinterval [—oo, 0]
as f(—x) = f(x),i.e., make f(x) an even function. Then we may construct the integral

%/[;oo da /Z f(n) cosfa(n —x)]dn = % /000 da /0“’ f(n) cos[a(n — x)]dn -

00 0
+ %/0 do /m f(n) cos[e(n —x)]dn
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But,
0 0o
| rneoslatn—oldn = [ f-meoslat-y - v]dy
o . (3.84)
— [ reeostan+ o) an.
Consequently,
o e [ seostatn - 1
= %/OOO do fooo f(n) {cos[a(n — x)] + cos[a(n + x)]} dn
= %fooo cos(ax) da /000 f(n)cos(an)dn.
Therefore, with appeal to (3.76), if
Fi@) = V277 [ feostan) di. (3:85)
then
£(x) = V2m /0 " F(a) cos(ax) da. (3.86)
On the other hand, if f(x) is defined in the interval [—o0, 0] as f(—x) = — f(x), then
F@) = V27 [ fsintan) di (3:87)
implies
Fx) = V27 /0 " Fu(@)sin(ax) de. (3.88)
Noting that
f " cos[a(n — x)] do =2 / " cos[a( — x)] da.
m 0
(3.89)

/_ " sin[e(y — x)] da = 0.

we have, as before,

£ = tim [~ oy [ coslat - x)] de

1 [ 1 .
= lim —/ f(n)dn 5/ (179 dgy,

m—00 JT

or

Flx) = % /_ " emiar do /_ © fone . (3.90)
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Thus,
F(a) = «/% f: f(x)e™* dx (3.91)
implies
1 - —iox
flx) = Nors [w F(a)e ™" da. (3.92)

3.6 Convolution Integrals

The convolution of f(x) and g(x) is defined as

frg= J% / Z ¢(n) f(x — n) dn. (3.93)
Since
/ Z g(n) fx — mydy = J% / : san [ Z F(t)e @ dt,
where
F(t) = \/% /_ : f(x)e'™ dx, (3.94)
we have

1 00 0 ) 1 00 A o ‘
7| s [ roerea oo | roeta | goenan

_ / ¥ FOG@e ™ dr,

with
G(t) = \/% [ Z g(x)e'™™ dx. (3.95)
Therefore,
| FoGwe = [ gt -nan (3.96)
In a special case where x = 0, (3.96) becomes
| rocwa = [ swrena (3.97)

If we replace F(t) with F.(t), i.e., if f(x) is an even function, f(—x) = f(x), and if the
same is done for g(x), the above becomes

| " E(0)G.(r) df = [ " fg(n) dn. (3.98)
0 0



3.7. Transforms of Derivatives

3.6.1 Evaluation of Integrals by Use of Convolution Theorems

The above results may be used to evaluate integrals. For example, let

flx)=e™,
and let us evaluate two integrals, viz.,
o0
I = f e P cos(ax) dx,
0
o0
L= / e P sin(ax) dx.
0

We find

I = [—%eb" cos(ozx)i|

WIQ
>
S

/ 5% sin(ax) dx = L “h,
e

b cos(ax) dx = %Il.

1
L= |:—Ee_bx sin(ax)i|

U‘IQ

When the above are solved, we obtain

b b
h=—m = ) =V2/n 0.

a? + b?
a o
L= PR = F(a)=2/r ——— 21

But, from the definition of the Fourier cosine transform,

f(x)=+2/7 /000 F.(a)cos(ax)da = % /OOC oﬂL—l—bz cos(ax) da

_2b [ cos(ax)
o T 0 Ol2 + b2

da = e,

49

(3.99)

(3.100)

(3.101)

(3.102)

Imagine the same development for a companion function, g(x) = e~** and substitute

both results into (3.99). First, it is found that

F.(a) = ,/2/71# and G.(o) =2/1————
o+ b?

and then, after the substitution,
b [V [ eg ]
7 Jo (@2+b*)(a?+a?) Jy a+b

3.7 Fourier Transforms of Derivatives of f(x)

2+2’

To obtain formulae for the transformations of derivatives of functions, first define

af (X)

F(r)(a) iax dx

75

(3.103)

(3.104)

(3.105)
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and then integrate by parts to obtain

r—1 oo gr—1
F(r)(a) — |: 1 d f zax:| _ 1 d f(ia)eiax dx

d r—1 oo dxr—1
v2m & v2m * (3.106)
) r—1) ] dr—l f
=—(a)F"" Na), if —0 as x — too.
dxr—1
In general, by repetitive application of this procedure, it is found that
FO(a) = (—ia) F(a). (3.107)

3.8 Fourier Integrals as Limiting Cases of Fourier Series

It is useful to explore the existence of the above Fourier integrals as limiting cases of the
Fourier series considered at in previous sections. Although the following is not as rigorous
as the proof of the Fourier theorem given earlier, the discussion of the Fourier integral as
a limiting case of a Fourier series is valuable as a connection between the two.

As before, let f(x) be defined for all real x, and let it be piecewise smooth (with a
possible finite number of discontinuities) on every finite interval —¢ < x < £. Then f(x)
can be expanded as a Fourier series

a = nwx
f(x) = 5 T Z (an cos X 4 bysin T> , (3.108)

n=1

where

1 4
:Z/ f(u)cos? du, n=0,1,2,...,
- (3.109)

1 €
——/ fluysin ™2 du, n=1,2,3,....
¢/, ¢

We note that at points where f(x) is discontinuous we must interpret the value as % [f(x+
0) + f(x — 0)]. Now, substitute (3.109) into the above to obtain

Fx) = 217 /_ i F) du + i:: % /_ i fluycos ™ (u—x)du (3.110)

Suppose that f(x) is absolutely integrable on the entire x axis, that is suppose that the
integral

/ [ f(x)|dx (3.111)
exists. Then, as £ — o0, (3.110) becomes
R nw
f@x) = lim ; 7 /_ Z f(u)cos = (u —x)du. (3.112)
Setting
N b4 N 2 N 3
1=—, Aa=—, Ma=—, ...,
¢ ¢ ¢ (3.113)

T
Adp = Ayt — Ap = Z,
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and using this in the above, the sum takes the form

SRR

% ¢
Z Ak, / f(u) cos Ap(u — x) du. (3.114)
n=1 ¢

But for fixed x this looks like the sum that would define the integral of the function

c(h) = % /_00 f(u)cos A(u — x)du, (3.115)

and, therefore, it is natural to conclude that, as £ — oo,

flx)= % /Ooo di /jo f(u)cos A(u — x)du. (3.116)

3.9 Dirac Delta Function
Consider the function

1 sin(vs)

Ay(s) = (3.117)
TS

It can be verified that

/ Ay(s)ds =1, (3.118)
and
lim / Ay(s) f(s)ds = £(0). (3.119)
To prove the latter, expand f(s) about the point s = 0, i.e.,

f(s) = f(O) + (8f/ds)os + 1/21(8* f/35%)os* + ... (3.120)

Then,

sin

00 1 |
lim / Ay(5) f(s)ds = lim f ~ 02 gy lim / —(8f/ds ) sin vs ds
v—=>0 ) o v=>0 ) o T v=>0 ) 5 TT

s
. > 1 2 2 .
+ lim —(8” f/3s7)ps sinvs ds
v—=>0 J_ 2
= f(0).
We also explore the function, (s — a), where n(s) is shown in Fig. 3.3. Clearly,

00 11
/ n(s)ds =27¢ — =1, (3.121)
oo €

Then, by expanding f(s) about the point s = a, we deduce that

00 a+1/2¢ 1
lin%f n(s) f(s)ds = lin}) f(a) - ds. (3.122)
€— — 00 €— €

a—1/2¢
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n(s)A

e F--
f(s)

I
: / Figure 3.3. A step function as a generalized function.
T
gk
>s

1 |
fa
a-—1/2¢e a+1/2¢e

The f(a) here is, of course, just the first term of a Taylor expansion of f(s) about the point
s = a. The remaining terms in the Taylor expansion produce null results; for example, the
next term in the expansion yields

a 1 a—1/2€ 1
11_r)r(1] ail/ze(s — a)g ds + ll_I)I(l)/a (s — a)g ds =0, (3.123)
and so on. Thus,
tim [ 1(5)£(5)ds = f(@). (3.124)
We note that
!i_r}r(l} nis —a)=o00, at s =a, (3.125)
and
liir(l) /_: n(s)ds = 1. (3.120)
Consequently, we define
ll_r)% n(s —a)=38(s — a), (3.127)
and
ll)lg}) Ay(s) = 8(s). (3.128)
The so defined Dirac delta function §(s) is such that
/:5(s)ds —1, 8(s)= {03 i z;g (3.129)
and
/ ¥ F5)8(s —a)ds = f(a). (3.130)
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PART 2: CONTINUUM MECHANICS

4 Kinematics of Continuum

4.1 Preliminaries
Let ¢(x) be a scalar field which is a function of x1, x,, x5 (Fig. 4.1), i.e.,
¢ = ¢(x1,x2, X2). (4.1)
The function ¢ is continuous if
iii%|¢(x+oea)—¢>(x)| =0, VxeD, acé. (4.2)
The field ¢ is differentiable within D if there is a vector field, w, such that
ii_r)r}]|w~a—<x’1[¢(x+aa)—¢(x)]|=0, VxeD, acf. (4.3)

The vector field w is unique and is the gradient of ¢, w = grad ¢.
If uis a vector field, u(x), then its gradient is defined by

[gradu(x)]” -a=grad[u(x)-a], VxeD, acf. (4.4)
The divergence of u(x), divu, or V - u, is defined by
V -u = tr[gradu(x)]. 4.5)
The curl is defined by
[curlu(x)]-a=V - [u(x) xa], VxeD, acf. (4.6)
The tensor field, T(x), if differentiable, has its divergence defined as
divT(x)-a= V- T(x)-a=div[T(x) - a]. (4.7)

It is readily shown that if ¢, u, and T are scalar, vector, and tensor fields, respectively,
then with reference to rectangular Cartesian unit base vectors {ej, e;, e3}, we can write

¢ = ¢(x),
u(x) = uy(x)e,, (4.8)
T(x) = Tpg(x)e,eq.

55
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Figure 4.1. A scalar field, ¢(x).

It is also readily shown from the discussion and definitions given above that, inter alia,
grad ¢(x) = V¢ = d¢(x)/0xpe,,
grad u(x) = Vu(x) = du,/dxepe, ,
divu(x) = V- u(x) = du,/dx,, (4.9)
curl u(x) = €,4,0u,/9x4€, ,

divT(x) =V -T(x) =0T),,/0xpe, .

4.2 Uniaxial Strain

A uniaxial measure of strain should, at the minimum, quantitatively describe changes in
length as depicted in Fig. 4.2. There are, however, an infinite number of ways to do this.
For example,

nominal strain: e = AL/Ly = (£ — £y) /Lo = /Ly — 1. (4.10)
The stretch associated with this change in length is
A=L/y — e=Xr—1. (4.11)

Other definitions of uniaxial strain follow, and as examples we define

-1
natural strain: n = i 01— 1/x, (4.12)
1e2-0 1
Lagrangian strain: E = 5 —— 0= _(x2-1), (4.13)
24 2
1e2-0 1
Eulerian strain: € = - 0= _(1-1/2%). 4.14
ulerian strain T 2( /A7) (4.14)

Figure 4.2. Uniaxial stretch.
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Figure 4.3. Kinematics of deformation,

dIX A describing the motion of material parti-
P cles from the “reference state” to the “de-
X 19 formed state.

C | [ [T

"reference" or
"undeformed" state

"deformed" or
"current" state

Still another measure is defined by
€ l
/ de:/ %zezlnﬁzln)\. (4.15)
0 o ¢ o

Accordingly, this measure of strain is referred to as the logarithmic strain or true strain.

4.3 Deformation Gradient

To provide a precise description of changes in the shape, size, and orientation of a solid
body, we introduce various tensors that describe deformation of a body. The displacement
field u(x) describes the change in position, relative to a convenient coordinate system, of
all points in the body. We shall assume this field to be single valued and continuous for
the present. The property of being single valued implies that there are no holes, gaps, or
interpenetrations of matter in the body. The displacement field is nonuniform if the body
is deformed and is uniform only if the body has undergone rigid translations.

To describe the picture above we need to describe how each “material point” is displaced,
i.e., we want to associate a displacement, u, with each material point (Fig. 4.3). We identify
material points by their positions in the reference state, X. Thus,

X is position in the reference state,
x is position in the current (deformed) state, and
x is function of X, x = x(X).
The gradient of x(X) is defined as
F = 9x/0X. (4.16)

If {e1, ey, es}isa set of convenient base vectors in the current configuration and {E;, E;, E3}
are base vectors in the reference configuration, then an explicit, and most natural, repre-
sentation of F is

F= 8x,-(X)/8X,-el-Ej. (417)
This is a so-called two-point tensor, which relates dx and dX, such that

dx = F - dX. (4.18)
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Figure 4.4. Case of 2D simple shear.

Since F is invertible,
dX =F!.dx (4.19)

In terms of displacement gradients we may express the above as follows. Since

x=X+u, (4.20)
the displacement gradient is
du/o0X =9x/0X —-1=F—1, (4.21)
or, in the current state,
du/ox =1—9X/ox =1—F . (4.22)

For example, consider a simple shear deformation. Define a shear strain as y = s/, as
depicted in Fig. 4.4. Then, the deformation mapping is

x1=X1+vXs, x=2X. (423)
The in-plane deformation gradient has the components
Ly
F= [0 1] , (4.24)
whereas the displacement gradient is
Ju 0y
X |:0 O:| . (4.25)

4.4 Strain Tensor

Let Ry and R be regions within the body in the reference (undeformed) configuration and
current (deformed) configuration, respectively. Further, let N be a unit vector embedded
within the body in the reference configuration; the deformation transforms N to n in the
deformed state (Fig. 4.5). The square of the stretch of N, A(N), can be calculated as

A(N)=(F-N)-(F-N)=N-F’.F-N. (4.26)

Define C=F' . F as the right Cauchy-Green deformation tensor. Then the stretch,
squared, is also given by

A(N)=N-C-N. (4.27)
By using the polar decomposition theorem (1.145), we obtain

F=R-U C=F'.F=U? }*(N)=N-U>-N. (4.28)



4.4, Strain Tensor 59

-
N Figure 4.5. Stretch of an arbitrary fiber N
>t in the reference state to m in the current,

~ ~ deformed state.
7
\
o
"reference" or ndeformed” or

"undeformed" state nourrent" state

The tensor U is called the right stretch tensor. If we now define the strain in the direction
N as

1
ENN) = 5 [*(N)-1]=N-E-N, (4.29)
we deduce the strain tensor
1
E=(C-D), (4.30)

which is known as the Green strain (or Lagrangian strain) tensor.
An alternative approach to define this strain tensor is as follows. Let

dS = length of dX,
ds = length of dx.
Then,
ds? =dX-dX =dX I-dX,
ds? =dx-dx = (F-dX) - (F-dX)=dX - F’.F.dX.
Combining the last two results, we have
ds? —ds? =dX - (F'-F-1).dX. (4.31)
This leads to the definition of Green strain as
1 1
E= E(FT-F—I) = E(C—I),
because then
ds? — dS? =2dX - E - dX. (4.32)

The Green strain is symmetric as may be seen via the manipulations
1
Eij = E(FisTFS/ —3ij),
Loor
Ej; = E(Fjst'i —3ji)

1 1
= E(FS]'FI{ —8j) = E(FiZFSi —8ij) -

This is also obvious from (4.4), because F” - F and I are symmetric.
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- - ! Figure 4.6. Angle change during shearing deformation.

4.5 Stretch and Normal Strains

Consider an infinitesimal vector, dX, which is deformed by F into the vector element, dx.
The magnitudes of the lengths of these vectors are, respectively, dS and ds. Then,

ds? =dx-dx=dX-F’.F.dX =dX. C.dX. (4.33)
By defining the unit vector, N = dX/dS, we can write
ds?/dS*> =N-C-N =% (N). (4.34)

Thus, A(N) is the stretch of a fiber, initially of unit length, which was lying in the direction
N in the reference state.

For example, consider a uniaxial stretching, and take N = e,. Then,

A(e) =Cy =2E; +1. (4.35)
Also,
d —ds
w —a(e))—1=y2E; +1—1. (4.36)
If £ < 1, we have
ds —ds
~ Ep, 4.37
is 1 (4.37)

which is just the definition of a small uniaxial engineering (or nominal) strain measure.
Clearly, by expanding (1 + 2 Ey;)'/?, we obtain

ds — ds 1
=& —C B+ (4.38)

4.6 Angle Change and Shear Strains

We begin by examining Fig. 4.6. Note that a convenient measure of the obvious distortion
would be the change in the 90° angle made between the horizontal and vertical sides of
the square section. This angular change is & as shown. Thus one measure of the distor-
tion is simply cos(7/2 — «), which is zero if « = 0 and is nonzero if « # 0, in which case
cos(/2 — a) = sina # 0. We also note that the distortions in both figures are the same,
and the displacements differ only by a rigid body rotation. Thus, cos(7/2 — «) is an ac-
ceptable measure of strain. Now let us consider two infinitesimal vector elements, dX
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F
s I N A
|
I+ A
IYl v Figure 4.7. Angle change between two
A N fibers.
X N.
C | T2 [ ][]/
"reference" or ndeformed" or
"undeformed" state wgyurrent" state

and dXj, in the reference state; in the current state they become, respectively, dx; and dx;
(Fig. 4.7). Unit vectors associated with these two can be defined as

N; = dX/[dXq], fy = dx;/|dx], (4.39)
Nz = dX2/|dX2|, ﬁ2 = dX2/|dX2|. (440)
We can now form the cosine of the angle between them as
Xm . dXz
i, i) =R -l = — . 4.41
cos(iiy, fip) = Ay - fip x| ( )
In view of the connections
dX1 :F-Xm, dXz :F~dX2,
Xm = dX1 . FT, dXz = dX2 . FT,
the angle change can be expressed as
dX; -FT.F.dX,
iy, i) = ) 4.42
COS(nl 112) (Xm .C. dX1)1/2(dX2 .C. dXz)l/z ( )
But, dX; = Nl |dX;| and dX,; = N2|dX2|, so that
cos(fiy, fip) = Ni-Cl (4.43)
A(Np)A(N2)
As an example, let N; = e; and N, = e,. Then,
cos(i, fip) = Ciz = Ci
rMenr(e)  VCiv/Crn
2F
- 12 , (4.44)
V2E; +1V2E»n +1
If all strains are small, | Ej;| < 1, we have
cos(fiy, fip) ~ 2 Fys. (4.45)

Infinitesimal Strains

In general, the connection between positions in the reference and deformed states can be
written as

x(X) = X + u(X). (4.46)



62 4. Kinematics of Continuum

Consider a particular component of strain, say

En = % (FiyFii—1). (4.47)
Since
Fyj =8+ 0u;/0X;, Fj =8+ 0u;/dX, (4.48)
we have
Ey = % [(815 + dus/dX1) (851 + duy /3 X7) — 1],
ie.,

1
E = E [(8M1/3X1 + 8141/3)(1) + (8145/3)('1)(31/!‘/3)(1)] . (449)
In general, we obtain that
1
Eij = 5 [(0ui /0 + du; /0X5) + (9us /) (9us /9 X)) (4:50)
If [0u/0X| « 1, the E;; reduce to the infinitesimal strain components,

1
Eij ~ eip = 5 (0ui/0 X + 9u; /X)), (4.51)

4.8 Principal Stretches
Consider the stretch of a fiber along the direction of the unit vector n. We have
A’(m)=n-C-n. (4.52)

We seek those n for which the stretch is extreme (principal stretch). To find the extremum
introduce a Lagrange multiplier, u, via

L=n-C-n—pum-n-1). (4.53)
Then,
9L, n)/on=2(C-n — un) =0,
which leads to
C-n—un=0, (4.54)
where the s are the eigenvalues of C. By using the results from Chapter 1, we have
w = Iep? + Iepw — I1e =0, (4.55)
where the invariants of C are
Ic = tr (C),
Ilc =[e;,C-e;,C-e5] +[C-e1,e,C-e35] +[C-e,C- e, €3], (4.56)
1llc =[C-e;,C-e,,C-e;].
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4.9 Eigenvectors and Eigenvalues of Deformation Tensors

The deformation gradient may be decomposed via the polar decomposition theorem as
F =R - U, with C = U’ - U = U2 Thus, if

3
C=) ppnyn,, (4.57)
i=1
then
3
U= M}J/annp, (4.58)

i=1

where the eigenvalues, 1, are associated with eigenvectors, n,, via
C-n,=p,mn,. (4.59)
Consider the stretch of an eigenvector, A(n,). Its square is
A2(my) =mn,-C-n, = pu,. (4.60)

If p # s, thenn, - n, = 0. Indeed,

C-n,=p,mn,, (4.61)
and thus, since C is symmetric,
n-C-np,—n, -C-n;=0. (4.62)
Also,
ng - (pn, —nyumg =0,
ie.,

(p — ps)ms - mp = 0. (4.63)
Thus, if 1, # ps, thenn, -n; = 0.
Now consider cos(F - n;, F - n;). We have
n-Cm _my- (psmy) _ Ve
VB SR I
Therefore, the eigenvectors of C undergo pure stretch, i.e., they are not rotated by the
deformation.

jome=0. (4.64)

4.10 Volume Changes
Consider the volume element, § V as it is transformed into §v through F (Fig. 4.8). Clearly,
8V = |dX1||dX;||dX3], and Sv = |dxq||dx;||dx3]. (4.65)
Also,
Sv=[F-dX;, F-dX;,, F-dXj;]. (4.60)
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2 Figure 4.8. Changes in volume of a
typical volume element.

dx

Now, if dX; = e;, then §V =1, and
Sv=_(8v/8V)=1I111r = detF = |F|. (4.67)

4.11 Area Changes

The area element, bounded by the infinitesimals dX and dY shown in Fig. 4.9, can clearly be
described asNdS = dX x dY;dSis the magnitude of the area and Nis the unit normal to the
surface “patch.” The componental representation for the vectorial area of the undeformed
surface patch is

N:dS = €;jxd X;dYi. (4.68)
Likewise, for the deformed surface patch,
ﬁ,’dS = e,-,-kdxjdyk, (469)

where ds is the area of the deformed surface patch and ii is its unit normal. Since dx =
F - dX, we have

nids = € Fisd X FppdY,. (4.70)
Now multiply both sides of (4.70) by F;,; and perform the indicated summations to obtain
1 Fyds = €3 Fig Frp Fipd X;d X, (4.71)
Note that within the rAs we find the term 5, (det F) ~ ¢; Fjs Fyp, Fi;. This allows us to write
7i; Fyds = €,5p(det F)dX;dY, = N,(det F)dS. (4.72)
Taking a product with F;! gives
7 Fy F;'ds = N, F,, ' (det F)dsS,

ie.,
A, ds = (detF)N, F,;1dS, (4.73)
A
A n
N
ds ds Figure 4.9. Area change of a surface patch (element) during a
dy general deformation.

dy Kv
F dx

dx
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and thus
fids = (det F)N - F~'dS = (det F)F~ 7 . Nds. (4.74)

This is known as Nanson’s relation between the undeformed and deformed vectorial areas.
By multiplying (4.74) with itself, and then taking a square root of the result, we obtain

ds = (detF)(N-C~ 1. N)1/2ds, (4.75)

where C = F” . F is the right Cauchy—-Green deformation tensor. Substituting this back
into (4.74), we obtain an expression for the unit normal fi in terms of the unit normal N,
Le.,

F7.N

i=— (4.76)
(N.C1.N)12

Alternatively, if (4.74) is rewritten as
RdS = — - FT . fds = ——a-Fd (4.77)
~ detF = detF > '

the multiplication with itself gives

B 1
" detF

where B = F - FT is the left Cauchy-Green deformation tensor. When (4.78) is substituted
back into (4.77), we obtain an expression for the unit normal N in terms of the unit normal
n, ie.,

ds (i-B-n)/2ds, (4.78)

F' . h

Two identities can be observed from the above results, one for the ratio of the deformed

and undeformed surface areas and another for the cosine of the angle between their unit
normals. These are

d A A
d—g = (detF)(i - B -1)"2 = (detF)(N- C" - N)!/2, (4.80)

A. T.A \ . 7T- N\
aN- pF-R _ NF N (4.81)
(h-B-n)l/2 (N-C1.N)l/2

4.12 Area Changes: Alternative Approach
A second-order tensor F has a dual tensor F*, such that
F*-(axb)=(F-a)x (F-b), (4.82)

where a and b are arbitrary vectors. To see this and identify F*, let ¢ be still a third arbitrary
vector. Then, by using the result from Problem 1.7, we obtain

[F*-(axb)]-c=[(F-a)x (F-b)]-(F-F!.¢)=(detF)(axb)-F!.c
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X
2 F
e, dXs >
B dX, Figure 4.10. Block with circular hole
4 subject to a deformation involving a
3 1 simple shear.
by

X3 r _/ Xm 1

Recalling that F~! . ¢ =c¢-F~7, and by invoking cyclic property of triple product and
commutative property of scalar product, the above becomes

c-F*.(axb)=(detF)e-F7.(axbh). (4.83)
Since this holds for arbitrary trio of vectors a, b, ¢, we obtain
F* = (detF)F 7. (4.84)
Applying this result to the computation of area, we find

dx x dy = (F - dX) x (F-dY) = F* - (dX x dY) = (det F)F~ 7 . NdS.

4.13 Simple Shear of a Thick Plate with a Central Hole

A three-dimensional state of simple shear, as depicted in Fig. 4.10, is prescribed by

x =X +yX,
X=X, (4.85)
X3 = ng,

The corresponding deformation gradient and its inverse are

1y0 1—y0
F=|010|, F!=]010]. (4.86)
001 001
Furthermore,
100
FH'=F"=|-y10], (4.87)
001
and
fids = (det F)F~ 7 . NdS. (4.88)

On side 1 we have N = ey, dS = d X3d X», and det F = 1. Thus,

ids =F 7 .edX3dX;. (4.89)
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This means that
d A} = fids - ids

=F 7T . e(dX:dX;)*- (F T ep)

=e -F1.F 7. e(dXsdXy)’

= F,' FT (dXadX)?

= (1+7*)(dXad X)),
that is,

dA = V1 +y2dXsd X. (4.90)

Thus, on all of side 1,

1 pd4
/ dA= f f VI 72dX%dXs =414 2. 4.91)
side 1 0 0

Similarly, for side 3,

/ dA =41+ y2. (4.92)
side3

On side 2, we have N = e,, dS = d X;d X;. Thus,
ids = F 7. e;dX1d.X;, (4.93)
and
d A5 = fds - fds
=e - F 1. F 7. e(dXdX;)?
= F, (F,) (dXidX:)°
= 1(dX;d X3)? = no change!

For side 4 we have the same result as for side 2.

Now consider the circular hole. Its radius in the reference state is r. With the origin at
the hole’s center, and using a polar coordinate system aligned with the x; — x, axes, we
have that

NdS = (cosfe; + sinfey)rdod X, (4.94)
and (Fig. 4.11)
fids = (det F)F~7 . NdS

= (F;HNirdo dXsey + (F,')T Nyrdod Xse,

= [cosfe; + (sinf — y cosH)e,|rdo d Xz.
Consequently,

dA* =fi-ds-f-ds
= [cosfe; + (sin@ — y cosb)e;] - [cosfe; + (sin@ — y cosb)e,|r>do*d X2,
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8>

Figure 4.11. Normal to the hole’s surface. See Fig. 4.10 for a complete perspective of
the geometry.

or
dA* = [cos 6 + (sin — y cos0)*]r’de*d X5
= (cos? 6 +sin® 6 — 2y sin 6 cos O + y> cos’ )r>do>d X2
v 14 3
= (1 — ysin26 + y? cos? 0)r’do*d X3.
Finally,

dA=/1—ysin20 + y2cos?6 rdo dXs, (4.95)

which, when integrated, yields

1 pr2n
Azr/ V1 —ysin260 + y2cos? 6 d6 d X;. (4.96)
0 JO

4.14 Finite vs. Small Deformations

It is worthwhile to explore the differences between finite and small deformations for the
purpose of understanding how even seemingly qualitative effects can arise in the transition
from infinitesimal to finite deformation. We do this here via a simple example. Consider
the deformation

X=X —y X+ BX;,
X=vXI+X; —aXs, (4.97)
¥3=—pXi +aXs+ X

What we show is that this deformation involves only a rigid body rotation if the «, 8, y are

“small,” but a general deformation if they are “finite.”
Indeed, the deformation gradient is

L -y B
F=|vyv 1 -af, (4.98)
-8 « 1

whereas the corresponding Green strain is

Br+y?  —ap —ay
E = 5 —af  a?+yr By |. (4.99)
—ay By  o*+p?
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¢

\ ]

Figure 4.12. Reference and current coor-
dinate systems.

"reference" or
"undeformed" state

"deformed" or
"current" state

Clearly, the strains vanish to O(&¢) where &, ¢ = o, B, y. If, however, these quadratic terms
are not negligible, the state is one that involves deformation. In any event, the rotations
do not vanish. The rotation vector, w, can be calculated as

1
wi=—> €ijkWik, (4.100)

which yields w; = «, wy = 8, w3 = y.

4.15 Reference vs. Current Configuration

We again begin by defining the deformation commencing from the reference to the current
states as shown in Fig. 4.12. We introduce two coordinate frames each belonging to one
state or the other. In particular, the frame {E;, E,, E3} is defined in the reference state,
and {ey, ey, e3} is defined in the current, i.e., deformed state. For clarity we will use Greek
subscripts to denote components referred to the reference state and Latin subscripts for
the current state. Thus a vector such as u is expressed as either

u=u,E;, or u=ue;. (4.101)
Their components are formed as
u, =u-E,, or u,=u-e,. (4.102)
Higher order tensors can be handled similarly. For example,
o =oEEp = 0y, e5¢,, (4.103)
where
oup=Ey-0-Eg o0y =e€5-0-e,. (4.104)
Mixed representations are also possible, e.g.,

o =0y E.e; = ope,Eg, (4.105)
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where
Oyi — Ea O - €, (4106)
Osp = € -0 - Eﬂ. (4107)

Some components are most naturally represented as mixed components, including those
of the deformation gradient. Recall

x =x(X, 1), (4.108)

where the possibility that the deformation mapping depends on time, ¢, has been explicitly
included. Then the gradient is

F = 0x/0X = F,¢;E,, (4.109)

because x “lives” in the current configuration, and X in the reference state.

We note that F is invertible and so F~! exists — this is physically demandable from the
various pictures of the deformation presented to date, and from the statements that the
displacements involved are single valued. Thus each material point is, at this juncture,
taken to originate from a unique point in the reference configuration and is displaced to
a unique point in the current configuration. Thus, the process is “conceptually invertible,”
and F~! exists. Therefore, we can write

X =w(x,t), F!=03w(xt)/ox=0dX/ox. (4.110)

For a component representation, we have

F'=F'Ee, F,'=0X,/0x. (4.111)

LEMMA 4.1: If ¢ is a scalar field, then
Grad ¢ = 3¢/0X = F7 . grad ¢, (4.112)
where grad ¢ = d¢/x.
Proof: First we write Grad ¢ = 9¢/0X = d¢/9 X, E,. Then,
/X = 3¢ /0x - 0x/0X = (3¢ /0x;e;) - (3x,/d X, e, E,)
= (39xp/0 X,Eqep) - (0¢/0x;€;)
=F7 . grad ¢.

COROLLARY 4.1: Similarly to Lemma 4.1 above, we find that for a vector field u,

Gradu = (gradu) - F, (4.113)
Le.,
- - ou; ou; 0xi
V’=uV)-F, =" . 4.114
WV =@V F =gty (4.114)

For clarity, the arrow above the nabla operator is attached to indicate the direction in
which the operator applies.
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4.16 Material Derivatives and Velocity

Let ¢ be a time like variable that increases monotonically with the deformation process. It
is assumed that F evolves with ¢. Likewise all scalar or tensor fields may evolve with time.
For a scalar field then

¢ = scalar field = ¢(X, 1). (4.115)
We may define the “material derivative” of ¢ as
d(X, 1) =dp(X, t)/0t, (4.116)

that is, a derivative taken at constant reference position, X. Stated otherwise, this is a rate
of change at a fixed material point. Clearly X does not depend on time. But the current
position of a material point, x, does depend on time, so that in the current configuration
where we have the representation, ¢(x, t), the time rate of ¢ is

d(x, 1) = 0p(x,1)/dt + (3¢p/9x) - (3x/1). (4.117)
Defining the velocity as
v(x, t) = 9x/0t, (4.118)
the rate of change of the scalar field is
d(x, 1) = 0p(x, 1)/t + V¢ - v. (4.119)
But, V¢ = grad ¢, and so
d(x, 1) = 0p(x,1)/3t + (grad ¢) - v. (4.120)

4.17 Velocity Gradient

The velocity gradient is defined as

L = grad v = grad x, (4.121)
iLe.,
L=wv, I,=2Y%, (4.122)
0x;
By using (4.113), we obtain
Grad x = (grad x) - F, (4.123)
or
gradx = gradv = L = (Gradx) - F 1. (4.124)
But,
Gradx=F (4.125)
and so

L=gradv=gradx=F -F .. (4.126)
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Note that F - F~! = L. Taking the time derivative of this identity, we obtain
FF!4F. FHY=0 = (F'Y)Y=-F'.F.F' (4.127)
Thus,
L=F.-F!=—F.(F!). (4.128)

LEMMA 4.2: [fF is invertible and depends on a time like parameter, t, then

d d .
5(detF) = EJ = (detF) tr(F - F1). (4.129)

Proof: Begin by writing
detF=[F-a,F-b,F.c|, (4.130)

where {a, b, ¢} is a set of any convenient orthonormal unit vectors. Then,

d dF dF dF
—(det F)=|—-a,F-b,F- F-a,— -b,F- F-aF-b,— - cf.
dt( et F) [dt a c}—k[ a. c}+[ a a c}

Since
L=— F1! (4.131)
we have
%(detF): [L-F-a,F-b,F-¢c]+[F-aL-F-bF-c]+[F-a,F-b,L-F-c].
Clearly, then,
%(det F) = (trL)(detF). (4.132)
Recalling that (§v/8V) = J = detF, this means that
J=dJ/dt = (sv/8V) = Jtr (F-F 1) = J(trL). (4.133)
But, L = grad v = dv/0x, and we have
trL=divv=V-v, (4.134)
or
J =7 div (v). (4.135)

Let us return now to the rate of change of an infinitesimal material fiber (Fig. 4.3), and
recall that

dx = F - dX. (4.136)
Then,
(dx) =dk=F.-dX=L-F-dX=L.dx (4.137)
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Consider
dx = £ds, (4.138)
where
£ = a unit vector || dx,
ds = the arc length of dx.
By taking the time derivative we obtain
dx = £ds + £ds. (4.139)
Recalling that L = F- F~! and dX = F~! - dx, we obtain
dx = £ds 4 £ds = L - £ds. (4.140)
It is noted that
L-L=1 = £-£=0.
Thus,
ds=¢£-L-£ds (4.141)
and
£=L-£—(£-L-0)e. (4.142)

Consequently, the change in length per unit length of the material fiber, dx, is found to be

ds/ds=£-L-£. (4.143)
If we decompose L into its symmetric and antisymmetric parts as
L= %(L +L7) + %(L —-L7), (4.144)
and call
D= %(L +L7), (4.145)
then
ds/ds =¢-D - L. (4.1406)

The symmetric tensor D is called the rate of deformation or simply the deformation rate.
The term velocity strain is also in use.

We next look at the rate of change of the included angle between two material fibers,
i.e., at rates of shear. Let dx and dy be two infinitesimal fibers in the current state
(Fig. 4.13). Then,

dx =F.dX =4ds*, dy=F- -dY =mds”. (4.147)
As for the angle between them, in the current state we have

cosf =£-m (4.148)
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(111

T3y
__r AI/ - Figure 4.13. Stretch and angular change be-
H % T tween arbitrary fibers.

11

N

"reference" or
"undeformed" state

"deformed" or
"current" state

and
d R )
a(cos@):—sm@@:ﬁ-vae-m. (4.149)
Now, identify sind = |£ x m|, and use (4.142) to get
1
= 2-L-£4+m-L-m)¢-m)—£-(L+L") - m]. 4.150
T (€L tmeLom)(Cm) £ (L4 LT) m](4150)

4.18 Deformation Rate and Spin

Recall again the definitions of the symmetric and antisymmetric parts of L, viz.,

L= %(L +L7) + %(L — L. (4.151)

We call D the symmetric part and W the antisymmetric part of L, i.e.,
D= %(L +L7), (4.152)
W= %(L —L7). (4.153)

From the polar decomposition theorem

F=R-U=V_-R, (4.154)
it follows that
F=R-U+R-U=V.R+V-R (4.155)
and
F!'=R-U)'=U'" R =(V.-R)'=RT.VL (4.156)
Therefore,
L=F-F!'=R.-RT+R-U.U'.R” (4.157)
or

L=V. V!4 V.R.RT.VL (4.158)
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because
R-RT=—(R-RNT. (4.159)
For D and W, we obtain
D= %R (U-U'+U . 0U)-RT (4.160)
and
W:%R-(U~U‘1—U‘]-U)-RT—l—R-RT. (4.161)

If the current state is taken as the reference state, i.e., if F=1, U =1, and R =1, then
instantaneously

1
D=

and
W = R,. (4.163)

The subscript 0 signifies the assignment of reference to current state.

4.19 Rate of Stretching and Shearing

Once again consider two infinitesimal fibers dx and dy in the current state, as sketched in
Fig. 4.13. Recall the connections dx = F - dX and dy = F - dY, where dX and dY are the
same fibers in the reference state. Recall also the representation of dx and dy in terms of
unit vectors along them and their respective lengths, viz., dx = €ds* and dy = mds”. For
the change in length per unit length of dx, we have

ds*/ds* =£-L-£=£-D L. (4.164)
Also, from (4.150),

1
T 1€ x m|

[(6-L-£+m-L-m)(¢ m)—£-(L+L") -m]. (4.165)
If it happened that, instantaneously, £ - m = 0 in the current configuration, then
6=—£- (L+L")-m=-2¢.-D-m. (4.166)

This suggests a possible definition of shearing rate as
1.
)'/:—Eezﬂ-D-m. (4.167)

Since D is symmetric, it can be represented via a spectral form

3
D=> opp. (4.168)
r=1
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‘We also have the relations
Pr'PxZO, ifr?éS,

(ds/ds)p, = o, (4.169)
1, >
_EO(PM Pg) =Ps - Z“rprpr “Pg-

r=1
Note a property of the last relation, viz.,
1, >
_EQ(PM Pg) =Ps - ;arprpr ‘Pe=0, if s#gq. (4.170)

Thus the principal directions of D do not undergo relative angular changes and conse-
quently undergo only rigid body rotations as a triad of vectors. Indeed, recall (4.142) for
the time derivative of a unit vector along a fiber in the current state,

£=L-£—(£-L-£), (4.171)
and apply it to a principal direction, p;. There follows

pi=L-pi—(pi-L-p))pi. (4.172)
This can be reduced to
pi=D-p;+W-p,—(p; -D-p;)p; (nosumoni)
=aipi + W-pi —a;p;
= W.p;, = arigid rotation.

Thus W can be thought of as the instantaneous spin of the principal directions of D.

4.20 Material Derivatives of Strain Tensors: E vs. D

Recall that
1, 7 1
E = E(F F-1) = E(C_I)' (4.173)
Taking the time derivative, we find

E:%C: (K" F 4+ F)

(F"-L"-F+F"-L-F)

[F"-(L+L") F].

N = D= N

Thus,

E=F'.D.F= %C. (4.174)
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| Figure 4.14. Geometry of uniaxial tension.

Only when the reference state is taken as the current state, i.e., when F = Iinstantaneously,
do we have

Eo = Dy. (4.175)

As an example, consider a homogeneous uniaxial tension or compression test. The ref-
erence gauge length of the uniaxial specimen is taken as ¢y, and its current length is ¢
(Fig. 4.14). The geometry of uniaxial tension, or compression, then dictates the following
deformation map

r—r
x=1+—2)x
ro
.y
x=(1+— %X, (4.176)
0
r —r
x3 =1+ %) Xs.
ro

The stretches are defined as A ~ length/initial length, and so for the three principal di-
rections,

)\1 = r/ro, )»2 = g/g(], )»3 = r/ro. (4177)

The radial stretch in both directions is assumed to be the same, e.g., as would be the case
for an isotropic material. For the deformation gradient we obtain

M 000 /a0 0
F=[0 % 0|, Fl=| 0 1/ 0 [. (4.178)
0 0 A3 0 0 1/x3
Also,
a0 00
F=R-U=>U=|0 A 0|, R=L (4.179)
0 0 is
Thus,
A0 0
C=F'.F=U*’=|0 2} 0 |. (4.180)
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The strain tensor is

E:%(FT.F—I)=%(C—I)

1 )»% -1 0 0
=5 0 k% -1 0 . (4.181)
0 0 -1
The velocity gradient is
)'q /)\.1 0 0 f'/r() 0 0
L=F-F!=| 0 Jyx 0 |[=|0 {4 0 |. (4.182)
0 0 )’\-3/)-3 0 0 i’/r()
It is clear that
L=D, W=0. (4.183)
The rate of strain is
1 2h1h 0 0
E= 5 0 2ixx 0 . (4.184)
0 0 2i3r3
As a check on the above, form
E=F'.D.F
M 000 A /A1 0 0 M 00
=10 XA O0]- 0 Ao/ 0 10 A 0
0 0 Az 0 0 A3/A3 0 0 X3
1 2X1 A 0 0
=5| 0 2hada 0 |, (4.185)
0 0 2i3rs

in agreement with the previous result.

4.21 Rate of F in Terms of Principal Stretches

The right stretch tensor can be expressed in terms of its eigenvalues — principal stretches
A; (assumed here to be different) and corresponding eigendirections N; as

3
U=) nuN;N. (4.186)
i=1

The rate of U is then

3
U= [)\, N;N; +A; (N, N; + N; Nl)] . (4.187)
=1

i
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If € (i = 1,2, 3) are the fixed reference unit vectors, the unit vectors N; of the principal
directions of U can be expressed as

Ni =Ry e, (4.188)

where R is the rotation that carries the orthogonal triad {eY} into the Lagrangian triad
{N;}. Defining the spin of the Lagrangian triad by

Q=R Ry, (4.189)
it follows that
N =Rg-e'=Q-N; = -N; - Qp, (4.190)
and the substitution into (4.187) gives
3
U=>"LNN+Q-U-U-Q. (4.191)
i=1

If the spin tensor €2 is expressed on the axes of the Lagrangian triad as

Q=) Q) N;N;, (4.192)
i#]

it is readily found that

Qp-U= 9(1)2()‘2 —2M)NIN, + 933()»3 —2)NoN; + le()»l —23)N3N;j. (4.193)

Consequently,
Q- U-U Q=9 U+(2-U)"=>"0) (- 1)N:N;. (4.194)
i#]
The substitution into (4.191) yields
. 3 .
U=) NN +> Q) (hj—1)N;N;. (4.195)
i=1 iZ]

Similarly, the rate of the Lagrangian strain tensor is
N 22 —22
E=) LLuNN+) Q) %Ni N;. (4.196)
i=1 i#]
The principal directions of the left stretch tensor V, appearing in the spectral
representation

3
V=> xmn;, (4.197)
i=1

are related to principal directions N; of the right stretch tensor U by

m=R-N,=R-e!, R=R-R,. (4.198)
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The rotation tensor R is the rotation from the polar decomposition of the the deformation
gradient F = V- R = R - U. By differentiating the above expression for n;, there follows

n; =Q-n, (4.199)
where the spin of the Eulerian triad {n;} is defined by
Q=R R '=w+R-Q-R7, w=R-RL (4.200)
On the axes n;, the spin €2 can be decomposed as

Q= ZQ”‘ n;n;. (4201)
i#]

By an analogous derivation, as used to obtain the rate U, it follows that
. 3 .
VZZ)uilliﬂi‘FZQij()»j—)»i)l'lill/'. (4202)
i=1 i#]

The rate of the rotation tensor

n; N; (4.203)

~
Il
i

is

3
R:Z(niN,-+niNi)=Q~R—R-QO, (4.204)
i=1
or
i#]

Finally, the rate of the deformation gradient

L

3
F=> xmN, (4.206)
i=1
is
. 3 .
F = [)L, m N; + (fli N; +n; N,)] . (4207)

1

Since n; = Q- n; and N; = Qg - N;, it follows that

3
F=> JmN+Q F-F Q) (4.208)
i=1
and
. 3 .
F:Z)"iniNi'i_Z()VjQij_kiQ?j)niN/" (4209)
i=1 i#j
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4.21.1 Spins of Lagrangian and Eulerian Triads

The inverse of the deformation gradient can be written in terms of the principal
stretches as

3
1
Fl=>" —Nim;. (4.210)

Using this and (4.209) we obtain an expression for the velocity gradient

3

L=F.F!= Z n,nl—l—Z( f )nln] (4.211)

=1

The symmetric part of this is the rate of deformation tensor,

3 s 2 2
Aj i M ~0
D= —n,-n,-+2149--n,~nj, (4212)
il it] 2xin; Y

whereas the antisymmetric part is the spin tensor

32422
w=>" ( " sz%) nn;. (4.213)
i#] A
Evidently, for i # j from (4.212) we have
21
0 i
=7 D kAR (4214)

which is an expression for the components of the Lagrangian spin €2y in terms of the
stretch ratios and the components of the rate of deformation tensor. Substituting (4.214)
into (4.213) we obtain an expression for the components of the Eulerian spin €2 in terms
of the stretch ratios and the components of the rate of deformation and spin tensors, i.e.,

32 + AZ
Qij = Wi+ - /\2 M # A (4.215)
The inverse of the rotation tensor R is
3
1= Z N; n;, (4.216)
i=1
so that, by virtue of (4.205), the spin w can be expressed as
w=R-R"'=Y"(Q;—Q))nn;. (4.217)
i#]
Thus,
wij = Quj — Q). (4.218)

where Q?j are the components of Qy on the Lagrangian triad {N;}, whereas ©;; are the
components of €2 on the Eulerian triad {n;}. When (4.214) and (4.215) are substituted into
(4.218), we obtain an expression for the spin components w;; in terms of the stretch ratios
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and the components of the rate of deformation and spin tensors, which is
A=A
Ai F A

wij = Wij + D;;. (4.219)

4.22 Additional Connections Between Current and Reference
State Representations

LEMMA 4.3: Ifuisavectorfield andT is a tensor field representing properties of a deforming
body, then

Diva = Jdiv(J7'F-u), DivT = Jdiv(/'F-T). (4.220)

Proof: The above relations depend on the result

a

— (J 7' Fpe) =0, 4221
axp ( p ) ( )
which is justified from Lemma 4.1. In fact replacing ¢ with X, we obtain

9 Fgp -1_ 7 82)‘4 ~1
X, " X, 0X, P9’

B ) S
0J/0X, =Jtr (@ -F ) =17 (4.222)

where we note that Fozl = 0x;/0X,,and J = det F. Thus,

0 ad 00X,
0 (Jlepa) = (JlePa)
0xp 0X; 0xp
— J71 azxp . ]71 azxq Fle F71
9X,0 X, dX,0X, P71 ) p

3%x, 9%x,
=J! ( 4_fp-1_ 4_s aF‘1> =0.
AX,0X, P dXz0X, "

Furthermore, we obtain

Divu—Jdiv (J7'F-u) = Oitn _ J (J 7 Fpnuty)

0 Xz

_ 0l oy,

X, MMax,

_ oy, ou, 0x, .
0X;  3x, 0X;

and
DivT - Jdiv (J7'F-T) = 0Tz, E, - Ji(rlF,m Trq)eq
0X; 0xp
= 3;’;: E, — Fp,,aaTTnpqeq

0
= _8X (Y;rpE,o - T;quq) =0.
£
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4.23 Transport Formulae

‘We now turn our attention to the rates of change of integrals over material curves, surfaces,
and volume elements. We focus attention to the area or volume elements in the current
state.

LEMMA 4.4: Let C, S, and V represent a material line (curve), a surface, and a volume
element, respectively in the current state; as usual, ¢(x) is a scalar field. Then,

E/qbdx:/((jbd}l{—i-d)de),

%/Sq)nda:/S[(é—HptrL)n—qSLT-n]da, (4.223)

i/ql)dv=/‘(<i'>—|—¢trL)dv,
dr Jy v

where n is the unit normal to the external surface, S, of the body.
Ifu(x) is a continuous and differentiable vector field, then the corresponding results are

g/u- dX=/(ll+LT-u)~ dx,
d :
—/u-nda:/(u+utrL—L-u)-nda, (4.224)

g/udv:/(l’l—l—utrL)dv.

Proof: We focus on the second of the above relations, as the other relations follow by
direct analogy. We have

d d »
E/Swnda_dt SR[u-(]F ‘NdA)]
=/ 2 Tu (JF T NdA)]

5, 01

3
=/ E(]F‘l-u)~NdA
Sr
:/ [JF' a+ (@ trL)-F'-u+J(-F"'.L)-u|-NdA
Sr

= | (a+utrL—L-u)-(JFT.NdA)
Sr

=/(l’1+utrL—L-u)-nda.
s
In developing the above use was made of the following

FYHY=—F"'F.F',

L=F.-F'=—-F-(F),
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and J = tr L. Also, if dx = F- dX and dy = F - dY are vector elements in the current and
reference states respectively, then nda = (F - dX) x (F-dY) = JF~T.NdA.

4.24 Material Derivatives of Volume, Area, and Surface Integrals:
Transport Formulae Revisited

We recall the results for the rate of change of a volume element,

d 81),‘
—(dV) = dv. 4.225
o=z (4.225)
Examine integrals of the type
-Aij...(f)=/Aij.,,(X, t)dv, (4.226)
1%
and, more particularly, their time derivatives
d Aij () = d / A (x,1)dV. (4.227)
dr ij... - dr v Jo.\&s . .

Since this integral is taken over a fixed amount of mass (i.e., material), we may interchange
the order of differentiation and integration. This leads to

d d
Eﬁ&xmmvaﬁamummw, (4.228)
which on using (4.225) leads to
d B _ dA; (x,1) - 3&]
" fv A (x,1)dV = /V [—dt + A (x.1) T av. (4.229)

We next recall the relation for the material derivative operator, viz.,

d 0 0

- = — 4.230
TR TR ax, (4.230)
When this is used in the above it is found that
d A (x,1) 0
— i (x,0)dV = e i (x,1)]pdV. 4231
G [ ooy = [ [P0 L4y o) (4231)
The divergence theorem may be used on the second term on the rhs to obtain
d DA; t
l f Aj (x.0)dV = / 940 4y f v, Aij (X, O)n, dS, (4.232)
dr J, v ot s

where n is the outward pointing unit normal to the surface S that bounds V and n,, is its
p™ component.
We next examine surface integrals of the form

Bij..(t) = /S B;j..(x,t)n,dS, (4.233)

and derivatives of the type

d

d
E /S Bij...(x’ t)np ds = ]; E [B,‘jm(x, t)np dS] . (4234)
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Figure 4.15. Geometry of simple shear.

From the solved Problem 4.11 of Chapter 34, with dS, = n,dS, we have

ds
d—t” = (0vy/0x4)dS, — (dvy/0x,)dS,, (4.235)

which describes the rate of change of surface area elements. Using this in (4.234), we obtain

dB;;..(1) _ /[dBifw(x, B, v
S

v
B (x,t)|dS, — | B (x,1)—2dS,,.
de dt dx, j (X )} P fs jo (X )axq P

Finally, consider line integrals of the type
Lij. (1) = f Lij. (x,t)¢,ds, (4.236)
c

where ds is an element of arc length and £ is the running tangent at each point on the line;
¢, is then the p™ component of that tangent. Recall that £,ds = dx, and

%(dxp) = g%zdxk. (4.237)
Then,
d d
Efclﬂ'“(x’ t)dx, =fca[l,,~j,_(x, t)dx,] (4.238)
and

ds;;. (t) _/ dL;. (x, t)d
d  Jo dr

d
X+ / O 1L (x. )] dxe. (4.239)
c 0xk

4.25 Analysis of Simple Shearing

Consider the motion depicted in Fig. 4.15. The motion is associated with the deformation
gradient,

F =1+ y()fm. (4.240)

Let n be a third unit vector that along with £ and m form a right-handed triad and serve as
a basis system. The deformation prescribed by the above F is volume preserving because

detF=[F-¢,F- m,F-n]=[¢,m+ yf,n]=[¢, mn]=1. (4.241)
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‘We also note that

F'!=1-yf/m,
F' =1+ yme, (4.242)
I=4¢¢+ mm+ nn.

Thus,
C=F".F=+00+(1+y*)mm+nn+ y(fm 4 me). (4.243)

Since C - n = n, the vector n is clearly an eigenvector with an eigenvalue of 1; let p; and
p2 be the other two eigenvectors of C. Then,

3
C=)> Appi. (4.244)
i=1

where formally p; = n. Butsince det F = A;A;A3 = 1,and A3 = 1,itisclear that A1 = 1/4,.
Recall that det C = det(F” - F) = (det F)?. Thus, letting A = A, we write
C = A’p1p1 + »*p2p2 + nn. (4.245)

Next, express the eigenvectors as

P1 = cos O£ + sin 6m,

(4.246)
P2 = —sin6€ 4 cos 6m.
We use these in (4.245), and then in (4.243), to form the equations
C-pi=1p;, C-pp=2r"ps (4.247)
Upon expanding, we obtain the set
A2 cos?f + A 2sin? 0 = 1,
A2sin® 6 + 12 cos? 6 =1+ y2, (4.248)
(A2 =1 7?)sinf cos = y,
which has the solution
1 1
A= (1 + ZVZ)I/Z + E)/ = cot 1//,
1
0=-m—, (4.249)

2
1
Y= 5 tan(2/y).
Thus, the principal stretches are

M =coty, Ay =tany, Az =1, (4.250)
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with the corresponding principal directions
p1 = siny £ + cos yrm,
p2 = —cos ¥ £ + sinym, (4.251)
p; = n.
But y is a function of time and we note that F = y#m. Thus, the velocity gradient becomes
L=yfm- (- yfm)=ylm, (4.252)
which, in turn, means that the velocity is
v =y(fm)-x. (4.253)
The rate of deformation and spin rates become
D= %(Em +mé),

(4.254)
W= %(ém —mf).

Consider the effect of W on an arbitrary vector a. We have
1 1
W.a= E)'/[(a~m)£—(a~£)m]=—§)'/nxa, (4.255)

and thus %)}n is the axial vector of W.

4.26 Examples of Particle and Plane Motion

Consider a deformation map prescribed by
X = Xi + kt X,
X=X + kt X, (4.256)
=X —kt(X] — Xp),

where the geometry is sketched in Fig. 4.16. The parameter kis a constant and ¢ is time. We
will show that the motion of an arbitrary particle is along a straight line always orthogonal
to X, the vector from the origin to the initial position of the particle. Further, if there was
a slab, as also depicted in the figure, lying with its faces perpendicular to the X axis, this
slab would reorient such that, in the limit as t — oo, the slab’s faces would lie inclined to
the X axes at /4.

From (4.256) we first form the components of the deformation gradient and the vector
of material velocity. These are

1 0 Kk
F=| 0 1 k|, (4.257)
—kt —kt 1

and

v = kXze; + kXze, — k(X + Xo)es. (4.258)
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Xo A
Figure 4.16. (a) Position vector, X, of an arbitrary
__>e particle. (b) Slab with its initial faces perpendicular
1 to the X axis.
L
X1
b
Xz ()

Since the vector to the arbitrary material particle is X, the velocity is — and for all ¢ is —
orthogonal to X, because

v- X = [kXze; + kXzes — k(X1 + Xo)es] - [Xier + Xoer + Xzes] = 0. (4.259)

Next consider the two vectors that define the sides of the slab. In the current state they
are

F- € = queq, F. €3 = Fr3er. (4260)

Thus, the normal to the slab’s face is

_ Fpey x Fses

= . 4.261

|Fpae| | Fraes) ( )

A straightforward calculation shows that

1— (kt)?
e = , 4262
O S T (2 2 1+ 20k )22 (4.262)
which, in the limit, becomes

limn-e; = 1/¥/2, (4.263)

thus demonstrating the proposition.

4.27 Rigid Body Motions
LEMMA 4.5: Let {ey, e, e3} and (e}, €,, €}} be two orthonormal unit bases systems. Then
P = epe/p (4.264)

is an orthogonal tensor.

Proof: 1f a and b are two arbitrary vectors and if P is an orthogonal tensor, then
(P-a)-(P-b)=a-b. (4.265)
To verify this, write
(P-a)-(P-b) = (¢e,-a) - (€}¢, b)
=@-PhH-(P-b)=(a- eye),) - (ee;-b).
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Figure 4.17. Two material fibers.

The last equality verifies the proposition since e’p - e, = 8, and, of course, a, = a- e, and
bs =b-e;. Thus (P -a)- (P -b) =a-b, as P defines an orthogonal tensor.

