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Preface

This book is written for graduate students in solid mechanics and materials science and
should also be useful to researchers in these fields. The book consists of eight parts. Part 1
covers the mathematical preliminaries used in later chapters. It includes an introduction to
vectors and tensors, basic integral theorems, and Fourier series and integrals. The second
part is an introduction to nonlinear continuum mechanics. This incorporates kinematics,
kinetics, and thermodynamics of a continuum and an application to nonlinear elasticity.
Part 3 is devoted to linear elasticity. The governing equations of the three-dimensional
elasticity with appropriate specifications for the two-dimensional plane stress and plane
strain problems are given. The applications include the analyses of bending of beams
and plates, torsion of prismatic rods, contact problems, semi-infinite media, and three-
dimensional isotropic and anisotropic elastic problems. Part 4 is concerned with microme-
chanics, which includes the analyses of dislocations and cracks in isotropic and anisotropic
media, the well-known Eshelby elastic inclusion problem, energy analyses of imperfections
and configurational forces, and micropolar elasticity. In Part 5 we analyze dislocations in
bimaterials and thin films, with an application to the study of strain relaxation in thin films
and stability of planar interfaces. Part 6 is devoted to mathematical and physical theories
of plasticity and viscoplasticity. The phenomenological or continuum theory of plasticity,
single crystal, polycrystalline, and laminate plasticity are presented. The micromechanics
of crystallographic slip is addressed in detail, with an analysis of the nature of crystalline
deformation, embedded in its tendency toward localized plastic deformation. Part 7 is an
introduction to biomechanics, particularly the formulation of governing equations of the
mechanics of solids with a growing mass and constitutive relations for biological mem-
branes. Part 8 is a collection of 180 solved problems covering all chapters of the book. This
is included to provide additional development of the basic theory and to further illustrate
its application.

The book is transcribed from lecture notes we have used for various courses in solid
mechanics and materials science, as well as from our own published work. We have also
consulted and used major contributions by other authors, their research work and written
books, as cited in the various sections. As such, this book can be used as a textbook for a
sequence of solid mechanics courses at the graduate level within mechanical, structural,
aerospace, and materials science engineering programs. In particular, it can be used for

xix
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xx Preface

the introduction to continuum mechanics, linear and nonlinear elasticities, theory of dis-
locations, fracture mechanics, theory of plasticity, and selected topics from thin films and
biomechanics. At the end of each chapter we offer a list of recommended references for
additional reading, which aid further study and mastering of the particular subject.

Standard notations and conventions are used throughout the text. Symbols in bold, both
Latin and Greek, denote tensors or vectors, the order of which is indicated by the context.
Typically the magnitude of a vector will be indicated by the name symbol unbolded. Thus,
for example, a or b indicate two vectors or tensors. If a and b are vectors, then the scalar
product, i.e., the dot product between them is indicated by a single dot, as a · b. Since a
and b are vectors in this context, the scalar product is also ab cos θ , where θ is the angle
between them. If A is a higher order tensor, say second-order, then the dot product of
A and a produces another vector, viz., A · a = b. In the index notation this is expressed
as Ai j a j = bi . Unless explicitly stated otherwise, the summation convention is adopted
whereby a repeated index implies summation over its full range. This means, accordingly,
that the scalar product of two vectors as written above can also be expressed as a j bj = φ,
where φ is the scalar result. Two additional operations are introduced and defined in the
text involving double dot products. For example, if A and B are two second-rank tensors,
then A : B = Ai j Bi j and A · · B = Ai j Bji . For higher order tensors, similar principles apply.
If C is a fourth-rank tensor, then C : e ⇒ Ci jklekl = {...}i j . .

In finite vector spaces we assume the existence of a convenient set of basis vectors. Most
commonly these are taken to be orthogonal and such that an arbitrary vector, say a, can be
expressed wr t its components along these base vectors as a = a1e1 + a2e2 + a3e3, where
{e1, e2, e3} are the orthogonal set of base vectors in question. Other more or less standard
notations are used, e.g., the left- or right-hand side of an equation is referred to as the lhs,
or rhs, respectively. The commonly used phrase with respect is abbreviated as wr t , and so
on.

We are grateful to many colleagues and students who have influenced and contributed
to our work in solid mechanics and materials science over a long period of time and thus
directly or indirectly contributed to our writing of this book. Specifically our experiences at
Stanford University, Brown University, UCSD, Ford Motor Company (RJA), Ohio State
University (RJA), University of Montenegro (VAL), and Arizona State University (VAL)
have involved collaborations that have been of great professional value to us. Research
funding by NSF, the U.S. Army, the U.S. Air Force, the U.S. Navy, DARPA, the U.S. DOE,
Alcoa Corp., and Ford Motor Co. over the past several decades has greatly facilitated our
research in solid mechanics and materials science. We are also most grateful to our families
and friends for their support during the writing of this book

La Jolla, California Robert J. Asaro
July, 2005 Vlado A. Lubarda
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PART 1: MATHEMATICAL PRELIMINARIES

1 Vectors and Tensors

This chapter and the next are concerned with establishing some basic properties of vectors
and tensors in real spaces. The first of these is specifically concerned with vector algebra and
introduces the notion of tensors; the next chapter continues the discussion of tensor algebra
and introduces Gauss and Stokes’s integral theorems. The discussion in both chapters is
focused on laying out the algebraic methods needed in developing the concepts that follow
throughout the book. It is, therefore, selective and thus far from inclusive of all vector
and tensor algebra. Selected reading is recommended for additional study as it is for all
subsequent chapters. Chapter 3 is an introduction to Fourier series and Fourier integrals,
added to facilitate the derivation of certain elasticity solutions in later chapters of the book.

1.1 Vector Algebra

We consider three-dimensional Euclidean vector spaces, E , for which to each vector
such as a or b there exists a scalar formed by a scalar product a · b such that a · b =
a real number in R and a vector product that is another vector such that a × b = c. Note
the definitions via the operations of the symbols, · and ×, respectively. Connections to
common geometric interpretations will be considered shortly.

With α and β being scalars, the properties of these operations are as follows

a · b = b · a, ∀ a,b ∈ E, (1.1)

(αa + βb) · c = α(a · c) + β(b · c), ∀ a,b, c ∈ E, (1.2)

a · a ≥ 0, with a · a = 0 iff a = 0, (1.3)

a × b = −b × a, (1.4)

(αa + βb) × c = α(a × c) + β(b × c). (1.5)

Also,

a · (a × b) = 0, (1.6)

(a × b) · (a × b) = (a · a)(b · b) − (a · b)2. (1.7)

1
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2 1. Vectors and Tensors

a

b

c

Figure 1.1. Geometric meaning of a vector triple product. The triple product
is equal to the volume of the parallelepiped formed from the three defining
vectors, a,b, and c.

The magnitude of a is

|a| ≡ a = (a · a)1/2. (1.8)

Two vectors are orthogonal if

a · b = 0. (1.9)

From the above expressions it follows that if a × b = 0, then a and b are linearly dependent,
i.e., a = αb where α is any scalar.

A triple product is defined as

[a,b, c] ≡ a · (b × c). (1.10)

It is evident from simple geometry that the triple product is equal to the volume enclosed
by the parallelepiped constructed from the vectors a,b, c. This is depicted in Fig. 1.1. Here,
again, the listed vector properties allow us to write

[a,b, c] = [b, c, a] = [c, a,b]

= −[b, a, c] = −[a, c,b] (1.11)

= −[c,b, a]

and

[αa + βb, c,d] = α[a, c,d] + β[b, c,d]. (1.12)

Furthermore,

[a,b, c] = 0 (1.13)

iff a,b, c are linearly dependent.
Because of the first of the properties (1.3), we can establish an orthonormal basis (Fig. 1.2)
that we designate as {e1, e2, e3}, such that

ei · e j = δi j =
{

1, if i = j ,

0, otherwise.
(1.14)

The δi j is referred to as the Kronecker delta. Using the basis {ei }, an arbitrary vector, say
a, can be expressed as

a = a1e1 + a2e2 + a3e3 (1.15)

or

a = ai ei , (1.16)
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e

e
e1

2

3

υ

Figure 1.2. A vector υ in an orthonormal basis.

where the repeated index i implies summation, i.e.,

a = ai ei =
3∑

i=1

ai ei . (1.17)

We can use (1.14) to show that

ai = a · ei = ar er · ei = arδri . (1.18)

The properties listed previously allow us to write

e1 = e2 × e3, e2 = e3 × e1, e3 = e1 × e2. (1.19)

We note that these relations can be expressed as

ei × e j = εi jkek, (1.20)

where the permutation tensor is defined as

εi jk =

⎧⎪⎪⎨
⎪⎪⎩

+1, if i, j, k are an even permutation of 1, 2, 3,

−1, if i, j, k are an odd permutation of 1, 2, 3,

0, if any of i, j, k are the same.

(1.21)

Some useful results follow. Let a = apep and b = br er . Then,

a · b = (apep) · (br er ) = apbr (ep · er ) = apbrδpr . (1.22)

Thus, the scalar product is

a · b = apbp = ar br . (1.23)

Similarly, the vector product is

a × b = apep × br er = apbr ep × er = apbrεpri ei = εipr (apbr )ei . (1.24)

Finally, the component form of the triple product,

[a,b, c] = [c, a,b] = c · (a × b), (1.25)

is

c · (εipr apbr ei ) = εipr apbr ci = εpri apbr ci = εi jkai bj ck. (1.26)
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e

e

e

e'

e'

e'

1

1

2
2

3

3

Figure 1.3. Transformation via rotation of basis.

1.2 Coordinate Transformation: Rotation of Axes

Let υ be a vector referred to two sets of basis vectors, {ei } and {e′
i }, i.e.,

υ = υi ei = υ ′
i e

′
i . (1.27)

We seek to relationship of the υi to the υ ′
i . Let the transformation between two bases

(Fig. 1.3) be given by

e′
i = αi j e j . (1.28)

Then

e′
i · e j = αises · e j = αisδs j = αi j . (1.29)

It follows that

υ ′
s = υ · e′

s = υ · αspep = υpαsp = αspυp

and thus

υ ′
i = αi jυ j . (1.30)

For example, in the two-dimensional case, we have

e′
1 = cos θe1 + sin θe2,

e′
2 = − sin θe1 + cos θe2,

(1.31)

with the corresponding transformation matrix

α =
[

cos θ sin θ
− sin θ cos θ

]
. (1.32)

Another way to describe the transformation in (1.28) is to set

e′ = β · e. (1.33)

A straightforward manipulation, however, shows that β and α are related by

β = αT, (1.34)

where the transpose, αT , is defined in the sequel.
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1.3 Second-Rank Tensors

A vector assigns to each direction a scalar, viz., the magnitude of the vector. A second-rank
tensor assigns to each vector another (unique) vector, via the operation

A · a = b. (1.35)

More generally,

A · (αa + βb) = αA · a + βA · b. (1.36)

Second-rank tensors obey the following additional rules

(A + B) · a = A · a + B · a,

(αA) · a = αA · a,

(A · B) · a = A · (B · a),

A + B = B + A, (1.37)

α(A · B) = (αA) · B,

A · (B + C) = A · B + A · C,

A · (B · C) = (A · B) · C.

Each tensor, A, has a unique transpose, AT , defined such that

a · (AT · b) = b · (A · a). (1.38)

Because of (1.36)–(1.38), we can write

(αA + βB)T = αAT + βBT, (1.39)

and

(A · B)T = BT · AT. (1.40)

1.4 Symmetric and Antisymmetric Tensors

We call the tensor A symmetric if A = AT . A is said to be antisymmetric if A = −AT .
An arbitrary tensor, A, can be expressed (or decomposed) in terms of its symmetric and
antisymmetric parts, via

A = 1
2

(A + AT) + 1
2

(A − AT), (1.41)

where

sym (A) ≡ 1
2

(A + AT),

skew (A) ≡ 1
2

(A − AT).

(1.42)
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6 1. Vectors and Tensors

1.5 Prelude to Invariants of Tensors

Let
{
f, g,h

}
and {l,m,n} be two arbitrary bases of E . Then it can be shown that

χ1 = ([A · f, g, h] + [f,A · g, h] + [f, g,A · h]) /[f, g,h]

= ([A · l,m, n] + [l,A · m,n] + [l,m,A · n]) /[l,m,n],

χ2 = ([A · f,A · g,h] + [f,A · g,A · h] + [A · f, g,A · h]) /[f, g,h]

= ([A · l,A · m,n] + [l,A · m,A · n] + [A · l,m,A · n]) /[l,m,n],

χ3 = [A · f,A · g,A · h]/[f, g,h] = [A · l,A · m,A · n]/[l,m,n].

In proof of the first of the above, consider the first part of the lhs,

[A · f, g,h] = [A · ( fpep), gqeq, hr er ]

= [ fp(A · ep), gqeq, hr er ] = fpgqhr [A · ep, eq, er ].
(1.43)

Thus the entire expression for χ1 becomes

χ1 = fpgqhr

[f, g,h]
([A · ep, eq, er ] + [ep,A · eq, er ] + [ep, eq,A · er ]) . (1.44)

The term in (. . .) remains unchanged if p,q, r undergo an even permutation of 1, 2, 3; it
reverses sign if p,q, r undergo an odd permutation, and is equal to 0 if any of p,q, r are
made equal. Thus set p = 1, q = 2, r = 3, and multiply the result by εpqr to take care of
the changes in sign or the null results just described. The full expression becomes

( fpgqhr )εpqr

[f, g,h]
([A · e1, e2, e3] + [e1,A · e2, e3] + [e1, e2,A · e3])

= [A · e1, e2, e3] + [e1,A · e2, e3] + [e1, e2,A · e3].

(1.45)

Since [e1, e2, e3] = +1, the quantity

([A · f, g,h] + [f,A · g,h] + [f, g,A · h]) /[f, g,h] (1.46)

is invariant to changes of the basis {f, g, h}.
Given the validity of the expressions for χ1, χ2, and χ3, we thereby discover three

invariants of the tensor A, viz.,

IA = ([A · f, g,h] + [f,A · g,h] + [f, g,A · h]) /[f, g,h],

I IA = ([A · f,A · g,h] + [f,A · g,A · h] + [A · f, g,A · h]) /[f, g,h], (1.47)

I I IA = [A · f,A · g,A · h]/[f, g,h].

The commonly held descriptors for two of these are

IA = trace of A = tr (A),

I I IA = determinant of A = det(A) = |A|.
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1.6 Inverse of a Tensor

If |A| 
= 0, A has an inverse, A−1, such that

A · A−1 = A−1 · A = I, (1.48)

where I, the identity tensor, is defined via the relations

a = I · a = a · I. (1.49)

Useful relations that follow from the above are

|αA| = α3|A|,
|A · B| = |A||B|.

(1.50)

Thus, it follows that

|A · A−1| = |I| = 1 = |A||A−1|,

|A−1| = 1
|A| = |A|−1.

(1.51)

1.7 Additional Proofs

We deferred formal proofs of several lemmas until now in the interest of presentation. We
provide the proofs at this time.

LEMMA 1.1: If a and b are two vectors, a × b = 0 iff a and b are linearly dependent.

Proof: If a and b are linearly dependent then there is a scalar such that b = αa. In
this case, if we express the vector product a × b = c in component form, we find that
ci = εi jka jαak = αεi jka j ak. But the summations over the indices j and k will produce pairs
of multiples of aβaγ , and then again aγ aβ , for which the permutator tensor alternates
algebraic sign, thus causing such pairs to cancel. Thus, in this case a × b = 0.

Conversely, if a × b = 0, we find from (1.3) to (1.8) that a × b = ±|a||b|. If the plus signs
holds, we have from the second of (1.3)

(|b|a − |a|b) · (|b|a − |a|b) = 2|a|2|b|2 − 2|a||b|a · b = 0. (1.52)

Because of the third property in (1.3) this means that |b|a = |a|b. When the minus sign
holds, we find that |b|a = −|a|b. In either case this leads to the conclusion that b = αa.

Next we examine the relations defining properties of the triple product when pairs
of the vectors are interchanged. Use (1.26) to calculate the triple product. This yields
[a,b, c] = εi jkai bj ck. Next imagine interchanging, say a with b; we obtain [b, a, c] =
εi jkbi a j ck = εi jka j bi ck = −ε j ika j bi ck = −εi jkai bj ck, where the last term involved merely
a reassignment of summation indices. Thus [a,b, c] = −[b, a, c]. Proceeding this way all
members of (1.11) are generated.

We now examine the triple product property expressed in (1.12).

LEMMA 1.2: If a, b, c, and d are arbitrary vectors, and α and β arbitrary scalars, then

[αa + βb, c,d] = α[a, c,d] + β[b, c,d], ∀ a,b, c,d ∈ E, α, β ∈ R. (1.53)
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Proof: Begin with the property of scalar products between vectors expressed in (1.2)
and replace c with c × d. Then,

(αa + βb) · (c × d) = αa · (c × d) + βb · (c × d) = α[a, c,d] + β[b, c,d]. (1.54)

Of course, the first term in the above is the triple product expressed on the lhs of the
lemma.

1.8 Additional Lemmas for Vectors

LEMMA 1.3: If

v = αa + βb + γ c, (1.55)

where a,b, c, v are all vectors, then

α = εi jkvi bj ck

εpqr apbqcr
, β = εi jkaiv j ck

εpqr apbqcr
, γ = εi jkai bjvk

εpqr apbqcr
. (1.56)

Proof: The three relations that express the connections are

v1 = αa1 + βb1 + γ c1 ,

v2 = αa2 + βb2 + γ c2 , (1.57)

v3 = αa3 + βb3 + γ c3 .

By Cramer’s rule

α =

∣∣∣∣∣∣
v1 b1 c1

v2 b2 c2

v3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
. (1.58)

Thus, the lemma is proved once the two determinants are expressed using the permutation
tensor.

LEMMA 1.4: Given a vector a, then for arbitrary vector x,

a × x = a iff a = 0. (1.59)

Proof: Express the i th component of a × x as

εi jka j xk, (1.60)

and then form the product a · a to obtain

εi jka j xkεirsar xs = (δ jrδks − δ jsδkr )a j xkar as = a2x2 − (a · x)2 = a2.

The expression just generated is zero as may be seen, for example, by letting x be equal to
e1, e2, e3, respectively. Note that the third equation of (1.70) below has been used.
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LEMMA 1.5: Suppose that for any vector p, p · q = p · t, then we have

p · q = p · t ⇒ q = t. (1.61)

Proof: The relation p · q = p · t can be rewritten as

p · (q − t) = p1(q1 − t1) + p2(q2 − t2) + p3(q3 − t3) = 0. (1.62)

As in the previous lemma, letting p be systematically equal to e1, e2, e3 shows that p1 =
p2 = p3 = 0.

We reexamine now the operation of the cross product between vectors to develop two
additional lemmas of interest.

LEMMA 1.6: Given the vectors p, q, r we have

p × (q × r) = q(p · r) − r(p · q). (1.63)

Proof: The proof is most readily done by expressing the above in component form, i.e.,

εrsi psεi jkqjrk = εrsiεi jk psqjrk = εirsεi jk psqjrk. (1.64)

Use the identity given by the third equation of (1.70) and write

εirsεi jk psqjrk = qr (psrs) − rr (psqs) (1.65)

to complete the proof.
A simple extension of the last lemma is that

(p × q) × r = q(p · r) − p(r · q). (1.66)

The proof is left as an exercise.

1.9 Coordinate Transformation of Tensors

Consider coordinate transformations prescribed by (1.28). A tensor A can be written
alternatively as

A = Ai j ei e j = A′
i j e

′
i e

′
j = A′

i jαir erα jses . (1.67)

Since e′
p · A · e′

q = A′
pq, performing this operation on (1.67) gives

A′
pq = e′

p · Ai j ei e j · e′
q = αpiαqj Ai j . (1.68)

Transformation of higher order tensors can be handled in an identical manner.
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1.10 Some Identities with Indices

The following identities involving the Kronecker delta are useful and are easily verified
by direct expansion

δi i = 3,

δi jδi j = 3,

δi jδikδ jk = 3, (1.69)

δi jδ jk = δik,

δi j Aik = Ajk.

Useful identities involving the permutation tensor are

εi jkεkpq = δipδ jq − δiqδ jp,

εpqsεsqr = −2δpr , (1.70)

εi jkεi jk = 6.

1.11 Tensor Product

Let u and v be two vectors; then there is a tensor B = uv defined via its action on an
arbitrary vector a, such that

(uv) · a = (v · a)u. (1.71)

Note that there is the commutative property that follows, viz.,

(αu + βv)w = αuw + βvw,

u(αv + βw) = αuv + βuw.
(1.72)

By the definition of the transpose as given previously, we also have

(uv)T = vu. (1.73)

The identity tensor, I, can be expressed as

I = epep, (1.74)

if e1, e2, e3 are orthonormal. Indeed,

(epep) · a = (a · ep)ep = apep = a = I · a.

LEMMA 1.7: If u and v are arbitrary vectors, then

|uv| = 0, and tr (uv) = u · v. (1.75)

Proof: Replace A in (1.47) with uv, and use {a,b, c} as a basis of E . Then the third
equation from (1.47) becomes

[(uv) · a, (uv) · b, (uv) · c] = I I Iuv[a,b, c],
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where

I I Iuv = |uv|.
But,

(uv) · a = (v · a)u ‖ u,

and similarly

(uv) · b = (v · b)u ‖ u, (uv) · c = (v · c)u ‖ u.

Consequently,

|uv| = 0. (1.76)

Next, we note that the first equation from (1.47), with A = uv, leads to

[(uv) · a,b, c] + [a, (uv) · b, c] + [a,b, (uv) · c] = Iuv[a,b, c], (1.77)

where

Iuv = tr (uv).

But the lhs of the relation (1.77) can be rearranged as

v · a[u,b, c] + v · b[a,u, c] + v · c[a,b,u].

Since {a,b, c} is a basis of E , u can be expressed as

u = αa + βb + γ c, (1.78)

which, when substituted into the above, yields for the various bracketed terms

[αa + βb + γ c,b, c] = α[a,b, c],

[a, αa + βb + γ c, c] = β[a,b, c], (1.79)

[a,b, αa + βb + γ c] = γ [a,b, c].

But, the first of (1.47) gives

(αa · v + βb · v + γ c · v) [a,b, c] = tr (uv)[a, b, c],

so that

tr (uv) = u · v. (1.80)

1.12 Orthonormal Basis

Let us now refer the tensor A to an orthonormal basis, {e1, e2, e3}. The ei are unit vectors
in this context. Let Ai j be the components of A relative to this basis. Then

A · e j = Apj ep and Ai j = ei · A · e j . (1.81)

Now form A = Apqepeq and look at its operation on a vector a = ar er . We have

(Apqepeq) · ar er = Apqar epeq · er = Apr ar ep = ar Apr ep.
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Figure 1.4. Coordinate system (axes) of the principal directions.

But,

A · a = A · ar er = ar A · er = ar Apr ep. (1.82)

Thus, A can be expressed as

A = Apqepeq, with Apq = ep · A · eq. (1.83)

Note if A = uv, then Ai j = uiv j , because A = uiv j ei e j and u = ui ei , v = v j e j .
By using an orthonormal basis {ei }, the invariants of a second-rank tensor A can be

expressed from (1.47) as follows. First, consider

IA = [A · e1, e2, e3] + [e1,A · e2, e3] + [e1, e2,A · e3]

= [Ap1ep, e2, e3] + [e1, Ar2er , e3] + [e1, e2, As3es]. (1.84)

To evaluate the above, use Ap1ep = A11e1 + A21e2 + A31e3 and, for example,

[A11e1 + A21e2 + A31e3, e2, e3] = [A11e1, e2, e3] = A11[e1, e2, e3] = A11.

Likewise,

[e1, Ar2er , e3] = A22, [e1, e2, As3es] = A33.

Thus,

IA = A11 + A22 + A33 = tr A. (1.85)

Similar manipulations yield

I IA = 1
2

(A2
pp − Apq Aqp), (1.86)

I I IA = det A = |A| = εpqr Ap1 Aq2 Ar3. (1.87)

1.13 Eigenvectors and Eigenvalues

Let σ be a symmetric tensor, i.e., σi j = σ j i in any orthonormal basis, {ei }. Examine the
“normal components” of σ, e.g., σnn = n · σ · n = niσi j n j . Look for extremum values for
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σnn wr t the orientation of n. Let θ be the angle between n and e1 (Fig. 1.4). We require
that

∂σnn/∂θ = 0 = ∂ni/∂θ(σi j n j ) + ni∂(σi j n j )/∂θ

= ∂ni/∂θσi j n j + niσi j∂nj/∂θ

= 2∂ni/∂θ(σi j n j ) = 2(∂n/∂θ) · T(n) = 0,

where T(n) = σ · n and T(n)
i = σi j n j . Since ∂n/∂θ is orthogonal to n, we conclude that

T(n) = σ · n must be codirectional with n. Hence, T(n) = σ · n = λ(n)n. This leads to the
homogeneous set of equations

(σi j − λ(n)δi j )nj = 0. (1.88)

In dyadic notation these are

σ · n − λ(n)n = 0 (1.89)

or

A · n = 0, A = σ − λI. (1.90)

Conditions need to be sought whereby (1.89) can have nontrivial solutions.

LEMMA 1.8: Recall (1.5) viz. det A = [A · f,A · g,A · h], where {f, g, h} is an arbitrary
basis of E . If [A · f,A · g,A · h] = 0, then {A · f,A · g,A · h} must be linearly dependent.
That is, [a,b, c] = 0 iff {a,b, c} are linearly dependent.

Proof: If one of {p,q, r} are zero, [p, q, r] = p · (q × r) = 0. Next, if {a,b, c} are linearly
dependent, there exist α, β, γ (not all zero) such that

αa + βb + γ c = 0. (1.91)

But, such triple products are

[αa + βb + γ c,b, c] = 0 = α[a,b, c]. (1.92)

The converse result follows from the fact that a × b = 0 iff a and b are linearly depen-
dent.

Return now to the possible solution of the equation A · n = 0. Suppose |A| = 0, then if
{f, g,h} form a basis of E , they are linearly dependent, i.e.,

α(A · f) + β(A · g) + γ (A · h) = 0,

which leads to

A · (αf + βg + γh) = 0.

Thus,

n = αf + βg + γh. (1.93)

Conversely, if n satisfies A · n = 0, then we can choose two vectors l and m that together
with n form a basis of E . Then

det A = [A · l,A · m,A · n] = 0,
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because A · n = 0.
Thus, if A · n = λ(n)n is to have a solution for n with λ(n), then

det(A − λ(n)I) = 0. (1.94)

Using an arbitrary basis {a,b, c}, we obtain

[A · a − λ(n)a,A · b − λ(n)b,A · c − λ(n)c] = 0, (1.95)

which becomes

λ3 − IAλ
2 + I IAλ− I I IA = 0. (1.96)

Equation (1.96), referred to as a characteristic equation, has three solutions.

1.14 Symmetric Tensors

Symmetric tensors, e.g., S, possess real eigenvalues and corresponding eigenvectors,
{λ1, λ2, λ3} and {p1,p2, p3}, respectively. We may write S in the various forms such as
S = S · I = S · (pr pr ) = S · pr pr = λ(r)pr pr . Thus the spectral representation of S is

S = λ(r)pr pr (sum on r). (1.97)

The invariants of S are

I I IS = λ1λ2λ3,

I IS = λ1λ2 + λ2λ3 + λ1λ3, (1.98)

IS = λ1 + λ2 + λ3.

1.15 Positive Definiteness of a Tensor

If for any arbitrary vector a, a · A · a ≥ 0, the tensor A is said to be positive semidefinite. If
a · A · a > 0, A is said to be positive definite.

Let S be a symmetric, positive semidefinite tensor with the associated eigenvectors and
eigenvalues, pi and λi . Then, as before,

S = λr pr pr (sum on r). (1.99)

Now form the double products indicated above and note that

a · S · a = a · λr pr pr · a = λr (a · pr )2 ≥ 0. (1.100)

Since a is arbitrary, λr ≥ 0 for all r = 1, 2, 3. It follows that

S1/2 = λ1/2
r pr pr . (1.101)

Also,

S−1 = λ−1
r pr pr , (1.102)
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which is readily verified via

S · S−1 = λr pr pr · λ−1
s psps (sum on r,s)

= λrλ
−1
s pr pspr · ps = λrλ

−1
s pr psδrs

= pr pr = I.

LEMMA 1.9: If A is an arbitrary tensor, then AT · A and A · AT are positive semidefinite.

Proof: Clearly,

(AT · A)T = AT · (AT)T = AT · A = symmetric,

(A · AT)T = (AT)T · AT = A · AT = symmetric.

Thus,

a · [(AT · A) · a
] = a · [AT · (A · a)

] = (a · AT) · (A · a)

= (A · a) · (A · a) ≥ 0, (1.103)

and

a · [(A · AT) · a
] = (a · A) · (AT · a) = (a · A) · (a · A) ≥ 0. (1.104)

1.16 Antisymmetric Tensors

If

WT = −W, (1.105)

the tensor W is said to be antisymmetric.
Let a and b be arbitrary vectors, then

b · (W · a) = a · (WT · b) = −a · (W · b). (1.106)

Thus, for example, if a = b,

a · W · a = 0. (1.107)

Furthermore,

Wi j = ei · W · e j =

⎧⎪⎨
⎪⎩

0, if i = j,

Wi j , if i 
= j,

−Wji , if i 
= j.

(1.108)

1.16.1 Eigenvectors of W

Examine

W · p = λp, (1.109)

where p is a unit vector. Form the product

p · W · p = λ = 0. (1.110)

Thus λ = 0 and W · p = 0.
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Let {q, r,p} be a unit orthonormal basis; then

p = q × r, q = r × p,

r = p × q, [p, q, r] = 1.
(1.111)

Recall that if {i, j} is a pair of unit vectors from the set {q, r}, then

Wi j = i · W · j, W = Wi j ij. (1.112)

Thus

W = ω(rq − qr), (1.113)

which is readily verified via

W · p = ω(rq − qr) · p = 0. (1.114)

The scalar ω is then obtained as

ω = r · W · q = −q · W · r. (1.115)

Now set w = ωp, and let a be an arbitrary vector. We have

W · a − w × a = ω(rq − qr) · a − ωp × a. (1.116)

Next, write

a = (a · p)p + (a · q)q + (a · r)r, (1.117)

and form

W · a − w × a

= ω [(rq) · a − (qr) · a − p × (a · p)p − p × (a · q)q − p × (a · r)r]

= ω [(q · a){r − p × q} − (r · a){q + p × r}] .
But the two terms in the {. . .} above are equal to zero, and so

W · a − w × a = 0. (1.118)

So associated with W there is an axial vector w ≡ ωp such that

W · a = w × a, (1.119)

where

W · p = 0. (1.120)

It is readily deduced from the above that

IW = tr W = 0,

I IW = ω2, (1.121)

I I IW = det W = 0.

Also, if u and v are arbitrary vectors, then the tensor L defined as

L ≡ uv − vu (1.122)
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is an antisymmetric tensor and

w = v × u (1.123)

is its axial vector.

1.17 Orthogonal Tensors

An orthogonal tensor Q has the property of preserving scalar products, i.e.,

(Q · a) · (Q · b) = a · b. (1.124)

This property has the following effect

(Q · a) · (Q · b) = (a · QT) · (Q · b) = a · (QT · Q) · b = a · b.

Thus, we deduce that

QT · Q = I, or Q−1 = QT. (1.125)

Note that

QT · (Q − I) = −(Q − I)T. (1.126)

Since QT · Q = I and det QT = det Q, we have

(det Q)2 = 1. (1.127)

Thus, for a proper orthogonal (rotation) tensor,

det Q = 1. (1.128)

The proper orthogonal tensor has one real eigenvalue, which is equal to 1. The correspond-
ing eigenvector, p, is parallel to the axis of rotation associated with Q, i.e.,

Q · p − 1p = 0. (1.129)

Now introduce q and r as before, viz.,

p = q × r, q = r × p, r = p × q. (1.130)

Then,

Q · p = p = QT · p , (because QT = Q−1). (1.131)

In addition, we may deduce

q · (Q · p) = 0 = r · (Q · p) = p · (Q · q) = p · (Q · r) (1.132)

and

p · Q · p = 1. (1.133)

Some other results that may be straightforwardly deduced are

(Q · q) · (Q · r) = q · r,

(Q · q) · (Q · q) = (q · QT) · (Q · q) = q · q = 1, (1.134)

|Q · q| = |Q · r| = 1.
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Figure 1.5. Geometric interpretation of an orthogonal tensor in terms of the
rotation of a material fiber.

Thus, the pairs (q, r) and (Q · q,Q · r) are orthogonal to p. Because of this property, we
then can write

Q · q = αq + βr, Q · r = γq + δr, (1.135)

and

α2 + β2 = 1, γ 2 + δ2 = 1. (1.136)

The determinant of Q is

det(Q) = [Q · p,Q · q,Q · r] = [p, αq + βr, γq + δr]

= αδ − βγ = 1. (1.137)

Note also, since (Q · q) · (Q · r) = 0, that

αγ + βδ = 0. (1.138)

In addition,

α2 + β2 = 1, γ 2 + δ2 = 1,

αδ − βγ = 1, αγ + βδ = 0.
(1.139)

These are satisfied by the following assignments

α = δ = cos θ, β = −γ = sin θ. (1.140)

Therefore,

−q · Q · r = r · Q · q = sin θ,

q · Q · q = r · Q · r = cos θ,
(1.141)

and thus

Q = pp + cos θ(qq + rr) − sin θ(qr − rq). (1.142)

This last result is depicted in Fig. 1.5, which shows the result of operating on a typical
vector, x. As shown, the effect of the tensor operation is to rotate x about the eigenvector
p by the angle θ . That is, the result of operating with Q is to produce a rotated vector,
x′ = Q · x, as shown in the figure.

As expected, orthogonal tensors enter the discussion of material motion prominently
with respect to describing rotations of bodies and material fibers. This will, for example,
appear explicitly in our consideration of the the polar decomposition theorem introduced
in the next section.



P1: FBQ

0521859794c01.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:47

1.18. Polar Decomposition 19

As an example, with respect to the basis e = {e1, e2, e3}, let Q11 = Q22 = cos θ , Q12 =
−Q21 = − sin θ , Q33 = 1, and Qi j = 0 otherwise. Equations (1.129) then become

cos θp1 + sin θp2 = p1,

− sin θp1 + cos θp2 = p2, (1.143)

p3 = p3,

with p = pi ei . The solution to this set is trivially p1 = p2 = 0 and p3 = 1; thus p = e3.
Next choose q = e1 and r = e2 to satisfy the requirement of a right-handed triad basis,

{p,q, r}. Clearly then Qqq = q · Q · q = cos θ = r · Q · r = Qrr , Qrq = r · Q · q = sin θ =
−(q · Q · r) = −Qqr , and hence

Q = pp + cos θ(qq + rr) − sin θ(qr − rq). (1.144)

But x = xses = (x · ξs)ξs , where ξs = {p,q, r} and where x1 = cosα, x2 = sinα and x3 =
0. The relationship x′ = Q · x leads to

x′ = [pp + cos θ(qq + rr) − sin θ(qr − rq)] · (cosαq + sinαr)

= cos(θ + α)q + sin(θ + α)r.

The result is exactly what was expected, namely that the fiber x inclined by θ to the e1 base
vector is now rotated by α so that its total inclination is θ + α.

1.18 Polar Decomposition Theorem

Let A be an arbitrary tensor that possesses an inverse A−1. The following theorem, known
as the polar decomposition theorem, will be useful in the analysis of finite deformations
and the development of constitutive relations.

THEOREM 1.1: An invertible second-order tensor A can be uniquely decomposed as

A = Q · U = V · Q, (1.145)

where Q is an orthogonal tensor and U and V are symmetric, positive definite tensors.

Proof: Recall that the forms AT · A and A · AT are positive semidefinite, symmetric
tensors. If A is invertible, i.e., A−1 exists, then det A 
= 0 and A · n 
= 0 if n 
= 0; also by this
AT · n 
= 0. Recall also, that AT · A and A · AT have unique, positive square roots.

Let U be the square root of AT · A and V be the square root of A · AT . But then U and
V have unique inverses, U−1 and V−1. Consequently, if

A = Q · U, then Q = A · U−1, (1.146)

and if

A = V · R, then R = V−1 · A. (1.147)
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R

T

dX dx

>

V

dx Figure 1.6. Decomposition of motions into a rotation and translation
followed by a deformation.

Now,

QT · Q = (A · U−1)T · (A · U−1)

= (U−1)T · AT · A · U−1

= U−1 · U2 · U−1

= I · I = I.

Similarly, we find that RT · R = I, and thus that Q and R are orthogonal tensors. With
U = (AT · A)1/2 and V = (A · AT)1/2 we have established that

A = Q · U = V · R. (1.148)

The question is now, are Q and R unique? Suppose we proposed another decomposition,
A = Q′ · U′. Then

AT · A = (Q′ · U′)T · (Q′ · U′) = (U′ · Q′T) · (Q′ · U′) = (U′)2.

But (U′)2 = U2 and thus U′ = U. This means that

Q′ = A · U−1 = Q (1.149)

is unique! A similar consideration establishes the uniqueness of R.
Finally, we ask if Q = R? To address this, write

A = Q · U = (R · RT) · (V · R) = R · (RT · V · R)

= R ·
[
(V1/2 · R)T · (V1/2 · R)

]
= R · (RT · V · R)

= Q · U.

Therefore, R = Q and U = RT · V · R.

COROLLARY 1.1: If A is an invertible tensor and A = Q · U = V · Q, then

U has eigenvectors pi and eigenvalues λi ,

V has eigenvectors qi and eigenvalues µi ,

where

λi = µi and qi = Q · pi .

1.19 Polar Decomposition: Physical Approach

It is illustrative to view the motions involved in the polar decomposition discussed above
as a sequential set of motions. This is schematically shown in Fig. 1.6.
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1.19.1 Left and Right Stretch Tensors

In the first motion the element dX → dx̂, such that

dx̂ = R · dX + T, (1.150)

where T is a translation vector and R is an orthogonal tensor representing a rotation. This
gives for a deformation gradient,

F̂ = ∂ x̂/∂X = R. (1.151)

Since there is no deformation in this first step, we have

Ĉ = F̂
T · F̂ = I = RT · R ⇒ R is orthogonal. (1.152)

Next, let dx̂ be deformed into the element dx via a pure deformation,

dx = V · dx̂ = V · (R · dX + T) = (V · R) · dX + V · T,

which yields

F = V · R. (1.153)

This is the left form of the polar decomposition. The tensor V is the left stretch tensor.
Note that

C = FT · F = (V · R)T · V · R = RT · VT · V · R = RT · V2 · R. (1.154)

Alternatively, the total motion may be viewed as occurring first via a pure deformation
given so that

dx̂′ = U · dX, (1.155)

followed by a rotation, R, and a translation, T. Theses motions result in

dx = R · dx̂′ + T = (R · U) · dX + T, (1.156)

and

F = R · U. (1.157)

The tensor U is the right stretch tensor.

1.19.2 Principal Stretches

Write, again,

dx = F · dX, dX = NdS, dx = nds, (1.158)

where all quantities should have obvious meanings. Then the principal stretches can be
expressed as

�(N)n = F · N or λ(n)n = F · N, (1.159)

where �(N) = λ(n) = ds/dS. Since N and n are unit vectors, N is transformed into n via

n = R · N. (1.160)
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This relation implies that

R = nN. (1.161)

Thus, noting that F = R · U = V · R, we have

�(N)R · N = (R · U) · N = F · N

or

R · [U −�(N)I] · N = 0. (1.162)

For arbitrary R this leads to

[U −�(N)I] · N = 0 (1.163)

for the principal stretch ratios, �(N), in the unrotated principal directions, N.
Similarly, we find that

λ(n)n = (V · R) · N = V · n, (1.164)

which yields

[V − λ(n)I] · n = 0 (1.165)

for the principal stretch ratios in the rotated principal directions, n.

1.20 The Cayley–Hamilton Theorem

LEMMA 1.10: Let f (λ) be a real polynomial and A an arbitrary tensor, and let λ be an
eigenvalue of A. Then if f (A) is the tensor obtained from the polynomial function of
A constructed from the appropriate multiples (i.e., dot products) of A, then f (λ) is an
eigenvalue of f (A). Also an eigenvector of f (A) associated with eigenvalue f (λ) is an
eigenvector of A associated with λ.

Proof: The proof is obtained using simple induction. Let p be an eigenvector of A
associated with λ via the equation A · p = λp. Then,

Ar · p = λr p (1.166)

holds for r = 1. Assume that this relation holds for r = n. If we prove that it also holds for
r = n + 1, we would have shown that it holds by induction for all r . Therefore,

An+1 · p = A · (An · p) = A · (λnp) = λn+1p, (1.167)

and thus the relation holds for all r . Further, since f (A) is a linear combination of pow-
ers of A, it follows that f (λ) will be an eigenvalue of f (A) and p will be its associated
eigenvector.

THEOREM 1.2: Let A be an arbitrary tensor and the set of three λ’s be its associated eigen-
values. Then, since the λ’s satisfy (1.96), we have

λ3 − IAλ
2 + I IAλ− I I IA = 0. (1.168)
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Apply Lemma 1.10 to this characteristic polynomial. This leads to the result that the ten-
sor A3 − IAA2 + I IAA − I I IAI = 0 has three eigenvalues each equal to 0. The Cayley–
Hamilton theorem states that for arbitrary A this tensor is 0. This means that the tensor, A,
satisfies its own characteristic equation, i.e., (1.96).

1.21 Additional Lemmas for Tensors

LEMMA 1.11: Consider the quadratic form

λ = A : (xx) = Ai j xi xj . (1.169)

Then

∂λ/∂x = 2 sym (A) · x,

∂2λ/∂x ∂x = 2 sym (A),
(1.170)

or, in component form,

∂λ/∂xi = (Ai j + Aji )xj ,

∂2λ/∂xi∂xj = Ai j + Aji .
(1.171)

Proof: Consider

∂λ/∂xk = Ai j (∂xi/∂xk)xj + Ai j xi (∂xj/∂xk). (1.172)

Since ∂xi/∂xk = δik, the substitution into the above, proves the first assertion. The rest is
proved simply by continuing the argument.

LEMMA 1.12: If r2 = x · x = xi xi and f (r) is an arbitrary function of r , then

∇ f (r) = f ′(r)x/r. (1.173)

Proof: The components of ∇ f (r) are ∂ f/∂xi . Thus,

∂ f
∂xi

= ∂ f
∂r

∂r
∂xi

(1.174)

and since r2 = xj xj and ∂r2/∂xj = 2r∂r/∂xj = 2xj , it follows that ∂r/∂xj = xj/r . Thus,

∂ f (r)
∂xi

= ∂ f
∂r

∂r
∂xi

= ∂ f
∂r

xi

r
. (1.175)

1.22 Identities and Relations Involving ∇ Operator

In this section several useful and illustrative results involving the gradient, and divergence,
operation are given. They are listed as a collection of lemmas as follows.
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LEMMA 1.13: Let r be a position vector and thus r = x1e1 + x2e2 + x3e3. Then

∇ · r = 3,

∇ × r = 0, (1.176)

∇ ·
( r

r3

)
= 0.

Proof: The proof of the first assertion is straightforward, since ∂xi/∂xj = δi j and

∇ · r = ∂xi

∂xi
= 3. (1.177)

The curl of r is taken so that its i th component is εi jk∂xk/∂xj . But ∂xk/∂xj = δkj and this
leads to εi jkδkj = 0, because εi jk = −εikj and δkj = δ jk. This proves the second assertion.

The third equation is expressed as

∇ ·
( r

r3

)
= ∂

∂xi

xi

r3
= 3

1
r3

+ xi
∂r−3

∂xi
. (1.178)

Since r2 = xi xi , we find

r
∂r
∂xi

= xi ,
∂r−3

∂xi
= −3r−4 ∂r

∂xi
= −3r−5xi . (1.179)

Substituting this result in the expression for ∇ · (r/r3) given above proves the lemma.

LEMMA 1.14: Let f (u, v) be a scalar function of u and v, where u = u(x) and v = v(x).
Then the gradient of f may be expressed as

∇ f (x) = ∂ f
∂u

∇u + ∂ f
∂v

∇v. (1.180)

Proof: First write the gradient of f as

∇ f = ∂ f
∂xi

ei . (1.181)

By the chain rule of calculus,

∂ f
∂xi

ei =
(
∂ f
∂u

∂u
∂xi

+ ∂ f
∂v

∂v

∂xi

)
ei . (1.182)

When this expression is expanded, and its terms reassembled, it is found that

∇ f (x) = ∂ f
∂u

∇u + ∂ f
∂v

∇v, (1.183)

as desired.

LEMMA 1.15: Let f (x) be a scalar field and G a vector field. Then

∇ · ( f G) = ∇ f · G + f ∇ · G. (1.184)
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Proof: We again use the chain rule of calculus to write

∇ · ( f G) = ∂( fGi )
∂xi

= ∂ f
∂xi

Gi + f
∂Gi

∂xi

= ∇ f · G + f ∇ · G.
(1.185)

LEMMA 1.16: If u is a vector field then,

∇ · (∇ × u) = 0, (1.186)

or, in other words, the divergence of the curl vanishes.

Proof: When expressed in component form, this is

∂

∂xi
εi jk
∂uk

∂xj
= εi jk

∂2uk

∂xi∂xj
. (1.187)

But this will vanish because the second derivatives of u are symmetric, whereas εi jk is
antisymmetric in i j , so that εi jkuk,i j = 0.

1.23 Suggested Reading

There are a number of excellent texts and reference books concerned with vector and
tensor algebra in physics and applied mathematics. Those that are specifically concerned
with or provide a framework directly relevant to applications to solid mechanics include
Synge and Shild (1949), Ericksen (1960), Brillouin (1964), Wrede (1972), and Boehler
(1987). The reader is also directed to Chadwick (1999) for an excellent summary of such
results as applied to the analysis of deformation and forces. The following is a list of books
recommended for additional reading.

Boehler, J. P. (1987), Application of Tensor Functions in Solid Mechanics, Springer-Verlag,
Wien.

Brillouin, L. (1964), Tensors in Mechanics and Elasticity, Academic Press, New York.
Chadwick, P. (1999), Continuum Mechanics: Concise Theory and Problems, Dover Publi-

cations, Mineola, New York.
Ericksen, J. L. (1960), Tensor Fields. In Hanbuch der Physik (S. Flugge, ed.), Band III/1,

Springer-Verlag, Berlin.
Eringen, A. C. (1971), Tensor Analysis. In Continuum Physics (A. C. Eringen, ed.), Vol. 1,

Academic Press, New York.
Spencer, A. J. M. (1971), Theory of Invariants. In Continuum Physics (A. C. Eringen, ed.),

Vol. 1, Academic Press, New York.
Synge, J. L., and Schild, A. (1949), Tensor Calculus, University Press, Toronto.
Wrede, R. C. (1972), Introduction to Vector and Tensor Analysis, Dover Publications,

New York.
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2 Basic Integral Theorems

2.1 Gauss and Stokes’s Theorems

The divergence theorem of Gauss may be expressed as follows:

THEOREM 2.1: If V is a volume bounded by the closed surface S and A is a vector field that
possesses continuous derivatives (and is singled valued in V), then∫

V
∇ · A dV =

∫
S

A · n dS =
∫

S
A · dS, (2.1)

where n is the outward pointing unit normal vector to S. Note that we may extend this result
to the case where A is a tensor field with the same proviso’s. The basic theorem is proven
below.

Stokes’s theorem takes the following form:

THEOREM 2.2: If S is an open, two-sided surface bounded by a closed, nonintersecting
curve C, and if A again has continuous derivatives, then∮

C
A · dr =

∫
S
(∇ × A) · n dS =

∫
S
(∇ × A) · dS, (2.2)

where C is measured positive if the motion along it is counterclockwise (then S would be on
the left).

A special case of Stokes’s theorem for the plane is

THEOREM 2.3: If S is a closed region of the x − y plane bounded by a closed curve S, and if
M(x, y) and N(x, y) are two continuous functions having continuous derivatives in S, then∮

C
M(x, y) dx + N(x, y) dy =

∫
S

(
∂N
∂x

− ∂M
∂y

)
dS, (2.3)

where C is traversed in the same positive direction.

26
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2.2. Vector and Tensor Fields 27

2.1.1 Applications of Divergence Theorem

A useful application of the divergence theorem involves the computation of the volume
of a solid. Consider the integral ∫

S
r · n dS, (2.4)

where r is the position vector and all other quantities have their obvious meanings as
above. The divergence theorem states that∫

S
r · n dS =

∫
V

∇ · r dV

=
∫

V
∇ · (xi ei ) dV =

∫
V

∂xi

∂xi
dV = 3V.

(2.5)

Next, consider the integral ∫
V

∇ϕ dV, (2.6)

where ϕ is a scalar function of position. To interpret this, define a vector a = ϕb0 where b0

is an arbitrary constant vector. Then,∫
V

∇ · (ϕb0) dV =
∫

S
ϕb0 · n dS

=
∫

V
b0 · ∇ϕ dV

=
∫

S
b0 · (ϕn) dS.

(2.7)

Now take the constant vector, b0, out of the integrals and note that it was indeed arbitrary.
Thus, what is established is ∫

V
∇ϕ dV =

∫
S
ϕn dS. (2.8)

Clearly other useful integral lemmas may be derived by similar manipulations of the
Gauss or Stokes theorems.

2.2 Vector and Tensor Fields: Physical Approach

Consider, as an example, fields that arise from electrostatics and Coulomb’s law. If f is the
force between two charged points at distance r with charges q and q0, its representation is
given as

f = 1
4πε0

qq0

r2
û. (2.9)

The permeability of the vacuum is ε0. As shown in Fig. 2.1, û is the unit vector from charge
q to charge q0 and r is the distance between them.

Now introduce a vector field E(x1, x2, x3) such that

E(x1, x2, x3) = E(r) = 1
4πε0

q
r2

û. (2.10)
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Figure 2.1. Interaction of point charges.

Thus the force exerted on charge q0 from the field of charge q can be expressed as

f = Eq0. (2.11)

Now let there be as many as n charges, each with a net charge qi . The force they exert
on the test charge q0 is given by the linear superposition,

f(r) =
(

n∑
i=1

qi

4πε0|r − ri |2 û

)
q0. (2.12)

Thus, we define the field arising from this distribution of charges as

E(r) =
n∑

i=1

qi

4πε0|r − ri |2 û. (2.13)

Finally, if we define a continuous charge density by the limit ρ = lim�v→0
�q
�v

, the total
charge in volume V is

Q =
∫

V
ρ(x1, x2, x3) dV. (2.14)

The total field arising from this continuous distribution of charge is, therefore,

E(r) = 1
4πε0

∫
V

ρ(x1, x2, x3)û
|r − r′|2 dV. (2.15)

Such is an example of a simple vector field.

2.3 Surface Integrals: Gauss Law

We will be interested in integrals evaluated over a surface of the general form, such as
arises in the Gauss law ∫

S
E(x) · n dS = q/ε , (2.16)

where n is the outward pointing unit normal vector to the surface S. The normal to the
surface can be defined as

n = u × v, (2.17)

where u and v are locally unit vectors, tangent to the surface element as sketched in Fig. 2.2.
If u and v are not unit vectors, then

n = u × v
|u × v| . (2.18)
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3 Figure 2.2. Defining the local normal to a surface.

Let the surface be given by

g(x1, x2, x3) = 0 ⇒ x3 = f (x1, x2). (2.19)

Imagine following the curve over an arc C, along x1. The corresponding displacement
undergone would be

u = u1e1 + (∂ f/∂x1)u1e3. (2.20)

Similarly, on an arc C′, along x2, we obtain

v = v2e2 + (∂ f/∂x2)v2e3. (2.21)

Thus,

N = u × v = (−∂ f/∂x1e1 − ∂ f/∂x2e2 + e3)u1v2,

n = u × v
|u × v| = −∂ f/∂x1e1 − ∂ f/∂x2e2 + e3

[1 + (∂ f/∂x1)2 + (∂ f/∂x2)2]1/2
.

(2.22)

2.4 Evaluating Surface Integrals

Examine the integral ∫
S

G(x1, x2, x3) dS, (2.23)

where G may be either a scalar or tensor field. Such integrals may be considered as the limit
of a summation over an infinite number of infinitesimal surface elements (Fig. 2.3), i.e.,∫

S
G(x1, x2, x3) dS = lim

N→∞
�Si →0

N∑
i=1

G(xi
1, xi

2, xi
3)�Si . (2.24)

ni
iS∆

S

x

x

x

2

3

1

S

R

i

i

∆

∆

Figure 2.3. Limiting approach to evaluating surface integrals.
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We want to relate these surface elements to the projections they make on the x1 − x2

coordinate plane. Note that if �Ri is the projection of �Si , then

�Si = �Ri/(n · e3). (2.25)

Thus, ∫
S

G(x1, x2, x3) dS = lim
N→∞
�Ri →0

N∑
i=1

G(xi
1, xi

2, xi
3)�Ri/(n · e3), (2.26)

which in the limit becomes ∫ ∫
R

G(x1, x2, x3)
n · e3

dx1 dx2. (2.27)

Since on S, x3 = f (x1, x2), and recalling the result from (2.22) for n, (2.26) becomes∫
S

G(x1, x2, x3) dS =
∫ ∫

R
G(x1, x2, f )

[
1 + (∂ f/∂x1)2 + (∂ f/∂x2)2]1/2

dx1 dx2. (2.28)

If, instead, we had used projections on the x1 − x3 plane, we would have∫
S

G(x1, x2, x3) dS =
∫ ∫

R
G[x1, g(x1, x2), x3]

[
1 + (∂g/∂x1)2 + (∂g/∂x2)2]1/2

dx1 dx3,

(2.29)

where

x2 = g(x1, x3). (2.30)

Alternatively, on the x2 − x3 plane,∫
S

G(x1, x2, x3) dS =
∫ ∫

R
G[h(x2, x3), x2, x3]

[
1 + (∂h/∂x2)2 + (∂h/∂x3)2]1/2

dx2 dx3,

(2.31)

where

x = h(x2, x3). (2.32)

We are, however, even more interested in integrals of the form,∫
S

F · n dS, (2.33)

such as appears in (2.16). Replace G with F · n in (2.28) to obtain∫
S

F · n dS =
∫ ∫

R
F · n

[
1 + (∂ f/∂x1)2 + (∂ f/∂x2)2]1/2

dx1 dx2. (2.34)

The substitution of (2.22) into the above gives∫
S

F · n dS =
∫ ∫

R

{−F1(∂ f/∂x1) − F2(∂ f/∂x2) + F3[x1, x2, f (x1, x2)]
}

dx1 dx2,

or ∫
S

F · n dS =
∫ ∫

R

{−F1[x1, x2, f (x1, x2)](∂ f/∂x1) − F2[x1, x2, f (x1, x2)](∂ f/∂x2)

+F3[x1, x2, f (x1, x2)]
}

dx1 dx2,
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n
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θ

Figure 2.4. Flux of fluid through a cylinder.

where

F = F1e1 + F2e2 + F3e3. (2.35)

2.4.1 Application of the Concept of Flux

The flux of the vector field F through the surface S is defined by∫
S

F · n dS , (2.36)

where n is a unit outward normal to S. For example, consider the flow of fluid through
a cylinder, during a time increment �t, as depicted in Fig. 2.4. With υ as the velocity,
the distance travelled in time �t is υ�t, where υ is the magnitude of υ. The volume of
fluid flowing through the surface inclined as shown is equal to υ�t cos θ . The mass of fluid
flowing through the inclined surface is, with ρ as the mass density, ρυ�t cos θ = ρ�tυ · n,
and thus the rate of mass flow through the inclined surface is ρυ · n�S. As shown in the
sketch, �S is the area of the inclined surface element. Thus, if we define

F ≡ ρυ(x1, x2, x3), (2.37)

we find that

Rate of mass flow through S =
∫

S
F · n dS. (2.38)

2.5 The Divergence

Recall the Gauss law ∫
S

E(x) · n dS = q/ε0. (2.39)

Let q = ρ̄�V�V, where ρ̄�V is the average charge density in �V. Then,∫
S

E(x) · n dS = ρ̄�V�V/ε0,

1
�V

∫
S

E(x) · n dS = ρ̄�V/ε0.

(2.40)

Taking an appropriate limit, there follows

lim
�V→0

1
�V

∫
S

E(x) · n dS = ρ(x1, x2, x3)/ε0. (2.41)



P1: FBQ

0521859794c02.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:32

32 2. Basic Integral Theorems

Figure 2.5. A cuboid with edges aligned with the coordinate axes.

Now, define the divergence of F to be

div F ≡ lim
�V→0

1
�V

∫
S

F · n dS. (2.42)

The Gauss law then becomes

div F = ρ/ε0. (2.43)

We next calculate div F over a cuboid whose volume shrinks to zero (Fig. 2.5). Calculate
first ∫

S±
1

F · n dS, (2.44)

on S+
1 , where F · n = F · e1 = F1(x1, x2, x3). Take the centroid of the cuboid at (x1, x2, x3).

On S+
1 we have

F · n = F1 ≈ F1(x1, x2, x3) + (∂F1/∂x1)dx1/2, (2.45)

while on S−
1 ,

F · n = −F1 ≈ −F1(x1, x2, x3) + (∂F1/∂x1)dx1/2. (2.46)

Thus, we obtain∫
S+

1

+
∫

S−
1

= [∂F1(x1, x2, x3)/∂x1] dx1 dx2 dx3 = [∂F1(x1, x2, x3)/∂x1]dx1�S±
1 ,

where �S±
1 = dx2 dx3. This also shows that

lim
�V→0

1
�V

∫
S±

1

F · n dS = ∂F1/∂x1. (2.47)

By the same sort of argument we have

lim
�V→0

1
�V

∫
S±

2

F · n dS = ∂F2/∂x2, (2.48)

and

lim
�V→0

1
�V

∫
S±

3

F · n dS = ∂F3/∂x3. (2.49)
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Figure 2.6. Limiting approach to evaluating surface integrals.

Consequently,

div (F) = ∂F1/∂x1 + ∂F2/∂x2 + ∂F3/∂x3. (2.50)

Letting

∇ ≡ ∂/∂x1e1 + ∂/∂x2e2 + ∂/∂x3e3, (2.51)

we can write

∇ · F = (∂/∂x1e1 + ∂/∂x2e2 + ∂/∂x3e3) · (F1e1 + F2e2 + F3e3)

= ∂F1/∂x1 + ∂F2/∂x2 + ∂F3/∂x3. (2.52)

This yields another expression of the Gauss law, namely

∇ · E = ρ/ε0. (2.53)

2.6 Divergence Theorem: Relation of Surface to Volume Integrals

Assume that ∫
S

F · n dS =
N∑

i=1

∫
Si

F · n dS, (2.54)

as sketched in Fig. 2.6. The two subsurface integrals over S1 and S2 include the integrals
over the subsurface facet common to both small subelements. The value of F is the same
at each point on this common facet (if F is continuous). But the outward pointing normals
n on such a common facet are such that at each point, n1 = −n2. Thus, the integrals over
the facet cancel. With this in mind, rewrite (2.54) as∫

S
F · n dS =

N∑
i=1

(
1
�Vi

∫
Si

F · n dS
)
�Vi . (2.55)

Taking the limit as N → ∞, or as �Vi → 0, we have∫
S

F · n dS = lim
N→∞
�Vi →0

N∑
i=1

(
1
�Vi

∫
Si

F · n dS
)
�Vi . (2.56)
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But the term within (. . .) in (2.56) is in fact ∇ · F and thus∫
S

F · n dS =
∫

V
∇ · F dV. (2.57)

This is the Gauss divergence theorem.
To illustrate its application, consider the rate of flow of mass through a surface S, i.e.,

flow rate =
∫

S
ρυ · n dS. (2.58)

Let the surface S be closed. Then we can write

amount of mass in V =
∫

V
ρ dV, (2.59)

and

change of mass within V
unit time

=
∫

V
∂ρ/∂t dV. (2.60)

The conservation of mass requires that∫
V
∂ρ/∂t dV = −

∫
S
ρυ · n dS. (2.61)

Applying the divergence theorem to the second integral in (2.61), we obtain∫
S
(ρυ) · n dS =

∫
V

∇ · (ρυ) dV. (2.62)

Consequently, ∫
V
∂ρ/∂t dV = −

∫
V

∇ · (ρυ) dV. (2.63)

Since this is true for all V, we conclude that

∂ρ/∂t = −∇ · (ρυ), (2.64)

which is known as a continuity equation.

2.7 More on Divergence Theorem

Another form of the divergence theorem of interest for later application can be stated as
follows.

LEMMA 2.1: If S is the surface bounding the volume V, and n is its unit outward pointing
normal, and u(x) and T(x) are arbitrary vector and tensor fields in V, then∫

S
u
(
TT · n

)
dS =

∫
V

[u∇ · T + (∇u) · T ] dV. (2.65)

Some special cases immediately follow. For example, if u is a fixed vector, then

u
∫

S
TT · n dS = u

∫
V

∇ · T dV. (2.66)



P1: FBQ

0521859794c02.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:32

2.8. Suggested Reading 35

Because u is arbitrary, (2.66) implies that∫
S

TT · n dS =
∫

V
∇ · T dV. (2.67)

Suppose further that T = I. Then (2.66) becomes∫
S

un dS =
∫

V
∇u dV. (2.68)

By taking the trace of both sides of (2.68), we obtain∫
S

u · n dS =
∫

V
∇ · u dV. (2.69)

It should be noted that (2.65) can, in fact, be derived from (2.69) by setting u to be
(u · a)(T · b), where a and b are arbitrary vectors.

2.8 Suggested Reading

Malvern, L. E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice
Hall, Englewood Cliffs, New Jersey.

Marsden, J. E., and Tromba, A. J. (2003), Vector Calculus, 5th ed., W. H. Freeman and
Company, New York.

Truesdell, C., and Toupin, R. (1960), The Classical Field Theories. In Handbuch der Physik
(S. Flügge, ed.), Band III/l, Springer-Verlag, Berlin.

Wrede, R. C. (1972), Introduction to Vector and Tensor Analysis, Dover, New York.
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3 Fourier Series and Fourier Integrals

3.1 Fourier Series

Let f (x) be a continuous, integrable function defined on the interval [−c, c]. Consider the
Fourier series of f (x), viz.,

f (x) = (a0/2) +
∞∑

k=1

[ak cos(kπx/c) + bk sin(kπx/c)]. (3.1)

The coefficients, ak and bk, indexed by the integers k, can be identified as follows. Mul-
tiply each side of (3.1) by cos(nπx/c), n being an integer, and integrate over [−c, c] to
obtain ∫ c

−c
f (x) cos(nπx/c) dx =

∫ c

−c
(a0/2) cos(nπx/c) dx

+
∫ c

−c

∞∑
k=1

[ak cos(kπx/c) cos(nπx/c)

+ bk sin(kπx/c) cos(nπx/c)] dx.

To proceed, we note that∫ c

−c
cos(kπx/c) cos(nπx/c) dx = c/π

∫ π

−π
cos(kλ) cos(nλ) dλ, (3.2)

where

λ = πx/c, dλ = (π/c) dx. (3.3)

Thus,

∫ π

−π
cos(kλ) cos(nλ) dλ =

⎧⎪⎪⎨
⎪⎪⎩

0, k 
= n ,

π, k = n ,

2π, k = n = 0 ,

(3.4)

and ∫ π

−π
sin(kλ) cos(nλ) dλ = 0. (3.5)

36
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Similarly, ∫ π

−π
sin(kλ) sin(nλ) dλ =

{
0, k 
= n ,

π, k = n ,
(3.6)

as long as k 
= 0 and n 
= 0. Consequently,

∫ c

−c
cos(kπx/c) cos(nπx/c) dx =

⎧⎪⎪⎨
⎪⎪⎩

0, k 
= n ,

c, k = n ,

2c, k = n = 0 ,

(3.7)

and ∫ c

−c
cos(kπx/c) sin(nπx/c) dx = 0. (3.8)

Therefore, we obtain

an = 1
c

∫ c

−c
f (x) cos(nπx/c) dx. n = 0, 1, 2, . . . . (3.9)

Likewise, if (3.1) were multiplied by sin(nπx/c) and integrated over the interval [−c, c],
it would be found that

bn = 1
c

∫ c

−c
f (x) sin(nπx/c) dx, n = 1, 2, . . . . (3.10)

It is noted in passing that if f (x) were an odd function of x, such that f (−x) = − f (x),
then an = 0 for all n. Likewise if f (−x) = f (x), that is if f (x) were an even function of x,
then bn = 0.

3.2 Double Fourier Series

Let R be a rectangle defined by the region −a ≤ α ≤ a, −b ≤ β ≤ b, and let ϕn(α, β) be
a set of continuous functions, none of which vanishes identically in R. Such a set is said to
be orthogonal if ∫∫

R
ϕn(α, β)ϕm(α, β) dα dβ = 0, if n 
= m. (3.11)

The number

‖ϕn‖ =
[∫∫

R
ϕ2

n(α, β) dα dβ
]1/2

(3.12)

is called the norm of ϕn. The set is said to be normalized if ‖ϕn‖ = 1, for n = 0, 1, 2, . . . . It
is equivalent for normalization that∫∫

R
ϕ2

n(α, β)dα dβ = 1, for n = 0, 1, 2, . . . . (3.13)

Of course, it is always possible to define constants, say µn, such that

µn = 1
‖ϕn‖ , (3.14)

which can be used to normalize the members of the set ϕn.
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As was done for a function of a single variable, it is possible to expand a function of two
variables in terms of these orthogonal functions as

f (α, β) = c0ϕ0(α, β) + c1ϕ1(α, β) + . . .+ cnϕn(α, β) + . . . . (3.15)

The coefficients are obtained by using the orthogonality property. This gives

cn =
∫∫

R f (α, β)ϕn(α, β) dα dβ∫∫
R ϕ

2(α, β) dα dβ
. (3.16)

If it is assumed that the equality holds in (3.15), the series will converge uniformly.

3.2.1 Double Trigonometric Series

Consider the orthogonal set consisting of the functions

1, cos(mx), sin(mx), cos(ny), sin(ny) ,

cos(mx) cos(ny), sin(mx) cos(ny) ,

cos(mx) sin(ny), sin(mx) sin(ny), . . . , (n,m = 1, 2, 3, . . .) .

(3.17)

These are clearly orthogonal on the square defined by −π ≤ x ≤ π and −π ≤ y ≤ π . For
reference we note that the norms are

‖1‖ = 2π, ‖ cos(mx)‖ = ‖ sin(mx)‖ =
√

2π ,

‖ cos(mx) cos(ny)‖ = ‖ sin(mx) sin(ny)‖ = ‖ cos(mx) sin(ny)‖ = π.
(3.18)

The above leads to the following system

amn = 1
π2

∫∫
R

f (x, y) cos(mx) cos(ny) dx dy,

bmn = 1
π2

∫∫
R

f (x, y) sin(mx) cos(ny) dx dy,

cmn = 1
π2

∫∫
R

f (x, y) cos(mx) sin(ny) dx dy,

dmn = 1
π2

∫∫
R

f (x, y) sin(mx) sin(ny) dx dy,

(3.19)

for m,n = 1, 2, . . . . For the cases where either m = 0 or n = 0, we have

Am0 =
∫∫

R f (x, y) cos(mx) dx dy

‖ cos(mx)‖2

= 1
2π2

∫∫
R

f (x, y) cos(mx) dx dy, (m = 1, 2, . . .), (3.20)
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A0n =
∫∫

R f (x, y) cos(ny) dx dy

‖ cos(ny)‖2

= 1
2π2

∫∫
R

f (x, y) cos(ny) dx dy, (n = 1, 2, . . .), (3.21)

Bm0 =
∫∫

R f (x, y) sin(mx) dx dy

‖ sin(mx)‖2

= 1
2π2

∫∫
R

f (x, y) sin(mx) dx dy, (m = 1, 2, . . .), (3.22)

B0n =
∫∫

R f (x, y) sin(ny) dx dy

‖ sin(ny)‖2

= 1
2π2

∫∫
R

f (x, y) sin(ny) dx dy, (n = 1, 2, . . .). (3.23)

Note that for symmetry of expression we may define Am0 = 1
2 am0, with similar definitions

for the other Aand B terms. Finally note that

A00 =
∫∫

R f (x, y) dx dy

‖1‖ = 1
4π2

∫∫
R

f (x, y) dx dy, (3.24)

whereby we may define A00 = 1
4 a00.

When this is assembled, the series expansion may be written as

f (x, y) =
∞∑

m,n=0

λmn[amn cos(mx) cos(ny) + bmn sin(mx) cos(ny)

+cmn cos(mx) sin(ny) + dmn sin(mx) sin(ny)],

(3.25)

with

λmn = 1
4
, for m = n = 0,

λmn = 1
2
, for m> 0, n = 0 or m = 0, n > 0, (3.26)

λmn = 1 , for m,n > 0.

The rectangular domain of interest is easily transformed into the area defined by −a ≤
α ≤ a and −b ≤ β ≤ b by the change in variables, x = πα/a, y = πβ/b.

3.3 Integral Transforms

Let f (x) be a function that has a convergent integral over the domain [0,∞]. Also let
K(αx) define a function of (α, x). Then, if the integral

I f (α) =
∫ ∞

0
f (x)K(αx) dx (3.27)
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is convergent, then I f (α) is the integral transform of f (x) by the kernel K(αx). If for each
I f (α), (3.27) is satisfied by only one f (x), then (3.27) has an inverse

f (x) =
∫ ∞

0
I f (α)H(αx) dα. (3.28)

If H(αx) = K(αx), then K(αx) is a Fourier kernel.
A Mellin transform of K(x) is defined as

K(s) =
∫ ∞

0
K(x)xs−1 dx. (3.29)

LEMMA 3.1: If K(αx) is a Fourier kernel then K(s)K(1 − s) = 1.

Proof: By definition,

K(s) =
∫ ∞

0
K(x)xs−1 dx, (3.30)

and thus, by implication,∫ ∞

0
αs−1 I f (α) dα =

∫ ∞

0
αs−1

∫ ∞

0
f (x)K(αx) dx dα

=
∫ ∞

0
f (x) dx

∫ ∞

0
αs−1 K(αx) dα.

(3.31)

Now let η ≡ αx, and write∫ ∞

0
K(αx)αs−1 dα = x−s

∫ ∞

0
K(η)ηs−1 dη = x−s K(s). (3.32)

Then, ∫ ∞

0
αs−1 I f (α) dα = I(s) =

∫ ∞

0
x−s f (x) dx K(s)

= K(s)F(1 − s).

(3.33)

Furthermore, if

f (x) =
∫ ∞

0
I f (α)K(αx) dα, (3.34)

we have ∫ ∞

0
f (x)xs−1 dx =

∫ ∞

0
xs−1

∫ ∞

0
I f (α)K(αx) dα dx

=
∫ ∞

0
I f (α) dα

∫ ∞

0
xs−1 K(αx) dx.

(3.35)

Thus, when compared with (3.33),

F(s) =
∫ ∞

0
I f (α)α−s dα

∫ ∞

0
ηs−1 K(η) dη = I(1 − s)K(s), (3.36)

which shows that

F(1 − s) = I(s)K(1 − s), (3.37)
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and, therefore,

K(s)K(1 − s) = 1, (3.38)

as desired.
For example, if

K(αx) =
√

2/π cos(αx), (3.39)

the Fourier cosine transform of a function f (x) is

Fc(α) =
√

2/π
∫ ∞

0
f (x) cos(αx) dx, (3.40)

with its inverse

f (x) =
√

2/π
∫ ∞

0
Fc(α) cos(αx) dα. (3.41)

As another example, let K(αx) be defined as

K(αx) =
√

2/π sin(αx). (3.42)

The corresponding set of transform and inverse is

Fs(α) =
√

2/π
∫ ∞

0
f (x) sin(αx) dx, (3.43)

and

f (x) =
√

2/π
∫ ∞

0
Fs(α) sin(αx) dα. (3.44)

By the lemma proved above, if

I f (α) =
∫ ∞

0
f (x)K(αx) dx, (3.45)

then

f (x) =
∫ ∞

0
I f (α)H(αx) dα, (3.46)

and

K(s)H(1 − s) = 1, (3.47)

where K(s) and H(s) are the Mellin transforms of K(x) and H(x), respectively.
In short, what is desired is to show that if f (x) is defined on [0,∞], then it is possible

that

f (x) = 2
π

∫ ∞

0
dα

∫ ∞

0
f (η) cos(αη) cos(αx) dη, (3.48)

or, more generally,

f (x) = 1
π

∫ ∞

−∞
dα

∫ ∞

−∞
f (η) cos(αη) cos(αx) dη. (3.49)

Before exploring this, it is necessary to establish some integrability properties of f (x). This
is done next.
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f(x)

a

a

a

a a a b

0

1 2 ..... p

p+1

x

Figure 3.1. Function with finite number of extrema and
discontinuities.

3.4 Dirichlet’s Conditions

We say that the function f (x) satisfies Dirichlet’s conditions if

(1) f (x) has only a finite number of extrema in an interval [a,b], and
(2) f (x) has only a finite number of discontinuities in the interval [a,b] and no infinite

discontinuities.

Let a0 = a, ap+1 = b and ai , i = 1, 2, . . . , p be the points where f (x) has either an extrema
or a discontinuity, as depicted in Fig. 3.1. The satisfaction of Dirichelet’s conditions leads
to the following lemmas.

LEMMA 3.2: If f (x) satisfies Dirichlet’s conditions in the interval [a,b], then

lim
ω→∞

∫ b

a
f (x) sin(ωx) dx = 0,

lim
ω→∞

∫ b

a
f (x) cos(ωx) dx = 0.

(3.50)

Proof: From the definition of the ai above we may rewrite the first of the integrals as

∫ b

a
f (x) sin(ωx) dx =

p∑
k=0

∫ ak+1

ak

f (x) sin(ωx) dx. (3.51)

In each subinterval f (x) is monotone, either increasing or decreasing, and by the second
mean value theorem of calculus we have∫ ak+1

ak

f (x) sin(ωx) dx = f (ak + 0)
∫ ζ

ak

sin(ωx) dx

+ f (ak+1 − 0)
∫ ak+1

ζ

sin(ωx) dx,

(3.52)

where ζ is a point in the subinterval [ak, ak+1]. When the integrations are performed, there
results ∫ ak+1

ak

f (x) sin(ωx) dx = f (ak + 0)
cos(ωak) − cos(ωζ )

ω

+ f (ak+1 − 0)
cos(ωζ ) − cos(ωak+1)

ω
.

(3.53)
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f(x)

f(x+0)

f(x-0)

x

Figure 3.2. Values of a discontinuous function.

Thus,

lim
ω→∞

∫ b

a
f (x) sin(ωx) dx = 0. (3.54)

Since p is finite, we obtain

lim
ω→∞

∫ b

a
f (x) sin(ωx) dx =

p∑
k=0

lim
ω→∞

∫ ak+1

ak

f (x) sin(ωx) dx = 0, (3.55)

as proposed above. The proposal in the second of (3.50) is proved by a similar procedure.
The same considerations lead to the following additional results that are proved in

standard textbooks on integral transforms.

LEMMA 3.3: If f (x) satisfies the Dirichlet conditions on the interval [a,b], then

lim
ω→∞

∫ b

a
f (x)

sin(ωx)
x

dx =
{

0, if a > 0,
1
2π f (0+), if a = 0.

(3.56)

More generally,

LEMMA 3.4: If f (x) satisfies Dirichlet’s conditions on the interval [a,b], then

lim
ω→∞

2
π

∫ b

a
f (x + u)

sin(ωu)
x

du =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (x + 0) + f (x − 0), if a < 0 < b,

f (x + 0), if a = 0 < b,

f (x − 0), if a < 0 = b,

0, if 0 < a < b or a < b < 0.

Proof: The proof of this lemma requires the following identity, which is demonstrated
first, viz.,

lim
n → ∞

1
π

∫ π

−π
f (x + u)

sin(n + 1/2)u
2 sin(u/2)

du = f (x + 0) + f (x − 0)
2

. (3.57)

It is, for this purpose, sufficient to show that (Fig. 3.2)

lim
n → ∞

1
π

∫ π

0
f (x + u)

sin(n + 1/2)u
2 sin(u/2)

du = f (x + 0)
2

, (3.58)

lim
n → ∞

1
π

∫ 0

−π
f (x + u)

sin(n + 1/2)u
2 sin(u/2)

du = f (x − 0)
2

. (3.59)
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Focus on the demonstration of the first of these, as the proof of the second follows similar
lines. It is readily shown that

1
2

f (x + 0) = 1
π

∫ π

0
f (x + 0)

sin(n + 1/2)u
2 sin(u/2)

du, (3.60)

which leads to the strategy of proving that

lim
n → ∞

1
π

∫ π

0
[ f (x + u) − f (x + 0)]

sin(n + 1/2)u
2 sin(u/2)

du = 0. (3.61)

Consider the function of u defined by

ϕ(u) = f (x + u) − f (x + 0)
2 sin(u/2)

= f (x + u) − f (x + 0)
u

u
2 sin(u/2)

. (3.62)

Since this function has a derivative at x + 0, the ratio f (x + u) − f (x + 0)/u exists as
u → 0. This means that this same ratio is absolutely integrable on the interval 0 ≤ x ≤ π .
But the function u/2 sin(u/2) is bounded, and so the function defined as ϕ(u) is integrable
on 0 ≤ x ≤ π . We furthermore have that∫ π

0
[ f (x + u) − f (x + 0)]

sin(n + 1/2)u
2 sin(u/2)

du =
∫ π

0
ϕ(u) sin(n + 1/2)u du. (3.63)

To continue with the proof, note that for any ε > 0, the inequality

1
π

∫ δ

−δ
| f (x + u)| du <

1
2
ε (3.64)

holds for sufficiently small δ. The function (1/u) f (x + u) is absolutely integrable over
−∞ < u ≤ −δ and δ ≤ u <∞. Therefore, by the previous lemma we have

lim
�→ ∞

1
π

∫ ∞

δ

f (x + u)
sin(�u)

u
du = lim

�→ ∞
1
π

∫ −δ

−∞
f (x + u)

sin(�u)
u

du = 0.

Next consider the equality

lim
m → ∞

1
π

∫ π

−π
f (x + u)

sin(mu)
2 sin(u/2)

du = f (x + 0) + f (x − 0)
2

, (3.65)

which has already been demonstrated, and where m = n + 1/2 for integer n. This can be
rewritten as

lim
m → ∞

1
π

∫ δ

−δ
f (x + u)

sin(mu)
2 sin(u/2)

du = f (x + 0) + f (x − 0)
2

, (3.66)

because the integrals on the intervals −π ≤ u ≤ −δ and δ ≤ u ≤ π vanish as m → ∞.
Note that the integral on the lhs of (3.66) differs from

1
π

∫ δ

−δ
f (x + u)

sin(mu)
u

du (3.67)

by the quantity

1
π

∫ δ

−δ
f (x + u)

[
1

2 sin(u/2)
− 1

u

]
sin(mu) du, (3.68)
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where the function in [...] is continuous and where it is seen to be zero at u = 0 (by
appropriate limits). But the integral in (3.68) vanishes in the limit as m → ∞, and (3.66)
can be replaced by

lim
m → ∞

1
π

∫ δ

−δ
f (x + u)

sin(mu)
u

du = f (x + 0) + f (x − 0)
2

. (3.69)

Now, let m ≤ � < m + 1, so that � = m + ξ , where 0 ≤ ξ < 1. The mean value theorem
of calculus gives

sin(�u) − sin(mu)
u

= (�− m) cos(hu), (3.70)

where m ≤ h ≤ �. Therefore, for any �,

1
π

∣∣∣ ∫ δ

−δ
f (x + u)

sin(�u)
u

du −
∫ δ

−δ
f (x + u)

sin(mu)
u

du
∣∣∣

= 1
π

∣∣∣ ∫ δ

−δ
f (x + u)ξ cos(hu) du

∣∣∣
≤ 1
π

∫ δ

−δ
| f (x + u)| du <

ε

2
.

(3.71)

For large � and m, we have

∣∣∣ f (x + 0) + f (x − 0)
2

− 1
π

∫ δ

−δ
f (x + u)

sin(mu)
u

du
∣∣∣ < ε

2
. (3.72)

Thus, combining the last two inequalities, we find that

∣∣∣ f (x + 0) + f (x − 0)
2

− 1
π

∫ δ

−δ
f (x + u)

sin(�u)
u

du
∣∣∣ < ε

2
, (3.73)

for all sufficiently large �. Finally, by (3.4),

∣∣∣ f (x + 0) + f (x − 0)
2

− 1
π

∫ ∞

−∞
f (x + u)

sin(�u)
u

du
∣∣∣ < ε

2
, (3.74)

for sufficiently large �. This proves the lemma in question.

LEMMA 3.5: If f (x) satisfies the Dirichlet conditions on the interval [a,b], then

1
2

[ f (x + 0) + f (x − 0)] = 1
π

∫ ∞

0
dα

∫ ∞

−∞
f (η) cos[α(η − x)] dη, (3.75)

and, if f (x) is continuous,

f (x) = 1
π

∫ ∞

0
dα

∫ ∞

−∞
f (η) cos[α(η − x)] dη. (3.76)

This last lemma will be used below to demonstrate an integral inversion theorem.
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Proof: We again suppose that f (x) is absolutely integrable on the entire x axis. Then,
by the definition of an improper integral, we have

1
π

∫ ∞

0
dλ

∫ ∞

−∞
f (u)cosλ(u − x) du = lim

�→ ∞
1
π

∫ �

0
dλ

∫ ∞

−∞
f (u) cos λ(u − x) du. (3.77)

The integral

∫ ∞

−∞
f (u) cos λ(u − x) du (3.78)

is convergent for −∞ ≤ λ ≤ ∞, because

| f (u) cos λ(u − x)| ≤ | f (u)|, (3.79)

and f (u) is, as already stipulated, absolutely integrable on the entire axis. It follows from
the previous lemmas that

∫ �

0

∫ ∞

−∞
f (u) cos λ(u − x) du =

∫ ∞

−∞
du

∫ �

0
f (u) cos λ(u − x) dλ

=
∫ ∞

−∞
f (u)

sin �(u − x)
u − x

du =
∫ ∞

−∞
f (x + u)

sin(�u)
u

du,

(3.80)

where an obvious substitution of variables has been made. But, from (3.77) we have

1
π

∫ ∞

0
dλ

∫ ∞

−∞
f (u) cos λ(u − x) du = lim

�→ ∞
1
π

∫ ∞

−∞
f (x + u)

sin(�u)
u

du. (3.81)

If the function f (x) has left-hand and right-hand derivatives at the point x, then the limit
on the rhs exists and is equal to 1

2 [ f (x + 0) + f (x − 0)]. Thus, the integral on the lhs exists
and is

1
π

∫ ∞

0
dλ

∫ ∞

−∞
f (u) cos λ(u − x) du = 1

2
[ f (x + 0) + f (x − 0)], (3.82)

which proves the lemma.

3.5 Integral Theorems

Let f (x) have a convergent integral over the interval [0,∞] and satisfy the Dirichlet
conditions described above. As f (x) is defined for x ≥ 0, define f (x) in the interval [−∞, 0]
as f (−x) = f (x), i.e., make f (x) an even function. Then we may construct the integral

1
π

∫ ∞

0
dα

∫ ∞

−∞
f (η) cos[α(η − x)] dη = 1

π

∫ ∞

0
dα

∫ ∞

0
f (η) cos[α(η − x)] dη

+ 1
π

∫ ∞

0
dα

∫ 0

−∞
f (η) cos[α(η − x)] dη.

(3.83)
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But, ∫ 0

−∞
f (η) cos[α(η − x)] dη =

∫ ∞

0
f (−η) cos[α(−η − x)] dη

=
∫ ∞

0
f (η) cos[α(η + x)] dη.

(3.84)

Consequently,

1
π

∫ ∞

0
dα

∫ ∞

−∞
f (η) cos[α(η − x)] dη

= 1
π

∫ ∞

0
dα

∫ ∞

0
f (η)

{
cos[α(η − x)] + cos[α(η + x)]

}
dη

= 2
π

∫ ∞

0
cos(αx) dα

∫ ∞

0
f (η) cos(αη) dη.

Therefore, with appeal to (3.76), if

Fc(α) =
√

2/π
∫ ∞

0
f (η) cos(αη) dη, (3.85)

then

f (x) =
√

2/π
∫ ∞

0
Fc(α) cos(αx) dα. (3.86)

On the other hand, if f (x) is defined in the interval [−∞, 0] as f (−x) = − f (x), then

Fs(α) =
√

2/π
∫ ∞

0
f (η) sin(αη) dη (3.87)

implies

f (x) =
√

2/π
∫ ∞

0
Fc(α) sin(αx) dα. (3.88)

Noting that ∫ m

−m
cos[α(η − x)] dα = 2

∫ m

0
cos[α(η − x)] dα,

∫ m

−m
sin[α(η − x)] dα = 0,

(3.89)

we have, as before,

f (x) = lim
m→∞

1
π

∫ ∞

−∞
f (η) dη

∫ m

0
cos[α(η − x)] dα

= lim
m→∞

1
π

∫ ∞

−∞
f (η) dη

1
2

∫ m

−m
eiα(η−x) dα,

or

f (x) = 1
2π

∫ ∞

−∞
e−iαx dα

∫ ∞

−∞
f (η)eiαη dη. (3.90)
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Thus,

F(α) = 1√
2π

∫ ∞

−∞
f (x)eiαx dx (3.91)

implies

f (x) = 1√
2π

∫ ∞

−∞
F(α)e−iαx dα. (3.92)

3.6 Convolution Integrals

The convolution of f (x) and g(x) is defined as

f � g = 1√
2π

∫ ∞

−∞
g(η) f (x − η) dη. (3.93)

Since ∫ ∞

−∞
g(η) f (x − η) dη = 1√

2π

∫ ∞

−∞
g(η) dη

∫ ∞

−∞
F(t)e−i t(x−η) dt,

where

F(t) = 1√
2π

∫ ∞

−∞
f (x)ei tx dx, (3.94)

we have

1√
2π

∫ ∞

−∞
g(η) dη

∫ ∞

−∞
F(t)e−i t(x−η) dt = 1√

2π

∫ ∞

−∞
F(t)e−i tx dt

∫ ∞

−∞
g(η)ei tη dη

=
∫ ∞

−∞
F(t)G(t)e−i tx dt,

with

G(t) = 1√
2π

∫ ∞

−∞
g(x)ei tx dx. (3.95)

Therefore, ∫ ∞

−∞
F(t)G(t)e−i tx dt =

∫ ∞

−∞
g(η) f (x − η) dη. (3.96)

In a special case where x = 0, (3.96) becomes∫ ∞

−∞
F(t)G(t) dt =

∫ ∞

−∞
g(η) f (−η) dη. (3.97)

If we replace F(t) with Fc(t), i.e., if f (x) is an even function, f (−x) = f (x), and if the
same is done for g(x), the above becomes∫ ∞

0
Fc(t)Gc(t) dt =

∫ ∞

0
f (η)g(η) dη. (3.98)



P1: FBQ

0521859794c03.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:32

3.7. Transforms of Derivatives 49

3.6.1 Evaluation of Integrals by Use of Convolution Theorems

The above results may be used to evaluate integrals. For example, let

f (x) = e−bx, (3.99)

and let us evaluate two integrals, viz.,

I1 =
∫ ∞

0
e−bx cos(αx) dx,

I2 =
∫ ∞

0
e−bx sin(αx) dx.

(3.100)

We find

I1 =
[
−1

b
e−bx cos(αx)

]∞

0
− α

b

∫ ∞

0
e−bx sin(αx) dx = 1

b
− α

b
I2,

I2 =
[
−1

b
e−bx sin(αx)

]∞

0
+ α

b

∫ ∞

0
e−bx cos(αx) dx = α

b
I1.

(3.101)

When the above are solved, we obtain

I1 = b
α2 + b2

⇒ Fc(α) =
√

2/π
b

α2 + b2
,

I2 = α

α2 + b2
⇒ Fs(α) =

√
2/π

α

α2 + b2
.

(3.102)

But, from the definition of the Fourier cosine transform,

f (x) =
√

2/π
∫ ∞

0
Fc(α) cos(αx) dα = 2

π

∫ ∞

0

b
α2 + b2

cos(αx) dα

= 2b
π

∫ ∞

0

cos(αx)
α2 + b2

dα = e−bx.

Imagine the same development for a companion function, g(x) = e−ax and substitute
both results into (3.99). First, it is found that

Fc(α) =
√

2/π
b

α2 + b2
and Gc(α) =

√
2/π

a
α2 + a2

, (3.103)

and then, after the substitution,

2ab
π

∫ ∞

0

dα
(α2 + b2)(α2 + a2)

=
∫ ∞

0
e−(a+b)x dx = 1

a + b
. (3.104)

3.7 Fourier Transforms of Derivatives of f (x)

To obtain formulae for the transformations of derivatives of functions, first define

F (r)(α) = 1√
2π

∫ ∞

−∞

dr f (x)
dxr

eiαx dx (3.105)
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and then integrate by parts to obtain

F (r)(α) =
[

1√
2π

dr−1 f
dxr−1

eiαx
]∞

−∞
− 1√

2π

∫ ∞

−∞

dr−1 f
dxr−1

(iα)eiαx dx

= −(iα)F (r−1)(α) , if
dr−1 f
dxr−1

→ 0 as x → ±∞.
(3.106)

In general, by repetitive application of this procedure, it is found that

F (r)(α) = (−iα)r F(α). (3.107)

3.8 Fourier Integrals as Limiting Cases of Fourier Series

It is useful to explore the existence of the above Fourier integrals as limiting cases of the
Fourier series considered at in previous sections. Although the following is not as rigorous
as the proof of the Fourier theorem given earlier, the discussion of the Fourier integral as
a limiting case of a Fourier series is valuable as a connection between the two.

As before, let f (x) be defined for all real x, and let it be piecewise smooth (with a
possible finite number of discontinuities) on every finite interval −� ≤ x ≤ �. Then f (x)
can be expanded as a Fourier series

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx
�

+ bn sin
nπx
�

)
, (3.108)

where

an = 1
�

∫ �

−�
f (u) cos

nπx
�

du, n = 0, 1, 2, . . . ,

bn = 1
�

∫ �

−�
f (u) sin

nπx
�

du, n = 1, 2, 3, . . . .

(3.109)

We note that at points where f (x) is discontinuous we must interpret the value as 1
2 [ f (x +

0) + f (x − 0)]. Now, substitute (3.109) into the above to obtain

f (x) = 1
2�

∫ �

−�
f (u) du +

∞∑
n=1

1
�

∫ �

−�
f (u) cos

nπ
�

(u − x) du. (3.110)

Suppose that f (x) is absolutely integrable on the entire x axis, that is suppose that the
integral ∫ ∞

−∞
| f (x)| dx (3.111)

exists. Then, as � → ∞, (3.110) becomes

f (x) = lim
�→ ∞

∞∑
n=1

1
�

∫ �

−�
f (u) cos

nπ
�

(u − x) du. (3.112)

Setting

λ1 = π

�
, λ2 = 2π

�
, λ2 = 3π

�
, . . . ,

�λn = λn+1 − λn = π

�
,

(3.113)
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and using this in the above, the sum takes the form

1
π

∞∑
n=1

�λn

∫ �

−�
f (u) cos λn(u − x) du. (3.114)

But for fixed x this looks like the sum that would define the integral of the function

ζ (λ) = 1
π

∫ ∞

−∞
f (u) cos λ(u − x) du, (3.115)

and, therefore, it is natural to conclude that, as � → ∞,

f (x) = 1
π

∫ ∞

0
dλ

∫ ∞

−∞
f (u) cos λ(u − x) du. (3.116)

3.9 Dirac Delta Function

Consider the function

�υ(s) ≡ 1
π

sin(υs)
s

. (3.117)

It can be verified that ∫ ∞

−∞
�υ(s) ds = 1, (3.118)

and

lim
υ→0

∫ ∞

−∞
�υ(s) f (s) ds = f (0). (3.119)

To prove the latter, expand f (s) about the point s = 0, i.e.,

f (s) = f (0) + (∂ f/∂s)0s + 1/2!(∂2 f/∂s2)0s2 + . . . . (3.120)

Then,

lim
υ→0

∫ ∞

−∞
�υ(s) f (s) ds = lim

υ→0

∫ ∞

−∞

1
π

f (0)
sin υs

s
ds + lim

υ→0

∫ ∞

−∞

1
π

(∂ f/∂s)0 sin υs ds

+ lim
υ→0

∫ ∞

−∞

1
2π

(∂2 f/∂s2)0s sin υs ds

= f (0).

We also explore the function, η(s − a), where η(s) is shown in Fig. 3.3. Clearly,∫ ∞

−∞
η(s) ds = 2

1
2
ε

1
ε

= 1. (3.121)

Then, by expanding f (s) about the point s = a, we deduce that

lim
ε→0

∫ ∞

−∞
η(s) f (s) ds = lim

ε→0

∫ a+1/2ε

a−1/2ε
f (a)

1
ε

ds. (3.122)
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a

a

s

s

f(s)
1/ε

η(   )

+ 1/2εa − 1/2ε

Figure 3.3. A step function as a generalized function.

The f (a) here is, of course, just the first term of a Taylor expansion of f (s) about the point
s = a. The remaining terms in the Taylor expansion produce null results; for example, the
next term in the expansion yields

lim
ε→0

∫ a

a−1/2ε
(s − a)

1
ε

ds + lim
ε→0

∫ a−1/2ε

a
(s − a)

1
ε

ds = 0, (3.123)

and so on. Thus,

lim
ε→0

∫ ∞

−∞
η(s) f (s) ds = f (a). (3.124)

We note that

lim
ε→0

η(s − a) = ∞, at s = a, (3.125)

and

lim
ε→0

∫ ∞

−∞
η(s) ds = 1. (3.126)

Consequently, we define

lim
ε→0

η(s − a) ≡ δ(s − a), (3.127)

and

lim
υ→0

�υ(s) ≡ δ(s). (3.128)

The so defined Dirac delta function δ(s) is such that∫ ∞

−∞
δ(s) ds = 1, δ(s) =

{
∞, if s = 0 ,

0, if s 
= 0 ,
(3.129)

and ∫ ∞

−∞
f (s)δ(s − a) ds = f (a) . (3.130)

3.10 Suggested Reading

Brown, J. W., and Churchill, R. V. (2001), Fourier Series and Boundary Value Problems,
6th ed., McGraw-Hill, Boston.

Goldberg, R. R. (1961), Fourier Transforms, Cambridge University Press, Cambridge, UK.
Little, R. W. (1973), Elasticity, Prentice Hall, Englewood Cliffs, New Jersey.
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Wolf, K. B. (1979), Integral Transforms in Science and Engineering, Plenum, New York.



P1: FBQ

0521859794c03.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:32

54



P1: FBQ

0521859794c04.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:32

PART 2: CONTINUUM MECHANICS

4 Kinematics of Continuum

4.1 Preliminaries

Let φ(x) be a scalar field which is a function of x1, x2, x3 (Fig. 4.1), i.e.,

φ = φ(x1, x2, x2) . (4.1)

The function φ is continuous if

lim
α→0

∣∣φ(x + αa) − φ(x)
∣∣ = 0, ∀ x ∈ D, a ∈ E . (4.2)

The field φ is differentiable within D if there is a vector field, w, such that

lim
α→0

∣∣w · a − α−1[φ(x + αa) − φ(x)]
∣∣ = 0, ∀ x ∈ D, a ∈ E . (4.3)

The vector field w is unique and is the gradient of φ, w = gradφ.
If u is a vector field, u(x), then its gradient is defined by

[grad u(x)]T · a = grad[u(x) · a], ∀ x ∈ D, a ∈ E . (4.4)

The divergence of u(x), div u, or ∇ · u, is defined by

∇ · u = tr [grad u(x)]. (4.5)

The curl is defined by

[curl u(x)] · a = ∇ · [u(x) × a], ∀ x ∈ D, a ∈ E . (4.6)

The tensor field, T(x), if differentiable, has its divergence defined as

div T(x) · a = ∇ · T(x) · a = div [T(x) · a]. (4.7)

It is readily shown that if φ,u, and T are scalar, vector, and tensor fields, respectively,
then with reference to rectangular Cartesian unit base vectors {e1, e2, e3}, we can write

φ = φ(x),

u(x) = up(x)ep, (4.8)

T(x) = Tpq(x)epeq.

55
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x

x

x1

3

2
xφ( )

e

ee 1

2

3

Figure 4.1. A scalar field, φ(x).

It is also readily shown from the discussion and definitions given above that, inter alia,

grad φ(x) = ∇φ = ∂φ(x)/∂xpep ,

grad u(x) = ∇u(x) = ∂up/∂xqepeq ,

div u(x) = ∇ · u(x) = ∂up/∂xp , (4.9)

curl u(x) = εpqr∂ur/∂xqep ,

div T(x) = ∇ · T(x) = ∂Tpq/∂xpeq .

4.2 Uniaxial Strain

A uniaxial measure of strain should, at the minimum, quantitatively describe changes in
length as depicted in Fig. 4.2. There are, however, an infinite number of ways to do this.
For example,

nominal strain: e = ��/�0 = (�− �0)/�0 = �/�0 − 1. (4.10)

The stretch associated with this change in length is

λ ≡ �/�0 → e = λ− 1. (4.11)

Other definitions of uniaxial strain follow, and as examples we define

natural strain: η = �− �0

�
= 1 − 1/λ , (4.12)

Lagrangian strain: E = 1
2
�2 − �2

0

�2
0

= 1
2

(λ2 − 1) , (4.13)

Eulerian strain: E = 1
2
�2 − �2

0

�2
= 1

2
(1 − 1/λ2) . (4.14)

0
l ∆ l

l

Figure 4.2. Uniaxial stretch.
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F

u(X)

dX

X

dx

x

"reference" or
 "undeformed" state

"deformed" or
 "current" state

Figure 4.3. Kinematics of deformation,
describing the motion of material parti-
cles from the “reference state” to the “de-
formed state.”

Still another measure is defined by∫ ε

0
dε =

∫ �

�0

d�
�

= ε = ln
�

�0
= ln λ. (4.15)

Accordingly, this measure of strain is referred to as the logarithmic strain or true strain.

4.3 Deformation Gradient

To provide a precise description of changes in the shape, size, and orientation of a solid
body, we introduce various tensors that describe deformation of a body. The displacement
field u(x) describes the change in position, relative to a convenient coordinate system, of
all points in the body. We shall assume this field to be single valued and continuous for
the present. The property of being single valued implies that there are no holes, gaps, or
interpenetrations of matter in the body. The displacement field is nonuniform if the body
is deformed and is uniform only if the body has undergone rigid translations.

To describe the picture above we need to describe how each “material point” is displaced,
i.e., we want to associate a displacement, u, with each material point (Fig. 4.3). We identify
material points by their positions in the reference state, X. Thus,

X is position in the reference state ,

x is position in the current (deformed) state, and

x is function of X, x = x(X) .

The gradient of x(X) is defined as

F = ∂x/∂X. (4.16)

If {e1, e2, e3} is a set of convenient base vectors in the current configuration and {E1,E2,E3}
are base vectors in the reference configuration, then an explicit, and most natural, repre-
sentation of F is

F = ∂xi (X)/∂Xj ei E j . (4.17)

This is a so-called two-point tensor, which relates dx and dX, such that

dx = F · dX. (4.18)
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h

s

x

x

1

2
Figure 4.4. Case of 2D simple shear.

Since F is invertible,

dX = F−1 · dx. (4.19)

In terms of displacement gradients we may express the above as follows. Since

x = X + u, (4.20)

the displacement gradient is

∂u/∂X = ∂x/∂X − I = F − I, (4.21)

or, in the current state,

∂u/∂x = I − ∂X/∂x = I − F−1. (4.22)

For example, consider a simple shear deformation. Define a shear strain as γ = s/h, as
depicted in Fig. 4.4. Then, the deformation mapping is

x1 = X1 + γ X2, x2 = X2. (4.23)

The in-plane deformation gradient has the components

F =
[

1 γ
0 1

]
, (4.24)

whereas the displacement gradient is

∂u
∂X

=
[

0 γ
0 0

]
. (4.25)

4.4 Strain Tensor

Let R0 and R be regions within the body in the reference (undeformed) configuration and
current (deformed) configuration, respectively. Further, let N be a unit vector embedded
within the body in the reference configuration; the deformation transforms N to n in the
deformed state (Fig. 4.5). The square of the stretch of N, λ(N), can be calculated as

λ2(N) = (F · N) · (F · N) = N · FT · F · N. (4.26)

Define C ≡ FT · F as the right Cauchy–Green deformation tensor. Then the stretch,
squared, is also given by

λ2(N) = N · C · N. (4.27)

By using the polar decomposition theorem (1.145), we obtain

F = R · U, C = FT · F = U2, λ2(N) = N · U2 · N. (4.28)
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F

"reference" or
 "undeformed" state

"deformed" or
 "current" state

N

n

RRo

Figure 4.5. Stretch of an arbitrary fiber N
in the reference state to n in the current,
deformed state.

The tensor U is called the right stretch tensor. If we now define the strain in the direction
N as

E(N) = 1
2

[
λ2(N) − 1

] = N · E · N, (4.29)

we deduce the strain tensor

E = 1
2

(C − I), (4.30)

which is known as the Green strain (or Lagrangian strain) tensor.
An alternative approach to define this strain tensor is as follows. Let

dS = length of dX ,

ds = length of dx.

Then,

dS2 = dX · dX = dX · I · dX ,

ds2 = dx · dx = (F · dX) · (F · dX) = dX · FT · F · dX .

Combining the last two results, we have

ds2 − dS2 = dX · (FT · F − I) · dX. (4.31)

This leads to the definition of Green strain as

E = 1
2

(FT · F − I) = 1
2

(C − I),

because then

ds2 − dS2 = 2dX · E · dX. (4.32)

The Green strain is symmetric as may be seen via the manipulations

Ei j = 1
2

(F T
is Fs j − δi j ) ,

Ej i = 1
2

(F T
js Fsi − δ j i )

= 1
2

(Fsj F T
is − δi j ) = 1

2
(F T

is Fs j − δi j ) .

This is also obvious from (4.4), because FT · F and I are symmetric.
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α

α/2

α/2

Figure 4.6. Angle change during shearing deformation.

4.5 Stretch and Normal Strains

Consider an infinitesimal vector, dX, which is deformed by F into the vector element, dx.
The magnitudes of the lengths of these vectors are, respectively, dS and ds. Then,

ds2 = dx · dx = dX · FT · F · dX = dX · C · dX. (4.33)

By defining the unit vector, N̂ = dX/dS, we can write

ds2/dS2 = N̂ · C · N̂ = λ2(N̂). (4.34)

Thus, λ(N̂) is the stretch of a fiber, initially of unit length, which was lying in the direction
N̂ in the reference state.

For example, consider a uniaxial stretching, and take N̂ = e1. Then,

λ2(e1) = C11 = 2E11 + 1 . (4.35)

Also,

ds(e1) − dS(e1)
dS

= λ(e1) − 1 =
√

2E11 + 1 − 1. (4.36)

If E11 � 1, we have

ds − dS
dS

≈ E11, (4.37)

which is just the definition of a small uniaxial engineering (or nominal) strain measure.
Clearly, by expanding (1 + 2E11)1/2, we obtain

e11 = ds − dS
dS

∼ E11 − 1
2

E2
11 + . . . . (4.38)

4.6 Angle Change and Shear Strains

We begin by examining Fig. 4.6. Note that a convenient measure of the obvious distortion
would be the change in the 90◦ angle made between the horizontal and vertical sides of
the square section. This angular change is α as shown. Thus one measure of the distor-
tion is simply cos(π/2 − α), which is zero if α = 0 and is nonzero if α 
= 0, in which case
cos(π/2 − α) = sinα 
= 0. We also note that the distortions in both figures are the same,
and the displacements differ only by a rigid body rotation. Thus, cos(π/2 − α) is an ac-
ceptable measure of strain. Now let us consider two infinitesimal vector elements, dX1
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F

X x

"reference" or
 "undeformed" state

"deformed" or
 "current" state

N

>

1
>

N2

n1
n2 Figure 4.7. Angle change between two

fibers.

and dX2, in the reference state; in the current state they become, respectively, dx1 and dx2

(Fig. 4.7). Unit vectors associated with these two can be defined as

N̂1 = dX1/|dX1|, n̂1 = dx1/|dx1|, (4.39)

N̂2 = dX2/|dX2|, n̂2 = dx2/|dx2|. (4.40)

We can now form the cosine of the angle between them as

cos(n̂1, n̂2) = n̂1 · n̂2 = dx1 · dx2

|dx1||dx2| . (4.41)

In view of the connections

dx1 = F · dX1, dx2 = F · dX2,

dx1 = dX1 · FT, dx2 = dX2 · FT,

the angle change can be expressed as

cos(n̂1, n̂2) = dX1 · FT · F · dX2

(dX1 · C · dX1)1/2(dX2 · C · dX2)1/2
. (4.42)

But, dX1 = N̂1|dX1| and dX2 = N̂2|dX2|, so that

cos(n̂1, n̂2) = N̂1 · C · N̂2

λ(N̂1)λ(N̂2)
. (4.43)

As an example, let N̂1 = e1 and N̂2 = e2. Then,

cos(n̂1, n̂2) = C12

λ(e1)λ(e2)
= C12√

C11
√

C22

= 2E12√
2E11 + 1

√
2E22 + 1

. (4.44)

If all strains are small, |Ei j | � 1, we have

cos(n̂1, n̂2) ≈ 2E12. (4.45)

4.7 Infinitesimal Strains

In general, the connection between positions in the reference and deformed states can be
written as

x(X) = X + u(X). (4.46)



P1: FBQ

0521859794c04.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:32

62 4. Kinematics of Continuum

Consider a particular component of strain, say

E11 = 1
2

(
F T

1s Fs1 − 1
)
. (4.47)

Since

Fi j = δi j + ∂ui/∂Xj , F T
i j = δi j + ∂u j/∂Xi , (4.48)

we have

E11 = 1
2

[(δ1s + ∂us/∂X1)(δs1 + ∂us/∂X1) − 1] ,

i.e.,

E11 = 1
2

[(∂u1/∂X1 + ∂u1/∂X1) + (∂us/∂X1)(∂us/∂X1)] . (4.49)

In general, we obtain that

Ei j = 1
2

[(∂ui/∂Xj + ∂u j/∂Xi ) + (∂us/∂Xi )(∂us/∂Xj )] . (4.50)

If |∂u/∂X| � 1, the Ei j reduce to the infinitesimal strain components,

Ei j ≈ ei j = 1
2

(∂ui/∂Xj + ∂u j/∂Xi ). (4.51)

4.8 Principal Stretches

Consider the stretch of a fiber along the direction of the unit vector n. We have

λ2(n) = n · C · n. (4.52)

We seek those n for which the stretch is extreme (principal stretch). To find the extremum
introduce a Lagrange multiplier, µ, via

L = n · C · n − µ(n · n − 1). (4.53)

Then,

∂L(n, µ)/∂n = 2(C · n − µn) = 0,

which leads to

C · n − µn = 0, (4.54)

where the µ’s are the eigenvalues of C. By using the results from Chapter 1, we have

µ3 − ICµ
2 + I ICµ− I I IC = 0, (4.55)

where the invariants of C are

IC = tr (C),

I IC = [e1,C · e2,C · e3] + [C · e1, e2,C · e3] + [C · e1,C · e2, e3], (4.56)

I I IC = [C · e1,C · e2,C · e3].
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4.9 Eigenvectors and Eigenvalues of Deformation Tensors

The deformation gradient may be decomposed via the polar decomposition theorem as
F = R · U, with C = UT · U = U2. Thus, if

C =
3∑

i=1

µpnpnp, (4.57)

then

U =
3∑

i=1

µ1/2
p npnp, (4.58)

where the eigenvalues, µp, are associated with eigenvectors, np, via

C · np = µpnp. (4.59)

Consider the stretch of an eigenvector, λ(np). Its square is

λ2(np) = np · C · np = µp. (4.60)

If p 
= s, then np · ns = 0. Indeed,

C · np = µpnp, (4.61)

and thus, since C is symmetric,

ns · C · np − np · C · ns = 0. (4.62)

Also,

ns · µpnp − npµsns = 0,

i.e.,

(µp − µs)ns · np = 0. (4.63)

Thus, if µp 
= µs , then np · ns = 0.
Now consider cos(F · n j ,F · nk). We have

n j · C · nk√
µ j

√
µk

= n j · (µknk)√
µ j

√
µk

=
√
µk√
µ j

n j · nk = 0. (4.64)

Therefore, the eigenvectors of C undergo pure stretch, i.e., they are not rotated by the
deformation.

4.10 Volume Changes

Consider the volume element, δV as it is transformed into δv through F (Fig. 4.8). Clearly,

δV = |dX1||dX2||dX3|, and δv = |dx1||dx2||dx3|. (4.65)

Also,

δv = [F · dX1,F · dX2,F · dX3]. (4.66)
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Figure 4.8. Changes in volume of a
typical volume element.

Now, if dXi = ei , then δV = 1, and

δv = (δv/δV) = I I IF = det F = |F|. (4.67)

4.11 Area Changes

The area element, bounded by the infinitesimals dX and dY shown in Fig. 4.9, can clearly be
described as N̂dS = dX × dY; dS is the magnitude of the area and N̂ is the unit normal to the
surface “patch.” The componental representation for the vectorial area of the undeformed
surface patch is

N̂i dS = εi jkdXj dYk. (4.68)

Likewise, for the deformed surface patch,

n̂i ds = εi jkdxj dyk, (4.69)

where ds is the area of the deformed surface patch and n̂ is its unit normal. Since dx =
F · dX, we have

n̂i ds = εi jkFjsdXs FkpdYp. (4.70)

Now multiply both sides of (4.70) by Fi t and perform the indicated summations to obtain

n̂i Fi t ds = εi jkFjs FkpFi t dXsdXp. (4.71)

Note that within the rhs we find the term εtsp(det F) ∼ εi jkFjs FkpFi t . This allows us to write

n̂i Fi t ds = εtsp(det F)dXsdYp = N̂t (det F)dS. (4.72)

Taking a product with F−1
tr gives

n̂i Fi t F−1
tr ds = N̂t F−1

tr (det F)dS,

i.e.,

n̂r ds = (det F)N̂t F−1
tr dS, (4.73)

N

>

>

dS

dX

dY

dx

dy

ds

n

F

Figure 4.9. Area change of a surface patch (element) during a
general deformation.
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and thus

n̂ds = (det F)N̂ · F−1dS = (det F)F−T · N̂dS. (4.74)

This is known as Nanson’s relation between the undeformed and deformed vectorial areas.
By multiplying (4.74) with itself, and then taking a square root of the result, we obtain

ds = (det F)(N̂ · C−1 · N̂)1/2 dS , (4.75)

where C = FT · F is the right Cauchy–Green deformation tensor. Substituting this back
into (4.74), we obtain an expression for the unit normal n̂ in terms of the unit normal N̂,
i.e.,

n̂ = F−T · N̂

(N̂ · C−1 · N̂)1/2
. (4.76)

Alternatively, if (4.74) is rewritten as

N̂dS = 1
det F

FT · n̂ ds = 1
det F

n̂ · F ds , (4.77)

the multiplication with itself gives

dS = 1
det F

(n̂ · B · n̂)1/2 ds , (4.78)

where B = F · FT is the left Cauchy–Green deformation tensor. When (4.78) is substituted
back into (4.77), we obtain an expression for the unit normal N̂ in terms of the unit normal
n̂, i.e.,

N̂ = FT · n̂
(n̂ · B · n̂)1/2

. (4.79)

Two identities can be observed from the above results, one for the ratio of the deformed
and undeformed surface areas and another for the cosine of the angle between their unit
normals. These are

ds
dS

= (det F)(n̂ · B · n̂)−1/2 = (det F)(N̂ · C−1 · N̂)1/2 , (4.80)

n̂ · N̂ = n̂ · FT · n̂
(n̂ · B · n̂)1/2

= N̂ · F−T · N̂

(N̂ · C−1 · N̂)1/2
. (4.81)

4.12 Area Changes: Alternative Approach

A second-order tensor F has a dual tensor F∗, such that

F∗ · (a × b) = (F · a) × (F · b), (4.82)

where a and b are arbitrary vectors. To see this and identify F∗, let c be still a third arbitrary
vector. Then, by using the result from Problem 1.7, we obtain

[F∗ · (a × b)] · c = [(F · a) × (F · b)] · (F · F−1 · c) = (det F)(a × b) · F−1 · c.
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Figure 4.10. Block with circular hole
subject to a deformation involving a
simple shear.

Recalling that F−1 · c = c · F−T , and by invoking cyclic property of triple product and
commutative property of scalar product, the above becomes

c · F∗ · (a × b) = (det F)c · F−T · (a × b). (4.83)

Since this holds for arbitrary trio of vectors a, b, c, we obtain

F∗ = (det F)F−T. (4.84)

Applying this result to the computation of area, we find

dx × dy = (F · dX) × (F · dY) = F∗ · (dX × dY) = (det F)F−T · N̂dS.

4.13 Simple Shear of a Thick Plate with a Central Hole

A three-dimensional state of simple shear, as depicted in Fig. 4.10, is prescribed by

x1 = X1 + γ X2,

x2 = X2, (4.85)

x3 = X3.

The corresponding deformation gradient and its inverse are

F =
⎡
⎣1 γ 0

0 1 0
0 0 1

⎤
⎦ , F−1 =

⎡
⎣1 −γ 0

0 1 0
0 0 1

⎤
⎦ . (4.86)

Furthermore,

(F−1)T = F−T =
⎡
⎣ 1 0 0

−γ 1 0
0 0 1

⎤
⎦ , (4.87)

and

n̂ds = (det F)F−T · N̂dS. (4.88)

On side 1 we have N̂ = e1, dS = dX3dX2, and det F = 1. Thus,

n̂ds = F−T · e1dX3dX2 . (4.89)
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This means that

dA2
1 = n̂ds · n̂ds

= F−T · e1(dX3dX2)2 · (F−T · e1)

= e1 · F−1 · F−T · e1(dX3dX2)2

= F−1
1s F−T

s1 (dX3dX2)2

= (1 + γ 2)(dX3dX2)2,

that is,

dA1 =
√

1 + γ 2 dX3dX2. (4.90)

Thus, on all of side 1,∫
side 1

dA=
∫ 1

0

∫ 4

0

√
1 + γ 2 dX2 dX3 = 4

√
1 + γ 2. (4.91)

Similarly, for side 3, ∫
side3

dA= 4
√

1 + γ 2. (4.92)

On side 2, we have N̂ = e2, dS = dX1dX3. Thus,

n̂ds = F−T · e2dX1dX3 , (4.93)

and

dA2
2 = n̂ds · n̂ds

= e2 · F−1 · F−T · e2(dX1dX3)2

= F−1
2s (F−1

s2 )T(dX1dX3)2

= 1(dX1dX3)2 = no change!

For side 4 we have the same result as for side 2.
Now consider the circular hole. Its radius in the reference state is r . With the origin at

the hole’s center, and using a polar coordinate system aligned with the x1 − x2 axes, we
have that

N̂dS = (cos θe1 + sin θe2)rdθdX3, (4.94)

and (Fig. 4.11)

n̂ds = (det F)F−T · N̂dS

= (F−1
1s )N̂srdθ dX3e1 + (F−1

2s )T N̂srdθdX3e2

= [cos θe1 + (sin θ − γ cos θ)e2]rdθ dX3.

Consequently,

dA2 = n̂ · ds · n̂ · ds

= [cos θe1 + (sin θ − γ cos θ)e2] · [cos θe1 + (sin θ − γ cos θ)e2]r2dθ2dX2
3,



P1: FBQ

0521859794c04.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:32

68 4. Kinematics of Continuum

n
Figure 4.11. Normal to the hole’s surface. See Fig. 4.10 for a complete perspective of
the geometry.

or

dA2 = [cos2 θ + (sin θ − γ cos θ)2]r2dθ2dX2
3

= (cos2 θ + sin2 θ − 2γ sin θ cos θ + γ 2 cos2 θ)r2dθ2dX2
3

= (1 − γ sin 2θ + γ 2 cos2 θ)r2dθ2dX2
3.

Finally,

dA=
√

1 − γ sin 2θ + γ 2 cos2 θ rdθ dX3, (4.95)

which, when integrated, yields

A= r
∫ 1

0

∫ 2π

0

√
1 − γ sin 2θ + γ 2 cos2 θ dθ dX3. (4.96)

4.14 Finite vs. Small Deformations

It is worthwhile to explore the differences between finite and small deformations for the
purpose of understanding how even seemingly qualitative effects can arise in the transition
from infinitesimal to finite deformation. We do this here via a simple example. Consider
the deformation

x1 = X1 − γ X2 + βX3,

x2 = γ X1 + X2 − αX3,

x3 = −βX1 + αX2 + X3.

(4.97)

What we show is that this deformation involves only a rigid body rotation if the α, β, γ are
“small,” but a general deformation if they are “finite.”

Indeed, the deformation gradient is

F =
⎡
⎣ 1 −γ β

γ 1 −α
−β α 1

⎤
⎦ , (4.98)

whereas the corresponding Green strain is

E = 1
2

⎡
⎣β2 + γ 2 −αβ −αγ

−αβ α2 + γ 2 −βγ
−αγ −βγ α2 + β2

⎤
⎦ . (4.99)
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Figure 4.12. Reference and current coor-
dinate systems.

Clearly, the strains vanish toO(ξζ ) where ξ, ζ = α, β, γ . If, however, these quadratic terms
are not negligible, the state is one that involves deformation. In any event, the rotations
do not vanish. The rotation vector, w, can be calculated as

wi = −1
2
εi jkWjk, (4.100)

which yields w1 = α, w2 = β, w3 = γ .

4.15 Reference vs. Current Configuration

We again begin by defining the deformation commencing from the reference to the current
states as shown in Fig. 4.12. We introduce two coordinate frames each belonging to one
state or the other. In particular, the frame {E1,E2,E3} is defined in the reference state,
and {e1, e2, e3} is defined in the current, i.e., deformed state. For clarity we will use Greek
subscripts to denote components referred to the reference state and Latin subscripts for
the current state. Thus a vector such as u is expressed as either

u = uπEπ , or u = uses . (4.101)

Their components are formed as

uπ = u · Eπ , or us = u · es . (4.102)

Higher order tensors can be handled similarly. For example,

σ = σαβEαEβ = σsr eser , (4.103)

where

σαβ = Eα · σ · Eβ σsr = es · σ · er . (4.104)

Mixed representations are also possible, e.g.,

σ = σαi Eαei = σsβesEβ, (4.105)
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where

σαi = Eα · σ · ei , (4.106)

σsβ = es · σ · Eβ. (4.107)

Some components are most naturally represented as mixed components, including those
of the deformation gradient. Recall

x = x(X, t), (4.108)

where the possibility that the deformation mapping depends on time, t , has been explicitly
included. Then the gradient is

F = ∂x/∂X = Fiαei Eα, (4.109)

because x “lives” in the current configuration, and X in the reference state.
We note that F is invertible and so F−1 exists – this is physically demandable from the

various pictures of the deformation presented to date, and from the statements that the
displacements involved are single valued. Thus each material point is, at this juncture,
taken to originate from a unique point in the reference configuration and is displaced to
a unique point in the current configuration. Thus, the process is “conceptually invertible,”
and F−1 exists. Therefore, we can write

X = �(x, t), F−1 = ∂�(x, t)/∂x = ∂X/∂x. (4.110)

For a component representation, we have

F−1 = F−1
αr Eαer , F−1

αr = ∂Xα/∂xr . (4.111)

LEMMA 4.1: If φ is a scalar field, then

Grad φ = ∂φ/∂X = FT · grad φ, (4.112)

where gradφ = ∂φ/x.

Proof: First we write Grad φ = ∂φ/∂X = ∂φ/∂XαEα . Then,

∂φ/∂X = ∂φ/∂x · ∂x/∂X = (∂φ/∂xi ei ) · (∂xp/∂XαepEα)

= (∂xp/∂XαEαep) · (∂φ/∂xi ei )

= FT · grad φ.

COROLLARY 4.1: Similarly to Lemma 4.1 above, we find that for a vector field u,

Grad u = (grad u) · F , (4.113)

i.e.,

u
↼

∇0 = (u
↼

∇) · F,
∂ui

∂Xj
= ∂ui

∂xk

∂xk

∂Xj
. (4.114)

For clarity, the arrow above the nabla operator is attached to indicate the direction in
which the operator applies.
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4.16 Material Derivatives and Velocity

Let t be a time like variable that increases monotonically with the deformation process. It
is assumed that F evolves with t . Likewise all scalar or tensor fields may evolve with time.
For a scalar field then

φ = scalar field = φ(X, t). (4.115)

We may define the “material derivative” of φ as

φ̇(X, t) = ∂φ(X, t)/∂t, (4.116)

that is, a derivative taken at constant reference position, X. Stated otherwise, this is a rate
of change at a fixed material point. Clearly X does not depend on time. But the current
position of a material point, x, does depend on time, so that in the current configuration
where we have the representation, φ(x, t), the time rate of φ is

φ̇(x, t) = ∂φ(x, t)/∂t + (∂φ/∂x) · (∂x/∂t). (4.117)

Defining the velocity as

υ(x, t) = ∂x/∂t, (4.118)

the rate of change of the scalar field is

φ̇(x, t) = ∂φ(x, t)/∂t + ∇φ · υ. (4.119)

But, ∇φ = grad φ, and so

φ̇(x, t) = ∂φ(x, t)/∂t + (grad φ) · υ. (4.120)

4.17 Velocity Gradient

The velocity gradient is defined as

L = grad υ = grad ẋ , (4.121)

i.e.,

L = υ
↼

∇ , Li j = ∂vi

∂xj
. (4.122)

By using (4.113), we obtain

Grad ẋ = (grad ẋ) · F, (4.123)

or

grad ẋ = grad υ = L = (Grad ẋ) · F−1. (4.124)

But,

Grad ẋ = Ḟ (4.125)

and so

L = grad υ = grad ẋ = Ḟ · F−1. (4.126)
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Note that F · F−1 = I. Taking the time derivative of this identity, we obtain

Ḟ · F−1 + F · (F−1)
. = 0 ⇒ (F−1)

. = −F−1 · Ḟ · F−1 . (4.127)

Thus,

L = Ḟ · F−1 = −F · (F−1)
.

. (4.128)

LEMMA 4.2: If F is invertible and depends on a time like parameter, t , then

d
dt

(detF) ≡ d
dt

J = (detF) tr(Ḟ · F−1). (4.129)

Proof: Begin by writing

det F = [F · a,F · b,F · c], (4.130)

where {a,b, c} is a set of any convenient orthonormal unit vectors. Then,

d
dt

(det F) =
[

dF
dt

· a,F · b,F · c
]

+
[

F · a,
dF
dt

· b,F · c
]

+
[

F · a,F · b,
dF
dt

· c
]
.

Since

L = dF
dt

· F−1, (4.131)

we have

d
dt

(det F) = [L · F · a,F · b,F · c] + [F · a,L · F · b,F · c] + [F · a,F · b,L · F · c].

Clearly, then,

d
dt

(det F) = (tr L)(det F). (4.132)

Recalling that (δv/δV) ≡ J = det F, this means that

J̇ = dJ/dt = (δv/δV). = J tr (Ḟ · F−1) = J (tr L). (4.133)

But, L = grad υ = ∂υ/∂x, and we have

tr L = div υ = ∇ · υ, (4.134)

or

J̇ = J div (υ). (4.135)

Let us return now to the rate of change of an infinitesimal material fiber (Fig. 4.3), and
recall that

dx = F · dX. (4.136)

Then,

(dx). = dẋ = Ḟ · dX = L · F · dX = L · dx. (4.137)
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Consider

dx = �ds , (4.138)

where

� = a unit vector ‖ dx,

ds = the arc length of dx.

By taking the time derivative we obtain

dẋ = �̇ds + �dṡ. (4.139)

Recalling that L = Ḟ · F−1 and dX = F−1 · dx, we obtain

dẋ = �̇ds + �dṡ = L · �ds. (4.140)

It is noted that

� · � = 1 ⇒ � · �̇ = 0.

Thus,

dṡ = � · L · �ds (4.141)

and

�̇ = L · � − (� · L · �)�. (4.142)

Consequently, the change in length per unit length of the material fiber, dx, is found to be

dṡ/ds = � · L · �. (4.143)

If we decompose L into its symmetric and antisymmetric parts as

L = 1
2

(L + LT) + 1
2

(L − LT), (4.144)

and call

D = 1
2

(L + LT), (4.145)

then

dṡ/ds = � · D · �. (4.146)

The symmetric tensor D is called the rate of deformation or simply the deformation rate.
The term velocity strain is also in use.

We next look at the rate of change of the included angle between two material fibers,
i.e., at rates of shear. Let dx and dy be two infinitesimal fibers in the current state
(Fig. 4.13). Then,

dx = F · dX = �dsx, dy = F · dY = mdsy. (4.147)

As for the angle between them, in the current state we have

cos θ = � · m (4.148)
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F

x

"reference" or
 "undeformed" state

"deformed" or
 "current" state

dY

dX

dy

dx

θ
X

Figure 4.13. Stretch and angular change be-
tween arbitrary fibers.

and

d
dt

(cos θ) = − sin θ θ̇ = �̇ · m + � · ṁ. (4.149)

Now, identify sin θ = |� × m|, and use (4.142) to get

θ̇ = 1
|� × m|

[
(� · L · � + m · L · m)(� · m) − � · (L + LT) · m

]
. (4.150)

4.18 Deformation Rate and Spin

Recall again the definitions of the symmetric and antisymmetric parts of L, viz.,

L = 1
2

(L + LT) + 1
2

(L − LT). (4.151)

We call D the symmetric part and W the antisymmetric part of L, i.e.,

D = 1
2

(L + LT), (4.152)

W = 1
2

(L − LT). (4.153)

From the polar decomposition theorem

F = R · U = V · R, (4.154)

it follows that

Ḟ = Ṙ · U + R · U̇ = V̇ · R + V · Ṙ (4.155)

and

F−1 = (R · U)−1 = U−1 · RT = (V · R)−1 = RT · V−1. (4.156)

Therefore,

L = Ḟ · F−1 = Ṙ · RT + R · U̇ · U−1 · RT (4.157)

or

L = V̇ · V−1 + V · Ṙ · RT · V−1, (4.158)
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because

Ṙ · RT = −(Ṙ · RT)T. (4.159)

For D and W, we obtain

D = 1
2

R · (U̇ · U−1 + U−1 · U̇) · RT (4.160)

and

W = 1
2

R · (U̇ · U−1 − U−1 · U̇) · RT + Ṙ · RT. (4.161)

If the current state is taken as the reference state, i.e., if F = I, U = I, and R = I, then
instantaneously

D = 1
2

(U̇0 + U̇0) = U̇0 (4.162)

and

W = Ṙ0. (4.163)

The subscript 0 signifies the assignment of reference to current state.

4.19 Rate of Stretching and Shearing

Once again consider two infinitesimal fibers dx and dy in the current state, as sketched in
Fig. 4.13. Recall the connections dx = F · dX and dy = F · dY, where dX and dY are the
same fibers in the reference state. Recall also the representation of dx and dy in terms of
unit vectors along them and their respective lengths, viz., dx = �dsx and dy = mdsy. For
the change in length per unit length of dx, we have

dṡx/dsx = � · L · � = � · D · �. (4.164)

Also, from (4.150),

θ̇ = 1
|� × m|

[
(� · L · � + m · L · m)(� · m) − � · (L + LT) · m

]
. (4.165)

If it happened that, instantaneously, � · m = 0 in the current configuration, then

θ̇ = −� · (L + LT) · m = −2� · D · m. (4.166)

This suggests a possible definition of shearing rate as

γ̇ = −1
2
θ̇ = � · D · m. (4.167)

Since D is symmetric, it can be represented via a spectral form

D =
3∑

r=1

αr pr pr . (4.168)
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We also have the relations

pr · ps = 0, if r 
= s,

(dṡ/ds)pr = αr , (4.169)

−1
2
θ̇(ps, pq) = ps ·

3∑
r=1

αr pr pr · pq.

Note a property of the last relation, viz.,

−1
2
θ̇(ps,pq) = ps ·

3∑
r=1

αr pr pr · pq = 0, if s 
= q. (4.170)

Thus the principal directions of D do not undergo relative angular changes and conse-
quently undergo only rigid body rotations as a triad of vectors. Indeed, recall (4.142) for
the time derivative of a unit vector along a fiber in the current state,

�̇ = L · � − (� · L · �)�, (4.171)

and apply it to a principal direction, pi . There follows

ṗi = L · pi − (pi · L · pi )pi . (4.172)

This can be reduced to

ṗi = D · pi + W · pi − (pi · D · pi )pi (no sum on i)

= αi pi + W · pi − αi pi

= W · pi ⇒ a rigid rotation.

Thus W can be thought of as the instantaneous spin of the principal directions of D.

4.20 Material Derivatives of Strain Tensors: Ė vs. D

Recall that

E = 1
2

(
FT · F − I

) = 1
2

(C − I). (4.173)

Taking the time derivative, we find

Ė = 1
2

Ċ = 1
2

(
Ḟ

T · F + FT · Ḟ
)

= 1
2

(
FT · LT · F + FT · L · F

)
= 1

2

[
FT · (L + LT) · F

]
.

Thus,

Ė = FT · D · F = 1
2

Ċ. (4.174)
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l

2

3

1
0

r0

l

r

Figure 4.14. Geometry of uniaxial tension.

Only when the reference state is taken as the current state, i.e., when F = I instantaneously,
do we have

Ė0 = D0. (4.175)

As an example, consider a homogeneous uniaxial tension or compression test. The ref-
erence gauge length of the uniaxial specimen is taken as �0, and its current length is �
(Fig. 4.14). The geometry of uniaxial tension, or compression, then dictates the following
deformation map

x1 = (1 + r − r0

r0
)X1

x2 = (1 + �− �0

�0
)X2 (4.176)

x3 = (1 + r − r0

r0
)X3.

The stretches are defined as λ ∼ length/ ini tial length, and so for the three principal di-
rections,

λ1 = r/r0, λ2 = �/�0, λ3 = r/r0. (4.177)

The radial stretch in both directions is assumed to be the same, e.g., as would be the case
for an isotropic material. For the deformation gradient we obtain

F =
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ , F−1 =

⎡
⎣1/λ1 0 0

0 1/λ2 0
0 0 1/λ3

⎤
⎦ . (4.178)

Also,

F = R · U ⇒ U =
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ , R = I. (4.179)

Thus,

C = FT · F = U2 =
⎡
⎣λ2

1 0 0
0 λ2

2 0
0 0 λ2

3

⎤
⎦ . (4.180)
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The strain tensor is

E = 1
2

(FT · F − I) = 1
2

(C − I)

= 1
2

⎡
⎣λ2

1 − 1 0 0
0 λ2

2 − 1 0
0 0 λ2

3 − 1

⎤
⎦ . (4.181)

The velocity gradient is

L = Ḟ · F−1 =
⎡
⎣λ̇1/λ1 0 0

0 λ̇2/λ2 0
0 0 λ̇3/λ3

⎤
⎦ =

⎡
⎣ṙ/r0 0 0

0 �̇/�0 0
0 0 ṙ/r0

⎤
⎦ . (4.182)

It is clear that

L = D, W = 0. (4.183)

The rate of strain is

Ė = 1
2

⎡
⎣2λ1λ̇1 0 0

0 2λ̇2λ2 0
0 0 2λ̇3λ3

⎤
⎦ . (4.184)

As a check on the above, form

Ė = FT · D · F

=
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ ·

⎡
⎣λ̇1/λ1 0 0

0 λ̇2/λ2 0
0 0 λ̇3/λ3

⎤
⎦ ·

⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦

= 1
2

⎡
⎣2λ1λ̇1 0 0

0 2λ̇2λ2 0
0 0 2λ̇3λ3

⎤
⎦ , (4.185)

in agreement with the previous result.

4.21 Rate of F in Terms of Principal Stretches

The right stretch tensor can be expressed in terms of its eigenvalues – principal stretches
λi (assumed here to be different) and corresponding eigendirections Ni as

U =
3∑

i=1

λi Ni Ni . (4.186)

The rate of U is then

U̇ =
3∑

i=1

[
λ̇i Ni Ni + λi

(
Ṅi Ni + Ni Ṅi

)]
. (4.187)
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If e0
i (i = 1, 2, 3) are the fixed reference unit vectors, the unit vectors Ni of the principal

directions of U can be expressed as

Ni = RRR0 · e0
i , (4.188)

where RRR0 is the rotation that carries the orthogonal triad {e0
i } into the Lagrangian triad

{Ni }. Defining the spin of the Lagrangian triad by

Ω0 = ṘRR0 ·RRR−1
0 , (4.189)

it follows that

Ṅi = ṘRR0 · e0
i = Ω0 · Ni = −Ni · Ω0, (4.190)

and the substitution into (4.187) gives

U̇ =
3∑

i=1

λ̇i Ni Ni + Ω0 · U − U · Ω0. (4.191)

If the spin tensor Ω0 is expressed on the axes of the Lagrangian triad as

Ω0 =
∑
i 
= j

�0
i j Ni N j , (4.192)

it is readily found that

Ω0 · U = �0
12(λ2 − λ1) N1 N2 +�0

23(λ3 − λ2) N2 N3 +�0
31(λ1 − λ3) N3 N1. (4.193)

Consequently,

Ω0 · U − U · Ω0 = Ω0 · U + (Ω0 · U)T =
∑
i 
= j

�0
i j (λ j − λi ) Ni N j . (4.194)

The substitution into (4.191) yields

U̇ =
3∑

i=1

λ̇i Ni Ni +
∑
i 
= j

�0
i j (λ j − λi ) Ni N j . (4.195)

Similarly, the rate of the Lagrangian strain tensor is

Ė =
3∑

i=1

λi λ̇i Ni Ni +
∑
i 
= j

�0
i j

λ2
j − λ2

i

2
Ni N j . (4.196)

The principal directions of the left stretch tensor V, appearing in the spectral
representation

V =
3∑

i=1

λi ni ni , (4.197)

are related to principal directions Ni of the right stretch tensor U by

ni = R · Ni = RRR · e0
i , RRR = R ·RRR0. (4.198)
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The rotation tensor R is the rotation from the polar decomposition of the the deformation
gradient F = V · R = R · U. By differentiating the above expression for ni , there follows

ṅi = Ω · ni , (4.199)

where the spin of the Eulerian triad {ni } is defined by

Ω = ṘRR ·RRR−1 = ω + R · Ω0 · RT, ω = Ṙ · R−1. (4.200)

On the axes ni , the spin Ω can be decomposed as

Ω =
∑
i 
= j

�i j ni n j . (4.201)

By an analogous derivation, as used to obtain the rate U̇, it follows that

V̇ =
3∑

i=1

λ̇i ni ni +
∑
i 
= j

�i j (λ j − λi ) ni n j . (4.202)

The rate of the rotation tensor

R =
3∑

i=1

ni Ni (4.203)

is

Ṙ =
3∑

i=1

(
ṅi Ni + ni Ṅi

) = Ω · R − R · Ω0, (4.204)

or

Ṙ =
∑
i 
= j

(
�i j −�0

i j

)
ni N j . (4.205)

Finally, the rate of the deformation gradient

F =
3∑

i=1

λi ni Ni (4.206)

is

Ḟ =
3∑

i=1

[
λ̇i ni Ni + λi

(
ṅi Ni + ni Ṅi

)]
. (4.207)

Since ṅi = Ω · ni and Ṅi = Ω0 · Ni , it follows that

Ḟ =
3∑

i=1

λ̇i ni Ni + Ω · F − F · Ω0, (4.208)

and

Ḟ =
3∑

i=1

λ̇i ni Ni +
∑
i 
= j

(
λ j�i j − λi�

0
i j

)
ni N j . (4.209)
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4.21.1 Spins of Lagrangian and Eulerian Triads

The inverse of the deformation gradient can be written in terms of the principal
stretches as

F−1 =
3∑

i=1

1
λi

Ni ni . (4.210)

Using this and (4.209) we obtain an expression for the velocity gradient

L = Ḟ · F−1 =
3∑

i=1

λ̇i

λi
ni ni +

∑
i 
= j

(
�i j − λi

λ j
�0

i j

)
ni n j . (4.211)

The symmetric part of this is the rate of deformation tensor,

D =
3∑

i=1

λ̇i

λi
ni ni +

∑
i 
= j

λ2
j − λ2

i

2λiλ j
�0

i j ni n j , (4.212)

whereas the antisymmetric part is the spin tensor

W =
∑
i 
= j

(
�i j − λ2

i + λ2
j

2λiλ j
�0

i j

)
ni n j . (4.213)

Evidently, for i 
= j from (4.212) we have

�0
i j = 2λiλ j

λ2
j − λ2

i

Di j , λi 
= λ j , (4.214)

which is an expression for the components of the Lagrangian spin Ω0 in terms of the
stretch ratios and the components of the rate of deformation tensor. Substituting (4.214)
into (4.213) we obtain an expression for the components of the Eulerian spin Ω in terms
of the stretch ratios and the components of the rate of deformation and spin tensors, i.e.,

�i j = Wi j + λ2
i + λ2

j

λ2
j − λ2

i

Di j , λi 
= λ j . (4.215)

The inverse of the rotation tensor R is

R−1 =
3∑

i=1

Ni ni , (4.216)

so that, by virtue of (4.205), the spin ω can be expressed as

ω = Ṙ · R−1 =
∑
i 
= j

(
�i j −�0

i j

)
ni n j . (4.217)

Thus,

ωi j = �i j −�0
i j , (4.218)

where �0
i j are the components of Ω0 on the Lagrangian triad {Ni }, whereas �i j are the

components of Ω on the Eulerian triad {ni }. When (4.214) and (4.215) are substituted into
(4.218), we obtain an expression for the spin components ωi j in terms of the stretch ratios
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and the components of the rate of deformation and spin tensors, which is

ωi j = Wi j + λ j − λi

λi + λ j
Di j . (4.219)

4.22 Additional Connections Between Current and Reference
State Representations

LEMMA 4.3: If u is a vector field and T is a tensor field representing properties of a deforming
body, then

Div u = Jdiv (J−1F · u), Div T = Jdiv (J−1F · T). (4.220)

Proof: The above relations depend on the result

∂

∂xp

(
J−1 Fpα

) = 0, (4.221)

which is justified from Lemma 4.1. In fact replacing t with Xα , we obtain

∂ J/∂Xα = J tr
(
∂F
∂Xα

· F−1
)

= J
∂Fqρ

∂Xα
F−1
ρq = J

∂2xq

∂Xα∂Xρ
F−1
ρq , (4.222)

where we note that F−1
αi = ∂xi/∂Xα , and J = det F. Thus,

∂

∂xp

(
J−1 Fpα

) = ∂

∂Xπ

(
J−1 Fpα

) ∂Xπ
∂xp

=
(

J−1 ∂2xp

∂Xα∂Xπ
− J−1 ∂2xq

∂Xπ∂Xρ
F−1
ρq Fpα

)
F−1
πp

= J−1
(

∂2xq

∂Xα∂Xρ
F−1
ρq − ∂2xq

∂Xπ∂Xρ
δπαF−1

ρq

)
= 0.