LEMMA 4.6: If the distance between every pair of material points is the same following a
motion, the motion is said to be rigid. For this to be the case the mapping must be of the form

x(t) = ¢(1) + Q(t) - X, (4.266)

where Q is an orthogonal tensor.

Proof: Refer to Fig. 4.17 showing two material vectors, x and y. First note that the term
¢(t) simply represents a uniform translation of the body. This clearly produces no changes
in the length of any fibers or any changes in the relative angle between any two fibers.
Thus, we are concerned only with the remaining part of the transformation, i.e.,

x—c=Q- -X. (4.267)
We proceed as follows. Form the scalar product between the two vectors x —candy — ¢,
x—0 y-0=(0Q-X)-(Q-Y)=X-Q0)-(Q-Y)=X"Y,

which is constant for given X and Y. Also, [x — y| = | X — Y|, because Q is orthogonal and
x —y= Q- (X-Y). Furthermore, since x = ¢ + Q - X, the velocity is

x=v=dx/dr =¢(t)+Q - X. (4.268)
But,
X=0Q" [x—c()], (4.269)
and so
v=x=¢t)+Q-Q7 - (x—¢). (4.270)
Conversely,
QQ'=I=QQ+Q. Q' =0 = QQ'=-Q.Q".
Thus, Q - Q7 = Wis antisymmetric, and we so write
v=Xx=¢+W-(x—oc). (4.271)

4.28 Behavior under Superposed Rotation

If a time-dependent rotation Q(¢) is superposed to the deformed configuration at time ¢,
an infinitesimal material line element dx becomes

dx* = Q - dx, (4.272)
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whereas in the undeformed configuration

dX* = dX. (4.273)
Consequently, since dx = F - dX, we have
FF=Q-F. (4.274)
This implies that
U'=U, C'=C, E*=E, (4.275)
and
Vi=Q-V-Q', B*=Q-B-Q’. (4.276)
The objective rate of the deformation gradient F transforms according to
v v v .
FF=Q-F, F=F—W.F. (4.277)
The rotation R becomes
R*=Q-R. (4.278)

The spin w = R - R~! changes to
W=0+Q - w-Qf, 9=Q-QL. (4.279)
The velocity gradient transforms as
L*=Q0+Q-L-Q7, (4.280)
whereas the rate of deformation and the spin tensor become
D'=Q D-Q’,

W e 010.W. O (4.281)
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5 Kinetics of Continuum

5.1 Traction Vector and Stress Tensor

There are two general types of forces we consider in the mechanics of solid bodies, viz.,
applied surface traction and body forces. Examples of body forces include, inter alia, grav-
itational forces (self-weight), electrostatic forces (in the case of charged bodies in electric
fields), and magnetic forces. Body forces are usually described as a density of force and
thus have units of newtons per cubic meter [N/m?]. Surface traction has, as expected, units
of newtons per square meter [N/m?]. We then describe a body force density as b, so that the
total body force acting on a volume element §v is bév. Surface traction must be described
in terms of the vector force involved and with respect to the surface element it acts on;
this, in turn, is described by the unit normal, n, to the surface element that the traction acts
on. Let T, be the traction vector measured per unit area of the surface element involved.
Then the total force acting on an area element with normal n and area ds is T,ds. These
are depicted in Fig. 5.1.

Consider a thin “wafer” of material whose lateral dimensions are of O(h) and whose
thickness is of O(¢); we will soon take the limit as lim.,;_¢. In any event, €¢/h <« 1.
Equilibrium for the wafer requires that

feTr ds+f Ty dA+/ T dA+/ cbdA=0. (5.1)
r Q Q

Q

Here €2 is the total area of the wafer’s top and bottom sides and I" is the perimeter around
its edge. The traction vectors, T+ and T,- act on the “top” and “bottom” sides of the
wafer, respectively. The wafer’s thickness is €. If ¢ — 0, we have

/ eTrds — 0, / ebdA— 0, (5.2)
r Q

and we arrive at the notion of traction continuity

/ Ty dA+ / T,-dA=0. (5.3)
Q Q
Since 2 is arbitrary, we must have

T = —Tp-. (5.4)
92
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Figure 5.1. Traction vector over the
surface element.

Consider next the tetrahedron shown in Fig. 5.2. This is known as the Cauchy tetrahe-
dron. Letay, ay, as be the areas of the three faces having normals in the ey, e;, e3 directions,
respectively. The volume of the tetrahedron is v. Note that the edges of the oblique face
make intercepts with the axes at locations marked a, b, c. The distances along the axes of
these intercepts are €1, €, €3. Note also that the three faces aligned with the coordinate
axes have unit normals along —e;, —e;, —es, respectively. Simple geometry reveals that

1 1 1 1
ay = 56263, ap = 56163, az = 56261, V= 6616263. (55)

We need to calculate the area of the oblique face, and for this purpose we define two
convenient vectors that define the oblique surface element. If we call a,, the magnitude
of the area of this oblique surface element, and n its unit normal, its vector area will be
ann. Clearly,

a,n = % (b—a) x (c—a), (5.6)

where a, b, and ¢ are the edge vectors comprising the sides of the inclined face of the
Cauchy tetrahedron. In terms of the intercepts and unit base vectors, this becomes

1
ayn = E(_Elel + €2€2) x (—€1€1 + €3€3)

1
= 5(636162 + €160e3 + 626361). (57)
Thus,
an = a;€¢; = a; =ay(n-e;). (5.8)

Figure 5.2. The Cauchy tetrahedron.
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Figure 5.3. Rectangular stress components of
03 |0, Cauchy stress.
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X3
The equilibrium of the tetrahedron yields
anTo + a1 T, + axTe + a3T,; +vb =0, (5.9)
or, more compactly,
T+ (n-e)T, + v/ab = 0. (5.10)

In the limit when ¢; — 0, or v/a,, — 0, we obtain

To=—-(n-¢)T, =(n-e)T,,. (5.11)
This suggests the definition
o=¢ T, (5.12)
such that
Ta=n-o. (5.13)
But,
T, =Ty, (5.14)

which suggests a further definition
o=1,;ee;. (5.15)
This yields
o =ojee;, o;=1I;. (5.16)
With reference to Fig. 5.3, we can represent the normal and shear components of stress as
Opp =M -0 - N,

(5.17)

Ops =M -0 -8.

5.2 Equations of Equilibrium

Consider a loading system on a solid body consisting of body forces and applied surface
traction. Equilibrium requires that

/T,,dS+f bdV =0, (5.18)
N 14
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Figure 5.4. A portion of an equilibrated body under surface tractions and body
forces.

b (x)

where dS is a surface area element and S the body’s surface as depicted in Fig. 5.4. Since
T, =n- o, (5.18) can be written as

/n-adS+/de:0. (5.19)
s 14
The divergence theorem gives
/n~0'dS=/V~0'dV, (5.20)
s 14
which, in turn, leads to
/(V-cr—l—b)dV:O. (5.21)

Since V is arbitrary, we find that at every point
dive+b=V-oc+b=0. (5.22)
These are the equilibrium equations. Since
o = ayee, (5.23)

we can write, in component form, the three equilibrium equations as
i p=0, i=1,23. (5.24)

The components of the body force per unit current volume are b;.

5.3 Balance of Angular Momentum: Symmetry of o

The requirement of vanishing net torque on the solid body requires that

/rxT.,dS+/rxde=0, (5.25)
S 14

where r is a position vector within the body measured from an arbitrary point (Fig. 5.4).
Using the fact that T, =n-o = o - n, the above becomes

frx(aT-n)dS+/rxde=0. (5.26)
S |4
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The corresponding equation in the index notation is
f €ijkX 01N ds + / Eijkijk dv=0. (527)
s 1%

By the Gauss divergence theorem

ad
/eijkxjalknl dS:/Eijk—(Xj(le)dV
s v o ox

5 (5.28)
Olk
= ,/;/Eijk (ij + Xja—)Cl)dV.
Then, (5.27) becomes
9
/ €ijkXj <% —i—bk)dV—i—/ éijkO'/'deZO. (5.29)
v X1 14
The first integral vanishes by equilibrium equations. Thus,
/ Ei}‘kO'jdeZ 0. (530)
14

This holds for the whole volume V, or any part of it, so that we must have at every point
€ijkOjk = 0. (531)

Since ;i is antisymmetric in jk, the stress tensor must be symmetric, ojx = oy;. Alterna-
tively, by multiplying (5.31) with €,,,; and by using € — § relation

Emni€jki = SmjSnk — SmkOnj (5.32)
there follows
€Emni €ijkT jk = Omn — Onm = 0. (5.33)
Consequently,
Own = Opm, OF o =0al, (5.34)

establishing that the Cauchy stress tensor is a symmetric tensor.

5.4 Principal Values of Cauchy Stress
To explore principal values, o;, of the Cauchy stress tensor, we consider the equation
o-n=on. (5.35)
The eigenvalues
o, =N 0N (5.36)

are the principal stresses, and the eigenvectors n; are the unit normals to principal planes
of the stress tensor o. Since

o-n —on = 0, (537)

there is no shear stress on the principal planes. The principal stresses and principal planes
are determined by solving the eigenvalue problem (5.35). If the three eigenvalues are
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Figure 5.5. Coordinate system of the principal directions.

different, there are three mutually orthogonal principal directions. If two eigenvalues
are equal, e.g., 01 = 02 # 03, any direction in the plane orthogonal to nj is the principal
direction. If three eigenvalues are equal to each other, the stress state is said to be spherical;
any direction is the principal direction, without shear stress on any plane.

5.5 Maximum Shear Stresses

Imagine that the principal stresses have been determined along with the correspond-
ing eigenvectors, Le., the principal directions of the Cauchy stress tensor o. Call them
{p1, p2, p3}- Call the three principal stresses {01, 02, 03}, and assume without loss of gener-
ality that they are algebraically ordered as o1 > 03, > 03. Now consider an arbitrary area
element within the body at a point with unit normal n. The traction acting on this area
element is t,. The components of t, with respect to the principal directions are then

i = o1ny,
l‘; = 0Ny, (5.38)
t; = o3N3,

where the components of the unit normal n are likewise referred to the principal directions
of o. The normal stress on the area element is

O =N-0-N= aln% + azn% + (73n§. (5.39)

The stress component oy, defined in Fig. 5.5 is the shear stress acting in the area element
resulting from the tangential force resolved from t,. Then since the magnitude of t, is

tn-ta =02, + 02, (5.40)
we have
02 =ty -ty — 2. (5.41)
With the obvious substitutions, we obtain
O = 07N + 035 + oins — (o1} + oo + o3m3)’. (5.42)

Extremum values for o,; are found using the Lagrangian multiplier. Let

L =0k —rmn —1), (5.43)
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2>

Figure 5.6. The traction vector in the reference and de-
formed states.

subject to the constraint that n;n; = 1. Then 0£/9A = 0 yields the system
n [012 - 201(0111% + azn% + 03n§) + A] =0,
(05 — 202(o1n] + 02m5 + 03n3) + 1] = 0, (5.44)
n3 (05 — 203(o1n] + 0213 + 03n3) + 1] = 0.

These equations are solved for A and the components of n, subject to the constraint that
n+ns+n3 =1
There are two sets of solutions possible. The first set is

m ==1, np =0, n3 =0, for which o,;, =0,
n =0, np==+1, n3 =0, for which o,;, =0,
n =0, np,=0, n3 ==+1, for which o,;, =0.

The shear stresses are zero because these solutions for n are just to align it with a principal
direction; this yields minimum values for oy;.
Another set of solutions is

ny = 0, Ny = :|:1/\/2, n3 = :I:l/JZ, for which Ops — (0’2 — 0’3)/2,
n ==x1/2, n, =0, n3 ==+1//2, for which o,; = (01 — 03)/2,
m = =+1/y2, np ==+1//2, n3 =0, for which o,;, = (01 — 02)/2.

The second expression gives the maximum shear stress, which is equal to half the difference
between the maximum and minimum principal stress. Also, the maximum shear stress
acts in the plane that bisects the right angle between the directions of the maximum and
minimum principal stresses.

5.6 Nominal Stress

Recall the connection between area elements in the deformed and the reference state,
fids = (det F)F~7 . NdS. (5.45)

Define the nominal traction T acting on the area element in the reference state (Fig. 5.6) by

TgdS = tyds , (5.46)
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where t; is the true traction acting in the corresponding area element in the deformed
state. Since t; = o - fi, we have
TgdS = o - fids = o - (det F)F~7 . NdS. (5.47)
This defines the nominal stress tensor, or the first Piola—Kirchhoff stress tensor,
P = (detF)o -F 7, (5.48)

such that Ty = P - N. If we decompose the nominal stress on the bases in the undeformed
and deformed configuration, we have

P=PFjeE;. (5.49)
Thus, the nominal stress defined in this way has the following interpretation
Pj=¢;-P-E; = i component of force acting on an area element
that had its normal in the j direction
and had a unit area in the reference state.

The representation P is also used in the literature, where P = P”. This is associated with
the relationship to nominal traction, viz.,

Ty =N.P. (5.50)
In this case

P=PEe,, (5.51)
so that

P i=E; - P-e; = j™ component of force acting on an area element
that had its normal in the i direction

and had a unit area in the reference state.

It is noted that first Piola—Kirchhoff stress is not symmetric. Since

o= deltF P-F/, (5.52)
the symmetry of the Cauchy stress (o = o) implies
P.F =® FT=F.PT,
or
P-F/=F.P’ (5.53)

5.7 Equilibrium in the Reference State

We had already established the concept of nominal stress based on the idea of traction
equality, i.e.,

TndS = tyds. (5.54)
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Figure 5.7. Nominal and true traction in the reference
and current states.

To establish equilibrium in the reference state, we recall the definition of the nominal
stress, viz., P = (det F)o - F~T. With this in mind, global equilibrium requires that

/ Tn dSo+f BdV, =0. (5.55)
So Vo

The body force per unit reference volume is B. With the understanding that T, = P - N,
where N is the unit normal to the body’s surface Sy (see Fig. 5.7), (5.55) becomes

/ P-NdSo+f BdW, =0. (5.56)
So Vo
By the usual route, the divergence theorem leads to
/ (DivP" +B)dV, =0, (5.57)
Vo
ie.,
DivP" + B =0. (5.58)
By taking the time derivative of (5.56) we find that
d
— | (DivPT +B)dV; =0, (5.59)
dr Jy,

where we note that dV;/d¢t = 0. Thus, in rate form,
DivP  +B =0. (5.60)

Such a simple rate form equation does not hold for the Cauchy stress and its rate.
In component form (5.58) becomes

oF;
B =0. 5.61
7X, + B (5.61)
whereas, in rate form,
0B,
B =0. 5.62
ax T (5.62)

5.8 Work Conjugate Connections

Consider an increment of work performed during an incremental displacement, i.e.,

sw= [ (P-N)-sudS). (5.63)
So
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The rate of such working, at fixed imposed stress, is

w= [ (P N)-uds,
So

But the connection between positions in the current and reference states is
x=X+u x=1u
Recalling also that
F = 0x/0X, 0x/0X =0u/0X =F,
we can write
w = / (a-P)-NdSy :/ Div (u-P)dVy =/ Div (PT -w)dV;,
SU VlJ V()
or

w= [ (a-DivPT +P:F)dVj.
Vo

Consider the case where B = B = 0, DivP? = 0, and so
W = / P:FdV,
Yo
where P : F = P F;;. Note, if P = P is used as a nominal stress, then
P:F=P;F;=P;F =P -F.
If Ry is the work rate per unit reference volume, then

k rat . .
work rate _PiF= P,

0= unit reference volume
Since P = (detF)o - F~7, we have
Ro = (detF)(o -F7):F,

and, since o = o7,

Ro = (detF) o : [F-F*1+(F-F*1)T].

N =

This is is equivalent to
Ro=(detF)o :D =71:D,
where we define the Kirchhoff stress as
7 = (detF) o.
Recalling that

E=F"'D.-F = D=F7T.E.F!,
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(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)
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we can further write
Ro=(detF)o: (FT.E.F1!)
= (detF) oy F;;" E,, ;!
= (detF) 0;; F;," F ' Ey)
= (detF) F,'oi; F}," Ey.
Thus,
Ro=(detF)F'.0 . FT:E, (5.76)
from which we extract the stress measure
S=(detF)F!.0.F 7, (5.77)

which we call the second Piola—Kirchhoff stress. Thus, for the rate of working per unit
initial volume we have

Ro=P:F=7:D=S:E. (5.78)

Tosummarize, we have introduced three measures of stress, each conjugate to a particular
deformation measure vis-d-vis the work rate per unit reference volume, i.e.,

Nominal stress = P = (detF) o - F~ 7,
Kirchhoff stress = 7 = (detF) o, (5.79)
2"d Piola—Kirchhoff stress = § = (detF) F! . o - F 7.

We can say that P is work conjugate to F, whereas S is work conjugate to E.

5.9 Stress Deviator

The general tensor, such as o, can be uniquely decomposed into a deviatoric part as
1
oc=0+ 3 (tro)l. (5.80)

In proof, assume there were two such decompositions, viz., o;; = A§;; + a[’j = A" + ai//’-‘,

with oj; = o; = 0. Then, 0;; = 3 = 31" and from 14;; + o/, = Ad;; + o} it follows that
o;; = o;7. Note also that the principal directions of o and o are coincident.

5.10 Frame Indifference
Consider the scenario depicted in Fig. 5.8, i.e., a uniaxial tensile test with
oy =0, o0;j =0 otherwise. (5.81)

For the simple case of linear elasticity, with Young’s modulus FE, one is tempted to write

1
€ = 5 0. (5.82)
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Am - — - =

1
1
vO € Figure 5.8. Rotating body with stress relative to a fixed reference

frame.
€

This relation in rate form, on the surface, looks innocent enough! But, imagine that the rod
shown in the figure were to rotate, with the loading system attached to it as indicated. With
respect to a fixed basis such as {eq, e, e3} the components of o would change. However,
there are clearly no changes in stress state within the body that would cause any additional
deformation. Thus a stress rate such as ¢ would clearly be inappropriate for use in a
constitutive law.

We introduce the concept of an observer, i.e., a frame of observation. We say that two
such frames are equivalent if

(a) they measure the distance between any two arbitrary points to be the same;
(b) they measure the orientation between any two vectors to be the same;

(c) the time elapsed between any two events is the same; and

(d) the relative time between any two events is the same.

Let the two frames be called F and F, respectively. The two frames will satisfy the invari-
ance conditions (a)-(d) above iff the spatial-time coordinates are connected via

X =ct)+Q(t)-x, t'=t—a, (5.83)

where Q is an orthogonal tensor and a is a scalar constant (Fig. 5.9). Equation (5.83) can
be inverted to yield

x=Q (' +a)[xX —c(t' +a)], t=t+a. (5.84)

If a scalar field ¢, a vector field u, and a tensor field T are to be objective, they must
transform according to

P'(x, 1) = p(x,1),
v (x,t) = Q@) u(x,1), (5.85)
T, 1) = Q) T(x, 1) - Q"(2).

These transformation rules ensure that the directions of u and T are not altered by
the transformation, relative to two rotated frames. To see this consider the two sets of
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Y Figure 5.9. Rotated coordinate frame.

(¥

orthonormal bases, {e, e, e3} and {e], €}, €}}, where the {e;} bases, defined in F, coincide
with the {e}} bases defined in F’, and where according to (5.85),

e =Q() e (5.86)
Thus,
Q1) = €),()e,. (5.87)
Now, form the components of u as
WX, )€ = (X, 1) = Q) - u(x, 1) - € = u(x,1)- Q7 (1) - ¢
=u(x,1)- (e,,e’p) e =u(x,1)-eps, =u(x, 1) e =u;(x,1).
A similar manipulation confirms that
I(x,t)=e€ T(X,1)-€ =e T(x, 1) e = T;(x, ). (5.88)

Let us next obtain the relations for the velocity v, acceleration a, the rate of deformation
gradient F, and the velocity gradient L, under an observer transformation e; = Q - e;. As
before, x' = ¢(t) + Q -xand ¢’ =t — a. In frame F the motion is given as

x = ¥(X, 1), (5.89)
whereas in frame F’
X =c¢(t'+a)+Q(t' +a) X, t'+a)=¥'(X, ). (5.90)
We obtain
V(X 1) = 2—’; - —8‘1'5( £)
=¢(t' +a)+ Q' +a)- U(X, ' +a)
+ Q@ +a)- 78‘1'()(5;/ +a)
Since X' = ¢ + Q - x, there follows x = Q7 - (X' — ¢), and
vV, 1)=¢+Q -v+(Q-Q7) (x —¢). (5.91)
Furthermore,

X /0X = Q(f +4a)-9¥/3X =Q -F(X,1) =F,
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so that
F=QF
and
F(X,1)=Q@) -F(X, 1)+ Q- -F(X,1).
For the velocity gradient, we can write
L=F F'=(QF+Q-F)-(Q-F)"'
=Q - F-F' Q'+Q-Q".

Let
Q=0Q-Q".
Since
Q- Q=1 = (Q-Q) =0,
we have

. . T . T
Q- Q'=-Q-Q =-(Q-Q")",
that is, Q - Q7 is antisymmetric. Furthermore,

1
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(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

D= (L'+L7),
and
D/=%(Q-L-QT+Q'LT-QT+Q+QT).

Thus,

D'=Q-D-Q".

Finally, we show that if a vector u and a tensor T are objective, their so-called convected

rates

u=u+L". u,
and

A .
T=T+LT.T+T.L.

are also objective. In frame 7 we have

SR
=(Q-w +(Q-L-Q" - ) (Q-u)
=Q - (a+L"-u)+(Q-Q"-2)-(Q-w

A

:Q-(l’l+LT~u)=Q-u.

(5.100)
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Figure 5.10. Components of stress formed on spinning axes.

Thus, lAl, as given by (5.99), is objective. Similarly, for the tensor T,

A

T=T+L".-T+T L
=(Q-T-Q"y+(Q-L"-Q"-0)-(Q-T-Q7)
+(Q - T-Q")-(Q-L-Q"+9),
ie.,

T=Q- T. Q7. (5.101)

A
Thus, T, as given by (5.100), is objective.
Further results can be obtained by using the polar decomposition theorem, F =R - U.
Then,
L=F-F'=(R-U+R-U)- (U R
=R-R"+R-(U-U")-R"
=Q+R-(U-U")-R", @=R-R" (5.102)

Recall that the spin W is given by
1 . . .
W=-R-(U-U'-U".0U)-R"+R-R". (5.103)

IfU=0,then W=R R, ie., W= Q. Consequently, L=R-R”" and W=L =R -R’,
as well. It follows that

v
T=T-W-T+T-W (5.104)
is another objective rate of the tensor T, viz., the Jaumann rate.
To better understand the Jaumann rate, consider the stress tensor o. Its representation

in the basis {e;} is

o = 0;j€;€;. (5105)
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We ask now about the precise character of the base vectors e; that are used to form the
components of o. Let the basis {e;} spin with the rate W (material spin), as sketched in
Fig. 5.10. Then,

0 =0;jee; +0;¢e; +0;;eé;, (5.1006)
and
e =W-.e = Wye. (5.107)
Consequently,
o = g;jee; + Wioyee; — o Wiee;, (5.108)
iLe.,
o=dee;+W-o—-—0c-W. (5.109)

This leads to definition of corotational stress rate, observed in the frame that instanta-
neously rotates with material spin W,

dijeiej =6—-W-0c+0-W. (5110)
The stress rate
c=6-W-oc+o W (5.111)

is known as the Jaumann stress rate.

5.11 Continuity Equation and Equations of Motion

Consider an arbitrary material region that occupies V at time ¢. Let p be its mass density,
and as such is a continuous, differentiable, scalar field; thus the third equation of (4.223)
applies. If diffusion or chemical reactions are neglected, the total mass in this region is
conserved during deformation processes that may cause V to change, i.e.,

d
— dv =0. 5.112
A (5.112)
When the third equation of (4.223) is applied, this gives
/(D + pdive)dV =0. (5.113)
v

Since the region V is arbitrary, we have the continuity equation
p+pdive =0, (5.114)

at each point of the body.
Using (5.114), we may also show that

i/ ,od)dV:/,o(i)dV. (5.115)
dr Jy 1%
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Figure 5.11. The volume V of the body bounded by closed surface S. The
body force per unit mass is b and the surface traction over S'is t,,. The velocity
vector at an arbitrary point is v.

Indeed,
G [ poav= [ 1oy +porrriav
= /V[mb +(p + p divo)p]dV
_ /V pédV. (5.116)

Let b be the density of body force, measured per unit mass, as opposed to b, intro-
duced earlier which was measured per unit current volume. Then conservation of linear
momentum dictates that

d N
—/ pvdV:/pde—i—/tndS, (5.117)
dr Jy v s

where S is the bounding surface of the region in question, n is its outward pointing unit
normal, and t, = o - nis the traction vector. Now use (5.115) and the divergence theorem
to obtain

/ [pv — (dive + pB)] dv =0. (5.118)
14
Because V is arbitrary, we obtain

pa = pv = pX = div o + pb. (5.119)

These are the equations of motion.

5.12 Stress Power

The rate at which external surface and body forces are doing work (the mechanical power
input) on a body currently occupying the volume V bounded by the surface S is given by

P = /tl-"vl- dS+/ pbiv; AV, (5120)
S |4

where b; are the components of the body force (per unit mass), and ¢ are the components
of the traction vector over the surface element with unit normal n (Fig. 5.11). Since by the
Cauchy relation 1" = o;;n;, the surface integral can be expressed, with a help of the Gauss
divergence theorem, as

a
/ti"v,- dS:/Uijvinj dSZ/ —(ai,-v,-)dV. (5121)
s s v 0x;
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Thus, the mechanical power input is

a0;; av;
P= L+ pbi ) vi +01j — |dV. 5122
/v[(axi+p )v+613x1} (122
Since, by the equations of motion,
80,-, dU,’
bi=p—, 5.123
o, +pbi=p o (5.123)
the first integral in the expression for P becomes
dv; 1 d d 1
i—dV = p—(vv)dV=— [ =p(vv)dV. 5.124
[ougav=[ 3o emav=4 [ Sowu) (5.124)
This is evidently the rate of the kinetic energy
1
K= / = p(viv;)dV, (5.125)
v2
so that the mechanical power input is
dK 8vi
= — ;i —dV. 5.126
P dr fv % axj ( )
But, the velocity gradient is the sum of the rate of deformation and spin tensors,
av[
=L;;=D;+ W, (5.127)
ox; i ij if

and because o;; W;; = 0 (0;; being a symmetric and Wj; an antisymmetric tensor), we finally
obtain

P = d—K +/ (Ti]'D,‘jdV. (5128)
dr %
The second term is the so-called stress power. Thus, the mechanical power input goes
into the change of kinetic energy of the body and the stress power associated with the
deformation of the body. The quantity o;; D;; is the stress power per unit current volume.
The stress power per unit initial volume is 7;; D;;, where t;; = (po/p)oij is the Kirchhoff
stress. The stress power per unit mass is (1/p)o;; D;;.

5.13 The Principle of Virtual Work

Consider a body that is in a state of static equilibrium under the action of a system of
body forces b and surface traction Ty; the unit vector n is again the normal to the body’s
surface S. The surface § is taken to be composed of two parts, Sy and §,, where on S7
traction boundary conditions are imposed and on §, displacement boundary conditions
are imposed, as sketched in Fig. 5.12. Note that this assumes that a displacement field,
u, exists that gives rise to the equilibrium state of stress, such that the stresses satisfy the
equations of static equilibrium, viz.,V - & +b = 0. Now let us consider a displacement field
du consistent with the constraints imposed on the body. Thus du must vanish on S, but is
arbitrary on S7. Additionally, we take Su to be continuous and differentiable (as needed)
and to be infinitesimal. We assume that this virtual displacement does not affect static
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Tn n
sT
Figure 5.12. Virtual displacements atop boundary conditions.
Su

equilibrium which continues to prevail during the imposition of du on u. The increment of
work done through these displacements is then

5w=/b-8udV+/Tn~8udS, (5.129)
v N
or, in the component form,

1% s

ButT, = o -nor I; = o;jn;, and the second integral in (5.129) becomes, via the divergence
theorem,

/Tn-éudS:/(a'-n)~8udS
s s

:/S(a--Su)-ndSszV- (o-su)dV

= f V.-o- (SudV—i—/ o :grad sudV. (5.131)
14 v
The equilibrium conditions allow us to write
/V'J-Sude—fb-SudV. (5.132)
v v
Define a small strain measure corresponding to éu as
1

Se = 5 sym (grad éu). (5.133)

Then, because of the symmetry of o, (5.129) becomes
/b-BudV—l—/ Tn-BudSzfa:SedV, (5.134)

1% Sy 1%

or, in the component form,
/ b;du; dV+/ T:6u; dS = / aij(Seij dv. (5135)
1% Sr v

This is a principle of virtual work.
A similar development in terms of the nominal stress and an increment in §F yields the
result

/P:SFdVOZ/ B-(SudVO—i—/Su-P~NdSo, (5.136)
Vo Vo So

where Vj and Sy are the volume and surface of the body in the reference state.
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5.14 Generalized Clapeyron’s Formula

Let o;; be any statically admissible stress field, in equilibrium with body forces b; prescribed
within the volume V of the body and surface tractions 7; prescribed over the boundary
S of V. Let ii; be any continuous and differentiable displacement field within V| giving rise
to strain field &;; = (&; ; + @;,;)/2. The notation for partial differentiation is used such that
fl; j = 0@1;/dx;. Then, since T; = o;;n;, where n; defines the unit outward normal to S, the
application of the Gauss divergence theorem gives

/Y;ﬁidS:/O’l‘jflinj dS:/ (Uijﬁi)j dv
S S v ’

(5.137)
= / (Uij,jﬁi + Uijai,_j) dv.
v
But, 0;;, j = —b; by equilibrium, and 0;;i1; ; = 0;;¢;; by symmetry of 0;;, and the substitution
in above establishes a generalized Clapeyron’s formula
/ O'l'jél'j dVv = / T;i; dS +/ b;jii; dV . (5138)
v s 1%

This remarkable formula clearly leads to the principle of virtual work. Suppose we
take 4; to be the difference of any kinematically admissible displacement field ¥ and the
true displacement field u} of the boundary value problem corresponding to prescribed
body forces within V/, surface tractions on St, and displacements on S, = § — St (if any).
A kinematically admissible displacement field is continuous and differentiable, and it sat-
isfies the prescribed displacement conditions on §,. Call the displacement difference a
virtual displacement field, i.e.,

i = ou; = Uk —u . (5.139)

Clearly, 8u; = 0 over §,,. The generalized Clapeyron’s formula then becomes
/ o,-jSeij dVv = / T;6u; dS + / b;du; dV . (5140)
1% s 1%

This is the virtual work principle, previously established in (5.135). If (5.140) holds for any
kinematically admissible virtual displacement field du;, giving rise to virtual strain field
8e;; by usual relations, then the stress field oj; is in equilibrium with given body forces b;
in V and surface tractions 7; on S, i.e.,

Oij.j T bij=0 inV, and ojjinj = T, on St. (5141)
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6 Thermodynamics of Continuum

6.1 First Law of Thermodynamics: Energy Equation

A deforming body, or a given portion of it, can be considered to be a thermodynamic
system in continuum mechanics. The first law of thermodynamics relates the mechanical
work done on the system and the heat transferred into the system to the change in total
energy of the system. The rate at which external surface and body forces are doing work on
a body currently occupying the volume V bounded by the surface S is given by (5.128), i.e.,

P = E/ l,ov,-v,-dV+/ m,-D,-,-dV. (61)
Let g; be a vector whose magnitude gives the rate of heat flow by conduction across a unit
area normal to g;. The direction of ¢; is the direction of heat flow, so that in time dr the
heat amount ¢g;d¢ would flow through a unit area normal to g;. If the area dS§ is oriented
so that its normal #; is not in the direction of g;, the rate of outward heat flow through d§
is ¢;n;dS (Fig. 6.1). Let a scalar r be the rate of heat input per unit mass due to distributed
internal or external heat sources (e.g., radiation and heating due to dissipation). The total
heat input rate into the system is then

aq;
Q:—/qinid5+fprdV=f <— L +pr>dV. (6.2)
s 1% v\ 9x

First law of thermodynamics states that in any process the total energy of the system is
conserved, if no work is done or heat transferred to the system from outside. Alternatively,
the whole energy of the universe (system and its surrounding) is conserved. According to
the first law of thermodynamics there exists a state function of a thermodynamic system,
called the total energy of the system &, such that its rate of change is

gtot = P + Q (63)

Neither P nor Q is in general the rate of any state function, but their sum is. The total
energy of the system consists of the macroscopic kinetic energy and the internal energy of
the system,

1
gtotZ/ —pvividV—F/ pudV. (6.4)
v2 v

113
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Figure 6.1. (a) Heat flow through the surface orthogonal to the direction of the heat flow.
(b) The heat flow vector q through the surface element d§ with a unit normal n.

The specific internal energy (internal energy per unit mass) is denoted by u. It includes the
elastic strain energy and all other forms of energy that do not contribute to macroscopic
kinetic energy (e.g., latent strain energy around dislocations, phase-transition energy, twin-
ning energy, and energy of random thermal motion of atoms).

Substituting (6.1), (6.2), and (6.4) into (6.3) and having in mind the general result for a
scalar or tensor field A,

d dA
— AdV = —dV, 6.5
dt/Vp /Vp o (6.5)
gives
. g
/ (,ou—oi,-Dij—i-——,or)dV:O. (6.6)
% ox;

This holds for the whole body and for any part of it, so that locally, at each point, we can
write

. 9q;
pu=a,-jD,--—8—?+pr. (67)
i

This is the energy equation in the deformed configuration.

6.2 Second Law of Thermodynamics: Clausius-Duhem Inequality

The first law of thermodynamics is a statement of the energy balance, which applies re-
gardless of the direction in which the energy conversion between work and heat is assumed
to occur. The second law of thermodynamics imposes restrictions on possible directions of
thermodynamic processes. A state function, called the entropy of the system, is introduced
as a measure of microstructural disorder of the system. The entropy can change by inter-
action of the system with its surroundings through the heat transfer, and by irreversible
changes that take place inside the system due to local rearrangements of microstructure
caused by deformation. The entropy input rate due to heat transfer is

qin; r 13(qi/T)  r
— ds —dV = — 2+ —|pdV, 6.8
/sT +/va /v[p 0x; +Tp (68)
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where T > 0 is the absolute temperature. The temperature is defined as a measure of the
coldness or hotness. It appears in the denominators of the above integrands, because a
given heat input causes more disorder (higher entropy change) at lower than at higher
temperature (state at lower temperature being less disordered and thus more sensitive to
the heat input).

An explicit expression for the rate of entropy change caused by irreversible microstruc-
tural changes inside the system depends on the type of deformation and constitution of
the material. Denote this part of the rate of entropy change (per unit mass) by y. The total
rate of entropy change of the whole system is then

ds 19(q;/)T) 7
—dV = —— = dv. 6.9
P /v[p o + e (6.9)
Locally, at each point of a deformed body, the rate of specific entropy is

) 19(qi/T) r
= —— — . 6.10
§ > ox +ty (6.10)

Because irreversible microstructural changes increase a disorder, they always contribute
to an increase of the entropy. Thus, y is always positive, and is referred to as the entropy
production rate. The inequality

y >0 (6.11)

is a statement of the second law of thermodynamics for irreversible processes. Therefore,
from (6.10), we can write

. _Lae/n  r
o 0x; T

(6.12)

The equality sign applies only to reversible processes (y = 0). Inequality (6.12) is known
as the Clausius—Duhem inequality.

Since
ag/T) 1og 1 9T
_ 2% 1 ob 6.13
o,  Tox 1 7oy (613)
the inequality (6.12) can be rewritten as
1 9g; 1 oT
§>—— 4 T o (6.14)

pT dx; T pﬁqiax,-'

The heat spontaneously flows in the direction from the hot to cold part of the body, so that
qi(dT/9x;) < 0. Since T > 0, it follows that

1 oT
. <0. 6.15
7%y = (6.15)
Thus, a stronger (more restrictive) form of the Clausius—Duhem inequality is
1 9q; r
§ > ——— =. 6.16
5= p T ox; + T ( )

Inequality (6.16) can alternatively be adopted if the temperature gradients are negligible
or equal to zero. For the Carathéodory’s formulation of the second law of thermodynamics
and the resulting expression for the entropy production rate, see Boley and Wiener (1960)
and Kestin (1979).
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6.3 Reversible Thermodynamics

If deformation is such that there are no permanent microstructural rearrangements within
the material (e.g., thermoelastic deformation), the entropy production rate y is equal to
zero. The rate of entropy change is due to heat transfer only, and

1 9g;
Ts=— -2 4 (6.17)
p 0x;
Since
1 1 .
—0ij Di]‘ = — Si 'E,'/' s (618)
P Lo
the energy equation (6.7) becomes
1 .
= —S,‘jE,‘]‘-i- Ts. (6.19)
00

Equation (6.19) shows that the internal energy is a thermodynamic potential for determin-
ing §;; and T, when E;; and s are considered to be independent state variables. Indeed, by
partial differentiation of

u=u(kij,s), (6.20)
we have
u . u
1= —FE;; + —35, 6.21
u 8Eij ij s s ( )
and comparison with (6.19) gives
ou ou
S;i = , T=—. 6.22
ij £0 aEij 9s ( )

In the theory of the so-called entropic elasticity, describing thermo-mechanical behavior
of some elastomers, the internal energy depends only on temperature (i.e., there is no
change of internal energy due to deformation at constant temperature); see Chadwick
(1974) and Holzapfel (2000).

6.3.1 Thermodynamic Potentials
The Helmbholtz free energy is related to internal energy by
¢o=u—Ts. (6.23)

By differentiating and incorporating (6.19), the rate of the Helmholtz free energy is
.1 . .
¢ = —Sl‘jE,‘]'—ST. (624)
£0

This indicates that ¢ is the portion of internal energy u available for doing work at constant
temperature (7 = 0), i.e., the change of ¢ is the increment of work done at constant 7.
The Helmbholtz free energy is a thermodynamic potential for S;; and s, when E;; and T are
considered to be independent state variables. Indeed, by partial differentiation of

¢=0¢(Ej T), (6.25)
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we have
. ap . 10 .
= E,+—T, 6.26
b= 55 bt 5 (6.26)
and comparison with (6.24) gives
3¢ 3¢
Sij = , =——. 6.27
] 00 aE*l] S aT ( )

The Gibbs energy is defined as a thermodynamic potential with stress and temperature
as independent (controllable) variables, such that

1
g(Sij, T)=¢(E;, T) - o Sij Eij - (6.28)
By differentiating (6.28) and using (6.24), it follows that
. g . g 1 . .
8 asl] J + aT 00 s ( )
so that
g g
E=— , =__° 6.30
Ji £0 8Sij § T ( )
Note that
1
M(Eij,S)—g(Si,', T)Z _SijEj+Ts- (631)
' Lo

Finally, the enthalpy function is introduced as a thermodynamic potential with stress
and entropy as independent variables, such that

1
h(S,,,s):u(E],s)——S,]E,]=g(S,,, T)+TS (632)
Lo
By either (6.19) or (6.29), the rate of change of enthalpy is
. oh oh 1 .
h=—— 8+ —§=——E;S; +Ts. 6.33
aS,~Sf+8ss o iSii+Ts (6.33)

This demonstrates that the enthalpy is a portion of the internal energy that can be absorbed
or released as heat, T'ds, when stress §j; is held constant. For example, if we compress the
solid adiabatically, it warms up. If we then keep the stress constant, the amount of heat that
is conducted and/or convected away is the enthalpy change. Furthermore, (6.33) yields

oh oh
Ej=— , = — . 6.34
] L0 aSij 9s ( )
The fourth-order tensors
3S;j 9*(po @)
A, = ! = , 6.35
K (aEk,)T I E;j0 Ey (6.35)

0 E;j 3%(po 8)
Me,, — R - 6.36
ijkl (aSk,>T 3S;;0Su (6.36)
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are the isothermal elastic stiffness and compliance tensors. The two fourth-order tensors
are the inverse of each other. Being defined as the the second partial derivatives of pg ¢
and po g with respect to strain and stress, respectively, the tensors A;jy and My possess
reciprocal symmetries

?jk[ = Zli/' ’ Miejkl = MZI:’/‘ . (6.37)
The adiabatic elastic stiffness and compliance tensors are defined be the second derivatives
of pou and poh with respect to strain and stress, respectively.

6.3.2 Specific and Latent Heats

The ratio of the absorbed amount of heat and the temperature increase is called the
heat capacity. Because the increment of heat is not a perfect differential, the specific heat
depends on the path of transformation. The two most important kinds of transformations
are those taking place at constant stress (pressure) and constant strain (volume). Specific
heats at constant strain and stress are thus defined by

s as
CE (aT)E’ cs (aT)S’ (6.38)

s=35(Lj, T)=5(S;, T). (6.39)

where

The latent heats of change of strain and stress are the second-order tensors

as as
IE = T( ) S = T( ) . (6.40)
! 0Eij ) Y 3Sij )

In view of the reciprocal relations

as 8S,’j as 8E,'/'
- _ , = — , 6.41
p()(aEij)T <3T)E po(asij>T <3T )s (641

the latent heats can also be expressed as

1 98i; 1 E;;
E=——T(2), BE==—T(-2) . (6.42)
! Lo oT ) i T po aT )¢
The physical interpretation of the specific and latent heats follows from
as as 1
ds=(—) dE;+ (= | dT = = (I5dE; + cgdT), 6.43
’ ( Ei')T }+(3T)E T(” j +epdT) (643)
as as 1
ds = dS;j+ (== ) dT = = (13dS;; + csdT). 6.44
’ (asij>r ]+(3T)s (148 esdT) (049

Thus, the specific heat at constant strain c g (often denoted by ¢, ) is the heat amount (7'ds)
required to increase the temperature of a unit mass for the amount d7" at constant strain
(dE;;j = 0). Similar interpretation holds for cg (often denoted by c,,). The latent heat ll-? is
the second-order tensor whose ij component represents the heat amount associated with
a change of the corresponding strain component by d £;;, at fixed temperature and fixed
values of the remaining five strain components. Analogous interpretation applies to liSj.
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By partial differentiation, we have from (6.39)
05 95 95 0F;

— = — . 6.45
oT aT * ok aT (645)
The multiplication by T and incorporation of (6.38)—(6.42) gives the relationship
0
cs—cp="2 L (6.46)
Furthermore, since
N 05
= — M, 6.47
BS, 9 Ey ijkl ( )
it follows that
I = Myl (6.48)
When this is inserted into (6.46), we obtain
cs—cp = p—T" MBI, (6.49)
For positive definite elastic compliance M, it follows that
Cs > CE. (650)

The change in temperature caused by adiabatic straining d ;;, or adiabatic stressing
dS;;, is obtained by setting ds = 0 in (6.43) and (6.44). This gives

1 5 Los

6.3.3 Coupled Heat Equation

Suppose that the heat conduction is specified by a generalized Fourier law

oT
4 = _K"a—xj’ Kij = Kji . (6.52)
If the inequality applies in (6.15), the second-order tensor of conductivities K;; must be
positive-definite, i.e.,

oT aT
_I<ij_
8)6,‘ 8)6]‘

> 0. (6.53)

For simplicity it is assumed that Kj; is a constant tensor, although it could more generally
depend on temperature and deformation. The nominal rate of heat flow is

aT
0_ 0 0 _ -1 -T
4 = —Kj; ax Kjj = (detF) F, Ky F,; " (6.54)
which follows from
g'nlds’ = ginidS = g = (detF)F;'q; (6.55)
and (6.52). Since
13¢; 1 3q°
. (6.56)
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we obtain from (6.17)

1 3°T
Ts = — K° . 6.57
s pO ) 3)(1,3)(]_ +r ( )
Combining this with (6.43) yields the heat equation
1, 9T . .
— K° =IEF; T, 6.58
po 1] a){laxj + r ij ] + CE ( )
where
a5 1 .08 3%
IE—-T =—_—_T7 2 __T , 6.59
4 8Eij pO oT 8E,'/'3 T ( )
_ 5 g (6.60)
ETLT T T '

Since (6.58) involves the rates of both temperature and strain, it is referred to as a coupled
heat equation. The temperature and deformation fields cannot be determined separately,
but simultaneously.

6.4 Thermodynamic Relationships with p,V, T, and s

In many thermodynamic considerations in materials science it is the pressure and volume
that, together with temperature and entropy, appear in the analysis. We thus list in this
section the corresponding thermodynamic expressions, reckoned per one mole of the
substance (i.e., poVp is the mass of one mole). The energy equation is

du = —pdV + Tds.. (6.61)

Taking u = u(V, s), we obtain

() (), )

The Helmbholtz free energy is ¢ = ¢(V, T) = u(V,s) — Ts, which gives
dp = —pdV —sdT, (6.63)

The Gibbs energyisg =g(p, T) = ¢(V, T) + pV, and

and

dg = Vdp — sdT, (6.65)

indicating that s determines how fast g varies with 7, and V how fast g varies with p.

Furthermore,
a 0
V:(ﬁ), s=—(ﬁ>. (6.66)
op/)r or/,
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Finally, the enthalpy is & = h(p, s) = u(V, s) + pV, which gives

dh = Vdp+ Tds, (6.67)
and
() () 68
It is noted that
g=h—-Ts, u=¢—g+h. (6.69)

The Maxwell relations are
d 0 d oT
Yy _(E) () - (&), (6.70)
aoT )+, V), as )y v/,
A% 0 A% oT
<_) =_<_s) , <_> z(_> , (6.71)
or/, op/)r as /), ap /)

It may be noted that at constant V,
d¢p = —sdT, du= Tds, (6.72)

and

whereas at constant p,
dg = —sdT, dh=Tds. (6.73)

A physicist by “free energy” usually means the Helmholtz free energy, whereas a chemist
usually means Gibbs free energy (because they study their reactions at constant p or 7).

6.4.1 Specific and Latent Heats

The specific heats at constant volume and pressure are defined by

as as
,=T(—) , =T(—) . 6.74
‘ (8T>V o (aT),, ©79
Similarly, the latent heats are defined by
a d
I, = T(—S> . L,=T <—s) . (6.75)
IV )r ap/r
Since s = s(V, T), we have
as as
ds=|—) dV — | dT, 6.76
= (av), v+ (57), (670

and, upon multiplication with 7,
Tds =1,dV +c,dT. (6.77)

In particular, at V = const., we have du = Tds = ¢,d7T. On the other hand, by writing

s =s(p, T), we obtain
d )
ds = <_S) dp + (—S> dr (6.78)
aip), T/,
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and, upon multiplication with 7,
Tds =1,dp +c,dT. (6.79)

In particular, at p = const., we have dh = Tds = c,dT.
The relationship between ¢, and ¢, can be derived by partial differentiation of s =
s[V(p,t), T], as follows

8s> <3s) <8V) (as)

— | =\ — ) tl =] - (6.80)
( ar/, oV ) \oT/, aT /),

The multiplication with 7 establishes

oV
—1, (X . 81
¢y 1(3T>p+c (6.81)

Similarly, the relationship between [/, and /, can be derived by partial differentiation of

s =s[p(V,0), T1,
)~ (). G),

The last transition is made by using the relationship p = —(3¢/9 V). The multiplication
with 7 then establishes

__ (20
l,=— <W>Tl,,. (6.83)

6.4.2 Coefficients of Thermal Expansion and Compressibility

Coefficient of volumetric thermal expansion and compressibility coefficient are defined by

1 /o0V 1 /0V
L) el () 65
Vv \aoT/, V\op/,
In view of one of the Maxwell relations, we also have
1 /oV 1 /0
a:—(—) S (-S) . (6.85)
v\er/, V\op/

The coefficient of linear thermal expansion is /3, whereas the modulus of compressibility
isk = 1/B.The coefficients @ and § appear in the expression for the increment of volumetric
strain

dv

v = adT — Bdp. (6.86)
This follows from the above definitions of « and g, and
% %
V=V(T,p) = dV=(—) dT+|—) dp. (6.87)
ar), op )¢

An important relation for the pressure gradient of enthalpy at constant temperature can
be derived by partial differentiation of & = h[p, s(p, T)]. This gives

(5),= (&) +(5) ), =v+7(5), (6.9
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iLe.,
<%)T =V(A—-aT). (6.89)

To establish additional useful relationships involving specific heats and coefficient of
thermal expansion, we first recall the following result from calculus. If z = z(x, y), then

() (5).(2) -

Applying this to variables (7, V, p), we have

(9,69, G2,

In view of the definitions (6.84) for « and B, this gives

(8—”) -2 (6.92)

aT), B
or, recalling the Maxwell relation (ap/9T)y = (3s/3V)r,
as o
— ) ==. 6.93
(), (099
Now, from (6.81) and (6.84),
% as
—aw=|5) bh=aVl=aVT| —| . 6.94
e (aT),, e <8V>T (039
and, in view of (6.93),
o?
cp—cy=—VT. (6.95)
p
Finally, we derive a useful expression for the entropy change. Since
a A%
zp=T<—s> =—T<—) — —TaV, (6.96)
op/)r aTr/,
we obtain, from (6.79),
dT
ds = —anp+cp7. (6.97)

6.5 Theoretical Calculations of Heat Capacity

In this section we give a brief summary of theoretical calculations of heat capacity ¢, from
solid-state physics. We start with a monatomic gas. Each atom has three degrees of free-
dom, so that the mean kinetic energy of an atomis 3 - %kT, where k = 1.38062 x 1072 J/K
is the Boltzmann constant. Thus, the molar heat capacity ¢, of a monatomic gas is
¢, =3R/2, where R= Nk =8.314 J/K is the universal gas constant, Ny = 6.02217 x
10% mol~! being the Avogadro’s number. For diatomic molecule there are additional
energy contributions, one vibrational along the axis joining two atoms, and two rota-
tional around the axes normal to common axis. Each translational and rotational degree
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Figure 6.2. Specific heat ¢, (J/mol K) of a solid as a function of
temperature 7 (normalized by the Debye’s temperature 6p ).

of freedom contributes on average an energy equal to %kT per molecule (principle of
equipartition of energy among the active degrees of freedom). This gives a theoretical
value ¢, = SR/2. At higher temperature, one needs to include the vibrational (kinetic and
potential) energy contributions and quantum mechanics effects. If this is done, it is found

that
2 6/ T
¢, =R §+(g) ¢ P (6.98)
2 (69/T 1) k

The Planck’s constant is 4 = 6.62620 x 1073* J s, and v is a characteristic vibrational fre-
quency of the Einstein harmonic oscillator. The corresponding result for a solid is

9 2 0/T

— 3R S (6.99)
(7~ 1)

At high temperature this gives a Dulong—Petit limit

lim ¢, = 3R. (6.100)
0/ T—0

The expression (6.99) is not satisfactory at low temperature, where it predicts an expo-
nential decrease of ¢, with temperature, whereas a dependence on 77 is generally observed.
This is accomplished by Debye’s expression

0p /T x3dx 36p/T
C”_3R[12<T) fo w1 1| (6.101)
where 0p is the Debye’s temperature of a solid (the temperature of a crystal’s highest
mode of vibration). The values of 6p are tabulated; for example, 0S" = 343 K, whereas
05! = 428 K. The plot of ¢,/ R vs. T/6p for a typical solid is shown in Fig. 6.2. For many

solids for which the room temperature is greater than 6p, the Dulong—Petit limit ¢, = 3R
is practically attained already at 298 K.
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Figure 6.3. Specific heats ¢, and ¢, of copper vs. temperature 7 (from
Lupis, 1983).

If the coefficients of thermal expansion and compressibility are experimentally deter-
mined, then the plot for ¢, vs. temperature can be obtained from that for ¢, and the relation-
ship ¢, — ¢, = («?/B)V T. Typically, one obtains a plot as sketched in Fig. 6.3. Knowing the
variation c,(7T) is important to determine the entropy change associated with the change
of temperature (at constant pressure). Since, at constant pressure, 7ds = ¢,d T, we obtain

T
s —580= / cp(T)dT. (6.102)
T
In a certain temperature range, the approximation ¢,(7T) = a + bT + ¢T~? may be satis-
factory. The coefficients a, b, and c are also tabulated for various materials and temperature
ranges. For most metals, the entropy increases because of phase transformations (melting
and boiling) are

J .
As) =83 +12.6 T (Richard’s rule),

J
K mol

(6.103)
Asp ~ 92

(Trouton'’s rule).

The superscript 0 indicates that the values are given at standard pressure of 1 atm. Bet-
ter estimates of Asy, are possible by including into considerations the crystallographic
structure of solid phase. Usually,

As? (h.c.p.) — As® (f.c.c.) = As% (f.c.c.) — As? (b.c.c.) ~ 1 .
sm(h.c.p.) — Asp (f.c.c.) sm(f.c.c.) — Asp (b.c.c.) Kmol

6.6 Third Law of Thermodynamics

It is first assumed that there is a lower limit of temperature that the matter can exhibit.
This is called the absolute zero of temperature. Now, if the entropy of each element in
its perfect crystalline state (without vacancies, dislocations, or any disorder) is taken to
be zero at the absolute zero of temperature, every substance composed of elements has
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a finite positive entropy, unless it is a perfect crystalline substance. All perfect substances
have zero entropy at 7 = 0 K. This is the third law of thermodynamics.

This law simplifies the calculation of entropies. For example, if perfect iron and perfect
carbon have zero entropies at 0 K, then the entropy of perfect cementite Fe;C is also zero
at 0 K. If we do not adopt the third law, we could take that the entropy of perfect iron is, say,
8 J/K mol, and of carbon 4 J/K mol, but then the entropy of the perfect cementite would be
28 J/K mol. Note also that, if we take thats = 0 at T =0, then fromdg = dh — Tds — sdT
we obtain that at the absolute zero of temperature dg = dh. Furthermore, from statistical
thermodynamics, we have s = kln wp,,x, Wwhere wyay is the probability of the state with
maximum number of quantum states (under given conditions of energy, volume, etc.). At
the absolute zero of temperature, there would be a perfect order and only one state. Thus,
Wmax = 1 and s = 0.

With the adopted third law, in a test at constant pressure the entropy of a perfect sub-
stance at the temperature 7 can be calculated from

r C
s =/ Ldr. (6.104)
o T
Clearly, the ratio ¢,/ T must remain finite as 7' — 0 K. Similarly, in a test at constant volume
(leading to another state from that obtained in a test at constant pressure), the entropy of

a perfect substance at the temperature 7 would be

TC
szf ©qr. (6.105)
T

The integrand is clearly not divergent at 7 = 0 K, because ¢, ~ T° near the absolute zero
of temperature.

The entropy of a perfect substance at 7' = 0 K is equal to zero regardless of the pressure
or volume there. Thus,

d
<_S) -0, (6.106)
/=0
and since, by the Maxwell’s relation and the definition of the coefficient of thermal expan-
sion,
0 1%
(_S) __ <_> — V. (6.107)
op/)r ar),
we conclude that
()79 =0. (6.108)
Furthermore, since
0
o5 =0, (6.109)

and

(), -85
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we conclude that

(B)r—o #0, e, (k)p_g#00. (6.111)

The modulus of compressibility is « = 1/8.

6.7 lrreversible Thermodynamics

For irreversible thermodynamic processes (e.g., processes involving plastic or viscoelastic
deformation) we can adopt a thermodynamics with internal state variables. A set of in-
ternal (structural) variables is introduced to describe, in some average sense, the essential
features of microstructural changes that occurred at the considered place during the de-
formation process. These variables are denoted by £; (j = 1,2, ..., n). For simplicity, they
are assumed to be scalars (extension to include tensorial internal variables is straightfor-
ward). Inelastic deformation is considered to be a sequence of constrained equilibrium
states. These states are created by a conceptual constraining of internal variables at their
current values through imposed thermodynamic forces f;. The thermodynamic forces or
constraints are defined such that the power dissipation (temperature times the entropy
production rate) due to structural rearrangements can be expressed as

Ty = f§. (6.112)

The rates of internal variables &; are called the fluxes, and the forces f; are their affinities.
By the second law, y > 0, and therefore f; &; > 0.

If various equilibrium states are considered, each corresponding to the same set of values
of internal variables &;, the neighboring states are related by the usual laws of reversible
thermodynamics (thermoelasticity), such as (6.17) and (6.19). If neighboring constrained
equilibrium states correspond to different values of internal variables, then

1 ag;
7 L4

St fi&. (6.113)

Combining this with the energy equation gives
1 , .
ZlZ—SijEij—i-TS‘—ijj. (6.114)
00
Thus, the internal energy is a thermodynamic potential for determining S;;, 7 and f;,

when FE;;, s and &; are considered to be independent state variables. Indeed, after partial
differentiation of

u=u(kj,s, &), (6.115)
the comparison with (6.114) gives
au ou ou
Si=po——, T=—, i=—— 6.116
i = Po 0 E; 3s f] 9 ( )

The Helmholtz free energy

p=0¢(Ej, T &)=u(E;j, s &)—Ts (6.117)
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is a thermodynamic potential for determining ;;, s and f;, such that

3¢ 3¢ )
Sij = po - =——, j=—0. 6.118
1=haE s ST e T g (6.118)
This clearly follows because
. 1 . . .
¢=—Skj—sT—[;§. (6.119)
P0
If the Gibbs energy
1
§=28(S T.&)=0¢(Ey T, s,»)—%SfEi- (6.120)
is used, we have
dg dg dg
Ej = - , =——, = —. 6.121
p=Tgs ST e T T (6.121)
This follows because
1 . . .
§=——E;Sj—sT—f;§. (6.122)
£0
It is noted that in (6.118)
fie= fi(Eij, T, &), (6.123)
whereas in (6.121)
fi= T (Sij, T. &), (6.124)
indicating different functional dependences of the respective arguments.
Finally, with the enthalpy
1
h:h(Sij,S,Ej)Zu(Ej,S,gj)——S,"E,“ (6125)
Lo
as a thermodynamic potential, it is found that
oh dh dh
Ej =— , T=—, = 6.126
1T s, o' 1T g (6.126)
because
. 1 X .
h=—-——E;S+Ts— fi§. (6.127)
Lo

By taking appropriate cross-derivatives of the previous expressions, we establish the
Maxwell relations. For example,

0Eu (S, T, &;)  95(Sy;, T, &)
oT T TS,
O0Su (Eij, T.§;) — 05(Ey. T.§))

9T Pk

k]

(6.128)
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and

0Eu (S, T, &) 3 (Sij, T, &)

= L0 B
95, 3,
5 o (6.129)
Sy (Eij, T, &)) — 3 fm (Eij, T, &)
A 0 9 Ey '

6.7.1 Evolution of Internal Variables

The selection of appropriate internal variables is a difficult task, which depends on the
material constitution and the type of deformation. Once internal variables are selected, it
is necessary to construct evolution equations that govern their change during the defor-
mation. For example, if the fluxes are assumed to be linearly dependent on the affinities,
we may write

& = Aij fj. (6.130)

The coefficients A;; obey the Onsager reciprocity relations if A;; = A j;.

For some materials and for some range of deformation, it may be appropriate to assume
that at a given temperature 7" and given pattern of internal rearrangements &;, each flux
depends only on its own affinity, i.e.,

& = function (f;, T, &;). (6.131)

The flux dependence on the stress S;; comes only through the fact that f; = f; (S, T, &).
This type of evolution equation is often adopted in metal plasticity, where it is assumed
that the crystallographic slip on each slip system is governed by the resolved shear stress on
that system (or, at the dislocation level, the motion of each dislocation segment is governed
by the local Peach—Koehler force on that segment).

6.8 Gibbs Conditions of Thermodynamic Equilibrium

The system is in a thermodynamic equilibrium if its state variables do not spontaneously
change with time.

Theorem 1: I[nanisolated system, the equilibrium state is the state that has the maximum
value of entropy.

This is a direct consequence of the second law of thermodynamics. The increment of
entropy is due to irreversible processes within the system, and its interaction with the
surrounding, ds = ds'™ + ds*""". By second law, ds™ > 0. Thus, for an isolated system
(dss** = (), we must have

ds > 0, (6.132)

i.e., the entropy of an isolated system can only increase during a thermodynamic process.
If the process comes to equilibrium, the entropy is greater than the entropy in any nearby
nonequilibrium state. This, for example, indicates that the entropy of the whole universe
(which is an isolated system) always increases.
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Theorem 2: At constant stress and temperature, the direction of a spontaneous change
of the thermodynamic state is in the direction of decreasing Gibbs energy.

This clearly follows from (6.122), which, at constant stress and temperature, reduces to

The inequality follows from the second law, requiring f; &; > 0. Thus, a transformation
from the thermodynamic state can occur at constant stress and temerature only if it is
associated with a decrease of the Gibbs energy. Because there is no spontaneous change
from the equilibrium state, the Gibbs energy is minimum at the equilibrium state (relative
to all neighboring states at constant stress and temperature).

Gibbs originally formulated his celebrated thermodynamic equilibrium condition as:

Any virtual variation from the equilibrium state at constant pressure and temperature
which does not involve irreversible processes would give §g > 0; if the variation involves
irreversible changes, then §g < 0.

If the substance can be in either a or b phase (structure), at given pressure and temper-
ature, a stable equilibrium phase is one that corresponds to lower Gibbs energy.

Theorem 3: Among all neighboring states with the same strain and entropy, the equi-
librium state is one with the lowest internal energy.

This follows from (6.114), which, at constant strain and temperature, reduces to
L'tz—f]‘éj<0. (6134)

Thus, when the system undergoing a thermodynamic process at constant strain and entropy
comes to rest at its equilibrium, its internal energy attains its minimum. (It is hard to
control entropy in the experiment; conceptually one would need to extract the heat from
the internal dissipation, such that ds = 0).

Theorem 4: Among all neighboring states with the same strain and temperature, the
equilibrium state is one with the lowest Helmholtz free energy.

This follows from (6.119), which, at constant strain and temperature, reduces to
¢=—fi§ <0. (6.135)

Theorem 5: Among all neighboring states with the same stress and temperature, the
equilibrium state is one with the lowest enthalpy.

This follows from (6.127), which, at constant strain and temperature, reduces to

h=—fé<0. (6.136)

6.9 Linear Thermoelasticity

The structure of the constitutive equations relating the stress, strain, entropy and tem-
perature in linear thermoelasticity is readily derived by assuming a quadratic represen-
tation of the Helmholtz free energy in terms of strain and temperature. The material
parameters are specified in the accordance with observed isothermal elastic behavior and
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measured coefficients of thermal expansion and the specific heat. For isotropic materials,
this yields

1
d(eij, T) = EKTeik + peijei; — krog(T — To)exx
. (6.137)
c
- 2—;0(T— 1) —so(T = To) + fo,

where A7 and u are the isothermal Lamé elastic constants, k7 = Ay + 2 /3 is the isothermal
bulk modulus, and «y, c(‘],, and s¢ are, respectively, the coefficient of volumetric thermal
expansion, the specific heat at constant strain, and the specific entropy (per unit volume), all
in the reference state with temperature 7y. The infinitesimal strain is ¢;;. The corresponding
free energy (per unit volume) is ¢(0, 7y) = ¢o. The stress and entropy in the deformed state
are the gradients of f with respect to strain and temperature, which gives

0
oij = < ¢ ) = Arewdij + 2pe;; — krao(T — 1o)di; (6.138)
' deij ) r
__(%2) _ +COV(T ) + (6.139)
s = 9T e—KTOl()ekk 1_(,] 0 S0 - .

The specific heat at constant strain, associated with (6.137) is

ds 3% o T
CV - T (8—T>e - —T (8—7'2>e - CVTO . (6140)

Once the Helmholtz free energy is specified as a function of strain and temperature, the
internal energy u = ¢ + Ts can be expressed in terms of the same independent variables
by simple substitution of (6.137) and the corresponding expression for the entropy. This
yields

1 cd
u(eij, T) = 5)\.7812(]( =+ neije;j + KTO{()T(‘)Ekk =+ 2_¥6(T2 — 7—(‘]2) + Up . (6141)

In the sequel, it will be assumed that the internal energy vanishes in the reference state,
so that

uy = 0 s (]50 = —YE)S() . (6.142)

However, the internal energy is a thermodynamic potential whose natural independent
state variables are strain and entropy, rather than strain and temperature. The desired rep-
resentation u = u(e;;, s) can be obtained from u = ¢ 4+ T's by eliminating the temperature
in terms of strain and entropy. The purely algebraic transition is simple, but little indicative
of the underlying thermodynamics. An independent derivation, starting from the energy
equation and utilizing the experimental data embedded in the Duhamel-Neumann exten-
sion of Hooke’s law and the assumed specific heat behavior, is desirable. The systematic
procedure to achieve this, and to derive the expressions for other thermodynamic poten-
tials, is presented in next section.
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6.10 Thermodynamic Potentials in Linear Thermoelasticity

The four thermodynamic potentials are derived in this section in terms of their natural
independent state variables. The derivation is in each case based only on the Duhamel-
Neumann extension of Hooke’s law, and an assumed linear dependence of the specific
heat on temperature.

6.10.1 Internal Energy

The increment of internal energy is expressed in terms of the increments of strain and
entropy by the energy equation

du = O'i}‘dei}‘ + Tds . (6143)

Because u is a state function, du is a perfect differential, and the Maxwell relation holds

(30’7 ) = <8T> . (6.144)
as e 8eij s

The thermodynamic potential u = u(e;;, s) is sought corresponding to the Duhamel-
Neumann expression

ojj = ArekkSij + 2,[L€ij — KTC(()(T — R)Sij s (6145)
and an assumed linear dependence of the specific heat on temperature
T
cy=c)—. (6.1406)
T

By partial differentiation from (6.145) it follows that

301']' a(fij oT oT
- — ) =- — ) &; 14
(5).= (7). (&) = () 0w

so that the Maxwell relation (6.144) gives

aT aT
=— — ) 8ij. 6.148
<8eij>s KTOlO(aS )e ij ( )
The thermodynamic definition of the specific heat at constant strain is
as
=T|=) , 6.149
v (a T>e (©14)
which, in conjunction with (6.146), specifies the temperature gradient
aT 1
(—> =2 (6.150)
s ), oy
The substitution into (6.148) yields
oT 1
= 0, (6.151)
3eij s C(‘)/

The joint integration of the above two equations provides the temperature expression

ke 1) 1
T=—"2"ey+ (s —s0)+T. (6.152)
c cy

Vv
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When this is inserted into (6.145), we obtain an expression for the stress in terms of the

strain and entropy,
ko 1)
0ij = )LSekk(Sij + 2I«Leij _ %(s — SO)(SU . (6153)
1%

The adiabatic (isentropic) Lamé constant Ag is related to its isothermal counterpart A7 by

2
T
s = Ar + “20 0,2.. (6.154)
14

By using (6.152) and (6.153), the joint integration of

3 5
oij =( u) , T= (—u) , (6.155)
86,‘]‘ s as e

yields a desired expression for the internal energy in terms of its natural independent
variables e;; and s. This is

1 ko1
u(eij,s) = Ekge,zck + peijeij — %(s — 80)ekk
v
(6.156)

T
+ —%(S —50)* + To(s — o).
2cy,

6.10.2 Helmholtz Free Energy

An independent derivation of the Helmholtz free energy ¢ = ¢(e;;, T) again begins with
the pair of expressions (6.145) and (6.146). The increment of ¢ is

d¢ = Uijde,-j — SdT, (6157)

(3"”’) =—<8S) . (6.158)
oT e Bei,- T

By evaluating the temperature gradient of stress from (6.145), and by substituting the
result into (6.158), we find

with the Maxwell relation

<8a: j ) = kraudy;. (6.159)
The integration of above, in conjunction with
ds )
<ﬁ>e = ?Z (6.160)
provides the entropy expression
cy
s = KkTeKk + 70(T —1p) +s0. (6.161)

By using (6.145) and (6.161), the joint integration of

_ (99 __ (92
Gii_(aei)f T <8T>e’ (6.162)
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yields a desired expression for the Helmholtz free energy in terms of its natural independent
variables ¢;; and 7. This is

1
¢(eij, T) = Elreik + pejjeij — krog(T — To)exk

K P . (6.163)
276 0 Sod .
6.10.3 Gibbs Energy
The increment of the Gibbs energy is
dg = —€ijd0’,'j — SdT, (6164)

with the Maxwell relation

aei, as
= . 1
<3T>a <3ffij)r (6169

To derive the function g(o;;, T), independently of the connection g = ¢ — o;¢;; and with-
out tedious change of variables, we begin with the thermoelastic stress-strain relation and
the expression for the specific heat,

1 vr (o))
€ 2u<6’ T+ ’>+3( 2 ( :
T
cp(T) = c(})?o . (6.167)

The first one is a simple extension of Hooke’s law to include thermal strain, and the second
one is the assumed linear dependence of the specific heat at constant stress on temperature.
The thermodynamic definition of the specific heat cp is

as
=T|—=) - 6.168

C‘” (BT)G (6169
By differentiating (6.166) to evaluate the temperature gradient of strain, and by substituting
the result into the Maxwell relation (6.165), we find

(;’;}_)T = 3o (6.169)
The integration of this, in conjunction with
(g_ST)a _ % (6.170)
provides the entropy expression
s:%okk—k%(T—To)—i-so. (6.171)

Using (6.166) and (6.171), the joint integration of

98 98
= — , =—(==) . 6.172
e] (30,']'>T s (3T>0, ( )
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yields a desired expression for the Gibbs energy in terms of its natural independent vari-
ables o;; and T. This is

1 vr [o%))
g(0ij, T) = m (Uijf’if - m%@) -3 (T - To)ow
' (6.173)

Cp 2
P (T T2 —sT.
275( 0)" =0

The relationship between the specific heats ¢% and ¢!, can be obtained in various ways.
For example, by reconciling the entropy expressions (6.161) and (6.171), and by using the
relationship

1
ek = —okk +ao(T — 1), (6.174)
3KT

following from (6.164), it is found that
0

A= =kl Ty (6.175)
6.10.4 Enthalpy Function
The increment of enthalpy is

dh = —€i/d0’,’]’ + Tds, (6176)

ij T
<aef> =—(3 ) . (6.177)
as s 30’,‘]‘ s

To derive the function h(o;;, s), we again begin with the expressions (6.166) and (6.167).
By partial differentiation from (6.166) it follows that

86,'/' 36,']' oT o orT
= —) =2(=) &. 1
(as ) <8T>(,<as>(, 3 (as)(,‘s’ (©17)

The substitution into the Maxwell relation (6.177) gives

oT aT T
(5e), =5 (&), 0 =5 (6179
80,-]- s 3 as - 3CP

The definition (6.168), in conjunction with (6.167), was used in the last step. The joint
integration of the above equation and

with the Maxwell relation

oT T
(-) =, (6.180)
ds o Cp
provides the temperature expression
a1
T = 30 L o + T (s —s0)+ Tp. (6.181)

When this is substituted into (6.166), there follows

1 v aol;
= <Gl'f - Tsvsa"k‘sii> 30 2 (5 =503 (6.182)
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The adiabatic Poisson’s ratio vg is related to its isothermal counterpart vy by

2u(1 —2u(1
v5=vT+ w( —i—vr)a’ UT:vs u( +v5)a’ (6183)
1—-2u(l+vr)a 1+2u(1+vs)a
where
2Ty
=50 (6.184)
9cp
The adiabatic and isothermal Young’s moduli are related by
1 1 2Ty
— =20 (6.185)
ET ES 9CP
A simple relationship is also recorded
C% KS
- =—. (6.186)
CV KT
This easily follows by noting, from (6.152) and (6.181), that for adiabatic loading
T T
YE) —T= KTO;O Oekk = il 00 Okk - (6.187)
cy 3cp

Since for adiabatic loading oy, = 3k sex, the substitution into (6.187) yields (6.186).
Returning to the enthalpy function, by using (6.181) and (6.182), the joint integration of

oh oh
eij = —< ) , T= <—) : (6.188)
901 / 95 /4

yields the expression for the enthalpy in terms of its natural independent variables o;; and
s. This is

1 Vg aoTo
hoes) = =g (oo = ok ) = S oo (6.159)

1
+ —%(S —50)* + To(s — so) -
2¢p

6.11 Uniaxial Loading and Thermoelastic Effect

The derived representations of thermodynamic potentials for arbitrary three-dimensional
states of stress and strain are greatly simplified in the case of uniaxial and spherical states
of stress. The corresponding results are listed in Problems 6.1 and 6.2 of Chapter 34. To
illustrate the use of some of the derived formulas, consider the uniaxial loading paths
shown in Fig. 6.4. The path OAB is an adiabatic (fast loading) path, the path OC is an
isothermal (slow loading) path, the path AC is a constant stress path, and the path BC is
a constant longitudinal strain path. Along the adiabatic path OAB (see Problem 6.1)

L,

:—h:— s
u ZESG

(6.190)
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Figure 6.4. Uniaxial loading along isothermal path OC, and along adiabatic path
OAB. The paths AC and BC are the constant stress and constant longitudinal strain
c paths, respectively.

€a Cpg=C¢

Yo

whereas along the isothermal path OC [see the expressions for ¢(o, T) and g(o, T) from
Problem 6.1]

1
¢_¢0:go_82ﬁ02, ¢o =go=—Toso. (6.191)
T

The temperature drop along the adiabatic path is

T
T-T=-2lo, (6.192)
3cp
in accord with Kelvin’s formula describing Joule’s thermoelastic effect. The entropy in-
crease along the isothermal path is

s —s0= ? o, (6.193)
with the corresponding absorbed heat given by Ty(s — s0).

The heat absorbed along the constant stress path AC is equal to the enthalpy change

ap Ty T
he —hp=——04— ——04. 6.194
CTIAT TR OAT g0 4 (6.154)
This is in agreement with the result following from
T 0
/ cp(T)dT = L (T2 - T3). (6.195)
T 2T
The heat absorbed along the constant longitudinal strain path BC is
1 aoTo 1
Uc —up = <E03+TUC)—2—ESG§, (6196)
which gives
aply Es o}Ty ,
—Up=——04— — 6.197
e R A T (6.197)

This can be confirmed by integrating

Sc Sc T‘O 050
Tds = To+ — (s —s0— = ds, 6.198
/ s / |: 0+ ) (s 50 3 a)] s ( )

SB SB
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with the stress variation, along the path BC, given by

Eg aoTy
O =—04— 30

B Es(s — s0) . (6.199)

For metals, the second term on the right-hand side of (6.197) is much smaller than the first
term, being associated with small departures of cp and cy from their reference values c?,
and ¢, inherent in linear approximations cp = ¢% 7/ Ty and ¢y = ¢}, T/ Ty, which are valid
for sufficiently small temperature differences (7' — Tp).

An alternative derivation of (6.197) proceeds by noting that along the path BC,
do = — E7aodT/3 (because the longitudinal component of strain is fixed along that path).
The corresponding increment of entropy is

(&%)} CP ET
ds = 3 do + dT =T Es dT. (6.200)
The relationship (6.185) between isothermal and adiabatic Young’s moduli was used.
Therefore,

/TC Tds = < Er (T3 - T3). (6.201)
Ty 271y Es

The incorporation of (6.192) reproduces (6.197).
Yet another derivation is possible by starting from an expression for the heat increment
in terms of the latent and specific heat, i.e.,

Tds = [j;de;j + cvdT . (6.202)
The components of the latent heat tensor at constant strain are defined by
I = T( s > = k7o T8 . (6.203)
deij /7
which gives
Tds = kragTdey + cydT . (6.204)
Because along the path BC,
dey = % 1+ vp)aodT, (6.205)

the substitution into (6.204), and integration from Tg to Te = Ty, gives (6.197). This deriva-
tion is facilitated by noting that, in view of (6.183),

aé]b _vg—r

14 vp) D20
( VT)9C(IJ3 Es

(6.206)

The individual contributions of the latent and specific heat to the total heat absorbed
along the path BC are

¢ 1-2
f evdT = —— =5 (ue — up), (6.207)
B 1 — 21)

/ I¢,de;; = "T (e —up). (6.208)
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The contribution given by (6.207) is smaller than (¢ — ug), because vg > vr. Since the lat-
eral strain is not held constant along the path BC, there is a small but positive contribution
to absorbed heat from the latent heat, and this is represented by (6.208). Both, (6.197) and
(6.207) display in their structure simple combination of adiabatic and isothermal elastic
constants, via the ratio terms Es/ Ep and

&B_l—zvs
C(}, ET_1—2UT'

(6.209)

6.12 Thermodynamics of Open Systems: Chemical Potentials

In addition to heat and work transfer, an open thermodynamic system allows a mass
transfer across its boundary. Consider a homogeneous system, consisting of one phase,
made up from uniform mixture of k components. For example, an Al-Zn fcc phase consists
of Al and Zn components. Let ny, ny, . . ., ng be the numbers of moles of these components.
Let U, V, and § be the internal energy, volume, and entropy within the whole system
(extensive properties; if u is the internal energy per unit current mass, then U = pVu and
S = pVs, where p is the current mass density). Suppose

U=UV,S. n.n.....n). (6.210)

U U 1
dU = | — dv — ds E —_— dn; . 6.211
<3V>S,n,- * (8S>V,n,- " i—1 <ani>S,V,nj#i " ( )

then

Since, at constant composition (all #; fixed), the relationships from the thermodynamics
of closed system apply, we have

oU oU
=—— , T'=|— , 6.212
P (8V>S,ni <8S>V,n; ( )

where p and T are the pressure and temperature (intensive properties). If V and S are held
constant, (6.211) indicates that the internal energy changes because of the changes in com-
position alone. Thus, we introduce the so-called chemical potential of the i-th component
by

= (ﬂ) . (6213)
ani V,S,)’l]‘#’

Consequently, the overall increment of internal energy can be expressed as

k
dU = —pdV + TdS + ) " widn; . (6.214)
i=1
This can be viewed as the energy equation for an open system. The term — pdV is the work
done to the system, 7dS is the heat transferred to the system, and each u;dn; is the energy
change due to an infinitesimal change of the component i at fixed V and S and fixed number
of moles of other components. (For example, the addition of interstitial atoms changes the
internal energy of the system, and this change is governed by the corresponding chemical
potential).
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The chemical potential can also be introduced as the gradient of other thermodynamic
potentials, by holding their independent variables fixed. For example, considering the
Helmholtz free energy

SV, T,n,ny,....n)=UWV, S, ni,m,...,n,) — TS, (6.215)
we have
k
d® = —pdV — SAT + > pidn; , (6.216)
i=1
where
1o ad ad
p=_<_> , 5:_<_> , mz( ) . (6:217)
oV /)1, 0T )y, on; V. Tonjsi
With the Gibbs energy
G(p, T,n,ny,....,n5) =DV, T,ny,ny, ..., ng) + pV (6.218)
as the thermodynamic potential, we obtain
k
dG =Vdp — SAT + Y wdn; , (6.219)
i=1
where
G G G
V= (—) , S=- (—) NNES <—) . (6.220)
ap T,n; aT pshi 3)’11‘ p.Tnj
Finally, if the enthalpy of the system
H(p, S, ni,n,....,n)=UV, 8 ny,ma,...,ne)+ pV (6.221)
is used, we have
k
dH=Vdp+TdS+ ) pidn;, (6.222)
i=1
with
oH oH oH
V= (—) , T'= (—) NNES ( ) . (6.223)
ap Sy ENY oo on; S
If the stress state is not pure pressure, the stress and strain tensors are related by
1 /ad 1 /0G
Sif:_< ) : Eij:—< ) : (6.224)
VW \dE;j /1, Vo \3Sij ) g, n,

where V) is the initial volume of the system. Similar relations hold if U and H are used as
thermodynamic potentials.

One can easily establish the Maxwell’s relations corresponding to each thermodynamic
potential (or the set of independent state variables). For example, by using the Gibbs
energy, i.e., p, T, and n; as independent state variables, there follows

<3V) _ (am> , (6.225)
al’l,’ p.T.nj ap T.n;
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S o
( ) - —( “) , (6.226)
al’l,’ p.Tonjz oT pnj
o o
< “’) - <ﬂ> . (6.227)
n; P Tonrzj on; P Tonyi
For the two component system, G = G(p, T, ni, ny), the last reciprocal relation reads
9 9 2G
(ﬂ> - (£> - < ) _ (6.228)
ony p.T.m any p.T.ny dn ony p.T
6.13 Gibbs-Duhem Equation
The Gibbs energy
G=G(p, T,n,my, ..., "0k (6.229)

is a homogeneous function of degree 1 with respect to ;, so that

G(p, T, any, any, ..., ang) = AG(p, T, ny, na, ..., 1), (6.230)
and
k
G
> (—> n=G. (6.231)
o \on p.T.njz
Recalling a definition of the chemical potential
G
= <_> , (6.232)
al’li P T
we conclude that
k
G=> wni. (6.233)
i=1

Therefore, the Gibbs energy of the system is the weighted sum of the chemical potentials of
its components. If the system consists of 7; moles of only one component, then G; = 14,
i.e., the chemical potential of this component (associated with the change of energy of the
system due to change of the amount of this component in the system at constant V and S)
is 1 = Gy/n; (molar Gibbs energy).

An additional important relationship can be derived by applying a total differential to
(6.233). We obtain

k k
dG = Z widn; + Znidui . (6.234)
i=1 i=1
By equating this to (6.219), i.e.,

k
dG=Vdp—SdT+ Y pidn; (6.235)
i=1
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there follows

k
~Vdp+8dT+ ) midp; =0. (6.236)
i=1

This is known as the Gibbs—Duhem equation. In a test at constant pressure and tempera-
ture, it reduces to

k
> nidpi =0. (6.237)
i=1

Having established the representation of the Gibbs energy in terms of chemical poten-

tials, it is straightforward to derive the expressions for other thermodynamic potentials.
Indeed, since H = G+ TS, we obtain

k
H=TS+ Wil . (6.238)
i=1
Furthermore, since U = H — pV,
k
U=—pV+TS+> wni, (6.239)
i=1
and,since ® =U — TS,
k
O=—pV+> wn. (6.240)

i=1
The last two can be generalized for the case of nonhydrostatic state of stress as
k k
U=VOSijEi/'+TS+ZMini, ¢=%SijEj+ZMini. (6241)
i=1 i=1

6.14 Chemical Potentials for Binary Systems

Consider a binary system consisting of n; moles of component 1 and n; moles of component
2. By (6.233), its Gibbs energy is

G=nyu +nyuy, (6.242)

where 11 and u; are the chemical potentials of two components in the system. The molar
Gibbs energy is defined by

G
Gn = . (6.243)
ny+ny
Denoting by
Xi=—1_ x=_" (6.244)
n +n ny +ny

the concentrations of two components, we can write

G = X1 + Xoptz (6.245)
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Consider a process at constant p and 7. The Gibbs-Duhem equation (6.237) then gives
mdpr +nodp, =0 = Xidpg + Xodps =0. (6.2406)

Consequently, upon applying the differential to (6.245), we obtain
dGp = wdXi + nadXs . (6.247)

Since d X; = —dX; (because Xj + X, = 1), the above reduces to

dGn = (u2 — p1)d Xz, (6.248)
ie.,
dGp,
—py = 6.249
o= =g (6.249)
Solving (6.245) and (6.249) for 1 and u,, there follows
dGp
=Gn— Xo—, 6.250
1 23 X, ( )
dGp
=Gn+(1—-X)——. 6.251
H2 +( 2) ax, ( )
both being expressed in terms of the molar Gibbs energy G, = Gn(X2) and the concen-
tration X;.

6.15 Configurational Entropy

We derive in this section an expression for the configurational entropy that is often adopted
in the thermodynamics of open systems and alloy solutions. The number of distinguished
ways in which NV, particles of type 1 and N, particles of type 2 can fill the N} + N, available
sites is given by the well-known formula

(N + My)!
Q= el 6.252
NIN! ( )
The configurational entropy is defined as
conf __ _ (Nl + NZ)!
where k is the Boltzmann’s constant. Recalling the Stirling’s formula from calculus
m! = 2mrm m"e™", (6.254)
we have
1
Inm! = 3 In2mm) + minm —m. (6.255)

For large integers m, this is approximately equal to

Inm! ~mlnm—m. (6.256)



144 6. Thermodynamics of Continuum

Applying this approximation to (6.253), we now have
geonf _ k[(M 4+ N)In(M 4+ N,) — (M + N,) (6257)
—(MInM — N) = (M In N, — No)], '

Le.,

I
+ M 1n .
N+ N g N1+N2>

If there is n; moles of particles 1 and n, moles of particles 2, then Ny = Nan; and N, =
Nany, where N is the Avogadro’s number, so that
N1 . ni - X N2 . ny
N1+N2_n1+n2_ b N1+N2_n1+n2

seont — <N1 In (6.258)

- X, (6.259)

are the concentration of two types of particles in the mixture. Therefore, by dividing (6.258)
with the total number of moles n; + n,, we obtain

s — _R(X;In X; + Xo1In X5), (6.260)

where R = Nk is the universal gas constant, and Sf;f’“f = S /(n; 4 n,) is the molar con-
figurational entropy.

6.16 Ideal Solutions

The above expression for the configurational entropy is adopted in the theory of solid
solutions. The molar entropy of the solid solution is assumed to consists of two parts: a
weighted sum of the entropies of pure components (at given p and 7)), and the entropy of
the components’ mixing, i.e.,

k k k
Sm=) XS+ S =" XS, —RY XnkX. (6.261)
i=1 i=1 i=1

The molar entropy of pure component i at given p and 7' is denoted by 5. Similarly, the
molar Gibbs energy is taken to be
k A ' ' ' k
Gm =Y XGD+Gn*, Gu*=-TSp*=RT
i=1 i=1

X InX;. (6.262)

If these expressions are adopted, the solution model is referred to as an ideal solution.
Note that for an ideal solution model, H™* = 0 and ®™* = G™X, The chemical potentials
of the components in an ideal solution can be readily calculated. For example, for a binary
solution, (6.262) gives

Gm = XiGY) + X,GQ + RT(X,In X; + X, In X5)
= (1= X%)GY + XGY + RT[(1 - X5)In(1 - X2) + Xz In Xo],

so that

dGh, X;
= G® — GY 4 RTIn : _2X2 . (6.263)
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The substitution of this into (6.250) and (6.251) then gives
=GV 4+ RTInX;, u,=G?+ RTInX,. (6.264)

The logarithmic terms are the mixing contributions to chemical potentials.

6.17 Regular Solutions for Binary Alloys

The regular solution model involves an additional parameter w (representing in some
average sense the relative energies of like and unlike bonds between the two components
of the alloy), such that the molar enthalpy of mixing is

Hy=0XX;. (6.265)
The entropy of mixing is taken to be as in an ideal solution,
SMX — _R(X;In X; + X>In X3), (6.266)
so that the Gibbs energy of mixing (GMX = H™X — TSMiX) becomes
G™™ = X Xo + RT(X;In X; + X>1n X5). (6.267)
The molar Gibbs energy is accordingly
Gn = XiGY) + X, GQ + G| (6.268)

whereas the chemical potentials of two components in the solution are, from (6.250) and
(6.251),

w =GV +0X5+ RTIn X,
(6.269)
p2=G? +0Xe + RTIn X, .

The most distinguished feature of a regular solution model is that it can lead to a miscibil-
ity gap. Namely, whereas an ideal solution implies complete solubility of two components
throughout the concentration range, a regular solution allows a possibility that two com-
ponents at low temperature may not mix for some concentration, but form a mixture of
two solution phases with different concentrations. Assuming that w > 0, the temperature
below which there may be a miscibility gap is obtained from the requirements

&G, &EGy
dx; dx;
This specifies the critical temperature
1)
Ty = —. 6.271
7R (6.271)
The miscibility boundary is defined by
dGn
dGm _ G®» - G| (6.272)

dXo
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Figure 6.5. The molar Gibbs energy vs. the concentra-
tion X below the critical temp 7i;. The mixture of «
and B phases has lower Gibbs energy than the solution
in the concentration range X5 < X; < Xg .

or simply dG™*/d X, = 0, which gives

T 1-2X;
—y 2 (6.273)
T 1- X
In
X

This is clearly symmetric with respect to the midpoint of the concentration range X, = 0.5.
It can be easily verified that for T < T,
d’Gp, RT

— = 2w+
dx “TXX

<0, (6.274)

implying an unstable solution within the miscibility gap. The mixture of two solutions has
a lower Gibbs energy in this range.

If the miscibilty gap at some 7" < 7T, extends from Xj to X‘; , the alloy of concentration
X <X < Xf is a mixture of two solutions, one of the concentration X5 and the other
of the concentration X2’5 . This mixture has the Gibbs energy which is on the straight line
tangent to the solution curve at both concentration points, X5 and Xf (Fig. 6.5), and thus
given by

Gm(X2) = G +M(X - X3) (6.275)
m 2 m Xzﬂ_Xg 2 2) > .

where G% = Gn(X5) and Gl = Gm(Xzﬂ ) are the Gibbs energies of regular solutions at the
corresponding concentrations, calculated from (6.268). The two phases (« and ) in the
mixture are in thermodynamic equilibrium, so that

m(X5) = u(X5),  pua(X3) = pa(X5). (6.276)

The amounts of the « and B phases in the mixture are determined from the lever rule.
There is (Xf — Xz)/(XZ’S — X5) of the « phase, and (X, — Xg‘)/(Xf — X5) of the 8 phase in
the mixture of overall concentration X5. Note also that

ua(X5) — m(X5) = pa(X5) — (X)) = G2 = G, (6.277)
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7 Nonlinear Elasticity

In this chapter we give a concise treatment of nonlinear elasticity, which includes both
geometrical and material nonlinearities (finite deformations and nonlinear constitutive
equations). This is done to illustrate the application of the general framework of nonlin-
ear continuum mechanics developed in previous chapters and to give an introduction to
important subject of rubber elasticity. A detailed coverage of linear elasticity is presented
in Part III of the book.

7.1 Green Elasticity

Elastic deformation is a reversible process which does not cause any permanent change of
internal structure of the material. Experiments indicate that there is no net work left in a
material upon any closed cycle of elastic strain, i.e.,

S:dE =0, (7.1)
i

where E is the Green strain and S its conjugate symmetric Piola—Kirchhoff stress. This
means that

S:dE =d® (7.2)
is a total differential, which leads to
l)
S=—, ®=®(E). 7.3
T (E) (13)

The function ® = & (E) is the strain energy function per unit initial volume. It represents
the work done to isothermally deform a unit of initial volume to the state of strain E.

In view of the relationship between the Kirchhoff stress 7 and the symmetric Piola—
Kirchhoff stress S, we have

0o
T = (detF)a :F —_—

B S (7.4)

With a specified strain energy function for a given material, (7.4) defines the stress response
corresponding to the deformation gradient F. Because stress is derived from the strain
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energy function, the equation is referred to as the constitutive equation of hyperelasticity
or Green elasticity.
The nonsymmetric Piola—Kirchhoff stress (denoted by P in Section 5.8) is

0P 0P
P=— ., P,=—, 7.5

which follows from

P

Because @ is unaffected by the rotation of the deformed configuration,
O(F) = o(Q-F). (7.7)

By choosing Q = R”, where R is the rotation tensor from the polar decopmosition of the
deformation gradient F = V- R = R - U, it follows that ® depends on F only through U,
orC=1U2%ie.,

® =d(C), C=F".F. (7.8)

The functional dependences of ® on different tensor arguments such as F, U, or C are, of
course, different.

Constitutive equations of nonlinear elasticity can be derived without assuming the ex-
istence of the strain energy function. Suppose that at any state of elastic deformation, the
stress is a single-valued function of strain, regardless of the deformation path along which
the state has been reached. Since no strain energy is assumed to exist, the work done by the
stress could in general be different for different deformation paths. This type of elasticity
is known as Cauchy elasticity, although experimental evidence does not indicate existence
of any Cauchy-elastic material that is also not Green-elastic. In any case, we write

S =f(E), (7.9)

where f is a second-order tensor function, whose representation depends on the elastic
properties of the material. Since

S=(detHF!.0.F T, (7.10)
we have
= F-g(U) - FT, 7.11
o= FgU) (7.11)
where
1
g(U)=f(E), E= E(U2 -1). (7.12)
By using the polar decomposition F = R - U, (7.11) becomes
1
—— R-U-s(U)-U-RT. 7.13
7= 95U g(U) (7.13)

Thus, the stress response of the Cauchy elasticity can be put in the form

o =R-h(U) R7, (7.14)
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with the function h defined by

h(U) = ﬁ U-g(U) U. (7.15)

7.2 lIsotropic Green Elasticity

If the strain energy does not depend along which material directions the principal strains
are applied, so that

®(Q-E-Q7) = (E) (7.16)

for any rotation tensor Q, the material is elastically isotropic. A scalar function which
satisfies (7.16) is said to be an isotropic function of its second-order tensor argument. Such
a function can be expressed in terms of the principal invariants of the strain tensor E, i.e.,

S =& (Ig, g, I11E), (7.17)
where
1
Ig=tE, Ilg= 5 [tr(E®) — (wE)?], [1lgp=detE. (7.18)

Note that the definition for //g used here differs in sign from the definition of second
invariant used in Chapters 1 and 4. Since

g ollg alllg 5
— =1 =E — I, =E" — IgzE — 1141, 7.19
OE OE . 9E E . (7.19)
(7.3) yields, upon partial differentiation,
S = col + ¢1E + o, E2. (7.20)
The parameters are
P P P P P
C():—_IE —IIE B 1 = _IE 5
alg allg olllg allg olllg
(7.21)
P
= .
2T oI
For example, if the Saint-Venant—Kirchhoff assumption is adopted,
1
® =0+ 2u) 1%+ 2ul I, (7.22)
a generalized Hooke’s law for finite strain is obtained,
S =AM+ 21E. (7.23)
The material constants are A and .
If a cubic representation of @ is assumed,
1 1+2
®=3 A+ 2u) 17 4 2ul g + %1 I 4+ 2mIgllg +nlllg, (7.24)
the stress response becomes
S = [Mg + 17 + 2m — n) I+ 210 + (2m — n) I£]E + nE?. (7.25)

The constants /, m and n are the Murnaghan’s constants.
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7.3 Constitutive Equations in Terms of B

The finite strain constitutive equations of isotropic elasticity are often expressed in terms
of the left Cauchy-Green deformation tensor B = V2. Since

_8®-v

d=—:B=7:D 7.26
B T (7.26)
and

v

B=B-D+D-B, (7.27)
we obtain

0d 0d
—-B — + . 7.28
T oB 9B (7.28)

written in a symmetrized form. The function ® = ®(B) is an isotropic function of B.
Expressing the strain energy in terms of the invariants of B,

= (Iy, I1p 111), (7.29)
(7.28) gives
o o ad 1o
=2 (11l —+ |1+ (— -1 B B’ |. 7.30
T [( BamB> +(813 BaHB> +<8113) ] (=0
If B? is eliminated by using the Cayley—Hamilton theorem, (7.30) can be rewritten as
P P P od
=2|(111 11 I+(— B+ (111 B'|. 7.31
T [( B3Il BaHB> +<813) +( BaHB> } (730)
Note that the invariants of E and B are related by
1 1 1 3
Ip=5(s=3). Ilg= 1ls+515~7.
. (7.32)
11l = g (II]B+ IIg+ Ip — 1),
Ig =2Ip+3, Ilg=41Ip— 41 —3,
(7.33)

11l =811l —41lp+21p+1.
The constitutive equation of isotropic elastic material in terms of the nominal stress is

D D
P=F' - 7=F'.(— +B!.— .B}. 7.34
T (aBJr OB ) (734

By using the strain energy representation (7.29), this becomes

9D D D 9D
P=2F".|(— -1 I+(— |B+ (111 B'|. 7.35
[(alg BauB) +<aHB> +( BaHIB> ] (733)

Different forms of the strain energy function were used in the literature. For example,
Ogden (1984) used

2
® = % (Iy—3—1In [11g) +c (111]_%;/2 - 1) : (7.36)
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where a and ¢ are the material parameters. Blatz and Ko (1962) proposed an expression
for the strain energy for compressible foamed elastomers. Other representations can be
found in Beatty (1996) and Holzapfel (2000).

7.4 Constitutive Equations in Terms of Principal Stretches

The strain energy of an isotropic material can be conveniently expressed in terms of the
principal stretches A; (the eigenvalues of U and V, which are invariant quantities), i.e.,

® = B(hy, Ja, 13). (7.37)

Suppose that all principal stretches are different, and that N; and n; are the principal
directions of the right and left stretch tensors U and V, respectively, so that

3 3
U=Zx,»N,»N,», Z

i=1

(M —1)N;N;, (7.38)

l\)|>—‘

and
3 3
VZZ)uil'lilli, F:Z)\iniNi- (739)
i=1 i=1

For an isotropic elastic material, the principal directions of the strain tensor E are parallel
to those of its conjugate stress tensor S, and we can write

3
S=Y SN;N. (7.40)

i=1
The principal Piola—Kirchhoff stresses are

a0 1 90
R (7.41)
IE A A

S =

with no sum on i. Recall that 2> = 1 + 2 E2.
The principal directions of the Kirchhoff stress 7 of an isotropic elastic material are
parallel to those of V, so that

3
Z Tmn;. (7.42)
i=1
The corresponding principal components are
9P
= A2 = — . 7.43
T i i FYy ( )
Finally, decomposing the nominal stress as
3
P=>"PmN, (7.44)
i=1
we have
9
P=xS=—. (7.45)
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7.5 Incompressible Isotropic Elastic Materials

For an incompressible material the deformation is necessarily isochoric, so that det F = 1.
Only two invariants of E are independent, because

1
IIIEz—Z(IE—ZIIE). (7.46)
Thus, the strain energy can be expressed as
O =g [1Ig). (7.47)
If (7.30) is specialized to incompressible materials, there follows
0P P P
= _pl+2| (=1 B B’ |, 7.48
A [(313 BB[IB) +<8IIB> :| (749)
where p is an arbitrary pressure. Similarly, (7.31) gives
P ad
=-—pl+2|(—|B+(—)B"|. 7.49
o=-mi+2| (g7 )+ (577, )3 74)

Here, all terms proportional to I are absorbed in py.
Equation (7.48) can also be derived by viewing an incompressible material as a material
with internal constraint

Il —1=0. (7.50)
A Lagrangian multiplier —p/2 is then introduced, such that
® = & (Iy, I1) — g (1115 —1), (7.51)

and (7.28) directly leads to (7.48).
For the Mooney—Rivlin rubber model, the strain energy is

b b
®=alg+blly= %(13—3)+ 7 Un+3), (7.52)
whereas for the neo-Hookean material
® = % (Is — 3). (7.53)

The strain energy representation, suggested by Ogden (1982,1984),
N
an «, 23 %
o = — (A7 A+ A =3 7.54
; o (A" +23"+25" = 3) (7.54)

may be used in some applications, where N is positive integer, but «, need not be integers.
The material parameters are a, and «,. Incompressibility constraint is A1 ;A3 = 1. Other
representations in terms of principal stretches A; have also been explored (Anand, 1986;
Arruda and Boyce, 1993).

7.6 Elastic Moduli Tensors

The rate-type constitutive equation for finite deformation elasticity is obtained by dif-
ferentiating (7.3) with respect to a time like monotonically increasing parameter ¢. This
gives

3°® (E)

S=A:E A= .
OE OE

(7.55)
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The fourth-order tensor A is the tensor of elastic moduli (or tensor of elasticities) asso-
ciated with a conjugate pair of tensors (E, S). The rates of the conjugate tensors E and
S are

E=F'.D.F, S=F'!.7.F7, (7.56)
where
t=+-L.7—7-L7 (7.57)

is the Oldroydrate of the Kirchhoff stress 7 (L being the velocity gradient). The substitution
of (7.56) into (7.55) gives 7 in terms of the rate of deformation D,

+=L:D. (7.58)
The corresponding elastic moduli tensor is
L=FFAFTF (7.59)

The products are here such that the Cartesian components of the two tensors of elasticities
are related by

Eijkl = FiijnAmnqukalq . (760)
The rate-type constitutive equation (7.58) can be rewritten in terms of the Jaumann rate
T as
v A
T=L:D, (7.61)
where
L=L+2H. (7.62)

This follows because of the relationships
4 < A
T=7+D-74+7-D=7-D-7—7-D, (7.63)
where
S LT riTL (7.64)

is the Cotter—Rivlin convected rate of the Kirchhoff stress. The Cartesian components of
the fourth-order tensor H are

1
Hiju = 3 (tirdj1 + Tjrdis + TSk + Tj1dik) - (7.65)

For metals, £ ~ L. The elastic moduli tensors A, £, and £ all possess the basic and reciprocal
(major) symmetries, e.g.,

Lijw = Ljikt = Lijie,  Lij = Luaij - (7.66)
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7.7 Instantaneous Elastic Moduli

The instantaneous elastic moduli relate the rates of conjugate stress and strain tensors,
when these are evaluated at the current configuration as the reference (this being denoted
in the sequence by a subscript or superscript o). Thus, since E, = D, we write

S.=A.:E,=A,:D. (7.67)

The tensor of instantaneous elastic moduli A, can be related to the corresponding tensor
of elastic moduli A by using the relationship between E and E,. Indeed, we have

S=(detF)F'!.§,.F' E=F'.D.F. (7.68)

The substitution into (7.55) gives

S.=A,:D,
(7.69)
A, = (detF) 'FFAF'F! = (detF)"' L.
Since, from (7.56), S, = 7, (7.67) becomes
r=L.:D, L,=A.. (7.70)

7.8 Elastic Pseudomoduli

The nonsymmetricnominal stress P is derived from the strain energy function as its gradient
with respect to deformation gradient F, such that
ad ad

P=_—, P,= ) 7.71
F "TAF; (7.71)

The rate of the nominal stress is, therefore,
R
oFOF

A two-point tensor of elastic pseudomoduli is denoted by K. The Cartesian component
representation of (7.72) is

P=K. F=K.-(L-F), K=

(7.72)

92P

PH:K..F’ Kin—=— .
ji Jilk L'kl Jilk aF,]aFk]

(7.73)

The elastic pseudomoduli K;;; are not true moduli because they are partly associated with
the material spin. They clearly possess the reciprocal symmetry

K = K- (7.74)
In view of the connection
P=S.F7 (7.75)
the differentiation gives

K- -F=(A:E)-F' +S.F". (7.76)
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Upon using

. 1 . .

E:E(FT-F—i—FT-F), (7.77)

(7.76) yields the connection between the elastic moduli K and A. Their Cartesian compo-
nents are related by

Kiitk = A jpuin Fim Fron + Sji6ik. (7.78)
Since F - P is a symmetric tensor, i.e.,
FixPyj = Fji Py, (7.79)
by differentiation and incorporation of (7.73) it follows that
Fin Ktk — FimKnjix = ik Plj — 81 P (7.80)
This corresponds to the symmetry in the leading pair of indices of the true elastic moduli
Nijr = Njin- (7.81)

The tensor of elastic pseudomoduli A can be related to the tensor of instantaneous
elastic moduli, appearing in the expression

P.=K, --L, (7.82)
by recalling the relationship
P=(detF)F'.P,. (7.83)
This gives
K., = (detF)"'FKF, (7.84)

with the Cartesian component representation
io/'k[ = (det F)_l FimeinkFln- (785)
In addition, from (7.78), we have

K = Njitk + 0jidik. (7.86)

7.9 Elastic Moduli of Isotropic Elasticity

The constitutive structure of isotropic elasticity is

I 9D Id I I
S=— =2" =2|(—-Ic— )1+ (—)C
JE 9 [(alc Cauc) +<8IIC>

Lo}
111, 1.
+( C8111c>c ]

The strain energy function ® = & (I¢, II¢, I11¢) is here expressed in terms of the prin-
cipal invariants of the right Cauchy-Green deformation tensor C = F” . F = I 4 2E. The
corresponding elastic moduli tensor is

08 9%d 9%

- JE  JEJE  9CoC’

(7.87)

(7.88)
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which is thus defined by the fully symmetric tensor 3>®/(3C dC). Since

dl¢ ol
— =1 — =C- I,
aC aC <
(7.89)
A1,

0C

=C>—[.C—IIX=1III.C",

and in view of the symmetry C;; = Cj;, we obtain

92D

—— = 16;i6 + 8iiCu + Ciidi) + c3Ci; C
8C,~j8Ck1 C10jj0K 62( j Ykl ]kl) C3CijCu

+ey (&‘ngl + Ci;lakl) +¢s (Cijcﬁl + Ci;ICH) (7.90)
+¢5C;;' g + 7 (ng i+ C! Cj‘,j)
+ cg (8ikbj1 + 8irdjk) -

The parameters¢; (i = 1,2, ...,8) are

P GRS , 0 3P
= —2 — IC + IC 2 - ’
Iz dlcdllc Iz alle

1

R GRE
T olcolle S oIz’

2

92D 92D

A § 7 A
STh © CATIalllc

(7.91)

e 2% Hiele
cy = —_— - _—
4 CAIllcalc Tl I

32D Rl
ce=II12—— + [1I0 ——
° €Il Il

1 P 1 00

a= TSI T 2000

7.10 Elastic Moduli in Terms of Principal Stretches

For isotropic elastic material the principal directions N; of the right Cauchy—Green defor-
mation tensor
3
C=) M¥N;Ni, G =], (7.92)
i=1
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where A; are the principal stretches, are parallel to those of the symmetric Piola—Kirchhoff
stress S. Thus, the spectral representation of S is

3
S=Y SN;N. (7.93)

From the analysis presented in Section 4.21 it readily follows that

C= sz NN+ Q) (» N; N, (7.94)
i#]
and
S = Zs NN+ Q0 (S — S)N; N;. (7.95)
i#]

For elastically isotropic material the strain energy can be expressed as a function of the
principal stretches, ¥ = W(Aj, A, A3), so that

P 109

_ = __= 7.96
"TOE T hion (7.96)
3 2
S . 35 1o 1 09°9
=) —kj, =85 —+— . (7.97)
=t O W2 Oh | A OhiO;
Thus, (7.95) can be rewritten as
3
35 n Si— S
=D o NN+ Y 9l JoM) s NN, (7.98)
ij=19"1 i#] j i
Since
. . 1 .
S:A:E:EA:C, (7.99)
we recognize from (7.94) and (7.98), by inspection, that
3
1 38 -5
A:Z 5 NiN;(NiN; +N;Ny). (7.100)
L 0n; 0% =32

i,j=1
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PART 3: LINEAR ELASTICITY

8 Governing Equations of Linear Elasticity

8.1 Elementary Theory of Isotropic Linear Elasticity

Consider a bar of uniform cross section, composed of a homogeneous isotropic material,
subject to uniaxial tension of magnitude o. Assuming small strain, the response is linearly
elastic if

o = Ee, (8.1)

where E is Young’s modulus and e is the longitudinal strain. Likewise if a homogeneous
body is subject to a shear stress, 7, the linearly elastic response is

7 = Gy =2G(y/2). (8.2)

The constant G is the elastic shear modulus, and y /2 is the shear strain; y is the so-called
engineering shear strain.
For isotropic materials, equations (8.1) and (8.2) can be generalized to

!’ / 1 —
o/, =2Gej;, p_—gakk_—Kev, (8.3)
where
, 1
0jj = 0ij — 5 oxkbij = oij + pdij, (84)
, 1
€ = eij — 3 eydij, €y = €. (8.5)

This is referred to as the generalized Hooke’s law. The prime designates the deviatoric
part. The volumetric strain is e,. The bulk modulus, K, is related to E and G by

GE

K=366-5"

(8.6)

The most general form of an isotropic forth-order tensor, C, via its components on the
{e;} basis is

Cijkt = A8ij8ua + 11(8ixd j1 + 8i18 jx) + v(8ixdj1 — 8i1 jk)- (8.7)
161
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This is the elastic moduli tensor which relates the stress and strain tensors,
0ij = Gijueu- (8.8)

The symmetries of the stress and strain tensors imply

ew =ex = Cjiu= Ciju, (8.9)
and

oij=0j = GCju=Cjn. (8.10)
Thus, v = 0in (8.7), and Cjji = Cy;;. The end result takes the form

oij = Cijuew,
(8.11)
Cijie = A8ijdu + (881 + 8i jk).

These are the constitutive equations of isotropic linear elasticity. The constants A and u
are known as the Lamé constants. Consistent with the previous relations in terms of the
Young’s and shear moduli, it is readily shown that

E vE A

Taien MTarwa-ay e O

nw=aG

and

v 1+v
€ij = —f Okkdij + —— 0. (8.13)

The Poisson’s ratio of lateral contraction v is defined such that the lateral strain in uni-
axial tension is e,y = —ve, where e is the longitudinal strain. In the expanded form, the
constitutive equations of linear elasticity read

el = E[GH —v(on + 033)],
1
e = E[ffzz —v(o33 +o11)], (8.14)

1
e = E[033 —v(on + o)l

and
1 1 1
ey = (—;012, €3 = 6023’ €3 = (—;031- (8.15)
Note also that
1 1
ejj = =— o/ + — akkaij . (816)

2u U 9K
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The following is a useful list of the relationships among various elastic constants of
isotropic material:

9 3142
E=2u(l+v)=3k(1—-2v) = 3K"+“M - “(A:M“)

_ AT +v)A=2v)  9k(k —2)

v 3c—A
E 1 E A 3k —2u A
V= ——]l==-——= = —
2u 2 6k 20 +w) 2@k +pwp) 3k—ir’
s = Ev _ 2pv o 3kv 2
TO+nd-2v) 1-2v 14v " 3H

_ 3k(Bk — E) _ w(E—2up)

9 — E 3u—FE
E 3kE A(1=2v) 3k(1-2v) 3
= G = = = = = — — A
" 20+v) % —E 2 0y 2%
E Pt 2 Al +v)  2u(l+v) wE
K= ———— = = — _
3(1— 2v) 3T T3

T 3(1-2v) 3@u-E)

The expressions for the combinations of elastic moduli, expressed solely in terms of the
Poisson’s ratio, are also noted:

n

A
LS . T =,
A4+ A4+2n  1-—v
A2 1—-v 4 r+p 1
E  (1+v)(1-2v)’

E A+2u  1—2°

8.2 Elastic Energy in Linear Elasticity

For small strains, the elastic strain energy per unit volume is

1
o = 50’,‘]-61‘]' = ECi,-k;eijekl.

The total elastic strain energy within the body of volume V' is

1 1 1 /0u; Ou;
5/‘/O'ijeijdv=§'/;/0ij§< +—])dV

ij 3Xi

(8.17)

1 Bul-
= ii—dV. 8.18
2/;/013Xj ( )
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The symmetry of the Cauchy stress o;; = oj; was used in the last step. Since

d do;; ou; u;
—(oijui) = - ui + = —biu; + 0jj—
ij

ii— 8.19
8xj ij Gjax,- ( )

where b; are the body forces per unit volume (o;;,; + b; = 0), we have from (8.18)

1 31/!,‘ 1 0
= i—dV = = —(ojiu; biu; |dV . 8.20
Z/VGJE)xj Vv Z/V|:8xj(0]u)+ u} Vv (8.20)

Upon applying the Gauss divergence theorem to the first integral on the rhs, we obtain

1 8Lt,' 1 1
= i—dV == iniu; dS + = biu; AV
2/;/018351' Z/SUJH]M 2/;/ !

1 1
== / Tiu; dS + —/ biu; dV (821)
2 Js 2 )y

= the work done.

Thus, comparing (8.18) and (8.21), we have

1 1 1
= / 0ij€ij dV = - / Tu; dS + = / biu; dV. (822)
2 )y 2 Js 2 )y

We note that in later parts of this book ®(e) is called W(e), the strain energy density.
We further take the strain energy density to be a strictly positive function, in the sense that

1
W(e) = > Cijkeeijexe > 0, (8.23)

where the equality holds only if e = 0.

8.3 Restrictions on the Elastic Constants

In this section we explore restrictions on the elastic moduli that limit the number of possible
nonzero values and the range of values that elastic moduli may have.

8.3.1 Material Symmetry
We begin with the statement of basic symmetry
Cije = Cjire = Creij = Gijek. (8.24)

The symmetry in the first two indices follows from the symmetry of the stress tensor
whereas the symmetry in the last two follows from the symmetry of the strain tensor. The
reciprocal symmetry C;ji = Cy;; follows from (8.17), because

Cijreeijere = Cuijenei; = (Cijre — Cpaij)eijexe = 0. (8.25)

It is convenient to introduce here a contracted (Voigt) notation for the elastic constants,
whereby
61 < o011, 02 < op, 063 < 033

(8.26)

64 < 023, 05 < 031, O < O12.
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Similarly, for the strains,

el < ey, & < epn, & < exn
(827)
ey <« 2ey3, &5 <« 2e3, € < 2epn.

The use of the factor of 2 in the notation for the strain components ensures the symmetry
in the expression

64 = Cupep, (8.28)

ie., C’aﬂ = C’ﬁa. In defining the components of C the same indicial notation is used on the
index pairs ij and k¢ in the tensor C.
Consider a coordinate transformation specified by the orthogonal tensor, Q,

e, = Quje;. (8.29)

On the basis {e;} the components of C would be
tike = QipQiq Ok Que Cpgre- (8.30)

If Q represents a symmetry operation, we have
Ciike = Cije- (8.31)

As an example, consider the inversion process as specified by the improper orthogonal
tensor with components

-1 0 0
Q=0 -1 o0]. (8.32)
0 0 -1

All materials will be invariant under the transformation given by Q.

Now let the initial basis be aligned with the most natural set of axes in the material.
For example, if the material was cubic these would be the cube axes of the unit cell. Then
specify a rotation about the es axis as

cosf sinf O
Q@) =|—sinf cosf O0]. (8.33)
0 0 1

Reflection, on the other hand say across a plane whose unit normal was n, would be specified
by

Qf=1-2mn. (8.34)

Clearly, the effect of Q® would be to leave any vector, such as m, in the plane unchanged,
because m - n = 0, and would cause n to become —n, i.e.,

Qf¥ m=m and Qf.n=-n (8.35)
Let one such reflection plane be

n =cos6 e; +sind e, + 0 es. (8.36)
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Figure 8.1. Angles 6 and ¢ defining two reflection planes.