Furthermore, we obtain

Div u − J div
(
J−1F · u

) = ∂uπ
∂Xπ

− J
(
J−1 Fpπuπ

)
= ∂uπ
∂Xπ

− Fpπ
∂uπ
∂xp

= ∂uπ
∂Xπ

− ∂uπ
∂xp

∂xp

∂Xπ
= 0

and

Div T − J div
(
J−1F · T

) = ∂Tπρ
∂Xπ

Eρ − J
∂

∂xp
(J−1 FpπTπq)eq

= ∂Tπρ
∂Xπ

Eρ − Fpπ
∂Tπq

∂xp
eq

= ∂

∂Xπ
(TπρEρ − Tπqeq) = 0.
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4.23 Transport Formulae

We now turn our attention to the rates of change of integrals over material curves, surfaces,
and volume elements. We focus attention to the area or volume elements in the current
state.

LEMMA 4.4: Let C, S, and V represent a material line (curve), a surface, and a volume
element, respectively in the current state; as usual, φ(x) is a scalar field. Then,

d
dt

∫
C
φ dx =

∫
C

(φ̇ dx + φ L · dx),

d
dt

∫
S
φ n da =

∫
S

[
(φ̇ + φ tr L)n − φ LT · n

]
da, (4.223)

d
dt

∫
V
φ dv =

∫
V

(φ̇ + φ tr L) dv,

where n is the unit normal to the external surface, S, of the body.
If u(x) is a continuous and differentiable vector field, then the corresponding results are

d
dt

∫
C

u · dx =
∫

C
(u̇ + LT · u) · dx,

d
dt

∫
S

u · n da =
∫

S
(u̇ + u tr L − L · u) · n da, (4.224)

d
dt

∫
V

u dv =
∫

V
(u̇ + u tr L) dv.

Proof: We focus on the second of the above relations, as the other relations follow by
direct analogy. We have

d
dt

∫
S

u · n da = d
dt

∫
SR

[
u · (JF−T · N dA

)]

=
∫

SR

∂

∂t

[
u · (JF−T · N dA

)]

=
∫

SR

∂

∂t
(JF−1 · u) · N dA

=
∫

SR

[
JF−1 · u̇ + (J tr L) · F−1 · u + J (−F−1 · L) · u

] · N dA

=
∫

SR

(u̇ + u tr L − L · u) · (JF−T · N dA)

=
∫

S
(u̇ + u tr L − L · u) · n da.

In developing the above use was made of the following

(F−1)
. = −F−1 · Ḟ · F−1 ,

L = Ḟ · F−1 = −F · (F−1)
.

,
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and J̇ = tr L. Also, if dx = F · dX and dy = F · dY are vector elements in the current and
reference states respectively, then nda = (F · dX) × (F · dY) = JF−T · NdA.

4.24 Material Derivatives of Volume, Area, and Surface Integrals:
Transport Formulae Revisited

We recall the results for the rate of change of a volume element,

d
dt

(dV) = ∂vi

∂xi
dV. (4.225)

Examine integrals of the type

Ai j ...(t) =
∫

V
Ai j ...(x, t) dV, (4.226)

and, more particularly, their time derivatives

d
dt

Ai j ...(t) = d
dt

∫
V

Ai j ...(x, t) dV. (4.227)

Since this integral is taken over a fixed amount of mass (i.e., material), we may interchange
the order of differentiation and integration. This leads to

d
dt

∫
V

Ai j ...(x, t) dV =
∫

V

d
dt

[Ai j ...(x, t) dV] , (4.228)

which on using (4.225) leads to

d
dt

∫
V

Ai j ...(x, t) dV =
∫

V

[
dAi j ...(x, t)

dt
+ Ai j ...(x, t)

∂vp

∂xp

]
dV. (4.229)

We next recall the relation for the material derivative operator, viz.,

d
dt

= ∂

∂t
+ vp

∂

∂xp
. (4.230)

When this is used in the above it is found that

d
dt

∫
v

Ai j ...(x, t)dV =
∫

V

{
∂Ai j ...(x, t)

∂t
+ ∂

∂xp
[vp Ai j ...(x, t)]

}
dV. (4.231)

The divergence theorem may be used on the second term on the rhs to obtain

d
dt

∫
v

Ai j ...(x, t) dV =
∫

V

∂Ai j ...(x, t)
∂t

dV +
∫

S
vp Ai j ...(x, t)np dS, (4.232)

where n is the outward pointing unit normal to the surface S that bounds V and np is its
pth component.

We next examine surface integrals of the form

Bi j ...(t) =
∫

S
Bi j ...(x, t)np dS, (4.233)

and derivatives of the type

d
dt

∫
S

Bi j ...(x, t)np dS =
∫

S

d
dt

[Bi j ...(x, t)np dS] . (4.234)



P1: FBQ

0521859794c04.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:32

4.25. Analysis of Simple Shearing 85

Figure 4.15. Geometry of simple shear.

From the solved Problem 4.11 of Chapter 34, with dSp ≡ npdS, we have

dSp

dt
= (∂vq/∂xq)dSp − (∂vq/∂xp)dSq, (4.235)

which describes the rate of change of surface area elements. Using this in (4.234), we obtain

dBi j ...(t)
dt

=
∫

S

[
dBi j ...(x, t)

dt
+ ∂vq

∂xq
Bi j ...(x, t)

]
dSp −

∫
S

Bi j ...(x, t)
∂vp

∂xq
dSp.

Finally, consider line integrals of the type

Li j ...(t) =
∫

C
Li j ...(x, t)�p ds, (4.236)

where ds is an element of arc length and � is the running tangent at each point on the line;
�p is then the pth component of that tangent. Recall that �pds = dxp and

d
dt

(dxp) = ∂vp

∂xk
dxk. (4.237)

Then,

d
dt

∫
C

Li j ...(x, t) dxp =
∫

C

d
dt

[Li j ...(x, t) dxp] (4.238)

and

dLi j ...(t)
dt

=
∫

C

dLi j ...(x, t)
dt

dxp +
∫

C

∂vp

∂xk
[Li j ...(x, t)] dxk. (4.239)

4.25 Analysis of Simple Shearing

Consider the motion depicted in Fig. 4.15. The motion is associated with the deformation
gradient,

F = I + γ (t)�m. (4.240)

Let n be a third unit vector that along with � and m form a right-handed triad and serve as
a basis system. The deformation prescribed by the above F is volume preserving because

det F = [F · �,F · m,F · n] = [�,m + γ �,n] = [�,m,n] = 1. (4.241)
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We also note that

F−1 = I − γ �m,

FT = I + γm�, (4.242)

I = �� + mm + nn.

Thus,

C = FT · F = �� + (1 + γ 2)mm + nn + γ (�m + m�). (4.243)

Since C · n = n, the vector n is clearly an eigenvector with an eigenvalue of 1; let p1 and
p2 be the other two eigenvectors of C. Then,

C =
3∑

i=1

λ2
i pi pi , (4.244)

where formally p3 = n. But since det F = λ1λ2λ3 = 1, and λ3 = 1, it is clear that λ1 = 1/λ2.
Recall that det C = det(FT · F) = (det F)2. Thus, letting λ = λ1, we write

C = λ2p1p1 + λ−2p2p2 + nn. (4.245)

Next, express the eigenvectors as

p1 = cos θ� + sin θm,

p2 = − sin θ� + cos θm.
(4.246)

We use these in (4.245), and then in (4.243), to form the equations

C · p1 = λ2p1, C · p2 = λ−2p2. (4.247)

Upon expanding, we obtain the set

λ2 cos2 θ + λ−2 sin2 θ = 1,

λ2 sin2 θ + λ−2 cos2 θ = 1 + γ 2, (4.248)

(λ2 − λ−2) sin θ cos θ = γ,

which has the solution

λ = (1 + 1
4
γ 2)1/2 + 1

2
γ = cotψ,

θ = 1
2
π − ψ, (4.249)

ψ = 1
2

tan(2/γ ).

Thus, the principal stretches are

λ1 = cotψ, λ2 = tanψ, λ3 = 1, (4.250)
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with the corresponding principal directions

p1 = sinψ� + cosψm,

p2 = − cosψ� + sinψm, (4.251)

p3 = n.

Butγ is a function of time and we note that Ḟ = γ̇ �m. Thus, the velocity gradient becomes

L = γ̇ �m · (I − γ �m) = γ̇ �m, (4.252)

which, in turn, means that the velocity is

υ = γ̇ (�m) · x. (4.253)

The rate of deformation and spin rates become

D = 1
2

(�m + m�),

W = 1
2

(�m − m�).

(4.254)

Consider the effect of W on an arbitrary vector a. We have

W · a = 1
2
γ̇ [(a · m)� − (a · �)m] = −1

2
γ̇n × a, (4.255)

and thus 1
2 γ̇n is the axial vector of W.

4.26 Examples of Particle and Plane Motion

Consider a deformation map prescribed by

x1 = X1 + kt X3,

x2 = X2 + kt X3, (4.256)

x3 = X3 − kt(X1 − X2),

where the geometry is sketched in Fig. 4.16. The parameter k is a constant and t is time. We
will show that the motion of an arbitrary particle is along a straight line always orthogonal
to X, the vector from the origin to the initial position of the particle. Further, if there was
a slab, as also depicted in the figure, lying with its faces perpendicular to the X1 axis, this
slab would reorient such that, in the limit as t → ∞, the slab’s faces would lie inclined to
the X1 axes at π/4.

From (4.256) we first form the components of the deformation gradient and the vector
of material velocity. These are

F =
⎡
⎣ 1 0 kt

0 1 kt
−kt −kt 1

⎤
⎦ , (4.257)

and

υ = kX3e1 + kX3e2 − k(X1 + X2)e3. (4.258)
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Figure 4.16. (a) Position vector, X, of an arbitrary
particle. (b) Slab with its initial faces perpendicular
to the X1 axis.

Since the vector to the arbitrary material particle is X, the velocity is – and for all t is –
orthogonal to X, because

υ · X = [kX3e1 + kX3e2 − k(X1 + X2)e3] · [X1e1 + X2e2 + X3e3] = 0. (4.259)

Next consider the two vectors that define the sides of the slab. In the current state they
are

F · e2 = Fq2eq, F · e3 = Fr3er . (4.260)

Thus, the normal to the slab’s face is

n = Fq2e2 × Fr3e3

|Fq2e2| |Fr3e3| . (4.261)

A straightforward calculation shows that

n · e1 = 1 − (kt)2

[1 + (kt)2]1/2 [1 + 2(kt)2]1/2
, (4.262)

which, in the limit, becomes

lim
t→∞ n · e1 = 1/

√
2, (4.263)

thus demonstrating the proposition.

4.27 Rigid Body Motions

LEMMA 4.5: Let {e1, e2, e3} and {e′
1, e

′
2, e

′
3} be two orthonormal unit bases systems. Then

P = epe′
p (4.264)

is an orthogonal tensor.

Proof: If a and b are two arbitrary vectors and if P is an orthogonal tensor, then

(P · a) · (P · b) = a · b. (4.265)

To verify this, write

(P · a) · (P · b) = (e′
pep · a) · (e′

pep · b)

= (a · PT) · (P · b) = (a · epe′
p) · (e′

ses · b).
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x

y

Figure 4.17. Two material fibers.

The last equality verifies the proposition since e′
p · e′

s = δps and, of course, ap = a · ep and
bs = b · es . Thus (P · a) · (P · b) = a · b, as P defines an orthogonal tensor.

LEMMA 4.6: If the distance between every pair of material points is the same following a
motion, the motion is said to be rigid. For this to be the case the mapping must be of the form

x(t) = c(t) + Q(t) · X, (4.266)

where Q is an orthogonal tensor.

Proof: Refer to Fig. 4.17 showing two material vectors, x and y. First note that the term
c(t) simply represents a uniform translation of the body. This clearly produces no changes
in the length of any fibers or any changes in the relative angle between any two fibers.
Thus, we are concerned only with the remaining part of the transformation, i.e.,

x − c = Q · X . (4.267)

We proceed as follows. Form the scalar product between the two vectors x − c and y − c,

(x − c) · (y − c) = (Q · X) · (Q · Y) = (X · QT) · (Q · Y) = X · Y,

which is constant for given X and Y. Also, |x − y| = |X − Y|, because Q is orthogonal and
x − y = Q · (X − Y). Furthermore, since x = c + Q · X, the velocity is

ẋ = υ = dx/dt = ċ(t) + Q̇ · X. (4.268)

But,

X = QT · [x − c(t)], (4.269)

and so

υ = ẋ = ċ(t) + Q̇ · QT · (x − c). (4.270)

Conversely,

Q · QT = I ⇒ Q̇ · QT + Q · Q̇
T = 0 ⇒ Q̇ · QT = −Q · Q̇

T
.

Thus, Q̇ · QT = W is antisymmetric, and we so write

υ = ẋ = ċ + W · (x − c). (4.271)

4.28 Behavior under Superposed Rotation

If a time-dependent rotation Q(t) is superposed to the deformed configuration at time t ,
an infinitesimal material line element dx becomes

dx∗ = Q · dx, (4.272)
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whereas in the undeformed configuration

dX∗ = dX. (4.273)

Consequently, since dx = F · dX, we have

F∗ = Q · F. (4.274)

This implies that

U∗ = U, C∗ = C, E∗ = E, (4.275)

and

V∗ = Q · V · QT, B∗ = Q · B · QT. (4.276)

The objective rate of the deformation gradient F transforms according to

∇
F∗ = Q ·

∇
F,

∇
F = Ḟ − W · F . (4.277)

The rotation R becomes

R∗ = Q · R. (4.278)

The spin ω = Ṙ · R−1 changes to

ω∗ = Ω + Q · ω · QT, Ω = Q̇ · Q−1. (4.279)

The velocity gradient transforms as

L∗ = Ω + Q · L · QT, (4.280)

whereas the rate of deformation and the spin tensor become

D∗ = Q · D · QT,

W∗ = Ω + Q · W · QT.
(4.281)
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5 Kinetics of Continuum

5.1 Traction Vector and Stress Tensor

There are two general types of forces we consider in the mechanics of solid bodies, viz.,
applied surface traction and body forces. Examples of body forces include, inter alia, grav-
itational forces (self-weight), electrostatic forces (in the case of charged bodies in electric
fields), and magnetic forces. Body forces are usually described as a density of force and
thus have units of newtons per cubic meter [N/m3]. Surface traction has, as expected, units
of newtons per square meter [N/m2]. We then describe a body force density as b, so that the
total body force acting on a volume element δv is bδv. Surface traction must be described
in terms of the vector force involved and with respect to the surface element it acts on;
this, in turn, is described by the unit normal, n, to the surface element that the traction acts
on. Let Tn be the traction vector measured per unit area of the surface element involved.
Then the total force acting on an area element with normal n and area ds is Tnds. These
are depicted in Fig. 5.1.

Consider a thin “wafer” of material whose lateral dimensions are of O(h) and whose
thickness is of O(ε); we will soon take the limit as limε/h→0. In any event, ε/h � 1.
Equilibrium for the wafer requires that∫

�

εT� ds +
∫
�

Tn+ dA+
∫
�

Tn− dA+
∫
�

εb dA= 0. (5.1)

Here� is the total area of the wafer’s top and bottom sides and � is the perimeter around
its edge. The traction vectors, Tn+ and Tn− act on the “top” and “bottom” sides of the
wafer, respectively. The wafer’s thickness is ε. If ε → 0, we have∫

�

εT� ds → 0,
∫
�

εb dA→ 0, (5.2)

and we arrive at the notion of traction continuity∫
�

Tn+ dA+
∫
�

Tn− dA= 0. (5.3)

Since � is arbitrary, we must have

Tn+ = −Tn− . (5.4)

92
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Figure 5.1. Traction vector over the
surface element.

Consider next the tetrahedron shown in Fig. 5.2. This is known as the Cauchy tetrahe-
dron. Let a1, a2, a3 be the areas of the three faces having normals in the e1, e2, e3 directions,
respectively. The volume of the tetrahedron is v. Note that the edges of the oblique face
make intercepts with the axes at locations marked a,b, c. The distances along the axes of
these intercepts are ε1, ε2, ε3. Note also that the three faces aligned with the coordinate
axes have unit normals along −e1,−e2,−e3, respectively. Simple geometry reveals that

a1 = 1
2
ε2ε3, a2 = 1

2
ε1ε3, a3 = 1

2
ε2ε1, v = 1

6
ε1ε2ε3. (5.5)

We need to calculate the area of the oblique face, and for this purpose we define two
convenient vectors that define the oblique surface element. If we call an the magnitude
of the area of this oblique surface element, and n its unit normal, its vector area will be
ann. Clearly,

ann = 1
2

(b − a) × (c − a), (5.6)

where a,b, and c are the edge vectors comprising the sides of the inclined face of the
Cauchy tetrahedron. In terms of the intercepts and unit base vectors, this becomes

ann = 1
2

(−ε1e1 + ε2e2) × (−ε1e1 + ε3e3)

= 1
2

(ε3ε1e2 + ε1ε2e3 + ε2ε3e1). (5.7)

Thus,

ann = ai ei ⇒ ai = an(n · ei ). (5.8)

T
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Figure 5.2. The Cauchy tetrahedron.
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Figure 5.3. Rectangular stress components of
Cauchy stress.

The equilibrium of the tetrahedron yields

anTn + a1Te−
1

+ a2Te−
2

+ a3Te−
3

+ vb = 0, (5.9)

or, more compactly,

Tn + (n · ei )Te−
i

+ v/anb = 0. (5.10)

In the limit when εi → 0, or v/an → 0, we obtain

Tn = −(n · ei )Te−
i

= (n · ei )Tei . (5.11)

This suggests the definition

σ ≡ ei Tei , (5.12)

such that

Tn = n · σ . (5.13)

But,

Tei = Tei j e j , (5.14)

which suggests a further definition

σ = Tei j ei e j . (5.15)

This yields

σ = σi j ei e j , σi j = Tei j . (5.16)

With reference to Fig. 5.3, we can represent the normal and shear components of stress as

σnn = n · σ · n,

σns = n · σ · s.
(5.17)

5.2 Equations of Equilibrium

Consider a loading system on a solid body consisting of body forces and applied surface
traction. Equilibrium requires that∫

S
Tn dS +

∫
V

b dV = 0, (5.18)
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Figure 5.4. A portion of an equilibrated body under surface tractions and body
forces.

where dS is a surface area element and S the body’s surface as depicted in Fig. 5.4. Since
Tn = n · σ, (5.18) can be written as∫

S
n · σ dS +

∫
V

b dV = 0. (5.19)

The divergence theorem gives ∫
S

n · σ dS =
∫

V
∇ · σ dV, (5.20)

which, in turn, leads to ∫
v

(∇ · σ + b) dV = 0. (5.21)

Since V is arbitrary, we find that at every point

div σ + b = ∇ · σ + b = 0. (5.22)

These are the equilibrium equations. Since

σ = σi j ei e j , (5.23)

we can write, in component form, the three equilibrium equations as

∂σ j i

∂xj
+ bi = 0, i = 1, 2, 3. (5.24)

The components of the body force per unit current volume are bi .

5.3 Balance of Angular Momentum: Symmetry of σ

The requirement of vanishing net torque on the solid body requires that∫
S

r × Tn dS +
∫

V
r × b dV = 0, (5.25)

where r is a position vector within the body measured from an arbitrary point (Fig. 5.4).
Using the fact that Tn = n · σ = σT · n, the above becomes∫

S
r × (σT · n) dS +

∫
V

r × b dV = 0. (5.26)
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The corresponding equation in the index notation is∫
S
εi jkxjσlknl dS +

∫
V
εi jkxj bk dV = 0 . (5.27)

By the Gauss divergence theorem∫
S
εi jkxjσlknl dS =

∫
V
εi jk

∂

∂xl
(xjσlk) dV

=
∫

V
εi jk

(
σ jk + xj

∂σlk

∂xl

)
dV .

(5.28)

Then, (5.27) becomes∫
V
εi jkxj

(
∂σlk

∂xl
+ bk

)
dV +

∫
V
εi jkσ jk dV = 0 . (5.29)

The first integral vanishes by equilibrium equations. Thus,∫
V
εi jkσ jk dV = 0 . (5.30)

This holds for the whole volume V, or any part of it, so that we must have at every point

εi jkσ jk = 0 . (5.31)

Since εi jk is antisymmetric in jk, the stress tensor must be symmetric, σ jk = σkj . Alterna-
tively, by multiplying (5.31) with εmni and by using ε − δ relation

εmniε jki = δmjδnk − δmkδnj , (5.32)

there follows

εmniεi jkσ jk = σmn − σnm = 0 . (5.33)

Consequently,

σmn = σnm, or σ = σT , (5.34)

establishing that the Cauchy stress tensor is a symmetric tensor.

5.4 Principal Values of Cauchy Stress

To explore principal values, σi , of the Cauchy stress tensor, we consider the equation

σ · n = σn. (5.35)

The eigenvalues

σi = ni · σ · ni (5.36)

are the principal stresses, and the eigenvectors ni are the unit normals to principal planes
of the stress tensor σ. Since

σ · ni − σi ni = 0 , (5.37)

there is no shear stress on the principal planes. The principal stresses and principal planes
are determined by solving the eigenvalue problem (5.35). If the three eigenvalues are
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Figure 5.5. Coordinate system of the principal directions.

different, there are three mutually orthogonal principal directions. If two eigenvalues
are equal, e.g., σ1 = σ2 
= σ3, any direction in the plane orthogonal to n3 is the principal
direction. If three eigenvalues are equal to each other, the stress state is said to be spherical;
any direction is the principal direction, without shear stress on any plane.

5.5 Maximum Shear Stresses

Imagine that the principal stresses have been determined along with the correspond-
ing eigenvectors, i.e., the principal directions of the Cauchy stress tensor σ. Call them
{p1,p2,p3}. Call the three principal stresses {σ1, σ2, σ3}, and assume without loss of gener-
ality that they are algebraically ordered as σ1 ≥ σ2 ≥ σ3. Now consider an arbitrary area
element within the body at a point with unit normal n. The traction acting on this area
element is tn. The components of tn with respect to the principal directions are then

tn
1 = σ1n1,

tn
2 = σ2n2, (5.38)

tn
3 = σ3n3,

where the components of the unit normal n are likewise referred to the principal directions
of σ. The normal stress on the area element is

σnn = n · σ · n = σ1n2
1 + σ2n2

2 + σ3n2
3. (5.39)

The stress component σns , defined in Fig. 5.5 is the shear stress acting in the area element
resulting from the tangential force resolved from tn. Then since the magnitude of tn is

tn · tn = σ 2
nn + σ 2

ns, (5.40)

we have

σ 2
ns = tn · tn − σ 2

nn. (5.41)

With the obvious substitutions, we obtain

σ 2
ns = σ 2

1 n2
1 + σ 2

2 n2
2 + σ 2

3 n2
3 − (σ1n2

1 + σ2n2
2 + σ3n2

3)2. (5.42)

Extremum values for σns are found using the Lagrangian multiplier. Let

L = σ 2
ns − λ(ni n1 − 1), (5.43)



P1: FBQ

0521859794c05.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:34

98 5. Kinetics of Continuum

n t
n

>

>

ds

N N
T> >

dS

F

Figure 5.6. The traction vector in the reference and de-
formed states.

subject to the constraint that ni ni = 1. Then ∂L/∂λ = 0 yields the system

n1
[
σ 2

1 − 2σ1(σ1n2
1 + σ2n2

2 + σ3n2
3) + λ] = 0,

n2
[
σ 2

2 − 2σ2(σ1n2
1 + σ2n2

2 + σ3n2
3) + λ] = 0,

n3
[
σ 2

3 − 2σ3(σ1n2
1 + σ2n2

2 + σ3n2
3) + λ] = 0.

(5.44)

These equations are solved for λ and the components of n, subject to the constraint that
n2

1 + n2
2 + n2

3 = 1.
There are two sets of solutions possible. The first set is

n1 = ±1, n2 = 0, n3 = 0, for which σns = 0,

n1 = 0, n2 = ±1, n3 = 0, for which σns = 0,

n1 = 0, n2 = 0, n3 = ±1, for which σns = 0.

The shear stresses are zero because these solutions for n are just to align it with a principal
direction; this yields minimum values for σns .

Another set of solutions is

n1 = 0, n2 = ±1/
√

2, n3 = ±1/
√

2, for which σns = (σ2 − σ3)/2,

n1 = ±1/
√

2, n2 = 0, n3 = ±1/
√

2, for which σns = (σ1 − σ3)/2,

n1 = ±1/
√

2, n2 = ±1/
√

2, n3 = 0, for which σns = (σ1 − σ2)/2.

The second expression gives the maximum shear stress, which is equal to half the difference
between the maximum and minimum principal stress. Also, the maximum shear stress
acts in the plane that bisects the right angle between the directions of the maximum and
minimum principal stresses.

5.6 Nominal Stress

Recall the connection between area elements in the deformed and the reference state,

n̂ds = (det F)F−T · N̂dS. (5.45)

Define the nominal traction TN̂ acting on the area element in the reference state (Fig. 5.6) by

TN̂dS = tn̂ds , (5.46)
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where tn̂ is the true traction acting in the corresponding area element in the deformed
state. Since tn̂ = σ · n̂, we have

TN̂dS = σ · n̂ds = σ · (det F)F−T · N̂dS. (5.47)

This defines the nominal stress tensor, or the first Piola–Kirchhoff stress tensor,

P = (det F)σ · F−T , (5.48)

such that TN̂ = P · N̂. If we decompose the nominal stress on the bases in the undeformed
and deformed configuration, we have

P = Pi j ei E j . (5.49)

Thus, the nominal stress defined in this way has the following interpretation

Pi j = ei · P · E j = i th component of force acting on an area element

that had its normal in the j direction

and had a unit area in the reference state.

The representation P̂ is also used in the literature, where P̂ = PT . This is associated with
the relationship to nominal traction, viz.,

TN̂ = N̂ · P̂ . (5.50)

In this case

P̂ = P̂i j Ei e j , (5.51)

so that

P̂i j = Ei · P̂ · ei = j th component of force acting on an area element

that had its normal in the i direction

and had a unit area in the reference state.

It is noted that first Piola–Kirchhoff stress is not symmetric. Since

σ = 1
det F

P · FT, (5.52)

the symmetry of the Cauchy stress (σ = σT) implies

P · FT = (P · FT)T = F · PT,

or

P · FT = F · PT. (5.53)

5.7 Equilibrium in the Reference State

We had already established the concept of nominal stress based on the idea of traction
equality, i.e.,

TNdS = tnds. (5.54)
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Figure 5.7. Nominal and true traction in the reference
and current states.

To establish equilibrium in the reference state, we recall the definition of the nominal
stress, viz., P = (det F)σ · F−T . With this in mind, global equilibrium requires that∫

S0

TN dS0 +
∫

V0

B dV0 = 0. (5.55)

The body force per unit reference volume is B. With the understanding that Tn = P · N,
where N is the unit normal to the body’s surface S0 (see Fig. 5.7), (5.55) becomes∫

S0

P · N dS0 +
∫

V0

B dV0 = 0. (5.56)

By the usual route, the divergence theorem leads to∫
V0

(Div PT + B) dV0 = 0, (5.57)

i.e.,

Div PT + B = 0. (5.58)

By taking the time derivative of (5.56) we find that

d
dt

∫
V0

(Div PT + B) dV0 = 0, (5.59)

where we note that dV0/dt = 0. Thus, in rate form,

Div Ṗ
T + Ḃ = 0. (5.60)

Such a simple rate form equation does not hold for the Cauchy stress and its rate.
In component form (5.58) becomes

∂Pi j

∂Xj
+ Bi = 0. (5.61)

whereas, in rate form,

∂ Ṗi j

∂Xj
+ Ḃi = 0. (5.62)

5.8 Work Conjugate Connections

Consider an increment of work performed during an incremental displacement, i.e.,

δw =
∫

S0

(P · N) · δu dS0. (5.63)
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The rate of such working, at fixed imposed stress, is

ẇ =
∫

S0

(P · N) · u̇ dS0. (5.64)

But the connection between positions in the current and reference states is

x = X + u, ẋ = u̇. (5.65)

Recalling also that

F = ∂x/∂X, ∂ ẋ/∂X = ∂u̇/∂X = Ḟ, (5.66)

we can write

ẇ =
∫

S0

(u̇ · P) · N dS0 =
∫

V0

Div (u̇ · P) dV0 =
∫

V0

Div (PT · u̇) dV0 ,

or

ẇ =
∫

V0

(u̇ · Div PT + P : Ḟ) dV0. (5.67)

Consider the case where B = Ḃ = 0, Div PT = 0, and so

ẇ =
∫

V0

P : Ḟ dV0, (5.68)

where P : Ḟ = Pi j Ḟi j . Note, if P̂ = PT is used as a nominal stress, then

P : Ḟ = Pi j Ḟi j = P̂ji Ḟi j = P̂ · · Ḟ . (5.69)

If R0 is the work rate per unit reference volume, then

R0 = work rate
unit reference volume

= P : Ḟ = Pi j Ḟi j . (5.70)

Since P = (det F)σ · F−T , we have

R0 = (det F)(σ · F−T) : Ḟ, (5.71)

and, since σ = σT ,

R0 = (det F) σ :
1
2

[
Ḟ · F−1 + (Ḟ · F−1)T

]
. (5.72)

This is is equivalent to

R0 = (det F) σ : D = τ : D, (5.73)

where we define the Kirchhoff stress as

τ = (det F) σ. (5.74)

Recalling that

Ė = FT · D · F ⇒ D = F−T · Ė · F−1, (5.75)
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we can further write

R0 = (det F) σ : (F−T · Ė · F−1)

= (det F) σi j F−T
js ĖspF−1

pi

= (det F) σi j F−T
js F−1

pi Ėsp

= (det F) F−1
pi σi j F−T

js Ėsp.

Thus,

R0 = (det F) F−1 · σ · F−T : Ė, (5.76)

from which we extract the stress measure

S = (det F) F−1 · σ · F−T, (5.77)

which we call the second Piola–Kirchhoff stress. Thus, for the rate of working per unit
initial volume we have

R0 = P : Ḟ = τ : D = S : Ė. (5.78)

To summarize, we have introduced three measures of stress, each conjugate to a particular
deformation measure vis-à-vis the work rate per unit reference volume, i.e.,

Nominal stress = P = (det F) σ · F−T,

Kirchhoff stress = τ = (det F) σ, (5.79)

2nd Piola–Kirchhoff stress = S = (det F) F−1 · σ · F−T.

We can say that P is work conjugate to F, whereas S is work conjugate to E.

5.9 Stress Deviator

The general tensor, such as σ, can be uniquely decomposed into a deviatoric part as

σ = σ′ + 1
3

(trσ)I. (5.80)

In proof, assume there were two such decompositions, viz., σi j = λδi j + σ ′
i j = λ∗δi j + σ ′∗

i j ,
with σ ′

i i = σ ′∗
i i = 0. Then, σi i = 3λ = 3λ∗ and from λδi j + σ ′

i j = λδi j + σ ′∗
i j it follows that

σ ′
i j = σ ′∗

i j . Note also that the principal directions of σ and σ′ are coincident.

5.10 Frame Indifference

Consider the scenario depicted in Fig. 5.8, i.e., a uniaxial tensile test with

σ22 = σ, σi j = 0 otherwise. (5.81)

For the simple case of linear elasticity, with Young’s modulus E, one is tempted to write

ε̇22 = 1
E
σ̇22. (5.82)
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1e

σ

σ

σ

σ 2e

3e

Figure 5.8. Rotating body with stress relative to a fixed reference
frame.

This relation in rate form, on the surface, looks innocent enough! But, imagine that the rod
shown in the figure were to rotate, with the loading system attached to it as indicated. With
respect to a fixed basis such as {e1, e2, e3} the components of σ would change. However,
there are clearly no changes in stress state within the body that would cause any additional
deformation. Thus a stress rate such as σ̇ would clearly be inappropriate for use in a
constitutive law.

We introduce the concept of an observer, i.e., a frame of observation. We say that two
such frames are equivalent if

(a) they measure the distance between any two arbitrary points to be the same;
(b) they measure the orientation between any two vectors to be the same;
(c) the time elapsed between any two events is the same; and
(d) the relative time between any two events is the same.

Let the two frames be called F and F ′, respectively. The two frames will satisfy the invari-
ance conditions (a)–(d) above iff the spatial-time coordinates are connected via

x′ = c(t) + Q(t) · x, t ′ = t − a, (5.83)

where Q is an orthogonal tensor and a is a scalar constant (Fig. 5.9). Equation (5.83) can
be inverted to yield

x = QT(t ′ + a)[x′ − c(t ′ + a)], t = t ′ + a. (5.84)

If a scalar field φ, a vector field u, and a tensor field T are to be objective, they must
transform according to

φ′(x′, t ′) = φ(x, t),

u′(x′, t ′) = Q(t) · u(x, t), (5.85)

T′(x′, t ′) = Q(t) · T(x, t) · QT(t).

These transformation rules ensure that the directions of u and T are not altered by
the transformation, relative to two rotated frames. To see this consider the two sets of
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Figure 5.9. Rotated coordinate frame.

orthonormal bases, {e1, e2, e3} and {e′
1, e

′
2, e

′
3}, where the {ei } bases, defined in F , coincide

with the {e′
i } bases defined in F ′, and where according to (5.85),

e′
i = Q(t) · ei . (5.86)

Thus,

Q(t) = e′
p(t)ep. (5.87)

Now, form the components of u as

u′(x′, t ′) · e′
i = u′

i (x′, t ′) = Q(t) · u(x, t) · e′
i = u(x, t) · QT(t) · e′

i

= u(x, t) · (epe′
p) · e′

i = u(x, t) · epδpi = u(x, t) · ei = ui (x, t).

A similar manipulation confirms that

T′
i j (x′, t ′) = e′

i · T′(x′, t ′) · e′
j = ei · T(x, t) · e j = Ti j (x, t). (5.88)

Let us next obtain the relations for the velocityυ, acceleration a, the rate of deformation
gradient Ḟ, and the velocity gradient L, under an observer transformation e′

i = Q · ei . As
before, x′ = c(t) + Q · x and t ′ = t − a. In frame F the motion is given as

x = Ψ(X, t), (5.89)

whereas in frame F ′

x′ = c(t ′ + a) + Q(t ′ + a) · Ψ(X, t ′ + a) = Ψ′(X, t ′). (5.90)

We obtain

υ′(x′, t ′) = ∂x′

∂t ′ = ∂Ψ′(X, t ′)
∂t ′

= ċ(t ′ + a) + Q̇(t ′ + a) · Ψ(X, t ′ + a)

+ Q(t ′ + a) · ∂Ψ(X, t ′ + a)
∂t

.

Since x′ = c + Q · x, there follows x = QT · (x′ − c), and

υ′(x′, t ′) = ċ + Q · υ + (
Q̇ · QT) · (x′ − c). (5.91)

Furthermore,

∂x′/∂X = Q(t ′ + a) · ∂Ψ/∂X = Q · F(X, t) = F′,
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so that

F′ = Q · F, (5.92)

and

Ḟ
′
(X, t) = Q̇(t) · F(X, t) + Q · Ḟ(X, t). (5.93)

For the velocity gradient, we can write

L′ = Ḟ
′ · F′−1 = (

Q · Ḟ + Q̇ · F
) · (Q · F)−1

= Q · Ḟ · F−1 · QT + Q̇ · QT. (5.94)

Let

Ω ≡ Q̇ · QT. (5.95)

Since

Q · QT = I ⇒ (
Q · QT). = 0,

we have

Q̇ · QT = −Q · Q̇
T = − (

Q̇ · QT)T
, (5.96)

that is, Q̇ · QT is antisymmetric. Furthermore,

D′ = 1
2

(
L′ + L′T) , (5.97)

and

D′ = 1
2

(
Q · L · QT + Q · LT · QT + Ω + ΩT) .

Thus,

D′ = Q · D · QT. (5.98)

Finally, we show that if a vector u and a tensor T are objective, their so-called convected
rates

�
u = u̇ + LT · u, (5.99)

and
�
T = Ṫ + LT · T + T · L. (5.100)

are also objective. In frame F ′ we have

�
u′ = u̇′ + L′T · u′

= (Q · u)· + (
Q · LT · QT − Ω

) · (Q · u)

= Q · (u̇ + LT · u
)+ (

Q̇ · QT − Ω
) · (Q · u)

= Q · (u̇ + LT · u
) = Q · �

u.
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1e'

W Figure 5.10. Components of stress formed on spinning axes.

Thus,
�
u, as given by (5.99), is objective. Similarly, for the tensor T,

�
T′ = Ṫ

′ + L′T · T′ + T′ · L′

= (Q · T · QT)· + (Q · LT · QT − Ω) · (Q · T · QT)

+ (Q · T · QT) · (Q · L · QT + Ω),

i.e.,

�
T′ = Q ·

�
T · QT. (5.101)

Thus,
�
T, as given by (5.100), is objective.

Further results can be obtained by using the polar decomposition theorem, F = R · U.
Then,

L = Ḟ · F−1 = (
Ṙ · U + R · U̇

) · (U−1 · RT)
= Ṙ · RT + R · (U̇ · U−1) · RT

= Ω + R · (U̇ · U−1) · RT, Ω = Ṙ · RT. (5.102)

Recall that the spin W is given by

W = 1
2

R · (U̇ · U−1 − U−1 · U̇
) · RT + Ṙ · RT. (5.103)

If U̇ = 0, then W = Ṙ · RT , i.e., W = Ω. Consequently, L = Ṙ · RT and W = L = Ṙ · RT ,
as well. It follows that

�
T = Ṫ − W · T + T · W (5.104)

is another objective rate of the tensor T, viz., the Jaumann rate.
To better understand the Jaumann rate, consider the stress tensor σ. Its representation

in the basis {ei } is

σ = σi j ei e j . (5.105)
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We ask now about the precise character of the base vectors ei that are used to form the
components of σ. Let the basis {ei } spin with the rate W (material spin), as sketched in
Fig. 5.10. Then,

σ̇ = σ̇i j ei e j + σi j ėi e j + σi j ei ė j , (5.106)

and

ėi = W · ei = Wki ek . (5.107)

Consequently,

σ̇ = σ̇i j ei e j + Wikσkj ei e j − σikWkj ei e j , (5.108)

i.e.,

σ̇ = σ̇i j ei e j + W · σ − σ · W . (5.109)

This leads to definition of corotational stress rate, observed in the frame that instanta-
neously rotates with material spin W,

σ̇i j ei e j = σ̇ − W · σ + σ · W. (5.110)

The stress rate

�
σ = σ̇ − W · σ + σ · W (5.111)

is known as the Jaumann stress rate.

5.11 Continuity Equation and Equations of Motion

Consider an arbitrary material region that occupies V at time t . Let ρ be its mass density,
and as such is a continuous, differentiable, scalar field; thus the third equation of (4.223)
applies. If diffusion or chemical reactions are neglected, the total mass in this region is
conserved during deformation processes that may cause V to change, i.e.,

d
dt

∫
V
ρ dV = 0. (5.112)

When the third equation of (4.223) is applied, this gives∫
V

(ρ̇ + ρ div υ) dV = 0. (5.113)

Since the region V is arbitrary, we have the continuity equation

ρ̇ + ρ div υ = 0, (5.114)

at each point of the body.
Using (5.114), we may also show that

d
dt

∫
V
ρφ dV =

∫
V
ρφ̇ dV. (5.115)
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Figure 5.11. The volume V of the body bounded by closed surface S. The
body force per unit mass is b and the surface traction over S is tn. The velocity
vector at an arbitrary point is v.

Indeed,

d
dt

∫
V
ρφ dV =

∫
V

[(ρφ). + ρφ tr L] dV

=
∫

V

[
ρφ̇ + (ρ̇ + ρ div υ)φ

]
dV

=
∫

V
ρφ̇ dV. (5.116)

Let b̂ be the density of body force, measured per unit mass, as opposed to b, intro-
duced earlier which was measured per unit current volume. Then conservation of linear
momentum dictates that

d
dt

∫
V
ρυ dV =

∫
V
ρb̂ dV +

∫
S

tn dS, (5.117)

where S is the bounding surface of the region in question, n is its outward pointing unit
normal, and tn = σ · n is the traction vector. Now use (5.115) and the divergence theorem
to obtain ∫

V

[
ρυ̇ − (divσ + ρb̂)

]
dV = 0. (5.118)

Because V is arbitrary, we obtain

ρa = ρυ̇ = ρẍ = div σ + ρb̂. (5.119)

These are the equations of motion.

5.12 Stress Power

The rate at which external surface and body forces are doing work (the mechanical power
input) on a body currently occupying the volume V bounded by the surface S is given by

P =
∫

S
tn
i vi dS +

∫
V
ρbivi dV , (5.120)

where bi are the components of the body force (per unit mass), and tn
i are the components

of the traction vector over the surface element with unit normal n (Fig. 5.11). Since by the
Cauchy relation tn

i = σi j n j , the surface integral can be expressed, with a help of the Gauss
divergence theorem, as∫

S
tn
i vi dS =

∫
S
σi jvi n j dS =

∫
V

∂

∂xj
(σi jvi ) dV . (5.121)
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Thus, the mechanical power input is

P =
∫

V

[(
∂σi j

∂xj
+ ρbi

)
vi + σi j

∂vi

∂xj

]
dV. (5.122)

Since, by the equations of motion,

∂σi j

∂xj
+ ρbi = ρ dvi

dt
, (5.123)

the first integral in the expression for P becomes∫
V
ρvi

dvi

dt
dV =

∫
V

1
2
ρ

d
dt

(vivi ) dV = d
dt

∫
V

1
2
ρ (vivi ) dV . (5.124)

This is evidently the rate of the kinetic energy

K =
∫

V

1
2
ρ (vivi ) dV , (5.125)

so that the mechanical power input is

P = dK
dt

+
∫

V
σi j
∂vi

∂xj
dV. (5.126)

But, the velocity gradient is the sum of the rate of deformation and spin tensors,

∂vi

∂xj
= Li j = Di j + Wi j , (5.127)

and because σi j Wi j = 0 (σi j being a symmetric and Wi j an antisymmetric tensor), we finally
obtain

P = dK
dt

+
∫

V
σi j Di j dV. (5.128)

The second term is the so-called stress power. Thus, the mechanical power input goes
into the change of kinetic energy of the body and the stress power associated with the
deformation of the body. The quantity σi j Di j is the stress power per unit current volume.
The stress power per unit initial volume is τi j Di j , where τi j = (ρ0/ρ)σi j is the Kirchhoff
stress. The stress power per unit mass is (1/ρ)σi j Di j .

5.13 The Principle of Virtual Work

Consider a body that is in a state of static equilibrium under the action of a system of
body forces b and surface traction Tn; the unit vector n is again the normal to the body’s
surface S. The surface S is taken to be composed of two parts, ST and Su, where on ST

traction boundary conditions are imposed and on Su displacement boundary conditions
are imposed, as sketched in Fig. 5.12. Note that this assumes that a displacement field,
u, exists that gives rise to the equilibrium state of stress, such that the stresses satisfy the
equations of static equilibrium, viz., ∇ · σ + b = 0. Now let us consider a displacement field
δu consistent with the constraints imposed on the body. Thus δu must vanish on Su, but is
arbitrary on ST . Additionally, we take δu to be continuous and differentiable (as needed)
and to be infinitesimal. We assume that this virtual displacement does not affect static
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Figure 5.12. Virtual displacements atop boundary conditions.

equilibrium which continues to prevail during the imposition of δu on u. The increment of
work done through these displacements is then

δw =
∫

V
b · δu dV +

∫
S

Tn · δu dS, (5.129)

or, in the component form,

δw =
∫

V
bi · δui dV +

∫
S

Tiδui dS. (5.130)

But Tn = σ · n or Ti = σi j n j , and the second integral in (5.129) becomes, via the divergence
theorem, ∫

S
Tn · δu dS =

∫
S
(σ · n) · δu dS

=
∫

S
(σ · δu) · n dS =

∫
V

∇ · (σ · δu) dV

=
∫

V
∇ · σ · δu dV +

∫
V
σ : grad δu dV. (5.131)

The equilibrium conditions allow us to write∫
V

∇ · σ · δu dV = −
∫

V
b · δu dV. (5.132)

Define a small strain measure corresponding to δu as

δe = 1
2

sym (grad δu). (5.133)

Then, because of the symmetry of σ, (5.129) becomes∫
V

b · δu dV +
∫

ST

Tn · δu dS =
∫

V
σ : δe dV, (5.134)

or, in the component form,∫
V

biδui dV +
∫

ST

Tiδui dS =
∫

V
σi jδei j dV. (5.135)

This is a principle of virtual work.
A similar development in terms of the nominal stress and an increment in δF yields the

result ∫
V0

P : δF dV0 =
∫

V0

B · δu dV0 +
∫

S0

δu · P · N dS0, (5.136)

where V0 and S0 are the volume and surface of the body in the reference state.
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5.14 Generalized Clapeyron’s Formula

Let σi j be any statically admissible stress field, in equilibrium with body forces bi prescribed
within the volume V of the body and surface tractions Ti prescribed over the boundary
S of V. Let ûi be any continuous and differentiable displacement field within V, giving rise
to strain field êi j = (ûi, j + û j,i )/2. The notation for partial differentiation is used such that
ûi, j = ∂ûi/∂xj . Then, since Ti = σi j n j , where ni defines the unit outward normal to S, the
application of the Gauss divergence theorem gives∫

S
Ti ûi dS =

∫
S
σi j ûi n j dS =

∫
V

(σi j ûi ), j dV

=
∫

V
(σi j, j ûi + σi j ûi, j ) dV .

(5.137)

But, σi j, j = −bi by equilibrium, and σi j ûi, j = σi j êi j by symmetry of σi j , and the substitution
in above establishes a generalized Clapeyron’s formula∫

V
σi j êi j dV =

∫
S

Ti ûi dS +
∫

V
bi ûi dV . (5.138)

This remarkable formula clearly leads to the principle of virtual work. Suppose we
take ûi to be the difference of any kinematically admissible displacement field uk

i and the
true displacement field ut

i of the boundary value problem corresponding to prescribed
body forces within V, surface tractions on ST , and displacements on Su = S − ST (if any).
A kinematically admissible displacement field is continuous and differentiable, and it sat-
isfies the prescribed displacement conditions on Su. Call the displacement difference a
virtual displacement field, i.e.,

ûi = δui = uk
i − ut

i . (5.139)

Clearly, δui = 0 over Su. The generalized Clapeyron’s formula then becomes∫
V
σi jδei j dV =

∫
S

Tiδui dS +
∫

V
biδui dV . (5.140)

This is the virtual work principle, previously established in (5.135). If (5.140) holds for any
kinematically admissible virtual displacement field δui , giving rise to virtual strain field
δei j by usual relations, then the stress field σi j is in equilibrium with given body forces bi

in V and surface tractions Ti on ST , i.e.,

σi j, j + bi = 0 in V, and σi j n j = Ti on ST. (5.141)
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6 Thermodynamics of Continuum

6.1 First Law of Thermodynamics: Energy Equation

A deforming body, or a given portion of it, can be considered to be a thermodynamic
system in continuum mechanics. The first law of thermodynamics relates the mechanical
work done on the system and the heat transferred into the system to the change in total
energy of the system. The rate at which external surface and body forces are doing work on
a body currently occupying the volume V bounded by the surface S is given by (5.128), i.e.,

P = d
dt

∫
V

1
2
ρ vivi dV +

∫
V
σi j Di j dV. (6.1)

Let qi be a vector whose magnitude gives the rate of heat flow by conduction across a unit
area normal to qi . The direction of qi is the direction of heat flow, so that in time dt the
heat amount qi dt would flow through a unit area normal to qi . If the area dS is oriented
so that its normal ni is not in the direction of qi , the rate of outward heat flow through dS
is qi ni dS (Fig. 6.1). Let a scalar r be the rate of heat input per unit mass due to distributed
internal or external heat sources (e.g., radiation and heating due to dissipation). The total
heat input rate into the system is then

Q = −
∫

S
qi ni dS +

∫
V
ρ rdV =

∫
V

(
−∂qi

∂xi
+ ρ r

)
dV. (6.2)

First law of thermodynamics states that in any process the total energy of the system is
conserved, if no work is done or heat transferred to the system from outside. Alternatively,
the whole energy of the universe (system and its surrounding) is conserved. According to
the first law of thermodynamics there exists a state function of a thermodynamic system,
called the total energy of the system Etot, such that its rate of change is

Ėtot = P + Q. (6.3)

Neither P nor Q is in general the rate of any state function, but their sum is. The total
energy of the system consists of the macroscopic kinetic energy and the internal energy of
the system,

Etot =
∫

V

1
2
ρ vivi dV +

∫
V
ρ udV. (6.4)

113
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dS
q

heat flo
w direction

dS

n
q

Figure 6.1. (a) Heat flow through the surface orthogonal to the direction of the heat flow.
(b) The heat flow vector q through the surface element dS with a unit normal n.

The specific internal energy (internal energy per unit mass) is denoted by u. It includes the
elastic strain energy and all other forms of energy that do not contribute to macroscopic
kinetic energy (e.g., latent strain energy around dislocations, phase-transition energy, twin-
ning energy, and energy of random thermal motion of atoms).

Substituting (6.1), (6.2), and (6.4) into (6.3) and having in mind the general result for a
scalar or tensor field A,

d
dt

∫
V
ρAdV =

∫
V
ρ

dA
dt

dV, (6.5)

gives ∫
V

(
ρ u̇ − σi j Di j + ∂qi

∂xi
− ρ r

)
dV = 0 . (6.6)

This holds for the whole body and for any part of it, so that locally, at each point, we can
write

ρ u̇ = σi j Di j − ∂qi

∂xi
+ ρ r . (6.7)

This is the energy equation in the deformed configuration.

6.2 Second Law of Thermodynamics: Clausius–Duhem Inequality

The first law of thermodynamics is a statement of the energy balance, which applies re-
gardless of the direction in which the energy conversion between work and heat is assumed
to occur. The second law of thermodynamics imposes restrictions on possible directions of
thermodynamic processes. A state function, called the entropy of the system, is introduced
as a measure of microstructural disorder of the system. The entropy can change by inter-
action of the system with its surroundings through the heat transfer, and by irreversible
changes that take place inside the system due to local rearrangements of microstructure
caused by deformation. The entropy input rate due to heat transfer is

−
∫

S

qi ni

T
dS +

∫
V
ρ

r
T

dV =
∫

V

[
− 1
ρ

∂(qi/T)
∂xi

+ r
T

]
ρdV, (6.8)
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6.2. Second Law of Thermodynamics 115

where T > 0 is the absolute temperature. The temperature is defined as a measure of the
coldness or hotness. It appears in the denominators of the above integrands, because a
given heat input causes more disorder (higher entropy change) at lower than at higher
temperature (state at lower temperature being less disordered and thus more sensitive to
the heat input).

An explicit expression for the rate of entropy change caused by irreversible microstruc-
tural changes inside the system depends on the type of deformation and constitution of
the material. Denote this part of the rate of entropy change (per unit mass) by γ . The total
rate of entropy change of the whole system is then∫

V
ρ

ds
dt

dV =
∫

V

[
− 1
ρ

∂(qi/T)
∂xi

+ r
T

+ γ
]
ρdV . (6.9)

Locally, at each point of a deformed body, the rate of specific entropy is

ṡ = − 1
ρ

∂(qi/T)
∂xi

+ r
T

+ γ . (6.10)

Because irreversible microstructural changes increase a disorder, they always contribute
to an increase of the entropy. Thus, γ is always positive, and is referred to as the entropy
production rate. The inequality

γ > 0 (6.11)

is a statement of the second law of thermodynamics for irreversible processes. Therefore,
from (6.10), we can write

ṡ ≥ − 1
ρ

∂(qi/T)
∂xi

+ r
T
. (6.12)

The equality sign applies only to reversible processes (γ = 0). Inequality (6.12) is known
as the Clausius–Duhem inequality.

Since

∂(qi/T)
∂xi

= 1
T
∂qi

∂xi
− 1

T2
qi
∂T
∂xi

, (6.13)

the inequality (6.12) can be rewritten as

ṡ ≥ − 1
ρ T

∂qi

∂xi
+ r

T
+ 1
ρ T2

qi
∂T
∂xi

. (6.14)

The heat spontaneously flows in the direction from the hot to cold part of the body, so that
qi (∂T/∂xi ) ≤ 0. Since T > 0, it follows that

1
ρ T2

qi
∂T
∂xi

≤ 0 . (6.15)

Thus, a stronger (more restrictive) form of the Clausius–Duhem inequality is

ṡ ≥ − 1
ρ T

∂qi

∂xi
+ r

T
. (6.16)

Inequality (6.16) can alternatively be adopted if the temperature gradients are negligible
or equal to zero. For the Carathéodory’s formulation of the second law of thermodynamics
and the resulting expression for the entropy production rate, see Boley and Wiener (1960)
and Kestin (1979).
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6.3 Reversible Thermodynamics

If deformation is such that there are no permanent microstructural rearrangements within
the material (e.g., thermoelastic deformation), the entropy production rate γ is equal to
zero. The rate of entropy change is due to heat transfer only, and

Tṡ = − 1
ρ

∂qi

∂xi
+ r. (6.17)

Since

1
ρ
σi j Di j = 1

ρ0
Si j Ėi j , (6.18)

the energy equation (6.7) becomes

u̇ = 1
ρ0

Si j Ėi j + T ṡ. (6.19)

Equation (6.19) shows that the internal energy is a thermodynamic potential for determin-
ing Si j and T, when Ei j and s are considered to be independent state variables. Indeed, by
partial differentiation of

u = u (Ei j , s) , (6.20)

we have

u̇ = ∂u
∂Ei j

Ėi j + ∂u
∂s

ṡ, (6.21)

and comparison with (6.19) gives

Si j = ρ0
∂u
∂Ei j

, T = ∂u
∂s
. (6.22)

In the theory of the so-called entropic elasticity, describing thermo-mechanical behavior
of some elastomers, the internal energy depends only on temperature (i.e., there is no
change of internal energy due to deformation at constant temperature); see Chadwick
(1974) and Holzapfel (2000).

6.3.1 Thermodynamic Potentials

The Helmholtz free energy is related to internal energy by

φ = u − T s. (6.23)

By differentiating and incorporating (6.19), the rate of the Helmholtz free energy is

φ̇ = 1
ρ0

Si j Ėi j − s Ṫ. (6.24)

This indicates that φ is the portion of internal energy u available for doing work at constant
temperature (Ṫ = 0), i.e., the change of φ is the increment of work done at constant T.
The Helmholtz free energy is a thermodynamic potential for Si j and s, when Ei j and T are
considered to be independent state variables. Indeed, by partial differentiation of

φ = φ (Ei j , T) , (6.25)
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we have

φ̇ = ∂φ

∂Ei j
Ėi j + ∂φ

∂T
Ṫ, (6.26)

and comparison with (6.24) gives

Si j = ρ0
∂φ

∂Ei j
, s = − ∂φ

∂T
. (6.27)

The Gibbs energy is defined as a thermodynamic potential with stress and temperature
as independent (controllable) variables, such that

g (Si j , T) = φ (Ei j , T) − 1
ρ0

Si j Ei j . (6.28)

By differentiating (6.28) and using (6.24), it follows that

ġ = ∂g
∂Si j

Ṡi j + ∂g
∂T

Ṫ = − 1
ρ0

Ei j Ṡi j − s Ṫ, (6.29)

so that

Ei j = −ρ0
∂g
∂Si j

, s = − ∂g
∂T
. (6.30)

Note that

u (Ei j , s) − g (Si j , T) = 1
ρ0

Si j Ei j + T s . (6.31)

Finally, the enthalpy function is introduced as a thermodynamic potential with stress
and entropy as independent variables, such that

h (Si j , s) = u (Ei j , s) − 1
ρ0

Si j Ei j = g (Si j , T) + T s. (6.32)

By either (6.19) or (6.29), the rate of change of enthalpy is

ḣ = ∂h
∂Si j

Ṡi j + ∂h
∂s

ṡ = − 1
ρ0

Ei j Ṡi j + T ṡ. (6.33)

This demonstrates that the enthalpy is a portion of the internal energy that can be absorbed
or released as heat, Tds, when stress Si j is held constant. For example, if we compress the
solid adiabatically, it warms up. If we then keep the stress constant, the amount of heat that
is conducted and/or convected away is the enthalpy change. Furthermore, (6.33) yields

Ei j = −ρ0
∂h
∂Si j

, T = ∂h
∂s
. (6.34)

The fourth-order tensors

�e
i jkl =

(
∂Si j

∂Ekl

)
T

= ∂2(ρ0 φ)
∂Ei j∂Ekl

, (6.35)

Me
i jkl =

(
∂Ei j

∂Skl

)
T

= ∂2(ρ0 g)
∂Si j∂Skl

(6.36)
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are the isothermal elastic stiffness and compliance tensors. The two fourth-order tensors
are the inverse of each other. Being defined as the the second partial derivatives of ρ0 φ

and ρ0 g with respect to strain and stress, respectively, the tensors �i jkl and Mi jkl possess
reciprocal symmetries

�e
i jkl = �e

kli j , Me
i jkl = Me

kli j . (6.37)

The adiabatic elastic stiffness and compliance tensors are defined be the second derivatives
of ρ0u and ρ0h with respect to strain and stress, respectively.

6.3.2 Specific and Latent Heats

The ratio of the absorbed amount of heat and the temperature increase is called the
heat capacity. Because the increment of heat is not a perfect differential, the specific heat
depends on the path of transformation. The two most important kinds of transformations
are those taking place at constant stress (pressure) and constant strain (volume). Specific
heats at constant strain and stress are thus defined by

cE = T
(
∂s
∂T

)
E
, cS = T

(
∂s
∂T

)
S
, (6.38)

where

s = s̄ (Ei j , T) = ŝ (Si j , T) . (6.39)

The latent heats of change of strain and stress are the second-order tensors

l E
i j = T

(
∂s
∂Ei j

)
T

l S
i j = T

(
∂s
∂Si j

)
T

. (6.40)

In view of the reciprocal relations

ρ0

(
∂s
∂Ei j

)
T

= −
(
∂Si j

∂T

)
E
, ρ0

(
∂s
∂Si j

)
T

= −
(
∂Ei j

∂T

)
S
, (6.41)

the latent heats can also be expressed as

l E
i j = − 1

ρ0
T
(
∂Si j

∂T

)
E
, l S

i j = 1
ρ0

T
(
∂Ei j

∂T

)
S
. (6.42)

The physical interpretation of the specific and latent heats follows from

ds =
(
∂s
∂Ei j

)
T

dEi j +
(
∂s
∂T

)
E

dT = 1
T

(
l E
i j dEi j + cEdT

)
, (6.43)

ds =
(
∂s
∂Si j

)
T

dSi j +
(
∂s
∂T

)
S

dT = 1
T

(
l S
i j dSi j + cSdT

)
. (6.44)

Thus, the specific heat at constant strain cE (often denoted by cv) is the heat amount (T ds)
required to increase the temperature of a unit mass for the amount dT at constant strain
(dEi j = 0). Similar interpretation holds for cS (often denoted by cp). The latent heat l E

i j is
the second-order tensor whose i j component represents the heat amount associated with
a change of the corresponding strain component by dEi j , at fixed temperature and fixed
values of the remaining five strain components. Analogous interpretation applies to l S

i j .
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By partial differentiation, we have from (6.39)

∂ ŝ
∂T

= ∂ s̄
∂T

+ ∂ s̄
∂Ei j

∂Ei j

∂T
. (6.45)

The multiplication by T and incorporation of (6.38)–(6.42) gives the relationship

cS − cE = ρ0

T
l S
i j l

E
i j . (6.46)

Furthermore, since
∂ ŝ
∂Si j

= ∂ s̄
∂Ekl

Me
i jkl , (6.47)

it follows that

l S
i j = Me

i jkl l
E
kl . (6.48)

When this is inserted into (6.46), we obtain

cS − cE = ρ0

T
Me

i jkl l
E
i j l

E
kl . (6.49)

For positive definite elastic compliance Me
i jkl , it follows that

cS > cE. (6.50)

The change in temperature caused by adiabatic straining dEi j , or adiabatic stressing
dSi j , is obtained by setting ds = 0 in (6.43) and (6.44). This gives

dT = − 1
cE

l E
i j dEi j , dT = − 1

cS
l S
i j dSi j . (6.51)

6.3.3 Coupled Heat Equation

Suppose that the heat conduction is specified by a generalized Fourier law

qi = −Ki j
∂T
∂xj

, Ki j = K j i . (6.52)

If the inequality applies in (6.15), the second-order tensor of conductivities Ki j must be
positive-definite, i.e.,

∂T
∂xi

Ki j
∂T
∂xj

> 0 . (6.53)

For simplicity it is assumed that Ki j is a constant tensor, although it could more generally
depend on temperature and deformation. The nominal rate of heat flow is

q0
i = −K0

i j
∂T
∂Xj

, K0
i j = (det F) F−1

im Kmn F−T
nj , (6.54)

which follows from

q0
i n0

i dS0 = qi ni dS ⇒ q0
i = (det F)F−1

i j qj , (6.55)

and (6.52). Since

1
ρ

∂qi

∂xi
= 1
ρ0

∂q0
i

∂Xi
, (6.56)
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we obtain from (6.17)

Tṡ = 1
ρ0

K0
i j

∂2T
∂Xi∂Xj

+ r . (6.57)

Combining this with (6.43) yields the heat equation

1
ρ0

K0
i j

∂2T
∂Xi∂Xj

+ r = l E
i j Ėi j + cE Ṫ, (6.58)

where

l E
i j = T

∂ s̄
∂Ei j

= − 1
ρ0

T
∂Si j

∂T
= −T

∂2φ

∂Ei j∂T
, (6.59)

cE = T
∂ s̄
∂T

= −T
∂2φ

∂T2
. (6.60)

Since (6.58) involves the rates of both temperature and strain, it is referred to as a coupled
heat equation. The temperature and deformation fields cannot be determined separately,
but simultaneously.

6.4 Thermodynamic Relationships with p, V, T, and s

In many thermodynamic considerations in materials science it is the pressure and volume
that, together with temperature and entropy, appear in the analysis. We thus list in this
section the corresponding thermodynamic expressions, reckoned per one mole of the
substance (i.e., ρ0V0 is the mass of one mole). The energy equation is

du = −pdV + Tds . (6.61)

Taking u = u(V, s), we obtain

p = −
(
∂u
∂V

)
s
, T =

(
∂u
∂s

)
V
. (6.62)

The Helmholtz free energy is φ = φ(V,T) = u(V, s) − Ts, which gives

dφ = −pdV − sdT , (6.63)

and

p = −
(
∂φ

∂V

)
T
, s = −

(
∂φ

∂T

)
V
. (6.64)

The Gibbs energy is g = g(p,T) = φ(V,T) + pV, and

dg = Vdp − sdT , (6.65)

indicating that s determines how fast g varies with T, and V how fast g varies with p.
Furthermore,

V =
(
∂g
∂p

)
T
, s = −

(
∂g
∂T

)
p
. (6.66)
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Finally, the enthalpy is h = h(p, s) = u(V, s) + pV, which gives

dh = Vdp + Tds , (6.67)

and

V =
(
∂h
∂p

)
s
, T =

(
∂h
∂s

)
p
. (6.68)

It is noted that

g = h − Ts , u = φ − g + h . (6.69)

The Maxwell relations are(
∂p
∂T

)
V

=
(
∂s
∂V

)
T
,

(
∂p
∂s

)
V

= −
(
∂T
∂V

)
s
, (6.70)

and (
∂V
∂T

)
p

= −
(
∂s
∂p

)
T
,

(
∂V
∂s

)
p

=
(
∂T
∂p

)
s
. (6.71)

It may be noted that at constant V,

dφ = −sdT , du = Tds , (6.72)

whereas at constant p,

dg = −sdT , dh = Tds . (6.73)

A physicist by “free energy” usually means the Helmholtz free energy, whereas a chemist
usually means Gibbs free energy (because they study their reactions at constant p or T).

6.4.1 Specific and Latent Heats

The specific heats at constant volume and pressure are defined by

cv = T
(
∂s
∂T

)
V
, cp = T

(
∂s
∂T

)
p
. (6.74)

Similarly, the latent heats are defined by

lv = T
(
∂s
∂V

)
T
, l p = T

(
∂s
∂p

)
T
. (6.75)

Since s = s(V,T), we have

ds =
(
∂s
∂V

)
T

dV +
(
∂s
∂T

)
V

dT , (6.76)

and, upon multiplication with T,

Tds = lvdV + cvdT . (6.77)

In particular, at V = const., we have du = Tds = cvdT. On the other hand, by writing
s = s(p,T), we obtain

ds =
(
∂s
∂p

)
T

dp +
(
∂s
∂T

)
p

dT (6.78)
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and, upon multiplication with T,

Tds = l pdp + cpdT . (6.79)

In particular, at p = const., we have dh = Tds = cpdT.
The relationship between cp and cv can be derived by partial differentiation of s =

s[V(p, t),T], as follows (
∂s
∂T

)
p

=
(
∂s
∂V

)
T

(
∂V
∂T

)
p
+
(
∂s
∂T

)
V
. (6.80)

The multiplication with T establishes

cp = lv

(
∂V
∂T

)
p
+ cv . (6.81)

Similarly, the relationship between l p and lv can be derived by partial differentiation of
s = s[p(V, t),T], (

∂s
∂V

)
T

=
(
∂s
∂p

)
T

(
∂p
∂V

)
T

= −
(
∂s
∂p

)
T

(
∂2φ

∂V2

)
T
. (6.82)

The last transition is made by using the relationship p = −(∂φ/∂V)T . The multiplication
with T then establishes

lv = −
(
∂2φ

∂V2

)
T

l p . (6.83)

6.4.2 Coefficients of Thermal Expansion and Compressibility

Coefficient of volumetric thermal expansion and compressibility coefficient are defined by

α = 1
V

(
∂V
∂T

)
p
, β = − 1

V

(
∂V
∂p

)
T
. (6.84)

In view of one of the Maxwell relations, we also have

α = 1
V

(
∂V
∂T

)
p

= − 1
V

(
∂s
∂p

)
T
. (6.85)

The coefficient of linear thermal expansion is α/3, whereas the modulus of compressibility
isκ = 1/β. The coefficientsα andβ appear in the expression for the increment of volumetric
strain

dV
V

= αdT − βdp . (6.86)

This follows from the above definitions of α and β, and

V = V(T, p) ⇒ dV =
(
∂V
∂T

)
p

dT +
(
∂V
∂p

)
T

dp . (6.87)

An important relation for the pressure gradient of enthalpy at constant temperature can
be derived by partial differentiation of h = h[p, s(p,T)]. This gives(

∂h
∂p

)
T

=
(
∂h
∂p

)
s
+
(
∂h
∂s

)
p

(
∂s
∂p

)
T

= V + T
(
∂s
∂p

)
T
, (6.88)
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i.e., (
∂h
∂p

)
T

= V(1 − αT) . (6.89)

To establish additional useful relationships involving specific heats and coefficient of
thermal expansion, we first recall the following result from calculus. If z = z(x, y), then(

∂z
∂x

)
y

(
∂x
∂y

)
z

(
∂y
∂z

)
x

= −1 . (6.90)

Applying this to variables (T,V, p), we have(
∂p
∂T

)
V

(
∂T
∂V

)
p

(
∂V
∂p

)
T

= −1 . (6.91)

In view of the definitions (6.84) for α and β, this gives(
∂p
∂T

)
V

= α

β
, (6.92)

or, recalling the Maxwell relation (∂p/∂T)V = (∂s/∂V)T ,(
∂s
∂V

)
T

= α

β
. (6.93)

Now, from (6.81) and (6.84),

cp − cv =
(
∂V
∂T

)
p

lv = αVlv = αVT
(
∂s
∂V

)
T
, (6.94)

and, in view of (6.93),

cp − cv = α2

β
VT . (6.95)

Finally, we derive a useful expression for the entropy change. Since

l p = T
(
∂s
∂p

)
T

= −T
(
∂V
∂T

)
p

= −TαV , (6.96)

we obtain, from (6.79),

ds = −αVdp + cp
dT
T
. (6.97)

6.5 Theoretical Calculations of Heat Capacity

In this section we give a brief summary of theoretical calculations of heat capacity cv from
solid-state physics. We start with a monatomic gas. Each atom has three degrees of free-
dom, so that the mean kinetic energy of an atom is 3 · 1

2 kT, where k = 1.38062 × 10−23 J/K
is the Boltzmann constant. Thus, the molar heat capacity cv of a monatomic gas is
cv = 3R/2, where R = NAk = 8.314 J/K is the universal gas constant, NA = 6.02217 ×
1023 mol−1 being the Avogadro’s number. For diatomic molecule there are additional
energy contributions, one vibrational along the axis joining two atoms, and two rota-
tional around the axes normal to common axis. Each translational and rotational degree



P1: FBQ

0521859794c06.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:34

124 6. Thermodynamics of Continuum

Figure 6.2. Specific heat cv (J/mol K) of a solid as a function of
temperature T (normalized by the Debye’s temperature θD).

of freedom contributes on average an energy equal to 1
2 kT per molecule (principle of

equipartition of energy among the active degrees of freedom). This gives a theoretical
value cv = 5R/2. At higher temperature, one needs to include the vibrational (kinetic and
potential) energy contributions and quantum mechanics effects. If this is done, it is found
that

cv = R

[
5
2

+
(
θ

T

)2 eθ/T

(eθ/T − 1)2

]
, θ = hν

k
. (6.98)

The Planck’s constant is h = 6.62620 × 10−34 J s, and ν is a characteristic vibrational fre-
quency of the Einstein harmonic oscillator. The corresponding result for a solid is

cv = 3R
(
θ

T

)2 eθ/T

(eθ/T − 1)2 . (6.99)

At high temperature this gives a Dulong–Petit limit

lim
θ/T→0

cv = 3R . (6.100)

The expression (6.99) is not satisfactory at low temperature, where it predicts an expo-
nential decrease of cv with temperature, whereas a dependence on T3 is generally observed.
This is accomplished by Debye’s expression

cv = 3R

[
12
(
θD

T

)−3 ∫ θD/T

0

x3dx
ex − 1

− 3θD/T

eθD/T − 1

]
, (6.101)

where θD is the Debye’s temperature of a solid (the temperature of a crystal’s highest
mode of vibration). The values of θD are tabulated; for example, θCu

D = 343 K, whereas
θAl

D = 428 K. The plot of cv/R vs. T/θD for a typical solid is shown in Fig. 6.2. For many
solids for which the room temperature is greater than θD, the Dulong–Petit limit cv = 3R
is practically attained already at 298 K.
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Figure 6.3. Specific heats cp and cv of copper vs. temperature T (from
Lupis, 1983).

If the coefficients of thermal expansion and compressibility are experimentally deter-
mined, then the plot for cp vs. temperature can be obtained from that for cv and the relation-
ship cp − cv = (α2/β)VT. Typically, one obtains a plot as sketched in Fig. 6.3. Knowing the
variation cp(T) is important to determine the entropy change associated with the change
of temperature (at constant pressure). Since, at constant pressure, Tds = cpdT, we obtain

s − s0 =
∫ T

T0

cp(T)dT . (6.102)

In a certain temperature range, the approximation cp(T) = a + bT + cT−2 may be satis-
factory. The coefficients a, b, and c are also tabulated for various materials and temperature
ranges. For most metals, the entropy increases because of phase transformations (melting
and boiling) are

�s0
m = 8.3 ÷ 12.6

J
K mol

(Richard′s rule),

�s0
b ≈ 92

J
K mol

(Trouton′s rule).

(6.103)

The superscript 0 indicates that the values are given at standard pressure of 1 atm. Bet-
ter estimates of �sm are possible by including into considerations the crystallographic
structure of solid phase. Usually,

�s0
m(h.c.p.) −�s0

m(f.c.c.) = �s0
m(f.c.c.) −�s0

m(b.c.c.) ≈ 1
J

K mol
.

6.6 Third Law of Thermodynamics

It is first assumed that there is a lower limit of temperature that the matter can exhibit.
This is called the absolute zero of temperature. Now, if the entropy of each element in
its perfect crystalline state (without vacancies, dislocations, or any disorder) is taken to
be zero at the absolute zero of temperature, every substance composed of elements has
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a finite positive entropy, unless it is a perfect crystalline substance. All perfect substances
have zero entropy at T = 0 K. This is the third law of thermodynamics.

This law simplifies the calculation of entropies. For example, if perfect iron and perfect
carbon have zero entropies at 0 K, then the entropy of perfect cementite Fe3C is also zero
at 0 K. If we do not adopt the third law, we could take that the entropy of perfect iron is, say,
8 J/K mol , and of carbon 4 J/K mol, but then the entropy of the perfect cementite would be
28 J/K mol. Note also that, if we take that s = 0 at T = 0, then from dg = dh − Tds − sdT
we obtain that at the absolute zero of temperature dg = dh. Furthermore, from statistical
thermodynamics, we have s = k lnwmax, where wmax is the probability of the state with
maximum number of quantum states (under given conditions of energy, volume, etc.). At
the absolute zero of temperature, there would be a perfect order and only one state. Thus,
wmax = 1 and s = 0.

With the adopted third law, in a test at constant pressure the entropy of a perfect sub-
stance at the temperature T can be calculated from

s =
∫ T

0

cp

T
dT . (6.104)

Clearly, the ratio cp/T must remain finite as T → 0 K. Similarly, in a test at constant volume
(leading to another state from that obtained in a test at constant pressure), the entropy of
a perfect substance at the temperature T would be

s =
∫ T

0

cv
T

dT . (6.105)

The integrand is clearly not divergent at T = 0 K, because cv ∼ T3 near the absolute zero
of temperature.

The entropy of a perfect substance at T = 0 K is equal to zero regardless of the pressure
or volume there. Thus, (

∂s
∂p

)
T=0

= 0 , (6.106)

and since, by the Maxwell’s relation and the definition of the coefficient of thermal expan-
sion, (

∂s
∂p

)
T

= −
(
∂V
∂T

)
p

= −αV , (6.107)

we conclude that

(α)T=0 = 0 . (6.108)

Furthermore, since (
∂s
∂V

)
T=0

= 0 , (6.109)

and (
∂s
∂V

)
T

=
(
∂p
∂T

)
V

= α

β
, (6.110)
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we conclude that

(β)T=0 
= 0 , i.e., (κ)T=0 
= ∞ . (6.111)

The modulus of compressibility is κ = 1/β.

6.7 Irreversible Thermodynamics

For irreversible thermodynamic processes (e.g., processes involving plastic or viscoelastic
deformation) we can adopt a thermodynamics with internal state variables. A set of in-
ternal (structural) variables is introduced to describe, in some average sense, the essential
features of microstructural changes that occurred at the considered place during the de-
formation process. These variables are denoted by ξ j ( j = 1, 2, . . . ,n). For simplicity, they
are assumed to be scalars (extension to include tensorial internal variables is straightfor-
ward). Inelastic deformation is considered to be a sequence of constrained equilibrium
states. These states are created by a conceptual constraining of internal variables at their
current values through imposed thermodynamic forces f j . The thermodynamic forces or
constraints are defined such that the power dissipation (temperature times the entropy
production rate) due to structural rearrangements can be expressed as

T γ = f j ξ̇ j . (6.112)

The rates of internal variables ξ̇ j are called the fluxes, and the forces f j are their affinities.
By the second law, γ > 0, and therefore f j ξ̇ j > 0.

If various equilibrium states are considered, each corresponding to the same set of values
of internal variables ξ j , the neighboring states are related by the usual laws of reversible
thermodynamics (thermoelasticity), such as (6.17) and (6.19). If neighboring constrained
equilibrium states correspond to different values of internal variables, then

T ṡ = − 1
ρ

∂qi

∂xi
+ r + f j ξ̇ j . (6.113)

Combining this with the energy equation gives

u̇ = 1
ρ0

Si j Ėi j + T ṡ − f j ξ̇ j . (6.114)

Thus, the internal energy is a thermodynamic potential for determining Si j , T and f j ,
when Ei j , s and ξ j are considered to be independent state variables. Indeed, after partial
differentiation of

u = u (Ei j , s, ξ j ) , (6.115)

the comparison with (6.114) gives

Si j = ρ0
∂u
∂Ei j

, T = ∂u
∂s
, f j = − ∂u

∂ξ j
. (6.116)

The Helmholtz free energy

φ = φ (Ei j , T, ξ j ) = u (Ei j , s, ξ j ) − Ts (6.117)
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is a thermodynamic potential for determining Si j , s and f j , such that

Si j = ρ0
∂φ

∂Ei j
, s = − ∂φ

∂T
, f j = − ∂φ

∂ξ j
. (6.118)

This clearly follows because

φ̇ = 1
ρ0

Si j Ėi j − s Ṫ − f j ξ̇ j . (6.119)

If the Gibbs energy

g = g (Si j , T, ξ j ) = φ (Ei j , T, ξ j ) − 1
ρ0

Si j Ei j (6.120)

is used, we have

Ei j = −ρ0
∂g
∂Si j

, s = − ∂g
∂T
, f j = − ∂g

∂ξ j
. (6.121)

This follows because

ġ = − 1
ρ0

Ei j Ṡi j − s Ṫ − f j ξ̇ j . (6.122)

It is noted that in (6.118)

fk = f̄k (Ei j , T, ξ j ) , (6.123)

whereas in (6.121)

fk = f̂k (Si j , T, ξ j ) , (6.124)

indicating different functional dependences of the respective arguments.
Finally, with the enthalpy

h = h (Si j , s, ξ j ) = u (Ei j , s, ξ j ) − 1
ρ0

Si j Ei j (6.125)

as a thermodynamic potential, it is found that

Ei j = −ρ0
∂h
∂Si j

, T = ∂h
∂s
, f j = − ∂h

∂ξ j
, (6.126)

because

ḣ = − 1
ρ0

Ei j Ṡi j + T ṡ − f j ξ̇ j . (6.127)

By taking appropriate cross-derivatives of the previous expressions, we establish the
Maxwell relations. For example,

∂Ekl (Si j , T, ξ j )
∂T

= ρ0
∂ ŝ (Si j , T, ξ j )

∂Skl
,

∂Skl (Ei j , T, ξ j )
∂T

= −ρ0
∂ s̄ (Ei j , T, ξ j )

∂Ekl
,

(6.128)
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and

∂Ekl (Si j , T, ξ j )
∂ξm

= ρ0
∂ f̂m (Si j , T, ξ j )

∂Skl
,

∂Skl (Ei j , T, ξ j )
∂ξm

= −ρ0
∂ f̄m (Ei j , T, ξ j )

∂Ekl
.

(6.129)

6.7.1 Evolution of Internal Variables

The selection of appropriate internal variables is a difficult task, which depends on the
material constitution and the type of deformation. Once internal variables are selected, it
is necessary to construct evolution equations that govern their change during the defor-
mation. For example, if the fluxes are assumed to be linearly dependent on the affinities,
we may write

ξ̇i = �i j f j . (6.130)

The coefficients �i j obey the Onsager reciprocity relations if �i j = � j i .
For some materials and for some range of deformation, it may be appropriate to assume

that at a given temperature T and given pattern of internal rearrangements ξ j , each flux
depends only on its own affinity, i.e.,

ξ̇i = function ( fi , T, ξ j ) . (6.131)

The flux dependence on the stress Si j comes only through the fact that fi = f̂i (Skl , T, ξk).
This type of evolution equation is often adopted in metal plasticity, where it is assumed
that the crystallographic slip on each slip system is governed by the resolved shear stress on
that system (or, at the dislocation level, the motion of each dislocation segment is governed
by the local Peach–Koehler force on that segment).

6.8 Gibbs Conditions of Thermodynamic Equilibrium

The system is in a thermodynamic equilibrium if its state variables do not spontaneously
change with time.

Theorem 1: In an isolated system, the equilibrium state is the state that has the maximum
value of entropy.

This is a direct consequence of the second law of thermodynamics. The increment of
entropy is due to irreversible processes within the system, and its interaction with the
surrounding, ds = ds irr + dssurr. By second law, ds irr > 0. Thus, for an isolated system
(dssurr = 0), we must have

ds > 0 , (6.132)

i.e., the entropy of an isolated system can only increase during a thermodynamic process.
If the process comes to equilibrium, the entropy is greater than the entropy in any nearby
nonequilibrium state. This, for example, indicates that the entropy of the whole universe
(which is an isolated system) always increases.
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Theorem 2: At constant stress and temperature, the direction of a spontaneous change
of the thermodynamic state is in the direction of decreasing Gibbs energy.

This clearly follows from (6.122), which, at constant stress and temperature, reduces to

ġ = − f j ξ̇ j < 0 . (6.133)

The inequality follows from the second law, requiring f j ξ̇ j > 0. Thus, a transformation
from the thermodynamic state can occur at constant stress and temerature only if it is
associated with a decrease of the Gibbs energy. Because there is no spontaneous change
from the equilibrium state, the Gibbs energy is minimum at the equilibrium state (relative
to all neighboring states at constant stress and temperature).

Gibbs originally formulated his celebrated thermodynamic equilibrium condition as:
Any virtual variation from the equilibrium state at constant pressure and temperature

which does not involve irreversible processes would give δg ≥ 0; if the variation involves
irreversible changes, then δg < 0.

If the substance can be in either a or b phase (structure), at given pressure and temper-
ature, a stable equilibrium phase is one that corresponds to lower Gibbs energy.

Theorem 3: Among all neighboring states with the same strain and entropy, the equi-
librium state is one with the lowest internal energy.

This follows from (6.114), which, at constant strain and temperature, reduces to

u̇ = − f j ξ̇ j < 0 . (6.134)

Thus, when the system undergoing a thermodynamic process at constant strain and entropy
comes to rest at its equilibrium, its internal energy attains its minimum. (It is hard to
control entropy in the experiment; conceptually one would need to extract the heat from
the internal dissipation, such that ds = 0).

Theorem 4: Among all neighboring states with the same strain and temperature, the
equilibrium state is one with the lowest Helmholtz free energy.

This follows from (6.119), which, at constant strain and temperature, reduces to

φ̇ = − f j ξ̇ j < 0 . (6.135)

Theorem 5: Among all neighboring states with the same stress and temperature, the
equilibrium state is one with the lowest enthalpy.

This follows from (6.127), which, at constant strain and temperature, reduces to

ḣ = − f j ξ̇ j < 0 . (6.136)

6.9 Linear Thermoelasticity

The structure of the constitutive equations relating the stress, strain, entropy and tem-
perature in linear thermoelasticity is readily derived by assuming a quadratic represen-
tation of the Helmholtz free energy in terms of strain and temperature. The material
parameters are specified in the accordance with observed isothermal elastic behavior and
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measured coefficients of thermal expansion and the specific heat. For isotropic materials,
this yields

φ(ei j ,T) = 1
2
λTe2

kk + µei j ei j − κTα0(T − T0)ekk

− c0
V

2T0
(T − T0)2 − s0(T − T0) + f0 ,

(6.137)

whereλT andµare the isothermal Lamé elastic constants,κT = λT + 2µ/3 is the isothermal
bulk modulus, and α0, c0

V , and s0 are, respectively, the coefficient of volumetric thermal
expansion, the specific heat at constant strain, and the specific entropy (per unit volume), all
in the reference state with temperature T0. The infinitesimal strain is ei j . The corresponding
free energy (per unit volume) isφ(0,T0) = φ0. The stress and entropy in the deformed state
are the gradients of f with respect to strain and temperature, which gives

σi j =
(
∂φ

∂ei j

)
T

= λTekkδi j + 2µei j − κTα0(T − T0)δi j , (6.138)

s = −
(
∂φ

∂T

)
e
= κTα0ekk + c0

V

T0
(T − T0) + s0 . (6.139)

The specific heat at constant strain, associated with (6.137) is

cV = T
(
∂s
∂T

)
e
= −T

(
∂2φ

∂T2

)
e
= c0

V
T
T0
. (6.140)

Once the Helmholtz free energy is specified as a function of strain and temperature, the
internal energy u = φ + Ts can be expressed in terms of the same independent variables
by simple substitution of (6.137) and the corresponding expression for the entropy. This
yields

u(ei j ,T) = 1
2
λTe2

kk + µei j ei j + κTα0T0ekk + c0
V

2T0
(T2 − T2

0 ) + u0 . (6.141)

In the sequel, it will be assumed that the internal energy vanishes in the reference state,
so that

u0 = 0 , φ0 = −T0s0 . (6.142)

However, the internal energy is a thermodynamic potential whose natural independent
state variables are strain and entropy, rather than strain and temperature. The desired rep-
resentation u = u(ei j , s) can be obtained from u = φ + Ts by eliminating the temperature
in terms of strain and entropy. The purely algebraic transition is simple, but little indicative
of the underlying thermodynamics. An independent derivation, starting from the energy
equation and utilizing the experimental data embedded in the Duhamel–Neumann exten-
sion of Hooke’s law and the assumed specific heat behavior, is desirable. The systematic
procedure to achieve this, and to derive the expressions for other thermodynamic poten-
tials, is presented in next section.
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6.10 Thermodynamic Potentials in Linear Thermoelasticity

The four thermodynamic potentials are derived in this section in terms of their natural
independent state variables. The derivation is in each case based only on the Duhamel–
Neumann extension of Hooke’s law, and an assumed linear dependence of the specific
heat on temperature.

6.10.1 Internal Energy

The increment of internal energy is expressed in terms of the increments of strain and
entropy by the energy equation

du = σi j dei j + Tds . (6.143)

Because u is a state function, du is a perfect differential, and the Maxwell relation holds(
∂σi j

∂s

)
e
=
(
∂T
∂ei j

)
s

. (6.144)

The thermodynamic potential u = u(ei j , s) is sought corresponding to the Duhamel–
Neumann expression

σi j = λTekkδi j + 2µei j − κTα0(T − T0)δi j , (6.145)

and an assumed linear dependence of the specific heat on temperature

cV = c0
V

T
T0
. (6.146)

By partial differentiation from (6.145) it follows that(
∂σi j

∂s

)
e
=
(
∂σi j

∂T

)
e

(
∂T
∂s

)
e
= −κTα0

(
∂T
∂s

)
e
δi j , (6.147)

so that the Maxwell relation (6.144) gives(
∂T
∂ei j

)
s

= −κTα0

(
∂T
∂s

)
e
δi j . (6.148)

The thermodynamic definition of the specific heat at constant strain is

cV = T
(
∂s
∂T

)
e
, (6.149)

which, in conjunction with (6.146), specifies the temperature gradient(
∂T
∂s

)
e
= T0

c0
V

. (6.150)

The substitution into (6.148) yields(
∂T
∂ei j

)
s

= −κTα0T0

c0
V

δi j . (6.151)

The joint integration of the above two equations provides the temperature expression

T = −κTα0T0

c0
V

ekk + T0

c0
V

(s − s0) + T0 . (6.152)
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When this is inserted into (6.145), we obtain an expression for the stress in terms of the
strain and entropy,

σi j = λSekkδi j + 2µei j − κTα0T0

c0
V

(s − s0)δi j . (6.153)

The adiabatic (isentropic) Lamé constant λS is related to its isothermal counterpart λT by

λS = λT + α2
0 T0

c0
V

κ2
T . (6.154)

By using (6.152) and (6.153), the joint integration of

σi j =
(
∂u
∂ei j

)
s

, T =
(
∂u
∂s

)
e
, (6.155)

yields a desired expression for the internal energy in terms of its natural independent
variables ei j and s. This is

u(ei j , s) = 1
2
λSe2

kk + µei j ei j − κTα0T0

c0
V

(s − s0)ekk

+ T0

2c0
V

(s − s0)2 + T0(s − s0) .

(6.156)

6.10.2 Helmholtz Free Energy

An independent derivation of the Helmholtz free energy φ = φ(ei j ,T) again begins with
the pair of expressions (6.145) and (6.146). The increment of φ is

dφ = σi j dei j − sdT , (6.157)

with the Maxwell relation (
∂σi j

∂T

)
e
= −

(
∂s
∂ei j

)
T

. (6.158)

By evaluating the temperature gradient of stress from (6.145), and by substituting the
result into (6.158), we find (

∂s
∂ei j

)
T

= κTα0δi j . (6.159)

The integration of above, in conjunction with(
∂s
∂T

)
e
= c0

V

T0
, (6.160)

provides the entropy expression

s = κTα0ekk + c0
V

T0
(T − T0) + s0 . (6.161)

By using (6.145) and (6.161), the joint integration of

σi j =
(
∂φ

∂ei j

)
T

, s = −
(
∂φ

∂T

)
e
, (6.162)
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yields a desired expression for the Helmholtz free energy in terms of its natural independent
variables ei j and T. This is

φ(ei j ,T) = 1
2
λTe2

kk + µei j ei j − κTα0(T − T0)ekk

− c0
V

2T0
(T − T0)2 − s0T .

(6.163)

6.10.3 Gibbs Energy

The increment of the Gibbs energy is

dg = −ei j dσi j − sdT , (6.164)

with the Maxwell relation (
∂ei j

∂T

)
σ

=
(
∂s
∂σi j

)
T

. (6.165)

To derive the function g(σi j ,T), independently of the connection g = φ − σi j ei j and with-
out tedious change of variables, we begin with the thermoelastic stress-strain relation and
the expression for the specific heat,

ei j = 1
2µ

(
σi j − νT

1 + νT
σkkδi j

)
+ α0

3
(T − T0)δi j , (6.166)

cP(T) = c0
P

T
T0
. (6.167)

The first one is a simple extension of Hooke’s law to include thermal strain, and the second
one is the assumed linear dependence of the specific heat at constant stress on temperature.
The thermodynamic definition of the specific heat cP is

cP = T
(
∂s
∂T

)
σ

. (6.168)

By differentiating (6.166) to evaluate the temperature gradient of strain, and by substituting
the result into the Maxwell relation (6.165), we find(

∂s
∂σi j

)
T

= α0

3
δi j . (6.169)

The integration of this, in conjunction with(
∂s
∂T

)
σ

= c0
P

T0
, (6.170)

provides the entropy expression

s = α0

3
σkk + c0

P

T0
(T − T0) + s0 . (6.171)

Using (6.166) and (6.171), the joint integration of

ei j = −
(
∂g
∂σi j

)
T

, s = −
(
∂g
∂T

)
σ

, (6.172)
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yields a desired expression for the Gibbs energy in terms of its natural independent vari-
ables σi j and T. This is

g(σi j ,T) = − 1
4µ

(
σi jσi j − νT

1 + νT
σ 2

kk

)
− α0

3
(T − T0)σkk

− c0
P

2T0
(T − T0)2 − s0T .

(6.173)

The relationship between the specific heats c0
P and c0

V can be obtained in various ways.
For example, by reconciling the entropy expressions (6.161) and (6.171), and by using the
relationship

ekk = 1
3κT

σkk + α0(T − T0) , (6.174)

following from (6.164), it is found that

c0
P − c0

V = κTα
2
0 T0 . (6.175)

6.10.4 Enthalpy Function

The increment of enthalpy is

dh = −ei j dσi j + Tds , (6.176)

with the Maxwell relation (
∂ei j

∂s

)
σ

= −
(
∂T
∂σi j

)
s

. (6.177)

To derive the function h(σi j , s), we again begin with the expressions (6.166) and (6.167).
By partial differentiation from (6.166) it follows that(

∂ei j

∂s

)
σ

=
(
∂ei j

∂T

)
σ

(
∂T
∂s

)
σ

= α0

3

(
∂T
∂s

)
σ

δi j . (6.178)

The substitution into the Maxwell relation (6.177) gives(
∂T
∂σi j

)
s

= −α0

3

(
∂T
∂s

)
σ

δi j = −α0T0

3c0
P

δi j . (6.179)

The definition (6.168), in conjunction with (6.167), was used in the last step. The joint
integration of the above equation and(

∂T
∂s

)
σ

= T0

c0
P

, (6.180)

provides the temperature expression

T = −α0T0

3c0
P

σkk + T0

c0
P

(s − s0) + T0 . (6.181)

When this is substituted into (6.166), there follows

ei j = 1
2µ

(
σi j − νS

1 + νS
σkkδi j

)
+ α0T0

3c0
P

(s − s0)δi j . (6.182)
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The adiabatic Poisson’s ratio νS is related to its isothermal counterpart νT by

νS = νT + 2µ(1 + νT)a
1 − 2µ(1 + νT)a

, νT = νS − 2µ(1 + νS)a
1 + 2µ(1 + νS)a

, (6.183)

where

a = α2
0 T0

9c0
P

. (6.184)

The adiabatic and isothermal Young’s moduli are related by

1
ET

− 1
ES

= α2
0 T0

9c0
P

. (6.185)

A simple relationship is also recorded

c0
P

c0
V

= κS

κT
. (6.186)

This easily follows by noting, from (6.152) and (6.181), that for adiabatic loading

T0 − T = κTα0T0

c0
V

ekk = α0T0

3c0
P

σkk . (6.187)

Since for adiabatic loading σkk = 3κSekk, the substitution into (6.187) yields (6.186).
Returning to the enthalpy function, by using (6.181) and (6.182), the joint integration of

ei j = −
(
∂h
∂σi j

)
s

, T =
(
∂h
∂s

)
σ

, (6.188)

yields the expression for the enthalpy in terms of its natural independent variables σi j and
s. This is

h(σi j , s) = − 1
4µ

(
σi jσi j − νS

1 + νS
σ 2

kk

)
− α0T0

3c0
P

(s − s0)σkk

+ T0

2c0
P

(s − s0)2 + T0(s − s0) .

(6.189)

6.11 Uniaxial Loading and Thermoelastic Effect

The derived representations of thermodynamic potentials for arbitrary three-dimensional
states of stress and strain are greatly simplified in the case of uniaxial and spherical states
of stress. The corresponding results are listed in Problems 6.1 and 6.2 of Chapter 34. To
illustrate the use of some of the derived formulas, consider the uniaxial loading paths
shown in Fig. 6.4. The path OAB is an adiabatic (fast loading) path, the path OC is an
isothermal (slow loading) path, the path AC is a constant stress path, and the path BC is
a constant longitudinal strain path. Along the adiabatic path OAB (see Problem 6.1)

u = −h = 1
2ES

σ 2 , (6.190)
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σ

A C

o
e

eeA B

σCσA=

BσB

eC=

Figure 6.4. Uniaxial loading along isothermal path OC, and along adiabatic path
OAB. The paths AC and BC are the constant stress and constant longitudinal strain
paths, respectively.

whereas along the isothermal path OC [see the expressions for φ(σ,T) and g(σ,T) from
Problem 6.1]

φ − φ0 = g0 − g = 1
2ET

σ 2 , φ0 = g0 = −T0s0 . (6.191)

The temperature drop along the adiabatic path is

T − T0 = −α0T0

3c0
P

σ , (6.192)

in accord with Kelvin’s formula describing Joule’s thermoelastic effect. The entropy in-
crease along the isothermal path is

s − s0 = α0

3
σ , (6.193)

with the corresponding absorbed heat given by T0(s − s0).
The heat absorbed along the constant stress path AC is equal to the enthalpy change

hC − hA = α0T0

3
σA − α2

0 T0

18c0
P

σ 2
A . (6.194)

This is in agreement with the result following from∫ TC

TA

cP(T)dT = c0
P

2T0
(T2

0 − T2
A) . (6.195)

The heat absorbed along the constant longitudinal strain path BC is

uC − uB =
(

1
2ET

σ 2
C + α0T0

3
σC

)
− 1

2ES
σ 2

B , (6.196)

which gives

uC − uB = α0T0

3
σA − ES

ET

α2
0 T0

18c0
P

σ 2
A . (6.197)

This can be confirmed by integrating∫ sC

sB

Tds =
∫ sC

sB

[
T0 + T0

c0
P

(
s − s0 − α0

3
σ
)]

ds , (6.198)
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with the stress variation, along the path BC, given by

σ = ES

ET
σA − α0T0

3c0
P

ES(s − s0) . (6.199)

For metals, the second term on the right-hand side of (6.197) is much smaller than the first
term, being associated with small departures of cP and cV from their reference values c0

P

and c0
V , inherent in linear approximations cP = c0

PT/T0 and cV = c0
VT/T0, which are valid

for sufficiently small temperature differences (T − T0).
An alternative derivation of (6.197) proceeds by noting that along the path BC,

dσ = −ETα0dT/3 (because the longitudinal component of strain is fixed along that path).
The corresponding increment of entropy is

ds = α0

3
dσ + c0

P

T0
dT = c0

P

T0

ET

ES
dT . (6.200)

The relationship (6.185) between isothermal and adiabatic Young’s moduli was used.
Therefore, ∫ TC

TB

Tds = c0
P

2T0

ET

ES

(
T2

0 − T2
B

)
. (6.201)

The incorporation of (6.192) reproduces (6.197).
Yet another derivation is possible by starting from an expression for the heat increment

in terms of the latent and specific heat, i.e.,

Tds = le
i j dei j + cVdT . (6.202)

The components of the latent heat tensor at constant strain are defined by

le
i j = T

(
∂s
∂ei j

)
T

= κTα0Tδi j , (6.203)

which gives

Tds = κTα0Tdekk + cVdT . (6.204)

Because along the path BC,

dekk = 2
3

(1 + νT)α0dT , (6.205)

the substitution into (6.204), and integration from TB to TC = T0, gives (6.197). This deriva-
tion is facilitated by noting that, in view of (6.183),

(1 + νT)
α2

0 T0

9c0
P

= νS − νT

ES
. (6.206)

The individual contributions of the latent and specific heat to the total heat absorbed
along the path BC are ∫ C

B
cVdT = 1 − 2νS

1 − 2νT
(uC − uB) , (6.207)

∫ C

B
le
i j dei j = 2

νS − νT

1 − 2νT
(uC − uB) . (6.208)
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The contribution given by (6.207) is smaller than (uC − uB), because νS > νT . Since the lat-
eral strain is not held constant along the path BC, there is a small but positive contribution
to absorbed heat from the latent heat, and this is represented by (6.208). Both, (6.197) and
(6.207) display in their structure simple combination of adiabatic and isothermal elastic
constants, via the ratio terms ES/ET and

c0
V

c0
P

ES

ET
= 1 − 2νS

1 − 2νT
. (6.209)

6.12 Thermodynamics of Open Systems: Chemical Potentials

In addition to heat and work transfer, an open thermodynamic system allows a mass
transfer across its boundary. Consider a homogeneous system, consisting of one phase,
made up from uniform mixture of k components. For example, an Al-Zn fcc phase consists
of Al and Zn components. Let n1,n2, . . . ,nk be the numbers of moles of these components.
Let U, V, and S be the internal energy, volume, and entropy within the whole system
(extensive properties; if u is the internal energy per unit current mass, then U = ρVu and
S = ρVs, where ρ is the current mass density). Suppose

U = U(V, S,n1,n2, . . . ,nk) , (6.210)

then

dU =
(
∂U
∂V

)
S,ni

dV +
(
∂U
∂S

)
V,ni

dS +
k∑

i=1

(
∂U
∂ni

)
S,V,nj 
=i

dni . (6.211)

Since, at constant composition (all ni fixed), the relationships from the thermodynamics
of closed system apply, we have

p = −
(
∂U
∂V

)
S,ni

, T =
(
∂U
∂S

)
V,ni

, (6.212)

where p and T are the pressure and temperature (intensive properties). If V and S are held
constant, (6.211) indicates that the internal energy changes because of the changes in com-
position alone. Thus, we introduce the so-called chemical potential of the i-th component
by

µi =
(
∂U
∂ni

)
V,S,nj 
=i

. (6.213)

Consequently, the overall increment of internal energy can be expressed as

dU = −pdV + TdS +
k∑

i=1

µi dni . (6.214)

This can be viewed as the energy equation for an open system. The term −pdV is the work
done to the system, TdS is the heat transferred to the system, and each µi dni is the energy
change due to an infinitesimal change of the component i at fixed V and S and fixed number
of moles of other components. (For example, the addition of interstitial atoms changes the
internal energy of the system, and this change is governed by the corresponding chemical
potential).
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The chemical potential can also be introduced as the gradient of other thermodynamic
potentials, by holding their independent variables fixed. For example, considering the
Helmholtz free energy

 (V,T,n1,n2, . . . ,nk) = U(V, S,n1,n2, . . . ,nk) − TS , (6.215)

we have

d = −pdV − SdT +
k∑

i=1

µi dni , (6.216)

where

p = −
(
∂ 

∂V

)
T,ni

, S = −
(
∂ 

∂T

)
V,ni

, µi =
(
∂ 

∂ni

)
V,T,nj 
=i

. (6.217)

With the Gibbs energy

G(p,T,n1,n2, . . . ,nk) =  (V,T,n1,n2, . . . ,nk) + pV (6.218)

as the thermodynamic potential, we obtain

dG = Vdp − SdT +
k∑

i=1

µi dni , (6.219)

where

V =
(
∂G
∂p

)
T,ni

, S = −
(
∂G
∂T

)
p,ni

, µi =
(
∂G
∂ni

)
p,T,nj 
=i

. (6.220)

Finally, if the enthalpy of the system

H(p, S,n1,n2, . . . ,nk) = U(V, S, n1,n2, . . . ,nk) + pV (6.221)

is used, we have

dH = Vdp + TdS +
k∑

i=1

µi dni , (6.222)

with

V =
(
∂H
∂p

)
S,ni

, T =
(
∂H
∂S

)
p,ni

, µi =
(
∂H
∂ni

)
p,S,nj 
=i

. (6.223)

If the stress state is not pure pressure, the stress and strain tensors are related by

Si j = 1
V0

(
∂ 

∂Ei j

)
T,ni

, Ei j = 1
V0

(
∂G
∂Si j

)
Ei j ,ni

, (6.224)

where V0 is the initial volume of the system. Similar relations hold if U and H are used as
thermodynamic potentials.

One can easily establish the Maxwell’s relations corresponding to each thermodynamic
potential (or the set of independent state variables). For example, by using the Gibbs
energy, i.e., p, T, and ni as independent state variables, there follows(

∂V
∂ni

)
p,T,nj 
=i

=
(
∂µi

∂p

)
T,nj

, (6.225)
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(
∂S
∂ni

)
p,T,nj 
=i

= −
(
∂µi

∂T

)
p,nj

, (6.226)

(
∂µi

∂nj

)
p,T,nr 
= j

=
(
∂µ j

∂ni

)
p,T,nr 
=i

. (6.227)

For the two component system, G = G(p,T,n1, n2), the last reciprocal relation reads(
∂µ1

∂n2

)
p,T,n1

=
(
∂µ2

∂n1

)
p,T,n2

=
(
∂2G
∂n1∂n2

)
p,T
. (6.228)

6.13 Gibbs–Duhem Equation

The Gibbs energy

G = G(p,T,n1, n2, . . . ,nk) (6.229)

is a homogeneous function of degree 1 with respect to ni , so that

G(p,T, λn1, λn2, . . . , λnk) = λG(p,T,n1, n2, . . . ,nk) , (6.230)

and
k∑

i=1

(
∂G
∂ni

)
p,T,nj 
=i

ni = G . (6.231)

Recalling a definition of the chemical potential

µi =
(
∂G
∂ni

)
p,T,nj 
=i

, (6.232)

we conclude that

G =
k∑

i=1

µi ni . (6.233)

Therefore, the Gibbs energy of the system is the weighted sum of the chemical potentials of
its components. If the system consists of n1 moles of only one component, then G1 = n1µ1,
i.e., the chemical potential of this component (associated with the change of energy of the
system due to change of the amount of this component in the system at constant V and S)
is µ1 = G1/n1 (molar Gibbs energy).

An additional important relationship can be derived by applying a total differential to
(6.233). We obtain

dG =
k∑

i=1

µi dni +
k∑

i=1

ni dµi . (6.234)

By equating this to (6.219), i.e.,

dG = Vdp − SdT +
k∑

i=1

µi dni , (6.235)
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there follows

−Vdp + SdT +
k∑

i=1

ni dµi = 0 . (6.236)

This is known as the Gibbs–Duhem equation. In a test at constant pressure and tempera-
ture, it reduces to

k∑
i=1

ni dµi = 0 . (6.237)

Having established the representation of the Gibbs energy in terms of chemical poten-
tials, it is straightforward to derive the expressions for other thermodynamic potentials.
Indeed, since H = G + TS, we obtain

H = TS +
k∑

i=1

µi ni . (6.238)

Furthermore, since U = H − pV,

U = −pV + TS +
k∑

i=1

µi ni , (6.239)

and, since  = U − TS,

 = −pV +
k∑

i=1

µi ni . (6.240)

The last two can be generalized for the case of nonhydrostatic state of stress as

U = V0 Si j Ei j + TS +
k∑

i=1

µi ni ,  = V0 Si j Ei j +
k∑

i=1

µi ni . (6.241)

6.14 Chemical Potentials for Binary Systems

Consider a binary system consisting of n1 moles of component 1 and n2 moles of component
2. By (6.233), its Gibbs energy is

G = n1µ1 + n2µ2 , (6.242)

where µ1 and µ2 are the chemical potentials of two components in the system. The molar
Gibbs energy is defined by

Gm = G
n1 + n2

. (6.243)

Denoting by

X1 = n1

n1 + n2
, X2 = n2

n1 + n2
(6.244)

the concentrations of two components, we can write

Gm = X1µ1 + X2µ2 . (6.245)
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Consider a process at constant p and T. The Gibbs–Duhem equation (6.237) then gives

n1dµ1 + n2dµ2 = 0 ⇒ X1dµ1 + X2dµ2 = 0 . (6.246)

Consequently, upon applying the differential to (6.245), we obtain

dGm = µ1dX1 + µ2dX2 . (6.247)

Since dX1 = −dX2 (because X1 + X2 = 1), the above reduces to

dGm = (µ2 − µ1)dX2 , (6.248)

i.e.,

µ2 − µ1 = dGm

dX2
. (6.249)

Solving (6.245) and (6.249) for µ1 and µ2, there follows

µ1 = Gm − X2
dGm

dX2
, (6.250)

µ2 = Gm + (1 − X2)
dGm

dX2
, (6.251)

both being expressed in terms of the molar Gibbs energy Gm = Gm(X2) and the concen-
tration X2.

6.15 Configurational Entropy

We derive in this section an expression for the configurational entropy that is often adopted
in the thermodynamics of open systems and alloy solutions. The number of distinguished
ways in which N1 particles of type 1 and N2 particles of type 2 can fill the N1 + N2 available
sites is given by the well-known formula

� = (N1 + N2)!
N1!N2!

. (6.252)

The configurational entropy is defined as

Sconf = k ln� = k ln
(N1 + N2)!

N1!N2!
, (6.253)

where k is the Boltzmann’s constant. Recalling the Stirling’s formula from calculus

m! =
√

2πm mme−m , (6.254)

we have

ln m! = 1
2

ln(2πm) + m ln m − m . (6.255)

For large integers m, this is approximately equal to

ln m! ≈ m ln m − m . (6.256)
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Applying this approximation to (6.253), we now have

Sconf = k [(N1 + N2) ln(N1 + N2) − (N1 + N2)

−(N1 ln N1 − N1) − (N2 ln N2 − N2)] ,
(6.257)

i.e.,

Sconf = −k
(

N1 ln
N1

N1 + N2
+ N2 ln

N2

N1 + N2

)
. (6.258)

If there is n1 moles of particles 1 and n2 moles of particles 2, then N1 = NAn1 and N2 =
NAn2, where NA is the Avogadro’s number, so that

N1

N1 + N2
= n1

n1 + n2
= X1 ,

N2

N1 + N2
= n2

n1 + n2
= X2 (6.259)

are the concentration of two types of particles in the mixture. Therefore, by dividing (6.258)
with the total number of moles n1 + n2, we obtain

Sconf
m = −R(X1 ln X1 + X2 ln X2), (6.260)

where R = NAk is the universal gas constant, and Sconf
m = Sconf/(n1 + n2) is the molar con-

figurational entropy.

6.16 Ideal Solutions

The above expression for the configurational entropy is adopted in the theory of solid
solutions. The molar entropy of the solid solution is assumed to consists of two parts: a
weighted sum of the entropies of pure components (at given p and T), and the entropy of
the components’ mixing, i.e.,

Sm =
k∑

i=1

Xi S(i)
m + Smix

m =
k∑

i=1

Xi Si
m − R

k∑
i=1

Xi ln Xi . (6.261)

The molar entropy of pure component i at given p and T is denoted by S(i)
m . Similarly, the

molar Gibbs energy is taken to be

Gm =
k∑

i=1

Xi G(i)
m + Gmix

m , Gmix
m = −TSmix

m = RT
k∑

i=1

Xi ln Xi . (6.262)

If these expressions are adopted, the solution model is referred to as an ideal solution.
Note that for an ideal solution model, Hmix

m = 0 and mix
m = Gmix

m . The chemical potentials
of the components in an ideal solution can be readily calculated. For example, for a binary
solution, (6.262) gives

Gm = X1G(1)
m + X2G(2)

m + RT(X1 ln X1 + X2 ln X2)

= (1 − X2)G(1)
m + X2G(2)

m + RT[(1 − X2) ln(1 − X2) + X2 ln X2],

so that

dGm

dX2
= G(2)

m − G(1)
m + RT ln

X2

1 − X2
. (6.263)
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The substitution of this into (6.250) and (6.251) then gives

µ1 = G(1)
m + RT ln X1 , µ2 = G(2)

m + RT ln X2 . (6.264)

The logarithmic terms are the mixing contributions to chemical potentials.

6.17 Regular Solutions for Binary Alloys

The regular solution model involves an additional parameter ω (representing in some
average sense the relative energies of like and unlike bonds between the two components
of the alloy), such that the molar enthalpy of mixing is

Hm = ωX1 X2 . (6.265)

The entropy of mixing is taken to be as in an ideal solution,

Smix
m = −R(X1 ln X1 + X2 ln X2) , (6.266)

so that the Gibbs energy of mixing (Gmix
m = Hmix

m − TSmix
m ) becomes

Gmix
m = ωX1 X2 + RT(X1 ln X1 + X2 ln X2) . (6.267)

The molar Gibbs energy is accordingly

Gm = X1G(1)
m + X2G(2)

m + Gmix
m , (6.268)

whereas the chemical potentials of two components in the solution are, from (6.250) and
(6.251),

µ1 = G(1)
m + ωX2

2 + RT ln X1 ,

µ2 = G(2)
m + ωX2

1 + RT ln X2 .
(6.269)

The most distinguished feature of a regular solution model is that it can lead to a miscibil-
ity gap. Namely, whereas an ideal solution implies complete solubility of two components
throughout the concentration range, a regular solution allows a possibility that two com-
ponents at low temperature may not mix for some concentration, but form a mixture of
two solution phases with different concentrations. Assuming that ω > 0, the temperature
below which there may be a miscibility gap is obtained from the requirements

d2Gm

dX2
2

= d3Gm

dX3
2

= 0 . (6.270)

This specifies the critical temperature

Tcr = ω

2R
. (6.271)

The miscibility boundary is defined by

dGm

dX2
= G(2)

m − G(1)
m , (6.272)
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X2
0 1X2

α
X2

β

µ 1

µ 2

G m Τ<Τ cr

G m
(1)

G m
(2)

Figure 6.5. The molar Gibbs energy vs. the concentra-
tion X2 below the critical temp Tcr. The mixture of α
and β phases has lower Gibbs energy than the solution
in the concentration range Xα2 < X2 < Xβ2 .

or simply dGmix
m /dX2 = 0, which gives

T
Tcr

= 2
1 − 2X2

ln
1 − X2

X2

. (6.273)

This is clearly symmetric with respect to the midpoint of the concentration range X2 = 0.5.
It can be easily verified that for T < Tcr,

d2Gm

dX2
2

= −2ω + RT
X1 X2

< 0 , (6.274)

implying an unstable solution within the miscibility gap. The mixture of two solutions has
a lower Gibbs energy in this range.

If the miscibilty gap at some T < Tcr extends from Xα2 to Xβ2 , the alloy of concentration
Xα2 < X2 < Xβ2 is a mixture of two solutions, one of the concentration Xα2 and the other
of the concentration Xβ2 . This mixture has the Gibbs energy which is on the straight line
tangent to the solution curve at both concentration points, Xα2 and Xβ2 (Fig. 6.5), and thus
given by

Gm(X2) = Gα
m + Gβ

m − Gα
m

Xβ2 − Xα2
(X2 − Xα2 ) , (6.275)

where Gα
m = Gm(Xα2 ) and Gβ

m = Gm(Xβ2 ) are the Gibbs energies of regular solutions at the
corresponding concentrations, calculated from (6.268). The two phases (α and β) in the
mixture are in thermodynamic equilibrium, so that

µ1(Xα2 ) = µ1(Xβ2 ) , µ2(Xα2 ) = µ2(Xβ2 ) . (6.276)

The amounts of the α and β phases in the mixture are determined from the lever rule.
There is (Xβ2 − X2)/(Xβ2 − Xα2 ) of the α phase, and (X2 − Xα2 )/(Xβ2 − Xα2 ) of the β phase in
the mixture of overall concentration X2. Note also that

µ2(Xα2 ) − µ1(Xα2 ) = µ2(Xβ2 ) − µ1(Xβ2 ) = G(2)
m − G(1)

m , (6.277)
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6.18 Suggested Reading

Suggested texts for thermodynamics of solids and materials are listed below. They include
the books on continuum thermodynamics, thermoelasticity, metallurgical thermodynam-
ics, thermodynamics of materials, and chemical thermodynamics.

Boley, B. A., and Weiner, J. H. (1960), Theory of Thermal Stresses, Wiley, New York.
Callen, H. B. (1960), Thermodynamics, Wiley, New York.
DeHoff, R. T. (1993), Thermodynamics in Materials Science, McGraw-Hill, New York.
Denbigh, K. (1981), The Principles of Chemical Equilibrium, 4th ed., Cambridge University

Press, Cambridge.
Dickerson, R. E. (1969), Molecular Thermodynamics, The Benjamin/Cummings Publ.,

Menlo Park, CA.
Ericksen, J. L. (1991), Introduction to the Thermodynamics of Solids, Chapman and Hall,

London.
Fung, Y.-C. (1965), Foundations of Solid Mechanics, Prentice Hall, Englewood Cliffs, New

Jersey.
Gaskell, D. R. (2003), Introduction to the Thermodynamics of Materials, 4th ed., Taylor &

Francis, New York.
Kestin, J. (1979), A Course in Thermodynamics, McGraw-Hill, New York.
Kovalenko, A. D. (1969), Thermoelasticity, Wolters–Noordhoff, Groningen, The Nether-

lands.
Lupis, C. H. P. (1983), Chemical Thermodynamics of Materials, Prentice Hall, Englewood

Cliffs, New Jersey.
Malvern, L. E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice

Hall, Englewood Cliffs, New Jersey.
McLellan, A. G. (1980), The Classical Thermodynamics of Deformable Materials, Cam-

bridge University Press, Cambridge.
Müller, I. (1985), Thermodynamics, Pitman, Boston.
Noda, N., Hetnarski, R. B., and Tanigawa, Y. (2003), Thermal Stresses, Taylor & Francis,

New York.
Ragone, D. V. (1995), Thermodynamics of Materials, Wiley, New York.
Sneddon, I. N. (1974), The Linear Theory of Thermoelasticity, CISM Udine, Springer–

Verlag, Wien.
Swalin, R. A. (1972), Thermodynamics of Solids, Wiley, New York.
Ziegler, H. (1983), An Introduction to Thermomechanics, 2nd revised ed., North-Holland,

Amsterdam.
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7 Nonlinear Elasticity

In this chapter we give a concise treatment of nonlinear elasticity, which includes both
geometrical and material nonlinearities (finite deformations and nonlinear constitutive
equations). This is done to illustrate the application of the general framework of nonlin-
ear continuum mechanics developed in previous chapters and to give an introduction to
important subject of rubber elasticity. A detailed coverage of linear elasticity is presented
in Part III of the book.

7.1 Green Elasticity

Elastic deformation is a reversible process which does not cause any permanent change of
internal structure of the material. Experiments indicate that there is no net work left in a
material upon any closed cycle of elastic strain, i.e.,∮

S : dE = 0 , (7.1)

where E is the Green strain and S its conjugate symmetric Piola–Kirchhoff stress. This
means that

S : dE = d (7.2)

is a total differential, which leads to

S = ∂ 

∂E
,  =  (E) . (7.3)

The function  =  (E) is the strain energy function per unit initial volume. It represents
the work done to isothermally deform a unit of initial volume to the state of strain E.

In view of the relationship between the Kirchhoff stress τ and the symmetric Piola–
Kirchhoff stress S, we have

τ = (det F)σ = F · ∂ 
∂E

· FT . (7.4)

With a specified strain energy function for a given material, (7.4) defines the stress response
corresponding to the deformation gradient F. Because stress is derived from the strain

148
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energy function, the equation is referred to as the constitutive equation of hyperelasticity
or Green elasticity.

The nonsymmetric Piola–Kirchhoff stress (denoted by P̂ in Section 5.8) is

P = ∂ 

∂F
, Pji = ∂ 

∂Fi j
, (7.5)

which follows from

d = ∂ 

∂Fi j
dFi j = Pji dFi j . (7.6)

Because  is unaffected by the rotation of the deformed configuration,

 (F) =  (Q · F). (7.7)

By choosing Q = RT , where R is the rotation tensor from the polar decopmosition of the
deformation gradient F = V · R = R · U, it follows that  depends on F only through U,
or C = U2, i.e.,

 =  (C), C = FT · F. (7.8)

The functional dependences of  on different tensor arguments such as F, U, or C are, of
course, different.

Constitutive equations of nonlinear elasticity can be derived without assuming the ex-
istence of the strain energy function. Suppose that at any state of elastic deformation, the
stress is a single-valued function of strain, regardless of the deformation path along which
the state has been reached. Since no strain energy is assumed to exist, the work done by the
stress could in general be different for different deformation paths. This type of elasticity
is known as Cauchy elasticity, although experimental evidence does not indicate existence
of any Cauchy-elastic material that is also not Green-elastic. In any case, we write

S = f (E) , (7.9)

where f is a second-order tensor function, whose representation depends on the elastic
properties of the material. Since

S = (det F) F−1 · σ · F−T , (7.10)

we have

σ = 1
det F

F · g(U) · FT , (7.11)

where

g(U) = f(E) , E = 1
2

(
U2 − I

)
. (7.12)

By using the polar decomposition F = R · U, (7.11) becomes

σ = 1
det U

R · U · g(U) · U · RT . (7.13)

Thus, the stress response of the Cauchy elasticity can be put in the form

σ = R · h(U) · RT , (7.14)
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with the function h defined by

h(U) = 1
det U

· U · g(U) · U . (7.15)

7.2 Isotropic Green Elasticity

If the strain energy does not depend along which material directions the principal strains
are applied, so that

 
(
Q · E · QT) =  (E) (7.16)

for any rotation tensor Q, the material is elastically isotropic. A scalar function which
satisfies (7.16) is said to be an isotropic function of its second-order tensor argument. Such
a function can be expressed in terms of the principal invariants of the strain tensor E, i.e.,

 =  (IE, I IE, I I IE) , (7.17)

where

IE = trE , I IE = 1
2

[
tr(E2) − (trE)2] , I I IE = det E . (7.18)

Note that the definition for I IE used here differs in sign from the definition of second
invariant used in Chapters 1 and 4. Since

∂ IE

∂E
= I,

∂ I IE

∂E
= E − IEI,

∂ I I IE

∂E
= E2 − IEE − I IEI, (7.19)

(7.3) yields, upon partial differentiation,

S = c0I + c1E + c2E2. (7.20)

The parameters are

c0 = ∂ 

∂ IE
− IE

∂ 

∂ I IE
− I IE

∂ 

∂ I I IE
, c1 = ∂ 

∂ I IE
− IE

∂ 

∂ I I IE
,

c2 = ∂ 

∂ I I IE
.

(7.21)

For example, if the Saint-Venant–Kirchhoff assumption is adopted,

 = 1
2

(λ+ 2µ)I2
E + 2µI IE, (7.22)

a generalized Hooke’s law for finite strain is obtained,

S = λIEI + 2µE . (7.23)

The material constants are λ and µ.
If a cubic representation of  is assumed,

 = 1
2

(λ+ 2µ)I2
E + 2µI IE + l + 2m

3
I3

E + 2mIE I IE + nI I IE , (7.24)

the stress response becomes

S = [λIE + l I2
E + (2m − n)I IE]I + [2µ+ (2m − n)IE]E + nE2 . (7.25)

The constants l, m and n are the Murnaghan’s constants.
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7.3 Constitutive Equations in Terms of B

The finite strain constitutive equations of isotropic elasticity are often expressed in terms
of the left Cauchy–Green deformation tensor B = V2. Since

 ̇ = ∂ 

∂B
:

�
B = τ : D (7.26)

and
�
B = B · D + D · B , (7.27)

we obtain

τ = B · ∂ 
∂B

+ ∂ 

∂B
· B, (7.28)

written in a symmetrized form. The function  =  (B) is an isotropic function of B.
Expressing the strain energy in terms of the invariants of B,

 =  (IB, I IB, I I IB) , (7.29)

(7.28) gives

τ = 2
[(

I I IB
∂ 

∂ I I IB

)
I +

(
∂ 

∂ IB
− IB

∂ 

∂ I IB

)
B +

(
∂ 

∂ I IB

)
B2
]
. (7.30)

If B2 is eliminated by using the Cayley–Hamilton theorem, (7.30) can be rewritten as

τ = 2
[(

I I IB
∂ 

∂ I I IB
+ I IB

∂ 

∂ I IB

)
I +

(
∂ 

∂ IB

)
B +

(
I I IB

∂ 

∂ I IB

)
B−1

]
. (7.31)

Note that the invariants of E and B are related by

IE =1
2

(IB − 3) , I IE = 1
4

I IB + 1
2

IB − 3
4
,

I I IE = 1
8

(I I IB + I IB + IB − 1) ,

(7.32)

IB =2IE + 3, I IB = 4I IE − 4IE − 3,

I I IB = 8I I IE − 4I IE + 2IE + 1.
(7.33)

The constitutive equation of isotropic elastic material in terms of the nominal stress is

P = F−1 · τ = FT ·
(
∂ 

∂B
+ B−1 · ∂ 

∂B
· B
)
. (7.34)

By using the strain energy representation (7.29), this becomes

P = 2FT ·
[(
∂ 

∂ IB
− IB

∂ 

∂ I IB

)
I +

(
∂ 

∂ I IB

)
B +

(
I I IB

∂ 

∂ I I IB

)
B−1

]
. (7.35)

Different forms of the strain energy function were used in the literature. For example,
Ogden (1984) used

 = a
2

(IB − 3 − ln I I IB) + c
(

I I I1/2
B − 1

)2
, (7.36)
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where a and c are the material parameters. Blatz and Ko (1962) proposed an expression
for the strain energy for compressible foamed elastomers. Other representations can be
found in Beatty (1996) and Holzapfel (2000).

7.4 Constitutive Equations in Terms of Principal Stretches

The strain energy of an isotropic material can be conveniently expressed in terms of the
principal stretches λi (the eigenvalues of U and V, which are invariant quantities), i.e.,

 =  (λ1, λ2, λ3). (7.37)

Suppose that all principal stretches are different, and that Ni and ni are the principal
directions of the right and left stretch tensors U and V, respectively, so that

U =
3∑

i=1

λi Ni Ni , E =
3∑

i=1

1
2

(
λ2

i − 1
)

Ni Ni , (7.38)

and

V =
3∑

i=1

λi ni ni , F =
3∑

i=1

λi ni Ni . (7.39)

For an isotropic elastic material, the principal directions of the strain tensor E are parallel
to those of its conjugate stress tensor S, and we can write

S =
3∑

i=1

Si Ni Ni . (7.40)

The principal Piola–Kirchhoff stresses are

Si = ∂ 

∂Ei
= 1
λi

∂ 

∂λi
, (7.41)

with no sum on i . Recall that λ2
i = 1 + 2E2

i .
The principal directions of the Kirchhoff stress τ of an isotropic elastic material are

parallel to those of V, so that

τ =
3∑

i=1

τi ni ni . (7.42)

The corresponding principal components are

τi = λ2
i Si = λi

∂ 

∂λi
. (7.43)

Finally, decomposing the nominal stress as

P =
3∑

i=1

Pi ni Ni , (7.44)

we have

Pi = λi Si = ∂ 

∂λi
. (7.45)
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7.5 Incompressible Isotropic Elastic Materials

For an incompressible material the deformation is necessarily isochoric, so that det F = 1.
Only two invariants of E are independent, because

I I IE = −1
4

(IE − 2I IE) . (7.46)

Thus, the strain energy can be expressed as

 =  (IE, I IE) . (7.47)

If (7.30) is specialized to incompressible materials, there follows

σ = −pI + 2
[(
∂ 

∂ IB
− IB

∂ 

∂ I IB

)
B +

(
∂ 

∂ I IB

)
B2
]
, (7.48)

where p is an arbitrary pressure. Similarly, (7.31) gives

σ = −p0I + 2
[(
∂ 

∂ IB

)
B +

(
∂ 

∂ I IB

)
B−1

]
. (7.49)

Here, all terms proportional to I are absorbed in p0.
Equation (7.48) can also be derived by viewing an incompressible material as a material

with internal constraint

I I IB − 1 = 0. (7.50)

A Lagrangian multiplier −p/2 is then introduced, such that

 =  (IB, I IB) − p
2

(I I IB − 1) , (7.51)

and (7.28) directly leads to (7.48).
For the Mooney–Rivlin rubber model, the strain energy is

 = aIE + bI IE = a + b
2

(IB − 3) + b
4

(I IB + 3) , (7.52)

whereas for the neo-Hookean material

 = a
2

(IB − 3) . (7.53)

The strain energy representation, suggested by Ogden (1982,1984),

 =
N∑

n=1

an

αn

(
λ
αn
1 + λαn

2 + λαn
3 − 3

)
(7.54)

may be used in some applications, where N is positive integer, but αn need not be integers.
The material parameters are an and αn. Incompressibility constraint is λ1λ2λ3 = 1. Other
representations in terms of principal stretches λi have also been explored (Anand, 1986;
Arruda and Boyce, 1993).

7.6 Elastic Moduli Tensors

The rate-type constitutive equation for finite deformation elasticity is obtained by dif-
ferentiating (7.3) with respect to a time like monotonically increasing parameter t . This
gives

Ṡ = Λ : Ė, Λ = ∂2 (E)
∂E ∂E

. (7.55)
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The fourth-order tensor Λ is the tensor of elastic moduli (or tensor of elasticities) asso-
ciated with a conjugate pair of tensors (E,S). The rates of the conjugate tensors E and
S are

Ė = FT · D · F, Ṡ = F−1 · �
τ · F−T , (7.56)

where

�
τ = τ̇ − L · τ − τ · LT (7.57)

is the Oldroyd rate of the Kirchhoff stressτ (L being the velocity gradient). The substitution
of (7.56) into (7.55) gives

�
τ in terms of the rate of deformation D,

�
τ = LLL : D . (7.58)

The corresponding elastic moduli tensor is

LLL = F F Λ FT FT. (7.59)

The products are here such that the Cartesian components of the two tensors of elasticities
are related by

Li jkl = FimFjn�mnpq FkpFlq . (7.60)

The rate-type constitutive equation (7.58) can be rewritten in terms of the Jaumann rate
�
τ as

�
τ = L̂LL : D, (7.61)

where

L̂LL = LLL + 2HHH . (7.62)

This follows because of the relationships

�
τ = �

τ + D · τ + τ · D = �
τ − D · τ − τ · D , (7.63)

where

�
τ = τ̇ + LT · τ + τ · L (7.64)

is the Cotter–Rivlin convected rate of the Kirchhoff stress. The Cartesian components of
the fourth-order tensor HHH are

Hi jkl = 1
4

(τikδ jl + τ jkδil + τilδ jk + τ jlδik) . (7.65)

For metals,L̂LL ≈ LLL. The elastic moduli tensorsΛ,LLL, andL̂LLall possess the basic and reciprocal
(major) symmetries, e.g.,

Li jkl = L j ikl = Li jlk, Li jkl = Lkli j . (7.66)
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7.7 Instantaneous Elastic Moduli

The instantaneous elastic moduli relate the rates of conjugate stress and strain tensors,
when these are evaluated at the current configuration as the reference (this being denoted
in the sequence by a subscript or superscript ◦). Thus, since Ė◦ = D, we write

Ṡ◦ = Λ◦ : Ė◦ = Λ◦ : D. (7.67)

The tensor of instantaneous elastic moduli Λ◦ can be related to the corresponding tensor
of elastic moduli Λ by using the relationship between Ė and Ė◦. Indeed, we have

Ṡ = (det F) F−1 · Ṡ◦ · F−T, Ė = FT · D · F. (7.68)

The substitution into (7.55) gives

Ṡ◦ = Λ◦ : D,

Λ◦ = (det F)−1 F F Λ FT FT = (det F)−1 LLL .
(7.69)

Since, from (7.56), Ṡ◦ = �
τ , (7.67) becomes

�
τ = LLL◦ : D, LLL◦ = Λ◦ . (7.70)

7.8 Elastic Pseudomoduli

The nonsymmetric nominal stress P is derived from the strain energy function as its gradient
with respect to deformation gradient F, such that

P = ∂ 

∂F
, Pji = ∂ 

∂Fi j
. (7.71)

The rate of the nominal stress is, therefore,

Ṗ = K · · Ḟ = K · · (L · F), K = ∂2 

∂F ∂F
. (7.72)

A two-point tensor of elastic pseudomoduli is denoted by K. The Cartesian component
representation of (7.72) is

Ṗji = KjilkḞkl , Kjilk = ∂2 

∂Fi j∂Fkl
. (7.73)

The elastic pseudomoduli Kjilk are not true moduli because they are partly associated with
the material spin. They clearly possess the reciprocal symmetry

Kjilk = Klkji . (7.74)

In view of the connection

P = S · FT, (7.75)

the differentiation gives

K · · Ḟ = (
Λ : Ė

) · FT + S · ḞT. (7.76)
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Upon using

Ė = 1
2

(
ḞT · F + FT · Ḟ

)
, (7.77)

(7.76) yields the connection between the elastic moduli K and Λ. Their Cartesian compo-
nents are related by

Kjilk = � jmln FimFkn + Sjlδik. (7.78)

Since F · P is a symmetric tensor, i.e.,

FikPkj = FjkPki , (7.79)

by differentiation and incorporation of (7.73) it follows that

FjmKmilk − FimKmjlk = δikPl j − δ jkPli . (7.80)

This corresponds to the symmetry in the leading pair of indices of the true elastic moduli

�i jkl = � j ikl . (7.81)

The tensor of elastic pseudomoduli Λ can be related to the tensor of instantaneous
elastic moduli, appearing in the expression

Ṗ◦ = K◦ · · L, (7.82)

by recalling the relationship

Ṗ = (det F)F−1 · Ṗ◦ . (7.83)

This gives

K◦ = (det F)−1F K FT, (7.84)

with the Cartesian component representation

K◦
i jkl = (det F)−1 FimKmjnkFln. (7.85)

In addition, from (7.78), we have

K◦
j ilk = � j ilk + σ jlδik. (7.86)

7.9 Elastic Moduli of Isotropic Elasticity

The constitutive structure of isotropic elasticity is

S = ∂ 

∂E
= 2

∂ 

∂C
= 2

[(
∂ 

∂ IC
− IC

∂ 

∂ I IC

)
I +

(
∂ 

∂ I IC

)
C

+
(

I I IC
∂ 

∂ I I IC

)
C−1

]
.

(7.87)

The strain energy function  =  (IC, I IC, I I IC) is here expressed in terms of the prin-
cipal invariants of the right Cauchy–Green deformation tensor C = FT · F = I + 2E. The
corresponding elastic moduli tensor is

Λ = ∂S
∂E

= ∂2 

∂E ∂E
= 4

∂2 

∂C ∂C
, (7.88)
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which is thus defined by the fully symmetric tensor ∂2 /(∂C ∂C). Since

∂ IC

∂C
= I,

∂ I IC

∂C
= C − ICI,

∂ I I IC

∂C
= C2 − ICC − I ICI = I I ICC−1,

(7.89)

and in view of the symmetry Ci j = Cji , we obtain

∂2 

∂Ci j∂Ckl
= c1δi jδkl + c2 (δi j Ckl + Ci jδkl) + c3Ci j Ckl

+ c4

(
δi j C−1

kl + C−1
i j δkl

)
+ c5

(
Ci j C−1

kl + C−1
i j Ckl

)
+ c6C−1

i j C−1
kl + c7

(
C−1

ik C−1
jl + C−1

il C−1
jk

)
+ c8 (δikδ jl + δilδ jk) .

(7.90)

The parameters ci (i = 1, 2, . . . , 8) are

c1 = ∂2 

∂ I2
C

− 2IC
∂2 

∂ IC∂ I IC
+ I2

C
∂2 

∂ I I2
C

− ∂ 

∂ I IC
,

c2 = ∂2 

∂ IC∂ I IC
− IC

∂2 

∂ I I2
C

,

c3 = ∂2 

∂ I I2
C

, c5 = I I IC
∂2 

∂ I IC∂ I I IC
, (7.91)

c4 = I I IC
∂2 

∂ I I IC∂ IC
− I I IC IC

∂2 

∂ I IC∂ I I IC
,

c6 = I I I2
C
∂2 

∂ I I I2
C

+ I I IC
∂ 

∂ I I IC
,

c7 = −1
2

I I IC
∂ 

∂ I I IC
, c8 = 1

2
∂ 

∂ I IC
.

7.10 Elastic Moduli in Terms of Principal Stretches

For isotropic elastic material the principal directions Ni of the right Cauchy–Green defor-
mation tensor

C =
3∑

i=1

λ2
i Ni Ni , Ci = λ2

i , (7.92)
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where λi are the principal stretches, are parallel to those of the symmetric Piola–Kirchhoff
stress S. Thus, the spectral representation of S is

S =
3∑

i=1

Si Ni Ni . (7.93)

From the analysis presented in Section 4.21 it readily follows that

Ċ =
3∑

i=1

2λi λ̇i Ni Ni +
∑
i 
= j

�0
i j

(
λ2

j − λ2
i

)
Ni N j , (7.94)

and

Ṡ =
3∑

i=1

Ṡi Ni Ni +
∑
i 
= j

�0
i j (Sj − Si ) Ni N j . (7.95)

For elastically isotropic material the strain energy can be expressed as a function of the
principal stretches, � = �(λ1, λ2, λ3), so that

Si = ∂ 

∂Ei
= 1
λi

∂ 

∂λi
, (7.96)

Ṡi =
3∑

j=1

∂Si

∂λ j
λ̇ j ,

∂Si

∂λ j
= −δi j

1
λ2

i

∂ 

∂λi
+ 1
λi

∂2 

∂λi∂λ j
. (7.97)

Thus, (7.95) can be rewritten as

Ṡ =
3∑

i, j=1

∂Si

∂λ j
λ̇ j Ni Ni +

∑
i 
= j

�0
i j

(
λ2

j − λ2
i

) Sj − Si

λ2
j − λ2

i

Ni N j . (7.98)

Since

Ṡ = Λ : Ė = 1
2

Λ : Ċ, (7.99)

we recognize from (7.94) and (7.98), by inspection, that

Λ =
3∑

i, j=1

1
λ j

∂Si

∂λ j
Ni Ni N j N j +

∑
i 
= j

Sj − Si

λ2
j − λ2

i

Ni N j (Ni N j + N j Ni ) . (7.100)
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PART 3: LINEAR ELASTICITY

8 Governing Equations of Linear Elasticity

8.1 Elementary Theory of Isotropic Linear Elasticity

Consider a bar of uniform cross section, composed of a homogeneous isotropic material,
subject to uniaxial tension of magnitude σ . Assuming small strain, the response is linearly
elastic if

σ = Ee, (8.1)

where E is Young’s modulus and e is the longitudinal strain. Likewise if a homogeneous
body is subject to a shear stress, τ , the linearly elastic response is

τ = Gγ = 2G(γ /2). (8.2)

The constant G is the elastic shear modulus, and γ /2 is the shear strain; γ is the so-called
engineering shear strain.

For isotropic materials, equations (8.1) and (8.2) can be generalized to

σ ′
i j = 2Ge′

i j , p = −1
3
σkk = −Kev, (8.3)

where

σ ′
i j = σi j − 1

3
σkkδi j = σi j + pδi j , (8.4)

e′
i j = ei j − 1

3
evδi j , ev = ekk. (8.5)

This is referred to as the generalized Hooke’s law. The prime designates the deviatoric
part. The volumetric strain is ev . The bulk modulus, K, is related to E and G by

K = GE
3(3G − E)

. (8.6)

The most general form of an isotropic forth-order tensor, C, via its components on the
{ei } basis is

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk) + υ(δikδ jl − δilδ jk). (8.7)

161



P1: FBQ

0521859794c08.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:34

162 8. Governing Equations of Linear Elasticity

This is the elastic moduli tensor which relates the stress and strain tensors,

σi j = Ci jklekl . (8.8)

The symmetries of the stress and strain tensors imply

ekl = elk ⇒ Ci jkl = Ci jlk, (8.9)

and

σi j = σ j i ⇒ Ci jkl = Cjikl . (8.10)

Thus, υ = 0 in (8.7), and Ci jkl = Ckli j . The end result takes the form

σi j = Ci jklekl ,

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk).
(8.11)

These are the constitutive equations of isotropic linear elasticity. The constants λ and µ
are known as the Lamé constants. Consistent with the previous relations in terms of the
Young’s and shear moduli, it is readily shown that

µ ≡ G = E
2(1 + ν)

, λ = νE
(1 + ν)(1 − 2ν)

, ν = λ

2(λ+ µ)
, (8.12)

and

ei j = − ν
E
σkkδi j + 1 + ν

E
σi j . (8.13)

The Poisson’s ratio of lateral contraction ν is defined such that the lateral strain in uni-
axial tension is elat = −νe, where e is the longitudinal strain. In the expanded form, the
constitutive equations of linear elasticity read

e11 = 1
E

[σ11 − ν(σ22 + σ33)],

e22 = 1
E

[σ22 − ν(σ33 + σ11)], (8.14)

e33 = 1
E

[σ33 − ν(σ11 + σ22)],

and

e12 = 1
G
σ12, e23 = 1

G
σ23, e31 = 1

G
σ31. (8.15)

Note also that

ei j = 1
2µ
σ ′

i j + 1
9K

σkkδi j . (8.16)
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The following is a useful list of the relationships among various elastic constants of
isotropic material:

E = 2µ(1 + ν) = 3κ(1 − 2ν) = 9κµ
3κ + µ = µ(3λ+ 2µ)

λ+ µ

= λ(1 + ν)(1 − 2ν)
ν

= 9κ(κ − λ)
3κ − λ ,

ν = E
2µ

− 1 = 1
2

− E
6κ

= λ

2(λ+ µ)
= 3κ − 2µ

2(3κ + µ)
= λ

3κ − λ ,

λ = Eν
(1 + ν)(1 − 2ν)

= 2µν
1 − 2ν

= 3κν
1 + ν = κ − 2

3
µ

= 3κ(3κ − E)
9κ − E

= µ(E − 2µ)
3µ− E

,

µ = G = E
2(1 + ν)

= 3κE
9κ − E

= λ(1 − 2ν)
2ν

= 3κ(1 − 2ν)
2(1 + ν)

= 3
2

(κ − λ) ,

κ = E
3(1 − 2ν)

= λ+ 2
3
µ = λ(1 + ν)

3ν
= 2µ(1 + ν)

3(1 − 2ν)
= µE

3(3µ− E)
.