In this case

—cos(20)  —sin(20) O
} (8.37)

Q) = |: —sin(20)  cos(20) 0
0 0 1

The angle 0 is defined in Fig. 8.1 along with a second angle ¥ used to define a second
reflection plane. In our example, if 6 = 0 then the operation is specified by

-1 0 0
Q=0 1 0], (8.38)
0 0 1

and represents a reflection across the x, — x3 plane, i.e., through the x; axis.

To characterize the applicable symmetry operations we will use the form of the improper
orthogonal tensor given in (8.37), which specifies a reflection through a plane whose normal
isin the x; — x; plane, and one with respect to a plane whose normal is in the x, — x3 plane;
the latter is defined by the angle ¥ in Fig. 8.1. This would, in fact, be associated with

1 0 0
Q¥w) =10 —cos(2y) —sin2y)|. (8.39)
0 —sin(2y) cos(2y)

Additional details can be found in the books by Musgrave (1970) and Ting (1996); here
we list some results in two forms. First, the matrix C is shown by using Greek letters to
represent (positive) values of potentially nonzero elastic constants. Symmetry will dictate
the number of independent moduli. Second, the values of & and ¢ will be given along
with the symmetry type. The number of independent constants is called g. Note that € is
symmetric and that elements below the diagonal are not indicated.

I. Triclinic, no symmetry, g = 21:

o y 8 € ¢
n  k & m
C= poTox ¢ (8.40)
®w v v
¢ €
@
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I1. Monoclinic, one symmetry plane, x; =0, 6 =0, g = 13:

(@2
Il

e 5

- =

n

S a4 38 >

|t © o OO

g o ocoococ o
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(8.41)

Note that the single symmetry plane can be alternatively takenatx, =0, 6 = 7/2ory =0,

oratx; =0, v =0.

IIL. Orthotropic (or Rhombic), three symmetry planesat® = 0, 7/2and ¢ = 7/2,q = 9:

(@3
I

[« B v

~

n
P

0
0
0
1)

|t OO OO

§ coooc oo

IV. Tetragonal, five symmetry planes at0 = 0, +7 /4, 7/2 and ¢ = /2, q = 6:

(@}
Il

V. Transversely Isotropic (Hexagonal), the symmetry plane is the x3 axis, ¢ = 5:

(@2
Il

[« By

@y
P

[« By
noy
0

In this case m = % (Ch—Cp) = % (a — B).
VI. Cubic, nine symmetry planes including the coordinate axes and those whose normals

make angles of =7 /4 with the coordinate axes, g = 3:

(@2
Il

o B
a p

o

B

g oo o

0
0
0
0]

0
0
0
1)

g oo oo

g oo oo

g oo oo

g coocoococo

H OO O OO

g oo oo o

(8.42)

(8.43)

(8.44)

(8.45)



168 8. Governing Equations of Linear Elasticity

VII. Isotropic, any plane is a symmetry plane, g = 2:

[« BB 0 0 0
a B 0 0 0
- a 0 0 0
C= = 0 0l (8.46)
m 0
- ._
where m = %(0{ — B). The above matrix is commonly rewritten as
(A +2u A X 0 0 O]
A+2u A 0 0 O
- A+2n 0 0 O
C= L 000 (8.47)
w0
— M—

The constants A and u are the Lamé constants of the constitutive law (8.11).

8.3.2 Restrictions on the Elastic Constants

There are two conditions we impose on the elastic constants, namely the so-called strong
ellipticity condition

ab:C:ab =a;b; Cji arby > 0, (8.48)
and the strong convexity condition
e:C:e=GCjuejen > 0. (8.49)

The convexity condition is the more severe of the two, which may be readily seen by noting
that the dyadic product ab would represent a strain tensor that is singular; yet (8.49) is to
be true for al/l admissible strain tensors, including those that are not.

For isotropic materials (8.49) leads to

Meii)” + 2u(eijeif) > 0,

) , 1 , (8.50)

(r+ 5“)(31‘1‘) + 2uleije;; — g(eii) ]>0.

These imply
2

A+ K> 0, wp>0. (8.51)

Since the connections between the modulii (E, v) and (A, ) are

E E

A Y " (8.52)

T Arv(d-2v) T 20+
the conditions expressed in (8.50) become

E>0, —-1<v<1/2. (8.53)
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Another approach to establishing such restrictions, still based on the positive-definite
nature of the elastic energy function, is as follows. If the elastic strain energy is assumed
to be positive-definite function of strain ¢;;, then

ojjeij = A(ekk)2 + 2/L€i]‘€i]‘ > 0. (854)

Denoting by ¢; ; the deviatoric part of strain tensor, such that

1
eij = ej; + 3 ewidi (8.55)
we have
! ! 1
eijeij = €;;€;; + g(ekk)z' (8.56)

Consequently, the inequality (8.54) can be rewritten as
2uej el + k(ew)’ > 0, (8.57)

where
2 E E

= A — = — e —
KEATIEE3a 0y P T a1y

: (8.58)

By taking ey = 01in (8.57), we deduce that u > 0; by taking ¢;; = 0, we deduce that « > 0.
This implies from equations (8.58) that £ > 0 and —1 < v < 1/2. Since experience does
not reveal any isotropic elastic material with negative Poisson’s ratio, the physical range
of vis 0 < v < 1/2. Negative values of v would imply negative values of X, because A =
2uv/(1 —2v). Inthe limit v — 1/2, the material behaves as incompressible (A and x — 00),
andu = E/3.1fv =1/3,wehave E =k and A = 2u;ifv = 1/4,then E = 3x/2 and A = u.

8.4 Compatibility Relations

If the strains are derived from a continuous, single valued vector displacement field u, then
they must satisfy a particular set of differential equations. Conversely, if this set of differ-
ential equations is satisfied by the components of strain, the corresponding displacement
field is a continuous displacement field. We derive the compatibility equations below, using
the following convenient notation for partial derivatives

3(.)/0xe = (), 02(.)/0x00% = (1) 4.
With this notation the components of the infinitesimal strain tensor become
1
eij = i(ui’j +uj). (8.59)
Thus, by inspection, we observe that

Coe.mm = Ug tmm s  €mm.ee = U¢ mee » (8-60)

and

1 1
C€im,tm = E(ul,mim + um,ﬁ[m) = z(uﬂ,imm + um,m€2)~ (861)
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Therefore,
ot mm + Cmm et = 2€om em- (8.62)
Similarly,
1
Cotmn = Ul tmn >  Comn = E(ué,mﬁn + U, een), (8.63)
and
1 1
€en,tm = E(uf,n(fm + Unoem) s  Cmnoe = E(um.nll + U, mee)- (8.64)
Consequently,
€om,tn + €onem — Cmn, et = €¢0,mn- (865)

In general, we may express six independent relations of this type as
e +eni =2en1,
€033+ €332 = 22323,

e3s,11 + e11,33 = 231,31 ,

(8.60)
€12,13 + €13,12 — €23,11 = €11,.23 ,
€321 + €123 — €31,22 = €2231 ,
€31,32 + €331 — €12,33 = €33,12,
or, in more compact form,
€ij.id + eu.ij = €ik,ji + €jLik- (8.67)

The above are called the Saint-Venant’s compatibility equations for the strain components.
In what immediately follows, we revisit the establishment of such equations from two
different approaches.

8.5 Compatibility Conditions: Cesaro Integrals

Consider two points of the deformed body, Aand B. Denoting their displacement compo-
nents by u/! and u®, we can write

B
ul = ut + / du; . (8.68)
A

If displacement components u? are to be single-valued in a simply connected region,
the integral on the right-hand side of the above equation must be path-independent. By
imposing this condition, we will again arrive at the Saint-Venant’s compatibility equations.
To demonstrate this, we proceed as follows. First, we have

s B ) B du; ) B B
uy = u; —i—/ du; = u; —i—/ dx; = u; —i—/ eij dxj—i—/ w;j dx;, (8.69)
A A 0x; A A
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where ¢;; and w;; are the infinitesimal strain and rotation tensors (symmetric and antisym-
metric parts of the displacement gradient ; ;). By using the integration by parts, we then
write

B B B
0w ;
/ wjj de = / wjj d(x,» - x]B) = (x]B — )C}A)(,()l‘;x — / (Xj — X]B) aa)l] dxk. (870)
A A A X

But, as can be easily verified by inspection,

3(1),']' 8eik 8ejk

= . (8.71)
0Xy 0x; 0x;
Hence, by substituting (8.71) into (8.70), and then this into (8.69), we obtain
B
= i+ (= ot + [ fcn
A
where
3€'k de ik
fik:eik—(xj—xf <8xl]- — a)éi ) (8.72)

The above integral has to be path independent. Thus, fixdx; = f;;dx; = dg; has to be a
perfect differential. The necessary and sufficient condition for this is that

i Of;
i _ i (8.73)
ox;  0xg
(both then being equal to 82g; /dx;dx). Substituting (8.72) into (8.73) leads to
ey , Ve Ve  Ven (8.74)

Oxxdx;  0x;0x;  0x;0x  9x;0xk

There are 81 of these equations, but some of them are trivial identities, and some are
repetitions due to symmetry in indices ij and k. The contraction k& = [ yields six linearly
independent Saint-Venant’s equations

azei}‘ Bzekk azeik 82€]‘k

- — =0. (8.75)
oxiox,  0x;0x;  0x;0x,  0x;0x
They can be compactly rewritten as
92%es,
Eij = €ikl€jmn R — (8.76)
0X10X,,

The permutation tensor is denoted by ¢;;x. Thus, for a given strain field ¢;;, the necessary
and sufficient conditions for the existence of single-valued displacement field u; within
a simply connected region (apart from the rigid-body motion) are the six Saint-Venant’s
compatibility equations E;; = 0. These equations are linearly independent, but differen-
tially related by three Bianchi conditions
985 _y. (8.77)
an
These follow from the symmetry of the mixed partial derivative 32/9x,,dx, and the skew-
symmetry of the permutation tensor ;. If E;; # 0, the incompatibility tensor &;; repre-
sents a measure of the degree of strain incompatibility.
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For (N + 1)-tiply connected region, in addition to six Saint-Venant’s compatibility equa-
tions (8.76), there are 3N Cesaro integral conditions for the existence of single-valued
displacements. They are

?{ fijdxj =0, (8.78)
Co
where C, (¢ = 1,2, ..., N)are any closed irreducible curves around N internal “cavities”
and

fii = eij — O — x)(eijk — eji) - (8.79)

The coordinates of a selected reference point on C, are xy. Since this point can be selected
arbitrarily on each C,, equations (8.78) and (8.79) give rise to 6 N integral conditions

f (eij — Xk€rik€pgepjq)dx; =0, (8.80)
Co

% eiﬂejk,ldxk =0. (8.81)

@

8.6 Beltrami-Michell Compatibility Equations

By substituting the stress-strain relations
v 1+v
¢ =" Kk0ij + — il (8.82)
into the Saint-Venant’s compatibility equations (8.75), and by using the equilibrium equa-

tions
Oij,j + bi =0 s (883)

we can deduce six linearly independent compatibility equations expressed in terms of
stresses. These are the Beltrami—Michell compatibility equations

1 v
Oijkk + 10 n UUkk,ij = 1=, biibij —bi,j —bji. (8.84)
In particular, it follows that the hydrostatic stress satisfies the Poisson’s equation
1
Azdkk = —1 ad bk,k . (885)
—v

If there are no body forces, the Beltrami—Michell equation reduce to

1
Oijkk + T3y kil = 0, (8.86)

whereas the hydrostatic stress becomes a harmonic function, satisfying the Laplace’s
equation

Ao =0. (8.87)

8.7 Navier Equations of Motion

The Cauchy equations of motion, in terms of stresses, are

8@, 82ui
— 4+ b = , 8.88
ij + P or? ( )
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where b; are the components of the body force per unit volume. By substituting the stress-
strain relations

o  u; 9
" “f) ey (8.89)

+ Z)_xk

oij = 2ue;j + regdij = <3x4 9x:
j 1

into (8.88), we obtain the Navier equations of motion, in terms of displacements,

R i B S B
" ox ax, Hoxjox, T TP 2

(8.90)

Since 1; = o;;n;, the boundary conditions over the bounding surface of the body S7, where
tractions are externally prescribed, are

ouy ou; ou;
A —n; - F= Tt 8.91
Xk it M(ax,- * ax; )n} ! (891)
whereas
up = u™, (8.92)

where displacements are prescribed (S,). In the vector notation, the Navier equations are

82
(A+M)V(V~u)+uv2u+b=pa—: inV,
A(V-uwn+ p(@v+Vvu) -n=T™ on Sr, (8.93)

The nabla operator expressed with respect to three typical sets of coordinates is

V=e 9 +e 9 +e 9
T T o, Coxs
3 19 3
V=e - te,—, 8.94
Cor T 90 T (8.94)
V=e 9 +e L +e 1 0
T T 90 T rsing ¢

The corresponding Laplacian operators are, respectively,

2 0 8
ax?  ax;  ox3

1 d 9 1 92 92
2 _
Vi=- o (rar)+r2 9 o (8.95)

’

oL (50 N 1 9 sing N 1 92
2o or r2sinf 96 20 r2sin20 02
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8.8 Uniqueness of Solution to Linear Elastic Boundary Value Problem

8.8.1 Statement of the Boundary Value Problem

The boundary value problem of linear elasticity is specified by the equations

0ij,j +b =0,

1
eij = 5 (Wi +uji). (8.96)

€ijid + exij = €ik,j1 + €jlik
and the boundary conditions
1; = o;jn; prescribed on S,
(8.97)
u; prescribed on S, .

The outward pointing normal to the bounding surface of the body is n;. Furthermore, if
there exists a strain energy function W = W(e;;), then

ow
—L (8.98)
Y 8€i}‘
For linear elasticity,
1 1
oij = Gijueij, W= 0ijeij = Ecijkleijekl- (8.99)

If the elastic strain energy is assumed to be positive-definite function of strain, the elastic
moduli tensor C;jy is a positive-definite tensor.

8.8.2 Uniqueness of the Solution

The so specified boundary value problem of linear elasticity has a unique solution for the
stress and strain fields. The proof is based on the assumption of the positive-definiteness
of the elastic strain energy. Suppose that two solutions exist that satisfy (8.8.1)—(8.99).
Denote the corresponding displacement, strain, and stress fields by ul(]), el(}), oi(j]) and ul@,
e? @ Let

ij > ij
X 1 2 " 1 2 " 1 2
ui :ul(,)—u(z)’ ei/' =e§j)_el(j)’ Gi]- :Gi(j-)—o'i(j). (8100)
Since
ok +bi =0, o +b=0, (8.101)

we evidently have

ol =0. (8.102)
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Consequently, the fields u}, e}

7, 0;; represent a solution to the homogeneous boundary
value problem

o;;=0and by =0inV, T'=o/nj=0o0n Sy, u;=0onS,. (8.103)

Clearly, at every point of the bounding surface S of the body the product u} 7;* = 0, because
either u} or 7* vanishes at the boundary. Thus, upon integration and the application of the
Gauss divergence theorem,

0= /uj-‘]}*dS:[u;kaf;n dS = /(ul 0;;),;dV. (8.104)
s
Performing the partial differentiation within the integrand, and using o ; = Oand ojju} ; =
o;;e};, then gives
0= /Vai’;ej‘]-dV: 2/ W(ej)dV . (8.105)

But W is a positive-definite function of strain and the integral of W(e .) over the volume
V vanishes only if W = 0 at every point of the body. This is possible only ifej; = 0 atevery
point, i.e.,

1 2 1 2

l(]) = l(]) and therefore al(] ) = l(] ). (8.106)
Thus the uniqueness of the solution to the boundary value problem of linear elasticity:
there is only one stress and strain field corresponding to prescribed boundary conditions
and given body forces.

8.9 Potential Energy and Variational Principle

Consider infinitesimal deformation of an elastic material. In this section, for the sake of
generality, we do not actually restrict to linearly elastic material, but the material that is
characterized by the strain energy that is an arbitrary single valued function of a small
strain, such that

Emn ow
W= W(emn) = / o*,-jdel-j ) Oij = — - (8107)
0 88,’,’
The principle of virtual work (5.140) then gives
14 s v

because §W = o;;8e;; = (0W/de;j)de;;. With body forces b; regarded as given in V and
surface forces 7; given on Sz, and recalling that u; = 0on S, = S — S7, (8.108) delivers a
variational principle

si=0, M= / [W(emn) — b,-u,-]dV—/ Tiu; dS. (8.109)
\% ST
The functional IT = IT(x;) is the potential energy of the elastic body. Since b; and T; are
regarded as fixed, it is a functional of the displacement field. For the true equilibrium dis-
placement field, IT has a stationary value, because §IT = 0 for any kinematically admissible
variation ;.
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We next show the equilibrium displacement field minimizes the potential energy among
all kinematically admissible displacement fields. The following proof relies on the adoption
of an incremental stability (stability in the small), according to which

dai,-dei,- >0 (8110)

for any set of strain and corresponding stress increments. Indeed, let u} be the true equi-
librium displacement field and u¥ an arbitrary kinematically admissible displacement field
(continuous and differentiable, satisfying the displacement boundary conditions on S,, if
any). The difference in the potential energy associated with these two fields is

1)~ 11G) = [ [Week) = Weeh) = bilul = ) JaV
. (8.111)
—fr,(u?—u})ds.
S

Note that u¥ —u! =0 on S,, so that the above surface integral can be extended from
St to S. But the principle of virtual work gives

/ oj;(ef; — i) dV = f T (uk — u})ds+/ bi(uf —ut)dv. (8.112)
v s v
When this is substituted in (8.111), there follows

M(uf) — M) = /V[W(elim) = W(ey) — oy (el — eip)]dV. (8.113)

In view of (8.107), this can be rewritten as

Chn -
M (uf) — T(u;) :/ [/ (01 — 0;)de;; —/ (0ij — aitj)deifi|dv
Vv 0 0

:v/‘;|: (o,-j—ait/-)de,-j:|dv.

t
e”l"

The elastic deformation is path-independent, and the value of the integral

ebm
/ (O’,'/' — crl-tj)de,-,- (8114)

mn

does not depend on the strain path between e!,, and e¥, . Thus, selecting a strain path that
corresponds to a straight line in stress space from o} to oi';-, the stress increment doj; is
codirectional with o;; — ai‘]-. Consequently, if the material is incrementally stable, such that
doj;de;; > 0, we have

e‘;lﬂ
/ (01j — 0j;)de;; > 0, (8.115)

and thus
M(uf) — () > 0. (8.116)

Therefore, among all kinematically admissible displacement fields, the true (equilibrium)
displacement field minimizes the potential energy of the body.
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8.9.1 Uniqueness of the Strain Field

If two displacement fields ul(-l) and ul(-z) both minimize the potential energy, then
@)

/V Uem (0;) — ai(j-l))deij:|dV =0. (8.117)

mn

But, the incremental stability do;;de;; > 0 implies that (o;; — o ))dei j > 0 along the strain

if
path that corresponds to a straight line in stress space from ai(jl) too?. Consequently, the

ij
above integral can vanish if and only if e,(,%,)l = ef,},),, which assures the uniqueness of the

strain field (possibly, to within a rigid body displacement).

8.10 Betti’s Theorem of Linear Elasticity

This important theorem of linear elasticity follows from the generalized Claopeyron’s
formula and the linearity between the stress and strain, o;; = Gjjen, where Cjjy are
the elastic moduli obeying the reciprocal symmetry C;ji = Cy;;. Indeed, the Clapeyron’s
formula [see (5.138) from Chapter 5] gives

/ O'l'jél'j dVv = / 1;i; dS—i—/ b;ii; dV . (8118)
|4 S |4

Let 6;; = Cjjuéy be the true equilibrium stress field associated with the displacement field
;. Then,

5,']'8,']' = C,'jklel'jék[ s (8.119)
and
oijéij = Cijuenéij = Cuijeijen = Cijueijéu . (8.120)
Thus,
5’1‘]'61‘]' = O'ijéij . (8.121)

Consequently, from (8.118) it follows that

/7}&,- dS+[ b;i; dV:/f}ui dS+/ biu; dV . (8.122)
S |4 S |4

This is the Betti’s reciprocal theorem of linear elasticity. The work of the first type of
loading on the displacement due to the second type of loading, is equal to the work of the
second type of loading on the displacement due to the first type of loading.

A classical illustration of the application of this theorem is as follows. Consider a uniform
rod of length / and cross-sectional area A. The rod is made of isotropic elastic material,
with the elastic modulus E and Poisson’s ratio v. Two types of loading applied to this rod
are shown in Fig. 8.2. The first loading is a uniform tensile stress o applied to the ends
of the rod, giving rise to axial force P = o A. The second loading is a pair of two equal
but opposite transverse forces F applied to the lateral surface of the rod, anywhere along
the length of the rod. The transverse distance between the points of the application of
two forces is 4. The Betti’s theorem allows us to easily calculate the elongation of the
rod due to this pair of forces, without solving the complicated boundary value problem.
Indeed, the first type of loading causes the lateral contraction of the rod of magnitude
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F
c n o
. ! . P

Figure 8.2. A uniform elastic rod under two types of loading.

Ah = v(Ph/EA). By Betti’s theorem, the work of F on the displacement due to P = o A,
must be equal to the work of P on the displacement due to F, i.e.,

Ph
Fv— = PA. 8.123
7 (8.123)
Thus, the elongation of the rod due to the pair of forces F is
Fh
A=v—. 8.124
7 (8.124)

8.11 Plane Strain

Plane deformations are defined such that
es3 = e13 = ex3 = 0. (8.125)
If we allow for the possibility of thermal strains, with the thermal expansion coefficient «,
the corresponding thermoelastic constitutive equations are
1
el = E[GH —v(on +033)] + aAT,

1
e = —[on —v(oy + o0 +aAT,
22 E[ 22 (o1 33)] (8.126)

e33 =0 = o33 =v(o11 +02) — aEAT,

1
e = €1 = 5—012.

2G
Suppose that we introduce body forces via a potential function, V(xy, x;), such that
b =-9dV/ox. (8.127)
Using the compact notation for differentiation, the equations of equilibrium become
o1 +onp2—Vi=0
(8.128)

o1 +ony— Vo =0.

All of the compatibility equations (8.66) are identically satisfied except the first one, which
gives

e11.22 +exn1 = 2e112- (8.129)
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Introduce the Airy stress function, ¢(x1, x»), such that

o1 = ¢+ V(xi, x),
o =¢11+ V(x1, x2), (8.130)
o1 = —¢12.

With such definitions the equilibrium equations (8.128) are identically satisfied. To deter-
mine the governing equations for ¢ we first substitute (8.130) into the constitutive expres-
sions (8.126) and demand the satisfaction of the compatibility relation (8.129). Thus, we
substitute

en = 11— — (1 0)p 1+ [ v+ 20]V) + (14 v)aAT,
€y = %{(1 — U2)¢’11 — V(l + U)¢,22 + [1 — U(l + 21))]V} + (1 + U)O(AT,

en=-5- ®.12
into (8.129) to get
(1-2v)_, oF
(1-v) (1-v)

If there are no body forces and thermal gradients, or if V2V =0 and V>T = 0, then ¢
satisfies the biharmonic equation

Vip = V2T. (8.131)

4 4 4
Vi =0, v4¢zﬂ+—23¢ e

. 8.132
dx;  Oxfoxs  0x3 ( )

If the thermal field is such that V2T = 0, there would be no effect on ¢, or on the
stresses; there would, of course, be an effect on the strains. An example in Section 8.13
will illustrate these effects. For this purpose we consider thermal strains alone — linear
superposition allows the addition of the effects of applied loads or displacements.

8.11.1 Plane Stress
The governing equations for plane stress are similar. In that case we set o33 = 013 = 023 = 0,
and the constitutive equations are
L ( ) L ( )
el = — (o011 —voy), exp = — (0o —voy1),
=7z on 2 2=z 11

€33 = —% (en +exn), en= oYe o12, (8.133)
e13 = e = 0.
In the absence of thermal fields, the governing equation for the stress potential is

Vip = —(1 —v)V2V(x1, x2). (8.134)
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8.12 Governing Equations of Plane Elasticity

In this section we summarize the governing equations of plane elasticity, simultaneously
for both plane stress and plane strain. The stress-strain relations are

3—-0 .
ij = o (Uij - T(Tkk5ij> , (1, j=12), (8.135)
where ¢ is the Kolosov constant defined by
3 —4v, plane strain,

9=13_, (8.136)
. plane stress.
1 Ty plane stress

Because the physical range of the Poisson ratio is 0 < v < 1/2, the Kolosov constant is
restricted to 0 < ¥ < 3 for plane strain, and 5/3 < ¢ < 3 for plane stress. The inverted
form of (8.135) is

13-v .
oij =21 (@i/’ + 39 -1 ekk&-j) , (1, j=1,2). (8.137)
There are two Cauchy equations of motion
aoij 32L£,'
— 4+ b = , 8.138
o, TP (8.138)

and one Saint-Venant’s compatibility equation

92 3 3?
-y (8.139)
0x; 0x; 0x10x2

The corresponding Beltrami—Michell comaptibility equation is

4 3b;
v? =,
(on+o2) = 15 5

(8.140)

where V? is the two-dimensional Laplacian operator. Finally, the two Navier equations of
motion are
2/1 8214]' 82ui

VZu: b =
P S T o, T

(i,j=1,2). (8.141)

8.13 Thermal Distortion of a Simple Beam

As an illustration of the application of derived equations, consider the following thermoe-
lastic beam problem. Let T(x;) be the temperature variation specified across the beam
shown in Fig. 8.3. Our objective is to calculate the displacements of the beam, and as
needed the stresses and strains caused by what amounts to purely thermal loading. For
this case, V2T = d>T/dx3, since the gradient is solely through the thickness of the beam,
i.e., in its x, direction. Equation (8.131) becomes

oE T
(1—v) dx?

Vi = (8.142)
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XZA

AT
D Figure 8.3. A simple beam subject to a thermal
o < radient.
m=1 - {n\<l Ih 31 g
m>1> \\ 1]1
L

A

Consistent with all the boundary conditions specified so far, we can set o2, = o1, = 0, which
are typical assumptions of elementary beam theory. Then,
3*p/dx! =0

dx70x3 B

The integration of (8.143) is elementary, but illustrative. Toward that end, we write

3 [0? E &T
< ¢> == = (8.144)
ax2 \ 9x2 (1-v) dx;
Since 011 = ¢ 2, this reduce to
82
on+ (xz):| (8.145)
33 [ ( v)
Two integrations later, we obtain
E
o+ ¢ 1"‘_ 70 =G +Co (8.146)

The integration constants, C; and C,, are determined from the requirement of static equi-
librium

h
/ (7]1()(2) dX2 = O,
- (8.147)

h
/ o11(x2)x2 dxy = 0.
—h

The integrations yield

aF 1
(1—v)[ T+, |,

The corresponding strains are

h

o11(x2) =

ronan+ 525 [ ran].

1 v
e11(x) = 7o +aT(x2), en(xn)= —Fou +aT(x2), en=0.

We now analyze the resulting deflection of the beam. With the usual assumptions of
elementary beam theory, we approximate the beam’s curvature as

1/]’ ~ —611/)(2.
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Thus,
(1/r)op = —e11(h)/h,  (1/7)vottom =~ —e11(—h)/(=h), (8.148)
and so
Ur ~ ell(_h)Z; en(h) _ 382;1122' (8.149)
As a specific example, take
T(x2) = (1/2)"AT(1 — x2/ h)", (8.150)

where AT is a given difference in temperature between the bottom and top sides of the
beam. The analysis is straightforward. In particular, the maximum deflection of the beam
is found to be

Sonas %aAT(L/h)g(m), (8.151)
with
m=—" (8.152)
= i D(m+2) '

The result shows how the shape of the temperature variation is important in affecting
the magnitude of the induced thermal distortion. For example, if m < 1, say m ~ 1/3,
then g ~ 0.6, which represents an appreciable reduction in the maximum displacement at
the midpoint of the beam. On the other hand, if m = 3, then g ~ 0.9, and the reduction in
maximum displacement is far less. Thus manipulating the temperature profile may provide
a mechanism to mitigate intolerably large thermally induced deflections.
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9 Elastic Beam Problems

9.1 A Simple 2D Beam Problem

Approximate solutions can be developed for two-dimensional boundary value problems
in plane stress or plane strain by representing the Airy stress function as a polynomial in
x; and x,. This general methodology is developed via several specific examples.

To begin, recall the general form of the biharmonic equation for the case of plane strain,

V4¢>— 1-2v
1

vy, (0.1)

or, for plane stress,
Vip = —(1 —v)V2V. (9.2)

Recall also the connections between ¢ and the stresses, viz.,

o =¢n+ V(x, x),
on =¢11+ V(x1, x2), (9.3)
on=—¢12.

To illustrate how an approximate solution may be constructed consider the boundary value
problem for the simple beam shown in Fig. 9.1. Here the boundary conditions are specified
as

012 = 0 on Xy = :|:b,
0y = 0 on Xy = :|:b, (9.4)
(711=O on X1=0,
and
b
/ o012 d)C2 = F on X1 = 0. (95)
-b

The last boundary condition is the so-called integral or global boundary condition, in
contrast to point wise boundary conditions of (9.4).

184
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Figure 9.1. A cantilever beam under the end loading.

In the subsequent analysis it is assumed that no potentials act, so that V = 0. Also plane
stress prevails so that the governing equation for ¢ is simply V*¢ = 0. We then explore
possible polynomial solutions to this biharmonic equation.

9.2 Polynomial Solutions to V*¢p =0

Consider the general n™ order polynomial

Pa(x1, %2) = aox}! + arx! ' x + axx A3+ -+ apxy
n o (9.6)
= Z aix; "' x;.
i=0
If (9.6) is substituted into (9.2), with V' = 0, a polynomial of the form
n—4 o
Gn-a(x1, X2) = V* pu(x1, %2) = Z bix; X 9.7)
i=0
is generated. For example,
by =n(n—1)(n —2)(n —3)ap + 4(n —2)(n — 3)a, + 24ay, (9.8)

and so on. For (9.6) to be a solution to (9.2), all the ¢,(x;, x2) must be zero. This requires
that

bi=0, i=01,....n—4. (9.9)

Thus, (9.9) are a set of (n — 3) linear equations among the (n + 1) g;’s. Four g;’s are un-
known, i.e., are adjustable constants, so that (9.9) places constraints on the rest.

Now consider what polynomial forms for ¢(x, x,) give rise to associated forms for the
o;;’s. For example, consider the form

$2(x1, X2) = agxi + arx1x; + axx3, (9.10)
which yields
o111 = 2612, 07 = 200, o1 = —aj. (911)

Consequently, (9.10) implies a state of uniform inplane stress.
Next, consider the form

B3(x1, X2) = aox; + arxixg + arxi x5 + asx3, (9.12)
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which produces the stress components

o011 = 2ax1 + 6azx;,
0y = 2a1x; + 6apxy, (913)

o1 = —2611)61 — 2a2x2.
Suppose the assignment ag = a; = a; = 0 is made. Then
o111 = 6613)(2, (9.14)

which corresponds to a simple state of pure bending. Clearly additional perspective can be
developed by conjuring up other simple polynomial forms and noting that (9.2) is a linear
partial differential equation for ¢(xy, x).

9.3 A Simple Beam Problem Continued

Consider the polynomial form
o(x1, x0) = clxlxg + X1 7. (9.15)

The fourth-order term, clxlxg, produces a bending stress of the form oy; o x1x,, which
varies linearly with x;. The second term, ¢, x; x, produces a uniform shear stress, o1, = —c;
that can be used to cancel out any otherwise unwanted shear stress arising from other
terms. In fact, (9.15) yields

o1 = 6c1x1x2, 00 =0, o= —3c1x% — 0. (9.16)
The first boundary condition of (9.4) states that
op(xy =4b) =0= —3c1h* —c; = ¢ = —3c1h%, (9.17)
and thus
o1 = 31 (B — x3). (9.18)

The integral boundary condition of (9.5) demands that
b
/ o012 de = F on X1 = 0, (919)
-b
ie.,
b
/ 3ci(b? —x3)d, = F = ¢ = F/(4b°). (9.20)
-b

Therefore, we arrive at the result

F(x1x3 — 3b%x1x7)
45 '

P(x1,x2) = (9.21)
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Consequently,

_3F
T2

o11 X1X2,

3F 9.22
o = 4_b3 (b2 _ x22)’ ( )

02 = 0.

Note that the boundary conditions for the beam at the end x; = 0 are satisfied only on an
integral level; point wise satisfaction is not possible with such a simple polynomial solution.
However, by Saint-Venant’s principle, the solutions that correspond to statically equiva-
lent, although pointwise different, end loads differ appreciably only within the region near
the end of the beam.

9.3.1 Strains and Displacements for 2D Beams

The strains are calculated directly from the stresses as

o11 022 3FX1XQ
METETVE T 2Ep

022 o11 3FUX1X2
2="F "VE T T 2R

1+v 3F(1+v)(B? —x3)
€12 = o1 = 4ED

The strains may be integrated to obtain the displacements as follows. First, we have

(9.23)

3111 _ 3FX1X2
dx;  2EB3

3Fxix;
YA

where f(x,) is an arbitrary integration function of x,. Likewise,

€11 =
(9.24)

ui(x1, x2) =

Uy 3Fvxixy

2= 5y T T IEE 09

3Fvxix;
4ED3
where g(x;) is another arbitrary integration function of x;. Furthermore, we have

1 (8141 8u2) _3F(1+ v - x5)

=5\ " on 4ED

ur(x1, x2) = + g(x1),

(9.26)

When we substitute the expressions for ©; and u, from above into (9.26) and rearrange
terms, we find that

3F xl2 1 3F vx%
+ — [
8ED® 2 8ED?
Rearranged in this way, (9.27) reads

R(x1) = S(x2), (9.28)

3F(1+v) (b —x3)
4EDb3

g(x1) = - %f/(xz) + (9.27)
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2

ib X1 Figure 9.2. A simple beam under self-weight.

2a

which is true only if R(x;) = S(x) = C, where C is a constant. Thus,

3Fx?
g (x1, %) = —Fz; +C,
) ( VB 2) (9.29)
3Fvx; 3F(1+v —X;
"(x1, x2) = -C.
flan) = Zps + 2ED
This in turn leads to
Fx3
g()ﬁ) = _Fbl3 + Cx; + B,
) Fvx3 N F(1+v)(3bx — x3) Cor 4 A ©-30)
X2) = — X .
Y7 4ER 2ED> ?
By substituting equations (9.30) into (9.24) and (9.25), it is found that
3Fxixa 3F(1+v)x, FQ+v)x
- - A—
mn. ) = s+ ok dEp AT a1
3Fvxix?  Fx} .
ur(x1, x2) = — 1B AED + B+ Cx;.

Physically, the constants A, B, and C describe rigid body displacements in the x; and
X, directions and a counter-clockwise rotation about the x3 axis. Possible approximate
boundary conditions that may be applied to determine these constants are

Uy =up, = duy/ox; =0 at xy =a, x, =0, or

Uy =up, = duy/ox, =0 at xy =a, x, =0, or

b b b
/ uydx, = / Uy dx, = / xoupdx, =0 at x; =a.
—b —b —b

(9.32)

The choice of boundary condition here is motivated by additional consideration of the
actual conditions that may prevail in the physical system.

9.4 Beam Problems with Body Force Potentials

An example is now considered that involves a body force potential, in particular one that
accounts for the gravitational potential associated with self-weight. The simple beam is
illustrated in Fig. 9.2; the boundary conditions are described below. As throughout the
text, p is the mass density, and we introduce g as the gravitational acceleration constant.
Thus, the body force potential is

V(x1, x2) = pgxa, (9.33)
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where x, may be reckoned from any convenient reference level. This gives rise to the body
force density

oV
f=——=— . 9.34
i pge: (934)

The governing equation for ¢ for the case of plane stress is, in this case,
Vip = —(1—v)VV =0. (9.35)
The boundary conditions can be phrased as
o12(x1, £b) = o (x1, £b) =0,

011(:|:a,x2) = 0, (936)

b b
/ op(—a,x)dx; = —f o2(a, x2) dx; = —2pgba.
-b —b

At this point it is fruitful to consider the symmetry that is obvious in the system. For
example, for the normal stresses,

omn(x1, X2) ~ oun(—x1,x2) < an even function of xi,

(9.37)
o (X1, X2) ~ —0oun(x1, —x2) < an odd function of x,.
With these considerations, a stress function of the form
d(x1,x2) = 621x12x2 + Cz3x12X§ + co3%5 + CosX> 9.38)

= oddin x,, evenin xp,

may be tried. Note the subscripting convention used for the coefficients vis-d-vis the ex-
ponents of x; and x;. Since

VH(xixy) = V4(x3) =0, (9.39)
the remaining part of (9.38) must satisfy
V4 (csxix3 + cosx3) = 0, (9.40)

which leads to

1
24C23X2 + 120C05X2 = 0, i.E., Cos = —§C23. (941)

Consequently, the stresses are
o11(x1, X2) = pgx2 + 62372 + 6032 + 20053,
o022(x1, X2) = pgxs + 2¢01 %2 + 2cz3x§, (9.42)
o1(x1, X2) = —2c1%1 — 6C23x1x§.
Next the boundary conditions are applied. For example,
o12(x1.b) = 0 = —2¢51%1 — 6¢o3x1 b7,

(9.43)
02(x1,b) =0 = pgb + 2¢cy1b + 2C23b3.
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Observe the symmetry in o1, and o073, viz., that o1, is purely even in x; and oy, is purely odd
in x,. Thus, the boundary conditions applied on x, = b above may be equally well applied
on x, = —b. Together they lead to

o — 3
1 pg
=--= 9.44
€23 12 ( )
1 1 pg
W= TEBE T

The boundary condition o1 (+a, x;) = 0 cannot be satisfied point wise with a polynomial
solution of the type considered here. Global equilibrium can, however, be guaranteed by
setting

b
/ o11 dXQ =0. (945)
-b

Because o715 is an odd function of x;, this condition supplies no information regarding the
evaluation of the remaining coefficient, cp3. However, equilibrium also requires that no
net moment exist, and this leads to

b
/ 011X dX2 =0 on X1 = +a. (946)
-b

Since o711 is an even function in x1, (9.46) can be applied at x; = £a. Doing so leads to

2 2
3 pgh® + pga’b + dcgzb® — E pgh® =0,
~ (9.47)
= —pg| = + ~(a/b)
Co3 = —p§g 1574 .
The final results for the stresses are then
b[2 2
o11(x1, X2) = ek “bx— 25+ (6 —a)x |,
I |5 3
b b2 3
on(xi, v) = 2 (—% ; %2) , (9.48)

pgb
o1(x1, x2) = % (b*x1 — x3x1),

where I = 2b°/3 is the cross-sectional moment of inertia per unit thickness of the beam.

9.5 Beam under Fourier Loading

The beam illustrated in Fig. 9.3 is to be subject to a general loading along its top surface
(x2 = ¢) and along its bottom surface (x, = —c). This loading is imagined to have been
Fourier analyzed, as described in Chapter 3. Because of the linearity of the biharmonic
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XoA

' g X Figure 9.3. Fourier loading on a simple beam.

equation it suffices to develop a general solution for the typical Fourier component. Thus,
imagine the loading to be of the form
Uzz(X1, Xy = C) = —bm Sil’l((me1),
(9.49)

on(x1, X3 = —¢) = —ay, sin(opx1),

where «,, = mmr /¢, mis an integer, and ¢ is the length of the beam, as indicated in Fig. 9.3.
No body forces are considered and, therefore, solutions of the biharmonic equation

Vi =0 (9.50)

are sought. Assume solutions of the form

$m = sin(ox1) f(x2). (9.51)
When this is substituted into (9.50), the result, after cancelling a redundant sin(o,,, 7 x1), is
oy f(x2) = 20, f"(x2) + f""(x2) = 0. (9.52)

In (9.52) another common convention has been used, namely that primes denote differ-
entiation with respect to the obvious variable, e.g., f"(x2) = d° f/dx3.
General solutions to (9.52) are of the form

f(xz) ~ eamxz , e_amx2 , xzeiame . (9'53)
It is efficient to form solutions in the form of hyperbolic functions, i.e.,
f(XZ) ~ (eamJCz + e—amxz)’ (eclmxz _ e—()(,nJCz)’ (9'54)
or
f(x2) ~ coshoy,xz, sinha,,x;. (9.55)

A suitable stress function is

Om = [Cim cosh(a,xz) + Coppy sinh(o,x2)

(9.56)
+ C30x0 COSh(Olme) + Canxn Sinh((xme)] sin(ocmxl).
This delivers the stresses as
o1 = 0°¢/0x3
= sin(amxl){Clmafn cosh(a;,x2) + CZma,Zn sinh(o,,,x2)
(9.57)

+ G2 sinh(a;;x2) + a;x cosh(o,xz)]

+ Cymtm[2 cosh(anxz) + amx; sinh(o,x2)]},
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o = 0°¢/0x}
= —afn Sin(a;, %1 )[ Cim cosh(axz) + Copp sinh(ax2)

+ C3x0 COSh(OlmXQ) + Caxn sinh(amxz)],
o1 = —32¢)/8X13XZ

= —ayy, €08 X1 ){Crmttyy, sinh(a,,x2) + Copetyy, cosh(a,x2)

+ Cspfcosh(anxn) + apmx; sinh(a,x;)]
+ Cyp[sinh(e,;,x2) + ax; cosh(a,xz)]}).
The boundary condition o1, (x1, x; = +¢) = 0 requires that
Cim@m sinh(a,¢) + Copatyy, cosh(o,c)
+ Csp[cosh(amc) + apme sinh(o,c)]
+ Cyp[sinh(e,c) + anc cosh(ae)] = 0,
and
—Cimoty sinh(a,¢) + Cooty, cosh(a,c)
+ Csp[cosh(a;uc) + apme sinh(e,c)]
+ Cyy[sinh(ac) + e cosh(a,,c)] = 0.
When rearranged these provide the connections

ay, cosh(a,,0)

Gy = —C ,
o o cosh(w,c) + oy sinh(a,,c)

o sinh (o, €)

Cuym = —Cip— .
4 ! sinh(o,,¢) + amc cosh(w,,c)

On the other hand, the boundary condition given in (9.49) requires that
a,zn[Clm cosh(w,c) + Gy, sinh(a,,c)
+ Cspe cosh(ayc) + Cyype sinh(ay, )] = by
and
a,zn[Clm cosh(a,c) — Coypy sinh(ayc)
— Cype cosh(ay,c) + Cayne sinh(ayc)] = ap.
Consequently, we obtain

A + by, sinh(a,,¢) + apmc cosh(w,c)

Clm =

o2, sinh(2a,,¢) + 2a,mc
G — am = by cosh(a,,c) + apc sinh(a,,c)
= o2 sinh(2a,,,¢) — 20,,¢
Co — Ay — by oy cosh(a,,c)
= a2 sinhQapuc) — 2a,c’
Am + by oy sinh(a,c)
C4m = -

a2 sinh(2a,,¢) + 20,,c

(9.58)

(9.59)

(9.60)

(9.61)

(9.62)

(9.63)

(9.64)

(9.65)
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Finally, for compactness of notation, define the functions

x1 = [ame cosh(ay,c) — sinh(w,,c)] cosh(a,,xz),
X2 = tyy, sinh(a,,c)x; sinh(a,,x;),
X3 = [ame sinh(a,c) — cosh(ay,c)] sinh(w,,x;),
X4 = Qy, cosh(a,,,¢)x, cosh(wyxz),
X5 = [ame cosh(ay,c) + sinh(ay,c)] cosh(a,xz),
X6 = oy sinh(a;,¢)x; sinh(o,x2),
X7 = [ame sinh(a,¢) + cosh(ay,c)] sinh(a,,x;),
X8 = &y, cosh(a,,,¢)x; cosh(a,xz),
X9 = ¢ cosh(a,,c) sinh(w,x2),
X10 = oy sinh(a,,,¢)x; cosh(wyxz),
X11 = oyc sinh(a,,c) cosh(a,x,),
X12 = Oy cOSh(ay,C) X2 sinh (v, x;).

With these definitions, the stresses become

X1 — X2

= b i
o1 = (@n+bn) sinh(2a,,¢) + 20,¢ sin(enx1)
X3 — X4 .
_ —b ,
(@ = bm) sinh(Ca,,,¢) — 2a,,¢ sin(emx1)
X5 — X6 .
=— b
o2 (@ =+ b) sinh(2,,¢) + 2amc sin(en1)
X7 — X8 .
m = bm . m )
+(a ) sinh(2a,,¢) — 2amc sin(enx1)
X9 — X10
o (@ + brn) sinh(Ra,,,¢) + 20, ¢ cos(emx1)
+ (am - bm) a1~ X2 COS(Olmxl).

sinh(2a,,¢) — 20,

9.6 Complete Boundary Value Problems for Beams

193

(9.66)

(9.67)

(9.68)

In this section we consider a complete boundary value problem for a beam subject to a
general Fourier loading, as illustrated in Fig. 9.4. The load applied to the upper surface is

now

oyy = —gsin(nrx /L),

(9.69)

where ¢ is the length of the beam. Note that in this section coordinate notation has been
changed from x1, x, to x, y. This is done to illustrate generality of common notations. The
boundary conditions are as depicted in Fig. 9.4 and as applied explicitly below. As before,
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y
A ot Oyy
/ /\N Figure 9.4. Fourier component loading on a simple beam.
( < Ny
Y LA X’
At o

we require a stress potential ¢ satisfying the biharmonic equation

Vip =0. (9.70)
As discussed in Chapter 3, trial solutions of the form
¢ ~ e*“ePV, xe™ el or ye®*eP? (9.71)

are explored. When such terms are inserted into the biharmonic equation, there results
the characteristic equation,

a4 20282+ B =0 = (a®+ B2 =0, (9.72)

and thus & = £ip, where B can be either real or imaginary. Therefore, we obtain solutions

of the form
e (Ae’sy + Be P 4 CyeP” + Dye’ﬂy) 973)
. 9.73
+e P (AP’ + Be P + C'ye’ + D'ye #).

Of course, the roles of x and y could be interchanged, i.e., x = y, to obtain additional
solutions. In addition, terms could be formed such as sinh(By) = 1/2(e?? — ™) or
cosh(By) = 1/2(e?? + e=#?) by simply adding or subtracting exponential terms. At the
end, we obtain

¢ = sin(Bx)[ Asinh(By) + Bcosh(By) + CBysinh(By) + DBy cosh(By)]
+ cos(Bx)[ A sinh(By) + B cosh(By) + C'Bysinh(By) + D'By cosh(By)]
+ sin(ay)[ Esinh(ax) + F cosh(ax) + Gax sinh(ax) + Hax cosh(ax)]
+ cos(ay)[ E sinh(ax) + F’ cosh(ax) + G'ax sinh(ax) + H ax cosh(ax)]
+ Ry + Rix + Rox? + Ryx® 4+ Ryy + Rsy* + Rey® + Rixy
+ Rex?y + Roxy®.
The boundary conditions include
0y (X, y = h) = —gsin(nrx/€), oy (x,y = h) =0,
oyy(x,y = —h) = oxy(x, y = —h) =0,

h 1 £
ow(x=0,y) =0, / oy(x=0,y)dy = —3 / g sin(nmx/¢)dx,
—h 0

h 1 12
on(x=1¢,y)=0, / ony(x=4¢,y)dy = E/ gsin(nmx /) dx.
—h 0
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These suggest for ¢ the following form
¢ = sin(Bx) [Asinh(By) + Bcosh(By) + CBysinh(By) + DBy cosh(By)].

This form guarantees that o, (x = 0, y) = 0. It will satisfy the boundary condition at x = ¢,
as well, if the values for 8 are determined as described below.
For the stresses we obtain

oyy = —p*sin(Bx) [Asinh(By) + Bcosh(By) + CBysinh(By) + DBy cosh(By)],
vy = —p* cos(Bx) { Acosh(By) + D[Bysinh(By) + cosh(By)]}
— B*cos(Bx) { Bsinh(By) + C[By cosh(By) + sinh(By)]} .

The terms have been arranged so that they are either odd or even in y. Thus, to meet the
boundary condition oy, (x, y = £h) = 0, we require

Acosh(Bh) + D[Bhsinh(B8h) + cosh(Bh)] =0,

(9.74)
Bsinh(Bh) + C[h cosh(Bh) + sinh(8h)] = 0.
This leads to
A= —D[Bhtanh(Bh) + 1], (9.75)
B = —C|[Bhcoth(Bh) + 1],
and
oyy = — DB sin(Bx) { By cosh(By) — [Bh tanh(Bh) + 1] sinh(By)} (9.76)
~ Cp?sin(px) | Bysinh(By) — [Bh coth(ph) + 1] cosh(By)}
To ensure oy, (x, y = —h) = 0, we set
D {Bhcosh(Bh) — [Bhtanh(Bh) + 1] sinh(Bh)} (9.77)
— C{Bhsinh(Bh) — [Bhcoth(Bh) + 1] cosh(Bh)} .
Hence,
o[ ]
Bhsinh?(Bh) — Bhcosh’(Bh) o
=C [ sinh(8h) - COSh(ﬁh)} '
Since
coshz(,Bh) — sinhz(,Bh) =1,
we have
oo S o
Defining, for compactness, the parameter
T  tanh(gh) B SInR(B) cosh(gh) (9.80)

Bh + sinh(Bh) cosh(Bh) ’
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we can write

oyy = — DB’ sin(Bx) [By cosh(By) — (Bh tanh(Bh) + 1) sinh(By)]

+ DB*sin(Bx)Y [Bysinh(By) — (Bhcoth(Bh) + 1) cosh(By)]. ¢80
Since o,,(x, h) = —qsin(nmwx/f), there follows
gsin(nmx/t) =28 Dsin(Bx) ph - siriliﬁ(hﬂ)]:)osh(ﬂh) . (9.82)
For this to be true, we demand that
B =nm/t (9.83)
and
D— q cosh(nmh/l)
2(nw/€)*[nmh/t — sinh(nmh/¢) cosh(nmh/e)]’ ©0.84)
. g sinh(nwh/t)
2(nm/€)2[nmwh/t + sinh(nmh/€) cosh(nmh/L)]
It can be readily verified that indeed 0,,(0, y) = o, (¢, y) = 0.
9.6.1 Displacement Calculations
Recall the connections between the stress potential and the stresses, viz.,
Oxx 2 ¢ 29 (9.85)

:8_)12’ T ny:_axay'

For the two normal strains, and for the case of plane stress considered here, the strain-
displacement relations are

0x E

u, 1 (3% 3%
eyy - == —2 - U—2 .
ay E \ ox ay

du, 1 (3% 9%
€xx = ==\ "V— )
9y? dx2
(9.86)

When integrated, this yields

1 3¢ A
MX—E[/B—yZdX—Va—’—f(y)},

1 9%¢ ¢
uyzi[/ﬁdy—v5+g(x)]

where f(x) and g(y) are integration functions. Furthermore, for the shear strain,

ouy n duy  2(1+v) 3¢
ay  ax E  9xdy’

(9.87)

(9.88)

Now, substitute (9.87) into (9.88) and use exponential forms for ¢ of the type ¢ ~ e**ef?,
i.e., ignore polynomial like terms, to obtain

(B /o +2ap + o’ /B) e e + f(y) + &' (x) = 0. (9.89)
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Observe that

3¢ 3¢ 3¢
—dx+2 + | —dy+ f'(y)+ g (x)=0.
/ ay3 g dxdy / oxd ) +g(x)

But,
BJa+2ap +a’/B =B+ 20282 +a* =0,
from (9.72), and thus
FM+x) =0 = [y =5k =-o.
Therefore, we have
f(y) = oy +uf,
glx) = —wx + u(;.

The displacements are accordingly

e, ) = = B cos(BX)L A + v)sinh(By) + B(1 + v) cosh(8y)

+ C[(1 + v)Bysinh(By) + 2 cosh(By)]
+ D[(1 4+ v)Bycosh(By) + 2sinh(By)]}
- woy + ug,

and

uy(x,y)=— %,B sin(Bx){ A(1 + v) cosh(By) + B(1 4 v) sinh(By)

+ C[(1 + v)Bycosh(By) — (1 + v) sinh(By)]
+ D[(1 + v)Bysinh(By) — (1 — v) cosh(By)]}
+ o’x + u(;.
Now, referring to Fig. 9.4, set
uy(0,0) = uy(£,0) = u,(0,0) =0

to obtain

and

u = %,B[B(l +v)+2C].

197

(9.90)

(9.91)

(9.92)

(9.93)

(9.94)

(9.95)

(9.96)

(9.97)

(9.98)

More general loading, specified by say k(x), may be analyzed by Fourier analysis and by
applying linear superposition. If k(x) is an odd function, the solution just obtained will be
sufficient; if not, a similar solution involving a boundary condition such as o, (x, y = h) =
q cos(nzw/¢) will be required. The generation of such a solution would follow precisely

along the lines of the one obtained above.
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9.7 Suggested Reading

Little, R. W. (1973), Elasticity, Prentice Hall, Englewood Cliffs, New Jersey.

Sokolnikoff, 1. S. (1956), Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New
York.

Timoshenko, S. P., and Goodier, J. N. (1970), Theory of Elasticity, 3rd ed., McGraw-Hill,
New York.

Ugural, A. C., and Fenster, S. K. (2003), Advanced Strength and Applied Elasticity, 4th ed.,
Prentice Hall, Upper Saddle River, New Jersey.



10 Solutions in Polar Coordinates

10.1 Polar Components of Stress and Strain

We introduce a polar coordinate system as illustrated in Fig. 10.1. The polar coordinates
r, 0 are related to the cartesian coordinates x, y by
r=02+y)Y2, 6 =tan"!(y/x) (10.1)

or, through their inverse,

x=rcosf, y=rsiné. (10.2)

Thus, derivatives can be formed via
0 ar 0 a0 9
ox oxor Caxon e T T a8
(10.3)
9 _oro 000 _
dy  dydr dyoao

For second derivatives we obtain

9? 9 sind 9\’ 9? 1o 19

— = (cosf— — L — ) =cos?0— +sin’0(-— + = —
( r ) or? + <r or + r2 802>

9x?
+ 2sin6 cos O 19 1 &
r296 rordod )’

i = [ siné 9 +cos€ 9 2—sin29 il + cos” 0 19 + Lo
ay? or ro00) or? ror  r?ao?
. 19 1 98
—2sinfcosf | —— — — ,
r290 rorob

32 , ? 19 19 5 .5 19 19
=sinfcosf | — —~-—— =— | —(cos*0 —sin“0) [ = — — ——— ).
0xdy or2  ror  r2oo? r2 06  rordd

199
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Gog

Gor
o 6 Figure 10.1. The stress components in 2D
ey oy .
Gy 5 polar coordinates.
o

Gor

Oeo

Another need is to express the components of stress, strain, and displacement in terms of
the polar coordinates. This is done with the help of Fig. 10.1 that illustrates the definitions
of the polar stress components. For example,

Opp = Oyy COS2 6 + Oyy sin? 6 + 20y sinf cos 6

3% 9%¢ 9%¢

n2
= cos® 97—{— QT—ZSchosO 0%y (10.4)
_1ag 1 09%
Tror o r2ae?’
In an entirely similar fashion it is found that
3%¢
%00 = 57 (10.5)
and
lop 103°%¢ 0 184
Org = 5 — — (10.6)
r> 060 r 8r89 Car \rae

We now need to construct the field equations, in particular the biharmonic equation.
The Laplacian, in this 2D (x, y) frame, is formed as

9 9, 9% 1a 19

v 1o, 1o 107
0x2 + 9y? orz  ror + r2 962 (10.7)
and, thus,
2 1o 1Y
4_ v2e2 _

As for displacements, we appeal to the definitions of unit base vectors in the polar
geometry

e, =cosbde, +sinbe,,
(10.9)
ey = —sinf e, 4+ cosf ey,

and write

Uy = U, COSO — Uy SIinb,
(10.10)
Uy = U, sSinf + 1y cos 6.

For the strains we note, for example, that

ou,  ou, up oug 10du,\ . u, 10uy
Coy = —— = cos’ 0 + - — == sinfcosf + | — + — sin” 6.
r r 00 r 0

ax  or r oo
(10.11)
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Figure 10.2. Plate with a central hole.
X
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The use of such relations leads to the following expressions for the polar strain components

A €¢—

ou,
Crr = s

ar

1 /10u, oduy uy
== 2 _ 2}, 10.12
éro 2<r89+8r r) (10.12)
. 10uy u,
YT r a0

10.2 Plate with Circular Hole

10.2.1 Far Field Shear

As an example, consider an infinite plate containing a circular hole, asillustrated in Fig. 10.2.
The plate is assumed to be loaded by far field shear, which would represent a uniform pure
shear had it not been for the hole. Thus at infinite distance from the hole the state of stress
is to reduce to uniform pure shear, and the stress state is nonuniform near the hole. We
seek solutions of the biharmonic equation that can account for this state of loading. Try
solutions of the form

¢(r.0) =Y fulr)cos(nd) + Y ga(r) sin(nd). (10.13)
n=0 n=1

Substitution into the biharmonic equation V4¢ = 0 yields

2 2\ 2
(% + %% - %) {fu(r). ga(r)} = 0. (10.14)

Solutions are of two forms, i.e.,
Fur) = Ar™ + Apr 2 4 Apr + Aur™, n#£0,1, (10.15)

and

for) = Anr® + Apr®Inr + Aglnr + Ay, n=0,
(10.16)
fl(”)=A11r3+Alzrlnr+A13r+A14r’1, n=1.

Similar solutions exist for g,(r). These solution forms may be used to construct the solution.
Because the surface of the hole is traction free, the boundary condition there becomes

o,y =09 =0 onr=a, (10.17)



202 10. Solutions in Polar Coordinates

whereas far from the hole
Oy — T asr — 0o, (10.18)

where 7 is the magnitude of the remotely applied shear stress. Because the far field stress
state is pure shear,

Oxx, Oy — 0 asr — oo. (10.19)

The problem is most easily solved by using an elementary application of the principle
of linear superposition. We imagine two problems, one of a homogeneous plate subject
to pure far field shear and that of a plate with a hole whose surface is subject to traction;
the traction to be imposed in this second problem will be such as to precisely annihilate
the traction that would exist on a circular surface of the same radius in the homogeneous
plate of the first problem. When the two solutions are added, the hole’s surface becomes
traction free. Moreover, as will be seen, the stresses of the second problem vanish far from
the hole, so that the far field stress state for the combined problems becomes only the
uniform pure shear of the first problem.

For problem (1), involving pure uniform shear, we take

2
¢V = —txy = —1r’sinf cosf = —%‘L’ sin(20), (10.20)

which clearly produces a simple state of uniform pure shear stress of magnitude t. The
corresponding stresses are

o) =1sin(20), o) =1 cos(26). (10.21)

In problem (2) we apply the stresses o,, = —1 sin(20) and 0,4 = —1 cos(26) to the surface
of the hole. To accomplish this, consider potential of the form

»@(r,0) = Asin(26) + Br~2cos(26), (10.22)

which is from the inventory listed in (10.15) and (10.16). The choice of functions involving
sin(20) and cos(20) may be taken as arrived at by trial and error, but is clearly motivated
by similar term in the boundary conditions. The stresses associated with this potential are

4A 6B\ .
O'r(rz) = — (r—2 + 7_4) sm(29),
24 6B
o (72 N r_4> cos(26). (10.23)

@ 6B .
% =7 sin(20).

Next, by evaluating o )(r =a) and or(g)(r = a) and setting the results equal to —1 sin(26)
and —1 cos(26), respectively, it is found that A= ta? and B = —ta*/2.
The combined stresses, therefore, become

o =0V 4+06® =1 (1 —4a?/r* + 3a*/r*) sin(20),
Org = crr(;) + o}j) =1 (1+2a*/r* = 3a*/r*) cos(26), (10.24)

Oy = ae(é) + 06592) = —1 (1 +3a*/r")sin(20).
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It is interesting to examine the implications of such solutions vis-d-vis stress concentra-
tions. Of particular interest is the normal stress that occurs at a perimeter of the hole cor-
responding to 6 = 37 /4, where sin(20) = —1. The maximum hoop stress there is ogy = 47.
As the state of stress at this point is uniaxial tension, because o,, = 0,9 = 0 on the hole’s
surface, the maximum shear stress at this point is simply Ty = 27.

10.2.2 Far Field Tension

The second problem of this type that is of interest involves an identical plate subject to far
field tension (or compression). Thus the boundary conditions are the same as (10.17) on
the surface of the hole, but become

Oxyx — 0 at r — oo. (10.25)

Atr — oo all other components of stress vanish.

The problem may be solved using an identical superposition approach. For the first
problem we imagine a homogeneous plate subject to uniform far field tension; the potential
corresponding to this state of stress is

1 1 1
oV = anZ = Earzsinze = Za[r2 —r?cos(260)]. (10.26)

Consider a second potential prescribed as
»? = Ao Inr + Bo cos(20) + Cor 2 cos(260), (10.27)
so that, when the two solutions are combined,
1
¢ = Zcr[r2 —r?cos(20)] + Ao Inr 4+ Bo cos(20) + Cor =2 cos(26). (10.28)

The stresses computed from this potential are

|:1 cos(20) A 4Bcos(20) 6C cos(ZG)}
oy =0 |5+ + = — - R

2 2 r2 r2 r4
in(2 2 Bsin(2 in(2
0= o sin(20) n sin(20) n 6Csin(20) ’ (10.29)
2 r? r4
[l cos(20) A n 6C cos(20)
Opo = 2 2 }’2 74 :

In setting the boundary condition o,,(r = a) = 0, note that two equations are generated
from the first of (10.29), viz.,

(10.30)

These arise from the need to independently set the terms involving cos(26) to zero. The
second traction free boundary condition gives rise to a single equation

1 2B 6C

st >+ =0 (10.31)
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When the equations are solved, we find
A= —d?/2, B=d’/2, C=—a*/4 (10.32)

The resulting stresses are

a? cos(20) [3a*  4a?
orr=3<1——2)+07()<———+1>,

2 r 2 r4 r2
~ 4 2
) S“;(ZG) (314 - 1) , (10.33)
r r

o a’® o cos(26) (3a*

Of particular interest is the stress concentration at the point on the hole’s surface at
6 = +m/2. The maximum hoop stress there is ojp** = 30.

10.3 Degenerate Cases of Solution in Polar Coordinates
We again seek solutions to the equation
? 1o 19\
Vig=—S+-—+—=— =0 10.34
¢ <8r2+r8r+r2892>¢ ( )

in the form
¢ = i fu(r) cos(nf) + ign(r) sin(n9). (10.35)
n=0 n=1

We examine the terms involving cos(n0) for the moment. This leads to

d? +1 d n?
dr2  rdr 2

2
) fa(r) =0. (10.36)
In general, solutions exist of the type

Fur) = Anr™2 + Apr ™2+ Apar™ + Apr ™", (10.37)

as we have seen previously. But, if n = 0, two sets of solutions become degenerate, viz.,
(Ar"™2, Apr™+2) and (A,;3r", Auar ™). If, on the other hand, n = 1, two other solutions
become degenerate, viz., (Anr 2 A,3r"). In such cases we seek to find a resolution in
terms of alternative solutions to replace those that are degenerate.

Let n = 1 + €, that is relax the condition that #n be an integer. Then the two potentially
degenerate forms for n = 1 become

f(r) = Ar'=¢ 4 Brite, (10.38)
and as € — 0 the two forms become degenerate. Now, recast f(r) as

f(r) — C(r1+e + rlfe) + D(r1+e _ rlfe). (1039)
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In the limit as € — 0, we clearly have

lim C(r'* +r'7%) — 2Cr,

(10.40)
lim0 D(r'te —r'=¢) - 0.
€ —
Take D = Ee~! and form again the limit to find that
lim Ee'(r'* —r'=) - Erlnr. (10.41)
€ —>
Thus, forn =1,
fi(r) = Aur® + Aprinr + Ajr + Ar L (10.42)
For n = 0, we find
n+2
lim0 de) =r2Inr,
nehoan (10.43)
lim 3
n—0 dn - ’
so that
fo(r) = Apr? + Apr’Inr + Aplnr + Agy. (10.44)

There are, however, additional aspects of the analysis.

When n = 0, there are solutions of the form ¢ = A, for which there are no stresses. We
want instead solutions that give rise to stresses of the Fourier form, which would come
about, say, from potentials of the type

¢ = Ar€ cos(ed) + Bre€sin(ef), (10.45)
with the limit
eli_r)no [Ar€ cos(e0) + Br€sin(ef)] = A. (10.46)
Furthermore,
€li_r)n0 die [Ar€ cos(ef) + Br€sin(ef)] = Alnr + B6. (10.47)
The term B9 yields stresses
o =099 =0, 0,9 = B/r’. (10.48)

Whenn = 1,thetermsinr cosf and r sin 6 yield no stresses; a similar procedure uncovers
the alternative solution

¢ = BrOsinf + Cr0 cos ¥, (10.49)

which has the associated stresses

2Bcos® 2Csinf

- - (10.50)

00 =009 =0, 0, =
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The general solution of interest is, therefore,

o(r,0) = A01r2 + Aozrz Inr 4+ AgzInr + Agb
+ (A11r3 + Aprinr + A14r_l) cos 6 + Aj3r6 sinf

+ (Bur® + Bior Inr + Biyr ') sin@ + Bi3r6 cos 6

(10.51)

+ ) (Aar™? 4 Apr "+ Apr” + Aur ") cos(nf)

+

e i

(Bur"™™ + Bor ™ + Byar" + Bur ") sin(nf).

||
)

n

It should not go unnoticed that terms r6 sin and rf cos 0 are not single valued. This is a
feature we exploit in the next section.

10.4 Curved Beams: Plane Stress

Consider the equations of equilibrium. In polar coordinates, for cases of plane stress, we
have

aO—rr Orr — Opg 1 8070
ar r r 00
80’,9 20’,0 1 30’99

——— 4+ by =0.
ar r+r89+9

(10.52)

As before, if there are no body forces, the Airy stress function satisfies
2 19 19\
Vig=VV%=—S+-—+—5-—)¢=0. 10.53
¢ ¢ (8r2+r8r+r2892)¢ ( )
The connections to the stress components are

_1lag |, 109%

= ar o
9%¢

= m,

o (10¢
o0 =—7-\ -7, )"
ar \r 06

The strain-displacement relations are

0o (10.54)

ou,
ar’

1 /10u, 0duy uy
N — ), 10.
éro 2 (r 20 * ar r) (10.55)

10uy u,
N

Crp =
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To complete the set of governing equations, the elastic constitutive relations for plane
stress are used,

€rr = E(Grr - VUGO)a

1
€09 = _((709 — Vo), (10.56)
E
14w
€ = E Org.-

Consider solutions of a form that are dependent solely on r, ie., ¢ = ¢(r) only. In
this case, and using again the convention whereby a comma denotes differentiation, the
biharmonic equation, in the absence of body forces, reduces to

! {, [} (,4,1)1} } 0. (10.57)

I

This equation may be integrated four times in a straightforward manner to yield

1
r [_ (r¢,r),r:| = C11
r s

r

1
;(rd),,),r =Cilnr + G,

/2 /2 /2
rg,=0C (31117’ - 3) +C2§ + G,
¢, =Cirinr + CGor + G3/r, C;=C1/2, C,=(C—(1)/2,
2

(1 r? T
¢ =C; Elnr—i +C2?+C31nr+C4.

In a slightly simpler form, the last expression becomes
¢ = Alnr + Br’Inr 4+ Cr* + D. (10.58)
This form for ¢ gives rise to stresses
Oy = A/r2 +2BInr +2C,
o049 = —A/r* +2BInr +3B +2C, (10.59)
o9 = 0.

As for the strains, first note that

1+v 1 /10u, 0duy up
rg — 6 — S\ — — —— | =0. 10.60
o =" o 2(r89+8r r) (10.60)
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The radial strain is

L _duw 1A+
"9 E r?

+2C(1—v)+ B(1—v)2Inr+1)— 2\)3] . (10.61)

For the hoop strain we find

u, 1 duy
e — — [
o r r 06 (10.62)
1T A1 '
- [_(7;”’) +2C(1 = v) + BA —v)Q2lnr —1) —i-ZB] .
r

Equations (10.61) and (10.62) provide two paths for evaluating u,. Integrating (10.61)
it is found that
1 [ Al +v)
r

u, = B +2C(1 —v)r+ BA —v)Q2rinr —r) — 21)Bri| + f(0),

where f() is an arbitrary function of integration. Solving for u, in (10.62), on the other
hand, gives

U, = —,

LA

+2C(1 —v)yr+ Bl —v)Q2rinr +r) + ZBri| — duy/00.

For last two expressions to be both expressions for u,, it must be that
f(6) = —0uy/30 +4Br/E. (10.63)
If we take f(0) = 0, we obtain
dug/00 =4Br/E — ug =4Bro/E. (10.64)

With this choice for f(6), (10.60) shows that du, /960 = 0, as expected and as is consistent

with the original assumption that u, = u,(r) only. Note also, if such nonsingle valued

solutions as uy = (1/E)(4Bro) are disallowed, B = 0. The corresponding strains are
Cdu,  1TTA(1+v)

Crr = dr E |: r2

+2C(1—-v)+ Bl —v)2Inr+1)—-2vB|, (10.65)

and

609 = — =
r E r2

w_ 1 [_M 200 =)+ B —n)Q@Inr+1)+2B|.  (10.66)

To derive the radial displacement, integrate the first of these and solve the second to
obtain
1 |: Al +v)

ur=x +2C(1—v)r+B(l—v)(2rlnr—r)—2vBr:| +Y,

where Y'is a constant, and

u, = % [—M +2C(A —v)r+ B(1—v)2rinr +r)+2Bri| .
r

For these two expressions to be the same, we must have B=Y = 0.
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Figure 10.3. Hollow cylinder subject toimposed internal and external pressure.

10.4.1 Pressurized Cylinder

Consider the case of a hole in a thin plate subject to both external and internal pressure,
as depicted in Fig. 10.3. The boundary conditions are

oy =—p; On r=a,
(10.67)
oy =—pp On r =>b.
Take for the potential
¢ = Alnr + Cr* 4+ D, (10.68)
which gives the stresses
o = A/r? +2C,
opg = —A/r* +2C, (10.69)
Or9 = 0.
Setting the boundary conditions prescribed above gives
o (r =a) = Ala®> +2C = —p;,
" ‘ (10.70)
o, (r =b) = A/b* +2C = —py.
When these are solved for Aand C, it is found that
a’b* po—pi | a’pi—bp
N S E N C B
(10.71)
@t po—pi  a’pi—bp
T TR 2 g2 * b* —a?

Some interesting special cases are obtained as follows. Let t = (b —a) and Ry, = (b +
a)/2; this means that, for example,
t t
b=Rn+3, a=Rn-3, b* —a* =2t Ry. (10.72)
Now, let pp = 0 and assume ¢/ R,, < 1. Then,

Pi R R l 2,2
= (1 + - R—m> O/ R). (10.73)

Ogy =
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/ b Figure 10.4. Curved beam under the bending moment M.
N )

M o M

Recall the simple membrane approximation, viz., ops ~ p; Rn/t for the nominal stress
across the annulus wall of such a cylinder with a central hole. This may be obtained from
(10.73) by neglecting the term ¢/ R,, and evaluating the expression at r = Ry,.

10.4.2 Bending of a Curved Beam

Consider the curved beam shown in Fig. 10.4. The beam is loaded at its ends by a bending
moment M. The boundary conditions to be imposed are

o,=0,=0 on r=a,b,

/ oo dr =0 at =48, (10.74)

/O’QQVdVZ—M at 6 = £8.

As the beam does not close on itself, it is possible to accept solutions that are characterized
by nonsingle valued displacements, uy. Thus the coefficient B in (10.58) may not be zero!
Consequently, by using (10.58), evaluating the stresses, and setting the above boundary
conditions, it is found that

AJa* +2Blna + B+2C =0,

A/b* +2BInb+ B+2C =0,

b(A/b* +2BInb+ B+2C) —a (A/a* +2Blna + B+2C) =0,

— Aln(b/a) + B(b*Inb —a*Ina) + C(b* — a*) = — M.

Solving the above, we find
4M
A= —3azb2 In(b/a),
2M
B = ——(b2 - az),
D

(10.75)
M 2 2 2 2
C= SO —a) +2(0’nb — a’na)],

D = (b* — a®)* — 4a*b* In(b/a).
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The corresponding stresses are

272
Orr = —%4 |:ar_ia In(b/a) + b In(r/b) + a® ln(a/r)} ,
212
oy = —4%4 [—ar—f In(b/a) + b In(r/b) + (b* — az)i| , (10.76)
Org = 0.

10.5 Axisymmetric Deformations

We have already encountered geometries where polar coordinates are particularly suited,
namely those where the geometry is symmetric about some axis — we call that, as before,
the z axis. Here we explicitly consider some cases of such axisymmetry. Suppose that the
displacements are independent of the polar coordinate 6. If it happens that the stress
potential is also independent of 8, then the biharmonic equation for ¢ becomes

a4 2 &3 1 d2 1 d
- Lz - = 4 - = =0. 10.77
(dr4 + rdrd  r2 dr? + r3 dr)¢ ( )

General solutions to this reduced equation have already been developed, but an alternative
approach is to introduce a change in coordinates to &, where & is defined, via the polar
coordinate r, as

r=et. (10.78)

In this case (10.77) is simplified to
d* d3 d?
4 44— =0. 10.79
(a5 ~*a +4a) 0 (1079)
The general solution, in terms of & and r, is

¢ = Ate® + Be® + CE+ D

(10.80)
= Ar*Inr + Br* + Clnr + D.
We next recall the connections between the polar components of stress and the stress po-
tential, viz., relations (10.4), (10.5), and (10.6), which when specialized to the axisymmetric
case considered here are

1 do

o=

. _ & (10.81)
00 — d}’2 ’
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Substituting (10.80) into (10.81), we obtain
C
o, =2AlInr + = + A+ 2B,
r

c
o4 = 2AInr — — +3A+2B, (10.82)
r

Org = 0.

For solutions of this type in a simply connected body, e.g., a solid cylinder, the constants
Aand C must be zero so that the stresses are bounded at r = 0. For a multiply connected
body, e.g., a hollow cylinder, this is not required. For such cases, we must examine the
displacement field, as has been done earlier.

For the case of axisymmetry, relations (10.12) reduce to

du,
Crr = s
dr
Uur
e = (10.83)
r
€rg — 0.

The constitutive relations become, for the case of plane stress (o,; = 0),

du, 1 ( )
= — (0 — VOyg ),

dr f (10.84)
% =% (099 — voy,).

For plane strain, the moduli become 1/E < (1 —v?)/Eandv < v/(1 —v?),whileo,, =
v(oyr + 0pg). Using relations (10.82) in (10.84), we find from the first of (10.84) that

1
du, = — 2Alnr+£+A+ZB—v 2Alnr——C—|—3A+2B )
dr E r2 r2

When integrated, this becomes
1 C C
U, = 5 2ArInr — Ar +2Br — — —v|2ArInr + Ar +2Br + — | + H|,
r r

where H is an integration constant. The second of (10.84), on the other hand, gives
1 C C
B~ |24l — = +3A442B—v(2A4Inr + = + A+2B) .
r E r2 r2

When the two expressions for u, are equated, there follows
4Ar — H=0, (10.85)

which leads to the conclusion that A= H = 0.
For axisymmetric deformations, there is no circumferential displacement (1, = 0), and
the equations of equilibrium, in the absence of body forces, lead directly to

dPu, 1du, u,

I 10.
dr2 r dr 12 0, (10.86)
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Figure 10.5. Hollow cylinder subject to an imposed displacement on its
inner circular surface. The outer surface at r = b is fixed.

which has the general solution
1
u, = Kr +§5-. (10.87)
r

As an example, consider the case of a hollow cylinder, as in Fig. 10.5, that is subject
to an imposed displacement, uy, on its inner surface. The outer surface is fixed. Thus, the
boundary conditions are u, = uy onr = a,and u, = 0 on r = b. This leads from the above

to the solution
auy b?
U, = ey (7 — r) . (10.88)

The strains and stresses may now be calculated directly.
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11 Torsion and Bending of Prismatic Rods

In this chapter we present the Saint-Venant’s theory of torsion and bending of prismatic
rods. We first consider torsion of the prismatic rod by two concentrated torques at its
ends, and then analyze bending of a cantilever beam by a concentrated transverse force at
its end.

11.1 Torsion of Prismatic Rods

We consider here the torsional deformation of prismatic rods subject to a torque or imposed
angle of twist per unit length along the rod. The coordinate system, asillustrated in Fig. 11.1,
has the z axis along the rod and the rod’s cross section in the x-y plane. The rod is deformed
such that adjacent cross-sectional planes are rotated with respect to each other about the z
axis; the angle of rotation ¢ is such that d¢ = 6dz where 0 is the so-called rwist, or angle of
rotation per unit length along the rod’s axis. The deformation is assumed to be infinitesimal
in that 0r <« 1, where r represents a characteristic transverse dimension of the rod. If the
rotation is small, the change in a typical radius vector r, laying in a transverse plane, is
given by

Sr=38¢ xr, (11.1)

where 3¢ = §¢e;, is a vector along the z axis (measured from the mid cross section of
the rod) and has a magnitude equal to the amount of rotation. The vectors r and ér are,
respectively,

T =xe, + yey,

(11.2)
Or = uye, +uye,.
Because 8¢ = 0z, the components of the in-plane displacement vector are
uy, = —0zy, u,=02zx. (11.3)

The rod will undergo deformation in the z direction, as well; this is assumed small and
proportional to the twist 6. The displacement in the z direction is then given as

u; =0y (x,y), (11.4)
214



11.1. Torsion of Prismatic Rods 215

M,0 Figure 11.1. Prismatic rod in torsion.
-« The applied torque is M, and the angle
T of rotation, relative to the midsection

of the rod, is ¢.

where  is a function of x, y, referred to as the torsion function. Thus each cross section of
the rod becomes warped as it was originally flat. The components of strain can be calculated

from
1 8ul~ BM]‘
i == — . 11.5

€ij 2 (8)6/' + 3)6,') ( )

When this is done, the nonzero components of strain are

1 [oy 1 [oy
oL ). e =0 (Y x). 11.
€z 29 (Bx y) ey; 29 (Z)y +x> (11.6)

The application of the isotropic linear elastic constitutive relations shows that the two
nonzero components of stress are

Ay oy
Oxz = 2uex; = 40 (a — y) . Oy, =2ue,; = ub (5 +x> . (11.7)

Given that only o,; and o, are nonzero, the equations of equilibrium reduce to
00y, 0oy,

ox ay

=0, (11.8)

which, after substituting (11.7), becomes
V2 =0, (11.9)

where V? is the Laplacian with respect to x, y.
It is convenient at this stage to introduce two new stress potentials; the first is defined
via its connection to the stresses as

ax ax
Oyz =210 FI oy, = =210 " (11.10)
If (11.10) is compared to (11.7), the relations between y and x are found to be
a a a a
Wy W L (11.11)
0x ay ay ox

If the first of (11.11) is differentiated with respect to y, and the second with respect to x, and
the resulting equations subtracted, it is found that y must satisfy the Poisson’s equation

Vi =—1. (11.12)

It remains to specify the boundary conditions to be applied to x. We assume that the
side surfaces of the rod are traction free, as indicated in Fig. 11.1. Thus, on the rod’s surface
we have

oc-n=0 = o.n+oyn, =0, (11.13)
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geometry, ny = cosa = dy/d/ and ny, = sina = —dx/dl.

n
g @ Figure 11.2. The unit normal n = {n,, n,} to an infinitesimal arc of length d/. By
y hh
- dx

>y

where n is the outward pointing normal to the rod’s side surface, and n, and n, are its x
and y components. When (11.10) is substituted into the above it is found that

ax ax
ay ox
If d¢ is an increment of arc length around the circumference of the rod then the normal’s

components are also given by the relations n, = dy/d¢ and n, = —dx/d¢ (Fig. 11.2). Using
these in (11.14), it is found that

ny, =0. (11.14)

ax ax dx
Rax+ Zdy=dy =0="2de. 11.15
ax T 5y =X de (11.15)

In other words, x is a constant along the circumference. Since the stresses (and strains)
are related to derivatives of x, the constant in question may be taken as zero,

x = 0 on the edges of cross section. (11.16)

This result holds for a simply connected rod, i.e., one possessing a single, continuous outer
edge.

11.2 Elastic Energy of Torsion

We examine here the elastic energy of torsion. The elastic energy density is given as

1 1
W= EUZ']'EL']' = Oyz€x; + Oyz€y; = ﬁ (U)gz + O—}%Z s (1117)
or, in terms of y,
ax 2 ax 2
W = 2ub? <—> + (—) = 2u6?(grad x)?, (11.18)
ox ay

where grad is the gradient with respect to the in-plane coordinates x, y. The total elastic
energy is obtained by integration of W over the volume of the rod. The energy per unit
length along the rod is

1
W= 2,u02/(grad x)dA= Ece? (11.19)
A

The constant C is the forsional rigidity, because the applied moment is linear in the twist,
ie., M o 6, and thus

1
W:/Mde :/CGd@ = iCez. (11.20)

This defines C as the torsional rigidity in the relation M = C6.
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But, there is a relation

(grad x)? = div (xgrad x) — xV?x = div (xgrad x) + x, (11.21)
which may be verified by noting that V?>y = —1, and
d ax ax d0x 2
— | x—= )= Vx. 11.22
3Xj (Xaxj> 8x,~ 3X/+X X ( )
Thus,
C= 4;1,/(grad x)dA=4u / [div (x grad x) + x]dA. (11.23)
A A

The first integral contained in (11.23) vanishes, which can be be seen by transforming it
using the divergence theorem,

/le()( grad x)dA = f}(—dﬁ_o

because x = 0 on C. Thus, C is given by
C= 4u/ x dA. (11.24)
A

Finally, we introduce the second stress potential, ¢, in analogy with the function used in
the previous section, viz., ¢ = 2ufx. In terms of ¢ the above equations become

Oy; = 0¢/dy, 0y, =—0¢/0dx,

Vz(p = —2ub,
M=2/ odA (11.25)
A
1
C=2—/godA.
0Ja

The function ¢ is known as the Prandtl stress function. In the next section we will use the
Prandtl stress function and (11.25) as the basis for solving two classic torsional boundary
value problems.

11.3 Torsion of a Rod with Rectangular Cross Section
Let H = —2u6 so that the governing equation for ¢ becomes
V2 =H, within C,
=0 on C.

(11.26)

We are concerned with a rectangular cross section, as illustrated in Fig. 11.3,so that |x| < a
and |y| < b. The boundary conditions for ¢ are

¢=0on x==a, |yJ<b and ¢=0on y==+b, |x| <a. (11.27)

Define the function ¢ as

H(x* — a?), (11.28)

N =
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y A
2b » X  Figure 11.3. Rod of rectangular cross section.
2a
such that
V2 =H (11.29)
and
@ =0 on x = +a. (11.30)
With so defined ¢, we express ¢ as
1
o(x,y)=@1(x,y) + EH()CZ —a?). (11.31)
Thus, the boundary value problem is transformed into
V2<p1 =0 on A,
Y1 = 0on x= :i:a, (1132)

1
Y1 = —EH(x2 —a%) on y = +b.

We seek a solution by separation of variables as

pi(x. y) = f(x)g(y). (11.33)
Upon substitution into (11.32), we find
Vi = & f(x)/dx? g(y) + f d’g(y)/dy* =0, (11.34)
which, when rearranged, yields
1 1
?dzf/dxz = ——d?g/dy? = -2, (11.35)
8

where 1 is a constant. The two equations that follow for f(x) and g(y) are
d f/dx® +22f =0,
(11.36)
f(x) = Acos(rx) + Bsin(rx),
and
d*g/dy* —1’g =0,

(11.37)
g(y) = Ccosh(ry) + Dsinh(nry).
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To proceed, we recall the connections to stresses and note that o,, should be an odd
function of y, because of symmetry, and that o, should be an odd function of x, for the
same reason. Thus, since o, = dp/dy = d¢1/0y, and 0,;, = —d¢/0x = d¢1/dx — Hx, we
have B= D = 0in (11.36) and (11.37). This means that

@1(x, y) = Acos(rx) cosh(ry). (11.38)
Furthermore, by imposing the boundary condition on x = =a, it is found that

pr=0on x=4a =

(11.39)
cos(ha) =0 = A= E, n=1,73,5,....
2a
The general solution is, therefore,
> nwx nwy
= — h(—). 11.40
oo = 3 Avcos (5o cosh (52) (11.40)
Imposing the boundary condition on y = +b leads to
— b 1
A, cos (@) cosh (E> = ——H(x*—-d?). (11.41)
nei3s.. 2a 2a 2

The constants A, are easily determined by multiplying both sides of (11.41) by cos (%)
and integrating over [—a, a]. This yields

o (2 o (21 os (5

n=1,3,

(11.42)
1 T s, mmx
= _EH _a(x —a”)cos <?> dx.
Noting that
a nrx mmx 0, if m#n,
e dx = 11.43
[ cos () eos () o { it mn, (1143)
we deduce
b 1 “
Ay, cosh (%)a = _EH ﬂl(xz —a*)cos (%) dx, (11.44)
ie.,
16Ha*(—1)m=/2
= . 11.45
A 73mP cosh (Z2) ( )
Consequently, the function ¢ is
1
ox. ) = H(E =)
(11.46)

16Ha? & (—1)@D72cos (52) cosh (52)

w? n=135,.. n* cosh (%)
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The corresponding stresses are

8Ha & (=1 D72cos (%) sinh (2)

xz — s 11.47
%= ”2;3’5““ n? cosh (””b) ( )
and
8Ha ©  (=1)"D72sin (%) cosh (52)
= — - CHEAY 11.48
Oy [ . 123:5 n? cosh (“Z2) ( )

Assume, with no loss in generality, that a < b. The maximum shear stress then occurs at
x = +a, y =0, and is equal to

2, (=1)"=D2sin (%)
max — ,0)=-H 1-—= s 11.49
T oyz(a,0) a |: N 12235 7 cosh (“22) ( )
or, since sin (%) = 1 for the odd integer values of n involved,
Tmax = Oyz(a,0) = —Ha |1 - — . 11.50
den=mai- S 3] s
Here, it is convenient to write
Tmax = —Hak,
8 00 1 11.51
k=1-— 2 Z 2 h nb ( )
n? {35, nteosh (5P)
The applied moment is
A
= H2b ()Cz — 612) dx (1152)
32Ha i (=1)"=D72[(a, b, n)
n=135,. nicosh (57)
where
a b
I(a,b,n) = /_a cos (%) dx /_b cosh (%) dy. (11.53)
When the simple integrations are done, we find
1. (2a)*(2b) 192a & tanh (%”)
M=—-—H———|1— —— —= . 11.54
A e
Once again, it is convenient to define a factor
1924 & tanh (%Z2)
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so that

(2a)3(2b)

M= —-H222 ke (bja). (11.56)

With these, the maximum shear stress can be expressed as
2Mak M

T = MOk = G by~ @ayan) )

- (&) vy

where k, = ki / k. We list a table of computed values for the factors k, k& and k.

(11.57)

bla k ki ks
1.0 0675 0.1406 0.208
20 0930 0229 0246
3.0 0985 0263 0267
40 0997 0281 282

50 0999 0291 0291
co 10 0333 0333

11.4 Torsion of a Rod with Elliptical Cross Section

Consider a rod with an elliptical cross section as shown in Fig. 11.4. The rod’s periphery is
given as

2 2

X y
) + = 1=0. (11.58)
A suitable stress function is
2y

where the constant B is readily determined by substitution of (11.59) into the governing
equation developed previously. The result of this is
a?+b?
a’b? ’
a’bh?
2(a% + b?)’

H=V?¢=2B
(11.60)
= B=H

The torsional moment is computed from

M=2 / odA (11.61)
A

b Figure 11.4. Elliptical cross section of a rod subjected to torsion.
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which gives

2(a® + b?)
H=— T (11.62)
For the stresses, we obtain
dg 2y
Oxz = 7 = — s
0 b3
yooom (11.63)
ap 2x
o = - = —
e ax  mab?

Without loss of generality, assume that b < a; in that case the maximum shear stress
occurs at y = b, and is given by

2M
Tmax — Tab? (1164)
The evaluation of the displacement function, u.(x, y), is straightforward and leads to the
result

M b? — 42

ux,y) =
In the case of a circular cross section, i.e., where a = b, there is no longitudinal displace-
ment so that u;(x, y) = 0. The only nonvanishing component of stress is the shear stress

o =—r  Ih=-—. (11.66)

11.5 Torsion of a Rod with Multiply Connected Cross Sections

We have shown that the stress function, ¢, must be constant on the boundary (or bound-
aries) of a rod whose side surfaces are stress free. For a simply connected shaft, i.e., a solid
shaft, the constant was set to 0. For a multiply connected cross section in a hollow shaft, ¢
is also to be constant, but the constant values on the various contours of the cross section
are not the same. Such a geometry is depicted in Fig. 11.5.

Figure 11.5. Cross section of a multiply connected rod subject to tor-
sion. R denotes the area of the load bearing cross section between in
the inner surface contour C;, and the outer surface contour C;. Note
the continuous sense of the contour integration.
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To establish the augmented boundary conditions on ¢, consider the contour integral of
the warping displacement,

ou ou
du :o_f(—zd +—Zd> 11.67
féz ¢ 0x ay ( )

The integral is equal to 0 because i, is a single valued function. If we substitute from (11.7),
we obtain

1
du, = — f (022 dx + 0y dy) — eyg (xdy - ydx)
C2 G Cz CZ
(11.68)

1
= 6 Tds —ZQAZ

In (11.68) the third integral is easily seen, via Green’s theorem, to be equal to 2 A,, where
A is the area bounded by the inner contour C,. To recall Green’s theorem in this context,

we write
oM
/f (— — —) dxdy = f (Mdy + Ndx)
Az CZ

and set M =x and N = —y. The quantity 7t is the magnitude of the shear stress, ie.,

T = —0y;Nn, + 0y.n,, along the tangent to the contour, which becomes
_dy
T = 11.69
T (11.69)

where n is the unit normal to the contour C,. As the stress function must be constant on
both the inner and outer contours, (11.68) supplies the additional condition to determine
its constant value ¢y on C,. The value of ¢ on the outer boundary, C;, may still be taken as
0. Thus, in addition to the boundary condition ¢ = 0 on C;, ¢ must satisfy
% tds =2G0HA;, on Cs. (11.70)
G

The moment is readily computed from

M= // (0y:x — 0yzy) dxdy

/ / ( X+ — y) dx dy.
This may be rewritten as

M=— // [8(x‘”) Myy‘”}d dy +2//R¢dxdy, (11.72)

and transformed, via Green’s theorem, to

(11.71)

M:—fé(xqody—yq)dX)—fé(Xﬁﬂdy_)"ﬂdx)
1 2

+2//<pdxdy.
R

(11.73)
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<

Rﬂ_

— |

k<1

In (11.73), we take note of the senses of the contour integrals as indicated in Fig. 11.5.
Since ¢ = 0 on C, (11.73) becomes

M=2// o dxdy + 2¢) A. (11.74)
R

11.5.1 Hollow Elliptical Cross Section

As an example of a multiply connected rod subject to torsion, consider the hollow rod
illustrated in Fig. 11.6. The solution for the stress field in a solid rod with an ellipsoidal
cross section provides a direct path to the solution for this case where the inner contour is
an ellipse that is concentric with the outer surface. Examining that solution shows that all
ellipsoidal contours in the solid rod are lines of shear stress, so that there is no shear stress
acting on any plane section lying parallel to the axis of the rod. Therefore, it is possible to
perform the heuristic procedure of “removing an elliptical section” without disturbing the
stress state in the remainder of the rod. The stresses can be calculated from the potential

found earlier, viz.,
a’b*Go ([ x? 2
o= (S+5-1).
a’+b*> \a b
For a given 6, however, the moment will be less than in a solid rod with the same outer

dimensions, owing to the reduced total cross section. Thus, again appealing to the solution
for the solid rod,

7a*b’Go  w(ka)*(kb)}Go

M —
21 p2 2 2
a(—;i—b (ka)? + (kb) (11.75)
GO 55 4
=a2+b2a b’(1 - k7).
By implication, then, the stress function becomes
M x2 y2
= |5+ -1]. 11.76
¢ wab(1l — k*) <a2 + b? ) ( )
The maximum shear stress is, accordingly,
2M 1
for a > b. (11.77)

Tmax = ——= ——»

T rab? 1 -k
This solution may readily be verified by substitution into the governing equation and
boundary conditions developed earlier in this chapter.
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¢  Figure 11.7. A cantilever beam under

v , x bending by a concentrated force at
(T ,,,,,,,,,,,,,,,,,,,,,,,,,,, i_> its end z = [. The principal centroidal
axes of the cross section are x and y.

Vi v
\Y The shear force V passes through the
y y shear center S.

11.6 Bending of a Cantilever

Consider a cantilever beam under a transverse force V at its right end, parallel to one of
the principal centroidal directions of the beam’s cross section (y direction in Fig. 11.7). The
force passes through the so-called shear center S of the cross section, causing no torsion of
the beam. The centroid of the cross section is the point O. The reactive force and bending
moment at the left end of the beam are V and VI, where [ is the length of the beam. The
bending moment at an arbitrary distance z from the left end of the beam is

M,=-V(I-2). (11.78)
Adopting the Saint-Venant’s semi-inverse method, assume that the normal stress o, is
distributed over the cross section in the same manner as in the case of pure bending, i.e.,

M, V(-
0= — y= _7( ) y, (11.79)

I I
where I, = [, y*dAis the moment of inertia of the cross-sectional area A for the x axis.
Because the lateral surface of the beam is traction free, we also assume that throughout

the beam
Oxy = 0Oyy =0y =0. (11.80)

The objective is, thus, to determine the remaining nonvanishing stress components o, and
o,y. In the absence of body forces, the equilibrium equations reduce to

8;TZ)( — O, 8§ZY — 0’
z z
11.81
doz oy V ( )
ox oy )
These are satisfied by introducing the stress function
d = d(x,y), (11.82)
such that
ad
Oz = W s
(11.83)
p Vo, + )
Oy = ——— — — ,
N N YA

where f(x) is an arbitrary function of x. To derive the governing equation for ®, we resort
to the Beltrami-Michell’s compatibility equations (8.86). Four of them are identically
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satisfied by the above assumptions, whereas the remaining two are

Viou + 1J1r ;agz -
v dx
¢ (11.84)
V2o' + 1 8GZZ _
YT 14 aydz
Upon the substitution of (11.83), these become
a
a_ (V20) =0,
(11.85)
e 2 _ o 1
L (P0) =~ ).
Thus,
v V
Vo =—— — 11.
5 Ix—i—f(x)—i—c (11.86)

The constant ¢ can be given a geometric interpretation. By using Hooke’s law and the
above stress expressions, it can be shown that the longitudinal gradient of the material
rotation w; = (Uy x — Uy y)/2 is

dw; dey deyx 1 (doy oy 1 v Vx .
dz  x dy ~ 2G ay ) 2G\1+v I ’

where G is the shear modulus. We can define bending without torsion by requiring that the
mean value of the relative rotation of the cross sections dw,/dz over the cross-sectional
area is equal to zero,

dw,
—dA=0. 11.87
il (1187)

In the considered problem, this is fulfilled if we take ¢ = 0in (11.86). The local twist at the
point of the cross section is then
ow; vV

-2 11.88
9z EL" (11.88)

The traction free boundary condition on the lateral surface of the beam

d dx
N0y +Ny0yy = d_: O = Oy = 0, (11.89)
where n = {n,, n,} is the unit outward normal to the boundary C of the cross section, gives
do V
— = 11.90
ds |: 217 T fx )} ( )

An infinitesimal arc length along the boundary c is ds. In each particular problem
(shape of the cross section), the function f(x) will be conveniently chosen, such that
along the boundary C,

2? Vo f(x) = (11.91)
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This yields @ = const. along the boundary. Since stresses depend on the spatial derivatives
of @, the value of the constant is immaterial, and we may take ® = 0 on C. Thus, the
boundary-value problem for the stress function & is

1%
V2o =—— x4 fi(x) withinC,
L+v I (11.92)
®=0 onC.

After solving this boundary-value problem, the shear stresses follow from (11.83). At the
end cross sections of the cantilever, they must satisfy the integral boundary conditions

/szdAzo, /ozydsz,
A A

(11.93)
/(xozy — yo,)dA= Ve,
A

where e represents the horizontal distance between the shear center S and the centroid O
of the cross section.

11.7 Elliptical Cross Section
The equation of the boundary of an elliptical cross section is

x2 y2

where a and b are the semiaxes of the ellipse. The boundary condition ® = 0 is met by
choosing

Vb? x?
=—|(1-=]. 11.95
=5 (1-%) (11.95)
The partial differential equation (11.92) reads

¥\ V

Both, the boundary condition and this equation can be satisfied by taking

XZ yZ
® = Bx (;Jrﬁ—l). (11.97)

The constant B is readily found to be

2

Py
Vb2 +1+va

B=—o ¥V
21,  3b ta?

(11.98)
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The corresponding shear stresses are obtained from (11.83) as

b2 2
N 5 I ey
“ I 32 +a2
, 1 (11.99)
v | 20t LYY e @
o = — _— —_ = __—
¥ 2 30 +a? b? 1+v 302 +a?
The magnitude of the maximum shear stress component o, is
b + a?
. Vab
gmax — 24 l+v (11.100)

= 21,  3b +a?

and it occurs at the points x = +a/+/2, y = +b/+/2. The maximum shear stress component
Oy is

1

max __ Vbz 2b2 i 1 + \)az 11.101
v T T W ta (11.101)
occurring at the point x = y = 0 (center of the ellipse).
In the case of a circular cross section (@ = b = R), we have
V 1+2v
AR 1
v
Ty T R 1+ [

(11.102)
B+20)(R — y*) — (1 —2v)x*].
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12 Semi-Infinite Media

In this chapter solutions involving general types of loading on half-spaces are consid-
ered. Such solutions are developed using Fourier transforms. The media are taken to be
elastically isotropic. Solutions for anisotropic elastic media are considered in subsequent
chapters.

12.1 Fourier Transform of Biharmonic Equation

Consider a biharmonic function, ¢, that satisfies the equation

BN RN BN

Vip = — +2 — =0. 12.1
9= x4 + ax20y?  9y* (12.1)
Introduce the Fourier transform in y, viz.,
o .
D(x,a) = / o(x, y)e'*r dy, (12.2)
and its inverse
1 [ .
px.y) = / O(x, w)e " da. (123)
2 J_

It is noted here that the transform of ¢ is formed without the factor of (27)~'/?; accord-
ingly the inverse transform contains a factor (277)~!. Apply the Fourier transform to the
biharmonic equation (12.1), i.e.,

o g4y © 32 32 > 9%
/ a_je"’y dy+2 / 9x2 3y — e dy + / a_yfe,ay dy =0. (12.4)

The differentiation with respect to x may be taken outside the integrals, and after applying
the Fourier transform results from above, it is found that

3o 5 .

T +2(— zoz) +( ia)*® =0,
o a2c1) (12.5)
— — 2 — +a*'d=0
dx* 0x?2

229
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Figure 12.1. Normal loading on the surface of a half-plane.

With « > 0, the general solution is
®(x,a) = (A+ Bx)e ™ + (C + Dx)e**. (12.6)

When concerned with developing solutions to other problems in solid mechanics, such
solutions will occasionally be written as

®(x, a) = (A+ Bx)e "™ 4 (C + Dx)e*". (12.7)

The transforms of the stresses are

82 o) )
Oux = a—y(f - / 0 dy = (—iaYd(x, @) = o’ P(x, @),
—00
82 0 32 ) oD
Oy = — LN / _ 9% javgy — 10 2® (12.8)
0xay oo 0x0Yy 0x
9%¢ 9% . 2P
= — e Dtyd = —.
Tyy 9x2 = /,oo 8x2e Y ax2

The inverse transforms follow immediately as
_ 1 * 2 —iay
Opx = —— a®(x,a)e do,
27 J s

1 [, 9d(x, ;
ia—(x O[)e’“"y dao,

=) o (12.9)
1 [*3%d(x,a) 4,
Oy =50 700Te "“Yda.

12.2 Loading on a Half-Plane
Consider the half space defined by x > 0, as depicted in Fig. 12.1. The loading is specified by

oy = —p(y) on x =0, (12.10)

which describes a state of general normal loading on the external surface of the half space.
There are no shear forces on this external surface, so that the other boundary condition is

oy =0 on x=0. (12.11)
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The nature of the loading, p(y), is such that it produces bounded stresses. Infinitely far
into the bulk of the medium the stresses must be bounded, so that

Opp = 00 @S X — O0. (12.12)

As there are no body forces or temperature gradients, the Airy stress function satisfies the
simple form of the biharmonic equation

Vi = 0. (12.13)

Introduce the Fourier transform of ¢ in the spatial variable y, viz.,

P(x, o) =/ P(x, y)e™ dy, (12.14)
with an inverse
1 o0 .
o(x,y) = 2—/ D(x, a)e " da. (12.15)
v —0oQ

The acceptable solutions for the transform, ®(x, «), are of the form
®(x, a) = (A+ Bx)e "™ 4 (C + Dx)e“l. (12.16)

Next, invoke the boundary conditions specified above. First, form the Fourier transform
of the normal loading boundary condition on x = 0, we have

0 ) 0 82 )
/ o€ dy = / —¢e""y dy
_ oo 0Y2

* . (12.17)
— o =0.a) =~ [ p(y)e”dy=~P(a)
and
o) ) oo 82 ) BT ,
/ ey dy = —/ 0 oy gy = o [ 222 (12.18)
oo oo 0X0Y ax 0

Since the stresses need to be bounded at x — o0, it is clear that
C=D=0, (12.19)
whereas the transformed boundary conditions of (12.17), and (12.18) require that
—a’A=—P(¢) and 0= B—|a|A (12.20)
This leads to
A= P(a)/a’* and B= P(a)/|al. (12.21)
The result for ®(x, «) is then

P(a)

D(x, ) = "

(1 4+ |ee|x) e, (12.22)
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The solution for the stresses is consequently

1 [ '
O'xx(X, y) = _E / P(O[) ( 1 + |a|x )e—|Ot|x—lay dO[,
oxy(x, y) = —é / xo P(ar)e™ =iy dy, (12.23)

1 [ .
oy(x,y) = 5 / P(a) (1 — |a|x ) e "V dg.

There are two special cases of particular interest, viz., that arising if P(«) is symmetric
or antisymmetric. If symmetric, P(e) = P(—«), then

2 oo
oxx(x,y) = - /0 P(a) (1+ |a|x ) e ** cos(ay) da,

2 oo
oy(x,y) = _;x ; aP(a)e™* sin(ay) da, (12.24)

alx) == [ P@) (1~ lalr e cos(ay) d
with
P(a) = /OOC p(y)cos(ay)dy. (12.25)
If, conversely, P(«) = — P(—a), the integrals in (12.23) become

2 [o.¢]
oxx(X, y) = - /0 P(a) (1+ |alx ) e ** sin(ay) de,
2 oo
on(X, y) = ;x /0 aP(a)e ™" cos(ay) de, (12.26)

2 [*® .
op(x,y) = - /0 P(a) (1 — |a|x ) e * sin(ay) da,
with

P(a) = /Ooo p(y)sin(ay)dy. (12.27)

12.3 Half-Plane Loading: Special Case

As a particularly interesting special case, consider loading on the external surface of a
half-plane of the form

po, if y>0,
_ 12.28
P {o, if y <0. (12.28)

The planar polar coordinates, to be used later to express the resulting stresses, are shown
in Fig. 12.2. Consider the auxiliary function defined as

5, (a) = %S(a) - (12.29)

2mia’
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Ay

where §(«) is the Dirac delta function (see Chapter 3), and note that

o ; 1 1 [®si 1, if y>0
/ Si(w)e™da == + —/ sin(ay) da = { By=
— 2 T Jo

00 (24 0, if y < 0.
Thus, take
P(a) = 27pos. (@),
so that
1 o . po, ify>0
= — 27 pody(a)e ™ da =
o) =57 [ 2mmsi@ {QEMO

From (12.23), the stresses become

Oy = —Po/ 8y (a)e” =iy (1 4 jo|x ) da

o]

o0 1 —Xx
PP / Atar)e™ Gn@y)da.
g 0 o

5> -

Reducing this integral results in

1 Xy
=—py|1— —tan! — = |
Uxx p0|: T an (X/y)+ﬂ(x2+y2)]

Figure 12.2. Normal loading on a half-plane surface.
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(12.30)

(12.31)

(12.32)

(12.33)

(12.34)

Because # = tan"'(y/x),i.e.,x = r cosf and y = r sin 6, and noting that cot§ = tan(w/2 —

0), we can rewrite (12.34) as

1 6 1 .
o =—po|=+—+=—sin(20) .
12 = 2m ]

By a similar set of manipulations, it is found that
1

6 1 . i
Oyy = —P0 2 + P sm(29)_

and
Oxy = Ll cos? 6.
T
Note that on the external surface, x =0, i.e., 0 = /2,

Oxx = —pP0, Oyy = —PpPo, Oxy= 0.

(12.35)

(12.36)

(12.37)

(12.38)
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p > Figure 12.3. Symmetric loading on a half-plane surface.

This means that on the loading plane there exists a state of inplane hydrostatic pressure.
It is also noted that rays emanating from the origin, at constant 6, are contours of equal

stress.

12.4 Symmetric Half-Plane Loading

Consider the case where the loading on the half-plane is confined to a region symmetrically
located about y = 0. By simple shifting of the position of the origin along the line x = 0,
any situation involving a patch of loading as shown in Fig. 12.3 is embodied in this solution.

Thus, if the loading is specified as

_p()v lf —a S y S a,
Oxx = .
0, otherwise,

we have
Pa = [ " p()ee dy = /0 " p(y) cos(ay) dy

= / pocos(ay)dy = po
0

The use of (12.24) results in

2 *1 .
Opy = — % j;ax e **sin(aa) cos(ay) da,
0
2 [o¢]
Oxy = — % A e *"sin(aa) sin(ay) do,
2 *©1-—
Oy = — % ; aozx e “*sin(aa) cos(ay) da.

In terms of the polar angles in Fig. 12.3, it is readily shown that

Oy = —5—2 [2(6y — 6,) — sin(26y) + sin(26,) |,

Oxy = 2p_72 [ cos(26,) — cos(26y) ],

Gy = _5—; [2(6, — 6,) + sin(26;) — sin(26») |.

sin(aa)

(12.39)

(12.40)

(12.41)

(12.42)
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T T

o X Figure 12.4. Normal loading on a half-plane surface.
r
y

Asr — oo, 6 — 6 andthuso;; — 0. Note also that the maximum shear stress,

1 1/2
Tmax = |: Z(oxx - Uyy)2 + O')?yi| . (1243)
becomes

Tmax = % | sin(6, — 62) |. (12.44)

Thus, contours of | sin(¢; — 6,) | = constant are contours of equal maximum shear stress.

12.5 Half-Plane Loading: Alternative Approach

The boundary value problem specified on a half-plane by (12.10)—(12.12) is revisited here
and solved via application of the convolution theorem discussed in Chapter 3. To emphasize
the alternative approach, a change in coordinate definitions is used. In addition, the use of
the factor 1/4/27 is made both in the definition of the Fourier transform and its inverse.
Recall that the state of general loading on the external surface of the half-plane y =0
(Fig. 12.4) is specified as

79 b
o = — = .
W o TP (12.45)
oxy =0.
The Fourier transform of the Airy stress function, ¢(x, y), and its inverse are
1 e 8
DB, y) = — x, y)e't* dx,
6.9)= 2= [ o)
(12.46)

¢(x.y) = \/% [w @(B. y)e " dp.
In the absence of body forces, the transform @ satisfies the transformed biharmonic equa-
tion
*d R

— —2p°— +p'd=0. 12.47
e R (12.47)
The boundary conditions on y = 0 result in
— @ = P(p).
o (12.48)
T o,
dy

where P(B) is the transform of p(x), viz.,

P(B) = p(x)eP* dx. (12.49)

IN
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As in the previous section, it is noted that solutions of (12.47) that give rise to bounded
stresses at x, y — oo are of the form

®(B.y) =(A+C|Bly)e PV (12.50)
Upon application of (12.48), this leads to
A=C=—P(B)/p°, (12.51)
and
®(.3) =~ (1+1ly) e (12:52)
The transformed stresses are, therefore,
Ter = 227? = P(B) (1~ IBly)e ",
Z, = ip5 = P(B) (ipy)e . (1253)
Sy = =20 = P(B) (1 +1Bly)e V.
The inverse transform of (1 — 8]y )e™ 17 is
F L= 1Bly )e Y] = 2Pn 122 y(x* 4 y*) 72 = g(x. y). (12.54)
that is
G :L/‘OO x, y)eP*dx = (1 —|Bly e IV,
® i g(x. ) . (1=1p1y) e
g y) == [ G y)e P dp.
Similarly, for o,, we obtain
FU(L+ 181y e ] = 2927712362 4 ) 2, (12.56)
whereas for oy,
Fl (iﬂye"’gly) = 23/2]1'71/2)6_)12()62 + yz)’z. (12.57)
Next, recall the convolution theorem from Chapter 3,
[ rec@eas= [ ewse-man (12:58)
and make the association of the functions for oy, i.e.,
gn) & p(n) and G(B) & P(B).
This gives
O = L foo P(B)(1— e Plye=ifx g
N (B)(1—1Bly) B s

_ 2y [* (x—n)p()
IE 2 S [ ERe)
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Similar manipulations, involving the stresses oy, and oy, result in

2y [ (x —
and
2 3 0
Gy = % /_ ) % dn. (12.61)

A particularly interesting example that lies within this framework is a point force (actu-
ally a line of concentrated forces). Without loss of generality, place the coordinate origin
at the point of the application of the force. Taking p(x) to be p(x) = pod(x), we find

2pox’y 2po cos? 6 sin @
o} =
o w(x2 + y?)? T r
2 poxy? 2po cos 0 sin’ 6
ny = —ﬁ =, (1262)
7(x2+y?) T r
2poy? 2po sin’ 6
Oy = — o = 200 _
. 7 (x2 + y2)? Tor

12.6 Additional Half-Plane Solutions

This section offers additional solutions involving loading on a half-plane bounding a semi-

infinite medium. The approach is different than used in the above two sections and thus

the development details are provided, along with still another choice of variable names.

This is done to distinguish the alternative approach employed. The general solutions are

used vis-a-vis other specific forms of the loading function, p(y), as indicated in Fig. 12.1.
Again, begin with the biharmonic equation

Vi =0, (12.63)

and recall the definition of the Fourier transform

O(x, §) = Flo(x, y)] = f ¢(x, y)e's dy, (12.64)
with its inverse
1 [ .
p(x,y) = F [P(x,§)] = E/ D(x, £)e" dy. (12.65)
Since
2
2 = (—i§)’®, (12.66)
dy
we have

[e%e) 2 o0
/ v2¢<x,y>ef¥ydy=(%—sz) [ otneay. (12.67)

o0
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To form the biharmonic form, we apply the operator V2 again to obtain

o0 2 2 o0
/ v4¢><x,y)e"%y=<%—sz> [ otneay. (12.68)

o0
Thus, V*¢ = 0 implies
2\
<ﬁ —& ) D(x,&)=0. (12.69)
This has been seen to have solutions of the form
®(x,£) = (A4 Bx)e ¥ 4 (C 4 Dx)el™. (12.70)

For the transformed stresses we then obtain

0 . 00 32¢ )
T = / Tee® dy = f S2¢Vdy=—80(x,8),
- oo DY

o0 oo
0 , © 92 AP (x, &)
5. = i€ g :/ _ TP gievgy = ;g 225 12.71
xy KWUXye y - 8x3ye y=1i§ ox ( )
00 ) 8245
Eyy = /;OO O'yyelgydyz W

O (X y) — 1 / Z(D(x %‘)efiéy 1
XX ’ - 2 S ’ 57

1

© 9P
= — £ piky
o (X, y) = 37— [ g e (12.72)

1 [™8d
Uyy(X, Y) = Z/ 8X2€ EYdE
—00

12.6.1 Displacement Fields in Half-Spaces

For the case of plane strain, the isotropic elastic constitutive laws lead to

E odv
T @ =0y — V(0 + 0yy), (12.73)

where v is the y-component of displacement. The Fourier transform of this displacement
gradient is

YE v - i£ > it
[ raetor=[ o ar—r[ @utondar (12.74)
which yields

iEE [ - itE
- ) ! d = - )
1+U[wv(x N dy = 7= vu(x.y)

, , (12.75)
= B_Q_v<—g2d>+a—®).

9x? ox?2
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By taking the inverse, we have

1 d&
V)= — - O |ie V= 12.76
=5 [ [a-nEEewe]ent a2
In view of the definition of shear strain and the elastic constitutive relation,
E ou  dv
— +— | =0y, 12.77
2(1+4v) <8y+8x> Ty ( )
we thus obtain
E 1 od d&
=— 1- 2 2 —igy — 12.78
=5 [ Ja-viS e rneit]en s (1278)

12.6.2 Boundary Value Problem

As in the earlier sections, boundary conditions are applied that correspond to normal
loading on the external surface on a semi-infinite medium. They are, in the context of the
definitions used here,

o =—p(y), oxn=0 on x=0,

(12.79)
o;; boundedas x,y— oo.