The expressions for the combinations of elastic moduli, expressed solely in terms of the
Poisson’s ratio, are also noted:

µ

λ+ µ = 1 − 2ν ,
λ

λ+ 2µ
= ν

1 − ν ,

λ+ 2µ
E

= 1 − ν
(1 + ν)(1 − 2ν)

,
4µ
E
λ+ µ
λ+ 2µ

= 1
1 − ν2

.

8.2 Elastic Energy in Linear Elasticity

For small strains, the elastic strain energy per unit volume is

 = 1
2
σi j ei j = 1

2
Ci jklei j ekl . (8.17)

The total elastic strain energy within the body of volume V is

1
2

∫
V
σi j ei j dV = 1

2

∫
V
σi j

1
2

(
∂ui

∂xj
+ ∂u j

∂xi

)
dV

= 1
2

∫
V
σi j
∂ui

∂xj
dV. (8.18)
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The symmetry of the Cauchy stress σi j = σ j i was used in the last step. Since

∂

∂xj
(σi j ui ) = ∂σi j

∂xj
ui + σi j

∂ui

∂xj
= −bi ui + σi j

∂ui

∂xj
, (8.19)

where bi are the body forces per unit volume (σi j, j + bi = 0), we have from (8.18)

1
2

∫
V
σi j
∂ui

∂xj
dV = 1

2

∫
V

[
∂

∂xj
(σi j ui ) + bi ui

]
dV . (8.20)

Upon applying the Gauss divergence theorem to the first integral on the rhs, we obtain

1
2

∫
V
σi j
∂ui

∂xj
dV = 1

2

∫
S
σi j n j ui dS + 1

2

∫
V

bi ui dV

= 1
2

∫
S

Ti ui dS + 1
2

∫
V

bi ui dV (8.21)

= the work done.

Thus, comparing (8.18) and (8.21), we have

1
2

∫
V
σi j ei j dV = 1

2

∫
S

Ti ui dS + 1
2

∫
V

bi ui dV. (8.22)

We note that in later parts of this book  (e) is called W(e), the strain energy density.
We further take the strain energy density to be a strictly positive function, in the sense that

W(e) = 1
2

Ci jk�ei j ek� ≥ 0, (8.23)

where the equality holds only if e = 0.

8.3 Restrictions on the Elastic Constants

In this section we explore restrictions on the elastic moduli that limit the number of possible
nonzero values and the range of values that elastic moduli may have.

8.3.1 Material Symmetry

We begin with the statement of basic symmetry

Ci jk� = Cjik� = Ck�i j = Ci j�k. (8.24)

The symmetry in the first two indices follows from the symmetry of the stress tensor
whereas the symmetry in the last two follows from the symmetry of the strain tensor. The
reciprocal symmetry Ci jkl = Ckli j follows from (8.17), because

Ci jk�ei j ek� = Ck�i j ek�ei j ⇒ (Ci jk� − Ck�i j )ei j ek� = 0. (8.25)

It is convenient to introduce here a contracted (Voigt) notation for the elastic constants,
whereby

σ̂1 ← σ11, σ̂2 ← σ22, σ̂3 ← σ33

σ̂4 ← σ23, σ̂5 ← σ31, σ̂6 ← σ12.
(8.26)
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Similarly, for the strains,

ê1 ← e11, ê2 ← e22, ê3 ← e33

ê4 ← 2e23, ê5 ← 2e31, ê6 ← 2e12.
(8.27)

The use of the factor of 2 in the notation for the strain components ensures the symmetry
in the expression

σ̂α = Ĉαβeβ, (8.28)

i.e., Ĉαβ = Ĉβα . In defining the components of Ĉ the same indicial notation is used on the
index pairs i j and k� in the tensor C.

Consider a coordinate transformation specified by the orthogonal tensor, Q,

e′
α = Qα j e j . (8.29)

On the basis {e′
i } the components of C would be

C′
i jk� = QipQjq Qkr Q�t Cpqrt . (8.30)

If Q represents a symmetry operation, we have

C′
i jk� = Ci jk�. (8.31)

As an example, consider the inversion process as specified by the improper orthogonal
tensor with components

QI =
⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ . (8.32)

All materials will be invariant under the transformation given by QI .
Now let the initial basis be aligned with the most natural set of axes in the material.

For example, if the material was cubic these would be the cube axes of the unit cell. Then
specify a rotation about the e3 axis as

Q(θ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ . (8.33)

Reflection, on the other hand say across a plane whose unit normal was n, would be specified
by

QR = I − 2nn . (8.34)

Clearly, the effect of QR would be to leave any vector, such as m, in the plane unchanged,
because m · n = 0, and would cause n to become −n, i.e.,

QR · m = m and QR · n = −n. (8.35)

Let one such reflection plane be

n = cos θ e1 + sin θ e2 + 0 e3. (8.36)
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x

x

x

1

2

3

θ

ψ

Figure 8.1. Angles θ and ψ defining two reflection planes.

In this case

QR(θ) =
⎡
⎣− cos(2θ) − sin(2θ) 0

− sin(2θ) cos(2θ) 0
0 0 1

⎤
⎦ . (8.37)

The angle θ is defined in Fig. 8.1 along with a second angle ψ used to define a second
reflection plane. In our example, if θ = 0 then the operation is specified by

QR(0) =
⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ , (8.38)

and represents a reflection across the x2 − x3 plane, i.e., through the x1 axis.
To characterize the applicable symmetry operations we will use the form of the improper

orthogonal tensor given in (8.37), which specifies a reflection through a plane whose normal
is in the x1 − x2 plane, and one with respect to a plane whose normal is in the x2 − x3 plane;
the latter is defined by the angle ψ in Fig. 8.1. This would, in fact, be associated with

QR(ψ) =
⎡
⎣1 0 0

0 − cos(2ψ) − sin(2ψ)
0 − sin(2ψ) cos(2ψ)

⎤
⎦ . (8.39)

Additional details can be found in the books by Musgrave (1970) and Ting (1996); here
we list some results in two forms. First, the matrix Ĉ is shown by using Greek letters to
represent (positive) values of potentially nonzero elastic constants. Symmetry will dictate
the number of independent moduli. Second, the values of θ and ψ will be given along
with the symmetry type. The number of independent constants is called q. Note that Ĉ is
symmetric and that elements below the diagonal are not indicated.

I. Triclinic, no symmetry, q = 21:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β γ δ ε ζ

η ι κ ξ π

ρ τ χ φ

ω υ ν

ϕ ε

#

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.40)
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II. Monoclinic, one symmetry plane, x1 = 0, θ = 0, q = 13:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β γ δ 0 0
η ι κ 0 0

ρ τ 0 0
ω 0 0

ϕ ε

#

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.41)

Note that the single symmetry plane can be alternatively taken at x2 = 0, θ = π/2 orψ = 0,
or at x3 = 0, ψ = 0.

III. Orthotropic (or Rhombic), three symmetry planes at θ = 0, π/2 andψ = π/2, q = 9:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β γ 0 0 0
η ι 0 0 0

ρ 0 0 0
ω 0 0

ϕ 0
#

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.42)

IV. Tetragonal, five symmetry planes at θ = 0,±π/4, π/2 and ψ = π/2, q = 6:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β γ 0 0 0
α γ 0 0 0

ρ 0 0 0
ω 0 0

ω 0
#

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.43)

V. Transversely Isotropic (Hexagonal), the symmetry plane is the x3 axis, q = 5:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β γ 0 0 0
η γ 0 0 0

ρ 0 0 0
ω 0 0

ω 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.44)

In this case = 1
2 (Ĉ11 − Ĉ12) = 1

2 (α − β).
VI. Cubic, nine symmetry planes including the coordinate axes and those whose normals

make angles of ±π/4 with the coordinate axes, q = 3:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β β 0 0 0
α β 0 0 0

α 0 0 0
ω 0 0

ω 0
ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.45)
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VII. Isotropic, any plane is a symmetry plane, q = 2:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α β β 0 0 0
α β 0 0 0

α 0 0 0
0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (8.46)

where = 1
2 (α − β). The above matrix is commonly rewritten as

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ+ 2µ λ λ 0 0 0
λ+ 2µ λ 0 0 0

λ+ 2µ 0 0 0
µ 0 0

µ 0
µ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.47)

The constants λ and µ are the Lamé constants of the constitutive law (8.11).

8.3.2 Restrictions on the Elastic Constants

There are two conditions we impose on the elastic constants, namely the so-called strong
ellipticity condition

ab : C : ab = ai bj Ci jk� akb� > 0, (8.48)

and the strong convexity condition

e : C : e = Ci jk� ei j ek� > 0. (8.49)

The convexity condition is the more severe of the two, which may be readily seen by noting
that the dyadic product ab would represent a strain tensor that is singular; yet (8.49) is to
be true for all admissible strain tensors, including those that are not.

For isotropic materials (8.49) leads to

λ(eii )2 + 2µ(ei j ei j ) > 0,

(λ+ 2
3
µ)(eii )2 + 2µ[ei j ei j − 1

3
(eii )2] > 0.

(8.50)

These imply

λ+ 2
3
µ > 0, µ > 0. (8.51)

Since the connections between the modulii (E, ν) and (λ,µ) are

λ = Eν
(1 + ν)(1 − 2ν)

, µ = E
2(1 + ν)

, (8.52)

the conditions expressed in (8.50) become

E > 0, −1 < ν < 1/2. (8.53)
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Another approach to establishing such restrictions, still based on the positive-definite
nature of the elastic energy function, is as follows. If the elastic strain energy is assumed
to be positive-definite function of strain ei j , then

σi j ei j = λ(ekk)2 + 2µei j ei j > 0 . (8.54)

Denoting by e′
i j the deviatoric part of strain tensor, such that

ei j = e′
i j + 1

3
ekkδi j , (8.55)

we have

ei j ei j = e′
i j e

′
i j + 1

3
(ekk)2 . (8.56)

Consequently, the inequality (8.54) can be rewritten as

2µe′
i j e

′
i j + κ(ekk)2 > 0 , (8.57)

where

κ = λ+ 2
3
µ = E

3(1 − 2ν)
, µ = E

2(1 + ν)
. (8.58)

By taking ekk = 0 in (8.57), we deduce that µ > 0; by taking e′
i j = 0, we deduce that κ > 0.

This implies from equations (8.58) that E > 0 and −1 < ν < 1/2. Since experience does
not reveal any isotropic elastic material with negative Poisson’s ratio, the physical range
of ν is 0 < ν < 1/2. Negative values of ν would imply negative values of λ, because λ =
2µν/(1 − 2ν). In the limit ν → 1/2, the material behaves as incompressible (λ and κ → ∞),
and µ = E/3. If ν = 1/3, we have E = κ and λ = 2µ; if ν = 1/4, then E = 3κ/2 and λ = µ.

8.4 Compatibility Relations

If the strains are derived from a continuous, single valued vector displacement field u, then
they must satisfy a particular set of differential equations. Conversely, if this set of differ-
ential equations is satisfied by the components of strain, the corresponding displacement
field is a continuous displacement field. We derive the compatibility equations below, using
the following convenient notation for partial derivatives

∂(..)/∂x� ≡ (..),�, ∂2(..)/∂x�∂xr ≡ (..),�r .

With this notation the components of the infinitesimal strain tensor become

ei j = 1
2

(ui, j + u j,i ). (8.59)

Thus, by inspection, we observe that

e��,mm = u�,�mm , emm,�� = u�,m�� , (8.60)

and

e�m,�m = 1
2

(u�,m�m + um,��m) = 1
2

(u�,�mm + um,m��). (8.61)
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Therefore,

e��,mm + emm,�� = 2e�m,�m. (8.62)

Similarly,

e��,mn = u�,�mn , e�m,�n = 1
2

(u�,m�n + um,��n), (8.63)

and

e�n,�m = 1
2

(u�,n�m + un,��m) , emn,�� = 1
2

(um,n�� + un,m��). (8.64)

Consequently,

e�m,�n + e�n,�m − emn,�� = e��,mn. (8.65)

In general, we may express six independent relations of this type as

e11,22 + e22,11 = 2e12,12 ,

e22,33 + e33,22 = 2e23,23 ,

e33,11 + e11,33 = 2e31,31 ,

e12,13 + e13,12 − e23,11 = e11,23 ,

e23,21 + e21,23 − e31,22 = e22,31 ,

e31,32 + e32,31 − e12,33 = e33,12 ,

(8.66)

or, in more compact form,

ei j,kl + ekl,i j = eik, jl + e jl,ik. (8.67)

The above are called the Saint-Venant’s compatibility equations for the strain components.
In what immediately follows, we revisit the establishment of such equations from two
different approaches.

8.5 Compatibility Conditions: Cesàro Integrals

Consider two points of the deformed body, Aand B. Denoting their displacement compo-
nents by uA

i and uB
i , we can write

uB
i = uA

i +
∫ B

A
dui . (8.68)

If displacement components uB
i are to be single-valued in a simply connected region,

the integral on the right-hand side of the above equation must be path-independent. By
imposing this condition, we will again arrive at the Saint-Venant’s compatibility equations.
To demonstrate this, we proceed as follows. First, we have

uB
i = uA

i +
∫ B

A
dui = uA

i +
∫ B

A

∂ui

∂xj
dxj = uA

i +
∫ B

A
ei j dxj +

∫ B

A
ωi j dxj , (8.69)
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where ei j and ωi j are the infinitesimal strain and rotation tensors (symmetric and antisym-
metric parts of the displacement gradient ui, j ). By using the integration by parts, we then
write∫ B

A
ωi j dxj =

∫ B

A
ωi j d(xj − xB

j ) = (xB
j − xA

j )ωA
i j −

∫ B

A
(xj − xB

j )
∂ωi j

∂xk
dxk . (8.70)

But, as can be easily verified by inspection,

∂ωi j

∂xk
= ∂eik

∂xj
− ∂e jk

∂xi
. (8.71)

Hence, by substituting (8.71) into (8.70), and then this into (8.69), we obtain

uB
i = uA

i + (xB
j − xA

j )ωA
i j +

∫ B

A
fik dxk ,

where

fik = eik − (xj − xB
j )
(
∂eik

∂xj
− ∂e jk

∂xi

)
. (8.72)

The above integral has to be path independent. Thus, fikdxk = fi j dxj = dgi has to be a
perfect differential. The necessary and sufficient condition for this is that

∂ fik

∂xj
= ∂ fi j

∂xk
, (8.73)

(both then being equal to ∂2gi/∂xj∂xk). Substituting (8.72) into (8.73) leads to

∂2ei j

∂xk∂xl
+ ∂2ekl

∂xi∂xj
− ∂2eik

∂xj∂xl
− ∂2e jl

∂xi∂xk
= 0 . (8.74)

There are 81 of these equations, but some of them are trivial identities, and some are
repetitions due to symmetry in indices i j and kl. The contraction k = l yields six linearly
independent Saint-Venant’s equations

∂2ei j

∂xk∂xk
+ ∂2ekk

∂xi∂xj
− ∂2eik

∂xj∂xk
− ∂2e jk

∂xi∂xk
= 0 . (8.75)

They can be compactly rewritten as

$i j = εiklε jmn
∂2eln

∂xk∂xm
= 0 . (8.76)

The permutation tensor is denoted by εi jk. Thus, for a given strain field ei j , the necessary
and sufficient conditions for the existence of single-valued displacement field ui within
a simply connected region (apart from the rigid-body motion) are the six Saint-Venant’s
compatibility equations $i j = 0. These equations are linearly independent, but differen-
tially related by three Bianchi conditions

∂$i j

∂xj
= 0 . (8.77)

These follow from the symmetry of the mixed partial derivative ∂2/∂xm∂xn and the skew-
symmetry of the permutation tensor εi jk. If $i j 
= 0, the incompatibility tensor $i j repre-
sents a measure of the degree of strain incompatibility.
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For (N + 1)-tiply connected region, in addition to six Saint-Venant’s compatibility equa-
tions (8.76), there are 3N Cesàro integral conditions for the existence of single-valued
displacements. They are ∮

Cα
fi j dxj = 0 , (8.78)

where Cα (α = 1, 2, . . . , N) are any closed irreducible curves around N internal “cavities”
and

fi j = ei j − (xk − x0
k)(ei j,k − e jk,i ) . (8.79)

The coordinates of a selected reference point on Cα are x0
k. Since this point can be selected

arbitrarily on each Cα , equations (8.78) and (8.79) give rise to 6N integral conditions∮
Cα

(ei j − xkεlikεlpqepj,q)dxj = 0 , (8.80)

∮
Cα
εi jl e jk,ldxk = 0 . (8.81)

8.6 Beltrami–Michell Compatibility Equations

By substituting the stress-strain relations

ei j = − ν
E
σkkδi j + 1 + ν

E
σi j (8.82)

into the Saint-Venant’s compatibility equations (8.75), and by using the equilibrium equa-
tions

σi j, j + bi = 0 , (8.83)

we can deduce six linearly independent compatibility equations expressed in terms of
stresses. These are the Beltrami–Michell compatibility equations

σi j,kk + 1
1 + ν σkk,i j = − ν

1 − ν bk,kδi j − bi, j − bj,i . (8.84)

In particular, it follows that the hydrostatic stress satisfies the Poisson’s equation

�2σkk = −1 + ν
1 − ν bk,k . (8.85)

If there are no body forces, the Beltrami–Michell equation reduce to

σi j,kk + 1
1 + ν σkk,i j = 0 , (8.86)

whereas the hydrostatic stress becomes a harmonic function, satisfying the Laplace’s
equation

�2σkk = 0 . (8.87)

8.7 Navier Equations of Motion

The Cauchy equations of motion, in terms of stresses, are

∂σi j

∂xj
+ bi = ρ ∂

2ui

∂t2
, (8.88)
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where bi are the components of the body force per unit volume. By substituting the stress-
strain relations

σi j = 2µei j + λekkδi j = µ
(
∂ui

∂xj
+ ∂u j

∂xi

)
+ λ ∂uk

∂xk
δi j (8.89)

into (8.88), we obtain the Navier equations of motion, in terms of displacements,

(λ+ µ)
∂2u j

∂xi∂xj
+ µ ∂2ui

∂xj∂xj
+ bi = ρ ∂

2ui

∂t2
. (8.90)

Since Ti = σi j n j , the boundary conditions over the bounding surface of the body ST , where
tractions are externally prescribed, are

λ
∂uk

∂xk
ni + µ

(
∂ui

∂xj
+ ∂u j

∂xi

)
nj = Text

i , (8.91)

whereas

ui = uext
i , (8.92)

where displacements are prescribed (Su). In the vector notation, the Navier equations are

(λ+ µ) ∇(∇ · u) + µ∇2u + b = ρ ∂
2u
∂t2

in V ,

λ (∇ · u)n + µ(u∇ + ∇u) · n = Text on ST , (8.93)

u = uext on Su .

The nabla operator expressed with respect to three typical sets of coordinates is

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
,

∇ = er
∂

∂r
+ eθ

1
r
∂

∂θ
+ ez

∂

∂z
, (8.94)

∇ = er
∂

∂r
+ eθ

1
r
∂

∂θ
+ eφ

1
r sin θ

∂

∂φ
.

The corresponding Laplacian operators are, respectively,

∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

,

∇2 = 1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
, (8.95)

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2
.
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8.8 Uniqueness of Solution to Linear Elastic Boundary Value Problem

8.8.1 Statement of the Boundary Value Problem

The boundary value problem of linear elasticity is specified by the equations

σi j, j + bi = 0 ,

ei j = 1
2

(ui, j + u j,i ) , (8.96)

ei j,kl + ekl,i j = eik, jl + e jl,ik ,

and the boundary conditions

Ti = σi j n j prescribed on ST,

ui prescribed on Su .
(8.97)

The outward pointing normal to the bounding surface of the body is ni . Furthermore, if
there exists a strain energy function W = W(ei j ), then

σi j = ∂W
∂ei j

. (8.98)

For linear elasticity,

σi j = Ci jklei j , W = 1
2
σi j ei j = 1

2
Ci jklei j ekl . (8.99)

If the elastic strain energy is assumed to be positive-definite function of strain, the elastic
moduli tensor Ci jkl is a positive-definite tensor.

8.8.2 Uniqueness of the Solution

The so specified boundary value problem of linear elasticity has a unique solution for the
stress and strain fields. The proof is based on the assumption of the positive-definiteness
of the elastic strain energy. Suppose that two solutions exist that satisfy (8.8.1)–(8.99).
Denote the corresponding displacement, strain, and stress fields by u(1)

i , e(1)
i j , σ (1)

i j and u(2)
i ,

e(2)
i j , σ (2)

i j . Let

u∗
i = u(1)

i − u(2)
2 , e∗

i j = e(1)
i j − e(2)

i j , σ ∗
i j = σ (1)

i j − σ (2)
i j . (8.100)

Since

σ
(1)
i j, j + bi = 0 , σ

(2)
i j, j + bi = 0 , (8.101)

we evidently have

σ ∗
i j, j = 0 . (8.102)
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Consequently, the fields u∗
i , e∗

i j , σ
∗
i j represent a solution to the homogeneous boundary

value problem

σ ∗
i j, j = 0 and b∗

i = 0 in V , T∗
i = σ ∗

i j n j = 0 on ST , u∗
i = 0 on Su . (8.103)

Clearly, at every point of the bounding surface S of the body the product u∗
i T∗

i = 0, because
either u∗

i or T∗
i vanishes at the boundary. Thus, upon integration and the application of the

Gauss divergence theorem,

0 =
∫

S
u∗

i T∗
i dS =

∫
S

u∗
i σ

∗
i j n j dS =

∫
V

(u∗
i σ

∗
i j ), j dV . (8.104)

Performing the partial differentiation within the integrand, and usingσ ∗
i j, j = 0 andσ ∗

i j u
∗
i, j =

σ ∗
i j e

∗
i j , then gives

0 =
∫

V
σ ∗

i j e
∗
i j dV = 2

∫
V

W(e∗
i j )dV . (8.105)

But W is a positive-definite function of strain and the integral of W(e∗
i j ) over the volume

V vanishes only if W = 0 at every point of the body. This is possible only if e∗
i j = 0 at every

point, i.e.,

e(1)
i j = e(2)

i j and therefore σ
(1)
i j = σ (2)

i j . (8.106)

Thus the uniqueness of the solution to the boundary value problem of linear elasticity:
there is only one stress and strain field corresponding to prescribed boundary conditions
and given body forces.

8.9 Potential Energy and Variational Principle

Consider infinitesimal deformation of an elastic material. In this section, for the sake of
generality, we do not actually restrict to linearly elastic material, but the material that is
characterized by the strain energy that is an arbitrary single valued function of a small
strain, such that

W = W(emn) =
∫ emn

0
σi j dei j , σi j = ∂W

∂ei j
. (8.107)

The principle of virtual work (5.140) then gives∫
V
δW dV =

∫
S

Tiδui dS +
∫

V
biδui dV , (8.108)

because δW = σi jδei j = (∂W/∂ei j )δei j . With body forces bi regarded as given in V and
surface forces Ti given on ST , and recalling that δui = 0 on Su = S − ST , (8.108) delivers a
variational principle

δ% = 0 , % =
∫

V
[W(emn) − bi ui ] dV −

∫
ST

Ti ui dS . (8.109)

The functional % = %(ui ) is the potential energy of the elastic body. Since bi and Ti are
regarded as fixed, it is a functional of the displacement field. For the true equilibrium dis-
placement field,% has a stationary value, because δ% = 0 for any kinematically admissible
variation δui .
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We next show the equilibrium displacement field minimizes the potential energy among
all kinematically admissible displacement fields. The following proof relies on the adoption
of an incremental stability (stability in the small), according to which

dσi j dei j > 0 (8.110)

for any set of strain and corresponding stress increments. Indeed, let ut
i be the true equi-

librium displacement field and uk
i an arbitrary kinematically admissible displacement field

(continuous and differentiable, satisfying the displacement boundary conditions on Su, if
any). The difference in the potential energy associated with these two fields is

%(uk
i ) −%(ut

i ) =
∫

V

[
W(ek

mn) − W(et
mn) − bi (uk

i − ut
i )
]
dV

−
∫

S
Ti (uk

i − ut
i ) dS .

(8.111)

Note that uk
i − ut

i = 0 on Su, so that the above surface integral can be extended from
ST to S. But the principle of virtual work gives∫

V
σ t

i j (ek
i j − et

i j ) dV =
∫

S
Ti (uk

i − ut
i ) dS +

∫
V

bi (uk
i − ut

i ) dV . (8.112)

When this is substituted in (8.111), there follows

%(uk
i ) −%(ut

i ) =
∫

V

[
W(ek

mn) − W(et
mn) − σ t

i j (ek
i j − et

i j )
]
dV . (8.113)

In view of (8.107), this can be rewritten as

%(uk
i ) −%(ut

i ) =
∫

V

[∫ ek
mn

0
(σi j − σ t

i j )dei j −
∫ et

mn

0
(σi j − σ t

i j )dei j

]
dV

=
∫

V

[∫ ek
mn

et
mn

(σi j − σ t
i j )dei j

]
dV .

The elastic deformation is path-independent, and the value of the integral∫ ek
mn

et
mn

(σi j − σ t
i j )dei j (8.114)

does not depend on the strain path between et
mn and ek

mn. Thus, selecting a strain path that
corresponds to a straight line in stress space from σ t

i j to σ k
i j , the stress increment dσi j is

codirectional with σi j − σ t
i j . Consequently, if the material is incrementally stable, such that

dσi j dei j > 0, we have

∫ ek
mn

et
mn

(σi j − σ t
i j )dei j > 0 , (8.115)

and thus

%(uk
i ) −%(ut

i ) > 0 . (8.116)

Therefore, among all kinematically admissible displacement fields, the true (equilibrium)
displacement field minimizes the potential energy of the body.
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8.9.1 Uniqueness of the Strain Field

If two displacement fields u(1)
i and u(2)

i both minimize the potential energy, then

∫
V

[∫ e(2)
mn

e(1)
mn

(σi j − σ (1)
i j )dei j

]
dV = 0 . (8.117)

But, the incremental stability dσi j dei j > 0 implies that (σi j − σ (1)
i j )dei j > 0 along the strain

path that corresponds to a straight line in stress space from σ
(1)
i j to σ (2)

i j . Consequently, the

above integral can vanish if and only if e(2)
mn = e(1)

mn, which assures the uniqueness of the
strain field (possibly, to within a rigid body displacement).

8.10 Betti’s Theorem of Linear Elasticity

This important theorem of linear elasticity follows from the generalized Claopeyron’s
formula and the linearity between the stress and strain, σi j = Ci jklekl , where Ci jkl are
the elastic moduli obeying the reciprocal symmetry Ci jkl = Ckli j . Indeed, the Clapeyron’s
formula [see (5.138) from Chapter 5] gives∫

V
σi j êi j dV =

∫
S

Ti ûi dS +
∫

V
bi ûi dV . (8.118)

Let σ̂i j = Ci jkl êkl be the true equilibrium stress field associated with the displacement field
ûi . Then,

σ̂i j ei j = Ci jklei j êkl , (8.119)

and

σi j êi j = Ci jklekl êi j = Ckli j ei j êkl = Ci jklei j êkl . (8.120)

Thus,

σ̂i j ei j = σi j êi j . (8.121)

Consequently, from (8.118) it follows that∫
S

Ti ûi dS +
∫

V
bi ûi dV =

∫
S

T̂i ui dS +
∫

V
b̂i ui dV . (8.122)

This is the Betti’s reciprocal theorem of linear elasticity. The work of the first type of
loading on the displacement due to the second type of loading, is equal to the work of the
second type of loading on the displacement due to the first type of loading.

A classical illustration of the application of this theorem is as follows. Consider a uniform
rod of length l and cross-sectional area A. The rod is made of isotropic elastic material,
with the elastic modulus E and Poisson’s ratio ν. Two types of loading applied to this rod
are shown in Fig. 8.2. The first loading is a uniform tensile stress σ applied to the ends
of the rod, giving rise to axial force P = σA. The second loading is a pair of two equal
but opposite transverse forces F applied to the lateral surface of the rod, anywhere along
the length of the rod. The transverse distance between the points of the application of
two forces is h. The Betti’s theorem allows us to easily calculate the elongation of the
rod due to this pair of forces, without solving the complicated boundary value problem.
Indeed, the first type of loading causes the lateral contraction of the rod of magnitude
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l

σhσ

F

F

Figure 8.2. A uniform elastic rod under two types of loading.

�h = ν(Ph/EA). By Betti’s theorem, the work of F on the displacement due to P = σA,
must be equal to the work of P on the displacement due to F , i.e.,

Fν
Ph
EA

= P� . (8.123)

Thus, the elongation of the rod due to the pair of forces F is

� = ν Fh
EA

. (8.124)

8.11 Plane Strain

Plane deformations are defined such that

e33 = e13 = e23 = 0. (8.125)

If we allow for the possibility of thermal strains, with the thermal expansion coefficient α,
the corresponding thermoelastic constitutive equations are

e11 = 1
E

[σ11 − ν(σ22 + σ33)] + α�T,

e22 = 1
E

[σ22 − ν(σ11 + σ33)] + α�T,

e33 = 0 ⇒ σ33 = ν(σ11 + σ22) − αE�T,

e12 = e21 = 1
2G

σ12.

(8.126)

Suppose that we introduce body forces via a potential function, V(x1, x2), such that

b = −∂V/∂x. (8.127)

Using the compact notation for differentiation, the equations of equilibrium become

σ11,1 + σ12,2 − V,1 = 0

σ21,1 + σ22,2 − V,2 = 0.
(8.128)

All of the compatibility equations (8.66) are identically satisfied except the first one, which
gives

e11,22 + e22,11 = 2e12,12 . (8.129)
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Introduce the Airy stress function, φ(x1, x2), such that

σ11 = φ,22 + V(x1, x2) ,

σ22 = φ,11 + V(x1, x2) ,

σ12 = −φ,12.

(8.130)

With such definitions the equilibrium equations (8.128) are identically satisfied. To deter-
mine the governing equations for φ we first substitute (8.130) into the constitutive expres-
sions (8.126) and demand the satisfaction of the compatibility relation (8.129). Thus, we
substitute

e11 = 1
E

{(1 − ν2)φ,22 − ν(1 + ν)φ,11 + [1 − ν(1 + 2ν)]V} + (1 + ν)α�T,

e22 = 1
E

{(1 − ν2)φ,11 − ν(1 + ν)φ,22 + [1 − ν(1 + 2ν)]V} + (1 + ν)α�T,

e12 = − 1
2G

φ,12

into (8.129) to get

∇4φ = − (1 − 2ν)
(1 − ν)

∇2V − αE
(1 − ν)

∇2T. (8.131)

If there are no body forces and thermal gradients, or if ∇2V = 0 and ∇2T = 0, then φ
satisfies the biharmonic equation

∇4φ = 0, ∇4φ ≡ ∂4φ

∂x4
1

+ 2∂4φ

∂x2
1∂x2

2

+ ∂4φ

∂x4
2

. (8.132)

If the thermal field is such that ∇2T = 0, there would be no effect on φ, or on the
stresses; there would, of course, be an effect on the strains. An example in Section 8.13
will illustrate these effects. For this purpose we consider thermal strains alone – linear
superposition allows the addition of the effects of applied loads or displacements.

8.11.1 Plane Stress

The governing equations for plane stress are similar. In that case we setσ33 = σ13 = σ23 = 0,
and the constitutive equations are

e11 = 1
E

(σ11 − νσ22), e22 = 1
E

(σ22 − νσ11),

e33 = − ν
E

(e11 + e22), e12 = 1
2G

σ12,

e13 = e23 = 0.

(8.133)

In the absence of thermal fields, the governing equation for the stress potential is

∇4φ = −(1 − ν)∇2V(x1, x2). (8.134)



P1: FBQ

0521859794c08.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:34
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8.12 Governing Equations of Plane Elasticity

In this section we summarize the governing equations of plane elasticity, simultaneously
for both plane stress and plane strain. The stress-strain relations are

ei j = 1
2µ

(
σi j − 3 − ϑ

4
σkkδi j

)
, (i, j = 1, 2), (8.135)

where ϑ is the Kolosov constant defined by

ϑ =

⎧⎪⎨
⎪⎩

3 − 4ν , plane strain ,
3 − ν
1 + ν , plane stress .

(8.136)

Because the physical range of the Poisson ratio is 0 ≤ ν ≤ 1/2, the Kolosov constant is
restricted to 0 ≤ ϑ ≤ 3 for plane strain, and 5/3 ≤ ϑ ≤ 3 for plane stress. The inverted
form of (8.135) is

σi j = 2µ
(

ei j + 1
2

3 − ϑ
ϑ − 1

ekkδi j

)
, (i, j = 1, 2) . (8.137)

There are two Cauchy equations of motion

∂σi j

∂xj
+ bi = ρ ∂

2ui

∂t2
, (8.138)

and one Saint-Venant’s compatibility equation

∂2e11

∂x2
2

+ ∂2e22

∂x2
1

= 2
∂2e12

∂x1∂x2
. (8.139)

The corresponding Beltrami–Michell comaptibility equation is

∇2(σ11 + σ22) = 4
1 + ϑ

∂bi

∂xi
, (8.140)

where ∇2 is the two-dimensional Laplacian operator. Finally, the two Navier equations of
motion are

µ∇2ui + 2µ
ϑ − 1

∂2u j

∂xi∂xj
+ bi = ρ ∂

2ui

∂t2
, (i, j = 1, 2) . (8.141)

8.13 Thermal Distortion of a Simple Beam

As an illustration of the application of derived equations, consider the following thermoe-
lastic beam problem. Let T(x2) be the temperature variation specified across the beam
shown in Fig. 8.3. Our objective is to calculate the displacements of the beam, and as
needed the stresses and strains caused by what amounts to purely thermal loading. For
this case, ∇2T = d2T/dx2

2 , since the gradient is solely through the thickness of the beam,
i.e., in its x2 direction. Equation (8.131) becomes

∇4φ = − αE
(1 − ν)

d2T

dx2
2

. (8.142)
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Figure 8.3. A simple beam subject to a thermal
gradient.

Consistent with all the boundary conditions specified so far, we can setσ22 = σ12 = 0, which
are typical assumptions of elementary beam theory. Then,

∂4φ/∂x4
1 = 0,

∂4φ

∂x2
1∂x2

2

= 0.
(8.143)

The integration of (8.143) is elementary, but illustrative. Toward that end, we write

∂2

∂x2
2

(
∂2φ

∂x2
2

)
= − αE

(1 − ν)
d2T

dx2
2

. (8.144)

Since σ11 = φ,22, this reduce to

∂2

∂x2
2

[
σ11 + αE

(1 − ν)
T(x2)

]
= 0. (8.145)

Two integrations later, we obtain

σ11 + αE
(1 − ν)

T(x2) = C1x2 + C2. (8.146)

The integration constants, C1 and C2, are determined from the requirement of static equi-
librium ∫ h

−h
σ11(x2) dx2 = 0,

∫ h

−h
σ11(x2)x2 dx2 = 0.

(8.147)

The integrations yield

σ11(x2) = αE
(1 − ν)

[
−T(x2) + 1

2h

∫ h

−h
T(η) dη + x2

2/3h3

∫ h

−h
ηT(η) dη

]
.

The corresponding strains are

e11(x2) = 1
E
σ11 + αT(x2), e22(x2) = − ν

E
σ11 + αT(x2), e12 = 0.

We now analyze the resulting deflection of the beam. With the usual assumptions of
elementary beam theory, we approximate the beam’s curvature as

1/r ≈ −e11/x2.
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182 8. Governing Equations of Linear Elasticity

Thus,

(1/r)top ≈ −e11(h)/h , (1/r)bottom ≈ −e11(−h)/(−h), (8.148)

and so

1/r ≈ e11(−h) − e11(h)
2h

≈ ∂2u2

∂x2
1

. (8.149)

As a specific example, take

T(x2) = (1/2)m�T(1 − x2/h)m, (8.150)

where �T is a given difference in temperature between the bottom and top sides of the
beam. The analysis is straightforward. In particular, the maximum deflection of the beam
is found to be

δmax ≈ L
16
α�T(L/h)g(m), (8.151)

with

g(m) ≡ 6m
(m + 1)(m + 2)

. (8.152)

The result shows how the shape of the temperature variation is important in affecting
the magnitude of the induced thermal distortion. For example, if m< 1, say m ≈ 1/3,
then g ∼ 0.6, which represents an appreciable reduction in the maximum displacement at
the midpoint of the beam. On the other hand, if m ≈ 3, then g ∼ 0.9, and the reduction in
maximum displacement is far less. Thus manipulating the temperature profile may provide
a mechanism to mitigate intolerably large thermally induced deflections.
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9 Elastic Beam Problems

9.1 A Simple 2D Beam Problem

Approximate solutions can be developed for two-dimensional boundary value problems
in plane stress or plane strain by representing the Airy stress function as a polynomial in
x1 and x2. This general methodology is developed via several specific examples.

To begin, recall the general form of the biharmonic equation for the case of plane strain,

∇4φ = −1 − 2ν
1 − ν ∇2V, (9.1)

or, for plane stress,

∇4φ = −(1 − ν)∇2V. (9.2)

Recall also the connections between φ and the stresses, viz.,

σ11 = φ,22 + V(x1, x2) ,

σ22 = φ,11 + V(x1, x2) ,

σ12 = −φ,12 .

(9.3)

To illustrate how an approximate solution may be constructed consider the boundary value
problem for the simple beam shown in Fig. 9.1. Here the boundary conditions are specified
as

σ12 = 0 on x2 = ±b,

σ22 = 0 on x2 = ±b,

σ11 = 0 on x1 = 0,

(9.4)

and ∫ b

−b
σ12 dx2 = F on x1 = 0. (9.5)

The last boundary condition is the so-called integral or global boundary condition, in
contrast to point wise boundary conditions of (9.4).

184
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Figure 9.1. A cantilever beam under the end loading.

In the subsequent analysis it is assumed that no potentials act, so that V = 0. Also plane
stress prevails so that the governing equation for φ is simply ∇4φ = 0. We then explore
possible polynomial solutions to this biharmonic equation.

9.2 Polynomial Solutions to ∇4φ = 0

Consider the general nth order polynomial

pn(x1, x2) = a0xn
1 + a1xn−1

1 x2 + a2xn−2
1 x2

2 + · · · + anxn
2

=
n∑

i=0

ai xn−i
1 xi

2.
(9.6)

If (9.6) is substituted into (9.2), with V = 0, a polynomial of the form

qn−4(x1, x2) = ∇4 pn(x1, x2) =
n−4∑
i=0

bi xn−4−i
1 xi

2 (9.7)

is generated. For example,

b0 = n(n − 1)(n − 2)(n − 3)a0 + 4(n − 2)(n − 3)a2 + 24a4, (9.8)

and so on. For (9.6) to be a solution to (9.2), all the qn(x1, x2) must be zero. This requires
that

bi = 0, i = 0, 1, . . . ,n − 4. (9.9)

Thus, (9.9) are a set of (n − 3) linear equations among the (n + 1) ai ’s. Four ai ’s are un-
known, i.e., are adjustable constants, so that (9.9) places constraints on the rest.

Now consider what polynomial forms for φ(x1, x2) give rise to associated forms for the
σi j ’s. For example, consider the form

φ2(x1, x2) = a0x2
1 + a1x1x2 + a2x2

2 , (9.10)

which yields

σ11 = 2a2, σ22 = 2a0, σ12 = −a1. (9.11)

Consequently, (9.10) implies a state of uniform inplane stress.
Next, consider the form

φ3(x1, x2) = a0x3
1 + a1x2

1 x2 + a2x1x2
2 + a3x3

2 , (9.12)
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which produces the stress components

σ11 = 2a2x1 + 6a3x2,

σ22 = 2a1x2 + 6a0x1,

σ12 = −2a1x1 − 2a2x2.

(9.13)

Suppose the assignment a0 = a1 = a2 = 0 is made. Then

σ11 = 6a3x2, (9.14)

which corresponds to a simple state of pure bending. Clearly additional perspective can be
developed by conjuring up other simple polynomial forms and noting that (9.2) is a linear
partial differential equation for φ(x1, x2).

9.3 A Simple Beam Problem Continued

Consider the polynomial form

φ(x1, x2) = c1x1x3
2 + c2x1x2. (9.15)

The fourth-order term, c1x1x3
2 , produces a bending stress of the form σ11 ∝ x1x2, which

varies linearly with x1. The second term, c2x1x2, produces a uniform shear stress, σ12 = −c2

that can be used to cancel out any otherwise unwanted shear stress arising from other
terms. In fact, (9.15) yields

σ11 = 6c1x1x2, σ22 = 0, σ12 = −3c1x2
2 − c2. (9.16)

The first boundary condition of (9.4) states that

σ12(x2 = ±b) = 0 = −3c1b2 − c2 ⇒ c2 = −3c1b2, (9.17)

and thus

σ12 = 3c1(b2 − x2
2 ). (9.18)

The integral boundary condition of (9.5) demands that

∫ b

−b
σ12 dx2 = F on x1 = 0, (9.19)

i.e.,

∫ b

−b
3c1(b2 − x2

2 ) dx2 = F ⇒ c1 = F/(4b3). (9.20)

Therefore, we arrive at the result

φ(x1, x2) = F(x1x3
2 − 3b2x1x2)

4b3
. (9.21)
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Consequently,

σ11 = 3F
2b3

x1x2,

σ12 = 3F
4b3

(b2 − x2
2 ),

σ22 = 0.

(9.22)

Note that the boundary conditions for the beam at the end x1 = 0 are satisfied only on an
integral level; point wise satisfaction is not possible with such a simple polynomial solution.
However, by Saint-Venant’s principle, the solutions that correspond to statically equiva-
lent, although pointwise different, end loads differ appreciably only within the region near
the end of the beam.

9.3.1 Strains and Displacements for 2D Beams

The strains are calculated directly from the stresses as

e11 = σ11

E
− ν σ22

E
= 3Fx1x2

2Eb3
,

e22 = σ22

E
− ν σ11

E
= −3Fνx1x2

2Eb3
,

e12 = 1 + ν
E

σ12 = 3F(1 + ν)(b2 − x2
2 )

4Eb3
.

(9.23)

The strains may be integrated to obtain the displacements as follows. First, we have

e11 = ∂u1

∂x1
= 3Fx1x2

2Eb3
,

u1(x1, x2) = 3Fx2
1 x2

4Eb3
+ f (x2),

(9.24)

where f (x2) is an arbitrary integration function of x2. Likewise,

e22 = ∂u2

∂x2
= −3Fνx1x2

2Eb3
,

u2(x1, x2) = −3Fνx1x2
2

4Eb3
+ g(x1),

(9.25)

where g(x1) is another arbitrary integration function of x1. Furthermore, we have

e12 = 1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
= 3F(1 + ν)(b2 − x2

2 )
4Eb3

. (9.26)

When we substitute the expressions for u1 and u2 from above into (9.26) and rearrange
terms, we find that

3Fx2
1

8Eb3
+ 1

2
g′(x1) = 3Fνx2

2

8Eb3
− 1

2
f ′(x2) + 3F(1 + ν)(b2 − x2

2 )
4Eb3

. (9.27)

Rearranged in this way, (9.27) reads

R(x1) = S(x2), (9.28)
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Figure 9.2. A simple beam under self-weight.

which is true only if R(x1) = S(x2) = C, where C is a constant. Thus,

g′(x1, x2) = −3Fx2
1

4Eb3
+ C,

f ′(x1, x2) = 3Fνx2
2

4Eb3
+ 3F(1 + ν)(b2 − x2

2 )
2Eb3

− C .

(9.29)

This in turn leads to

g(x1) = − Fx3
1

4Eb3
+ Cx1 + B,

f (x2) = Fνx3
2

4Eb3
+ F(1 + ν)(3b2x2 − x3

2 )
2Eb3

− Cx2 + A.

(9.30)

By substituting equations (9.30) into (9.24) and (9.25), it is found that

u1(x1, x2) = 3Fx2
1 x2

4Eb3
+ 3F(1 + ν)x2

2Eb
− F(2 + ν)x3

2

4Eb3
+ A− Cx2,

u2(x1, x2) = −3Fνx1x2
2

4Eb3
− Fx2

1

4Eb3
+ B + Cx1.

(9.31)

Physically, the constants A, B, and C describe rigid body displacements in the x1 and
x2 directions and a counter-clockwise rotation about the x3 axis. Possible approximate
boundary conditions that may be applied to determine these constants are

u1 = u2 = ∂u2/∂x1 = 0 at x1 = a, x2 = 0, or

u1 = u2 = ∂u1/∂x2 = 0 at x1 = a, x2 = 0, or∫ b

−b
u1 dx2 =

∫ b

−b
u2 dx2 =

∫ b

−b
x2u1 dx2 = 0 at x1 = a.

(9.32)

The choice of boundary condition here is motivated by additional consideration of the
actual conditions that may prevail in the physical system.

9.4 Beam Problems with Body Force Potentials

An example is now considered that involves a body force potential, in particular one that
accounts for the gravitational potential associated with self-weight. The simple beam is
illustrated in Fig. 9.2; the boundary conditions are described below. As throughout the
text, ρ is the mass density, and we introduce g as the gravitational acceleration constant.
Thus, the body force potential is

V(x1, x2) = ρgx2, (9.33)
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where x2 may be reckoned from any convenient reference level. This gives rise to the body
force density

f = −∂V
∂x

= −ρge2. (9.34)

The governing equation for φ for the case of plane stress is, in this case,

∇4φ = −(1 − ν)∇2V = 0. (9.35)

The boundary conditions can be phrased as

σ12(x1,±b) = σ22(x1,±b) = 0,

σ11(±a, x2) = 0,∫ b

−b
σ12(−a, x2) dx2 = −

∫ b

−b
σ12(a, x2) dx2 = −2ρgba.

(9.36)

At this point it is fruitful to consider the symmetry that is obvious in the system. For
example, for the normal stresses,

σnn(x1, x2) ∼ σnn(−x1, x2) ⇔ an even function of x1,

σnn(x1, x2) ∼ −σnn(x1,−x2) ⇔ an odd function of x2.
(9.37)

With these considerations, a stress function of the form

φ(x1, x2) = c21x2
1 x2 + c23x2

1 x3
2 + c03x3

2 + c05x5
2

= odd in x2, even in x1,
(9.38)

may be tried. Note the subscripting convention used for the coefficients vis-à-vis the ex-
ponents of x1 and x2. Since

∇4(x2
1 x2) = ∇4(x3

2 ) = 0, (9.39)

the remaining part of (9.38) must satisfy

∇4(c23x2
1 x3

2 + c05x5
2 ) = 0, (9.40)

which leads to

24c23x2 + 120c05x2 = 0, i.e., c05 = −1
5

c23. (9.41)

Consequently, the stresses are

σ11(x1, x2) = ρgx2 + 6c23x2
1 x2 + 6c03x2 + 20c05x3

2 ,

σ22(x1, x2) = ρgx2 + 2c21x2 + 2c23x3
2 ,

σ12(x1, x2) = −2c21x1 − 6c23x1x2
2 .

(9.42)

Next the boundary conditions are applied. For example,

σ12(x1,b) = 0 = −2c21x1 − 6c23x1b2,

σ22(x1,b) = 0 = ρgb + 2c21b + 2c23b3.
(9.43)
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Observe the symmetry in σ12 and σ22, viz., that σ12 is purely even in x2 and σ22 is purely odd
in x2. Thus, the boundary conditions applied on x2 = b above may be equally well applied
on x2 = −b. Together they lead to

c21 = −3
4
ρg,

c23 = 1
4
ρg
b2
,

c05 = −1
5

c23 = − 1
20
ρg
b2
.

(9.44)

The boundary condition σ11(±a, x2) = 0 cannot be satisfied point wise with a polynomial
solution of the type considered here. Global equilibrium can, however, be guaranteed by
setting

∫ b

−b
σ11 dx2 = 0. (9.45)

Because σ11 is an odd function of x2, this condition supplies no information regarding the
evaluation of the remaining coefficient, c03. However, equilibrium also requires that no
net moment exist, and this leads to

∫ b

−b
σ11x2 dx2 = 0 on x1 = ±a. (9.46)

Since σ11 is an even function in x1, (9.46) can be applied at x1 = ±a. Doing so leads to

2
3
ρgb3 + ρga2b + 4c03b3 − 2

5
ρgb3 = 0,

c03 = −ρg
[

1
15

+ 1
4

(a/b)2
]
.

(9.47)

The final results for the stresses are then

σ11(x1, x2) = ρgb
I

[
2
5

b2x2 − 2
3

x3
2 + (x2

1 − a2)x2

]
,

σ22(x1, x2) = ρgb
I

(
−b2x2

3
+ x3

2

3

)
,

σ12(x1, x2) = ρgb
I

(
b2x1 − x2

2 x1
)
,

(9.48)

where I = 2b3/3 is the cross-sectional moment of inertia per unit thickness of the beam.

9.5 Beam under Fourier Loading

The beam illustrated in Fig. 9.3 is to be subject to a general loading along its top surface
(x2 = c) and along its bottom surface (x2 = −c). This loading is imagined to have been
Fourier analyzed, as described in Chapter 3. Because of the linearity of the biharmonic
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l
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Figure 9.3. Fourier loading on a simple beam.

equation it suffices to develop a general solution for the typical Fourier component. Thus,
imagine the loading to be of the form

σ22(x1, x2 = c) = −bm sin(αmx1),

σ22(x1, x2 = −c) = −am sin(αmx1),
(9.49)

where αm = mπ/�, m is an integer, and � is the length of the beam, as indicated in Fig. 9.3.
No body forces are considered and, therefore, solutions of the biharmonic equation

∇4φ = 0 (9.50)

are sought. Assume solutions of the form

φm = sin(αmx1) f (x2). (9.51)

When this is substituted into (9.50), the result, after cancelling a redundant sin(αmπx1), is

α4
m f (x2) − 2α2

m f ′′(x2) + f ′′′′(x2) = 0. (9.52)

In (9.52) another common convention has been used, namely that primes denote differ-
entiation with respect to the obvious variable, e.g., f ′′(x2) = d2 f/dx2

2 .
General solutions to (9.52) are of the form

f (x2) ∼ eαmx2 , e−αmx2 , x2e±αmx2 . (9.53)

It is efficient to form solutions in the form of hyperbolic functions, i.e.,

f (x2) ∼ (eαmx2 + e−αmx2 ), (eαmx2 − e−αmx2 ), (9.54)

or

f (x2) ∼ coshαmx2, sinhαmx2. (9.55)

A suitable stress function is

φm = [C1m cosh(αmx2) + C2m sinh(αmx2)

+ C3mx2 cosh(αmx2) + C4mx2 sinh(αmx2)] sin(αmx1).
(9.56)

This delivers the stresses as

σ11 = ∂2φ/∂x2
2

= sin(αmx1){C1mα
2
m cosh(αmx2) + C2mα

2
m sinh(αmx2)

+ C3mαm[2 sinh(αmx2) + αmx2 cosh(αmx2)]

+ C4mαm[2 cosh(αmx2) + αmx2 sinh(αmx2)]},

(9.57)
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σ22 = ∂2φ/∂x2
1

= −α2
m sin(αmx1)[C1m cosh(αmx2) + C2m sinh(αmx2)

+ C3mx2 cosh(αmx2) + C4mx2 sinh(αmx2)],

(9.58)

σ12 = −∂2φ/∂x1∂x2

= −αm cos(αmx1){C1mαm sinh(αmx2) + C2mαm cosh(αmx2)

+ C3m[cosh(αmx2) + αmx2 sinh(αmx2)]

+ C4m[sinh(αmx2) + αmx2 cosh(αmx2)]}.

(9.59)

The boundary condition σ12(x1, x2 = ±c) = 0 requires that

C1mαm sinh(αmc) + C2mαm cosh(αmc)

+ C3m[cosh(αmc) + αmc sinh(αmc)]

+ C4m[sinh(αmc) + αmc cosh(αmc)] = 0,

(9.60)

and

−C1mαm sinh(αmc) + C2mαm cosh(αmc)

+ C3m[cosh(αmc) + αmc sinh(αmc)]

+ C4m[sinh(αmc) + αmc cosh(αmc)] = 0.

(9.61)

When rearranged these provide the connections

C3m = −C2m
αm cosh(αmc)

cosh(αmc) + αmc sinh(αmc)
,

C4m = −C1m
αm sinh(αmc)

sinh(αmc) + αmc cosh(αmc)
.

(9.62)

On the other hand, the boundary condition given in (9.49) requires that

α2
m[C1m cosh(αmc) + C2m sinh(αmc)

+ C3mc cosh(αmc) + C4mc sinh(αmc)] = bm

(9.63)

and

α2
m[C1m cosh(αmc) − C2m sinh(αmc)

− C3mc cosh(αmc) + C4mc sinh(αmc)] = am.
(9.64)

Consequently, we obtain

C1m = am + bm

α2
m

sinh(αmc) + αmc cosh(αmc)
sinh(2αmc) + 2αmc

,

C2m = −am − bm

α2
m

cosh(αmc) + αmc sinh(αmc)
sinh(2αmc) − 2αmc

,

C3m = am − bm

α2
m

αm cosh(αmc)
sinh(2αmc) − 2αmc

,

C4m = −am + bm

α2
m

αm sinh(αmc)
sinh(2αmc) + 2αmc

.

(9.65)
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Finally, for compactness of notation, define the functions

χ1 = [αmc cosh(αmc) − sinh(αmc)] cosh(αmx2),

χ2 = αm sinh(αmc)x2 sinh(αmx2),

χ3 = [αmc sinh(αmc) − cosh(αmc)] sinh(αmx2),

χ4 = αm cosh(αmc)x2 cosh(αmx2),

χ5 = [αmc cosh(αmc) + sinh(αmc)] cosh(αmx2),

χ6 = αm sinh(αmc)x2 sinh(αmx2),

χ7 = [αmc sinh(αmc) + cosh(αmc)] sinh(αmx2),

χ8 = αm cosh(αmc)x2 cosh(αmx2),

χ9 = αmc cosh(αmc) sinh(αmx2),

χ10 = αm sinh(αmc)x2 cosh(αmx2),

χ11 = αmc sinh(αmc) cosh(αmx2),

χ12 = αm cosh(αmc)x2 sinh(αmx2).

With these definitions, the stresses become

σ11 = (am + bm)
χ1 − χ2

sinh(2αmc) + 2αmc
sin(αmx1)

− (am − bm)
χ3 − χ4

sinh(2αmc) − 2αmc
sin(αmx1),

(9.66)

σ22 = −(am + bm)
χ5 − χ6

sinh(2αmc) + 2αmc
sin(αmx1)

+ (am − bm)
χ7 − χ8

sinh(2αmc) − 2αmc
sin(αmx1),

(9.67)

σ12 = −(am + bm)
χ9 − χ10

sinh(2αmc) + 2αmc
cos(αmx1)

+ (am − bm)
χ11 − χ12

sinh(2αmc) − 2αmc
cos(αmx1).

(9.68)

9.6 Complete Boundary Value Problems for Beams

In this section we consider a complete boundary value problem for a beam subject to a
general Fourier loading, as illustrated in Fig. 9.4. The load applied to the upper surface is
now

σyy = −q sin(nπx/�), (9.69)

where � is the length of the beam. Note that in this section coordinate notation has been
changed from x1, x2 to x, y. This is done to illustrate generality of common notations. The
boundary conditions are as depicted in Fig. 9.4 and as applied explicitly below. As before,
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2h

y

x

yyσ
Figure 9.4. Fourier component loading on a simple beam.

we require a stress potential φ satisfying the biharmonic equation

∇4φ = 0. (9.70)

As discussed in Chapter 3, trial solutions of the form

φ ∼ eαxeβy, xeαxeβy, or yeαxeβy (9.71)

are explored. When such terms are inserted into the biharmonic equation, there results
the characteristic equation,

α4 + 2α2β2 + β4 = 0 ⇒ (α2 + β2)2 = 0, (9.72)

and thus α = ±iβ, where β can be either real or imaginary. Therefore, we obtain solutions
of the form

φ = eiβx (Aeβy + Be−βy + Cyeβy + Dye−βy)
+ e−iβx (A′eβy + B′e−βy + C′yeβy + D′ye−βy) . (9.73)

Of course, the roles of x and y could be interchanged, i.e., x � y, to obtain additional
solutions. In addition, terms could be formed such as sinh(βy) = 1/2(eβy − e−βy) or
cosh(βy) = 1/2(eβy + e−βy) by simply adding or subtracting exponential terms. At the
end, we obtain

φ = sin(βx)[Asinh(βy) + Bcosh(βy) + Cβy sinh(βy) + Dβy cosh(βy)]

+ cos(βx)[A′ sinh(βy) + B′ cosh(βy) + C′βy sinh(βy) + D′βy cosh(βy)]

+ sin(αy)[E sinh(αx) + F cosh(αx) + Gαx sinh(αx) + Hαx cosh(αx)]

+ cos(αy)[E′ sinh(αx) + F ′ cosh(αx) + G′αx sinh(αx) + H′αx cosh(αx)]

+ R0 + R1x + R2x2 + R3x3 + R4 y + R5 y2 + R6 y3 + R7xy

+ R8x2 y + R9xy2.

The boundary conditions include

σyy(x, y = h) = −q sin(nπx/�), σxy(x, y = h) = 0,

σyy(x, y = −h) = σxy(x, y = −h) = 0,

σxx(x = 0, y) = 0,
∫ h

−h
σxy(x = 0, y) dy = −1

2

∫ �

0
q sin(nπx/�) dx,

σxx(x = �, y) = 0,
∫ h

−h
σxy(x = �, y) dy = 1

2

∫ �

0
q sin(nπx/�) dx.
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These suggest for φ the following form

φ = sin(βx) [Asinh(βy) + Bcosh(βy) + Cβy sinh(βy) + Dβy cosh(βy)] .

This form guarantees that σxx(x = 0, y) = 0. It will satisfy the boundary condition at x = �,
as well, if the values for β are determined as described below.

For the stresses we obtain

σyy = −β2 sin(βx) [Asinh(βy) + Bcosh(βy) + Cβy sinh(βy) + Dβy cosh(βy)] ,

σxy = −β2 cos(βx)
{

Acosh(βy) + D[βy sinh(βy) + cosh(βy)]
}

− β2 cos(βx)
{

B sinh(βy) + C[βy cosh(βy) + sinh(βy)]
}
.

The terms have been arranged so that they are either odd or even in y. Thus, to meet the
boundary condition σxy(x, y = ±h) = 0, we require

Acosh(βh) + D[βh sinh(βh) + cosh(βh)] = 0,

B sinh(βh) + C[βh cosh(βh) + sinh(βh)] = 0.
(9.74)

This leads to

A= −D[βh tanh(βh) + 1] ,

B = −C [βh coth(βh) + 1] ,
(9.75)

and

σyy = − Dβ2 sin(βx)
{
βy cosh(βy) − [βh tanh(βh) + 1] sinh(βy)

}
− Cβ2 sin(βx)

{
βy sinh(βy) − [βh coth(βh) + 1] cosh(βy)

}
.

(9.76)

To ensure σyy(x, y = −h) = 0, we set

D
{
βh cosh(βh) − [βh tanh(βh) + 1] sinh(βh)

}
= C

{
βh sinh(βh) − [βh coth(βh) + 1] cosh(βh)

}
.

(9.77)

Hence,

D

[
βh cosh2(βh) − βh sinh2(βh)

cosh(βh)
− sinh(βh)

]

= C

[
βh sinh2(βh) − βh cosh2(βh)

sinh(βh)
− cosh(βh)

]
.

(9.78)

Since

cosh2(βh) − sinh2(βh) = 1,

we have

C = − tanh(βh)
βh − sinh(βh) cosh(βh)
βh + sinh(βh) cosh(βh)

D. (9.79)

Defining, for compactness, the parameter

ϒ ≡ tanh(βh)
βh − sinh(βh) cosh(βh)
βh + sinh(βh) cosh(βh)

, (9.80)
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we can write

σyy = −Dβ2 sin(βx) [βy cosh(βy) − (βh tanh(βh) + 1) sinh(βy)]

+ Dβ2 sin(βx)ϒ [βy sinh(βy) − (βh coth(βh) + 1) cosh(βy)] .
(9.81)

Since σyy(x, h) = −q sin(nπx/�), there follows

q sin(nπx/�) = 2β2 Dsin(βx)
βh − sinh(βh) cosh(βh)

cosh(βh)
. (9.82)

For this to be true, we demand that

β = nπ/� (9.83)

and

D = q cosh(nπh/�)
2(nπ/�)2[nπh/�− sinh(nπh/�) cosh(nπh/�)]

,

C = − q sinh(nπh/�)
2(nπ/�)2[nπh/�+ sinh(nπh/�) cosh(nπh/�)]

.

(9.84)

It can be readily verified that indeed σxx(0, y) = σxx(�, y) = 0.

9.6.1 Displacement Calculations

Recall the connections between the stress potential and the stresses, viz.,

σxx = ∂2φ

∂y2
, σyy = ∂2φ

∂x2
, σxy = − ∂2φ

∂x∂y
. (9.85)

For the two normal strains, and for the case of plane stress considered here, the strain-
displacement relations are

exx = ∂ux

∂x
= 1

E

(
∂2φ

∂y2
− ν ∂

2φ

∂x2

)
,

eyy = ∂uy

∂y
= 1

E

(
∂2φ

∂x2
− ν ∂

2φ

∂y2

)
.

(9.86)

When integrated, this yields

ux = 1
E

[∫
∂2φ

∂y2
dx − ν ∂φ

∂x
+ f (y)

]
,

uy = 1
E

[∫
∂2φ

∂x2
dy − ν ∂φ

∂y
+ g(x)

]
,

(9.87)

where f (x) and g(y) are integration functions. Furthermore, for the shear strain,

∂ux

∂y
+ ∂uy

∂x
= −2(1 + ν)

E
∂φ

∂x∂y
. (9.88)

Now, substitute (9.87) into (9.88) and use exponential forms for φ of the type φ ∼ eαxeβy,
i.e., ignore polynomial like terms, to obtain(

β3/α + 2αβ + α3/β
)

eαxeβy + f ′(y) + g′(x) = 0. (9.89)
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Observe that ∫
∂3φ

∂y3
dx + 2

∂2φ

∂x∂y
+
∫
∂3φ

∂x3
dy + f ′(y) + g′(x) = 0. (9.90)

But,

β3/α + 2αβ + α3/β = β4 + 2α2β2 + α4 = 0, (9.91)

from (9.72), and thus

f ′(y) + g′(x) = 0 ⇒ f ′(y) = g′(x) = −ω. (9.92)

Therefore, we have

f (y) = −ωy + u0
x,

g(x) = −ωx + u0
y.

(9.93)

The displacements are accordingly

ux(x, y) = − 1
E
β cos(βx){A(1 + ν) sinh(βy) + B(1 + ν) cosh(βy)

+ C[(1 + ν)βy sinh(βy) + 2 cosh(βy)]

+ D[(1 + ν)βy cosh(βy) + 2 sinh(βy)]}
− ω0 y + u0

x,

(9.94)

and

uy(x, y) = − 1
E
β sin(βx){A(1 + ν) cosh(βy) + B(1 + ν) sinh(βy)

+ C[(1 + ν)βy cosh(βy) − (1 + ν) sinh(βy)]

+ D[(1 + ν)βy sinh(βy) − (1 − ν) cosh(βy)]}
+ ω0x + u0

y.

(9.95)

Now, referring to Fig. 9.4, set

uy(0, 0) = uy(�, 0) = ux(0, 0) = 0 (9.96)

to obtain

ω0 = u0
y = 0 (9.97)

and

u0
x = 1

E
β[B(1 + ν) + 2C]. (9.98)

More general loading, specified by say k(x), may be analyzed by Fourier analysis and by
applying linear superposition. If k(x) is an odd function, the solution just obtained will be
sufficient; if not, a similar solution involving a boundary condition such as σyy(x, y = h) =
q cos(nπ/�) will be required. The generation of such a solution would follow precisely
along the lines of the one obtained above.
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9.7 Suggested Reading
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York.
Timoshenko, S. P., and Goodier, J. N. (1970), Theory of Elasticity, 3rd ed., McGraw-Hill,
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Prentice Hall, Upper Saddle River, New Jersey.
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10 Solutions in Polar Coordinates

10.1 Polar Components of Stress and Strain

We introduce a polar coordinate system as illustrated in Fig. 10.1. The polar coordinates
r, θ are related to the cartesian coordinates x, y by

r = (x2 + y2)1/2, θ = tan−1(y/x) (10.1)

or, through their inverse,

x = r cos θ, y = r sin θ. (10.2)

Thus, derivatives can be formed via

∂

∂x
= ∂r
∂x
∂

∂r
+ ∂θ

∂x
∂

∂θ
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
,

∂

∂y
= ∂r
∂y
∂

∂r
+ ∂θ

∂y
∂

∂θ
= sin θ

∂

∂r
+ cos θ

r
∂

∂θ
.

(10.3)

For second derivatives we obtain

∂2

∂x2
=
(

cos θ
∂

∂r
− sin θ

r
∂

∂θ

)2

= cos2 θ
∂2

∂r2
+ sin2 θ

(
1
r
∂

∂r
+ 1

r2

∂2

∂θ2

)

+ 2 sin θ cos θ
(

1
r2

∂

∂θ
− 1

r
∂2

∂r∂θ

)
,

∂2

∂y2
=
(

sin θ
∂

∂r
+ cos θ

r
∂

∂θ

)2

= sin2 θ
∂2

∂r2
+ cos2 θ

(
1
r
∂

∂r
+ 1

r2

∂2

∂θ2

)

− 2 sin θ cos θ
(

1
r2

∂

∂θ
− 1

r
∂2

∂r∂θ

)
,

∂2

∂x∂y
= sin θ cos θ

(
∂2

∂r2
− 1

r
∂

∂r
− 1

r2

∂2

∂θ2

)
− (cos2 θ − sin2 θ)

(
1
r2

∂

∂θ
− 1

r
∂2

∂r∂θ

)
.

199
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x

y

r
e r

eθ

θrσ

θrσ

θθσ

θθσ

rrσ rrσ
θσr

θrσ
θ

Figure 10.1. The stress components in 2D
polar coordinates.

Another need is to express the components of stress, strain, and displacement in terms of
the polar coordinates. This is done with the help of Fig. 10.1 that illustrates the definitions
of the polar stress components. For example,

σrr = σxx cos2 θ + σyy sin2 θ + 2σxy sin θ cos θ

= cos2 θ
∂2φ

∂y2
+ sin2 θ

∂2φ

∂x2
− 2 sin θ cos θ

∂2φ

∂x∂y

= 1
r
∂φ

∂r
+ 1

r2

∂2φ

∂θ2
.

(10.4)

In an entirely similar fashion it is found that

σθθ = ∂2φ

∂r2
(10.5)

and

σrθ = 1
r2

∂φ

∂θ
− 1

r
∂2φ

∂r∂θ
= − ∂

∂r

(
1
r
∂φ

∂θ

)
. (10.6)

We now need to construct the field equations, in particular the biharmonic equation.
The Laplacian, in this 2D (x, y) frame, is formed as

∂2

∂x2
+ ∂2

∂y2
= ∇2 = ∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2
, (10.7)

and, thus,

∇4 = ∇2∇2 =
(
∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2

)2

. (10.8)

As for displacements, we appeal to the definitions of unit base vectors in the polar
geometry

er = cos θ ex + sin θ ey,

eθ = − sin θ ex + cos θ ey,
(10.9)

and write

ux = ur cos θ − uθ sin θ,

uy = ur sin θ + uθ cos θ.
(10.10)

For the strains we note, for example, that

exx = ∂ux

∂x
= ∂ur

∂r
cos2 θ +

(
uθ
r

− ∂uθ
∂r

− 1
r
∂ur

∂θ

)
sin θ cos θ +

(
ur

r
+ 1

r
∂uθ
∂θ

)
sin2 θ.

(10.11)
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a

x

y

τ

τ

τ

τ

Figure 10.2. Plate with a central hole.

The use of such relations leads to the following expressions for the polar strain components

err = ∂ur

∂r
,

erθ = 1
2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
,

eθθ = 1
r
∂uθ
∂θ

+ ur

r
.

(10.12)

10.2 Plate with Circular Hole

10.2.1 Far Field Shear

As an example, consider an infinite plate containing a circular hole, as illustrated in Fig. 10.2.
The plate is assumed to be loaded by far field shear, which would represent a uniform pure
shear had it not been for the hole. Thus at infinite distance from the hole the state of stress
is to reduce to uniform pure shear, and the stress state is nonuniform near the hole. We
seek solutions of the biharmonic equation that can account for this state of loading. Try
solutions of the form

φ(r, θ) =
∞∑

n=0

fn(r) cos(nθ) +
∞∑

n=1

gn(r) sin(nθ). (10.13)

Substitution into the biharmonic equation ∇4φ = 0 yields(
d2

dr2
+ 1

r
d
dr

− n2

r2

)2 {
fn(r), gn(r)

} = 0. (10.14)

Solutions are of two forms, i.e.,

fn(r) = An1rn+2 + An2r−n+2 + An3rn + An4r−n, n 
= 0, 1, (10.15)

and

f0(r) = A01r2 + A02r2 ln r + A03 ln r + A04, n = 0,

f1(r) = A11r3 + A12r ln r + A13r + A14r−1, n = 1.
(10.16)

Similar solutions exist for gn(r). These solution forms may be used to construct the solution.
Because the surface of the hole is traction free, the boundary condition there becomes

σrr = σθr = 0 on r = a, (10.17)
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whereas far from the hole

σxy → τ as r → ∞, (10.18)

where τ is the magnitude of the remotely applied shear stress. Because the far field stress
state is pure shear,

σxx, σyy → 0 as r → ∞. (10.19)

The problem is most easily solved by using an elementary application of the principle
of linear superposition. We imagine two problems, one of a homogeneous plate subject
to pure far field shear and that of a plate with a hole whose surface is subject to traction;
the traction to be imposed in this second problem will be such as to precisely annihilate
the traction that would exist on a circular surface of the same radius in the homogeneous
plate of the first problem. When the two solutions are added, the hole’s surface becomes
traction free. Moreover, as will be seen, the stresses of the second problem vanish far from
the hole, so that the far field stress state for the combined problems becomes only the
uniform pure shear of the first problem.

For problem (1), involving pure uniform shear, we take

φ(1) = −τxy = −τr2 sin θ cos θ = −r2

2
τ sin(2θ), (10.20)

which clearly produces a simple state of uniform pure shear stress of magnitude τ . The
corresponding stresses are

σ (1)
rr = τ sin(2θ), σ

(1)
rθ = τ cos(2θ). (10.21)

In problem (2) we apply the stressesσrr = −τ sin(2θ) andσrθ = −τ cos(2θ) to the surface
of the hole. To accomplish this, consider potential of the form

φ(2)(r, θ) = Asin(2θ) + Br−2 cos(2θ), (10.22)

which is from the inventory listed in (10.15) and (10.16). The choice of functions involving
sin(2θ) and cos(2θ) may be taken as arrived at by trial and error, but is clearly motivated
by similar term in the boundary conditions. The stresses associated with this potential are

σ (2)
rr = −

(
4A
r2

+ 6B
r4

)
sin(2θ),

σ
(2)
rθ =

(
2A
r2

+ 6B
r4

)
cos(2θ),

σ
(2)
θθ = 6B

r4
sin(2θ).

(10.23)

Next, by evaluating σ (2)
rr (r = a) and σ (2)

rθ (r = a) and setting the results equal to −τ sin(2θ)
and −τ cos(2θ), respectively, it is found that A= τa2 and B = −τa4/2.

The combined stresses, therefore, become

σrr = σ (1)
rr + σ (2)

rr = τ (1 − 4a2/r2 + 3a4/r4) sin(2θ),

σrθ = σ (1)
rθ + σ (2)

rθ = τ (1 + 2a2/r2 − 3a4/r4) cos(2θ),

σθθ = σ (1)
θθ + σ (2)

θθ = −τ (1 + 3a4/r4) sin(2θ).

(10.24)
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It is interesting to examine the implications of such solutions vis-à-vis stress concentra-
tions. Of particular interest is the normal stress that occurs at a perimeter of the hole cor-
responding to θ = 3π/4, where sin(2θ) = −1. The maximum hoop stress there is σθθ = 4τ .
As the state of stress at this point is uniaxial tension, because σrr = σrθ = 0 on the hole’s
surface, the maximum shear stress at this point is simply τmax = 2τ .

10.2.2 Far Field Tension

The second problem of this type that is of interest involves an identical plate subject to far
field tension (or compression). Thus the boundary conditions are the same as (10.17) on
the surface of the hole, but become

σxx → σ at r → ∞. (10.25)

At r → ∞ all other components of stress vanish.
The problem may be solved using an identical superposition approach. For the first

problem we imagine a homogeneous plate subject to uniform far field tension; the potential
corresponding to this state of stress is

φ(1) = 1
2
σ y2 = 1

2
σr2 sin2 θ = 1

4
σ [r2 − r2 cos(2θ)]. (10.26)

Consider a second potential prescribed as

φ(2) = Aσ ln r + Bσ cos(2θ) + Cσr−2 cos(2θ), (10.27)

so that, when the two solutions are combined,

φ = 1
4
σ [r2 − r2 cos(2θ)] + Aσ ln r + Bσ cos(2θ) + Cσr−2 cos(2θ). (10.28)

The stresses computed from this potential are

σrr = σ
[

1
2

+ cos(2θ)
2

+ A
r2

− 4Bcos(2θ)
r2

− 6C cos(2θ)
r4

]
,

σrθ = −σ
[

sin(2θ)
2

+ 2B sin(2θ)
r2

+ 6C sin(2θ)
r4

]
,

σθθ = σ
[

1
2

− cos(2θ)
2

− A
r2

+ 6C cos(2θ)
r4

]
.

(10.29)

In setting the boundary condition σrr (r = a) = 0, note that two equations are generated
from the first of (10.29), viz.,

1
2

+ A
a2

= 0,

1
2

− 4B
a2

− 6C
a4

= 0.

(10.30)

These arise from the need to independently set the terms involving cos(2θ) to zero. The
second traction free boundary condition gives rise to a single equation

1
2

+ 2B
a2

+ 6C
a4

= 0. (10.31)
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When the equations are solved, we find

A= −a2/2, B = a2/2, C = −a4/4. (10.32)

The resulting stresses are

σrr = σ

2

(
1 − a2

r2

)
+ σ cos(2θ)

2

(
3a4

r4
− 4a2

r2
+ 1

)
,

σrθ = σ sin(2θ)
2

(
3a4

r4
− 2a2

r2
− 1

)
,

σθθ = σ

2

(
1 + a2

r2

)
− σ cos(2θ)

2

(
3a4

r4
+ 1

)
.

(10.33)

Of particular interest is the stress concentration at the point on the hole’s surface at
θ = ±π/2. The maximum hoop stress there is σmax

θθ = 3σ .

10.3 Degenerate Cases of Solution in Polar Coordinates

We again seek solutions to the equation

∇4φ =
(
∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2

)2

φ = 0 (10.34)

in the form

φ =
∞∑

n=0

fn(r) cos(nθ) +
∞∑

n=1

gn(r) sin(nθ). (10.35)

We examine the terms involving cos(nθ) for the moment. This leads to

(
d2

dr2
+ 1

r
d
dr

− n2

r2

)2

fn(r) = 0. (10.36)

In general, solutions exist of the type

fn(r) = An1rn+2 + An2r−n+2 + An3rn + An4r−n, (10.37)

as we have seen previously. But, if n = 0, two sets of solutions become degenerate, viz.,
(An1rn+2, An2r−n+2) and (An3rn, An4r−n). If, on the other hand, n = 1, two other solutions
become degenerate, viz., (An2r−n+2, An3rn). In such cases we seek to find a resolution in
terms of alternative solutions to replace those that are degenerate.

Let n = 1 + ε, that is relax the condition that n be an integer. Then the two potentially
degenerate forms for n = 1 become

f (r) = Ar1−ε + Br1+ε, (10.38)

and as ε → 0 the two forms become degenerate. Now, recast f (r) as

f (r) = C(r1+ε + r1−ε) + D(r1+ε − r1−ε). (10.39)
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In the limit as ε → 0, we clearly have

lim
ε→ 0

C(r1+ε + r1−ε) → 2Cr,

lim
ε→ 0

D(r1+ε − r1−ε) → 0.
(10.40)

Take D = Eε−1 and form again the limit to find that

lim
ε→ 0

Eε−1(r1+ε − r1−ε) → Er ln r. (10.41)

Thus, for n = 1,

f1(r) = A11r3 + A12r ln r + A13r + A14r−1. (10.42)

For n = 0, we find

lim
n → 0

d(rn+2)
dn

= r2 ln r,

lim
n → 0

d(rn)
dn

= ln r,

(10.43)

so that

f0(r) = A01r2 + A02r2 ln r + A03 ln r + A04. (10.44)

There are, however, additional aspects of the analysis.
When n = 0, there are solutions of the form φ = A, for which there are no stresses. We

want instead solutions that give rise to stresses of the Fourier form, which would come
about, say, from potentials of the type

φ = Ar ε cos(εθ) + Br ε sin(εθ), (10.45)

with the limit

lim
ε→ 0

[Ar ε cos(εθ) + Br ε sin(εθ)] = A. (10.46)

Furthermore,

lim
ε→ 0

d
dε

[Ar ε cos(εθ) + Br ε sin(εθ)] = Aln r + Bθ. (10.47)

The term Bθ yields stresses

σrr = σθθ = 0, σrθ = B/r2. (10.48)

When n = 1, the terms in r cos θ and r sin θ yield no stresses; a similar procedure uncovers
the alternative solution

φ = Brθ sin θ + Crθ cos θ, (10.49)

which has the associated stresses

σrθ = σθθ = 0, σrr = 2Bcos θ
r

− 2C sin θ
r

. (10.50)
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The general solution of interest is, therefore,

φ(r, θ) = A01r2 + A02r2 ln r + A03 ln r + A04θ

+ (
A11r3 + A12r ln r + A14r−1) cos θ + A13rθ sin θ

+ (
B11r3 + B12r ln r + B14r−1) sin θ + B13rθ cos θ

+
∞∑

n=2

(
An1rn+2 + An2r−n+2 + An3rn + An4r−n) cos(nθ)

+
∞∑

n=2

(
Bn1rn+2 + Bn2r−n+2 + Bn3rn + Bn4r−n) sin(nθ).

(10.51)

It should not go unnoticed that terms rθ sin θ and rθ cos θ are not single valued. This is a
feature we exploit in the next section.

10.4 Curved Beams: Plane Stress

Consider the equations of equilibrium. In polar coordinates, for cases of plane stress, we
have

∂σrr

∂r
+ σrr − σθθ

r
+ 1

r
∂σrθ

∂θ
+ br = 0,

∂σrθ

∂r
+ 2σrθ

r
+ 1

r
∂σθθ

∂θ
+ bθ = 0.

(10.52)

As before, if there are no body forces, the Airy stress function satisfies

∇4φ = ∇2∇2φ =
(
∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2

)2

φ = 0. (10.53)

The connections to the stress components are

σrr = 1
r
∂φ

∂r
+ 1

r2

∂2φ

∂θ2
,

σθθ = ∂2φ

∂r2
,

σrθ = − ∂

∂r

(
1
r
∂φ

∂θ

)
.

(10.54)

The strain-displacement relations are

err = ∂ur

∂r
,

erθ = 1
2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
,

eθθ = 1
r
∂uθ
∂θ

+ ur

r
.

(10.55)
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To complete the set of governing equations, the elastic constitutive relations for plane
stress are used,

εrr = 1
E

(σrr − νσθθ ),

εθθ = 1
E

(σθθ − νσrr ),

εrθ = 1 + ν
E

σrθ .

(10.56)

Consider solutions of a form that are dependent solely on r , i.e., φ = φ(r) only. In
this case, and using again the convention whereby a comma denotes differentiation, the
biharmonic equation, in the absence of body forces, reduces to

1
r

{
r
[

1
r

(rφ,r ),r

]
,r

}
,r

= 0. (10.57)

This equation may be integrated four times in a straightforward manner to yield

r
[

1
r

(rφ,r ),r

]
,r

= C1,

1
r

(rφ,r ),r = C1 ln r + C2,

rφ,r = C1

(
r2

2
ln r − r2

2

)
+ C2

r2

2
+ C3,

φ,r = C′
1r ln r + C′

2r + C3/r, C′
1 = C1/2, C′

2 = (C2 − C1)/2,

φ = C′
1

(
r2

2
ln r − r2

2

)
+ C′

2
r2

2
+ C3 ln r + C4.

In a slightly simpler form, the last expression becomes

φ = Aln r + Br2 ln r + Cr2 + D. (10.58)

This form for φ gives rise to stresses

σrr = A/r2 + 2B ln r + 2C,

σθθ = −A/r2 + 2B ln r + 3B + 2C,

σrθ = 0.

(10.59)

As for the strains, first note that

erθ = 1 + ν
E

σrθ = 1
2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
= 0. (10.60)
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The radial strain is

err = ∂ur

∂r
= 1

E

[
A(1 + ν)

r2
+ 2C(1 − ν) + B(1 − ν)(2 ln r + 1) − 2νB

]
. (10.61)

For the hoop strain we find

eθθ = ur

r
+ 1

r
∂uθ
∂θ

= 1
E

[
− A(1 + ν)

r2
+ 2C(1 − ν) + B(1 − ν)(2 ln r − 1) + 2B

]
.

(10.62)

Equations (10.61) and (10.62) provide two paths for evaluating ur . Integrating (10.61)
it is found that

ur = 1
E

[
− A(1 + ν)

r
+ 2C(1 − ν)r + B(1 − ν)(2r ln r − r) − 2νBr

]
+ f (θ),

where f (θ) is an arbitrary function of integration. Solving for ur in (10.62), on the other
hand, gives

ur = 1
E

[
− A(1 + ν)

r
+ 2C(1 − ν)r + B(1 − ν)(2r ln r + r) + 2Br

]
− ∂uθ /∂θ.

For last two expressions to be both expressions for ur , it must be that

f (θ) = −∂uθ /∂θ + 4Br/E. (10.63)

If we take f (θ) = 0, we obtain

∂uθ /∂θ = 4Br/E → uθ = 4Brθ/E. (10.64)

With this choice for f (θ), (10.60) shows that ∂ur/∂θ = 0, as expected and as is consistent
with the original assumption that ur = ur (r) only. Note also, if such nonsingle valued
solutions as uθ = (1/E)(4Brθ) are disallowed, B = 0. The corresponding strains are

err = dur

dr
= 1

E

[
A(1 + ν)

r2
+ 2C(1 − ν) + B(1 − ν)(2 ln r + 1) − 2νB

]
, (10.65)

and

eθθ = ur

r
= 1

E

[
− A(1 + ν)

r2
+ 2C(1 − ν) + B(1 − ν)(2 ln r + 1) + 2B

]
. (10.66)

To derive the radial displacement, integrate the first of these and solve the second to
obtain

ur = 1
E

[
− A(1 + ν)

r
+ 2C(1 − ν)r + B(1 − ν)(2r ln r − r) − 2νBr

]
+ Y,

where Y is a constant, and

ur = 1
E

[
− A(1 + ν)

r
+ 2C(1 − ν)r + B(1 − ν)(2r ln r + r) + 2Br

]
.

For these two expressions to be the same, we must have B = Y = 0.
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a

b

po

p
i

Figure 10.3. Hollow cylinder subject to imposed internal and external pressure.

10.4.1 Pressurized Cylinder

Consider the case of a hole in a thin plate subject to both external and internal pressure,
as depicted in Fig. 10.3. The boundary conditions are

σrr = −pi on r = a,

σrr = −p0 on r = b.
(10.67)

Take for the potential

φ = Aln r + Cr2 + D, (10.68)

which gives the stresses

σrr = A/r2 + 2C,

σθθ = −A/r2 + 2C,

σrθ = 0.

(10.69)

Setting the boundary conditions prescribed above gives

σrr (r = a) = A/a2 + 2C = −pi ,

σrr (r = b) = A/b2 + 2C = −p0.
(10.70)

When these are solved for Aand C, it is found that

σrr = a2b2

b2 − a2

p0 − pi

r2
+ a2 pi − b2 p0

b2 − a2
,

σθθ = − a2b2

b2 − a2

p0 − pi

r2
+ a2 pi − b2 p0

b2 − a2
.

(10.71)

Some interesting special cases are obtained as follows. Let t = (b − a) and Rm = (b +
a)/2; this means that, for example,

b = Rm + t
2
, a = Rm − t

2
, b2 − a2 = 2t Rm. (10.72)

Now, let p0 = 0 and assume t/Rm � 1. Then,

σθθ = pi Rm

2t

(
1 + R2

m

r2
− t

Rm

)
+ O(t2/R2

m). (10.73)
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a

b
β

M M

Figure 10.4. Curved beam under the bending moment M.

Recall the simple membrane approximation, viz., σθθ ≈ pi Rm/t for the nominal stress
across the annulus wall of such a cylinder with a central hole. This may be obtained from
(10.73) by neglecting the term t/Rm and evaluating the expression at r = Rm.

10.4.2 Bending of a Curved Beam

Consider the curved beam shown in Fig. 10.4. The beam is loaded at its ends by a bending
moment M. The boundary conditions to be imposed are

σrr = σrθ = 0 on r = a,b,∫
σθθ dr = 0 at θ = ±β,

∫
σθθr dr = −M at θ = ±β.

(10.74)

As the beam does not close on itself, it is possible to accept solutions that are characterized
by nonsingle valued displacements, uθ . Thus the coefficient B in (10.58) may not be zero!
Consequently, by using (10.58), evaluating the stresses, and setting the above boundary
conditions, it is found that

A/a2 + 2B ln a + B + 2C = 0,

A/b2 + 2B ln b + B + 2C = 0,

b
(

A/b2 + 2B ln b + B + 2C
)− a

(
A/a2 + 2B ln a + B + 2C

) = 0,

− Aln(b/a) + B
(
b2 ln b − a2 ln a

)+ C(b2 − a2) = −M.

Solving the above, we find

A= −4M
D

a2b2 ln(b/a),

B = −2M
D

(b2 − a2),

C = M
D

[(b2 − a2) + 2(b2 ln b − a2 ln a)],

D = (b2 − a2)2 − 4a2b2 ln(b/a).

(10.75)
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The corresponding stresses are

σrr = −4M
D

[
a2b2

r2
ln(b/a) + b2 ln(r/b) + a2 ln(a/r)

]
,

σθθ = −4M
D

[
−a2b2

r2
ln(b/a) + b2 ln(r/b) + (b2 − a2)

]
,

σrθ = 0.

(10.76)

10.5 Axisymmetric Deformations

We have already encountered geometries where polar coordinates are particularly suited,
namely those where the geometry is symmetric about some axis – we call that, as before,
the z axis. Here we explicitly consider some cases of such axisymmetry. Suppose that the
displacements are independent of the polar coordinate θ . If it happens that the stress
potential is also independent of θ , then the biharmonic equation for φ becomes

(
d4

dr4
+ 2

r
d3

dr3
− 1

r2

d2

dr2
+ 1

r3

d
dr

)
φ = 0. (10.77)

General solutions to this reduced equation have already been developed, but an alternative
approach is to introduce a change in coordinates to ξ , where ξ is defined, via the polar
coordinate r , as

r = eξ . (10.78)

In this case (10.77) is simplified to

(
d4

dξ 4
− 4

d3

dξ 3
+ 4

d2

dξ 2

)
φ = 0. (10.79)

The general solution, in terms of ξ and r , is

φ = Aξe2ξ + Be2ξ + Cξ + D

= Ar2 ln r + Br2 + C ln r + D.
(10.80)

We next recall the connections between the polar components of stress and the stress po-
tential, viz., relations (10.4), (10.5), and (10.6), which when specialized to the axisymmetric
case considered here are

σrr = 1
r

dφ
dr
,

σθθ = d2φ

dr2
,

σrθ = 0.

(10.81)
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Substituting (10.80) into (10.81), we obtain

σrr = 2Aln r + C
r2

+ A+ 2B,

σθθ = 2Aln r − C
r2

+ 3A+ 2B,

σrθ = 0.

(10.82)

For solutions of this type in a simply connected body, e.g., a solid cylinder, the constants
Aand C must be zero so that the stresses are bounded at r = 0. For a multiply connected
body, e.g., a hollow cylinder, this is not required. For such cases, we must examine the
displacement field, as has been done earlier.

For the case of axisymmetry, relations (10.12) reduce to

err = dur

dr
,

eθθ = ur

r
,

erθ = 0.

(10.83)

The constitutive relations become, for the case of plane stress (σzz = 0),

dur

dr
= 1

E
(σrr − νσθθ ),

ur

r
= 1

E
(σθθ − νσrr ).

(10.84)

For plane strain, the moduli become 1/E ← (1 − ν2)/E and ν ← ν/(1 − ν2), while σzz =
ν(σrr + σθθ ). Using relations (10.82) in (10.84), we find from the first of (10.84) that

dur

dr
= 1

E

[
2Aln r + C

r2
+ A+ 2B − ν

(
2Aln r − C

r2
+ 3A+ 2B

)]
.

When integrated, this becomes

ur = 1
E

[
2Ar ln r − Ar + 2Br − C

r
− ν

(
2Ar ln r + Ar + 2Br + C

r

)
+ H

]
,

where H is an integration constant. The second of (10.84), on the other hand, gives

ur

r
= 1

E

[
2Aln r − C

r2
+ 3A+ 2B − ν

(
2Aln r + C

r2
+ A+ 2B

)]
.

When the two expressions for ur are equated, there follows

4Ar − H = 0, (10.85)

which leads to the conclusion that A= H = 0.
For axisymmetric deformations, there is no circumferential displacement (uθ = 0), and

the equations of equilibrium, in the absence of body forces, lead directly to

d2ur

dr2
+ 1

r
dur

dr
− ur

r2
= 0, (10.86)
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Figure 10.5. Hollow cylinder subject to an imposed displacement on its
inner circular surface. The outer surface at r = b is fixed.

which has the general solution

ur = Kr + S
1
r
. (10.87)

As an example, consider the case of a hollow cylinder, as in Fig. 10.5, that is subject
to an imposed displacement, u0, on its inner surface. The outer surface is fixed. Thus, the
boundary conditions are ur = u0 on r = a, and ur = 0 on r = b. This leads from the above
to the solution

ur = au0

b2 − a2

(
b2

r
− r

)
. (10.88)

The strains and stresses may now be calculated directly.
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11 Torsion and Bending of Prismatic Rods

In this chapter we present the Saint-Venant’s theory of torsion and bending of prismatic
rods. We first consider torsion of the prismatic rod by two concentrated torques at its
ends, and then analyze bending of a cantilever beam by a concentrated transverse force at
its end.

11.1 Torsion of Prismatic Rods

We consider here the torsional deformation of prismatic rods subject to a torque or imposed
angle of twist per unit length along the rod. The coordinate system, as illustrated in Fig. 11.1,
has the zaxis along the rod and the rod’s cross section in the x-y plane. The rod is deformed
such that adjacent cross-sectional planes are rotated with respect to each other about the z
axis; the angle of rotation φ is such that dφ = θdz where θ is the so-called twist, or angle of
rotation per unit length along the rod’s axis. The deformation is assumed to be infinitesimal
in that θr � 1, where r represents a characteristic transverse dimension of the rod. If the
rotation is small, the change in a typical radius vector r, laying in a transverse plane, is
given by

δr = δφ × r, (11.1)

where δφ = δφez is a vector along the z axis (measured from the mid cross section of
the rod) and has a magnitude equal to the amount of rotation. The vectors r and δr are,
respectively,

r = xex + yey,

δr = uxex + uyey.
(11.2)

Because δφ = θz, the components of the in-plane displacement vector are

ux = −θzy, uy = θzx. (11.3)

The rod will undergo deformation in the z direction, as well; this is assumed small and
proportional to the twist θ . The displacement in the z direction is then given as

uz = θψ(x, y), (11.4)

214
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x

yy

l
C

A

M,φ

z

M,φ
M

Figure 11.1. Prismatic rod in torsion.
The applied torque is M, and the angle
of rotation, relative to the midsection
of the rod, is φ.

where ψ is a function of x, y, referred to as the torsion function. Thus each cross section of
the rod becomes warped as it was originally flat. The components of strain can be calculated
from

ei j = 1
2

(
∂ui

∂xj
+ ∂u j

∂xi

)
. (11.5)

When this is done, the nonzero components of strain are

exz = 1
2
θ

(
∂ψ

∂x
− y

)
, eyz = 1

2
θ

(
∂ψ

∂y
+ x

)
. (11.6)

The application of the isotropic linear elastic constitutive relations shows that the two
nonzero components of stress are

σxz = 2µexz = µθ
(
∂ψ

∂x
− y

)
, σyz = 2µeyz = µθ

(
∂ψ

∂y
+ x

)
. (11.7)

Given that only σxz and σyz are nonzero, the equations of equilibrium reduce to

∂σxz

∂x
+ ∂σyz

∂y
= 0, (11.8)

which, after substituting (11.7), becomes

∇2ψ = 0, (11.9)

where ∇2 is the Laplacian with respect to x, y.
It is convenient at this stage to introduce two new stress potentials; the first is defined

via its connection to the stresses as

σxz = 2µθ
∂χ

∂y
, σyz = −2µθ

∂χ

∂x
. (11.10)

If (11.10) is compared to (11.7), the relations between ψ and χ are found to be

∂ψ

∂x
= y + 2

∂χ

∂y
,

∂ψ

∂y
= −x − 2

∂χ

∂x
. (11.11)

If the first of (11.11) is differentiated with respect to y, and the second with respect to x, and
the resulting equations subtracted, it is found that χ must satisfy the Poisson’s equation

∇2χ = −1. (11.12)

It remains to specify the boundary conditions to be applied to χ . We assume that the
side surfaces of the rod are traction free, as indicated in Fig. 11.1. Thus, on the rod’s surface
we have

σ · n = 0 ⇒ σxznx + σyzny = 0, (11.13)
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y

α
dl

Ο

n

dy

dx-

x

α Figure 11.2. The unit normal n = {nx,ny} to an infinitesimal arc of length dl. By
geometry, nx = cosα = dy/dl and ny = sinα = −dx/dl.

where n is the outward pointing normal to the rod’s side surface, and nx and ny are its x
and y components. When (11.10) is substituted into the above it is found that

∂χ

∂y
nx − ∂χ

∂x
ny = 0. (11.14)

If d� is an increment of arc length around the circumference of the rod then the normal’s
components are also given by the relations nx = dy/d� and ny = −dx/d� (Fig. 11.2). Using
these in (11.14), it is found that

∂χ

∂x
dx + ∂χ

∂y
dy = dχ = 0 = dχ

d�
d�. (11.15)

In other words, χ is a constant along the circumference. Since the stresses (and strains)
are related to derivatives of χ , the constant in question may be taken as zero,

χ = 0 on the edges of cross section. (11.16)

This result holds for a simply connected rod, i.e., one possessing a single, continuous outer
edge.

11.2 Elastic Energy of Torsion

We examine here the elastic energy of torsion. The elastic energy density is given as

W = 1
2
σi j ei j = σxzexz + σyzeyz = 1

2µ
(σ 2

xz + σ 2
yz), (11.17)

or, in terms of χ ,

W = 2µθ2

[(
∂χ

∂x

)2

+
(
∂χ

∂y

)2
]

= 2µθ2(grad χ)2, (11.18)

where grad is the gradient with respect to the in-plane coordinates x, y. The total elastic
energy is obtained by integration of W over the volume of the rod. The energy per unit
length along the rod is

W = 2µθ2
∫

A
(grad χ)2 dA= 1

2
Cθ2. (11.19)

The constant C is the torsional rigidity, because the applied moment is linear in the twist,
i.e., M ∝ θ , and thus

W =
∫

M dθ =
∫

Cθ dθ = 1
2

Cθ2. (11.20)

This defines C as the torsional rigidity in the relation M = Cθ .
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But, there is a relation

(grad χ)2 = div (χgrad χ) − χ∇2χ = div (χgrad χ) + χ, (11.21)

which may be verified by noting that ∇2χ = −1, and

∂

∂xj

(
χ
∂χ

∂xj

)
= ∂χ

∂xj

∂χ

∂xj
+ χ∇2χ . (11.22)

Thus,

C = 4µ
∫

A
(grad χ)2 dA= 4µ

∫
A
[div (χ grad χ) + χ ] dA. (11.23)

The first integral contained in (11.23) vanishes, which can be be seen by transforming it
using the divergence theorem,∫

A
div (χ grad χ) dA=

∮
C
χ
∂χ

∂n
d� = 0,

because χ = 0 on C. Thus, C is given by

C = 4µ
∫

A
χ dA. (11.24)

Finally, we introduce the second stress potential, ϕ, in analogy with the function used in
the previous section, viz., ϕ ≡ 2µθχ . In terms of ϕ the above equations become

σxz = ∂ϕ/∂y, σyz = −∂ϕ/∂x,

∇2ϕ = −2µθ,

M = 2
∫

A
ϕ dA,

C = 2
1
θ

∫
A
ϕ dA.

(11.25)

The function ϕ is known as the Prandtl stress function. In the next section we will use the
Prandtl stress function and (11.25) as the basis for solving two classic torsional boundary
value problems.

11.3 Torsion of a Rod with Rectangular Cross Section

Let H ≡ −2µθ so that the governing equation for ϕ becomes

∇2ϕ = H, within C,

ϕ = 0 on C.
(11.26)

We are concerned with a rectangular cross section, as illustrated in Fig. 11.3, so that |x| ≤ a
and |y| ≤ b. The boundary conditions for ϕ are

ϕ = 0 on x = ±a, |y| ≤ b and ϕ = 0 on y = ±b, |x| ≤ a. (11.27)

Define the function ϕ̃ as

ϕ̃ ≡ 1
2
H(x2 − a2), (11.28)
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Figure 11.3. Rod of rectangular cross section.

such that

∇2ϕ̃ = H (11.29)

and

ϕ̃ = 0 on x = ±a. (11.30)

With so defined ϕ̃, we express ϕ as

ϕ(x, y) = ϕ1(x, y) + 1
2
H(x2 − a2). (11.31)

Thus, the boundary value problem is transformed into

∇2ϕ1 = 0 on A,

ϕ1 = 0 on x = ±a,

ϕ1 = −1
2
H(x2 − a2) on y = ±b.

(11.32)

We seek a solution by separation of variables as

ϕ1(x, y) = f (x)g(y). (11.33)

Upon substitution into (11.32), we find

∇2ϕ1 = d2 f (x)/dx2 g(y) + f d2g(y)/dy2 = 0, (11.34)

which, when rearranged, yields

1
f

d2 f/dx2 = − 1
g

d2g/dy2 = −λ2, (11.35)

where λ is a constant. The two equations that follow for f (x) and g(y) are

d2 f/dx2 + λ2 f = 0,

f (x) = Acos(λx) + B sin(λx),
(11.36)

and

d2g/dy2 − λ2g = 0,

g(y) = C cosh(λy) + Dsinh(λy).
(11.37)
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To proceed, we recall the connections to stresses and note that σxz should be an odd
function of y, because of symmetry, and that σyz should be an odd function of x, for the
same reason. Thus, since σxz = ∂ϕ/∂y = ∂ϕ1/∂y, and σyz = −∂ϕ/∂x = ∂ϕ1/∂x − Hx, we
have B = D = 0 in (11.36) and (11.37). This means that

ϕ1(x, y) = Ācos(λx) cosh(λy) . (11.38)

Furthermore, by imposing the boundary condition on x = ±a, it is found that

ϕ1 = 0 on x = ±a ⇒

cos(λa) = 0 ⇒ λ = nπ
2a
, n = 1, 3, 5, . . . .

(11.39)

The general solution is, therefore,

ϕ1(x, y) =
∞∑

n=1,3,5,...

An cos
(nπx

2a

)
cosh

(nπy
2a

)
. (11.40)

Imposing the boundary condition on y = ±b leads to

∞∑
n=1,3,5,...

An cos
(nπx

2a

)
cosh

(
nπb
2a

)
= −1

2
H(x2 − a2). (11.41)

The constants An are easily determined by multiplying both sides of (11.41) by cos
(mπx

2a

)
and integrating over [−a, a]. This yields

∞∑
n=1,3,5,...

An cosh
(

nπb
2a

)∫ a

−a
cos

(nπx
2a

)
cos

(mπx
2a

)
dx

= −1
2
H
∫ a

−a
(x2 − a2) cos

(mπx
2a

)
dx.

(11.42)

Noting that

∫ a

−a
cos

(nπx
2a

)
cos

(mπx
2a

)
dx =

{
0, if m 
= n,

a, if m = n,
(11.43)

we deduce

Am cosh
(

mπb
2a

)
a = −1

2
H
∫ a

−a
(x2 − a2) cos

(mπx
2a

)
dx , (11.44)

i.e.,

Am = 16Ha2(−1)(m−1)/2

π3m3 cosh
(mπb

2a

) . (11.45)

Consequently, the function ϕ is

ϕ(x, y) = 1
2
H(x2 − a2)

+ 16Ha2

π3

∞∑
n=1,3,5,...

(−1)(n−1)/2 cos
( nπx

2a

)
cosh

( nπy
2a

)
n3 cosh

( nπb
2a

) .

(11.46)
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The corresponding stresses are

σxz = 8Ha
π2

∞∑
n=1,3,5,...

(−1)(n−1)/2 cos
( nπx

2a

)
sinh

( nπy
2a

)
n2 cosh

( nπb
2a

) , (11.47)

and

σyz = −Hx + 8Ha
π2

∞∑
n=1,3,5,...

(−1)(n−1)/2 sin
( nπx

2a

)
cosh

( nπy
2a

)
n2 cosh

( nπb
2a

) . (11.48)

Assume, with no loss in generality, that a ≤ b. The maximum shear stress then occurs at
x = ±a, y = 0, and is equal to

τmax = σyz(a, 0) = −Ha

[
1 − 8

π2

∞∑
n=1,3,5,...

(−1)(n−1)/2 sin
( nπ

2

)
n2 cosh

( nπb
2a

)
]
, (11.49)

or, since sin
( nπ

2

) = 1 for the odd integer values of n involved,

τmax = σyz(a, 0) = −Ha

[
1 − 8

π2

∞∑
n=1,3,5,...

1

n2 cosh
( nπb

2a

)
]
. (11.50)

Here, it is convenient to write

τmax = −Hak,

k = 1 − 8
π2

∞∑
n=1,3,5,...

1

n2 cosh
( nπb

2a

) . (11.51)

The applied moment is

M = 2
∫

A
ϕ dA

= H2b
∫ a

−a
(x2 − a2) dx

+ 32Ha2

π3

∞∑
n=1,3,5,...

(−1)(n−1)/2 I(a,b,n)

n3 cosh
( nπb

2a

) ,

(11.52)

where

I(a,b,n) =
∫ a

−a
cos

(nπx
2a

)
dx

∫ b

−b
cosh

(nπy
2a

)
dy. (11.53)

When the simple integrations are done, we find

M = −1
2
H (2a)3(2b)

3

[
1 − 192

π5

a
b

∞∑
n=1,3,5,...

tanh
( nπb

2a

)
n5

]
. (11.54)

Once again, it is convenient to define a factor

k1(b/a) = 1 − 192
π5

a
b

∞∑
n=1,3,5,...

tanh
( nπb

2a

)
n5

, (11.55)
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so that

M = −1
2
H (2a)3(2b)

3
k1(b/a). (11.56)

With these, the maximum shear stress can be expressed as

τmax = −Hak = 2Mak
(2a)3(2b)k1

= M
(2a)2(2b)

(k/k1)

=
(

1
k2

)
M

(2a)2(2b)
,

(11.57)

where k2 = k1/k. We list a table of computed values for the factors k,k1 and k2.

b/a k k1 k2

1.0 0.675 0.1406 0.208
2.0 0.930 0.229 0.246
3.0 0.985 0.263 0.267
4.0 0.997 0.281 282
5.0 0.999 0.291 0.291
∞ 1.0 0.333 0.333

11.4 Torsion of a Rod with Elliptical Cross Section

Consider a rod with an elliptical cross section as shown in Fig. 11.4. The rod’s periphery is
given as

x2

a2
+ y2

b2
− 1 = 0. (11.58)

A suitable stress function is

ϕ = B
(

x2

a2
+ y2

b2
− 1

)
, (11.59)

where the constant B is readily determined by substitution of (11.59) into the governing
equation developed previously. The result of this is

H = ∇2ϕ = 2B
a2 + b2

a2b2
,

⇒ B = H a2b2

2(a2 + b2)
.

(11.60)

The torsional moment is computed from

M = 2
∫

A
ϕ dA, (11.61)

y

xa
b

A
Figure 11.4. Elliptical cross section of a rod subjected to torsion.
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which gives

H = −2(a2 + b2)
a3b3π

M. (11.62)

For the stresses, we obtain

σxz = ∂ϕ

∂y
= − 2y

πab3
M,

σyz = −∂ϕ
∂x

= 2x
πab3

M.

(11.63)

Without loss of generality, assume that b < a; in that case the maximum shear stress
occurs at y = b, and is given by

τmax = 2M
πab2

. (11.64)

The evaluation of the displacement function, uz(x, y), is straightforward and leads to the
result

uz(x, y) = M
G

b2 − a2

πa3b3
xy. (11.65)

In the case of a circular cross section, i.e., where a = b, there is no longitudinal displace-
ment so that uz(x, y) = 0. The only nonvanishing component of stress is the shear stress

σzθ = M
I0

r, I0 = πa4

2
. (11.66)

11.5 Torsion of a Rod with Multiply Connected Cross Sections

We have shown that the stress function, ϕ, must be constant on the boundary (or bound-
aries) of a rod whose side surfaces are stress free. For a simply connected shaft, i.e., a solid
shaft, the constant was set to 0. For a multiply connected cross section in a hollow shaft, ϕ
is also to be constant, but the constant values on the various contours of the cross section
are not the same. Such a geometry is depicted in Fig. 11.5.

x

y

C
CA R

1
22

Figure 11.5. Cross section of a multiply connected rod subject to tor-
sion. R denotes the area of the load bearing cross section between in
the inner surface contour C2, and the outer surface contour C1. Note
the continuous sense of the contour integration.
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To establish the augmented boundary conditions on ϕ, consider the contour integral of
the warping displacement,∮

C2

duz = 0 =
∮
C2

(
∂uz

∂x
dx + ∂uz

∂y
dy
)
. (11.67)

The integral is equal to 0 because uz is a single valued function. If we substitute from (11.7),
we obtain ∮

C2

duz = 1
G

∮
C2

(σxz dx + σyz dy) − θ
∮
C2

(x dy − y dx)

= 1
G

∮
C2

τ ds − 2θA2.

(11.68)

In (11.68) the third integral is easily seen, via Green’s theorem, to be equal to 2A2, where
A2 is the area bounded by the inner contour C2. To recall Green’s theorem in this context,
we write ∫∫

A2

(
∂M
∂x

− ∂N
∂y

)
dx dy =

∮
C2

(M dy + N dx)

and set M = x and N = −y. The quantity τ is the magnitude of the shear stress, i.e.,
τ = −σxzny + σyznx, along the tangent to the contour, which becomes

τ = −dϕ
dn
, (11.69)

where n is the unit normal to the contour C2. As the stress function must be constant on
both the inner and outer contours, (11.68) supplies the additional condition to determine
its constant value ϕ0 on C2. The value of ϕ on the outer boundary, C1, may still be taken as
0. Thus, in addition to the boundary condition ϕ = 0 on C1, ϕ must satisfy∮

C2

τ ds = 2GθA2 on C2. (11.70)

The moment is readily computed from

M =
∫∫

R
(σyzx − σxzy) dx dy

= −
∫∫

R

(
∂ϕ

∂x
x + ∂ϕ

∂y
y
)

dx dy.

(11.71)

This may be rewritten as

M = −
∫∫

R

[
∂(xϕ)
∂x

+ ∂(yϕ)
∂y

]
dx dy + 2

∫∫
R
ϕ dx dy, (11.72)

and transformed, via Green’s theorem, to

M = −
∮
C1

(xϕ dy − yϕ dx) −
∮
C2

(xϕ dy − yϕ dx)

+ 2
∫∫

R
ϕ dx dy.

(11.73)
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x

y

b
kb

a

ka
k<1

R A2 Figure 11.6. Cross section of a hollow ellipsoidal rod.

In (11.73), we take note of the senses of the contour integrals as indicated in Fig. 11.5.
Since ϕ = 0 on C2, (11.73) becomes

M = 2
∫∫

R
ϕ dx dy + 2ϕ0 A2. (11.74)

11.5.1 Hollow Elliptical Cross Section

As an example of a multiply connected rod subject to torsion, consider the hollow rod
illustrated in Fig. 11.6. The solution for the stress field in a solid rod with an ellipsoidal
cross section provides a direct path to the solution for this case where the inner contour is
an ellipse that is concentric with the outer surface. Examining that solution shows that all
ellipsoidal contours in the solid rod are lines of shear stress, so that there is no shear stress
acting on any plane section lying parallel to the axis of the rod. Therefore, it is possible to
perform the heuristic procedure of “removing an elliptical section” without disturbing the
stress state in the remainder of the rod. The stresses can be calculated from the potential
found earlier, viz.,

ϕ = −a2b2Gθ
a2 + b2

(
x2

a2
+ y2

b2
− 1

)
.

For a given θ , however, the moment will be less than in a solid rod with the same outer
dimensions, owing to the reduced total cross section. Thus, again appealing to the solution
for the solid rod,

M = πa3b3Gθ
a2 + b2

− π(ka)3(kb)3Gθ
(ka)2 + (kb)2

= πGθ
a2 + b2

a3b3(1 − k4).

(11.75)

By implication, then, the stress function becomes

ϕ = − M
πab(1 − k4)

(
x2

a2
+ y2

b2
− 1

)
. (11.76)

The maximum shear stress is, accordingly,

τmax = 2M
πab2

1
1 − k4

, for a > b. (11.77)

This solution may readily be verified by substitution into the governing equation and
boundary conditions developed earlier in this chapter.
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Figure 11.7. A cantilever beam under
bending by a concentrated force at
its end z = l. The principal centroidal
axes of the cross section are x and y.
The shear force V passes through the
shear center S.

11.6 Bending of a Cantilever

Consider a cantilever beam under a transverse force V at its right end, parallel to one of
the principal centroidal directions of the beam’s cross section (y direction in Fig. 11.7). The
force passes through the so-called shear center S of the cross section, causing no torsion of
the beam. The centroid of the cross section is the point O. The reactive force and bending
moment at the left end of the beam are V and Vl, where l is the length of the beam. The
bending moment at an arbitrary distance z from the left end of the beam is

Mx = −V(l − z) . (11.78)

Adopting the Saint-Venant’s semi-inverse method, assume that the normal stress σzz is
distributed over the cross section in the same manner as in the case of pure bending, i.e.,

σzz = Mx

Ix
y = − V(l − z)

Ix
y , (11.79)

where Ix = ∫
A y2dA is the moment of inertia of the cross-sectional area A for the x axis.

Because the lateral surface of the beam is traction free, we also assume that throughout
the beam

σxx = σyy = σxy = 0 . (11.80)

The objective is, thus, to determine the remaining nonvanishing stress components σzx and
σzy. In the absence of body forces, the equilibrium equations reduce to

∂σzx

∂z
= 0 ,

∂σzy

∂z
= 0 ,

∂σzx

∂x
+ ∂σzy

∂y
= − V

Ix
y .

(11.81)

These are satisfied by introducing the stress function

 =  (x, y) , (11.82)

such that

σzx = ∂ 

∂y
,

σzy = −∂ 
∂x

− V
2Ix

y2 + f (x) ,

(11.83)

where f (x) is an arbitrary function of x. To derive the governing equation for , we resort
to the Beltrami–Michell’s compatibility equations (8.86). Four of them are identically
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satisfied by the above assumptions, whereas the remaining two are

∇2σzx + 1
1 + ν

∂σzz

∂x∂z
= 0 ,

∇2σzy + 1
1 + ν

∂σzz

∂y∂z
= 0 .

(11.84)

Upon the substitution of (11.83), these become

∂

∂y
(∇2 ) = 0 ,

∂

∂x
(∇2 ) = − ν

1 + ν
V
Ix

+ f ′′(x) .

(11.85)

Thus,

∇2 = − ν

1 + ν
V
Ix

x + f ′(x) + c . (11.86)

The constant c can be given a geometric interpretation. By using Hooke’s law and the
above stress expressions, it can be shown that the longitudinal gradient of the material
rotation ωz = (uy,x − ux,y)/2 is

∂ωz

∂z
= ∂ezy

∂x
− ∂ezx

∂y
= 1

2G

(
∂σzy

∂x
− ∂σzx

∂y

)
= − 1

2G

(
ν

1 + ν
V
Ix

x − c
)
,

where G is the shear modulus. We can define bending without torsion by requiring that the
mean value of the relative rotation of the cross sections ∂ωz/∂z over the cross-sectional
area is equal to zero,

1
A

∫
A

∂ωz

∂z
dA= 0 . (11.87)

In the considered problem, this is fulfilled if we take c = 0 in (11.86). The local twist at the
point of the cross section is then

∂ωz

∂z
= − ν

E
V
Ix

x . (11.88)

The traction free boundary condition on the lateral surface of the beam

nxσzx + nyσzy = dy
ds
σzx − dx

ds
σzy = 0 , (11.89)

where n = {nx,ny} is the unit outward normal to the boundary C of the cross section, gives

d 
ds

=
[
− V

2Ix
y2 + f (x)

]
dx
ds
. (11.90)

An infinitesimal arc length along the boundary c is ds. In each particular problem
(shape of the cross section), the function f (x) will be conveniently chosen, such that
along the boundary C,

V
2Ix

y2 − f (x) = 0 . (11.91)
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This yields = const. along the boundary. Since stresses depend on the spatial derivatives
of  , the value of the constant is immaterial, and we may take  = 0 on C. Thus, the
boundary-value problem for the stress function  is

∇2 = − ν

1 + ν
V
Ix

x + f ′(x) within C ,

 = 0 on C .
(11.92)

After solving this boundary-value problem, the shear stresses follow from (11.83). At the
end cross sections of the cantilever, they must satisfy the integral boundary conditions

∫
A
σzx dA= 0 ,

∫
A
σzy dA= V ,

∫
A
(xσzy − yσzx) dA= Ve ,

(11.93)

where e represents the horizontal distance between the shear center S and the centroid O
of the cross section.

11.7 Elliptical Cross Section

The equation of the boundary of an elliptical cross section is

x2

a2
+ y2

b2
− 1 = 0 , (11.94)

where a and b are the semiaxes of the ellipse. The boundary condition  = 0 is met by
choosing

f (x) = Vb2

2Ix

(
1 − x2

a2

)
. (11.95)

The partial differential equation (11.92) reads

∇2 = −
(

ν

1 + ν + b2

a2

)
V
Ix

x . (11.96)

Both, the boundary condition and this equation can be satisfied by taking

 = Bx
(

x2

a2
+ y2

b2
− 1

)
. (11.97)

The constant B is readily found to be

B = − Vb2

2Ix

b2 + ν

1 + ν a2

3b2 + a2
. (11.98)



P1: KNP/JZV P2: IWV
0521859794c11.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:38

228 11. Torsion and Bending of Prismatic Rods

The corresponding shear stresses are obtained from (11.83) as

σzx = − Vxy
Ix

b2 + ν

1 + ν a2

3b2 + a2
,

σzy = Vb2

2Ix

⎡
⎢⎢⎢⎣

2b2 + 1

1 + ν a2

3b2 + a2

(
1 − y2

b2

)
− 1 − 2ν

1 + ν
x2

3b2 + a2

⎤
⎥⎥⎥⎦ .

(11.99)

The magnitude of the maximum shear stress component σzx is

σmax
zx = Vab

2Ix

b2 + ν

1 + ν a2

3b2 + a2
, (11.100)

and it occurs at the points x = ±a/
√

2, y = ±b/
√

2. The maximum shear stress component
σzy is

σmax
zy = Vb2

2Ix

2b2 + 1

1 + ν a2

3b2 + a2
, (11.101)

occurring at the point x = y = 0 (center of the ellipse).
In the case of a circular cross section (a = b = R), we have

σzx = − V
πR4

1 + 2ν
1 + ν xy ,

σzy = V
2πR4

1
1 + ν

[
(3 + 2ν)(R2 − y2) − (1 − 2ν) x2] .

(11.102)
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12 Semi-Infinite Media

In this chapter solutions involving general types of loading on half-spaces are consid-
ered. Such solutions are developed using Fourier transforms. The media are taken to be
elastically isotropic. Solutions for anisotropic elastic media are considered in subsequent
chapters.

12.1 Fourier Transform of Biharmonic Equation

Consider a biharmonic function, φ, that satisfies the equation

∇4φ = ∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= 0. (12.1)

Introduce the Fourier transform in y, viz.,

 (x, α) =
∫ ∞

−∞
φ(x, y)eiαy dy, (12.2)

and its inverse

φ(x, y) = 1
2π

∫ ∞

−∞
 (x, α)e−iαy dα. (12.3)

It is noted here that the transform of φ is formed without the factor of (2π)−1/2; accord-
ingly the inverse transform contains a factor (2π)−1. Apply the Fourier transform to the
biharmonic equation (12.1), i.e.,∫ ∞

−∞

∂4φ

∂x4
eiαy dy + 2

∫ ∞

−∞

∂2

∂x2

∂2

∂y2
φeiαy dy +

∫ ∞

−∞

∂4φ

∂y4
eiαy dy = 0. (12.4)

The differentiation with respect to x may be taken outside the integrals, and after applying
the Fourier transform results from above, it is found that

∂4 

∂x4
+ 2(−iα)2 ∂

2 

∂x2
+ (−iα)4 = 0,

∂4 

∂x4
− 2α2 ∂

2 

∂x2
+ α4 = 0.

(12.5)

229
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x

y

r

θ Figure 12.1. Normal loading on the surface of a half-plane.

With α > 0, the general solution is

 (x, α) = (A+ Bx)e−αx + (C + Dx)eαx. (12.6)

When concerned with developing solutions to other problems in solid mechanics, such
solutions will occasionally be written as

 (x, α) = (A+ Bx)e−|α|x + (C + Dx)e|α|x. (12.7)

The transforms of the stresses are

σxx = ∂2φ

∂y2
⇒

∫ ∞

−∞
σxxeiαy dy = (−iα)2 (x, α) = −α2 (x, α),

σxy = − ∂2φ

∂x∂y
⇒

∫ ∞

−∞
− ∂2φ

∂x∂y
eiαy dy = iα

∂ 

∂x
, (12.8)

σyy = ∂2φ

∂x2
⇒

∫ ∞

−∞

∂2φ

∂x2
eiαy dy = ∂2 

∂x2
.

The inverse transforms follow immediately as

σxx = − 1
2π

∫ ∞

−∞
α2 (x, α)e−iαy dα,

σxy = 1
2π

∫ ∞

−∞
iα
∂ (x, α)
∂x

e−iαy dα,

σyy = 1
2π

∫ ∞

−∞

∂2 (x, α)
∂x2

e−iαy dα.

(12.9)

12.2 Loading on a Half-Plane

Consider the half space defined by x ≥ 0, as depicted in Fig. 12.1. The loading is specified by

σxx = −p(y) on x = 0, (12.10)

which describes a state of general normal loading on the external surface of the half space.
There are no shear forces on this external surface, so that the other boundary condition is

σxy = 0 on x = 0. (12.11)



P1: JZT/JZV P2: IWV
0521859794c12.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:35

12.2. Loading on a Half-Plane 231

The nature of the loading, p(y), is such that it produces bounded stresses. Infinitely far
into the bulk of the medium the stresses must be bounded, so that

σαβ � ∞ as x → ∞. (12.12)

As there are no body forces or temperature gradients, the Airy stress function satisfies the
simple form of the biharmonic equation

∇4φ = 0. (12.13)

Introduce the Fourier transform of φ in the spatial variable y, viz.,

 (x, α) =
∫ ∞

−∞
φ(x, y)eiαy dy, (12.14)

with an inverse

φ(x, y) = 1
2π

∫ ∞

−∞
 (x, α)e−iαy dα. (12.15)

The acceptable solutions for the transform,  (x, α), are of the form

 (x, α) = (A+ Bx)e−|α|x + (C + Dx)e|α|x. (12.16)

Next, invoke the boundary conditions specified above. First, form the Fourier transform
of the normal loading boundary condition on x = 0, we have∫ ∞

−∞
σxxeiαy dy =

∫ ∞

−∞

∂2φ

∂y2
eiαy dy

= −α2 (x = 0, α) = −
∫ ∞

−∞
p(y)eiαy dy = −P(α),

(12.17)

and ∫ ∞

−∞
σxyeiαy dy = −

∫ ∞

−∞

∂2φ

∂x∂y
eiαy dy = iα

[
∂ (x, α)
∂x

]
x=0

= 0. (12.18)

Since the stresses need to be bounded at x → ∞, it is clear that

C = D = 0, (12.19)

whereas the transformed boundary conditions of (12.17), and (12.18) require that

−α2 A= −P(α) and 0 = B − |α|A. (12.20)

This leads to

A= P(α)/α2 and B = P(α)/|α|. (12.21)

The result for  (x, α) is then

 (x, α) = P(α)
α2 (1 + |α|x) e−|α|x. (12.22)



P1: JZT/JZV P2: IWV
0521859794c12.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:35

232 12. Semi-Infinite Media

The solution for the stresses is consequently

σxx(x, y) = − 1
2π

∫ ∞

−∞
P(α) ( 1 + |α|x ) e−|α|x−iαy dα,

σxy(x, y) = − i
2π

∫ ∞

−∞
xαP(α)e−|α|x−iαy dy,

σyy(x, y) = − 1
2π

∫ ∞

−∞
P(α) ( 1 − |α|x ) e−|α|x−iαy dα.

(12.23)

There are two special cases of particular interest, viz., that arising if P(α) is symmetric
or antisymmetric. If symmetric, P(α) = P(−α), then

σxx(x, y) = − 2
π

∫ ∞

0
P(α) ( 1 + |α|x ) e−αx cos(αy) dα,

σxy(x, y) = −2x
π

∫ ∞

0
αP(α)e−αx sin(αy) dα,

σyy(x, y) = − 2
π

∫ ∞

0
P(α) ( 1 − |α|x ) e−αx cos(αy) dα,

(12.24)

with

P(α) =
∫ ∞

0
p(y) cos(αy) dy. (12.25)

If, conversely, P(α) = −P(−α), the integrals in (12.23) become

σxx(x, y) = − 2
π

∫ ∞

0
P(α) ( 1 + |α|x ) e−αx sin(αy) dα,

σxy(x, y) = 2x
π

∫ ∞

0
αP(α)e−αx cos(αy) dα,

σyy(x, y) = − 2
π

∫ ∞

0
P(α) ( 1 − |α|x ) e−αx sin(αy) dα,

(12.26)

with

P(α) =
∫ ∞

0
p(y) sin(αy) dy. (12.27)

12.3 Half-Plane Loading: Special Case

As a particularly interesting special case, consider loading on the external surface of a
half-plane of the form

p(y) =
{

p0, if y ≥ 0,

0, if y < 0.
(12.28)

The planar polar coordinates, to be used later to express the resulting stresses, are shown
in Fig. 12.2. Consider the auxiliary function defined as

δ+(α) = 1
2
δ(α) − 1

2π iα
, (12.29)
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x

y

r

θ

p
o

Figure 12.2. Normal loading on a half-plane surface.

where δ(α) is the Dirac delta function (see Chapter 3), and note that

∫ ∞

−∞
δ+(α)e−iαy dα = 1

2
+ 1
π

∫ ∞

0

sin(αy)
α

dα =
{

1, if y ≥ 0

0, if y < 0.
(12.30)

Thus, take

P(α) = 2πp0δ+(α), (12.31)

so that

p(y) = 1
2π

∫ ∞

−∞
2πp0δ+(α)e−iαy dα =

{
p0, if y ≥ 0

0, if y < 0.
(12.32)

From (12.23), the stresses become

σxx = −p0

∫ ∞

−∞
δ+(α)e−|α|x−iαy ( 1 + |α|x ) dα

= − p0

2
− p0

π

∫ ∞

0

(1 + αx) e−αx

α
sin(αy) dα.

(12.33)

Reducing this integral results in

σxx = −p0

[
1 − 1

π
tan−1(x/y) + xy

π(x2 + y2)

]
. (12.34)

Because θ = tan−1(y/x), i.e., x = r cos θ and y = r sin θ , and noting that cot θ = tan(π/2 −
θ), we can rewrite (12.34) as

σxx = −p0

[
1
2

+ θ

π
+ 1

2π
sin(2θ)

]
. (12.35)

By a similar set of manipulations, it is found that

σyy = −p0

[
1
2

+ θ

π
− 1

2π
sin(2θ)

]
, (12.36)

and

σxy = p0

π
cos2 θ. (12.37)

Note that on the external surface, x = 0, i.e., θ = π/2,

σxx = −p0, σyy = −p0, σxy = 0. (12.38)
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Figure 12.3. Symmetric loading on a half-plane surface.

This means that on the loading plane there exists a state of inplane hydrostatic pressure.
It is also noted that rays emanating from the origin, at constant θ , are contours of equal
stress.

12.4 Symmetric Half-Plane Loading

Consider the case where the loading on the half-plane is confined to a region symmetrically
located about y = 0. By simple shifting of the position of the origin along the line x = 0,
any situation involving a patch of loading as shown in Fig. 12.3 is embodied in this solution.
Thus, if the loading is specified as

σxx =
{

−p0, if − a ≤ y ≤ a,

0, otherwise,
(12.39)

we have

P(α) =
∫ ∞

−∞
p(y)eiαy dy =

∫ ∞

0
p(y) cos(αy) dy

=
∫ a

0
p0 cos(αy) dy = p0

sin(αa)
α

.

(12.40)

The use of (12.24) results in

σxx = −2p0

π

∫ ∞

0

1 + αx
α

e−αx sin(αa) cos(αy) dα,

σxy = −2p0x
π

∫ ∞

0
e−αx sin(αa) sin(αy) dα,

σyy = −2p0

π

∫ ∞

0

1 − αx
α

e−αx sin(αa) cos(αy) dα.

(12.41)

In terms of the polar angles in Fig. 12.3, it is readily shown that

σxx = − p0

2π
[ 2(θ1 − θ2) − sin(2θ1) + sin(2θ2) ] ,

σxy = p0

2π
[ cos(2θ2) − cos(2θ1) ] ,

σyy = − p0

2π
[ 2(θ1 − θ2) + sin(2θ1) − sin(2θ2) ] .

(12.42)
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y

x

r

θ Figure 12.4. Normal loading on a half-plane surface.

As r → ∞, θ1 → θ2 and thus σi j → 0. Note also that the maximum shear stress,

τmax =
[

1
4

(σxx − σyy)2 + σ 2
xy

]1/2

, (12.43)

becomes

τmax = p0

π

∣∣ sin(θ1 − θ2)
∣∣ . (12.44)

Thus, contours of
∣∣ sin(θ1 − θ2)

∣∣ = constant are contours of equal maximum shear stress.

12.5 Half-Plane Loading: Alternative Approach

The boundary value problem specified on a half-plane by (12.10)–(12.12) is revisited here
and solved via application of the convolution theorem discussed in Chapter 3. To emphasize
the alternative approach, a change in coordinate definitions is used. In addition, the use of
the factor 1/

√
2π is made both in the definition of the Fourier transform and its inverse.

Recall that the state of general loading on the external surface of the half-plane y = 0
(Fig. 12.4) is specified as

σyy = ∂2φ

∂x2
= p(x),

σxy = 0 .

(12.45)

The Fourier transform of the Airy stress function, φ(x, y), and its inverse are

 (β, y) = 1√
2π

∫ ∞

−∞
φ(x, y)eiβx dx,

φ(x, y) = 1√
2π

∫ ∞

−∞
 (β, y)e−iβx dβ.

(12.46)

In the absence of body forces, the transform satisfies the transformed biharmonic equa-
tion

∂4 

∂y4
− 2β2 ∂

2 

∂y2
+ β4 = 0. (12.47)

The boundary conditions on y = 0 result in

− β2 = P(β),

∂ 

∂y
= 0,

(12.48)

where P(β) is the transform of p(x), viz.,

P(β) = 1√
2π

∫ ∞

−∞
p(x)eiβx dx. (12.49)
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As in the previous section, it is noted that solutions of (12.47) that give rise to bounded
stresses at x, y → ∞ are of the form

 (β, y) = ( A+ C|β|y ) e−|β|y. (12.50)

Upon application of (12.48), this leads to

A= C = −P(β)/β2, (12.51)

and

 (β, y) = − P(β)
β2 ( 1 + |β|y ) e−|β|y. (12.52)

The transformed stresses are, therefore,

(xx = ∂2 

∂y2
= P(β) ( 1 − |β|y ) e−|β|y,

(xy = iβ
∂ 

∂y
= P(β) ( iβy ) e−|β|y,

(yy = −β2 = P(β) ( 1 + |β|y ) e−|β|y.

(12.53)

The inverse transform of ( 1 − |β|y )e−|β|y is

F−1 [( 1 − |β|y )e−|β|y] = 23/2π−1/2x2 y(x2 + y2)−2 = g(x, y), (12.54)

that is

G(β) = 1√
2π

∫ ∞

−∞
g(x, y)eiβx dx = ( 1 − |β|y )e−|β|y,

g(x, y) = 1√
2π

∫ ∞

−∞
G(β, y)e−iβx dβ.

(12.55)

Similarly, for σyy we obtain

F−1 [( 1 + |β|y )e−|β|y] = 23/2π−1/2 y3(x2 + y2)−2, (12.56)

whereas for σxy,

F−1 (iβye−|β|y) = 23/2π−1/2xy2(x2 + y2)−2. (12.57)

Next, recall the convolution theorem from Chapter 3,∫ ∞

−∞
F(β)G(β)e−iβxdβ =

∫ ∞

−∞
g(η) f (x − η) dη, (12.58)

and make the association of the functions for σxx, i.e.,

g(η) ⇔ p(η) and G(β) ⇔ P(β).

This gives

σxx = 1√
2π

∫ ∞

−∞
P(β) ( 1 − |β|y ) e−|β|ye−iβx dβ

= 2y
π

∫ ∞

−∞

(x − η)2 p(η)
[(x − η)2 + y2]2

dη.

(12.59)
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Similar manipulations, involving the stresses σxy and σyy, result in

σxy = 2y2

π

∫ ∞

−∞

(x − η)p(η)
[(x − η)2 + y2]2

dη, (12.60)

and

σyy = 2y3

π

∫ ∞

−∞

p(η)
[(x − η)2 + y2]2

dη. (12.61)

A particularly interesting example that lies within this framework is a point force (actu-
ally a line of concentrated forces). Without loss of generality, place the coordinate origin
at the point of the application of the force. Taking p(x) to be p(x) = p0δ(x), we find

σxx = − 2p0x2 y
π(x2 + y2)2

= −2p0

π

cos2 θ sin θ
r

,

σxy = − 2p0xy2

π(x2 + y2)2
= −2p0

π

cos θ sin2 θ

r
,

σyy = − 2p0 y3

π(x2 + y2)2
= −2p0

π

sin3 θ

r
.

(12.62)

12.6 Additional Half-Plane Solutions

This section offers additional solutions involving loading on a half-plane bounding a semi-
infinite medium. The approach is different than used in the above two sections and thus
the development details are provided, along with still another choice of variable names.
This is done to distinguish the alternative approach employed. The general solutions are
used vis-à-vis other specific forms of the loading function, p(y), as indicated in Fig. 12.1.

Again, begin with the biharmonic equation

∇4φ = 0, (12.63)

and recall the definition of the Fourier transform

 (x, ξ) = F [φ(x, y)] =
∫ ∞

−∞
φ(x, y)eiξy dy, (12.64)

with its inverse

φ(x, y) = F−1 [ (x, ξ)] = 1
2π

∫ ∞

−∞
 (x, ξ)e−iξy dy. (12.65)

Since

∂2 

∂y2
= (−iξ)2 , (12.66)

we have ∫ ∞

−∞
∇2φ(x, y)eiξy dy =

(
∂2

∂x2
− ξ 2

)∫ ∞

−∞
φ(x, y)eiξy dy. (12.67)
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To form the biharmonic form, we apply the operator ∇2 again to obtain

∫ ∞

−∞
∇4φ(x, y)eiξy dy =

(
∂2

∂x2
− ξ 2

)2 ∫ ∞

−∞
φ(x, y)eiξy dy. (12.68)

Thus, ∇4φ = 0 implies (
∂2

∂x2
− ξ 2

)2

 (x, ξ) = 0. (12.69)

This has been seen to have solutions of the form

 (x, ξ) = (A+ Bx)e−|ξ |x + (C + Dx)e|ξ |x. (12.70)

For the transformed stresses we then obtain

(xx =
∫ ∞

−∞
σxxeiξy dy =

∫ ∞

−∞

∂2φ

∂y2
eiξy dy = −ξ 2 (x, ξ),

(xy =
∫ ∞

−∞
σxyeiξy dy =

∫ ∞

−∞
− ∂2φ

∂x∂y
eiξy dy = iξ

∂ (x, ξ)
∂x

,

(yy =
∫ ∞

−∞
σyyeiξy dy = ∂2φ

∂x2
.

(12.71)

The inversions are

σxx(x, y) = − 1
2π

∫ ∞

−∞
ξ 2 (x, ξ)e−iξy dξ,

σxy(x, y) = 1
2π

∫ ∞

−∞
iξ
∂ 

∂x
e−iξy dξ,

σyy(x, y) = 1
2π

∫ ∞

−∞

∂2 

∂x2
e−iξy dξ.

(12.72)

12.6.1 Displacement Fields in Half-Spaces

For the case of plane strain, the isotropic elastic constitutive laws lead to

E
1 + ν

∂v

∂y
= σyy − ν(σxx + σyy), (12.73)

where v is the y-component of displacement. The Fourier transform of this displacement
gradient is∫ ∞

−∞

E
1 + ν

∂v

∂y
eiξy dy =

∫ ∞

−∞
σyyeiξy dy − ν

∫ ∞

−∞
(σxx + σyy)eiξy dy, (12.74)

which yields

− iξE
1 + ν

∫ ∞

−∞
v(x, y)eiξy dy = − iξE

1 + ν ν v(x, y)

= ∂2 

∂x2
− ν

(
−ξ 2 + ∂2 

∂x2

)
.

(12.75)
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By taking the inverse, we have

E
1 + ν v(x, y) = 1

2π

∫ ∞

−∞

[
(1 − ν)

∂2 

∂x2
+ νξ 2 

]
ie−iξy dξ

ξ
. (12.76)

In view of the definition of shear strain and the elastic constitutive relation,

E
2(1 + ν)

(
∂u
∂y

+ ∂v

∂x

)
= σxy, (12.77)

we thus obtain

E
1 + ν u(x, y) = 1

2π

∫ ∞

−∞

[
(1 − ν)

∂3 

∂x3
+ (2 + ν)ξ 2 ∂ 

∂x

]
e−iξy dξ

ξ 2
. (12.78)

12.6.2 Boundary Value Problem

As in the earlier sections, boundary conditions are applied that correspond to normal
loading on the external surface on a semi-infinite medium. They are, in the context of the
definitions used here,

σxx = −p(y), σxy = 0 on x = 0,

σi j bounded as x, y → ∞.
(12.79)

The latter of (12.79) leads to the conclusion that, with reference to (12.70), C = D = 0.
The first two conditions of (12.79) lead to

− ξ 2 A= −
∫ ∞

−∞
p(y)eiξy dy = P(ξ),

B − |ξ |A= 0.

(12.80)

Consequently,

A= P(ξ)/ξ 2, B = P(ξ)/|ξ |, (12.81)

and

 (x, ξ) = P(ξ)
ξ 2 [1 + |ξ |x] e−|ξ |x. (12.82)

The stresses may now be calculated as

σxx(x, y) = − 1
2π

∫ ∞

−∞
P(ξ)e−|ξ |x−iξy(1 + |ξ |x) dξ,

σyy(x, y) = − 1
2π

∫ ∞

−∞
P(ξ)e−|ξ |x−iξy(1 − |ξ |x) dξ,

σxy(x, y) = − i
2π

∫ ∞

−∞
xξP(ξ)e−|ξ |x−iξy dξ.

(12.83)

Since there is an imposed state of plane strain here, σzz = ν(σxx + σyy), we have

σzz(x, y) = −ν
∫ ∞

−∞
P(ξ)e−|ξ |x−iξy dξ. (12.84)
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For the displacements, it is found that

u = 1 + ν
2πE

∫ ∞

−∞
P(ξ)e−|ξ |x−iξy [2(1 − ν) + |ξ |x]

dξ
|ξ | ,

v = −1 + ν
2πE

∫ ∞

−∞
i P(ξ)e−|ξ |x−iξy [(1 − 2ν) − |ξ |x]

dξ
|ξ | .

(12.85)

The above relations take on a rather simplified form when there exists symmetry in the
loading function, p(y). For example, if p(y) = p(−y), then

σxx(x, y) = − 2
π

∫ ∞

0
P(ξ) (1 + ξx) e−ξx cos(ξy) dξ,

σyy(x, y) = − 2
π

∫ ∞

0
P(ξ) (1 − ξx) e−ξx cos(ξy) dξ,

σxy(x, y) = −2x
π

∫ ∞

0
ξP(ξ)e−ξx sin(ξy) dξ.