The latter of (12.79) leads to the conclusion that, with reference to (12.70), C = D = 0.
The first two conditions of (12.79) lead to

—£2A=— /_ p(»)e'® dy = P(¢),

(12.80)
—1§]A=0.
Consequently,
A= PE)/E. B=P@E)/El (12.81)
and
D(x, &) = (E) ek (12.82)
The stresses may now be calculated as
1 [ :
o) =~ [ PO i) de,
1 [ :
o) = =5 [ PEeI (- b ds, (12:83)

oxy(x,y) = —% /_"o x& P(£)e ¥ —i8Y dg,

Since there is an imposed state of plane strain here, o, = v(oy, + 0y,), we have

o(x,y)=—v /_ h P(g)e F-ity de. (12.84)
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For the displacements, it is found that

L 14+v /OO P(£)e™ EF-EY [2(1 — v) + |£]x] d_é:

T 27E J o €]’
1+ o T d
v= g [P (1 20) — el

(12.85)

The above relations take on a rather simplified form when there exists symmetry in the

loading function, p(y). For example, if p(y) = p(—y), then
2 o0
rur ) === [P 1+ 5 costey) .
2 o0
mue) === [ PE 1 —ex)e cos(en) de.

2 oo
rue ) === [ eP@e siney) de.

Correspondingly, the displacements are

e = 2D 7 pege s - 60 S g

201+

Ev) /Om P(%.)e—gx [1 —Jv— Sx] Sln(éy)

§

v(x, y) = dg,

T

with

P) = /0 N p(y)cos(éy)dy.

(12.86)

(12.87)

(12.88)

Note that a factor of 2 has been placed on all of (12.86) and accordingly removed from

(12.88).

12.6.3 Specific Example

As a specific example, consider the loading function
Po. > o1
—(a” — , if 0< <a,
p(y) = 7_[( y9) =yl =
0, if |yl >a.

Note that

o0 po [ _
/ p(y)dy = — (a> — y*)"'2dy = py.

(o]

The transform of p(y) is

Pe= [ _<SEY) 4y 12 posi(ta).

o 7@ )7

(12.89)

(12.90)

(12.91)
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Figure 12.5. Coordinate system for the complex variable, z.

where Jy(...) is a well known Bessel function. By combining terms for the various compo-
nents of stress it is found that

2 o0
Oy + 0y = —%/0 Jo(Ea)e ¥ cos(£y) d&,

- (12.92)
i 2po —§z
Oy — Oy + 200,y = - EJo(Ea)e 7 dg,
0
where z = x + iy is the complex variable, and
et = e 5 Iy, (12.93)
From standard handbooks and the properties of Bessel functions,
oo
/ £Jo(ta)e 2 dg = z(a® + 2) 7
0
12.94
) . (1294)
 (z+1ia)2(z—ia)3?’
and thus
. 2pox z
Oy — Oxy +2i0,, = T Gtia) Pz —iay (12.95)
With reference to Fig. 12.5, we have
z—ia=re", z4+ia=re”, (12.96)
and
) 2 pox re'?
Oyy — Oxx + 2i0xy = 7 (rir2)3/2ei3/21¢i3/26;
(12.97)
_2PX T o3
b (71}’2)3/2 ’
Consequently,
2
por-cosf .
oxy(x,y) = o T sin[0 — 3/2(61 + 6,)]. (12.98)
It is also found that
2 e 2
Oy + Oy = —ﬂm/ ¢ ho(Ea) de = — P [(a® — 2)717]
T T
0 (12.99)

__2pocos[1/2(61 + 65)]
R (riry)/? ’
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\y

T Ve
\T_ﬂj\} p(x)

and

Figure 12.6. Symmetrically loaded infinite strip.

=| o

X

_ 2po r*cos6

— Oy = —7—>5 0 —3/2(01 + 62)]. 12.100
Oyy — 0. T (7'17'2)3/2 COS[ / ( 1+ 2)] ( )

From these relations, it readily follows that

2

- P - _
o(x. ) =~ { OS[1/2(61 + )] — - cosf cos[§ — 3/2(6n + 92)]},
(12.101)
Po r?
oxx(x,y) = —712{ cos[1/2(61 + 6;)] + — cos 6 cos[d — 3/2(61 + 92)]}.
7 (rirp)t/ rr;
(12.102)
Finally, we return to the displacements to find that
2(1 o0
u(x,y) = (L+v) f P(&)e 5 [2(1 —v) + Ex]M dg, (12.103)
T E 0 «‘;:
which, when differentiated with respect to y, gives
ou 2(1 =v)py [ )
- =" /7 d
() =222 [ aasineya:
(12.104)

0, if [yl <a,
= 2po(1-1?)

- T E(y?—a?)1 72>

if |y| > a.

Thus, for the assumed normal loading function, the x component of displacement is con-
stant under the load; this is as though the surface was indented by a rigid punch.

12.7 Infinite Strip

In this case we consider an infinite strip loaded on both sides with symmetrical loads as
shown in Fig. 12.6. We begin with the biharmonic equation

Vi =0, (12.105)
and the boundary conditions

oy = 0°¢/0x* = —p(x), on —oo<x <oo, y=dh,
o (12.106)
oy = —3%¢/3xdy =0, on y=+h.
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Define the Fourier transform

1 o0 .
(B, y) = — x, y)e'P* dx, 12.107
6.9)= = [ o) (12.107)
and its inverse
1 o0 )
b(r.9) = = [ e e, (12.108)
The transformed biharmonic equation becomes, as before,
d4
— — [3 + o = 0. (12.109)
dy*
Setting the boundary condition for oy, according to the first of (12.106), yields
1 o0 .
—BO = ——— x)e'f* dx = —P(B). 12.110
po=——7r [ po ® (12110)

To illustrate the procedure, consider loading functions, p(x), that are symmetric, so that
p(x) = p(—x). In this case

P(B) = N p(x)e'* dx. (12.111)

2
7=
Similar conversions of integrals involving symmetric functions will be made in what follows.
The boundary condition for oy, leads to

ad/9y =0, for y==+h. (12.112)
Solutions that meet these conditions are of the form
®(B, y) = Acosh(By) + Bsinh(By) + CBysinh(By) + DBy cosh(By).
The symmetry of ¢ in y requires that B = D = 0. The boundary condition for o, yields
d®/0y| y—+n = B { Asinh(Bh) + C[Bhcosh(Bh) + sinh(Bh)]} = 0
iLe.,
A= —C[1+ Bhcoth(Bh)]. (12.113)
The boundary condition for oy, gives the additional relation

Bh + sinh(Bh) cosh(ﬂh) 1

sinh(Bh) P(B). (12.114)
Thus,
[Bh cosh(Bh) + sinh(Bh)] cosh(By) — By sinh(Bh) smh(,By)
® (B, x) = P(ﬂ) Bh + sinh(Bh) cosh(Bh)
12.7.1 Uniform Loading: —a < x < a
If p(x) is defined as
Po, —a=x<=a,

p(x) = (12.115)

0, |x] > a,
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then
1 “ 2po sin(Ba)
P(B)= — dx= — ————. 12.116
(B)= o= | meos(pryax = T = (12.116)

It is convenient to define nondimensional variables ¢ = Bh,n = y/h, & =x/h, anda =
a/ h. Using these definitions, it is found that

1 /"" 2poh? sin(¢a)

=7 o £3[2¢ + sinh(2¢)]

x {[¢ cosh(¢) + sinh(¢)] cosh(¢n) — ¢nsinh(¢) sinh(£n) } cos(¢€) de.

Note that here the factor /42 is to be annihilated upon forming the stresses which involve
second derivatives with respect to x and y. In fact, performing these derivatives, and noting
the symmetry of the integrands involved, we obtain

XX —

dpy /°° [sinh(¢) + ¢ cosh(¢)] cosh(¢n) — ¢ sinh(¢) sinh(¢ )
T J 2¢ + sinh(2¢)
sin(¢a)
X
¢

cos(¢§)dg,

4po [ ¢nsinh(s) cosh(Sn) — ¢ cosh(¢) sinh(¢n)

nyz

2 inh(2
T ¢ +sinh(2¢) (12.117)
x Sm(;“) sin(¢8) g,
and
o —_ 3P0 > [sinh(¢) — ¢ cosh(¢)] cosh(¢n) + ¢n sinh(¢) sinh(¢n)
SO I 2¢ +sinh(2¢)
X Sm({& cos(¢€)de.

Strains may be calculated in a straightforward manner, and then the displacements. Be-
cause the system is fully equilibrated, the displacements will be set without the problem
of undetermined rigid body displacements. Note also that the problem solved above [see
(12.40) for the boundary conditions] should be recoverable by taking limits as & — oo,
although taking such limits may be a formidable task.

12.7.2 Symmetrical Point Loads

If the distribution of force, p(x), above is reduced to a concentrated point force, P, we let
po = P/2a, and take the limit

. P sin(¢e) P
lim — =—. 12.118
alino 2a Is 2h ( )
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Using the previously derived results, we obtain

2Px%y
Oy = — ",
- m(x2 4 y?)?
2Py?
Oyy = (2422’
2Pxy?
Oy = ———— s
Y m(x2 4 y2)?

12.8 Suggested Reading
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13 Isotropic 3D Solutions

13.1 Displacement-Based Equations of Equilibrium

Recall the Cauchy equations of equilibrium in terms of stresses

L+ b =0, (13.1)

along with the definition of small strains

1 814,‘ 314]'
== —+ =), 132
€ij 2<8xj+8xi> ( )

and the constitutive relations for isotropic thermoelastic media

E v
ojj = m <€i/' + m€kk8ij> — KO[AT&] (133)

The coefficient of thermal expansionis @, and K the elastic bulk modulus, K = E/3(1 — 2v).
The temperature difference from the reference temperature is AT = T — Ty. When (13.3)
are used in (13.1), we obtain

E 9%u; n E 0%uy
2(14+v) ox;jox; 2(1+v)(1 —2v) 3x;0x
(13.4)
— b+ Eo oT
T 31 =2v) ax;
In direct tensor notation, this is written as
E E
— V2 —— oraddi
2T+ " oA ey — o) BREAVE
E (13.5)
o
=-b+-—"—9gradT.
HE T
Because the curl of a vector can be written as
ou,
lu=¢€,, —e,, 13.6
curlu = €pgr o€ (13.6)

q
246
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it is straightforward to construct the vector identity
V?u = grad div u — curl curl u. (13.7)

When this is used in (13.5), it is found that

E(1—v) . E
_ — ——— curl curl
(1+U)(1_2v)graddlvu 2(1_+_V)curc:uru
E (13.8)
o
= —b4+-— T.
bt iy Tl
or
3(1 - 3(1-2
(1-v) grad divu — —u curl curl u
1+v) 2 (1+v)
(13.9)
31-2
=—%b+agradT.

These are the displacement based equations of equilibrium for isotropic thermoelastic
media.

13.2 Boussinesg-Papkovitch Solutions

There are a variety of methods for obtaining solutions to (13.9) or its alternative, (13.5).
One of the methods for obtaining general solutions is as follows. In the absence of body
forces and thermal gradients, (13.5) becomes

grad divu + (1 — 2v)Vu = 0. (13.10)
Now, if
v = grad ¢, (13.11)

where ¢ is any scalar function satisfying V¢ = 0, then v is a solution of (13.10), because

divv = du;/dx; = V¢ =0, (13.12)
and thus
V2v = grad V?¢ = 0. (13.13)
Next, if
w=4(1 —v)y — grad (x - 1), (13.14)

where 1 is any vector field satisfying V1) = 0, then w is also a solution to (13.10). To see
this note firstly that components of the grad (x - ) are

(k¥i).e = Ve + XiWrke s (13.15)

because xy ¢ = 8. Thus,

we =3 =4 — i, (13.16)
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Figure 13.1. Spherical coordinate system.

and

Wy g = divw = (3 - 41))1#4:,@ — XiWkee — Ve
=2(1 =20,

having regard to

Yiee = (V2ah) = 0.

Therefore,
divw = 2(1 — 2v)div 1.
But,
ok = 3 =)ok — (Yke + XmWm.ex)k
= =2V,
and so

V2w = —2 grad div 4.

(13.17)

(13.18)

(13.19)

(13.20)

(13.21)

Finally, by combining (13.21) and (13.19), we find that w is a solution to (13.10). Thus,

general solutions to the homogeneous equation (13.10) can be constructed as

u=uv+w.

Such solutions are known as Boussinesq—Papkovitch solutions.

13.3 Spherically Symmetrical Geometries

(13.22)

Considerable simplification, incorporating nonetheless interesting and important prob-
lems, is achieved when the problem’s geometry suggests a solution in which the displace-
ment field depends only on a radial coordinate directed from a fixed point. Such geometries
are most naturally described by a spherical coordinate system, as sketched in Fig. 13.1.
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With respect to spherical coordinate system, the components of strain are

. _ uy . _18u9+u,
T T a6 r’
1 duy Uy
— + — cotf + —,
o0 = rsinf ¢ + coto+ r
1 8u¢ 1 Bug
2epp = — | — — uy cot —_—, 13.23
Coo r<89 "o ¢>+rsin9 06 (13.23)
oug uy 1 du,
2erg = o2 = =2 4~ 2T,
or r r 00
Doy = — ézz___zz

rsinf d¢ r

Suppose, for example, that the displacement vector and the body force vector are of the
form

u=ue,, b=bhbe,, (13.24)

where e, is the unit vector directed radially. Then,

divu =div (W?) = (%) divx + x - grad (%)

=3= - — .
r dr r (13.25)
1d,,
=z
Also,
curl u = curl (ur§) = grad (&) X X + % curl x. (13.26)
r r r

But curl x = 0, and grad(u, /r) is parallel to e, || x. These facts lead to the conclusion that,
with such radial symmetry,

curlu = 0. (13.27)

Consider the equilibrium equation (13.18) and retain just the body force term. The sub-
stitution of the results (13.25)—(13.27) gives

E(1—v) d[1d
(14 v)(1—2v) dr |:r2 dr (ru ):| =~br. (13.28)

A similar development goes through if a radially symmetric temperature distribution is
included on the rhs of (13.5) or (13.9).

13.3.1 Internally Pressurized Sphere

Consider a hollow sphere with internal radius r{, and external radius r,. The sphere is
internally pressurized at a pressure p; and subject to an external pressure p, (Fig. 13.2a).
This geometry is clearly spherically symmetric and thus, with an origin at the sphere’s
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Figure 13.2. (a) Spherical hole and (b) an
inclusion subject to pressure.

(a) (b)

center, the displacement u is purely radial and a function of r alone. Thus, curl u = 0 and
(13.9) becomes

graddiva =0, (13.29)
which leads directly to
1 d(r*u,
diva= L 4w _ 5, (13.30)
r2  dr

where 3a is a constant (the 3 being incorporated for convenience). Upon integration,
u, =ar +b/r?, (13.31)
where b is another integration constant. The components of strain are easily derived as
ey =a —2b/r,  egy = epp =0a+ b/r3. (13.32)

The constants a and b are calculated by applying the stated boundary conditions to the
radial stress,

E E 2E b
= [(1=v)e, +2vep] = - -y 1333
o = A vy (Ve +2ven] = 50 a - 70 (13.33)
The result of applying o,,(r1) = —p1 and 0,,(r2) = —p> is
3 3 3.3
— 1-2 — 1
g =P Pn ZT r1r2(3p1 3”2) v (13.34)
ry =15 E ry = 2F
If, for example p; = p and p, = 0, we have

3 3 3 3

_ 3 _ _ b n
Opr = P <1 — r_3) . Opp = Opg = g <1 + r_3) . (13.35)

Limiting solutions for thin walled spherical shells, i.e., whenr, = r; + hand h/r; < 1, are
readily obtained. Another case of interest is a void in an infinite medium (r, — o0) subject
to external pressure p, = p. In this case, with p; = 0, we obtain

3 3

r r
o‘rr:—p (1—”—;), 0¢¢2099:—p (1+i> (1336)
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13.4 Pressurized Sphere: Stress-Based Solution

Another route of deriving the previous solution is as follows. In a three-dimensional prob-
lems with spherical symmetry, the only displacement component is the radial displacement
u = u(r). The corresponding strain components are

du u
= — = =—, 13.37
e ar €99 = €p¢ . ( )
with the Saint-Venant compatibility equation
d 1
% = (e — egs). (13.38)
r r

The nonvanishing stress components are the radial stress o,, and the hoop stresses oyg =
044 In the absence of body forces, the equilibrium equation is

do;,

dr

The Beltrami-Michell compatibility equation is obtained from (13.38) by incorporating
the stress-strain relations

1 1
err = (0 —2v040) . eos = lowe — V(0 +00s)] (13.40)

2
+ —=(0rr —099) = 0. (13.39)
r

and the equilibrium equation (13.39). This gives
d
4 (0 +2009) =0, (13.41)
B

which implies that the spherical component of stress tensor is uniform throughout the
medium,

1
g(O’rr + 20y9) = A= const. (13.42)

Combining (13.39) and (13.42) it follows that
do,, 3 3

T (13.43)
dr r r
The general solution of this equation is
B
o,y = A+ = (13.44)
The corresponding hoop stresses are
B
The boundary conditions for the Lamé problem of a pressurized hollow sphere are

(T,r(Rl) = —D, O’r,(Rz) =—D2. (1346)

These are satisfied provided that
PR — RS RIR
=—F->—=, B=- —D2). 13.47
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Consequently, the stress components are

R R R

= —2— | pi— — pr— (p1 — p2)— | 13.48

o B_R |:P1 R p2—(p1— p2) },3] ( )
R [ R Rf]

=———|p—-—n+P—-p)7s|. 13.49

= wog PR P (P1=P2)5 5 (13.49)

The corresponding hoop strain is obtained by substituting (13.48) and (13.49) into the
stress-strain relation (13.40). The result is

A B 1

€y =

where the elastic bulk modulus is K = E/3(1 — 2v), and the elastic shear modulus is 4 =
E/2(1 + v). Thus, the radial displacement u = reyy is

_ 1 pR - pR

RfR% 1
u =
3k Rg - Rf

—_ 13.51
R, — R} r? ( )

1
r+ 4—(P1 - p2)
m

For the nonpressurized hole (p; = 0) under remote pressure p, at infinity, the previous
results give

_p(1- R o= —pr (14 R 13.52
Oy = p2 }"3 B Opy = G¢¢ - p2 + 2r3 ) ( . )

_&[2(1—21))”5%].

vl e . (13.53)

The displacement is here conveniently expressed by using the Poisson’s ratio v. For the
pressurized cylindrical hole in an infinite medium with p, = 0, we obtain

O = —p1 —R13 Opy = Opp = D1 —R]3 (13.54)
r3’ 2r3’
pl Ri’
= . 13.55
“ 4 r? ( )

13.4.1 Pressurized Rigid Inclusion

Imagine that the cavity of the previous solution is a rigid inclusion so that the displacement
at its periphery were to vanish (Fig. 13.2b). The inclusion is to be loaded by a uniform
pressure applied at the outer boundary at r,, and the inclusion’s radius is still 7{. The
earlier found form for the displacement field (13.31) still holds, but now we have the
boundary condition that atr = ry,

u(r) =ary +b/ri =0 = a=-b/r;. (13.56)
With this we apply the same boundary condition at r = r,, viz.,

O—rr(r2) =—-p, (1357)
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to find

E 2B 17!
bz”[rfa—zv) +r§(1+v)] ' (13.58)

The complete solution for the displacements, stresses and strains follows by simple calcu-
lation. Here we look at the limit as r, becomes very large, i.e.,

3(1=2
lim b= 11=29P (13.59)
) — 00 E
The radial stress is then
1-—-2v 3
Oy =—p—2p 5 (ri/r)”. (13.60)

Note that for an incompressible material, with v = 1/2, the radial stress is everywhere
constant and equal to — p. In addition, at the inclusion surface
1—-v
1+v°

o, (r1) = =3p (13.61)

whichreveals an interesting effect of Poisson’s ratio on the concentration or virtual removal
of pressure on the surface of the inclusion. The complete stress and strain field can be easily
computed from the results listed above.

13.4.2 Disk with Circumferential Shear

It is possible to generate singular solutions of physical interest using the techniques intro-
duced here. For example, consider the displacement field

u= Cgrado, (13.62)

where 6 = tan~!(x,/x;), and C is a constant to be determined by suitable boundary con-
ditions. Note some properties of the nonzero components of displacement gradient. Since

CXZ CX1
—_ uz —
2 27 2 27
X7+ x5 Xy + x5

u = (13.63)
the normal strains are
X2X1 X2X1

———, Wy=-20—"—== 13.64

u 1 =2C .
b (x7 +x3)?

This shows, inter alia, that the deformation described by this displacement field involves
no volume change, because us = 0 and u; 1 + us 2 = 0. Also, the equilibrium equations are
satisfied because V?u = 0 and div u = 0. The other relevant components of displacement
gradient are

" Cc x3
12=773 2 2 2\2 °
X; + X3 (x7 +x3)
(13.65)
C x?
U 1|

St R)?
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and thus the shear strain is

1 X3 —x}
e = 5(”1,2 + I/lz,l) = Cm . (1366)
Consequently,
22— x2
=2GC 22— 13.67
o1 @)y (13.67)
and
X1X2
011 = —0p = 4Gc(x12_+_7x%)2 . (1368)
The circumferential shear stress is
1 1
, =2GC——— =2GC— . 13.69
o X7+ x5 r2 ( )

Thus, the peculiar displacement field of the problem gives rise to a singular stress field
associated with uniform shear stress acting on the periphery of a disk-like region. If for
example, this region were a disc of radius r = r; with applied shear stress oy, = 7 on its
edge, then C = rr12 /2G. The concentrated couple in the center of the disk, needed to
equilibrate this shear stress on the periphery of the disk, is M = 2zr?t (Fig. 13.3).

13.4.3 Sphere Subject to Temperature Gradients

Here we consider a sphere of radius r; subject to a radial temperature gradient. Again the
displacement field is assumed to be purely radial. Thus, curl u = 0 and (13.9) reduces to
d |:1 d(rzu,)i| 14+v dT

dr | r?2 dr - 31—v) dr (13.70)

We let T(r;) = 0 such that if the sphere were uniformly cooled to that temperature no
stresses would result. If (13.70) is integrated, we find

14+v [1 (7 2(1=2v) r [
=0 —— | — T(ryr*dr + =— 2 — T(r)r*dr|. 13.71
u a3(1_v) |:r2 /0 (ryr-dr + 5 r23/0 (ryr r] ( )

13.5 Spherical Indentation

In this section we examine the problem of indentation of an elastic half-plane by a rigid
spherical indenter. The process of indentation is essentially that associated with the Brinell
hardness test using a spherical indenter. We shall analyze the problem using the approach
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(@)? =8D
a(sinking in) < a'< a (piling up)

piling up
i\
—

sinking in . 'S
original surface
Figure 13.4. Geometry of an indentation. Note the phenomenology of

either sinking in or piling up depending on the degree of nonlinearity of
the indented material.

introduced by Love (1944) and later generalized in terms of the Galerkin vector potential.
The geometry of indentations, in its most general form in materials that are elastic-plastic,
is as sketched in Fig. 13.4. For nonlinear materials, indented material generally tends to
either sink-in or pile-up beneath or around the indenter. The trends are that for materials
that are linear or that display high rates of strain hardening indented material sinks away
from the indenter, whereas for materials that are weakly hardening piling up is observed.
The effect is that the actual contact radius will be smaller in the case of sinking in behavior
and larger for the case of piling up. This, of course has an important effect on the intensity
of the pressure that develops beneath the indenter and for the quantitative assessment of
hardness. For the case considered here, viz., that of linear elastic materials, we will find the
characteristic Hertzian sinking in.

13.5.1 Displacement-Based Equilibrium

Begin with the isotropic elastic constitutive relations expressed, using Lamé constants A
and p, as

0ij = Aeumlij + 2/L6,‘j. (13.72)

Recall the connections among the isotropic elastic constants

342
E— u’ w=G,
A+
(13.73)
A G E
V= "7, = -,
2(r + ) 2(1+4v)
and the equations of equilibrium
a ..
% 4 b, = 0. (13.74)
an
Since e, = dux/dxx = div u, it is readily verified that
de;j d
G _ w2y, 4 S (13.75)
ax]‘ 8xi

Thus,

d
A+ p) —diva+ uVZu; + b = 0. 13.76
0
X
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Using the relation

“w

A = 13.77
=T (13.77)
the equilibrium equations can be rewritten as
. 2 1-2v
Vdivu+ (1 —2v)Vu+ b =0, (13.78)
where 1 = G is the shear modulus. In the absence of body forces, this becomes
Vdiva + (1 —2v)Vu=0. (13.79)

13.5.2 Strain Potentials

We have already seen that a suitable displacement function can be constructed from the
gradient of a scalar field as

u= éwp. (13.80)
To satisty (13.79), ¢ must be such that
V Vi =0, (13.81)
which leads to the conclusion that
V2¢ = const. (13.82)

We note that (13.80) is not the most general form of displacement solution. A more
general form is one in which the displacement is constructed from the second derivatives
of apotential. As there are no operators of this type that transform a scalar into a vector, the
potential must be a vector potential. The Galerkin vector potential, G, is thus introduced
and the most general form for the displacement u is given as

u=o- (cV? -V div)G. (13.83)
When (13.83) is inserted into (13.79), it is found that ¢ = 2(1 — v), and
1
u=_- [2(1 —v)V?G — V divg]. (13.84)

The Galerkin vector potential G must satisfy the biharmonic equation
V4G =0. (13.85)

For the axisymmetric problem considered, we make use of one component of G, viz.,

G; we call G, = Q. In the (r, z) coordinate system, we then have
1 3%°Q 1 °Q
2 = 20 -vVPe- 220,
2G oraz T 2G |: (1-v) 8z2:|

uy =0, Q=Q(,2).

u, =
(13.86)
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The Laplacean in the (r, z) coordinates is

? 193 9
Vie —+4+-—+—. 13.87
arr ra 072 ( )
The stresses are
d , . 9Q
oy =— | VVW'QR——),
0z or?
d ) 1 92
Opp = — vwWQR — - — N
0z r or
; 20 (13.88)
_ 2
Gzz_a—z[(z—v)VQ—a—zz:I,
3 ,
Urzza[(l—\))vg—a—zz},
where the Love’s potential 2 satisfies
ViQ =0. (13.89)
Use has been made of the definitions of strain in a cylindrical system, viz.,
ou, u, ou,
oy = , =, =—, 13.90
[ or €0 . €zz 3z ( )
and
1/0u, ou,
. = — —). 13.91
ez 2( 0z * ar ) ( )

13.5.3 Point Force on a Half-Plane

The Love’s potential for a concentrated point force of intensity py is
Q= —z[l +2vy/147r?/22+ (1 =2v)In ( +1 +r2/zz) — lnz] )

The corresponding displacements, from (13.86), are

1-20) 1] 1 22 1
u = 2ol ”)_[ r/e —1], (13.92)

4 G 1—2v (14722232 (1 +r2/z2)12
and
po 1 1
= > 20—=v) ———5 |- 13.93
u; 47G 7 [(1 + 72/22)3/2 + ( V) (1 + r2/Z2)1/2i| ( )

Of particular interest is the z component of displacement, which we denote by » when
z=0. In general,

2
po |z 1

= P o —n)-], 13.94

we= o] S v2a-ny | (13.94)
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Figure 13.5. A hemispherical distributed load over
the half-space.

and on the surface, z =0,

po(l—=v) 1  p(1-v)1
— S/ e S A 13.95
2nG  p 2nG ¥’ ( )

where p = (2% 4+ r?)/? is the distance from the point force to the field point.

13.5.4 Hemispherical Load Distribution

Consider now the application of a distributed force whose intensity has a hemispherical
form (Fig. 13.5),

72\ /2
q(r)=qo <1 - ;) . (13.96)

The displacements are found by the using the solutions given in (13.95) as a Green’s
function, so that

1— /2
o= ﬂ / (612 — r2 Sin2 (/)) d(p , r<a, (1397)
20 G 0
1-—
W= ( U)QO/ (a®> —r?sin’)dg, r=>a. (13.98)
2aG

The angles ¢ and « are defined in Fig. 13.6. The results of integration are

2
r
a):wmax<1_ﬁ>, r<a,

Omax T2 a2 a a2\
w= — — —1])sin™ (—) 1—— ., r>a.
T a? r r r r?

The maximum displacement at the center of the distributed load, wmax = (0, 0), is twice
greater than the displacement at the periphery of the load, w, = w(a, 0), i.e.,

(13.99)

— _ Tq —v)
Omax = 20q,  Omax = 4G a. (13100)
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Figure 13.6. Integration angles. Note “M”
M  signifies the typical field point, either in-
side or outside the circle.

The total force is

a 1’2 1/2 2
P= 271/ qo (1 — —2> rdr = Z waqo, (13.101)
0 a 3
so that
2 3G
P = g maa)max. (13102)

13.5.5 Indentation by a Spherical Ball

The solution for the spherical load is an essential ingredient for constructing the Hertz
solution for the elastic indentation of a half-space by a spherical indenter. Denoting by R
the radius of the ball, and by § the depth of the indentation, the equation of the sphere, on
the surface of contact, is

P +[z+(R-8) = R. (13.103)

For shallow indentations §/R « 1 and z/R <« 1, where in the second inequality the coor-
dinate z is meant to be on the indented surface. Thus, when (13.103) is expanded, terms
such as 7% and 8z are neglected so that, with z replaced by w on the surface, (13.103) yields

2
w(r)=8— #, r<a. (13.104)
Because a is a geometric mean of §/2 and 2R — §/2, we have

8 8
2= _(2R- - 2~ R 13.1
a 2( 5) @ 5, (13.105)

and thus (13.104) can be rewritten as

2
o(r) = (1 - %) . r=a (13.106)
in agreement with the displacement field at the surface given in (13.99) for a hemispherical
load distribution.

Alternatively, consider the displacement at the periphery of the contact circle (r = a).
Call this §, = w(a, 0). Then,

_ L 5
w(r) =238, + 7R (a” —r%), (13.107)
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3
7

\Wf}\wmax W, Figure 13.7. The displacement profile of the

indented surface.

Z,Wy

with a simple connection

a2
=08+ —. 13.108
«t 3R ( )
Note that a ~ +/2 RS would be the “apparent radius of contact” of the sphere that was
ideally pressed into the surface to a depth §, assuming that the indented material simply
did not deflect or distort. The quantity

¢t =a’/a? (13.109)
is an invariant of such indentation processes, and for this linear elastic case
t=1/2. (13.110)
If (13.105) is used in (13.102), we obtain
_8 G RY2§3/2, (13.111)
T 31—
or, in terms of the radius of contact,
§ G 1
P=_ a’. 13.112
31-v R” ( )

An indentation hardness can be defined as

12
:n_l; il?v% glG (%) . (13.113)
The displacement of the indented surface (Fig. 13.7) is
a2 2
w:§<1_2_az>’ r<a,
(13.114)

2 2 2\ 172
a):r— 2(1__1 sin~ <E> 1—a— , r>a.
TR r2 r r r2

Alternatively, the displacement can be expressed in terms of the depth § of the indentation
(Fig. 13.8) as

w:ﬁ—r—R, r < VRS, (13.115)

w= ﬂz[(zm —1> sin~! (@) +@ <1—@>1/2}, r=vRs.
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T
& > Figure 13.8. The width a and the depth § of the inden-

- %) 15 tation by a spherical ball.

zV

The slope of the indented surface is continuous at the periphery of the contact circle
and equal to

o=

d 1)

©__ 2 (13.116)
a

which is unlike indentation with a rigid flat punch (where there is a slope discontinuity).

On the other hand, the hemispherical loading considered here prescribes a normal stress

that vanishes at the periphery of contact, in contrast to that of a flat punch (for which the
normal stress is infinite at the periphery).

13.6 Point Forces on Elastic Half-Space

Here we summarize the solutions for point force loading on elastic half-spaces for 3D infi-
nite media. The coordinate system used is shown in Fig. 13.9. We consider both normal and
tangential point forces imposed on the surface of an elastically isotropic media. Relations
(13.86)—(13.87) gave the radially symmetric displacement fields for a normal point force
in polar coordinates. We list here the same displacement components in the Cartesian
coordinate frame of Fig. 13.9. They are

Po [xz X
X ) ) = T 4 —a 1_2 N 5
ux(x, y, 2) G | o ( v) p(p+z)}

po [yz y

= |5 --2) ——— ,
uy(x,y,z) G | o ( V) p(p+z)] (13.117)
r 2

p [z [ 2(1-v)

Mz(x’y72)=m E-FT ,

> Figure 13.9. Normal and tangential point forces on elastic half-
space.




262 13. Isotropic 3D Solutions

where p = (x2 + y? + z2)V/2. It is of specific interest to form these on the surface of the
half-space, where > = x? + y2. The displacements there are

_ po (1 —2v)x

WEN=Tge T e

_ o (I=2v)y

1,¢y(x7 y) 47[G T, (13.118)
_ po 2(1—2v)

i (x,y) = nG 5

The stresses are then readily calculated by the straightforward procedure of forming the
strains and invoking the isotropic elastic constitutive relations.

The solution for the case of a tangential point load of magnitude ¢y is obtained using
similar techniques as described in the previous section on spherical indentation. The results
for the displacements are

@ [1 ¥ ! i
we(x,y,2) = nG{—+—3 - 2”)[p+z_p(p+z)2 ’
P

Y Xy
uy(x,y,z) = C |:—3 —(1- ZV)m] , (13.119)

u(x, y, 7) = 40[ +(1— )ﬁ}

When expressed on the surface z = 0 of the half-space, these displacements are

) g [21—v) 2vx?

(¥, y) = 47 G |: r + r3 |’

B qo 2vxy

uy(x, y) = G 3 (13.120)
_ g0 (1=2v)x 2V)x

)= e T

Again, the elastic strains and then the stresses can be readily calculated from (13.119).
For later reference, we note that if a general set of point loads f= { f;, f,, f;} were
applied to the surface, the displacements on the surface could be expressed as

(X, y) =Tep(x, y.2) fp. (. B=2x,y.2), (13.121)
where
2(1—v) 2vx? 2vxy (1—2v)x
n _
i r r3 r 5 r?
_ 2vxy 21 —v) 2vy* (1-2v)y (13.122)
4 G r3 r * 3
(1—2v)x (1-2v)y  2(1-2v)
— - .

This form will be useful in solving for the elastic fields at the surfaces of half-planes
subject to general loading via superposition techniques.
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14 Anisotropic 3D Solutions

14.1 Point Force

For the time being we refer to the case of generally anisotropic elastic media, and later
specialize to the case of isotropic elastic media. Recall the equilibrium equations

0ij.j +bi =0, (14.1)

where b; are the components of the body force per unit volume. The constitutive equations
that connect the stresses to small elastic strains are

0ij = Ciju e = Ciju Ug- (14.2)
Thus, combining (14.1) and (14.2), we obtain
Cijia ukij = b;. (14.3)

Suppose b is concentrated at a “point.” Next let b act only in the x,, direction and, for
now, let the magnitude of this concentrated force be unity. If the force acts at x = x/, we
can write

y |0 if i #m,
U lsx—x), ifi=m,

where §(x) is the Dirac delta function, defined in Chapter 3. The above can be rewritten
by using the Kronecker 6 as

b,' = 5,’m 5(X — X/), (l = 1, 2, 3) (144)

14.2 Green’s Function
Using (14.4), equation (14.3) becomes
Cijta ) = —8im 8(x — X). (14.5)

264
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Figure 14.1. Displacement caused by a unit point force.

(m) i

The direct physical interpretation of i~ is

u;m) = the component of displacement in the K

direction at the point x caused by a
point force acting in the m'" direction at X'

We note that u,((m) is a tensor as it associates a vector, u, with another vector, b (Fig. 14.1).
Thus, the component of tensor G is G = ug"), and (14.5) becomes

Cijk Grm, j1(X, X') = =8 8(x — X'). (14.6)

The function Gy, is called a Green'’s function. It is clearly symmetric, i.e., Gin = G-
When integrating (14.6) we demand that the influence of the point force vanish suffi-
ciently rapid, and in particular we demand that G vanish at least as fast as
1 1

G~ =— as r — oo. (14.7)
|x — x/| r

Solution by Fourier transforms provides a direct route to a solution. The Fourier transform
of G(x, x') is obtained from

g(K) = /_oo G(x, X) exp(iK - x) d’x, (14.8)

where d’x = dV = dx;dx,dx; and K is the Fourier vector in Fourier space. The inverse
transform is then obtained from

G(x,x) = (271r)3 /_ Z g(K) exp(—iK - x) I°K. (14.9)

To proceed, multiply (14.6) by exp(iK - x) or by (x — x'), because x’ is a fixed position in
the integrations, and integrate over all physical, i.e., X, space to obtain

/ Cijit Grm, j1(x, X') exp[iK - (x — x)] d*x
- . (14.10)
=— f S8im8(x —x) exp[iK - (x — x)] d*x.

o0

As noted above, d®x = d3(x — x') because of the fixity of x. Integration by parts yields,
after taking into account the vanishing of G at afar,

— f K; K Cijia Gion(x, X )d* (x — X') = —8ipn. (14.11)
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To reduce this expression, we define a unit vector, z, as the unit vector along K, i.e,
K = Kz, K = |K|. (14.12)
Then,
KK Ciju = K*2;zCiji = K* Mi(z). (14.13)

This, in turn, leads to the definition of the acoustic tensor, or Christoffel stiffness tensor,

M=z -C-z (14.14)
Thus, (14.11) becomes
- /00 K* M;1(2) Gion(x, X) exp[iK - (x — X)]d(x — X) = =8y (14.15)
—o0
Removing items that are constant within the integral, we obtain
—K* M (z) /OO Gim(x, X)) exp[iK - (x — X)]d*(x — X') = —8jm. (14.16)
—o0
Therefore,
— K2 Miion = —Bim. (14.17)

or, by inversion,

M—l
Gom = Sl’gz(z) . (14.18)
The inverse transform, or G itself, is thus
1 o0 —1
Gin(x, X)) = @) Kk;" exp[—iK - (x — X)] °K. (14.19)
—00
Since G is real, we need only take the real part of (14.19), i.e.,
1 =) 71
Gim(x, X)) = Gy K2 m cos[K - (x —x')] d°K. (14.20)
—00

To perform these integrations it is convenient to introduce a unit vector T and a stretched
vector A as follows

x—x =|x—x|T,

(14.21)
A=Kx—x|=K|x—x|z
With these, the inverse transform becomes
Gin(x,X') = / ( ) cos(rz - T) d> . (14.22)
87T3|x X|

Note, if T is replaced by —T, we have cos(rz - T) = cos(rz - —T). Accordingly, we can
express (14.22) as

gn(S)

Gin(X, X)) = Gin(sT) = Gin(T), (14.23)

where s is an algebraically signed scalar. Thus G scales as 1/|x — x/|. In fact, G depends on
x and x’ strictly as on (x — x').
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v Figure 14.2. A polar coordinate system
ab
aligned with T.

unit circle
z+T =0

We may now inquire about the derivatives of G. For example, we have

/ -1 Zp km( ) 3
Gim,p(x —X') = o T— /_00 . sin(Az - T) d° . (14.24)
Thus,
, sgn(s
Glonp(%.X') = Gignp(sT) = g ( ) Gionp(T). (14.25)
Similarly, we find
, sgn(s
G (%, X) = G (5T) = 252 ) G (D). (14.26)
and so on. In general, we obtain
Sgn(S)

ka,alaz...a,, (Xv X/) = ka,alaz.“a,, (ST) = ka , Q107 ...0p (T)

We now return to (14.22) and introduce polar coordinates aligned with T such as in
Fig. 14.2. Then

d*X = A%sing da dg do, z-T=cos¢, (14.27)

and

) 1 2n  pw 00 B )
ka(x — X ) = m \/0 /(; /0 Mkl’:l (Z) COS()\.Z . T) Sln¢ di d¢ do.

The integral over A within the above is

sin[A(z - T)]

/0 cos(Az-T)dr = ,\ILIEC @1 (14.28)
Recalling that
1sin[A(z-T
hm A)\(Z T) M —
—>oo 7 (z-T)
3(z-T),
we obtain

/oo cos(Az-T)dr =nés(z-T), (14.29)
0
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which, when substituted into (14.2), yields

1 2

Gin(x —X) = M) de. (14.30)

872x — x| Jy

The integration over 6 is about a unit circle lying on the plane x - T = 0. Note also that

8(z-T) =d(cosp) =8(p — 7 /2).

14.3 Isotropic Green’s Function

We recall that for the case of isotropic elastic media

Cijki = A8k + (ki + 88 k) (14.31)
and thus
Mix = Cijuzjz = Mijduzjz + n(Sidji + 8udjk)zjz
= AzZizk + Wik + Wi Zk- (14.32)
But,
au=2+3+4=1, (14.33)
because z is a unit vector, so that
A+
M= <8ik yoTH ZiZk) . (14.34)
Now consider a matrix with components
1
Qi = " (81 + Bziz) . (14.35)

We ask, is it possible to choose a value for Bsuch that Q;; = Mh ,Le.,sothat Q; M, = &,
To answer the question, evaluate the product

)
ZiZk

A
Qi My = (81 + Bziz;) <5ik +

A+ A+
= 8i0ik + M‘SliZi %+ B o 212122k + Bz12idik + Bz1Zidik
A+ A+
= 81k + 22k (— + B+ B—M) (14.36)
" "
Thus, if
A A
AR gyt (14.37)
we have
A
_Ate (14.38)
A2
and

- 1 A+ u
Ml=—1s ) 14.39
Jan 1 ( km+ A+2MZkZm) ( )
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Figure 14.3. Spherical coordinate system.

269

Therefore, to evaluate Gy,,(x — x') we need only express zxz,, as a function of 6 noting
that, for our purposes, zx is the k" direction cosine of a unit vector which is perpendicular to
x — x'. With reference to the spherical coordinate system in Fig. 14.3, the direction cosines

of x — x" are

with
Al =singcosy, Ay =singsiny, Az =cose,
and A;A; = 1. Then, construct z as

Zj = ar cosO + bysin0,

where
a =cos¢cosy, by =—siny,
a, =cos¢siny, by =cosy,
az; = —sin¢g, b;=0.

This gives

Zkzm = (ax cos 0 + by sin0)(a,, cos 6 + by, sin0)

= Apayy cOS” O + byby, sin® 6 + (agby, + amby) sin b cos 6.

Hence, for this isotropic case we have
1 2 A+
Gion=c——7" {8 + ———[aam cos® 6 + bib,, sin* 6
km 87T2/L|X—X/| /0 km )»+2/¢L[ k&m kUm

+ (agby, + apby) sin 6 cos 0]} de.

Noting that

2 27
/ St dO = 27 81y, / sinf cos 6 do = 0,
0 0

2 2
/ sin?6 do = / cos?0do =,
0 0

we thus obtain

1 A+
Gin= ——— | 26im — ——— bkbn) | -
ki 87X — X| |: km )\+2N«(akam+ k m):|

(14.40)

(14.41)

(14.42)

(14.43)

(14.44)

(14.45)

(14.46)
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It is easily verified that

(¥ = 263) (Xm — X,)

axam + bkbm = Span — Mehim = S — X — X/|2 ’ (1447)
so that
: At (ke = X)) (X — X,)
G —X)= —— 1 28— Skm — .
(X = X)) S8mu|x — x| { o A+2/L|:km |x — x/|?
An alternative, useful form of this expression is obtained by observing that
’ d ’ n11/2 Xm — xr/n
—x|=—(x— - =—" 14.48
G =¥ = = )= )] = T (14.48)
Then,
O () (e
Axe \ 9x,,, Oxe \Ix —X/|
S G ) — )
S x—x] Ix — x/|2
1 (ke = X1) (¥ — X;,)
= Skm — .
Ix — x| Ix — x|
Furthermore, we readily find
a 9 1 —x —x
Vix—x|= L x—x|= 5, — = Xm) (o = %) | (14.49)
30X, 0%y, |x — x/| |x — x/|?
Since
Smm =3, (m — X)) (om — x,,) = [x — X%, (14.50)
the previous expression simplifies to
Vix—x| = . (14.51)
Ix — x|
Thus, the alternative expression for the Green’s function is
1 At 92
Gion(x = X) = — [ 8nV? — —x/|. 14.52
k(X = X)) 877,u<km A4 20 0x0X,, Ix | ( )
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15 Plane Contact Problems

The basic problem considered in this chapter is one in which a rigid “punch” is forced into
the surface of an elastic half-space of semi-infinite extent. If the indenter is idealized as
rigid, the problem is displacement driven. We examine the problem by both considering
imposed forces on the surface of a half-space as well as by imposing displacements. Plane
strain conditions are assumed to prevail.

15.1 Wedge Problem

Consider the problem of a “wedge” loaded at its corner by a force f as shown in Fig. 15.1.
The geometry involved suggests that a polar coordinate system be used. We seek solutions
of the form

o = f(rg(®). (15.1)

so that all solutions are self-similar in angular form. Note that the solutions must be such
that

o~1/r = f(r)~1/r, (15.2)

since when considering equilibrium, the traction on any arc must decrease as 1/r, because
the arc length increases in proportion to r. Thus we seek solutions to the biharmonic equa-
tion that lead to stresses corresponding to (15.2). Appealing to the inventory of solutions
found earlier in Chapter 10, we try

¢ = Cirosin6 + Cor6 cos6 + CsrInr cos6 + Cyr Inr sin6. (15.3)

These give rise to stresses of the form

1
oy = —(2C1cos0 — 2C;sin + Cssinf + Cysinb),
r

1
—(Gssin — C4cos0), (15.4)
r

Org

1
o9 = - (Cscos0 + Cysind).

271
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Figure 15.1. Wedge loaded by corner point forces.

The sides of the wedge are stress-free, i.e.,
Ogr = Opp = 0 on 6=uaq, ,3, (155)

which leads to C; = C4 = 0. The constants C; and C, are determined by imposing global
equilibrium

P Cycost — Cysinb
fx+2/ 1608 p 25 acosfdf =0,

b Cycosh — Cysind
ﬁ+2/ 1698 - 2507 4sing do = 0.

(15.6)

Solving (15.6) we obtain
(C) — Cy)sin? 01 + (C + Cy)sinb cos 018 =(C, — C)(B — )= (fi — ),
(C1 + G)sin? 012 + (C, — Cy)sinb cos 0P =(Cy + C)(B — )+ (fr — )

Since C; = C4 = 0, all rays are traction free, i.e., 0,9 = ogg = 0 at each 6.
A particularly interesting case is that of a half-plane, obtained by setting « = —x and
B = 0. In that case (15.6), or (15.1), yields

fotmCL =0,
fy—mCy =0,

(15.7)

and thus
2f; cosf  2f, sind

Oy = —— —— — —=

15.8
T T (158)

We will find convenient in the sequel to redefine the convention used to describe the
applied forces. In fact, let us redefine the coordinate system as shown in Fig. 15.2. If we

call f, = —P, and ignore for the moment the tangential force f;, we obtain
2P cosf
ayy = — == 857 (15.9)
T r

Figure 15.2. Redefined polar coordinate system.

D>
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The Cartesian components of stress for the case of an applied normal load are

.~ 2P X%y
Oyx = Opp SIN QZ_FW’
. 2Py
2
LY SR L A A 15.10
Oyy =0, 7 (X% 4 y?2)? ( :
o 2P xy?
crxyzmrsmecosez—?m-

To proceed, recall that the strain components, for the considered two-dimensional
case, are

du, 1—v% 2P cosf

err = —_—
or E T r
0oy = 1 L 0uo _ v(14v) 2P cost (15.11)
r 00 E T r
1 /1 0u, Ouy uy Orp
o = = — _ =—=0
éro 2<r89+8r r) 2G

The above equations can be integrated to obtain the displacement components

1—? o 1-2v)(1 N A N R
u, = —( Y )2Pcoselnr — —( V) +v) POsinf +aysind 4+ aycosh  (15.12)
TE TE
and
1—? A 1 A
o= 5 psindtnr + "ET 5 pging
T E TE
1-2v)(1 A ~  (1-=2v)1 R
- —( v +v) PO cosb + —( v +v) Psiné (15.13)
) nE

+a,cosh — aysind + asr.
If the body does not translate or rotate, then a; = a, = az = 0. At the surface, where
6 = +m/2, we have

1 =2v)A+v) (1-2v)
ur|é=n/2 = _u7|é=_7[/2 == _T P = —T P’

1—2
u8|§:rr/2 = _u0|é:_n/2 = % 2PInr +a,

(15.14)

where a is a constant combined from the remaining termsin (15.13) that do notinvolve . To
determine this constant, a reference point is needed from which to measure displacement.
If uy = 0 atsay r = ry, then

(1-v?%)
Uplgmgyp = —Uslge—rp = — 2P1In(ro/r). (15.15)
nE
Consider next the tangential force f, = F. A similar analysis yields
2F 0
0= —— 2 gy =0, =0. (15.16)

T r
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The corresponding Cartesian stress components are

2F X3
Oy = —— ———,
h T (24 y2)?
2F  xy?
Tyy =~ e (15.17)
2F X%y
S Wy
Analysis of the displacements reveals that
1— 2
Urlg=0 = —Urlg=n = — ; 2FInr + b,
(1 —20)(1+v) (15.18)
—2v)(1+v
=0 = o= —F—— F.
Uplo=0 = Uplo= SE

Equation (15.18) shows an interesting effect that the entire surface at x > 0 is depressed
by an amount proportional to F, whereas the surface behind the point force is raised by
an equal amount. In a manner similar to the angular displacement due to a point normal
force, the constant b in (15.18) can be determined by selection of a reference point r,, so
that

(1-v?)
nE

2F In(r,/r). (15.19)

ur|9=0 = _ur|9=7r = -

15.2 Distributed Contact Forces

The solutions listed above can be used as Green’s functions for constructing the solutions
to the elastic fields of distributed forces on the surface of an infinitely extended half-plane.
Let the contact area be —a < x < a, and let the distributed normal and tangential forces
be p(x) and f(x), respectively. The resulting stresses are obtained via superposition as

2y [C p()(x—s)ds 2 ¢ f(s)(x —s)ds

T L=+ P 7 L =+ P
2y [t p(s)ds 2y* [ f(s)(x —s)ds
= [ G v L (13:20)
oy f p)x—s)ds 2y [ f(s)(x —s)2ds
N N D A CED S

This generalizes the result for normal force loading given earlier to include tangential force
loading. Note, however, that the sign convention for the normal load is reversed here.

When the radial displacement is given in terms of the Cartesian coordinates, the Inr
terms become sgn(x) In [x|. Thus, using the means employed by Johnson (1985) to han-
dlethe sign change in 1y at the surface, we find
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axz—% [/x p(s)ds—/xap(s)ds:|

—a

o (15.21)
_ 202D T e —slds +ar
TE —a
and
ity = — 2(1717—Ev2) Z p(s)In|x —s|ds 5o
+% [ _: f(s)ds—/: f(s)ds] +an,

where i, it, are the displacements on the surface. Note how splitting the range of inte-
gration of the integrals handles the sign switch inherent in uy, as discussed above. The
integration constants, here listed as a; and a, have already been discussed and do yield an
arbitrary rigid body translation that is undetermined. When the distortions are computed,
however, there is no ambiguity, so that

ity 1=2v)(1+v)

_20-) [0 f6)

ax E p(x) 7E L xXx=5
aa 21 —v2) [ p(s) (1 =2v)(1+v) (15.23)
8—xy:_ 7 E _ax—sds+ E J ).

The integrals in (15.23) are interpreted as Cauchy principal values where needed, that is
in —a<x<a.
Some interesting features arise. For example, let f(x) = 0 and consider for the moment
only normal applied forces. The normal strain on the surface, é,,, is in this case
di, (1 -=2v)(1+v) »

éxx:—_

- - (x). (15.24)

On the other hand, from the elastic constitutive relation in plane strain,

1
e = 7 [(1 = v®)6 — v(1 +v)5yy] - (15.25)
If the two expressions are to be equal, we must have
Gox = Gyy = —p(x). (15.26)

This simple result is interesting. Since in plane strain 6., = v(6, + &,,) and v is, say, in a
typical range 1/3 < v < 1/2, the state of stress under the indenter that applies p(x) is one
of nearly pure hydrostatic stress. This, in turn, means that plastic deformation tends to be
suppressed just under the contact surface.

15.2.1 Uniform Contact Pressure

Here we consider the problem of uniform loading over the strip —a < x < a with the
normal stress py, as depicted in Fig. 15.3. This problem has been already considered in
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Po
-a (I YITYa X
r ) 0 2 0 1 . .
2 ; Figure 15.3. Uniform contact pressure on a half-plane.
1
(%, )

Chapter 12 (see Fig. 12.3), where the stresses were found to be given by

- _5_0 [2(61 — 65) + sin(26;) — sin(26,)],
T

Oy = _é’_;; [2(61 — 6,) — sin(26,) + sin(26,)], (15.27)
Oy = Po [cos(20;) — cos(26,)] .
2w

The definitions of the angles 6; and 6, are indicated in Fig. 15.3. Here we compute the
corresponding displacements and displacement gradients. From (15.23), as long as —a <
x < a, we have
RIT 1-2v)1+v)
— =D

0x E

Care must be taken to note that, from (15.21), i, no longer changes beyond x > a or
x < —a because of the fact that p(x) = 0 for |x| > a. Then, if the origin is taken as fixed,
and |x| < a,

(15.28)

1=2v)(1+v) ox

i, (x) = — , 15.29
e 2y (1529)
and, if |x| > a,
1-2v)(1
i (x) = —(”—l)?(“) sen(x) poa. (15.30)
As for it,, we have
ou 2(1—=v%) [ pod
my A ”)/ Pods (15.31)
ax T E e X—5
where the principal value is to be taken if |x| < a. Thus, we form
/“ ds . <f"€ ds f" ds >
= lim —
aX—85 e-0\J_, x-—3s xie S —X
— (15.32)

lim [~In(x — )1, ~ In(s = 2)l¢,]

In(x +a) — In(a — x).

Therefore,

% - —2(27_;2) polln(a + x) — In(a — x)], (15.33)
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f

-a —>—>—>0—>—>a 'X
I’2 )92 ))91

M

Figure 15.4. Uniform tangential force on a half-plane.

X,y

and, upon integrating,
) (1—?) a+x\ a—x\’
iy(x) = — o (a+x)In p; +(a—x)In p +C.

We note that this expression holds for any range of x.

15.2.2 Uniform Tangential Force

Consider the case of a half-plane loaded on the patch —a < x < a by a uniform tangential
stress fy. With the angles as defined in Fig. 15.4, the relations (15.20) yield the stresses

Oxx = % [41n(r1/r2) — cos(261) + cos(26,)],

oyy = & [cos(201) — cos(26,)], (15.34)

Oyy = —Zﬁ [2(91 92) + sin(291) — s1n(202)]

where r 5 = [(x F a)? + y*]"/2. When the equations (15.22) are examined it becomes obvi-
ous that the relations obtained for the displacements produced by uniform normal pressure
give the displacements for the tangential stress if we make the following transitions

(l’_tx)langential = (l’_ty)normal’

) o (15.35)
(uy)tangential — (ux)normal'

15.3 Displacement-Based Contact: Rigid Flat Punch

Instead of imposing forces on the contact surface, suppose that displacements are imposed,
say by a rigid punch of a prescribed shape. This would be equivalent to the imposition of
dit,/dx and dii,/dx by the curved surface of the punch. The relations (15.23) now read

¢ f(S) 7'[(1—21)) T ,

s BT Aoy p(x) = 20— ) it (x),

“ pe) 7(1—2v) (15.36)
/_ux—sdsz 2(1—v) f(")‘ﬁ i, (x),

where it (x) = dii,/dx and @, (x) = di,/dx.
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For a frictionless flat rigid punch, with f(x) = 0 and &, prescribed, we have

/ ’ f (_S)S ds = _2(:7—?)2) i, (x). (15.37)

In this case, as in (15.28), we have

1-2v)(1+v) »

- (x). (15.38)

() = -

Note that the integral equation in (15.37) is singular. Its solutions of a general nature are
given in Section 19.8. Here we simply note that the singular integral equation

PV " L6) ds = g(x) (15.39)
aX—5

has the solution, if unbounded at the end points, given by

1 a (02 _ S2)1/2g(s) C
) = /_ R e (15.40)
where
C=n [ ¢(x)dx. (15.41)
For the rigid punch, i&)(x) =0 on —a < x < a, and
/ P 45 =0, (15.42)
aX—5s

which gives

p)y=—P (15.43)

w(a? — x2)1/2”

where py is the total load applied by the force distribution of the punch. The derived result
is, of course, the same force distribution as used earlier in Chapter 12 (see Fig. 12.5).
The displacement distribution outside the punch can be found readily from (15.21). The
result is
2(1 —v?) [@

ily(x) = —— p(s)In|x —s|ds + 8,

2(1 —v?) | x| 2\
:_—nE poln 7+ a_2 +8y7

where §, is an integration constant determined by selecting a datum from which to measure
displacement. The displacement component, ii, is found from (15.21) to be

(15.44)

1 -=2v)(1+v)

— posin~!(x/a). (15.45)

i(x) = —
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16 Deformation of Plates

The deformation of thin plates is considered here. Plates are assumed to be thin when their
thickness is very small compared to their other two dimensions in their plane. Deformations
and strains are assumed to be small and the material of the plates is isotropic linear
elastic.

16.1 Stresses and Strains of Bent Plates

Plates, when bent, develop a transition from one side to the other from tension to com-
pression and thus contain a neutral surface. If homogeneous, this neutral surface may be
assumed to pass through the middle of the plate thickness (see Fig. 16.1). The coordinate
system is accordingly taken so that the normal to the plane of the plate is the z axis, whereas
the plane of the plate is in the x-y plane. Displacement components within the plane are
assumed to be negligible compared to those normal to the plate. The displacement normal
to the plate, along the z axis, is designated as w. Thus, along the neutral plane

I,[SCO) = ug}o) = 0’ L[(ZO) = w(x, y) (161)

For small deflections of the plate, the displacement w is assumed to be small compared
to the thickness % of the plate. Because plate is assumed to be so thin, the forces acting
on the plate surface that induce deformation are typically small. Stresses within the plate,
however, due to bending and shear are not. Accordingly, the plate surface is approximated
as being stress free so that, if n is the normal to the plate,

n-o=0 = O','jl’lj=0. (162)

Moreover, since the deformations are small, i.e., the plates are but slightly bent, it may be
assumed that, n ~ e; where e; is the unit base vector along the z axis. Thus we take as an
approximation that o,; = o,; = 0,; = 0. The linear elastic constitutive relations yield

£ e £ e
Oxz = 77— €xz» Oyz = 7— €yz,
1+v 1+v
E (16.3)
02z [(1 = v)ez +v(exw + eyy)]-

(o) —2v)
280
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z A

Figure 16.1. Coordinate geometry of a thin
plate that undergoes deflection w.

When the definitions of the small strains are recalled, and if we take u, = w(x, y), it is
found that

uy  dw uy,  dw

0z ox’ oz dy (16.4)
)

€z = _m (exx + eyy) .

Thus, plane cross sections remain plane and orthogonal to the midsurface of the plate. The
first two of (16.4) are integrated wrt z to find that

ow ow
Uy = —Z——, Uy =—2—. 16.5
p=mige (165)
The constants of integration were made equal to zero, so that the displacements would be
zero at z = 0. Now, the nonzero strain components can be calculated as

92w 92w 92w
T T e T TR 0T Ty
(16.6)
v 92w 92w
a=ee =0 ex=g02\Ga T )

It may be noticed, in retrospect, that from the last expression for e,, and the relationship
e;; = du,/dz, the integration gives

2
YL+ w(x, y). (16.7)

=102

Because the plate is thin, this is approximately equal to w, in accord with the initial as-
sumption u, = w(x, y). The same order of approximation is common in the beam bending
theory. The underlying assumptions used in the above formulation of thin plate theory are
known as the Kirchhoff hypotheses.

16.2 Energy of Bent Plates

The elastic strain energy density of a plate can be expressed as

1 E 1 (Pw  Pw) 2w > 0w 0w
W=—0'ijeij=Zz— PyrEm— —2+—2 + N2 a0 .
2 14+v |2(1—v) \ ox ay 9xdy 9x% dy
The total elastic energy is obtained by integrating this expression throughout the plate.

If the thickness of the plate is 4, so that z runs from z = —%h toz= %h, and because the
deformations are small, it may be assumed that the area element in the plane of the plate
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is still just dxdy. Therefore, the total elastic energy of the plate is

ER3
24(1 — 12)

f/{(?};@ W)2+2(1—v)[<aaj§y>z—%%”dxdy.

The plate is assumed to be thin and to deform uniformly through the thickness.

W = / Wdv = (16.8)

16.3 Equilibrium Equations for a Plate

Imagine a variation in deflection, w; we wish to calculate the accompanying variation in
strain energy §WW. To begin, examine the first term in the integral in (16.8), i.e., the integral
of % (V2w)?. The factor 1/2 is placed for later convenience. It follows that

1
8—//(V2w)2dxdy:// V2wV2sw dx dy
2)J)a A

= / / V2w div (grad sw) dx dy (16.9)
A

= // div (V2w grad sw) dx dy — // grad Sw - grad V2w dx dy.
A A

The above transformation is verified with the help of the following identity, phrased in
component form as

— + Vw Vw.

d
div (V2w grad $w) = — ( VZw
ox; 0x;

sw 8V2w asw
E)xj o

ij

The divergence theorem enables an immediate transformation of the first integral in
(16.9), i.e.,

38
/ div(V?w grad sw) dx dy = 7{ V2w(n - grad sw) de = f Viw a: de,  (16.10)
A C

where d/dn denotes a derivative along the outward pointing normal to C, the curve bound-
ing the plate area A. The second integral in (16.9) is transformed as

// grad Sw -gradewdxdy:// diV(SwgradVZw)dxdy—// sw Viwdx dy
A A A

= ?{ Sw (n - grad VZw) de — // Sw V4w dx dy
c A

aVv?
:f&w wdﬁ—//SwV4wdxdy.
c on A
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Figure 16.2. Coordinates for a plate’s edge.

The above transformation can be verified by forming the following identity

d av?
div ((Sw grad VZ ) g (810 axw>
J J

asw V2w 9
= — Sw
ax,- an 3x]‘ 8x,~

where the operator - pra szw = V*w is the biharmonic operator. When these results are

combined, there follows

1 9v2 38
5= /(vzw)2 dxdy = // SwVhw dx dy — f sw 2 de +?§ V2% qe. (16.11)
2J)Ja A c on on

Attention is now turned to the second term in (16.8). We want to evaluate

2, a2
() - o) aay
Bxay 0x2 9y2

Pw %sw  w %6w  %Sw 9w
= 22— — - — —— — —— —— | dxdy.
A\ 0xdy dxdy  9x%Z 9y? 0x2 0y?

The integrand can be rewritten as the divergence of a certain vector, viz.,

9 <83w 2w dsw 9w ) 9 (88w 2w dsw 82w)
= — - — |+ —
ax ay

Thus, after using the Stokes formula (2.3), we have

2
92w 92w
~ 22 Y ldxd
// [(axay) 0x? 8y2] r

2 2

(16.12)

dy 0xdy  dx 0y? 0x 0xdy  dy 0x2

dx 0dxdy 9 y x2
where 0 is the angle that the outward pointing normal to the edge of the plate makes with
the x axis.
The derivatives appearing in the expression for I are expressed in terms of n and ¢
(Fig. 16.2) as

0 ad .
a—zcosea——smea,
X n
(16.14)

0 0
— =sinf — +cosh —.
ay on al
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When these are usedin (16.13), and terms rearranged, the result is assembled and combined

with the contributions from (16.11). The total variation in WV is found to be
ERW’
W=———(L+5L+5), 16.15
w 12(1_1)2)(1+ )+ k) ( )

where

I = // V4w swdx dy,
A

V2
L = —f sw " de
C on

9 32 82 2
—% Sw(l —v)— [sin6 coso G (cos® 6 — sin 9) de,
c 0¢ 0y 0x? X0y

and

a8 92 02 0%w
I3=% gow V2w+(1—v) 2sin 0 cos 6 v —sinze—w— 26— de.
c on dxdy ax? ay?

The variation we wish to perform to determine the equilibrium configuration of the
plate is that of the potential energy. For this we seek configurations that minimize I1. We
thus require

811 =(SW—// pSwdxdy =0. (16.16)
A

This variation includes both surface and line integral terms, which must both vanish. For
the surface integrals we obtain

.// [12(5631;2) Viw - p} Sdwdxdy =0. (16.17)

Since the variation in w is arbitrary, this integral can only vanish if

EW?

N vt p= 16.1
na—wm =0 (16.18)

ie.,

p ERW

Viw=2  p=_""
Y= 12(1 — v2)

(16.19)
The coefficient D is the so-called flexural rigidity of the plate. The distributed load over the
plate in the z direction is p = p(x, y).

Boundary conditions are obtained by setting the line integrals to zero. If the edges of
the plate are free, i.e., no external forces act on them, w and §dw/dn are arbitrary and
thus the integrands of the line integrals must vanish at each point on the plate’s edge. This
gives

V3w w92
on

3 92
+(1 —v)— sin 6 cos 0 v =0, (16.20)
0xay

FT 2)—i—(cos@
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b ﬁ
} Figure 16.3. (a) Clamped vs. (b) simply supported edge conditions.
a

and
32 92 32
V2w + (1 —v) | 2sin6 cos o TY 29 _cos?9 22 ) =o. (16.21)
0xdy b y

If, instead, the plate’s edges are clamped, we have w = 0 and dw/dn = 0 (Fig. 16.3). The
shear force and moment are readily calculated as follows. For example, the force Q acting
on an edge point of the plate is given by Q = 0WW/dw, because §V = Q5w. But, looking
at I in (16.16), we see that its integrand is just this derivative devided by — D, because
of the sign ahead of the integral. Likewise, the moment M at an edge point is related to
energy changes as )V = MdSw/dn because ddw/dn represents, in an infinitesimal strain
theory, the variation in rotation angle the moment acts on. But this is just the integrand of
L in (16.3) devided by D. It can be shown, with the use of (16.14) and taking 6 = 0 after
differentiation, that these reduce to

Pw 90 *w
o o W) ’
M= Daz—w .

on?

A third type of condition is where the edges lie on fixed supports so that w = 0, but
the edges are free to rotate and thus support no moment. Also w = 0, but dw/dn # 0.
Thus (16.21) remains valid, but (16.22) no longer holds, in general. The reaction force is
still given by the first of (16.22) at points where the edge is supported, but at such points
the reaction moment is zero. The boundary condition (16.21) can be simplified by noting
that w = 0 when the edges are supported, and that dw/3¢ = 0 and 8?w/3¢> = 0 as well. In
that case,

e=r ( (16.22)

Pw 90 Jw
=0, — — — =0. 16.23
v o T3¢ an (16.23)
In deriving these formulas, as in (16.22), the angle 6 may, without loss of generality, be
set to zero after differentiation. This simply means that we choose to measure 6 from the

normal at the point at which the boundary condition is invoked.

16.4 Shear Forces and Bending and Twisting Moments

The following expressions hold for the shear forces and bending and twisting moments per
unit length of a rectangular plate (Fig. 16.4),
a )

Q= D (Vw), Q,= D@ (V2w), (16.24)

92w 92w
Me= D(a—xz *”a—yz)’
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Figure 16.4. Positive directions of the shear force,
bending and twisting moments in a rectangular plate
element.

0%w 9%w
M,=D|— — |, 16.25
g ( oy e ) (162%)
9%w
M., = D(1 — .
v ( V) axay
From equilibrium conditions they are related by
00, 90, _
0x ay
oM, IM,
ad 2 = Q,, (16.26)
ax ay
M, oM
Y Y Qy'
ax ay
The effective shear forces (that need vanish at free edges) are
oM, M,
Vi= 0+ ay"y ., Vy=0,+ ax"y . (16.27)
Finally, the stress components in the plate are
12M, 12M, 12M,
axx:—sz, nyZ_TyZ’ Oy = — h3xy (16.28)
If we define
1
M= — (M, + M,), 16.29
o (M + M) (1629)
we also have
M
V2w=5, V:M=p,
o oM o oM (16.30)
T o YTy

In the case of circular plate, the shear forces (per unit length) can be determined from

a
QrZD_

1 0
Oy =D- —

(V2w), e (V2w). (16.31)

ar
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™ Figure 16.5. Positive directions of the shear force, bending and
twisting moments in a plate element in polar coordinates.

The bending and twisting moments per unit length (Fig. 16.5) are

32w 1 0w 1 8%w
M =p|2Y¥ LA N
’ [8r2 +U<r or +r2 892)]

1ow 1 3w 0%w
My=D|-—+ =5 — — . 16.32
¢ (r or 12902 Y 8r2> ( )
My = D(1 ) 1 3%w 1 ow
0= V\r aroo 2 90
The effective shear forces are given by
19M, M,
V=0 4+-— Vi=0s+ —2. (16.33)
r 00 ar
The corresponding stress components are
12M, 12M, 12M,
Urr:_TZ’ 0902—782, Org = — 3 GZ (16.34)

16.5 Examples of Plate Deformation

16.5.1 Clamped Circular Plate

Consider a circular plate of radius a, clamped around its edge, and loaded under the action
of gravity. Let the mass density be p, and the plate’s thickness 4. We seek a solution for
the deflection of the plate. In the equation of equilibrium (16.19), we identify p = —phg,
where g is the gravitational acceleration constant. Thus,

Viw = 648, (16.35)
where g = —3pg(1 — v)/16h? E is a constant factor, made for convenience. Since the plate
is circularly symmetric, w = w(r) only, and we have

1d dw
Viw=-—r— 16.
v rdr(rdr>’ (16.36)

and

1d df1d dw
Viw=-—r—|-—(r— . 16.
Y ar {rdr |:r dr (r dr)“ (1637)
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As noted in Chapter 10, and in particular in equation (10.58), the general integral of
(16.35) is

w(r) = pr*+ A2+ B+ Crzlng + Fln 2 . (16.38)

The particular solution Br* is included to account for the right-hand side of (16.35). We
can set F = 0 because w is bounded everywhere, including at r = 0. Also, we set C =0
since its term produces a singularity at » = 0 in V2w. The boundary conditions are that
atr =a, w =0 and dw/dr = 0. With these, Aand B are determined easily with the end
result for the deflection,

w(r) = Ba* —r?)*. (16.39)

16.5.2 Circular Plate with Simply Supported Edges

Consider a circular plate, again loaded by gravity force, whose edges are simply supported
so that the boundary conditions (16.23) apply. Because for this circular plate d6/d¢ = 1/r,
the conditions in (16.23) become

Pw v dw
— _ 27 _ =a. 16.4
w =0, P + i 0, onr=a (16.40)

The solution for w is similar as in previous case, and by invoking the conditions (16.40), it
is found that

w(r) = B(a” — )<5+v 2 r2>. (16.41)

16.5.3 Circular Plate with Concentrated Force

If a clamped circular plate is loaded by a concentrated force of magnitude f at its center,
we can write p = f§(r). The integration of (16.19) then yields

“ 12(1 —v?) 12(1 —v?)
2 Viwdr = —————= [ f8(r)dA=——-—F. 16.42
o [ rviwar= =022 [ ) S 6
In this case of a concentrated point force, the term involving the coefficient C is retained
so that the solution for w becomes

w(r) = A2+ B+ Crlln_. (16.43)
a

When (16.43) is used in (16.42), it is found that C = 3(1 — v?) /27 ER?. The clamped
boundary conditions, w = 0 and dw/dr = 0 atr = a, yield the coefficients Aand B, so that

() — 3];(1Eh3 ) [2( ST ﬂ (16.44)

16.5.4 Peeled Surface Layer

Imagine a thin surface layer peeled off a thick elastic body, as shown in Fig. 16.6. The
resistance is due to adhesive forces between the layer and the block. We seek a relation
between the surface energy and a measurable feature of the process, such as the shape of
the peeled layer. Note that the work done in decohering the layer is given by 7 = 2y — 4,
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z A

h
% . Figure 16.6. Peeled layer.

where y; is the surface energy of a newly created interface (of which there are two with
a surface energy of yp), and y, is the surface energy of the initial adhesive layer (which is
destroyed by the peeling process).

The layer is treated as a thin plate with one edge clamped at the edge being torn off. As
above, the angle made by the layer, to first order, is dw/dx, and its variation is ddw/dx.
Thus the increment of work done by the moment M, given by the second of (16.22), and
working through an increment of extension éx, is

2
Ma;_w =M 538 2. (16.45)
X X
By equating this increment of work to ydx, we find
ER (0w’
y=———\|—|] . 16.46
YT 120 -0 (aﬂ) (16.46)

16.6 Rectangular Plates

There are cases, other than those involving circular plates, where closed form solutions are
possible. Notable among them are cases concerning plates with rectangular shapes such as
illustrated in Fig. 16.7. We will take as a specific example cases where the edges are simply
supported, so that displacements normal to the plate and moments vanish at the edges.
The equation of equilibrium for a plate is

Vtu(x, y) = p(x, y)/ D, (16.47)

where D = Eh?/12(1 — v?) is the plate flexural rigidity. To meet the boundary conditions
ofw=0atx =0,aand y =0, b, as well as the condition of vanishing moment there, w is
expanded in a double Fourier sine series

o0 (o)
w(x,y) = Z Z Wy SIN ? sin mrTy . (16.48)

m=1 n=1

Figure 16.7. Geometry of a rectangular thin plate with simply supported edges.
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The boundary conditions,
w(0, y) = w(a, y) = w(x,0) = w(x, b) =0, (16.49)

are naturally satisfied. The moments are computed from the normal stresses, that in turn
are computed from the second derivatives of w(x, y), viz., w . and w,,, , which likewise
vanish along the edges. To satisfy the plate equilibrium equation, we expand the load
function, p(x, y), in a similar double sine series, viz.,

p(x,y) = Z Z D sin 2" nzy . (16.50)

m=1 n=

The usual procedure, outlined below in a specific example, is used to compute the Fourier
coefficients p;,.

When (16.50) and (16.48) are substituted into (16.47), and the coefficients of like har-
monics equated, it is found that

_ Pmn 1
Wy = 2D [(mja) + (n/b)° P (16.51)
Thus,
1] & & sin mgx . AWy
w(x, y) = % Z Z [(m/a)2 + (n/b)2]2 P sin T . (1652)

16.6.1 Uniformly Loaded Rectangular Plate
For a uniformly loaded plate we let p(x, y) = po, and (16.50) becomes

Z Z D sin 7Y gin ? . (16.53)

m=1 n=1

To obtain the coefficients, multiply both sides by sin(r7x/a) sin(swy/b), where r and s are
integers, and integrate over the area of the plate. Then,

/ / posm—sdexd

:ZZp / s1n—sm yd
m=1 n=1 0 b
To evaluate the above integrals, recall that
“ 27 = b
/ sin 2 sin 77 gy = a/ re=m (16.54)
0 a a 0, r#m

Since,
a b
. FTX . ST
po | sin——dx sin 7y dy
0 a 0 b
0, rorseven,

a b
= po—|[cos(rm) — 1]—/[cos(sw) — 1] = { 4ab
rm ST — - Po, randsodd,
Trs

(16.55)
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we obtain
16
= 2 mon=1,35,..., (16.56)
2mn
and
16 > 1 1 g ny
W= p M X D o ey Gy S (1697)
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PART 4: MICROMECHANICS

17 Dislocations and Cracks: Elementary Treatment

17.1 Dislocations
Consider the plane strain deformation and the Airy stress function of the form

¢ =Crlnrcosf, C = const. (17.1)

The corresponding stresses are obtained by using the general expressions from Chapter 10,
i.e., (10.4)—(10.6). They give

199 1 8% cosf

= —— —— = C S
o = Y or + r2 962 r
0 (1d¢ sin @
w=—I-—1=C , 17.2
ore ar (r 89> r (172)
9% cosf
=—=C .
700 = 52 r

The elastic strains may then be deduced from stresses by Hooke’s law. The displacements
are then obtained from strains by integration. The end result is

U = %[(1 —v)fsinf —1/4cos6 +1/2(1 —2v)Inr cosd],

C .
Uy = 5[(1 —v)dcosd —1/4sin6 —1/2(1 —2v)Inr sinb].
Details of the derivation are given in the subsection below. The shear modulusis G, and v is

the Poisson’s ratio. Clearly, the displacement field in this case is nonsingle valued, because

(17.3)

u,(0 =0)—u, (6 =2m) =0,

2nC(1 —v) b (17.4)
— ="

The physical scenario associated with this is illustrated in Fig. 17.1, which shows that the
dislocation is created, in a heuristic manner, by first making a cut, and then creating a gap
of width b, or removing a slab of material of thickness b, and then rejoining the two sides
of the cut. In the case where material has been removed the empty gap would be filled with

u0(9 =0)—u9(0=2n)=—

293
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yA

Figure 17.1. Dislocation created by a displacement discontinuity uy(0) —
up(2m) = b.

material of identical properties. The body is left in the state of stress

B Gb  cos6
rr = 2r(1—v) r
Gb  sinf
o =—-———-", 17.5
oro 2r(1—v) r (17.3)
_ Gb  cosf
700 = 2r(1—v) r °

The magnitude of the so-called Burgers vector of the dislocation is b. The stresses are singu-
lar at the center of dislocation (r = 0), and have both a shear and hydrostatic component.
For plane strain,

Ozz = V(Urr + 0'06), (17.6)
and thus the average normal stress is
Gb(1 +v) cosd
3r(l—v) r
Note that if the dislocation were to move, say along the x axis, this motion would result
in a displacement, u = be,, across the sections of plane so spanned by this motion. This
feature allows for the construction of the stress field of a crack, as demonstrated in the

next section. The vital role played by dislocations in the process of plastic deformation is
dealt with in detail in later chapters of this book.

1
op = 5(0” + 099 +0,;) = — (17.7)

17.1.1 Derivation of the Displacement Field

Since the displacement field associated with (17.1) is nonsingle valued, the approach to
derive Egs. (17.3) is outlined here. The reader is directed to Tables 23.1-23.5 in Chapter 23
for further details on stress and displacement fields in polar coordinates.

The radial strain component is

ou, 1
e =" = [ovr — V(08 + 022)], (17.8)
which, in the present case of plane strain, becomes
du,  C(1—2v) cosb
— = 17.9
ar 2G r (179)

When integrated this yields
ci1-2
u = C0=2v)
2G
where f(0) is the integration function.

Inr cos6 + f(6), (17.10)
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Next consider the circumferential component of strain egg. From its definition in terms
of the displacement components, we find

ou
8_90 =rep — Uy . (17.11)

When ey is constructed and (17.10) used in (17.11), the integration gives

_Cl-2v) . C(1-2v)

°C G Inr sind — F(0) + g(r), (17.12)

Ug

with F(0) = [ f(6)d6. Furthermore, recalling the definition of the shear strain

1/10u Oduy u
R +—2 -2, 17.13
eré 2 (r 00 or r ( )

and observing that F”(6) = f'(0), there follows

2C(1—v)sing  F"(0)  F©O) g(r)
G =t +g(r)—T, (17.14)
or
F"(0)+ F(0) — 2€d - v) sind =rg'(r)—g(r) =K, (17.15)

where K is a constant. The solution for F(6) and g(r) are, accordingly,

C(1-v)
G

AC BC
F@)=- 90059+Fsin9+Ecose+K, (17.16)

and
g(r)=Kr+H. (17.17)

The additional constants K and H correspond to rigid body motion and can be disregarded.
The constants A and B, associated with the homogeneous solution to (17.15) are fixed by
imposing the consistency of f(6) with the known strains. Since

C(l-v) . C(l—-v)
G G

0s6 +

AC BC
fo)=— 0 sinf + < cosf — el sinf, (17.18)

if (17.10) and (17.12) is to reproduce the known strains e,,, ez, and e,5, we must have

1
AZZ(3_4U)’ B=0. (17.19)
This specifies F(0) and thus the displacement components u, and uy, with the end results
as in (17.3).

17.2 Tensile Cracks

Consider the boundary value problem associated with a slitlike crack of length 2a, illus-
trated in Fig. 17.2. The crack lies within an infinite medium. We assume, as in the case of
of the dislocation described above, a plane strain state. Thus the crack is infinitely deep in
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Figure 17.2. Center cracked panel.

>

o
)
<

T

the direction normal to the x-y plane. The block is subject to a far field tensile stress of
magnitude oy. Boundary conditions are then

oy =0y, =0 on —a<x<a, y=0,
oy — 09 at r — oo, (17.20)
Oxx,0xy — 0 at r — oo.

This may be solved using a simple method of linear superposition of two companion
problems. For the first problem we take a simple homogeneous solution

ol =op, oM, 60 =0, (17.21)

For the second problem, we require
2 2
a()z , Uy(y)=—f70 on —a<x<a, y=0,

(17.22)

() c® 5@
oy y—>0 at r — oo.

Clearly, the stress state created as o = o) + o® will satisfy the crack boundary conditions
expressed in (17.20). Problem (2) will be solved by the linear superposition of dislocation
solutions obtained in the previous section. This is described next.

Let B(¢)d¢ represent a continuous density of dislocations distributed between & and
& + d¢ (Fig. 17.3). The coordinate & is to lie on the x axis, between —a < & < a. This
density will produce the stress

GB(§)ds
2r(1—v)(x —§)°
The stress produced by the distribution of dislocations along the entire length of the crack
is

Gy (x, 0) = 095 (r. 0) = — (17.23)

oyy(x,0) = 27_[(1 ) / B(¢) d§ = —o0y, (17.24)

ax_

and thus

/” B(&)de  2x(1—v)ag

X = G ., —a<x<a. (17.25)

ottt
AAAARAA0

Figure 17.3. Distribution of dislocations.
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To solve this singular integral equation introduce the variables ¢ and 6, such that

x=acos¢, & =acos6.

The equation (17.25) then becomes

/ B(0)sin 6 do _ 27 (1 —v)oy C0<é<n
o COs¢ —cosf G
Call
Ao 27 (1 —v)oy

G

for brevity, and note the result
/” cos(nf)dd  msin(nd)
) cos¢ —cosf sing

Having this in mind, let B(#) be expanded in a Fourier series, viz.,

B(6) = i pnco§(n9) .

= sin 0

Then,

" Dnmo P COS(n0)

do = A,
0 COs¢ —cos6

ie.,

f _pncos(nf) 49— A

Ccos ¢ — cos b

Using the result from (17.29), this becomes

B Z 7 sin(ng) _A

sin ¢

In fact, with n = 1, we have p; = — A/7 and

20p(1 —v) cos@ C

B(O) = — ,
®) G sinf  sin@

or
20p(1 —v) & C

BE) = - G /a2 — g2 + sinf
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(17.26)

(17.27)

(17.28)

(17.29)

(17.30)

(17.31)

(17.32)

(17.33)

(17.34)

(17.35)

But the dislocation distribution is an odd function of &, as there are no net dislocations

on —a < & < a. Consequently,

/aB(E)dszo = C=0,

and

2001 —v) &
G a2 — g2 ’

B() = -

(17.36)

(17.37)
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This means that

c@ _ _ / B(é)dé _ % /“ §dé
o 2n(1—v) a« X—§ o (x—§)a = &

X —a

Now, recall that the full solutionis o = o® + o@. For example, on the crack line ahead

or behind the crack tip, we obtain
oolx|

Oyy = ﬂ, |x| >a, y= 0. (1738)

Near the tip, say at x = a + €, where € < a, we have

oo(a +¢€) a
oy — ————~o0g,/—, ony=>0. 17.39
» 7 Jaere W Y (17:39)

If we write that on the crack line, just ahead of the tip,

K
ay,(r, 0) = zyln : (17.40)

where r is measured from the crack tip, then

K; = op/ma, (17.41)

which is the so-called stress intensity factor for this center cracked panel geometry.
Other components of stress may be generated by integration of those associated with
individual dislocations.

17.3 Suggested Reading
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The Netherlands.
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Heinemann, Boston.



18 Dislocations in Anisotropic Media

18.1 Dislocation Character and Geometry

Imagine a cut made within an otherwise unbounded elastic medium, where the cut is
over an open surface, Sy, that is bounded by a line, C (see Fig. 18.1). To create the
dislocation, material is displaced everywhere across the cut surface by a constant vector, b.
The displacement vector b is called the Burgers vector. Where such a displacement would
cause a gap, extra material is imagined inserted so as to make the body continuous. Where
such displacement would cause material to interpenetrate, the excess material is imagined
scraped away. At all points on Sgy, the surface is re-bonded so that all further displacements
are continuous. We note that this process causes the displacement field to be nonsingle
valued across Sey. In fact, if C is the line bounding the cut surface, and R is a closed circuit
surrounding C at any point on C, then

?ﬁ I e =, (18.1)
R

0X,,

where u is the displacement, and the integral is taken counterclockwise with t, the unit
tangent to C, taken in the positive sense. Note that the unit tangent t is continuous as
the dislocation line, C, is traversed. At points on the dislocation line, where t || b, t-b =
=+b, whereas at points where t L b, t- b = 0. We say that at the former type of point the
dislocation line has screw dislocation character, whereas at the latter type of point the
line has edge dislocation character. In general, the dislocation line has a mixed character
and has both edge and screw character. The figure illustrates a dislocation line that has
extended screw segments and hairpin type loop segments that, at points, have primarily
edge character. The elastic field is caused by the displacement jump across S, as measured
specifically by (18.1); there are no body forces or applied traction. Thus, the dislocation
represents a purely internal source of stress.
To construct the elastic field, consider the identity

um(x)=/ Sim8(x — X )u; (x') &X' (18.2)
and recall that
32 Gm
Simb(x —X') = —Cijuy —— . 18.3
(x—x) JH 0x;0x; ( )

299
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cut
surface

Figure 18.1. Dislocation loop and cut surface.

where G is the Green’s function. Thus, formally, the displacement field of the dislocation
can be written as

> 92 G
Up(X) = — ijk,[ K u;(x') d°x’. (18.4)
—oo 0X70X;

Since G is a function of x — X', we may write

0

)
% Gn(x = X) = ——— Gm(x — X)), 185
s Ginls =) = 55 Gins =) (18.5)
and
o0 3Gm(x — X , ,
un®) = i | a—m[%uxx)} dx (186)
. ;

=G [ o ! L [ Gin(x = X)t:(X)] = G Mw} o

0o 0X ax} Bx}

We next examine the second integral in (18.6), viz.,

9 ou;
I=-Cju / G 2 @x. (18.7)
o 0X; 0x

/.
J

First note that the stress field of the dislocation is calculated from the linear elastic consti-
tutive relation as
814,' (X/)
/ 9
0x i

ou(x') = Ciju (18.8)

because of the inherent symmetry in elastic moduli C. Noting (18.5) again, along with the
fact that oyy; = 0 by equilibrium, the integral I may be rewritten as

9
I= f - (Gomow) &x' = / Gimon(x')dS', (18.9)
—o0 0X; S

where Sy is a bounding surface that retreats to infinity in the unbounded medium.

But the dislocation is actually a loop, as illustrated in Fig. 18.1, and thus possesses both
positive a negative segments, i.e., segments for whicht-b > 0 and t-b < 0. At a distance,
then, the elastic fields must fall off at least as fast as 1/r2, where r is the radial distance
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An-

C :) Figure 18.2. Cross section of the cut surface.

n+ ‘r

from the centroid of the loop. This is shown via specific example below. In fact, the fall off
of the field is more like 1/r3, as will be verified. Moreover, the Green’s function G falls off
as 1/r. Thus the integrand of the second integral of (18.9) falls off at least as fast as 1/73,
or even as fast as 1/r*. Thus I — 0. The result for u is then

e d

m(x) = Cjj — Gionti (X')] X', 18.10
)= Con [ 5 5 (G )1 (18.10)
or, for the distortions,
A (x) 32 9 3
.~ Umr =G G i N]dx
ox, () =G f_oo 8x,0x, ox/ [Gantti ()] &'
(18.11)
=G > /OO 0 [Grontti ()] X’
IREAFT T X’ i '
An application of the divergence theorem yields
2
U, (X) = Ciju f Gimuti (X')n; dS', (18.12)
s 0X0X,

where § = Scut + Sx- Since Gy iy ~ 1/ r3 and, as it happens, u also falls off with distance,
the integral over S, vanishes. What remains is the integral over Sg. But across Scy the dis-
placement jump isu™ — u™ = b, on account of relation (18.1). Also, the outward pointing
normal to the infinite medium is such that the unit normal to S_,;, n™, points in the positive
direction as illustrated in Fig. 18.2. Thus we take n = n~ as the common unit normal to
Secut, and write

um,r(x) = Cijkl [g ka,lr (X - X,)bil/l]‘ ds'. (18.13)

This is known as the Volterra’s integral.
The surface integral may be converted to an integral over the bounding line C of the
dislocation using Stoke’s theorem in the form

[ eljxprin; dS = ?ﬁ ¢r11 ds, (18.14)
Seut C

where t is the running unit tangent vector to C, and ds is an element of arc length. The
integral in (18.13) may be rephrased as

Um,r (X) = Cifkl/ kaflr(x - X/)binf ds’
Scul

(18.15)
_ / Y n; ds'
Scul
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Letting
o7 = enp XWXy =Xy — Xy, (18.16)
it follows that

mr mr mr
Pik= 6njp)(n,kwp + 6njp)(rﬂpp,k

(18.17)
= ekjpwzir + 6nijnw;f;a
and
Ejks(p;’,lzns = Ejksekjpwlrymns + ejksenijnwgf;(ns (1818)
-2y ny — w;’f;{anp.
Since " is homogeneous of degree —3, we have
(Xil//l’,”’)J_ =0, Xy, =-3v,". (18.19)
Then,
€jks@ins = ¥y np, (18.20)
and
/ e]-kyfp;'f,’cns dS/ = / €jks (Enjp)(hw;m)’kns dS/
cut SL‘Lll (18'21)
= —f;én]‘PanlTrtj dS .
Consequently,
U (X) = — % €njp(Xn — X,)t5; Cipsg Ging sr ds. (18.22)
c

Note that this conversion demonstrates an important fact that dislocations are character-
ized by the line as described by t and their Burgers vector b; the cut surface used to create
them then becomes arbitrary, as expected.

18.2 Dislocations in Isotropic Media

In this section expressions are derived for the stress fields of infinitely long and straight
dislocations in isotropic elastic media. As such the fields correspond to either states of
antiplane strain or plane strain.

18.2.1 Infinitely Long Screw Dislocations

The dislocation line is taken to be t = es, i.e., along the unit base vector of the x3 axis.
The Burgers vector is taken such that b* - t = +b°; the dislocation is accordingly said to be
a right-handed screw dislocation. In other words, b* || t. The jump condition expressed in
(18.1) is met with

S
1 X2
u3——9=—tan1—

= . 18.23
2 2 bl ( )
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This displacement field is sufficient to satisfy the equations of equilibrium. Indeed, o153 =
Gous/dx; and op3 = Gdusz/dx;, the single equilibrium equation reads

a d
013 + 023 _ GVZMS =0, (18.24)
8x1 BXQ

which of course is satisfied by the harmonic function, us ~ 6. The stresses are, therefore,

Gb* X2 Gb* X1
023(x1, X2) =

_— _— . 18.25
21 xl2 —}—x% 27 xl2 +x22 ( )

o13(x1, x2) = —
Itis seen that the stress fields fall off as 1/r from an isolated infinitely long straight segment,
but for two parallel segments that are part of the same loop, the fields fall off as 1/r2.
Indeed, consider the two screw dislocation segments shown earlier in the figure. Let them
be separated by a distance €. The Burgers vector is the same for the two segments, but
their unit tangents are antiparallel. Thus the stress fields are of opposite sign. Consider,
for example, the stresses on the plane x, = 0. Then,

GH(l 1 ) _Gb' e

03 ~ —— —. (1826)

2 \x; x+e 27 X}

18.2.2 Infinitely Long Edge Dislocations
The edge dislocation is characterized by the property that b® = b°e;, whereas t = e3. The
corresponding displacement field is

S b° X1X2
b = _t ’
u(x1, x2) 2 (x2/x1) + 2 (1 —v) x2 + x?

18.27
( ) b 1—2v N X —x3 ( )
ury(x1,x) = —=— r— ,
S 27 2(1—v) 41 —v)(x 4 x3)
whereas the stresses are
Gb*  x(3x7 +x3)
o111 = —
T (24
Gb¢  x(xf—x3
r(1—v) (xf+x3) (18.28)
Gb¢  xi(xf—x3)
op = ,
2T 21— v) (x7 +x3)?
Gbv Y
033 = — 2 5 =v(on +on).

(1 —v) x} +x3

18.2.3 Infinitely Long Mixed Segments

The elastic field of an infinitely long and straight dislocation of mixed character is simply
obtained by the linear superposition of the solutions obtained above. Here, however, we
consider an infinitely long curved dislocation line lying in the plane x3 = 0 with a Burgers
vector as illustrated in Fig. 18.3. Our perspective is that the Burgers vector is given and
fixed, but the character of the line varies because of varying orientation of the line tangent t.



304 18. Dislocations in Anisotropic Media

Figure 18.3. Infinitely long curved dislocation with a Burgers vector b.

Thus as t varies, i.e., as 6 or (6 — ¢) varies, the edge vs. screw dislocation character varies.
Now let the Burgres vector be b, so that

b = bcos ¢e; + bsin ¢e,,
(18.29)
t = cosfe; + sinbe;.

This means that

b* = bcos(0 — ¢) = by,

(18.30)
b® = —bsin(0 — ¢) = b;,
where b* and b° are the screw and edge components of b respectively. We now use the
solutions obtained above to construct the in-plane field of this mixed dislocation.
Let d be the normal distance from the line as reckoned by “looking right” while sighting
down t. Then in the plane x3 = 0, we find

Gb
7md cos(0 — @),

03 =

18.31

LG s ey
03 = rd ,

where t and X are used as indices corresponding to rotated axes aligned with the dislocation
line and orthogonal to it (Fig. 18.3). With respect to the fixed coordinates (x1, x,), we have

013 = 0,3€08H — 0;3sIn 6

Gb Gb (18.32)
=5 cos(6 — ¢)cost + 3 — sin(f — ¢)sin 6,
and
023 = 038N 0 + 033 cos O
(18.33)

Gb .
—— cos(f — ¢)sinf —

=5 sin(6 — ¢) cos 6.

Gb
27(1 —v)d

We note for later use that the in-plane stresses can be expressed as

1 1
Oap = Zap(050) = p Zap(0), (18.34)
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where in the second rendering of this relation the dependence on ¢ has been omitted on
account of the perspective of fixed ¢, i.e., fixed b. In fact,

213(0) = f—: |:cos(9 — ¢)cosd + 1 ! sin(f — ¢) sin@] ,

(18.35)

$3(0) = ZG_: |:cos(9 — ¢)sinf — 1 1 5 sin(6 — ¢) cos 9] .

18.3 Planar Geometric Theorem

Here we consider the case of a dislocation loop lying entirely within a plane, and seek to
construct its elastic field in that plane. Let the plane be defined as x3 = 0. The dislocation
line is C and its cut surface can be taken to lie entirely in the plane, without loss of generality.
Then,

um,r (X) = Cl‘jk] /S ka,lr (X — x’)binj dS/, (18.36)

as found earlier. The field point of interest lies in the plane x3 = 0, and thus has coordinates
(x1, x2). Let

X=x1—x;, Y=x3—x. (18.37)

If we introduce a unit vector, T, defined to be parallel to (x — x’) then x — x' = sT, where
|s| = |x — x'|. Note that s is algebraically signed. Recall that the Green’s function has
symmetry, such that

sgn(s)
s

Gin(sT) = Gion(T) (18.38)

and

sgn(s
Giom,ir(sT) = gs_3() Gion1r(T), (18.39)

i.e., both G and its second derivative are symmetric with respect to the sense of T. Thus, if
6 is the angle that T makes with a datum drawn in the plane, we may write

Gin(x —X') = % Gin(0) = Il? Gign(6 + 1), (18.40)
where
R=|x—x|=|s|, T=T(0)=-T( +x). (18.41)
Similarly,

1 1
Gian.ir (X — X/) = F ka,lr(e) = ﬁ ka,lr(g + 7'[). (18.42)
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But 6 is a function of X/ R and Y/ R, and so the above may be expressed as a power series

of the form
1 _ X\ rY\"
m = Amn - - )
Gin = 3 2 (R) (R)

n,m

1 X\ /Y\"
o=k 2an (2 () =1
n,m

Call the second of (18.43), as noted, 7, and write

1 1

o= (3 (3

To proceed, examine the expression

(18.43)

(18.44)

7- %,(XI) + %(n). (18.45)

Since R> = X? + Y?, we have
R X oR Y
93X R’ 3Y R’
a(1/R)  3X  o(1/R) 3Y
X R a9y B’
al/R™™)  (m+n)X  9(1/R™)  (m+n)Y

X Rt Y - Rmni2
Thus, (18.45) becomes

I=1+1—3§;Am (%f)m G;)
s (3 () T () ()
AE] () SR )

(m+n)Yy X\
ZAmn ypmtn+2 v E =-1I

Therefore,
(X, Y) = 2 (x1) + 2 (vI) (18.46)
X ay '

Now return to (18.36) and incorporate the terms involving b; and C;ji, as they are
constants. Further, the sums over repeated subscripts are implied (and implemented), so
that (18.36) is expressed as

9 9
= — (X)) + — (Y1) | dX4Y. 18.47
o ][ o] o
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Figure 18.4. Geometry of a planar loop.

Next, recall Stokes theorem in the form

fé(P dX+ QdY) = //S (2—?{ - %) dxay, (18.48)

where C is the line that bounds the open surface S. Let Q = X[, and P = —Y1,, to
convert the surface integral into one along the bounding line C. Also note that the loop C
is characterized by the parametric equations for x;(s) and x}(s). Consider the typical point
such as P. At this point, dx;/ds = cos « and dx}/ds = sin «, where ds is an element of arc
length and, as before, t is the variable unit tangent to C (see Fig. 18.4). Thus, taking the
field points x1, x, to be fixed in the integration, we have that X’ = d X/ds = —dx;/ds, with
a similar consideration for Y’ = dY/ds. Consequently, the integral in (18.47) becomes

Up r(X) = %(XY— Y' X)L, (X, Y)ds. (18.49)
c
With reference to the figure, we can write
X =—cosa, Y = —sing,
(18.50)
X = Rcos0, Y = Rsin®.
Using these it follows that
(XY - Y X)ds = R(—cosasiné + sina cosf)ds = —Rsin(6 — «)ds,
and thus
O (0) sin(0 —
Uy (X) = — 7§ (©)sin(0 — @) 4 (18.51)
c R

Recall that ©®(0) = ©(0 + ), 0, @, and Rare all functions of the parameter s and therefore
dependent on the size and shape of the dislocation loop. Also note that the formula
expressed in (18.51) applies to any loop. We may then reinterpret (18.51) as an integral
equation for the as yet unknown function, ®(0), in terms of the solution, u,, ,(x).

We now want to choose a somewhat convenient choice for C; we choose C to be an
infinitely long and straight dislocation as depicted in Fig. 18.5. Using the geometry of the
figure, we observe the following identities

X| =scosa, X, = ssina,
s =—dcot(fd —«), R=d/sin(6 — ), (18.52)
ds = d de.

- sin?(f — a)
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Figure 18.5. Coordinates for an infinitely long, straight dislocation.

With these, (18.51) becomes

1 O=a+m
Up,(d, a) = ~J O(0)sin(0 — «) db. (18.53)
O=a
Derivatives wrt to « leads to a convenient interpretation, viz.,
9 o 1 o+
e _ L / O(0) cos(6 — o) do, (18.54)
o d J,
and
a2um , 1 o4 )
— = —— [O(x) +O(a +7)]+ = / O(9)sin(0 — a) do. (18.55)
da? d d J,
The addition of (18.53) and (18.55) yields the desired result,
021ty (d, 1
Uy (d, o) + Lz"‘) = —= [6(a) + Oc + )], (18.56)
o d
and thus

d 82 m,r ds
o) = -2 [y (d. ) 4 ZHmr( @ O] (18.57)
2 ' da?
We have already shown that the field of an infinitely long and straight dislocation can

be cast as

Uy = E’";(C), (18.58)

where ¢ would be an angle representing the dislocation’s orientation in the plane (assuming
its Burgers vector is fixed). Thus, the expression for the field at an arbitrary point becomes

1 [ Z0(0)+82%,,(0)/060%
um,r(x) = Ei ( ) R ( )

sin(6 — «) ds. (18.59)

18.4 Applications of the Planar Geometric Theorem

Considerable simplification can be achieved by approximating dislocation loops as being
polygonal, i.e., as having faceted sides such as sketched in Fig. 18.6. The geometry sketched
in the figure will be used to reduce the integral given in (18.59) above. Figure 18.7 indicates
a typical segment of the loop. As we integrate about the loop,

d
R=x—xX|=——, = —dcot(f —a), 18.60
X—XI= gy 0= oot —e) (18.60)
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Figure 18.6. Geometry of a loop vertex.

so that
d d —x
A _ x=x] (18.61)
df  sin*(f —a) sin(d —a)
Thus, upon changing the integration variable from s to 6 in (18.59), we obtain
S (0) + 3° T (0)/06%
o (X) = 1/2 7§ ©) + - ©O)/39” o — o) do. (18.62)
c

Integration by parts from 6; to 6,, as indicated in Fig. 18.7 for the typical segment, yields

Upr (X) = % [~ (0) cOS(0 — &) + 3T, /360 sin(0 — o1)]5:
(18.63)

6,
- / [0, /00 cos(6 — ) + 0%, /6 cos(6 — )] db.
o1

Thus,
1
thr (%) = 5 [~ Fr (6) cOS(0 — ) + DTy /06 5i(6 — )7 (18.64)

Clearly by summing over all such segments, the field of the entire loop may be constructed.
Recalling the first of (18.60), the integral in (18.63) may be recast as

1 yg S (0) + 025 (6) /067

=3 5, x|

do. (18.65)

Examine the second term in the integrand, viz.,

do,  (18.66)

1
7§ 9> T (6)/067 4 — [azm,(e)/ae] _7§ 3%, (6)/06 cot(f — )
C C

[x — x| [x — x|

Ix —x'|

1

~ Figure 18.7. Dislocation segment.
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where the limits of evaluation on the first integral indicate evaluation from a point labeled
1 to itself, and where it was noted that

% = —|x — x| cot(d — a). (18.67)
The second integral on the rhs of (18.66) is
_?g AT, (0)/06 C(/>t(9 —o) I:Emr(g)cot(e _,a)}]
; X — x| x—x| ],

Y (0) cot?(6 — a)
+ f a9

x — x|

_ 7§ i) (26 — @) (1 - day/de) do.
C

Ix —x'|
By recognizing that
cot?(0 — a) —csc?(0 — a) = —1,
we have
lﬂg 02X, (9)/06% do— L ,,,,(9) o4 L % o (9)der/d
2 ) Ix—X] 2 cIx— X/I ¢ |x —x/|sin’*(f — «)

When this result is incorporated into (18.65), the remarkably simple result follows, viz.,

Up, r(X) : i X — W(G)da/de

X[ sin’(6 — «)

1 §£ 0 (0)
== — do
2 Je |x —x/|sin”(0 — )

Note that do = 0 along each segment until a corner is reached, at which point « under-
goes a “jump” from, say «~ to a™ (Fig. 18.6). But during such jumps, 6 and |x — x'| remain
fixed. Thus, noting that

(18.68)

do
/ m = CO‘[(@ — Ol),

it is found that each corner, say the n'" corner, contributes a term such as

1 X, (6n)

=5 x—x, [cot(B, —a)] " . (18.69)

Qn

Therefore, for the entire loop, we have

tr(X) = 5 Z ’"’(9) [cot(6, —a)]j . (18.70)

=X,

There is a modification if the field point x happens to be colinear with one side, because
along such a side 6 = 0, and

/9s+1 o (0) + %%, /062
0

Ix — x|

do = 0. (18.71)
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Figure 18.8. An angular dislocation.

O& 1) - _e Dat um

It is assumed here that the side in question connects the s and s + 1 corner. In this case
(18.70) would have to be modified so that the segment between corners s and s + 1 does
not contribute. The result of removing this is

1 N X (9,,) af
’ == ——=[cot(8,, — "
ns () = 5 32 (22 oot — )l
n#s,s+1
=, (0 S (B541) cot(Bg41 — oF 18.72
. mr( s) COt(@S _as_) _ Hm ( +1) ( +1 s+1) ( )
Ix — x| X — X541
az:mr (9\)/39 az:mr (98+1)/89
Ix — X[ X —X'|g11
We can recast (18.60) or (18.65) using the fact that
da = kds, ds =df|x —x'|csc(f — ). (18.73)
When this is done, we obtain
1
() = 5 y{ S (0) c563(0 — ) . (18.74)
c

18.4.1 Angular Dislocations
As a further application of the previous results, consider the angular dislocation shown in

Fig. 18.8. Using (18.64), it is found that, for the segment labeled 1, we have

1 (4
), = 271f0 [S(6) + 825, (9)/36°] sin 6 d6

(18.75)
1
=% [ (0)cotd + 2, (0) csc O + 3%, (0)/06] .
Similarly, for the segment labeled 2 it is found that
1 o+
u®, = T [0 (0) + 972, (9)/367] sin(6 — ) dO (18.76)
2 Jo
1
=5 [ () cse(0 — a) + %, (0) cot(0 — ) — 3%, (0)/00] .
When added, they yield for the full field
1
U, (X) = 7 [Z) (o) cse(0 — ) + Z,,,,(0) cse(0)]
(18.77)

n 1 S (8) sin o
24 [ 7" sin(0 — ) sind |’

where we have used the fact that £, (¢) = Z, (« + 7).
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18.5 A 3D Geometrical Theorem

Consider again the line integral yielding the distortion field for a dislocation loop, viz.,
U, (x;C) = — % bi€njptj(Xn — X,,) Cpisk Gym r (X — X') ds. (18.78)
c

Upon using the symmetry inherent in the components Cp;y, let 73;,’5 = Cpisk Gym,i be the
pi component of stress at x, caused by a unit point force acting at x’ in the m direction.
Note that P; and P; . will possess all the symmetry and scaling properties of the Green’s
function G. The integral above becomes

Upr(X,C) = — fi; bienjptj(Xn — x,)Ppi (X — x') ds. (18.79)

Let C be an infinitely long and straight dislocation line. Then,

! !
X, =18, X =1{s,

(18.80)
anpxr’l[}‘ = €njplnljs = 0,
so that
[e.¢]

U (X, Cx) = —f bienjpxntjP;';,,(x —st)ds. (18.81)

But, because of the scaling and symmetry properties of P}, ., we have

m sg(s)

P (x—st) = 3 P (x/s —t). (18.82)

Define n = 1/s, dn = —1/s%ds, and observe that
U, (X, Cx0) = — / bien,-px,,tj(l/s3)73;’§’r(x/s —t)ds
0t

+/ bienjpxntj(l/SS)PZ,’»,r(x/s —t)ds

0+
= [ DbienjpxutinPp; ,(nx —t)dn

o0

—00
- f bi€njpXntinPpy;: ,(nx — t) dn.

Then, upon identifying this infinitely long and straight dislocation line by its constant
tangent, t, we can write

upy, (x;t) = — /0+ bi€njpxntinPpy; ,(nx — t) dn
+ / bi€njpxatinPy; ,(nx — t)dn (18.83)
—00

= / bi€njpxatjn sgn(n)P,; ,(nx — t) dn.
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Operate on this equation with (xaa /dt,)?, while noting that

pl r(T)X ) - a pz r()’]X ) (1884)

It is found that

n

82 * P ir
Uy, = 2/ bienjpXxnxjnsgn(n) a—’;’ dn

X,
P .01

(18.85)
o0 PP,
_f bi€njpXntjnsgn(n) 8772’ dn.

The first integral is clearly zero by virtue of €,;,x,x; = 0. The second may be integrated
by parts, using the result
[ Py, ]Oo _o
M | o '
The first integration then yields

92 o dsgn(n)] 9P,
o o = b njpin = dn.
8X, D100, Uy, /_ EnjpXnt| [sgn(n) +7n a :| o n

But,
d
m sgn(n) = 28(n),
n

and the second term in the square bracket above makes zero contribution to the integral.
Integrating by parts again, and noting that

[sen(m)Py;, 7, = 0.

now gives
52 0
XpXy YT Uy, =-2 /700 bi€njpxnt j8(n)Pp; ,(nx — t) dn
= —2bie,,jpxntj772}’,(—t) (18.86)
= —2bl-e,,jpxnt_,'771’,’,’»’,(t).
Finally, let
t < x—x and x <t (18.87)
where x' is a fixed point. Then, the integrand of (18.79) becomes
bienjptn(xj — X)) Ppi (X = X) = —1, % tg % up, (tx —x'), (18.88)
and, consequently,
39 /
U, (x;C) = — fé IO,E tg @ U, (tx —x')ds. (18.89)
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19 Cracks in Anisotropic Media

An elementary development of crack tip mechanics was given in Chapter 17. Here we
provide a more advanced construction of the elastic fields at crack tips and extract from
our construction some particularly important quantities that enter prominently into the
physics of crack growth and crack interaction with other defects that exist within the elastic
medium surrounding the crack. Of primary importance is the theoretical determination of
the total mechanical energy of a cracked body and the negative of its derivative with respect
to crack extension, i.e., the energy release rate, G, or the generalized force on the crack tip
vis-d-vis the concept further developed in subsequent chapters. The elastic medium is taken
to be arbitrarily anisotropic. The dislocation solutions and methods developed for dealing
with the elastic fields of dislocations are used to construct the crack solutions.

19.1 Dislocation Mechanics: Reviewed

In Chapter 21 we show that the energy of an infinitely long and straight dislocation can be
written as

& = Kygbubg In(R/ro), (19.1)

where R and ry were outer and inner cutoff radii respectively. The components of the dis-
location’s Burgers vector are b;, and K,,, are the components of a positive definite second-
rank tensor called the energy factor. K depends only on the direction of the dislocation
line within the elastic medium and on the elastic moduli tensor C, i.e., its components C; .
For an isotropic medium K is diagonal, when phrased with respect to the basis {ej, e;, es}
on the coordinate frame with axes (x1, x,, x3), and when the dislocation line is parallel to
X3 axis, t || e3. In that case, we obtained

Kll = K22 = G/47'[(1 — U), K33 = G/47T (192)

We have already shown in Chapter 17 how a slit like crack in an elastic medium can be
represented by a continuous distribution of dislocations distributed with an appropriate
density along the crack line. This was done, specifically for the case of a Mode I crack.
As noted in that development, the calculation of the crack tip field involves first solving
a singular integral equation for the dislocation distribution and then using linear super-
position to construct the field. It will be shown here that the crack extension force can

315



316 19. Cracks in Anisotropic Media

Figure 19.1. Slit-like crack and crystal frame.
) :2 X
1

~«—— 2C ———>

also be calculated knowing the distribution of dislocations in the crack, or more particu-
larly knowing the displacement discontinuity across the crack face that is caused by the
distribution of dislocations. In fact, it is shown that the crack extension force, G, can be
calculated knowing only the inverse of the energy factor matrix, K—!, for a single straight
dislocation.

Two types of cracks are considered, viz., freely slipping cracks and cracks whose faces are
not traction free but are subject to applied traction. Furthermore, the following universal
result is derived: when the displacement discontinuity at the tips of the crack vanishes, the
traction and stress concentration on the plane of the crack are independent of the elastic
anisotropy and are, accordingly, the same as predicted by the isotropic theory. The same
is true of the stress intensity factors. The same is not the case for the angular dependence
of the fields around the crack or of the crack extension force, G.

19.2 Freely Slipping Crack

Consider a slit like crack lying on the plane x, = 0, as shown in Fig. 19.1. The crack
lies in the region, |x1| < ¢, x, = 0, —00 < x3 < 0o in an infinite elastic medium. For later
reference, let X = { X}, X5, X3} be a coordinate frame in which the elastic moduli tensor, C,
and its components, C;jy, are displayed in their simplest form, e.g., for a cubic crystalline
medium these would be the cube axes. Asr? = x7 + x3 — oo, the state of stress is uniform
and thus

lim o;; = o/} (19.3)

r— 00 ]

We are assuming small strains so that, using the convention that commas denote differen-
tiation, the strains are defined by

2e;; =uij+uj;. (19.4)
In the absence of body forces, equilibrium requires that
0ij,j = 0. (19.5)
Since the crack is freely slipping there are no tractions on the crack faces, i.e.,
o;inj=0, on x=0, |x|<c, (19.6)

where n is the unit normal to the crack plane. The convention is that on the up-
per crack surface (x, = 0"), ny,n3 = 0,n, = —1. On the lower crack surface (x, = 07),
ni, n3 = 0, np = 1. This means that the freely slipping boundary conditions become

op=o0n=03=0 for |x]|=<c x=0 |x|<o0. (19.7)
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Figure 19.2. Dislocation types distributed over the crack.

This boundary value problem is solved using the method of continuously distributed dis-
locations as introduced earlier.
Let the solution be written in the form

A D A D A, _D
w=u; +u, ej=e;+e;, 0y =0} +0; (19.8)

ij» ij>

where the D fields are constructed from the linear superposition of those of the contin-
uously distributed dislocations of three types; these are indicated in the Fig. 19.2. The
A fields refer to the uniformly stressed uncracked solid, so that, excluding arbitrary rigid
body translations,

A _ A A _ Q. A
Ui =¢€;iXj,  €;j = OijmnOpy> (19.9)

where the Sjj., are the components of the elastic compliance tensor (the inverse of the
elastic stiffness tensor). The A fields are everywhere continuous. We note that

ai]/-) —0 as r—0, (19.10)

because the stress fields of individual dislocations vanish as 7> — 0. Since the A and D
fields are each admissible solutions to the equilibrium and compatibility equations, we can
complete the solution by choosing aill-) so that (19.7) is satisfied, i.e.,

D A A

op =—0p, ==1", on |x]|<c x=0,

D A A

oy =—0p=—1", on |x|<c, x=0, (19.11)
D A A

oy =—035,=—1;, on |x|<c, x=0.