(12.86)

Correspondingly, the displacements are

u(x, y) = 2(1 + ν)
πE

∫ ∞

0
P(ξ)e−ξx [2(1 − ν) + ξx]

cos(ξy)
ξ

dξ,

v(x, y) = 2(1 + ν)
πE

∫ ∞

0
P(ξ)e−ξx [1 − 2ν − ξx]

sin(ξy)
ξ

dξ,

(12.87)

with

P(ξ) =
∫ ∞

0
p(y) cos(ξy) dy. (12.88)

Note that a factor of 2 has been placed on all of (12.86) and accordingly removed from
(12.88).

12.6.3 Specific Example

As a specific example, consider the loading function

p(y) =
⎧⎨
⎩

p0

π
(a2 − y2)−1/2, if 0 ≤ |y| ≤ a,

0, if |y| > a.
(12.89)

Note that ∫ ∞

−∞
p(y)dy = p0

π

∫ a

−a
(a2 − y2)−1/2 dy = p0. (12.90)

The transform of p(y) is

P(ξ) =
∫ a

0

p0

π

cos(ξy)
(a2 − y2)1/2

dy = 1/2p0 J0(ξa), (12.91)
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Figure 12.5. Coordinate system for the complex variable, z.

where J0(...) is a well known Bessel function. By combining terms for the various compo-
nents of stress it is found that

σxx + σyy = −2p0

π

∫ ∞

0
J0(ξa)e−ξx cos(ξy) dξ,

σyy − σxx + 2iσxy = −2p0

π

∫ ∞

0
ξ J0(ξa)e−ξz dξ,

(12.92)

where z = x + iy is the complex variable, and

e−ξz = e−ξx−iξy. (12.93)

From standard handbooks and the properties of Bessel functions,∫ ∞

0
ξ J0(ξa)e−ξz dξ = z(a2 + z2)−3/2

= z
(z + ia)3/2(z − ia)3/2

,

(12.94)

and thus

σyy − σxx + 2iσxy = 2p0x
π

z
(z + ia)3/2(z − ia)3/2

. (12.95)

With reference to Fig. 12.5, we have

z − ia = r1eiθ1 , z + ia = r2eiθ2 , (12.96)

and

σyy − σxx + 2iσxy = 2p0x
π

reiθ

(r1r2)3/2ei3/2θ1 ei3/2θ2

= 2p0x
π

r
(r1r2)3/2

eiθ−3/2i(θ1+θ2).

(12.97)

Consequently,

σxy(x, y) = p0r2 cos θ
π(r1r2)3/2

sin[θ − 3/2(θ1 + θ2)]. (12.98)

It is also found that

σxx + σyy = −2p0

π
�
∫ ∞

0
eξzJ0(ξa) dξ = −2p0

π
� [

(a2 − z2)−1/2]

= −2p0

π

cos[1/2(θ1 + θ2)]
(r1r2)1/2

,

(12.99)
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Figure 12.6. Symmetrically loaded infinite strip.

and

σyy − σxx = 2p0

π

r2 cos θ
(r1r2)3/2

cos[θ − 3/2(θ1 + θ2)]. (12.100)

From these relations, it readily follows that

σyy(x, y) = − p0

π(r1r2)1/2

{
cos[1/2(θ1 + θ2)] − r2

r1r2
cos θ cos[θ − 3/2(θ1 + θ2)]

}
,

(12.101)

σxx(x, y) = − p0

π(r1r2)1/2

{
cos[1/2(θ1 + θ2)] + r2

r1r2
cos θ cos[θ − 3/2(θ1 + θ2)]

}
.

(12.102)

Finally, we return to the displacements to find that

u(x, y) = 2(1 + ν)
πE

∫ ∞

0
P(ξ)e−ξx[2(1 − ν) + ξx]

cos(ξy)
ξ

dξ, (12.103)

which, when differentiated with respect to y, gives(
∂u
∂y

)
x=0

= 2(1 − ν2)p0

πE

∫ ∞

0
J0(ξa) sin(ξy) dξ

=
{

0, if |y| ≤ a,

− 2p0(1−ν2)
πE(y2−a2)1/2 , if |y| > a.

(12.104)

Thus, for the assumed normal loading function, the x component of displacement is con-
stant under the load; this is as though the surface was indented by a rigid punch.

12.7 Infinite Strip

In this case we consider an infinite strip loaded on both sides with symmetrical loads as
shown in Fig. 12.6. We begin with the biharmonic equation

∇4φ = 0, (12.105)

and the boundary conditions

σyy = ∂2φ/∂x2 = −p(x), on − ∞ ≤ x ≤ ∞, y = ±h,

σxy = −∂2φ/∂x∂y = 0, on y = ±h.
(12.106)
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Define the Fourier transform

 (β, y) = 1√
2π

∫ ∞

−∞
φ(x, y)eiβx dx, (12.107)

and its inverse

φ(x, y) = 1√
2π

∫ ∞

−∞
 (β, y)e−iβx dβ. (12.108)

The transformed biharmonic equation becomes, as before,

d4 

dy4
− 2β2 d2 

dy2
+ β4 = 0. (12.109)

Setting the boundary condition for σyy according to the first of (12.106), yields

−β2 = − 1√
2π

∫ ∞

−∞
p(x)eiβx dx = −P(β). (12.110)

To illustrate the procedure, consider loading functions, p(x), that are symmetric, so that
p(x) = p(−x). In this case

P(β) = 2√
2π

∫ ∞

0
p(x)eiβx dx. (12.111)

Similar conversions of integrals involving symmetric functions will be made in what follows.
The boundary condition for σxy leads to

∂ /∂y = 0, for y = ±h. (12.112)

Solutions that meet these conditions are of the form

 (β, y) = Acosh(βy) + B sinh(βy) + Cβy sinh(βy) + Dβy cosh(βy).

The symmetry of φ in y requires that B = D = 0. The boundary condition for σxy yields

∂ /∂y| y=±h = β {Asinh(βh) + C [βh cosh(βh) + sinh(βh)]
} = 0,

i.e.,

A= −C[1 + βh coth(βh)]. (12.113)

The boundary condition for σyy gives the additional relation

−C
βh + sinh(βh) cosh(βh)

sinh(βh)
= 1
β2

P(β). (12.114)

Thus,

 (β, x) = 1
β2

P(β)
[βh cosh(βh) + sinh(βh)] cosh(βy) − βy sinh(βh) sinh(βy)

βh + sinh(βh) cosh(βh)
.

12.7.1 Uniform Loading: −a ≤ x ≤ a

If p(x) is defined as

p(x) =
{

p0, −a ≤ x ≤ a,

0, |x| > a,
(12.115)
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then

P(β) = 1√
2π

∫ a

−a
p0 cos(βx) dx = 2p0√

2π

sin(βa)
β

. (12.116)

It is convenient to define nondimensional variables ζ = βh, η = y/h, ξ = x/h, and α =
a/h. Using these definitions, it is found that

φ = 1
π

∫ ∞

−∞

2p0h2 sin(ζα)
ζ 3[2ζ + sinh(2ζ )]

× {
[ζ cosh(ζ ) + sinh(ζ )] cosh(ζη) − ζη sinh(ζ ) sinh(ζη)

}
cos(ζ ξ) dζ.

Note that here the factor h2 is to be annihilated upon forming the stresses which involve
second derivatives with respect to x and y. In fact, performing these derivatives, and noting
the symmetry of the integrands involved, we obtain

σxx = − 4p0

π

∫ ∞

0

[sinh(ζ ) + ζ cosh(ζ )] cosh(ζη) − ζη sinh(ζ ) sinh(ζη)
2ζ + sinh(2ζ )

× sin(ζα)
ζ

cos(ζ ξ) dζ,

σxy = − 4p0

π

∫ ∞

0

ζη sinh(ζ ) cosh(ζη) − ζ cosh(ζ ) sinh(ζη)
2ζ + sinh(2ζ )

× sin(ζα)
ζ

sin(ζ ξ) dζ,

(12.117)

and

σyy = − 4p0

π

∫ ∞

0

[sinh(ζ ) − ζ cosh(ζ )] cosh(ζη) + ζη sinh(ζ ) sinh(ζη)
2ζ + sinh(2ζ )

× sin(ζα)
ζ

cos(ζ ξ) dζ.

Strains may be calculated in a straightforward manner, and then the displacements. Be-
cause the system is fully equilibrated, the displacements will be set without the problem
of undetermined rigid body displacements. Note also that the problem solved above [see
(12.40) for the boundary conditions] should be recoverable by taking limits as h → ∞,
although taking such limits may be a formidable task.

12.7.2 Symmetrical Point Loads

If the distribution of force, p(x), above is reduced to a concentrated point force, P, we let
p0 = P/2a, and take the limit

lim
a → 0

P
2a

sin(ζα)
ζ

= P
2h
. (12.118)
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Using the previously derived results, we obtain

σxx = − 2Px2 y
π(x2 + y2)2

,

σyy = − 2Py3

π(x2 + y2)2
,

σxy = − 2Pxy2

π(x2 + y2)2
.

(12.119)

12.8 Suggested Reading

Little, R. W. (1973), Elasticity, Prentice Hall, Englewood Cliffs, New Jersey.
Muskhelishvili, N. I. (1963), Some Basic Problems of the Mathematical Theory of Elasticity,

Noordhoff, Groningen, Netherlands.
Sokolnikoff, I. S. (1956), Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New

York.
Sneddon, I. N. (1951), Fourier Transforms, McGraw-Hill, New York.
Timoshenko, S. P., and Goodier, J. N. (1970), Theory of Elasticity, 3rd ed., McGraw-Hill,

New York.
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13 Isotropic 3D Solutions

13.1 Displacement-Based Equations of Equilibrium

Recall the Cauchy equations of equilibrium in terms of stresses

∂σi j

∂xj
+ bj = 0, (13.1)

along with the definition of small strains

ei j = 1
2

(
∂ui

∂xj
+ ∂u j

∂xi

)
, (13.2)

and the constitutive relations for isotropic thermoelastic media

σi j = E
2(1 + ν)

(
ei j + ν

1 − 2ν
ekkδi j

)
− Kα�Tδi j . (13.3)

The coefficient of thermal expansion isα, and K the elastic bulk modulus, K = E/3(1 − 2ν).
The temperature difference from the reference temperature is�T = T − T0. When (13.3)
are used in (13.1), we obtain

E
2(1 + ν)

∂2ui

∂xj∂xj
+ E

2(1 + ν)(1 − 2ν)
∂2uk

∂xi∂xk

= −bi + Eα
3(1 − 2ν)

∂T
∂xi

.

(13.4)

In direct tensor notation, this is written as

E
2(1 + ν)

∇2u + E
2(1 + ν)(1 − 2ν)

grad div u

= −b + Eα
3(1 − 2ν)

grad T.

(13.5)

Because the curl of a vector can be written as

curl u = εpqr
∂ur

∂xq
ep , (13.6)

246
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it is straightforward to construct the vector identity

∇2u = grad div u − curl curl u. (13.7)

When this is used in (13.5), it is found that

E(1 − ν)
(1 + ν)(1 − 2ν)

grad div u − E
2(1 + ν)

curl curl u

= −b + Eα
3(1 − 2ν)

grad T,

(13.8)

or

3(1 − ν)
(1 + ν)

grad div u − 3
2

(1 − 2ν)
(1 + ν)

curl curl u

= −3(1 − 2ν)
E

b + α grad T.

(13.9)

These are the displacement based equations of equilibrium for isotropic thermoelastic
media.

13.2 Boussinesq–Papkovitch Solutions

There are a variety of methods for obtaining solutions to (13.9) or its alternative, (13.5).
One of the methods for obtaining general solutions is as follows. In the absence of body
forces and thermal gradients, (13.5) becomes

grad div u + (1 − 2ν)∇2u = 0. (13.10)

Now, if

υ = grad φ, (13.11)

where φ is any scalar function satisfying ∇2φ = 0, then υ is a solution of (13.10), because

div υ = ∂υi/∂xi = ∇2φ = 0, (13.12)

and thus

∇2υ = grad ∇2φ = 0. (13.13)

Next, if

ω = 4(1 − ν)ψ − grad (x · ψ), (13.14)

where ψ is any vector field satisfying ∇2ψ = 0, then ω is also a solution to (13.10). To see
this note firstly that components of the grad (x · ψ) are

(xkψk),� = ψ� + xkψk,� , (13.15)

because xk,� = δk�. Thus,

ω� = (3 − 4ν)ψ� − xkψk,� , (13.16)
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Figure 13.1. Spherical coordinate system.

and

ω�,� = div ω = (3 − 4ν)ψ�,� − xkψk,�� − ψ�,�
= 2(1 − 2ν)ψ�,� ,

(13.17)

having regard to

ψk,�� = (∇2ψ)k = 0. (13.18)

Therefore,

div ω = 2(1 − 2ν)div ψ. (13.19)

But,

ω�,kk = (3 − 4ν)ψ�,kk − (ψk,� + xmψm,�k)k

= −2ψk,�k ,
(13.20)

and so

∇2ω = −2 grad div ψ. (13.21)

Finally, by combining (13.21) and (13.19), we find that ω is a solution to (13.10). Thus,
general solutions to the homogeneous equation (13.10) can be constructed as

u = υ + ω. (13.22)

Such solutions are known as Boussinesq–Papkovitch solutions.

13.3 Spherically Symmetrical Geometries

Considerable simplification, incorporating nonetheless interesting and important prob-
lems, is achieved when the problem’s geometry suggests a solution in which the displace-
ment field depends only on a radial coordinate directed from a fixed point. Such geometries
are most naturally described by a spherical coordinate system, as sketched in Fig. 13.1.
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With respect to spherical coordinate system, the components of strain are

err = ∂ur

∂r
, eθθ = 1

r
∂uθ
∂θ

+ ur

r
,

eφφ = 1
r sin θ

∂uφ
∂φ

+ uθ
r

cot θ + ur

r
,

2eθφ = 1
r

(
∂uφ
∂θ

− uφ cotφ
)

+ 1
r sin θ

∂uθ
∂φ
,

2erθ = ∂uθ
∂r

− uθ
r

+ 1
r
∂ur

∂θ
,

2eφr = 1
r sin θ

∂ur

∂φ
+ ∂uφ
∂r

− uφ
r
.

(13.23)

Suppose, for example, that the displacement vector and the body force vector are of the
form

u = ur er , b = br er , (13.24)

where er is the unit vector directed radially. Then,

div u = div
(

ur
x
r

)
=
(ur

r

)
div x + x · grad

(ur

r

)

= 3
ur

r
+ dur

dr
− ur

r

= 1
r2

d
dr

(r2ur ).

(13.25)

Also,

curl u = curl
(

ur
x
r

)
= grad

(ur

r

)
× x + ur

r
curl x. (13.26)

But curl x = 0, and grad(ur/r) is parallel to er ‖ x. These facts lead to the conclusion that,
with such radial symmetry,

curl u = 0. (13.27)

Consider the equilibrium equation (13.18) and retain just the body force term. The sub-
stitution of the results (13.25)–(13.27) gives

E(1 − ν)
(1 + ν)(1 − 2ν)

d
dr

[
1
r2

d
dr

(
r2ur

)] = −br . (13.28)

A similar development goes through if a radially symmetric temperature distribution is
included on the rhs of (13.5) or (13.9).

13.3.1 Internally Pressurized Sphere

Consider a hollow sphere with internal radius r1, and external radius r2. The sphere is
internally pressurized at a pressure p1 and subject to an external pressure p2 (Fig. 13.2a).
This geometry is clearly spherically symmetric and thus, with an origin at the sphere’s
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p
2

p
1

(a)

p

(b)

Figure 13.2. (a) Spherical hole and (b) an
inclusion subject to pressure.

center, the displacement u is purely radial and a function of r alone. Thus, curl u = 0 and
(13.9) becomes

grad div u = 0, (13.29)

which leads directly to

div u = 1
r2

d(r2ur )
dr

= 3a, (13.30)

where 3a is a constant (the 3 being incorporated for convenience). Upon integration,

ur = ar + b/r2, (13.31)

where b is another integration constant. The components of strain are easily derived as

err = a − 2b/r3, eθθ = eφφ = a + b/r3. (13.32)

The constants a and b are calculated by applying the stated boundary conditions to the
radial stress,

σrr = E
(1 + ν)(1 − 2ν)

[(1 − ν)err + 2νeθθ ] = E
1 − 2ν

a − 2E
1 + ν

b
r3
. (13.33)

The result of applying σrr (r1) = −p1 and σrr (r2) = −p2 is

a = p1r3
1 − p2r3

2

r3
2 − r3

1

1 − 2ν
E

, b = r3
1 r3

2 (p1 − p2)

r3
2 − r3

1

1 + ν
2E

. (13.34)

If, for example p1 = p and p2 = 0, we have

σrr = pr3
1

r3
2 − r3

1

(
1 − r3

2

r3

)
, σφφ = σθθ = pr3

1

r3
2 − r3

1

(
1 + r3

2

r3

)
. (13.35)

Limiting solutions for thin walled spherical shells, i.e., when r2 = r1 + h and h/r1 � 1, are
readily obtained. Another case of interest is a void in an infinite medium (r2 → ∞) subject
to external pressure p2 = p. In this case, with p1 = 0, we obtain

σrr = −p
(

1 − r3
1

r3

)
, σφφ = σθθ = −p

(
1 + r3

1

2r3

)
. (13.36)
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13.4 Pressurized Sphere: Stress-Based Solution

Another route of deriving the previous solution is as follows. In a three-dimensional prob-
lems with spherical symmetry, the only displacement component is the radial displacement
u = u(r). The corresponding strain components are

err = du
dr
, eθθ = eφφ = u

r
, (13.37)

with the Saint-Venant compatibility equation

deθθ
dr

= 1
r

(err − eθθ ) . (13.38)

The nonvanishing stress components are the radial stress σrr and the hoop stresses σθθ =
σφφ . In the absence of body forces, the equilibrium equation is

dσrr

dr
+ 2

r
(σrr − σθθ ) = 0 . (13.39)

The Beltrami–Michell compatibility equation is obtained from (13.38) by incorporating
the stress-strain relations

err = 1
E

(σrr − 2νσθθ ) , eθθ = 1
E

[σθθ − ν(σrr + σθθ )] , (13.40)

and the equilibrium equation (13.39). This gives

d
dr

(σrr + 2σθθ ) = 0 , (13.41)

which implies that the spherical component of stress tensor is uniform throughout the
medium,

1
3

(σrr + 2σθθ ) = A= const. (13.42)

Combining (13.39) and (13.42) it follows that

dσrr

dr
+ 3

r
σrr = 3

r
A. (13.43)

The general solution of this equation is

σrr = A+ B
r3
. (13.44)

The corresponding hoop stresses are

σθθ = σφφ = A− B
2r3

. (13.45)

The boundary conditions for the Lamé problem of a pressurized hollow sphere are

σrr (R1) = −p1 , σrr (R2) = −p2 . (13.46)

These are satisfied provided that

A= p1 R3
1 − p2 R3

2

R3
2 − R3

1

, B = − R3
1 R3

2

R3
2 − R3

1

(p1 − p2) . (13.47)
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Consequently, the stress components are

σrr = R3
2

R3
2 − R3

1

[
p1

R3
1

R3
2

− p2 − (p1 − p2)
R3

1

r3

]
, (13.48)

σθθ = R3
2

R3
2 − R3

1

[
p1

R3
1

R3
2

− p2 + (p1 − p2)
R3

1

2r3

]
. (13.49)

The corresponding hoop strain is obtained by substituting (13.48) and (13.49) into the
stress-strain relation (13.40). The result is

eθθ = A
3K

− B
4µ

1
r3
, (13.50)

where the elastic bulk modulus is K = E/3(1 − 2ν), and the elastic shear modulus is µ =
E/2(1 + ν). Thus, the radial displacement u = rεθθ is

u = 1
3κ

p1 R3
1 − p2 R3

2

R3
2 − R3

1

r + 1
4µ

(p1 − p2)
R3

1 R3
2

R3
2 − R3

1

1
r2
. (13.51)

For the nonpressurized hole (p1 = 0) under remote pressure p2 at infinity, the previous
results give

σrr = −p2

(
1 − R3

1

r3

)
, σθθ = σφφ = −p2

(
1 + R3

1

2r3

)
, (13.52)

u = − p2

4µ

[
2(1 − 2ν)

1 + ν r + R3
1

r2

]
. (13.53)

The displacement is here conveniently expressed by using the Poisson’s ratio ν. For the
pressurized cylindrical hole in an infinite medium with p2 = 0, we obtain

σrr = −p1
R3

1

r3
, σθθ = σφφ = p1

R3
1

2r3
, (13.54)

u = p1

4µ
R3

1

r2
. (13.55)

13.4.1 Pressurized Rigid Inclusion

Imagine that the cavity of the previous solution is a rigid inclusion so that the displacement
at its periphery were to vanish (Fig. 13.2b). The inclusion is to be loaded by a uniform
pressure applied at the outer boundary at r2, and the inclusion’s radius is still r1. The
earlier found form for the displacement field (13.31) still holds, but now we have the
boundary condition that at r = r1,

ur (r1) = ar1 + b/r2
1 = 0 ⇒ a = −b/r3

1 . (13.56)

With this we apply the same boundary condition at r = r2, viz.,

σrr (r2) = −p, (13.57)



P1: FBQ

0521859794c13.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:35

13.4. Pressurized Sphere: Stress-Based Solution 253

to find

b = p
[

E

r3
1 (1 − 2ν)

+ 2E

r3
2 (1 + ν)

]−1

. (13.58)

The complete solution for the displacements, stresses and strains follows by simple calcu-
lation. Here we look at the limit as r2 becomes very large, i.e.,

lim
r2 → ∞ b = r3

1 (1 − 2ν)p
E

. (13.59)

The radial stress is then

σrr = −p − 2p
1 − 2ν
1 + ν (r1/r)3. (13.60)

Note that for an incompressible material, with ν = 1/2, the radial stress is everywhere
constant and equal to −p. In addition, at the inclusion surface

σrr (r1) = −3p
1 − ν
1 + ν , (13.61)

which reveals an interesting effect of Poisson’s ratio on the concentration or virtual removal
of pressure on the surface of the inclusion. The complete stress and strain field can be easily
computed from the results listed above.

13.4.2 Disk with Circumferential Shear

It is possible to generate singular solutions of physical interest using the techniques intro-
duced here. For example, consider the displacement field

u = C grad θ, (13.62)

where θ = tan−1(x2/x1), and C is a constant to be determined by suitable boundary con-
ditions. Note some properties of the nonzero components of displacement gradient. Since

u1 = − Cx2

x2
1 + x2

2

, u2 = Cx1

x2
1 + x2

2

, (13.63)

the normal strains are

u1,1 = 2C
x2x1

(x2
1 + x2

2 )2
, u2,2 = −2C

x2x1

(x2
1 + x2

2 )2
. (13.64)

This shows, inter alia, that the deformation described by this displacement field involves
no volume change, because u3 = 0 and u1,1 + u2,2 = 0. Also, the equilibrium equations are
satisfied because ∇2u = 0 and div u = 0. The other relevant components of displacement
gradient are

u1,2 = − C

x2
1 + x2

2

+ 2C
x2

2

(x2
1 + x2

2 )2
,

u2,1 = C

x2
1 + x2

2

− 2C
x2

1

(x2
1 + x2

2 )2
,

(13.65)
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τ

M
Figure 13.3. Disk-like region subject to shear.

and thus the shear strain is

e12 = 1
2

(u1,2 + u2,1) = C
x2

2 − x2
1

(x2
1 + x2

2 )2
. (13.66)

Consequently,

σ12 = 2GC
x2

2 − x2
1

(x2
1 + x2

2 )2
, (13.67)

and

σ11 = −σ22 = 4GC
x1x2

(x2
1 + x2

2 )2
. (13.68)

The circumferential shear stress is

σθr = 2GC
1

x2
1 + x2

2

= 2GC
1
r2
. (13.69)

Thus, the peculiar displacement field of the problem gives rise to a singular stress field
associated with uniform shear stress acting on the periphery of a disk-like region. If for
example, this region were a disc of radius r = r1 with applied shear stress σθr = τ on its
edge, then C = τr2

1/2G. The concentrated couple in the center of the disk, needed to
equilibrate this shear stress on the periphery of the disk, is M = 2πr2

1 τ (Fig. 13.3).

13.4.3 Sphere Subject to Temperature Gradients

Here we consider a sphere of radius r2 subject to a radial temperature gradient. Again the
displacement field is assumed to be purely radial. Thus, curl u = 0 and (13.9) reduces to

d
dr

[
1
r2

d(r2ur )
dr

]
= α 1 + ν

3(1 − ν)
dT
dr
. (13.70)

We let T(r2) = 0 such that if the sphere were uniformly cooled to that temperature no
stresses would result. If (13.70) is integrated, we find

ur = α 1 + ν
3(1 − ν)

[
1
r2

∫ r

0
T(r)r2 dr + 2(1 − 2ν)

1 + ν
r

r3
2

∫ r2

0
T(r)r2 dr

]
. (13.71)

13.5 Spherical Indentation

In this section we examine the problem of indentation of an elastic half-plane by a rigid
spherical indenter. The process of indentation is essentially that associated with the Brinell
hardness test using a spherical indenter. We shall analyze the problem using the approach
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a (sinking in)  <  a' <  a (piling up)
(a')     = δ D2

original surface

a'

r

a

a

δ

δr -

sinking in

piling up

Figure 13.4. Geometry of an indentation. Note the phenomenology of
either sinking in or piling up depending on the degree of nonlinearity of
the indented material.

introduced by Love (1944) and later generalized in terms of the Galerkin vector potential.
The geometry of indentations, in its most general form in materials that are elastic-plastic,
is as sketched in Fig. 13.4. For nonlinear materials, indented material generally tends to
either sink-in or pile-up beneath or around the indenter. The trends are that for materials
that are linear or that display high rates of strain hardening indented material sinks away
from the indenter, whereas for materials that are weakly hardening piling up is observed.
The effect is that the actual contact radius will be smaller in the case of sinking in behavior
and larger for the case of piling up. This, of course has an important effect on the intensity
of the pressure that develops beneath the indenter and for the quantitative assessment of
hardness. For the case considered here, viz., that of linear elastic materials, we will find the
characteristic Hertzian sinking in.

13.5.1 Displacement-Based Equilibrium

Begin with the isotropic elastic constitutive relations expressed, using Lamé constants λ
and µ, as

σi j = λemmδi j + 2µei j . (13.72)

Recall the connections among the isotropic elastic constants

E = µ(3λ+ 2µ)
λ+ µ , µ = G,

ν = λ

2(λ+ µ)
, G = E

2(1 + ν)
,

(13.73)

and the equations of equilibrium

∂σi j

∂xj
+ bi = 0. (13.74)

Since ekk = ∂uk/∂xk = div u, it is readily verified that

2
∂ei j

∂xj
= ∇2ui + ∂ekk

∂xi
. (13.75)

Thus,

(λ+ µ)
∂

∂xi
div u + µ∇2ui + bi = 0. (13.76)
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Using the relation

λ+ µ = µ

1 − 2ν
, (13.77)

the equilibrium equations can be rewritten as

∇ div u + (1 − 2ν)∇2u + 1 − 2ν
µ

b = 0, (13.78)

where µ = G is the shear modulus. In the absence of body forces, this becomes

∇ div u + (1 − 2ν)∇2u = 0. (13.79)

13.5.2 Strain Potentials

We have already seen that a suitable displacement function can be constructed from the
gradient of a scalar field as

u = 1
G

∇φ. (13.80)

To satisfy (13.79), φ must be such that

∇ ∇2φ = 0, (13.81)

which leads to the conclusion that

∇2φ = const. (13.82)

We note that (13.80) is not the most general form of displacement solution. A more
general form is one in which the displacement is constructed from the second derivatives
of a potential. As there are no operators of this type that transform a scalar into a vector, the
potential must be a vector potential. The Galerkin vector potential, G, is thus introduced
and the most general form for the displacement u is given as

u = 1
2G

(
c∇2 − ∇ div

)
G. (13.83)

When (13.83) is inserted into (13.79), it is found that c = 2(1 − ν), and

u = 1
2G

[
2(1 − ν)∇2G − ∇ div G

]
. (13.84)

The Galerkin vector potential G must satisfy the biharmonic equation

∇4G = 0. (13.85)

For the axisymmetric problem considered, we make use of one component of G, viz.,
Gz; we call Gz = �. In the (r, z) coordinate system, we then have

ur = − 1
2G

∂2�

∂r∂z
, uz = 1

2G

[
2(1 − ν)∇2�− ∂2�

∂z2

]
,

uθ = 0, � = �(r, z).

(13.86)
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The Laplacean in the (r, z) coordinates is

∇2 = ∂2

∂r2
+ 1

r
∂

∂r
+ ∂2

∂z2
. (13.87)

The stresses are

σrr = ∂

∂z

(
ν∇2�− ∂2�

∂r2

)
,

σθθ = ∂

∂z

(
ν∇2�− 1

r
∂�

∂r

)
,

σzz = ∂

∂z

[
(2 − ν)∇2�− ∂2�

∂z2

]
,

σrz = ∂

∂r

[
(1 − ν)∇2�− ∂2�

∂z2

]
,

(13.88)

where the Love’s potential � satisfies

∇4� = 0. (13.89)

Use has been made of the definitions of strain in a cylindrical system, viz.,

err = ∂ur

∂r
, eθθ = ur

r
, ezz = ∂uz

∂z
, (13.90)

and

erz = 1
2

(
∂ur

∂z
+ ∂uz

∂r

)
. (13.91)

13.5.3 Point Force on a Half-Plane

The Love’s potential for a concentrated point force of intensity p0 is

� = p0

2π
z
[
1 + 2ν

√
1 + r2/z2 + (1 − 2ν) ln

(
1 +

√
1 + r2/z2

)
− ln z

]
.

The corresponding displacements, from (13.86), are

ur = p0(1 − 2ν)
4πG

1
r

[
1

1 − 2ν
r2/z2

(1 + r2/z2)3/2
+ 1

(1 + r2/z2)1/2
− 1

]
, (13.92)

and

uz = p0

4πG
1
z

[
1

(1 + r2/z2)3/2
+ 2(1 − ν)

1
(1 + r2/z2)1/2

]
. (13.93)

Of particular interest is the z component of displacement, which we denote by ω when
z = 0. In general,

uz = p0

4πG

[
z2

ρ3
+ 2(1 − ν)

1
ρ

]
, (13.94)
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r

z

Figure 13.5. A hemispherical distributed load over
the half-space.

and on the surface, z = 0,

ω = p0(1 − ν)
2πG

1
ρ

= p0(1 − ν)
2πG

1
r
, (13.95)

where ρ = (z2 + r2)1/2 is the distance from the point force to the field point.

13.5.4 Hemispherical Load Distribution

Consider now the application of a distributed force whose intensity has a hemispherical
form (Fig. 13.5),

q(r) = q0

(
1 − r2

a2

)1/2

. (13.96)

The displacements are found by the using the solutions given in (13.95) as a Green’s
function, so that

ω = (1 − ν)q0

2aG

∫ π/2

0
(a2 − r2 sin2 ϕ) dϕ , r ≤ a , (13.97)

ω = (1 − ν)q0

2aG

∫ α

0
(a2 − r2 sin2 ϕ) dϕ , r ≥ a . (13.98)

The angles ϕ and α are defined in Fig. 13.6. The results of integration are

ω = ωmax

(
1 − r2

2a2

)
, r ≤ a ,

ω = ωmax

π

r2

a2

[(
2

a2

r2
− 1

)
sin−1

(a
r

)
+ a

r

(
1 − a2

r2

)1/2
]
, r ≥ a .

(13.99)

The maximum displacement at the center of the distributed load, ωmax = ω(0, 0), is twice
greater than the displacement at the periphery of the load, ωa = ω(a, 0), i.e.,

ωmax = 2ωa , ωmax = πq0(1 − ν)
4G

a . (13.100)
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Figure 13.6. Integration angles. Note “M”
signifies the typical field point, either in-
side or outside the circle.

The total force is

P = 2π
∫ a

0
q0

(
1 − r2

a2

)1/2

rdr = 2
3
πa2q0 , (13.101)

so that

P = 2
3

3G
1 − ν a ωmax. (13.102)

13.5.5 Indentation by a Spherical Ball

The solution for the spherical load is an essential ingredient for constructing the Hertz
solution for the elastic indentation of a half-space by a spherical indenter. Denoting by R
the radius of the ball, and by δ the depth of the indentation, the equation of the sphere, on
the surface of contact, is

r2 + [z + (R − δ)]2 = R2. (13.103)

For shallow indentations δ/R � 1 and z/R � 1, where in the second inequality the coor-
dinate z is meant to be on the indented surface. Thus, when (13.103) is expanded, terms
such as z2 and δz are neglected so that, with z replaced by ω on the surface, (13.103) yields

ω(r) = δ − r2

2R
, r ≤ a. (13.104)

Because a is a geometric mean of δ/2 and 2R − δ/2, we have

a2 = δ

2

(
2R − δ

2

)
, a2 ≈ Rδ , (13.105)

and thus (13.104) can be rewritten as

ω(r) = δ
(

1 − r2

2a2

)
, r ≤ a, (13.106)

in agreement with the displacement field at the surface given in (13.99) for a hemispherical
load distribution.

Alternatively, consider the displacement at the periphery of the contact circle (r = a).
Call this δa = ω(a, 0). Then,

ω(r) = δa + 1
2R

(a2 − r2), (13.107)
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Figure 13.7. The displacement profile of the
indented surface.

with a simple connection

δ = δa + a2

2R
. (13.108)

Note that â ≈ √
2Rδ would be the “apparent radius of contact” of the sphere that was

ideally pressed into the surface to a depth δ, assuming that the indented material simply
did not deflect or distort. The quantity

c2 = a2/â2 (13.109)

is an invariant of such indentation processes, and for this linear elastic case

c2 = 1/2. (13.110)

If (13.105) is used in (13.102), we obtain

P = 8
3

G
1 − ν R1/2δ3/2, (13.111)

or, in terms of the radius of contact,

P = 8
3

G
1 − ν

1
R

a3. (13.112)

An indentation hardness can be defined as

H = P
πa2

= 8
3

G
1 − ν

a
R

= 8
3

G
1 − ν

(
δ

R

)1/2

. (13.113)

The displacement of the indented surface (Fig. 13.7) is

ω = a2

R

(
1 − r2

2a2

)
, r ≤ a ,

ω = r2

πR

[(
2

a2

r2
− 1

)
sin−1

(a
r

)
+ a

r

(
1 − a2

r2

)1/2
]
, r ≥ a .

(13.114)

Alternatively, the displacement can be expressed in terms of the depth δ of the indentation
(Fig. 13.8) as

ω = δ − r2

2R
, r ≤

√
Rδ , (13.115)

ω = r2

πR

[(
2

Rδ
r2

− 1
)

sin−1

(√
Rδ
r

)
+

√
Rδ
r

(
1 − Rδ

r2

)1/2
]
, r ≥

√
Rδ .
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R

O

z

δ
δ 2

r
Figure 13.8. The width a and the depth δ of the inden-
tation by a spherical ball.

The slope of the indented surface is continuous at the periphery of the contact circle
and equal to

dω
dr

= − δ
a
, (13.116)

which is unlike indentation with a rigid flat punch (where there is a slope discontinuity).
On the other hand, the hemispherical loading considered here prescribes a normal stress
that vanishes at the periphery of contact, in contrast to that of a flat punch (for which the
normal stress is infinite at the periphery).

13.6 Point Forces on Elastic Half-Space

Here we summarize the solutions for point force loading on elastic half-spaces for 3D infi-
nite media. The coordinate system used is shown in Fig. 13.9. We consider both normal and
tangential point forces imposed on the surface of an elastically isotropic media. Relations
(13.86)–(13.87) gave the radially symmetric displacement fields for a normal point force
in polar coordinates. We list here the same displacement components in the Cartesian
coordinate frame of Fig. 13.9. They are

ux(x, y, z) = p0

4πG

[
xz
ρ3

− (1 − 2ν)
x

ρ(ρ + z)

]
,

uy(x, y, z) = p0

4πG

[
yz
ρ3

− (1 − 2ν)
y

ρ(ρ + z)

]
,

uz(x, y, z) = p0

4πG

[
z2

ρ3
+ 2(1 − ν)

ρ

]
,

(13.117)

x

y
z

p

q

o

o
Figure 13.9. Normal and tangential point forces on elastic half-
space.
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where ρ = (x2 + y2 + z2)1/2. It is of specific interest to form these on the surface of the
half-space, where r2 = x2 + y2. The displacements there are

ūx(x, y) = − p0

4πG
(1 − 2ν)x

r2
,

ūy(x, y) = − p0

4πG
(1 − 2ν)y

r2
,

ūz(x, y) = p0

4πG
2(1 − 2ν)

r
.

(13.118)

The stresses are then readily calculated by the straightforward procedure of forming the
strains and invoking the isotropic elastic constitutive relations.

The solution for the case of a tangential point load of magnitude q0 is obtained using
similar techniques as described in the previous section on spherical indentation. The results
for the displacements are

ux(x, y, z) = q0

4πG

{
1
ρ

+ x2

ρ3
+ (1 − 2ν)

[
1

ρ + z
− x2

ρ(ρ + z)2

]}
,

uy(x, y, z) = q0

4πG

[
xy
ρ3

− (1 − 2ν)
xy

ρ(ρ + z)2

]
,

uz(x, y, z) = q0

4πG

[
xz
ρ3

+ (1 − 2ν)
x

ρ(ρ + z)

]
.

(13.119)

When expressed on the surface z = 0 of the half-space, these displacements are

ūx(x, y) = q0

4πG

[
2(1 − ν)

r
+ 2νx2

r3

]
,

ūy(x, y) = q0

4πG
2νxy

r3
,

ūz(x, y) = q0

4πG
(1 − 2ν)x

r2
.

(13.120)

Again, the elastic strains and then the stresses can be readily calculated from (13.119).
For later reference, we note that if a general set of point loads f = { fx, fy, fz} were

applied to the surface, the displacements on the surface could be expressed as

ūα(x, y) = %αβ(x, y, z) fβ, (α, β = x, y, z), (13.121)

where

Π = 1

4πG

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(1 − ν)

r
+ 2νx2

r3

2νxy

r3
− (1 − 2ν)x

r2

2νxy

r3

2(1 − ν)

r
+ 2νy2

r3
− (1 − 2ν)y

r2

(1 − 2ν)x

r2

(1 − 2ν)y

r2

2(1 − 2ν)

r

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (13.122)

This form will be useful in solving for the elastic fields at the surfaces of half-planes
subject to general loading via superposition techniques.
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13.7 Suggested Reading
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14 Anisotropic 3D Solutions

14.1 Point Force

For the time being we refer to the case of generally anisotropic elastic media, and later
specialize to the case of isotropic elastic media. Recall the equilibrium equations

σi j, j + bi = 0, (14.1)

where bi are the components of the body force per unit volume. The constitutive equations
that connect the stresses to small elastic strains are

σi j = Ci jkl ekl = Ci jkl uk,l . (14.2)

Thus, combining (14.1) and (14.2), we obtain

Ci jkl uk,l j = bi . (14.3)

Suppose b is concentrated at a “point.” Next let b act only in the xm direction and, for
now, let the magnitude of this concentrated force be unity. If the force acts at x = x′, we
can write

bi =
{

0, if i 
= m,

δ(x − x′), if i = m,

where δ(x) is the Dirac delta function, defined in Chapter 3. The above can be rewritten
by using the Kronecker δ as

bi = δim δ(x − x′), (i = 1, 2, 3). (14.4)

14.2 Green’s Function

Using (14.4), equation (14.3) becomes

Ci jkl u(m)
k,l j = −δim δ(x − x′). (14.5)

264
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x'

x

u
k

bm
x-x'

Figure 14.1. Displacement caused by a unit point force.

The direct physical interpretation of u(m)
k is

u(m)
k = the component of displacement in the kth

direction at the point x caused by a

point force acting in the mth direction at x′.

We note that u(m)
k is a tensor as it associates a vector, u, with another vector, b (Fig. 14.1).

Thus, the component of tensor G is Gmk = u(m)
k , and (14.5) becomes

Ci jkl Gkm, jl(x, x′) = −δim δ(x − x′). (14.6)

The function Gkm is called a Green’s function. It is clearly symmetric, i.e., Gkm = Gmk.
When integrating (14.6) we demand that the influence of the point force vanish suffi-

ciently rapid, and in particular we demand that G vanish at least as fast as

G ∼ 1
|x − x′| = 1

r
as r → ∞. (14.7)

Solution by Fourier transforms provides a direct route to a solution. The Fourier transform
of G(x, x′) is obtained from

g(K) =
∫ ∞

−∞
G(x, x′) exp(iK · x) d3x, (14.8)

where d3x ≡ dV = dx1dx2dx3 and K is the Fourier vector in Fourier space. The inverse
transform is then obtained from

G(x, x′) = 1
(2π)3

∫ ∞

−∞
g(K) exp(−iK · x) d3K. (14.9)

To proceed, multiply (14.6) by exp(iK · x) or by (x − x′), because x′ is a fixed position in
the integrations, and integrate over all physical, i.e., x, space to obtain∫ ∞

−∞
Ci jkl Gkm, jl(x, x′) exp[iK · (x − x′)] d3x

= −
∫ ∞

−∞
δim δ(x − x′) exp[iK · (x − x′)] d3x.

(14.10)

As noted above, d3x = d3(x − x′) because of the fixity of x′. Integration by parts yields,
after taking into account the vanishing of G at afar,

−
∫ ∞

−∞
Kj KlCi jkl Gkm(x, x′)d3(x − x′) = −δim. (14.11)
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To reduce this expression, we define a unit vector, z, as the unit vector along K, i.e,

K = Kz, K ≡ |K|. (14.12)

Then,

Kj KlCi jkl = K2zj zlCi jkl = K2 Mik(z). (14.13)

This, in turn, leads to the definition of the acoustic tensor, or Christoffel stiffness tensor,

M ≡ z · C · z. (14.14)

Thus, (14.11) becomes

−
∫ ∞

−∞
K2 Mik(z)Gkm(x, x′) exp[iK · (x − x′)]d3(x − x′) = −δim. (14.15)

Removing items that are constant within the integral, we obtain

−K2 Mik(z)
∫ ∞

−∞
Gkm(x, x′) exp[iK · (x − x′)]d3(x − x′) = −δim. (14.16)

Therefore,

−K2 Mikgkm = −δim, (14.17)

or, by inversion,

gsm = M−1
sm (z)
K2

. (14.18)

The inverse transform, or G itself, is thus

Gkm(x, x′) = 1
(2π)3

∫ ∞

−∞

M−1
km

K2
exp[−iK · (x − x′)] d3K. (14.19)

Since G is real, we need only take the real part of (14.19), i.e.,

Gkm(x, x′) = 1
(2π)3

∫ ∞

−∞

M−1
km

K2
cos[K · (x − x′)] d3K. (14.20)

To perform these integrations it is convenient to introduce a unit vector T and a stretched
vector λ as follows

x − x′ = |x − x′|T,
λ = K|x − x′| = K|x − x′|z.

(14.21)

With these, the inverse transform becomes

Gkm(x, x′) = 1
8π3|x − x′|

∫ ∞

−∞

M−1
km(z)
λ2

cos(λz · T) d3λ. (14.22)

Note, if T is replaced by −T, we have cos(λz · T) = cos(λz · −T). Accordingly, we can
express (14.22) as

Gkm(x, x′) = Gkm(sT) = sgn(s)
s

Gkm(T), (14.23)

where s is an algebraically signed scalar. Thus G scales as 1/|x − x′|. In fact, G depends on
x and x′ strictly as on (x − x′).
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Tθz

Da
tu
m

z  T = 0 

z
zλ

θ ϕ

unit circle
 z  T = 0

T x-x'
Figure 14.2. A polar coordinate system
aligned with T.

We may now inquire about the derivatives of G. For example, we have

Gkm,p(x − x′) = −1
8π3|x − x′|2

∫ ∞

−∞

zpM−1
km(z)
λ

sin(λz · T) d3λ. (14.24)

Thus,

Gkm,p(x, x′) = Gkm,p(sT) = sgn(s)
s2

Gkm,p(T). (14.25)

Similarly, we find

Gkm,pt (x, x′) = Gkm,pt (sT) = sgn(s)
s3

Gkm,pt (T), (14.26)

and so on. In general, we obtain

Gkm,α1α2...αn (x, x′) = Gkm,α1α2...αn (sT) = sgn(s)
sn

Gkm,α1α2...αn (T).

We now return to (14.22) and introduce polar coordinates aligned with T such as in
Fig. 14.2. Then

d3λ = λ2 sinφ dλdφ dθ, z · T = cosφ, (14.27)

and

Gkm(x − x′) = 1
8π3|x − x′|

∫ 2π

0

∫ π

0

∫ ∞

0
M−1

km(z) cos(λz · T) sinφ dλdφ dθ.

The integral over λ within the above is∫ ∞

0
cos(λz · T) dλ = lim

λ→∞
sin[λ(z · T)]

(z · T)
. (14.28)

Recalling that

lim
λ→∞

�λ(z · T) = lim
λ→∞

1
π

sin[λ(z · T)]
(z · T)

=

δ(z · T),

we obtain ∫ ∞

0
cos(λz · T) dλ = πδ(z · T), (14.29)
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which, when substituted into (14.2), yields

Gkm(x − x′) = 1
8π2|x − x′|

∫ 2π

0
M−1

km dθ. (14.30)

The integration over θ is about a unit circle lying on the plane x · T = 0. Note also that
δ(z · T) = δ(cosφ) = δ(φ − π/2).

14.3 Isotropic Green’s Function

We recall that for the case of isotropic elastic media

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk) (14.31)

and thus

Mik = Ci jkl zj zl = λδi jδkl zj zl + µ(δikδ jl + δilδ jk)zj zl

= λzi zk + µδikzl zl + µzi zk. (14.32)

But,

zl zl = z2
1 + z2

2 + z2
3 = 1, (14.33)

because z is a unit vector, so that

Mik = µ
(
δik + λ+ µ

µ
zi zk

)
. (14.34)

Now consider a matrix with components

Qli = 1
µ

(δli + Bzl zi ) . (14.35)

We ask, is it possible to choose a value for B such that Qli = M−1
li , i.e., so that Qli Mik = δlk?

To answer the question, evaluate the product

Qli Mik = (δli + Bzl zi )
(
δik + λ+ µ

µ
zi zk

)

= δliδik + λ+ µ
µ

δli zi zk + B
λ+ µ
µ

zl zi zi zk + Bzl ziδik + Bzl ziδik

= δlk + zl zk

(
λ+ µ
µ

+ B + B
λ+ µ
µ

)
. (14.36)

Thus, if

λ+ µ
µ

+ B + B
λ+ µ
µ

= 0, (14.37)

we have

B = − λ+ µ
λ+ 2µ

, (14.38)

and

M−1
km = 1

µ

(
δkm + λ+ µ

λ+ 2µ
zkzm

)
. (14.39)
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x

x

x1

2

3

x 
- 
x'φ

ψ

Figure 14.3. Spherical coordinate system.

Therefore, to evaluate Gkm(x − x′) we need only express zkzm as a function of θ noting
that, for our purposes, zk is the kth direction cosine of a unit vector which is perpendicular to
x − x′. With reference to the spherical coordinate system in Fig. 14.3, the direction cosines
of x − x′ are

λk = xk − x′
k

|x − x′| , (14.40)

with

λ1 = sinφ cosψ, λ2 = sinφ sinψ, λ3 = cosφ, (14.41)

and λiλi = 1. Then, construct z as

zk = ak cos θ + bk sin θ, (14.42)

where

a1 = cosφ cosψ, b1 = − sinψ,

a2 = cosφ sinψ, b2 = cosψ,

a3 = − sinφ, b3 = 0.

(14.43)

This gives

zkzm = (ak cos θ + bk sin θ)(am cos θ + bm sin θ)

= akam cos2 θ + bkbm sin2 θ + (akbm + ambk) sin θ cos θ. (14.44)

Hence, for this isotropic case we have

Gkm = 1
8π2µ|x − x′|

∫ 2π

0

{
δkm + λ+ µ

λ+ 2µ
[akam cos2 θ + bkbm sin2 θ

+ (akbm + ambk) sin θ cos θ ]
}

dθ.

(14.45)

Noting that ∫ 2π

0
δkm dθ = 2πδkm,

∫ 2π

0
sin θ cos θ dθ = 0,

∫ 2π

0
sin2 θ dθ =

∫ 2π

0
cos2 θ dθ = π,

we thus obtain

Gkm = 1
8πµ|x − x′|

[
2δkm − λ+ µ

λ+ 2µ
(akam + bkbm)

]
. (14.46)
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It is easily verified that

akam + bkbm = δkm − λkλm = δkm − (xk − x′
k)(xm − x′

m)
|x − x′|2 , (14.47)

so that

Gkm(x − x′) = 1
8πµ|x − x′|

{
2δkm− λ+ µ

λ+ 2µ

[
δkm − (xk − x′

k)(xm − x′
m)

|x − x′|2
]}
.

An alternative, useful form of this expression is obtained by observing that

∂

∂xm
|x − x′| = ∂

∂xm
[(xl − x′

l )(xl − x′
l )]1/2 = xm − x′

m

x − x′ . (14.48)

Then,

∂

∂xk

(
∂

∂xm
|x − x′|

)
= ∂

∂xk

(
xk − x′

k

|x − x′|
)

= δkm

|x − x′| − (xk − x′
k)(xm − x′

m)
|x − x′|2

= 1
|x − x′|

[
δkm − (xk − x′

k)(xm − x′
m)

|x − x′|2
]
.

Furthermore, we readily find

∇2|x − x′| = ∂

∂xm

∂

∂xm
|x − x′| = 1

|x − x′|
[
δmm − (xm − x′

m)(xm − x′
m)

|x − x′|2
]
. (14.49)

Since

δmm = 3, (xm − x′
m)(xm − x′

m) = |x − x′|2, (14.50)

the previous expression simplifies to

∇2|x − x′| = 2
|x − x′| . (14.51)

Thus, the alternative expression for the Green’s function is

Gkm(x − x′) = 1
8πµ

(
δkm∇2 − λ+ µ

λ+ 2µ
∂2

∂xk∂xm

)
|x − x′|. (14.52)

14.4 Suggested Reading
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York.
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Netherlands.
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Elasticity and Applications, SIAM, Philadelphia.
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15 Plane Contact Problems

The basic problem considered in this chapter is one in which a rigid “punch” is forced into
the surface of an elastic half-space of semi-infinite extent. If the indenter is idealized as
rigid, the problem is displacement driven. We examine the problem by both considering
imposed forces on the surface of a half-space as well as by imposing displacements. Plane
strain conditions are assumed to prevail.

15.1 Wedge Problem

Consider the problem of a “wedge” loaded at its corner by a force f as shown in Fig. 15.1.
The geometry involved suggests that a polar coordinate system be used. We seek solutions
of the form

σ = f (r)g(θ), (15.1)

so that all solutions are self-similar in angular form. Note that the solutions must be such
that

σ ∼ 1/r ⇒ f (r) ∼ 1/r, (15.2)

since when considering equilibrium, the traction on any arc must decrease as 1/r , because
the arc length increases in proportion to r . Thus we seek solutions to the biharmonic equa-
tion that lead to stresses corresponding to (15.2). Appealing to the inventory of solutions
found earlier in Chapter 10, we try

φ = C1rθ sin θ + C2rθ cos θ + C3r ln r cos θ + C4r ln r sin θ. (15.3)

These give rise to stresses of the form

σrr = 1
r

(2C1 cos θ − 2C2 sin θ + C3 sin θ + C4 sin θ) ,

σrθ = 1
r

(C3 sin θ − C4 cos θ) ,

σθθ = 1
r

(C3 cos θ + C4 sin θ) .

(15.4)

271
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y

xβ
θ

α

r

xf

yf

Figure 15.1. Wedge loaded by corner point forces.

The sides of the wedge are stress-free, i.e.,

σθr = σθθ = 0 on θ = α, β, (15.5)

which leads to C3 = C4 = 0. The constants C1 and C2 are determined by imposing global
equilibrium

fx + 2
∫ β

α

C1 cos θ − C2 sin θ
a

a cos θ dθ = 0,

fy + 2
∫ β

α

C1 cos θ − C2 sin θ
a

a sin θ dθ = 0.

(15.6)

Solving (15.6) we obtain

(C1 − C2) sin2 θ |βα + (C1 + C2) sin θ cos θ |βα =(C2 − C1)(β − α)−( fx − fy),

(C1 + C2) sin2 θ |βα + (C2 − C1) sin θ cos θ |βα =(C2 + C1)(β − α)+( fx − fy).

Since C3 = C4 = 0, all rays are traction free, i.e., σrθ = σθθ = 0 at each θ .
A particularly interesting case is that of a half-plane, obtained by setting α = −π and

β = 0. In that case (15.6), or (15.1), yields

fx + πC1 = 0,

fy − πC2 = 0,
(15.7)

and thus

σrr = −2 fx

π

cos θ
r

− 2 fy

π

sin θ
r
. (15.8)

We will find convenient in the sequel to redefine the convention used to describe the
applied forces. In fact, let us redefine the coordinate system as shown in Fig. 15.2. If we
call fy = −P, and ignore for the moment the tangential force fx, we obtain

σrr = −2P
π

cos θ̂
r

. (15.9)

y

x

θ

θ

r

P

^

Figure 15.2. Redefined polar coordinate system.
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The Cartesian components of stress for the case of an applied normal load are

σxx = σrr sin2 θ̂ = −2P
π

x2 y
(x2 + y2)2

,

σyy = σrr cos2 θ̂ = −2P
π

y3

(x2 + y2)2
,

σxy = σrr sin θ̂ cos θ̂ = −2P
π

xy2

(x2 + y2)2
.

(15.10)

To proceed, recall that the strain components, for the considered two-dimensional
case, are

err = ∂ur

∂r
= −1 − ν2

E
2P
π

cos θ̂
r

,

eθθ = ur

r
+ 1

r
∂uθ
∂θ

= ν(1 + ν)
E

2P
π

cos θ̂
r

,

erθ = 1
2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
= σrθ

2G
= 0.

(15.11)

The above equations can be integrated to obtain the displacement components

ur = − (1 − ν2)
πE

2P cos θ̂ ln r − (1 − 2ν)(1 + ν)
πE

Pθ̂ sin θ̂ + a1 sin θ̂ + a2 cos θ̂ (15.12)

and

uθ = (1 − ν2)
πE

2P sin θ̂ ln r + ν(1 + ν)
πE

2P sin θ̂

− (1 − 2ν)(1 + ν)
πE

Pθ̂ cos θ̂ + (1 − 2ν)(1 + ν)
πE

P sin θ̂

+ a1 cos θ̂ − a2 sin θ̂ + a3r.

(15.13)

If the body does not translate or rotate, then a1 = a2 = a3 = 0. At the surface, where
θ̂ = ±π/2, we have

ur |θ̂=π/2 = −ur |θ̂=−π/2 = − (1 − 2ν)(1 + ν)
2E

P = − (1 − 2ν)
4G

P,

uθ |θ̂=π/2 = −uθ |θ̂=−π/2 = (1 − ν2)
πE

2P ln r + a,

(15.14)

where a is a constant combined from the remaining terms in (15.13) that do not involve r . To
determine this constant, a reference point is needed from which to measure displacement.
If uθ = 0 at say r = r0, then

uθ |θ̂=π/2 = −uθ |θ̂=−π/2 = − (1 − ν2)
πE

2P ln(r0/r). (15.15)

Consider next the tangential force fx = F . A similar analysis yields

σrr = −2F
π

cos θ
r
, σθθ = σrθ = 0. (15.16)
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The corresponding Cartesian stress components are

σxx = −2F
π

x3

(x2 + y2)2
,

σyy = −2F
π

xy2

(x2 + y2)2
,

σxy = −2F
π

x2 y
(x2 + y2)2

.

(15.17)

Analysis of the displacements reveals that

ur |θ=0 = −ur |θ=π = −1 − ν2

πE
2F ln r + b,

uθ |θ=0 = uθ |θ=π = (1 − 2ν)(1 + ν)
2E

F.

(15.18)

Equation (15.18) shows an interesting effect that the entire surface at x > 0 is depressed
by an amount proportional to F , whereas the surface behind the point force is raised by
an equal amount. In a manner similar to the angular displacement due to a point normal
force, the constant b in (15.18) can be determined by selection of a reference point rt , so
that

ur |θ=0 = −ur |θ=π = − (1 − ν2)
πE

2F ln(rt/r). (15.19)

15.2 Distributed Contact Forces

The solutions listed above can be used as Green’s functions for constructing the solutions
to the elastic fields of distributed forces on the surface of an infinitely extended half-plane.
Let the contact area be −a ≤ x ≤ a, and let the distributed normal and tangential forces
be p(x) and f (x), respectively. The resulting stresses are obtained via superposition as

σxx = −2y
π

∫ a

−a

p(s)(x − s)2 ds
[(x − s)2 + y2]2

− 2
π

∫ a

−a

f (s)(x − s)3 ds
[(x − s)2 + y2]2

,

σyy = −2y3

π

∫ a

−a

p(s) ds
[(x − s)2 + y2]2

− 2y2

π

∫ a

−a

f (s)(x − s) ds
[(x − s)2 + y2]2

,

σxy = −2y2

π

∫ a

−a

p(s)(x − s) ds
[(x − s)2 + y2]2

− 2y
π

∫ a

−a

f (s)(x − s)2 ds
[(x − s)2 + y2]2

.

(15.20)

This generalizes the result for normal force loading given earlier to include tangential force
loading. Note, however, that the sign convention for the normal load is reversed here.

When the radial displacement is given in terms of the Cartesian coordinates, the ln r
terms become sgn(x) ln |x|. Thus, using the means employed by Johnson (1985) to han-
dlethe sign change in uθ at the surface, we find



P1: FBQ

0521859794c15.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:13

15.2. Distributed Contact Forces 275

ūx = − (1 − 2ν)(1 + ν)
2E

[∫ x

−a
p(s) ds −

∫ a

x
p(s) ds

]

− 2(1 − ν2)
πE

∫ a

−a
f (s) ln |x − s| ds + a1

(15.21)

and

ūy = − 2(1 − ν2)
πE

∫ a

−a
p(s) ln |x − s| ds

+ (1 − 2ν)(1 + ν)
2E

[∫ x

−a
f (s) ds −

∫ a

x
f (s) ds

]
+ a2,

(15.22)

where ūx, ūy are the displacements on the surface. Note how splitting the range of inte-
gration of the integrals handles the sign switch inherent in uθ , as discussed above. The
integration constants, here listed as a1 and a2, have already been discussed and do yield an
arbitrary rigid body translation that is undetermined. When the distortions are computed,
however, there is no ambiguity, so that

∂ūx

∂x
= − (1 − 2ν)(1 + ν)

E
p(x) − 2(1 − ν2)

πE

∫ a

−a

f (s)
x − s

ds,

∂ūy

∂x
= −2(1 − ν2)

πE

∫ a

−a

p(s)
x − s

ds + (1 − 2ν)(1 + ν)
E

f (x).

(15.23)

The integrals in (15.23) are interpreted as Cauchy principal values where needed, that is
in −a ≤ x ≤ a.

Some interesting features arise. For example, let f (x) = 0 and consider for the moment
only normal applied forces. The normal strain on the surface, ēxx, is in this case

ēxx = ∂ūx

∂x
= − (1 − 2ν)(1 + ν)

E
p(x). (15.24)

On the other hand, from the elastic constitutive relation in plane strain,

ēxx = 1
E

[
(1 − ν2)σ̄xx − ν(1 + ν)σ̄yy

]
. (15.25)

If the two expressions are to be equal, we must have

σ̄xx = σ̄yy = −p(x). (15.26)

This simple result is interesting. Since in plane strain σ̄zz = ν(σ̄xx + σ̄yy) and ν is, say, in a
typical range 1/3 ≤ ν ≤ 1/2, the state of stress under the indenter that applies p(x) is one
of nearly pure hydrostatic stress. This, in turn, means that plastic deformation tends to be
suppressed just under the contact surface.

15.2.1 Uniform Contact Pressure

Here we consider the problem of uniform loading over the strip −a ≤ x ≤ a with the
normal stress p0, as depicted in Fig. 15.3. This problem has been already considered in
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po

x

y

a-a

r1

r
2

θθ 12

(x,y)

Figure 15.3. Uniform contact pressure on a half-plane.

Chapter 12 (see Fig. 12.3), where the stresses were found to be given by

σxx = − p0

2π
[2(θ1 − θ2) + sin(2θ1) − sin(2θ2)] ,

σyy = − p0

2π
[2(θ1 − θ2) − sin(2θ1) + sin(2θ2)] ,

σxy = p0

2π
[cos(2θ1) − cos(2θ2)] .

(15.27)

The definitions of the angles θ1 and θ2 are indicated in Fig. 15.3. Here we compute the
corresponding displacements and displacement gradients. From (15.23), as long as −a ≤
x ≤ a, we have

∂ūx

∂x
= − (1 − 2ν)(1 + ν)

E
p0. (15.28)

Care must be taken to note that, from (15.21), ūx no longer changes beyond x > a or
x < −a because of the fact that p(x) = 0 for |x| > a. Then, if the origin is taken as fixed,
and |x| ≤ a,

ūx(x) = − (1 − 2ν)(1 + ν)
E

p0x, (15.29)

and, if |x| > a,

ūx(x) = − (1 − 2ν)(1 + ν)
E

sgn(x)p0a. (15.30)

As for ūy, we have

∂ūy

∂x
= −2(1 − ν2)

πE

∫ a

−a

p0ds
x − s

, (15.31)

where the principal value is to be taken if |x| ≤ a. Thus, we form∫ a

−a

ds
x − s

= lim
ε→ 0

(∫ x−ε

−a

ds
x − s

−
∫ a

x+ε

ds
s − x

)

= lim
ε→ 0

[− ln(x − s)|x−ε
−a − ln(s − x)|ax+ε

]
= ln(x + a) − ln(a − x).

(15.32)

Therefore,

∂ūy

∂x
= −2(1 − ν2)

πE
p0[ln(a + x) − ln(a − x)], (15.33)
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fo x

y

a-a

r1

r
2

θθ 12

x,y

Figure 15.4. Uniform tangential force on a half-plane.

and, upon integrating,

ūy(x) = − (1 − ν2)
πE

p0

[
(a + x) ln

(
a + x

a

)2

+ (a − x) ln
(

a − x
a

)2
]

+ C.

We note that this expression holds for any range of x.

15.2.2 Uniform Tangential Force

Consider the case of a half-plane loaded on the patch −a ≤ x ≤ a by a uniform tangential
stress f0. With the angles as defined in Fig. 15.4, the relations (15.20) yield the stresses

σxx = f0

2π
[4 ln(r1/r2) − cos(2θ1) + cos(2θ2)],

σyy = f0

2π
[cos(2θ1) − cos(2θ2)],

σxy = − f0

2π
[2(θ1 − θ2) + sin(2θ1) − sin(2θ2)].

(15.34)

where r1,2 = [(x ∓ a)2 + y2]1/2. When the equations (15.22) are examined it becomes obvi-
ous that the relations obtained for the displacements produced by uniform normal pressure
give the displacements for the tangential stress if we make the following transitions

(ūx)tangential � (ūy)normal,

(ūy)tangential � (ūx)normal.
(15.35)

15.3 Displacement-Based Contact: Rigid Flat Punch

Instead of imposing forces on the contact surface, suppose that displacements are imposed,
say by a rigid punch of a prescribed shape. This would be equivalent to the imposition of
dūx/dx and dūy/dx by the curved surface of the punch. The relations (15.23) now read

∫ a

−a

f (s)
x − s

ds = −π(1 − 2ν)
2(1 − ν)

p(x) − πE
2(1 − ν2)

ū′
x(x),

∫ a

−a

p(s)
x − s

ds = π(1 − 2ν)
2(1 − ν)

f (x) − πE
2(1 − ν2)

ū′
y(x),

(15.36)

where ū′
x(x) = dūx/dx and ū′

y(x) = dūy/dx.
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For a frictionless flat rigid punch, with f (x) = 0 and ū′
y prescribed, we have

∫ a

−a

p(s)
x − s

ds = − πE
2(1 − ν2)

ū′
y(x). (15.37)

In this case, as in (15.28), we have

ū′
x(x) = − (1 − 2ν)(1 + ν)

E
p(x). (15.38)

Note that the integral equation in (15.37) is singular. Its solutions of a general nature are
given in Section 19.8. Here we simply note that the singular integral equation

PV
∫ a

−a

ζ (s)
x − s

ds = g(x) (15.39)

has the solution, if unbounded at the end points, given by

ζ (x) = 1
π2(a2 − x2)1/2

∫ a

−a

(a2 − s2)1/2g(s)
x − s

ds + C
π2(a2 − x2)1/2

, (15.40)

where

C = π
∫ a

−a
ζ (x) dx. (15.41)

For the rigid punch, ū′
y(x) = 0 on −a ≤ x ≤ a, and

∫ a

−a

p(s)
x − s

ds = 0, (15.42)

which gives

p(x) = p0

π(a2 − x2)1/2
, (15.43)

where p0 is the total load applied by the force distribution of the punch. The derived result
is, of course, the same force distribution as used earlier in Chapter 12 (see Fig. 12.5).

The displacement distribution outside the punch can be found readily from (15.21). The
result is

ūy(x) = −2(1 − ν2)
πE

∫ a

−a
p(s) ln |x − s| ds + δy

= −2(1 − ν2)
πE

p0 ln

[
|x|
a

+
(

x2

a2

)1/2
]

+ δy,

(15.44)

where δy is an integration constant determined by selecting a datum from which to measure
displacement. The displacement component, ūx is found from (15.21) to be

ūx(x) = − (1 − 2ν)(1 + ν)
πE

p0 sin−1(x/a). (15.45)
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16 Deformation of Plates

The deformation of thin plates is considered here. Plates are assumed to be thin when their
thickness is very small compared to their other two dimensions in their plane. Deformations
and strains are assumed to be small and the material of the plates is isotropic linear
elastic.

16.1 Stresses and Strains of Bent Plates

Plates, when bent, develop a transition from one side to the other from tension to com-
pression and thus contain a neutral surface. If homogeneous, this neutral surface may be
assumed to pass through the middle of the plate thickness (see Fig. 16.1). The coordinate
system is accordingly taken so that the normal to the plane of the plate is the zaxis, whereas
the plane of the plate is in the x-y plane. Displacement components within the plane are
assumed to be negligible compared to those normal to the plate. The displacement normal
to the plate, along the z axis, is designated as w. Thus, along the neutral plane

u(0)
x = u(0)

y = 0, u(0)
z = w(x, y). (16.1)

For small deflections of the plate, the displacement w is assumed to be small compared
to the thickness h of the plate. Because plate is assumed to be so thin, the forces acting
on the plate surface that induce deformation are typically small. Stresses within the plate,
however, due to bending and shear are not. Accordingly, the plate surface is approximated
as being stress free so that, if n is the normal to the plate,

n · σ = 0 � σi j n j = 0. (16.2)

Moreover, since the deformations are small, i.e., the plates are but slightly bent, it may be
assumed that, n ≈ ez where ez is the unit base vector along the z axis. Thus we take as an
approximation that σxz = σyz = σzz = 0. The linear elastic constitutive relations yield

σxz = E
1 + ν exz, σyz = E

1 + ν eyz,

σzz = E
(1 + ν)(1 − 2ν)

[(1 − ν)ezz + ν(exx + eyy)].
(16.3)

280
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w x

z

h/

h/2

2

Figure 16.1. Coordinate geometry of a thin
plate that undergoes deflection w.

When the definitions of the small strains are recalled, and if we take uz = w(x, y), it is
found that

∂ux

∂z
= −∂w

∂x
,

∂uy

∂z
= −∂w

∂y
,

ezz = − ν

1 − ν (exx + eyy) .
(16.4)

Thus, plane cross sections remain plane and orthogonal to the midsurface of the plate. The
first two of (16.4) are integrated wrt z to find that

ux = −z
∂w

∂x
, uy = −z

∂w

∂y
. (16.5)

The constants of integration were made equal to zero, so that the displacements would be
zero at z = 0. Now, the nonzero strain components can be calculated as

exx = −z
∂2w

∂x2
, eyy = −z

∂2w

∂y2
, exy = −z

∂2w

∂x∂y
,

exz = eyz = 0, ezz = ν

1 − ν z
(
∂2w

∂x2
+ ∂2w

∂y2

)
.

(16.6)

It may be noticed, in retrospect, that from the last expression for ezz and the relationship
ezz = ∂uz/∂z, the integration gives

uz = ν

1 − ν
z2

2
∇2w + w(x, y) . (16.7)

Because the plate is thin, this is approximately equal to w, in accord with the initial as-
sumption uz = w(x, y). The same order of approximation is common in the beam bending
theory. The underlying assumptions used in the above formulation of thin plate theory are
known as the Kirchhoff hypotheses.

16.2 Energy of Bent Plates

The elastic strain energy density of a plate can be expressed as

W = 1
2
σi j ei j = z2 E

1 + ν

{
1

2(1 − ν)

(
∂2w

∂x2
+ ∂2w

∂y2

)2

+
[(

∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]}
.

The total elastic energy is obtained by integrating this expression throughout the plate.
If the thickness of the plate is h, so that z runs from z = − 1

2 h to z = 1
2 h, and because the

deformations are small, it may be assumed that the area element in the plane of the plate
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is still just dxdy. Therefore, the total elastic energy of the plate is

W =
∫

V
W dV = Eh3

24(1 − ν2)
(16.8)

×
∫∫

A

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

+ 2(1 − ν)

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]}
dx dy.

The plate is assumed to be thin and to deform uniformly through the thickness.

16.3 Equilibrium Equations for a Plate

Imagine a variation in deflection, δw; we wish to calculate the accompanying variation in
strain energy δW . To begin, examine the first term in the integral in (16.8), i.e., the integral
of 1

2 (∇2w)2. The factor 1/2 is placed for later convenience. It follows that

δ
1
2

∫∫
A
(∇2w)2 dx dy =

∫∫
A
∇2w∇2δw dx dy

=
∫∫

A
∇2w div (grad δw) dx dy (16.9)

=
∫∫

A
div (∇2w grad δw) dx dy −

∫∫
A

grad δw · grad ∇2w dx dy.

The above transformation is verified with the help of the following identity, phrased in
component form as

div
(∇2w grad δw

) = ∂

∂xj

(
∇2w

∂δw

∂xj

)
= ∂∇2w

∂xj

∂δw

∂xj
+ ∇2w ∇2δw.

The divergence theorem enables an immediate transformation of the first integral in
(16.9), i.e.,

∫∫
A

div(∇2w grad δw) dx dy =
∮

C
∇2w(n · grad δw) d� =

∮
C

∇2w
∂δw

∂n
d�, (16.10)

where ∂/∂n denotes a derivative along the outward pointing normal to C, the curve bound-
ing the plate area A. The second integral in (16.9) is transformed as

∫∫
A

grad δw · grad ∇2w dx dy =
∫∫

A
div (δw grad∇2w) dx dy −

∫∫
A
δw∇4w dx dy

=
∮

C
δw (n · grad ∇2w) d�−

∫∫
A
δw∇4w dx dy

=
∮

C
δw
∂∇2w

∂n
d�−

∫∫
A
δw∇4w dx dy.
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x

y n

θ Figure 16.2. Coordinates for a plate’s edge.

The above transformation can be verified by forming the following identity

div
(
δw grad ∇2w

) = ∂

∂xj

(
δw
∂∇2w

∂xj

)

= ∂δw

∂xj

∂∇2w

∂xj
+ δw ∂

∂xj

∂

∂xj
∇2w,

where the operator ∂
∂xj

∂
∂xj

∇2w = ∇4w is the biharmonic operator. When these results are
combined, there follows

δ
1
2

∫∫
A
(∇2w)2 dx dy =

∫∫
A
δw∇4w dx dy −

∮
C
δw
∂∇2w

∂n
d�+

∮
C

∇2w
∂δw

∂n
d�. (16.11)

Attention is now turned to the second term in (16.8). We want to evaluate

δ

∫∫
A

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
dx dy

=
∫∫

A

(
2
∂2w

∂x∂y
∂2δw

∂x∂y
− ∂2w

∂x2

∂2δw

∂y2
− ∂2δw

∂x2

∂2w

∂y2

)
dx dy.

(16.12)

The integrand can be rewritten as the divergence of a certain vector, viz.,

I = ∂

∂x

(
∂δw

∂y
∂2w

∂x∂y
− ∂δw

∂x
∂2w

∂y2

)
+ ∂

∂y

(
∂δw

∂x
∂2w

∂x∂y
− ∂δw

∂y
∂2w

∂x2

)
.

Thus, after using the Stokes formula (2.3), we have

δ

∫∫
A

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
dx dy

=
∮

C
d� cos θ

(
∂δw

∂y
∂2w

∂x∂y
− ∂δw

∂x
∂2w

∂y2

)

+
∮

C
d� sin θ

(
∂δw

∂x
∂2w

∂x∂y
− ∂δw

∂y
∂2w

∂x2

)
,

(16.13)

where θ is the angle that the outward pointing normal to the edge of the plate makes with
the x axis.

The derivatives appearing in the expression for I are expressed in terms of n and �
(Fig. 16.2) as

∂

∂x
= cos θ

∂

∂n
− sin θ

∂

∂�
,

∂

∂y
= sin θ

∂

∂n
+ cos θ

∂

∂�
.

(16.14)
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When these are used in (16.13), and terms rearranged, the result is assembled and combined
with the contributions from (16.11). The total variation in W is found to be

δW = Eh3

12(1 − ν2)
(I1 + I2 + I3), (16.15)

where

I1 =
∫∫

A
∇4w δw dx dy,

I2 = −
∮

C
δw
∂∇2w

∂n
d�

−
∮

C
δw(1 − ν)

∂

∂�

[
sin θ cos θ

(
∂2w

∂y2
− ∂2w

∂x2

)
+ (cos2 θ − sin2 θ)

∂2w

∂x∂y

]
d� ,

and

I3 =
∮

C

∂δw

∂n

[
∇2w + (1 − ν)

(
2 sin θ cos θ

∂2w

∂x∂y
− sin2 θ

∂2w

∂x2
− cos2 θ

∂2w

∂y2

)]
d�.

The variation we wish to perform to determine the equilibrium configuration of the
plate is that of the potential energy. For this we seek configurations that minimize %. We
thus require

δ% = δW −
∫∫

A
pδw dx dy = 0. (16.16)

This variation includes both surface and line integral terms, which must both vanish. For
the surface integrals we obtain∫∫

A

[
Eh3

12(1 − ν2)
∇4w − p

]
δw dx dy = 0. (16.17)

Since the variation in δw is arbitrary, this integral can only vanish if

Eh3

12(1 − ν2)
∇4w − p = 0 , (16.18)

i.e.,

∇4w = p
D
, D = Eh3

12(1 − ν2)
. (16.19)

The coefficient D is the so-called flexural rigidity of the plate. The distributed load over the
plate in the z direction is p = p(x, y).

Boundary conditions are obtained by setting the line integrals to zero. If the edges of
the plate are free, i.e., no external forces act on them, δw and δ∂w/∂n are arbitrary and
thus the integrands of the line integrals must vanish at each point on the plate’s edge. This
gives

∂∇2w

∂n
+ (1 − ν)

∂

∂�

[
sin θ cos θ

(
∂2w

∂y2
− ∂2w

∂x2

)
+ (cos2 θ − sin2 θ)

∂2w

∂x∂y

]
= 0, (16.20)
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a

b
Figure 16.3. (a) Clamped vs. (b) simply supported edge conditions.

and

∇2w + (1 − ν)
(

2 sin θ cos θ
∂2w

∂x∂y
− sin2 θ

∂2w

∂x2
− cos2 θ

∂2w

∂y2

)
= 0. (16.21)

If, instead, the plate’s edges are clamped, we have w = 0 and ∂w/∂n = 0 (Fig. 16.3). The
shear force and moment are readily calculated as follows. For example, the force Q acting
on an edge point of the plate is given by Q = ∂W/∂w, because δW = Qδw. But, looking
at I2 in (16.16), we see that its integrand is just this derivative devided by −D, because
of the sign ahead of the integral. Likewise, the moment M at an edge point is related to
energy changes as δW = M∂δw/∂n because ∂δw/∂n represents, in an infinitesimal strain
theory, the variation in rotation angle the moment acts on. But this is just the integrand of
I3 in (16.3) devided by D. It can be shown, with the use of (16.14) and taking θ = 0 after
differentiation, that these reduce to

Q = D
(
∂3w

∂n3
+ ν ∂θ

∂�

∂2w

∂n2

)
,

M = D
∂2w

∂n2
.

(16.22)

A third type of condition is where the edges lie on fixed supports so that w = 0, but
the edges are free to rotate and thus support no moment. Also δw = 0, but ∂δw/∂n 
= 0.
Thus (16.21) remains valid, but (16.22) no longer holds, in general. The reaction force is
still given by the first of (16.22) at points where the edge is supported, but at such points
the reaction moment is zero. The boundary condition (16.21) can be simplified by noting
thatw = 0 when the edges are supported, and that ∂w/∂� = 0 and ∂2w/∂�2 = 0 as well. In
that case,

w = 0,
∂2w

∂n2
+ ν ∂θ

∂�

∂w

∂n
= 0. (16.23)

In deriving these formulas, as in (16.22), the angle θ may, without loss of generality, be
set to zero after differentiation. This simply means that we choose to measure θ from the
normal at the point at which the boundary condition is invoked.

16.4 Shear Forces and Bending and Twisting Moments

The following expressions hold for the shear forces and bending and twisting moments per
unit length of a rectangular plate (Fig. 16.4),

Qx = D
∂

∂x

(∇2w
)
, Qy = D

∂

∂y

(∇2w
)
, (16.24)

Mx = D
(
∂2w

∂x2
+ ν ∂

2w

∂y2

)
,
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Figure 16.4. Positive directions of the shear force,
bending and twisting moments in a rectangular plate
element.

My = D
(
∂2w

∂y2
+ ν ∂

2w

∂x2

)
, (16.25)

Mxy = D(1 − ν)
∂2w

∂x∂y
.

From equilibrium conditions they are related by

∂Qx

∂x
+ ∂Qy

∂y
= p ,

∂Mx

∂x
+ ∂Mxy

∂y
= Qx , (16.26)

∂Mxy

∂x
+ ∂My

∂y
= Qy .

The effective shear forces (that need vanish at free edges) are

Vx = Qx + ∂Mxy

∂y
, Vy = Qy + ∂Mxy

∂x
. (16.27)

Finally, the stress components in the plate are

σxx = −12Mx

h3
z , σyy = −12My

h3
z , σxy = −12Mxy

h3
z . (16.28)

If we define

M = 1
1 + ν (Mx + My) , (16.29)

we also have

∇2w = M
D
, ∇2 M = p ,

Qx = ∂M
∂x

, Qy = ∂M
∂y
.

(16.30)

In the case of circular plate, the shear forces (per unit length) can be determined from

Qr = D
∂

∂r

(∇2w
)
, Qθ = D

1
r
∂

∂θ

(∇2w
)
. (16.31)
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Figure 16.5. Positive directions of the shear force, bending and
twisting moments in a plate element in polar coordinates.

The bending and twisting moments per unit length (Fig. 16.5) are

Mr = D
[
∂2w

∂r2
+ ν

(
1
r
∂w

∂r
+ 1

r2

∂2w

∂θ2

)]
,

Mθ = D
(

1
r
∂w

∂r
+ 1

r2

∂2w

∂θ2
+ ν ∂

2w

∂r2

)
, (16.32)

Mrθ = D(1 − ν)
(

1
r
∂2w

∂r∂θ
− 1

r2

∂w

∂θ

)
.

The effective shear forces are given by

Vr = Qr + 1
r
∂Mrθ

∂θ
, Vθ = Qθ + ∂Mrθ

∂r
. (16.33)

The corresponding stress components are

σrr = −12Mr

h3
z , σθθ = −12Mθ

h3
z , σrθ = −12Mrθ

h3
z . (16.34)

16.5 Examples of Plate Deformation

16.5.1 Clamped Circular Plate

Consider a circular plate of radius a, clamped around its edge, and loaded under the action
of gravity. Let the mass density be ρ, and the plate’s thickness h. We seek a solution for
the deflection of the plate. In the equation of equilibrium (16.19), we identify p = −ρhg,
where g is the gravitational acceleration constant. Thus,

∇4w = 64β, (16.35)

where β = −3ρg(1 − ν)/16h2 E is a constant factor, made for convenience. Since the plate
is circularly symmetric, w = w(r) only, and we have

∇2w = 1
r

d
dr

(
r

dw
dr

)
, (16.36)

and

∇4w = 1
r

d
dr

{
r

d
dr

[
1
r

d
dr

(
r

dw
dr

)]}
. (16.37)
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As noted in Chapter 10, and in particular in equation (10.58), the general integral of
(16.35) is

w(r) = βr4 + Ar2 + B + Cr2 ln
r
a

+ F ln
r
a
. (16.38)

The particular solution βr4 is included to account for the right-hand side of (16.35). We
can set F = 0 because w is bounded everywhere, including at r = 0. Also, we set C = 0
since its term produces a singularity at r = 0 in ∇2w. The boundary conditions are that
at r = a, w = 0 and dw/dr = 0. With these, A and B are determined easily with the end
result for the deflection,

w(r) = β(a2 − r2)2. (16.39)

16.5.2 Circular Plate with Simply Supported Edges

Consider a circular plate, again loaded by gravity force, whose edges are simply supported
so that the boundary conditions (16.23) apply. Because for this circular plate dθ/d� = 1/r ,
the conditions in (16.23) become

w = 0,
d2w

dr2
+ ν

r
dw
dr

= 0, on r = a. (16.40)

The solution for w is similar as in previous case, and by invoking the conditions (16.40), it
is found that

w(r) = β(a2 − r2)
(

5 + ν
1 + ν a2 − r2

)
. (16.41)

16.5.3 Circular Plate with Concentrated Force

If a clamped circular plate is loaded by a concentrated force of magnitude f at its center,
we can write p = f δ(r). The integration of (16.19) then yields

2π
∫ a

0
r∇4w dr = 12(1 − ν2)

Eh3

∫
A

f δ(r) dA= 12(1 − ν2)
Eh3

f. (16.42)

In this case of a concentrated point force, the term involving the coefficient C is retained
so that the solution for w becomes

w(r) = Ar2 + B + Cr2 ln
r
a
. (16.43)

When (16.43) is used in (16.42), it is found that C = 3(1 − ν2) f/2πEh3. The clamped
boundary conditions,w = 0 and dw/dr = 0 at r = a, yield the coefficients Aand B, so that

w(r) = 3 f (1 − ν2)
2πEh3

[
1
2

(a2 − r2) − r2 ln
a
r

]
. (16.44)

16.5.4 Peeled Surface Layer

Imagine a thin surface layer peeled off a thick elastic body, as shown in Fig. 16.6. The
resistance is due to adhesive forces between the layer and the block. We seek a relation
between the surface energy and a measurable feature of the process, such as the shape of
the peeled layer. Note that the work done in decohering the layer is given by γ̄ = 2γ0 − γa ,
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w x

z

h

Figure 16.6. Peeled layer.

where γ0 is the surface energy of a newly created interface (of which there are two with
a surface energy of γ0), and γa is the surface energy of the initial adhesive layer (which is
destroyed by the peeling process).

The layer is treated as a thin plate with one edge clamped at the edge being torn off. As
above, the angle made by the layer, to first order, is ∂w/∂x, and its variation is ∂δw/∂x.
Thus the increment of work done by the moment M, given by the second of (16.22), and
working through an increment of extension δx, is

M
∂δw

∂x
= M

δx∂2w

∂x2
. (16.45)

By equating this increment of work to γ̄ δx, we find

γ̄ = Eh3

12(1 − ν2)

(
∂2w

∂x2

)2

. (16.46)

16.6 Rectangular Plates

There are cases, other than those involving circular plates, where closed form solutions are
possible. Notable among them are cases concerning plates with rectangular shapes such as
illustrated in Fig. 16.7. We will take as a specific example cases where the edges are simply
supported, so that displacements normal to the plate and moments vanish at the edges.
The equation of equilibrium for a plate is

∇4w(x, y) = p(x, y)/D, (16.47)

where D = Eh3/12(1 − ν2) is the plate flexural rigidity. To meet the boundary conditions
of w = 0 at x = 0, a and y = 0,b, as well as the condition of vanishing moment there, w is
expanded in a double Fourier sine series

w(x, y) =
∞∑

m=1

∞∑
n=1

wmn sin
mπx

a
sin

nπy
b
. (16.48)

x

y

a

b

Figure 16.7. Geometry of a rectangular thin plate with simply supported edges.
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The boundary conditions,

w(0, y) = w(a, y) = w(x, 0) = w(x,b) = 0, (16.49)

are naturally satisfied. The moments are computed from the normal stresses, that in turn
are computed from the second derivatives of w(x, y), viz., w,xx and w,yy , which likewise
vanish along the edges. To satisfy the plate equilibrium equation, we expand the load
function, p(x, y), in a similar double sine series, viz.,

p(x, y) =
∞∑

m=1

∞∑
n=1

pmn sin
mπx

a
sin

nπy
b
. (16.50)

The usual procedure, outlined below in a specific example, is used to compute the Fourier
coefficients pmn.

When (16.50) and (16.48) are substituted into (16.47), and the coefficients of like har-
monics equated, it is found that

wmn = pmn

π4 D
1

[(m/a)2 + (n/b)2]2
. (16.51)

Thus,

w(x, y) = 1
π4 D

∞∑
m=1

∞∑
n=1

pmn

[(m/a)2 + (n/b)2]2
sin

mπx
a

sin
nπy

b
. (16.52)

16.6.1 Uniformly Loaded Rectangular Plate

For a uniformly loaded plate we let p(x, y) = p0, and (16.50) becomes

p0 =
∞∑

m=1

∞∑
n=1

pmn sin
mπx

a
sin

nπy
b
. (16.53)

To obtain the coefficients, multiply both sides by sin(rπx/a) sin(sπy/b), where r and s are
integers, and integrate over the area of the plate. Then,∫ a

0

∫ b

0
p0 sin

rπx
a

sin
sπy

b
dx dy

=
∞∑

m=1

∞∑
n=1

pmn

∫ a

0
sin

rπx
a

sin
mπx

a
dx

∫ b

0
sin

sπy
b

sin
nπy

b
dy.

To evaluate the above integrals, recall that∫ a

0
sin

rπx
a

sin
mπx

a
dx =

{
a/2, r = m,

0, r 
= m.
(16.54)

Since,

p0

∫ a

0
sin

rπx
a

dx
∫ b

0
sin

sπy
b

dy

= p0
a

rπ
[cos(rπ) − 1]

b
sπ

[cos(sπ) − 1] =
⎧⎨
⎩

0, r or s even,
4ab

π2rs
p0, r and s odd,

(16.55)
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we obtain

pmn = 16p0

π2mn
, m,n = 1, 3, 5, . . . , (16.56)

and

w(x, y) = 16
π6 D

p0

∞∑
m=1,3,5

∞∑
n=1,3,5

1
mn

1
[(m/a)2 + (n/b)2]2

sin
mπx

a
sin

nπy
b
. (16.57)

16.7 Suggested Reading
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Szilard, R. (2004), Theories and Applications of Plate Analysis: Classical, Numerical, and
Engineering Methods, Wiley, Hoboken, New Jersey.

Timoshenko, S. P., and Woinowsky-Krieger, S. (1987), Theory of Plates and Shells, 2nd ed.,
McGraw-Hill, New York.

Ugural, A. C. (1999), Stresses in Plates and Shells, 2nd ed., McGraw-Hill, Boston.
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PART 4: MICROMECHANICS

17 Dislocations and Cracks: Elementary Treatment

17.1 Dislocations

Consider the plane strain deformation and the Airy stress function of the form

φ = Cr ln r cos θ, C = const. (17.1)

The corresponding stresses are obtained by using the general expressions from Chapter 10,
i.e., (10.4)–(10.6). They give

σrr = 1
r
∂φ

∂r
+ 1

r2

∂2φ

∂θ2
= C

cos θ
r
,

σrθ = − ∂

∂r

(
1
r
∂φ

∂θ

)
= C

sin θ
r
,

σθθ = ∂2φ

∂r2
= C

cos θ
r
.

(17.2)

The elastic strains may then be deduced from stresses by Hooke’s law. The displacements
are then obtained from strains by integration. The end result is

ur = C
G

[(1 − ν)θ sin θ − 1/4 cos θ + 1/2(1 − 2ν) ln r cos θ ],

uθ = C
G

[(1 − ν)θ cos θ − 1/4 sin θ − 1/2(1 − 2ν) ln r sin θ ].

(17.3)

Details of the derivation are given in the subsection below. The shear modulus is G, and ν is
the Poisson’s ratio. Clearly, the displacement field in this case is nonsingle valued, because

ur (θ = 0) − ur (θ = 2π) = 0,

uθ (θ = 0) − uθ (θ = 2π) = −2πC(1 − ν)
G

≡ b.
(17.4)

The physical scenario associated with this is illustrated in Fig. 17.1, which shows that the
dislocation is created, in a heuristic manner, by first making a cut, and then creating a gap
of width b, or removing a slab of material of thickness b, and then rejoining the two sides
of the cut. In the case where material has been removed the empty gap would be filled with

293
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y

x
θ

r

u (2π)θ

u (0)θ

gap=b

Figure 17.1. Dislocation created by a displacement discontinuity uθ (0) −
uθ (2π) = b.

material of identical properties. The body is left in the state of stress

σrr = − Gb
2π(1 − ν)

cos θ
r
,

σrθ = − Gb
2π(1 − ν)

sin θ
r
,

σθθ = − Gb
2π(1 − ν)

cos θ
r
.

(17.5)

The magnitude of the so-called Burgers vector of the dislocation is b. The stresses are singu-
lar at the center of dislocation (r = 0), and have both a shear and hydrostatic component.
For plane strain,

σzz = ν(σrr + σθθ ), (17.6)

and thus the average normal stress is

σh = 1
3

(σrr + σθθ + σzz) = −Gb(1 + ν)
3π(1 − ν)

cos θ
r
. (17.7)

Note that if the dislocation were to move, say along the x axis, this motion would result
in a displacement, u = bey across the sections of plane so spanned by this motion. This
feature allows for the construction of the stress field of a crack, as demonstrated in the
next section. The vital role played by dislocations in the process of plastic deformation is
dealt with in detail in later chapters of this book.

17.1.1 Derivation of the Displacement Field

Since the displacement field associated with (17.1) is nonsingle valued, the approach to
derive Eqs. (17.3) is outlined here. The reader is directed to Tables 23.1–23.5 in Chapter 23
for further details on stress and displacement fields in polar coordinates.

The radial strain component is

err = ∂ur

∂r
= 1

E
[σrr − ν(σθθ + σzz)], (17.8)

which, in the present case of plane strain, becomes

∂ur

∂r
= C(1 − 2ν)

2G
cos θ

r
. (17.9)

When integrated this yields

ur = C(1 − 2ν)
2G

ln r cos θ + f (θ) , (17.10)

where f (θ) is the integration function.
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Next consider the circumferential component of strain eθθ . From its definition in terms
of the displacement components, we find

∂uθ
∂θ

= reθθ − ur . (17.11)

When eθθ is constructed and (17.10) used in (17.11), the integration gives

uθ = C(1 − 2ν)
2G

sin θ − C(1 − 2ν)
2G

ln r sin θ − F(θ) + g(r) , (17.12)

with F(θ) = ∫
f (θ)dθ . Furthermore, recalling the definition of the shear strain

erθ = 1
2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
, (17.13)

and observing that F ′′(θ) = f ′(θ), there follows

2C(1 − ν)
G

sin θ
r

= F ′′(θ)
r

+ F(θ)
r

+ g′(r) − g(r)
r
, (17.14)

or

F ′′(θ) + F(θ) − 2C(1 − ν)
G

sin θ = rg′(r) − g(r) = K , (17.15)

where K is a constant. The solution for F(θ) and g(r) are, accordingly,

F(θ) = −C(1 − ν)
G

θ cos θ + AC
G

sin θ + BC
G

cos θ + K , (17.16)

and

g(r) = Kr + H . (17.17)

The additional constants K and H correspond to rigid body motion and can be disregarded.
The constants Aand B, associated with the homogeneous solution to (17.15) are fixed by
imposing the consistency of f (θ) with the known strains. Since

f (θ) = −C(1 − ν)
G

cos θ + C(1 − ν)
G

θ sin θ + AC
G

cos θ − BC
G

sin θ , (17.18)

if (17.10) and (17.12) is to reproduce the known strains err , eθθ , and erθ , we must have

A= 1
4

(3 − 4ν) , B = 0 . (17.19)

This specifies F(θ) and thus the displacement components ur and uθ , with the end results
as in (17.3).

17.2 Tensile Cracks

Consider the boundary value problem associated with a slitlike crack of length 2a, illus-
trated in Fig. 17.2. The crack lies within an infinite medium. We assume, as in the case of
of the dislocation described above, a plane strain state. Thus the crack is infinitely deep in
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a-a x

yσο

σο

Figure 17.2. Center cracked panel.

the direction normal to the x-y plane. The block is subject to a far field tensile stress of
magnitude σ0. Boundary conditions are then

σxy = σyy = 0 on − a ≤ x ≤ a, y = 0,

σyy → σ0 at r → ∞,
σxx, σxy → 0 at r → ∞.

(17.20)

This may be solved using a simple method of linear superposition of two companion
problems. For the first problem we take a simple homogeneous solution

σ (1)
yy = σ0, σ (1)

xx , σ
(1)
xy = 0. (17.21)

For the second problem, we require

σ (2)
xy = 0, σ (2)

yy = −σ0 on − a ≤ x ≤ a, y = 0,

σ (2)
xx , σ

(2)
yy , σ

(2)
xy → 0 at r → ∞.

(17.22)

Clearly, the stress state created asσ = σ(1) + σ(2) will satisfy the crack boundary conditions
expressed in (17.20). Problem (2) will be solved by the linear superposition of dislocation
solutions obtained in the previous section. This is described next.

Let B(ξ)dξ represent a continuous density of dislocations distributed between ξ and
ξ + dξ (Fig. 17.3). The coordinate ξ is to lie on the x axis, between −a ≤ ξ ≤ a. This
density will produce the stress

σyy(x, 0) = σθθ (r, 0) = − GB(ξ)dξ
2π(1 − ν)(x − ξ)

. (17.23)

The stress produced by the distribution of dislocations along the entire length of the crack
is

σyy(x, 0) = − G
2π(1 − ν)

∫ a

−a

B(ξ) dξ
x − ξ = −σ0, (17.24)

and thus ∫ a

−a

B(ξ) dξ
x − ξ = 2π(1 − ν)σ0

G
, −a ≤ x ≤ a. (17.25)

σο

σο

Figure 17.3. Distribution of dislocations.
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To solve this singular integral equation introduce the variables φ and θ , such that

x = a cosφ, ξ = a cos θ. (17.26)

The equation (17.25) then becomes∫ π

0

B(θ) sin θ dθ
cosφ − cos θ

= 2π(1 − ν)σ0

G
, 0 ≤ φ ≤ π. (17.27)

Call

A= 2π(1 − ν)σ0

G
(17.28)

for brevity, and note the result∫ π

0

cos(nθ) dθ
cosφ − cos θ

= −π sin(nθ)
sinφ

. (17.29)

Having this in mind, let B(θ) be expanded in a Fourier series, viz.,

B(θ) =
∞∑

n=0

pn
cos(nθ)

sin θ
. (17.30)

Then, ∫ π

0

∑∞
n=0 pn cos(nθ)

cosφ − cos θ
dθ = A, (17.31)

i.e.,
∞∑

n=0

∫ π

0

pn cos(nθ)
cosφ − cos θ

dθ = A. (17.32)

Using the result from (17.29), this becomes

−
∞∑

n=0

pn
π sin(nφ)

sinφ
= A. (17.33)

In fact, with n = 1, we have p1 = −A/π and

B(θ) = −2σ0(1 − ν)
G

cos θ
sin θ

+ C
sin θ

, (17.34)

or

B(ξ) = −2σ0(1 − ν)
G

ξ√
a2 − ξ 2

+ C
sin θ

. (17.35)

But the dislocation distribution is an odd function of ξ , as there are no net dislocations
on −a ≤ ξ ≤ a. Consequently,∫ a

−a
B(ξ) dξ = 0 ⇒ C = 0, (17.36)

and

B(ξ) = −2σ0(1 − ν)
G

ξ√
a2 − ξ 2

. (17.37)
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This means that

σ (2)
yy = − G

2π(1 − ν)

∫ a

−a

B(ξ) dξ
x − ξ = σ0

π

∫ a

−a

ξ dξ

(x − ξ)
√

a2 − ξ 2

= σ0

(
−1 + |x|√

x2 − a2

)
, x ≥ 0, y = 0.

Now, recall that the full solution is σ = σ(1) + σ(2). For example, on the crack line ahead
or behind the crack tip, we obtain

σyy = σ0|x|√
x2 − a2

, |x| ≥ a, y = 0. (17.38)

Near the tip, say at x = a + ε, where ε � a, we have

σyy → σ0(a + ε)√
2aε + ε2

∼ σ0

√
a
2ε
, on y = 0. (17.39)

If we write that on the crack line, just ahead of the tip,

σyy(r, 0) = KI√
2πr

, (17.40)

where r is measured from the crack tip, then

KI = σ0
√
πa , (17.41)

which is the so-called stress intensity factor for this center cracked panel geometry.
Other components of stress may be generated by integration of those associated with

individual dislocations.

17.3 Suggested Reading

Broek, D. (1987), Elementary Engineering Fracture Mechanics, 4th ed., Martinus Nijhoff,
Dordrecht, The Netherlands.

Cherepanov, G. P. (1979), Mechanics of Brittle Fracture, McGraw-Hill, New York.
Friedel, J. (1964), Dislocations, Pergamon, New York.
Gdoutos, E. E. (1993), Fracture Mechanics: An Introduction, Kluwer Academic, Dordrecht,

The Netherlands.
Hull, D., and Bacon, D. J. (1999), Introduction to Dislocations, 3rd ed., Butterworth-

Heinemann, Boston.
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18 Dislocations in Anisotropic Media

18.1 Dislocation Character and Geometry

Imagine a cut made within an otherwise unbounded elastic medium, where the cut is
over an open surface, Scut, that is bounded by a line, C (see Fig. 18.1). To create the
dislocation, material is displaced everywhere across the cut surface by a constant vector, b.
The displacement vector b is called the Burgers vector. Where such a displacement would
cause a gap, extra material is imagined inserted so as to make the body continuous. Where
such displacement would cause material to interpenetrate, the excess material is imagined
scraped away. At all points on Scut, the surface is re-bonded so that all further displacements
are continuous. We note that this process causes the displacement field to be nonsingle
valued across Scut. In fact, if C is the line bounding the cut surface, and R is a closed circuit
surrounding C at any point on C, then∮

R

∂u
∂xm

dxm = b, (18.1)

where u is the displacement, and the integral is taken counterclockwise with t, the unit
tangent to C, taken in the positive sense. Note that the unit tangent t is continuous as
the dislocation line, C, is traversed. At points on the dislocation line, where t ‖ b, t · b =
±b, whereas at points where t ⊥ b, t · b = 0. We say that at the former type of point the
dislocation line has screw dislocation character, whereas at the latter type of point the
line has edge dislocation character. In general, the dislocation line has a mixed character
and has both edge and screw character. The figure illustrates a dislocation line that has
extended screw segments and hairpin type loop segments that, at points, have primarily
edge character. The elastic field is caused by the displacement jump across Scut as measured
specifically by (18.1); there are no body forces or applied traction. Thus, the dislocation
represents a purely internal source of stress.

To construct the elastic field, consider the identity

um(x) =
∫ ∞

−∞
δimδ(x − x′)ui (x′) d3x′ (18.2)

and recall that

δimδ(x − x′) = −Ci jkl
∂2Gkm

∂xl∂xj
, (18.3)

299



P1: FBQ

0521859794c18.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:37

300 18. Dislocations in Anisotropic Media

(1)

(2)

b
b

t

t

t

t

e
3

e
2

e
1

cut
surface

(+)

(-)

C

Figure 18.1. Dislocation loop and cut surface.

where G is the Green’s function. Thus, formally, the displacement field of the dislocation
can be written as

um(x) = −Ci jkl

∫ ∞

−∞

∂2Gkm

∂xl∂xj
ui (x′) d3x′. (18.4)

Since G is a function of x − x′, we may write

∂

∂xj
Gkm(x − x′) = − ∂

∂x′
j

Gkm(x − x′), (18.5)

and

um(x) = Ci jkl

∫ ∞

−∞

∂

∂xl

[
∂Gkm(x − x′)

∂x′
j

ui (x′)

]
d3x′ (18.6)

= Ci jkl

∫ ∞

−∞

∂

∂xl

{
∂

∂x′
j
[Gkm(x − x′)ui (x′)] − Gkm

∂ui (x′)
∂x′

j

}
d3x′.

We next examine the second integral in (18.6), viz.,

I = −Ci jkl

∫ ∞

−∞

∂

∂xl

(
Gkm

∂ui

∂x′
j

)
d3x′. (18.7)

First note that the stress field of the dislocation is calculated from the linear elastic consti-
tutive relation as

σkl(x′) = Ci jkl
∂ui (x′)
∂x′

j
, (18.8)

because of the inherent symmetry in elastic moduli C. Noting (18.5) again, along with the
fact that σkl,l = 0 by equilibrium, the integral I may be rewritten as

I =
∫ ∞

−∞

∂

∂x′
l

(Gkmσkl) d3x′ =
∫

S∞
Gkmσkl(x′) dS′, (18.9)

where S∞ is a bounding surface that retreats to infinity in the unbounded medium.
But the dislocation is actually a loop, as illustrated in Fig. 18.1, and thus possesses both

positive a negative segments, i.e., segments for which t · b > 0 and t · b < 0. At a distance,
then, the elastic fields must fall off at least as fast as 1/r2, where r is the radial distance
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Figure 18.2. Cross section of the cut surface.

from the centroid of the loop. This is shown via specific example below. In fact, the fall off
of the field is more like 1/r3, as will be verified. Moreover, the Green’s function G falls off
as 1/r . Thus the integrand of the second integral of (18.9) falls off at least as fast as 1/r3,
or even as fast as 1/r4. Thus I → 0. The result for u is then

um(x) = Ci jkl

∫ ∞

−∞

∂

∂xl

∂

∂x′
j

[Gkmui (x′)] d3x′, (18.10)

or, for the distortions,

∂um(x)
∂xr

= um,r (x) = Ci jkl

∫ ∞

−∞

∂2

∂xl∂xr

∂

∂x′
j

[Gkmui (x′)] d3x′

= Ci jkl
∂2

∂xl∂xr

∫ ∞

−∞

∂

∂x′
j

[Gkmui (x′)] d3x′.

(18.11)

An application of the divergence theorem yields

um,r (x) = Ci jkl

∫
S

∂2

∂xl∂xr
Gkmui (x′)nj dS′, (18.12)

where S = Scut + S∞. Since Gkm,lr ∼ 1/r3 and, as it happens, u also falls off with distance,
the integral over S∞ vanishes. What remains is the integral over Scut. But across Scut the dis-
placement jump is u− − u+ = b, on account of relation (18.1). Also, the outward pointing
normal to the infinite medium is such that the unit normal to S−

cut, n−, points in the positive
direction as illustrated in Fig. 18.2. Thus we take n = n− as the common unit normal to
Scut, and write

um,r (x) = Ci jkl

∫
Scut

Gkm,lr (x − x′)bi n j dS′. (18.13)

This is known as the Volterra’s integral.
The surface integral may be converted to an integral over the bounding line C of the

dislocation using Stoke’s theorem in the form∫
Scut

εl jkϕr,kn j dS′ =
∮
C
ϕr tl ds, (18.14)

where t is the running unit tangent vector to C, and ds is an element of arc length. The
integral in (18.13) may be rephrased as

um,r (x) = Ci jkl

∫
Scut

Gkm,lr (x − x′)bi n j dS′

=
∫

Scut

ψmr
j n j dS′.

(18.15)
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Letting

ϕmr
j = εnjp Xnψ

mr
p , Xn = xn − x′

n, (18.16)

it follows that

ϕmr
j,k = εnjp Xn,kψ

mr
p + εnjp Xnψ

mr
p,k

= εkjpψ
mr
p + εnjp Xnψ

mr
p,k,

(18.17)

and

ε jksϕ
mr
j,kns = ε jksεkjpψ

mr
p ns + ε jksεnjp Xnψ

mr
p,kns

− 2ψmr
s ns − ψmr

p,kXknp.
(18.18)

Since ψmr
p is homogeneous of degree −3, we have(

Xiψ
mr
p

)
,i

= 0, Xkψ
mr
p,k = −3ψmr

p . (18.19)

Then,

ε jksϕ
mr
j,kns = ψmr

p np, (18.20)

and ∫
Scut

ε jksϕ
mr
j,kns dS′ =

∫
Scut

ε jks
(
εnjp Xnψ

mr
p

)
,k

ns dS′

= −
∮
C
εnjp Xnψ

mr
p t j ds .

(18.21)

Consequently,

um,r (x) = −
∮
C
εnjp(xn − x′

n)t j bi CipsqGmq,sr ds. (18.22)

Note that this conversion demonstrates an important fact that dislocations are character-
ized by the line as described by t and their Burgers vector b; the cut surface used to create
them then becomes arbitrary, as expected.

18.2 Dislocations in Isotropic Media

In this section expressions are derived for the stress fields of infinitely long and straight
dislocations in isotropic elastic media. As such the fields correspond to either states of
antiplane strain or plane strain.

18.2.1 Infinitely Long Screw Dislocations

The dislocation line is taken to be t = e3, i.e., along the unit base vector of the x3 axis.
The Burgers vector is taken such that bs · t = +bs ; the dislocation is accordingly said to be
a right-handed screw dislocation. In other words, bs ‖ t. The jump condition expressed in
(18.1) is met with

u3 = bs

2π
θ = bs

2π
tan−1 x2

x1
. (18.23)
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This displacement field is sufficient to satisfy the equations of equilibrium. Indeed, σ13 =
G∂u3/∂x1 and σ23 = G∂u3/∂x2, the single equilibrium equation reads

∂σ13

∂x1
+ ∂σ23

∂x2
= G∇2u3 = 0, (18.24)

which of course is satisfied by the harmonic function, u3 ∼ θ . The stresses are, therefore,

σ13(x1, x2) = −Gbs

2π
x2

x2
1 + x2

2

, σ23(x1, x2) = Gbs

2π
x1

x2
1 + x2

2

. (18.25)

It is seen that the stress fields fall off as 1/r from an isolated infinitely long straight segment,
but for two parallel segments that are part of the same loop, the fields fall off as 1/r2.
Indeed, consider the two screw dislocation segments shown earlier in the figure. Let them
be separated by a distance ε. The Burgers vector is the same for the two segments, but
their unit tangents are antiparallel. Thus the stress fields are of opposite sign. Consider,
for example, the stresses on the plane x2 = 0. Then,

σ23 ∼ −Gbs

2π

(
1
x1

− 1
x1 + ε

)
∼ −Gbs

2π
ε

x2
1

. (18.26)

18.2.2 Infinitely Long Edge Dislocations

The edge dislocation is characterized by the property that be = bee1, whereas t = e3. The
corresponding displacement field is

u1(x1, x2) = be

2π
tan−1(x2/x1) + be

2π(1 − ν)
x1x2

x2
1 + x2

2

,

u2(x1, x2) = − be

2π
1 − 2ν

2(1 − ν)
ln r − x2

1 − x2
2

4(1 − ν)(x2
1 + x2

2 )
,

(18.27)

whereas the stresses are

σ11 = − Gbe

2π(1 − ν)
x2(3x2

1 + x2
2 )

(x2
1 + x2

2 )2
,

σ22 = Gbe

2π(1 − ν)
x2(x2

1 − x2
2 )

(x2
1 + x2

2 )2
,

σ12 = Gbe

2π(1 − ν)
x1(x2

1 − x2
2 )

(x2
1 + x2

2 )2
,

σ33 = − Gbeν

π(1 − ν)
x2

x2
1 + x2

2

= ν(σ11 + σ22) .

(18.28)

18.2.3 Infinitely Long Mixed Segments

The elastic field of an infinitely long and straight dislocation of mixed character is simply
obtained by the linear superposition of the solutions obtained above. Here, however, we
consider an infinitely long curved dislocation line lying in the plane x3 = 0 with a Burgers
vector as illustrated in Fig. 18.3. Our perspective is that the Burgers vector is given and
fixed, but the character of the line varies because of varying orientation of the line tangent t.
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Figure 18.3. Infinitely long curved dislocation with a Burgers vector b.

Thus as t varies, i.e., as θ or (θ − φ) varies, the edge vs. screw dislocation character varies.
Now let the Burgres vector be b, so that

b = b cosφe1 + b sinφe2,

t = cos θe1 + sin θe2.
(18.29)

This means that

bs = b cos(θ − φ) = bt ,

be = −b sin(θ − φ) = bλ,
(18.30)

where bs and be are the screw and edge components of b respectively. We now use the
solutions obtained above to construct the in-plane field of this mixed dislocation.

Let d be the normal distance from the line as reckoned by “looking right” while sighting
down t. Then in the plane x3 = 0, we find

σt3 = Gb
2πd

cos(θ − φ),

σλ3 = − Gb
2πd

sin(θ − φ),

(18.31)

where t and λ are used as indices corresponding to rotated axes aligned with the dislocation
line and orthogonal to it (Fig. 18.3). With respect to the fixed coordinates (x1, x2), we have

σ13 = σt3 cos θ − σλ3 sin θ

= Gb
2πd

cos(θ − φ) cos θ + Gb
2π(1 − ν)d

sin(θ − φ) sin θ,
(18.32)

and

σ23 = σt3 sin θ + σλ3 cos θ

= Gb
2πd

cos(θ − φ) sin θ − Gb
2π(1 − ν)d

sin(θ − φ) cos θ.
(18.33)

We note for later use that the in-plane stresses can be expressed as

σαβ = 1
d
(αβ(θ ;φ) = 1

d
(αβ(θ), (18.34)
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where in the second rendering of this relation the dependence on φ has been omitted on
account of the perspective of fixed φ, i.e., fixed b. In fact,

(13(θ) = Gb
2π

[
cos(θ − φ) cos θ + 1

1 − ν sin(θ − φ) sin θ
]
,

(23(θ) = Gb
2π

[
cos(θ − φ) sin θ − 1

1 − ν sin(θ − φ) cos θ
]
.

(18.35)

18.3 Planar Geometric Theorem

Here we consider the case of a dislocation loop lying entirely within a plane, and seek to
construct its elastic field in that plane. Let the plane be defined as x3 = 0. The dislocation
line is C and its cut surface can be taken to lie entirely in the plane, without loss of generality.
Then,

um,r (x) = Ci jkl

∫
Scut

Gkm,lr (x − x′)bi n j dS′, (18.36)

as found earlier. The field point of interest lies in the plane x3 = 0, and thus has coordinates
(x1, x2). Let

X = x1 − x′
1, Y = x2 − x′

2. (18.37)

If we introduce a unit vector, T, defined to be parallel to (x − x′) then x − x′ = sT, where
|s| = |x − x′|. Note that s is algebraically signed. Recall that the Green’s function has
symmetry, such that

Gkm(sT) = sgn(s)
s

Gkm(T) (18.38)

and

Gkm,lr (sT) = sgn(s)
s3

Gkm,lr (T), (18.39)

i.e., both G and its second derivative are symmetric with respect to the sense of T. Thus, if
θ is the angle that T makes with a datum drawn in the plane, we may write

Gkm(x − x′) = 1
R

Gkm(θ) = 1
R

Gkm(θ + π), (18.40)

where

R = |x − x′| = |s|, T = T(θ) = −T(θ + π). (18.41)

Similarly,

Gkm,lr (x − x′) = 1
R3

Gkm,lr (θ) = 1
R3

Gkm,lr (θ + π). (18.42)
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But θ is a function of X/R and Y/R, and so the above may be expressed as a power series
of the form

Gkm = 1
R

∑
n,m

�̄mn

(
X
R

)m(Y
R

)n

,

Gkm,lr = 1
R3

∑
n,m

�mn

(
X
R

)m(Y
R

)n

= I.

(18.43)

Call the second of (18.43), as noted, I, and write

I = 1
R3
)(θ) = 1

R3
)(θ + π),

)(θ) =
∑
n,m

�mn

(
X
R

)m(Y
R

)n

.

(18.44)

To proceed, examine the expression

I = ∂

∂X
(XI) + ∂

∂Y
(YI). (18.45)

Since R2 = X2 + Y2, we have

∂R
∂X

= X
R
,

∂R
∂Y

= Y
R
,

∂(1/R3)
∂X

= −3X
R5
,

∂(1/R3)
∂Y

= −3Y
R5
,

∂(1/Rm+n)
∂X

= − (m + n)X
Rm+n+2

,
∂(1/Rm+n)

∂Y
= − (m + n)Y

Rm+n+2
.

Thus, (18.45) becomes

I = I + I − 3
X2

R5

∑
m,n

�mn

(
X
R

)m(Y
R

)n

− 3
Y2

R5

∑
m,n

�mn

(
X
R

)m(Y
R

)n

+ X
R3

∑
m,n

m�mn

(
Xm−1

Rm

)(
Y
R

)n

+ Y
R3

∑
m,n

n�mn

(
X
R

)m(Yn−1

Rn

)
− X

R3

∑
m,n

�mn
(m + n)X

rm+n+2
Xm

(
Y
R

)n

− Y
R3

∑
m,n

�mn
(m + n)Y

rm+n+2
Yn

(
X
R

)m

= −I.

Therefore,

−I(X,Y) = ∂

∂X
(XI) + ∂

∂Y
(YI). (18.46)

Now return to (18.36) and incorporate the terms involving bi and Ci jkl , as they are
constants. Further, the sums over repeated subscripts are implied (and implemented), so
that (18.36) is expressed as

um,r = −
∫∫

Scut

[
∂

∂X
(XImr ) + ∂

∂Y
(YImr )

]
dXdY. (18.47)
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Figure 18.4. Geometry of a planar loop.

Next, recall Stokes theorem in the form∮
C
(P dX + QdY) =

∫∫
S

(
∂Q
∂X

− ∂P
∂Y

)
dXdY, (18.48)

where C is the line that bounds the open surface S. Let Q = XImr and P = −YImr to
convert the surface integral into one along the bounding line C. Also note that the loop C
is characterized by the parametric equations for x′

1(s) and x′
2(s). Consider the typical point

such as P . At this point, dx′
1/ds = cosα and dx′

2/ds = sinα, where ds is an element of arc
length and, as before, t is the variable unit tangent to C (see Fig. 18.4). Thus, taking the
field points x1, x2 to be fixed in the integration, we have that X′ = dX/ds = −dx′

1/ds, with
a similar consideration for Y′ = dY/ds. Consequently, the integral in (18.47) becomes

um,r (x) =
∮
C
(X′Y − Y′ X)Imr (X,Y) ds. (18.49)

With reference to the figure, we can write

X′ = − cosα, Y′ = − sinα,

X = Rcos θ, Y = Rsin θ.
(18.50)

Using these it follows that

(X′Y − Y′ X)ds = R(− cosα sin θ + sinα cos θ)ds = −Rsin(θ − α)ds,

and thus

um,r (x) = −
∮
C

)mr (θ) sin(θ − α)
R2

ds. (18.51)

Recall that)(θ) = )(θ + π), θ, α, and Rare all functions of the parameter s and therefore
dependent on the size and shape of the dislocation loop. Also note that the formula
expressed in (18.51) applies to any loop. We may then reinterpret (18.51) as an integral
equation for the as yet unknown function, )(θ), in terms of the solution, um,r (x).

We now want to choose a somewhat convenient choice for C; we choose C to be an
infinitely long and straight dislocation as depicted in Fig. 18.5. Using the geometry of the
figure, we observe the following identities

x′
1 = s cosα, x′

2 = s sinα,

s = −d cot(θ − α), R = d/ sin(θ − α),

ds = d

sin2(θ − α)
dθ .

(18.52)
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Figure 18.5. Coordinates for an infinitely long, straight dislocation.

With these, (18.51) becomes

um,r (d, α) = − 1
d

∫ θ=α+π

θ=α
)(θ) sin(θ − α) dθ. (18.53)

Derivatives wr t to α leads to a convenient interpretation, viz.,

∂um,r

∂α
= 1

d

∫ α+π

α

)(θ) cos(θ − α) dθ, (18.54)

and

∂2um,r

∂α2
= − 1

d
[)(α) +)(α + π)] + 1

d

∫ α+π

α

)(θ) sin(θ − α) dθ. (18.55)

The addition of (18.53) and (18.55) yields the desired result,

um,r (d, α) + ∂2um,r (d, α)
∂α2

= − 1
d

[)(α) +)(α + π)] , (18.56)

and thus

)(α) = −d
2

[
um,r (d, α) + ∂2um,r (d, α)

∂α2

]
. (18.57)

We have already shown that the field of an infinitely long and straight dislocation can
be cast as

um,r = (mr (ζ )
d

, (18.58)

where ζ would be an angle representing the dislocation’s orientation in the plane (assuming
its Burgers vector is fixed). Thus, the expression for the field at an arbitrary point becomes

um,r (x) = 1
2

∮
C

(mr (θ) + ∂2(mr (θ)/∂θ2

R2
sin(θ − α) ds. (18.59)

18.4 Applications of the Planar Geometric Theorem

Considerable simplification can be achieved by approximating dislocation loops as being
polygonal, i.e., as having faceted sides such as sketched in Fig. 18.6. The geometry sketched
in the figure will be used to reduce the integral given in (18.59) above. Figure 18.7 indicates
a typical segment of the loop. As we integrate about the loop,

R = |x − x′| = d
sin(θ − α)

, s = −d cot(θ − α), (18.60)
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R m

αα

θ

+
n

-
n

n Figure 18.6. Geometry of a loop vertex.

so that

ds
dθ

= d

sin2(θ − α)
= |x − x′|

sin(θ − α)
. (18.61)

Thus, upon changing the integration variable from s to θ in (18.59), we obtain

um,r (x) = 1/2
∮
C

(mr (θ) + ∂2(mr (θ)/∂θ2

d
sin(θ − α) dθ. (18.62)

Integration by parts from θ1 to θ2, as indicated in Fig. 18.7 for the typical segment, yields

um,r (x) = 1
2d

[−(mr (θ) cos(θ − α) + ∂(mr/∂θ sin(θ − α)]θ2
θ1

−
∫ θ2

θ1

[∂(mr/∂θ cos(θ − α) + ∂(mr/∂θ cos(θ − α)] dθ.
(18.63)

Thus,

um,r (x) = 1
2d

[−(mr (θ) cos(θ − α) + ∂(mr/∂θ sin(θ − α)]θ2
θ1
. (18.64)

Clearly by summing over all such segments, the field of the entire loop may be constructed.
Recalling the first of (18.60), the integral in (18.63) may be recast as

um,r (x) = 1
2

∮
C

(mr (θ) + ∂2(mr (θ)/∂θ2

|x − x′| dθ. (18.65)

Examine the second term in the integrand, viz.,

∮
C

∂2(mr (θ)/∂θ2

|x − x′| dθ =
[
∂(mr (θ)/∂θ

|x − x′|
]1

1
−
∮
C

∂(mr (θ)/∂θ cot(θ − α)
|x − x′| dθ, (18.66)

Datum

dR

θ
θ

α
1

2

Figure 18.7. Dislocation segment.
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where the limits of evaluation on the first integral indicate evaluation from a point labeled
1 to itself, and where it was noted that

d|x − x′|
dθ

= −|x − x′| cot(θ − α). (18.67)

The second integral on the rhs of (18.66) is

−
∮
C

∂(mr (θ)/∂θ cot(θ − α)
|x − x′| dθ = −

[
(mr (θ)

cot(θ − α)
|x − x′|

]1

1

+
∮
C

(mr (θ) cot2(θ − α)
|x − x′| dθ

−
∮
C

(mr (θ)
|x − x′| csc2(θ − α) (1 − dα/dθ) dθ.

By recognizing that

cot2(θ − α) − csc2(θ − α) = −1,

we have

1
2

∮
C

∂2(mr (θ)/∂θ2

|x − x′| dθ = −1
2

∮
C

(mr (θ)
|x − x′| dθ + 1

2

∮
C

(mr (θ)dα/dθ

|x − x′| sin2(θ − α)
dθ.

When this result is incorporated into (18.65), the remarkably simple result follows, viz.,

um,r (x) = 1
2

∮
C

(mr (θ)dα/dθ

|x − x′| sin2(θ − α)
dθ

= 1
2

∮
C

(mr (θ)

|x − x′| sin2(θ − α)
dα.

(18.68)

Note that dα = 0 along each segment until a corner is reached, at which point α under-
goes a “jump” from, say α− to α+ (Fig. 18.6). But during such jumps, θ and |x − x′| remain
fixed. Thus, noting that ∫

dα

sin2(θ − α)
= cot(θ − α),

it is found that each corner, say the nth corner, contributes a term such as

χ = 1
2
(mr (θn)
|x − x′|n [cot(θn − α)]α

+
n

α−
n
. (18.69)

Therefore, for the entire loop, we have

um,r (x) = 1
2

N∑
n=1

(mr (θn)
|x − x′|n [cot(θn − α)]α

+
n

α−
n
. (18.70)

There is a modification if the field point x happens to be colinear with one side, because
along such a side θ = 0, and∫ θs+1

θs

(mr (θ) + ∂2(mr/∂θ
2

|x − x′| dθ = 0. (18.71)
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(2)α = α

=0

λ

θ

Figure 18.8. An angular dislocation.

It is assumed here that the side in question connects the s and s + 1 corner. In this case
(18.70) would have to be modified so that the segment between corners s and s + 1 does
not contribute. The result of removing this is

um,r (x) = 1
2

N∑
n=1

n
=s,s+1

(mr (θn)
|x − x′|n [cot(θn − α)]α

+
n

α−
n

− (mr (θs)
|x − x′|s cot(θs − α−

s ) − (mr (θs+1) cot(θs+1 − α+
s+1)

|x − x′|s+1

+ ∂(mr (θs)/∂θ
|x − x′|s − ∂(mr (θs+1)/∂θ

|x − x′|s+1
.

(18.72)

We can recast (18.60) or (18.65) using the fact that

dα = κds, ds = dθ |x − x′| csc(θ − α). (18.73)

When this is done, we obtain

um,r (x) = 1
2

∮
C
κ(mr (θ) csc3(θ − α) dθ. (18.74)

18.4.1 Angular Dislocations

As a further application of the previous results, consider the angular dislocation shown in
Fig. 18.8. Using (18.64), it is found that, for the segment labeled 1, we have

u(1)
m,r = 1

2�1

∫ θ

0

[
(mr (θ) + ∂2(mr (θ)/∂θ2] sin θ dθ

= 1
2λ

[−(mr (θ) cot θ +(mr (0) csc θ + ∂(mr (θ)/∂θ ] .

(18.75)

Similarly, for the segment labeled 2 it is found that

u(2)
m,r = 1

2�2

∫ α+π

θ

[
(mr (θ) + ∂2(mr (θ)/∂θ2] sin(θ − α) dθ (18.76)

= − 1
2λ

[(mr (α) csc(θ − α) +(mr (θ) cot(θ − α) − ∂(mr (θ)/∂θ ] .

When added, they yield for the full field

um,r (x) = 1
2λ

[(mr (α) csc(θ − α) +(mr (0) csc(θ)]

+ 1
2λ

[
(mr (θ)

sinα
sin(θ − α) sin θ

]
,

(18.77)

where we have used the fact that (mr (α) = (mr (α + π).
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18.5 A 3D Geometrical Theorem

Consider again the line integral yielding the distortion field for a dislocation loop, viz.,

um,r (x; C) = −
∮
C

biεnjpt j (xn − x′
n)CpiskGsm,kr (x − x′) ds. (18.78)

Upon using the symmetry inherent in the components Cpisk, let Pm
pi = CpiskGsm,k be the

pi component of stress at x, caused by a unit point force acting at x′ in the m direction.
Note that Pm

pi and Pm
pi,r will possess all the symmetry and scaling properties of the Green’s

function G. The integral above becomes

um,r (x, C) = −
∮
C

biεnjpt j (xn − x′
n)Pm

pi,r (x − x′) ds. (18.79)

Let C be an infinitely long and straight dislocation line. Then,

x′
n = tns, x′ = ts,

εnjpx′
nt j = εnjptnt j s = 0,

(18.80)

so that

um,r (x, C∞) = −
∫ ∞

−∞
biεnjpxnt jPm

pi,r (x − st) ds. (18.81)

But, because of the scaling and symmetry properties of Pm
pi,r , we have

Pm
pi,r (x − st) = sgn(s)

s3
Pm

pi,r (x/s − t). (18.82)

Define η = 1/s, dη = −1/s2ds, and observe that

um,r (x, C∞) = −
∫ ∞

0+
biεnjpxnt j (1/s3)Pm

pi,r (x/s − t) ds

+
∫ 0−

−∞
biεnjpxnt j (1/s3)Pm

pi,r (x/s − t) ds

=
∫ 0+

∞
biεnjpxnt jηPm

pi,r (ηx − t) dη

−
∫ −∞

0−
biεnjpxnt jηPm

pi,r (ηx − t) dη.

Then, upon identifying this infinitely long and straight dislocation line by its constant
tangent, t, we can write

u∞
m,r (x; t) = −

∫ ∞

0+
biεnjpxnt jηPm

pi,r (ηx − t) dη

+
∫ 0−

−∞
biεnjpxnt jηPm

pi,r (ηx − t) dη

=
∫ ∞

−∞
biεnjpxnt jη sgn(η)Pm

pi,r (ηx − t) dη.

(18.83)
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Operate on this equation with (xα∂/∂tα)2, while noting that

xα
∂

∂tα
Pm

pi,r (ηx − t) = − ∂

∂η
Pm

pi,r (ηx − t). (18.84)

It is found that

xβxα
∂2

∂tα∂tβ
u∞

m,r = 2
∫ ∞

−∞
biεnjpxnxjη sgn(η)

∂Pm
pi,r

∂η
dη

−
∫ ∞

−∞
biεnjpxnt jη sgn(η)

∂2Pm
pi,r

∂η2
dη.

(18.85)

The first integral is clearly zero by virtue of εnjpxnxj = 0. The second may be integrated
by parts, using the result [

η sgn(η)
∂Pm

pi,r

∂η

]∞

−∞
= 0.

The first integration then yields

xβxα
∂2

∂tα∂tβ
u∞

m,r =
∫ ∞

−∞
biεnjpxnt j

[
sgn(η) + ηd sgn(η)

dη

]
∂Pm

pi,r

∂η
dη.

But,

d
dη

sgn(η) = 2δ(η),

and the second term in the square bracket above makes zero contribution to the integral.
Integrating by parts again, and noting that[

sgn(η)Pm
pi,r

]∞
−∞ = 0,

now gives

xβxα
∂2

∂tα∂tβ
u∞

m,r = −2
∫ ∞

−∞
biεnjpxnt jδ(η)Pm

pi,r (ηx − t) dη

= −2biεnjpxnt jPm
pi,r (−t)

= −2biεnjpxnt jPm
pi,r (t).

(18.86)

Finally, let

t ← x − x′ and x ← t, (18.87)

where x′ is a fixed point. Then, the integrand of (18.79) becomes

biεnjptn(xj − x′
j )Pm

pi,r (x − x′) = −tα
∂

∂xα
tβ
∂

∂xβ
u∞

m,r (t; x − x′), (18.88)

and, consequently,

um,r (x; C) = −
∮
C

tα
∂

∂xα
tβ
∂

∂xβ
u∞

m,r (t; x − x′) ds. (18.89)
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19 Cracks in Anisotropic Media

An elementary development of crack tip mechanics was given in Chapter 17. Here we
provide a more advanced construction of the elastic fields at crack tips and extract from
our construction some particularly important quantities that enter prominently into the
physics of crack growth and crack interaction with other defects that exist within the elastic
medium surrounding the crack. Of primary importance is the theoretical determination of
the total mechanical energy of a cracked body and the negative of its derivative with respect
to crack extension, i.e., the energy release rate, G, or the generalized force on the crack tip
vis-à-vis the concept further developed in subsequent chapters. The elastic medium is taken
to be arbitrarily anisotropic. The dislocation solutions and methods developed for dealing
with the elastic fields of dislocations are used to construct the crack solutions.

19.1 Dislocation Mechanics: Reviewed

In Chapter 21 we show that the energy of an infinitely long and straight dislocation can be
written as

E = Kmgbmbg ln(R/r0), (19.1)

where R and r0 were outer and inner cutoff radii respectively. The components of the dis-
location’s Burgers vector are bi , and Kmg are the components of a positive definite second-
rank tensor called the energy factor. K depends only on the direction of the dislocation
line within the elastic medium and on the elastic moduli tensor C, i.e., its components Ci jkl .
For an isotropic medium K is diagonal, when phrased with respect to the basis {e1, e2, e3}
on the coordinate frame with axes (x1, x2, x3), and when the dislocation line is parallel to
x3 axis, t ‖ e3. In that case, we obtained

K11 = K22 = G/4π(1 − ν), K33 = G/4π. (19.2)

We have already shown in Chapter 17 how a slit like crack in an elastic medium can be
represented by a continuous distribution of dislocations distributed with an appropriate
density along the crack line. This was done, specifically for the case of a Mode I crack.
As noted in that development, the calculation of the crack tip field involves first solving
a singular integral equation for the dislocation distribution and then using linear super-
position to construct the field. It will be shown here that the crack extension force can

315
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X

X
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1
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3

Figure 19.1. Slit-like crack and crystal frame.

also be calculated knowing the distribution of dislocations in the crack, or more particu-
larly knowing the displacement discontinuity across the crack face that is caused by the
distribution of dislocations. In fact, it is shown that the crack extension force, G, can be
calculated knowing only the inverse of the energy factor matrix, K−1, for a single straight
dislocation.

Two types of cracks are considered, viz., freely slipping cracks and cracks whose faces are
not traction free but are subject to applied traction. Furthermore, the following universal
result is derived: when the displacement discontinuity at the tips of the crack vanishes, the
traction and stress concentration on the plane of the crack are independent of the elastic
anisotropy and are, accordingly, the same as predicted by the isotropic theory. The same
is true of the stress intensity factors. The same is not the case for the angular dependence
of the fields around the crack or of the crack extension force, G.

19.2 Freely Slipping Crack

Consider a slit like crack lying on the plane x2 = 0, as shown in Fig. 19.1. The crack
lies in the region, |x1| ≤ c, x2 = 0, −∞ < x3 <∞ in an infinite elastic medium. For later
reference, let X = {X1, X2, X3} be a coordinate frame in which the elastic moduli tensor, C,
and its components, Ci jkl , are displayed in their simplest form, e.g., for a cubic crystalline
medium these would be the cube axes. As r2 = x2

1 + x2
2 → ∞, the state of stress is uniform

and thus

lim
r → ∞ σi j = σA

i j . (19.3)

We are assuming small strains so that, using the convention that commas denote differen-
tiation, the strains are defined by

2ei j = ui, j + u j,i . (19.4)

In the absence of body forces, equilibrium requires that

σi j, j = 0. (19.5)

Since the crack is freely slipping there are no tractions on the crack faces, i.e.,

σi j n j = 0, on x2 = 0, |x1| ≤ c, (19.6)

where n is the unit normal to the crack plane. The convention is that on the up-
per crack surface (x2 = 0+), n1,n3 = 0,n2 = −1. On the lower crack surface (x2 = 0−),
n1,n3 = 0,n2 = 1. This means that the freely slipping boundary conditions become

σ12 = σ22 = σ32 = 0, for |x1| ≤ c, x2 = 0, |x3| ≤ ∞. (19.7)
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Figure 19.2. Dislocation types distributed over the crack.

This boundary value problem is solved using the method of continuously distributed dis-
locations as introduced earlier.

Let the solution be written in the form

ui = uA
i + uD

i , ei j = eA
i j + eD

i j , σi j = σA
i j + σD

i j , (19.8)

where the D fields are constructed from the linear superposition of those of the contin-
uously distributed dislocations of three types; these are indicated in the Fig. 19.2. The
A fields refer to the uniformly stressed uncracked solid, so that, excluding arbitrary rigid
body translations,

uA
i = eA

i j x j , eA
i j = Si jmnσ

A
mn, (19.9)

where the Si jmn are the components of the elastic compliance tensor (the inverse of the
elastic stiffness tensor). The A fields are everywhere continuous. We note that

σD
i j → 0 as r → 0, (19.10)

because the stress fields of individual dislocations vanish as r2 → 0. Since the A and D
fields are each admissible solutions to the equilibrium and compatibility equations, we can
complete the solution by choosing σD

i j so that (19.7) is satisfied, i.e.,

σD
12 = −σA

12 = −TA
1 , on |x1| < c, x2 = 0,

σD
22 = −σA

22 = −TA
2 , on |x1| < c, x2 = 0,

σD
32 = −σA

32 = −TA
3 , on |x1| < c, x2 = 0.

(19.11)

The D field is constructed by an integral superposition of three types of straight dislocations,
the dislocations being parallel to the x3 axis and lying in the region |x1| < c, x2 = 0. If we
denote by bs f (s)(t)dt (no sum on s) the amount of Burger’s vector in the xs direction,
distributed between t and t + dt , then

σD
i j (x1, x2) =

3∑
s=1

∫ c

−c
f (s)(t)σ (s)

i j (x1, x2; t, 0) dt, (19.12)

where σ (s)
i j (x1, x2; t, 0) is the stress field at (x1, x2) due to a single straight dislocation of type

s (s = 1, 2, 3), piercing the planes x3 = const. at the point (t, 0). Thus equations (19.11)
may be written as

3∑
s=1

∫ c

−c
f (s)(t)σ (s)

i2 (x1, 0; t, 0) dt = −TA
i , for |x1| < c, i = 1, 2, 3. (19.13)
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In an infinite elastic medium,

σ
(s)
i j (x1, 0; t, 0) = σ (s)

i j (x1 − t), (19.14)

and, from what has been developed in Chapters 17 and 18, σ (s)
i j (x1 − t) ∼ (x1 − t)−1.

Now consider a single dislocation parallel to the x3 axis and piercing the planes x3 =
const. at (t, 0). Let its Burger’s vector have components b1,b2,b3. The energy per unit
length can be written as

E = Kmqbmbq ln(R/r0) = Kmqbmbq

∫ t+R

t+r0

(x1 − t)−1 dx1. (19.15)

But the formula

E = 1
2

3∑
s=1

∫ t+R

t+r0

σ
(s)
m2 (x1 − t)bm dx1 (19.16)

is also valid. If a dislocation is of type 1 (i.e., s = 1, b2 = b3 = 0), a comparison of (19.15)
and (19.16) yields

σ
(1)
12 (x1 − t) = 2K11b1/(x1 − t). (19.17)

Similar reasoning gives

σ
(2)
22 (x1 − t) = 2K22b2/(x1 − t), σ

(3)
32 (x1 − t) = 2K33b3/(x1 − t). (19.18)

If we consider the case s = 1, 2 and b3 = 0, and note that

σ
(1)
12 (x1 − t)b2 = σ (2)

12 (x1 − t)b1, (19.19)

(because one can calculate the interaction energy between a dislocation of type 1 and type 2
by looking at the interaction of one on the other or vice versa), a comparison of (19.15)
and (19.16) again shows that

σ
(1)
22 (x1 − t) = 2K21b1/(x1 − t), σ

(2)
12 (x1 − t) = 2K12b2/(x1 − t). (19.20)

Note that (19.19) essentially follows from Betti’s reciprocal theorem. In general,

σ
(s)
i2 (x1 − t) = 2Kisbs/(x1 − t), (no sum on s). (19.21)

If we use (19.21) to define

Fs(t) = bs f (s)(t), (no sum on s), (19.22)

(19.13) may be concisely expressed as

2Ki j

∫ c

−c
(x1 − t)−1 Fj (t) dt = −TA

i , for |x1| < c, (19.23)

or ∫ c

−c
(x1 − t)−1 Fj (t) dt = −1

2
K−1

j i TA
i , for |x1| < c, (19.24)

with the sum over the repeated index. The integrals in question, as will be the case with
all singular integrals appearing in this development, are defined by their Cauchy principal
values.
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We recall that the components of the inverse of Kji are given by

K−1
j i = K−1

i j = ε jmnεirs Kmr Kns/2εαβγ K1αK2βK3λ, (19.25)

so that

K−1
j i Kis = Kji K−1

is = δ js . (19.26)

Since we expect stress singularities at the crack tip, we require Fj (±c) to be unbounded
with a weak singularity. Moreover, if we demand that there be no relative displacement of
the crack faces at x1 = ±c, then ∫ c

−c
Fj (t) dt = 0. (19.27)

It is noteworthy that implicit in this analysis is the convention that the displacement dis-
continuity across the crack faces at (x1, 0) is given by

�u j (x1) = uD
j (x1, x2)|x2=0−

x2=0+ =
∫ x1

−c
Fj (t) dt. (19.28)

The solution of (19.24) is

Fj (t) = K−1
j i TA

i
t

2π(c2 − t2)1/2
. (19.29)

A rather important result can be extracted from the above when we consider the traction
σi2 on the plane of the crack (| x1| > c, x2 = 0). We have

σi2|x2=0 = σA
i2 + 2

3∑
s=1

∫ c

−c

Fs(t)
bs

Kisbs

(x1 − t)
dt, |x1| > c. (19.30)

Since

TA
i = σA

i2 , (19.31)

using (19.26) and (19.29), yields

σi2|x2=0 = σA
i2

[
1 + 1

π

∫ c

−c

t dt
(c2 − t2)1/2(x1 − t)

]

= σA
i2

|x1|
(x2

1 − c2)1/2
, |x1| > c.

(19.32)

As x1 → ±c, (19.32) reduces to the familiar isotropic expression for stress concentration,
viz., σi2 ≈ σA

i2 (c/2r)1/2, where r = |x1| − c. Hence, the traction and stress concentrations
on the plane of the crack are independent of the elastic constants and the anisotropy of
the medium, i.e., they are identical with those for a crack in an isotropic medium loaded
by stresses σA

i j at infinity. It is shown below that this is also true for the case of a crack that
is arbitrarily but symmetrically loaded on its faces by self-equilibrating stresses, provided
that (19.27) is true.

19.3 Crack Extension Force

The energy of deformation and crack extension force may now be easily calculated. The
change in total mechanical energy per unit length in the x3 direction between the stressed
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cracked solid and the uncracked solid stressed homogeneously by σi j = σA
i j , is

�E = 1
2

∫ c

−c
σA

i2�uD
i dx1. (19.33)

Combining (19.28), (19.29), and (19.33), we obtain

�E = −1
8

c2σA
i2σ

A
s2 K−1

is . (19.34)

The crack extension force is defined as

G = −∂(�E)
∂c

= 1
4

cσA
i2σ

A
s2 K−1

is . (19.35)

The appropriate Griffith criterion for brittle fracture in the anisotropic medium is obtained
by requiring that G be greater or equal to 4γ , where γ is the surface energy associated with
the plane x2 = 0 (the crack is assumed to extend on both ends, so that 2 × 2γ = 4γ ). Thus,
the applied stress state required to propagate the crack is determined from

σA
i2σ

A
s2 K−1

is ≥ 16γ /c. (19.36)

Using (19.2) allows a recovery of the isotropic Griffith criterion,

(1 − ν)
[
(σA

12)2 + (σA
22)2]+ (σ32)2 ≥ 4Gγ /πc. (19.37)

A method is presented below for calculating Kis , and hence K−1
is , using the coordinate

frame denoted earlier by X = {X1, X2, X3}. If all quantities are referred to the X frame,
then (19.35) becomes

G = 1
4

c σA
i j n jσ

A
smnmK−1

is , (19.38)

where nm are components of the unit normal to the crack surface in the X frame.
As an example, imagine a cleavage crack lying in the (001) plane of a cubic crystal such

as α-Fe, or an ionic crystal such as KCl or NaCl, which is stressed by far field tension pA.
The crack’s normal, then, lies in the x3 direction. The crack extension force would be given
in this case by

G = 1
4

(pA)2cK−1
33 . (19.39)

Figure 19.3 shows the variation of K−1
33 with angle in the (001) plane of three cubic materials.

The effects of anisotropy appear to be modest and are appreciable only for Fe. In fact, us-
ing Voigt average isotropic elastic constants for α-Fe, K−1

33 = 0.103 × 10−10cm3/erg, which
differs by between 10 and 20% of our anisotropic calculations (recall that 1 erg= 10−7 J).

19.4 Crack Faces Loaded by Tractions

The extension of the results for a freely slipping crack to the case of a crack whose faces
are loaded by tractions −Ri (x1) is readily done. The same analysis suffices if we replace
the boundary condition (19.7) by

σi j n j =
{

−Ri (x1), for x2 = 0+,

Ri (x1), for x2 = 0−,
|x1| < c, (19.40)
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Figure 19.3. Variation of K−1
33 with angle within the (001)

plane.

so that we assume that the traction on the upper and lower crack faces are equal in
magnitude but opposite in direction. Clearly, the loading is symmetrical about x2 = 0 and
thus self-equilibrating. For example, if the loading were internal pressure of magnitude P,
then R1 = R3 = 0, R2 = −P. Hence the distribution function Fj (t) must now satisfy∫ c

−c
(x1 − t)−1 Fj (t) dt = −1

2
K−1

i j

[
TA

i − Ri (x1)
]
, |x1| < c. (19.41)

It is again required that (19.27) be satisfied when Fj (±c) is unbounded. The integral
equation may be easily solved once we specify Ri (x1). For our purposes it is sufficient to
note that

2Fj (t) = K−1
j i Qi (t), (19.42)

where Qi (t) is independent of the anisotropy of the medium and satisfies∫ c

−c
(x1 − t)−1 Qi (t) dt = − [

TA
i − Ri (x1)

]
, |x1| < c. (19.43)

If Fj (±c) is to be unbounded, then

Qi (t) = TA
i t

π(c2 − t2)1/2
+ 1
π2(c2 − t2)1/2

∫ c

−c

Ri (x1)(c2 − x2
1 )1/2

x1 − t
dx1. (19.44)

For cracks with no stress singularities at x1 = ±c, as in simple models of cracks relaxed
by plastic deformation, Fj (±c) must vanish, and

Qi (t) = 1
π2

(c2 − t2)1/2
∫ c

−c
(c2 − x2

1 )−1/2(x1 − t)−1 R(x1) dx1, (19.45)

provided that the subsidiary condition∫ c

−c
(c2 − s2)−1/2 Ri (s) ds = πTA

i (19.46)
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is satisfied. The traction σi2 acting on the plane of the crack (|x1| > c, x2 = 0) is then given
by (19.32) which, after using (19.26) and (19.42), reduces to

σi2|x2=0 = σA
i2 +

∫ c

−c
(x1 − t)−1 Qi (t) dt, |x1| > c. (19.47)

Since Qi (t) depends only on the loading TA
i − Ri (x1), the traction and also the stress

concentrations, if any, on the plane of the crack are independent of the elastic anisotropy.
Stress intensity factors for cracks with singular fields are computed in the next section.

If (19.27) is not satisfied, there exists a net dislocation content in the crack, i.e.,∫ c

−c
Fj (t) dt = Nj . (19.48)

In this event, we must add to Fj (t), as given by (19.29) or (19.42) and (19.44), the term

F∗
j (t) = Nj/π(c2 − t2)1/2. (19.49)

The traction on the crack plane is in this case no longer independent of the anisotropy
because the distribution (19.49) induces an extra traction

σ ∗
i2|x2=0 = 2Kis Ns(x2

1 − c2)−1/2 sgn(x1), |x1| > c. (19.50)

19.5 Stress Intensity Factors and Crack Extension Force

The three stress intensity factors, called ki here, are most simply defined by noting that if
the stresses are singular at the crack tip, i.e., at x1 = c, then

σi2| x1 → c, x2=0 = ki/(2πr)1/2 + nonsingular terms, (19.51)

where r = x1 − c, so that

ki (c) = lim
x1 → c

(2πr)1/2σi2|x2=0, x1 > c. (19.52)

When (19.27) is satisfied, the use of (19.44) and (19.47) yields

ki (c) = σA
i2 (πc)1/2 + lim

x1 → c

[
(2πr)1/2

∫ c

−c

dt
x1 − t

1
π2(c2 − t2)1/2

∫ c

−c

Ri (s)(c2 − s2)1/2 ds
s − t

]
.

(19.53)

Interchanging the order of integration and noting that

1
(x1 − t)(s − t)

= 1
s − x1

(
1

x1 − t
− 1

s − t

)
,

∫ c

−c

dt
(c2 − t2)1/2(s − t)

= 0, |s| < c (Cauchy principal value),

∫ c

−c

dt
(c2 − t2)1/2(x1 − t)

= π

(x2
1 − c2)1/2

sgn(x1), |x1| > c,

(19.54)

the limit of (19.53) as x1 → c gives

ki (c) = σA
i2 (πc)1/2 − (πc)−1/2

∫ c

−c
Ri (s)

(
c + s
c − s

)1/2

ds. (19.55)
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In a similar fashion one deduces that at the tip x1 → −c,

ki (−c) = σA
i2 (πc)1/2 − (πc)−1/2

∫ c

−c
Ri (s)

(
c − s
c + s

)1/2

ds. (19.56)

Thus ki (±c) is independent of the anisotropy of the medium.
It can now be shown that the crack extension force is easily calculated from only knowing

ki and K−1
i j . When the crack extends from x1 = c to x1 = c + δc, the change in energy is

given by

δE = 1
2

∫ c+δc

c
dx1σi2(x1, 0)

∫ x1−δc

−c
Fi (t) dt. (19.57)

Using (19.44), (19.51), and (19.55) and letting δc → 0 (see the next subsection for details),
the crack extension force is found to be

G = − lim
δ→ 0

δE
δc

= 1
8π

ki kmK−1
im , (19.58)

which is the desired result. Had we considered the crack tip at x1 = −c extending from −c
to −(c + δc), we would have obtained (19.58) with ki given by (19.56). Since in deriving
(19.58) we considered extension of only one end of the crack, in this instance the proper
Griffith criterion for brittle fracture would be G = 2γ .

Equations (19.55) and (19.56) may also be used to derive formulae for the applied stress
at which an equilibrium crack becomes mobile. In this instance we interpret the Ri (x1)
as restraining stresses acting on the crack surfaces due to cohesive forces; usually one
imagines that Ri (x1) differs appreciably from zero only in regions c − d < |x1| < c, where
d � c, and d is independent of c. Such a crack will propagate when ki (±c) ≥ 0, i.e., when

σA
i2 ≥ 1

πc

∫ c

−c
Ri (s)

(
c ± s
c ∓ s

)
ds. (19.59)

The upper and lower signs correspond to the tips x1 = c and x1 = −c, respectively. The
fracture criterion expressed in (19.59) depends on anisotropy only through the dependence
of Ri (s), the cohesive forces, on anisotropy.

The utility of (19.58) for the crack extension force is that the stress intensity factors, ki ,
need be calculated only once, using either (19.55) or (19.56), for a given crack configuration,
because anisotropic effects appear only through the K−1

i j . The determination of G may also
be executed in the X frame. This would be most easily done by calculating K−1

i j in the X
frame and computing ki (X frame) = Aimkm(crack frame), where Aim is the cosine of the
angle between the Xi and xm directions.

19.5.1 Computation of the Crack Extension Force

In this section the procedure for evaluating G is developed in detail. We wish to evaluate

G = − lim
δc → 0

δE
δc
, (19.60)
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where

δE = 1
4

∫ c+δc

c
σi2(x1, 0)dx1

∫ x1−δc

−c
K−1

im Qm(t) dt

= 1
2

(8π)−1/2ki K−1
im

∫ c+δc

c
(x1 − c)−1/2dx1

∫ x1−δc

−c
Qm(t) dt,

(19.61)

with ki given by (19.55). If we let s = x1 − c and integrate by parts, noting that∫ c

−c
Qm(t) dt = 0 (19.62)

when (19.27) is satisfied, there follows

δE = −(8π)−1/2ki K−1
im

∫ δc

0
s1/2 Qm(c − δc + s) ds. (19.63)

The further substitution of s = (1 − λ)δc reduces (19.63) to

−δE
δc

= (8π)−1/2ki K−1
im (δc)1/2

∫ 1

0
(1 − λ)1/2 Qm(c − λδc) dλ. (19.64)

For the crack with singular stresses at x1 = ±c, we have

Qm(t) = 1
π
σA

m2
t

(c2 − t2)1/2
+ 1
π2(c2 − t2)1/2

∫ c

−c

Rm(s)(c2 − s2)1/2

s − t
ds. (19.65)

As δc → 0, the first term in (19.65) on the rhs yields a contribution to −δE/δc given by

(8π)−1/2ki K−1
im σ

A
m2

1
π

(δc)1/2
( c

2δc

) ∫ 1

0

(
1 − λ
λ

)1/2

dλ = 1
8π

ki K−1
im σ

A
m2(πc)1/2. (19.66)

Interchanging the order of integration, the second term on the rhs of (19.65) becomes

lim
δc → 0

χ = − 1
8π

ki K−1
im

1
(πc)1/2

∫ c

−c
Rm(s)

(
c + s
c − s

)1/2

ds, (19.67)

where

χ = (8π)−1/2ki K−1
im

1
π2

(δc)1/2
(

1
2cδc

)1/2 ∫ c

−c
Rm(s)(c2 − s2)1/2 ds

×
∫ 1

0

(
1 − λ
λ

)1/2 dλ
c − s + λδc .

In obtaining (19.67) we have noted that

lim
δc → 0

∫ 1

0

(
1 − λ
λ

)1/2 dλ
s − c + λδc = − π

2(c − s)
. (19.68)

Comparing (19.66) and (19.67) with (19.55) yields the crack extension force in the form

G = 1
8π

ki K−1
im km. (19.69)

Equation (19.69) is also valid for the crack extension force at the crack tip at x1 = −c,
provided we use ki as given in (19.56).
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c

ζ Figure 19.4. Crack tip opening.

19.6 Crack Tip Opening Displacement

Of particular interest is the result given in (19.28) for the crack tip opening displacement.
Here we simply list some results for the case of isotropic elastic media. Recall that the
displacement discontinuity at the crack tip is given as

�ui = uD
i (x1, x2)|x2=0−

x2=0+ =
∫ x1

−c
Fj (t) dt, (19.70)

with

Fj (t) = K−1
j i TA

i
1

2π(c2 − t2)1/2
. (19.71)

Thus,

�ui = K−1
j i σ

A
i2

2π

∫ x1

−c

dt
(c2 − t2)1/2

. (19.72)

Simple integration yields

−�ui = ui (x1, 0+) − ui (x1, 0−) = K−1
j i σ

A
i2

2π
(c2 − t2)1/2. (19.73)

Now, let δi (x1) = ui (x1, 0+) − ui (x1, 0−) and consider the case of isotropic media. Recalling
the expressions in (19.2), we have, for a Mode II crack stressed by in-plane shear,

δ1(x1) = 2(1 − ν)
G

σA
12(c2 − x2

1 )1/2. (19.74)

Consider the region just behind the crack tip, say at a distance ζ behind the tip (Fig. 19.4).
Noting that k1 = σA

12

√
πc, we find

δ1(ζ ) = 4k1(1 − ν)√
2πG

ζ 1/2. (19.75)

By identical reasoning, we have

δ2(x1) = 4k2(1 − ν)√
2πG

ζ 1/2,

δ3(x1) = 4k3√
2πG

ζ 1/2.

(19.76)

19.7 Dislocation Energy Factor Matrix

In this section a simple and convenient method for calculating the dislocation energy
factor matrix, K, is developed. We begin with the line integral giving the solution for the
displacement gradient of a dislocation line, i.e.,

ui,p(x) = −εpjwbmCwmrs
∂

∂xs

∮
C

Gir (x − x′) dx′
j . (19.77)
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Figure 19.5. Coordinate frame for dislocation.

The integral is taken over the dislocation line, C. We also recall that, in general, analytic
solution for the Green’s function does not exist, but its Fourier transform is given as

Gir (x − x′) = 1
8π2|x − x′|

∫ 2π

0
M−1

ir (z) dθ, (19.78)

where the Christoffel stiffness tensor is M = z · C · z, and in this context z(θ) is a unit vector
lying in the plane perpendicular to x − x′. In terms of the unreduced Fourier transform of
G, we have

∂

∂xs
Gir (x − x′) = − i

8π

∫ ∞

−∞
d3K zs

M−1
ir

K
e−iK·(x−x′). (19.79)

Here K is the Fourier vector and z is the unit vector along K. Consequently, (19.77) may
be rewritten as

ui,p(x) = i
8π2

εpjwbmCwmrs

∫ ∞

−∞
d3K zs

M−1
ir (x)
K

e−iK·x
∮
C

eiK·x′
dx′

j . (19.80)

For an infinitely long and straight dislocation line, laying along the unit vector t,∮
C

eiK·x′
dx′

j = t j

∫ ∞

−∞
eiK·ts ds = 2π t jδ(K · t), (19.81)

where s is the distance along the line. Hence, only those Fourier vectors perpendicular to
the dislocation line contribute to the displacement gradient field, and (19.81) becomes

ui,p(x) = 1
4π2

εpjwt j bmCwmrs

∫ ∞

−∞
d2K zs

M−1
ir (z)
K

sin(Kz · x). (19.82)

The integral in (19.82) extends over the plane defined by z · t = 0, and for this plane

z · x = z · ρ, (19.83)

where ρ is the polar radius vector from the dislocation line to the point x, as illustrated in
Fig. 19.5. Accordingly, we may replace x with ρ in (19.82) and thereby show that the field
is independent of position along the dislocation line, as it should be for an infinitely long
and straight line.

In the plane z · t = 0 we define a polar coordinate system centered about the dislocation
line, such that

d2K = KdKdψ, (19.84)

where 0 ≤ ψ ≤ 2π . Then

zs = αs cosψ + βs sinψ, (19.85)
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where α and β are two orthogonal unit vectors in the plane z · t = 0. In particular, we may
choose them such that

α1 = sin θ, α2 = − cos θ, α3 = 0,

β1 = cosϕ cos θ, β2 = cosϕ sin θ, β3 = − sinϕ.
(19.86)

Similarly the vector ρ is written as

ρm = ρ(αm cosψ0 + βm sinψ0), (19.87)

so that

sin(Kz · ρ) = sin[Kρ cos(ψ − ψ0)]. (19.88)

The integral in (19.82) is now rewritten in terms of this polar coordinate system, and the
integration over K yields∫ ∞

0
sin[Kρ cos(ψ − ψ0)] dK = 1

ρ
sec(ψ − ψ0). (19.89)

The expression for the displacements becomes

ui,p(ρ) = 1
4π2ρ

εpjwbmt j Cwmrs

∫ 2π

0
zs M−1

ir (ψ) sec(ψ − ψ0) dψ. (19.90)

The integral in (19.90) is defined by its Cauchy principal value.
The elastic energy is given by

E = 1
2

∫ R

r0

(C fgipui,pbg Nf ) dρ, (19.91)

where

Nf = −α f sinψ0 + β f cosψ0 = 1
ρ
ε f sr tsρr (19.92)

are the components of the unit normal to the planar cut surface used (arbitrarily as usual)
to create the dislocation, and across which the displacement jumps by b. Clearly, the energy
E is independent of ψ0, so that

E = 1
2π

∫ 2π

0
E dψ0. (19.93)

If we integrate (19.92) over ψ0, interchange the order of integration, and note that

sec ζ = 2
∞∑

h=0

(−1)h cos(2h + 1)ζ, ζ 
= −3π
2
,
π

2
,

3π
2
, . . . , (19.94)

we obtain ∫ 2π

0
Nf sec(ψ − ψ0) dψ0 = 2πn f , (19.95)

with

n f = −α f sinψ + β f cosψ = dzf /dψ. (19.96)
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This yields

E = 1
8π2

(
ln

R
r0

)
bmbgεpjwt j C fgipCwmrs

∫ 2π

0
zsn f M−1

ir (ψ) dψ. (19.97)

Next, we recognize that

αsβ f − βsα f = εvs f tv, (19.98)

so that

zsn f = 1
2

[
εvs f tv + (αsβ f + βsα f ) cos(2ψ) + (β fβs − α fαs) sin(2ψ)

]
. (19.99)

Finally, we obtain

E = Kmgbmbg ln(R/r0), (19.100)

where

Kmg = (K∗
mg + K∗

gm) = Kgm, (19.101)

and

K∗
mg = 1

16π2
εpjwt j C fgipCwmrs

[
εvs f tv

∫ π

0
M−1

ir dψ + (αsβ f + βsα f )
∫ π

0
M−1

ir cos(2ψ) dψ

+ (β fβs − α fαs)
∫ π

0
M−1

ir sin(2ψ) dψ
]
.

19.8 Inversion of a Singular Integral Equation

Certain solutions were given above for the singular integral equations involved with deter-
mining the equilibrium distributions of dislocations. Here we list a brief summary of some
techniques given by Muskhelishivili (1960) for inverting integral equations of the form

p.v.
∫

D

f (t) dt
t − x

= σ (x), (19.102)

where p.v. signifies the principal value of the integral. If f (t) and σ (x) are functions that
are continuous in the interval D, and if D consists of p finite segments of which at q of the
2p ends f (t) is bounded, then

f (x) = − 1
π2

[
R1(x)
R2(x)

]1/2

p.v.
∫

D

[
R2(x)
R1(x)

]1/2
σ (t) dt
t − x

+
[

R1(x)
R2(x)

]1/2

Pp−q−1(x), (19.103)

provided p − q ≥ 0. Here

R1(x) =
q∏

i=1

(x − ei ), R2(x) =
2p∏

i=q+1

(x − ei ). (19.104)

The polynomial Pp−q−1(x) is an arbitrary polynomial of degree ≤ p − q − 1, with P−1 = 0.
The end points of the segments are ei . When p − q < 0, the same solution is valid with the
necessary and sufficient condition∫

D

[
R2(x)
R1(x)

]1/2

xmσ (x) dx = 0, m = 0, 1, . . . ,q − p − 1. (19.105)
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19.9 2D Anisotropic Elasticity – Stroh Formalism

For the sake of completeness, in this section we give a brief summary of the Stroh formal-
ism for two-dimensional anisotropic elasticity. Consider a two-dimensional anisotropic
elasticity problem in which the deformation field is independent of the x3 coordinate, so
that the displacement components are

uk = uk(x1, x2), k = 1, 2, 3. (19.106)

The corresponding stresses are

σi j = Ci jkluk,l , (19.107)

where Ci jkl are the components of the anisotropic elastic moduli tensor (with respect to
selected coordinate directions x1, x2, x3). They are assumed to possess the usual symmetry
properties with respect to the interchange of indices i � j and k � l, as well as reciprocal
symmetry Ci jkl = Ckli j . In the absence of body forces, the equilibrium equations are

σi j, j = 0 , (19.108)

or, after using (19.107),

Ci jkluk, jl . (19.109)

A general solution of (19.109) can be cast in the form

uk = ak f (z), z = x1 + px2, (19.110)

where ak and p are complex-valued constants, and f is an arbitrary function of z. Since

uk,l = f ′ak(δ1l + pδ2l), f ′ = d f/dz ,

uk, jl = f ′′ak(δ1 j + pδ2 j )(δ1l + pδ2l), f ′′ = d2 f/dz2 ,

we obtain from (19.109)[
Ci1k1 + p(Ci1k2 + Ci2k1) + p2Ci2k2

]
ak = 0 , (19.111)

whereas (19.107) gives

σi j = f ′(Ci jk1 + pCi jk2)ak . (19.112)

In particular,

σi1 = f ′(Ci1k1 + pCi1k2)ak ,

σi2 = f ′(Ci2k1 + pCi2k2)ak .
(19.113)

In view of the reciprocal symmetry of Ci jkl , we now define the symmetric 3 × 3 matrices
Q and T with components

Qik = Ci1k1 , Tik = Ci2k2 , (19.114)

and the nonsymmetric 3 × 3 matrix R with components

Rik = Ci1k2 . (19.115)
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Since the elastic strain energy is positive, the matrices Q and T are positive-definite.
With so defined matrices Q, T, and R, (19.111) and (19.113) can be rewritten in the matrix
form as [

Q + p
(
R + RT)+ p2T

] · a = 0 (19.116)

and

t1 = f ′(Q + pR) · a , t2 = f ′ (RT + pT
) · a , (19.117)

where

a =
⎡
⎣a1

a2

a3

⎤
⎦ , t1 =

⎡
⎣σ11

σ21

σ31

⎤
⎦ , t2 =

⎡
⎣σ12

σ22

σ32

⎤
⎦ . (19.118)

The equilibrium equations (19.108) can be cast in the vector form as

t1,1 + t2,2 = 0 . (19.119)

This suggests the introduction of the vector stress function ϕ, such that

t1 = − ∂ϕ
∂x2

, i.e., σi1 = −∂ϕi

∂x2
,

t2 = ∂ϕ

∂x1
, i.e., σi2 = ∂ϕi

∂x1
.

(19.120)

When these are introduced in (19.117), there follows

− ∂ϕ
∂x2

= f ′(Q + pR) · a ,

∂ϕ

∂x1
= f ′(RT + pT) · a .

(19.121)

Since z = x1 + px2, and

∂ f
∂x1

= f ′ ,
∂ f
∂x2

= pf ′ ,

equations (19.121) can be integrated to give

ϕ = − f
p

(Q + pR) · a = f
(
RT + pT

) · a . (19.122)

Thus,

ϕ = f (z)b , (19.123)

where

b = (
RT + pT

) · a = − 1
p

(Q + pR) · a . (19.124)

It was shown by Stroh (1958) that the constants p, ak, and bk can be determined simulta-
neously from the six-dimensional eigenvalue problem as follows. From the first of (19.124),
upon the multiplication with T−1, we have

− (
T−1 · RT) · a + T−1 · b = p · a . (19.125)
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By multiplying this with R, we obtain

pR · a = R · T−1 · b − (
R · T−1 · RT) · a . (19.126)

The second of (19.124) can be rearranged as

−Q · a − pR · a = pb , (19.127)

or, by using (19.126), (
R · T−1 · RT − Q

) · a − R · T−1 · b = p · b . (19.128)

Equations (19.125) and (19.128) together constitute a six-dimensional eigenvalue
problem

N · υ = pυ , (19.129)

where

N =
[ −T−1 · RT T−1

R · T−1 · RT − Q −R · T−1

]
(19.130)

is a real nonsymmetric 6 × 6 matrix, and

υ =
[

a
b

]
(19.131)

is a six-dimensional vector with components {a1, a2, a3,b1,b2,b3}. The eigenvalue prob-
lem (19.129) delivers six eigenvalues p(α) and six corresponding eigendirections υ(α)

(α = 1, 2, . . . , 6). They depend only on the type of elastic anisotropy and the values of
elastic moduli. The positive definiteness of the strain energy requires the six eigenvalues
to appear as three pairs of complex conjugates. It is convenient to arrange them so that
p(1), p(2), and p(3) have positive imaginary parts, i.e.,

Im p(α) > 0 , α = 1, 2, 3 ,

p(α+3) = p̄(α) , α = 1, 2, 3 ,
(19.132)

where overbar denotes the complex conjugation and Im the imaginary part. Correspond-
ingly, we have

a(α+3) = ā(α) , α = 1, 2, 3 ,

b(α+3) = b̄(α) , α = 1, 2, 3 .
(19.133)

The general solution can now be expressed by superposition as

u =
3∑
α=1

[
a(α) f (α)(z(α)) + ā(α) f (α+3)(z̄(α))

]
, (19.134)

ϕ =
3∑
α=1

[
b(α) f (α)(z(α)) + b̄(α) f (α+3)(z̄(α))

]
, (19.135)

in which f (α) are arbitrary functions of their argument, and z(α) = x1 + p(α)x2, (α =
1, 2, . . . , 6). Equations (19.134) and (19.135) are Stroh’s solutions for two-dimensional
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anisotropic elasticity. See also Eshelby, Read, and Shockley (1953) and, for an alternative
approach, Lekhnitskii (1981).

In many applications, the functions f (α) assume the same function form, differing only
by complex scaling parameters q(α), such that

f (α)(z(α)) = q(α) f (z(α)) ,

f (α+3)(z̄(α)) = q̄(α) f̄ (z̄(α)) .
(19.136)

Thus, by introducing the matrices

A = [
a(1) a(2) a(3)

] =

⎡
⎢⎣a(1)

1 a(2)
1 a(3)

1

a(1)
2 a(2)

2 a(3)
2

a(1)
3 a(2)

3 a(3)
3

⎤
⎥⎦ , (19.137)

B = [
b(1) b(2) b(3)

] =

⎡
⎢⎣b(1)

1 b(2)
1 b(3)

1

b(1)
2 b(2)

2 b(3)
2

b(1)
3 b(2)

3 b(3)
3

⎤
⎥⎦ , (19.138)

F =
⎡
⎣ f (z(1)) 0 0

0 f (z(1)) 0
0 0 f (z(1))

⎤
⎦ , (19.139)

and the vector

q =
⎡
⎣q(1)

q(2)

q(3)

⎤
⎦ , (19.140)

the solution (19.134) and (19.135) can be compactly expressed as

u = 2Re (A · F · q) , (19.141)

ϕ = 2Re (B · F · q) , (19.142)

where Re stands for the real part. For example, for a Griffith crack of length 2c, subject
to uniform tractions −t0

2 over the crack faces which are parallel to x1 direction, it can be
shown that (e.g., Ting, 1991)

f (z) = 1
2

[
(z2 − c2)1/2 − z

]
, (19.143)

q = B−1 · t0
2 , t0

2 =
⎡
⎣σ 0

21
σ 0

22
σ 0

23

⎤
⎦ . (19.144)

19.9.1 Barnett–Lothe Tensors

Equations (19.141) and (19.142) are genearal solutions, provided that the state of
anisotropy is such that there are indeed six independent eigenvectors υ(α). This is, for
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example, not the case with isotropic materials, for which p = i = √−1 is a triple eigen-
value with only two independent eigenvectors. Barnett and Lothe (1973) constructed a
method to derive the solution which circumvent the need of solving the six-dimensional
eigenvalue problem. They introduced the real matrices S, H, and L, which are related to
complex matrices A and B by

S = i(2A · BT − I), H = 2iA · AT, L = −2iB · BT , (19.145)

and showed that

S = − 1
π

∫ π

0
T−1(θ) · RT(θ) dθ ,

H = 1
π

∫ π

0
T−1(θ) dθ ,

L = 1
π

∫ π

0

[
Q(θ) − R(θ) · T−1(θ) · RT(θ)

]
dθ ,

(19.146)

where

Qik(θ) = Ci jkln j nl ,

Rik(θ) = Ci jkln j ml ,

Tik(θ) = Ci jklmj ml ,

(19.147)

and n = {cos θ, sin θ, 0}, m = {− sin θ, cos θ, 0}. It is clear that H and H are symmetric
(because T−1 and Q are). It can also be shown that the products S · H, L · S, H−1 · S, and
S · L−1 are antisymmetric tensors. There is furthermore a connection H · L − S · S = I.
The explicit representations for Barnett–Lothe tensors S, H, and L have been reported
in the literature for various types of anisotropic materials, such as cubic and orthotropic
(e.g., Chadwick, and Smith, 1982; Ting, 1996).

For example, along the plane coinciding with the crack faces of the Griffith crack, loaded
over its crack faces by uniform tractions, one has (Ting, 1991)

(z2 − c2)1/2 =
{

(x2
1 − c2)1/2, |x1| > c,

±i(c2 − x2
1 )1/2, |x1| < c, x2 = ±0 .

(19.148)

The displacement and traction vectors for ±x1 > c are

u(x1, 0) = ± [|x1| − (x2
1 − c2)1/2]S · L−1 · t2

0 ,

t1(x1, 0) = − [|x1|(x2
1 − c2)−1/2 − 1

]
G2 · t2

0 ,

t2(x1, 0) = [|x1|(x2
1 − c2)−1/2 − 1

]
t2

0 ,

(19.149)

while, for |x1| < c,

u(x1,±0) = [±(c2 − x2
1 )1/2I + x1S

] · L−1 · t2
0 ,

t1(x1,±0) = [±x1(c2 − x2
1 )−1/2G1 − G2

] · t2
0 ,

t2(x1,±0) = −t2
0 .

(19.150)

The G matrices are here defined by

G1 = (
R · T−1 · RT − Q

) · L−1, G2 = R · T−1 + G1 · L · S · L−1 . (19.151)
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From the first of (19.149) or (19.150) it is observed that u(c, 0) is in general not equal to zero,
unless S · L−1 · t2

0 = 0. Furthermore, the traction vector t2(x1, 0) is independent of the type
of elastic anisotropy or the values of the elastic moduli. This was already demonstrated
by (19.47).
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20 The Inclusion Problem

The problem considered here has found application to a legion of physical applications
including, inter alia, the theory of solid state phase transformations where the transforma-
tion (arising from second phase precipitation, allotropic transition, or uptake of solutes,
or changes in chemical stoichiometry) causes a change in size and/or shape of the trans-
formed, included, region; differences in thermal expansion of an included region and its
surrounding matrix, which in turn causes incompatible thermal strains between the two;
and, perhaps surprisingly, the concentrated stress and strain fields that develop around in-
cluded regions that have different elastic modulus from those of their surrounding matrices.
For the reason that the results of this analysis have application to such a wide variety of
problem areas, and because the solution approach we adopt has heuristic value, we devote
this chapter to the inclusion problem.

20.1 The Problem

In an infinitely extended elastic medium, a region – the “inclusion” – undergoes what would
have been a stress free strain. Call this strain the “transformation strain,” eT. Due to the
elastic constraint of the medium, i.e., the matrix, there are internal stresses and elastic strains.
What is this resulting elastic field and what are its characteristics? In particular, can an
exact solution be found for this involved elastic field? The region of interest is shown in
Fig. 20.1 and is denoted as VI; the outward pointing unit normal to VI is n. The stress
free transformation, i.e., change in size and shape, can be viewed as occurring while the
inclusion has been hypothetically removed from the medium, as depicted in Fig. 20.1. Thus
the transformation indicated by eT involves a displacement within the inclusion of the form

b(x) = eT · x,

bi = eT
i j x j .

(20.1)

The size and shape change associated with this transformation have caused no stresses and
elastic strains if it were not for the constraint of the matrix.

We consider here the case where eT is uniform, i.e., does not depend on position. We
denote the elastic constants as C, so that the linear connection between stress and elastic
strain, eel, is σ = C : eel In the discussion that follows, the distinction between elastic strain

335
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Figure 20.1. Eshelby’s heuristic scheme for the
inclusion setup.

and total strain will be made clear in specific context. For the infinitesimal strain formulation
considered here the total strain is simply the sum of the elastic and the “nonelastic” strains.

20.2 Eshelby’s Solution Setup

We consider the following heuristic solution approach originally devised by Eshelby (1957).
The approach will involve a series of heuristic steps, each accompanied by a change in stress
or strain. The concept of linear superposition is used to “build the solution.”

Step 1: It is explicitly understood that the inclusion is embedded and bound to the matrix
and its interface purely continuous with the matrix (medium). Thus all final displacements
must be so continuous, and, as our procedure will show, they are. We imagine removing
the inclusion from the medium by a purely heuristic process that produces no stress in the
inclusion or in the medium. This means, of course, that no elastic strain has been induced in
either region. Now let the inclusion transform, i.e., let it undergo a homogeneous strain as
prescribed by (20.1). This will induce a total strain in VI of eT. At this stage, the stresses in
both the inclusion, VI, and the medium, Vm, are zero. Also, the total strain in the medium
is zero at this stage. To be formal, we say

eI1 = eT, σI1 = 0,

em1 = 0, σm1 = 0.
(20.2)

The convention will be that the first superscript, (..)I or (..)m, represents field quantities
that belong to the inclusion and medium, respectively, and the second superscript indicates
the contribution of that field quantity from the “step” in question.

Step 2: Now the inclusion in its hypothetically separated, yet transformed, state will no
longer “fit” within the “hole” in the medium that it came from. But it has undergone a
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uniform strain, eT. To replace it within the medium, we may imagine applying a uniform
set of boundary traction, T, such that

T = −C : eT · n,

Ti = −Ci jkleT
kln j .

(20.3)

This has the result of producing a uniform state of elastic strain, and therefore uniform
stress, in the inclusion. No strain, or stress, has yet to be caused in the matrix. The contri-
butions to total stress and strain from this step is

eI2 = −eT, σI2 = −C : eT,

em2 = 0, σm2 = 0.
(20.4)

Step 3: At this point the inclusion will fit perfectly into the “hole” from which it came,
and therefore it may be reinserted, and the interface between it and the medium made
continuous again. At this stage the state of strain and stress is

eI3 = eI1 + eI2 = 0, σI3 = −C : eT,

em3 = 0, σm3 = 0.
(20.5)

It is important to recall, however, that the elastic strain in the inclusion is at this stage, −eT,
which of course accounts for the state of stress in the inclusion. Note, as explained above,
that at this point all displacements are to be continuous across the interface between
the inclusion and matrix – and at this point they already are! The final step will pro-
duce additional displacements in both the matrix and inclusion which are inherently
continuous.

Although the inclusion now fits within its original “hole,” there are what now appears
to be an embedded layer of body force T = −C : eT · n distributed around the interface SI.
To remove these fictitious body forces we apply a layer of annulling forces, −T = C : eT · n
around SI, as indicated in Fig. 20.1. The application of these forces will cause displacements,
elastic strains, and additional stresses, in both the medium and the inclusion; call these the
“constrained field,” as they occur under the constraint of the infinite elastic medium. Thus
the superscript 4 will be replaced by c to specially designate this.

Step 4 or c: The last step involves the removal of the unwanted layer of body force,
T. Formally this is accomplished by applying a layer of body force −T around SI. How-
ever, as already explained, this occurs while the inclusion is bound to the medium. Thus,
all displacements that occur in this step will be continuous across the interface between
the inclusion and matrix. Call these displacements, inside and outside VI, uc. It is this con-
strained or c field we will now solve for. However, the final state for the total field quantities
within the inclusion and medium will be

eI4 = eI1 + eI2 + ec = ec, σI4 = −C : eT + σc,

em4 = ec, σm4 = σc,
(20.6)

where the strains ec are calculated from the constrained displacements, and the stresses
σc are calculated as σc = C : ec.
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It is also important to explicitly note the total displacements in the inclusion and the
medium at this final stage; they are

u = uc in both VI and Vm. (20.7)

On the other hand, the displacements that cause elastic strains, and thus stresses, are

u = −b + uc in VI, and u = uc in Vm. (20.8)

Thus, the elastic strains in the inclusion are

e = eel = ec − eT in VI. (20.9)

20.3 Calculation of the Constrained Fields: uc, ec, and σc

To calculate the displacements caused by the application of the layer of body force, −T =
C : eT · n, we simply use linear superposition and the Green’s function to write

uc
p(x) =

∫
SI

Ci jkleT
kln j Gip(x − x′) dS′

=
∫

SI

(Ci jkleT
kl Gip)nj dS′

=
∫

VI

Ci jkleT
kl
∂

∂x′
j

Gip(x − x′) dV′.

We note that

Gip = Gip(x − x′) ⇒ ∂

∂x′
j

Gip(x − x′) = − ∂

∂xj
Gip(x − x′) (20.10)

and thus

uc
p(x) = ∂

∂xj

∫
VI

Ci jkleT
kl Gip(x − x′) dV′. (20.11)

For the distortion, i.e., the displacement gradient, we have

uc
p,s(x) = ∂uc

p

∂xs
= ∂2

∂xs∂xj

∫
VI

Ci jkleT
kl Gip(x − x′) dV′. (20.12)

We recall that the Green’s function is given by

Gip(x − x′) = 1
8π3

∫ ∞

−∞
d3k

M−1
ip (z)

k2
exp[−ik · (x − x′)], (20.13)

where k is the Fourier vector and z is a unit vector aligned along k. Thus,

∂uc
p

∂xs
= − ∂2

∂xs∂xj
Ci jkleT

kl
1

8π3

∫ ∞

−∞
d3k

M−1
ip

k2
exp(−ik · x)

×
∫

VI

exp(ik · x′) dV′.

(20.14)

Consider the last integral first, i.e.,∫
VI

exp(ik · x′) dV′.
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x'

k

Ω

θ

φ
Figure 20.2. A polar coordinate system aligned with k.

Let VI be an ellipsoidal volume with axes a1, a2, a3, for reasons that will be clear in what
follows. Define expanded variables and a polar coordinate system aligned with k (see
Fig. 20.2), as follows

Ki = ki ai and Ri = x′
i/ai (no sum on i),

k · x′ = K · R = KRcosφ,

dV′ = d3x′ = a1a2a3 d3R,

d3x′ = a1a2a3 R2 sinφ dφ dRdθ.

Then, ∫
VI

exp(ik · x′) dV′ = a1a2a3

∫ 1

0
R2dR

∫
�

exp(i KRcosφ) sinφ dφ dθ. (20.15)

Note that � is a unit sphere such that 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π . The integral over θ is
trivial, so that∫

VI

exp(ik·x′) dV′ = 2πa1a2a3

∫ 1

0
R2 dR

∫ π

0
exp(i KRcosφ) sinφ dφ. (20.16)

The standard integral tables reveal that∫ π

0
exp(i KRcosφ) sinφ dφ = (2π)1/2

(KR)1/2
J1/2(KR), (20.17)

where J1/2(KR) is a fractional Bessel function. Thus,∫ π

0
exp(i KRcosφ) sinφ dφ = 2πa1a2a3(2π)1/2

K1/2

∫ 1

0
R3/2 J1/2(KR) dR

= 2πa1a2a3(2π)1/2

K3/2
J3/2(K),

with

K = |K| = (k2
1a2

1 + k2
2a2

2 + k2
3a2

3)1/2. (20.18)

Consequently,

uc
p,s = − ∂2

∂xs∂xj

1
2π2

a1a2a3(π/2)1/2Ci jkleT
kl

∫ ∞

−∞
d3k

M−1
ip (z)

k2
exp(−ik · x)

J3/2(K)
K3/2

.

(20.19)
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If we again define

Ki = ki ai , (no sum on i),

K2 = k2
i a2

i , d3k = 1
a1a2a3

d3K,
(20.20)

then
ki

K
= K i

Kai
= νi

ai
, (no sum on i),

k2
1 + k2

2 + k2
3

K2
= ν2

1

a2
1

+ ν2
2

a2
2

+ ν2
3

a2
3

,

(20.21)

so that

k · x = Kν · R, Ri = xi/ai , (no sum on i). (20.22)

Now, take the real part of (20.19) to obtain

uc
p,s = − 1

2π2

√
π/2 Ci jkleT

kl
∂2

∂xj∂xs

∫ ∞

−∞

d3KM−1
pi cos[K(ν · R)]J3/2(K)

K2 K3/2[(ν1/a1)2 + (ν2/a2)2 + (ν3/a3)2]
. (20.23)

Next, introduce another polar coordinate system aligned with R, so that

d3K = k2dK sinφ dφ dθ,

and note ∫ ∞

0

cos[K(ν · R)]J3/2(K)
K3/2

dK = 1/2
√
π/2

[
1 − (ν · R)2] ,

if (ν · R) ≤ 1.

(20.24)

It follows that

uc
p,s = 1

4π
Ci jkleT

kl

∫ 2π

0

∫ π

0

sinφM−1
pi (ν)(ν j/a j )(νs/as)

[(ν1/a1)2 + (ν2/a2)2 + (ν3/a3)2]
dφ dθ,

(no sum on j, s),

= Constants, if ν · R ≤ 1 .

(20.25)

To form the strains we take the symmetric part of uc
p,s , or

ec
p,s = 1

8π
Ci jkleT

kl

∫ 2π

0

∫ π

0

sinφ dφ dθnj [M−1
pi (ν)ns + M−1

si (ν)np]

[(ν1/a1)2 + (ν2/a2)2 + (ν3/a3)2]
, (20.26)

where

np = (νp/ap), (no sum on p).

We can conveniently define the components of the tensor S as

Spskl = 1
8π

Ci jkl

∫ 2π

0

∫ π

0

sinφ dφ dθnj [M−1
pi (ν)ns + M−1

si (ν)np]

[(ν1/a1)2 + (ν2/a2)2 + (ν3/a3)2]
, (20.27)

such that

ec
ps = SpskleT

kl . (20.28)
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x 1

x 2

x3

a1

a2

a3

Figure 20.3. An ellipsoidal inclusion with its principal axes parallel
to coordinate axes.

The fourth-order tensor with components Si jkl is known as the Eshelby tensor.
In summary, it is worth recalling that:

In the Inclusion:

σ I
i j = Ci jps(ec

ps − eT
ps),

ec
ps = SpskleT

kl ,

eI,el
ps = ec

ps − eT
ps,

uI,el
i = uc

i − bi ,

eI
ps = ec

ps .

(20.29)

In the medium:

σm
i j = Ci jpsec

ps,

em
ps = ec

ps,

um
i = um,el

i = uc
i .

(20.30)

20.4 Components of the Eshelby Tensor for Ellipsoidal Inclusion

The components of the Eshelby tensor Si jkl obey the symmetry

Si jkl = S j ikl = Si jlk . (20.31)

When written with respect to coordinate axes parallel to principal axes of the ellipsoidal
inclusion (Fig. 20.3), these components are

S1111 = 3a2
1

8π(1 − ν)
I11 + 1 − 2ν

8π(1 − ν)
I1 ,

S1122 = a2
2

8π(1 − ν)
I12 − 1 − 2ν

8π(1 − ν)
I1 ,

S1133 = a2
3

8π(1 − ν)
I13 − 1 − 2ν

8π(1 − ν)
I1 ,

S1212 = a2
1 + a2

2

16π(1 − ν)
I12 + 1 − 2ν

16π(1 − ν)
(I1 + I2) .

(20.32)

The remaining nonzero components are obtained by cyclic permutations of (1, 2, 3). All
other components vanish.
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The Ii integrals appearing in above expressions can be expressed in terms of elliptic
integrals. Assuming that a1 > a2 > a3, we have

I1 = 4πa1a2a3

(a2
1 − a2

2)(a2
1 − a2

3)1/2
[F(θ,k) − E(θ,k)],

I3 = 4πa1a2a3

(a2
2 − a2

3)(a2
1 − a2

3)1/2

[
a2(a2

1 − a2
3)1/2

a1a3
− E(θ,k)

]
, (20.33)

I1 + I2 + I3 = 4π ,

where F(θ,k) and E(θ,k) are elliptic integrals of the first and second kind, and

θ = arcsin
(

a2
1 − a2

3

a2
1

)1/2

, k =
(

a2
1 − a2

2

a2
1 − a2

3

)1/2

. (20.34)

The Ii j integrals can be calculated from

3I11 + I12 + I13 = 4π
a2

1

,

3a2
1 I11 + a2

2 I12 + a2
3 I13 = 3I1 , (20.35)

I12 = 1
a2

1 − a2
2

(I2 − I1) ,

and their cyclic counterparts.
The stress components in an ellipsoidal inclusion due to uniform transformation (eigen-

strain) eT
i j are

σ11

2µ
=
{

a2
1

8π(1 − ν)

[
1 − ν
1 − 2ν

3I11 + ν

1 − 2ν
(I21 + I31)

]

+ 1 − 2ν
8π(1 − ν)

[
1 − ν
1 − 2ν

I1 − ν

1 − 2ν
(I2 + I3)

]
− 1 − ν

1 − 2ν

}
eT

11

+
{

a2
2

8π(1 − ν)

[
1 − ν

1 − 2ν
I12 + ν

1 − 2ν
(3I22 + I32)

]

− 1 − 2ν
8π(1 − ν)

[
1 − ν
1 − 2ν

I1 − ν

1 − 2ν
(I2 − I3)

]
− ν

1 − 2ν

}
eT

22

+
{

a2
3

8π(1 − ν)

[
1 − ν

1 − 2ν
I13 + ν

1 − 2ν
(3I33 + I23)

]

− 1 − 2ν
8π(1 − ν)

[
1 − ν
1 − 2ν

I1 − ν

1 − 2ν
(I3 − I2)

]
− ν

1 − 2ν

}
eT

33 ,

(20.36)

σ12

2µ
=
[

a2
1 + a2

2

8π(1 − ν)
I12 + 1 − 2ν

8π(1 − ν)
(I1 + I2) − 1

]
eT

12 , (20.37)

with other stress components obtained from the above two expressions by cyclic permu-
tations of (1, 2, 3).
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20.5 Elastic Energy of an Inclusion

The elastic energy of the entire body, i.e., inclusion and medium is

E = 1
2

∫
V
σi j ei j dV = 1

2

∫
V
σi j ui, j dV. (20.38)

Formally, we may divide the body into the inclusion volume and the volume of the medium,
so that

E = 1
2

∫
VI

σ I
i j u

I,el
i, j dV + 1

2

∫
Vm

σm
i j um

i, j dV. (20.39)

Since there are no body forces, i.e., ∇ · σ = 0, the divergence theorem shows that

E = 1
2

∫
VI

(σ I
i j u

I
i ), j dV + 1

2

∫
Vm

(σm
i j um

i ), j dV

= 1
2

∫
SI

σ I
i j n j u

I,el
i dS + 1

2

∫
SI

σ I
i j n̂ j u

I,el
i dS + 1

2

∫
S∞
σm

i j n∞
j um

i dS.

Furthermore, ∫
S∞
σm

i j n∞
j um

i dS → 0,

because of the way in which the stresses and displacements fall off with distance. Thus,

E = 1
2

∫
SI

(σ I
i j n j u

I,el
i + σ I

i j n̂ j um
i ) dS

= 1
2

∫
SI

σ I
i j n j (uI,el

i − um
i ) dS

= −1
2

∫
SI

σ I
i j n j eT

is xs dS,

(20.40)

because uI,el
i − um

i = −bi . From (20.40) it then follows, with another use of the divergence
theorem, that

E = −1
2

∫
VI

σ I
i j e

T
i j dV. (20.41)

20.6 Inhomogeneous Inclusion: Uniform Transformation Strain

We next consider the problem of an infinite medium containing an inclusion of a material
different from that of the medium. The inhomogeneous inclusion, which occupies the
volume VI, as before, is to undergo what would be, without the constraint of the surrounding
medium, a stress free strain, e∗. The elastic moduli tensor for this inclusion is designated
as C∗. For the case of a homogeneous inclusion, i.e., one having the same elastic constants
as the medium, after undergoing a transformation strain, eT, the final inclusion strain is
ec = S : eT, and the resulting inclusion stress is σ = C : (S : eT − eT). We recall, if the
inclusion were of ellipsoidal shape, and if eT were uniform, the resulting stresses and
strains in the inclusion were also uniform. We have omitted the superscript I for the
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C

C*

ε

ε

Figure 20.4. Inhomogeneous inclusion subject to far field strains.

inclusion field variables for brevity and because we will only require discussion of field
quantities within the inclusions for our development. With the above in mind, imagine
applying surface forces to the inhomogeneous inclusion so as to produce a strain, ec − e∗,
where we will associate ec here with that of a companion homogeneous inclusion shortly.
The resulting stresses in the inclusion are σ∗ = C : (ec − e∗). Note that −e∗ strain will
cancel the stress free strain, e∗, which now leaves the total strain of the inhomogeneous
inclusion to be ec. At this stage both the homogeneous and inhomogeneous inclusions
have experienced the same total strains and thus have the same size and shape. If the
stresses within the two inclusions are also identical, then we may replace the homogeneous
inclusion with the inhomogeneous inclusion. This is so because the traction that would
be computed from these stresses would be identical, and thus traction continuity would
be maintained with the medium. For the stresses to be the same, we must be able to solve
for a companion set of transformation strains for a homogeneous inclusion, eT, given the
prescribed transformation strains, e∗. The resulting equations are

C : (S : eT − eT) = C∗ : (S : eT − e∗),

Ci jkl(SklmneT
mn − eT

kl) = C∗
i jkl(SklmneT

mn − e∗
kl).

(20.42)

The set (20.42) can indeed be solved for eT.
Consider the problem of an infinite medium containing an inclusion of a different ma-

terial and subject to a far field strain e∞ (Fig. 20.4). Suppose we first solve the problem
of a homogeneous inclusion with the same elastic constants as the medium and the same
initial size and shape, which undergoes a uniform transformation strain eT. We recall that
in the case of this companion homogeneous inclusion, the resulting state of stress and
strain would be such that the total strain would be ec; the elastic strain would, however,
be ec − eT. Now, superimpose a uniform strain, e∞, on this homogeneous inclusion as well
as on the medium. The stress in the inclusion is

σhom,I = C : (ec − eT + e∞). (20.43)

Next, subject the inhomogeneous inclusion, with elastic constants C, to a uniform strain
ec + e∞. Note at this point that the size and shape change undergone by this inhomo-
geneous inclusion is identical to that of the fully transformed companion homogeneous
inclusion. The stresses in the inhomogeneous inclusion are

σinhom,I = C∗ : (ec + e∞). (20.44)
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If the stresses in both inclusions are the same, we may replace the companion homo-
geneous inclusion with its inhomogeneous counterpart. If the inclusions are of ellipsoidal
shape this is possible because ec = S : eT, whereS is a constant Eshelby tensor. Thus, given
e∞,C,C∗, we may solve for the companion homogeneous eT from

C : (S : eT − eT + e∞) = C∗ : (S : eT + e∞),

Ci jkl(SklrseT
rs − eT

kl + e∞
kl ) = C∗

i jkl(SklrseT
rs + e∞

kl ).
(20.45)

Note that the stresses and strains are everywhere the same for both the medium with the
inhomogeneous and the companion homogeneous inclusions.

20.7 Nonuniform Transformation Strain Inclusion Problem

As before, we imagine a volume element – that we will later, for clear advantage, take to be of
ellipsoidal shape – undergo what would be a stress-free change in size and shape while it is
embedded within an infinite medium. The inclusion and its medium have the same elastic
constants, C. The stress-free change in size and shape is described by a transformation
strain, eT, as discussed in the previous sections.

LEMMA 20.1: If an ellipsoidal region in an infinite anisotropic linear elastic medium un-
dergoes, in the absence of its surroundings, a stress-free transformation strain which is a
polynomial of degree M in the position coordinates, xp, then the final stress and strain state
of the transformed inclusion, when constrained by its surroundings, is also a polynomial of
degree M in the coordinates xp.

This generalization of Eshelby’s original theorem for the uniform inclusion in an
isotropic elastic medium has far reaching consequences - viz., that all the developments
of the previous section regarding the inhomogeneous inclusion hold true, as can be veri-
fied by direct analysis. Clearly, the above results for the uniform transformation strain are
included in this generalization.

Proof: We start almost from the beginning. Imagine cutting out the volume element VI

in an undeformed infinite anisotropic linear elastic medium. As this process is heuristic, let
VI undergo a stress-free transformation strain eT(x), where x denotes position within the
inclusion. The strain eT(x) is assumed to be continuous and differentiable, but is otherwise
arbitrary. Now let pT

i j (x) = Ci jkleT
kl be the stress derived from Hook’s law as above, i.e., if

the uniform strain eT were applied unconstrained to VI. The construction of the constrained
elastic field is accomplished by first applying −pT

i j (x)nj to the surface SI bounding VI [and
distributing body forces (∂/∂xj )pT

i j (x) throughout VI].

With this nomenclature, we can move to the general expression, i.e., (20.11), for the
components of displacement gradient,

∂uc
i

∂xp
= − ∂2

∂xp∂xj

∫
VI

Gik(x − x′)pT
kj (x′) dV′. (20.46)
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Take the Fourier transform of (20.46) to obtain, with K again being a Fourier vector,

∂uc
i

∂xp
= K2zpzj g jk(K)

∫
VI

pT
kj (x′) exp(i Kz · x′) dV′

= zpzj M−1
ik (z)

∫
VI

pT
kj (x′) exp(i Kz · x′) dV′.

We recall that the Fourier transform of G is

g(K) = M−1/K2, (20.47)

where M ≡ z · C · z, and z = K/|K|. In other words,

gik(K) = M−1
ik (K)/K2. (20.48)

Using the Fourier inversion described in Chapter 3, along with the spherical coordinate
system, yields

∂uc
i

∂xp
= (2π)−3

∫
�

zpzj M−1
ik (z) d�

∫ ∞

0
K2 exp(−i Kz · x) dK

∫
VI

pT
kj (x′) exp(i Kz · x′) dV′.

(20.49)

Again, d� = sinφ dφ dθ is the surface area over the unit sphere, as described in the previous
section. We are interested in only the real part of (20.49), and we note that

∇2
x cos[Kz · (x′ − x)] = −K2 cos[Kz · (x′ − x)], (20.50)

where

∇2
x ≡ ∂2/∂xs∂xs . (20.51)

We also recall that ∫ ∞

0
cos(Ks) dK = πδ(s). (20.52)

Thus, an interchange of the order of integration yields

∂uc
i

∂xp
= − 1

8π2

∫
�

zpzj M−1
ik (z) d�∇2

x

∫
VI

pT
jk(x′)δ(z · x′ − z · x) dV′. (20.53)

We now specialize to the case of an ellipsoidal inclusion,

3∑
α=1

(xα/aα)2 = 1, (20.54)

which means that x lies in VI, and eT(x′) and hence pT
jk(x′) are polynomials of degree M

in x′. We have, for convenience, chosen the xi axes to coincide with the principal axes of
the ellipsoid; this can be done without loss of generality because a polynomial of degree
M in xi remains a polynomial of degree M in the coordinates of any rectangular Cartesian
system obtained by rotation and translation from other rectangular Cartesian system.

In general, pT
kj (x′) is the sum of M + 1 terms, with a typical r th term of the form

Akjmn..,s x′
mx′

n . . . x
′
s,
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where 0 ≤ r ≤ M and the Akjmn..,s x′
mx′

n . . . x
′
s are r2 constants, whereas x′

mx′
n . . . x

′
s are r

products. Consider such a term substituted into (20.53), namely the integral

I(r)
kj = Akjmn...s

∫
VI

x′
mx′

n...x
′
sδ(z · x′ − z · x) dV′, (20.55)

with

3∑
α=1

(xα/aα)2 ≤ 1. (20.56)

Then,

∂uc
i

∂xp
= 1

8π2

∫
�

zpzj M−1
ik (z) d�

M∑
r=0

∇2
x I(r)

kj . (20.57)

Now, introduce the change in variables

t ′
α = x′

α/aα, tα = xα/aα, (20.58)

which will convert the integral over the ellipsoid in (20.55) to an integral over the unit
sphere, |t′| ≤ 1. When x lies within the ellipsoid, |t| ≤ 1 and (20.55) become

I(r)
kj =

3∑
α,β,...γ=1

Akjαβ...γ aαaβ...aγ (a1a2a3)
∫

|t′|≤1
t ′
αt ′
β...t

′
γ δ[µ(s · t′ − s · t)] dV′, (20.59)

where

µ = (
a2

1 z2
1 + a2

2 z2
2 + a2

3 z2
3

)1/2
> 0,

sα = zαaα/µ, (no sum on α),

|s| = 1.

(20.60)

The delta function in (20.59) is nonzero only for those t′ of the form

t′ = T(m cosψ + n sinψ) + (s · t)s,

0 ≤ T ≤ [
1 − (s · t)2]1/2

,

(20.61)

and m and n are any two fixed unit vectors normal to s. The angle ψ is a polar angle in
the plane of m and n. Thus, the volume integral in (20.59) is reduced to an integral over a
plane circular region of radius [1 − (s · t)2]1/2. Since

δ(µf ) = 1
µ
δ( f ), (20.62)

we have

I(r)
kj = a1a2a3

µ

3∑
α,β,..,γ=1

Akjαβ...γ aαaβ...aγ (20.63)

×
∫ 2π

0
dψ

∫ [1−(s·t)2]1/2

0
[TRα + (s · t)sα] . . . [TRγ + (s · t)sγ ]T dT.
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In here,

Rα = mα cosψ + nα sinψ, (20.64)

and TdT is the polar element of area in the plane of integration.
The integrand in (20.63) can be expanded using the binomial theorem and is of the form

r∑
w=0

Tw+1(s · t)r−w
(

r
w

)
f (w)
αβ...γ (ψ), (20.65)

where ⎧⎪⎪⎨
⎪⎪⎩

f (0)
αβ...γ (ψ) = sαsβ...sγ ,

f (1)
αβ...γ (ψ) = sαsβ...Rγ + sαRβ...sγ + Rαsβ...sα,

f (r)
αβ...γ (ψ) = RαRβ...Rγ ,

(20.66)

i.e., each term in f (w)
αβ...γ (ψ) contains the product of w R′s. Since

∫ 2π

0
sinmψ cosnψ dψ = 0, if m + n is odd or if both m and n are odd,

one easily verifies that ∫ 2π

0
f (w)
αβ...γ (ψ) dψ = 0, if w is odd. (20.67)

Thus,

I(r)
jk = a1a2a3

µ

3∑
α,β,...γ=1

Akjαβ...γ aαaβ...aγ

〈 1
2 r〉∑
w=0

(
r

2w

)
(s · t)r−2w

×
∫ 2π

0
f (2w)
αβ...γ (ψ) dψ

∫ [1−(s·t)2]1/2

0
T2w+1 dT,

(20.68)

where 〈 1
2r〉 denotes the greatest integer not greater than 1

2r . Since, from (20.58) and (20.61),

s · t = z · x/µ, (20.69)

and having in mind the fact that

∫ [1−(s·t)2]1/2

0
T2w+1 dT = 1

2(w + 1)

[
1 − (s · t)2]w+1

, (20.70)

we obtain

I(r)
jk = a1a2a3

2µ

3∑
α,β,...γ=1

Akjαβ...γ aαaβ...aγ

〈 1
2 r〉∑
w=0

(
r

2w

)∫ 2π

0
f (2w)
αβ...γ (ψ) dψ

× 1
w + 1

(
z · w
µ

)r−2w
[

1 −
(

z · x
µ

)2
]w+1

.
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Clearly, each term in here is a polynomial in z · x of degree r − 2w + 2(w + 1) = r + 2.
Thus I(r)

jk is a polynomial in xi of degree r + 2, and

∇2
x I(r)

jk = P(r)
jk (z · x), (20.71)

where P(r)
jk (z · x) is a polynomial of degree r in xi . Finally,

M∑
r=0

∇2
x I(r)

jk = F (M)
jk (z · x), (20.72)

where F (M)
jk (z · x) is a polynomial of degree M in xi . Using (20.57) we immediately conclude

that inside the ellipsoid the constrained elastic displacement gradients, and thus the strains
and stresses, are polynomials in xi of degree M. The total elastic strain inside the ellipsoid
is given by (20.57) and −eT(x), which is, of course, also a polynomial in xi of degree M.
Thus the proposition of the lemma is proven.

20.7.1 The Cases M = 0, 1

The theorem will be illustrated for the cases where M = 0, 1. For M = 0, we have f (0)(ψ) =
1 and

I(0)
jk = π a1a2a3

µ
Akj

[
1 −

(
z · x
µ

)2
]
. (20.73)

Now,

∇2
x

(
z · x
µ

)2

= 2/µ2, (20.74)

so that inside the inclusion

ec
ip =

[
a1a2a3

8π

∫
�

(zpzj M−1
ik + zi zj M−1

pk )

µ
d�

]
Akj = Sipkj Akj , (20.75)

where the Sipkj may be evaluated by simple numerical integration. For instance, using the
fact that

M−1
ik = 1

2
εisrεrmn MsmMrn/�, � = εmns M1mM2n M2s, (20.76)

we can use spherical coordinates

z1 = cosφ cos θ, z2 = sinφ sin θ, z3 = cosφ. (20.77)

When M = 1, in addition to the term in (20.75), we obtain a term corresponding to
f (0)(ψ) = sα . Then,

I(1)
jk = π a1a2a3

µ2

3∑
α=1

Akjαzαa2
α

(
z · x
µ

)[
1 −

(
z · x
µ

)2
]
. (20.78)

Since

∇2
x

(
z · x
µ

)2

= 6
z · x
µ3
, (20.79)
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in addition to the term in (20.75), we obtain a contribution

ec
ip =

[
3a1a2a3

8π

∫
�

(
zpzj M−1

ik + zi zj M−1
pk

µ5
zs

3∑
α=1

Akjαzαa2
α

)
d�

]
xs .

The integrals may be easily evaluated by numerical integration.

20.8 Inclusions in Isotropic Media

Eshelby’s (1957,1959) original development of the problem of an inclusion in a elastic
medium contained insight and results of considerable interest for exploring physical phe-
nomena. Here we present some of these. The general framework for this has already been
presented and is accordingly utilized here.

20.8.1 Constrained Elastic Field

Recall the expression derived for the Green’s function for an infinitely extended isotropic
elastic medium, viz.,

Gkm(x − x′) = 1
8πµ

(
δkm∇2 − λ+ µ

λ+ 2µ
∂2

∂xk∂xm

)
|x − x′|. (20.80)

Using the result

∇2|x − x′| = 2
|x − x′| , (20.81)

(20.80) may be rewritten as follows. The displacement at the point x due to a unit point
force with components fi acting at the point x′, is

û j (x − x′) = 1
4πµ

f j

|x − x′| − 1
16πµ(1 − ν)

f�
∂2

∂x�∂xj
|x − x′|. (20.82)

The stress associated with the uniform transformation strain, eT, is

σT
i j = λeTδi j + 2µeT

i j , (20.83)

where eT ≡ tr eT. The constrained elastic field is constructed by applying traction σi j n j to
the surface of the inclusion, i.e.,

uc
j (x) =

∫
S
σT

i j û j (x − x′)nk dS′, (no sum on j). (20.84)

The strain in the matrix and inclusion, if measured from the original, untransformed state, is

ec
i j = 1

2
(uc

i, j + uc
j,i ). (20.85)

The stress in the matrix arises solely from this constrained field and is given by

σ c
i j = λecδi j + 2µec

i j . (20.86)

The stress in the inclusion is

σ I
i j = λ(ec − eT)δi j + 2µ(ec

i j − eT
i j ). (20.87)
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Because the σT
i j are constant, and by applying the divergence theorem to (20.84), we obtain

Eshelby’s result

uc
i = 1

16πµ(1 − ν)
σT

jkψ, i jk − 1
4πµ

σT
ikφ, k, (20.88)

where

φ(x) =
∫

V

dV′

|x − x′| , and ψ(x) =
∫

V
|x − x′| dV′ (20.89)

are the Newtonian harmonic and biharmonic potentials, respectively; V is the volume of
the inclusion. Note the fact that ∂/∂x� = −∂/∂x′

� has been used.
Now, since φ(x) is the gravitational potential of a constant unit mass density in the

volume V, we have

∇2φ(x) =
{

−4π, inside V,

0, outside V.
(20.90)

Furthermore, it is evident that

∇2ψ(x) = 2φ(x),

∇4ψ(x) = 2∇2φ(x).
(20.91)

An interesting result follows immediately. Suppose we wish to know the dilatation, uc
i, i .

Since

ψ, i jki = ψ, i i jk = ∇2(ψ, jk) = 2φ, jk,

we can construct uc
i, i from (20.88) as

uc
i, i = ec = − 1 − 2ν

8πµ(1 − ν)
σT

ikφ, ik. (20.92)

Suppose further, as an example, that eT = 1
3 eTI. Then,

ec
i j = − 1

4π
1 + ν

3(1 − ν)
eTφ, i j , (20.93)

and

ec = 1 + ν
3(1 − ν)

eT = ζeT. (20.94)

Thus, the factor ζ is a measure of the constraint of the matrix against free expansion of an
inclusion.

20.8.2 Field in the Matrix

The field in the matrix is generally more difficult to determine in a simple form. The Green’s
function can be expressed as

ûi (x − x′) = 1
16πµ(1 − ν)

f j

|x − x′|

[
(3 − 4ν)δi j + (xi − x′

i )(xj − x′
j )

|x − x′|2
]
.
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rV

x

x'

l
Figure 20.5. Field point in the matrix “far” from the inclusion.

Insert this into (20.84) and apply the divergence theorem to obtain

uc
i (x) = σT

jk

16πµ(1 − ν)

∫
V

dV
r2

hi jk(�)

= eT
jk

8π(1 − ν)

∫
V

dV
r2

gi jk(�),

(20.95)

where r is the distance from x′ to x, and � is a unit vector parallel to x − x′, as shown in
Fig. 20.5. Furthermore,

hi jk = (1 − 2ν)(δi j�k + δik� j ) − δ jk�i + 3�i� j�k,

gi jk = (1 − 2ν)(δi j�k + δik� j − δ jk�i ) + 3�i� j�k.
(20.96)

Suppose x is far removed from the inclusion. Then, we may remove everything from the
integrand, except dV, to obtain

uc
i (x) ∼ VσT

jkhi jk
1

16πµ(1 − ν)r2
= VeT

jkgi jk
1

8π(1 − ν)r2
. (20.97)

20.8.3 Field at the Interface

Now once again the σT
i j are constant, and thus

uc
i, � = 1

16πµ(1 − ν)
σT

i jψ, i jk� − 1
4πµ

σT
ikφ, k�. (20.98)

Consider the jump in uc
i, � across the interface S of the inclusion. This involves

[[ψ, i jk� ]] and [[φ, k� ]].

It is readily shown that

[[φ, k� ]] = uc
i, �(out) − uc

i, �(in) = 4πnkn�. (20.99)

It is left as an exercise to demonstrate this but the steps involve starting with the definition
of φ and noting that the connection ∂/∂xi = −∂/∂x′

i can be used within the integral when
forming a second derivative such as φ, k�. Use of the divergence theorem, and a bit of
elementary geometry, settles the proof. The same argument can be applied to ψ, i j , which
is the potential obtained by using the density −2φ, i j/4π . Thus,

[[ψ, i jk� ]] = 8πni n j nkn� . (20.100)
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Using the results such as (20.92), there follows

[[ec]] = − 1
3

1 + ν
1 − ν eT − 1 − 2ν

1 − ν e′T
i j ni n j ,

[[e′c
i�]] = 1

1 − ν e′T
jkn j nkni n� − e′T

iknkn� − e′T
�knkni

+ 1 − 2ν
3(1 − ν)

e′T
jkn j nkδi� − 1

3
1 + ν
1 − ν eT

(
ni n� − 1

3
δi�

)
,

(20.101)

where e′T
i j = eT

i j − 1
3 eTδi j is a deviatoric part of the strain tensor.

These are Eshelby’s results. Several aspects of the results should be noted. First, since
both ec

i j and eT
i j are related to σ c

i j and σT
i j by the isotropic elastic constitutive law given in

(20.86), the relations in (20.101) are readily expressed in terms of the stresses. Second,
by evaluating the elastic field within the inclusion, the elastic field just outside is known
via (20.101). This allows for the determination of stress and strain concentrations at the
interface. Third, and quite obviously, the result in (20.101) is available for [[uc

i, �]] itself. This
makes it useful for evaluating such quantities as surface forces, discussed earlier. Clearly,
the strain energy density, W(e), at points on either side of the interface can be evaluated
once the field within the inclusion is known; this process is quite tractable for inclusions
that are ellipsoidal in shape.

20.8.4 Isotropic Spherical Inclusion

Eshelby lists his results for an isotropic spherical inclusion and we close by providing them
below. One has

ec = αeT, e′c
i j = βe′T

i j , (20.102)

with

α = 1
3

1 + ν
1 − ν , β = 2

15
4 − 5ν
1 − ν . (20.103)

For a spherical inhomogeneous inclusion with elastic constants κ∗ and µ∗, subject to a far
field applied strain e∞

i j , the equivalent transformation strain is given by

eT = Ae∞, e′T
i j = Be′∞

i j , (20.104)

where

A= κ∗ − κ
(κ − κ∗)α − κ ,

B = µ∗ − µ
(µ− µ∗)β − µ .

(20.105)

Recall that κ = λ+ 2
3 µ is a bulk modulus governing the relation between pressure and

dilatation, i.e., σ = 3κe.
Of particular interest is the field that exists just outside the inclusion. The hydrostatic

and deviatoric parts of the stress are readily found to be

σ = σ∞ − 1 + ν
1 − ν Bσ ′

i j
∞ni n j , (20.106)



P1: JzG
0521859794c20.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:37

354 20. The Inclusion Problem

and

σ ′
i� = (1 + βB)σ ′

i�
∞ − B(σ ′

ik
∞nkn� + σ ′

�k
∞nkni ) + B

1 − ν σ
′
jk
∞nj nkni n�

+ 1 − 2ν
3(1 − ν)

Bσ ′
jk
∞nj nkδi� − 1 − 2ν

3(1 − ν)
Aσ∞(ni n� − 1

3
δi�).

(20.107)

A particularly interesting case of an inhomogeneous inclusion in an applied remote field
is that of a spherical cavity, where κ∗ = 0 and µ∗ = 0. In that case (20.106) and (20.107)
yield

σi� = 15
7 − 5ν

[
(1 − ν)(σ∞

i� − σ∞
ik nkn� − σ∞

�k nkni ) + σ∞
jk n j nkni n�

− νσ∞
jk n j nkδi� + 1 − 5ν

10
σ∞(ni n� − δi�)

]
.

(20.108)

An elementary check on Eshelby’s (1957) solution is to consider the case where the spher-
ical cavity is subject to far field hydrostatic tension of magnitude σ∞. Consider the hole’s
surface, and note that the circumferential (hoop) normal stress, tangential to the hole is
indeed

σt t = 3
2
σ∞, (20.109)

where the subscript t t simply indicates a tangential direction to the hole’s surface. The
hydrostatic tension is, of course, elevated in magnitude by the same factor of 3/2.
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21 Forces and Energy in Elastic Systems

21.1 Free Energy and Mechanical Potential Energy

Elasticity is concerned with the state of deformation, stress, and resulting energy in bodies
subject to applied loads, displacements, or, as illustrated by the chapters on dislocations,
incompatible or discontinuous displacements. For example, two such sources of stress in a
body are indicated in Fig. 21.4 as S and A. Because of the presence of Aand S the internal
energy and the Hemholtz free energy, i.e., the isothermal strain energy, are altered; in
addition, the potential energy of external loading mechanisms responsible for traction, T,
on the external surfaces, would have been altered as well. In considerations of equilibrium
it is not enough to simply consider energy or free energy changes of the body itself, because
changes in, say, defect configuration or position cause changes in the potential energy of the
external loading mechanisms. The thermodynamic potential that is appropriate to use to
seek equilibrium states, or to construct forces from, therefore, must take both the energetic
changes of the body and the loading mechanism into account. To begin, then, consider the
so-called total energy,

Etot = Eel + Eext, (21.1)

where Eel is the isothermal elastic energy, or Hemholtz free energy, and Eext is the potential
energy of the loading mechanism. We now write a Gibbs equation for the change in this
total energy of a body which is assumed to be at constant temperature and subject to fixed
loads (i.e., fixed traction). The body is thus assumed to be surrounded by a medium that
serves as a heat bath maintaining constant temperature, and a loading mechanism exerting
constant boundary traction. The body and the surrounding medium are in thermal contact
and can exchange heat; together they are thermally isolated from the remainder of the
universe. We also consider an external source of work,Wext, that may do work on the body,
but cannot exchange heat with either the body or medium (Fig. 21.1).

The total change in internal energy of the body following an incremental process is

δU = δWext +
∫

S0

Tiδui dS − T(0)δS(0), (21.2)

where we have explicitly noted the dual character of the medium. First, it serves as a heat
bath and thus the heat given to the body is the heat it loses in a pure thermal transfer of

355
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body

medium

So

T

T

W
ext

Figure 21.1. Adiabatically isolated body and medium. The traction
vector is T and the temperature is T.

heat; this means that the heat lost to the body is just −T(0)δS(0). The absolute temperature
is T, and S the entropy. The superscript 0 pertains to the medium, unscripted variables
in context pertain to the body, and we recall that T = T(0). The integral accounts for the
other role of the medium as a loading mechanism capable of performing mechanical work
on the body.

As the body plus medium together comprise a thermally isolated system, the second law
of thermodynamics states that

δS + δS(0) ≥ 0, (21.3)

because δSext = 0. Thus,

−T(0)δS(0) ≤ T(0)δS, (21.4)

and

δU ≤ δWext +
∫

S0

Tiδui dS + TδS, (21.5)

or, since S = S0,

δWext ≥ δU − TδS −
∫

S
Tiδui dS. (21.6)

The work that must be performed externally by the external “engine” to produce this
change in state is δWext. When the change occurs reversibly, the equality holds and

δWext =
rev

δ −
∫

S
Tiδui dS, δ = δU − TδS . (21.7)

The Helmholtz free energy δ contains the “locked in” elastic strain energy within the
body, whereas the surface integral describes the work effects associated with the external
loading mechanism. It is common to define the potential energy of the body as

% =
∫

V
WdV −

∫
S

T · u dS, (21.8)

where W is the strain energy density, and we seek the configuration, under a given set of
boundary conditions, that minimizes it. This will be a solution technique we will use in later
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sections. Thus, at equilibrium, % is a minimum. Generalized forces acting on the system
can be thereby defined as

fα = − ∂%
∂ξα

= −∂Etot

∂ξα
, (21.9)

where α represents a generalized displacement such as the movement of a defect like
dislocation or the deflection of a plate under prescribed loading.

21.2 Forces of Translation

The objective here is to calculate the force acting on a defect, for example, a crack tip, from
the formalism described above. Thus, we want the force inducing translation, which is

f� = −∂Etot

∂x�
. (21.10)

We calculate the energy change in two parts. First consider the elastic energy change. As
the defect translates a small distance ε� in the x� direction, it “drags along with it” its elastic
field. After the translation, the field quantities are given as

uεi (xj ) = ui (xj − ε�δ j�),

σ εi j (xk) = σi j (xk − ε�δk�),
(21.11)

where the superscript ε denotes the quantities after the translation. The strain energy
density is, accordingly,

Wε = 1
2
σ εi j (xk)eεi j (xk) = 1

2
σi j (xk − ε�δk�)ei j (xk − ε�δk�). (21.12)

We can expand Wε , excluding regions of singularity, as

Wε = 1
2
{[σi j (xk) − ε�σi j,�(xk)][ei j (xk) − ε�ei j,�(xk)]} + O(ε2)

= 1
2
σi j ei j − 1

2
ε�(σi j ei j ),� + O(ε2)

= W − ε�W,� + O(ε2).

(21.13)

Therefore, the energy change in this first step is

δE (1)
el =

∫
V

(Wε − W) dV = −ε�
∫

V
W,� dV + O(ε2). (21.14)

The divergence theorem may be used to obtain, to first order in ε,

δE (1)
el = −ε�

∫
S

Wn� dS. (21.15)

Now, by simply translating the elastic field, a state of stress within the body will be
created that does not satisfy the boundary conditions. That is, on a boundary with unit
normal n, we have

σ εi j n j = (σi j − ε�σi j,�)nj + O(ε2). (21.16)

Step 2: then involves applying a traction ε�σi j,� nj + O(ε2) = O(ε) to annul the error. At
the end of step 1 the surface displacements are ui − ε�ui,� + O(ε2), and after step 2 they
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attain the values ui (final), which of course is unknown. Therefore, the change in elastic
energy during step 2 is

δE (2)
el =

∫
S
σi j [ui (final) − ui + ε�ui,�]nj dS + O(ε2). (21.17)

The difference [ui (final) − ui ] is of O(ε), because the set of tractions imposed in step 2 is
of O(ε).

We now consider the change in energy associated with the loading mechanism. To first
order in ε, this is

δEext = −
∫

S
σi j [ui (final) − ui ]nj dS + O(ε2), (21.18)

and thus

δEtot = δE (1)
el + δE (2)

el + δEext

= −ε�
∫

S
(Wn� − σi j ui,�nj ) dS,

(21.19)

where conveniently the unknown quantity, [ui (final) − ui ], drops out!
Therefore, appealing to the definition of force in (21.10), we find that

f� =
∫

S
(Wn� − σi j ui,� nj ) dS. (21.20)

This may be rephrased as

f� =
∫

S
(Wδ j� − σi j ui,�)nj dS. (21.21)

The generalized force developed here is often called the J integral (Rice, 1968a,1968b).
The tensor

P j� = Wδ j� − σi j ui,� (21.22)

is called the energy momentum tensor (Eshelby, 1956). Thus,

f� =
∫

S
P j�nj dS, f =

∫
S

n · P dS. (21.23)

It is a rather straightforward exercise to show that the divergence of P is zero, that is

(Wδ j� − σi j ui,�), j = 0. (21.24)

Thus, if S and S′ are two surfaces that surround the defect s, enclosing a volume V′

(Fig. 21.2), it is found that∫
V′

div P dV = 0 =
∫

S
n · P dS +

∫
S′

n′ · P dS′. (21.25)

Therefore, since n′ = −n, ∫
S

n · P dS =
∫

S′
n · P dS′. (21.26)

Thus, the value of the generalized force on a defect does not depend on the choice of
surface S surrounding the defect used to evaluate the integral in (21.21).
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V'

S

S'

s

n

n' Figure 21.2. Path independence of the energy momentum tensor, or J integral. A
defect labeled s is indicated as surrounded by S and S′.

21.2.1 Force on an Interface

Eshelby has extended the above development of a translational force on a defect to the
consideration of a force acting on an interface. Consider the interface between two phases
α and β. The surface element is to move by an incremental vector, δξ. For example, this
may represent the result of a phase transformation β → α, where the transformation
involves a change in size and shape of the material. Such problems are dealt with in detail
in subsequent chapters, but for now we want to consider the possibility that due to such
discontinuities in displacement, induced by a transformation, there may be net mechanical
forces on the interface between the two phases.The described total energy change can be
computed using the two heuristic steps, as described earlier. First, cut out the material lying
between the old surface element, S, and the new element, S′, and discard the material. We
imagine that suitable tractions are applied to the freshly cut surface to prevent relaxation.
This results in a change in elastic energy,

δE (1)α
el = −

∫
S
δξ�Wαn� dS. (21.27)

The direction of the unit normal n is taken as pointing from β → α. At this stage the
displacement on S′ is uαi + δξ�uαi,�. Now, alter the displacements to their final value, u fα

i .
The work required to do this is

δE (2)α = −
∫

S
σαi j (u fα

i − uαi − δξ�uαi,�)nj dS. (21.28)

For phase β, similar arguments lead to

δE (1)β
el =

∫
S
δξ�Wβn� dS, (21.29)

and

δE (2)β = −
∫

S
σ
β

i j (u fβ
i − uβi − δξ�uβi,�)nj dS. (21.30)

But during this process of interface motion, u fα
i − uαi = u fβ

i − uβi , so that

δEtot = −
∫

S
n j (Pαj� − Pβj�)δξ� dS. (21.31)

Thus, the force on the interface becomes

f αβ� =
∫

S
n j [[P j�]] dS. (21.32)
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ξ

n
S

α

β S'
Figure 21.3. Moving interface.

If we form f αβ� n�, we can define

F = [[W]] − T · [[∂u/∂n]], (21.33)

as the normal force per unit area acting on the interface.
This result should be extended in two obvious ways. In the first place, the energy consid-

ered so far has only included the elastic energy of deformation. If, however, the interface
is one between two phases undergoing the transformation α → β, then the chemical part
of the free energy change needs to be included. This would add a contribution to the free
energy change ∫

S
δξ� (Gβ − Gα)n� dS = −

∫
S
δξ� [[G]]n� dS. (21.34)

The second contribution to the total energy change is that due to the surface energy, γ ,
per unit area. This contributes a term∫

S
δξ� κn�γn� dS, (21.35)

where κ is the double mean curvature of the surface. Note that this curvature is measured
positive for a surface as seen from the α side in Fig. 21.3, i.e., where the radii of curvature
are constructed on the α side.

Including these two effects yields for the total normal force on the interface

F = [[W]] − T · [[∂u/∂n]] − κγ, (21.36)

where W = W + G. With the sense of the curvature as taken here, the surface energy term
induces a retarding effect on interface motion if κ > 0, i.e., if additional surface area is
created by forward motion.

21.2.2 Finite Deformation Energy Momentum Tensor

The energy momentum tensor also exists for finite elastic deformations, and has similar
form to that derived for the infinitesimal strain case. The development was originally also
due to Eshelby (1970,1975). Recall that the position of a material particle in the deformed
configuration, x, is given in terms of its position in the reference configuration by

x(X) = X + u(X). (21.37)

In component form this gives for the displacement

ui (Xm) = xi (Xm) − Xi . (21.38)
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The equilibrium equations with respect to the nominal stress, P, and without body forces,
are

∂Pi j

∂Xj
= 0. (21.39)

Denoting the strain energy density per unit reference volume by W, we have W =
W(Grad u,X), and

Pi j = ∂W
∂ui, j

. (21.40)

Recall that P is not symmetric, but satisfies

P�i − Pj� = Pj i u�,i − P�i u j,i . (21.41)

The energy momentum tensor is derived by considering the set of field equations that
result from causing the ratio of the current volume and reference volume to be stationary
(extreme). This gives

∂

∂Xj

∂W
∂ui, j

= ∂W
∂ui
, (21.42)

with W = W(ui ,ui, j , Xi ). Consider the gradient of W with components ∂W/∂X�, and then
the partial derivative of W holding the displacements and displacement gradients fixed,
i.e., (

∂W
∂X�

)
exp

=
(
∂W
∂X�

)
ui ,ui, j ,Xm
=�

. (21.43)

If the material were homogeneous and free of singularities or dislocations, then(
∂W
∂X�

)
exp

= 0. (21.44)

But now we have

∂W
∂X�

= ∂W
∂ui

ui,� + ∂W
∂ui, j

ui, j� +
(
∂W
∂X�

)
exp
. (21.45)

When (21.42) is used to replace ∂W/∂ui with ∂(∂W/∂ui, j )/∂Xj , the first two terms on the
rhs of (21.45) become

∂

∂Xj

(
∂W
∂ui, j

ui,�

)
.

Thus, since formally ∂W/∂Xi = ∂(Wδi j )/∂Xj , we can write

∂P j�

∂Xj
=
(
∂W
∂X�

)
exp
, (21.46)

where

P j� = Wδ j� − ∂W
∂ui, j

ui,� (21.47)

is the energy momentum tensor. Also, because of (21.40), we have

P j� = Wδ j� − Pi j ui,� . (21.48)
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Figure 21.4. Two sources of stress, labeled A and S, in an elastic medium.

The integral defined by

F� =
∫

S
P j�nj dS, (21.49)

is equal to zero if S encloses a volume in which ∂W
∂ui, j

ui,� = 0, i.e., one that is homogeneous
and free of defects. The argument shows that, in the case that S does enclose a defect,
i.e., a singularity or displacement discontinuity, the integral given in (21.49) represents the
force of translation acting on the defect. The proof follows the same route as detailed in
the previous section.

21.3 Interaction Between Defects and Loading Mechanisms

We return to the general situation of two sources of stress that are called A and S in Fig. 21.4.
As noted earlier, for internal sources of stress such as dislocations or inclusions, the elastic
fields are caused by discontinuous displacement fields, but even in those cases the stresses
and strains are continuous. Since linear superposition applies, the total field is the sum of
the fields due to all sources, i.e.,

σi j = σA
i j + σ S

i j , ei j = eA
i j + eS

i j . (21.50)

Equilibrium applies to each field separately, so that

σA
i j, j = σ S

i j, j = 0. (21.51)

The total elastic energy is then

Eel = 1
2

∫
V

(σA
i j + σ S

i j )(eA
i j + eS

i j ) dV

= 1
2

∫
V
σA

i j eA
i j dV + 1

2

∫
V
σ S

i j e
S
i j dV + 1

2

∫
V

(σA
i j eS

i j + σ S
i j e

A
i j ) dV

= EA
s + ES

s + EA−S
int .

(21.52)

Here, EA
s and ES

s are “self-energies” of the A and S systems, as if they were isolated,
and EA−S

int is the interaction energy of the two sources. Clearly, all forces that these two
systems are to exert on each other derive from EA−S

int , which we examine now. The
interaction energy is

EA−S
int = 1

2

∫
V

(σA
i j eS

i j + σ S
i j e

A
i j ) dV. (21.53)



P1: JzG
0521859794c21.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:38

21.3. Interaction Between Defects and Loading Mechanisms 363

In general, we expect that uA and/or uS may be discontinuous. Since σi j = Ci jklekl , we can
write

Ci jkleA
kl e

S
i j = σA

i j eS
i j = σ S

kle
A
kl , (21.54)

because of the symmetry Ci jkl = Ckli j . Thus, the two terms in the integrand of (21.53)
are equal. Now construct a surface, (0, surrounding S such that outside this surface uS is
continuous. Then, we may rewrite (21.53) as

EA−S
int =

∫
I
σ S

i j e
A
i j dV +

∫
I I
σA

i j eS
i j dV, (21.55)

where, as seen in Fig. 21.4, I and I I are the two volume elements so formed by the separator
(0. Recognizing that the integrands of (21.55) can be put into the form σi j ui, j = (σi j ui ), j ,
because of the equilibrium stated in (21.51), the application of the divergence theorem
leads to ∫

I
σ S

i j e
A
i j dV =

∫
(0

σ S
i j n j uA

i dS,

∫
I I
σA

i j eS
i j dV =

∫
(

σA
i j n̂ j uS

i dS −
∫
(0

σA
i j n j uS

i dS.

(21.56)

The outward pointing normal to the surface ( is n̂, and the minus sign of the last integral
appears because the outward pointing normal on (0 from volume I has been used in the
integrand. The nature of ( will be defined by application to specific examples below. For
now, we find that

EA−S
int =

∫
(0

(σ S
i j n j uA

i − σA
i j n j uS

i ) dS +
∫
(

σA
i j n̂ j uS

i dS. (21.57)

Suppose that A is an internal source of stress, so that on (, which is now taken as
the external surface of the body containing A and S, σA

i j n̂ j = 0. Then, not only is the last
integral in (21.57) zero, but the integral that would be associated with the potential energy
of the external loading mechanism, as well. Thus, we obtain that

EA−S
int = Etot =

∫
(0

(σ S
i j u

A
i − σA

i j uS
i ) nj dS (21.58)

is the total energy of interaction between A and S.
Now let A be an external source of stress, so that σA

i j n̂ j 
= 0. Then, to EA−S
int we add the

potential energy associated with the loading mechanism, i.e.,

−
∫
(

TA
i uS

i dS = −
∫
(

σA
i j n̂ j uS

i dS, (21.59)

and arrive again at the conclusion that the total interaction energy is given by

EA−S
int = Etot =

∫
(0

(σ S
i j u

A
i − σA

i j uS
i ) nj dS. (21.60)

Furthermore, in this case we can let (0 → ( and, since S is an internal source of stress
so that σ S

i j n̂ j = 0, we have

EA−S
int = Etot = −

∫
(

σA
i j n̂ j uS

i dS. (21.61)
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Figure 21.5. Dislocation and inclusion.

21.3.1 Interaction Between Dislocations and Inclusions

Consider the interaction of an infinitely long and straight dislocation line and an inclusion.
The stress field σ I

i j of an inclusion vanishes with distance from it as 1/r3. Let superscripts
I and D denote field quantities associated with the inclusion and dislocation, respectively.
The interaction energy is then

E I−D
int = 1

2

∫
V

(σ I
i j u

D
i, j + σD

i j uI
i, j ) dV. (21.62)

The reciprocity σ I
i j u

D
i, j = σD

i j uI
i, j within the above integrand is observed, as before. The

total volume is divided via the construction of a surface(0 made so that in the two volume
elements so created one or the other of uI or uD is continuous (Fig. 21.5). Then,

E I−D
int =

∫
I
σD

i j uI
i, j dV +

∫
I I
σ I

i j u
D
i, j dV

=
∫

I
(σD

i j uI
i ), j dV +

∫
I I

(σ I
i j u

D
i ), j dV

=
∫
(0

σD
i j nI

j u
I
i dS −

∫
(0

σ I
i j n

I
j u

D
i dS +

∫
(

σ I
i j u

D
i n j dS.

(21.63)

We note that the outer surface of region II may be taken as the free surface of the body (at
least as far as the inclusion’s stress field is concerned). Moreover, we may first choose the
half-plane defined by x2 = 0 and x1 ≥ 0 as the cut surface of the dislocation, Scut, and let
(0 → Scut. The displacement field of the inclusion is continuous across (0 and so is the
stress field of the dislocation. We note that on(0, σD

i j n+
j = −σD

i j n−
j , where the normals are

defined in the figure; thus along those parts of(0 called(+
0 and(−

0 the combined integrals
cancel. Now, around the loop of vanishing radius ε, the displacement of the inclusion is
uniquely defined, and ∮

ε

σD
i j n j dS = 0, (21.64)

because this would be, in fact, just the total content of body force at that point, which is
zero for the dislocation. Thus, the total contribution to the interaction energy is

E I−D
int = −

∫
(0

σ I
i j u

D
i nI

j dS = −
∫
(0

σ I
i j n

+
j

[
uD(+)

i − uD(−)
i

]
dS

=
∫
(0

σ I
i j n

+
j bi dS.

(21.65)
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Figure 21.6. Dislocation segment movement.

To calculate a force from this interaction energy we first consider this integral per unit
length normal to the plane of the figure, and write

E I−D
int = −

∫ ∞

λ

σ I
i j n

+
j

[
uD(+)

i − uD(−)
i

]
dS =

∫ ∞

λ

σ I
i j n

+
j bi dS. (21.66)

It follows that

fλ = −∂E
I−D
int

∂λ
= σ I

i j (λ)n+
j bi . (21.67)

The normal n+ is nI oriented upward. This result can be generalized in terms of the force
acting on an arbitrary segment of curved dislocation, which is discussed next.

21.3.2 Force on a Dislocation Segment

The above result can be used to readily generate an expression for the force on an arbi-
trary segment of dislocation. Consider a segment of dislocation depicted in Fig. 21.6. The
dislocation is acted on by a stress field labeled A. Let the arc length of this segment be
initially ds and let it move by the normal vector distance δn, thus traversing the planar
element dS. In terms of the force acting on this segment, f̂, we have

−δEtot = f̂ · δn = −σA
i j biδSj , (21.68)

where dSj = η j dS, and η would be the unit normal to the area element traversed. But,

δSj = (δn × ds) j + O(κδn2), ds = tds, (21.69)

where κ is the curvature at the point in question on the segment, and t is the unit tangent
to the loop at the point of the segment. Thus,

dSj = ε jkldslδnk = ε jkl tlδnkds. (21.70)

Consequently,

fkδnk = −σA
i j biε jkl tlδnk, (21.71)

where fk = f̂k/ds. Therefore, the force per unit length of dislocation segment is

fk = ε jlkσ
A
i j bi tl . (21.72)

This is called the Peach–Koehler force.
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Figure 21.7. Dislocation cut surface and integration path.

21.4 Elastic Energy of a Dislocation

Consider an infinitely long and straight dislocation indicated in Fig. 21.7. Per unit length,
the elastic energy can be written as

E = 1
2

∫
V
σi j ei j dV

= 1
2

∫
V
σi j ui, j dV = 1

2

∫
V

(σi j ui ), j dV

= 1
2

∫
S
σi j ui n j dS,

(21.73)

where S is the surface that bounds the total volume V and is constructed so that the
dislocation’s displacement field is single valued within V. This is illustrated in the figure,
where the outward pointing normal, n, to S is also shown. Now, the integrals are divided as

E = 1
2

∫
S±

cut

σi j ui n j dS + 1
2

∫
S∞
σi j ui n j dS + 1

2

∫
S0

σi j ui n j dS. (21.74)

Considering the angle ϕ, we note that σi j = (i j (ϕ)/r, nj = nj (ϕ) and thus Ti = σi j n j =
hi (ϕ)/r . As there are no body forces, we have∫ 2π

0
hi (ϕ) dϕ = 0. (21.75)

However, ∫ 2π

0
ui (ϕ) dϕ = bi . (21.76)

The second two integrals cancel, because dS = rdϕ, and h∞
i = −h0

i (the directions of the
outward pointing normals are opposite). The integrals left on Scut become

E = 1
2

∫
S±

cut

σi j n±
j u±

i dS = 1
2

∫
S
σi j n−

j (u−
i − u+

i ) dS

= 1
2

∫
S
σi j n−

j bi dS,

(21.77)

where we have used n− to describe the normal and b = u− − u+. Since againσi j = (i j (ϕ)/r ,
this can be rewritten as

E = 1
2

∫ ∞

0

(i2(0)bi

x1
dx1. (21.78)
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Note from the geometry that n‖ x2. The integral is logarithmicaly singular and we introduce
the so-called cutoff radii, r0 and R, to write

E = 1
2

∫ R

r0

(i2(0)bi

x1
dx1 = 1

2
(i2(0)bi ln(R/r0). (21.79)

Recalling that (i2 ∝ Ki j bj , (21.79) may be rewritten as

E = Ki j bi bj ln(R/r0). (21.80)

For the infinitely long and straight screw dislocation in an isotropic medium, our previous
results show that

Escrew = Gb2
s

4π
ln(R/r0), (21.81)

whereas for the edge dislocation

Eedge = Gb2
e

4π(1 − ν)
ln(R/r0). (21.82)

For an infinitely long and straight dislocation with t ‖ x3 and b = bee1 + bee2 + bse3, we
find

K = G
4π

⎛
⎝be/(1 − ν) 0 0

0 be/(1 − ν) 0
0 0 bs

⎞
⎠ (21.83)

21.5 In-Plane Stresses of Straight Dislocation Lines

The energy factor matrix introduced in the previous section, K, has an interesting and useful
connection to the traction caused by a dislocation in planes that contain the dislocation
line. We explore that connection herein.

Recall two expressions for the energy of a straight dislocation line, i.e.,

E = Ki j bi bj ln(R/r0), (21.84)

and

E = 1
2

∫
V
σi j ui, j dV = 1

2

∫
S
σi j ui dS

= 1
2

∫ R

r0

σi j n j bi dS = 1
2

∫ R

r0

σi j n j bi dx1.

(21.85)

In (21.85) the cut has been taken along the x1 axis, that is on the plane where x2 = 0; the
dislocation is lying along the x3 axis.

Consider a dislocation with a Burgers vector with a nonzero component b1 (b2 = b3 = 0).
From (21.84) then

E = K11b1b1 ln(R/r0) =
∫ R

r0

K11b1b1

x1
dx1. (21.86)
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But, from (21.85), the energy is also given as

E = 1
2

∫ R

r0

σ
(1)
i j n j bi dx1 = 1

2

∫ R

r0

σ
(1)
12 b1 dx1, (21.87)

where σ (1)
12 is the stress component in the plane x2 = 0 caused by the dislocation with

Burgers vector b1. When (21.87) is compared to (21.86), we find that

σ
(1)
12 = 2K11b1

x1
. (21.88)

Similarly, we find that for a dislocation with Burgers vector b2 (b1 = b3 = 0),

σ
(2)
22 = 2K22b2

x1
, (21.89)

where σ (2)
22 is the stress component on the plane x2 = 0 caused by the dislocation with

Burgers vector b2. Finally, if the Burgers vector had only a nonzero component b3, we
would find that

σ
(3)
23 = 2K33b3

x1
. (21.90)

Note that the above results were arrived at by considering the self-energy of individual
dislocations with single nonzero components of Burgers vector. Now consider interaction
effects between two dislocations or between the stresses arising from different components
of Burgers vector of a single dislocation. Let a dislocation line be again along the x3 axis,
but with a Burgers vector b = b1e1 + b2e2. From (21.84), the energy is

E = Ki j bi bj ln(R/r0) = K11b1b1 ln(R/r0) + K22b2b2 ln(R/r0)

+ (K12b1b2 + K21b2b1) ln(R/r0).
(21.91)

Since K12 = K21, this becomes

E = Ki j bi bj ln(R/r0) = K11b1b1 ln(R/r0) + K22b2b2 ln(R/r0) + 2K12b1b2 ln(R/r0).
(21.92)

Alternatively, we could write that this energy is

E = 1
2

∫ R

r0

σi j n j bi dx1

= 1
2

∫ R

r0

[
σ

(1)
i j n j + σ (2)

i j n j

]
bi dx1

= 1
2

∫ R

r0

[
σ

(1)
12 b1 + σ (1)

22 b2 + σ (2)
12 b1 + σ (2)

22 b2

]
dx1.

(21.93)

Comparing (21.93) with (21.92), having in mind that σ (1)
12 and σ (2)

22 are already known, we
find that

1
2

∫ R

r0

[
σ

(1)
22 b2 + σ (2)

12 b1

]
dx1 =

∫ R

r0

2K12b1b2

x1
dx1. (21.94)
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Figure 21.8. Arbitrary cut surface.

Furthermore, the reciprocity σ (1)
22 b2 = σ (2)

12 b1 holds. To see this, write

1
2

∫
V
σ

(1)
i j e(2)

i j dV = 1
2

∫
V
σ

(2)
i j e(1)

i j dV

= 1
2

∫
V
σ

(1)
i j u(2)

i, j dV = 1
2

∫
S
σ

(1)
i j n j b

(2)
i dS

= 1
2

∫ R

r0

σ
(1)
22 b(2)

2 dx1 = 1
2

∫
V
σ

(2)
i j u(1)

i, j dV

= 1
2

∫ R

r0

σ
(2)
12 b(1)

1 dx1.

(21.95)

Hence, we find that

σ
(2)
12 = 2K12b2

x1
,

σ
(1)
22 = 2K21b1

x1
.

(21.96)

In general, we obtain by using this kind of analysis that

σi2 = 2Kisbs

x1
. (21.97)

It should be noted at this point that our arguments and procedures would be true for
any cut plane that contains the dislocation line, and that could have been used to calculate
the energy. Thus, for any plane containing the dislocation line, and with λ as the distance
from that line,

σi j n j = Ti = Kisbs

λ
, (21.98)

i.e., the traction is the same on any plane containing the dislocation line (Fig. 21.8).

21.6 Chemical Potential

The chemical potential is defined as the differential change in Gibbs free energy with
respect to the addition of a unit amount of a chemical specie, or in the case considered
here, of matter. We wish to specifically evaluate the influence of stress and elastic strain
state on that quantity. Thus we consider the addition of a small amount of material to the
surface of a stressed body.
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Consider the potential of two states, 1 and 2, before and after the addition of matter.
We have

%1 =
∫

V1

W(e(1)
i j )dV −

∫
(1

T(1)
i u(1)

i dS,

%2 =
∫

V2

W(e(2)
i j )dV −

∫
(1

T(2)
i u(2)

i dS.

(21.99)

The system is to act at constant temperature and state of applied traction on its external
surface. The latter constraint sets T(1) = T(2). Thus, considering the change in potential,
%2 −%1, the surface integrals of (21.99) contribute∫

(1

T(1)
i u(1)

i dS −
∫
(2

T(2)
i u(2)

i dS = −
∫
(1

T(1)
i [u(2)

i − u(1)
i ] dS −

∫
�(

T(1)
i [u(2)

i − u(1)
i ] dS,

where �( is the increment of surface area to which matter was added. Naturally, if �(
should lie on a traction free part of the surface, the last integral would vanish.

Next, focus attention on an infinitesimal volume element at the site of �(; in state 1 it
is v1 and in state 2 it is v2. The goal is to let v2 − v1 → 0. Then,

%2 −%1 = W̄(e(2)
i j )

∫
v2

dV +
∫

V2−v2

W(e(2)
i j ) dV

− W̄(e(1)
i j )

∫
v1

dV −
∫

V1−v1

W(e(1)
i j ) dV

+
∫
(1

T(1)
i [u(1)

i − u(2)
i ] dS −

∫
�(

T(1)
i [u(2)

i − u(1)
i ] dS,

(21.100)

where W̄(e(1,2)
i j ) is the mean value of strain energy density in these vanishingly small volume

elements. But, after combining terms, (21.100) is equivalent to

%2 −%1 = W̄(e(1)
i j )(v2 − v1) +

∫
V2

{ ∫ e(1)
i j

e(2)
i j

[σ (1)
i j − σi j ]dei j

}
dV −

∫
�(

T(1)
i [u(2)

i − u(1)
i ] dS,

(21.101)

or, by using the divergence theorem, to

%2 −%1 = W̄(e(1)
i j )(v2 − v1) +

∫
(

{ ∫ u(1)
i

u(2)
i

[T(1)
i − Ti ]dui

}
dS −

∫
�(

T(1)
i [u(2)

i − u(1)
i ] dS.

(21.102)

The result may be rewritten as

%2 −%1 = W̄(e(1)
i j )(v2 − v1) +

∫
v2−v1

{ ∫ e(1)
i j

e(2)
i j

[σ (1)
i j − σi j ]dei j

}
dV −

∫
�(

T(1)
i [u(2)

i − u(1)
i ] dS

(21.103)

= W̄(e(1)
i j )(v2 − v1) +

∫ e(1)
i j

e(2)
i j

[σ (1)
i j − σi j ] dei j −

∫
�(

T(1)
i [u(2)

i − u(1)
i ] dS.

But

[u(2)
i − u(1)

i ] dS = (v2 − v1)ni dS,
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Figure 21.9. Movement of an internal source of stress by the removal and addition
of matter to the external surface.

because the change in volume on the surface is

v2 − v1 = [u(2)
i − u(1)

i ]ni dS, (21.104)

where n is the unit normal on�(. Now, divide by v2 − v1 and let v2 − v1 → 0. The integral
over strain vanishes as the two states merge, and

∂%

∂v
= W(e(1)

i j ) − T(1)
n , (21.105)

where T(1)
n is the normal traction at the point on the surface where mass is added, i.e.,

T(1)
n = T(1)

i ni . Therefore, we have deduced that the chemical potential is

µ = W(e) − Tn. (21.106)

21.6.1 Force on a Defect due to a Free Surface

Consider a purely internal source of stress, such as a defect within a body whose external
surface is traction free, as depicted in Fig. 21.9. If the surface did have applied traction,
then by ignoring it we would be calculating only that contribution to the total force arising
from the free surface. This is the so-called image force. From the energy momentum tensor,
this force would be calculated from the integral

J� =
∫
C
(Wn� − σi j n j∂ui/∂x�) dS. (21.107)

Now take the contour C to be(, the external surface of the body. On( we have σi j n j = 0,
and hence

J� =
∫
(

W(e)n� dS. (21.108)

The movement of such an internal source of stress could be accomplished by imagining a
process of mass removal and addition to the external surface as illustrated in the figure. In
particular, if mass is removed in the direction x� from the surface element whose outward
pointing normal is n, and if the distance along x� where mass is removed is h, then the
change in free energy is, by using (21.106),

�% = −
∫ h

0

∫
(

W(ei j )n� dS dh. (21.109)

Thus, the “force” on the defect can be constructed as

f� = −∂�%/∂h =
∫
(

W(ei j )n� dS, (21.110)

which reproduces the result obtained from the energy momentum tensor.
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ef
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Figure 21.10. Crack in a strip clamped at its upper and
lower edges and subject to extension normal to the crack
line.

21.7 Applications of the J Integral

Here we present some applications of the J integral to calculate the force on particular
defects in solid bodies.

21.7.1 Force on a Clamped Crack

Consider a crack in a strip, shown in Fig. 21.10, that is loaded via the action of applying
a displacement to the upper and lower surfaces, i.e., the surfaces along the lines c-d and
e-f are displaced away from each other by a distance δ. As the original height of the
strip is h, this action produces a strain e = δ/h. The force acting on the crack tip would be
computed by evaluating J1 along the contour C1 (axis x1 being parallel to crack faces). Path
independence, however, allows the alternate evaluation of J1 along the contour C′. This is
rather straightforward in this case. First, note that along the paths b-c and f-g, the stresses
vanish, as does the strain energy density and the traction; thus, there is no contribution
from these segments. Next, along the paths c-d and e-f, the normal is orthogonal to the
direction of propagation of the crack and the displacement is confined by the rigid clamp
such that ui,1 vanishes; thus, there is no contribution from these segments, either. Finally,
along the segment d-e, the strain energy density is given, assuming a state of plane stress, as

W = E
2(1 − ν2)

(
δ

h

)2

. (21.111)

Integration of this along the segment d-e gives∫
W dy = Eh

2(1 − ν2)

(
δ

h

)2

, (21.112)

which is the only contribution to the total contour integral. Thus, we obtain

J1 = E
2(1 − ν2)

δ2

h
. (21.113)

21.7.2 Application of the Interface Force to Precipitation

As an application of the concept of a force on an interface, consider the case of the
precipitation of a second phase particle within an elastic matrix. We idealize the situation
by ignoring any inelastic deformation, i.e., dislocation activity. Further, let this process
occur in an infinite matrix (the parent phase) under the influence of a remotely applied
hydrostatic stress state of intensity σ∞. The process is driven (that is, if it is spontaneous) by
the combination of a negative change in the chemical part of the Gibbs free energy,�G< 0,
and the interaction energy between the remotely applied stress field and the transformation



P1: JzG
0521859794c21.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:38

21.7. J Integral 373

r

σ

σ
σ

Figure 21.11. Formation of a critical nucleus and growing
precipitate in an elastic matrix.

strain associated with the phase change. Here we assume that the transformation strain is
purely dilatational, i.e.,

eT
i j = 1

3
eTδi j . (21.114)

Of course, it is possible that, even if �G> 0, the transformation may be driven forward
by an intense enough remote stress, and this is conventionally mapped on “pressure vs.
temperature” phase diagram for single component systems.

As the phase forms, an elastic field is created along with its energy. This problem was
dealt with in great detail in previous chapter and will not be included here. The results
are only used. Specifically, we consider the precipitate to be spherical and of radius r
(Fig. 21.11). The solution for the elastic field can be determined by the methods developed
in Chapter 20. The matrix and precipitate are considered to be isotropic in their elastic
properties and of the same modulus. With this in mind, the normal interface force from
(21.36) becomes

F = −�G − E
9(1 − ν)

(εT)2 + εTσ∞ − 2
r
γ, (21.115)

where γ is the surface energy of the α/β interface. Of course, for growth we must have
F > 0, or, more specifically,

−�G + εTσ∞ >
E

9(1 − ν)
(εT)2. (21.116)

We note that, even if (21.116) were satisfied, there is the nucleation problem to face,
because if γ is significant in magnitude, the surface energy term dominates (in a negative
way) for small values of r ; that is, we must acquire a nucleus of critical size, r∗. This is
readily attained by setting F = 0 in (21.115), which yields

r∗(T) = 2γ
−�G − E/[9(1 − ν)](εT)2 + εTσ∞

. (21.117)

We have explicitly noted the very important temperature dependence of the process,
coming most strongly through the term involving �G, and more weakly through the
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temperature dependence of E, ν, εT , and γ . Now, if r < r∗, the nucleus is unstable and
the work done on the system to attain the nucleus of radius r > r∗ is

�G∗ = −
∫ r∗

0
4πr2F dr. (21.118)

In (21.118) we have employed the often used nomenclature�G∗ to denote the magnitude
of the activation energy of nucleation. This energy arises through statistical fluctuations
and is of paramount importance with respect to the kinetics of the nucleation process. The
evaluation of (21.118) for particular cases is left to the reader’s interest.
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22 Micropolar Elasticity

22.1 Introduction

In a micropolar continuum the deformation is described by the displacement vec-
tor and an independent rotation vector. The rotation vector specifies the orientation
of a triad of director vectors attached to each material particle. A particle (material
element) can experience a microrotation without undergoing a macrodisplacement. An
infinitesimal surface element transmits a force and a couple vector, which give rise
to nonsymmetric stress and couple-stress tensors. The former is related to a nonsym-
metric strain tensor and the latter to a nonsymmetric curvature tensor, defined as the
gradient of the rotation vector. This type of the continuum mechanics was originally
introduced by Voigt (1887) and the brothers Cosserat (1909). In a simplified microp-
olar theory, the so-called couple-stress theory, the rotation vector is not independent
of the displacement vector, but related to it in the same way as in classical continuum
mechanics.

The physical rationale for the extension of the classical to micropolar and couple-
stress theory was that the classical theory was not able to predict the size effect ex-
perimentally observed in problems which had a geometric length scale comparable to
material’s microstructural length, such as the grain size in a polycrystalline or granu-
lar aggregate. For example, the apparent strength of some materials with stress concen-
trators such as holes and notches is higher for smaller grain size; for a given volume
fraction of dispersed hard particles, the strengthening of metals is greater for smaller
particles; the bending and torsional strengths are higher for very thin beams and wires.
The classical theory was also in disagreement with experiments for high-frequency ul-
trashort wave propagation problems, if the wavelength becomes comparable to the
material’s microstructural length. In the presence of couple-stresses, shear waves prop-
agate dispersively (with a frequency dependent wave speed). Couple-stresses are also
expected to affect the singular nature of the crack tip fields. The couple-stress and re-
lated nonlocal and strain-gradient theories of elastic and inelastic material response are
also of interest to describe the deformation mechanisms and manufacturing of micro
and nanostructured materials and devices, as well as inelastic localization and instability
phenomena.

375
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376 22. Micropolar Elasticity

22.2 Basic Equations of Couple-Stress Elasticity

In a micropolar continuum the deformation is described by the displacement vector and
an independent rotation vector. In the couple-stress theory, the rotation vector ϕi is not
independent of the displacement vector ui but is subject to the constraint

ϕi = 1
2
εi jkω jk = 1

2
εi jk uk, j , ωi j = εi jk ϕk , (22.1)

as in classical continuum mechanics. The skew-symmetric alternating tensor is εi jk, and ωi j

are the rectangular components of the infinitesimal rotation tensor. The latter is related
to the displacement gradient and the symmetric strain tensor by u j,i = ei j + ωi j , where

ei j = 1
2

(u j,i + ui, j ) , ωi j = 1
2

(u j,i − ui, j ) . (22.2)

The comma designates the partial differentiation with respect to Cartesian coordinates xi .
A surface element dS transmits a force vector Ti dS and a couple vector Mi dS. The

surface forces are in equilibrium with the nonsymmetric Cauchy stress ti j , and the surface
couples are in equilibrium with the nonsymmetric couple-stress mi j , such that

Ti = nj t j i , Mi = nj mji , (22.3)

where nj are the components of the unit vector orthogonal to the surface element under
consideration. In the absence of body couples, the differential equations of equilibrium
are

t j i, j + fi = 0 , mji, j + εi jk t jk = 0 . (22.4)

The body forces are denoted by fi . By decomposing the stress tensor into its symmetric
and antisymmetric part,

ti j = σi j + τi j , (σi j = σ j i , τi j = −τ j i ) , (22.5)

from the moment equilibrium equation it readily follows that the antisymmetric part can
be determined as

τi j = −1
2
εi jkmlk,l . (22.6)

If the gradient of the couple-stress vanishes at some point, the stress tensor is symmetric
at that point.

The rate of strain energy per unit volume is

Ẇ = σi j ėi j + mi j κ̇i j , (22.7)

where

κi j = ϕ j,i (22.8)

is a nonsymmetric curvature tensor. In view of the identity

ωi j,k = ekj,i − eki, j , (22.9)

the curvature tensor can also be expressed as

κi j = −ε jkleik,l . (22.10)
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These are the compatibility equations for curvature and strain fields. In addition, there is
an identity

κi j,k = κkj,i (= ϕ j,ik) , (22.11)

which represents the compatibility equations for curvature components. The compatibility
equations for strain components are the usual Saint-Venant’s compatibility equations.
Since ei j is symmetric and εi jk skew-symmetric, from (22.10) it follows that the curvature
tensor in couple-stress theory is a deviatoric tensor (κkk = 0).

Assuming that the elastic strain energy is a function of the strain and curvature ten-
sors, W = W(ei j , κi j ), the differentiation and the comparison with (22.7) establishes the
constitutive relations of couple-stress elasticity,

σi j = ∂W
∂ei j

, mi j = ∂W
∂κi j

. (22.12)

In the case of isotropic material, with the quadratic strain energy,

W = 1
2
λ ekkell + µ eklekl + 2α κklκkl + 2βκklκlk , (22.13)

where µ, λ, α, and β are the Lamé-type constants of isotropic couple-stress elasticity. The
stress and couple-stress tensors are in this case

σi j = 2µ ei j + λ ekk δi j , mi j = 4α κi j + 4β κ j i . (22.14)

By the positive-definiteness of the strain energy, it follows that α + β > 0 , and α − β > 0 .
Thus, α is positive, but not necessarily β. Since the curvature tensor is deviatoric, from
the second (22.14) it follows that the couple-stress is also a deviatoric tensor (mkk = 0). In
some problems the curvature tensor may be symmetric, and then the couple-stress is also
symmetric, regardless of the ratio α/β.

If the displacement components are prescribed at a point of the bounding surface of
the body, the normal component of the rotation vector at that point cannot be prescribed
independently. This implies (e.g., Mindlin and Tiersten, 1962; Koiter, 1964) that at any
point of a smooth boundary we can specify three reduced stress tractions

T̄i = nj t j i − 1
2
εi jk n j (npmpqnq),k , (22.15)

and two tangential couple-stress tractions

M̄i = nj mji − (nj mjknk)ni . (22.16)

22.3 Displacement Equations of Equilibrium

The couple-stress gradient can be expressed, from (22.10) and (22.14), as

mlk,l = −2α εkpqup,qll , (22.17)

independently of the material parameterβ. The substitution into (22.6) gives an expression
for the antisymetric part of the stress tensor

τi j = −2α ωi j,kk = −2α∇2ωi j , (22.18)
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which is also independent of β. The Laplacian operator is ∇2 = ∂2/∂xk∂xk. Consequently,
by adding (22.14) and (22.18), the total stress tensor is

ti j = 2µ ei j + λ ekk δi j − 2α∇2ωi j . (22.19)

Incorporating this into the force equilibrium equations (22.4), we obtain the equilibrium
equations in terms of the displacement components

∇2ui − l2 ∇4ui + ∂

∂xi

[
1

1 − 2ν
(∇ · u) + l2 ∇2(∇ · u)

]
= 0 , (22.20)

where ∇ · u = uk,k . The biharmonic operator is ∇4 = ∇2∇2, and

l2 = α

µ
, 1 + λ

µ
= 1

1 − 2ν
. (22.21)

The Poisson coefficient is denoted by ν. Upon applying to (22.20) the partial derivative
∂/∂xi , there follows ∇2ekk = 0 . Thus, the volumetric strain is governed by the same equa-
tion as in classical elasticity, without couple-stresses. The substitution into (22.20) yields
the final form of the displacement equations of equilibrium

∇2ui − l2 ∇4ui + 1
1 − 2ν

∂

∂xi
(∇ · u) = 0 . (22.22)

Three components of displacement and only two tangential components of rotation may be
specified on the boundary. Alternatively, three reduced stress tractions and two tangential
couple-stress tractions may be specified on a smooth boundary.

The general solution of (22.22) can be cast in the form

ui = Ui − l2 ∂

∂xi
(∇ · U) − 1

4(1 − ν)
∂

∂xi

[
ϕ + x · (1 − l2 ∇2)U

]
, (22.23)

where the scalar potential ϕ and the vector potential Ui are solutions of the Laplace’s and
Helmholtz partial differential equations

∇2ϕ = 0 , ∇2 (Ui − l2 ∇2Ui
) = 0 . (22.24)

The general solution of the latter equation can be obtained by observing that

Ui − l2 ∇2Ui = U0
i (22.25)

must be a harmonic function, satisfying the Laplacian equation ∇2U0
i = 0 . Thus, the gen-

eral solution can be expressed as Ui = U0
i + U∗

i , where

U∗
i − l2 ∇2U∗

i = 0 . (22.26)

22.4 Correspondence Theorem of Couple-Stress Elasticity

For equilibrium problems of couple-stress elasticity with prescribed displacement bound-
ary conditions, and with no body forces or body couples present, we state the following
theorem.
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Theorem: If ui = ûi is a solution of the Navier equations of elasticity without couple-
stresses,

∇2ûi + 1
1 − 2ν

∂

∂xi
(∇ · û) = 0 , (22.27)

then ûi is also a solution of differential equations (22.22) for couple-stress elasticity.

Proof: It suffices to prove that ûi is a biharmonic function. By applying the Laplacian
operator to (22.27), we obtain

∇4ûi + 1
1 − 2ν

∂

∂xi
∇2(∇ · û) = 0 . (22.28)

Since ∇ · û is a harmonic function, as can be verified from (22.27) by applying the partial
derivatives ∂/∂xi , equation (22.28) reduces to

∇4ûi = 0 . (22.29)

This shows that ûi is a biharmonic function, which completes the proof.
We now prove that the stress tensor in couple-stress elasticity with prescribed displace-

ment boundary conditions, and without body forces or body couples, is a symmetric tensor.
From (22.27) it readily follows by partial differentiation that the rotation components are
harmonic functions (∇2ωi j = 0 ,∇2ϕi = 0), and substitution into (22.18) gives τi j = 0. In
general, the couple-stress tensor is still nonsymmetric, although in the case of antiplane
strain with prescribed displacement boundary conditions it becomes a symmetric tensor.

22.5 Plane Strain Problems of Couple-Stress Elasticity

In plane strain elasticity the displacement components are

u1 = u1(x1, x2) , u2 = u2(x1, x2) , u3 = 0 . (22.30)

The nonvanishing strain, rotation, and curvature components are

e11 = ∂u1

∂x1
, e22 = ∂u2

∂x2
e12 = 1

2

(
∂u2

∂x1
+ ∂u1

∂x2

)
,

ϕ3 = ω12 = 1
2

(
∂u2

∂x1
− ∂u1

∂x2

)
, (22.31)

κ13 = ∂ϕ3

∂x1
, κ23 = ∂ϕ3

∂x2
.

The stress-strain relations are

σ11 = (2µ+ λ)e11 + λe22 , σ22 = (2µ+ λ)e22 + λe11 ,

σ12 = 2µe12 , τ12 = −2α∇2ϕ3 .
(22.32)

The normal stress σ33 = λ(e11 + e22). The couple-stress–curvature relations are

m13 = 4ακ13 , m31 = 4βκ13 , m23 = 4ακ23 , m32 = 4βκ23 . (22.33)
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The elastic strain energy per unit volume is

W = 1
2µ

[
σ 2

12 + 1
2(1 + ν)

(
σ 2

11 + σ 2
22 − 2νσ11σ22 − σ 2

33

)]+ 1
8α

(m2
13 + m2

23) . (22.34)

Equations (22.31)–(22.34) can be easily rewritten in terms of polar coordinate compo-
nents. For example, we have

err = ∂ur

∂r
, eθθ = 1

r

(
∂uθ
∂θ

+ ur

)
, erθ = 1

2r

(
∂ur

∂θ
+ r

∂uθ
∂r

− uθ

)
,

ϕ3 = ωrθ = 1
2r

[
∂(ruθ )
∂r

− ∂ur

∂θ

]
, κr3 = ∂ϕ3

∂r
, κθ3 = 1

r
∂ϕ3

∂θ
.

22.5.1 Mindlin’s Stress Functions

The rectangular components of stress and couple-stress tensors can be expressed in terms
of the functions  and � as

t11 = ∂2 

∂x2
2

− ∂2�

∂x1∂x2
, t22 = ∂2 

∂x2
1

+ ∂2�

∂x1∂x2
,

t12 = − ∂2 

∂x1∂x2
− ∂2�

∂x2
2

, t21 = − ∂2 

∂x1∂x2
+ ∂2�

∂x2
1

, (22.35)

m13 = ∂�

∂x1
, m23 = ∂�

∂x2
,

where the functions  and � satisfy the partial differential equations

∇4 = 0 , ∇2� − l2∇4� = 0 . (22.36)

The curvature-strain compatibility equations require that the functions and� be related
by

∂

∂x1

(
� − l2∇2�

) = −2(1 − ν)l2 ∂

∂x2
(∇2 ) ,

∂

∂x2

(
� − l2∇2�

) = 2(1 − ν)l2 ∂

∂x1
(∇2 ) .

(22.37)

The solution of the equation for � in (22.36) can be expressed as � = �0 +�∗, where

∇2�0 = 0 , �∗ − l2∇2�∗ = 0 . (22.38)

Thus, (22.37) can be rewritten as

∂�0

∂x1
= −2(1 − ν)l2 ∂

∂x2
(∇2 ) ,

∂�0

∂x2
= 2(1 − ν)l2 ∂

∂x1
(∇2 ) .

(22.39)

The counterparts of (22.35) and (22.39) in polar coordinates are

trr = 1
r
∂ 

∂r
+ 1

r2

∂2 

∂θ2
− 1

r
∂2�

∂r∂θ
+ 1

r2

∂�

∂θ
,
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tθθ = ∂2 

∂r2
+ 1

r
∂2�

∂r∂θ
− 1

r2

∂�

∂θ
,

trθ = −1
r
∂2 

∂r∂θ
+ 1

r2

∂ 

∂θ
− 1

r
∂�

∂r
− 1

r2

∂2�

∂θ2
, (22.40)

tθr = −1
r
∂2 

∂r∂θ
+ 1

r2

∂ 

∂θ
+ ∂2�

∂r2
,

mr3 = ∂�

∂r
, mθ3 = 1

r
∂�

∂θ
,

and

∂

∂r

(
� − l2∇2�

) = −2(1 − ν)l2 1
r
∂

∂θ
(∇2 ) ,

1
r
∂

∂θ

(
� − l2∇2�

) = 2(1 − ν)l2 ∂

∂r
(∇2 ) .

(22.41)

22.6 Edge Dislocation in Couple-Stress Elasticity

For an edge dislocation in an infinite medium, the only boundary condition is the displace-
ment discontinuity b, imposed for example along the plane x1 > 0, x2 = 0. Thus, by the
correspondence theorem, the displacement field is as in classical elasticity, i.e.,

u1 = b
2π

[
tan−1 x2

x1
+ 1

2(1 − ν)
x1x2

x2
1 + x2

2

]
,

u2 = − b
2π

1
4(1 − ν)

[
(1 − 2ν) ln

x2
1 + x2

2

b2
+ x2

1 − x2
2

x2
1 + x2

2

]
.

(22.42)

The stresses are

σ11 = − µb
2π(1 − ν)

x2(3x2
1 + x2

2 )

(x2
1 + x2

2 )2
,

σ22 = µb
2π(1 − ν)

x2(x2
1 − x2

2 )

(x2
1 + x2

2 )2
,

σ12 = µb
2π(1 − ν)

x1(x2
1 − x2

2 )

(x2
1 + x2

2 )2
,

σ33 = − νµb
π(1 − ν)

x2

x2
1 + x2

2

.

(22.43)

The rotation and curvature components are

ϕ3 = − b
2π

x1

x2
1 + x2

2

,

κ13 = b
2π

x2
1 − x2

2

(x2
1 + x2

2 )2
, κ23 = b

2π
2x1x2

(x2
1 + x2

2 )2
.

(22.44)
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The corresponding couple-stresses are

m13 = 2αb
π

x2
1 − x2

2

(x2
1 + x2

2 )2
, m31 = 2βb

π

x2
1 − x2

2

(x2
1 + x2

2 )2
,

m23 = 2αb
π

2x1x2

(x2
1 + x2

2 )2
, m31 = 2βb

π

2x1x2

(x2
1 + x2

2 )2
.

(22.45)

In polar coordinates, the displacements are

ur = b
2π

{
θ cos θ + 1

4(1 − ν)

[
1 − (1 − 2ν) ln

r2

b2

]
sin θ

}
,

uθ = − b
2π

{
θ sin θ + 1

4(1 − ν)

[
1 + (1 − 2ν) ln

r2

b2

]
cos θ

}
,

(22.46)

and the stresses

σrr = σθθ = − µb
2π(1 − ν)

sin θ
r
,

σrθ = µb
2π(1 − ν)

cos θ
r

,

σ33 = − νµb
π(1 − ν)

sin θ
r
.

(22.47)

The rotation and curvature components are

ϕ3 = − b
2π

cos θ
r

, κr3 = b
2π

cos θ
r2

, κθ3 = b
2π

sin θ
r2

, (22.48)

with the corresponding couple-stresses

mr3 = 2αb
π

cos θ
r2

, m3r = 2βb
π

cos θ
r2

,

mθ3 = 2αb
π

sin θ
r2

, m3θ = 2βb
π

sin θ
r2

.

(22.49)

The stress components decay with a distance from the center of dislocation as r−1, whereas
the couple-stresses decay as r−2. These also specify the orders of the singularities at the
dislocation core when r → 0. The displacement and rotation fields for an edge dislocation
in polar elasticity, without the constraint (22.1), can be found in Nowacki (1986).

22.6.1 Strain Energy

The strain energy (per unit length in x3 direction) stored within a cylinder bounded by the
radii r0 and R (Fig. 22.1) is

E =
∫ R

r0

∫ 2π

0
W r dr dθ , (22.50)
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r0

b

T ϕ

r3m

rrσ
rθσ

Figure 22.1. A material of the dislocation core is removed and its effect
on the remaining material represented by the indicated stress and couple-
stress tractions over the surface r = r0. The slip discontinuity of amount b is
imposed along the cut at an angle ϕ.

where the specific strain energy (per unit volume) is

W = 1
2µ

[
σ 2

rθ + (1 − 2ν)σ 2
rr

]+ 1
8α

(
m2

r3 + m2
θ3

)

= µb2

8π2(1 − ν)2

1
r2

(
1 − 2ν sin2 θ

)
+ αb2

2π2

1
r4
.

(22.51)

Upon the substitution into (22.50) and integration, there follows

E = µb2

4π(1 − ν)
ln

R
r0

+ αb2

2π

(
1
r2

o
− 1

R2

)
. (22.52)

The second term on the right-hand side is the strain energy contribution from the couple-
stresses. The presence of this term is associated with the work done by the couple-stresses
on the surfaces r = r0 and r = R. This can be seen by writing an alternative expression for
the strain energy,

E = 1
2

∫ R

r0

σrθ (r, 0) b dr + 1
2

∫ 2π

0
M3 ϕ3 Rdθ − 1

2

∫ 2π

0
M3 ϕ3 r0 dθ , (22.53)

with M3 = mr3 given by (22.49), andϕ3 given in (22.48). The work of the tractionsσrr andσrθ

on the displacements ur and uθ over the surface r = R cancels the work of the tractions σrr

and σrθ over the surface r = r0. These terms are thus not explicitly included in (22.53). The
second term in (22.52) is the strain energy contribution due to last two work terms in (22.53).
For example, in a metallic crystal with the dislocation density ρ = 1010 cm−2, the radius
of influence of each dislocation (defined as the average distance between dislocations) is
of the order of ρ−1/2 = 100 nm. For an fcc crystal with the lattice parameter a = 0.4 nm,
and the Burgers vector along the closed packed direction b = a/

√
2, the radius R can

be approximately taken as R = 200b. By choosing the material length l to be the lattice
parameter (l = √

2b), the couple-stress modulus is α = 2µb2, and by selecting r0 = 2b and
ν = 1/3, the strain energy contribution from couple-stresses in (22.52) is 14.5% of the
strain energy without couple stresses. The calculations are sensitive to selected value of
the dislocation core radius; larger the value of r0 smaller the effect of couple-stresses in the
region beyond r0 (Lubarda, 2003a). The strain energy contribution from couple-stresses
is likely to be lowered by inclusion of the micropolar effects. It is known that the effect
of couple-stresses on stress concentration is less pronounced if the microrotations are
assumed to be independent of the displacement field (Eringen, 1999).
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r

R

0 b
Figure 22.2. A slip discontinuity of amount b is imposed along the horizontal
cut from the inner radius r0 to the outer radius R. The inner and outer surface
of the cylinder are free from stresses and couple-stresses.

22.7 Edge Dislocation in a Hollow Cylinder

The so-called hollow dislocation along the axis of a circular cylinder with inner radius r0

and the outer radius R is shown in Fig. 22.2. Both surfaces of the cylinder are required to be
stress and couple stress free. The displacement discontinuity of amount b is imposed along
the horizontal cut from r0 to R. The solution is derived from the infinite body solution by
superposing an additional solution that cancels the stresses and couple-stresses over the
inner and outer surface associated with the solution for an edge dislocation in an infinite
medium. Thus, we require that the superposed solution satisfies the boundary conditions

trr (R, θ) = µb
2π(1 − ν)

sin θ
R
, trr (r0, θ) = µb

2π(1 − ν)
sin θ

r0
,

trθ (R, θ) = − µb
2π(1 − ν)

cos θ
R

, trθ (r0, θ) = − µb
2π(1 − ν)

cos θ
r0

, (22.54)

mr3(R, θ) = −2αb
π

cos θ
R2

, mr3(r0, θ) = −2αb
π

cos θ
r2

0

.

This can be accomplished by using the following structure of the Mindlin stress functions

 =
(

A0r3 + B0
1
r

)
sin θ , (22.55)

� =
[

Ar + B
1
r

+ CI1

(r
l

)
+ DK1

(r
l

)]
cos θ . (22.56)

From the conditions (22.41) it readily follows that

A= −16(1 − ν)l2 A0 , B = 0 . (22.57)

The stress and couple-stress components of the superposed solution are accordingly

trr =
[

2A0r − 2B0
1
r3

+ C
1
rl

I2

(r
l

)
− D

1
rl

K2

(r
l

)]
sin θ ,

trθ = −
[

2A0r − 2B0
1
r3

+ C
1
rl

I2

(r
l

)
− D

1
rl

K2

(r
l

)]
cos θ , (22.58)

mr3 = −
{

16(1 − ν)l2 A0 − C
1
2l

[
I0

(r
l

)
+ I2

(r
l

)]
+ D

1
2l

[
K0

(r
l

)
+ K2

(r
l

)] }
cos θ.



P1: FBQ

0521859794c22.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:38

22.7. Edge Dislocation in a Hollow Cylinder 385

The expressions for the derivatives of the modified Bessel functions with respect to r/ l are
used (Watson 1995).

After a lengthy but straightforward derivation, it follows that

A0 = µb
2π(1 − ν)

R2 − r2
0

Ra1 − r0a2
− 2αb
π

l
R2

Rb1 − r0b2

Ra1 − r0a2
,

B0 = 1
2

Rr0

[
µb

2π(1 − ν)
Ra2 − r0a1

Ra1 − r0a2
− 2αb
π

l
R2

a2b1 − a1b2

Ra1 − r0a2

]
,

(22.59)

and

C = 16(1 − ν)l3 c1

c
A0 − 2αb

π

l
R2

c2

c
,

D = −16(1 − ν)l3 d1

c
A0 + 2αb

π

l
R2

d2

c
.

(22.60)

The introduced parameters are

a1 = 2R3 − 16(1 − ν)
l3

c
(c1d3 − d1c3) ,

a2 = 2r3
0 − 16(1 − ν)

l3

c
(c1d4 − d1c4) , (22.61)

b1 = 1
c

(c2d3 − d2c3) , b2 = 1
c

(c2d4 − d2c4) ,

where

c1 = 1
2

[
K0

(
R
l

)
+ K2

(
R
l

)]
− 1

2

[
K0

(r0

l

)
+ K2

(r0

l

)]
,

c2 = −1
2

[
K0

(r0

l

)
+ K2

(r0

l

)]
+ R2

2r2
0

[
K0

(
R
l

)
+ K2

(
R
l

)]
, (22.62)

c3 = R
l

K2

(
R
l

)
, c4 = r0

l
K2

(r0

l

)
,

and

d1 = −1
2

[
I0

(
R
l

)
+ I2

(
R
l

)]
+ 1

2

[
I0

(r0

l

)
+ I2

(r0

l

)]
,

d2 = 1
2

[
I0

(r0

l

)
+ I2

(r0

l

)]
− R2

2r2
0

[
I0

(
R
l

)
+ I2

(
R
l

)]
, (22.63)

d3 = − R
l

I2

(
R
l

)
, d4 = −r0

l
I2

(r0

l

)
.
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The parameter c is defined by

c = 1
4

[
K0

(
R
l

)
+ K2

(
R
l

)] [
I0

(r0

l

)
+ I2

(r0

l

)]

− 1
4

[
K0

(r0

l

)
+ K2

(r0

l

)] [
I0

(
R
l

)
+ I2

(
R
l

)]
.

(22.64)

If R → ∞, we obtain the solution for an edge dislocation with a stress free hollow core
in an infinite medium. In this case A0 = A= B = D = 0, and

B0 = − µbr2
0

4π(1 − ν)
− 2αb

π

K2(r0/ l)
K0(r0/ l) + K2(r0/ l)

,

D = 4αbl

πr2
0

1

K0(r0/ l) + K2(r0/ l)
.

(22.65)

If couple-stresses are neglected, (22.59) and (22.60) yield

A0 = µb
4π(1 − ν)

1
R2 + r2

0

, B0 = −R2r2
0 A0 A= C = D = 0 . (22.66)

The corresponding stresses are

σrr = − µb
2π(1 − ν)

[
1
r

− 1
R2 + r2

0

(
r + R2r2

0

r3

)]
sin θ ,

σrθ = µb
2π(1 − ν)

[
1
r

− 1
R2 + r2

0

(
r + R2r2

0

r3

)]
cos θ , (22.67)

σθθ = − µb
2π(1 − ν)

[
1
r

− 1
R2 + r2

0

(
3r − R2r2

0

r3

)]
sin θ ,

in agreement with the solution for the Volterra edge dislocation from classical elasticity
(Love, 1944).

22.8 Governing Equations for Antiplane Strain

For the antiplane strain problems, the displacements are

u1 = u2 = 0 , u3 = w(x1, x2) . (22.68)

The nonvanishing strain, rotation, and curvature components are

e13 = e31 = 1
2
∂w

∂x1
, e23 = e32 = 1

2
∂w

∂x2
,

ϕ1 = ω23 = 1
2
∂w

∂x2
, ϕ2 = ω31 = −1

2
∂w

∂x1
, (22.69)

κ11 = −κ22 = 1
2
∂2w

∂x1∂x2
, κ12 = −1

2
∂2w

∂x2
1

, κ21 = 1
2
∂2w

∂x2
2

.
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It readily follows that

∇2ω13 = 1
2
∂

∂x1

(∇2w
)
, ∇2ω23 = 1

2
∂

∂x2

(∇2w
)
, (22.70)

so that, from (22.18),

τ31 = −τ13 = α ∂

∂x1

(∇2w
)
, τ32 = −τ23 = α ∂

∂x2

(∇2w
)
. (22.71)

Consequently, from (22.19),

t13 = µ ∂

∂x1

(
w − l2 ∇2w

)
, t31 = µ ∂

∂x1

(
w + l2 ∇2w

)
,

t23 = µ ∂

∂x2

(
w − l2 ∇2w

)
, t32 = µ ∂

∂x2

(
w + l2 ∇2w

)
.

(22.72)

The couple-stresses are related to the curvature components by

m11 = 4(α + β)κ11 = 2(α + β)
∂2w

∂x1∂x2
,

m22 = 4(α + β)κ22 = −2(α + β)
∂2w

∂x1∂x2
= −m11 ,

m12 = 4ακ12 + 4βκ21 = −2α
∂2w

∂x2
1

+ 2β
∂2w

∂x2
2

,

m21 = 4ακ21 + 4βκ12 = 2α
∂2w

∂x2
2

− 2β
∂2w

∂x2
1

.

(22.73)

It is noted that

m12 − m21 = 2(β − α)∇2w . (22.74)

Since displacement field is isochoric (∇ · u = 0), the displacement equations of equilib-
rium (22.22) reduce to a single equation

∇2w − l2 ∇4w = 0 . (22.75)

The general solution can be expressed as

w = w0 + w∗ , (22.76)

where w0 and w∗ are the solutions of the partial differential equations

∇2w0 = 0 ,

w∗ − l2 ∇2w∗ = 0 .
(22.77)

In view of (22.76) and (22.77), the following identities hold

∇2w = 1
l2
w∗ , (22.78)

and

w − l2 ∇2w = w0 , w + l2 ∇2w = w0 + 2w∗ , (22.79)

which can be conveniently used to simplify the stress expressions (22.72).
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22.8.1 Expressions in Polar Coordinates

When expressed in terms of polar coordinates, the general solutions of (22.77), obtained
by separation of variables, are

w0 = (A0 + B0 ln r)(C0 + θ) +
∞∑

n=1

(
An rn + Bn r−n) (Cn cos nθ + sin nθ) , (22.80)

w∗ =
[

A∗
0 I0

(r
l

)
+ B∗

0 K0

(r
l

)]
(C∗

0 + θ)

+
∞∑

n=1

[
A∗

n In

(r
l

)
+ B∗

n Kn

(r
l

)]
(C∗

n cos nθ + sin nθ) .
(22.81)

The functions In(ρ) and Kn(ρ) (with ρ = r/ l) in (22.81) are the modified Bessel functions
of the first and second kind (of the order n).

The nonvanishing strain, rotation, and curvature components in polar coordinates are

eθ3 = e3θ = 1
2r
∂w

∂θ
, er3 = e3r = 1

2
∂w

∂r
,

ϕr = ωθ3 = 1
2r
∂w

∂θ
, ϕθ = ω3r = −1

2
∂w

∂r
,

(22.82)

and

κrr = ∂ϕr

∂r
= 1

2
∂

∂r

(
1
r
∂w

∂θ

)
, κrθ = ∂ϕθ

∂r
= −1

2
∂2w

∂r2
,

κθr = 1
r
∂ϕr

∂θ
− ϕθ

r
= 1

2r2

∂2w

∂θ2
+ 1

2r
∂w

∂r
, (22.83)

κθθ = 1
r
∂ϕθ

∂θ
+ ϕr

r
= −1

2
∂

∂r

(
1
r
∂w

∂θ

)
= −κrr .