The D field is constructed by an integral superposition of three types of straight dislocations,
the dislocations being parallel to the x3 axis and lying in the region |x| < ¢, x, = 0. If we
denote by b, f®)(¢)dt (no sum on s) the amount of Burger’s vector in the x, direction,
distributed between ¢ and ¢ + dr, then

3 c
of (v x) =) / FOW0S (x1. 3231, 0) dr, (19.12)
s=1Y¢

where ai(js)(xl, xp;t, 0) is the stress field at (x1, x,) due to a single straight dislocation of type
s (s =1,2,3), piercing the planes x3 = const. at the point (¢, 0). Thus equations (19.11)
may be written as

3 c
S OO0 (e, 00, 0)de = =T, for x| <c, i =1,2.3. (19.13)
s=1Y~¢
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In an infinite elastic medium,
o) (x1,0:1,0) = o) (1 — 1), (19.14)

and, from what has been developed in Chapters 17 and 18, ol-(js)(xl —t)~(x; —t)"L.

Now consider a single dislocation parallel to the x3 axis and piercing the planes x3 =
const. at (z, 0). Let its Burger’s vector have components by, b, b3. The energy per unit
length can be written as

t+R
& = Kugbmby n(R/10) = Kygbmb, (x; — 1)l dx. (19.15)
t+rg
But the formula
1 BRSO
== Z (1 — )by dxy (19.16)
2 s=1 Yt+ro

is also valid. If a dislocation is of type 1 (i.e.,s = 1, b, = b3 = 0), a comparison of (19.15)
and (19.16) yields

oW (x1 — 1) = 2Ki1by /(x) — 1). (19.17)
Similar reasoning gives
o (1 — 1) = 2Knby/(x1 — 1), 0D (x1 — 1) = 2Ka3bs/(x1 — 1). (19.18)
If we consider the case s = 1, 2 and b3 = 0, and note that
oD (1 — )by = 62 (x — 1)by, (19.19)

(because one can calculate the interaction energy between a dislocation of type 1 and type 2
by looking at the interaction of one on the other or vice versa), a comparison of (19.15)
and (19.16) again shows that

o) (01 — 1) = 2Koiby/(x1 — 1), 03 (x1 — 1) = 2Kiaba/(x1 — 1). (19.20)
Note that (19.19) essentially follows from Betti’s reciprocal theorem. In general,
al(;)(xl —1t) =2Kisbs/(x1 —t), (nosumons). (19.21)
If we use (19.21) to define
Fy(t) = b f*)(r), (nosumons), (19.22)
(19.13) may be concisely expressed as
2K; C(xl —0)7'Fi(t)dt = =T, for x| <c, (19.23)
or C
¢ 1
7C(x1 —)7'Fi(t)dt = —EK;? A, for |xi| <c, (19.24)

with the sum over the repeated index. The integrals in question, as will be the case with
all singular integrals appearing in this development, are defined by their Cauchy principal
values.
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We recall that the components of the inverse of K;; are given by
Ki' = K = €jmeirs Kow Kus /260, Kia Kop K, (19.25)
so that
Kj_ilKis = K;; K" =55 (19.26)

Since we expect stress singularities at the crack tip, we require F;(%c) to be unbounded
with a weak singularity. Moreover, if we demand that there be no relative displacement of
the crack faces at x; = +c, then

/C Fi(t)dr = 0. (19.27)

It is noteworthy that implicit in this analysis is the convention that the displacement dis-
continuity across the crack faces at (xg, 0) is given by

X1
Auj(xy) = uf (x1, ) [250. = f_ Fi(t)dt. (19.28)
The solution of (19.24) is
t
_ g1 A
Fj(t) = K/'i I; 27‘[(6‘2 — I2)1/2 :
A rather important result can be extracted from the above when we consider the traction
oi2 on the plane of the crack (] x1| > ¢, x, = 0). We have

(19.29)

F,(t Klsb
0i2|x=0 = 02 + 22/ ) _y dt, |x1| > c. (19.30)

Since
" = o}, (19.31)
using (19.26) and (19.29), yields

1 tdt
Oinl=0 = 0} + (c2 —2)12(x; — 1)

A |1 |
=0 ————=, X1| > C.
i2 (xlz — C2)1/2 | 1|

(19.32)

Asx; — =c, (19.32) reduces to the familiar isotropic expression for stress concentration,
viz., o ~ o5 (c/2r)/?, where r = |x;| — c. Hence, the traction and stress concentrations
on the plane of the crack are independent of the elastic constants and the anisotropy of
the medium, i e., they are identical with those for a crack in an isotropic medium loaded
by stresses o at infinity. It is shown below that this is also true for the case of a crack that
is arbitrarily but symmetrically loaded on its faces by self-equilibrating stresses, provided
that (19.27) is true.

19.3 Crack Extension Force

The energy of deformation and crack extension force may now be easily calculated. The
change in total mechanical energy per unit length in the x3 direction between the stressed
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cracked solid and the uncracked solid stressed homogeneously by o;; = al‘]*, is

A€ = % [ ofy Aup dx;. (19.33)
Combining (19.28), (19.29), and (19.33), we obtain
AE = —éc oho S K (19.34)
The crack extension force is defined as
G—— a(;‘f) i oAGAK. (19.35)

The appropriate Griffith criterion for brittle fracture in the anisotropic medium is obtained
by requiring that G be greater or equal to 4y, where y is the surface energy associated with
the plane x, = 0 (the crack is assumed to extend on both ends, so that 2 x 2y = 4y). Thus,
the applied stress state required to propagate the crack is determined from

oho5 K > 16y /c. (19.36)
Using (19.2) allows a recovery of the isotropic Griffith criterion,
(1-v) [(0{3)2 + (0213)2] + (032)2 > 4Gy /nc. (19.37)

A method is presented below for calculating Kj;, and hence K” , using the coordinate
frame denoted earlier by X = { X}, X3, X3}. If all quantities are referred to the X frame,
then (19.35) becomes

A 1
ij 10 Ann K

g= %c 0; (19.38)
where n,, are components of the unit normal to the crack surface in the X frame.

As an example, imagine a cleavage crack lying in the (001) plane of a cubic crystal such
as a-Fe, or an ionic crystal such as KCI or NaCl, which is stressed by far field tension pA.
The crack’s normal, then, lies in the x3 direction. The crack extension force would be given
in this case by

G= %(pA)chg;. (19.39)

Figure 19.3 shows the variation of K3_31 with angle in the (001) plane of three cubic materials.
The effects of anisotropy appear to be modest and are appreciable only for Fe. In fact, us-
ing Voigt average isotropic elastic constants for a-Fe, K3_3l = 0.103 x 10~ %cm?/erg, which
differs by between 10 and 20% of our anisotropic calculations (recall that 1 erg= 1077 J).

19.4 Crack Faces Loaded by Tractions

The extension of the results for a freely slipping crack to the case of a crack whose faces
are loaded by tractions — R;(x;) is readily done. The same analysis suffices if we replace
the boundary condition (19.7) by

—Ri(x1), for x; =0"

ojin; = ’ x| <ec, 19.40
I R;(X1), for x, =07, al ( )
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Figure 19.3. Variation of K3_31 with angle within the (001)
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so that we assume that the traction on the upper and lower crack faces are equal in
magnitude but opposite in direction. Clearly, the loading is symmetrical about x, = 0 and
thus self-equilibrating. For example, if the loading were internal pressure of magnitude P,
then Ry = R =0, R, = — P. Hence the distribution function F;(¢) must now satisfy

¢ 1
(1 — ) 'Fi(t)de = -3 GTA = R()]. al<e (19.41)

It is again required that (19.27) be satisfied when F;j(4c) is unbounded. The integral
equation may be easily solved once we specify R;(x;). For our purposes it is sufficient to
note that

2F(t) = K;;' Qi (), (19.42)

where Q;(t) is independent of the anisotropy of the medium and satisfies
(=070 dr = = [T* = R(w)],  |al<ec (19.43)

If Fj(=c) is to be unbounded, then

TAt 1 ¢ Ri(x1)(c? — x})1?
2 ).

(1) = L dx;. 19.44
0i(t) (2 — 2)12 + 22(c? = X —1 x1 ( )

For cracks with no stress singularities at x; = %c, as in simple models of cracks relaxed
by plastic deformation, F;(+c) must vanish, and

1 c
oi(t)= ;(c2 — Y2 (= xP) V(g — )T Ry ) dxy, (19.45)
provided that the subsidiary condition

' (c* —=s) VPR (s)ds = n TA (19.46)
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is satisfied. The traction o;, acting on the plane of the crack (x| > ¢, x, = 0) is then given
by (19.32) which, after using (19.26) and (19.42), reduces to

0ol =05 + | (1 —)'Q:()dt,  |xi| > c. (19.47)
—C

Since Q;(r) depends only on the loading T* — R;(x), the traction and also the stress
concentrations, if any, on the plane of the crack are independent of the elastic anisotropy.
Stress intensity factors for cracks with singular fields are computed in the next section.

If (19.27) is not satisfied, there exists a net dislocation content in the crack, i.e.,

/ Fj([) dr = Nj. (1948)
In this event, we must add to F;(¢), as given by (19.29) or (19.42) and (19.44), the term
Fi(t) = Nj/m(¢* —1?)"/2. (19.49)

The traction on the crack plane is in this case no longer independent of the anisotropy
because the distribution (19.49) induces an extra traction

Ol=0 = 2Kis No(xf — )P sgn(xr), x| > c. (19.50)

19.5 Stress Intensity Factors and Crack Extension Force

The three stress intensity factors, called &; here, are most simply defined by noting that if
the stresses are singular at the crack tip, i.e., at x; = ¢, then

02l 1, > c. =0 = ki /(2r)"?* + nonsingular terms, (19.51)
where r = x; — ¢, so that

k,(C) = r}iLnC(ZT[r)l/zO'iﬂxZ:(), X1 > C. (1952)

When (19.27) is satisfied, the use of (19.44) and (19.47) yields
dr Ri(s)(c? —s?)1/2ds
() — 12 12
ki(c) = oy (me)/? + hm |:(2nr) / P / Fp— .

e X1 —t 712(62

(19.53)
Interchanging the order of integration and noting that
1 1 < 1 >
(=0 —1) s—x1 \xy—t s—1t)°
@@= z2;11t/2(s ) =0, |s| <c (Cauchy principal value), (19.54)
dr

b
= sgn(x1), |xl >c,
@ =) P —1)  (F )~

the limit of (19.53) as x; — c gives

ki(c) = afy(me)'/* - (nc)*l/zf Ri(s )<C+S>1/2ds. (19.55)
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In a similar fashion one deduces that at the tip x; — —c,

ki(—c) = o5 (wc)/* — (JTC)_l/Z/ Ri(s) (C _ S>1/2 ds. (19.56)

Thus k;(£c) is independent of the anisotropy of the medium.

It can now be shown that the crack extension force is easily calculated from only knowing
k; and KJl When the crack extends from x; = ¢ to x; = ¢ + dc, the change in energy is
given by

x178

1 c+dc c
=3 / dxi01(x1, 0) Fi(t)dr. (19.57)

—C

Using (19.44), (19.51), and (19.55) and letting Sc — 0 (see the next subsection for details),
the crack extension force is found to be

& 1
=—1 —kik, K1 19.58
g 500 8¢ 87 m ( )
which is the desired result. Had we considered the crack tip at x; = —c extending from —c

to —(c¢ + 8¢), we would have obtained (19.58) with k; given by (19.56). Since in deriving
(19.58) we considered extension of only one end of the crack, in this instance the proper
Griffith criterion for brittle fracture would be G = 2y.

Equations (19.55) and (19.56) may also be used to derive formulae for the applied stress
at which an equilibrium crack becomes mobile. In this instance we interpret the R;(x1)
as restraining stresses acting on the crack surfaces due to cohesive forces; usually one
imagines that R;(x;) differs appreciably from zero only in regions ¢ — d < |x;| < ¢, where
d < ¢, and d is independent of ¢. Such a crack will propagate when k;(£c) > 0, i.e., when

oh = nlc RGs )(Cis)ds. (19.59)

The upper and lower signs correspond to the tips x; = ¢ and x; = —c, respectively. The
fracture criterion expressed in (19.59) depends on anisotropy only through the dependence
of R;(s), the cohesive forces, on anisotropy.

The utility of (19.58) for the crack extension force is that the stress intensity factors, k;,
need be calculated only once, using either (19.55) or (19.56), for a given crack configuration,
because anisotropic effects appear only through the Kl-;l. The determination of G may also
be executed in the X frame. This would be most easily done by calculating Kgl in the X
frame and computing k; (X frame) = A;,,,k,(crack frame), where A, is the cosine of the
angle between the X; and x,, directions.

19.5.1 Computation of the Crack Extension Force

In this section the procedure for evaluating G is developed in detail. We wish to evaluate

. 8&
G=- 821210 5o (19.60)
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where

1 c+8c x1—68¢ .
= Z‘/; U,‘z(X], O)dX1 /_C K;n Qm(t) dr

) hse e (19.61)
= 5(871)‘1/21(,- / (x1 — ) 2dxy / On(r)dr,
with &; given by (19.55). If we let s = x; — ¢ and integrate by parts, noting that
' On(t)dt =0 (19.62)
when (19.27) is satisfied, there follows
= —8n) VKK, foscsl/z Onlc — 8¢ +5)ds. (19.63)
The further substitution of s = (1 — A)8c reduces (19.63) to
‘;5 87) V2 KL (8¢)1? / (1 =22 Qp(c — r8c)da. (19.64)
For the crack with s1ngular stresses at x; = +c, we have
Ont) = ”’2( 2 112)1/2 T e i 2172 _Z RM(S)(scz__z s (19.65)

As 8¢ — 0, the first term in (19.65) on the rhs yields a contribution to —8€ /8¢ given by

12 12 AN L Ko1oA ()2, (19.66
8m) Pk K;)! (3 ) (28 )/ <T> dh = kK, ops(re) . (19:66)

Interchanging the order of integration, the second term on the rhs of (19.65) becomes

. 1 c+s\"?
5}»1210)( = gk sz( )1/2/ Ru(s )< ) ds, (19.67)
where
1 LY e 2 _ 212
x= G0 K 60 () [ R —s 2 as

/1 1-\"" da
. 0 A c—s+Adc’
In obtaining (19.67) we have noted that

Lrr-on\" dx n
li =— . 19.68
se 0 0 ( X ) s —c+Adc 2(c—s) ( )

Comparing (19.66) and (19.67) with (19.55) yields the crack extension force in the form

1
Equation (19.69) is also valid for the crack extension force at the crack tip at x; = —c,

provided we use k; as given in (19.56).
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>
>

Cc
> Figure 19.4. Crack tip opening.

19.6 Crack Tip Opening Displacement

Of particular interest is the result given in (19.28) for the crack tip opening displacement.
Here we simply list some results for the case of isotropic elastic media. Recall that the
displacement discontinuity at the crack tip is given as

Aus = uP (xy, 1)[72) = / Fi(r)dr, (19.70)
with
1
_ pl7A
Thus,
Kloh n dr
o Jji Yi2
Au; = e /C @—ayn (19.72)
Simple integration yields
KTIO',A
—Au; = u;(x1,07) — i (x1, 07) = —L 2 (2 — 2)112, (19.73)

2
Now, let §;(x1) = u;(x1,0") — u;(x1, 07) and consider the case of isotropic media. Recalling
the expressions in (19.2), we have, for a Mode II crack stressed by in-plane shear,
81(x1) = % B —x)'2. (19.74)
Consider the region just behind the crack tip, say at a distance ¢ behind the tip (Fig. 19.4).
Noting that ki = o{3/7c, we find
4k (1—v) )

G (19.75)

81(¢) =

By identical reasoning, we have

4o (1 —v) )
V2mG
4es

V2rG

82(x1) =
(19.76)

53()61) = ;1/2.

19.7 Dislocation Energy Factor Matrix

In this section a simple and convenient method for calculating the dislocation energy
factor matrix, K, is developed. We begin with the line integral giving the solution for the
displacement gradient of a dislocation line, i.e.,

0
Ui p(X) = —€pjuwbmComrs — 7{ G (x —x)) dx;-. (19.77)
Bxs I
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Figure 19.5. Coordinate frame for dislocation.

The integral is taken over the dislocation line, C. We also recall that, in general, analytic
solution for the Green’s function does not exist, but its Fourier transform is given as

1 2
Gr(x—x)= —— M- (z)do, 19.78
=X)= g [ M@ (19.78)

where the Christoffel stiffness tensoris M = z - C - z, and in this context z(6) is a unit vector
lying in the plane perpendicular to x — x'. In terms of the unreduced Fourier transform of
G, we have
3 i [® M'  kiex

.G )= d3K g ir 7lK-(X7X). 19.79

o (x—x') 8 /_OO s ¢ ( )
Here K is the Fourier vector and z is the unit vector along K. Consequently, (19.77) may
be rewritten as

i > My, (%) ik f ik g
ui,l’(x) = gepfwbmcwmrx /_Oo d&’K s ZT e leéele dxj- (1980)
For an infinitely long and straight dislocation line, laying along the unit vector t,
oo
fée"K"‘/ dx; =t; / Kt ds = 27t;8(K - t), (19.81)
—00

where s is the distance along the line. Hence, only those Fourier vectors perpendicular to

the dislocation line contribute to the displacement gradient field, and (19.81) becomes

M, (2)
K

1 oo
Ui p(X) = —€pjut jbmComrs / d’K z sin(Kz - x). (19.82)

472 oo
The integral in (19.82) extends over the plane defined by z - t = 0, and for this plane
Z-X=1-p, (19.83)

where p is the polar radius vector from the dislocation line to the point x, as illustrated in
Fig. 19.5. Accordingly, we may replace x with p in (19.82) and thereby show that the field
is independent of position along the dislocation line, as it should be for an infinitely long
and straight line.

In the plane z - t = 0 we define a polar coordinate system centered about the dislocation
line, such that

d’K = KdKdy, (19.84)
where 0 < ¢ < 2x. Then
Zg = Qs COS Y + B sin r, (19.85)
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where o and 3 are two orthogonal unit vectors in the plane z - t = 0. In particular, we may
choose them such that

o] =siné, o) = —COs O, a3 =0,
(19.86)
B =cospcosh, B =cospsing, B3=—sing.
Similarly the vector p is written as
om = p(om €08 Yo + By sin o), (19.87)
so that
sin(Kz - p) = sin[ Kp cos(¢¥ — )] (19.88)

The integral in (19.82) is now rewritten in terms of this polar coordinate system, and the
integration over K yields

e 1
/ sin[ Kp cos(yr — )] dK = —sec(y — ). (19.89)
0 o
The expression for the displacements becomes
1 2w B
. (P) = gz €piubint Cunrs fo &My (9) sec(yr — yo) dy. (19.90)

The integral in (19.90) is defined by its Cauchy principal value.
The elastic energy is given by

1 R
€=5 | (CripttipbeNy) dp, (19.91)
where
1
Nf = —OlfSiIl Yo+ :Bf cos Yo = —€fsrlspr (1992)
‘ P

are the components of the unit normal to the planar cut surface used (arbitrarily as usual)
to create the dislocation, and across which the displacement jumps by b. Clearly, the energy
& is independent of v, so that

1 2

E=— | &du. (19.93)
2 0

If we integrate (19.92) over v, interchange the order of integration, and note that

37 w 3w

sec¢ :22(—1)hCOS(2h~|—1)C, {#—7,5,7,.”,

h=0

(19.94)

we obtain

2w
Nysec(y — o) dyg = 2mny, (19.95)

with

ny=—agsiny + Brcosy =dzy/dy. (19.96)
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This yields
1 R 2 .
E=g5|\ln p bmbg€ pjutj C fgip Cuomrs | an FM () dy. (19.97)
Next, we recognize that
asﬁf - ,Bsaf = €ysfly, (1998)
so that
1 .
Zshy = E[evsftv + (s Bf + Bsary) cos(2yr) + (BB — o pat) sin(2yr)]. (19.99)
Finally, we obtain
& = Kygbmbg In(R/19), (19.100)
where
King = (Kyg + Kgp) = K, (19.101)
and

1 ” T
;:lg = —Zepfwtj Cfgipcwmrs €vsfly ]‘41;1 dy + (O[Sle + IBSaf) ]\4;1 COS(ZI//) dy
167 0 0

+ (BrBs — ayas) /{; M sin(2y) dw].

19.8 Inversion of a Singular Integral Equation

Certain solutions were given above for the singular integral equations involved with deter-
mining the equilibrium distributions of dislocations. Here we list a brief summary of some
techniques given by Muskhelishivili (1960) for inverting integral equations of the form

p. [ TOI_

o =W, (19.102)

where p.v. signifies the principal value of the integral. If f(¢) and o (x) are functions that
are continuous in the interval D, and if D consists of p finite segments of which at g of the
2p ends f(t) is bounded, then

1 [RM®]” R(x)1* o()dt [ Ri(x)]"?
w=-zlzw) »flwe] TR Ao om

provided p — g > 0. Here

2
Ri(x) = ﬁ(x —e), R(x)= l_p[ (x —e). (19.104)
i=1 i=q+1

The polynomial P,_,_;(x) is an arbitrary polynomial of degree < p — g — 1, with P_; = 0.
The end points of the segments are e;. When p — g < 0, the same solution is valid with the
necessary and sufficient condition

R(x) 172 . B B o
/D[Rl(x)] Mo(x)dx =0, m=01,....¢-p-1 (19.105)
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19.9 2D Anisotropic Elasticity — Stroh Formalism

For the sake of completeness, in this section we give a brief summary of the Stroh formal-
ism for two-dimensional anisotropic elasticity. Consider a two-dimensional anisotropic
elasticity problem in which the deformation field is independent of the x3 coordinate, so
that the displacement components are

Up = uk(xl, XZ), k= 1, 2, 3. (19.106)
The corresponding stresses are
0ij = Cijrlk , (19.107)

where C;jj are the components of the anisotropic elastic moduli tensor (with respect to
selected coordinate directions x1, X3, x3). They are assumed to possess the usual symmetry
properties with respect to the interchange of indices i < j and k < [, as well as reciprocal
symmetry C;;iy = Cy;;. In the absence of body forces, the equilibrium equations are

0ij,j =0, (19.108)
or, after using (19.107),
Cijratk ji - (19.109)
A general solution of (19.109) can be cast in the form
up=arf(z), z=x1+ pxa, (19.110)
where a; and p are complex-valued constants, and f is an arbitrary function of z. Since

ur; = f'a(8u + pdu), [ =df/dz,

ur.ji = f"ax(81; + pd2j)(8u + pda), f=d*f/dz?,
we obtain from (19.109)
[Citrn + P(Ciire + Cion) + P*Cioie ] ax = 0, (19.111)

whereas (19.107) gives

0ij = f'(Cijrs + pCijra)ax . (19.112)
In particular,

oit = f'(Cam + pCika)ax (19.113)

oi2 = f'(Ciara + pCioka)ax .

In view of the reciprocal symmetry of C;;, we now define the symmetric 3 x 3 matrices
Q and T with components

Oik=Cianr, Tix= Con, (19.114)
and the nonsymmetric 3 x 3 matrix R with components

Ry = Cia. (19.115)
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Since the elastic strain energy is positive, the matrices Q and T are positive-definite.
With so defined matrices Q, T, and R, (19.111) and (19.113) can be rewritten in the matrix
form as

[Q+p(R+R")+p’T]-a=0 (19.116)
and
ti=f(Q+pR)-a, t,=f (R"+pT)-a, (19.117)
where
ay o011 o012
a=|m|, t=|on|, b=|on|. (19.118)
as 03] 032

The equilibrium equations (19.108) can be cast in the vector form as

t1+t62=0. (19.119)
This suggests the introduction of the vector stress function ¢, such that
dp . 99
t1=_877 Le., Gil:_ax ’
g g (19.120)
=22 e .=
2 aX1 ’ ety i2 8x1 N
When these are introduced in (19.117), there follows
9
—2 = [(Q+pR)a,
) ? (19.121)
L4 / T
— = f'(R T) a.
oy = R APT)-a
Since z = x; + px;, and
of _ . _
3X1_f’ a)Cz_pf7
equations (19.121) can be integrated to give
soz—g(Q—i-pR)-a: f(RT +pT) -a. (19.122)
Thus,
¢ = f(z2)b, (19.123)
where
1
b= (R"+pT)-a=—-—(Q+pR) a. (19.124)
p

It was shown by Stroh (1958) that the constants p, ai, and by can be determined simulta-
neously from the six-dimensional eigenvalue problem as follows. From the first of (19.124),
upon the multiplication with T~!, we have

—(T'.RT).a+T ' .b=p-a. (19.125)
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By multiplying this with R, we obtain
pR-a=R-T".b—(R-T".R’) a. (19.126)
The second of (19.124) can be rearranged as
—Q-a—pR-a=pb, (19.127)
or, by using (19.126),
R-T'R"-Q)-a—R-T'-b=p-b. (19.128)

Equations (19.125) and (19.128) together constitute a six-dimensional eigenvalue
problem

N.v = pv, (19.129)
where
_T—l . RT T—l
N = |:R T1.RT_Q -R. T_]] (19.130)

is a real nonsymmetric 6 x 6 matrix, and

v= [lﬂ (19.131)

is a six-dimensional vector with components {ay, ay, as, b1, b2, b3}. The eigenvalue prob-
lem (19.129) delivers six eigenvalues p® and six corresponding eigendirections v(®
(¢ =1,2,...,6). They depend only on the type of elastic anisotropy and the values of
elastic moduli. The positive definiteness of the strain energy requires the six eigenvalues
to appear as three pairs of complex conjugates. It is convenient to arrange them so that
pM, p@ and p® have positive imaginary parts, i.e.,
Imp® >0, a=1,23,
(19.132)
pletd = p@ o =1,2,3,

where overbar denotes the complex conjugation and Im the imaginary part. Correspond-
ingly, we have

a®t =a@ 4 =123,

_ (19.133)
bt =bp@ | «=1,2,3.
The general solution can now be expressed by superposition as

u=Y" [a(a) FO(7@) ¢ 5@ f<a+3>(z(a))] , (19.134)

a=1

3 —

o= [bw) FEO (L) 4 p@ f<a+3>(z<a>)] , (19.135)

a=1

in which f@ are arbitrary functions of their argument, and z(* = x; + p@x,, (@ =
1,2,...,6). Equations (19.134) and (19.135) are Stroh’s solutions for two-dimensional
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anisotropic elasticity. See also Eshelby, Read, and Shockley (1953) and, for an alternative
approach, Lekhnitskii (1981).

In many applications, the functions f(® assume the same function form, differing only
by complex scaling parameters ¢(®, such that

f(a)(z(a)) — q(a) f(z(“)),
f(a+3)(z(a)) — q(a) f(Z(“)).

Thus, by introducing the matrices

(19.136)

A=[a®a®a®] = 4" 4P 4], (19.137)

B =[b®b®bd] = | pP Y|, (19.138)
el
fE&)y 0 0
F= 0o f o |, (19.139)
0 0 f(zV)
and the vector
q(l)
q=|q? |, (19.140)
q(3)
the solution (19.134) and (19.135) can be compactly expressed as
u=2Re(A-F.q), (19.141)
¢ =2Re(B-F-q), (19.142)

where Re stands for the real part. For example, for a Griffith crack of length 2c¢, subject
to uniform tractions —tg over the crack faces which are parallel to x; direction, it can be
shown that (e.g., Ting, 1991)

1

f@) =52 =) =], (19.143)
031

q=B"-6), )=o) |. (19.144)
0
073

19.9.1 Barnett-Lothe Tensors

Equations (19.141) and (19.142) are genearal solutions, provided that the state of
anisotropy is such that there are indeed six independent eigenvectors v(®). This is, for
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example, not the case with isotropic materials, for which p =i = +/—1 is a triple eigen-
value with only two independent eigenvectors. Barnett and Lothe (1973) constructed a
method to derive the solution which circumvent the need of solving the six-dimensional
eigenvalue problem. They introduced the real matrices S, H, and L, which are related to
complex matrices A and B by

S=i2A-B"-1), H=2A- A", L=-2iB-BT, (19.145)
and showed that
1 T
S = __/ T-1(9)-RT(0)do,
T Jo

-1t / T-1(9)do, (19.146)
T Jo

L=t /ﬂ [Q(6) —R(®) - T '(9) - R7(9)]do,
T Jo

where
Oi(0) = Cijun;ny,
Rix(9) = Cijianjmy (19.147)
Tik(0) = Gijumjmy ,
and n = {cos6, sin6, 0}, m = {—sin6, cosH, 0}. It is clear that H and H are symmetric
(because T~! and Q are). It can also be shown that the products S - H, L - S, H!.S, and
S - L~! are antisymmetric tensors. There is furthermore a connection H-L —S-S =1L
The explicit representations for Barnett-Lothe tensors S, H, and L have been reported
in the literature for various types of anisotropic materials, such as cubic and orthotropic
(e.g., Chadwick, and Smith, 1982; Ting, 1996).
For example, along the plane coinciding with the crack faces of the Griffith crack, loaded
over its crack faces by uniform tractions, one has (Ting, 1991)
(x7 — B2, lx1] > c,

(Z2 _ c2)l/2 —
+i(c? —x)Y2, |l <c, x==0.

(19.148)

The displacement and traction vectors for +x; > ¢ are
u(x;, 0) = £ [|x| — (xf = A)?]S- L7 - t,°,
t1(x1,0) = — [lx1|(xf — )72 = 1] Gy - 57, (19.149)
t(x1,0) = [lx](xf — )72 —1]8°,

while, for |x1| < c,
u(xy, £0) = [:I:(c2 —xHV1+ xi8] - L0,
t(x1, £0) = [£x1(c* — ) *Gy — G2 - 57, (19.150)
ty(x1, £0) = —t,°.

The G matrices are here defined by

G=R-T!'"R'-Q)-L!, G=R-T'+G;-L-S-L". (19.151)
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From the first of (19.149) or (19.150) itis observed that u(c, 0) is in general not equal to zero,
unless S - L' - t,° = 0. Furthermore, the traction vector t,(x, 0) isindependent of the type

of elastic anisotropy or the values of the elastic moduli. This was already demonstrated
by (19.47).
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20 The Inclusion Problem

The problem considered here has found application to a legion of physical applications
including, inter alia, the theory of solid state phase transformations where the transforma-
tion (arising from second phase precipitation, allotropic transition, or uptake of solutes,
or changes in chemical stoichiometry) causes a change in size and/or shape of the trans-
formed, included, region; differences in thermal expansion of an included region and its
surrounding matrix, which in turn causes incompatible thermal strains between the two;
and, perhaps surprisingly, the concentrated stress and strain fields that develop around in-
cluded regions that have different elastic modulus from those of their surrounding matrices.
For the reason that the results of this analysis have application to such a wide variety of
problem areas, and because the solution approach we adopt has heuristic value, we devote
this chapter to the inclusion problem.

20.1 The Problem

In an infinitely extended elastic medium, a region — the “inclusion” — undergoes what would
have been a stress free strain. Call this strain the “transformation strain,” €. Due to the
elastic constraint of the medium, i.e., the matrix, there are internal stresses and elastic strains.
What is this resulting elastic field and what are its characteristics? In particular, can an
exact solution be found for this involved elastic field? The region of interest is shown in
Fig. 20.1 and is denoted as Vj; the outward pointing unit normal to V; is n. The stress
free transformation, i.e., change in size and shape, can be viewed as occurring while the
inclusion has been hypothetically removed from the medium, as depicted in Fig. 20.1. Thus
the transformation indicated by e! involves a displacement within the inclusion of the form

x)=el -x,
blx) = (20.1)

—ely.
bi = e;;x;.

The size and shape change associated with this transformation have caused no stresses and
elastic strains if it were not for the constraint of the matrix.

We consider here the case where e! is uniform, i.e., does not depend on position. We
denote the elastic constants as C, so that the linear connection between stress and elastic
strain, e, is o = C : e In the discussion that follows, the distinction between elastic strain

335
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Figure 20.1. Eshelby’s heuristic scheme for the
inclusion setup.
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and fotal strain will be made clear in specific context. For the infinitesimal strain formulation
considered here the total strain is simply the sum of the elastic and the “nonelastic” strains.

20.2 Eshelby’s Solution Setup

We consider the following heuristic solution approach originally devised by Eshelby (1957).
The approach will involve a series of heuristic steps, each accompanied by a change in stress
or strain. The concept of linear superposition is used to “build the solution.”

Step 1: It is explicitly understood that the inclusion is embedded and bound to the matrix
and its interface purely continuous with the matrix (medium). Thus all final displacements
must be so continuous, and, as our procedure will show, they are. We imagine removing
the inclusion from the medium by a purely heuristic process that produces no stress in the
inclusion or in the medium. This means, of course, that no elastic strain has been induced in
either region. Now let the inclusion transform, i.e., let it undergo a homogeneous strain as
prescribed by (20.1). This will induce a total strain in V; of eT. At this stage, the stresses in
both the inclusion, V;, and the medium, V,, are zero. Also, the total strain in the medium
is zero at this stage. To be formal, we say

(202)
e™ =0, o™ = 0.

The convention will be that the first superscript, (..)! or (..)™, represents field quantities
that belong to the inclusion and medium, respectively, and the second superscript indicates
the contribution of that field quantity from the “step” in question.

Step 2: Now the inclusion in its hypothetically separated, yet transformed, state will no
longer “fit” within the “hole” in the medium that it came from. But it has undergone a
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uniform strain, e'. To replace it within the medium, we may imagine applying a uniform
set of boundary traction, T, such that

T (20.3)
T; = =Cijueyn,.

This has the result of producing a uniform state of elastic strain, and therefore uniform
stress, in the inclusion. No strain, or stress, has yet to be caused in the matrix. The contri-
butions to total stress and strain from this step is

e? = —eT, o2 =—_C:e,

(20.4)
e =0, o™=0
Step 3: At this point the inclusion will fit perfectly into the “hole” from which it came,
and therefore it may be reinserted, and the interface between it and the medium made
continuous again. At this stage the state of strain and stress is

eB—ell fel2 =0, oB=_cC:é,

(20.5)
e™ =0, o™ =0.

It is important to recall, however, that the elastic strain in the inclusion is at this stage, —e”,
which of course accounts for the state of stress in the inclusion. Note, as explained above,
that at this point all displacements are to be continuous across the interface between
the inclusion and matrix — and at this point they already are! The final step will pro-
duce additional displacements in both the matrix and inclusion which are inherently
continuous.

Although the inclusion now fits within its original “hole,” there are what now appears
to be an embedded layer of body force T = —C : e - n distributed around the interface Sj.
To remove these fictitious body forces we apply a layer of annulling forces, ~T = C : eT - n
around 8y, asindicated in Fig. 20.1. The application of these forces will cause displacements,
elastic strains, and additional stresses, in both the medium and the inclusion; call these the
“constrained field,” as they occur under the constraint of the infinite elastic medium. Thus
the superscript 4 will be replaced by © to specially designate this.

Step 4 or c: The last step involves the removal of the unwanted layer of body force,
T. Formally this is accomplished by applying a layer of body force —T around S;. How-
ever, as already explained, this occurs while the inclusion is bound to the medium. Thus,
all displacements that occur in this step will be continuous across the interface between
the inclusion and matrix. Call these displacements, inside and outside V1, u°. It is this con-
strained or ¢ field we will now solve for. However, the final state for the total field quantities
within the inclusion and medium will be

e —ell +e 4 e =, o4 =_C:e" +o°,

(20.6)

em4 — ec’ o_m4 — O'C,

where the strains e® are calculated from the constrained displacements, and the stresses
o¢ are calculated as ¢ = C : e°.
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It is also important to explicitly note the total displacements in the inclusion and the
medium at this final stage; they are

u=u

in both Vf and V.

(20.7)
On the other hand, the displacements that cause elastic strains, and thus stresses, are
u=-b-+u

in Vi, and u=u° in V.
Thus, the elastic strains in the inclusion are

(20.8)
e=e'=e—el inW.

(20.9)
20.3 Calculation of the Constrained Fields: u¢, e®, and o°

To calculate the displacements caused by the application of the layer of body force, —T =
C : e’ . n, we simply use linear superposition and the Green’s function to write

us(x) = / Cijueyn;Gip(x — x')dS’
St

= S (C[jk]ezl Gl'p)l’lj dS/

)
= / Ci,'klezl o G,'p(X — X,)dV,.
\% ’ 8x]
We note that

G,‘p = G,‘p(X—X/) =

5y Cir(x=X) =~
j
and thus

(X — X)) (20.10)
J

0 T / %
0= 5 /V CiuehGiplx —x)dV'.
For the distortion, i.e., the displacement gradient, we have

(20.11)
c au% 82 T ’ / 20.12
up’s(x) = 8xs = axsax/' . Cijklek]Gip(X — X)dV ( 0. )
We recall that the Green’s function is given by
1 M, (2) .
Gip(x—x) = el B d’k ’22 exp[—ik - (x —x')], (20.13)
where k is the Fourier vector and z is a unit vector aligned along k. Thus,
us 92 1 [ M}
L = ———— Gijuey, 3 / d’k 2p exp(—ik - x)
0 X 0x,0x; 8713 J_ k (20.14)
X / exp(ik - x')dV".
Wi
Consider the last integral first, i.e.,

/ exp(ik - x')dV’.
1
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Figure 20.2. A polar coordinate system aligned with k.

Let V1 be an ellipsoidal volume with axes a1, az, a3, for reasons that will be clear in what
follows. Define expanded variables and a polar coordinate system aligned with k (see
Fig. 20.2), as follows

K; =ka; and R, = x//a; (nosumon i),
k-xX =K-R = KRcos ¢,
dV' = &' = ayayaz I°R,
d*x’ = a1ara3 R? sinp d dRd6.

Then,

1
/ exp(ik - x)dV' = ajaza3 / RZdR/ exp(i KRcos ¢) sin ¢ dg do. (20.15)
Vi 0 Q

Note that € is a unit sphere such that 0 <6 < 27 and 0 < ¢ < z. The integral over 6 is
trivial, so that

1 k4
/ exp(ik-x')dV' = 2raaza; / R de exp(i KRcos ¢)sin ¢ de. (20.16)
Vi 0 0

The standard integral tables reveal that

(27.[)1/2

/(; exp(i KRcos¢)sing dgp = (KR

Ji2(KR), (20.17)

where Ji»(KR) is a fractional Bessel function. Thus,

b4 ) 2712 1
/ exp(i KRcos ¢) sin g dg = %/ R2J1(KR)dR
0 0
2maiazaz;(2m)'/?
T a— J32(K),
with
K = |K| = (kiai + ka3 + k3a3)". (20.18)
Consequently,
3% 1 . o - M !(z) J32(K)
= 2c.. ,T 3 ip k. /2
U, = —m ﬁa1a2a3(n/2) Cijuey /_ood k ) exp(—ik - x) O

(20.19)
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If we again define

K; = ka;, (nosumon i),

(20.20)
=Ka}, dk= &K,
arazas
then
kl K,‘ Vi
— —, (nosumon i)
K Ka a 2021
R4I2+k @ 2 a2 (2021)
=5+=2+3,
K? a a3 a4
so that
k-x=Kv-R, R =x/a;, (nosumon i). (20.22)
Now, take the real part of (20.19) to obtain
1 2 (o KM, cos[K(v - R)|J3(K)
S, = —5— v/m/2Cijuey — - ~. (20.23)
2 3x;j0x; J oo K2K32[(vi/a1)* + (v2/a2)* + (v3/az)?]
Next, introduce another polar coordinate system aligned with R, so that
d&’K = Ki*dK sin ¢ d¢ do,
and note
o0 K -R)]J30(K
COS[ (V 32] 3/2( )dKzl/Z\/JT/Z[l—(UR)Z],
0 K3/ (20.24)
if (w-R)<1.
It follows that
2t e sing M (v)(vj/a;)(vs/a
ijkleZI/ / ¢2p[( )( ]/2])( S/ 5)2 d¢d9,
o [(vi/a1)* + (v2/a2)? + (vs/a3)?] 2025
(nosumon j,s), (2025)
= Constants, if v-R<1.
To form the strains we take the symmetric part of uj, ;, or
o 7 sing dg don;[M, Hw)ns + M (v)ny) 20,26
p.s l]klekl 2 2 2 ) ( . )
[(vi/a1)* + (Vz/az) + (v3/a3)?]
where
n, = (vp/a,), (nosumon p).
We can conveniently define the components of the tensor S as
7 sing dg don;[M, w)ng + M (v)n,]
Spskl = o_ z]k[ / / 2] ) 2 5 r (2027)
[(vi/a1)* + (Vz/az) + (v3/a3)?]
such that
e, = Spsuey. (20.28)



20.4. Eshelby Tensor for Ellipsoidal Inclusion

The fourth-order tensor with components S;jx is known as the Eshelby tensor.

to coordinate axes.

In summary, it is worth recalling that:

In the Inclusion:

In the medium:

20.4 Components of the Eshelby Tensor for Ellipsoidal Inclusion

1 T
Uij = ifPS(e;s - eps)’

c T
€ps = Spsklek]a

Lel _ ¢ _ T
€ps = €p — €,

The components of the Eshelby tensor ;i obey the symmetry

Sijie = Sjilt = Sijik -
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Figure 20.3. An ellipsoidal inclusion with its principal axes parallel

(20.29)

(20.30)

(20.31)

When written with respect to coordinate axes parallel to principal axes of the ellipsoidal
inclusion (Fig. 20.3), these components are

St =

Sin =

Sz =

S =

342 1—2v
I I
Br(l—v) " T Bz —w)
a; g L=
8r(1—v) * 8r(l—v)
2
as 1-2v
Iy — I
8r(1—v) ® 8x(1l—v)
2 2
ay +ajy 1-2v
I L+D).
16 (1 —v) 124“1671(1—1))(14“ 2)

(20.32)

The remaining nonzero components are obtained by cyclic permutations of (1, 2, 3). All

other components vanish.
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The [; integrals appearing in above expressions can be expressed in terms of elliptic
integrals. Assuming that a; > a, > a3, we have

draiaras
L = [F(6, k) — E(, k)],
(a1 - az)(al 2)]/2
draiayaz az(a1 — a3)1/2
L = — E0,k) |, 20.33
3 (02 — a3)(a1 2)1/2 |: aaz ( ) ( )

L+ L+ 6L=4m,
where F(6, k) and E(6, k) are elliptic integrals of the first and second kind, and

2 1/2 2 2N\ 1/2
6 = arcsin (”1 2”3> . k= (“12 “g) . (20.34)
ay ar — a3
The I;; integrals can be calculated from
4
3hi+lho+6hs=—,
ay
3al L 4+ a3l +alls =31, (20.35)

Iy = — ! 5 (L — 1),
ay —ay
and their cyclic counterparts.
The stress components in an ellipsoidal inclusion due to uniform transformation (eigen-
strain) e; are

an_ { a12 [ 1= 3]11 +

(it m)}

2 87 (1—v) 1-
1—-2v 1—v 1—v
I L+1 —tel
+8n(1—v)[1—2v 1=y (b 3)} 1—21)}6“

2
a; 1
I 31 I
+{8n(1—v)[1—2 12+1 ( 0+ I3p)

(20.36)
1—-2v 1—v I v (h—1Iy) v T
St(l—v) [1-2v ' " 1—2w 2T | T T
2
as 1-v
I 3+ 1
+{8n(1—v)[1—2 13+1 ( 33+ 23)}
1—-2v 1—v v v
— L — L—-DL)|— T
sn(l—v)[l—zv i b 2)} 1—2v}e33’
2 2
o12 ay +a; 1-2v T
oz _| ATh Y (41 : 20.37
2 |:871(1—v) yrpn RG] (2037)

with other stress components obtained from the above two expressions by cyclic permu-
tations of (1, 2, 3).
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20.5 Elastic Energy of an Inclusion

The elastic energy of the entire body, i.e., inclusion and medium is

1 1
E = E/Va,'je,',- dVv = E/;/oijui,jdV. (2038)

Formally, we may divide the body into the inclusion volume and the volume of the medium,
so that

1 1 Iel 1 m,,m
E=s [ ol aves [ opurav. (2039)

Since there are no body forces, i.e., V - o = 0, the divergence theorem shows that

2](” u).j dV+2/ (0w dV

Iel IA Iel m, 00, m
== ds ds ds.
2/& gt AS+ 5 /s +2/sf’”’“

Furthermore,
/ ojinFu"dS — 0,
Soo
because of the way in which the stresses and displacements fall off with distance. Thus,

/(O‘ njul Iel IA m)dS

-2 / Ty — uyds (20.40)
—5 f nj ”xv ds,
because ul o — u™ = —b;. From (20.40) it then follows, with another use of the divergence
theorem, that
1
E=— /V olelav. (20.41)
1

20.6 Inhomogeneous Inclusion: Uniform Transformation Strain

We next consider the problem of an infinite medium containing an inclusion of a material
different from that of the medium. The inhomogeneous inclusion, which occupies the
volume W1, as before, is to undergo what would be, without the constraint of the surrounding
medium, a stress free strain, e*. The elastic moduli tensor for this inclusion is designated
as C*. For the case of a homogeneous inclusion, i.e., one having the same elastic constants
as the medium, after undergoing a transformation strain, e', the final inclusion strain is
e =S : el and the resulting inclusion stress is o = C: (S : ef —eT). We recall, if the
inclusion were of ellipsoidal shape, and if e’ were uniform, the resulting stresses and
strains in the inclusion were also uniform. We have omitted the superscript ! for the
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@ Figure 20.4. Inhomogeneous inclusion subject to far field strains.

800

inclusion field variables for brevity and because we will only require discussion of field
quantities within the inclusions for our development. With the above in mind, imagine
applying surface forces to the inhomogeneous inclusion so as to produce a strain, e — e*,
where we will associate e® here with that of a companion homogeneous inclusion shortly.
The resulting stresses in the inclusion are o* = C: (e° — e*). Note that —e* strain will
cancel the stress free strain, e*, which now leaves the total strain of the inhomogeneous
inclusion to be e®. At this stage both the homogeneous and inhomogeneous inclusions
have experienced the same total strains and thus have the same size and shape. If the
stresses within the two inclusions are also identical, then we may replace the homogeneous
inclusion with the inhomogeneous inclusion. This is so because the traction that would
be computed from these stresses would be identical, and thus traction continuity would
be maintained with the medium. For the stresses to be the same, we must be able to solve
for a companion set of transformation strains for a homogeneous inclusion, e’, given the
prescribed transformation strains, e*. The resulting equations are

C:(S:ef—eh)=C":(S:ef —eY),
T - . T i} (20.42)
Cifkl(sklm"emn - ekl) = Cijkl(Sklmnemn - ekl)'

The set (20.42) can indeed be solved for e!.

Consider the problem of an infinite medium containing an inclusion of a different ma-
terial and subject to a far field strain e> (Fig. 20.4). Suppose we first solve the problem
of a homogeneous inclusion with the same elastic constants as the medium and the same
initial size and shape, which undergoes a uniform transformation strain e'. We recall that
in the case of this companion homogeneous inclusion, the resulting state of stress and
strain would be such that the total strain would be e°; the elastic strain would, however,
be e¢ — e'. Now, superimpose a uniform strain, >, on this homogeneous inclusion as well
as on the medium. The stress in the inclusion is

o_hom,l —C: (ec _ eT + eoo). (2043)

Next, subject the inhomogeneous inclusion, with elastic constants C, to a uniform strain
e® + e>. Note at this point that the size and shape change undergone by this inhomo-
geneous inclusion is identical to that of the fully transformed companion homogeneous
inclusion. The stresses in the inhomogeneous inclusion are

o,inhom,I — C* . (eC + eOO)' (2044)
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If the stresses in both inclusions are the same, we may replace the companion homo-
geneous inclusion with its inhomogeneous counterpart. If the inclusions are of ellipsoidal
shape this is possible because e° = S : eT, where S is a constant Eshelby tensor. Thus, given
e, C, C*, we may solve for the companion homogeneous e’ from

C:(S:el —el +e*)=C*:(S:e’ +e%),

B S (20.45)
ijkI\Okirs €, ek]+ekl)_ ijkl( klrser5+ek1)'

Note that the stresses and strains are everywhere the same for both the medium with the
inhomogeneous and the companion homogeneous inclusions.

20.7 Nonuniform Transformation Strain Inclusion Problem

As before, we imagine a volume element — that we will later, for clear advantage, take to be of
ellipsoidal shape —undergo what would be a stress-free change in size and shape while it is
embedded within an infinite medium. The inclusion and its medium have the same elastic
constants, C. The stress-free change in size and shape is described by a transformation
strain, ", as discussed in the previous sections.

LEMMA 20.1: If an ellipsoidal region in an infinite anisotropic linear elastic medium un-
dergoes, in the absence of its surroundings, a stress-free transformation strain which is a
polynomial of degree M in the position coordinates, x,, then the final stress and strain state
of the transformed inclusion, when constrained by its surroundings, is also a polynomial of
degree M in the coordinates x,.

This generalization of Eshelby’s original theorem for the uniform inclusion in an
isotropic elastic medium has far reaching consequences - viz., that all the developments
of the previous section regarding the inhomogeneous inclusion hold true, as can be veri-
fied by direct analysis. Clearly, the above results for the uniform transformation strain are
included in this generalization.

Proof: We start almost from the beginning. Imagine cutting out the volume element W
in an undeformed infinite anisotropic linear elastic medium. As this process is heuristic, let
Vi undergo a stress-free transformation strain e'(x), where x denotes position within the
inclusion. The strain e’(x) is assumed to be continuous and differentiable, but is otherwise
arbitrary. Now let piTj (x) = Cijue}; be the stress derived from Hook’s law as above, i.e., if
the uniform strain e’ were applied unconstrained to V4. The construction of the constrained
elastic field is accomplished by first applying — piTj (x)n; to the surface S; bounding V; [and
distributing body forces (3/9x;) pl-Tj (x) throughout Vj].

With this nomenclature, we can move to the general expression, i.e., (20.11), for the
components of displacement gradient,
ous 32

L=— Gi(x —x)pL(x)dV'. 20.46
o, ax,0x; K(x = x) p; (X) (20.46)
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Take the Fourier transform of (20.46) to obtain, with K again being a Fourier vector,

ous

L= Kz [ ph) exp(iKa-x)av’
Bxp Vi

= 2,2, M;;' (2) /VI pi(X)exp(iKz-x)dV'.
We recall that the Fourier transform of G is
gK)=M"/K*, (20.47)
where M =z - C -z, and z = K/|K]. In other words,
gin(K) = M;! (K)/ K. (20.48)

Using the Fourier inversion described in Chapter 3, along with the spherical coordinate
system, yields

C (o]
ou; =@2n)7 | zpz; M (2) dQ2 K*exp(—iKz-x)dK | pl(x)exp(iKz x)dV'.
o e Mk A p . Pl p

0xp
(20.49)

Again,dQ2 = sin ¢ d¢ df isthe surface area over the unit sphere, as described in the previous
section. We are interested in only the real part of (20.49), and we note that

V2cos[Kz - (X —x)] = —K*cos[Kz - (X' —x)], (20.50)
where
V2 = 9%/0x,0x;. (20.51)
We also recall that
[o.¢]
f cos(Ks) dK = 78(s). (20.52)
0
Thus, an interchange of the order of integration yields
auic 1 —1 2 T (o / !
E =35 QZijMl-k (z)dQ V; . Pi(x)8(z- X —z-x)dV". (20.53)
1

We now specialize to the case of an ellipsoidal inclusion,
3
D (xa/aq)* =1, (20.54)
a=1

which means that x lies in V4, and e (x') and hence p};(x') are polynomials of degree M
in x'. We have, for convenience, chosen the x; axes to coincide with the principal axes of
the ellipsoid; this can be done without loss of generality because a polynomial of degree
M in x; remains a polynomial of degree M in the coordinates of any rectangular Cartesian
system obtained by rotation and translation from other rectangular Cartesian system.

In general, p,fj (x') is the sum of M + 1 terms, with a typical 7" term of the form

! / !
Aljmn.. s XX, - - X,
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where 0 <r < M and the A sX,,X, ... X, are r? constants, whereas X)X, ...X, are r
products. Consider such a term substituted into (20.53), namely the integral

I = Ajon..o / XXy X,8(2 - X — 2 x)dV/, (20.55)
%
with
3
Y (/) < 1. (20.56)
a=1
Then,
o _ 1 / 2p2j M, (z)dQZVzl(f) (20.57)
axp 8 Q2 p<] ik — . .

Now, introduce the change in variables
1, =X,/0y, ty=Xy/0y, (20.58)

which will convert the integral over the ellipsoid in (20.55) to an integral over the unit
sphere, |t'| < 1. When x lies within the ellipsoid, |t| < 1 and (20.55) become

I(r Z Akjap...yAalp...a, (a1a2a3) totgt,8[u(s -t —s-)]dV’, (20.59)
wfy=1 <1
where
n=(alz + a3 +a3d)"” >0
So = Zgdy /I, (nOsumon «), (20.60)
Is| = 1.
The delta function in (20.59) is nonzero only for those t' of the form

t' = T(mcosy +nsiny) + (s - t)s,
. (20.61)
0<T=<[l—-(s- t)z]/

and m and n are any two fixed unit vectors normal to s. The angle ¢ is a polar angle in
the plane of m and n. Thus, the volume integral in (20.59) is reduced to an integral over a
plane circular region of radius [1 — (s - t)?]'/2. Since

S(uf) = %w), (20.62)

we have

aiara
=2 Z Akjap..yap...a, (20.63)
H a,pB,...y=1
]1/2

2 [1—(st?
X / dl//f [TR, +(s-t)se]... [TR, + (s-1t)s, ]TdT.
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In here,
R, = my cos ¥ + ng sin ¢,

and 7dT is the polar element of area in the plane of integration.

(20.64)

The integrand in (20.63) can be expanded using the binomial theorem and is of the form

r (T "
Z Tw+1(s -ty < > ofﬁ )y(w)
w=0

where

fofg)iy(‘ﬁ) = SaS8...8y,

fof;) L (V) =saSp... Ry +saR,3...sy + Rysg...Sq,
o(ﬂ y(W) - ROlR,B

i.e., each term in £

ws...,(¥) contains the product of w R's. Since

2
/ sin” ¢ cos” v dyy =0, if m+ nis odd or if both m and n are odd,
0

one easily verifies that

2
/ ég})y(lﬁ)diﬁ—() if w is odd.
0

Thus,

aaxa
I](;()_ 22 Z Akjap...ydadp-. ayZ( )(s t) 2w

a,pB,...y=1 w=0

e -7
x /0 o wan [ 12,

(20.65)

(20.66)

(20.67)

(20.68)

where (3r) denotes the greatest integer not greater than 3. Since, from (20.58) and (20.61),

s-t=z-x/u,

and having in mind the fact that

[1=(s-1)*]'? 1 w
/ T2w+ 4T = [ —(s- t)z] +1
0 w

we obtain

(3r)
r araras r 2w
1= S a3 () [ 8 00 d

ao,pB,..y=1 w=0

1 z-w\ z-x\° v
) )]
w+1\ w w

(20.69)

(20.70)
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Clearly, each term in here is a polynomial in z - x of degree r — 2w +2(w + 1) =r + 2.
Thus II(Q is a polynomial in x; of degree r + 2, and

V2 = P}z x), (20.71)

where P;,r()(z -X) is a polynomial of degree r in x;. Finally,
Z V215 = F(z - x), (20.72)

where F ](,iu ) (z - x) is a polynomial of degree M in x;. Using (20.57) we immediately conclude
that inside the ellipsoid the constrained elastic displacement gradients, and thus the strains
and stresses, are polynomials in x; of degree M. The total elastic strain inside the ellipsoid
is given by (20.57) and —e"(x), which is, of course, also a polynomial in x; of degree M.
Thus the proposition of the lemma is proven.

20.7.1 The Cases M =0, 1

The theorem will be illustrated for the cases where M = 0, 1. For M = 0, we have fO(y) =
1 and

2
19 = “122“3 Ay [1 - (%) } . (20.73)

Now,
Z-X 2
% <_) =2/u?, (20.74)
n

so that inside the inclusion

. 6110203 (ZpZ/ ka7 M)
e, = p

dQi|Ak] = lPk]Ak]’ (20'75)

where the S;,i; may be evaluated by simple numerical integration. For instance, using the
fact that

1
EeixrermnMymMn/A 5 A= €mns MlmMZn M2S7 (2076)

we can use spherical coordinates

-1 _
My =

71 =cos¢pcosh, 1z =sin¢gsinfh, zz = cosqo. (20.77)

When M =1, in addition to the term in (20.75), we obtain a term corresponding to
FO@) = s,.. Then,

2
11(11{) _ a1Zza3 ZAk]aZa <zl-Lx> |:1 _ (E) :| ) (20.78)

u

Since

2
V2 <E> 6 X (20.79)
1 0
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in addition to the term in (20.75), we obtain a contribution

—1 —1 3
3a1ara3 2pZiMy + iz M,
c __ P . 2
o= | [ (P S vt o

The integrals may be easily evaluated by numerical integration.

20.8 Inclusions in Isotropic Media

Eshelby’s (1957,1959) original development of the problem of an inclusion in a elastic
medium contained insight and results of considerable interest for exploring physical phe-
nomena. Here we present some of these. The general framework for this has already been
presented and is accordingly utilized here.

20.8.1 Constrained Elastic Field

Recall the expression derived for the Green’s function for an infinitely extended isotropic
elastic medium, viz.,

1 A4 92
G —xX)= — |8, V> — 