Note that

κrθ − κθr = κ12 − κ21 = −1
2

∇2w . (22.84)

The corresponding couple-stress components are (Fig. 22.3)

mrr = −mθθ = 2(α + β)
∂

∂r

(
1
r
∂w

∂θ

)
,

mrθ = −2(α + β)
∂2w

∂r2
+ 2β ∇2w , (22.85)

mθr = −2(α + β)
∂2w

∂r2
+ 2α∇2w .

The shear stresses are

tr3 = µ ∂

∂r

(
w − l2 ∇2w

)
, tθ3 = µ 1

r
∂

∂θ

(
w − l2 ∇2w

)
,

t3r = µ ∂

∂r

(
w + l2 ∇2w

)
, t3θ = µ 1

r
∂

∂θ

(
w + l2 ∇2w

)
.

(22.86)
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θrm
θ

12m

11m
12m

13t13t

23t

23t

21m

22m

11m

22m

21m θθm

r3t

(a) (b)

rθm rrm

r3t

rrm

rθm θrm

θθm

θ3t

θ3t

Figure 22.3. (a) A material element with sides parallel to coordinates directions x1 and x2
under conditions of antiplane strain; (b) The corresponding element with sides parallel to
polar directions r and θ .

In view of (22.79), the stress components tr3 and tθ3 (or t13 and t23) do not depend explicitly
on w∗, i.e.,

tr3 = µ ∂w
0

∂r
, tθ3 = µ 1

r
∂w0

∂θ
,

t3r = tr3 + 2µ
∂w∗

∂r
, t3θ = tθ3 + 2µ

1
r
∂w∗

∂θ
.

(22.87)

The couple-stresses, however, affect the values of tr3 and tθ3 through the imposed boundary
conditions. For example, along an unstressed circular boundary r = R around the origin,
the reduced tractions must vanish,

t̄r3 = tr3 − 1
2R

∂mrr

∂θ
= 0 , mrθ = 0 . (22.88)

Also note that

mrθ = −2(α + β)
∂2w

∂r2
+ 2β

l2
w∗ , mθr = −2(α + β)

∂2w

∂r2
+ 2α

l2
w∗ . (22.89)

The elastic strain energy per unit volume is

W = 1
2µ

(
σ 2

r3 + σ 2
θ3

)+ 1
4(α + β)

{
m2

rr + 1
2(α − β)

[
α(m2

rθ + m2
θr ) − 2βmrθmθr

] }
. (22.90)

22.8.2 Correspondence Theorem for Antiplane Strain

For antiplane strain problems with prescribed displacement boundary conditions, the cor-
respondence theorem of couple-stress elasticity reads: Ifw = w0 is a solution of differential
equation of elasticity without couple-stresses ∇2w0 = 0, then w0 is also a solution of dif-
ferential equations (22.75) for couple-stress elasticity.

The proof is simple. Sincew0 is a harmonic function, it is also a biharmonic function, sat-
isfying (22.75). For prescribed displacement boundary conditions, the functionw0 specifies
the displacement field in both nonpolar and couple-stress elasticity.
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rθm0

r3σ 0

w = 0
= 0

= const.

R

R

0

Figure 22.4. A circular annulus of inner radius R and outer radius
R0 under shear stress σ 0

r3 over the outer surface. The inner surface
of the cylinder is fixed (w = 0).

The stress and couple-stress tensors in antiplane strain problems of couple-stress elas-
ticity, in the case of prescribed displacement boundary conditions, are symmetric ten-
sors. Indeed, since the displacement field is a harmonic function, the antisymmetric stress
components in (22.72) vanish, i.e., τ13 = τ23 = 0. Thus, the total stress tensor is a sym-
metric tensor. From (22.8) it further follows that the curvature tensor is a symmetric
tensor (κ12 = κ21). This implies from (22.73) that the couple-stress tensor is also symmetric
(m12 = m21), regardless of the ratio α/β.

22.9 Antiplane Shear of Circular Annulus

A simple but illustrative problem of couple-stress elasticity is the antiplane shearing of
a circular annulus. Suppose that the inner surface r = R is fixed, whereas the constant
shearing stress σ 0

r3 is applied on the outer surface r = R0 (Fig. 22.4). The corresponding
displacement field is independent of θ and given by

w(r) = R0

[
Aln

r
R

+ B + CI0

(r
l

)
+ DK0

(r
l

)]
. (22.91)

The integration constants are specified from the boundary conditions

w(R) = 0 , tr3(R0) = σ 0
r3 , mrθ (R0) = 0 . (22.92)

The fourth boundary condition is obtained by specifying an additional information about
the bonded interface, such as the magnitude of slope dw/dr or the couple-stress mrθ at
r = R. We will proceed by adopting the first choice, i.e., by assuming that the rotation

ϕθ (R) = −1
2

(
dw
dr

)
r=R

= ϕ̂θ (22.93)

is known at the interface. It readily follows from (22.87)–(22.89) that

A= σ 0
r3

µ
, B = −CI0

(
R
l

)
− DK0

(
R
l

)
, (22.94)

and

C = l
R0

[
K1

( R
l

)− b R0
R

] σ 0
r3
µ

− 2b ϕ̂θ

b I1
( R

l

)+ a K1
( R

l

) ,

D = l
R0

[
I1
( R

l

)+ a R0
R

] σ 0
r3
µ

+ 2a ϕ̂θ

b I1
( R

l

)+ a K1
( R

l

) ,

(22.95)
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where

a = α

α + β
R0

l
I0

(
R0

l

)
− I1

(
R0

l

)
, b = α

α + β
R0

l
K0

(
R0

l

)
+ K1

(
R0

l

)
.

Consequently,

tr3(r) = R0

r
σ 0

r3 ,

t3r (r) = R0

r

{
σ 0

r3 + 2µ
r
l

[
CI1

(r
l

)
− DK1

(r
l

)]}
, (22.96)

mrθ (r) = 2(α + β)
{R0

r2

σ 0
r3

µ
− C

R0

l2

[
α

α + β I0

(r
l

)
− l

r
I1

(r
l

)]

− D
R0

l2

[
α

α + β K0

(r
l

)
+ l

r
K1

(r
l

)] }
,

mθr (r) = 2(α + β)
{R0

r2

σ 0
r3

µ
− C

R0

l2

[
β

α + β I0

(r
l

)
− l

r
I1

(r
l

)]

− D
R0

l2

[
β

α + β K0

(r
l

)
+ l

r
K1

(r
l

)] }
.

(22.97)

If the bonded interface cannot support the couple-stress mrθ , we set the right-hand side
of the above expression for mrθ equal to zero and calculate the corresponding rotation ϕ̂θ .

22.10 Screw Dislocation in Couple-Stress Elasticity

The displacement field for a screw dislocation with imposed displacement discontinuity b
along the plane x1 > 0, x2 = 0 is as in classical elasticity, i.e.,

w = b
2π

tan−1 x2

x1
= b

2π
θ . (22.98)

This follows from the correspondence theorem, since only the displacement boundary
conditions are prescribed. The stresses and couple-stresses associated with (22.98) are

σ13 = −µb
2π

x2

x2
1 + x2

2

, σ23 = µb
2π

x1

x2
1 + x2

2

,

m11 = −m22 = − (α + β)b
π

x2
1 − x2

2

(x2
1 + x2

2 )2
, (22.99)

m12 = m21 = − (α + β)b
π

2x1x2

(x2
1 + x2

2 )2
.

The components of the stress and couple-stress tensors along the polar directions are

σθ3 = µb
2π

1
r
, σr3 = 0 ,

mrr = −mθθ = − (α + β)b
π

1
r2
, mrθ = mθr = 0 .

(22.100)
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The stress components decay with a distance from the center of dislocation as r−1, whereas
the couple-stresses decay as r−2. These also specify the orders of the singularities at the
dislocation core when r → 0.

22.10.1 Strain Energy

The strain energy (per unit length in x3 direction) stored within a cylinder bounded by the
radii r0 and R is

E =
∫ R

r0

W 2πr dr , (22.101)

where the specific strain energy (per unit volume) is

W = 1
2µ
σ 2
θ3 + 1

4(α + β)
m2

rr = µb2

8π2

1
r2

+ (α + β)b2

4π2

1
r4
. (22.102)

Upon the substitution into (22.101) and integration, there follows

E = µb2

4π
ln

R
r0

+ (α + β)b2

4π

(
1
r2

o
− 1

R2

)
. (22.103)

The second term on the right-hand side is the strain energy contribution from the couple-
stresses. The presence of this term is associated with the work done by the couple-stresses
on the surfaces r = r0 and r = R. This can be seen by writing an alternative expression for
the strain energy,

E = 1
2

∫ R

r0

σθ3(r, 0) b dr + 1
2

∫ 2π

0
Mr ϕr Rdθ − 1

2

∫ 2π

0
Mr ϕr r0 dθ , (22.104)

with Mr = mrr given by (22.100), and with

ϕr = ωθz = 1
2r
∂w

∂θ
= 1

4π
b
r

(22.105)

being the r component of the rotation vector. Since σr3 = 0, there is no work of stress
traction on the displacement w over the surfaces r = r0 and r = R. The second term in
(22.103) is the strain energy contribution due to last two work terms in (22.104). For
example, if we set R = 200b, r0 = 2b, and α + β = 2µb2, the energy contribution from
couple-stresses in (22.103) is 10.9% of the strain energy without couple-stresses. In the
classical elasticity a cylindrical surface around the screw dislocation at its center is stress
free. On the other hand, the solution derived in this section is characterized by the presence
of the constant couple stress mrr along that surface. However, since mrr in (22.100) does
not depend on θ , the reduced traction t̄r3 vanishes on the cylindrical surface r = const.

22.11 Configurational Forces in Couple-Stress Elasticity

Returning to general theory of couple-stress elasticity, it is appealing to extend the energy
considerations from Chapter 21 to the framework of couple-stress theory. Thus, we now
derive expressions for the interaction energy between the stress systems due to internal
and external sources of stress, the configurational force on a singularity or the source of
internal stress, and the energy-momentum tensor of elastic couple-stress field.
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22.11.1 Reciprocal Properties

Consider two equilibrium elastic fields, designated by the superscripts Aand B. Clearly, in
analogy with (21.54),

σ A
j i e

B
ji = σ B

ji e
A
j i , mA

j iκ
B
ji = mB

jiκ
A
j i , (22.106)

and

(t A
j i − τ A

j i )uB
i, j = (t B

ji − τ B
ji )uA

i, j . (22.107)

The equilibrium equations (22.4) provide the relationships

t A
j i u

B
i, j − t B

ji u
A
i, j = (t A

j i u
B
i − t B

ji u
A
i ), j + f A

i uB
i − f B

i uA
i ,

τ A
j i u

B
i, j − τ B

ji u
A
i, j = −(mA

j iϕ
B
i − mB

jiϕ
A
i ), j ,

(22.108)

so that the substitution into (22.107) gives

(t A
j i u

B
i + mA

j iϕ
B
i − t B

ji u
A
i − mB

jiϕ
A
i ), j = f B

i uA
i − f A

i uB
i . (22.109)

Integrating over the volume of the body and using the Gauss divergence theorem, we thus
obtain ∫

S

(
t A

j i u
B
i + mA

j iϕ
B
i

)
nj dS +

∫
V

f A
i uB

i dV =
∫

S

(
t B

ji u
A
i + mB

jiϕ
A
i

)
nj dS +

∫
S

f B
i uA

i dV,

(22.110)

which is Betti’s reciprocal theorem of couple-stress elasticity.
In the absence of body forces, from (22.109) it follows that the vector

v j (A, B) = t A
j i u

B
i + mA

j iϕ
B
i − t B

ji u
A
i − mB

jiϕ
A
i (22.111)

has zero divergence. Thus,∫
S1

v j (A, B)nj dS =
∫

S2

v j (A, B)nj dS, (22.112)

for any two surfaces S1 and S2 which do not embrace any singularity of v j (A, B). In
particular, if there are no singularities of v j (A, B) within a surface S,∫

S
v j (A, B)nj dS = 0. (22.113)

If the material is homogeneous, in addition to (22.106) we have

σ A
j i,keB

ji = σ B
ji e

A
j i,k, mA

j i,kκ
B
ji = mB

jiκ
A
j i,k. (22.114)

Consequently, for a homogeneous material (22.113) also applies when v j (A, B) is re-
placed by

ϑ jk(A, B) = t A
j i,kuB

i + mA
j i,kϕ

B
i − t B

ji u
A
i,k − mB

jiϕ
A
i,k. (22.115)
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22.11.2 Energy due to Internal Sources of Stress

Suppose that there are two systems of internal stresses in the body of volume V bounded
by the surface S. The sources of internal stress system A lie entirely within the surface S0,
and those of the system B lie entirely outside of S0. If EA and EB are the values of the
elastic strain energy when Aand B alone exists in the body, we may write the total strain
energy as E = EA + EB + EAB when the sources coexist in the body. Here,

EAB = 1
2

∫
V

(
σ A

j i e
B
ji + mA

j iκ
B
ji + σ B

ji e
A
j i + mB

jiκ
A
j i )dV (22.116)

is the interaction energy between A and B. Noting that eB
i j = 1

2 (uB
i, j + uB

j,i ) and κB
i j = ϕB

j,i

in the volume V0 within the surface S0, and eA
i j = 1

2 (uA
i, j + uA

j,i ) and κA
i j = ϕA

j,i in the volume
V − V0 (but not conversely), and in view of the reciprocity properties, (22.116) can be
rewritten as

EAB =
∫

V0

(
σ A

j i e
B
ji + mA

j iκ
B
ji

)
dV +

∫
V−V0

(
σ B

ji e
A
j i + mB

jiκ
A
j i

)
dV. (22.117)

Furthermore, σ A
j i e

B
ji = σ A

j i u
B
i, j = (t A

j i − τ A
j i )uB

i, j , and since from equilibrium equations with-
out body forces

t A
j i u

B
i, j = (t A

j i u
B
i ), j , τ A

j i u
B
i, j = −mA

j i, jϕ
B
i , (22.118)

we obtain

σ A
j i e

B
ji + mA

j iκ
B
ji = (t A

j i u
B
i + mA

j iϕ
B
i ), j . (22.119)

An analogous equation holds when the superscripts Aand B are interchanged in (22.119).
Substituting these two equations into (22.117) and applying the Gauss divergence theorem
gives

EAB =
∫

S0

(
t A

j i u
B
i + mA

j iϕ
B
i − t B

ji u
A
i − mB

jiϕ
A
i

)
nj dS, (22.120)

where nj is the outward normal to S0. The surface integral over S vanishes, because no
load is there applied. Thus, the interaction energy between two internal stress systems can
be expressed by the integral over any surface S0 that separates the two stress sources. Note
that the bracketed terms of the integrand in (22.120) are equal to v j (A, B) by (22.111).

22.11.3 Energy due to Internal and External Sources of Stress

Denote by A the stress system due to internal sources within the volume V, and by B the
stress system due to external surface load TB

i and MB
i applied over S. The total potential

energy of the system is % = %A +%B +%AB, where

%A = EA = 1
2

∫
V

(σ A
j i e

A
j i + mA

j iκ
A
j i )dV,

%B = EB −
∫

S
(TB

i uB
i + MB

i ϕ
B
i )dS

(22.121)



P1: FBQ

0521859794c22.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:38

22.11. Configurational Forces 395

represent the potential energies of two systems when they act alone, and

%AB = EAB −
∫

S
(TB

i uA
i + MB

i ϕ
A
i )dS (22.122)

is the interaction potential energy between the two systems. The interaction strain energy
EAB between stress systems due to internal and external stress sources is equal to zero.
Indeed, in this case uB

i and ϕB
i exist throughout the volume V, and from (22.116) and the

reciprocity property we have

EAB =
∫

V

(
σ A

j i e
B
ji + mA

j iκ
B
ji

)
dV =

∫
V

(t A
j i u

B
i + mA

j iϕ
B
i ), j dV. (22.123)

Thus, upon application of the Gauss theorem, we obtain EAB = 0, because T A
i = 0 and

MA
i = 0 on S. The response of the body to external loading in couple-stress theory is,

therefore, the same whether the body is self-stressed or not, as in classical elasticity.
The interaction potential energy between external and internal stress systems is conse-

quently

%AB = −
∫

S
(t B

ji u
A
i + mB

jiϕ
A
i )nj dS. (22.124)

The right-hand side of (22.124) can be rewritten in the same form as the right-hand side of
(22.120), provided that S0 is taken to be any surface that entirely encompasses the sources
of internal stress A. This follows from the Gauss divergence theorem applied to the region
V − V0, noting that T A

i = MA
i = 0 on S, and that v j (A, B) is divergence free in the region

between S and S0.
In fact, if (uC

i , ϕ
C
i , t

C
i j ,m

C
i j ) is any elastic field free of singularities within S0 (thus v j (B,C)

is divergence free in S0), we can write

%AB =
∫

S0

[
(t A

j i − tC
ji )uB

i + (mA
j i − mC

ji )ϕ
B
i

− t B
ji (uA

i − uC
i ) − mB

ji (ϕ
A
i − ϕC

i )
]
nj dS,

(22.125)

Since the field C is arbitrary field without singularities within S0, (A− C) field in (22.125)
can be any field which has the same singularities within S0 as does the field A. In applications
it is convenient to take (A− C) to be the elastic field of internal sources A, considered to
be emerged in an infinite body. Thus, the interaction potential energy between the internal
system Aand external system B can be written as

%AB =
∫

S0

(
t∞

j i uB
i + m∞

j i ϕ
B
i − t B

ji u
∞
i − mB

jiϕ
∞
i

)
nj dS. (22.126)

This is a generalization of the corresponding Eshelby’s result from classical elasticity.

22.11.4 The Force on an Elastic Singularity

The force on a singularity A due to external system B can be defined as the negative
gradient of interaction energy with respect to the location of the singularity, i.e.,

Jk = −∂%AB

∂xA
k

. (22.127)
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To elaborate on this expression, it is convenient to use (22.126) for the interaction energy
%AB. The stress field in an infinite body due to singularity at A evidently satisfies the
property

t∞
i j

(
xk, xA

k + dxA
k

) = t∞
i j

(
xk − dxA

k , xA
k

)
, (22.128)

because moving the singularity for dxA
k toward the point of observation xk, or approaching

the point of observation toward the singularity by dxA
k , equally effects the stress at the

point of observation. Thus,

∂t∞
i j

∂xA
k

= −∂t∞
i j

∂xk
. (22.129)

Analogous expressions apply to couple-stress, displacement and rotation gradients. Sub-
stitution into (22.127), therefore, gives

Jk =
∫

S0

(
t∞

j i,kuB
i + m∞

j i,kϕ
B
i − t B

ji u
∞
i,k − mB

jiϕ
∞
i,k

)
nj dS. (22.130)

Since t A
i j = t∞

i j + t I
i j (and similarly for other fields), where the superscript I denotes the

image field, free of singularities within S0, (22.130) can be rewritten as

Jk =
∫

S0

(
t A

j i,kuB
i + mA

j i,kϕ
B
i − t B

ji u
A
i,k − mB

jiϕ
A
i,k

)
nj dS. (22.131)

The terms within the brackets in the integrand are equal to ϑ jk(A, B), defined by (22.115).
Recall that ϑ jk(I, B) is divergence free within S0.

The right-hand side of (22.131) is symmetric with respect to superscripts Aand B. Thus,
the force on a singularity can also be expressed as

Jk =
∫

S0

(
t B

ji,kuA
i + mB

ji,kϕ
A
i − t A

j i u
B
i,k − mA

j iϕ
B
i,k

)
nj dS. (22.132)

To see that the right-hand sides of (22.131) and (22.132) are equal, we can form their
difference, which is∫

S0

[
ϑ jk(A, B) − ϑ jk(B, A)

]
nj dS =

∫
S0

v j,k(A, B)nj dS =
∫

S0

v j, j (A, B)nkdS. (22.133)

The last integral is equal to zero, because from (22.111) we obtain v j, j (A, B) = 0, in view of
the reciprocity properties and (22.118). In (22.133) we also assumed that uA

i is single-valued
on S0.

22.12 Energy-Momentum Tensor of a Couple-Stress Field

As in classical elasticity, it is possible to develop a general expression for the force on an
elastic singularity. To that goal, consider a body of volume V, loaded by the force traction
Tk and couple traction Mk over its external surface S. The body contains a singularity which
is a source of internal stress (e.g., a dislocation, an interstitial atom, or other lattice defect).
The total potential energy is

% =
∫

V
WdV −

∫
S

(
Tj u j + Mjϕ j

)
dS, (22.134)
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where W is the elastic strain energy density, defined in linear couple-stress theory by
(22.13). If the singularity is moved a small distance ε in the direction nk, the potential
energy alters due to the change of the elastic strain energy and the load potential. The
change of the elastic strain energy is

δk

∫
V

WdV = −ε
∫

S
WnkdS +

∫
S

[
Tj
(
δku j + εu j,k

)+ Mj
(
δkϕ j + εϕ j,k

)]
dS, (22.135)

to within linear terms in ε. This can be established by the same consideration as in the
original Eshelby’s derivation of classical elasticity. The symbol δk indicates a variation
associated with an infinitesimal displacement of the singularity in the direction nk. The
change of the load potential due to displacement of the singularity is

δk

∫
S

(
Tj u j + Mjϕ j

)
dS =

∫
S

(
Tjδku j + Mjδkϕ j

)
dS + O(ε2). (22.136)

Thus, the total change of the potential energy becomes

δk% = −ε
∫

S

(
Wnk − Tj u j,k − Mjϕ j,k

)
dS + O(ε2). (22.137)

Since the force on the singularity can be defined as

Jk = − lim
ε→0

δk%

ε
, (22.138)

we obtain, from (22.137),

Jk =
∫

S

(
Wnk − Tj u j,k − Mjϕ j,k

)
dS. (22.139)

This can be rewritten as

Jk =
∫

S
Pikni dS, (22.140)

where

Pik = Wδik − ti j u j,k − mi jϕ j,k (22.141)

is the energy-momentum tensor of the couple-stress elastic field.
Pursuing Eshelby’s (1956) analysis further, assume that in addition to a considered

singularity A and external load B, there are other sources of internal stress, collectively
denoted by C. Each of the elastic fields in the body, such as the displacement field ui , can
be represented as

ui = u∞
i + uI

i + uB
i + uC

i , (22.142)

where the superscript I designates the image field of the singularity A, considered to be in
an infinite medium. The total force on the singularity A is then

Jk = J I
k + J B

k + J C
k , (22.143)

where

J X
k =

∫
S

(
t∞

j i,kuX
i + m∞

j i,kϕ
X
i − t X

j i u
∞
i,k − mX

j iϕ
∞
i,k

)
nj dS, (22.144)
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for each of the superscripts X = I, B,C. Indeed, a typical cross term in (22.139) is

(X,Y) =
∫

S

[1
2

(
σ X

lk eY
kl + mX

lkϕ
Y
k,l

)
ni − (

t X
jkuY

k,i + mX
jkϕ

Y
k,i

)
nj

]
dS. (22.145)

This can be rewritten, by using (22.119), as

(X,Y) =
∫

S

[1
2

(
t X
lkuY

k + mX
lkϕ

Y
k

)
,i nl − (

t X
jkuY

k,i + mX
jkϕ

Y
k,i

)
nj

]
dS. (22.146)

The property was employed that the surface integral of  ,lni is equal to that of  ,i nl for
any tensor field  defined within S. Thus, upon differentiation, it follows that

(X,Y) = 1
2

∫
S
ϑ j i (X,Y)nj dS. (22.147)

This is equal to zero because ϑ j i (X,Y) is a divergence free field, unless one or other of
the labels X and Y stands for ∞. The term (∞,∞) also vanishes because the products of
the elastic fields in an infinite medium rapidly approach zero at large distances from the
singularity.

Returning to (22.139), if S does not embrace a singularity, a conservation law Jk = 0 of
couple-stress elasticity is obtained. There is also a conservation law Lk = 0, where

Lk =
∫

S
εki j

(
Wxj ni + Ti u j + Miϕ j − Tlul,i x j − Mlϕl,i x j

)
dS, (22.148)

i.e., written more compactly by using the energy-momentum tensor,

Lk =
∫

S
εki j

(
Pli x j + tli u j + mliϕ j

)
nldS. (22.149)

22.13 Basic Equations of Micropolar Elasticity

In the infinitesimal micropolar elasticity the deformation is described by the displacement
vector ui and an independent rotation vector ϕi , which are both functions of the position
vector xi . A surface element dS transmits a force vector Ti dS and a couple vector Mi dS.
The surface forces are in equilibrium with the nonsymmetric Cauchy stress ti j , and the
surface couples are in equilibrium with the nonsymmetric couple-stress mi j , such that

Ti = nj t j i , Mi = nj mji , (22.150)

where nj are the components of the unit vector orthogonal to the surface element under
consideration. In the absence of body forces and body couples, the integral forms of the
force and moment equilibrium conditions are∫

S
Ti dS = 0 ,

∫
S
(εi jk xj Tk + Mi )dS = 0 . (22.151)

Upon using (22.150) and the Gauss divergence theorem, equation (22.151) yields the
differential equations of equilibrium

t j i, j = 0 , mji, j + εi jk t jk = 0 . (22.152)
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For elastic deformations of micropolar continuum, the increase of the strain energy is due
to external work done by the surface forces and couples, i.e.,∫

V
Ẇ dV =

∫
S

(Ti u̇i + Mi ϕ̇i ) dS . (22.153)

The strain energy per unit volume is W, and the superposed dot denotes the time derivative.
Incorporating (22.150) and (22.152) and using the divergence theorem gives

Ẇ = ti j γ̇i j + mi j κ̇i j , (22.154)

where

γi j = u j,i − εi jkϕk , κi j = ϕ j,i (22.155)

are the nonsymmetric strain and curvature tensors, respectively. The symmetric and anti-
symmetric parts of γi j are

γ(i j) = ei j = 1
2

(u j,i + ui, j ) ,

γ<i j> = ωi j − ei jkϕk , ωi j = 1
2

(u j,i − ui, j ) .

(22.156)

In general, both ekk and κkk are different from zero. In addition, there is an identity κi j,k =
κkj,i = ϕ j,ik. Assuming that the strain energy is a function of the strain and curvature
tensors, W = W(γi j , κi j ), the differentiation and the comparison with (22.154) establishes
the constitutive relations of micropolar elasticity

ti j = ∂W
∂γi j

, mi j = ∂W
∂κi j

. (22.157)

In the case of material linearity, the strain energy is a quadratic function of the strain
and curvature components

W = 1
2

Ci jkl γi jγkl + 1
2

Ki jkl κi jκkl . (22.158)

The fourth-order tensors of micropolar elastic moduli are Ci jkl and Ki jkl . Since the strain
and curvature tensors are not symmetric, only reciprocal symmetries hold Ci jkl = Ckli j and
Ki jkl = Kkli j . The stresses associated with (22.158) are ti j = Ci jkl γkl and mi j = Ki jkl κkl . In
the case of isotropic micropolar elasticity, we have

Ci jkl = (µ+ µ̄) δik δ jl + (µ− µ̄) δil δ jk + λ δi j δkl ,

Ki jkl = (α + ᾱ) δik δ jl + (α − ᾱ) δil δ jk + β δi j δkl ,
(22.159)

where µ, µ̄, λ and α, ᾱ, β are the Lamé-type constants of isotropic micropolar elasticity.
The symmetric and antisymmetric parts of the stress tensors are then

t(i j) = 2µ ei j + λ ekk δi j , t<i j> = 2µ̄ (ωi j − εi jk ϕk) ,

m(i j) = 2α κ(i j) + β κkk δi j , m<i j> = 2ᾱ κ<i j> .
(22.160)

More generally, suppose that the elastic strain energy of a nonlinear isotropic material
is given by

W = W
(
Iγ , IIγ , ¯IIγ , IIIγ , Iκ , IIκ , ¯IIκ , IIIκ

)
, (22.161)
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where

Iγ = γkk , IIγ = γi j γi j , ¯IIγ = γi j γ j i , IIIγ = 1
6
εi jk εlmn γil γ jm γkn ,

and similarly for the first-, second-, and third-order invariants of the curvature tensor κi j .
It follows that

ti j = c1 δi j + c2 γi j + c̄2 γ j i + c3 εikl ε jmn γkm γln ,

mi j = k1 δi j + k2 κi j + k̄2 κ j i + k3 εikl ε jmn κkm κln ,
(22.162)

with

c1 = ∂W
∂ Iγ

, c2 = 2
∂W
∂ IIγ

, c̄2 = 2
∂W
∂ ¯IIγ

, c3 = 1
2
∂W
∂ IIIγ

,

k1 = ∂W
∂ Iκ

, k2 = 2
∂W
∂ IIκ

, k̄2 = 2
∂W
∂ ¯IIκ

, k3 = 1
2
∂W
∂ IIIκ

.

(22.163)

22.14 Noether’s Theorem of Micropolar Elasticity

The original Noether’s (1918) theorem on invariant variational principles states that there
is a conservation law for the Euler–Lagrange differential equations associated with each
infinitesimal symmetry group of the Lagrangian functional. A comprehensive treatment of
the general and various restricted forms of Noether’s theorem, with a historical outline, can
be found in the book by Olver (1986). Noether’s theorem was applied by Günther (1962),
and Knowles and Sternberg (1972) to derive the conservation integrals of infinitesimal
nonpolar elasticity. When evaluated over a closed surface that does not embrace any
singularity, these integrals give rise to conservation laws Jk = 0, Lk = 0, and M = 0. The law
Jk = 0 applies to anisotropic linear or nonlinear material, the law Lk = 0 to isotropic linear
or nonlinear material, and M = 0 to anisotropic linear material. If the surface embraces a
singularity or inhomogeneity (defect), Eshelby (1951,1956) has shown that the value of Jk

is not equal to zero but represents a configurational or energetic force on the embraced
defect (vacancy, inclusion, dislocation). As discussed in Chapter 21, the path-independent
J integral of plane fracture mechanics has proved to be of great practical importance
in modern fracture mechanics, allowing the prediction of the behavior at the crack tip
from the values of the remote field quantities (Rice, 1968a,1968b). Budiansky and Rice
(1973) interpreted the Lk and M integrals as the energetic forces (potential energy release
rates) conjugate to rotation (by erosion/addition of material) and self-similar expansion
(erosion) of the traction-free void. Freund (1978) used the M conservation law for certain
plane elastic crack problems to calculate the elastic stress intensity factor without solving
the corresponding boundary value problem.

Consider a family of coordinate mappings defined by a vector-valued function

x̂ = f(x, η) , η ∈ (−η∗, η∗) , (22.164)

such that f(x, 0) = x for all position vectors x. Consider also the families of the displacement
and rotation mappings

û = g(u, η) , ϕ̂ = h(ϕ, η) , (22.165)
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such that g(u, 0) = u and h(ϕ, 0) = ϕ for all displacement and rotation vectors u = u(x)
and ϕ = ϕ(x). Finally, introduce a one-parameter family of functionals

Eη =
∫

V̂
W(γ̂i j , κ̂i j ) dV̂ , (22.166)

where

γ̂i j = ∂û j

∂ x̂i
− εi jk ϕ̂k , κ̂i j = ∂ϕ̂ j

∂ x̂i
, (22.167)

and

dV̂ = det
(
∂ x̂ j

∂xi

)
dV = det( f j,i ) dV . (22.168)

When the parameter η is equal to zero, we have

E0 = E =
∫

V
W(γi j , , κi j ) dV , (22.169)

which is the total strain energy within the volume V. The family Eη is, therefore, the family
of functionals induced from the functional E by the families of mappings f, g, and h.

Definition: The functional E is considered to be invariant at (u,ϕ) with respect to f, g,
and h, if

Eη = E , η ∈ (−η∗, η∗) , (22.170)

and infinitesimally invariant if (
∂Eη
∂η

)
η=0

= 0 . (22.171)

Theorem: If u and ϕ satisfy the equilibrium equations

∂

∂xj

(
∂W
∂γ j i

)
= 0 ,

∂

∂xj

(
∂W
∂κ j i

)
+ εi jk t jk = 0 , (22.172)

for all x in V, then the total strain energy E is infinitesimally invariant at (u, ϕ) with respect
to mappings f, g, and h, if and only if

∂

∂xi
(ai W + bj ti j + c j mi j ) = 0 , (22.173)

where

ai = f ′
i (x, 0) ,

bi = g′
i (u, 0) − f ′

k(x, 0)ui,k , (22.174)

ci = h′
i (ϕ, 0) − f ′

k(x, 0)ϕi,k .
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The prime designates the derivative with respect to the parameter η, such that

f ′
i (x, 0) =

[
∂

∂η
fi (x, η)

]
0
. (22.175)

For brevity, the subscript 0 is used to indicate that the quantity within the brackets is
evaluated at η = 0. The condition (22.173) implies the conservation law in the integral
form ∫

S
(ai ni W + Ti bi + Mi ci )dS = 0 , (22.176)

for every surface S bounding a regular subregion of V.

Proof: By differentiating (22.166) with respect to η and then setting η = 0, there follows(
∂Eη
∂η

)
0

=
∫

V

[
W f ′

k,k(x, 0) + ∂W
∂γi j

(
∂γ̂i j

∂η

)
0
+ ∂W
∂κi j

(
∂κ̂i j

∂η

)
0

]
dV . (22.177)

The partial derivatives with respect to η appearing in (22.177) can be evaluated by using
(22.167) and (22.168). This gives(

∂γ̂i j

∂η

)
0

= ∂g′
j (u, 0)

∂uk
uk,i − f ′

k,i (x, 0)u j,k − εi jk h′
k(ϕ, 0) ,

(
∂κ̂i j

∂η

)
0

= ∂h′
j (ϕ, 0)

∂ϕk
κik − f ′

k,i (x, 0)κkj , (22.178)

[
∂(dV̂)
∂η

]
0

= f ′
k,k(x, 0) dV .

The integrand in (22.177) is continuous on V, so that the integral vanishes if and only if
its integrand vanishes at each x. The leading term of the integrand can be eliminated by
using the identity

∂

∂xk
[W f ′

k(x, 0)] = W f ′
k,k(x, 0) + f ′

k(x, 0)
(
∂W
∂γi j

γi j,k + ∂W
∂κi j

κi j,k

)
.

Accordingly, the integrand in (22.177) becomes

∂

∂xk
[W f ′

k(x, 0)] + Di j
∂W
∂γi j

+ di j
∂W
∂κi j

= 0 , (22.179)

where

Di j =
(
∂γ̂i j

∂η

)
0
− f ′

k(x, 0) γi j,k ,

di j =
(
∂κ̂i j

∂η

)
0
− f ′

k(x, 0) κi j,k .

(22.180)

Introducing the vectors bi and ci , defined by (22.174), it can be readily verified that

bj,i = Di j + εi jk ck , c j,i = di j . (22.181)
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Thus, there is an identity

∂

∂xi

(
∂W
∂γi j

bj + ∂W
∂κi j

c j

)
= ∂W
∂γi j

Di j + ∂W
∂κi j

di j

+ ∂W
∂γi j

εi jk ck + ∂

∂xi

(
∂W
∂γi j

)
bj + ∂

∂xi

(
∂W
∂κi j

)
c j .

(22.182)

In view of the equilibrium equations (22.172), the last two terms on the right-hand side of
(22.182) are together equal to −c j ε jkl tkl , so that

∂W
∂γi j

εi jk ck − c j ε jkl tkl = 0 . (22.183)

Consequently, (22.182) reduces to

∂

∂xi
(ti j bj + mi j c j ) = ∂W

∂γi j
Di j + ∂W

∂κi j
di j . (22.184)

Substituting (22.184) into (22.179) gives the desired result of (22.173). The conservation law
(22.176) follows by applying the Gauss divergence theorem. The Knowles and Sternberg’s
(1972) proof for infinitesimal nonpolar elasticity follows by taking W = W(ei j ) and by
setting mi j = 0 and t<i j> = 0.

22.15 Conservation Integrals in Micropolar Elasticity

The strain energy in micropolar elasticity is invariant under the mappings

x̂i = x0
i η + Qi j (η) xj , ûi = Qi j (η) u j , ϕ̂i = Qi j (η)ϕ j , (22.185)

where x0
i is a constant vector, Qi j (η) is an orthogonal tensor in the case of an isotropic

material, and Qi j = δi j (Kronecker delta) in the case of a fully anisotropic material. Thus,
since the invariance necessarily implies an infinitesimal invariance, the corresponding con-
servation laws follow from (22.176). Indeed, we have

f ′
i (x, 0) = x0

i + qi j xj , g′
i (u, 0) = qi j u j , h′

i (ϕ, 0) = qi j ϕ j , (22.186)

and

ai = x0
i + qi j xj ,

bi = qi j u j − (x0
m + qmn xn) ui,m , (22.187)

ci = qi j ϕ j − (x0
m + qmn xn)ϕi,m ,

where qi j = Qi j (0). When this is substituted into (22.176), we obtain

x0
i

∫
S

(W ni − Ti ui, j − Mi ϕi, j ) dS

+ qi j

∫
S

(W ni xj + Ti u j + Mi ϕ j − Tl ul,i x j − Ml ϕl,i x j ) dS = 0 .

For a fully anisotropic material qi j = 0, and by choosing the vector x0
i to be a unit vector

in the direction k (x0
i = δik, for each value of k = 1, 2, 3), the above equation gives

Jk =
∫

S
(Wnk − Tk uk, j − Mk ϕk, j ) dS = 0 . (22.188)
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For an isotropic material qi j are the components of an orthogonal tensor, and we can take
qi j = εi jk for k = 1, 2, 3, so that, in addition to (22.188), there is a conservation law

Lk = εi jk

∫
S

(Wni xj + Ti u j + Mi ϕ j − Tl ul,i x j − Ml ϕl,i x j ) dS = 0 . (22.189)

If the micropolar terms are omitted, the above conservation laws reduce to those of the
classical nonpolar elasticity (Knowles and Sternberg, 1972; Budiansky and Rice, 1973).

Using the energy-momentum tensor of micropolar elastic field,

Pi j = W δi j − tik uk, j − mik ϕk, j , (22.190)

the derived conservation integrals can be recast as

Jk =
∫

S
P jk n j dS , (22.191)

Lk = εi jk

∫
S

(Pli x j + tli u j + mli ϕ j ) nl dS . (22.192)

22.16 Conservation Laws for Plane Strain Micropolar Elasticity

In two-dimensional plane strain problems within (x1, x2) plane, the components ϕ3, M3,
m13, and m23 are generally different from zero, whereas other rotation, moment, and
couple-stress components are equal to zero. By taking S to be a cylindrical surface with its
generatrix parallel to x3 axis and with its two flat bases bounded by a curve C, integration
in (22.191) and (22.192) gives (per unit length in x3 direction)

Jα =
∫

C
Pβα nβ dC , (22.193)

L = εαβ3

∫
S

(Pγα xβ + tγα uβ) nγ dC . (22.194)

The energy-momentum tensor of the plane strain micropolar elasticity is

Pαβ = W δαβ − tαγ uγ,β − mα3 ϕ3,β . (22.195)

The summation in repeated Greek indices is over 1 and 2. The J1 integral from (22.193)
was used by Atkinson and Leppington (1974) to calculate the energy release rate for a
semi-infinite crack within a strip of thickness h. Xia and Hutchinson (1996) also used the
J1 integral to study the elastoplastic crack tip field in a strain-gradient dependent material
described by the deformation-type theory of plasticity (see Chapter 26).

22.17 M Integral of Micropolar Elasticity

In contrast to classical elasticity, there is no M conservation law of micropolar elasticity.
In two-dimensional case this was originally observed by Atkinson and Leppington (1977),
and elaborated in the three-dimensional context by Lubarda and Markenscoff (2003).
Consider a family of scale-changes

x̂i = (1 + η)xi , ûi =
(

1 − η

2

)
ui . (22.196)
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It is easily verified that the total strain energy of a nonpolar elastic material with a quadratic
strain energy representation is infinitesimally invariant under (22.196). This is, however,
not so in the case of micropolar elasticity, because the material length parameter, whose
square is the ratio of the representative micropolar elastic moduli l2 = [K]/[C], remains
unaltered by the transformation (22.196). Indeed, since the angle change corresponding
to (22.196) is

ϕ̂i = 1 − η/2
1 + η ϕi , (22.197)

which follows from a simple dimensional argument (u ∼ xϕ, û ∼ x̂ϕ̂), we have

γ̂i j = 1 − η/2
1 + η γi j , κ̂i j = 1 − η/2

(1 + η)2
κi j . (22.198)

We assume here that η∗ < 1. Thus, for a linear micropolar material with a quadratic strain
energy representation,

Eη = 1
2

(
1 − η

2

)2
∫

V

[
(1 + η) ti j γi j + 1

1 + η mi j κi j

]
dV , (22.199)

so that Eη 
= E0 = E, and (
∂Eη
∂η

)
0

= −
∫

V
mi j κi j dV 
= 0 . (22.200)

This shows that the total strain energy E is not infinitesimally invariant with respect to
the considered family of scale changes. Consequently, there is no M conservation law in
micropolar elasticity. Actually, the value of the M integral is equal to the expression in
(22.200). This follows from

f ′
i (x, 0) = xi , g′

i (u, 0) = −1
2

ui , h′
i (ϕ, 0) = −3

2
ϕi , (22.201)

and

M =
∫

S

(
Wxi ni − 1

2
Ti ui − 3

2
Mi ϕi − Ti x j ui, j − Mi x j ϕi, j

)
dS . (22.202)

Upon using the Gauss divergence theorem, the evaluation of the last integral gives

M = −
∫

V
mi j κi j dV . (22.203)

In the derivation it is noted that

W,k = ti j γi j,k + mi j κi j,k , (22.204)

and that, for the quadratic strain energy representation, the identities hold

ti j γi j,k = ti j,k γi j , mi j κi j,k = mi j,k κi j . (22.205)

In terms of the energy-momentum tensor (22.190), the M integral of (22.202) can be
rewritten as

M =
∫

S

(
Pi j x j − 1

2
ti j u j − 3

2
mi j ϕ j

)
ni dS . (22.206)
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The plane strain counterpart is

M =
∫

C
(Pαβ xβ − mα3 ϕ3) nα dC . (22.207)

If the polar effects are neglected, the couple-stress vanishes and the conservation law
M = 0 of the classical linear isotropic elasticity is obtained. This is

M =
∫

S

(
Wxi ni − 1

2
Ti ui − Ti x j ui, j

)
dS = 0 (22.208)

for three-dimensional nonpolar elasticity, and

M =
∫

C
(Wxα nα − Tα xβ uα,β) dC = 0 (22.209)

for two-dimensional nonpolar elasticity.
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PART 5: THIN FILMS AND INTERFACES

23 Dislocations in Bimaterials

23.1 Introduction

This chapter contains a detailed analysis of straight (edge and screw) dislocations near the
bimaterial interface or near the free surface of a semi-infinite medium. A general elastic
study of straight dislocations and dislocation loops was presented earlier in Chapter 18.
Here, we focus on those aspects of the dislocation analysis that are of importance to study
the strain relaxation in thin films. We first derive the stress fields for straight dislocations
near bimaterial interfaces and then specialize these results to dislocations near the free
surfaces or rigid boundaries. An energy analysis of dislocations beneath the free surface
of a semi-infinite body is also presented.

23.2 Screw Dislocation Near a Bimaterial Interface

Consider a screw dislocation near a bimaterial interface at a distance h from it (Fig. 23.1a).
The Burgers vector of dislocation is in the z direction and has the magnitude bz. The
shear modulus and Poisson’s ratio of the material (1) are µ1 and ν1; those of material
(2) are µ2 and ν2. A complete adherence between the two materials is assumed, so that
the displacement and traction components are continuous across the interface. The only
nonvanishing displacement component is the out-of-plane displacement

u(1)
z = bz

2π
(θ1 − c θ2) , (23.1)

u(2)
z = bz

2π
[(1 + c)θ1 − cπ ] , (23.2)

where the constant c is a nondimensional shear modulus mismatch parameter, de-
fined by

c = µ1 − µ2

µ1 + µ2
. (23.3)

The above displacement field is continuous across the interface, and the slip discontinuity of
amount bz is imposed along the cut from x = h to x → ∞. The two sets of polar coordinates

407
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θ1θ2
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hh
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(x,y)

(1)(2)

S

Figure 23.1. (a) A screw dislocation with the Burgers vector bz at a distance h from the
bimaterial interface. (b) An interface screw dislocation.

shown in Fig. 23.1a are related to the Cartesian coordinates (x, y) by

r2
1 = (x − h)2 + y2 , r2

2 = (x + h)2 + y2 ,

tan θ1 = y
x − h

, tan θ2 = y
x + h

.
(23.4)

The utilized angles have the range

0 ≤ θ1 ≤ 2π , −π ≤ θ2 ≤ π . (23.5)

The stress components associated with the displacement field in (23.1) and (23.2) are
obtained from Hooke’s law as

σ (1)
zx = µ1

∂u(1)
z

∂x
= −µ1bz

2π

(
y

r2
1

− c
y

r2
2

)
, (23.6)

σ (1)
zy = µ1

∂u(1)
z

∂y
= µ1bz

2π

(
x − h

r2
1

− c
x + h

r2
2

)
, (23.7)

and

σ (2)
zx = µ2

∂u(2)
z

∂x
= −µ2bz

2π
(1 + c)

y

r2
1

, (23.8)

σ (2)
zy = µ2

∂u(2)
z

∂y
= µ2bz

2π
(1 + c)

x − h

r2
1

. (23.9)

The force exerted by the interface on the dislocation is

Fx = bzσ
(1)
zy (h, 0) . (23.10)

Excluding the divergent part of the stress at the core center of the dislocation, this gives

Fx = −c
µ1b2

z

4πh
. (23.11)

Depending on the sign of c, the dislocation may be attracted or repelled by the interface.
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23.2.1 Interface Screw Dislocation

For an interface screw dislocation (Fig. 23.1b) we take h = 0, r1 = r2 = r , θ1 = θ , and

θ2 =
{
θ , y ≥ 0+,

θ − 2π , y ≤ 0−,
(23.12)

with 0 ≤ θ ≤ 2π . The displacement field is

u(1)
z = bz

2π
(1 − c)θ , y ≥ 0+, (23.13)

u(1)
z = bz

2π
[(1 − c)θ + 2πc] , y ≤ 0−, (23.14)

u(2)
z = bz

2π
[(1 + c)θ − cπ ] . (23.15)

The corresponding stresses are

σ (1)
zx = −µ1bz

2π
(1 − c)y

r2
, (23.16)

σ (1)
zy = µ1bz

2π
(1 − c)x

r2
, (23.17)

and

σ (2)
zx = −µ2bz

2π
(1 + c)y

r2
, (23.18)

σ (2)
zy = µ2bz

2π
(1 + c)x

r2
. (23.19)

23.2.2 Screw Dislocation in a Homogeneous Medium

If two materials have the same shear modulus (e.g., homogeneous medium), the parameter
c = 0 and, with h = 0, the results reduce to

uz = bz

2π
θ , (23.20)

σzx = −µbz

2π
y
r2
, (23.21)

σzy = µbz

2π
x
r2
. (23.22)

23.2.3 Screw Dislocation Near a Free Surface

If a dislocation is near the free surface of a semi-infinite homogeneous medium, we take
µ2 = 0 and c = 1. The displacement and stress fields in this case are

uz = bz

2π
(θ1 − θ2) , (23.23)
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σzx = −µbz

2π

(
y

r2
1

− y

r2
2

)
, (23.24)

σzy = µbz

2π

(
x − h

r2
1

− x + h

r2
2

)
. (23.25)

The displacement discontinuity is imposed along the cut from x = 0 to x = h. The fields
are recognized to be the superposition of two infinite medium fields, one for a dislocation
at the point x = h, y = 0 and the other for an opposite (image) dislocation at the point
x = −h, y = 0.

The force exerted by the free surface on the dislocation is

Fx = −µ1b2
z

4πh
. (23.26)

The dislocation is attracted by the free surface.

23.2.4 Screw Dislocation Near a Rigid Boundary

If the second material is rigid, we take µ2 → ∞ and c = −1. The displacement and stress
fields are

uz = bz

2π
(θ1 + θ2) − bz

2
, (23.27)

σzx = −µbz

2π

(
y

r2
1

+ y

r2
2

)
, (23.28)

σzy = µbz

2π

(
x − h

r2
1

+ x + h

r2
2

)
. (23.29)

The displacement vanishes along the rigid boundary, and the discontinuity is imposed
along the cut from x = h to x → ∞. The fields are recognized to be the superposition of
two infinite medium fields, one for a dislocation at the point x = h, y = 0 and the other for
an alike dislocation at the point x = −h, y = 0.

The force exerted by the rigid boundary on the dislocation is

Fx = µ1b2
z

4πh
. (23.30)

The dislocation is repelled by the rigid boundary.

23.3 Edge Dislocation (bx) Near a Bimaterial Interface

Two edge dislocations near the bimaterial interface, one with the Burgers vector bx and
the other with the Burgers vector by, are shown in Figs. 23.2a and b. Consider first the
stress field for an edge dislocation with the Burgers vector bx. The corresponding Airy
stress functions are (Dundurs, 1969)

 (1) = − k1bx [r1 ln r1 sin θ1 + (a − 1)r2 ln r2 sin θ2

− qh
(

sin 2θ2 − 2h
sin θ2

r2

)
+ aβr2θ2 cos θ2

]
,

(23.31)

 (2) = −ak1bx[r1 ln r1 sin θ1 − β(r1θ1 cos θ1 + 2hθ1)] . (23.32)
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θ1θ2

x

y

r2
r1

hh

(x,y)

(1)(2)

θ1θ2

x

y

r2
r1

hh

(x,y)

(1)(2)

(a) (b)

Figure 23.2. (a) An edge dislocation with the Burgers vector bx at a distance h from the
bimaterial interface. (b) The same for an edge dislocation with the Burgers vector by.

The parameters are introduced

k1 = µ1

2π(1 − ν1)
, a = 1 + α

1 − β2
, q = α − β

1 + β , (23.33)

and

α = (1 − ν1)µ2 − (1 − ν2)µ1

(1 − ν1)µ2 + (1 − ν2)µ1
, 2β = (1 − 2ν1)µ2 − (1 − 2ν2)µ1

(1 − ν1)µ2 + (1 − ν2)µ1
. (23.34)

The Airy stress function yields the stress components according to

σxx = ∂2 

∂y2
, σyy = ∂2 

∂x2
, σxy = − ∂2 

∂x∂y
. (23.35)

The polar coordinates counterparts are

σrr = 1
r
∂ 

∂r
+ 1

r2

∂2 

∂θ2
, σθθ = ∂2 

∂r2
, σrθ = − ∂

∂r

(
1
r
∂ 

∂θ

)
. (23.36)

The Tables 23.1–23.5 (reproduced from the results listed by Dundurs and Mura, 1964)
give the displacement and stress components corresponding to some typical forms of the
Airy stress function. In these tables, ϑ is the Kolosov constant defined, as in (8.136), by

ϑ =

⎧⎪⎨
⎪⎩

3 − 4ν , plane strain ,
3 − ν
1 + ν , plane stress .

(23.37)

By using the results from Table 23.4, we obtain

σ (1)
xx = − k1bx y

[
3(x − h)2 + y2

r4
1

+ q
3(x + h)2 + y2

r4
2

+ 4qhx
3(x + h)2 − y2

r6
2

+ aβ
1
r2

2

]
,

(23.38)
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Table 23.1. Rectangular displacement components

 2Gux 2Guy

r ln r cos θ 1
2 (ϑ − 1) ln r − x2

r2
1
2 (ϑ + 1)θ − xy

r2

r ln r sin θ − 1
2 (ϑ + 1)θ − xy

r2
1
2 (ϑ − 1) ln r + x2

r2

rθ cos θ 1
2 (ϑ − 1)θ + xy

r2 − 1
2 (ϑ + 1) ln r − x2

r2

rθ sin θ 1
2 (ϑ + 1) ln r − x2

r2
1
2 (ϑ − 1)θ − xy

r2

cos θ

r

1

r2 + 2x2

r4

2xy

r4

sin θ

r

2xy

r4

1

r2 − 2x2

r4

cos 2θ (ϑ − 3)
x

r2 + 4x3

r4 −(ϑ + 1)
y

r2 + 4x2 y

r4

sin 2θ (ϑ − 1)
y

r2 + 4x2 y

r4 (ϑ + 3)
x

r2 − 4x3

r4

θ
y

r2 − x

r2

ln r − x

r2 − y

r2

Table 23.2. Radial displacement component

 2µur

r ln r cos θ 1
2 [(ϑ + 1)θ sin θ + (ϑ − 1) ln r cos θ − cos θ ]

r ln r sin θ 1
2 [−(ϑ + 1)θ cos θ + (ϑ − 1) ln r sin θ − sin θ ]

rθ cos θ 1
2 [(ϑ − 1)θ cos θ − (ϑ + 1) ln r sin θ + sin θ ]

rθ sin θ 1
2 [(ϑ − 1)θ sin θ + (ϑ + 1) ln r cos θ − cos θ ]

cos θ

r

cos θ

r2

sin θ

r

sin θ

r2

cos 2θ (ϑ + 1)
cos 2θ

r

sin 2θ (ϑ + 1)
sin 2θ

r

θ 0

ln r − 1

r
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Table 23.3. Circumferential displacement component

 2µuθ

r ln r cos θ 1
2 [(ϑ + 1)θ cos θ − (ϑ − 1) ln r sin θ − sin θ ]

r ln r sin θ 1
2 [(ϑ + 1)θ sin θ + (ϑ − 1) ln r cos θ + cos θ]

rθ cos θ 1
2 [−(ϑ − 1)θ sin θ − (ϑ + 1) ln r cos θ − cos θ ]

rθ sin θ 1
2 [(ϑ − 1)θ cos θ − (ϑ + 1) ln r sin θ − sin θ ]

cos θ

r

sin θ

r2

sin θ

r
− cos θ

r2

cos 2θ −(ϑ − 1)
sin 2θ

r

sin 2θ (ϑ − 1)
cos 2θ

r

θ − 1

r
ln r 0

Table 23.4. Rectangular stress components

 σxx σyy σxy

r ln r cos θ − x

r2 + 2x3

r4

3x

r2 − 2x3

r4 − y

r2 + 2x2 y

r4

r ln r sin θ
y

r2 + 2x2 y

r4

y

r2 − 2x2 y

r4

x

r2 − 2x3

r4

rθ cos θ − 2x2 y

r4 − 2y

r2 + 2x2 y

r4 − 2x

r2 + 2x3

r4

rθ sin θ
2x3

r4

2x

r2 − 2x3

r4

2x2 y

r4

cos θ

r

6x

r4 − 8x3

r6
− 6x

r4 + 8x3

r6

2y

r4 − 8x2 y

r6

sin θ

r

2y

r4 − 8x2 y

r6
− 2y

r4 + 8x2 y

r6
− 6x

r4 + 8x3

r6

cos 2θ
12x2

r4 − 16x4

r6

4

r2 − 20x2

r4 + 16x4

r6

8xy

r4 − 16x3 y

r6

sin 2θ
4xy

r4 − 16x3 y

r6
− 12xy

r4 + 16x3 y

r6

2

r2 − 16x2

r4 + 16x4

r6

θ − 2xy

r4

2xy

r4 − 1

r2 + 2x2

r4

ln r − 1

r2 + 2x2

r4

1

r2 − 2x2

r4

2xy

r4
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Table 23.5. Polar stress components

 σrr σθθ σrθ

r ln r cos θ
cos θ

r

cos θ

r

sin θ

r

r ln r sin θ
sin θ

r

sin θ

r
− cos θ

r

rθ cos θ −2
sin θ

r
0 0

rθ sin θ 2
cos θ

r
0 0

cos θ

r
−2

cos θ

r3 2
cos θ

r3 −2
sin θ

r3

sin θ

r
−2

sin θ

r3 2
sin θ

r3 2
cos θ

r3

cos 2θ −4
cos 2θ

r2 0 −2
sin 2θ

r2

sin 2θ −4
sin 2θ

r2 0 2
cos 2θ

r2

θ 0 0
1

r2

ln r
1

r2 − 1

r2 0

σ (1)
yy = k1bx y

[
(x − h)2 − y2

r4
1

+ q
(x + h)2 − y2

r4
2

+ aβ
1
r2

2

− 4qh
2(x + h)3 − 3x(x + h)2 + 2(x + h)y2 + xy2

r6
2

]
,

(23.39)

σ (1)
xy = k1bx

{
(x − h)[(x − h)2 − y2]

r4
1

+ q
(x + h)[(x + h)2 − y2]

r4
2

− 2qh
(x + h)4 − 2x(x + h)3 + 6x(x + h)y2 − y4

r6
2

+ aβ
x + h

r2
2

}
,

(23.40)

and

σ (2)
xx = −ak1bx y

[
3(x − h)2 + y2

r4
1

+ 2β
x2 − h2

r4
1

]
, (23.41)

σ (2)
yy = ak1bx y

[
(x − h)2 − y2

r4
1

+ 2β
2h(x − h) − y2

r4
1

]
, (23.42)

σ (2)
xy = ak1bx

{
(x − h)[(x − h)2 − y2]

r4
1

+ 2β
h(x − h)2 − xy2

r4
1

]
. (23.43)

The force exerted by the interface on the dislocation is obtained from

Fx = bxσ
(1)
xy (h, 0) , (23.44)
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Figure 23.3. (a) An interface dislocation with the Burgers vector bx , and (b) with the
Burgers vector by.

by excluding the divergent part of the stress at the core center of the dislocation. This gives

Fx = −(1 − a)
k1b2

x

2h
. (23.45)

Depending on the value of a, the dislocation may be attracted or repelled by the interface.

23.3.1 Interface Edge Dislocation

The Airy stress functions for an interface dislocation with the Burgers vector bx (Fig. 23.3a)
are

 (1) = −ak1bx[r ln r sin θ + βrθ cos θ ] , (23.46)

 (2) = −ak1bx[r ln r sin θ − βrθ cos θ ] . (23.47)

The rectangular stress components in the material (1) are

σ (1)
xx = −ak1bx y

(3 − 2β)x2 + y2

(x2 + y2)2
, (23.48)

σ (1)
yy = ak1bx y

x2 − (1 − 2β)y2

(x2 + y2)2
, (23.49)

σ (1)
xy = ak1bxx

x2 − (1 − 2β)y2

(x2 + y2)2
. (23.50)

The same expressions apply for the material (2), provided that β is replaced with −β. The
expressions have simple counterparts in polar coordinates. The radial stresses are

σ (1)
rr = −ak1bx(1 − 2β)

sin θ
r
, (23.51)

σ (2)
rr = −ak1bx(1 + 2β)

sin θ
r
. (23.52)
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The hoop and shear stresses in both media are

σθθ = −ak1bx
sin θ

r
, σrθ = ak1bx

cos θ
r

. (23.53)

These expressions can be deduced by using the results listed in Tables 23.4 and 23.5.
The radial displacements are

u(1)
r = − ak1bx

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
bx

sin θ

− [2(1 − ν1) − β(1 − 2ν1)]θ cos θ − µ1

2µ2
(1 + β) sin θ

}
, y ≥ 0+ ,

(23.54)

u(1)
r = bx cos θ − ak1bx

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
bx

sin θ

− [2(1 − ν1) − β(1 − 2ν1)](θ − 2π) cos θ − µ1

2µ2
(1 + β) sin θ

}
, y ≤ 0− ,

(23.55)

u(2)
r = − ak1bx

2µ2

{
[1 − 2ν2 + 2β(1 − ν2)] ln

r
bx

sin θ

− [2(1 − ν2) + β(1 − 2ν2)]θ cos θ − 1
2

(1 + β) sin θ
}
.

(23.56)

These expressions satisfy the continuity across the interface and give a slip discontinuity
across y = 0, x > 0. The circumferential displacements are

u(1)
θ = − ak1bx

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
bx

cos θ

+ [2(1 − ν1) − β(1 − 2ν1)]θ sin θ

+ [1 − β − µ1

2µ2
(1 + β)] cos θ

}
, y ≥ 0+ ,

(23.57)

u(1)
θ = − ak1bx

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
bx

cos θ

+ [2(1 − ν1) − β(1 − 2ν1)]θ sin θ − C′
2 sin θ

+ [1 − β − µ1

2µ2
(1 + β)] cos θ

}
, y ≤ 0− ,

(23.58)

u(2)
θ = − ak1bx

2µ2

{
[1 − 2ν2 + 2β(1 − ν2)] ln

r
bx

cos θ

+ [2(1 − ν2) + β(1 − 2ν2)]θ sin θ − C′′
2 sin θ + 1

2
(1 + β) cos θ

}
.

(23.59)

The continuity conditions across the interface specify the constants C′
2 and C′′

2 as

C′
2 = π{2(1 − ν1) − β(1 − 2ν1) − µ1

µ2
[2(1 − ν2) + β(1 − 2ν2)]

}
,

C′′
2 = π

2

{
2(1 − ν2) + β(1 − 2ν2) − µ2

µ1
[2(1 − ν1) − β(1 − 2ν1)]

}
.

(23.60)
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It is recalled that the rigid body displacements in polar coordinates are

ur = C1 cos θ + C2 sin θ , uθ = −C1 sin θ + C2 cos θ + C3r , (23.61)

with the rectangular counterparts ux = C1 + C3 y and uy = C2 − C3x.

23.3.2 Edge Dislocation in an Infinite Medium

If two materials have the same elastic properties, the introduced parameters are α = β =
q = 0 and a = 1. Taking h = 0, the Airy stress function becomes

 = −kbxr ln r sin θ , k = µ

2π(1 − ν)
, (23.62)

with the corresponding stresses

σxx = −kbx y
3x2 + y2

(x2 + y2)2
, (23.63)

σyy = kbx y
x2 − y2

(x2 + y2)2
, (23.64)

σxy = kbxx
x2 − y2

(x2 + y2)2
. (23.65)

The displacements are

ux = bx

2π

[
tan−1 y

x
+ 1

2(1 − ν)
xy

x2 + y2

]
, (23.66)

uy = − bx

2π

[
1 − 2ν

4(1 − ν)
ln

x2 + y2

b2
x

+ 1
4(1 − ν)

x2 − y2

x2 + y2

]
. (23.67)

The counterparts in polar coordinates are

σrr = σθθ = −kbx
sin θ

r
, σrθ = kbx

cos θ
r

, (23.68)

with the displacements

ur = −kbx

2µ

[
(1 − 2ν) ln

r
bx

sin θ − 2(1 − ν)θ cos θ − 1
2

sin θ
]
, (23.69)

uθ = −kbx

2µ

[
(1 − 2ν) ln

r
bx

cos θ + 2(1 − ν)θ sin θ + 1
2

cos θ
]
. (23.70)

23.3.3 Edge Dislocation Near a Free Surface

For an edge dislocation near a free surface (Fig. 23.4a) we take µ2 = 0, so that α = q = −1
and a = 0. The Airy stress function becomes

 = − kbx [r1 ln r1 sin θ1 − r2 ln r2 sin θ2

+ h
(

sin 2θ2 − 2h
sin θ2

r2

)]
.

(23.71)
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θ1

θ2

x

y

r2

r1

h

(x,y)

h

θ1

θ2

x

y

r2

r1

h

(x,y)

h

(a) (b)

Figure 23.4. (a) A dislocation with the Burgers vector bx at a distance h from the free
surface. (b) Same for a dislocation with the Burgers vector by.

The corresponding stresses are

σxx = −kbx y
[

3(x − h)2 + y2

r4
1

− 3(x + h)2 + y2

r4
2

− 4hx
3(x + h)2 − y2

r6
2

]
, (23.72)

σyy = kbx y
[

(x − h)2 − y2

r4
1

− (x + h)2 − y2

r4
2

+ 4h
2(x + h)3 − 3x(x + h)2 + 2(x + h)y2 + xy2

r6
2

]
,

(23.73)

σxy = kbx

{
(x − h)[(x − h)2 − y2]

r4
1

− (x + h)[(x + h)2 − y2]
r4

2

+ 2h
(x + h)4 − 2x(x + h)3 + 6x(x + h)y2 − y4

r6
2

}
.

(23.74)

These expressions were originally derived by Head (1953a,1953b).
The force exerted by the free surface on the dislocation is

Fx = −k1b2
x

2h
, (23.75)

which is an attraction toward the free surface.

23.3.4 Edge Dislocation Near a Rigid Boundary

In this case we take µ2 → ∞, and with µ1 = µ and ν1 = ν, we have

α = − 1 , 2β = 1 − 2ν
1 − ν , q = 1

3 − 4ν
,

a =8(1 − ν)2

3 − 4ν
, aβ = 4(1 − ν)(1 − 2ν)

3 − 4ν
.

(23.76)

The Airy stress function is

 = −kbx

[
r1 ln r1 sin θ1 + (a − 1)r2 ln r2 sin θ2

− qh
(

sin 2θ2 − 2h
sin θ2

r2

)
+ aβr2θ2 cos θ2

]
.

(23.77)
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The corresponding stresses are

σxx = −kbx y
[

3(x − h)2 + y2

r4
1

+ q
3(x + h)2 + y2

r4
2

+ 4qhx
3(x + h)2 − y2

r6
2

+ aβ
1
r2

2

]
,

(23.78)

σyy = kbx y
[

(x − h)2 − y2

r4
1

+ q
(x + h)2 − y2

r4
2

+ aβ
1
r2

2

− 4qh
2(x + h)3 − 3x(x + h)2 + 2(x + h)y2 + xy2

r6
2

]
,

(23.79)

σxy = kbx

{
(x − h)[(x − h)2 − y2]

r4
1

+ q
(x + h)[(x + h)2 − y2]

r4
2

− 2qh
(x + h)4 − 2x(x + h)3 + 6x(x + h)y2 − y4

r6
2

+ aβ
x + h

r2
2

}
.

(23.80)

23.4 Edge Dislocation (by) Near a Bimaterial Interface

Consider next an edge dislocation with the Burgers vector by (Fig. 23.2b). The correspond-
ing Airy stress functions are

 (1) = k1by [r1 ln r1 cos θ1 + (a − 1)r2 ln r2 cos θ2

− qh
(

2 ln r2 − cos 2θ2 + 2h
cos θ2

r2

)
− aβr2θ2 sin θ2

]
,

(23.81)

 (2) = ak1by[r1 ln r1 cos θ1 + β(2h ln r1 + r1θ1 sin θ1)] . (23.82)

This gives

σ (1)
xx = k1by

{
(x − h)[(x − h)2 − y2]

r4
1

+ q
(x + h)[(x + h)2 − y2]

r4
2

− 2qh
(x + h)4 + 2x(x + h)3 − 6x(x + h)y2 − y4

r6
2

− aβ
x + h

r2
2

}
,

(23.83)

σ (1)
yy = k1by

{
(x − h)[(x − h)2 + 3y2]

r4
1

+ q
(x + h)[(x + h)2 + 3y2]

r4
2

− 2qh
(x + h)4 − 2x(x + h)3 + 6x(x + h)y2 − y4

r6
2

+ aβ
x + h

r2
2

}
,

(23.84)

σ (1)
xy = k1by

{
y[(x − h)2 − y2]

r4
1

+ q
y[(x + h)2 − y2]

r4
2

− 4qhxy
3(x + h)2 − y2

r6
2

− aβ
y

r2
2

}
,

(23.85)
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and

σ (2)
xx = ak1by

[
(x − h)[(x − h)2 − y2]

r4
1

+ 2β
x(x − h)2 − hy2

r4
1

]
, (23.86)

σ (2)
yy = ak1by

[
(x − h)[(x − h)2 + 3y2]

r4
1

− 2β
h(x − h)2 − xy2

r4
1

]
, (23.87)

σ (2)
xy = ak1by

[
y[(x − h)2 − y2]

r4
1

+ 2βy
x2 − h2

r4
1

]
. (23.88)

23.4.1 Interface Edge Dislocation

The Airy stress functions in this case (Fig. 23.3b) are

 (1) = ak1by[r ln r cos θ − βrθ sin θ ] , (23.89)

 (2) = ak1by[r ln r cos θ + βrθ sin θ ] . (23.90)

The stress components in the material (1) are

σ (1)
xx = ak1byx

(1 − 2β)x2 − y2

(x2 + y2)2
, (23.91)

σ (1)
yy = ak1byx

x2 + (3 − 2β)y2

(x2 + y2)2
, (23.92)

σ (1)
xy = ak1by y

(1 − 2β)x2 − y2

(x2 + y2)2
. (23.93)

The same expressions hold in material (2), provided that β is replaced with −β. The
expressions have simple counterparts in polar coordinates. The radial stresses are

σ (1)
rr = ak1by(1 − 2β)

cos θ
r

, (23.94)

σ (2)
rr = ak1by(1 + 2β)

cos θ
r

. (23.95)

The hoop and shear stresses in both media are given by

σθθ = ak1by
cos θ

r
, σrθ = ak1by

sin θ
r
. (23.96)

The circumferential displacements are

u(1)
θ = − ak1by

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
by

sin θ

− [2(1 − ν1) − β(1 − 2ν1)]θ cos θ

+ µ1

2µ2
(1 + β) sin θ

}
, y ≥ 0+ ,

(23.97)
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23.4. Edge Dislocation (by) Near an Interface 421

u(1)
θ = by cos θ − ak1by

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
by

sin θ

− [2(1 − ν1) − β(1 − 2ν1)](θ − 2π) cos θ

+ µ1

2µ2
(1 + β) sin θ

}
, y ≤ 0− ,

(23.98)

u(2)
θ = − ak1by

2µ2

{
[1 − 2ν2 + 2β(1 − ν2)] ln

r
by

sin θ

− [2(1 − ν2) + β(1 − 2ν2)]θ cos θ

+ 1
2

(1 + β) sin θ
}
.

(23.99)

These expressions satisfy the continuity across the interface and give a displacement dis-
continuity of amount by across y = 0, x > 0.

The radial displacements are

u(1)
r = ak1by

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
by

cos θ

+ [2(1 − ν1) − β(1 − 2ν1)]θ sin θ

− [1 − β − µ1

2µ2
(1 + β)] cos θ

}
, y ≥ 0+ ,

(23.100)

u(1)
r = ak1by

2µ1

{
[1 − 2ν1 − 2β(1 − ν1)] ln

r
by

cos θ

+ [2(1 − ν1) − β(1 − 2ν1)]θ sin θ − C′
2 sin θ

− [1 − β − µ1

2µ2
(1 + β)] cos θ

}
, y ≤ 0− ,

(23.101)

u(2)
r = ak1by

2µ2

{
[1 − 2ν2 + 2β(1 − ν2)] ln

r
by

cos θ

+ [2(1 − ν2) + β(1 − 2ν2)]θ sin θ − C′′
2 sin θ

− 1
2

(1 + β) cos θ
}
.

(23.102)

The continuity conditions across the interface specify the constants C′
2 and C′′

2 , as given by
(23.60).

The force exerted by the interface on the dislocation is obtained from

Fx = byσ
(1)
yy (h, 0) , (23.103)

by excluding the divergent part of the stress at the core center of the dislocation. This gives

Fx = −(1 − a)
k1b2

y

2h
. (23.104)

Depending on the value of a, the dislocation may be attracted or repelled by the interface.
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23.4.2 Edge Dislocation in an Infinite Medium

The Airy stress function is

 = kbyr ln r cos θ , (23.105)

with the corresponding stress components

σxx = kbyx
x2 − y2

(x2 + y2)2
, (23.106)

σyy = kbyx
x2 + 3y2

(x2 + y2)2
, (23.107)

σxy = kby y
x2 − y2

(x2 + y2)2
. (23.108)

The displacements are

ux = by

2π

[
1 − 2ν

4(1 − ν)
ln

x2 + y2

b2
y

− 1
4(1 − ν)

x2 − y2

x2 + y2

]
, (23.109)

uy = by

2π

[
tan−1 y

x
− 1

2(1 − ν)
xy

x2 + y2

]
. (23.110)

The counterparts in polar coordinates are

σrr = σθθ = kby
cos θ

r
, σrθ = kby

sin θ
r
, (23.111)

with the displacements

ur = by

2π

[
1 − 2ν

2(1 − ν)
ln

r
by

cos θ + θ sin θ − 1
4(1 − ν)

cos θ
]
, (23.112)

uθ = − by

2π

[
1 − 2ν

2(1 − ν)
ln

r
by

sin θ − θ cos θ + 1
4(1 − ν)

sin θ
]
. (23.113)

23.4.3 Edge Dislocation Near a Free Surface

In this case (Fig. 23.4b) we take µ2 = 0, so that α = q = −1 and a = 0. The Airy stress
function becomes

 = kby [r1 ln r1 cos θ1 − r2 ln r2 cos θ2

+ h
(

2 ln r2 − cos 2θ2 + 2h
cos θ2

r2

)]
.

(23.114)

The stresses are

σxx = kby

{
(x − h)[(x − h)2 − y2]

r4
1

− (x + h)[(x + h)2 − y2]
r4

2

+ 2h
(x + h)4 + 2x(x + h)3 − 6x(x + h)y2 − y4

r6
2

]
,

(23.115)
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σyy = kby

{
(x − h)[(x − h)2 + 3y2]

r4
1

− (x + h)[(x + h)2 + 3y2]
r4

2

+ 2h
(x + h)4 − 2x(x + h)3 + 6x(x + h)y2 − y4

r6
2

]
,

(23.116)

σxy = kby

{
y[(x − h)2 − y2]

r4
1

− y[(x + h)2 − y2]
r4

2

+ 4hxy
3(x + h)2 − y2

r6
2

]
.

(23.117)

The force exerted by the free surface on the dislocation is

Fx = −k1b2
y

2h
. (23.118)

The dislocation is attracted by the free surface.

23.4.4 Edge Dislocation Near a Rigid Boundary

In this case we take µ2 → ∞, which implies (23.76). The Airy stress function is

 = kby [r1 ln r1 cos θ1 + (a − 1)r2 ln r2 cos θ2

− qh
(

2 ln r2 − cos 2θ2 + 2h
cos θ2

r2

)
− aβr2θ2 sin θ2

]
.

(23.119)

The corresponding stresses are

σxx = kby

{
(x − h)[(x − h)2 − y2]

r4
1

+ q
(x + h)[(x + h)2 − y2]

r4
2

− 2qh
(x + h)4 + 2x(x + h)3 − 6x(x + h)y2 − y4

r6
2

− aβ
x + h

r2
2

]
,

(23.120)

σyy = kby

{
(x − h)[(x − h)2 + 3y2]

r4
1

+ q
(x + h)[(x + h)2 + 3y2]

r4
2

− 2qh
(x + h)4 − 2x(x + h)3 + 6x(x + h)y2 − y4

r6
2

+ aβ
x + h

r2
2

]
,

(23.121)

σxy = kby

{
y[(x − h)2 − y2]

r4
1

+ q
y[(x + h)2 − y2]

r4
2

− 4qhxy
3(x + h)2 − y2

r6
2

− aβ
y

r2
2

]
.

(23.122)

23.5 Strain Energy of a Dislocation Near a Bimaterial Interface

The elastic strain energy per unit dislocation length within a large cylinder of radius R>> h
around the core of the dislocation, excluding the core itself, can be calculated by using the
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ρ
h

R

(1)(2)

Figure 23.5. The dislocation core surface of radius ρ, the remote
contour of radius R, and the cut surface from ρ to R used to create
a dislocation near the bimaterial interface.

divergence theorem. The energy consists of the work done by the traction on the slip
discontinuity along the surface of the cut used to create a dislocation, and the work done
by tractions on the corresponding displacements along the surface of the dislocation core
and the surface of the remote contour (Fig. 23.5). Thus, for a dislocation with the Burgers
vector bx,

E = 1
2

bx

∫ R

h+ρ
σ (1)

xy (x, 0)dx + ER + Eρ , (23.123)

where ρ is a selected small radius of the dislocation core. The shear stress σ (1)
xy (x, 0) is

obtained from (23.40) as

σ (1)
xy (x, 0) = k1bx

[
1

x − h
+ (q + aβ)

1
x + h

+ 2qh
x − h

(x + h)3

]
. (23.124)

The substitution into (23.123) and integration gives

E = 1
2

k1b2
x

(
ln

2h
ρ

+ a ln
R
2h

+ q
2

)
+ ER + Eρ . (23.125)

For a sufficiently small radius (ρ << h), the core energy Eρ can be calculated by replacing
the dislocation core with a cylindrical hole, whose surface is subjected to tractions of an
isolated dislocation in an infinite homogeneous medium, along with the corresponding
displacements. The work of these is

Eρ = −1
2

∫ 2π

0
(σrr ur + σrθuθ )ρdθ . (23.126)

With the displacement discontinuity imposed along the x axis, we have, from (23.69) and
(23.70),

ur = −k1bx

2µ1

[
(1 − 2ν1) ln

r
bx

sin θ − 2(1 − ν1)θ cos θ − 1
2

sin θ
]
, (23.127)

uθ = −k1bx

2µ1

[
(1 − 2ν1) ln

r
bx

cos θ + 2(1 − ν1)θ sin θ + 1
2

cos θ
]
. (23.128)
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23.5. Strain Energy of Dislocation Near an Interface 425

The stress components (independently of the cut) are

σrr = σθθ = −k1bx
sin θ

r
, σrθ = k1bx

cos θ
r

. (23.129)

The substitution into (23.126) and integration gives

Eρ = −1
8

k1b2
x

1 − 2ν1

1 − ν1
. (23.130)

The energy contribution ER can be calculated by using the stress and displacement
fields of an interfacial dislocation, because the distance h between the dislocation and the
interface is not observed at a far remote contour R. These fields are given by (23.51)–(23.53)
for the stresses, and (23.54)–(23.59) for the displacements. The substitution into

ER = 1
2

∫ 2π

0
(σrr ur + σrθuθ )Rdθ (23.131)

gives, upon integration,

ER = 1
4

ak1b2
x(1 − 2β) + 1

8
(ak1bx)2

[
β

C′
2

µ1
− π

(
1 − β
µ1

+ 1 + β
µ2

)]
. (23.132)

If β = 0 (homogeneous medium), the above reduces to

ER = 1
8

kb2
x

1 − 2ν
1 − ν = −Eρ . (23.133)

The strain energy for a dislocation with the Burgers vector by can be calculated from

E = 1
2

by

∫ R

h+ρ
σ (1)

yy (x, 0)dx + ER + Eρ , (23.134)

with appropriate values of ER and Eρ . The normal stress σ (1)
yy (x, 0) is obtained from (23.84)

as

σ (1)
yy (x, 0) = k1by

[
1

x − h
+ (q + aβ)

1
x + h

+ 2qh
x − h

(x + h)3

]
. (23.135)

The substitution into (23.134) and integration gives

E = 1
2

k1b2
y

(
ln

2h
ρ

+ a ln
R
2h

+ q
2

)
+ ER + Eρ . (23.136)

By an analogous analysis, as for the misfit dislocation with the Burgers vector bx, it
follows that

ER = − 1
4

ak1b2
y − π

4
(ak1by)2

[(
1
µ1

+ 1
µ2

)
(1 + 2β2)

−β
(

3 + A1

µ1
− 3 − 3A2

µ2

)]
,

(23.137)

where

A1 = 2(1 − ν1) − β(1 − 2ν1) , A2 = 2(1 − ν2) + β(1 − 2ν2) . (23.138)



P1: FBQ

0521859794Xc23.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:45

426 23. Dislocations in Bimaterials

x

y

h

O

Figure 23.6. A general straight dislocation with the edge compo-
nents bx and by, and the screw component bz, at a distance h from
the free surface.

If β = 0 (homogeneous medium), the above reduces to

ER = −1
8

kb2
y

3 − 2ν
1 − ν . (23.139)

This is just the negative of the core energy

Eρ = 1
8

kb2
y

3 − 2ν
1 − ν , (23.140)

so that ER + Eρ = 0 in a homogeneous medium (see also Hirth and Lothe, 1982).
The elastic strain energy for a screw dislocation within a large cylinder around the

dislocation is

E = 1
2

bz

∫ R

h+ρ
σ (1)

zy (x, 0)dx . (23.141)

There is no contribution from the tractions at the remote contour of radius R, since σzr = 0
for an interface screw dislocation, and no work is done on the uz displacement. Similarly,
there is no contribution from the tractions over the core surface for a dislocation in an
infinite homogeneous medium. Since the shear stress σ (1)

zy (x, 0) is obtained from (23.7) as

σ (1)
zy (x, 0) = µ1bz

2π

(
1

x − h
− c

1
x + h

)
, (23.142)

substitution into (23.141) and integration gives

E = µ1b2
z

4π

[
ln

2h
ρ

+ (1 − c) ln
R
2h

]
. (23.143)

23.5.1 Strain Energy of a Dislocation Near a Free Surface

For the analysis of thin film dislocations, a particularly important special case of the previ-
ous results is the case of a dislocation near the free surface in a semi-infinite body. In this
case the parameters a = 0, c = 1, and from (23.132) and (23.137) it follows that ER = 0.
This was expected on physical grounds because for a dislocation in a semi-infinite medium
the stresses decay with the distance r from the dislocation as 1/r2. The energy contri-
bution from the core surface for a general straight dislocation with the Burgers vector
b = {bx,by,bz} (Fig. 23.6) is the sum of (23.130) and (23.140), which is

Eρ = k
4

[
b2

x − b2
y − 1

2(1 − ν)
(b2

x + b2
y)
]
. (23.144)
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There is no interaction energy between the individual components of the dislocation, as
can be checked by inspection. The total elastic strain energy, outside the core region of the
dislocation, is

E = −1
2

∫ h−ρ

0
[bxσxy(x, 0) + byσyy(x, 0) + bzσzy(x, 0)] dx + Eρ . (23.145)

This implies the slip discontinuity along the x axis is from 0 to h. This is also equal to

E = 1
2

∫ ∞

h+ρ
[bxσxy(x, 0) + byσyy(x, 0) + bzσzy(x, 0)] dx + Eρ , (23.146)

which corresponds to slip discontinuity from h to infinity. Upon integration (or by special-
izing the earlier results for the dislocation near a bimaterial interface), there follows

E = k
2

{[
b2

x + b2
y + (1 − ν)b2

z

]
ln

2h
ρ

− 1
4(1 − ν)

[
(3 − 4ν)b2

x − b2
y

]}
. (23.147)

The result is originally due to Freund (1987,1990).
The force exerted by the free surface on the dislocation is the negative gradient of E

with respect to h

Fx = −∂E
∂h
. (23.148)

This gives

Fx = −k
2

[
(1 − a)(b2

x + b2
y) + c(1 − ν)b2

z

] 1
h
. (23.149)
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24 Strain Relaxation in Thin Films

24.1 Dislocation Array Beneath the Free Surface

Consider an infinite array of dislocations with uniform spacing p at a distance h below
the free surface of a semi-infinite body (Fig. 24.1). The stresses due to this array at an
arbitrary point can be obtained by superposition of stresses due to each dislocation alone.
Of particular importance for the subsequent energy analysis are the stress components
σxy, σyy, and σzy. These are derived by Lubarda (1998) as

σxy = πkbx

p
Tx + πkby

p
Ty sinψ , (24.1)

σyy = πkby

p
Yy + πkbx

p
Yx sinψ , (24.2)

σzy = πk(1 − ν)bz

p

(
sinhϑ

C
− sinhϕ

A

)
. (24.3)

The parameter k = µ/2π(1 − ν), and

Tx = Dϑ
C2

− Bϑ
A2

− 2ϕ0(ϕ − ϕ0)
A3

(B − sin2 ψ) sinhϕ ,

Ty = 1
A

− 1
C

+ ϑ sinhϑ
C2

− ϕ sinhϕ
A2

+ 2ϕ0(ϕ − ϕ0)
A3

(B + sinh2 ϕ) ,

(24.4)

Yx = 1
A

− 1
C

+ ϑ sinhϑ
C2

− (ϕ − 4ϕ0) sinhϕ
A2

− 2ϕ0(ϕ − ϕ0)
A3

(B + sinh2 ϕ), (24.5)

Yy = 2 sinhϑ
C

− 2 sinhϕ
A

− Dϑ
C2

+ B(ϕ + 2ϕ0)
A2

− 2ϕ0(ϕ − ϕ0)
A3

(B − sin2 ψ)sinhϕ.

The following abbreviations have been used

A= coshϕ − cosψ , B = coshϕ cosψ − 1 ,

C = coshϑ − cosψ , D = coshϑ cosψ − 1 .
(24.6)

428
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24.1. Dislocation Array Beneath the Free Surface 429

x

h

p p

y

Figure 24.1. An infinite array of dislocations with uniform spacing
p at a distance h bellow the free surface of a semi-infinite body.

The nondimensional variables in (24.6) are

ϑ = 2π
x − h

p
, ϕ = 2π

x + h
p

, ϕ0 = 2π
h
p
, ψ = 2π

y
p
. (24.7)

In particular, the stress components along the vertical plane containing a dislocation from
the array can be obtained from the above formulas by substituting y = 0. The expressions
can be conveniently written as

σxy(x, 0) = πkbx

2p

[
ϑ

sinh2(ϑ/2)
− ϕ

sinh2(ϕ/2)
+ 2ϕ0

sinh2(ϕ/2)
A(ϕ)

]
, (24.8)

σyy(x, 0) = πkby

2p

[
4
(

coth
ϑ

2
− coth

ϕ

2

)
− ϑ

sinh2(ϑ/2)

+ ϕ

sinh2(ϕ/2)
+ 2ϕ0

sinh2(ϕ/2)
A(ϕ)

]
,

(24.9)

σzy(x, 0) = µbz

2p

(
coth

ϑ

2
− coth

ϕ

2

)
, (24.10)

where

A(ϕ) = 1 − (ϕ − ϕ0) coth
ϕ

2
. (24.11)

Along the vertical planes midway between the two dislocations from the array, the
stresses are

σxy(x,
p
2

) = πkbx

2p

[
− ϑ

cosh2(ϑ/2)
+ ϕ

cosh2(ϕ/2)
− 2ϕ0

cosh2(ϕ/2)
B(ϕ)

]
, (24.12)

σyy(x,
p
2

) = πkby

2p

[
4
(

tanh
ϑ

2
− tanh

ϕ

2

)
+ ϑ

cosh2(ϑ/2)

− ϕ

cosh2(ϕ/2)
− 2ϕ0

cosh2(ϕ/2)
B(ϕ)

]
,

(24.13)

σzy(x,
p
2

) = µbz

2p

(
tanh

ϑ

2
− tanh

ϕ

2

)
, (24.14)

where

B(ϕ) = 1 − (ϕ − ϕ0) tanh
ϕ

2
. (24.15)
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h

p
Figure 24.2. A strip of width p around a dislocation from the
periodic array of spacing p. Indicated are the surface of the
dislocation core, and the vertical cut from the free surface to
the core used to create the dislocation.

24.2 Energy of a Dislocation Array

The strain energy per unit length of a dislocation in the strip of width p (Fig. 24.2), outside
the dislocation core region, is

Ed = −1
2

∫ h−ρ

0
[bxσxy(x, 0) + byσyy(x, 0) + bzσzy(x, 0)] dx + Eρ . (24.16)

This implies the displacement discontinuity is from 0 to h. The energy Eρ is the contribu-
tion from the tractions on the dislocation core surface of radius ρ. For a sufficiently small
core radius (ρ << h), Eρ can be calculated by replacing the dislocation core with a cylin-
drical hole, whose surface is subjected to tractions of an isolated dislocation in an infinite
homogeneous medium, along with the corresponding displacements. With a displacement
discontinuity imposed along the cut along the x axis from 0 to h, this is

Eρ = 1
4

k
[

b2
x − b2

y − 1
2(1 − ν)

(b2
x + b2

y)
]
. (24.17)

The stressesσxy(x, 0),σyy(x, 0), andσzy(x, 0) are given by (24.8)–(24.10). Upon substitution
into (24.16) and integration, it follows that

Ed = k
2

{
(b2

x + b2
y)
[

ln
sinhϕ0

sinh ρ0
− ϕ2

0

2 sinh2 ϕ0
+ 1

4(1 − ν)

]

+ (b2
x − b2

y)
(

1
2

− ϕ0 cothϕ0

)
+ (1 − ν)b2

z ln
sinhϕ0

sinh ρ0

}
.

(24.18)

The nondimensional variablesϕ0 = 2πh/p and ρ0 = πρ/p are used. For a sufficiently small
core radius, sinh ρ0 can be replaced by ρ0. The result in this form was derived by Lubarda
(1997). The original result given in terms of exponential functions is due to Willis et al.
(1990,1991).

If h >> p, (24.18) gives

Ed = [2b2
y + (1 − ν)b2

z]
πkh

p
, (24.19)

which is proportional to h. This is so because for h >> p the stress field in the layer above
the dislocation array becomes essentially uniform

σyy = −4πkby

p
, σzy = −µbz

p
, (24.20)

as if the array consists of continuously distributed infinitesimal dislocations.
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24.3. Strained-Layer Epitaxy 431

Figure 24.3. A threading dislocation segment across the layer and a long
misfit dislocation left behind at the interface between the layer and its
substrate.

The energy for an isolated dislocation near the free surface is obtained when h << p,
which reproduces (23.147), i.e.,

Ed
0 = k

2

{[
b2

x + b2
y + (1 − ν)b2

z

]
ln

2h
ρ

− 1
4(1 − ν)

[
(3 − 4ν)b2

x − b2
y

]}
. (24.21)

The force on an individual dislocation from the array in Fig. 24.1 can be calculated from

Fx = −∂Ed

∂h
, (24.22)

which gives

Fx = − πk
p

cothϕ0

{
(b2

x + b2
y)
[

1 − 2ϕ0

sinh 2ϕ0
(1 − ϕ0 cothϕ0)

]

− (b2
x − b2

y)
(

1 − 2ϕ0

sinh 2ϕ0

)
+ (1 − ν)b2

z

}
.

(24.23)

24.3 Strained-Layer Epitaxy

Thin films comprise important parts of many electronic, optoelectronic, and magnetic
devices. When the lattice parameters of the film and a substrate match, the film grows
without a mismatch strain. If the lattice parameters differ, strain is needed to achieve
perfect atomic registry across the interface (strained-layer epitaxy). The elastic energy
stored in the film can cause the onset and propagation of structural defects in the layer.
These defects are generally undesirable, because they can degrade electrical and optical
performance of the layer and heterostructural device. If a dislocation is nucleated, for
example, as a half loop from irregularities at the free surface, or if it extends from the
substrate to the free surface of the layer, it is desirable that the dislocation expand into the
configuration with a threading segment across the layer and a long misfit dislocation left
behind at the interface between the layer and its substrate (Fig. 24.3). The driving force
provided by the misfit energy in the layer pushes the threading segment until it exits at the
edges of the film. Only the misfit dislocation is left, which relaxes the strain in the layer and
causes nonalignment between the layer and substrate lattices. The smallest layer thickness
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at which the first misfit dislocation forms during epitaxial growth is known as the critical
layer thickness. Comprehensive reviews of the subject are given by Matthews (1979), Nix
(1989), Fitzgerald (1991), van der Merwe (1991), Freund (1993), and in the book by Freund
and Suresh (2004). If the layer is grown beyond its critical thickness and more dislocations
enter, it is of interest to determine the relationship between the dislocation spacing in the
interface array and the layer thickness, for any given amount of initial mismatch strain,
crystalline orientation and material properties.

Let the layer be bonded to the substrate, with dislocations at the interface, and let the
initial uniform misfit strains be em

yy, em
zz, em

zy, with the corresponding stresses

σm
yy = 2µ

1 − ν (em
yy + νem

zz) , σm
zz = 2µ

1 − ν (em
zz + νem

yy) , σm
zy = 2µem

zy . (24.24)

The total elastic strain energy per unit length of a dislocation within the strip of width p is

E = Ed + Em + Ed,m . (24.25)

Here, Ed is the energy associated with dislocations alone, given by (24.18), while Em is the
energy associated with the misfit strain alone, which is

Em = 1
2

(
σm

yyem
yy + σm

zzem
zz + 2σm

zyem
zy

)
hp . (24.26)

The interaction energy Ed,m is the work of uniform misfit stresses on dislocation jump
displacements along the cut from the free surface to x = h, i.e.,

Ed,m = −(σm
yyby + σm

zybz)h . (24.27)

During the layer deposition, all elastic accommodation is assumed to take place in the
layer, with the substrate, being much thicker than the layer, essentially behaving as a rigid
elastic half-space.

24.4 Conditions for Dislocation Array Formation

The dislocation array will not form at the interface if the process is not energetically
favored. We can thus require as a necessary, but not sufficient condition, that E ≤ Em in
order for an array to form. The difference F = Em − E can be interpreted as the total
driving force on each threading dislocation in the array, when all dislocations are imagined
to simultaneously form. In view of (24.25), we therefore have

F = −(Ed + Ed,m) , (24.28)

where Ed is given by (24.18), and Ed,m by (24.27). If the array is at the interface, F ≥ 0.
For arbitrary ϕ0 = 2πh/p, the limiting condition F = 0 gives the relationship between
the layer thickness h and dislocation spacing p. Actually, it gives the smallest dislocation
spacing for which the array could exist in the film of a given thickness. The arrays with
larger spacing could also exist at this film thickness, but they would be associated with the
condition F > 0. Alternatively, for a given dislocation spacing of the array, the condition
F = 0 specifies the smallest film thickness required to support the array at the interface.
Thicker film could also support the considered array, but they would correspond to F > 0.
Since Ed is positive, in order that F ≥ 0, the interaction energy Ed,m must be negative, and
its magnitude greater or equal to Ed.
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In the limit ϕ0 → 0 , the condition F = 0 reduces to the Matthews–Blakeslee (1974)
equation for the critical film thickness, associated with the introduction of an isolated
dislocation. In this case F = −(Ed

0 + Ed,m), where Ed
0 is given by (24.21). If ϕ0 → ∞, i.e.,

h >> p, from (24.28) it follows that the smallest dislocation spacing of the interface array
for a very thick layer, is independent of h and is given by

p = kπ [2b2
y + (1 − ν)b2

z]
(
σm

yyby + σm
zybz

)−1
. (24.29)

Physically, the independence of h is a consequence of the fact that for h >> p the stress
field in the layer becomes essentially constant, and both energies, far ahead and far behind
the threading dislocation segments, are proportional to the layer thickness.

The misfit dislocation, far behind the threading dislocation segment, must be under a
force directed away from the free surface, so that misfit dislocations are not pulled out to the
free surface. This force is given by the negative gradient of the energy difference E − Em

with respect to the film thickness. Although this must be positive, the misfit dislocation
will not advance into the substrate, because the external stress in a thick substrate is zero,
whereas the free surface exerts only an attractive force on the misfit dislocation.

As an illustration, consider the layer and substrate that share the same cubic lattice and
orientation, with the interface parallel to their (001) crystallographic planes. If the lattice
parameters of the layer and substrate are al and as , the fractional mismatch of the lattice
parameter is

em = as − al

al
. (24.30)

The associated misfit strain components are

em
yy = em

zz = em , em
zy = 0 , (24.31)

and the biaxial stress state is

σm
yy = σm

zz = 4πk(1 + ν)em , σm
zy = 0 . (24.32)

If the layer/substrate system is GexSi1−x/Si , where x is the fraction of lattice sites in
the layer occupied by Ge atoms, the lattice parameter of the layer is (approximately, by
Vegard’s rule)

al = xaGe + (1 − x)aSi , (24.33)

and of substrate as = aSi. Since aSi = 0.54305 nm and aGe = 0.56576 nm, the misfit strain
is em ≈ −0.042x. For x = 0.25, this gives em ≈ −0.01. The dislocation array consists of
dislocations along [11̄0] crystallographic direction on the (111) glide planes (Fig. 24.4).
The dislocation Burgers vector is along the [01̄1], so that relative to the (xyz) coordinate
system bx = −b/

√
2, by = −b/2, and bz = b/2, where b is equal to al/

√
2. Consequently,

(24.18) becomes

Ed = kb2

8

[
(4 − ν) ln

sinhϕ0

ρ0
− 3ϕ2

0

2 sinh2 ϕ0
− ϕ0 cothϕ0 + 5 − 2ν

4(1 − ν)

]
, (24.34)

whereas (24.27) gives

Ed,m = 2πk(1 + ν)embh . (24.35)
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- b
[011] [010]

[110]
[100]

[001]

[110]
-

y

z

Figure 24.4. A cubic lattice and orienta-
tion, with the interface parallel to (001)
crystallographic plane. The Burgers vector
of dislocation is b = 1

2 [01̄1]. The coordinate
axes y and z are along the diagonals of the
lattice cube. The x axis is parallel to the
crystallographic direction [001].

The relaxation occurs, because Ed,m is negative. Relaxation actually proceeds with the
formation of two orthogonal dislocation arrays; the other array consists of dislocations
along [110] direction on the (11̄1) glide planes. Since the incorporation of the contribution
from the second array is straightforward, we proceed with the consideration of one array
only (the relaxation via the formation of two orthogonal dislocations arrays is considered
is Problems 24.2 and 24.3 of Chapter 34). With ν = 0.3, and with the core radius ρ equal to
the length of the Burgers vector b, the critical layer thickness is hcr = 19.25 b, where b =
0.388 nm. This satisfies the condition Fx > 0 , which requires h > 5.66 b. The relationship
between the dislocation spacing and the layer thickness, resulting from the condition F = 0,
is shown in Fig. 24.5. The dislocation spacing p tends to infinity when h → hcr. The thickness
h0 = 29.25 b corresponds to a dislocation spacing p0 = −(b/2)em = 50 b at which the array
completely relaxes the initial mismatch strain.

24.5 Frank and van der Merwe Energy Criterion

Frank and van der Merwe proposed that, for a given layer thickness h, dislocations in the
array will arrange themselves by choosing the periodicity p which minimizes the energy
per unit area of the free surface. This energy is E/p, and the criterion requires

d
dp

(
E
p

)
= 0 , i.e., p

dE
dp

= E . (24.36)

Since E is given by (24.25), from the above condition it follows that

p
dEd

dp
= Ed + Ed,m . (24.37)

The right-hand side of (24.37) is equal to −F. Defining the force f by

f = −p
dEd

dp
, (24.38)

the Frank and van der Merwe energy condition can be expressed as

F = f , (24.39)
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where

f = k
2

{[
(b2

x + b2
y)ϕ0 cothϕ0 − 2b2

y

] ϕ2
0

sinh2 ϕ0

+ [
2b2

y + (1 − ν)b2
z

]
ϕ0 cothϕ0 − [

b2
x + b2

y + (1 − ν)b2
z

]}
.

(24.40)

It can be verified that f is always positive (or equal to zero in the limitϕ0 → 0), as expected,
because from the criterion E ≤ Em, we reason that F cannot be negative. A physical
interpretation of f can be given as follows. The force on a single threading dislocation
entering alone into an epitaxial layer which already contains an array of spacing p is the
negative gradient of the specific energy with respect to dislocation density, i.e., (Gosling
et al. 1992),

G = −d(E/p)
d(1/p)

, (24.41)

Indeed, if n is the large number of dislocations in the array before one additional dislocation
is inserted, the force can be written as

G = nE(p) − (n + 1)E(p + dp) . (24.42)

Since dislocations distribute within the same domain, np = (n + 1)(p + dp). Thus, upon
expanding,

G = p
dE
dp

− E = F − f . (24.43)

The force f is, therefore, the difference between the force F on a threading dislocation
associated with a simultaneous formation of all dislocations in the array of spacing p,
and the force G on a single dislocation when it alone enters an epitaxial layer already
containing an array of spacing p. In the latter case, it is assumed that the array remains
periodic upon the introduction of new dislocation by appropriate adjustment of its spacing
(if necessary, by dislocation climb). Since f is never negative, it follows that F ≥ G (equality
sign applying only at infinitely large dislocation spacing). From this we can again conclude
that the equilibrium spacing predicted by the Frank and van der Merwe criterion (G = 0)
must be greater than that obtained from the condition F = 0. Indeed, if for an array F = 0,
then G < 0, and one dislocation would tend to leave the array, which would increase the
spacing among the remaining dislocations. The process would gradually continue until the
condition G = 0 is reached, which gives the equilibrium array configuration according to
Frank and van der Merwe criterion.

For the layer/substrate system under consideration, the predictions based on the condi-
tion F = f , and the condition F = 0, are shown in Fig. 24.5. As previously discussed, for a
given film thickness, a larger spacing is predicted by the Frank and van der Merwe crite-
rion. If the array with dislocation spacing according to Frank and van der Merwe would be
formed by a simultaneous threading of all dislocations, the corresponding force F on the
threading segments would not be zero, but large and positive. Arrays are observed that
do not correspond to the minimum energy, or the most relaxed configuration, so that the
actual spacing may indeed be greater or smaller than that predicted by the Frank and van
der Merwe criterion. One reason for this is that during the process of their gradual intro-
duction, dislocations cannot easily readjust their positions to minimize the total energy.
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Figure 24.5. Dislocation spacing p vs. layer thickness h (scaled by the length of the Burgers
vector) according to the condition based on simultaneous array formation, F = 0; Frank and
van der Merwe energy minimum condition, F = f ; and the conditions based on two different
processes of gradual array formation, F = f1, and F = f2 (0 < f1 < f2 < f ). From Lubarda
(1999).

Experiments, however, indicate that for a film thickness that exceeds the critical thickness
by a factor of 2 or 3, the dislocation spacing is substantially greater than that predicted by
the condition F = 0 (Freund, 1993).

The critical layer thicknesses according to the Matthews and Frank and van der Merwe
criteria are identical. The critical thickness according to the Frank and van der Merwe
criterion follows from (24.39) in the limit p → ∞, which implies that very few dislocations
are introduced in the film. Because f goes to zero as p goes to infinity, the condition
(24.39) reduces to F = 0, which is the Matthews condition for the critical layer thickness.
It is interesting to note that at this value of the layer thickness, the stationary value of the
specific energy E/p, reached asymptotically in the limit p → ∞, is actually a local energy
maximum. There is also an energy minimum (being very slightly lower than the local
energy maximum), which occurs at a large but finite value of the dislocation spacing. This
was originally observed by Jain et al. (1992). However, by taking the critical film thickness
to be just slightly smaller than that associated with the condition F = 0, the value of the
energy in the limit of infinite spacing becomes an energy minimum, and a single dislocation
can be deposited at the interface in a stable manner.

24.6 Gradual Strain Relaxation

During the film growth beyond its critical thickness, dislocations gradually enter to form
the misfit dislocation array at the interface between the film and its substrate. To uniformly
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relax the film, dislocations tend to form periodic arrays. A misfit dislocation already de-
posited at the interface on a particular glide plane relaxes the elastic strain on adjacent glide
planes, reducing a tendency for another misfit dislocation there. The gradual relaxation is
a difficult process, which involves time effects and the kinetics of dislocation nucleation
and motion for any given temperature of the film growth. A simplified model of gradual
relaxation was suggested by Freund (1993). Imagine that in the process of the formation
of an array of spacing p, at some instant the array of uniform spacing 2p is first formed.
Denote the corresponding energy within the width 2p by E(2p). The film is assumed to
be thick enough for the energy difference

F(2p) = 2Em − E(2p) = −Ed(2p) − Ed,m (24.44)

to be positive. This is required to make the configuration energetically preferred relative to
the film configuration without dislocations. The actual order by which dislocations entered
the film to form the considered array is irrelevant for the present discussion, because the
energy E(2p) does not depend on that order. Thus, the value of F(2p) is also independent
of the order, although F(2p) can be interpreted as a driving force on each threading
dislocation in the array, if they would simultaneously form. For F(2p) to be positive, the
film thickness must be greater than the thickness associated with the condition F(2p) = 0.

The second set of dislocations is next introduced by the glide of their threading segments
along the planes midway between the glide planes of the first set. After this set is introduced,
an array of dislocation spacing p is formed. The corresponding elastic strain energy per
unit length of dislocation, stored within the width 2p, can be written as

2E(p) = E(2p) + Ed(2p) + Ed,m + Ed,d(2p) . (24.45)

Here, E(p) is the energy within the width p, given by (24.18), and Ed,d(2p) is the interaction
energy between the two sets of dislocations (two arrays of spacing 2p). The film of a
given thickness will prefer the array of spacing p rather than the array of spacing 2p,
if 2E(p) < E(2p), regardless of the order by which the second set is introduced. The
difference

F1 = E(2p) − 2E(p) (24.46)

is a driving force on each threading dislocation from the second set, if they all were intro-
duced simultaneously. Substituting (24.44) and (24.45) into (24.46), we obtain

F1 = F(p) − f1 , f1 = 1
2

Ed,d(2p) . (24.47)

The force F(p) is given by (24.28). An expression for the interaction energy Ed,d(2p) can
be conveniently obtained by using the fact that the elastic strain energy does not depend
on the sequence by which dislocations are introduced in the array. Thus, the energy within
the width 2p, associated with sequential formation of the array, given by (24.45), must be
equal to the energy associated with simultaneous formation of the whole array, which is
2E(p) = 2Ed(p) + Em + 2Ed,m. By equating this to the right-hand side of (24.45), we find

Ed,d(2p) = 2[Ed(p) − Ed(2p)] . (24.48)
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h

p p/2p/2 p Figure 24.6. An array of nonuniform dislocation spacing,
which alters between p and p/2.

Substituting (24.18), this becomes explicitly

Ed,d(2p) = k
{

[b2
x + b2

y + (1 − ν)b2
z] ln

(
cosh

ϕ0

2

)
+ 1

8
(b2

x + b2
y)

ϕ2
0

cosh2(ϕ0/2)

− 1
2

(b2
x − b2

y)ϕ0 tanh
ϕ0

2

}
.

For the previously considered Ge-Si layer/substrate system, (24.6) simplifies to

Ed,d(2p) = kb2

4

[
(4 − ν) ln

(
cosh

ϕ0

2

)
+ 3ϕ2

0

8 cosh2(ϕ0/2)
− 1

2
ϕ0 tanh

ϕ0

2

]
. (24.49)

It can be verified that this energy is always positive. It is also observed that Ed,d is a mono-
tonically increasing function of ϕ0, so that Ed,d(p) > Ed,d(2p). The plot of the relationship
between the dislocation spacing p and the layer thickness h, associated with the condi-
tion F1 = 0, i.e., F(p) = f1, is shown in Fig. 24.5. For a given film thickness, the predicted
dislocation spacing is greater in the case of sequential, rather than simultaneous, array
formation, associated with the condition F(p) = 0.

An additional increase in predicted dislocation spacing is obtained if the relaxation
process is more gradual. For example, imagine that, in the transition from the array of
spacing 2p to the array of spacing p, an intermediate configuration is first reached which
contains a periodic array of period 4p. The dislocation spacing in this array is nonuniform,
and it varies from p to 2p. The array is shown in Fig. 24.6, if p there is replaced by 2p.
This configuration can be obtained by the introduction of a new dislocation between every
second pair of dislocations of the array of spacing 2p, i.e., by an appropriate introduction
of an additional array of spacing 4p. The corresponding energy, within the width 4p, is

E2 = 2E(2p) + Ed(4p) + Ed,m + Ed,d(2p) . (24.50)

The driving force for the transition from the configuration with the array of spacing 2p to
the considered intermediate configuration is 2E(2p) − E2, which is assumed to be positive.
The driving force from the intermediate configuration to the configuration with the array
of spacing p is F2 = E2 − 4E(p), which gives

F2 = F(p) − f2 , f2 = 3Ed(p) − 2Ed(2p) − Ed(4p) − Ed,d(2p) . (24.51)

The plot of the relationship between the film thickness and the dislocation spacing, resulting
from the condition F2 = 0, i.e., F(p) = f2 is shown in Fig. 24.5. The results demonstrate
that, for a given film thickness, the predicted spacing is greater than that associated with
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the condition F1 = 0. Thus, the more gradual the relaxation process, the less dense is the
array deposited at the interface.

24.7 Stability of Array Configurations

Consider a periodic array of spacing p at the interface between the film and its substrate.
If the film is sufficiently thick, additional dislocations will enter to relax the film. If the film
is too thin, some dislocations will recede. For example, if enough dislocations enter so that,
from the array of spacing p, an array of spacing p/2 is formed, the driving force for the
transition is E(p) − 2E(p/2) = F(p) − Ed,d(p). If the film resists the transition, this force
must be negative, hence

F(p) < Ed,d(p) . (24.52)

On the other hand, if the film is too thin, it may not support the array of dislocation
density as high as 1/p, and some dislocations will recede. Imagine that every second
dislocation from the array leaves the film. The driving force for this recession is −F1 =
−F(p) + Ed,d(2p)/2, as given by (24.47). If the recession is not preferred, the force must
be negative, and

F(p) >
1
2

Ed,d(2p) . (24.53)

Combining the inequalities (24.52) and (24.53), we obtain the bounds that define the range
of the (p, h) values for which the array can stably exist at the interface, at least regarding
the considered perturbations of its structure. The bounds are shown in Fig. 24.7, where they
are designated by B1. Recall that the stable range was previously bounded from below by
the condition F > 0, which defines the lowest lower bound.

A higher lower bound can be obtained from the condition F2 > 0, associated with the
recession in which every fourth dislocation leaves the array of uniform spacing p. From
(24.51), we have

F(p) > 3Ed(p) − 2Ed(2p) − Ed(4p) − Ed,d(2p) . (24.54)

On the other hand, a lower upper bound can be obtained by considering a possible transi-
tion of the array of spacing p into the array of nonuniform spacing, which is obtained by
the entrance of additional dislocation midway between every second pair of dislocations
in the array of uniform spacing p (Fig. 24.6). The energy of this configuration, within the
width 2p, is 2E(p) + Ed(2p) + Ed,m + Ed,d(p) . Thus, if the transition should not occur,

F(p) < Ed,d(p) + Ed(2p) − Ed(p) . (24.55)

The bounds defined by (24.54) and (24.55) are also shown in Fig. 24.7, designated there by
B2, and they are within the previously defined bounds B1.

24.8 Stronger Stability Criteria

Stronger stability conditions and restrictions on possible bounds can be obtained by using
the analysis of Gosling et al. (1992), who introduced the criterion based on the conditions for
the entrance, or recession, of a single dislocation from the periodic array. If the dislocation
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Figure 24.7. Four sets of bounds (B1 through B4) which define range of stable array configura-
tions with respect to assumed perturbations in the periodic array structure, as described in the
text (from Lubarda, 1999).

spacing can adjust so that the array maintains its periodicity upon the entrance of a new
dislocation, the force on a threading dislocation entering the array would be G = F − f .
Because the adjustment of spacing generally requires dislocation climb (which may not be
operative at low temperatures), it may be assumed that dislocations in the array remain
fixed as the new misfit dislocation deposits at the interface. The array is then considered to
be stable if this deposition is resisted. The driving force on a threading dislocation, midway
between the two dislocations of the periodic array of spacing p, is the difference between
the energies of the two configurations: the energy of the configuration with a periodic array,
and the energy of the same configuration with an inserted new dislocation. The latter is
equal to the former, plus the energy of the added dislocation Ed

0 , given by (24.21), plus the
work done to introduce the new dislocation against the stress of the existing array and the
misfit stress, which is Ed,d(p) + Ed,m. Thus, the force to drive a dislocation into the array is

F(+) = −Ed,d(p) − Ed,m − Ed
0 = F(p) − Ed,d(p) + Ed(p) − Ed

0 . (24.56)

If the introduction of new dislocation is resisted, then F(+) < 0, and

F(p) < Ed,d(p) − [Ed(p) − Ed
0 ] . (24.57)

It was additionally proposed by Gosling et al. (1992) that the recession of a single dis-
location from the array (creation of a vacancy in its periodic structure), should also be
resisted. A simple way to calculate the force that tends to drive a dislocation out of the
array, while all other dislocations remain fixed, is to imagine that a negative dislocation
(whose Burgers vector is opposite to that of dislocations in the array) is introduced to
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3p/2 p3p/2p
Figure 24.8. A perturbed array configuration used to de-
rive a lower bound of the stable array configurations (des-
ignated by B4 in Fig. 24.7).

annihilate one of dislocations from the array. The energy difference between the two con-
figurations is then equal to the energy of the added negative dislocation, Ed

0 , plus the work
done to introduce the negative dislocation against the stress of the existing periodic array
and the misfit stress. This work is∫ h−ρ

0
[bxσxy(x, 0) + byσyy(x, 0) + bzσzy(x, 0)]dx + 2Eρ − Ed,m =−2Ed(p) − Ed,m.

(24.58)
Equation (24.16) was used to express the integral in (24.58) in terms of other introduced
energy contributions. Thus, the force to drive dislocation out of the array is

F(−) = 2Ed(p) + Ed,m − Ed
0 = Ed(p) − Ed

0 − F(p) . (24.59)

A dislocation will not recede from the array if F(−) < 0, i.e.,

F(p) > Ed(p) − Ed
0 . (24.60)

For the considered layer/substrate system, the bounds defined by (24.57) and (24.60)
are shown in Fig. 24.7, where they are designated by B3. These bounds are within the
bounds B1. This was clear for the upper bounds, because Ed(p) − Ed

0 is positive. It was
also expected for the lower bounds on physical grounds, because the array may be in a
stable configuration regarding the recession of every second dislocation from the array,
but in an unstable configuration regarding a slighter disturbance, due to recession of a
single dislocation. For example, suppose the film is in the state corresponding to a point
on the lower bound curve. With further film growth, dislocation spacing remains constant
until the point on the upper bound curve is reached, at which instant a new dislocation can
enter the film.

24.9 Further Stability Bounds

A new set of bounds which define possible range of stable array configurations can be
constructed by comparing the array configuration with two perturbed neighboring config-
urations, as follows.

24.9.1 Lower Bound

Consider a perturbed array configuration, which contains one dislocation at a distance 3p/2
from the two neighboring dislocations, whereas the rest of the array has uniform spacing p
(Fig. 24.8). This configuration can be obtained from a perfectly periodic array of spacing p
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x

y

h

O

y
(1) (2) Figure 24.9. Two dislocations with different Burgers vectors,

beneath the free surface at the horizontal distance y between
each other.

by recession of two neighboring dislocations and by injection of one new dislocation along
the slip plane midway between the two receding dislocations. One may also think that one
dislocation has receded, whereas one dislocation, ahead or behind the receding disloca-
tion, has subsequently positioned itself in the middle between the two dislocations of the
perturbed array. The change of energy between the perturbed and unperturbed configu-
rations can be calculated as follows. First, introduce a new dislocation midway between
the two neighboring dislocations of the perfect array. As previously shown, the energy
increases by Ed

0 + Ed,d(p) + Ed,m. Introduce next two negative dislocations to annihilate
two dislocations, ahead and behind the inserted dislocation. This further increases the en-
ergy by 2[Ed

0 − 2Ed(p) − Ed,m], plus the interaction energy among the three dislocations,
which is Ein = E(−,−) + 2E(+,−).

The interaction energy between two dislocations, both at depth h below the free surface
of a semi-infinite body, and at the horizontal distance y from each other (Fig. 24.9), can be
calculated from

E(1,2) = −
∫ h

0

[
b(2)

x σ
(1)
xy (x, y) + b(2)

y σ
(1)
yy (x, y) + b(2)

z σ
(1)
zy (x, y)

]
dx . (24.61)

One dislocation has the Burgers vector b(1) and the other b(2). The substitution of the Head’s
stress expressions for a single dislocation beneath the free surface (see Chapter 23) into
(24.61), and integration gives

E(1,2) = k
2

{[
b(1)

x b(2)
x + b(1)

y b(2)
y + (1 − ν)b(1)

z b(2)
z

]
ln(1 + η2)

−
(

b(1)
x b(2)

y − b(1)
y b(2)

x

) 2η3

(1 + η2)2

−
[
(1 + 3η2)b(1)

x b(2)
x − (3 + η2)b(1)

y b(2)
y

] η2

(1 + η2)2

}
,

(24.62)

where η = 2h/y. The energy E(−,−) is obtained from (24.62) by taking b(1) = b(2) = −b,
and y = p. The energy E(+,−) is obtained if b(1) = −b(2) = b, and y = p/2. Therefore, we
obtain

E(−,−) = k
2

{[
b2

x + b2
y + (1 − ν)b2

z

]
ln(1 + η2)

− [
(1 + 3η2)b2

x − (3 + η2)b2
y

] η2

(1 + η2)2

}
,

(24.63)

where now η = 2h/p. The interaction energy between the positive and negative dislocation
E(+,−) is given by the same expression, with η replaced by 2η, and k by −k. The force which
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2p/3p 2p/3 2p/3 p
Figure 24.10. A perturbed array configura-
tion used to derive an upper bound of the sta-
ble array configurations (designated by B4 in
Fig. 24.7).

drives the perfect array into the perturbed array is the negative of the corresponding energy
change, which gives

F∗ = −F(p) + 3[Ed(p) − Ed
0 ] − Ed,d(p) − Ein . (24.64)

If the perturbation is resisted, F∗ < 0 , i.e.,

F(p) > 3[Ed(p) − Ed
0 ] − Ed,d(p) − Ein . (24.65)

This defines a lower bound for the stable configuration of the perfect array (B4 in Fig. 24.7),
which is slightly higher than the lower bound B3 defined by (24.60). This was expected
to be the case, because the symmetric configuration in Fig. 24.8 is more relaxed than
the configuration with the array containing the vacancy in its periodic structure, with the
surrounding dislocations being fixed.

Since dislocation adjustment may require climb, it is supportive to the above consider-
ation to give an additional or alternative interpretation of the condition F∗ < 0. Imagine
that the periodic array of uniform spacing p is completed, except for two missing disloca-
tions next to each other. Denote the corresponding energy by E. (Total energies of infinite
arrays are infinitely large, but their differences are finite, and will only be needed in this
discussion). If two dislocations enter and complete the perfect array, the energy becomes
Ea, and the driving force for this to occur would be Fa = E − Ea. If, instead of two, only
one dislocation enters, midway between the two missing dislocations of the perfect array,
the energy is Eb, and the corresponding force would be Fb = E − Eb. If Fa > Fb, the case
(a) is preferred, because then Ea < Eb. On the other hand, the force that would drive
the configuration (a) into (b) is F∗ = Ea − Eb = Fb − Fa. Thus, the condition F∗ < 0 again
gives Fa > Fb, which means that the perfect array (a) would be preferred to the perturbed
array (b).

24.9.2 Upper Bound

A lower upper bound can be obtained by considering a perturbed array configuration
shown in Fig. 24.10. This configuration can be obtained from the perfectly periodic array
of spacing p by recession of one dislocation, and by symmetric injection of two new dislo-
cations at the distance p/3 from the receding dislocation. Alternatively, one may consider
that a perfect array was created, except for one missing dislocation, and the competition
is taking place whether one more dislocation will enter and complete the perfect array or



P1: FBQ

052177777Xc24.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 2:47

444 24. Strain Relaxation in Thin Films
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p p
Figure 24.11. A dislocation at the position (x, y) approaching
a dislocation array of spacing p, beneath the free surface.

whether two dislocations will symmetrically enter to form the perturbed array in Fig. 24.10.
Imagine that a negative dislocation is introduced to cancel one dislocation from the per-
fect array and two additional dislocations are then injected. The energy change relative
to the perfect configuration is equal to the energy of the added negative dislocation, Ed

0 ,
plus the work done to introduce the negative dislocation against the stress of the perfect
array and the misfit stress, which is given by (24.58), plus the energy associated with the
introduction of the two dislocations. This is 2Ed

0 + 2Ed,m, plus the interaction energy of
the two dislocations with the perfect array 2Eint(p/3), plus the interaction energy among
the three added dislocations, Ein = E(+,+) + 2E(+,−). Thus, the force that would drive the
perfect array into the perturbed array is

F∗ = F(p) + 3[Ed(p) − Ed
0 ] − 2Eint(

p
3

) − Ein . (24.66)

The interaction energy E(+,+) is given by (24.63), with η = 3h/p. The interaction energy
E(+,−) is given by the same expression, with η replaced by 2η, and k by −k.

The general expression for the interaction energy associated with the introduction of an
additional dislocation into the periodic array, anywhere between two dislocations in the
array (Fig. 24.11), can be calculated from

Eint(x, y) = −
∫ x

0
[bxσxy(x, y) + byσyy(x, y) + bzσzy(x, y)]dx . (24.67)

The substitution of the stress expressions (24.1)–(24.3) gives upon integration the following
expression for the interaction energy

Eint(x, y) = k[b2
x Ix + b2

y Iy + bxby Ixy + (1 − ν)b2
z Iz] , (24.68)

where

Ix = Iz − 1
2

ϕ sinhϕ
coshϕ − cosψ

+ 1
2

ϑ sinhϑ
coshϑ − cosψ

+ ϕ0(ϕ − ϕ0)
1 − coshϕ cosψ

(coshϕ − cosψ)2
,

Iy = Ix + ϕ sinhϕ
coshϕ − cosψ

− ϑ sinhϑ
coshϑ − cosψ

,

Ixy = ϑ sinψ
(

1
coshϑ − cosψ

− 1
coshϕ − cosψ

)
,

(24.69)

Iz = 1
2

ln
coshϕ − cosψ
coshϑ − cosψ

.
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x

y

h

O
y

p p
Figure 24.12. A dislocation injected between two neighboring
dislocations from a dislocation array of spacing p.

The interaction energy for x = h (Fig. 24.12) is consequently

Eint(y) = k [b2
x Ix + b2

y Iy + (1 − ν)b2
z Iz] , (24.70)

where

Ix = Iz − ϕ0 sinh 2ϕ0

cosh 2ϕ0 − cosψ
+ ϕ2

0(1 − cosh 2ϕ0 cosψ)
(cosh 2ϕ0 − cosψ)2

,

Iy = Ix + 2ϕ0 sinh 2ϕ0

cosh 2ϕ0 − cosψ
, (24.71)

Iz = 1
2

ln
cosh 2ϕ0 − cosψ

1 − cosψ
.

In (24.9.2)–(24.9.2), ϕ0 = 2πh/p, and ψ = 2πy/p. The interaction energy Eint(p/3) is ob-
tained by taking ψ = 2π/3.

Having Eint(p/3) calculated, the perturbation is resisted if F∗ < 0, i.e.,

F(p) < 2Eint(
p
3

) + Ein − 3[Ed(p) − Ed
0 ] . (24.72)

This defines an upper bound for the stable configuration of the perfect array (B4 in
Fig. 24.7), which is lower than the upper bound B3 defined by (24.57), because the sym-
metric configuration in Fig. 24.10 is more relaxed than the perfect array configuration with
an additional dislocation exactly midway between the two dislocations of the array. It is
interesting to note that the four lower bounds shown in Fig. 24.7 are closer to each other
than the four upper bounds, so that bounds are more sensitive to perturbation modes
involving the entrance of new dislocations, than the recession of some of the dislocations
from the array.

From a purely energetic point of view, which does not take into account possible mech-
anisms by which configurations can alter, the stable configuration would be unique and
given by the Frank and van der Merwe criterion. The corresponding curve is always be-
tween the upper and lower bound of any considered set of bounds, because f in (24.39) is
always between these bounds. However, during film growth dislocations may be entering
in such a way that the minimum energy spacing cannot actually be attained at a given film
thickness, because complete readjustment of already taken dislocation positions would
be required (either by climb or recession of some and entrance of other dislocations). In
view of this, then, any spacing between derived upper and lower bounds could in principle
correspond to a given film thickness, depending on the sequence or the order by which
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dislocations entered in the process of film growth. Inevitably, the dislocation spacing will
be more or less nonuniform, although dislocations will try their best to form, as nearly as
possible, periodic arrays and minimize the total energy of the system. Furthermore, the
order by which dislocations enter depends on the location and strength of available dislo-
cation sources. The rate of film growth has also an obvious effect on dislocation spacing
that is eventually taken by the array at the final film thickness.

24.10 Suggested Reading

Fitzgerald, E. A. (1991), Dislocations in Strained-Layer Epitaxy: Theory, Experiment, and
Applications, Mater. Sci. Reports, Vol. 7, pp. 87–142.

Freund, L. B. (1993), The Mechanics of Dislocations in Strained-Layer Semiconductor
Materials, Adv. Appl. Mech., Vol. 30, pp. 1–66.

Freund, L. B., and Suresh, S. (2003), Thin Film Materials: Stress, Defect Formation and
Surface Evolution, Cambridge University Press, New York.

Gosling, T. J., Jain, S. C., Willis, J. R., Atkinson, A., and Bullough, R. (1992), Stable Con-
figurations in Strained Epitaxial Layers, Phil. Mag. A, Vol. 66, pp. 119–132.

Lubarda, V. A. (1999), Dislocations Arrarys at the Interface between an Epitaxial Layer
and Its Substrate, Math. Mech. Solids, Vol. 4, pp. 411–431.

Matthews, J. W. (1979), Misfit Dislocations. In Dislocations in Solids (F. R. N. Nabarro,
ed.), Vol. 2, pp. 461–545, North-Holland, Amsterdam.

Nix, W. D. (1969), Mechanical Properties of Thin Films, Metall. Trans. A, Vol. 20A, pp. 2217–
2245.

Van der Merwe, J. H. (1991), Strain Relaxation in Epitaxial Overlayers, J. Electr. Mat.,
Vol. 20, pp. 793–803.



P1: JzG
052177777Xc25.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 5:46

25 Stability of Planar Interfaces

The breakdown of an initially flat, or smooth, surface into one characterized by surface
roughness is an important type of phenomena occurring, inter alia, during the growth
of thin films or at surfaces of solids subject to remotely applied stress in environments
that induce mass removal or transport. In the case of thin films, stresses arise due to lattice
mismatch and/or differences in coefficients of thermal expansion. The sources of stress are,
indeed, legion but the effect can be to induce roughness, and surface restructuring, that
may be either deleterious, or in some cases desirable, if the patterning can be controlled.
The phenomena was first studied by Asaro and Tiller (1972) and has since been pursued
by others. Our purpose is to develop some of the guiding principles, but we note that the
topic is far from being thoroughly worked out. In particular, we make many simplifying
assumptions, one being the assumption of surface isotropy. We also ignore some important
physical attributes of surfaces, such as surface stress, which have recently been added to
the description of surface patterning (Freund and Suresh, 2003).

25.1 Stressed Surface Problem

We consider here the phenomena of the breakdown of planar interfaces subject to stress
into interfaces characterized by undulated topology. The phenomena is governed by those
same driving forces that lead to crack growth and the growth of defects, such as inclusions,
that cause internal stresses. Figure 25.1 illustrates such a process occurring under the
action of a remotely applied tensile stress, although the same process can be driven by
remotely applied shear stress. Moreover, attention will be confined to cases where mass
transport is effected by surface diffusion and dissolution followed by diffusion through a
bulk medium. An exactly parallel development can be made where mass transport is via
bulk solid diffusion.

The process involves the development of stress concentrations at the troughs of the
(slightly) rough surface; this, in turn, causes higher levels of strain energy density and
chemical potential (defined in the next section). The gradients of chemical potential cause
mass flow, via diffusion, from the troughs to the hills, thus leading to deepening of the
troughs and an increase in undulation. The impediment is the the energy required to
create additional surface area. This leads to a stability problem as described below. We
begin by considering a half-plane whose free surface has become slightly undulated; the

447
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n n

nx

y

x

y

σο σο

Figure 25.1. Undulated stressed surface.

surface profile is assumed to be sinusoidal with a form y = a cos(ωx). The slope of the
surface is assumed small and the intent is to create an asymptotic solution of order O(aω).
The normal to the surface is n, where

nx = sin[tan−1(−aω sin(ωx)] ∼ −aω sin(ωx) + O(a2ω2),

ny = cos[tan−1(−aω sin(ωx)] ∼ 1 + O(a2ω2).
(25.1)

This surface is traction free.
Once again the total problem will be solved by superposing two companion problems.

The first problem is simply a half-plane subject to far field tension of magnitude σ0 –
this will create tractions on the sinusoidal surface, T, that we shall evaluate. The second
problem is one in which the opposite tractions −T are applied to the surface of the half-
plane; when these are added the effect is to annihilate those existing in the first problem,
thereby creating a sinusoidal surface that is traction free, as desired. Clearly, the potential
for the first problem is φ(1) = σ0 y2, with the stress σ (1)

xx = σ0. For problem (2), we proceed
as follows. Consider the potential

φ(2) = aσ0 ye−ωy cos(ωx). (25.2)

The corresponding stresses are

σ (2)
xx = ∂2φ(2)

∂y2
= −2aωσ0e−ωy cos(ωx) + aω2σ0 ye−ωy cos(ωx),

σ (2)
yy = ∂2φ(2)

∂x2
= −aω2σ0 ye−ωy cos(ωx), (25.3)

σxy = −∂
2φ(2)

∂x∂y
= aωσ0e−ωy sin(ωx) − aω2σ0 ye−ωy sin(ωx).

On the surface, which is taken asymptotically to be at y = a cos(ωx), the traction compo-
nents are, to first order in aω,

T(2)
x = σ (2)

xx nx + σ (2)
xy ny = aωσ0 sin(ωx) + O(a2ω2),

T(2)
y = σ (2)

yy ny + σ (2)
xy nx = 0 + O(a2ω2).

(25.4)

Note from problem (1) that these traction components are, again to first order in aω,

T(1)
x = −aωσ0 sin(ωx) + O(a2ω2),

T(1)
y = 0 + O(a2ω2).

(25.5)

Thus, to first order in aω, the full solution for the stress potential is

φ(x, y) = 1
2
σ0 y2 + aσ0 ye−ωy cos(ωx). (25.6)
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ε Figure 25.2. Surface area and curvature.

The corresponding stresses are

σxx = σ0 − σ0(ω2 y − 2ω)e−ωy cos(ωx),

σyy = −ω2aσ0 ye−ωy cos(ωx),

σxy = −ωaσ0(1 − ωy)e−ωy sin(ωx).

(25.7)

The strain energy density on y = a cos(ωx) is given, to first order in aω, by

W(x) = σ 2
0 [1 + 4aω cos(ωx)]/2E + O(a2ω2). (25.8)

The above will be used to construct the chemical potential for matter on the undulated sur-
face and to set up the equations of diffusion that govern the evolution of the surface profile.

25.2 Chemical Potential

The Gibbs free energy was introduced in previous chapters. Here we introduce the chemical
potential µ as the partial molar derivative of G. Accordingly, µ is defined as the work
required to add a unit amount of material at constant temperature to the body. Moreover,
we are specifically concerned with the chemical potential on the surface of the body. When
material is added to a surface it is necessarily added normal to the surface, and if the
surface has curvature this will change the surface area and thus require additional free
energy associated with the surface energy, γ . This energy is to be added to that associated
with the elastic strain energy.

Consider the addition of mass to a surface as depicted in Fig. 25.2. The increment in area
is related to curvature by

δS = Sκδε, (25.9)

where δε is the normal growth of the surface, S is the area to which material is being
added, and κ is the curvature at the point where material is added. In two dimensions, the
curvature is given as

κ = d2 y/dx2[
1 + (dy/dx)2

]3/2 ≈ −aω cos(ωx) + O(a2ω2). (25.10)

Now, the surface area change can also be written as

δS = κ(Sδε) = κδv, (25.11)

where δv is the increment of volume of added material. Thus, the extra amount of work
required to add material associated with surface energy is γ κδv. Let the unit amount be
per atom, and define v0 as the atomic volume. Then, the amount of work required to create
(or destroy) surface area is, per atom, γ κv0.

Recall that the body is elastically strained. To add a unit amount of material at a point,
it is necessary to bring it to the same state of elastic strain – this adds an additional amount
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of required work, W(x)v0. The total chemical potential is, therefore,

µ = µ0 + W(x)v0 + γ κv0, (25.12)

where µ0 represents all other contributions to µ, not affected by position on the surface.
It is gradients in µ that cause mass flow, which we assume occurs by surface diffusion.

25.3 Surface Diffusion and Interface Stability

Suppose that the body contains β atoms per unit area. Gradients in the chemical potential
give rise to a diffusive flux, J , calculated from

J = − D
kT

∇µ, (25.13)

where k is Boltzman’s constant, T is the absolute temperature, and Dis the surface diffusion
constant. For the case considered,

∇µ = ∂µ

∂x
+ O(a2ω2). (25.14)

Define rn as the rate of normal motion of the surface. Then,

rn = v0 divJ = − Dβv0

kT
∂2µ

∂x2
. (25.15)

The rate of normal advance is related to the time change in the curve y(x) defining the
surface as

rn =
(

1 + dy
dx

)−1/2 dy
dt
, (25.16)

and so, to first order,

∂y
∂t

= − Dβv0

KT
∂2µ

∂x2
. (25.17)

The differential equation in (25.17) may be solved using the definitions in (25.10) and
(25.12). At t = 0 and at x = 0, i.e., at the depth of a trough at time t = 0, we find that

V = da
dt

= B
(

−γ 2ω4 + 2σ 2
0

E
ω3
)
, (25.18)

where B = av2
0βD/kT. For V ≥ 0, that is for the interface to become unstable, in the sense

that its undulated amplitude begins to grow, we must have

√
2 σ0 ≥ (Eγω)1/2 =

(
2πEγ
λ

)1/2

, (25.19)

where λ is the wavelength of the sinusoidal surface.
Assume that all wavelengths are possible and that the one that dominates is that which

grows fastest, i.e., set

∂V
∂ω

= 0 and
∂2V
∂ω2

< 0, (25.20)
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Figure 25.3. Velocity of surface amplitude growth vs. frequency.

to obtain

ω� = 3
2
σ0

Eγ
, (25.21)

and

V = Vmax = 0.1B
σ 8

0

γ 3 E4
. (25.22)

Relations such as (25.21) and (25.22) certainly suggest a very strong sensitivity of interface
stability to the material properties involved in the process, such as interface energy and
elastic modulus (Fig. 25.3).

25.4 Volume Diffusion and Interface Stability

The chemical potential on the surface of the stressed solid was given in (25.12), and in full
it is

µ− µ0 = v0σ
2
0

2E
[1 + 4aωe−ωy cos(ωx)] − γ v0aω2 cos(ωx), (25.23)

where the expression for strain energy density was evaluated on y = 0. Now we assume
that the stressed solid is in contact with a fluid that is capable of dissolving the solid and
forming with it a perfect solution. With that assumption, we take the chemical potential
of the solid constituent in the fluid to be

µ− µ0 = kT ln c, (25.24)

where c is the concentration. If c0 is the equilibrium concentration between an unstressed
flat solid and the liquid, we obtain the relation

kT ln
c
c0

= v0σ
2
0

2E

[
1 + 4aωe−ωy cos(ωx)

]− γ v0aω2 cos(ωx), (25.25)

which can be expressed as

c = c0e f (σ0,ω). (25.26)
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Since f (σ0, ω) is typically much less that unity, we may expand (25.26) to first order and
obtain

c
c0

= 1 − v0

kT
σ 2

0

2E

[
1 + 4aωe−ωy cos(ωx)

]
+ γ

( v0

kT

)
ω2 cos(ωx).

(25.27)

This relation is the interface boundary condition for a fluid diffusion problem wherein
matter will dissolve at the valleys and deposit at the peaks, or vice versa, depending on the
sign of the chemical potential gradient. Assuming that equilibrium is maintained between
the solid and the fluid, and that the interface moves sufficiently slowly that the transport
is nearly steady state at all times, the solution to the transport problem, subject to (25.27)
as the boundary condition, is given by

c − c0 = − c0

{
v0

kT
σ 2

0

2E

[
1 + 4aωe−ωy0 cos(ωx)

]}
e−ωy

+ c0

[
γ
( v0

kT

)
aω2 cos(ωx)

]
e−ωy.

(25.28)

The rate of change of the amplitude, a, is

ȧ =
(
∂y
∂t

)
x=0

= v0 DL

(
∂c
∂y

)
y=0

x=0

= DLc0
v2

0

kT
a
[
σ 2

0

2E

(ω
a

+ 4ω2
)

− γω3
]
,

(25.29)

with DLc0v
2
0a/kT = B∗ for later reference.

For growth of the wave, we must have

σ 2
0

2E

(ω
a

+ 4ω2
)
> γω3, (25.30)

i.e.,

σ0 > (2Eγω)1/2
(

1
aω

+ 4
)−1/2

. (25.31)

The frequency, ω∗, yielding a maximum in ȧ is obtained from(
∂ ȧ
∂ω

)
ω∗

= 0 = σ 2
0

2E

(
1
a

+ 8ω∗
)

− 3γω2, (25.32)

as

ω∗ = 2
3
σ 2

0

2E
± 1

2

√(
4
3
σ 2

0

Eγ

)2

+ 4
(
σ 2

0

6aEγ

)
. (25.33)

For very small values of a, the second term within the radical will be comparable to the
first and no real simplification is possible. It is best to leave the expression as it is. Thus,
(25.33) provides us with ω∗ for Mode I type loading and, with (25.29), we have

ȧ(ω∗) = V = B∗
[
σ 2

0

2E

(
ω∗

a
+ 4ω∗2

)
− γω∗3

]
. (25.34)
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Figure 25.4. Velocity normalized with B (from
Asaro and Tiller, 1972).

In Figs. 25.4 and 25.5, the results for V/B∗ have been plotted as a function of σ0 for
a range of values of γ and compared with the similar predictions for growth via surface
diffusion as described earlier; see (25.23). We note that the dependence on applied stress
is not as strong for this case of volume diffusion as was the case for surface diffusion
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Figure 25.5. Velocity normalized with B contin-
ued (from Asaro and Tiller, 1972).
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Figure 25.6. Optimal wave frequency (from
Asaro and Tiller, 1972).

at high values of γ , but is quite comparable in this dependence at low values of γ . The
strong dependence on γ should, of course, also be noted. For these calculations, the value
of E = 1012 dynes/cm2 and a = 10−5 cm were used (1 dyne = 10−5 N). For a complete
comparison between the volume diffusion (i.e., dissolution) case and the surface diffusion
case we must also consider the relative magnitude of B∗ and the coefficient B of (25.22);
we recall that for surface diffusion

V = 0.1Bsdσ
8
0 /γ

3 E4,

Bsd = av2
0βDs/kT,

(25.35)

where β is the surface density of atoms. We have renamed the surface diffusion coefficient
Ds for clarity. Thus, if we similarly rename B∗ = Bvd, we must consider the ratio Bsd/Bvd =
βDs/c0 DL. If this ratio were small, the two mechanisms would give comparable rates of
growth of the rough surface. If this ratio were near unity, the surface diffusion mechanism
is strongly dominant over the volume/dissolution mechanism. Of course, in reality both
mechanisms operate concurrently.

The presence of surface adsorption leading to a reduction in γ will produce a strong
increase in V unless there is a compensatory reduction in B. For the surface diffusion case,
β may be reduced, so that Bsd may also be reduced. For the case of dissolution/volume
diffusion, a significant affect on Bvd is not anticipated, but there may be an interference
with the assumption of surface equilibrium that would have a negative effect on the overall
kinetics. Such effects of surface adsorption may, of course, be marked at a liquid/metal
interface.

In Fig. 25.6 the optimum frequencyω∗ has been plotted as a function of σ0 and it is noted
that the dissolution mechanism produces a comparable, but smaller optimum wavelengths,
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x
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z

Figure 25.7. 2D surface roughness.

λ∗, than the surface diffusion mechanism for similar stress levels. Depending on the surface
energy, there seems to be a critical stress range beyond which ω∗ increases very sharply.
For example, for γ ∼ 100 erg/cm2, and σ0 ≤ 50, 000 to 75,000 psi, λ∗ decreases rapidly and
the roughness sharpens drastically (1 erg = 10−7 J and 1 psi =6.895 kPa). Finally, it should
be noted that the analysis of volume diffusion as considered here should also apply to the
case of diffusion via vacancy diffusion in the volume of the solid beneath the undulated
surface. Equations (25.27) and (25.28) are still applicable, but with c0 being the equilibrium
vacancy concentration in the solid in the unstressed state. Equations (25.29) to (25.34) also
hold, with Dbd replacing Dvd in the expression for B. Thus, the figures also hold, with B
changing via D and c0.

25.5 2D Surface Profiles and Surface Stability

As seen in the above discussion of 1D surface profiles, modeled as sinusoidal perturbations,
the tendency for an initially nearly smooth surface in a stressed body to break down into
one characterized by growing roughness, is a competition between the release of strain
energy and the creation of surface energy. The driving force for the process is properly
described by the gradient in chemical potential, as originally introduced in this context by
Asaro and Tiller (1972). Thus we want to evaluate

µ = µ0 + W(x, y)v0 + κγ. (25.36)

The coordinate geometry for the 2D surface profiles is as illustrated in Fig. 25.7. The surface
energy γ is so far taken to be isotropic and independent of orientation and state of surface
stress; W(x, y) is the surface strain energy density. Alternatively, we could calculate the
rate of change of the total free energy, Gtot, due to growth of the surface,

Ġtot =
∫

S
µvn dS, (25.37)

where vn is the normal growth rate described earlier and inquire as to its algebraic sign. This
in itself would be sufficient to assess stability, but an evaluation of µ would be desirable to
carry out detailed kinetic simulations, as dictated by the appropriate mechanisms of mass
transport such as surface diffusion, bulk diffusion, and dissolution and bulk transport.
Since our purposes here are illustrative only, we will examine stability only. To calculate
µ it is necessary to evaluate the elastic field at the surface and evaluate the strain energy
density W(x, y). A general procedure by Asaro and Tiller (1972) to accomplish this is
based on a linear superposition. The method was described previously for 1D sinusoidal
surface profiles; here we extend the analysis to a 2D sinusoidal profile.

Let the surface take on the perturbed shape given by

z = a cos(ωxx) cos(ωy y), (25.38)
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where ωx = 2π/λx and ωy = 2π/λy are the respective frequencies. We assume that the
surface is shallow, i.e., aωx, aωy � 1. The body is loaded by a biaxially applied uniform
stress, σ0, rather than by the uniaxial stress as in the case of 1D surface profiles. A uniform
state of stress of this type produces a traction on a so perturbed surface of the form

Tx = −σ0
∂z
∂x
, Ty = −σ0

∂z
∂y
, Tz = 0, (25.39)

to first order in the aω’s. Thus, if we write the total stress field as

σ = σ(1) + σ(2)(x, y, z), (25.40)

where σ(1) = σ0 exex + σ0 eyey is the uniform biaxial stress state, then the perturbed field,
σ(2), is obtained by solving the problem of applying the negative traction, given by (25.39)
above, to the surface; this has the effect of producing a traction free perturbed surface, as
desired. The solution for the surface displacements is

ū(2)
α (x, y) = σ0

∫∫ ∞

−∞

[
%αx(x − ξ, y − η)

∂z
∂x

+%αy(x − ξ, y − η)
∂z
∂y

]
dξ dη,

where the surface is taken as z = z(x, y), and the matrix Π has been given earlier in
(13.122) as

Π = 1

4πG

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(1 − ν)

r
+ 2νx2

r3

2νxy

r3
− (1 − 2ν)x

r2

2νxy

r3

2(1 − ν)

r
+ 2νy2

r3
− (1 − 2ν)y

r2

(1 − 2ν)x

r2

(1 − 2ν)y

r2

2(1 − 2ν)

r

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (25.41)

Freund and Suresh (2003) have carried out this analysis and found by straightforward
integration that

ū(2)
x = − 2σ0aλy

Ē
√
λ2

x + λ2
y

sin(ωxx) cos(ωy y),

ū(2)
y = − 2σ0aλx

Ē
√
λ2

x + λ2
y

cos(ωxx) sin(ωy y),

ū(2)
z = 0.

(25.42)

The stresses follow immediately by calculating the strains and using the isotropic consti-
tutive relations.

The change in energy is the energy involved with creating the perturbation and the
perturbed field. This was also calculated by Freund and Suresh (2003). Per period over the
perturbation it is found that

δE (2)
el =

∫ λx

0

∫ λy

0

1
2

[ū(2)
x σxz + ū(2)

y σyz] dx dy

= −πσ
2
0 a2

2Ē

√
λ2

x + λ2
y .

(25.43)
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The change in energy due to the creation of surface is calculated by noting that, to first
order,

d(δS) = 1
2

[(
∂z
∂x

)2

+
(
∂z
∂y

)2
]

dx dy. (25.44)

Thus, this contribution to the energy change is

δEsurface = γ
∫ λx

0

∫ λy

0

1
2

[(
∂z
∂x

)2

+
(
∂z
∂y

)2
]

dx dy

= π2γ a2

2

λ2
x + λ2

y

λxλy
.

(25.45)

Therefore, if

δE = δE (2)
el + δEsurface = 0 (25.46)

defines the condition for stability, i.e., for growth versus decay of the perturbation, the
critical stress is obtained as

(
σ 2

0

Ē

)
cr

= γπ
√
λ2

x + λ2
y

λxλy
= γπ

√
1
λ2

x
+ 1
λ2

y
. (25.47)

Defining

1
λ∗ =

√
1
λ2

x
+ 1
λ2

y
, (25.48)

the stability condition (25.47) becomes(
σ 2

0

Ē

)
cr

= γπ

λ∗ ⇒
(

2σ 2
0

Ē

)
cr

= γω∗. (25.49)

This may be compared to the original criterion of this type developed by Asaro and
Tiller (1972), which is ω∗ = 2π/λ∗ = 2σ 2

0 /(γ E). The difference is simply the change from
a uniaxial stress state to one of uniform biaxial stress.

An interesting observation is that these results suggest that initially surface profiles may
tend to take on a 1D shape. For example, look at the stability criterion by forming the ratio
of the magnitude of the released elastic energy to the positive surface energy, viz.,

δE (2)
el

δEsurface
= λ∗

λx

√
1 + λ2

x

λ2
y
. (25.50)

When this ratio becomes greater than unity, the perturbation may grow. The smallest value
of λx for which this happens is when λx = λ∗ and λy → ∞. Of course, after initial growth
the patterning may, and probably will, become multidimensional.

25.6 Asymptotic Stresses for 1D Surface Profiles

In the previous section a general procedure was developed for calculating the asymptotic
stresses on 2D surface profiles. Here we revisit the 1D case given out at the outset of the
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y = a cos  xω
σο Figure 25.8. Creation of a perturbed free surface.

chapter via the original analysis of Asaro and Tiller (1972). We simply seek to establish
the similar procedure for constructing the surface stress field and strain energy density
required to calculate the surface chemical potential. The procedure is developed via the
general sinusoidal profile y = a cos(ωx).

Consider the surface to be in a state of uniform biaxial stress of magnitude σ0. If the
surface was perturbed in shape with the profile y = a cos(ωx), (aω � 1), then we would
write the stress state as

σ = σ0 exex + σ(2), (25.51)

where, as before, σ(2) is the perturbed field. The goal is to determine σ(2) to O(aω). The
traction induced over the sketched surface in Fig. 25.8 by the biaxial stress is, to first order,

Tx = σ0nx ∼ σ0∂y/∂x ∼ −aωσ0 sin(ωx) + O(a2ω2),

Ty = 0 + O(a2ω2).
(25.52)

To render the perturbed surface traction free we need to impose a shear traction

−Tx = aωσ0 cos(ωx) = −σ0
∂y
∂x
. (25.53)

This defines the perturbed field, called (2) above. Recalling the point force solution given
by (15.17), yields

σ (2)
xx (x) = 2σ0

π

∫ ∞

−∞

∂y(ξ)/∂ξ
x − ξ dξ + O(a2ω2),

σ (2)
yy (x) = 0.

(25.54)

Of course, σ (2)
xy is already specified as

σ (2)
xy = aωσ0 sin(ωx) = −σ0

∂y
∂x
. (25.55)

This procedure holds for general profiles so long as |∂y/∂x| � 1.
When applied to the case where y = a cos(ωx), we find

σ (2)
xx = −2σ0aω

π

∫ ∞

−∞

sin(ωξ)
x − ξ dξ. (25.56)

The (real) Cauchy principal value is needed, which is

PV
∫ ∞

−∞

sin(ωξ)
x − ξ dξ = −π cos(ωx).
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This yields the Asaro–Tiller field, viz.,

σ (2)
xx ∼ 2aωσ0 cos(ωx) + O(a2ω2),

σ (2)
yy ∼ 0 + O(a2ω2),

σ (2)
xy ∼ aωσ0 sin(ωx) + O(a2ω2).

(25.57)

The surface strain energy density is readily computed as

W(x) = σ 2
0

Eb
+ σ

(2)
xx

Ē

[
σ0 + 1

2
σ (2)

xx

]
+ O(a2ω2), (25.58)

where Eb = E/(1 − ν) is the biaxial modulus and Ē = E/(1 − ν2) is the plane strain modu-
lus. Note that the O(a2ω2) term embedded in (25.58) would be omitted from consideration
in an asymptotic analysis, but is nonetheless retained for completeness. Indeed, if one had
the general field σxx = σ0 + σ (2)

xx , then (25.58) would be the energy density.
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PART 6: PLASTICITY AND VISCOPLASTICITY

26 Phenomenological Plasticity

When stressed beyond a critical stress, ductile materials such as metals and alloys display
a nonlinear plastic response. This is sketched in Fig. 26.1 for a uniaxial tensile test of a
smooth specimen, where some relevant terms are defined. In general, plastic yielding is
gradual when resolved at typical strain levels (e.g., ∼ 10−4). A critical stress, called the yield
stress, is defined, which is the stress in uniaxial tension, or compression, required to cause
a small, yet finite, permanent strain that is not recovered after unloading. It is common to
take this onset yield strain as ey = 0.002 = 0.2%. Some common general features of plastic
flow, with reference to stress vs. strain curves, are:

� The σ vs. e response is nonlinear and characterized by a decreasing intensity of strain
hardening, measured by the slope dσ/de, as the strain increases. Generally, dσ/de ≥ 0.

� Unloading is nearly elastic.
� Plastic deformation of nonporous metals is essentially incompressible, i.e., volume

preserving. A discussion of the physical basis for plastic deformation in subsequent
chapters will explain why this is so.

As noted, a schematic stress-strain curve during uniaxial loading and unloading of an
elastoplastic material is shown in Fig. 26.1. The initial yield stress is Y (later terms such as
σy will be used to denote yield stress). Note that the yield stress is now ideally represented
as a stress level at which an abrupt transition from linear, purely elastic, to nonlinear,
elastic-plastic deformation occurs. Below this stress level the deformation is elastic, i.e.,
reversible upon the removal of stress. For linear elasticity, Hooke’s law relates the stress
and strain by σ = Ee, where E is Young’s modulus of elasticity (the slope of the linear
portion of the curve in Fig. 26.1). When the stress is increased beyond the initial yield
limit, the material deforms plastically. The nonlinear portion of the stress-strain curve is
associated with plastic mechanisms of deformation due to dislocations (in metals) and is
referred to as the work or strain hardening of the material. At an arbitrary state of stress
σ > Y, the total strain e consists of the elastic part ee = σ/E, which is recoverable upon
removal of the stress, and the plastic part ep = e − σ/E, which is the permanent (residual)
strain left upon removal of the stress. It is generally assumed that plastic deformation does
not affect elastic properties of the material, so that the unloading slope (Young’s modulus
E) remains the same as before the plastic deformation took place. The physical basis for

461
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0
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e ee
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Y/E

E

Figure 26.1. The stress strain curve during tensile loading and un-
loading of an elastoplastic material. The initial yield stress is Y,
and the Young’s modulus of elasticity is E. At an arbitrary stage
of elastoplastic deformation, the total strain is the sum of elastic
and plastic parts (e = ee + ep).

this assumption is made clear in the discussion of crystalline plasticity given in subsequent
chapters.

The concern of this chapter is the formulation of constitutive equations that describe
elastoplastic material response under multiaxial states of stress. While purely elastic defor-
mation is a history independent process, in which the current strain depends only on the
current stress, elastic-plastic states of strain depend on the entire history of loading and
deformation. Consequently, elastoplastic constitutive equations are more appropriately
expressed in an incremental or rate-type form by relating the rate of deformation to the
rate of stress. Derivation of a variety of these equations is presented in this chapter. Vari-
ous constitutive models are considered, applicable to either metals or geomaterials. Time-
independent response is mainly considered, although an introduction to time-dependent
constitutive behavior is also given. A more detailed development of strain rate and time
dependent elastic-plastic deformation is given in the following chapters that are concerned
with physically based constitutive theory.

26.1 Yield Criteria for Multiaxial Stress States

A central concept in the classical theory of rate independent plasticity is the yield surface,
which defines the multiaxial states of stress at the threshold of plastic deformation. If the
stress states are within the yield surface, the corresponding changes of deformation are
purely elastic. Plastic deformation is possible only when the stress state is on the current
yield surface. The yield surface evolves with the progression of plastic deformation due
to strain hardening of the material. We analyze the shape of the initial yield surface first,
leaving the hardening models for later sections. The yield surface can be expressed as a
hypersurface in the six-dimensional stress space

f (σi j ) = 0 . (26.1)

For isotropic material, the onset of plastic deformation does not depend on the directions
of principal stresses, but only on their magnitudes. Thus, f can be expressed in terms of
the stress invariants as

f (I1, I2, I3) = 0 , (26.2)
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σ1
2

3

σ

Tresca

von Mises hydrostaic axis

π plane

σ Figure 26.2. Von Mises and Tresca yield surfaces
in principal stress space. The yield cylinder and the
yield prism have their axis parallel to the hydro-
static axis, which is perpendicular to the π plane
(σ1 + σ2 + σ3 = 0).

where

I1 = σi i , I2 = 1
2

(σi jσi j − σi iσ j j ) , I3 = det(σi j ) . (26.3)

For nonporous metals at moderate pressures, the yield is not influenced by hydrostatic
pressure, and the yield surface can be expressed in terms of the deviatoric part of stress
only, i.e.,

f (J2, J3) = 0 , (26.4)

where

J1 = 0 , J2 = 1
2
σ ′

i jσ
′
i j , J3 = det(σ ′

i j ) . (26.5)

26.2 Von Mises Yield Criterion

The most frequently utilized yield criterion is the von Mises criterion

J2 = k2 , (26.6)

where k is the material parameter (yield stress in pure shear). In an expanded form,

J2 = 1
6

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ 2

12 + σ 2
23 + σ 2

31)
]
. (26.7)

If the yield stress in uniaxial tension is Y, then according to the von Mises criterion Y2/3 =
k2, so that k = Y/

√
3. The von Mises yield locus in the principal stress space is shown in

Fig. 26.2.
Two physical interpretations of the von Mises criterion are possible. The elastic strain

energy (per unit volume) is

W = 1
2
σi j ei j = 1

2

(
σ ′

i j + 1
3
σkkδi j

)(
e′

i j + 1
3

ekkδi j

)
, (26.8)
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i.e.,

W = 1
2
σ ′

i j e
′
i j + 1

6
σi i e j j . (26.9)

Since σ ′
i j = 2µe′

i j , where µ denotes the elastic shear modulus, the portion of the elastic
strain energy associated with the deviatoric part of stress and the resulting shape change
of the material, is

W′ = 1
2
σ ′

i j e
′
i j = 1

4µ
σ ′

i jσ
′
i j = 1

2µ
J2 . (26.10)

Thus, the von Mises yield criterion can be interpreted as the criterion according to which
the yield begins when the deviatoric work W′ reaches the critical value (k2/2µ = Y2/6µ).

The second interpretation of the von Mises criterion is based on the octahedral shear
stress. An octahedral plane is the material plane that makes equal angles with the princi-
pal stress directions at the considered point of the material. Thus, with respect to princi-
pal stress axes ei , the unit vector normal to an octahedral plane is n=±(e1 + e2 + e3)/

√
3.

Since the stress tensor can be expressed relative to its principal directions via the spectral
decomposition

σ = σ1e1e1 + σ2e2e2 + σ3e3e3 , (26.11)

where the product such as e1e1 represents a dyadic product, the traction vector over the
octahedral plane is

tn = n · σ = ± 1√
3

(σ1e1 + σ2e2 + σ3e3) . (26.12)

The magnitude of the octahedral traction is obtained from

t2
n = 1

3
(σ 2

1 + σ 2
2 + σ 3

3 ) , (26.13)

whereas the associated normal stress is

σn = tn · n = n · σ · n = 1
3

(σ1 + σ2 + σ3) . (26.14)

Therefore, the square of the octahedral shear stress is

τ 2
n = t2

n − σ 2
n = 1

9

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)3] . (26.15)

It can be shown that the octahedral shear stress is the average shear stress over all planes
passing through the considered material point. Since the second invariant of the deviatoric
part of stress tensor, expressed in terms of principal stresses, is

J2 = 1
6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] , (26.16)

we have the connection

τ 2
n = 2

3
J2 . (26.17)

Consequently, the von Mises yield criterion can be interpreted as the criterion according to
which the yield begins when the octahedral shear stress reaches the critical value (

√
2/3 k =√

2 Y/3).
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Figure 26.3. (a) The von Mises ellipse and the Tresca hexagon in the plane of principal stress differences;
(b) the same in the case of plane stress (σ3 = 0).

We note that the von Mises yield criterion can be rewritten as

(σ1 − σ3)2 − (σ1 − σ3)(σ2 − σ3) + (σ2 − σ3)2 = Y2 . (26.18)

This is an ellipse at 45◦ relative to the coordinates σ1 − σ3 and σ2 − σ3 (Fig. 26.3a). In the
case of plane stress (σ3 = 0), we have

σ 2
1 − σ1σ2 + σ 2

2 = Y2 , (26.19)

which is an ellipse at 45◦ relative to the coordinates σ1 and σ2 (Fig. 26.3b). Clearly, the
yield stress in pure shear (σ2 = −σ1) is equal to Y/

√
3, whereas the yield stress in biaxial

tension (σ2 = σ1) is the same as in uniaxial tension (Y).
In the combined tension-torsion (σ, τ ) test (as it occurs in a thin-walled tube under an

axial force and a twisting moment), the principal stresses are

σ1,2 = σ

2
± 1

2
(σ 2 + 4τ 2)1/2 , (26.20)

and the yield criterion (26.19) gives

σ 2 + 3τ 2 = Y2 . (26.21)

This is an ellipse with the semiaxes of length Yand Y/
√

3 along theσ and τ axes, respectively
(Fig. 26.4).

26.3 Tresca Yield Criterion

The Tresca criterion is a maximum shear stress criterion: plastic deformation begins when
the maximum shear stress reaches the critical value kT = Y/2, which is the maximum shear
stress at yield in uniaxial tension. Analytically, the Tresca yield criterion is

τmax = 1
2

(σmax − σmin) = kT . (26.22)



P1: FBQ

052177777Xc26.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:19

466 26. Phenomenological Plasticity

τ

σY

Y 3

Y 2

von Mises
Tresca Figure 26.4. The von Mises and Tresca ellipses in

the case of combined tension–torsion (σ, τ ) test.
According to von Mises criterion the yield stress
in pure shear is Y/

√
3, whereas according to Tresca

criterion it is Y/2, where Y is the yield stress in
simple tension.

Thus, the intermediate principal stress according to Tresca criterion does not have any
effect on the yield.

The maximum shear stress criterion can be recast in terms of principal stresses by any
of the following forms

1
2

max
(
|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|

)
= kT ,

1
4

(|σ1 − σ2| + |σ2 − σ3| + |σ3 − σ1|) = kT , (26.23)

[
1
4

(σ1 − σ2)2 − k2
T

][
1
4

(σ2 − σ3)2 − k2
T

][
1
4

(σ3 − σ1)2 − k2
T

]
= 0 .

Since σ1 − σ2 = σ ′
1 − σ ′

2, and similarly for other principal stress differences, and since
the invariants of the deviatoric part of stress are

J1 = (σ ′
1 − σ ′

2) + (σ ′
2 − σ ′

3) + (σ ′
3 − σ ′

1) = 0 ,

J2 = 1
6

[
(σ ′

1 − σ ′
2)2 + (σ ′

2 − σ ′
3)2 + (σ ′

3 − σ ′
1)2] , (26.24)

J3 = σ ′
1σ

′
2σ

′
3 ,

the analytical representation of the maximum shear stress criterion (26.3) in terms of the
invariants J2 and J3 is

4J 3
2 − 27J 2

3 − 36k2
T J 2

2 + 96k4
T J2 − 64k6

T = 0 . (26.25)

Because of its complexity, this representation of the yield criterion is rarely used.
The Tresca yield locus for plane stress (σ3 = 0) is depicted in Fig. 26.3b. The same plot

applies to three-dimensional states of stress, but with respect to the stress differences as
the coordinates (Fig. 26.3a). In the combined tension–torsion (σ, τ ) test, the Tresca yield
criterion gives

σ 2 + 4τ 2 = Y2 . (26.26)
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τ

σ
2α φ

σσ
13

n

n

c µ*

τn= c − µ*σn Figure 26.5. The Mohr’s circle corresponding to three-
dimensional state of stress with maximum stress σ1 and
minimum stress σ3, and the Mohr–Coulomb envelope
τn = c − µ∗σn.

This is an ellipse with the semiaxes of length Y and Y/2 along the σ and τ axes, respectively
(Fig. 26.4).

The von Mises yield criterion is in better agreement with experimental data than the
Tresca criterion. To optimize the fit with experimental data, a generalization of the von
Mises criterion in the form (

1 − c
J 2

3

J 3
2

)α
J2 = k2 (26.27)

has been suggested. Usually,α is taken to be equal to one, and c is an appropriate parameter.
Because of uncertainties in the description of the subsequent work hardening, the benefits
of using the representation (26.27) over the simple von Mises criterion J2 = k2 are hardly
worth. Further discussion can be found in the book by Hill (1950), and review articles by
Drucker (1960) and Naghdi (1960).

26.4 Mohr–Coulomb Yield Criterion

For geomaterials such as rocks and soils and for concrete, the inelastic deformation occurs
by frictional sliding over the plane of shearing, and thus the normal stress over that plane
affects the yield. A simple criterion that accounts for this is a Mohr–Coulomb yield criterion
τn = τf + c, where τf = −µ∗σn is the friction stress (µ∗ = tanφ is the coefficient of internal
friction, φ being the angle of friction), and c is the cohesive strength of the material. Failure
occurs if the Mohr’s circle corresponding to the stress state (σ1, σ2, σ3) touches the Mohr’s
envelope τn = c − µ∗σn (Fig. 26.5). The corresponding plane of failure has a normal at an
angle α from the axis of the least tensile stress (σ3). From Fig. 26.5, 2α = π/2 − φ and

σn = σ1 + σ3

2
+ σ1 − σ3

2
cos 2α ,

τn = σ1 − σ3

2
sin 2α .

(26.28)

Thus, the Mohr–Coulomb yield criterion is

σ1 − σ3 + (σ1 + σ3) sinφ = 2c cosφ , (26.29)

or, in all six sextants,

σmax − σmin + (σmax + σmin) sinφ = 2c cosφ . (26.30)
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Figure 26.6. (a) The Mohr–Coulomb hexagon for plane stress (σ3 = 0). The
yield stress in simple tension is Y+ and in compression Y−. (b) The Drucker–
Prager ellipse for plane stress.

It can be easily verified that, according to this criterion, the yield stress in pure shear is τY =
c cosφ, whereas the yield stresses in uniaxial tension and compression are Y+ = 2c tanα
and Y− = 2c cotα, respectively.

We note that the Mohr–Coulomb yield criterion is of the general form

f (J2, J3) = a − bI1 . (26.31)

Indeed, the criterion (26.29) can be rewritten as

σ1 − σ3 + 1
3

[(σ1 − σ2) − (σ2 − σ3)] sinφ = 2c cosφ − 2
3

I1 sinφ , (26.32)

where I1 = σ1 + σ2 + σ3. The left hand side of the above equation is an isotropic function
of deviatoric stress, which can thus be expressed in terms of J2 and J3.

The Mohr–Coulomb yield locus for plane stress (σ3 = 0) is depicted in Fig. 26.6a.

26.4.1 Drucker–Prager Yield Criterion

For porous metals, concrete and geomaterials like soils and rocks, plastic deformation has
its origin in pressure dependent microscopic processes. The corresponding yield condition
depends on both deviatoric and hydrostatic parts of the stress tensor. Drucker and Prager
(1952) suggested that yielding in soils occurs when the shear stress on octahedral planes
overcomes cohesive and frictional resistance to sliding on these planes, i.e., when

τoct = τf +
√

2
3

k, (26.33)

where

τoct =
(

2
3

J2

)1/2

, τf = −µ∗σoct = −1
3
µ∗ I1. (26.34)

The yield stress in simple shear is k, the coefficient of internal friction is µ∗, the first
invariant of the Cauchy stress tensor is I1, and J2 is the second invariant of the deviatoric
part of the Cauchy stress. The yield condition is consequently

f = J 1/2
2 + 1

3
µ∗ I1 − k = 0 . (26.35)
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Drucker-Prager Mohr-Coulomb

σ1

3

2

σ

σ

0

σ σ

σ

31

2

(a) (b)

Figure 26.7. The Drucker–Prager
cone and the Mohr–Coulomb pyramid
matched along the compressive
meridian shown in (a) principal stress
space and (b) deviatoric plane.

A modified friction parameter µ∗ = √
3/2µ∗ is conveniently introduced. The criterion

geometrically represents a cone in the principal stress space with its axis parallel to the
hydrostatic axis (Fig. 26.7). The radius of the circle in the deviatoric (π) plane is

√
2 k,

where k is the yield stress in simple shear. The angle of the cone is tan−1(
√

2µ∗/3). The
yield stresses in uniaxial tension and compression are, according to (26.35),

Y+ = 3k√
3 + µ∗

, Y− = 3k√
3 − µ∗

. (26.36)

For the yield condition to be physically meaningful, the restriction holds µ∗ <
√

3.
If the compressive states of stress are considered positive (as commonly done in geome-

chanics, e.g., Jaeger and Cook, 1976), a minus sign appears in front of the second term of
f in (26.35). In the case of plane stress (σ3 = 0), the Drucker–Prager criterion reduces to
an ellipse in the (σ1, σ2) plane, with the center at the point σ1 = σ2 = −2µ∗k/(1 − 4µ2

∗/3),
Fig. 26.6b. The magnitudes of the yield stresses in simple tension and compression are
as in (26.36), whereas the yield stresses in equal biaxial tension and compression are,
respectively,

σ+ = 3k√
3 + 2µ∗

, σ− = 3k√
3 − 2µ∗

. (26.37)

When the Drucker–Prager cone is applied to porous rocks, it overestimates the yield
stress at higher pressures, and inadequately predicts inelastic volume changes. To circum-
vent the former, DiMaggio and Sandler (1971) introduced an ellipsoidal cap to close the
cone at the certain level of pressure. This cap is described by the equation

J2

K2
+

(
1

3
I1 + b

)2

(a − b)2
= 1 , (26.38)

where a is the magnitude of the compressive stress that would alone cause the crushing of
the material (apex of the cap in Fig. 26.8). Other shapes of the cap were also used. Details
can be found in Chen and Han (1988). See also Ortiz (1985) and Lubarda et al. (1996).
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µ

k

cap
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I13
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K

-b-a k

yield cone

Figure 26.8. The Drucker–Prager yield criterion shown in
the coordinates of stress invariants I1 and J2. The yield stress
in pure shear is k, and the frictional parameter isµ∗. At high
pressure a cap is used to close the cone.

26.5 Gurson Yield Criterion for Porous Metals

Based on a rigid-perfectly plastic analysis of spherically symmetric deformation around a
spherical cavity, Gurson (1977) suggested a yield criterion for porous metals in the form

f = J2 + 2
3
υY2 cosh

(
I1

2Y

)
− (1 + υ2)

Y2

3
= 0 , (26.39)

where υ is the porosity (void/volume fraction) and Y is the tensile yield stress of the matrix
material (Fig. 26.9). To improve the agreement with experimental data on ductile void
growth, Tvergaard (1982) introduced two additional material parameters (q1,q2) in the
structure of the Gurson yield criterion, such that

f = J2 + 2
3
υY2q1 cosh

(
q2 I1

2Y

)
− (1 + q2

1υ
2)

Y2

3
= 0 . (26.40)

Further refinements of the model were suggested by Tvergaard and Needleman (1984)
and Mear and Hutchinson (1985). If there is no porosity (υ = 0), both (26.39) and (26.40)
reduce to von Mises yield criterion J2 = Y2/3.

26.6 Anisotropic Yield Criteria

An anisotropic generalization of the von Mises yield criterion, due to Hill (1950), replaces
J2 with a general quadratic function of the stress components

1
2

Ai jklσi jσkl = k2 , (26.41)

where the anisotropy tensor Ai jkl has the same symmetries as the elastic stiffness tensor
(Ai jkl = Ajikl = Akli j ). Decomposing the stress tensor into its deviatoric and hydrostatic
parts

σi j = σ ′
i j − pδi j , p = −1

3
σkk , (26.42)

J
1/2

2

0

Y 3

I1

2Y

ln υ ln υ

1 υ
Figure 26.9. Gurson yield condition for porous metals with
the void/volume fraction υ. The tensile yield stress of the
matrix material is Y.
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the yield criterion (26.41) can be rewritten as

1
2

Ai jklσ
′
i jσ

′
kl − pAi jkkσ

′
i j + 1

2
p2 Aii j j = k2 . (26.43)

Consequently, if the plastic yield is independent of p, we must have Ai jkk = 0, and the yield
criterion reduces to

1
2

Ai jklσ
′
i jσ

′
kl = k2 . (26.44)

The von Mises isotropic yield condition is recovered if

Ai jkl = 1
2

(δikδ jl + δilδ jk) − 1
3
δi jδkl . (26.45)

The most well-known anisotropic yield criterion of the type considered in this section is
the Hill’s orthotropic yield criterion. Hill (1948) introduced the yield condition, expressed
relative to the principal axes of orthotropy, in the form

F(σ22 − σ33)2 + G(σ22 − σ11)2 + H(σ11 − σ22)2 + 2Lσ 2
23 + 2Mσ 2

31 + 2Nσ 2
12 =1,

where F,G,H, L,M, N are the material parameters. If the tensile yield stresses in the
directions of the principal axes of orthotropy are Y1, Y2, and Y3, then

1
Y2

1

= G + H ,
1

Y2
2

= H + F ,
1

Y2
3

= F + G . (26.46)

Consequently, the material parameters F,G, and H are specified by

F = 1
2

(
1

Y2
2

+ 1
Y2

3

− 1
Y2

1

)
, (26.47)

G = 1
2

(
1

Y2
3

+ 1
Y2

1

− 1
Y2

2

)
, (26.48)

H = 1
2

(
1

Y2
1

+ 1
Y2

2

− 1
Y2

3

)
. (26.49)

Furthermore, if T12, T23, and T31 are the yield stresses under pure shear in the corresponding
planes of orthotropy, we have

L = 1
2T2

23

, M = 1
2T2

31

, N = 1
2T2

12

. (26.50)

In the case of transverse isotropy (with the axis 3 as the axis of transverse isotropy), the
relationships hold

N = F + 2H = G + 2H , L = M . (26.51)

For a fully isotropic material, L = M = N = 3F = 3G = 3H.

26.7 Elastic-Plastic Constitutive Equations

In the rate-type theory of plasticity, the rate of deformation tensor D (symmetric part
of the velocity gradient L = Ḟ · F−1) is decomposed into the elastic and plastic parts,
such that
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D = De + Dp . (26.52)

The elastic part gives a reversible part of the strain increment Dedt in an infinitesimal

loading–unloading cycle of the stress increment
�
τ dt . Thus, if Me is the fourth-order tensor

of elastic compliances, we have

De = Me :
�
τ , (26.53)

where
�
τ = σ̇ + σ trD − W · σ + σ · W (26.54)

is the Jaumann rate of the Kirchhoff stress τ = (det F)σ, with the current state as the ref-
erence. For infinitesimally small elastic deformation of isotropic materials, the rectangular
components of the elastic compliance tensor (inverse of the elastic moduli tensor) are

Me
i jkl = 1

2µ

[
1
2

(δikδ jl + δilδ jk) − λ

2µ+ 3λ
δi jδkl

]
. (26.55)

The Lamé elastic constants are λ and µ, and δi j denotes the Kronecker delta.
In the so-called associative theory of plasticity, the plastic part of the rate of deformation

tensor is codirectional with the outward normal to the yield surface in stress space, i.e.,

Dp = γ̇ ∂ f
∂σ
, γ̇ > 0 . (26.56)

It can be shown that this normality rule follows from the plasticity postulate, which states
that the net work in an isothermal cycle of strain must be positive if a cycle involves
plastic deformation at some stage (Ilyushin, 1961; Hill and Rice, 1973). In the context of
infinitesimal strain, Drucker (1951,1959) introduced a plasticity postulate based on stress
cycles, which also leads to normality rule and the convexity of the yield surface. Assuming
that the response is incrementally linear, the loading index γ̇ can be expressed as

γ̇ = 1
H

(
∂ f
∂σ

:
�
τ

)
, (26.57)

where H is a scalar parameter dependent on the history of deformation. For a given
representation of the yield function and its evolution, this parameter can be determined
from the consistency condition for continuing plastic deformation ḟ = 0.

In the material is in the hardening range (H > 0), three types of response can be iden-
tified, depending on the direction of stress increment. These are

∂ f
∂σ

:
�
τ

⎧⎪⎪⎨
⎪⎪⎩
> 0, plastic loading,

= 0, neutral loading,

< 0, elastic unloading.

(26.58)

Thus, in the case of plastic loading

Dp = 1
H

(
∂ f
∂σ

:
�
τ

)
∂ f
∂σ

. (26.59)

Physically, the plastic increment of the rate of deformation tensor Dpdt is the residual

strain increment left upon a cycle of application and removal of the stress increment
�
τ dt .
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The overall elastoplastic constitutive structure is obtained by combining (26.53) and
(26.59). This gives

D =
(

Me + 1
H
∂ f
∂σ

∂ f
∂σ

)
:

�
τ . (26.60)

The scalar parameter H can be positive, negative or equal to zero. Three types of response
are thus possible within this constitutive framework. They are

H > 0,
∂ f
∂σ

:
�
τ > 0, hardening,

H < 0,
∂ f
∂σ

:
�
τ < 0, softening,

H = 0,
∂ f
∂σ

:
�
τ = 0, ideally plastic.

(26.61)

Starting from the current yield surface in stress space, the stress point moves outward in the
case of hardening, inward in the case of softening, and tangentially to the yield surface in
the case of ideally plastic response. In the case of softening, D is not uniquely determined

by the prescribed stress rate
�
τ , because either (26.60) or the elastic unloading expression

applies,

D = Me :
�
τ . (26.62)

In the case of ideally plastic response, the plastic part of the strain rate is indeterminate to
the extent of an arbitrary positive multiple, since γ̇ in (26.57) is indeterminate.

Clearly, from (26.59),

�
τ : Dp = 1

H

(
∂ f
∂σ

:
�
τ

)2

, (26.63)

which is positive in the hardening range and negative in the softening range of the material
response. The inverted form of (26.60) is

�
τ =

[
Λe − 1

h

(
Λe :

∂ f
∂σ

)(
∂ f
∂σ

: Λe
)]

: D, (26.64)

where Λe is the elastic stiffness tensor (inverse of Me), and

h = H + ∂ f
∂σ

: Λe :
∂ f
∂σ
. (26.65)

26.8 Isotropic Hardening

Suppose that the yield function is an isotropic function of stress throughout the deformation
process, i.e.,

f (σ, K) = 0, (26.66)

where

K = K(ϑ) (26.67)

is a scalar function of deformation history which defines the size of the current yield sur-
face. The hardening model in which the yield surface expands during plastic deformation,
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preserving its shape, is known as the isotropic hardening model. Because f is taken to be an
isotropic function of stress, the material is assumed to be isotropic. The history parameter
ϑ can be taken to be the generalized plastic strain, defined by

ϑ =
∫ t

0
(2 Dp : Dp)1/2 dt. (26.68)

The consistency condition for continuing plastic deformation, which requires that the
stress state remains on the yield surface during plastic deformation, is

ḟ = ∂ f
∂σ

:
�
τ + ∂ f

∂K
∂K
∂ϑ

ϑ̇ = 0 . (26.69)

Since, from (26.56), (26.57), and (26.68),

ϑ̇ = (2 Dp : Dp)1/2 = 1
H

(
2
∂ f
∂σ

:
∂ f
∂σ

)1/2 (
∂ f
∂σ

:
�
τ

)
, (26.70)

the substitution into (26.69) gives

H = − ∂ f
∂K

dK
dϑ

(
2
∂ f
∂σ

:
∂ f
∂σ

)1/2

. (26.71)

26.8.1 J2 Flow Theory of Plasticity

Suppose that the yield criterion is of the von Mises type

f = J2 − k2(ϑ) = 0, J2 = 1
2
σ ′ : σ ′ , (26.72)

where σ ′ is a deviatoric part of σ. It readilly follows that

∂ f
∂σ

= σ ′ (26.73)

and

H = 4k2hp
t . (26.74)

The plastic tangent modulus in the pure shear test is

hp
t = dk

dϑ
. (26.75)

Equation (26.73) implies that plastic deformation is isochoric,

tr Dp = 0. (26.76)

The total rate rate of deformation is

D =
(

Me + 1

2hp
t

σ ′ σ ′

σ ′ : σ ′

)
:

�
τ . (26.77)

The plastic loading condition in the hardening range is

σ ′ :
�
τ > 0 . (26.78)
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Figure 26.10. Illustration of the Bauschinger effect (|σ−
y | < σ+

y ) in uniaxial tension.

The inverse equation is

�
τ =

(
Λe − 2µ

1 + hp
t /µ

σ ′ σ ′

σ ′ : σ ′

)
: D, (26.79)

which applies for

σ ′ : D > 0. (26.80)

In retrospect, the plastic rate of deformation can be expressed either in terms of the
stress rate or the total rate of deformation as

Dp = 1

2hp
t

σ ′ :
�
τ

σ ′ : σ ′ σ ′ = 1

1 + hp
t /µ

σ ′ : D
σ ′ : σ ′ σ ′. (26.81)

The derivation of elastoplastic constitutive equations within the framework of infinitesimal
strain, with a historical perspective, can be found in the books by Hill (1950), Kachanov
(1971), and Johnson and Mellor (1973).

26.9 Kinematic Hardening

To account for the Bauschinger effect (Fig. 26.10) and anisotropic hardening, and thus
provide better description of material response under cyclic loading, a simple model of
kinematic hardening was introduced by Melan (1938) and Prager (1955,1956). According
to this model, the initial yield surface does not change its size and shape during plastic de-
formation, but translates in the stress space according to some prescribed rule (Fig. 26.11).
If the yield criterion is pressure-independent, it is assumed that

f (σ ′ − α, K0) = 0, K0 = const., (26.82)

where α represents the current center of the yield locus in the deviatoric plane (back
stress), and f is an isotropic function of the stress difference σ ′ − α (Fig. 26.12). The size
of the yield locus is specified by the constant K0. The consistency condition for continuing
plastic deformation is

∂ f
∂σ

:
(�
τ − �

α
)

= 0 . (26.83)
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02 Figure 26.11. One-dimensional stress-strain response according to

linear kinematic hardening model.

Suppose that the yield surface instantaneously translates so that the evolution of back
stress is governed by

�
α = c(α, ϑ) Dp + C(α, ϑ) (Dp : Dp)1/2

, (26.84)

where c and C are the appropriate scalar and tensor functions of α and ϑ . This representa-
tion is in accord with assumed time independence of plastic deformation, which requires
(26.84) to be homogeneous function of degree one in the components of plastic rate of
deformation. Since the plastic rate of deformation is

Dp = γ̇ ∂ f
∂σ
, (26.85)

the substitution of (26.84) into (26.83) gives the loading index

γ̇ = 1
H

(
∂ f
∂σ

:
�
τ

)
. (26.86)

The hardening parameter H is defined by

H = c
(
∂ f
∂σ

:
∂ f
∂σ

)
+
(
∂ f
∂σ

:
∂ f
∂σ

)1/2 (
C :

∂ f
∂σ

)
. (26.87)

If the yield condition is specified by

f = 1
2

(σ ′ − α) : (σ ′ − α) − k2
0 = 0, (26.88)

then

∂ f
∂σ

= σ ′ − α. (26.89)

The loading index is

γ̇ = 1
H

(σ ′ − α) :
�
τ , (26.90)

with

H = 2ck2
0 +

√
2k0 C : (σ ′ − α) . (26.91)
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α

~ ~D

0

dα (σ′   α)
p

σ′

f(α,Κ 0) = 0

dα

f(σ  α,Κ 0) = 0

Figure 26.12. Translation of the yield surface according to
kinematic hardening model. The center of the yield surface
is the back stress α. Its evolution is governed by dα ∼ Dp ac-
cording to Prager’s model, and by dα ∼ (σ ′ − α) according
to Ziegler’s model.

26.9.1 Linear and Nonlinear Kinematic Hardening

When C = 0 and c = 2hp
t , the model with evolution equation (26.84) reduces to Prager’s

linear kinematic hardening (Fig. 26.12). The corresponding elastoplastic constitutive equa-
tion is

D =
[

Me + 1

2hp
t

(σ ′ − α) (σ ′ − α)
(σ ′ − α) : (σ ′ − α)

]
:

�
τ , (26.92)

with plastic loading condition in the hardening range

(σ ′ − α) :
�
τ > 0. (26.93)

The inverse equation is

�
τ =

[
Λe − 2µ

1 + hp
t /µ

(σ ′ − α) (σ ′ − α)
(σ ′ − α) : (σ ′ − α)

]
: D, (26.94)

provided that

(σ ′ − α) : D > 0. (26.95)

Alternatively, by using the suggestion by Ziegler (1959), the evolution equation for back
stress can be taken in the form

�
α = β̇ (σ ′ − α). (26.96)

The proportionality factor β̇ is determined from the consistency condition in terms of
σ and α (Fig. 26.12). Detailed analysis is available in the book by Chakrabarty (1987).
Duszek and Perzyna (1991) used an evolution equation that is a linear combination of the
Prager and Ziegler hardening rules.

A nonlinear kinematic hardening model of Armstrong and Frederick (1966) is obtained
if C in (26.84) is taken to be proportional to back stress, C = −c0 α, where c0 is a constant
material parameter. In this case

�
α = 2h Dp − c0 α (Dp : Dp)1/2 , (26.97)
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Figure 26.13. Geometric illustration of isotropic,
kinematic, and combined hardening. The initial yield
surface ( f0) expands in the case of isotropic, trans-
lates in the case of kinematic ( fk), and expands and
translates in the case of combined hardening ( fc).

with h as another material parameter. The added nonlinear term in (26.97), referred to as
a recall term, gives rise to hardening moduli for reversed plastic loading that are in better
agreement with experimental data. It follows that

Dp = 1
2h(1 − m)

(σ ′ − α) :
�
τ

(σ ′ − α) : (σ ′ − α)
(σ ′ − α) , (26.98)

where

m = c0

2 h
(σ ′ − α) : α

[(σ ′ − α) : (σ ′ − α)]1/2
. (26.99)

If the yield surface expands and translates during plastic deformation, we have a com-
bined isotropic–kinematic hardening (Fig. 26.13). For example, consider

1
2

(σ ′ − α) : (σ ′ − α) = k2
α(ϑ), (26.100)

where α represents the current center of the yield surface and kα(ϑ) is its current radius.
If the evolution equation for the back stress α is given by (26.97), we obtain

Dp = 1

2hp
α + 2h(1 − m)

(σ ′ − α) :
�
τ

(σ ′ − α) : (σ ′ − α)
(σ ′ − α) . (26.101)

The rate of the yield surface expansion is hp
α = dkα/dϑ , and the parameter m is specified by

(26.99). For purely kinematic hardening hp
α = 0, whereas for a purely isotropic hardening

hp
α = hp

t (plastic tangent modulus in simple shear).
More involved, multisurface hardening models were proposed by Mróz (1967,1976),

Dafalias and Popov (1975,1976), and Krieg (1975). A review of these models is given in
the book by Khan and Huang (1995). See also the books by Lubliner (1990) and Lubarda
(2002).

26.10 Constitutive Equations for Pressure-Dependent Plasticity

Suppose that the pressure-dependent yield criterion is of the type

f (J2, I1, K) = 0, (26.102)

where J2 and I1 stand for the second invariant of the deviatoric stress and the first invariant
of the stress, whereas K designates an appropriate history dependent parameter. If it is
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assumed that plastic part of the rate of deformation tensor is normal to the yield surface,
we have

Dp = γ̇ ∂ f
∂σ
,

∂ f
∂σ

= ∂ f
∂ J2

σ ′ + ∂ f
∂ I1

I. (26.103)

The unit second-order tensor whose components are δi j is denoted by I. The loading index
can be expressed from the consistency condition ḟ = 0 as

γ̇ = 1
H

(
∂ f
∂ J2

σ ′ + ∂ f
∂ I1

I
)

:
�
τ , (26.104)

where H is a hardening modulus. The substitution of (26.104) into (26.103) gives

Dp = 1
H

[(
∂ f
∂ J2

σ ′ + ∂ f
∂ I1

I
)(

∂ f
∂ J2

σ ′ + ∂ f
∂ I1

I
)]

:
�
τ . (26.105)

The volumetric part of the plastic rate of deformation is

tr Dp = 3
H
∂ f
∂ I1

(
∂ f
∂ J2

σ ′ + ∂ f
∂ I1

I
)

:
�
τ . (26.106)

In the case of the Drucker–Prager yield criterion for geomaterials, we have

∂ f
∂ J2

= 1
2

J −1/2
2 ,

∂ f
∂ I1

= 1
3
µ∗ (26.107)

and

H = hp
t = dk

dϑ
, ϑ =

∫ t

0
(2 Dp′ : Dp′)1/2 dt. (26.108)

The relationship k = k(ϑ) between the shear yield stress k under a given superimposed
pressure, and the generalized shear plastic strain ϑ , is assumed to be known. Note that
ϑ̇ = γ̇ .

In the case of the Gurson yield criterion for porous metals, we have

∂ f
∂ J2

= 1,
∂ f
∂ I1

= 1
3
υ Y sinh

(
I1

2Y

)
(26.109)

and

H = 2
3
υ(1 − υ)Y3 sinh

(
I1

2Y

)[
υ − cosh

(
I1

2Y

)]
. (26.110)

The change in porosity during plastic deformation is specified by the evolution equation,
such as

υ̇ = (1 − υ) tr Dp. (26.111)

Other evolution equations, which take into account nucleation and growth of voids, have
also been considered (e.g., Tvergaard and Needleman, 1984). From (26.111) and (26.103)
it follows that the porosity evolves according to

υ̇ = γ̇ υ(1 − υ)Y sinh
(

I1

2Y

)
. (26.112)
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26.11 Nonassociative Plasticity

Constitutive equations in which plastic part of the rate of deformation is normal to the
yield surface f = 0, i.e.,

Dp = γ̇ ∂ f
∂σ
, (26.113)

are referred to as the associative flow rules. A sufficient condition for this constitutive
structure is that the material obeys the Ilyushin’s work postulate (Ilyushin, 1961). However,
many pressure-dependent dilatant materials, with internal frictional effects, are not well
described by the associative flow rules. For example, the associative flow rules largely
overestimate inelastic volume changes in geomaterials such as rocks and soils (Rudnicki
and Rice, 1975; Rice, 1977), and in certain high-strength steels exhibiting the strength-
differential effect by which the yield strength is higher in compression than in tension
(Spitzig, Sober, and Richmond, 1975). For such materials, plastic part of the rate of strain
is taken to be normal to the plastic potential surface

g = 0, (26.114)

which is distinct from the yield surface f = 0. The resulting constitutive structure,

Dp = γ̇ ∂g
∂σ
, (26.115)

is referred to as a nonassociative flow rule.
The consistency condition ḟ = 0 gives the loading index

γ̇ = 1
H

(
∂ f
∂σ

:
�
τ

)
, (26.116)

where H is a hardening modulus. Thus,

Dp = 1
H

(
∂ f
∂σ

:
�
τ

)
∂g
∂σ
. (26.117)

The overall elastic-plastic constitutive structure is

D =
[

Me + 1
H

(
∂g
∂σ

∂ f
∂σ

)]
:

�
τ . (26.118)

Because g 
= f , the elastoplastic compliance tensor in (26.118) does not possess a reciprocal
symmetry.

In an inverted form, the constitutive equation (26.118) becomes

�
τ =

[
Λe − 1

h

(
Λe :

∂g
∂σ

)(
∂ f
∂σ

: Λe
)]

: D , (26.119)

where

h = H + ∂ f
∂σ

: Λe :
∂g
∂σ
. (26.120)

26.12 Plastic Potential for Geomaterials

To better describe inelastic behavior of geomaterials whose yield is governed by the
Drucker–Prager yield criterion of (26.35), a nonassociative flow rule is used with the plastic
potential (Fig. 26.14) given by

g = J 1/2
2 + 1

3
β I1 − k = 0. (26.121)
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= 0

J 1/2
2

I13
1

D
p

0

σ
f
σ

g
~

f = 0

g

Figure 26.14. Illustration of a nonassocia-
tive flow rule. The plastic rate of defor-
mation Dp is normal to the flow potential
g = 0, which is distinct from the yield sur-
face f = 0.

The material parameter β is in general different from the friction parameter µ∗ of (26.35).
Thus,

Dp = γ̇ ∂g
∂σ

= γ̇
(

1
2

J −1/2
2 σ ′ + 1

3
β I
)
. (26.122)

The loading index γ̇ is determined from the consistency condition. Assuming known the
relationship k = k(ϑ) between the shear yield stress and the generalized shear plastic strain
ϑ , defined by (26.108), the consistency condition ḟ = 0 gives

γ̇ = 1
H

(
1
2

J −1/2
2 σ ′ + 1

3
µ∗ I

)
:

�
τ , H = hp

t = dk
dϑ
. (26.123)

The substitution of (26.123) into (26.122) yields

Dp = 1
H

[(
1
2

J −1/2
2 σ ′ + 1

3
β I
)(

1
2

J −1/2
2 σ ′ + 1

3
µ∗ I

)]
:

�
τ . (26.124)

The deviatoric and spherical parts of the plastic rate of deformation are

Dp′ = 1
2H

σ ′

J 1/2
2

(
σ ′ :

�
τ

2 J 1/2
2

+ 1
3
µ∗ tr

�
τ

)
, (26.125)

tr Dp = β

H

(
σ ′ :

�
τ

2 J 1/2
2

+ 1
3
µ∗ tr

�
τ

)
. (26.126)

To physically interpret the parameter β, we observe from (26.122) that

(2 Dp′ : Dp′)1/2 = γ̇ , tr Dp = β γ̇ , (26.127)

i.e.,

β = tr Dp

(2 Dp′ : Dp′)1/2
. (26.128)

Thus,β is the ratio of the volumetric and shear part of the plastic rate of deformation, which
is often called the dilatancy factor (Rudnicki and Rice, 1975). The frictional parameter
and inelastic dilatancy of the material actually change with the progression of inelastic
deformation, but are here treated as constants. This is further analyzed by Nemat-Nasser
and Shokooh (1980) and Nemat-Nasser (1983).
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The deviatoric and spherical parts of the total rate of deformation are, respectively,

D′ =
�
τ ′

2µ
+ 1

2H
σ ′

J 1/2
2

(
σ ′ :

�
τ

2 J 1/2
2

+ 1
3
µ∗ tr

�
τ

)
, (26.129)

tr D = 1
3κ

tr
�
τ + β

H

(
σ ′ :

�
τ

2 J 1/2
2

+ 1
3
µ∗ tr

�
τ

)
. (26.130)

These can be inverted to give the deviatoric and spherical parts of the stress rate. The
results are

�
τ ′ = 2µ

[
D′ − 1

c
σ ′

J 1/2
2

(
σ ′ : D

2 J 1/2
2

+ µ∗
κ

2µ
tr D

)]
, (26.131)

tr
�
τ = 3κ

c

[(
1 + H

µ

)
tr D − β σ ′ : D

J 1/2
2

]
, (26.132)

where

c = 1 + H
µ

+ µ∗β
κ

µ
. (26.133)

If the friction coefficient µ∗ is equal to zero, (26.131) and (26.132) reduce to

�
τ ′ = 2µ

[
D′ − 1

1 + H/µ
σ ′ : D

2 J2
σ ′
]
, (26.134)

tr
�
τ = 3κ

(
tr D − β

1 + H/µ
σ ′ : D

J 1/2
2

)
. (26.135)

With a vanishing dilatancy factor (β = 0), (26.134) and (26.135) coincide with the consti-
tutive equations of isotropic hardening pressure-independent metal plasticity.

26.13 Rate-Dependent Plasticity

In the modeling of rate-dependent plastic response of metals and alloys, there is no yield
surface in the model and plastic deformation commences from the onset of loading, al-
though it may be exceedingly small below certain levels of applied stress. In his analysis
of rate-dependent behavior of metals, Rice (1970,1971) showed that the plastic rate of
deformation can be derived from a scalar flow potential �, as its gradient

Dp = ∂� (σ, T, H)
∂σ

, (26.136)

provided that the rate of shearing on any given slip system within a crystalline grain depends
on local stresses only through the resolved shear stress. The history of deformation is
represented by the pattern of internal rearrangements H, and the absolute temperature
is T. Geometrically, the plastic part of the strain rate is normal to surfaces of constant
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flow potential in stress space. Time-independent behavior can be recovered, under certain
idealizations – neglecting creep and rate effects, as an appropriate limit. In this limit, at
each instant of deformation there is a range in stress space over which the flow potential is
constant. The current yield surface is then a boundary of this range, a singular clustering
of all surfaces of constant flow potential.

The power-law representation of the flow potential is

� = 2γ̇ 0

m + 1

(
J 1/2

2

k

)m

J 1/2
2 , J2 = 1

2
σ ′ : σ ′, (26.137)

where k = k(T, H) is the reference shear stress, γ̇ 0 is the reference shear strain rate to be
selected for each material, and m is the material parameter. The corresponding plastic part
of the rate of deformation is

Dp = γ̇ 0

(
J 1/2

2

k

)m
σ ′

J 1/2
2

. (26.138)

The equivalent plastic strain ϑ , defined by (26.69), is usually used as the only history
parameter, and the reference shear stress depends on ϑ and T according to

k = k0
(

1 + ϑ

ϑ 0

)α
exp

(
−β T − T0

Tm − T0

)
. (26.139)

Here, k0 and ϑ0 are the normalizing stress and strain, T0 and Tm are the room and melting
temperatures, and α and β are the material parameters. The total rate of deformation is

D = Me :
�
τ + γ̇ 0

(
J 1/2

2

k

)m
σ ′

J 1/2
2

. (26.140)

The instantaneous elastic compliance tensor is Me. From the onset of loading the defor-
mation rate consists of elastic and plastic constituents, although for large m the plastic

contribution may be small if J2 is less than k. The inverted form of (26.140), expressing
�
τ

in terms of D, is

�
τ = Λe : D − 2µγ̇ 0

(
J 1/2

2

k

)m
σ ′

J 1/2
2

. (26.141)

Another representation of the flow potential, according to the Johnson–Cook (1983)
model, is

� = 2γ̇ 0

a
kexp

[
a

(
J 1/2

2

k
− 1

)]
. (26.142)

The reference shear stress is

k = k0
[

1 + b
(
ϑ

ϑ 0

)c][
1 −

(
T − T0

Tm − T0

)d
]
, (26.143)
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Figure 26.15. Nonlinear stress-strain response in pure shear. Indicated are the initial
elastic modulus E, the secant modulus hs, and the tangent modulus ht.

where a,b, c, and d are the material parameters. The corresponding plastic part of the rate
of deformation becomes

Dp = γ̇ 0 exp

[
a

(
J 1/2

2

k
− 1

)]
σ ′

J 1/2
2

. (26.144)

26.14 Deformation Theory of Plasticity

Simple plasticity theory has been suggested for proportional loading and small deformation
by Hencky (1924) and Ilyushin (1947,1963). Assume that the loading is such that all stress
components increase proportionally, i.e.,

σ = c(t)σ∗, (26.145)

where σ∗ is the stress tensor at an instant t∗ and c(t) is a monotonically increasing function
of t , with c(t∗) = 1. This implies that the principal directions of σ remain fixed during the
deformation process and parallel to those of σ∗.

Because the stress components proportionally increase, and no elastic unloading takes
place, it is assumed that elastoplastic response can be described macroscopically by the
constitutive structure of nonlinear elasticity, in which the total strain is a function of the
total stress. Thus, we decompose the strain tensor into elastic and plastic parts,

e = ee + ep, (26.146)

and assume that

ee = Me : σ , ep = ϕ σ ′ , (26.147)

where Me is the elastic compliance tensor, and ϕ is an appropriate scalar function to be
determined in accord with experimental data. The prime designates a deviatoric part, so
that plastic strain tensor is assumed to be traceless.

Suppose that a nonlinear relationship

τ = τ (γ ) (26.148)

between the stress and strain is available from the elastoplastic shear test. Let the secant
and tangent moduli be defined by (Fig. 26.15)

hs = τ

γ
, ht = dτ

dγ
, (26.149)
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and let

τ =
(

1
2
σ ′ : σ ′

)1/2

, γ = (2 e′ : e′)1/2
. (26.150)

Since

e′ =
(

1
2µ

+ ϕ
)
σ ′, (26.151)

the substitution into (26.150) gives

ϕ = 1
2hs

− 1
2µ
. (26.152)

26.14.1 Rate-Type Formulation of Deformation Theory

Although the deformation theory of plasticity is a total strain theory, deformation theory
can be cast in the rate-type form. This is important for the comparison with the flow
theory of plasticity and for extending the application of the resulting constitutive equations
beyond the proportional loading. The rate-type formulation is also needed whenever the
considered boundary value problem is being solved in an incremental manner.

In place of (26.146) and (26.147), we take

D = De + Dp, (26.153)

De = Me :
�
τ , (26.154)

Dp = ϕ̇ σ ′ + ϕ �
τ ′. (26.155)

The deviatoric and spherical parts of the total rate of deformation tensor are accordingly

D′ = ϕ̇ σ ′ +
(

1
2µ

+ ϕ
)

�
τ ′, (26.156)

tr D = 1
3κ

tr
�
τ . (26.157)

To derive an expression for the rate ϕ̇, we use

τ τ̇ = 1
2
σ ′ :

�
τ , γ γ̇ = 2 e′ : D. (26.158)

In view of (26.149), (26.151), and (26.152), this gives

1
2
σ ′ :

�
τ = ht σ

′ : D′. (26.159)

When (26.156) is incorporated into (26.159), there follows

ϕ̇ = 1
2

(
1
ht

− 1
hs

)
σ ′ :

�
τ

σ ′ : σ ′ . (26.160)
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Figure 26.16. Shear stress vs. plastic shear strain. The plastic secant modulus is
hp

s , and the plastic tangent modulus is hp
t .

Substituting (26.160) into (26.156), the deviatoric part of the total rate of deformation
becomes

D′ = 1
2hs

[
�
τ ′ +

(
hs

ht
− 1

)
σ ′ :

�
τ

σ ′ : σ ′ σ ′
]
. (26.161)

Equation (26.161) can be inverted to express the deviatoric part of
�
τ as

�
τ ′ = 2hs

[
D′ −

(
1 − ht

hs

)
σ ′ : D
σ ′ : σ ′ σ ′

]
. (26.162)

During the initial, purely elastic, stage of deformation ht = hs = µ. The onset of plasticity,
beyond which (26.161) and (26.162) apply, occurs when τ , defined by the second invariant
of the deviatoric stress in (26.150), reaches the initial yield stress in shear. The resulting
theory is often referred to as the J2 deformation theory of plasticity.

If plastic secant and tangent moduli are used (Fig. 26.16), related to secant and tangent
moduli with respect to total strain by

1
ht

− 1

hp
t

= 1
hs

− 1

hp
s

= 1
µ
, (26.163)

the plastic part of the rate of deformation can be rewritten as

Dp = 1

2hp
s

�
τ ′ +

(
1

2hp
t

− 1

2hp
s

)
σ ′ :

�
τ

σ ′ : σ ′ σ ′ . (26.164)

26.14.2 Application beyond Proportional Loading

Deformation theory agrees with flow theory of plasticity only under proportional loading,
because then specification of the final state of stress also specifies the stress history. For
general (nonproportional) loading, more accurate and physically appropriate is the flow
theory of plasticity, particularly with an accurate modeling of the yield surface and the
hardening characteristics. Budiansky (1959), however, indicated that deformation theory
can be successfully used for certain nearly proportional loading paths, as well. The stress

rate
�
τ ′ in (26.164) then does not have to be codirectional with σ ′. The first and third term

(both proportional to 1/2hp
s ) in (26.164) do not cancel each other in this case (as they

do for proportional loading), and the plastic part of the rate of deformation depends on

both components of the stress rate
�
τ ′, one in the direction of σ ′ and the other normal

to it. In contrast, according to the flow theory with the von Mises smooth yield surface,
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the component of the stress rate
�
τ ′ normal to σ ′ (thus tangential to the yield surface)

does not affect the plastic part of the rate of deformation. Physical theories of plasticity
(Batdorf and Budiansky, 1954; Sanders, 1955; Hill, 1967) indicate that the yield surface of
a polycrystalline aggregate develops a vertex at its loading stress point, so that infinites-
imal increments of stress in the direction normal to σ ′ indeed cause further plastic flow
(“vertex softening”). Because the structure of the deformation theory of plasticity under
proportional loading does not use any notion of the yield surface, Budiansky suggested
that (26.164) can be adopted to describe the response when the yield surface develops a
vertex. If (26.164) is rewritten in the form

Dp = 1

2hp
s

(
�
τ ′ − σ ′ :

�
τ

σ ′ : σ ′ σ ′
)

+ 1

2hp
t

σ ′ :
�
τ

σ ′ : σ ′ σ ′ , (26.165)

the first term on the right-hand side gives the response to component of the stress increment
normal toσ ′. The associated plastic modulus is hp

s . The plastic modulus associated with the
component of the stress increment in the direction of σ ′ is hp

t . Therefore, for continued
plastic flow with small deviations from proportional loading (so that all yield segments
which intersect at the vertex are active – fully active loading), (26.165) can be used as a
model of a pointed vertex (Stören and Rice, 1975). The idea was used by Rudnicki and
Rice (1975) to model the inelastic behavior of fissured rocks.

For the full range of directions of the stress increment, the relationship between the rates
of stress and plastic deformation is not necessarily linear, although it is homogeneous in
these rates, in the absence of time-dependent (creep) effects. A corner theory that predicts
continuous variation of the stiffness and allows increasingly nonproportional increments
of stress was formulated by Christoffersen and Hutchinson (1979). This is discussed in
the next subsection. When applied to the analysis of necking in thin sheets under biaxial
stretching, the results were in better agreement with experiments than those obtained from
the theory with a smooth yield surface. Further discussion can be found in Section 30.5 of
this book.

26.15 J2 Corner Theory

In phenomenological J2 corner theory of plasticity, proposed by Christoffersen and
Hutchinson (1979), the instantaneous elastoplastic moduli for nearly proportional loading
are chosen equal to the J2 deformation theory moduli, whereas for increasing deviation
from proportional loading the moduli increase smoothly until they coincide with elastic
moduli for stress increments directed along or within the corner of the yield surface. The
yield surface in the neighborhood of the loading point in deviatoric stress space (Fig. 26.17)
is a cone around the axis

lll = σ ′

(σ ′ : Mp
def : σ ′)1/2

, (26.166)

where Mp
def is the plastic compliance tensor of the deformation theory. The angular measure

θ of the stress rate direction, relative to the cone axis, is defined by

cos θ = lll : Mp
def :

�
τ

(
�
τ : Mp

def :
�
τ )1/2

. (26.167)
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total
loading

θθθ

θ

0

c

n

τ

σ

0

Figure 26.17. Near proportional or total loading
range at the yield vertex of J2 corner theory is a cone
with the angle θ0 around the axis l ∼ σ ′. The vertex
cone is defined by the angle θc, and θn = θc − π/2.

The conical surface separating elastic unloading and plastic loading is θ = θc, so that plastic
rate of deformation falls within the range 0 ≤ θ ≤ θn, where θn = θc − π/2. The range of
near proportional loading is 0 ≤ θ ≤ θ0. The angle θ0 is a suitable fraction of θn. The range
of near proportional loading is the range of stress-rate directions for which no elastic
unloading takes place on any of the yield vertex segments. This range is also called the
fully active or total loading range.

The stress-rate potential at the corner is defined by

% = %e +%p, %p = f (θ)%p
def. (26.168)

The elastic contribution to the stress-rate potential is

%e = 1
2

�
τ : Me :

�
τ . (26.169)

The plastic stress-rate potential of the J2 deformation theory can be written, from (26.161),
as

%
p
def = 1

2
�
τ : Mp

def :
�
τ , Mp

def = 1
2hs

[(
1 − hs

µ

)
A +

(
hs

ht
− 1

)
σ ′ σ ′

σ ′ : σ ′

]
,

where

Ai jkl = 1
2

(δikδ jl + δilδ jk) − 1
3
δi jδkl . (26.170)

The plastic stress-rate potential %p
def is weighted by the cone transition function f (θ) to

obtain the plastic stress-rate potential %p of the J2 corner theory.
In the range of near proportional loading

0 ≤ θ ≤ θ0, f (θ) = 1, (26.171)

whereas in the elastic unloading range

θc ≤ θ ≤ π, f (θ) = 0. (26.172)
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In the transition region θ0 ≤ θ ≤ θc, the function f (θ) decreases monotonically and
smoothly from one to zero in a way which ensures convexity of the plastic-rate potential,

%p(
�
τ 2) −%p(

�
τ 1) ≥ ∂%p

∂
�
τ 1

: (
�
τ 2 − �

τ 1). (26.173)

A simple choice of f (θ) meeting these requirements is

f (θ) = cos2
(
π

2
θ − θ0

θc − θ0

)
, θ0 ≤ θ ≤ θc. (26.174)

The specification of the angles θc and θ0 in terms of the current stress measure is discussed
by Christoffersen and Hutchinson (1979).

The rate independence of the material response requires

Dp = ∂%p

∂
�
τ

= ∂2%p

∂
�
τ ∂

�
τ

:
�
τ = Mp :

�
τ (26.175)

to be a homogeneous function of degree one, and %p to be a homogeneous function of

degree two in the stress rate
�
τ . The function %p(

�
τ ) is quadratic in the region of nearly

proportional loading, but highly nonlinear in the transition region, because of nonlinearity
associated with f (θ). The plastic rate of deformation is accordingly a linear function of
�
τ in the region of nearly proportional loading, but a nonlinear function in the transition
region.

26.16 Rate-Dependent Flow Theory

In this section we introduce a multiplicative decomposition of the total deformation gra-
dient into elastic and plastic parts to provide an additional kinematical framework for
dealing with finite elastic and plastic deformation. We introduce this in the specific context
of a strain rate, and thus time dependent, J2 flow theory of plasticity. We will introduce
a simple description of kinetic behavior for the strain rates and for the strain hardening
rates for the purpose of making the discussion explicit. We note, however, that these con-
cepts are developed in far more detail in the chapters to follow concerned with crystalline
plasticity.

26.16.1 Multiplicative Decomposition F = Fe · Fp

Consider the current elastoplastically deformed configuration of the material sample. Let
F be the deformation gradient that maps an infinitesimal material element dX from the
initial to dx in the current configuration, such that dx = F · dX. Introduce an intermediate
configuration by elastically destressing the current configuration to zero stress (Fig. 26.18).
Such configuration differs from the initial configuration by residual (plastic) deformation
and from the current configuration by reversible (elastic) deformation. If dxp is the material
element in the intermediate configuration, corresponding to dx in the current configura-
tion, then dx = Fe · dxp, where Fe represents the deformation gradient associated with the
elastic loading from the intermediate to current configuration. If the deformation gradient
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Figure 26.18. Schematic representation of the multiplica-
tive decomposition of deformation gradient into its elastic
and plastic parts. The intermediate configuration is obtained
from the current configuration by elastic destressing to zero
stress.

of the plastic transformation is Fp, such that dxp = Fp · dX, the multiplicative decomposi-
tion of the total deformation gradient into its elastic and plastic parts follows as

F = Fe · Fp. (26.176)

This decomposition was introduced in the phenomenological rate independent theory of
plasticity by Lee (1969). In the case when elastic destressing to zero stress is not physically
achievable because of possible onset of reverse inelastic deformation before the state of
zero stress is reached, the intermediate configuration can be conceptually introduced by
virtual destressing to zero stress, locking all inelastic structural changes that would take
place during the actual destressing.

The deformation gradients Fe and Fp are not uniquely defined because the interme-
diate unstressed configuration is not unique. Arbitrary local material rotations can be
superposed to the intermediate configuration, preserving it unstressed. In applications,
however, the decomposition (26.176) can be made unique by additional specifications, dic-
tated by the nature of the considered material model. For example, for elastically isotropic
materials the elastic stress response depends only on the elastic stretch Ve and not on the
rotation Re from the polar decomposition Fe = Ve · Re. Consequently, the intermediate
configuration can be specified uniquely by requiring that the elastic unloading takes place
without rotation (Fe = Ve). An alternative choice will be pursued below.

The velocity gradient in the current configuration at time t is defined by

L = Ḟ · F−1. (26.177)

The superposed dot designates the material time derivative. By introducing the multiplica-
tive decomposition of deformation gradient (26.176), the velocity gradient becomes

L = Ḟe · Fe−1 + Fe · (Ḟp · Fp−1) · Fe−1. (26.178)

The rate of deformation D and the spin W are, respectively, the symmetric and antisym-
metric part of L,

D = (
Ḟe · Fe−1)

s + [
Fe · (Ḟp · Fp−1) · Fe−1]

s , (26.179)

W = (
Ḟe · Fe−1)

a + [
Fe · (Ḟp · Fp−1) · Fe−1]

a . (26.180)
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Since Fe is specified up to an arbitrary rotation, and since the stress response of elastically
isotropic materials does not depend on the rotation, we shall choose the unloading program
such that [

Fe · (Ḟp · Fp−1) · Fe−1]
a = 0 . (26.181)

With this choice, the rate of deformation and the spin tensors become

D = (
Ḟe · Fe−1)

s + Fe · (Ḟp · Fp−1) · Fe−1 , (26.182)

W = (
Ḟe · Fe−1)

a . (26.183)

26.17 Elastic and Plastic Constitutive Contributions

It is assumed that the material is elastically isotropic in its initial undeformed state and
that plastic deformation does not affect its elastic properties. The elastic response is then
given by

τ = Fe · ∂ 
e(Ee)
∂Ee

· FeT. (26.184)

The elastic strain energy per unit unstressed volume, e, is an isotropic function of the La-
grangian strain Ee = (

FeT · Fe − I
)
/2. Plastic deformation is assumed to be incompressible

(det Fe = det F), so that τ = (det F)σ is the Kirchhoff stress. By differentiating (26.184),
we obtain

τ̇ − (
Ḟe · Fe−1) · τ − τ · (Ḟe · Fe−1)T = Λ̂

e
:
(
Ḟe · Fe−1)

s . (26.185)

The rectangular components of Λ̂
e

are

�̂e
i jkl = Fe

imFe
jn

∂2 e

∂Ee
mn∂Ee

pq
Fe

kpFe
lq. (26.186)

Equation (26.185) can be equivalently written as

τ̇ − (
Ḟe · Fe−1)

a · τ + τ · (Ḟe · Fe−1)
a = Λe :

(
Ḟe · Fe−1)

s . (26.187)

The modified elastic moduli tensor Λe has the components

�e
i jkl = �̂e

i jkl + 1
2

(τikδ jl + τ jkδil + τilδ jk + τ jlδik) . (26.188)

In view of (26.183), we can rewrite (26.187) as

�
τ = Λe :

(
Ḟe · Fe−1)

s , (26.189)

where
�
τ = τ̇ − W · τ + τ · W (26.190)

is the Jaumann rate of the Kirchhoff stress with respect to total spin. By inversion, (26.189)
gives the elastic rate of deformation as

De = (
Ḟe · Fe−1)

s = Λe −1 :
�
τ . (26.191)
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Physically, the strain increment De dt is a reversible part the total strain increment D dt ,

which is recovered upon loading–unloading cycle of the stress increment
�
τ dt . The remain-

ing part of the total rate of deformation,

Dp = D − De, (26.192)

is the plastic part, which gives a residual strain increment left after the considered infinites-
imal cycle of stress.

26.17.1 Rate-Dependent J 2 Flow Theory

Classical J2 flow theory uses the yield surface as generated earlier as a flow potential. Thus
the current yield criteria σ̄ = κ defines a series of yield surfaces in stress space, where κ
serves the role of a scaling parameter. Here we rephrase the yield criterion of (26.6) in
terms of the effective stress, σ̄ = (3/2σ ′

i jσ
′
i j )

1/2; κ is then the uniaxial yield stress Y. J2 flow
theory assumes that Dp ||σ ′. This amounts to taking

Dp || ∂σ̄
∂σ ′ , (26.193)

or

Dp
i j || ∂σ̄

∂σ ′
i j

= 3
2

σ ′
i j

σ̄
, (26.194)

Thus, we can write

Dp = ˙̄ep 3
2
σ ′

σ̄
, (26.195)

where ˙̄ep is an effective plastic strain rate whose specification requires an additional model
statement. By incorporating (26.195) we can write, from (26.189),

�
τ = Λe : De = Λe : (D − Dp) = Λe :

(
D − ˙̄ep 3

2
σ ′

σ̄

)
. (26.196)

For the present we use a simple power law expression of the form

˙̄ep = ė0

(
σ̄

g

)1/m

, (26.197)

where ė0 is a reference strain rate and 1/m represents a strain rate sensitivity coefficient.
We note that for common metals, 50 < 1/m< 200. For values of 1/m ∼ 100, or larger, the
materials will display a very nearly rate independent response in the sense that σ̄ will track
g, the hardness, at nearly any value of strain rate.

Strain hardening is described as an evolution of the hardness function g. As an example,
we adopt the model with

g(ēp) = σ0

(
1 + ēp

ey

)n

, (26.198)

where

˙̄ep =
(

2
3

Dp : Dp
)1/2

, ēp =
∫ t

0

(
2
3

Dp : Dp
)1/2

dt (26.199)
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are the effective plastic strain rate and effective plastic strain, respectively. The remaining
parameters are the material parameters; the initial yield stress is σ0, and n is the hardening
exponent.

26.18 A Rate Tangent Integration

In this section we introduce an integration method, originally proposed by Peirce et al.
(1982) for phenomenological constitutive theories discussed above and by Peirce et al.
(1983) for physically based theories that are discussed in the following chapters. The main
concern is the estimate of the plastic strain increments over finite time steps during the
integration of relations such as (26.196). Consider, for example, the expression for the
plastic part of the rate of deformation in the phenomenological J2 flow theory, viz.,

Dp = ˙̄e(ē, βi )p, (26.200)

where p is the direction of viscoplastic straining, and the effective plastic strain, ē, is defined
as

ē =
∫ t

0

(
Dp : Dp

p : p

)1/2

dt. (26.201)

A set of scalar variables βi define the “strength of the material.” Of course, the effective
plastic strain rate depends on the effective stress, σ̄ , as well. For the J2 flow theory, we have

p = 3
2
τ ′

τ̄
, (26.202)

where

τ ′ = τ − 1
3

(τ : I)I, τ̄ 2 = 3
2
τ : τ . (26.203)

The total rate of deformation is consequently

D = D∗ + Dp = Λe −1 :
�
τ + ˙̄e(ē, βi )p, (26.204)

which can be inverted to give

�
τ = Λe : D − ˙̄e P, (26.205)

where

P = Λe : p. (26.206)

As a model evolutionary law for the βi , we assume

β̇i = Ai : Dp + Bi :
�
τ . (26.207)

The Ai and Bi can, in general, depend on the current values of τ , ē, and the βi . The
objective is to estimate an effective ˙̄e�t over a small, but finite time increment�t . To that
goal, we write for an increment in �ē, over the time step �t ,

�ē = �t [(1 − θ) ˙̄et + θ ˙̄et+�t ] . (26.208)
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We then expand ˙̄et+�t in a Taylor series about the time t to obtain

˙̄et+�t ≈ ˙̄et +
(
∂ ˙̄e
∂ ē

)
˙̄et �t +

∑
i

(
∂ ˙̄e
∂βi

)
β̇i,t �t. (26.209)

The use of (26.207) in (26.209) gives

�ē ≈ �t ˙̄et + θ(�t)2

[
∂ ˙̄e
∂ ē

˙̄e +
∑

i

∂ ˙̄e
∂βi

(Ai : Dp + Bi :
�
τ )

]
. (26.210)

Upon the substitution of (26.200) and (26.205) into (26.210), we obtain

�ē ≈�t ˙̄et + (θ�t)

×
[
∂ ˙̄e
∂ ē
�ē +

∑
i

∂ ˙̄e
∂βi

Bi : Λe : D�t +
∑

i

∂ ˙̄e
∂βi

(Ai : p − Bi : P)�ē

]
.

When this relation is solved for �ē, and then divided by �t , there follows

˙̄e = ˙̄et

1 + ξ + 1
H̄

ξ

1 + ξ Q : D, (26.211)

where

Q =
∑

i

∂ ˙̄e
∂βi

Bi : Λe,

H̄ = −∂ ˙̄e
∂ ē

−
∑

i

∂ ˙̄e
∂βi

(Ai : p − Bi : P),

ξ = (θ�t)H̄.

(26.212)

For the J2 flow theory itself, take as a specific model for evolution,

˙̄e = ˙̄e(ē, σ̄ ), (26.213)

and note that

˙̄σ = p :
�
τ . (26.214)

Then,

Q = ∂ ˙̄σ
∂σ̄

P. (26.215)

It follows that

H̄ = −∂ ˙̄e
∂ ē

+ ∂ ˙̄e
∂σ̄

(p : Λe : p), (26.216)

and

Λtan = Λe − ξ

1 + ξ
1
h

PP. (26.217)

Here,

h = H̄
∂ ˙̄e/∂ ē

= −
(
∂ ˙̄e
∂ ē

)(
∂ ˙̄e
∂σ̄

)−1

+ p : Λe : p, (26.218)
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with

ξ = θ�t
(
∂ ˙̄e
∂σ̄

)
h. (26.219)

We note that Λtan is symmetric, and the constitutive relation takes the final form

�
τ = Λtan : D − ˙̄e

1 + ξ P. (26.220)

26.19 Plastic Void Growth

As an illustration of the application of some of the derived equations in this chapter,
we present in this section an analysis of plastic void growth under triaxial tension. More
involved studies of plastic void growth under different states of stress, and based on the
more involved material models, can be found in Rice and Tracey (1969), Needleman (1972),
Budiansky, Hutchinson, and Slutsky (1982), Huang, Hutchinson, and Tvergaard (1991),
Needleman, Tvergaard, and Hutchinson (1992), and others.

Consider a spherical void of initial radius R0 in an isotropic infinite medium under
remote triaxial tension σ . The stress state at an arbitrary point consists of the radial stress
σrr and the hoop stress σθθ = σφφ . Because of spherical symmetry, the stress components
depend only on the radial distance r and not on the spherical angles θ and φ. In the absence
of body forces the equilibrium equation is

dσrr

dr
− 2

r
(σθθ − σrr ) = 0 . (26.221)

If the material response is within the infinitesimal elastic range, the compatibility equation
is

d
dr

(σrr + 2σθθ ) = 0 , (26.222)

which implies that the spherical component of stress tensor is uniform throughout the
medium, and thus equal to σ , i.e.,

σrr + 2σθθ = 3σ . (26.223)

Combining (26.221) and (26.223) it follows that

σrr = σ
(

1 − R3
0

r3

)
, σθθ = σ

(
1 + 1

2
R3

0

r3

)
. (26.224)

The corresponding radial displacement is

u = σ

E

[
(1 − 2ν)r + 1

2
(1 + ν)

R3
0

r2

]
, (26.225)

where E is Young’s modulus and ν is Poisson’s ratio of the material.
According to either von Mises or Tresca yield criterion, the plastic deformation com-

mences when

σθθ − σrr = Y . (26.226)

The initial yield stress of the material in uniaxial tension is denoted by Y. Thus, the threshold
value of applied stress σ for the onset of plastic deformation at the surface of the void
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ρ≈ρ
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Figure 26.19. The elastic-plastic interface around the spherical void of
initial radius R0. The radius of the expanded void is R. The initial and
current radii of material elements within the plastic zone are r0 and r .
Since deformation is infinitesimal beyond the elastic-plastic interface, its
deformed and undeformed radii are nearly equal to each other (ρ ≈ ρ0).

(r = R0) is σy = 2Y/3. With further increase of stress beyond this value, the plastic zone
expands outward and at an arbitrary instant of deformation the elastic-plastic boundary
has reached the radius ρ (Fig. 26.19). The corresponding radius of the expanded void is
R. A material element within the current plastic zone, which was initially at the radius
r0, is currently at the radius r . We assume that ρ is sufficiently large, so that large strains
take place in the vicinity of the void, whereas infinitesimal strains characterize the elastic
zone beyond the radius ρ. This means that ρ ≈ ρ0 and similarly for any radius beyond the
elastic-plastic boundary. The deformation gradient tensor associated with the spherical
expansion of the void, expressed in spherical coordinates, is

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dr

dr0
0 0

0
r

r0
0

0 0
r

r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (26.227)

The corresponding volume change of an infinitesimal material element is

dV
dV0

= det F =
(

r
r0

)2 dr
dr0

. (26.228)

If plastic deformation is assumed to be isochoric, the volume change is entirely due to
elastic deformation, and

dV − dV0

dV
= 1 − 2ν

E
(σrr + 2σθθ ) . (26.229)

Combining (26.228) and (26.229), there follows(r0

r

)2 dr0

dr
= 1 − 1 − 2ν

E
(σrr + 2σθθ ) . (26.230)

Incorporating the equilibrium equation (26.221), rewritten as

σrr + 2σθθ = 1
r2

d
dr

(
r3σrr

)
, (26.231)
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equation (26.230) becomes

r2
0 dr0 = r2dr − 1 − 2ν

E
d
(
r3σrr

)
. (26.232)

Upon integration, using the boundary condition σrr (R) = 0, we obtain

σrr = E
3(1 − 2ν)

(
r3 − r3

0

r3
− R3 − R3

0

r3

)
. (26.233)

This expression holds everywhere in the medium, regardless of the constitutive description
in the plastic zone r ≤ ρ.

On the other hand, in the elastic zone r ≥ ρ, we have

σrr = σ − 2
3

Y
ρ3

r3
, σθθ = σ + 1

3
Y
ρ3

r3
, (26.234)

which ensures that σθθ (ρ) − σrr (ρ) = Y, and σrr + 2σθθ = 3σ everywhere in the elastic
region. Thus, σrr (ρ) = σ − 2Y/3, and from (26.233) we obtain

σ = 2
3

Y + E
3(1 − 2ν)

(
ρ3 − ρ3

0

ρ3
− R3 − R3

0

ρ3

)
. (26.235)

Since the strain is elastic and infinitesimal at the elastic-plastic interface, there is an ap-
proximation

ρ3 − ρ3
0

ρ3
≈ 3eθθ (ρ) = 3(1 − 2ν)

E
σ + 1 + ν

E
Y , (26.236)

and the substitution into (26.235) gives

R3 = R3
0 + 3(1 − ν)

Y
E
ρ3 . (26.237)

At the advanced stages of plastic deformation, when R becomes much greater than R0,
the above result implies that the ratio ρ/R approaches a constant value

ρ

R
=
[

E
3(1 − ν)Y

]1/3

. (26.238)

Equations (26.237) and (26.238) hold for any type of hardening in the plastic zone, but
the analysis cannot be pursued further without using the constitutive description of plastic
deformation. For an elastoplastic material with a general nonlinear hardening the relation-
ship between the applied stress σ and the size of the plastic zone ρ can be determined only
numerically. The closed form solutions are attainable for two particular material models: an
elastic ideally plastic material, and an incompressible elastic linearly hardening material.

26.19.1 Ideally Plastic Material

In the case of a nonhardening material, we have σθθ − σrr = Y throughout the plastic zone,
and from the equilibrium equation the stress state in the plastic zone (r ≤ ρ) is

σrr = Y ln
r2

R2
, σθθ = Y

(
1 + ln

r2

R2

)
. (26.239)
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Since the stress field in the surrounding elastic region (r ≥ ρ) is specified by (26.234), the
continuity condition for the radial stress component at the elastic-plastic interface gives

σ = 2
3

Y
(

1 + 3 ln
ρ

R

)
, ρ = Rexp

(
σ

2Y
− 1

3

)
. (26.240)

The substitution of (26.240) into (26.237) furnishes an expression for the current radius of
the void in terms of the applied stress

R = R0

[
1 − 3(1 − ν)

Y
E

exp
(

3σ
2Y

− 1
)]−1/3

. (26.241)

At this stress level, the plastic zone has spread to

ρ = R0

exp

(
σ

2Y
− 1

3

)
[

1 − 3(1 − ν)
Y

E
exp

(
3σ

2Y
− 1

)]1/3
. (26.242)

The inverted form, giving σ in terms of ρ, is

σ = 2Y
3

{
1 − ln

[
R3

0

ρ3
+ 3(1 − ν)

Y
E

]}
. (26.243)

The limiting stress value, obtained as R or ρ increases indefinitely, is

σcr = 2Y
3

{
1 − ln

[
3(1 − ν)

Y
E

]}
. (26.244)

The unlimited void growth under this level of stress is referred to as an unstable cavita-
tion. This stress level is also the critical (bifurcation) stress at which a nonhomogeneous
deformation bifurcates from the homogeneous by the sudden void formation.

26.19.2 Incompressible Linearly Hardening Material

If the material is both elastically and plastically incompressible, we have det F = 1 in
(26.228), and

r3 − r3
0 = R3 − R3

0 = ρ3 − ρ3
0 = 3Y

2E
ρ3 . (26.245)

The deformation gradient tensor is in this case

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

r2
0

r2
0 0

0
r

r0
0

0 0
r

r0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (26.246)
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By using the multiplicative decomposition of the deformation gradient into its elastic and
plastic parts, we can write

F = Fe · Fp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r2
p

r2
0 0

0
r

rp
0

0 0
r

rp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r2
0

r2
p

0 0

0
rp

r0
0

0 0
rp

r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (26.247)

The logarithmic strain

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 ln
r

r0
0 0

0 ln
r

r0
0

0 0 ln
r

r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26.248)

can be additively decomposed into its elastic and plastic parts (E = Ee + Ep) as

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 ln
r

rp
0 0

0 ln
r

rp
0

0 0 ln
r

rp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 ln
rp

r0
0 0

0 ln
rp

r0
0

0 0 ln
rp

r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (26.249)

For the proportional loading, the generalized plastic strain is

Ēp =
(

2
3

Ep : Ep
)1/2

= 2 ln
rp

r0
. (26.250)

If the material is linearly hardening with respect to this strain measure, the equivalent yield
stress at an arbitrary stage of deformation can be expressed as

σθθ − σrr = Y + 2k ln
rp

r0
= Y + 2k

(
ln

r
r0

− ln
r
rp

)
, (26.251)

where k is the hardening modulus. By using Hooke’s law for the elastic component of
strain,

Ee = 3
2E

[
σ − 1

3
(trσ) I

]
, (26.252)

we obtain

ln
r
rp

= 1
2E

(σθθ − σrr ) . (26.253)

The substitution of (26.253) into (26.251) yields

σθθ − σrr = Ŷ + 2k̂ ln
r
r0
, (26.254)
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with the abbreviations

Ŷ = Y
1 + k/E

, k̂ = k
1 + k/E

. (26.255)

The distinction between the barred and nonbarred quantities is important for strong hard-
ening rates and high values of the ratio k/E. Physically, the stress Ŷ and the harden-
ing modulus k̂ appear in the relationship between the uniaxial stress and the total strain
(σ = Ŷ + k̂E), whereas Y and k appear in the relationship between uniaxial stress and
plastic strain (σ = Y + kEp).

When (26.254) is introduced into (26.221), the integration gives

σrr = 2Ŷ ln
r
R

+ 4k̂
3

∫ r

R
ln

r3

r3
0

dr
r
, (26.256)

or, in view of (26.245),

σrr = 2Ŷ ln
r
R

+ 4k̂
9

∞∑
n=1

1
n2

[(
R3 − R3

0

R3

)n

−
(

R3 − R3
0

r3

)n
]
. (26.257)

Evaluating at r = ρ, and equating the result with σrr (ρ) = σ − 2Y/3, following from
(26.234), provides an expression for the applied stress σ in terms of the plastic zone radius
ρ. This is

σ = 2
3

Y + 2Ŷ ln
ρ

R
+ 4k̂

9

∞∑
n=1

1
n2

[(
R3 − R3

0

R3

)n

−
(

3Y
2E

)n
]
. (26.258)

The radius R of the expanded void is given in terms of ρ by (26.245). If the plastic zone
surrounding the void has spread to a large radius ρ, we have R3 >> R3

0 , and by neglecting
higher than linear terms in 3Y/2E, we obtain

σcr = 2Y/3
1 + k/E

(
1 + ln

2E
3Y

+ π2

9
k
Y

)
. (26.259)

This is the critical stress for cavitation instability in an incompressible elastic linearly
hardening material. If the ratio k/E << 1, the above result coincides with the result of
Bishop, Hill, and Mott (1945) for a pressurized spherical cavity in an infinite solid. This is
so because the solutions for a pressurized spherical void and a spherical void under remote
triaxial tension differ by a state of uniform spherical stress throughout the medium, which
for an incompressible material has no effect on the deformation field. If k = 0 is substituted
in (26.259), and ν = 1/2 in (26.244), the two expressions give the critical stress for cavitation
instability in an incompressible elastic-ideally plastic material.

A similar analysis for the cylindrical void (see Problem 26.8 of Chapter 34) yields an
expression for the applied biaxial stress σ in terms of the plastic zone radius ρ,

σ = Y√
3

+ Ŷ ln
ρ

R
+ k̂

4

∞∑
n=1

1
n2

[(
R2 − R2

0

R2

)n

−
(√

3Y
E

)n]
. (26.260)

The radius of the expanded void R is given in terms of ρ by

R2 = R2
0 +

√
3Y
E

ρ2 . (26.261)
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If the plastic zone around the void has spread to a large extent, we have

σcr = Y/
√

3
1 + k/E

(
1 + ln

E√
3Y

+ π2

18

√
3k

Y

)
, (26.262)

which is the critical stress for a cylindrical cavitation instability in an incompressible elastic
linearly hardening material.
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27 Micromechanics of Crystallographic Slip

Fundamental concepts concerning the micromechanics of crystalline plasticity are re-
viewed in this chapter. An overview of deformation mechanisms is given for crystalline
materials that possess grain sizes that are said to be “traditional,” i.e., larger than about
2µm in diameter. Some brief comments are made about the trends in deformation mech-
anisms when the grain sizes are much below this range (nanograins).

27.1 Early Observations

In a series of articles published between 1898 and 1900 Ewing and Rosenhain summa-
rized their metallographic studies of deformed polycrystalline metals. The conclusion they
reached concerning the mechanisms of plastic deformation provided a remarkably accu-
rate picture of crystalline plasticity. Figure 27.1 is a schematic diagram, including some
surrounding text, taken from their 1900 overview article. Figure 27.2 is one of their many
excellent optical micrographs of deformed polycrystalline metals; the particular micro-
graph in Fig. 27.2 is of polycrystalline lead. They identified the steps a-e in Fig. 27.1 as
“slip-steps” caused by the emergence of “slip bands,” which formed along crystallographic
planes, at the specimen surfaces (thereby coining these two well-known phrases).

Traces of the crystalline slip planes were indicated by the dashed lines. The line labeled
C was indicated by them to be a grain boundary separating two grains; the grains, they
concluded, were crystals with a more or less homogeneous crystallographic orientation.
Slip steps corresponding to the diagram of Fig. 27.1 are clearly visible in the micrograph
of Fig. 27.2. Ewing and Rosenhain had not only concluded from their slip-line studies that
metals and alloys were crystalline and composed of aggregates of crystallites (i.e., grains),
but also that plastic deformation took place by simple shearing caused by the sliding of
only certain families of crystal planes over each other in certain crystallographic directions
lying in the planes. They also noted that certain metals deformed by “twinning” in addition
to slip, which is also a crystallographic phenomenon.

Ewing and Rosenhain’s (1900) early slip-line studies further indicated that the particular
crystalline structure of the metals were preserved during plastic straining. This view was
consistent with their conclusion that the simple shearing process of plastic flow involved
only crystallographic planes sliding in crystallographic directions, but included the further
assumption that slip progressed in whole multiples of lattice spacings so that during slip

502
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(b)

Figure 27.1. Schematic diagram taken from Ewing and
Rosenhain (1900) indicating slip steps on the surface of
plastically deformed metal: (a) before straining; (b) after
straining. Slip was concluded to occur along crystallographic
plane. Ewing and Rosenhain say, “The diagram, Fig. 27.1,
is intended to represent a section through the upper part
of two contiguous surface grains, having cleavage or gliding
places as indicated by the dotted lines, AB being a portion
of the polished surface, C being the junction between the
two grains.” “When the metal is strained beyond its elastic
limit, as say by a pull in the direction of the arrows, yielding
takes place by finite amounts of slips at a limited number
of places, in the manner shown at a, b, c, d, e. This exposes
short portions of inclined cleavage or gliding surfaces, and
when viewed in the microscope under normally incident
light these surfaces appear black because they return no
light to the microscope. They consequently show as dark
lines or narrow bands extending over the polished surface
in directions which depend on the intersection of the pol-
ished surface with the surfaces of slip.”

atoms were transported to equivalent lattice sites within the crystal structure. They rec-
ognized, however, that grains deformed inhomogeneously, i.e., only certain planes in the
family of possible slip planes underwent slip, and this they attributed to a random dis-
tribution of microscopic imperfections of a nonspecified type that triggered the slipping
process. They further argued that slip would disrupt these imperfections, which in turn
would make it more difficult to activate further slip and thus cause strain hardening.

A remarkable aspect of these early studies of metal plasticity is that it was not until 1912
that Von Laue first diffracted X rays from copper sulfate crystals and not until 1913 that W.
H. Bragg and W. L. Bragg made the first crystal structure determination for ionic crystals
(Bragg and Bragg, 1933). In 1919 Hull published his results on the crystal structures of

Figure 27.2. Optical micrograph of deformed polycrystalline lead taken from Ewing
and Rosenhain (1900).
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Figure 27.3. Unit cells for four common
crystal structures: (a) fcc, (b) bcc, (c) hcp,
and (d) NaCl type (from Asaro, 1983b).

various common metals that provided proof and documentation of the crystalline struc-
ture of metals. As examples, Figs. 27.3 show the “unit cells” of the face-centered-cubic
(fcc), body-centered-cubic (bcc), and hexagonal-closed-packed (hcp) crystal structures.
Aluminum, copper, nickel, and gold, along with γ -iron (austenite), are fcc crystals; nio-
bium, molybdenum, and α-iron (ferrite) are bcc; whereas zinc, magnesium, and cadmium
are hcp. As a fourth example, Fig. 27.3d shows the crystal structure of a typical ionic crystal
such as NaCl or LiF. It is easy to confirm that this “NaCl crystal structure” is based on
the fcc point lattice but that each lattice site such as shown in Fig. 27.3a has four atoms
positions (0, 1/2a, 0), (1/2a, 0, 0), and (0, 0, 1/2a) with respect to it.

A good deal of the present quantitative understanding of plastic deformation in crys-
talline materials is due to Taylor and coworkers, in particular to Taylor and Elam (1923,
1925). Their pioneering experiments carried out in the 1920s again firmly established the
crystallographic nature of slip, but then with the aid of X-ray diffraction. They made a
detailed study of aluminum single crystals and interpreted the kinematics of deformation
in terms of the crystallography. For fcc aluminum single crystals they identified the slip
planes as the family of octahedral {111} planes and the slip directions as the particular
<110> type directions lying in the {111} planes. Figure 27.4 illustrates the (111) and the
[101̄] direction, one of the three crystallographically identical<110> type directions lying

(III)

 a/2 [IOI]

a

2

1

3e

e
~

~

e~

–

Figure 27.4. Unit cell and one of the 12 crystallographically
equivalent slip systems for fcc crystals (from Asaro, 1983b).
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in the plane. Note that the Ewing and Rosenhain (1900) conclusion that crystal structure
is preserved by shearing requires that slips occur in units of “perfect lattice vectors” along
the 110 directions. In Fig. 27.4 the shortest of these along [101̄] is a a/2[101̄], as indicated.
Furthermore, as there are 4 independent (but crystallographically identical) {111} planes
and 3 <110> type directions in each plane, there are 12 distinct “slip systems” of the type
{111} <110> in fcc crystals.

Taylor and Elam (1923,1925) had also established for their aluminum crystals what is now
commonly referred to as the Schmid law (1924) of a critical resolved shear stress for plastic
yielding. They phrased it as follows: “Of the twelve crystallographically similar possible
modes of shearing, the one for which the component of shear-stress in the direction was
greatest was the one which actually occurred” (1925, p. 28). Taylor and Elam had therefore
identified the component of shear stress resolved in the slip plane and in the direction of
slip, the “resolved shear stress,” defined, as above, as the combination of slip plane and
slip direction. We shall adopt this nomenclature and refer to a particular set of active slip
systems as the “slip mode.”

During this same period (1920–1930) research in Germany on crystalline plasticity was
conducted by Polanyi, Masing, Schmid, and Orowan, among others. They had reached
many of the conclusions during their studies of zinc (with a hcp crystal structure) that Taylor
and Elam had with fcc aluminum. In particular, in 1922 Polanyi had not only observed crys-
tallographic slip in zinc but had also noted in polycrystalline zinc that grains with initially
random crystallographic orientations tended to assume preferred orientations after finite
straining, i.e., they developed texture. In 1924 Schmid, using data on zinc single crystals sub-
ject to tension, suggested that plastic yield would begin on a slip system when the resolved
shear stress reached a critical value, independent of the orientation of the tensile axis and
thus of other components of stress resolved on the lattice. This was a clear statement of
the Schmid law. It should be pointed out, however, that although experiments conducted
in uniaxial tension or compression often yield an approximate confirmation of Schmid’s
law, deviations from it are likely and have been found, as later discussion will allow.

The early work of the 1920s included some important observations of strain-hardening
behavior in crystalline plasticity. Taylor and Elam (1923,1925), in particular, noted that
the individual slip systems hardened with strain and that slip on one slip system hardens
other slip systems, even if the latter are not active. This is known as “latent hardening,”
and because it plays an important role in crystal mechanics the Taylor and Elam (1925)
results will now be briefly discussed.

Figure 27.5a illustrates a single crystal in tension, oriented for single slip, i.e., the resolved
shear stress is highest on the slip system (1̄11)[110]. The vectors s and m are unit vectors
lying in the [110] and [1̄11] directions, respectively, so that (s, m) now defines the slip
system that is denoted the “primary” slip system. For the present the crystal is modeled as
rigid-plastic, because the points being illustrated are not substantially affected by elasticity.
Figure 27.5d is Taylor and Elam’s stereographic plot of the orientation of the tensile axis,
with respect to the crystal axes, as a function of the extensional strain; the point marked
0 represents the initial orientation. As the crystal slips, the orientation of the tensile axis
AB changes with respect to the crystal axes and therefore to the slip direction s and the
slip plane normal m, as shown in Fig. 27.5b. In fact, since most tensile machines constrain
the loading axis to remain fixed in orientation relative to the laboratory (e.g., vertical in
Fig. 27.5), the crystal undergoes a rigid rotation, shown in Fig. 27.5e. The result is that the



P1: JzG
052177777Xc27.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:46

506 27. Micromechanics of Crystallographic Slip

BA

010

937456
4010

10 40
56

74
93

110

111011

(121) axis
0

m
mc

sc
s

T

A

B

T

�

�

σ

T

A

m
s

B

�

σ T

A

B

m

s

T

�

σ

σ
Tσ

m
s

T

A

B

T

�

σ

σ

(a)

(d) (e)

(b) (c)

Figure 27.5. (a) Schematic diagrams for a crystal
undergoing single slip in tension. The material
fiber l and AB are considered to remain verti-
cal, which causes a rigid lattice rotation (b) to
(c). (d) Taylor and Elam’s (1925) result for the
change in crystallographic orientation of the ten-
sile axis during deformation. (e) The relative ori-
entation of the so-called conjugate slip system
(from Asaro, 1983b).

slip direction rotates toward the tensile axis about an axis r orthogonal to both, where the
unit vector r is given by

r = s × T/[1 − (s · T)2]1/2. (27.1)

On the stereographic projection the pole of the tensile axis appears to rotate along the
great circle common to s and T. Now consider increments of extension, shear, and rotation
starting at some current stage taken as reference, as indicated in Fig. 27.5e. The slip system
that is said to be “conjugate” to the primary system, (111̄)[011], is also indicated. Conjugacy
refers to the fact that single slip on the system (111̄)[011] will induce rotations during
tensile straining that lead to large resolved shear stresses and inevitable slip on the system
(111̄)[011]. The rate of rotation β about r is easily shown to be

β̇ = γ̇ (T · m)[1 − (s · T)2]1/2, (27.2)

where γ̇ is the plastic shearing rate on the primary system. The resolved shear stress τ is
given by

τ = σ (m · T)(s · T) = Sσ, (27.3)

with a similar relation holding for the conjugate system. In (27.3), S is defined as the
“Schmid factor.” Taylor and Elam (1925) noted that if the strain-hardening rate on the ac-
tive slip system (call this the “self-hardening rate”) were equal to the latent-hardening rate
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of the conjugate slip system, conjugate slip would become active when the two resolved
shear stresses were equal. This occurs when the tensile axis rotates to any point on the
[111]-[010] symmetry boundary in Fig. 27.5d. The dotted arc in Fig. 27.5d is the great circle
on the sterographic projection whose pole is r and is the path of rotation for the tensile
axis. The “tick” marks indicate the crystallographic orientations of the tensile axis expected
from pure single slip, and the dots the orientations measured by Taylor and Elam (1925)
at the specific extensional strains (in percentages). Until the tensile axis approaches the
symmetry boundary, the predictions of single slip are closely matched by experiment. The
X-ray measurements indicate that the tensile axis “overshoots” the symmetry boundary,
which leads to a larger resolved shear stress on the conjugate, i.e., latent system. The mea-
surements also indicate that the rotations are nonetheless much less than expected from
single slip, which means that conjugate slip does occur, but at a lower rate than primary
slip. If the double mode of slip were symmetric once the symmetry boundary were reached,
the tensile axis would rotate to the [121] pole and remain there. In this case the rotations
caused by primary and conjugate slip exactly cancel. Such behavior was observed in some
of their other tests. Taylor and Elam (1925) had thus demonstrated two very important as-
pects of crystal strain hardening: (1) slip systems hardened on other systems (whether they
themselves are active or not), and (2) this latent hardening is at least comparable in magni-
tude to self-hardening. The observations of “overshooting” indicated that latent-hardening
rates are often somewhat larger than self-hardening rates, so that a slightly larger shear
stress is required on the previously latent system to activate it. Taylor and Elam summa-
rized the hardening behavior as follows: “It is found that though the double slipping does,
in fact, begin when the two planes get to the position in which they make equal angles
with the axis, the rate of slipping on the original slip-plane is sometimes greater than it
is on the new one” (1925, p. 29). They went on to note that “the process cannot be fol-
lowed very far, however, because the specimen usually breaks when only a comparatively
small amount of double slipping has occurred” (1925, p. 29). As discussed later, crystals
typically undergo necking and intense localized shearing after double slip begins.

In passing, we note an interesting consequence of the kinematics of crystalline slip, again
using the rigid plastic crystal model of Fig. 27.5 for a crystal in tension. According to the
Schmid rule, the resolved shear stress τ must remain at the critical yield value τc for slip to
continue; τc increases with shear strain at a rate given by τ̇c = hγ̇ , where h is the current
strain-hardening (self-hardening) rate of the active slip system. Differentiating (27.3) with
respect to time, evaluating ṡ and ṁ by noting that

ṡ = Ω∗ · s, ṁ = Ω∗ · m, (27.4)

where

Ω∗ = −(sT − Ts)γ̇T · m (27.5)

is the rigid lattice spin rate, and setting the result equal to hγ̇ yields

σ̇ =
[

h
cos2 φ cos2 θ

+ σ cos(2φ)
cos2 φ

]
ė. (27.6)

Here ė is the current rate of extension along the tensile direction. This rate is taken from
the current state as the reference state of strain. The first term, due to strain hardening,
leads to an increase in true tensile stress with extension (if h > 0), whereas the second
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Figure 27.6. Data for the critical resolved shear stress for initial yield vs.
temperature for various materials. • 70:30 brass; × 90:10; o 80:20; � 95:5;

Cu. Reproduced with permission from Mitchell (1964).

term is due to the change in τ , at fixed σ , caused by rotation of the lattice with respect
to the fixed tensile axis. If cos 2φ < 0 and h/σ < | cos 2φ| cos2 θ , the instantaneous mod-
ulus governing extension is negative, and the crystal softens. This softening is associated
with purely geometrical effects and not material strain softening, and for this reason is
called geometrical softening. Evidently, if lattice rotations that cause geometrical softening
occurred locally within the crystal’s gauge section, they would promote nonuniform and
perhaps localized deformation. This is true for single crystals, as well as for individual
grains of polycrystals. We show later that geometrical softening does indeed play a vital
role in the phenomenology of crystalline slip. In fact, this effect will lead to the formation
of zones, later called patches, that are the precursors to the formation of substructures.

Thus, by 1930 much of the macroscopic phenomenology of crystalline plasticity, aside
from strain rate effects, had been documented. The fundamental connection was observed
between the resolved shear stress and notions of self-hardening and latent hardening of slip
systems. Temperature had long been known to have an important influence on strength, as
shown in Fig. 27.6 which is taken from Mitchell’s (1964) review. A tenable micromechanistic
theory, however, was missing. For example, in 1926 Frenkel made a simple but plausible
calculation of the theoretical shear strength of a perfect crystal. The result indicated that the
shear stress required to slide an entire unit area of crystal plane over the overlaying plane
by one lattice spacing is not less than about 1/10 the elastic shear modulus, a value several
orders of magnitude higher than observed yield strengths (see Fig. 27.6). As Orowan (1963)
pointed out much later, it was also realized that Becker’s thermal fluctuation theory could
not resolve this large discrepancy. The satisfactory resolution of this problem led to the
theoretical discovery of crystal dislocation in 1934.

27.2 Dislocations

Figures 27.7–27.9 were all published in 1934 and they describe essentially the same crystal
defect known as an “edge” dislocation. In all three cases the dislocation is drawn in a
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a

d e f

b c
Figure 27.7. Taylor’s (1934) model picture for a
crystal dislocation. Glide of the dislocation causes
material on either side of the slip plane to move by
one lattice spacing, a, b, c, positive dislocation; d, e,
f, negative dislocation.

simple cubic crystal and was used by Taylor (1934), Orowan (1934), and Polanyi (1934)
to explain the micromechanics of slip. As is easily appreciated from the Taylor model
in Fig. 27.7, slip is caused by the glide of the dislocation across the slip plane one lattice
spacing at a time. The result is to displace the material on either side of the plane by the unit
lattice spacing. Taylor (1934) argued that the shear stress required to cause incremental
dislocation motion would be very low and thus propagation of such defects would result in
shear strengths consistent with those observed. Crystal symmetry is preserved after glide
and, in fact, even if the dislocation is trapped within the crystal, as in Fig. 27.7b or 27.7e,
because the disregistry in the crystal structure is highly localized in the dislocation “core”
region.

The precise specification of the dislocation involves both the displacement vector of
the material and the dislocation line, including its sense; in Fig. 27.7 the dislocation line
is directed into the plane and the displacement vector is orthogonal to the dislocation
line. A second type of dislocation involves a displacement vector that is collinear with the
dislocation line. These two dislocations are known as “edge” and “screw” dislocations,
respectively, and actually coexist as shown in Fig. 27.10. Figure 27.10 illustrates that a glide
dislocation can be formed within a continuum by making a cut over the surface, S, bounded
by the line C, and displacing material on either side of the cut by the vector b. The cut is
then rejoined so that the material across the cut surface has been permanently slipped by
b; t is the unit tangent vector to C and thus the segments of C for which t · b = 0 are “edge”
segments and those for which t · b/b = ±1 are “screw” segments. The vector b is known as
the Burgers vector, and for crystal dislocations it must be one of the perfect lattice vectors,
if slip is to preserve crystal symmetry. The Schmid rule can now be reinterpreted in terms
of a critical force required either to move or to generate dislocations. This force if defined

A B
Figure 27.8. Orowan’s (1934) model for a crystal dislocation.
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BA
Figure 27.9. Polanyi’s (1934) model for a crystal dislocation.

to be work conjugate to the gliding motion and hence is equivalent to the resolved shear
stress multiplied by the magnitude of b.

Taylor’s 1934 analysis also provided basis for a quantitative understanding of strain
hardening. He recognized that dislocations were sources of internal elastic strain and stress
and that dislocations would interact with each other through their mutual stress fields.
Figure 27.11 shows two of Taylor’s (1934) interaction problems involving dislocations
of opposite and similar signs. The stress fields for these dislocations had already been
calculated in linear isotropic elastic media by Timpe (1905), Volterra (1907), and Love
(1944). The interactions in Fig. 27.11 can be either attractive or repulsive, depending on
the relative sign of dislocations, but in either case the maximum resolved shear stress acting
on the dislocations required to slip them by each other occurs at |x| = h and is equal to
Gb/2πh, where G is the elastic shear modulus. Thus the shear stress required to move
dislocations within a “substructure” of other dislocations is considerably larger than that
required to move an isolated dislocation. Furthermore, once dislocations and slip have
been generated on a plane, it becomes easier to generate slip on planes further removed
from those currently active. However, this leads to an increase in dislocation density, a
decrease in the average spacing between dislocations, and hence to smaller values of h.
This in turn leads to an increase in the value of the “passing stress.”

One model picture envisioned by Taylor for the dislocation arrangement is shown in
Fig. 27.12. To see how this leads to a specific strain-hardening relation we consider the
following dimensional arguments. Taylor assumed that dislocations would be generated at
one surface of the crystal and would move a distance x along the slip plane; the maximum
value x may have is L, which is either the dimension of the crystal or the distance to a
boundary. The average dislocation moves by L/2. The average spacing between active slip
planes in Fig. 27.12 is d/2. The spacing between dislocations is a, so the average “dislocation
density” ρ is 2/ad; the shear strain accumulated in this substructure, γ , is L2 1

2 b/L =
ρLb/2 = Lb/ad. Dislocation density is often measured as the number of dislocation lines
penetrating a unit area of plane, as here, or as the total length of dislocation lines per unit
volume. Now since the passing stress is proportional to h−1, and h scales with ρ−1/2 if the
dislocation distribution is regular, it follows from dimensional considerations alone that

C

edge

b∼

t∼

screw

Figure 27.10. A dislocation loop in continuum is produced by first making
a cut on surface S and then displacing material across it by b (from Asaro,
1983b).
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A (+ ve)

B (− ve)

h

A
x

h

B

S

S

Figure 27.11. Taylor’s (1934) model for the elastic
interaction of two edge dislocations gliding by each
other.

the passing stress is proportional to ρ1/2, or actually to Gbρ1/2, and hence to G(γb/L)1/2.
Finally, if τi represents the shear stress required to move an isolated dislocation, the stress-
strain law derived above has the form

τc = τi + κG(bγ /L)1/2 = τi + ηGbρ1/2, (27.7)

where κ and η are constants determined by the geometry of the dislocation distribution.
Although Taylor’s model arrangement for the distribution of dislocations is oversimpli-

fied, it serves to focus on an important cause of strain hardening – the elastic interaction
between dislocations. The dimensional form of his strain-hardening law reflects the exper-
imentally observed fact that, in metals at least, strain-hardening rates generally decrease
with strain. Furthermore, the proportionality between the flow stress and the square root
of dislocation density is also well documented, especially in fcc metals, although, as we shall
see later, this dimensional rule follows from other micromechanical models for dislocation
interaction, as well. Finally, we note that the indicated dependence of τc on the microstruc-
tural dimension L reflects the well-established fact that yield and flow strength increase
with decreases in grain (or subgrain) size, i.e., with refinement of the microstructure in
general.

27.2.1 Some Basic Properties of Dislocations in Crystals

A linear elastic theory of dislocations, notable due to Volterra (1905), was available at the
time Taylor published his 1934 analysis of dislocation interactions. This theory has since
been extended to include elastic anisotropy and a variety of techniques for solving for the
elastic fields of complex arrays of dislocations (see, for example, Hirth and Lothe 1982,
Asaro et al., 1973, and Asaro and Barnett, 1976, and Chapter 18 of this book). For infinitely
long and straight dislocations, for example, it follows from this linear theory that the elastic
energy per unit length of dislocation line can be expressed as (see Section 21.5)

E = Ki j bi bj ln(R/r0), (27.8)

a

d Figure 27.12. Taylor’s (1934) idealized
arrangement for the dislocation sub-
structure in a finitely deformed crystal.
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Table 27.1. Slip systems for common crystal types

Crystal structure Burgers vector Slip plane (at 20o C)

fcc a/2 <110> {111}
bcc a/2 <111> {110} and {112}
NaCl a/2 <110> {110}

where K is an energy factor that depends on the direction of the dislocation line with
respect to the crystal axes, and R and r0 are outer and inner cutoff radii (not specified in
the linear theory). The quadratic form in the components of the Burgers vector indicated
that stable dislocations take on the shortest Burgers vector possible – the energies of crystal
bonding, along with the evidence that slip does not affect crystal structure, indicate that b
is a perfect lattice vector. Thus, with reference to Fig. 27.4, b = a/2 <110> for fcc crystals.
The slip systems for fcc metals crystals are then of the type {111}a/2 <110>, where a is the
lattice parameter shown in Fig. 27.3a. Table 27.1 indicates some common slip systems for
the cubic crystal types illustrated in Fig. 27.3.

Although the Burgers vector of a crystal dislocation is a perfect lattice vector, it is
possible for dislocations to “dissociate” and form “partial dislocations,” as illustrated in
Fig. 27.13 for a glide dislocation in a fcc crystal. The extent of dissociation depends not
only on the crystal geometry, but also on the chemistry. A simple analysis, using linear
isotropic elasticity, follows.

The glide force acting on a segment of dislocation line is by definition the force that is
work conjugate to the gliding motion. Then, if τ is the shear stress resolved in the plane of
glide at the dislocation line and in the direction of the Burgers vector, the force is τb per
unit length of dislocation line. A more precise definition of τ , accounting for finite lattice
elasticity, is given in the chapter to follow. In general, the force per unit length, due to stress
σ, acting on a segment of dislocation with unit tangent t is (Peach and Koehler, 1950)

f = t × (b · σ). (27.9)

For a general discussion of forces on elastic singularities the reader is referred to Eshelby
(1951,1958) and Chapter 21 of this book. It can be shown that the in-plane traction acting
on any plane containing an infinitely long straight dislocation line is given by T = 2K · b/d,
where d is the distance from the line that is taken to be positive if it falls to the right of the
dislocation line (see, for example, Barnett and Asaro, 1972). With reference to Fig. 27.14,
x1, x2, x3 are mutually orthogonal directions with x3 along the dislocation line. The point in
question lies along x1, which is to the right. In this coordinate frame, the energy factor K is
diagonal, with K11 = K22 = G/[4π(1 − ν)] and K33 = G/4π ; ν is Poisson’s ratio. It is now
easy to show that any two parallel dislocations repel each other on their common plane

"STACKING FAULT"

DISSOCIATION

d

a
2 1 0 1

a
6 1 1 2

a
6 2 1 1

Figure 27.13. Screw dislocation dissociating
in an fcc crystal. Partial dislocations are pro-
duced by the dissociation of a perfect disloca-
tion (from Asaro, 1983b).
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X2

X1
X3

t∼

Figure 27.14. Coordinate frame used to reference the elements of the K matrix (from
Asaro, 1983b).

with a force given by 2b(1) · K · b(2)/d; if this quantity is negative, they attract each other.
However, as the partial dislocations form according to the reaction

a/2[101̄] = a/6[112̄] + a/6[21̄1̄], (27.10)

a “faulted” region is created across which the equilibrium atomic stacking sequence is
disrupted. It is convenient to express the energy associated with this “stacking fault” as a
surface tension, i.e., the reversible isothermal work required to create a unit area of fault,
�. Hirth and Lothe (1982) quoted some values for this as follows: aluminum, 20 × 10−6

J/cm2; silver, 1.7 × 10−6 J/cm2; and copper, 7.3 × 10−6 J/cm2. The total force, including the
fault tension acting between two partial dislocations, per unit length, is

2b(1) · K · b(2)/δ − � . (27.11)

At equilibrium, this force vanishes, which yields

δeq = [2b(1) · K · b(2)]/�. (27.12)

If the undissociated dislocation in Fig. 27.13 were a perfect screw dislocation, the estimated
equilibrium spacings δeq would be on the order of 0.2 nm, for aluminum and 2 nm, for
copper. In practical terms this suggests that the partial dislocations are not “extended” in
aluminum, but may well be in copper and almost certainly would be in silver.

An important feature of dissociated, or extended, dislocation is that they may not readily
undergo such micromechanical processes as cross-slip. Figure 27.15 is an illustration of
such a process in a fcc crystal adopted from Asaro and Rice (1977). Dislocations in fcc
crystals may glide in any {111} plane containing the Burgers vector and the dislocation
line. However, the individual partial dislocations do not lie in the cross-slip plane and so
the extended dislocation on the primary slip system (s,m) must first develop a constricted
segment that can bow out on the cross-slip plane. Once the dislocation has bowed by
a critical amount on the cross-slip plane, it may then continue to glide on an adjacent
primary plane. Micromechanical processes such as cross-slip lead to deviations from the
Schmid law, because stress components other than the resolved shear stress τms affect the
constriction and bowing process.

φ

σ∼
σ∼

σ∼

z∼

z∼b∼

b∼

∼m

∼m

∼m

. .

. .

. .2 r ∼c

∼c

∼

∼

∼

Figure 27.15. Idealized model for the cross-slip of an ex-
tended screw dislocation (from Asaro, 1983b).
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Figure 27.16. Interaction between disloca-
tions in a primary-conjugate relationship
(from Asaro, 1983b).

27.2.2 Strain Hardening, Dislocation Interactions, and Dislocation Multiplication

Taylor’s (1934) original analysis of strain hardening focused on the elastic interaction of
essentially straight nonintersecting dislocations belonging to one slip system. An entire dif-
ferent and revealing picture of dislocation substructure emerges when interactions between
dislocations belonging to two or more systems are accounted for. Figure 27.16 illustrates
an interaction for fcc crystals proposed by Lomer (1951) between dislocations having a
primary-conjugate relationship. Suppose that the conjugate slip system, (11̄1)a/2[110], is
not active but that a certain initial “grown-in” density of its dislocations exists in the crystal.
When the primary system, taken to be (111̄)a/2[101], yields, its dislocations necessarily
intersect conjugate dislocations along the line common to both slip planes, [011]. At the
juncture the two dislocations merge according to the reaction

a/2[101] + a/21̄1̄0] = a/2[01̄1], (27.13)

where bL = a/2[01̄1] is the Burgers vector of the product Lomer dislocation. The basis
for the reaction lies in the fact that the elastic energies of all three dislocations involved
in reaction (27.13) are equal and so the formation of the Lomer dislocation leads to a
new decrease in the total elastic energy. A more rigorous method of analyzing dislocation
reactions of this type has been given by Asaro and Hirth (1974). The Lomer dislocation
is an edge dislocation, because tL = 1/

√
2[011] and tL · bL = 0, and if it were to glide it

would have to do so on the (100) plane containing tL and bL. Since glide on {100} type
planes is very difficult in fcc crystals, the Lomer dislocation is immobile and thus impedes
further glide of the original primary dislocation. What is further evident is that glide of
conjugate dislocations would also be more difficult should the conjugate system become
highly stressed. Figure 27.16c shows a view of the two slip planes along the [011] direction.
Subsequent primary and conjugate dislocations are impeded in their motion, since they
are both repelled from the Lomer dislocation with a force equal to Ga2/[8π(1 − ν)d]. Both
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Figure 27.17. (a, b) Interaction between primary
dislocations and “forest” dislocations. (c) Forma-
tion of “nodes” and discrete dislocation segments
(from Asaro, 1983b).

the primary and conjugate slip systems are then hardened in a roughly symmetrical way,
which helps explain Taylor and Elam’s (1923,1925) observations of latent hardening.

Another type of dislocation reaction leading to strain hardening and latent hardening is
illustrated in Fig. 27.17. The primary slip system and primary dislocations are again taken
to be (111̄)a/2[101] and the other system, whose dislocations are referred to as “forest”
dislocations, is (111)a/2[1̄10]. When the two dislocations meet, they undergo the reaction

a/2[101] + a/2[1̄10] = a/2[011], (27.14)

i.e., they react to form a product segment lying in both planes along the [110] direction with
the Burgers vector along [011]. The dislocation with Burgers vector a/2[011] lies in the
(111̄) plane and so it may glide in the primary plane. However, since the “nodes” shown
in Fig. 27.17 are energetically stable, they essentially pin and thus impede the motion of
the original primary and forest dislocations. If adjacent primary planes are considered,
the effect is to produce a three-dimensional network, as suggested in Fig. 27.17c. As a
consequence, dislocations are not arranged in the ideal fashion envisioned in the Taylor
model of Fig. 27.12, but in a segmented distribution such as suggested by the idealized
model in Fig. 27.17c.

The determination of the crystal’s strength depends on the resistance of the network to
the motion of dislocation segments. If we assume for a moment that the nodes are rigid
and act as pinning sites, the segments move by bowing out in the manner illustrated in

(a)

(b)

Figure 27.18. (a) Idealized model for the movement of dislocation
segment pinned at nodes. (b) Bowing out of the segment to form a
dislocation loop (from Asaro, 1983b).
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Figure 27.19. Plot showing how the dislocation density increases
with shear strain (from Ashby, 1971).

Fig. 27.18a. The simplest analysis of this follows if the dislocation is taken to be a line with
average tension L and if the bowing is assumed to proceed in circular arcs. Then at any
stage that is stable, τb = L/r , where τ is the resolved shear stress for the dislocation and r
is the radius of curvature of the bowing segment. If the shear stress exceeds a critical value
τc > 2L/b� corresponding to r = �/2, the bowing becomes unstable and the loop closes
on itself, as shown in Fig. 27.18b, The result is that a new dislocation loop is produced and
the original segment restored, whereupon it may bow again; the critical stress required for
this is given by τc = 2L/b�.

The mechanism just described constitutes one possible source of dislocations and rep-
resents a type of source introduced by Frank and Read (1950). In well-annealed crystals
dislocation densities can be on the order of 106 cm−2 and even less in certain cases. How-
ever, after modest plastic strains of, say, 10%, this may increase to 1010 cm−2, as indicated
in Fig. 27.19 taken from Ashby (1971). A dislocation source involving double cross-slip
was suggested by Koehler (1952). As shown in Fig. 27.20 (see also Fig. 27.15), once a dis-
location segment has cross-slipped onto the cross-slip plane, it may then cross-slip onto
a primary slip plane again. This segment may then bow out and operate as a dislocation
source. Figure 27.19 indicates how dislocation density ρ depends on shear strain. Fig-
ure 27.21 shows the corresponding relationships for shear stress and ρ1/2. As mentioned
earlier, most models for strain hardening result in such relationships. For example, if the

PRIMARY PLANE

PRIMARY PLANE

CROSS-
SLIP PLANE

Figure 27.20. Koehler’s model of the so-
called double cross-slip mechanism for
dislocation multiplication (from Asaro,
1983b).
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Figure 27.21. Collection of data for single
crystals for the flow stress on a slip system
vs. the average dislocation density (from
Ashby, 1971).

flow stress is determined by the stress τc, which is proportional to �−1, then, by dimensional
arguments, �−1 should be proportional to ρ1/2.

27.3 Other Strengthening Mechanisms

Most crystalline materials derive their strength from a combination of the intrinsic mech-
anisms described previously and the interaction of dislocations with other microstructural
features. The yield strength and strain-hardening characteristics of polycrystals depend in
an important way on grain size, as shown by the two examples in Fig. 27.22. In both these
cases a close correspondence with the well-known Hall–Petch relation (Hall, 1951; Petch,
1953) between yield strength σy and average grain diameter d is found, σy = σi + kyd−1/2,
at least for the range of grain sizes included by the data. Although the Hall–Petch relation
bears a superficial resemblance to Taylor’s flow stress of (27.7), the physical underpinning
of it is different. The yield strengthσy is determined in large part by the process by which slip
is transferred from grains that yield at the smallest plastic strain to the surrounding grains
and not solely by the interaction of dislocations and strain-hardening processes occurring
in the grain interiors. As pointed out by Embury (1971), the local stress necessary to prop-
agate slip may be determined by the critical conditions for (1) the unpinning of existing
dislocations or the operation of dislocation sources in unyielded grains or (2) the creation of
dislocations in the grain boundaries that glide into the unyielded grain. Furthermore, as is
evident form the Thompson and Baskes (1973) data, the Hall–Petch relation holds, even in
the range of grain sizes shown, only for proof stresses defined at plastic strains less than 0.01.
The relation breaks down at high strains, which indicates that grain size has a significant
influence on strain-hardening behavior, especially at the finer grain sizes. Thompson (1975)
correctly pointed out the implications of such grain size dependence regarding the devel-
opment of continuum polycrystalline models, all of which have to date ignored grain size
per se. In short, the data indicate that grains of polycrystals, especially grains less than 10−2

mm in diameter, do not strain harden as if they were single crystals subjected to comparable
strains.

Finally, we note that the development of a segmented network of dislocations, as de-
scribed in the previous section, typically evolves into the formation of dislocation cells
after finite strain. An example of cell structure in single-crystal aluminum, taken from the
work of Chiem and Duffy (1981), is shown in Fig. 27.23a. The cell walls are characterized
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Figure 27.22. Morrison’s data for the dependence
of yield strength on grain size. Reproduced with
permission from Morrison (1966).

by high dislocation density, as described, for example, by Embury (1971) and Kuhlman-
Wilsdorf (1975), and by the existence of dislocations with two or three different Burgers
vectors in them. Cell size in turn plays an important role in determining strength, as shown
in Fig. 27.23b, which is also taken from Chiem and Duffy (1981).

The present discussion does not cover the wide range of strengthening and strain-
hardening phenomena in crystalline materials and the importance of chemistry and mi-
crostructure. For example, topics such as solute strengthening and precipitation hardening
have not been discussed and the reader is encouraged, in this regard, to consult Kelly and
Nicholson (1971). The intent was rather to present a very basic picture that serves both
to identify important phenomena and construct continuum constitutive laws which allow
for a more precise analysis of them. As it happens, one of the most important of these
phenomena is latent hardening, and some of the available data for this are discussed next.
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Figure 27.23. (a) Dislocation cell structure in aluminum
single crystals and (b) the relationship between flow
strength and cell diameter (from Chiem and Duffy, 1981).

27.4 Measurements of Latent Hardening

Latent hardening has been measured in essentially two ways. One method involves deform-
ing large crystals in single slip and the machining specimens aligned for slip on another slip
system from them. Yield stresses on previously latent systems are then measured and com-
pared to the flow stress reached on the original, primary, system. The results are typically
described by a variation of the “latent-hardening ratio,” the ratio of these two flow stresses.
A second method involves measurements of lattice rotations in single crystals that occur
during tensile straining in single slip, as described previously in connection with Fig. 27.5.
The rate of rotation with strain can be measured, and discrepancies with the single-slip
predictions can be used to detect yielding on latent systems. The extent of overshoot can
also be measured and used as an indication of the magnitude of latent hardening. These
two techniques are not equivalent, because they subject the specimen to different strain
histories; in the first only one system is active at any stage, whereas in the second at least
two systems are simultaneously active at the point where yield stresses are measured for
the initially latent system. To describe the experimental results quantitatively, it is helpful
to assume for the moment a rate-independent hardening rule of the form

dτ (α)
c =

∑
β

hαβ dγ (β), (27.15)

where τ (α)
c is the current yield strength on the α slip system, and hαβ are the hardening

rates. The off-diagonal terms in the matrix h represent latent hardening.



P1: JzG
052177777Xc27.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:46

520 27. Micromechanics of Crystallographic Slip

Figure 27.24. Optical micrographs of the gauge section
of α-Brass crystals deformed in tension. The crystals
were deformed in single slip and the onset of conjugate
slip was determined by the appearance of slip lines be-
longing to the conjugate system. Reproduced with per-
mission from Piercy et al. (1955).

In his original analysis of polycrystals, Taylor (1938a,1938b) assumed that the latent-
hardening rates were equal to self-hardening rates, i.e., hαβ = h for all α and β. He was
undoubtedly motivated to assume such isotropic hardening by his experiments with Elam
(Taylor and Elam, 1923,1925) presented above. It is important to note, however, that
overshoots of the symmetry positions, where equal shear stresses existed on the conjugate
system, of 2-3◦ were common in those experiments, indicating that slip on the initially
latent conjugate system required a slightly larger resolved shear stress than on the active
primary system. The Taylor isotropic rule was evidently meant to be approximate, because
its background experiments actually indicated that the latent-hardening rate was slightly
larger than the self-hardening rate.

A brief review of the measurements made by 1970 was given by Kocks (1970), who
concluded that the average ratio of latent-hardening to self-hardening rates is nearly unity
for coplanar systems (i.e., systems sharing the same plane) and between 1 and 1.4 for
noncoplaner systems. This appears to be a very reasonable approximate range, especially
for pure metals with intermediate or high stacking fault energies (e.g., Al and Cu) at finite
strains, although the authors reported to variation of latent-hardening ratios with strain
to be more complicated than described by Jackson and Basinski (1967) for copper and
by Kocks and Brown (1966) for aluminum. Franciosi et al. (1980) found that the latent-
strengthening ratios first increase from unity to peak values of 1.6-2.2 for aluminum and
to peak values nearly twice as high for copper. It is important to note, though, that these
peak values occur at prestrains of only 0.2% or so. The ratios rapidly decrease at larger
strains and level off at values near 1.3 and 1.5 for aluminum and copper, respectively.

The experimental study of Piercy et al. (1955) on α-brass crystals is an interesting exam-
ple of earlier work on latent hardening. Their crystals were initially oriented for single slip
in tension, and lattice rotations as described in connection with Fig. 27.5 were measured
by X-ray diffraction. The point where conjugate slip began was determined “by continual
microscopical examination (at 15 x) of the specimen during the period of linear hardening,
after easy glide” (Piercy et al., 1955, p. 332). Figure 27.24 shows a micrograph of the gauge
section of one of their crystals. The crystallographic orientation of the tensile axis was
then determined at the point where activity on the conjugate system was detected and the
resolved shear stress on the conjugate and primary systems calculated. Piercy et al. (1955)
found the latent-hardening ratio to be essentially constant and equal to τ (c)

c /τ
(p)
c = 1.28,
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thus indicating that the average rate of latent hardening on the conjugate system was ap-
proximately 28% greater than the self-hardening rate on the primary system. Note that
their experiments are of the second type described previously and involve simultaneous ac-
tivity on the primary and conjugate systems. The amount of overshoot they observed, 4◦-7◦,
was rather large but consistent with the measurements made earlier on copper-aluminum
by Elam (1927a,b). She also found overshoot of several degrees. α-Brass and copper-5
at% aluminum alloys have low stacking fault energies, and this appears to contribute to
strong latent hardening. Mitchell and Thornton (1964) have also reported large amounts
of overshoot in α-brass of up to 7◦.

The large amounts of overshoot reported in α-brass and Cu-Al alloys and the high
latent hardening they imply do not appear to be typical of other fcc crystals. Taylor was
able to interpret his experiments conducted with Elam on aluminum in terms of isotropic
hardening, although it is important to note that up to 2◦-3◦ of overshoot were reported
(Taylor and Elam, 1925). Conjugate slip was definitely observed through, even as the
symmetry line was approached. Mitchell and Thornton (1964) also reported that conjugate
slip began in copper crystals before the symmetry boundary was reached. They nonetheless
found that the tensile axis rotated past the symmetry position and followed a path that
fell between the predictions of single and symmetric double slip. Ramaswami et al. (1965)
reported very little or no overshoot in pure silver crystals, and between 2◦ and 3◦ in alloy
crystals of silver-10% gold. They estimated the ratio of latent-hardening to self-hardening
rates to be 0.95 for silver and 1.05 for silver-gold alloy. Their results for silver are interesting,
considering its low stacking fault energy, but the trend toward larger overshoots with
alloying, and therefore lower stacking fault energy, is consistent with the results on α-brass
Cu-Al alloys. Chang and Asaro (1981) found that in age-hardened aluminum-copper alloys
overshoot ranged from 0◦ to 4◦ at most. As in many other reported cases, conjugate slip
was often observed to begin before the tensile axis reached the symmetry line.

Linear relationships between flow (or yield) stresses on latent systems, τ (L)
c , and flow

stresses on active primary systems, τ (p)
c , of the form τ

(L)
c = A τ

(p)
c + B have been reported

in several of these studies after a strain of several percentages. Piercy et al. (1955) found
A= 1.28 and B = 0 for α-brass; Jackson and Basinski (1967) found A= 1.36 and B = 1.49
MPa for copper; for silver and silver-10% gold Ramaswami et al. (1965) found (where the
latent system was what they called the “half-critical” system) A= 1.4 and 1.2, respectively,
with B = 0 in both cases. Thus Kocks’ suggestion that the average ratio of latent-hardening
to self-hardening rates lies between 1 and 1.4 is consistent with available measurements.

It must be realized that the direct measurements of latent hardening are limited to only
a few studies in which the hardening of latent systems is measured following single slip.
Furthermore, the measurements described above have all been interpreted as if plastic
flow were rate insensitive, and so the influence of strain rate is uncertain. In a study
on aluminum crystals, Joshi and Green (1980) found for a few crystals that larger strain
rates were accompanied by larger amounts of overshoot – for other crystals no systematic
correlation between strain rate and overshoot was detected. In other studies, such as those
of Mitchell and Thornton (1964) on copper, as well as those of Joshi and Green (1980), the
observed lattice rotations during the transitions from single to double slip are not readily
described in detail by the simple relation suggested above with A constant. Figure 27.25
shows data from these two studies of the observed lattice rotation, compared in the one
case to the predicted rotation assuming single slip and in the other to the extensional strain;
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Figure 27.25. (a) Mitchell and Thornton’s (1964) data for the angle λe

between the tensile axis and primary slip direction and λs , the angle
expected from single slip. Note that deviations from the single-slip pre-
dictions occur before the symmetry position is reached, but that the
tensile axis overshoots the symmetry position. The dotted lines indicate
the values for λe , assuming equal slipping on the primary and conjugate
systems once symmetry position is reached. (b) Joshi and Green’s (1980)
data for the angle of lattice rotation versus tensile strain. The solid line is
based on the prediction of single slip. Reproduced with permission from
Springer-Verlag and from Taylor & Francis Ltd.

Fig. 27.25 also shows, by dotted lines, the rotation expected if the hardening were isotropic
and symmetric double slip began when the tensile axis reached the symmetry line. This
indicates that, although a constant A (larger than 1) accounts for the observed average
ratio of hardening rates, it cannot account for both the apparent premature conjugate slip
and subsequent overshoot. In a later section an alternative description of overshoot is
suggested based on a rate-dependent constitutive law, which may help to explain these
observations.

Finally, we note that the limited experimental data available suggests that rate of latent
hardening may also be influenced by the ratio of strain rates on the active systems. For
example, the high latent-hardening ratios of 1.36 and 1.5 in copper reported by Jackson and
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Figure 27.26. Optical micrograph of the
slip-line pattern in polycrystalline alu-
minum. Note the discontinuous slip mode
leading to a pattern of patchy slip (Boas and
Ogilvie, 1954). Reproduced with permission
from Elsevier.

Basinski (1967) and Franciosi et al. (1980), respectively, are not consistent with the lattice
rotations and conjugate slip reported by Mitchell and Thornton (1964). The latter found
that conjugate slip began even before the symmetry line corresponding to equal shear
stresses on the primary and conjugate systems was reached. These high latent-hardening
ratios would have required large amounts of overshoot to activate the conjugate system.
The two measurements differ in that the former maintains the crystal in a single-slip
mode, first on the primary system, then on one of the latent systems, whereas the latter
measurement allows the crystal to deform in multiple slip. The inclusion of rate sensitivity
may account for some of these differences, but there may still be influences having to do
more with the ratio of shearing rates that will only be sorted out by further experiment.

27.5 Observations of Slip in Single Crystals and Polycrystals at Modest Strains

When slip is confined to one system, i.e., single slip, macroscopic deformation often occurs
uniformly over the gauge section of uniformly stressed crystals. When more than one
system is active, however, observations suggest that this is generally not the case. For
example, Fig. 27.24 shows the patchy slip-line pattern that develops in α-brass crystals
when they are stretched in tension so that double primary-conjugate slip eventually occurs
after primary single slip. The patches consist of regions of double slip. Piercy et al. (1955)
attributed this nonuniform slip mode to latent hardening. They argued that “these results
prove the reality of latent-hardening, in the sense that the slip lines of the one system
experience difficulty in breaking through the active slip lines of the other one” (p. 337). A
very similar kind of patchy slip is observed within the grains of polycrystals, as shown, for
example, in Fig. 27.26 taken from the work of Boas and Ogilvie (1954) on aluminum. In both
these examples, the loading was uniform, and in the polycrystalline case the microscopic
deformation field that included the grain in question was also uniform. Nonetheless, the
slip mode was highly nonuniform. One significance of patchy slip is that the slip mode, and
therefore the lattice rotation with respect to the material, becomes difficult to specify for
an entire grain. Thus grain, or crystal, reorientation becomes ambiguous. At small strains
this may not be important, but at finite strains, where crystallographic texture develops
owing to finite amounts of grain reorientation, specification of the slip mode and thus
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Figure 27.27. Slip bands initiated at (a) a grain boundary of iron-silicon poly-
crystals (Worthington and Smith, 1964), (b) a grain boundary in a Cu-4 wt%
Al alloy (Swearengen and Taggart, 1971) and (c) multiple slip induced at the
bicrystal boundary due to the impingement of slip bands. The asterisk indicates
an induced slip system. Strain was 4.2% (Miura and Saeki, 1978). Reproduced
with permission from Elsevier.

the relative rotation of the lattice with respect to the material is vital to the evolution of
constructive behavior. Initiation of the nonuniform slip mode occurs owing to the initiation
of slip at grain boundaries, as shown for an iron-silicon alloy in Fig 27.27a. On the other
hand, a nonuniform slip mode may be triggered by the impingement of slip bands at
grain boundaries, resulting in stress concentrations, as shown in Fig. 27.27b for copper-
aluminum alloy. A third example of a nonuniform slip mode is shown in Fig. 27.27c for
an aluminum bicrystal. This latter example is taken from the work of Miura and Saeki
(1978), who discussed the stress concentrations at the bicrystal (grain) boundary, caused
by the impinging slip bands belonging to the slip systems highly stressed by the applied
“induced” slip activity on other systems. In this way full compatibility between the crystals
was maintained. On the other hand, Peirce et al. (1982) have shown that small spatial
variations in stress coupled with relatively strong latent hardening (A≈ 1.4) would bring
about patchy slip in single crystals. Whatever the mechanism, the result is to produce a
highly nonuniform mode of slip throughout the grain, as well as a nonuniform dislocation
density. It is common that the dislocation density becomes much larger in regions adjacent
to the grain boundaries, where complex multiple slip modes are generated, than in the grain
interiors. Remarkably, Miura and Saeki (1978) found that, provided that the slip mode
within the grains was multiple slip, there was very little difference in the strain-hardening
properties of their bicrystals and the component single crystals comprising them. When the
grain slip mode was single slip, however, they reported that the grain boundaries caused
multiple slip, even at very small strains, and this effect on the overall strain hardening
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of the grain will be negligible at extremely large grain sizes. When the grains are fine
and the more highly dislocated boundary zones occupy a proportionately larger volume,
the influence of the boundary-induced slip modes should be more significant. This may
well be an important factor contributing to the grain size dependence of polycrystalline
strain hardening evidenced in Fig. 27.22b. As yet these effects have not been included in
continuum polycrystalline models.

27.6 Deformation Mechanisms in Nanocrystalline Grains

It has been recognized for several decades that metals and alloys with grain dimensions
smaller than 100 nm (so-called nanostructured or nanocrystalline metals and alloys) gen-
erally exhibit substantially higher strength than their microstructured or microcrystalline
counterparts with grain dimensions typically larger than, say, 1 µm (e.g., Hall, 1951; Petch,
1953; Gleiter, 1989; Kumar et al., 2003). Moreover, there is mounting experimental evidence
from recent investigations that points to the following additional mechanical characteris-
tics of nanostructured metals:

� The plastic deformation characteristics on nanocrystalline metals are much more sensi-
tive to the rate of loading than those of microcrystalline metals; the strain-rate sensitiv-
ity index, defined below, is an order of magnitude higher for metals with nanocrystalline
structures (Lu et al., 2001; Wang and Ma, 2003; Dalla Torre et al., 2002; Schwaiger et al.,
2003; Wei et al., 2004).

� The activation volume, which is broadly defined as the rate of decrease of activation
enthalpy with respect to flow stress at fixed temperature and which influences the
rate-controlling mechanisms in the plastic deformation of engineering metals and
alloys, is some two orders of magnitude smaller for nanocrystalline metals than for
microcrystalline metals (Wang and Ma, 2004; Lu et al., 2004).

� Whereas the abundance of grain boundaries providing obstacles to dislocation mo-
tion during plastic deformation generally leads to enhanced strength in nanocrystalline
metals, twin boundaries (which are special kinds of coherent internal interfaces) are
also known to obstruct dislocation motion. Recent experiments show that the introduc-
tion of nanoscale twins within ultrafine crystalline metals, with average grain size within
the 100 nm to 1 µm range, leads to significant increases in flow stress and hardness.
The extent of such strengthening is comparable to that achievable by nanocrystalline
grain refinement (Lu et al., 2005).

� The incorporation of nanoscale twins during the processing of metals with ultrafine
grains is also known to increase the loading rate sensitivity by almost an order of mag-
nitude and decrease the activation volume by two orders of magnitude as compared
to the values observed in microcrystalline metals (Lu et al., 2005).

Thermally activated mechanisms contributing to plastic deformation processes in metals
and alloys are often quantitatively interpreted by examining the rate sensitivity index, m,
and activation volume, υ. The nondimensional strain rate sensitivity index is defined as
(e.g., Conrad, 1965)

m =
√

3kT
υσ

= 3
√

3kT
υH

, (27.16)
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Figure 27.28. A plot of the yield stress as a function of inverse square root
grain size from experimental data obtained on nanocrystalline, ultrafine
and microcrystalline pure Cu. Also indicated are data (denoted by the
symbols with a scatter-range) for Cu with controlled growth twins for which
the twin width l is plotted in place of the grain size d. The different shaded
symbols denote data from different sources.

where k is the Boltzman constant, T the absolute temperature, σ the uniaxial flow stress,
H is the hardness (which is generally assumed to be three times the flow stress), and

υ =
√

3kT
(
∂ ln ė
∂σ

)
. (27.17)

The strain rate ė is measured in uniaxial tension, for instance. For a general discussion of
thermally activated rate theory as applied to deformation kinetics, see Krausz and Eyring
(1975). The strain rate sensitivity index, m, in (27.16) is the exponent used in common
phenomenological power law relations for the rate dependence of plastic flow, viz.,

σ ∝ ėm or ė ∝ σ 1/m. (27.18)

Such simple power law rate forms are used in other chapters of this book concerned with
strain rate dependent phenomenological and physically based theories of plasticity.

The implications of grain refinement on strengthening and hardening in face-centered
cubic metals is summarized in Figs. 27.28 and 27.29 for Cu and Ni. Available data from
Gertsman et al. (1994), Sanders et al. (1997), Legros et al. (2000), Wang et al. (2002),
Valiev et al. (2002), Champion et al. (2003), Youssef et al. (2004), and Lu et al. (2004)
on the dependence of flow stress on grain size for polycrystalline Cu, over a range from
nanometers to micrometers, are plotted in Fig. 27.28. The flow stress varies more or less
linearly with d−1/2, where d is the grain size. The shaded symbols in Fig. 27.28 pertain to
ultrafine-grained Cu with growth twins, where the twin width l is plotted in place of the
grain size. Note that the twin width exhibits the same connection to flow stress as the grain
size in nanotwinned Cu.
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Figure 27.29. Variation of hardness as a function of grain size (top ab-
scissa axis), or inverse square root grain size (bottom abscissa axis), for
polycrystalline Ni with grain size from nanocrystalline, ultrafine, and mi-
crocrystalline regimes from several investigators, indicated by the data
points. The points with a scatter-range denote data extracted from in-
strumented nanoindentation experiments on thin Ni foils produced by
pulsed laser deposition on different hard substrates (Knapp and Foll-
staedt, 2004).

Figure 27.29 is a plot of indentation hardness versus decreasing grain size for polycrys-
talline Ni spanning the nanostructured to the microstructured grain dimensions. The data
points indicated in blue denote experimental results obtained on nanocrystalline and ultra-
fine crystalline Ni produced by such techniques as electrodeposition, powder consolidation
and inert gas condensation followed by compaction (Hughes et al., 1986; Mitra et al., 2001;
Dalla Torre et al., 2002; Legros et al., 2003; Schwaiger et al., 2003; Wei et al., 2004). These
results indicate that the hardness of Ni departs significantly from the classical Hall–Petch-
type behavior when the grain size reduced typically below about 100 nm. In addition, a
lowering of hardness with grain refinement has been reported for Ni below a grain size of
about 8 nm (Schuh et al. 2002). Such a transition in strengthening to weakening with grain
refinement has been postulated from computational simulations (Schiotz et al., 1998; Van
Swygenhoven et al. 2001; Yamakov et al., 2002; Kumar et al., 2003) and by invoking concepts
of grain boundary sliding associated with room temperature creep (Chokshi et al., 1989).
Experimental simulations of indentation of two-dimensional nanocrystalline structures
employing the polycrystalline bubble raft analogs also revealed a transition from primar-
ily dislocation nucleation at grain boundary triple junctions to a greater propensity for
grain boundary sliding when the average grain size of the crystals in the draft was reduced
below about 7 nm (Van Vliet et al., 2003). By contrast, hardness values (showed by the red
data points in Fig. 27.29) extracted from instrumented nanoindentation for nanocrystalline
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Figure 27.30. A plot of the effect of grain size on the loading rate sensitivity index, m,
of pure Cu and Ni at room temperature from available literature data. The data point
indicated by the vertical arrow represents estimated value for m ∼ 0.1 and is not plotted
to scale. Also indicated are two points, taken from Lu et al. (2004) and denoted by open
diamonds, for pure Cu where twins with a width of 20 nm or 90 nm were introduced by
pulsed electrodeposition inside grains with an average size of approximately 500 nm.
For these cases, the twin width is plotted instead of the grain size.

Ni foils pulse-laser-deposited on different hard substrates (Knapp and Follstaedt, 2004)
appear to show strengthening with grain refinement down to about 8 nm or so in a man-
ner consistent with the expectations predicated on the classical Hall–Petch behavior. It is
evident from the results displayed in Fig. 27.29 that, despite the growing body of experi-
mental results on the deformation characteristics of nanostructured metals, considerable
uncertainty exists about the mechanisms responsible for deformation, especially at very
small grain sizes.

Figure 27.30 provides a summary of the experimental results available to date in the
literature on the variation of m as a function of grain size for microcrystalline, ultrafine,
and nanocrystalline metals and alloys. It is evident here that a reduction in grain size from
the microcrystalline to the nanocrystalline regime causes an order of magnitude increase
in the strain rate sensitivity of plastic deformation. Results are shown for Cu with a fixed
grain size of 500µm that was pulse-electrodeposited in such a way that the grains contained
nanoscale twins with widths of approximately 20 or 90 nm. The twin width is indicated in
Fig. 27.30 for these cases in place of the grain size. Available data indeed indicate a trend of
increased rate sensitivity at higher strain rates. This was also observed for ultrafine-grained
Cu of a grain size of approximately 300 nm (Wang and Ma, 2004).

A summary of literature data (Carreker and Hibbard, 1953; Gray et al., 1997; Follans-
bee and Kocks, 1988; Conrad and Narayan, 2000; Conrad, 2003; Schwaiger et al., 2003; Wei
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Figure 27.31. A plot of the effect of grain size on the activation volume,
measured in units of b3, for pure Cu and Ni from the literature data. Also
indicated are two data points, denoted by open diamonds (corresponding to
the same set of experiments for which m values were shown in Fig. 27.30), for
pure Cu where twins with a width of 20 or 90 nm were introduced via pulsed
electrodeposition inside grains with an average size of 500 nm (from Lu et
al., 2004). For these cases, the twin width is plotted instead of the grain size.

et al., 2004; Ma, 2004; Wang and Ma, 2004; Lu et al., 2004) on the effect of grain size on the
activation volume of Cu and Ni is shown in Fig. 27.31. Note the decrease in activation vol-
ume with grain refinement. The activation volume for the ultrafine-grained Cu specimens
with nanotwins is also indicated in this figure, with the twin width replacing the grain size
as the characteristic structural length scale. There is the hundredfold increase in activation
volume as the spacing of the internal interface is varied from about 20 to about 100 nm.

Although the observations clearly illustrate the effects of nanocrystalline grains and
nanoscale twins on strength, hardness, rate sensitivity of deformation, and activation vol-
ume, the mechanisms underlying such trends are not well understood at the present time.
In addition, no quantitative analysis is available at the time of this writing for rationaliz-
ing the observed variations in parameters as the characteristic structural length scales are
altered by several orders of magnitude. The subject remains a research area. Some brief
comments are made that outline some of the basic issues involved.

In addition to the above phenomenology, when the grain sizes of metals or alloys tran-
sits through the micrometer down to the nanometre, there are accompanying transitions
in the mechanisms of inelastic deformation as well as significant changes in constitutive
properties including, inter alia, levels of strength and strain hardening. There is direct exper-
imental evidence for these transitions, theoretical evidence vis-à-vis molecular dynamics
simulations of nanocrystalline deformation (Van Swygenhoven, 2003, and Van Swygen-
hoven and co-workers 2001, 2002), as well as suspicions that arise from what is known
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about the mechanisms of plastic deformation in crystalline metals and alloys. For example,
in fcc metals with grain sizes in the micron and larger size range, plastic deformation occurs
via the generation and motion of intragranular slip, i.e., dislocation motion. This process
is evidently shut off at grain sizes somewhat below a micron. This is natural to understand
simply by noting that the crystallographic shear stresses required to generate and move
dislocation segments that exist within the well-characterized networks that evolve during
plastic flow are on the order of τ ≈ Gb/�, where G is the shear modulus, b is the Burgers
vector, and � is the segment length. This has been discussed above. But if dislocations
are to be confined to the intragranular space, which might be taken as the definition of a
grain, � must be less than the grain diameter, d, and in fact simulations of the operation
of Frank–Read sources would suggest � ≤ d/4 − d/3. This would lead to the conclusion
that τ ≥ (3 − 4)G(b/d), or τ/G ≥ (3 − 4)(b/d). For pure Ni, the shear modulus is G ≈ 82
GPa, and if d ≈ 1µm, we obtain τ ≥ 82 MPa, which is reasonable. If, however, d ≈ 30 nm,
then τ ≥ 3280 MPa, which is too large by at least a factor of nearly 3! Not surprisingly,
experimental evidence shows that at grain sizes in this nanocrystalline range, grains seem
free of dislocations in their interior. Likewise molecular dynamic simulations of deforma-
tion of such nanocrystalline polycrystals do not reveal dislocation activity as part of the
deformation process.

Recently, Asaro, Krysl, and Kad (2003) developed a simple yet compelling mechanistic
model for the likely scenario for the anticipated transitions in deformation mechanisms
that appears to be quite consistent with experimental observations that exist to date and
that leads to a complete constitutive theory amenable to computational analysis. The model
is based on the notion, shown to follow naturally from dislocation and partial dislocation
mechanics, that at grain sizes below, say, 400 nm deformation occurs via grain boundary
dislocation emission; at grain sizes below, say, 50 nm deformation occurs instead by the
emission of partial dislocations, and at even finer grain sizes deformation occurs by grain
boundary sliding. These mechanisms and characteristic grain sizes are influenced by tem-
perature, lattice spacing, and stacking fault energy. In fact, stacking fault energy is revealed
to be a particularly important factor in determining deformation mechanism and strength
level. Moreover, it is shown that the proposed mechanisms lead to strain rate sensitivi-
ties that are inherent to the various mechanisms and that are also part of deciding which
mechanism is dominant at particular imposed strain rates.

27.6.1 Background: AKK Model

Figure 27.32 can well serve as a point of departure in reviewing the model of Asaro–Krysl–
Kad. The figure illustrates a process of emission of a dislocation from a grain boundary
into the interior of a grain. The figure describes the details associated with the emission of
a partial dislocation, but it can also be used to explain the result of the emission of a perfect
dislocation. As explained by AKK, as the segment is emitted into the grain, it creates two
trailing segments in the “side grain boundaries,” and, in the case of a partial dislocation, a
stacking fault within the grain. The energy (per unit length) of these segments is taken as
1/2Gb2 for the perfect dislocation, and 1/6Gb2 for the partial dislocation. The explanation
for the latter value lies simply in the fact that for a Schockley partial dislocation in a fcc
crystal, the magnitude of the Burgers vector is bpartial = 1/3bperfect. As evident, b ≡ bperfect

is the magnitude of the perfect Burgers vector. Now in the case of the emission of a perfect
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Figure 27.32. Emission of a partial dislocation into a nanocrystalline grain (from Asaro
et al., 2003).

dislocation, the minimum required resolved shear stress is that required to perform the
work of creating the two residual segments in the side boundaries, or τbdδx = 2( 1

2 Gb2)δx.
This leads to the remarkably simple result, τ/G = b/d. The d−1 scaling of stress level
derives simply from the fact that the area over which work can be performed by the
applied shear stress itself scales with d. As noted by AKK, this leads to forecasted shear
stresses that are too high for grain sizes less than, say, 50 nm for typical fcc metals for which
data exist.

For the case of the emission of a partial dislocation, there is a reduced requirement for
work associated with the residual segments in the side boundaries (owing to their lesser
energy per unit length), but the additional requirement of creating a stacking fault with
an energy � per unit area. Consider the primary slip system to be b = a/2[101̄]; its two
partials are thereby b(1) = a/6[21̄1̄] and b(2) = a/6[112̄]. Recall that for the perfect lattice
dislocation the energy per unit length is, within the limits of linear elasticity,

E = Ki j bi bj ln(R/r0). (27.19)

To complete the geometry, let the slip plane normal be m = 1/
√

3[111] and the slip direction
be s = 1/

√
2[101̄]; this leaves the unit vector in the slip plane orthogonal to s as z =

1/
√

6[1̄21̄]. K is the energy factor matrix defined earlier, and for convenience we repeat
that for an elastically isotropic material, Kmm = Kzz = G/4π(1 − ν) and Kss = G/4π . Now
consider the extended dislocation, extended through the distance δ and with the stacking
fault energy, �. The energy of this dislocation is

E = Ki j b
(1)
i b(1)

j ln(R/r0) + Ki j b
(2)
i b(2)

j ln(R/r0) + 2Ki j b
(1)
i b(2)

j ln(R/r0) + �(δ − r0).

Minimizing E by choice of δ yields

δeq = 2E12/�, (27.20)
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where E12 ≡ Ki j b
(1)
i b(2)

j . Assume the partial (1) to be fixed and let partial (2) move, i.e.,
extend relative to (1); if it is vice versa the signs of the driving stresses would change. We
then consider the total energy change when the dislocation extends, including the work
done by the applied stresses τms and τmz, viz.,

�E = −2E12 ln(δ/r0) + [τmsb(2)
s + τmzb(2)

z ](δ − r0) + �(δ − r0). (27.21)

If �E is minimized relative to δ, the equilibrium spacing becomes

δeq = 2E12/�̄, (27.22)

where �̄ ≡ � + τmsb
(2)
s + τmzb(2)

z . It should be apparent that deviations from the Schmid
rule of a critical resolved shear stress are inherent in any such analysis, but at this juncture
we consider only the influence of the Schmid stress τms. We leave the exploration of such
deviations to a later study and keep in mind the findings of Asaro and Rice (1977) of the
importance of such deviations from what amounts to a normality rule for flow vis-à-vis the
promotion of localized plastic flow. Specifically, Asaro and Rice (1977) found that such
deviations would promote the onset of intense localized plastic flow, either in the form
of intense shear bands or “kinking-type” bands. Equations (27.20)–(27.22) allow us to
calculate the shear stress required to drive a partial dislocation across a grain of dimension
d, i.e., δ is now set to δ = d. We do this by assuming that the terms involving τmz are of
the same order in magnitude as those involving τms, because in the average grain this is
as likely to be as true as not. Note how the mechanics at this scale lead to a much less
accurate picture for the notion of the Schmid rule.

Consider, again, Fig. 27.32, which illustrates the extension of a partial dislocation from
the boundary into the intragranular region; we imagine that it traverses the entire grain.
As it does, it produces two segments whose energy per unit length in an fcc crystal is, in
fact, (1/3)(Gb2/2). This leads, as before, to a contribution to the required shear stress of
(1/3)G(b/d). We next define α ≡ d/δeq and if we set δ = d, (27.22) yields, when combined
with the stress required to create the additional two segments, the following result

τms

G
b(1)

s

|b| + τmz

G
b(1)

z

|b| = α − 1
α

�̃ + 1
3

b
d
. (27.23)

Here, α ≡ d/δeq and �̃ ≡ �/Gb. Thus, if we define

τ (α) = τms
b(1)

s

|b| + τmz
b(1)

z

|b| , (27.24)

we obtain

τ (α)

G
≈ 1

3
b
d

+ α − 1
α

�̃. (27.25)

We also recall that δeq is defined as the equilibrium spacing of Schockley partials in the
absence of applied stress and is given as

δeq = 1
12π

Gb
�
. (27.26)

The coordinate system of the dislocation’s slip system is such that m is the unit normal to
the slip plane, s is unit vector along the direction of the perfect Burgers vector, b̃, and z is
the third direction of a right-handed triad and lies in the slip plane as well.
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Table 27.2. Predicted strength levels for Cu, Ni, Ag, and Pd

d (nm) 50 30 20 10 δeq �/(Gb)

Cu 211 MPa 248 MPa 291 MPa 421 MPa 1.6 nm 1/250
Ni 960 MPa 1027 MPa 1115 MPa 1381 MPa 0.5 nm 1/100
Ag 125 MPa 158 MPa 198 MPa 321 MPa 3.4 nm 1/447
Pd 719 MPa 763 MPa 820 MPa 988 MPa 0.54 nm 1/75

Note that for Cu this leads to required stresses considerably lower than would be the
case if only a perfect dislocation were emitted into the interior of the grain. For example,
if d = 25.6 nm, b/d ≈ 1/100 and the required shear stress suggested by the result Gb/d,
coming from a picture involving the emission of a perfect dislocation, would be G/100
vs. the G/300, coming from the first term in the above result. As �/(Gb) ≈ 1/250 for
Cu, the second term yields a maximum contribution of G/250 which, in combination
with the contribution of G/300, yields a total result approximately 33% less than Gb/d
would. Of course, as the grain size decreases even further, the differences between the
predictions increase. The other obvious feature of this result is the effect of stacking fault
energy that appears as a primary influence on the required stress. We note that for an fcc
crystal, (27.20) yields δeq = (1/12π)Gb/�. It is useful to note what this yields regarding
equilibrium partial dislocation extensions without stress. Some numerical predictions are
listed in Table 27.2. Note that the combination of a relatively high stacking fault energy and
modulus for Ni results in a predicted high strength level. On the other hand, the strength
level for Pd, which has a high stacking fault energy, is similarly predicted to be relatively
high, especially as compared to Cu, which has a comparable shear modulus to that of Pd.
Ag is clearly predicted to show the lowest strength, which, although not surprising, should
be appreciated to suggest that nanostructuring will not lead to exceedingly high strengths.
Note that for Ag, δeq ≈ 3.4 nm, and thus when d ∼ 10 nm little is to be gained from further
reductions in grin size!

Two examples of experimental data are now shown to illustrate the consistency of these
predictions and what is known experimentally. Figure 27.33 is taken from Dalla Torre et al.
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Nieman et al. (1992).

(2002) and shows stress vs. strain data in tension for Ni with a grain size of approximately 20
nm. In the first place, we note that for this Ni the ultimate strength at the highest imposed
strain rate (ė = 1.7 × 103 s−1) is approximately σult ≈ 2400 MPa. If we take σ ≈ 2τ at
yield and just after, Table 27.2 suggests that σult ≈ 2 × 1115 MPa = 2230 MPa, which is in
reasonably good agreement with the high strain rate measurement of Dalla Torre et al.
(2002). We also note the essential absence of strain hardening, which may be also forecast
from the AKK model as discussed below. There is, however, much more that requires
comment concerning this data.

Between the highest strain rate imposed and the lowest, viz., ė = 8.6 × 102 s−1, there
is an approximately 800 MPa reduction in flow stress. As discussed below, it may be no
coincidence that the first term in 27.25 is for Ni with d ≈ 20 nm, 1/3(b/d) ≈ 4.58 × 10−3,
which, when multiplied by the shear modulus of Ni, is 376 MPa. When multiplied by 2 (to
link shear stress to tensile stress), a tensile stress increment of δτ ≈ 752 MPa is obtained. A
speculation then may be that residual segments of partial dislocation in the side boundaries
may be capable of “annealing out” or dissipating if sufficient time is allowed, i.e., if the
imposed strain rate is sufficiently low. A further forecast, and one which follows for this
first speculation, is that at lower imposed strain rates no further reduction in strength will
be observed, until still another transition to grain boundary sliding sets in.

At the highest imposed strain rate, we can estimate the grain size, say for Ni, at which
there would be a transition from perfect dislocation emission to partial dislocation emission
by simply equating (b/d) to the rhs of (27.25) as

b
d

= 1
3

b
d

+ α̃�̃, (27.27)

where α̃ ≡ 1 − 1/α. Since for Ni, α̃ ≈ 1, the estimate is that the transition would occur at a
grain size of approximately d ≈ 70 b or d ≈ 20 nm! This result is somewhat surprising and
may be in need for further refinement.

Figure 27.34 illustrates additional data obtained via hardness measurements on three
other fcc metals, viz., Cu, Ag, and Pd. The shear modulii of Cu and Pd are similar; that
for Ag is approximately 15% less. With this in mind, and with the understanding that the
grain sizes for these metals in this set of data are in the range 3 nm ≤ d ≤ 25 nm, it is
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Figure 27.35. How many partial dislo-
cations or stacking faults are emitted
into a nanocrystalline grain?

clear that the ordering of strength appears to be Pd ≥ Cu ≥ Ag. This is, of course, what is
predicted form the AKK model, that is without the appearance of grain boundary sliding.
Grain boundary sliding per se is not discussed here, but it should be noted that it occurs
at sufficiently high temperatures and in cases where the grain sizes fall below, say, 5 nm or
so. It then appears as a transition in deformation mode.

27.6.2 Perspective on Discreteness

It is revealing to inquire as to the actual number of dislocations or stacking faults that
would need to be emitted into a typical grain whose dimensions are on the order of 20 or
30 nm. Figure 27.35 presents a simple analysis of this for perspective. The important point
to be illustrated here is that to induce strains that are less than, say 10%, the number of
defects involved is itself quite modest and typically less than 10. This, in turn, illustrates
the rather discrete nature of the deformation process that occurs in grains of this size. We
will, nonetheless, view the process in what follows as occurring in a continuous manner,
despite its obvious discrete nature. For analyzing polycrystalline regions, this is viewed
as representing suitable averaging. In other words, we take the view that the discrete
slip increments that given grains undergo over a short time scale on the order of 10−6s
can be time stretched over much longer times, provided the average ensemble’s strain
increment is the same in both cases. This means that in the analysis, and at any given
moment, the number of defects emitted will be noninteger, yet the average plastic strain in
a representative polycrystalline aggregate will be equal to what would have been produced
by discrete slip events in a discrete group of grains.

27.6.3 Dislocation and Partial Dislocation Slip Systems

The slip systems associated with perfect dislocations are the usual 12 (or 24) fcc systems
involving the octahedral {111} planes, and the face diagonal<110> directions lying within
those planes. The choice of 12 or 24 is simply one of allowing the slipping rate to possess
algebraic sign or to be strictly positive, respectively. In the latter case slip systems describing
slip in positive and negative directions are required. Figure 27.36 illustrates the kinematics
associated with partial dislocations, which are themselves associated with parent perfect
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Table 27.3. List of fault systems

Slip Plane Burgers Vector Leading partial, b+ Trailing partial, b−

(111) [101̄] [112̄] [21̄1̄]
(111) [01̄1] [12̄1] [1̄1̄2]
(111) [1̄10] [2̄11] [1̄21̄]
(1̄11) [110] [211] [121̄]
(1̄11) [01̄1] [1̄2̄1] [11̄2]
(1̄11) [1̄01̄] [1̄12̄] [2̄1̄1̄]
(11̄1) [110] [121] [211̄]
(11̄1) [01̄1̄] [11̄2̄] [1̄2̄1̄]
(11̄1) [1̄01] [2̄1̄1] [1̄12]
(111̄) [101] [21̄1] [112]
(111̄) [11̄1̄] [12̄1̄] [1̄1̄2̄]
(111̄) [1̄10] [1̄21] [2̄11̄]

dislocations. The parent, i.e., perfect dislocation Burgers vector is denoted as b̃. Partial
systems are associated with each parent fcc slip system, and for our purposes we may
restrict attention to slipping in a single sense along each <110> direction. This is because
each perfect slip system naturally defines two partial systems, one for slip along the parent
<110> direction and the second for slipping in the opposite direction. Thus slip in what
may be referred to as the + and − directions, in any {111} plane, can be described by
24 partial systems. Note that partial slip events occur in particular sequences, e.g., slipping
over the perfect Burgers vector, b̃, occurs in the sequence, b̃+ followed by b̃−. Slipping in
the direction −b̃, on the other hand, occurs in the sequence −b̃− followed by −b̃+. Now
we recall that slip events involving partial dislocations, i.e., the emission of stacking faults
into the grains, involves emitting only the leading partial dislocation. Therefore, from the
perfect slip system (m,b), we obtain the two partial slip systems, (m,b+) and (m,−b−).
Table 27.3 lists the 24 such partial slip systems, each associated with a perfect slip system.

The restriction of allowing only the “leading” partial dislocation to be emitted derives
from several rationales. First, we recall from the dislocation analysis above that on energetic
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Figure 27.36. Partial dislocation slip sys-
tems.
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grounds the emission of a single partial dislocation is favored over the emission of a
perfect dislocation at sufficiently small grain sizes. Second, and entirely consistent with
this view, are the results of a series of molecular dynamics simulations performed by Van
Swygenhoven and co-workers (2001–2003).

We close this discussion with the complete list of partial dislocation, i.e., stacking fault
based, slip systems in fcc crystals. The slip, or actually fault, systems listed herein would pro-
vide the basis for the kinematics of fault induced shear deformation, as perfect dislocations
do for slip in larger grain materials.
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28 Crystal Plasticity

This chapter develops the mathematical framework for the physical theory of plasticity
outlined in the previous chapter. Examples of the use of the theory are given in subsequent
chapters, including the chapter devoted to the development of a special form of the theory
developed herein as applied to laminates. In the derivations that follows, the summation
convention is used but augmented by the stipulation that a subscript enclosed in (·) is not
to be included in a summation; for instance, s(α)mα is simply the dyadic product of the two
vectors, sα and mα , not summed over the index α.

28.1 Basic Kinematics

In a crystalline solid an increment of deformation is imagined to occur in two steps. The
first, starting from the reference state, occurs by a process of simple shears on slip systems,
as described in the previous chapter. Following this is a process of lattice deformation;
the basic kinematic scheme is as shown in Fig. 28.1. Thus, the deformation gradient is
decomposed as

F = F∗ · Fp. (28.1)

The velocity gradient due to slip is

Lp = Ḟp · Fp−1 = γ̇(α)sαmα. (28.2)

In the summation α goes from 1 to the number of active slip systems, n. For the symmetric
and skew parts of Lp we have

Dp = γ̇(α)sym(sαmα), Wp = γ̇(α)skew(sαmα), (28.3)

where γ̇α is the rate of simple shearing in the direction of sα across planes whose normal
is mα ; sα and mα are unit vectors, so that s(α) · mα = 0. Note that for an fcc crystal there
are 12 distinct systems of the type ([110], [111]), and for the rate-independent case, it is
taken that slip along the ±[110] directions represent two different systems. This leads to
a total of 24 systems. In later sections, when dealing with the rate-dependent case, we
will revert back to a specification of 12 systems, where slipping can occur in the positive
and negative sense along each slip direction. For example, when phrased wr t components

538
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Figure 28.1. Kinematic model of elastoplastic deformation of
single crystal. The material flows through the crystalline lattice
by crystallographic slip, which gives rise to deformation gradi-
ent Fp. The material with embedded lattice is then deformed
elastically from the intermediate to the current configuration.
The lattice vectors in the two configurations are related by
s∗
α = F∗ · sα and m∗

α = sα · F∗−1.

formed on crystal axes {ai }, i.e., sα = si
αai , then s1

α = −1/
√

2, s2
α = 1/

√
2, s3

α = 0; m1
α = m2

α =
m3
α = 1/

√
3 would be the components of the vectors defining one of the typical slip systems.

We use covariant and contravariant base vectors and components throughout this chapter.
The deformation F∗ is the deformation of the lattice plus rigid body motions, all imagined

to occur after the plastic shears. In the plastic part, material is imagined to flow through the
lattice via the shears; the lattice is sensibly unaffected by this. In the lattice deformation,
the lattice with the material embedded on it is deformed and translated/rotated; thus the
material fully participates in this lattice motion. The total velocity gradient,

L = Ḟ · F−1 = D + W, (28.4)

consequently becomes

L = (F∗ · Fp)
. · (F∗ · Fp)−1

= Ḟ∗ · F∗−1 + F∗ · Ḟp · Fp−1 · F∗−1.
(28.5)

We define the lattice velocity gradient, and the shear induced plastic velocity gradient in
the intermediate configuration, as

L∗ = Ḟ∗ · F∗−1, Lp = Ḟp · Fp−1. (28.6)

What is defined the plastic part of L in the deformed configuration contains more than
the effect of simple shears occurring in the intermediate reference state. Accordingly, we
define the plastic velocity gradient in the current configuration as

�p = F∗ · Lp · F∗−1 (28.7)

and thus

L = L∗ + �p. (28.8)
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Consequently, we arrive at the following decompositions

L = D + W, L∗ = D∗ + W∗,

Lp = Dp + Wp, �p = dp + wp.
(28.9)

To proceed, consider a typical slip direction vector, sα . This vector convects with the
lattice deformation, because it is embedded in the lattice. Consequently, we can write

s∗
α = F∗ · sα, s∗

α = sα · F∗T,

sα = F∗−1 · s∗
α, sα = s∗

α · F∗−T,

ṡ∗
α = Ḟ∗ · sα = Ḟ∗ · F∗−1 · s∗

α ⇒ ṡ∗
α = L∗ · s∗

α.

(28.10)

Recalling that in the reference configuration mα · s(α) = 0, we will choose to define m∗
α as

follows

mα · F∗−1 · F∗ · s(α) = 0, m∗
α · s∗

(α) = 0, (28.11)

where

m∗
α = mα · F∗−1, m∗

α = F∗−T · mα,

mα = m∗
α · F∗, mα = F∗T · m∗

α.
(28.12)

To demonstrate that m∗
α , so defined, is orthogonal to the deformed slip plane, note that

an area element in the reference state in the α slip plane is, by the Nanson’s relation of
Chapter 4, transformed into

m̂∗
αdS∗ = J ∗mα · F∗−1dS. (28.13)

The unit normal to the deformed area is m̂∗
α , and J = det F∗. Thus,

1
J ∗

dS∗

dS
m̂∗
α = mα · F∗−1 = m∗

α, (28.14)

which is clearly normal to the deformed slip plane area element (m∗
α · s∗

(α) = 0).
The rates ṡα and ṁα are inherently equal to zero, as the vectors sα and mα are fixed in the

reference configuration. The rate of change of s∗
α is obtained by differentiating s∗

α = F∗ · sα ,
which gives

ṡ∗
α = Ḟ∗ · sα = Ḟ∗ · F∗−1 · F∗ · sα = L∗ · s∗

α . (28.15)

Similarly, the rate of change of m∗
α is obtained by differentiating mα = m∗

α · F∗, as follows

0 = ṁ∗
α · F∗ + m∗

α · Ḟ∗ ⇒ ṁ∗
α = −m∗

α · (Ḟ∗ · F∗−1) = −m∗
α · L∗. (28.16)

Introduce reference covariant and contravaraint base vectors, Bi and Bi . If the coordi-
nate systems are Cartesian, Bi = Bi . Introduce also a convected set of base vectors, bi and
bi , such that

bi = F∗ · Bi , bi = Bi · F∗T, Bi = F∗−1 · bi , Bi = bi · F∗−T,

bi = Bi · F∗−1, bi = F∗T · Bi , Bi = bi · F∗, Bi = F∗T · bi ,

ḃi = Ḟ
∗ · Bi = Ḟ

∗ · F∗−1 · bi = L∗ · bi .

(28.17)
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Similarly,

Ḃi = 0 = ḃi · F∗ + bi · Ḟ∗ ⇒ ḃi = −bi · L∗. (28.18)

Of course, bi and b j are a set of reciprocal base vectors, as are Bi and B j , and so

bi · b j = Bi · F∗−1 · F∗ · B j = Bi · B j = δi
. j . (28.19)

Now, reconsider the velocity gradient

�p = F∗ · Lp · F∗−1, Lp = γ̇(α)sαmα. (28.20)

In a more expanded form, this is

�p = γ̇(α)F∗ · sα mα · F∗−1 = γ̇(α)s∗
αm∗

α. (28.21)

Its symmetric and antisymmetric parts are

dp = γ̇(α) sym(s∗
αm∗

α), wp = γ̇(α)skew(s∗
αm∗

α). (28.22)

If we define

Pα = sym(s∗
(α)m

∗
α), Qα = skew(s∗

(α)m
∗
α), (28.23)

the above can be rewritten as

dp = γ̇αPα, wp = γ̇αQα,

�p = γ̇α(Pα + Qα).
(28.24)

28.2 Stress and Stress Rates

Consider the two Jaumann rates of Kirchhoff stress, viz.,
�
τ = τ̇ − W · τ − τ · WT,

�
τ ∗ = τ̇ − W∗ · τ − τ · W∗T.

(28.25)

The difference in these is
�
τ ∗ − �

τ = (W − W∗) · τ + τ · (W − W∗)T

= wp · τ + τ · wpT,
(28.26)

or, alternatively, using the second of (28.24),

�
τ ∗ − �

τ = γ̇α (Qα · τ − τ · Qα) . (28.27)

Thus,
�
τ ∗ − �

τ = γ̇αβα, (28.28)

where

βα = Qα · τ − τ · Qα. (28.29)

If we take the elastic constitutive law to be
�
τ ∗ = Λ : D∗ = Λ : (D − dp), (28.30)



P1: FBQ

052177777Xc28.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:47

542 28. Crystal Plasticity

as will be later justified, we obtain

�
τ + γ̇αβα = Λ : (D − γ̇αPα) , (28.31)

or

�
τ = Λ : (D − γ̇αPα) − γ̇αβα

= Λ :
[
D − γ̇α

(
Pα + Λ−1 : βα

)]
.

(28.32)

The elastic compliance tensor is Λ−1 is the inverse to the elastic moduli tensor Λ. The sums
in (28.32) over repeated α are from 1 to n.

28.2.1 Resolved Shear Stress

The resolved shear stress on the α slip system may be defined as

τα = m̂∗
(α) · σ · ŝ∗

α, (28.33)

where the ˆ denotes a unit vector. Asaro and Rice (1977) used, instead, the definition

τα = m∗
(α) · σ · s∗

α . (28.34)

It is thus prudent to explore the implications and meaning of these deferring choices.
Toward this end let the slip system vectors be expressed as

sα = (sα)i Bi , mα = (mα)i Bi ,

s∗
α = F∗ · sα = (sα)i F∗ · Bi = (sα)i bi ,

m∗
α = mα · F∗−1 = (mα)i Bi · F∗−1 = (mα)i bi .

(28.35)

Then,

τα = m∗ · τ · s∗ = {m(α)}i {sα} j bi · τ · b j ,

τα = {m(α)}i {sα} jτ i
. j ,

(28.36)

where τ i
. j are the mixed components of Kirchhoff stress on the convected and reciprocal

b j and bi base vectors. Recall that bi = F∗ · Bi , bi = Bi · F∗−1, and

ḃi = L∗ · bi , ḃi = −bi · L∗ ,

ṡ∗
α = L∗ · s∗

α , ṁ∗
α = −m∗

α · L∗.
(28.37)

The rate of τα , defined in (28.34), is

τ̇α = ṁ∗
α · τ · s∗

(α) + m∗
α · τ̇ · s∗

(α) + m∗
α · τ · ṡ∗

(α)

= m∗
α · (τ̇ − L∗ · τ + τ · L∗) · s∗

(α).
(28.38)

Since, from (28.25),

τ̇ = �
τ ∗ + W∗ · τ − τ · W∗,



P1: FBQ

052177777Xc28.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:47

28.2. Stress and Stress Rates 543

we obtain

τ̇α = m∗
α ·
(�
τ ∗ + W∗ · τ − L∗ · τ + τ · L∗ − τ · W∗

)
· s∗

(α)

= m∗
α ·
(�
τ ∗ + τ · D∗ − D∗ · τ

)
· s∗

(α)

= m∗
α · (Λ : D∗ + τ · D∗ − D∗ · τ ) · s∗

(α)

= m∗
α · (Λ : D∗) · s∗

(α) + m∗
α · (τ · D∗ − D∗ · τ ) · s∗

(α).

(28.39)

To proceed consider the quantity

βα : D∗ = (Qα · τ − τ · Qα) · D∗. (28.40)

Recall that βα was introduced in (28.29) and Qα in (28.23), so that

βα = 1
2

(
s∗
αm∗

(α) · τ − m∗
αs∗

(α) · τ
)

− 1
2

(
τ · s∗

αm∗
(α) − τ · m∗

αs∗
(α)

)
. (28.41)

Upon expanding (28.40), we have

βα : D∗ = 1
2

(
s∗
αm∗

(α) · τ
)

: D∗ − 1
2

(
m∗
αs∗

(α) · τ
)

: D∗

− 1
2

(
τ · s∗

αm∗
(α)

)
: D∗ + 1

2

(
τ · m∗

αs∗
(α)

)
: D∗.

(28.42)

If this is expressed in component form, temporarily suppressing the Greek subscripts for
clarity, we obtain

(βα)i j D∗
i j = 1

2
s∗

i m∗
�τ�j D∗

i j − 1
2

m∗
i s∗
� τ�j D∗

i j

− 1
2
τi�s∗

�m∗
j D∗

i j + 1
2
τi�m∗

�s
∗
j D∗

i j

= 1
2

s∗
i m∗

�τ�j D∗
i j + 1

2
τ j�m∗

�s
∗
i D∗

i j

− 1
2

m∗
i s∗
� τ�j D∗

i j − 1
2
τ j�s∗

�m∗
i D∗

i j

= m∗
�

(
τ�j D∗

j i − D∗
�jτ j i

)
s∗

i .

(28.43)

This establishes the identity

βα : D∗ = m∗
α · (τ · D∗ − D∗ · τ ) · s∗

(α). (28.44)

Since this appears in (28.39), that equation can be written as

τ̇α = m∗
α · (Λ : D∗) · s∗

(α) + βα : D∗. (28.45)

But,

m∗
α · (Λ : D∗) · s∗

(α) = m∗
αs∗

(α) : Λ : D∗, (28.46)

and, because of the inherent symmetry in Λ, we have

m∗
αs∗

(α) : Λ : D∗ = sym
(

m∗
αs∗

(α)

)
: Λ : D∗ = Pα : Λ : D∗. (28.47)
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Thus, (28.45) becomes

τ̇α = Pα : Λ : D∗ + βα : D∗ = (Pα : Λ + βα) : D∗. (28.48)

This can be further expanded as

τ̇α = (Pα : Λ + βα) : (D − dp)

= (Pα : Λ + βα) : D − (Pα : Λ + βα) : γ̇δPδ

= (Pα : Λ + βα) : D − γ̇δ (Pα : Λ : Pδ + βα : Pδ) .

(28.49)

28.2.2 Rate-Independent Strain Hardening

In the rate-independent case, the strain hardening on each slip system is taken as

τ̇α = hαδγ̇δ. (28.50)

Thus, by equating with (28.49),

hαδγ̇δ = (Pα : Λ + βα) : D − γ̇δ (Pα : Λ : Pδ + βα : Pδ) . (28.51)

This leads to

(hαδ + Pα : Λ : Pδ + βα : Pδ) γ̇δ = (Pα : Λ + βα) : D. (28.52)

By defining

hαδ + Pα : Λ : Pδ + βα : Pδ = Nαδ, (28.53)

the more compact form of (28.52) is

Nαδγ̇δ = (Pα : Λ + βα) : D. (28.54)

If we introduce Mαδ = N−1
αδ such that

MθαNαδ = δθδ, (28.55)

the solution of (28.54) can be expressed as

γ̇α = Mαδ (Pδ : Λ + βδ) : D. (28.56)

When (28.56) is substituted into (28.32), we obtain

�
τ = Λ :

{
D − [Mαδ (Pδ : Λ + βδ) : D]

(
Pα + Λ−1 : βα

)}
. (28.57)

Letting

ψα = Mαδ (Pδ : Λ + βδ) ,

χα = Pα + Λ−1 : βα,
(28.58)

the more compact form of (28.57) is

�
τ = Λ : [D − (ψα : D)χα]

= Λ : D − (ψα : D) (Λ : χα) .
(28.59)
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This, however, can be simplified further. Regressing to index notation, we have

�
τ i j = �i jkl Dkl − ψαkl Dkl�i jmnχ

α
mn =

(
�i jkl −�i jmnχ

α
mnψ

α
kl

)
Dkl . (28.60)

Thus, by using (28.58),

�
τ = [Λ − (Pα : Λ + βα) Mαδ (Pδ : Λ + βδ)] : D. (28.61)

Consequently, the rate-independent constitutive law for elastoplastic deformation of single
crystals reads

�
τ = Λe−p : D,

Λe−p = Λ − (Pα : Λ + βα) Mαδ (Pδ : Λ + βδ) .
(28.62)

However, there are a number of strong proviso’s that exist in above derivation. First,
even when the inverse Mαδ exists, it is not symmetric, i.e.,

Mαδ 
= Mδα, (28.63)

which implies that

�
e−p
i jkl 
= �e−p

kli j . (28.64)

Second, it should be noted that the inverse Mαδ may not always exist and thus additional
stipulation is required to determine the γ̇α for a given D. For instance, if all slip systems
are of equal strength and with equal strain hardening properties, in fcc crystals with more
than five linearly independent slip systems a unique set required to construct a given D is
impossible to find without auxiliary requirements. Details can be found in the books by
Havner (1992) and Lubarda (2002).

28.3 Convected Elasticity

Consider the rate of work per unit reference volume, i.e.,

R = τ : D = τ : D∗ + τ : dp = τ : D∗ + γ̇ατ : Pα. (28.65)

Because of the symmetry of τ , we may write

τ : Pα = τ : sym (s∗
αm∗

α) = τα = s∗
α · τ · m∗

α. (28.66)

Thus,

τ : D = τ : D∗ + ταγ̇α. (28.67)

Since the rate of lattice Lagrangian strain is

Ė∗ = F∗T · D∗ · F∗, D∗ = F∗−T · Ė∗ · F∗−1, (28.68)

we have

τ : D∗ = τ :
(
F∗−T · Ė∗ · F∗−1) = (

F∗−1 · τ · F∗−T) : Ė∗. (28.69)

Hence,

τ : D = (
F∗−1 · τ · F∗−T) : Ė

∗ + ταγ̇α. (28.70)
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The stress measure

S∗ = F∗−1 · τ · F∗−T (28.71)

is the second Piola–Kirchhoff stress relative to the lattice. If plasticity does not affect the
elasticity, and if we assume the material is hyperelastic, then a reference volume based
work increment is given as

δ = S∗ i jδE∗
i j . (28.72)

This gives

S∗ i j = ∂ 

∂E∗
i j
, Ṡ∗ i j = ∂2 

∂E∗
i j∂E∗

k�
Ė∗

k� . (28.73)

We recall that slip induced plasticity considered here is volume preserving, so that det F =
det F∗. The components of the elastic moduli tensor are

�i jkl = ∂2 

∂E∗
i j∂E∗

k�
, (28.74)

such that

Λ∗ = �i jk� Bi B j BkB� . (28.75)

For later reference, we also define

Λ = �i jk� bi b j bkb�. (28.76)

The vectors bi are convected with the lattice deformation, as given in (28.17). Hence, the
rate-type hyperelastic relation is

Ṡ∗ = Λ∗ : Ė∗. (28.77)

Taking the derivative of (28.71) yields, after some manipulation (see Problem 28.3 in
Chapter 34),

�
τ ∗ = F∗ · (Λ∗ : Ė∗) · F∗T + D∗ · τ + τ · D∗, (28.78)

or, in terms of D∗,

�
τ ∗ = F∗ · [Λ∗ : (F∗T · D∗ · F∗)

] · F∗T + D∗ · τ + τ · D∗. (28.79)

We will examine the first term in (28.79). Toward this end, because I = BkBk, we have

F∗ = bkBk, F∗T = Bkbk. (28.80)

Then, the inner term of the entire expression in question becomes[
Λ∗ : (F∗T · D∗ · F∗)

] = �i jk� Bi B j BkB� : (Bmbm · D∗ · bnBn)

= �i jk�D∗
mnBi B jδ

m
.kδ

n
.�

= �i jmn D∗
mnBi B j .

(28.81)
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The full expression for the first term in (28.79) is accordingly

F∗ · (�i jmn D∗
mnBi B j

) · F∗T = �i jmn D∗
mnbkBk · Bi B j · B�b�

= �i jmn D∗
mnbi b j = �i jmn D∗

k�δ
�
.mδ

�
.nbi b j

= �i jmn D∗
k�

(
bk · bm

)(
b� · bn

)
bi b j = �i jmn D∗

k� (bi b j bmbn) :
(
bkb�

)
= Λ : D∗.

Thus, (28.79) becomes

�
τ ∗ = Λ : D∗ + D∗ · τ + τ · D∗,

Λ = �i jmn bi b j bmbn.
(28.82)

If, as is typical for metals and alloys, ‖Λ‖ � ‖τ‖, in some suitable norm or component
by component, then (28.82) may be approximated as

�
τ ∗ ≈ Λ : D∗. (28.83)

This approximation amounts to assuming that the magnitude of a typical component of
stress is small as compared to a typical component of elastic modulus tensor. Note also
that the tensor, Λ, used in (28.30) has now been properly defined and qualified.

28.4 Rate-Dependent Slip

As discussed in the previous chapter, slip in crystalline materials is rate-dependent, typ-
ically governed by thermally activated processes. Here we adopt a simple, isothermal,
phenomenological description of the rate dependence, and write

γ̇α = γ̇0
τ(α)

gα

∣∣∣∣τ(α)

gα

∣∣∣∣
1/m−1

, (28.84)

where m is the so-called strain rate sensitivity parameter and γ̇0 is a reference strain rate.
As before, gα(γ ) is a hardness parameter that depends on the accumulated shear strain,
γ , defined as

γ =
∑
α

|γα|. (28.85)

The hardness increases with on-going shear strain, and gα(0) = τ0. As m → 0, the ma-
terial displays sensibly rate-independent behavior. Strain hardening is prescribed by an
evolutionary law akin to (28.50), i.e.,

ġα = hαβ |γ̇β |. (28.86)

Various forms for the hardening matrix, h, were discussed in Chapter 27. A simple, yet
flexible, form for h is

hαβ = h(γ )[q + (1 − q)δαβ], (28.87)

where q is the ratio of the latent and self-hardening rates.
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28.4.1 A Rate Tangent Modulus

When relations such as (28.84) are used in constitutive relations such as (28.32), there are
issues of stability and accuracy of numerical integration algorithms that arise because of
the inherent severe nonlinearity of the kinetic laws for slip. Peirce, Asaro, and Needleman
(1983), and later Harren and Asaro (1988), developed a reduced modulus scheme, or rate
tangent modulus scheme, for dealing with such severe nonlinearity. The basic goal is to
estimate an effective slip rate to use over a small yet finite time step in such relations as
(28.32); that is, we seek γ̇eff = �γ/�t for a given time step �t .

With the convention that a subscript , t means evaluate at time t, the kinetic law for slip
is written as

γ̇α,t = γ̇α
[
τ(α),t ; g(α),t

]
(28.88)

and accordingly

γ̇α,t+�t = γ̇α
[
τ(α),t+�t ; g(α),t+�t

]
= γ̇α

[
τ(α),t +�τ(α); g(α),t +�g(α)

]
.

(28.89)

Imagine that γ̇α,t+�t is expanded in a Taylor series about the current time t , i.e.,

γ̇α,t+�t = γ̇α
[
τ(α),t ; g(α),t

]+ ∂γ̇α

∂τ(α)

∣∣∣
t
�τ(α) + ∂γ̇α

∂g(α)

∣∣∣
t
�g(α). (28.90)

Thus, given the form (28.84), we have

∂γ̇α

∂τ(α)

∣∣∣
t
= γ̇0

mτ(α),t

[
τ(α),t

g(α),t

]1/m

= γ̇α,t

mτ(α),t
,

∂γ̇α

∂g(α)

∣∣∣
t
= − γ̇0

mg(α),t

[
τ(α),t

g(α),t

]1/m

= − γ̇α,t

mg(α),t
.

(28.91)

When (28.91) is substituted into (28.90), we obtain

γ̇α,t+�t = γ̇α,t
{

1 + 1
m

[
�τ(α)

τ(α),t
− �g(α)

g(α),t

]}
. (28.92)

Now, write the difference relation

1
�t

(γα,t+�t − γα,t ) = �γα

�t
= (1 − θ)γ̇α,t + θγ̇α,t+�t , (28.93)

where θ = 0 leads to a forward Euler integration scheme and θ = 1 to an Euler integration
scheme. Substituting (28.92) into (28.93) yields

�γα

�t
= γ̇(α),t

{
1 + θ

m

[
�τ(α)

τ(α),t
− �g(α)

g(α),t

]}
. (28.94)

Recalling the relation for τ̇α from (28.49), and defining

Rα = Pα : Λ + βα, (28.95)

we obtain

τ̇α = Rα : D − Rα : Pβ γ̇β . (28.96)
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The hardening relation gives ġα as

γ̇α = sgn
[
γ̇(β)

]
hαβ γ̇β . (28.97)

Thus, if

τ̇α,t�t = �τα, ġα,t�t = �gα, (28.98)

we obtain

�τα = Rα,t : Dt�t − Rα,t : Pβ,t γ̇β,t�t,

�gα = sgn
[
γ̇(β),t

]
hαβ,t γ̇β,t�t .

(28.99)

When the relations (28.99) are substituted into (28.94), there follows

�γα + γ̇(α),tθ�t

mτ(α),t
Rα,t : Pβ,t γ̇β,t�t + γ̇(α),tθ�t

mτ(α),t

τ(α),t

g(α),t
sgn

[
γ̇(β),t

]
hαβ,t γ̇β,t�t

=
[
γ̇α,t + γ̇(α),tθ�t

mτ(α),t
Rα,t : Dt

]
�t.

(28.100)

Using again the Euler estimate

γ̇β,t�t = �γβ (28.101)

in (28.100), there follows{
δαβ + γ̇(α)θ�t

mτ(α)

[
Rα : Pβ + sgn

[
γ̇(β)

] τ(α)

g(α)
hαβ

]}
�γβ

=
[
γ̇α,t + γ̇(α)θ�t

mτ(α)
Rα : D

]
�t.

(28.102)

If we define

Nαβ = δαβ + γ̇(α)tθ�t

mτ(α)

[
Rα : Pβ + sgn

[
γ̇(β)

] τ(α)

g(α)
hαβ

]
,

Qα = γ̇(α)θ�t

mτ(α)
Rα ,

(28.103)

the equation (28.102) becomes

Nαβ�γβ = (γ̇α + Qα : D)�t. (28.104)

Note that sgn(τβ) may be used instead of sgn(γ̇β) if convenient. If the inversion of Nαβ is
defined by

MδαNαβ = δδβ, (28.105)

we can rewrite (28.104) as

�γα = (Mαβ γ̇β + MαβQβ : D)�t. (28.106)

The Nαβ and Mδα may be compared to their rate-independent analogs in (28.53)–(28.56),
but we now note that the inverse Mδα always exists. This is evident from the fact that with
�t small enough, Nαβ is but a perturbation away from unity.
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Defining, for compactness,

Mαβ γ̇β = ḟα, MαβQβ = Fα, (28.107)

(28.106) can be recast in the form

�γα = (
ḟα + Fα : D

)
�t. (28.108)

Thus, we arrive at the effective slip rate

γ̇ ♦
α,t = ḟα,t + Fα,t : Dt . (28.109)

When (28.109) is used in (28.31), i.e., in either of

�
τ = Λ : D − γ̇α (Λ : Pα + βα)

= Λ : D − γ̇αRα,
(28.110)

in place of γ̇α , we obtain

�
τ t = Λ : Dt − γ̇ ♦

α,t Rα,t

= Λ : Dt − (
ḟα,t + Fα,t : Dt

)
Rα,t

= (Λ − Rα,t Fα,t ) : Dt − ḟα,t Rα,t .

(28.111)

Of course, from (28.110), we also have

Rα = Λ : Pα + βα. (28.112)

By defining

ΛR
t = Λ − Rα,t Fα,t , (28.113)

so that
�
τ t = ΛR

t : Dt − ḟα,t Rα,t , (28.114)

we finally obtain

�
τ = CR

t : D − ḟαRα,t , (28.115)

where

ΛR = Λ − γ̇(β)θ�t

mτ(β)
(Pα : Λ + βα) Mαβ

(
Pβ : Λ + ββ

)
. (28.116)

Note that, in general, the moduli �R
i jk� do not possess reciprocal symmetry, i.e.,

�R
i jk� 
= �R

k�i j . (28.117)

28.5 Crystalline Component Forms

Consider a typical crystalline grain, and let the local covariant and contravariant base
vectors of the reference configuration be {ai } and {ai }, respectively. Note that for cubic
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crystals, it is most natural to take these as Cartesian, in which case {ai } = {ai }. Let {a∗
i }

and {a∗i } be the convected base vectors with respect to F∗, and let {āi } and {āi } be those
convected with the total F. Thus, we have

a∗
i = F∗ · ai = ai · F∗T, ai = F∗−1 · a∗

i = a∗
i · F∗−T,

a∗i · F∗ = ai , F∗T · a∗i = ai , a∗i = ai · F∗−1, a∗i = F∗−T · ai .
(28.118)

Similarly, we have

āi = F · ai , āi = ai · FT, ai = F−1 · āi , ai = āi · F−T,

ai = āi · F, ai = FT · āi , āi = ai · F−1, āi = F−T · ai .
(28.119)

For later reference, we record the metrics

ai · a j = ai j , ai · a j = ai j , a = det (ai j ),

a∗
i · a∗

j = a∗
i j , a∗i · a∗ j = a∗i j , a∗ = det (a∗

i j ),

āi · ā j = āi j , āi · ā j = āi j , ā = det (āi j ).

(28.120)

We have already shown in (28.82) that

Λ = �i jk� a∗
i a∗

j a
∗
ka∗
�, (28.121)

and
�
τ ∗ = Λ : D∗. (28.122)

Now, consider the reduced stiffness tensor CR of (28.116), and the constitutive relation
developed in (28.110), viz.,

�
τ = ΛR : D − ḟα (Pα : Λ + βα) . (28.123)

Letting

Pα = Pαi j a∗i a∗ j , βα = β i j
α a∗

i a∗
j , (28.124)

yields

ΛR = �Ri jk� a∗
i a∗

j a
∗
ka∗
�, (28.125)

where

�Ri jk� = �i jk� − γ̇(β)θ�t

mτ(β)

(
Pαmn�

mni j + β i j
α

)
Mαβ

(
Pβrs�

rsk� + βk�
β

)
. (28.126)

But, the component forms

�
τ = �

τ i j āi ā j , D = Dk� ākā�, τ = τ i j āi ā j , (28.127)

are used and hence the components of ΛR on the {āi } bases are needed. To this end, we
write

ΛR = �Ri jk� a∗
i a∗

j a
∗
ka∗
� = �̄Ri jk� āi ā j ākā�. (28.128)
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Then

�̄Ri jk� = ā j · (āi · ΛR · ā�
) · āk

= �Rmnrs(āi · a∗
m)(ā j · a∗

n)(ā� · a∗
s )(āk · a∗

r ).
(28.129)

Since

āi · a∗
m = (ai · F−1) · (F∗ · am) = ai · Fp−1 · am = {F p−1}i

.m, (28.130)

and similarly for other dot products, we obtain

�̄Ri jk� = �Rmnrs{F p−1}i
.m{F p−1} j

.n{F p−1}�.s{F p−1}k
.r . (28.131)

The same is required for Rα , see (28.112), and so write

Rα = Ri j
α a∗

i a∗
j = R̄i j

α āi ā j . (28.132)

By analogous manipulations, we arrive at

R̄i j
α = Rmn

α {F p−1}i
.m{F p−1} j

.n . (28.133)

Consequently,

�
τ i j = �̄Ri jk�Dk� − ḟα R̄i j

α . (28.134)

The explicit forms for Pα,βα and Qα are needed on the lattice bases to compute (28.134).
Recall first that

Pα = sym (s∗
αm∗

α) = 1
2

(s∗
αm∗

α + m∗
αs∗
α) ,

Qα = skew (s∗
αm∗

α) = 1
2

(s∗
αm∗

α − m∗
αs∗
α) .

(28.135)

Then, since

sα = si
αai , m(α) = m(α)i ai ,

s∗
α = F∗ · si

αai = si
α(F∗ · ai ) = si

αa∗
i ,

m∗
(α) = F∗−T · m(α)i ai = m(α)i a∗i ,

(28.136)

the tensors

Pα = Pαi j a
∗i a∗ j , Qα = Qα

i j a
∗i a∗ j (28.137)

have the components

Pαi j = 1
2

[
sk
αa∗

ki m(α) j + m(α)i a∗
jksk
α

]
,

Qα
i j = 1

2

[
sk
αa∗

ki m(α) j − m(α)i a∗
jksk
α

]
.

(28.138)

Furthermore,

βα = Qα · τ − τ · Qα = β i j
α a∗

i a∗
j , (28.139)

with

τ = τ k� ākā� = τ ∗k� a∗
ka∗
�. (28.140)
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It is easy enough to show that

τ ∗k� = a∗k · τ · a∗� = τmn{Fp}k
.m{Fp}�.n, (28.141)

and thus

β i j
α = Qα

mn

(
a∗imτ ∗nj + a∗mjτ ∗in) . (28.142)

Consequently,

β i j
α = Qα

mnτ
k�
[
a∗im(Fp)n

.k(Fp) j
.� + a∗mj (Fp)i

.k(Fp)n
.�

]
. (28.143)

Note that the symmetry of τ leads immediately to

β i j
α = β j i

α . (28.144)

From the definition of Rα this, in turn, means that

Ri j
α = Rji

α , (28.145)

which yields the result

R̄ j i
α = Rmn

α {F p−1} j
.n{F p−1}i

.m. (28.146)

28.5.1 Additional Crystalline Forms

Examine the rate of Lagrangian strain, viz.,

Ė = FT · D · F, L = Ḟ · F−1. (28.147)

Since

D = 1
2

(
Ḟ · F−1 + F−T · Ḟ

T
)
, (28.148)

and thus

FT · D · F = sym
(
FT · Ḟ

)
, (28.149)

we have

Ė = sym
(
FT · Ḟ

)
. (28.150)

Of course, (28.150) is most naturally expressed in components on the {ai } basis, i.e.,

Ėmn = sym
(
Fk
.mḞkn

)
. (28.151)

Thus, if D is expressed most naturally on the {ām} basis as

D = Dmn āmān, (28.152)

we have

Dmn = sym
(
Fk
.mḞkn

) = Ėmn. (28.153)

Next, consider the nominal stress, P, defined via

P = F−1 · τ . (28.154)
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Note that this definition of the nominal stress P is the transpose of the tensor definition
used in Chapter 5. If P is expressed on the reference basis {ai }, then

P = Pi j ai a j , Pi j = ai · P · a j . (28.155)

Thus,

Pi j = ai · F−1 · τ · a j = āi · τ · a j . (28.156)

But,

a j = a j · I = a j · (ākāk) = (a j · āk)āk = F j
.kāk. (28.157)

Using (28.157) in (28.156), we then obtain

Pi j = τ iq F j
.q. (28.158)

Now, reconsider the constitutive relation (28.134), viz.,

�
τ i j = �̄Ri jk�Dk� − ḟα R̄i j

α . (28.159)

Since
�
τ i j = τ̇ i j + Di

.kτ
kj + τ ikD. j

k

= τ̇ i j + āipτ jq Dpq + ā jpτ iq Dpq,
(28.160)

(28.159) can be rewritten as

τ̇ i j = �̄Ri jk�Dk� − =
�i jk�Dk� − ḟα R̄i j

α , (28.161)

where
=
�i jk� = āikτ j� + ā jkτ i�, (28.162)

which has the symmetry
=
�i jk� = =

�i j�k. (28.163)

Defining

�̂i jk� = �̄Ri jk� − =
�i jk�, (28.164)

which also possesses the symmetry in k� � �k, we have

τ̇ i j = �̂i jk�Dk� − ḟα R̄i j
α . (28.165)

Now, use (28.153) in (28.165), noting the k� symmetry, to obtain

τ̇ ik = �̂ikmn Fs
.mḞsn − ḟα R̄ik

α . (28.166)

Hence, by differentiating (28.158), we find

Ṗi j = τ̇ ikF j
.k + τ ikḞ j

.k, (28.167)

and, after incorporating (28.166),

Ṗi j = �̂iprkF�.r F j
.pḞ�k + τ ika j� Ḟ�k − ḟα R̄ik

α F j
.k. (28.168)
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Figure 28.2. Laboratory vs. local crystal coordinates.

Finally, if we define

Ki jk� = �̂iprkF�.r F j
.p + τ ika j�,

Ḃi j = ḟα R̄ik
α F j

.k,
(28.169)

we obtain

Ṗi j = Ki jk� Ḟ�k − Ḃi j . (28.170)

28.5.2 Component Forms on Laboratory Axes

Suppose the given grain (crystallite) in question is referred to a set of fixed laboratory
axes, i.e., the {ei } basis. Define the transformation

 i j e j = ai , (28.171)

as shown in Fig. 28.2. Assuming that the bases {ai } and {ai } are indeed Cartesian, (28.170)
can equally well be written as

Ṗi j = Ki jk� Ḟ�k − Ḃi j . (28.172)

Then, if

K = Ki jk� ai a j aka� = Ki jk� ei e j eke�, (28.173)

we have

Kmnrs =  im jnKi jk�  kr �s . (28.174)

Similarly, if Ṗi j are the rates of nominal stress on the laboratory basis,

Ṗmn =  imṖi j jn, (28.175)

it follows that

Ḃmn =  imḂi j jn, Ḟrs =  �r Ḟ�k ks . (28.176)

On the {ei } basis, we accordingly have

Ṗmn = KmnrsḞrs − Ḃmn. (28.177)
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29 The Nature of Crystalline Deformation: Localized
Plastic Deformation

The previous three chapters have laid out some of the basic phenomenological features of
plastic deformation in crystals and have developed a mathematical constitutive framework
for analyzing crystalline deformation. It is not the purpose herein to provide an exhaustive
treatment of particular case studies, in particular through the review of various numerical
studies that have been performed, as this is the subject of a rather different volume. We
do, however, explore some of the phenomenological implications of the mechanisms and
theory developed above vis-à-vis the nature of crystalline deformation. In particular, we
will explore the natural tendency of plastic deformation to become highly nonuniform and
in fact localized into patterns that can, inter alia, evolve into bands of intensely localized slip,
kinking patterns, and the sort of heterogeneous patterns of slip on different systems that
were referred to as “patchy slip” in Chapter 27. These examples of localized deformation
are important because they often lead to material failure, as well as to the evolution of
internal substructure that, in turn, directly influences evolving material response. On the
other hand, the analysis of these deformation patterns serves to highlight some rather
fundamental aspects of the process of crystalline deformation via the process of slip. This
serves to reveal and, in part explain, some of the basic implications of the type of theory
we have outlined herein.

Specifically, we examine two aspects of the theory regarding the stability of uniform
deformation, viz., the implications of deviations from the Schmid rule of a critical resolved
shear stress, as well as the effects of lattice kinematics, on the formation of localized modes
of deformation. As will become clear from the development, deviations from the Schmid
rule, in fact, represent deviations from the rule of plastic normality in the flow law. In
addition, there are geometrical effects that involve discontinuous rates of lattice rotation
that can destabilize uniform plastic flow and lead to the formation of modes such as kinks
and shear bands. Some empirical perspective is needed first.

29.1 Perspectives on Nonuniform and Localized Plastic Flow

The origins and phenomenology of localized deformation in crystals has been reviewed
by Asaro (1983a,1983b) and Dao and Asaro (1996); here we provide a summary of those
findings.

557
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Figure 29.1. CSB and subsequent MSB formation in a GP-II con-
taining single crystal of Al-2.8 wt% Cu deformed in uniaxial tension.
The CSB’s are very nearly aligned with the most active slip system,
whereas the MSB’s are characteristically misoriented by several de-
grees to the active slip planes (from Chang and Asaro, 1981).

29.1.1 Coarse Slip Bands and Macroscopic Shear Bands in Simple Crystals

Most ductile crystals display the formation of intense shear bands, if deformed sufficiently
far into the plastic range prior to, but often leading to, fracture. For example, precipitation
hardened alloys containing GP-I and GP-II zones display intense shear bands leading to
dramatic shear fractures as shown earlier. Elam (1927) performed early experiments on
Al-Zn and Cu-Be single crystals, Beevers and Honeycombe (1962) on Al-Cu, and Price
and Kelly (1964) on Al-Cu, Al-Zn, Al-Ag, and Cu-Be. They observed the same trends
with respect to the natural tendency toward the localization of deformation. Chang and
Asaro (1981) have performed systematic experiments on Al-2.8 wt% Cu single crystals in
tension and compression and Harren, Deve, and Asaro (1988) performed tests on the same
Al-Cu crystals Chang and Asaro (1981) tested, but this time in plane strain compression
as well as uniaxial tension and compression. The phenomena studied by Chang and Asaro
(1981) and by Harren et al. (1988) revealed that the process of localization occurred by the
formation of what they termed coarse slip bands (CSB) that were followed after further
deformation by macroscopic shear bands (MSB). The same phenomena occur in nominally
pure, single-phase crystals and thus appear to be an entirely natural part of the finite strain
deformation process.

Figure 29.1 shows CSB and MSB formation in an Al-2.8 wt% Cu crystal containing
GP-II zones. The crystal was oriented so that slip began on the primary slip plane, whereas
the lattice rotations described earlier eventually induced slip on a second system (i.e., the
conjugate system). The CSB’s formed very nearly aligned with the primary slip system, and
subsequently clustered, and finally within a cluster of CSB’s a MSB formed. The MSB’s
are characteristically misoriented from the CSB’s (and the most active slip system) as is
evident in the figure and this misorientation had been shown by Asaro (1979) to be because
of an abrupt lattice misorientation that, in turn, causes a geometrical softening as described
below. Chang and Asaro (1981) showed that MSB’s sometimes formed on the conjugate
slip system after CSB’s formed on the primary slip system. Very similar phenomenology
was observed in compression. For example, Fig. 29.2 shows the formation of CSB’s on
both the primary and conjugate systems in plane strain compression. Eventually, MSB’s
formed in this state of compression as described by Harren et al. (1988).
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Figure 29.2. CSB formation on both the primary and conju-
gate systems followed by MSB formation in a GP-II containing
single crystal of Al-2.8 wt% Cu deformed in plane strain com-
pression. As in the case of uniaxial tension, the MSB’s are char-
acteristically misoriented with respect to the active slip planes,
again associated with geometrical softening (from Harren et
al., 1988).

29.1.2 Coarse Slip Bands and Macroscopic Shear Bands in Ordered Crystals

CSB patterns are observed in ordered intermetallic compounds, including Ni3Ga (L12)
(Takeuchi and Kuramoto, 1973), TiAl (L10) (Kawabata et al., 1985), and Ti3AL (DO3)
(Minonishi, 1991). Figure 29.3 shows examples of compression tests along a fixed orien-
tation at three different temperatures for Ni3Ga. CSB’s are clearly observed at the low
temperature of 77 K, as well at the higher temperature of 993 K. At the intermediate
temperature of 458 K the deformation appears rather uniform. The analysis performed by
Dao and Asaro (1996), using methods described below, indicated that the strain hardening
rates were too high to meet the critical conditions required for localization, even though
the magnitude of the deviation from the Schmid rule was largest at this intermediate tem-
perature. Heredia and Pope (1988) studied Ni3Al (L11) single crystals in tension. They
found that the crystals often fractured on {111}-type shear planes. Such abruptly occurring
localized plastic flow has been reported in crystals of other ordered intermetallic com-
pounds such as Ni-Al (Wasilewski et al., 1967) as well as in Ti-Al alloys containing duplex
γ /α microstructures (Inui et al., 1992). What appears to be common to these materials
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⏐ Figure 29.3. Compression tests along a
fixed orientation at three temperatures
for Ni3Ga, (a) at 77 K, (b) at 458 K,
and (c) at 993 K (from Dao and Asaro,
1996).
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is that they display stable, and often high, rates of strain hardening, yet fail via intensely
concentrated shearing.

As noted above, the theory of crystal plasticity can describe much of the observed be-
havior. Indeed localized plastic deformation of the type described here has been analyzed,
and we explore some of that analysis as an application of the theory in what follows.

29.2 Localized Deformation in Single Slip

29.2.1 Constitutive Law for the Single Slip Crystal

For the sake of compactness we develop a suitable constitutive law for a crystal undergoing
single slip based on the framework described in the previous chapter. Let s and m be the
slip direction and slip plane normal, respectively. Let them be unit vectors. Then, the rate
of deformation and spin rates are, respectively,

D = D∗ + Pγ̇ , 2P = sm + ms,

W = W∗ + Qγ̇ , 2Q = sm − ms.
(29.1)

The elastic response is of the form

�
σ∗ + σ tr D∗ = L : D∗, (29.2)

where the Jaumann rate of stress on axes that spin with the lattice,
�
σ∗, is given as

�
σ∗ = σ̇ − W∗ · σ + σ · W∗. (29.3)

The elastic moduli have the reciprocal symmetry, Li jk� = Lk�i j . Of course, the lhs of (29.2)

is the lattice based Jaumann rate of Kirchhoff stress,
�
τ ∗, when the reference state is chosen

to instantaneously coincide with the current state. In this regard, also note that Λ from

(28.30) is related to L by Λ = (det F)L, because
�
τ ∗ = (det F)(

�
σ∗ + σ tr D∗).

Expressing D∗ and W∗ in terms of D, W, and γ̇ , the constitutive law becomes

�
σ + σ tr (D) = L : (D − P′γ̇ ), (29.4)

where

P′ = P + L−1 : (Q · σ − σ · Q), (29.5)

and
�
σ = σ̇ − W · σ + σ · W. (29.6)

29.2.2 Plastic Shearing with Non-Schmid Effects

Begin by writing an expression for an increment of slip, in accordance with the Schmid
rule,

dγ = dτms/h, (29.7)

where dτms is the increment of resolved shear stress following an increment of slip strain,
and h is the strain hardening modulus on the slip system. For compactness of notation
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here, γ is used to represent the plastic shear strain γms , the shear strain on the (s,m) slip
system. An expression for dγ such as this must be refined and generalized in several ways.
First, it is necessary to state precisely how dτms is to be related to a stress increment such

as
�
σ∗. We recall that a particular way of computing an increment of resolved shear stress,

dτms , was used in the previous chapter. Here we explore the implications of more general
definitions of such increments. Next, as noted in Chapter 27 on the micromechanics of slip,
there are good reasons for suspecting that small departures from the Schmid rule are to
be expected, in the sense that increments of components of stress, other than the resolved
shear stress, will influence slip on a particular slip system. To describe such effects, let z be
the unit vector that, together with s and m, form a right handed triad; z is in the slip plane
along with s. Thus, in place of (29.7), we write the flow law as

dγ = 1
h

(dτms + αssdτss + αmmdτmm + αzzdτzz + 2αszdτsz + 2αmzdτmz). (29.8)

Here each component of α gives the decrement on the Schmid stress, τms , required for
flow per unit increase of the corresponding non-Schmid stress. Examples of such effects,
and estimates of their values, are given below.

We now turn attention to defining the increments in the resolved shear stress dτms (and
accordingly increments in the other dτi j ’s). In all such definitions, we take

τms = m · σ · s, (29.9)

where s and m are unit vectors in the current state, which is taken as the reference state.
The choice is, however, how to form the increments ṡdt and ṁdt . The most direct way is
to require that s and m remain orthogonal unit vectors, with s remaining in the slip plane
as the plane rotates. Then,

ṡ = (D∗ + W∗) · s − s(s · D∗ · s),

ṁ = − m · (D∗ + W∗) + m(m · D∗ · m).
(29.10)

The rate of resolved shear stress becomes

τ̇ms = ṁ · σ · s + m · σ̇ · s + m · σ · ṡ

= m · [
�
σ∗ − D∗ · σ + σ · D∗ + σ(m · D∗ · m − s · D∗ · s)] · s.

An alternative definition follows from choosing to convect s with the lattice slip plane,
so that its length changes, and to choose m as the reciprocal base vector normal to the
deformed slip plane. In this case

ṡ = (D∗ + W∗) · s, ṁ = −m · (D∗ + W∗), (29.11)

which gives for the rate of Schmid stress,

τ̇ms = m · (
�
σ∗ − D∗ · σ + σ · D∗) · s. (29.12)

A third choice follows if we convect s with the lattice and choose m so that it is normal
to the deformed slip plane, but of a length that decreases in proportion to slip plane area.
Then,

ṡ = (D∗ + W∗) · s, ṁ = −m · (D∗ + W∗) + m tr (D∗), (29.13)
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which gives

τ̇ms = m · [
�
σ∗ + σ tr (D∗) − D∗ · σ + σ · D∗] · s. (29.14)

This particular version of dτms is of some special interest because it is the definition of the
resolved shear stress that is precisely the work conjugate to γ̇ , and thus leads to a precise
statement of normality.

There are unlimited alternative definitions for the rate of the Schmid stress, and as a
fourth and final example we again require s and m to be orthogonal unit vectors, but simply
rotate them at the lattice spin rate, so that

ṡ = W∗ · s, ṁ = W∗ · m. (29.15)

In this case,

τ̇ms = m · �
σ∗ · s. (29.16)

All the above expressions for the Schmid rate have in common the feature that

τ̇ms = m · [
�
σ∗ + σ tr (D∗)] · s + σ : H : D∗, (29.17)

where H is a fourth-rank tensor that depends on the precise way in which the base vectors
s and m deform with the lattice and that has components that are of O(1). By inverting
(29.2), all such rates can be written in the form

τ̇ms = (sm + σ : H : L−1) : [
�
σ∗ + σ tr (D∗)]

= (P + σ : H : L−1) : [
�
σ∗ + σ tr (D∗)].

(29.18)

In the second version of the above expression, we have noted that the term in [. . .] is
symmetric.

We examine now the specification of the various non-Schmid stress increments appear-
ing in (29.8). Each of these increments is multiplied by an α. If the α’s are small fractions
of unity, there will be contributions of negligibly small size, of O(ασ/L) in comparison to
terms of O(1) or O(α) or O(σ/L), made to the bracketed term in (29.8) (e.g., at the level
of choosing a specific form for H in (29.18)). On the other hand, looking ahead to the final
result for hcr at localization, if the α’s are not small then the correction due to the retention
of the O(σ/L)-terms in the non-Schmid stress rates would in any case be negligible. This is
a fortunate circumstance, because the current understanding of crystalline slip barely en-
ables a definite choice of the α’s, much less a precise specification of the non-Schmid stress
rates. Even though the precise form of the Schmid rate τ̇ms cannot be specified according
to our present understanding of the physics of crystalline slip, in this case we are helped
by the remarkable fact that our result for hcr, to the order of accuracy that we determine
it, turns out to be independent of how we choose H.

In view of the above remarks it suffices to write expressions of the type τ̇mz = m · [
�
σ∗ +

σ tr (D∗)] · z, τ̇ss = s · [
�
σ∗ + σ tr (D∗)] · s, and so on for the non-Schmid stress rates, because

precision of the order O(σD∗) is evidently unnecessary. This, by the way, justifies the
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s

m

z

n

Figure 29.4. Cartesian coordinates aligned with unit vectors of the crystal’s slip system.
The surface of the band of localized deformation has unit normal n.

definitions of resolved shear stress used in previous chapters. Thus, using (29.18), the plastic
shear rate of (29.8) can be written as

γ̇ = 1
h

Q′ : [
�
σ∗ + σ tr (D∗)], (29.19)

where

Q′ = P + σ : H : L−1 + α. (29.20)

The tensor α of non-Schmid effects, chosen without loss of generality to be symmetric,
has the matrix components, taken on axes aligned with the triad s,m, z and ordered in the
same sense,

α =
⎡
⎣αss 0 αsz

0 αmm αmz

αsz αmz αzz

⎤
⎦ . (29.21)

The elastic relation (29.2) can be used to rewrite (29.19) as

γ̇ = 1
h

Q′ : L : (D − Pγ̇ ), (29.22)

which can be solved for γ̇ to obtain

γ̇ = 1
h + Q′ : L : P

Q′ : L : D. (29.23)

By substituting this into (29.4), we obtain the form of the constitutive rate equation needed
for the localization analysis, viz.,

�
σ + σ tr (D) =

[
L − (L : P′)(Q′ : L)

h + Q′ : L : P

]
: D. (29.24)

When the tensor α is zero and when H is chosen to yield (29.14), it is readily verified
that Q′ = P′; the bracketed tensor of constitutive moduli in (29.24) is then said to exhibit
“normality.”

29.2.3 Conditions for Localization

Hill (1962) has presented the general theory of bifurcation of a homogeneous elastic-plastic
flow field into a band of localized deformation [or in Hadamard’s (1903) terminology, into
a “stationary discontinuity”]. There is first the kinematical restriction that for localization
in a thin planar band of unit normal n (see Fig. 29.4) the velocity gradient field, vi, j , inside
the band can differ from that outside, namely v0

i, j , by only an expression of the form

vi, j − v0
i, j = gi n j . (29.25)
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In addition, there is the requirement of continuing equilibrium that

ni σ̇i j − ni σ̇
0
i j = 0 (29.26)

at incipient localization, where σ̇ is the stress rate within the band and σ̇0 that outside of
it. The latter requirement is merely a statement of an ongoing traction continuity.

If the constitutive rate relation is assumed to have the form

σ̇i j = Ci jk� vk,�, (29.27)

and if the same set of constitutive coefficients, C, apply both inside and outside the band
at incipient localization, then (29.25) and (29.26) will be satisfied simultaneously if

(ni Ci jk� n�)gk = 0, (29.28)

where n · C · n is considered to be a second-rank matrix. Of course, once the critical value
of some constitutive parameter, say h, for localization is known as a function of n from
(29.28), it is then necessary to determine the orientation n at which the critical state is first
attained.

It is necessary to first identify the modulus C used in (29.28), and so we write

σ̇ =
[
L − (L : P′)(Q′ : L)

h + Q′ : L : P

]
: D + W · σ − σ · W − σ tr (D), (29.29)

recognizing that D and W can be expressed in terms of the velocity gradient. To form the
expression analogous to (29.28), we multiply (29.29) from the left with n, and write

1
2

(gn + ng) and
1
2

(gn − ng)

in place of D and W, respectively. This gives

0 =
[

(n · L · n) − (n · L : P′)(Q′ : L · n)
h + Q′ : L : P

]
· g + A · g, (29.30)

where

A = 1
2

[(n · σ · n)I − σ − (n · σ)n − n(σ · n)]. (29.31)

Here, I has the usual meaning as the second-rank identity tensor.
Now consider the acoustic tensor, n · L · n, and form its inverse, (n · L · n)−1, which we

may assume to exist as long as the stresses are not significant fractions of the elastic moduli
themselves. Multiplying (29.30) with this inverse, we obtain

0=
{[

I + (n · L · n)−1 · A
]−

[
(n · L · n)−1 · (n · L : P′)

]
(Q′ : L · n)

h + Q′ : L : P

}
·g. (29.32)

Since A in (29.32) has elements which are of order σ , the tensor

I + (n · L · n)−1 · A
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differs from unity by terms of O(σ/L), which, in representative cases, are small fractions
of unity. Thus, we may assume that this tensor has an inverse and we express it as an
expansion series[

I + (n · L · n)−1 · A
]−1 = I − (n · L · n)−1 · A

+ [
(n · L · n)−1 · A

] · [(n · L · n)−1 · A
]− · · · .

When (29.32) is multiplied by this inverse, we arrive at an expression in the form(
I − ab

h + Q′ : L : P

)
· g = 0, (29.33)

where the vectors a and b are given by

a = [
I + (n · L · n)−1 · A

]−1 · (n · L · n)−1 · (n · L : P′),

b = Q′ : L · n.
(29.34)

Upon multiplying (29.34) from the left by b, we then obtain(
1 − b · a

h + Q′ : L : P

)
· (b · g) = 0. (29.35)

In view of (29.23), the term b · g cannot vanish for nonzero g unless the bifurcation
mode involves no plastic strain. Thus, the only relevant condition allowing a nonzero g is
that the coefficient of b · g vanish, which yields the condition for the critical value of h at
localization,

h + Q′ : L : P = b · a. (29.36)

It is easy to verify that the localization mode has the form g ∝ a. Therefore, using the
expressions for a and b, we obtain

hcr = −Q′ : L : P + (
Q′ : L · n

) [
I + (n · L · n)−1 · A

]−1 · (n · L · n)−1 · (n · L : P′).
(29.37)

Of course, (29.37) may be readily evaluated for particular cases numerically, but there
is reason for insight to consider expansions of it in terms of the order of magnitudes
of the various parameters within it. Asaro and Rice (1977) have done that as described
below.

29.2.4 Expansion to the Order of σ

To review the origin of the terms in (29.37), we first note that P is of O(1) and it represents
the plastic flow direction tensor. P′ is defined by (29.5) and differs from P by terms of
O(σ/L). A is defined by (29.31) and is of O(σ ). Finally, Q′ is defined by (29.20) and
involves the term P. This term is of O(σ/L) involving the fourth-rank tensor H introduced
to account for lattice deformation effects on the Schmid stress rate, and the term α, which
accounts for the non-Schmid effects on yielding and subsequent plastic flow. We recall
that the specification of Q′ neglected terms of O(ασ/L), which in any event we would be
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hard-pressed to specify anyway. For this reason we delete from the rhs of (29.37) all terms
of the orders

ασ, ασ 2/L, ασ 3/L2, . . . and σ 2/L, σ 3/L2, . . . .

When this is done, we obtain

hcr = hL
cr + hαLcr + hσcr, (29.38)

where the three terms have the order of their superscripts and are defined by

hL
cr = − P : L : P + (P : L · n) · (n · L · n)−1 · (n · L : P),

hαLcr = − α : L : P + (α : L · n) · (n · L · n)−1 · (n · L : P),
(29.39)

hσcr = − σ : H : P + (σ : H · n) · (n · L · n)−1 · (n · L : P)

+ (P : L · n) · (n · L · n)−1 · [n · (Q · σ − σ · Q)]

− (P : L · n) · (n · L · n)−1 · A · (n · L · n)−1 · (n · L : P).

(29.40)

When expressed in this order, it is convenient to represent these terms as

hcr = LF0(n) + αF1(n) + σ F2(n). (29.41)

In (29.41) the functions F are all of O(1), and L, α, σ are meant to be representative
members of their corresponding tensors.

We begin the exploration of the most critical orientation for n by examining the case
where both α and σ/L are sufficiently small that we can approximate (29.41) by

hcr ≈ LF0(n). (29.42)

Consider the first of (29.39), which is rewritten as

LF0(n) = −P : N : P, (29.43)

where the fourth-rank tensor N is defined by

N = L − (L · n) · (n · L · n)−1 · (n · L). (29.44)

We observe that N has the same symmetry as does L, and that

n · N = N · n = 0. (29.45)

We now show that the tensor N is, in fact, the tensor of incremental elastic moduli gov-
erning plane stress states in a plane perpendicular to n. Specifically, we let the unit vectors
u, v, and n form a right-handed triad and we form

d = 2Dnuu + 2Dnvv + Dnnn, (no sum on u, v, n) (29.46)

and

D′ = Duuuu + Duv(uv + vu) + Dvvvv, (29.47)

where the Di j ’s (i, j = u, v, n) are components of an arbitrary rate of stretching tensor D
on the directions of the corresponding unit vectors. Furthermore, we observe that

D = D′ + 1
2

(nd + dn). (29.48)
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For an increment of elastic plane stress deformation in the u − v plane, in the sense that the
corotational increment of Kirchhoff stress has no components associated with the normal
n to that plane, it is evidently necessary that

O = n · L : D = n · L : D′ + (n · L · n) · d (29.49)

and hence that

d = −(n · L · n)−1 · (n · L : D′). (29.50)

Thus the corotational Kirchhoff rate can be written in terms of the rate of deformation D′

in the plane of stretching as
�
σ + σtr (D) = L : D = L : D′ + (L · n) · d

= [L − (L · n) · (n · L · n)−1 · (n · L)] : D′ = N : D′,
(29.51)

where (29.44) has been used for N . This establishes the interpretation of N as the plane
stress elastic modulus tensor. Because lattice distortions are small in all cases that we
consider, the quadratic form

V = D′ : N : D′ (29.52)

may be assumed to be positive definite in D′. On the other hand,

N : D = N : D′ + (N · n) · d = N : D′, (29.53)

because of (29.45), and thus the quadratic form V can also be written

V = D : N : D. (29.54)

We see, therefore, that V is a positive definite function of D′ but a positive semidefinite
function of D. In particular,

V = D : N : D = 0, if and only if D′ = 0. (29.55)

Making use of these results in (29.42) and (29.43), we see that the critical value, hcr, for
localization on a plane with normal n must be either negative or zero, the latter occurring
when n is chosen so that P has no components in the plane perpendicular to n. It is
straightforward to show that there are two, and only two, orientations n that allow this
condition of hcr = 0, and these are given by

case (i): n = m, and case (ii): n = s. (29.56)

Thus, to summarize, when we approximate (29.41) by (28.40), we find that the critical
plastic-hardening modulus at the inception of localization is

hcr = 0, (29.57)

and the plane of localization is either the slip plane, where n = m, or a plane that we shall
refer to as the kink plane, where n = s.

29.2.5 Perturbations about the Slip and Kink Plane Orientations

To study the influence of the terms of O(αL) and O(σ ) in (29.38), we begin by expanding
(29.38) in a series in n, first about n = m and then about n = s. In this we wish to be mindful
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of the fact that σ/L is of order 10−2 or smaller in representative cases, but that the α’s,
which we estimate later based on models for dislocation processes such as cross-slip, and
from experimental data, may be appreciably larger, say on the order of 10−1.

For the perturbation about n = m, we write

n = m + ε, (29.58)

where ε is understood to be small and to be chosen so that n, like m, is a unit vector. Also,
we define the second-rank tensors

M = m · L · m, E = m · L · ε, H = ε · L · ε, (29.59)

and we observe that, by the definition of P, we have

P : L · n = s · (M + E), P : L : P = s · M · s. (29.60)

Further,

(n · L · n)−1 = (
M + E + ET + H

)−1

=
[
I + M−1 · (E + ET + H

)]−1
· M−1,

(29.61)

where ET is the transpose of E. Since ε is small, so also are E and H, and the inverse of
the bracketed matrix can be expanded in a series to give

(n · L · n)−1 = M−1 − M−1 · (E + ET) · M−1 − M−1 · H · M−1

+ M−1 · (E + ET) · M−1 · (E + ET) · M−1 + · · · O(ε3).

By using these results and reading off the various terms of the first set of brackets in (29.39),
and comprising LF0(n), we find, after some algebra, that

LF0(n) = −s · (H − ET · M−1 · E) · s + O(Lε3). (29.62)

Next, by using the definitions of M, E, H, and by writing n − m for ε, there follows

LF0(n) = −(n − m) · (s · M · s) · (n − m) + O(L|n − m|3). (29.63)

The fourth-rank tensor M is given by

M = L − (L · m) · (m · L · m)−1 · (m · L), (29.64)

and corresponds to the tensor N when n is set to m. Since the vector n − m can have
no component in the direction of m to the order considered (n and m are unit vectors),
we observe from the properties discussed earlier for N that (29.63) is a negative definite
quadratic form.

Consider the term αLF1(n), which is defined by the second set of brackets in (29.39).
We can write, using the usual definitions,

αLF1(n) = −α : N : P = −(α : N · m) · s. (29.65)

Observe that F1(m) = 0, because M · m = 0. By expanding the expression for αLF1(n),
using various results from above, we obtain

αLF1(n) = (α : M · s) · (n − m) + O(αL|n − m|2). (29.66)
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Finally, σ F2(n) of (29.40) is evaluated. We first calculate F2(m), noting that

(m · L · m)−1 · (m · L : P) = (m · L · m)−1 · (m · L · m) · s = s, (29.67)

so that

αLF2(m) = − σ : H :
[1

2
(ms + sm)

]
+ (σ : H · m) · s

+ s ·
{

m ·
[1

2
(sm − ms) · σ − 1

2
σ · (sm − ms)

]}

− s ·
{1

2

[
(m · σ · m)I − σ − (m · σ)m − m(σ · m)

]}
· s.

Observing that the two terms involving H cancel one another, because of the symmetry
of H, and simplifying the remaining terms, we come to the remarkable conclusion that

σ F2(m) = 0, (29.68)

which applies irrespective of the several different generalizations of the Schmid stress
considered above. Therefore, for any choice for H, we have

σ F2(n) = O(σ |n − m|). (29.69)

By combining all the terms for hcr, we obtain

hcr = − (n − m) · (s · M · s) · (n − m) + (α : M · s) · (n − m)

+ O(L|n − m|3, αL|n − m|2, σ |n − m|, ασ, σ 2/L).
(29.70)

Now, since n − m has no component in the direction of m to the order considered, and
since the (mm, sm, zm) components of s · M · s vanish, because

m · (s · M · s) = (s · M · s) · m = 0, (29.71)

by (29.64), we shall henceforth understand the notation s · M · s to represent a plane
second-rank tensor. Specifically, this is a tensor that has only components with the indices
ss, sz, zs, and zz and whose components agree with those of its three-dimensional coun-
terpart. The inverse operation to (s · M · s) · q = p is defined only for vectors p and q lying
in the s-z plane. In this sense, the inverse (s · M · s)−1 exists as a plane tensor, and

(s · M · s) · q = p implies q = (s · M · s)−1 · p, (29.72)

for associated vectors p and q lying in the s-z plane.
In terms of this inverse, the orientation n which maximizes the rhs of (29.70) is

n = m + 1
2

(s · M · s)−1 · (s · M : α) + O(α2, σ/L). (29.73)

When this expression is inserted into (29.70), we find that the critical hardening rate at the
onset of localization is

hcr = 1
4

(α : M · s) · (s · M · s)−1 · (s · M : α) + O(ασ, σ 2/L, α3L). (29.74)

A parallel calculation can be carried out for case (ii), in which we perturb about the
kink-plane n = s. The results are given in terms of a tensor

ζ = L − (L · s) · (s · L · s)−1 · (s · L). (29.75)
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The critical orientation is given by

n = s + 1
2

(m · ζ · m)−1 · (m · ζ : α) + O(α2, σ/L), (29.76)

and the corresponding hardening rate is

hcr = 1
4

(α : ζ · m) · (m · ζ · m)−1 · (m · ζ : α) + O(ασ, σ 2/L, α3L). (29.77)

It is interesting to note from (29.74) and from the result m · M = 0, that only the
components of α in the slip-plane (specifically αss, αsz = αzs , and αzz) affect the value
of hcr for localization, at least to quadratic order in the α’s. Similarly, from (29.77), only
components of α in the kink-plane affect the result for hcr. Also, we see that the critical
value of h for the onset of localization is indeed positive when the non-Schmid effects,
represented by the α’s, are present.

We note that the terms represented explicitly in (29.74) and (29.77) have the order of
α2/L. So long as α is much larger than σ/L, the terms of order ασ and σ 2/L, represented
by O(. . .) in (29.74) and (29.77), will be negligible in comparison to what is retained. On
the other hand, the neglected and retained terms are of the same order when the α’s are
of order σ/L. But in this case, hcr will be such a small fraction of σ (say, 10−2σ or less) that
it is to be expected that local necking, setting in when h is of the order of σ , will have long
preceded the attainment of conditions for localizations of the types considered here. In
any event, as we have emphasized earlier, it does not seem possible at present to specify
the constitutive relation with enough precision to determine suitably the terms of order
ασ and σ 2/L that we neglected in the above expressions for hcr.

29.2.6 Isotropic Elastic Moduli

Suppose that L has the isotropic form

Li jk� = G(δikδ j� + δi�δ jk) + λδi jδk�, (29.78)

where G and λ have their usual meanings as the Lamé moduli. Then we note that

α : L · s = 2Gα · s + λs tr (α),

m · L · m = G(I + mm) + λmm,

m · L · s = Gsm + λms,

(29.79)

as well as

(m · L · m)−1 = G−1(I − ξmm), ξ = (λ+ G)/(λ+ 2G). (29.80)

With these expressions, and with (29.64), we find

s · M · s = G(zz + 4ξss), (29.81)

so that its inverse, in the sense discussed earlier, is

(s · M · s)−1 = G−1(zz + ss/4ξ). (29.82)

Furthermore,

α : M · s = 2G{αzsz + [(2ξ − 1)αzz + 2ξαss]s}. (29.83)
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These last two expressions enable us to carry out the perturbation about n = m, in which
case we find from (29.73) that the orientation of the plane of localization is

n = m + αszz + 1
4ξ

[(2ξ − 1)αzz + 2ξαss]s + O(α2, σ/L), (29.84)

with for the corresponding critical hardening rate

hcr = G
{
α2

sz + 1
4ξ

[(2ξ − 1)αzz + 2ξαss]2
}

+ O(ασ, σ 2/G, α3G). (29.85)

In a similar manner, the perturbation about n = s leads to the orientation of the local-
ization plane

n = s + αmzz + 1
4ξ

[(2ξ − 1)αzz + 2ξαss]m + O(α2, σ/G), (29.86)

with the corresponding critical hardening rate

hcr = G
{
α2

mz + 1
4ξ

[(2ξ − 1)αzz + 2ξαmm]2
}

+ O(ασ, σ 2/G, α3G. (29.87)

The results given so far are for small α. It is possible, however, to write out explicitly the
entire expressions for LF0(n) and αLF1(n) in the isotropic case. Since such expressions
are wanted only when the α’s are large, there is no need to retain the terms of order σ in
(29.41), and it suffices to write

hcr = LF0(n) + αLF1(n). (29.88)

Because α enters linearly in (29.39), there is no truncation in this expression. By using
(29.78) in (29.41), and noting that

(n · L · n)−1 = G−1(I − ξnn), (29.89)

equation (29.88) can be written as

h/G = − 1 + (n · m)2 + (n · s)2 − 4ξ(n · m)2(n · s)2 + 2[n · α · (sm + ms) · n

− 2ξ(n · m)(n · s)(n · α · n) + (2ξ − 1)(n · m)(n · s) tr(α)].

This latter result may be used to numerically search for the most critical set of conditions
when maximum accuracy is desired.

29.2.7 Particular Cases for Localization

In what follows we examine some particular cases of non-Schmid effects, i.e., the pressure
sensitivity of plastic flow, the models for cross slip, and an analysis of non-Schmid effects
in intermetallic compound Ni3Al.

Consider first the possibility of pressure sensitivity of the Schmid stress for plastic flow.
Suppose, for example, that

(τms)onset = τ0 + κp, (29.90)

where τ0 is the flow stress at zero pressure, p = − 1
3 σkk is the mean pressure and κ is a

dimensionless parameter. Then, the Schmid stress increment dτms is replaced by

dτms + 1
3

(dτmm + dτss + dτzz). (29.91)
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Comparing this to (29.8), we find that

αi j = 1
3
κδi j . (29.92)

This yields the same value for hcr from (29.85) or (29.87); by taking ξ = 2/3, corresponding
to taking λ = G for instance, we obtain

hcr ≈ 0.12 κ2G. (29.93)

The parameter κ is readily interpreted in terms of the difference between yield strengths in
uniaxial tension, σt, and compression, σc. If the slip system were oriented for a maximum
resolved shear stress, i.e., at 45◦ to the tensile axis so that τms = 1

2 σ , then (29.90) gives

1
2

(σc − σt) = κ 1
3

(σc + σt), (29.94)

or

σc − σt = 4κ
3
σc + σt

2
. (29.95)

Now the strength differential is 4κ/3 times the mean strength. Hence, making the definition
SD = 4κ/3,

hcr ≈ 0.07(SD)2G. (29.96)

Of course, this would also yield the connection

αmm = αss = αzz = 1
4

SD. (29.97)

Localization in crystals is generally observed to take place in the range of hardening
between 5 × 10−4 G and 5 × 10−3 G. If this is to be explained by a pressure sensitivity of
yielding, it would be necessary to have values of SD in the range of 0.085 to 0.27. Such
values seem, according to the survey of Dao and Asaro (1996), larger than are observed,
except for martensitic high-strength steels and low symmetry crystals such as Zn. Spitzig,
Sober, and Richmond (1975), for example, found values for the strength differential effect
in the range 0.07-0.10, whereas in Zn crystals Barendareght and Sharpe (1973) report
values for a normal stress dependence, as deduced by Dao and Asaro (1996), that would
suggest αmm ≈ 0.1.

Next we consider the models for cross slip. Asaro and Rice (1977) suggested that cross
slip, which tends to occur in the later stages of deformation in single crystals, also provides
a fundamental mechanism that leads to deviations from the Schmid rule. The process is
illustrated in Fig. 29.5. Details of the cross slip process are given in the original work of
Asaro and Rice (1977); here we list only some of the results from their analysis of the cross-
slip process. We note that in the process of cross-slip an extended dislocation gliding on the
primary plane will first have to constrict along a segment of critical length, so that it may
successfully “bow out onto” the cross slip plane. The process of constriction is influenced
by the component of shear stress τmz resolved in the primary slip plane, but acting in the
direction orthogonal to the primary slip direction, s. Following this constriction, the now
perfect dislocation must bow onto the cross-slip plane, which involves a process influenced
by the component of shear stress, τcs, resolved on the cross-slip system. Of course, τcs is
built up in significant measure by the shear stress component τzs . In this way we see the
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Figure 29.5. Cross-slip model of Asaro and Rice. Local obstacles are bypassed
by partial dislocation segments of screw dislocations on the primary plane
through a process of constriction and cross-slip onto the cross-slip plane. The
cross-slipped dislocations, after bypassing their obstacles, cross-slip back to an
adjacent primary plane. Adapted from Asaro and Rice (1977).

roles that the non-Schmid components τmz and τzs play in the total process of ongoing
primary slip. We describe these effects by writing

dγ = 1
h

(dτms + αdτzs + βdτmz), (29.98)

so that α describes the effect of the stress component τmz in the primary slip-plane, and
β the effect of the shear stress on the plane whose normal is along z. In terms of the
coefficients of α, we have the connections

αsz = αzs = 1
2
α, αmz = αzm = 1

2
β. (29.99)

With no other effects in the model, all other components ofα vanish. Thus, for localization
on a plane near the slip plane, we have

n = m + 1
2
αz, (29.100)

and

hcr = 1
4
α2G. (29.101)

For localization near the kink plane orientation, we have

n = s + 1
2
βz, (29.102)

and

hcr = 1
4
β2G. (29.103)
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Figure 29.6. Arrays of dislocations piled up at a barrier.
φ is the angle of inclination of the cross-slip plane. The
dots represent dislocations in the pileups. (a) An isolated
array which may have a single or a double end. (b) A
group of parallel arrays with spacing p. Adapted from
Barnett and Asaro (1972).

Asaro and Rice (1977) have provided a rather detailed analysis of the cross-slip process
shown in Fig. 29.5. In fact, their models describe the effects of having the primary disloca-
tions piled up at their obstacles in various forms of arrays, as sketched in Fig. 29.6. Several
types, or geometries, of arrays were considered in an attempt to understand the effect of
slip geometry on the potential magnitudes of the parameters α and β introduced above.
The arrays were characterized by their length, �, and in the case of parallel arrays, by their
average spacing, p. As examples of the results, let bs be the magnitude of the “perfect
dislocation” of the primary slip system and let � be the average (or typical) length of a slip
line (i.e., a pileup). Then, standard results indicate that the number of dislocations in each
type of pileup would be

n = πτms�/(Gbs), for a single ended pileup,

n = 2τms�/(Gbs), for a double ended pileup,

n ≈ τms p/(Gbs), for a parallel array,

(29.104)

and where the last of (29.104) is most accurate if p/�� 1. With these scenarios, Asaro and
Rice (1977) found estimates for α to be

α ≈ 1.1(bs/�)1/2, for a single ended pileup,

α ≈ 1.6(bs/�)1/2, for a double ended pileup,

α ≈ 2.8(bs/p)1/2, for a parallel array.

(29.105)

Now, � typically ranges from 10−7 to 10−6 m in the later stages of deformation (stages
II and III); Burgers vectors are in the range bs ≈ 2.7 × 10−10 m. With � = 10−7 m, we
find α = 0.06 and 0.08 for the model cases of isolated single and double ended pileups,
whereas for sequential pileups, taking p = 0.5 �, we find α = 0.21. Of course, for � = 10−6

m, all the numbers are smaller by approximately 1
3 �. We note that � typically decreases

with ongoing strain, with the implication that the relative importance of τzs with respect
to τms , and hence the size of α increases. Thus, since hcr ≈ 1

4 α
4G, the critical hardening

modulus, below which localization occurs, increases with strain in stage II and early stage
III hardening. This pattern continues until the localization condition is met.
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Table 29.1. Non-Schmid coefficients for Ni3Al at 298 K

Stress state αss αmm αzz αmz αsz

τsm > 0, τcb > 0 0 0.008 −0.008 0.008 −0.015
τsm < 0, τcb < 0 0 −0.008 0.008 −0.008 −0.015
τsm > 0, τcb < 0 0 0.008 −0.008 0.008 0.014
τsm < 0, τcb > 0 0 −0.008 0.008 −0.008 0.014

To compare the predicted critical hardening rate, 1
4 α

2G, with experimental values, we
need only remember that near the stage II-III transition, h/G is of the order 1/300 ≈
3 × 10−3 and, of course, generally falling with increasing strain. However, if α ≈ 0.1, which
is representative of the estimates of Asaro and Rice (1977), then 1

4 α
2G is of the or-

der 2.5 × 10−3 G. Thus, the predicted magnitudes of these non-Schmid effects lead to
critical hardening rates that are consistent with experiment. On the other hand, Chang
and Asaro (1981) conducted detailed experimental studies on single crystals of Al-Cu
and observed the sequential formation of what they described as CSB’s and MSB’s (see
Fig. 29.1). The CSB’s were interpreted as being localized modes of deformation of the
general type considered here; indeed, these modes formed when the crystals were still
deforming by a sensibly single slip mode. They estimated the critical hardening rates at
which such modes first appeared, and extracted values of α in the range α ≈ 0.08-0.09.
These are, again, consistent with the range of values forecast by the Asaro and Rice (1977)
modeling.

There are at least two scenarios for the value of the parameter β. First, if the only barrier
to cross-slip were the constriction of the partial dislocations comprising the extended
primary dislocations, then

β = b(2)
z /nb(2)

s ≈ 0.58/n, (29.106)

where the superscript on the bz and bs signifies the Burgers vector of the trailing partial
dislocation (called 2 in Asaro and Rice model). Of course, the number of dislocations
in the pileup can be related to � and the stress level via (29.103). However, if both the
processes of constriction of partial dislocations and bowing onto the cross-slip plane are
simultaneously important for cross-slip, then β is computed as

β = 0.3ς(δ − r0)(b(2)
z /bs) sec( 1

2 φ)

(2π�r0)1/2
,

β = 0.3(δ − r0)(b(2)
z /bs) sec( 1

2 φ)

(pr0)1/2
.

(29.107)

Here ς = 1 or ς = √
2 for the isolated single or double ended pileup, respectively.

We end this subsection with an analysis of non-Schmid effects in intermetallic compound
Ni3Al. Dao and Asaro (1996) reviewed the data of Paidar et al. (1984) for ordered Ni3Al
and interpreted their data on yield strength vis-à-vis the existence of non-Schmid effects.
Table 29.1 shows some of their results for Ni3Al deformed at a temperature of T = 298 K.

The values of the non-Schmid coefficients extracted this way are noticeably dependent
on stress state. Note also that Table 29.1 defines the stress component τcb as the shear stress
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Figure 29.7. Geometry for an idealized crystal subject to nom-
inally uniaxial tension. The crystal is presumed to deform by
either slip on two slip systems (i.e., the primary and conjugate
systems) or more than two. This system is idealized as being two-
dimensional. A potential band of localized deformation is also
shown, inclined at the angle θ to the crystal’s axis.

resolved on the cross-slip plane and in the direction of the primary Burgers vector. The
values of the non-Schmid coefficients are also very much dependent upon the temperature
of testing. For example, at temperatures of 600-800 K the values of the nonzero coefficients,
although similar in sign, have magnitudes that are some 3-4 times as large.

29.3 Localization in Multiple Slip

Although modes of deformation involving primarily single slip are often nearly achieved
in single crystals, crystalline deformation invariably occurs via activity on more than one
slip system. In polycrystals, compatibility constraints among the differently oriented grains
impose multiple slip system activity in all grains even under the simplest states of globally
imposed strains. In single crystals, oriented initially for slip on a single system, lattice ro-
tations (of a type already discussed) lead to states of multiple slip often after what turns
out to be quite modest globally imposed strains. Aside from the global multiple slip states
just mentioned, slip on other than the primary system can occur locally through the action
of concentrated stresses developed at the tips of slip bands or at substructural sites such
as dislocation boundaries. As shown by Asaro and co-workers (Asaro, 1979; Chang and
Asaro, 1981; Peirce et al., 1982; Harren et al., 1988; Dao and Asaro, 1993,1994) multiple
slip states give rise to several critical differences in phenomenology that have important
implications vis-à-vis inhomogeneous, and indeed localized, deformation. Two of these are
the appearance of local vertexes on what would be an idealized strain rate independent
yield surface, and the phenomena of geometrical softening within the deformation patterns
that, in turn, induce localized flow. Of course, the effects of latent hardening have already
been discussed with respect to its strong influence on promoting (indeed causing) inhomo-
geneous plastic flow. We examine some of the fundamental aspects of these geometrical
and energetic effects on deformation patterning via analysis of the original model of Asaro
(1979) as generalized by Dao and Asaro (1996)

29.3.1 Double Slip Model

Consider the crystal subject to tension as depicted in Fig. 29.7. In this two-dimensional
geometry, both slip systems are symmetrically oriented about the tensile axis by the angle
φ. We first develop a suitable constitutive model for this double slip crystal model and
perform a bifurcation analysis akin to that performed for the crystal undergoing only
single slip.
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29.3.2 Constitutive Law for the Double Slip Crystal

We begin by writing a suitable hardening relation for the ξ -slip system (ξ = 1, 2) by making
a suitable choice for H, as we have seen that its precise specification is of minor importance.
With that, we write the generalization of (29.19) for single slip as(

Pξ + Φξ · α · ΦξT) :
�
σ∗ = hξβ γ̇β, (no sum on ξ). (29.108)

Here Φξ is a transformation matrix that transforms the coefficients of α from their local
base vectors formed on the slip system ξ to those based on a set of fixed laboratory base
vectors, {e j }; for example, we may do this via the connection  ξi j = ei · aξj , where the {aξi }
are the slip system based basis. For this 2-dimensional crystal model we need to keep
the in-plane components of α, viz., αss and αmm. To account for incompressibility, it is
convenient to define α+ and α− as

α+ = αss + αmm, α− = αss − αmm (29.109)

and

α′ =
[
αss − 1

2 α
+ 0

0 αmm − 1
2 α

+

]
=
[ 1

2 α
− 0

0 − 1
2 α

−

]
. (29.110)

In terms of these so defined quantities, (29.108) becomes

Q′
ξ :

�
σ∗ + 1

2
α+ ṗ = hξβ γ̇β, (29.111)

with

Q′
ξ = Pξ + Φξ · α′ · ΦξT, (no sum on ξ), (29.112)

and where the pressure rate can be expressed as

ṗ = 1
2

(�
σ 11 + �

σ 22

)
= 1

2
(σ̇11 + σ̇22) . (29.113)

The development of the constitutive relations that govern this crystal follows directly,
and straightforwardly, from the procedure developed by Asaro (1979). For example,
Asaro’s (1979) relation (Eq. 3.15) becomes

D = L−1 :
(�
σ + σ tr D

)
+ P̂ξN−1

ξβ (Q′
β : L : D) + 1

2
P̂ξ

∑
β

N−1
ξβ α

+ ṗ, (29.114)

where

Nξβ = hξβ + Q′
ξ : L : Pβ,

P̂ξ = Pξ + L−1 : (Qξ · σ − σ · Qξ ).
(29.115)

To complete the constitutive analysis we next assume that the crystal’s elasticity is
isotropic and incompressible; this has the effect of simplifying the relations and yet pre-
serving the phenomena. Then tr D = 0, and the first term in (29.114) becomes

1
2G

�
σ.
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Next we take a simple, yet acceptably general, form for the hardening matrix h11 = h22 = h
and h12 = h21 = h1; we also write the tensile stress as simply σ22 = σ . Together, these yield

N−1
ξβ = 1

det (N)

[
h + G −h1 + Gcos(4φ) − Gα− sin(4φ)

−h1 + Gcos(4φ) − Gα− sin(4φ) h + G

]
,

and finally

D11 = 1
2G

�
σ 11 − G sin(2φ)[sin(2φ) + α− cos(2φ)]

h + h1 + 2G sin2(2φ) + Gα− sin(4φ)
(D22 − D11) − δ ṗ

2G
, (29.116)

D22 = 1
2G

�
σ 22 + G sin(2φ)[sin(2φ) + α− cos(2φ)]

h + h1 + 2G sin2(2φ) + Gα− sin(4φ)
(D22 − D11) + δ ṗ

2G
, (29.117)

D12 = 1
2G

�
σ 12 + G[2 cos(2φ) − σ/G][cos(2φ) − α− sin(2φ)]

h − h1 + 2Gcos2(2φ) − Gα− sin(4φ)
D12, (29.118)

along with the incompressibility constraint

D11 + D22 = 0. (29.119)

The parameter δ is defined as

δ = 2Gα+ sin(2φ)

h + h1 + 2G sin2(2φ) + Gα− sin(4φ)
. (29.120)

Alternatively, the above relations may be rephrased in a form used to study the influence
of pressure sensitivity in bifurcation analysis, in the context of plane strain tension, as
studied by Biot (1973), Hill and Hutchinson (1975), and Needleman (1979), viz.,

�
σ 11 = 2µ∗ D11 + (1 + δ) ṗ,

�
σ 22 = 2µ∗ D22 + (1 − δ) ṗ,

�
σ 12 = 2µD12,

(29.121)

and D11 + D22 = 0. The moduli in (29.121) will be identified after noting that the consti-
tutive relation can be rewritten, by combining the first two expressions, as

�
σ 22 − �

σ 11 = 2µ∗(D22 − D11) − 2δ ṗ. (29.122)

In the above, the moduli are identified as

2µ∗ = 2G(h + h1)

h + h1 + 2G sin2(2φ) + Gα− sin(4φ)
,

2µ = 2G[h − h1 + σ cos(2φ) − σα− sin(2φ)]
h − h1 + 2Gcos2(2φ) − Gα− sin(4φ)

.

(29.123)

When G � σ and G � h, h1, we have

2µ∗ = h + h1

sin2(2φ) + α− sin(2φ) cos(2φ)
,

2µ = h − h1 + σ cos(2φ) − σα− sin(2φ)
cos2(2φ) − α− sin(2φ) cos(2φ)

,

(29.124)
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Figure 29.8. The critical ratio, (h/σ )cr, for a band
of localized shear inclined by the angle θ . The fig-
ure is for the case where φ = 30◦. The cases in-
cluded are for: (a) αss = 0.08, αmm = 0; (b) αss =
0.04, αmm = 0.04; (c) αss = 0, αmm = 0.08; (d) αss =
0, αmm = 0.05; (e) αss = 0, αmm = 0; and (f) αss = 0,
αmm = −0.05, respectively (from Dao and Asaro,
1996).

and in this case

δ = α+

sin(2φ) + α− cos(2φ)
. (29.125)

When the compatibility and equilibrium conditions listed in (29.25) and (29.26) are
applied, the criterion for localization becomes

(1 + δ)(µ− 1
2
σ )n4

1 + [2(2µ∗ − µ) − δσ ]n2
1n2

2 + (1 − δ)(µ+ 1
2
σ )n4

2 = 0. (29.126)

As before, n is the unit normal to the plane of localization. With the simple representations,
n2

1 = cos2 θ and n2
2 = sin2 θ , equation (29.126) can be rephrased as(

h
σ

)
cr

= cos(2θ) − cos2(2θ)/ cos(2φ) + δ(1 − cos(2θ)/ cos(2φ))

(1 − q) cos2(2θ)/B + (1 + q) sin2(2θ)/A+ (1 − q)δ cos2(2θ)/B
,

where

A= sin2(2φ) + α− sin(2φ) cos(2φ),

B = cos2(2φ) − α− sin(2φ) cos(2φ),

q = h1/h,

(29.127)

and δ has been given earlier in (29.120). When the Schmid rule holds, i.e., when α− =
α+ = 0, we obtain(

h
σ

)
cr

= cos(2θ) − cos2(2θ)/ cos(2φ)

(1 − q) cos2(2θ)/ cos2(2φ) + (1 + q) sin2(2θ)/ sin2(2φ)
. (29.128)

We note that for crystal’s undergoing multiple slip, the conditions for localization take the
form of critical ratios of hardening rate to the prevailing stress. Examples are shown in
Fig. 29.8.

To interpret these results note first that for localization on either slip system, i.e., with
θ = φ in the context of this model, the critical conditions become (h/σ )cr = 0, which is
consistent with the analysis given earlier for single slip. On the other hand, with deviations
from the Schmid rule, for example if αss + αmm ≈ 0.08, the critical hardening to stress
ratios are seen to be some 30-40% larger than when Schmid’s rule applies. Furthermore,
in this particular orientation the optimal orientation of the band of localization is only
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Figure 29.9. X-ray (Berg–Barrett) topo-
graph of the gage section of an Al-2.8
wt% Cu single crystal subject to ten-
sile deformation. The contrast seen is in-
dicative an abrupt transition in lattice
orientation in the shear band relative
to the surrounding matrix (from Chang
and Asaro, 1981).

slightly affected by the existence of non-Schmid effects, although the range of orientations
where localization is possible with positive h is increased. Now, as pointed out by Asaro
(1979), the optimal orientations for localized bands of deformation are characteristically
misoriented from the slip systems, and this is a direct reflection of some of the more
important mechanistic underpinnings of the phenomena of localization itself. It is readily
shown, for example, that with a band oriented at an angle θ ≈ 36◦-39◦, i.e., near slip system
2, the strain is concentrated on slip system 2; this indicates that this band is indeed a shear
band. But for slip to concentrate in this way, it is necessary that the lattice itself undergoes
a reorientation in the same sense as the misorientation of the band. The geometry of this
simple crystal then shows that such a rotation of the lattice causes a geometrical softening
within the band, which promotes strain concentration. These effects of lattice rotations
are examined in the next section by way of a brief survey of numerical results based on
the kinds of models introduced here. In particular, we will be interested in exploring the
trends with respect to the development of deformation patterns.

Before closing this section we do mention that Dao and Asaro (1996) have performed
the same type of rate independent bifurcation analysis for fully three-dimensional
geometries. The results are substantially consistent with the phenomena revealed by the
two-dimensional analysis described here. The reader is referred to their work for further
details.

29.4 Numerical Results for Crystalline Deformation

29.4.1 Additional Experimental Observations

Experimental observations have been presented in this chapter, as well as in previous
chapters, concerned with an overview of the micromechanics of plastic deformation in
crystalline materials. In this section we present additional observations that bear directly
upon the analysis described above. Some results of numerical analysis using the constitutive
theory laid out in this and, more specifically, the previous chapter are then described.

Figure 29.9 shows an X-ray topograph of the gage section of an Al-Cu single crystal
deformed in tension. The rather obvious contrast is caused by what turns out to be an abrupt
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transition in the orientation of the crystal’s lattice from inside a shear band with respect to
the surrounding matrix. As noted previously, such lattice misorientations are characteristic
of shear bands that eventually develop in ductile crystals. Analysis of such misorientations,
in fact, shows that they are due to the formation of dislocation tilt boundaries that are, in
turn, formed by arrays of Lomer dislocations (discussed earlier in Chapter 27). This makes
sense because fcc crystals like these, when deformed in tension, will invariably develop a
double slip mode involving the primary slip system and the system that is conjugate to it.
The slip mode may, in fact, involve more than these two systems, but primary-conjugate
slip is clearly expected. Thus the dislocation interactions that can explain the observed
lattice rotations are naturally expected.

To understand some of the salient mechanistic features of the localization process, and
in particular the role that geometrical softening plays, we recall the compatibility condition
imposed on the jump in velocity gradient across the band, i.e., relation (29.25), which is
here rewritten as

�(vi, j ) = vi, j |band − vi, j |matrix = gi n j = λḡi n j . (29.129)

A unit vector along the direction of velocity jump is ḡ. Given the geometry defined in Fig.
29.7, we have (ḡ1, ḡ2) = (sin θ, cos θ) and (n1, n2) = (− cos θ, sin θ). If we recognize that
this jump involves essentially plastic deformation, and after setting �D = λ/2(ḡn + nḡ),
we find that

�(γ̇ (1) − γ̇ (2)) = λ cos(2θ)/ cos(2φ). (29.130)

Similarly, from the jump in material spin rate, �W = λ/2(ḡn − nḡ), we find by forming
both sides of the first of (29.1) (extended in an obvious way to include two slip systems)
that

�W12 = �W∗
12 + λ

2
cos(2θ)/ cos(2φ) = λ

2
,

�W∗
12 = λ

2
[1 − cos(2θ)/ cos(2φ)],

�W∗
12 = �D22

sin(2θ)
[1 − cos(2θ)/ cos(2φ)].

(29.131)

Since elastic contributions to this difference are negligible, �W∗
12 is interpreted as a finite

spin of the lattice in the band relative to that outside. If we take, as another representative
example, φ = 35◦ and θ = 40◦, we find that �W∗

12 ≈ 0.246 λ (radians) or 14.1 λ (degrees).
To gain some appreciation for the magnitude of rotation implied by this, let λdt = 0.01,
where dt is a time increment, i.e., let an approximately 10% excess shear strain increment
develop in the band. Then�W∗

12dt ≈ 1.41◦. In other words if, say, some 30% strain were to
develop within the band, there would result a roughly 4◦ lattice rotation jump across the
band/matrix interface. It is important to note that the sense of this lattice spin is to increase
the Schmid factor within the band relative to the surrounding matrix. Thus the kinematics
of localized shearing imply a local geometrical softening of the slip plane with which the
shear band is most closely aligned. These are precisely the sort of lattice misorientations
given evidence in Fig. 29.9; other examples are shown next.
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Figure 29.10. Sketch of the crystallographic geometry of a
plane strain compression test (from Harren et al., 1988).

Harren, Deve, and Asaro (1988) performed experimental studies on single crystals of
Al-2.8 wt% Cu crystals in states of plane strain compression. The geometry is sketched in
Fig. 29.10; a photomicrograph of a shear band that formed after a compressive strain of
approximately ε ≈ 0.44 was shown in Fig. 29.2. The symmetry in this orientation suggests
that the deformation mode would be symmetric slip on four slip systems leading to a near
state of plane strain. Of course, the small elastic strains that form include out-of-plane
strains. The sense of the lattice rotations is to bring the most active slip planes within
the shear band toward the orientation of maximum resolved shear stress, i.e., the 45◦

inclination to the compression axis (which is vertical). This again leads to a geometrical
softening within the shear band.

29.4.2 Numerical Observations

The experimental studies briefly reviewed have been analyzed in detail by Asaro and co-
workers (e.g., by Harren, Deve, and Asaro, 1988). As discussed in the previous chapter,
material response is characteristically rate dependent and the fully strain rate dependent
constitutive theory outlined there was used. In particular, the kinetic-hardening of the
power law form

γ̇α = γ̇0 sgn (τα)
∣∣∣∣ τ(α)

g(α)

∣∣∣∣
1/m

(29.132)

was incorporated. For the crystals studied, the hardening function, gα , was fitted to tensile
and compression tests, and was found to be

g(γa) = g0 + h∞γα + (g∞ − g0) tanh
[(

h0 − h∞
g∞ − g0

)
γα

]
, (29.133)

where g0 = g(γα = 0) = 123 MPa, h0 = 120 MPa, g∞ = 133 MPa, and h∞ = 11 MPa. The
latent hardening ratios were taken as unity, i.e., isotropic hardening among the slip systems
was assumed. Aged hardened alloys such as these are weakly rate sensitive and a value of
m = 0.005 was selected. The contours clearly indicate the intensely concentrated nature
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Figure 29.11. Contours of (a) maximum principal logarithmic strain; (b) accumulated glide
strain γ1 on system 1; (c) accumulated glide strain γ2 on system 2; (d) lattice rotation in degrees
(from Harren et al., 1988).

of the plastic deformation. Figure 29.11 demonstrates the geometrical softening described
above.

The reader is referred to Harren, Deve, and Asaro (1988) for the legion of details, but
here we close with one last account of some numerically and experimentally obtained ob-
servations for inhomogeneous flow in polycrystals. This is to be added to the already men-
tioned observations of inhomogeneous flow in single crystals (e.g., patchy slip). Figure 29.12
shows a result, using the same constitutive data as given above, of a simulation of plane
strain compression of polycrystals of the same Al-Cu material. The figure is for one grain
in an assembly of 27 grains all with hexagonal shape. The short lines are traces of the
most active slip system in the grain as per location within the intragrain space. Note that
although each grain, including the one shown, initially had a uniform lattice orientation –

A

B

C

D

E

Figure 29.12. Traces of the most active slip planes within a given grain in
polycrystal. This is the result of a finite element simulation of an Al-Cu
polycrystal (from Harren and Asaro, 1989).
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Figure 29.13. Traces of the most active slip planes at a grain bound-
ary triple point. Note how the traces tend to become aligned within
a shear band (from Harren and Asaro, 1989).

but different than that of its neighboring grains – the lattice has broken up into subregions
of distinctly different orientation. The grains become patchy and the boundaries between
the misoriented regions are quite distinct, i.e., the boundaries are sharp. This was suggested
to be the continuum analog to the formation of sub-boundaries within the grain. It should
also be noted that the hardening was again taken to be isotropic. If the latent hardening
were to be biased, as experimental evidence indicates (see Chapter 27), the “patchyness”
would only be increased. Thus we again see how the fundamental trends in deformation
are to produce substructure which, in turn, directly influences the subsequent response of
the material.

Figure 29.13 shows the same sort of trace pattern near a triple point, where a shear band
has formed and propagated through the polycrystal. There are several features to note here.
First, the grains shown have all broken up into patches, but there is clear organization there.
The lattices in each grain have rotated so that the most active slip planes supporting the
concentrated shear have become closely aligned – again a kind of geometrical softening.
This pattern of lattice rotation has been documented by Asaro and co-workers (see Harren,
Deve, and Asaro, 1988 for details).
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30 Polycrystal Plasticity

In this chapter we explore the transition from the plastic response of single crystals to that
of polycrystalline aggregates. The treatment given here is not meant to be exhaustive but
rather to reveal some of the more fundamental issues involved. Suggested reading provides
the link to the rather large volume of research conducted during the past two decades on
the subject. The basic issues to be explored include the link between the micromechanical
mechanisms of deformation on the scale of individual grains and macroscopic elastic-plastic
response. One particular aggregate model is developed in detail and used to examine sev-
eral physical phenomena. Among these are the development of crystallographic texture
and anisotropic macroscopic response. We use the model to perform “numerical experi-
ments” to define yield surfaces as they might be measured experimentally. We note how
such surfaces naturally develop structure that is described as corners and explore the sig-
nificance of this vis-à-vis the plastic strain response to sudden changes in strain path. We
study this path dependent behavior further by appealing to simple rate-independent flow
and deformation theories thus completing the link between microscopic and macroscopic
behavior. The development of anisotropic plastic behavior is shown to occur after only
modest deformation of initially isotropic aggregates.

30.1 Perspectives on Polycrystalline Modeling and Texture Development

Polycrystals are continuous 3D collections of grains (crystallites), which, as assumed herein,
can deform by cyrstallographic slip. As such, the actual solution to a problem of a deforming
polycrystal is that of a highly complex elastic-plastic boundary value problem for a large
collection of anisotropic, continuous, and fully contiguous crystals. (If we assume that the
process of deformation is, indeed, intragranular slip then, as noted in previous chapter, we
also assume that the grain sizes are in the 2µm range and larger.) Specific solutions will
depend on the shape of the grains and their orientations, both of which change with plastic
strain. These changes are what produce material and crystallographic texture. Rigorous
solutions of this type are possible and could, in principle, be pursued using the constitutive
framework presented in the forgoing chapters. Specific calculations have, indeed, been
performed for the study of specific phenomena such as the localization of plastic strain.
What we seek here, however, are models for aggregates of small to modest numbers of
grains that describe, in some approximate way, the behavior of truly large aggregates. Many

586
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such models have been proposed and one of the first was that of Taylor (1938a,1938b).
Here we review, in detail, the more recent extended Taylor model, developed by Asaro and
Needleman (1985), in which the deformation is modeled as finite and rate-dependent. This
extends Taylor’s original small strain, rate-independent, model. Some perspective follows
first.

One of the earliest polycrystal models, proposed by Sachs (1928), was based on the
assumption that each grain was subject to the same stress state. This was taken to be a state
of uniaxial stressing. The grains were taken to respond as though they were isolated single
crystals, which meant they initially deformed by single slip on their most highly stressed
slip system. The model was refined by Kochendörfer (1941), who further stipulated that
each grain was subjected to the same stretch. Then, as pointed out by Bishop and Hill
(1951a,1951b), with the assumption of identical strain hardening in all grains, common to
the Sachs (1928) and Kochendörfer (1941) analyses, each grain fits the relation

σ/τ = dγ /dε = M, (30.1)

where σ and dε are the axial stress in a grain and the macroscopic aggregate strain in-
crement, respectively, and τ and dγ are the shear strength and slip shear increment, re-
spectively. The factor M depends only on geometry and in particular on the relationship
between the loading axis and the crystal slip systems. Then, as also noted by Bishop and
Hill (1951a,1951b), if each grain is taken to be at the same stage of strain hardening and if
M is taken as a constant, independent of strain, an aggregate stress-strain relation can be
defined as an average over all orientations, viz.,

σ = M̄τ (γ ) = M̄τ (M̄ε). (30.2)

The average value for M̄ determined by Sachs (1928) assuming an isotropic aggregate,
i.e., uniform coverage of all grain orientations, is 2.2. It might be noted, though, that the
value of M̄ found by Taylor (1938a,1938b), which produced a close correlation between
measured polycrystal tensile stress strain curves and those computed from experimentally
measured fcc single crystal shear stress-shear strain curves, was approximately 3.06. (It
should be indicated, however, that this correlation was done for polycrystals of relatively
large grain sizes, where grain size effects are not dominant.) For later reference we also note
that, within the context of Taylor’s model described below, if all slip systems have equal
strength, τ , then M in the relation (30.1) can be defined as

∑
α dγα/dε, where the summation

is over all shear increments on the active slip systems; M̄ would then be interpreted as the
average value of M over all grains in the aggregate.

Aside from numerical inconsistencies with experimentally measured str-ess vs. strain
behavior, there are at least two other objections to the Sach’s model. In the first place,
equilibrium of the stresses cannot be established across grain boundaries if each grain is
subject to only simple tension of different amounts. Second, there is no way to maintain
compatibility among the grains when each is assumed to deform by single slip, even if the
deformation is extension of a uniform amount. To overcome the latter objection, Taylor
(1938a,1938b) proposed a model that strictly enforces compatibility by imposing the same
set of strains – identified with the aggregate strain – on each grain. This is also a basis of
Asaro and Needleman’s (1985) aggregate model.

The basic idea underlying the Taylor model rests on the experimental observations,
quoted by Taylor (1938a), that most of the grains of a polycrystal undergo about the same
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strain. His idea then was to a priori subject the all grains – treated as isolated single crystals –
to the presupposed aggregate strain. Specifically, he analyzed states of uniaxial tension and
compression of single phase fcc aggregates. The polycrystals were made initially isotropic
by choosing the grains to have a uniform coverage of all crystallographic orientations – this
provided further justification for Taylor’s additional assumption of axisymmetric uniaxial
deformation of initially isotropic fcc polycrystals. The procedure was to then determine the
combination of slip systems and corresponding shear strains and stress states in each grain
required to produce the specified strain. The aggregate stress was taken to be the average
of the stresses generated in each grain. The selection of slip systems required to produce
an arbitrary strain increment is, however, not unique within the strain rate independent
framework he was using – a fact we have already encountered in previous chapters. Since
the lattice rotations depend on the choice of active slip systems, and therefore so will
the textures that develop, the predicted textures are also nonunique. Taylor made the
physically intuitive assumption that, of all possible choices for combinations of active slip
systems, the appropriate selection was that for which the cumulative shears would be
minimized. His criterion was actually that the net internal work be minimized, and if it
is further assumed that all slip systems are hardened equally so that they have the same
shear strength, this amounts to a minimization of the cumulative shears.

Bishop and Hill (1951a,1951b) later recast this theory for polycrystals and based it
on the principle of maximum work, a version of which they derived for a single crystal.
In particular, from the principle of maximum work, they derived inequalities between
external work, computed as the product of macroscopic stress and strain increments, and
internal work computed as the integral over the volumes of grains of the products of
crystallographic shear strength and assumed slip increments, and used these to set bounds
on the critical stress state required to induce yield. Indeed, the primary aim of the Bishop
and Hill theory was the computation of yield surfaces. This is done using the extended
Taylor model of Asaro and Needleman (1985) below.

The Taylor–Bishop–Hill theories have been used extensively and successfully to pre-
dict textures, and more recently, polycrystal stress-strain response. This literature is not
reviewed here, but suggested reading provides an overview of the more recent work.
Here we develop the finite strain, strain rate dependent theory of Asaro and Needleman
(1985), which provides insight into some of the basic issues involved in constructing ag-
gregate models. This model, above all others, has been used by them and others (see, for
example, Bronkhorst et al., 1992; Anand and Kothari, 1996) to explore a wide range of
phenomenology.

30.2 Polycrystal Model

We consider an aggregate of grains, with the constitutive response of each grain charac-
terized by a constitutive law of the form (28.110), i.e.,

�
τ = Λ : D −

∑
α

R(α)γ̇α, (30.3)

where all quantities have been defined in Chapter 28. The aggregate occupies a region
of volume V with external surface Sext. We confine attention to quasistatic deformation
processes, neglect body forces and presume that the aggregate is subject to all around
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displacement boundary conditions. These displacement boundary conditions are taken
to be such as to give rise to homogeneous deformations in a homogeneous sample. In
this model the transition from the microscopic response of the individual grains to the
macroscopic response of the aggregate is provided via the averaging theorems of Hill
(1972). However, these averaging theorems pertain to fields that satisfy both equilibrium
and compatibility throughout the volume. In the approximate model to be used here,
compatibility is satisfied and equilibrium holds within each grain, but equilibrium may be
violated between grains.

A convenient choice of variables for expressing the aggregate response is the deforma-
tion gradient F and the unsymmetrical nominal stress, P. We recall that the nominal stress
is related to the Kirchhoff stress τ by

P = F−1 · τ , (30.4)

and that it is related to the force transmitted across a material element by N · P dS, where N
is the unit normal to the area element and dS is the magnitude of the area in the reference
configuration. We take F to be a deformation gradient that satisfies compatibility within
each grain and between grains, and P to be a nominal stress field that satisfies equilibrium
within each grain. Then, from the divergence theorem,∫

V
P · · F dV =

∑
grains

∫
Vg

P · · F dV

=
∫

Sint

�T · u dS +
∮

Sext

T · u dS.

(30.5)

Here, P · · F = Pi j Fji , the grain volume is Vg, the internal grain boundaries are denoted
by Sint, and �T is the traction difference across grain boundaries. For an equilibrium
stress field�T = 0. We note that an identity of the form (30.5) also holds with F or P both
replaced by the corresponding rate quantity, Ḟ and Ṗ, this being so because the equilibrium
equations expressed in terms of P are Pji, j = 0 or in rate form Ṗji, j = 0. We have assumed
here that the base vectors to which the components of P are phrased are Cartesian.

The homogeneous displacement boundary condition mentioned above takes the form
u = F̄ · x on Sext. Substituting the prescribed value of F into the last integral on the rhs of
(30.5) gives

∑
grains

∫
Vg

P · · F dV −
∫

Sint

�T · u dS =
(∮

Sext

xT dS
)

· · F̄. (30.6)

The basic assumption underlying the averaging procedure for an approximate stress field
is that the contribution from the lack of equilibrium across grain boundaries is small
compared to the volume integral contribution. The error is difficult to quantify, but this
approximation is inherent in any derivation of aggregate properties based on an approach
that does not enforce equilibrium between grains. Invoking this approximation, (30.6) is
replaced by

∑
grains

∫
Vg

P · · F dV =
(∮

Sext

xT dS
)

· · F̄. (30.7)
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Figure 30.1. Coordinate geometry used to describe material direc-
tions and stress state in homogeneously deformed polycrystals. The
x2 axis will be the axis of tension or compression. Components of
nominal stress are illustrated.

In particular, we specify F to have the uniform value F̄ throughout the aggregate, which
permits (30.7) to be written as

∑
grains

∫
Vg

P · · F dV = VP̄ · · F̄, (30.8)

where

P̄ = 1
V

∑
grains

∫
Vg

P dV, V =
∑

grains

Vg. (30.9)

Since F̄ is, trivially, the average value of F in the aggregate, the average Kirchhoff stress is
given by

τ̄ = F̄ · P̄. (30.10)

The relations (30.8) and (30.10), or their rate forms, serve as the basis for calculating
aggregate response.

We have confined attention to displacement boundary conditions. Other boundary con-
ditions such as prescribed traction could be also considered. In any case, we presume the
sample is large compared to any heterogeneities so that it can be argued that constitutive
properties are independent of the boundary conditions, as long as these are consistent with
macroscopically uniform deformation.

30.3 Extended Taylor Model

The essential kinematical assumption in Taylor’s original model was that each grain in
the aggregate is subject to the same homogeneous deformation field as the aggregate.
We make the same assumption here, but now in the context of finite strains and rate-
dependent material response. Specific constitutive relations have already been derived
and will be recalled as in (30.3) above. Here we illustrate the procedure by considering
two basic deformation histories, one corresponding to monotonic tension, the other to
monotonic compression; the specification of other histories would be a straightforward
extension of the methods laid out.

Consider the “sample” as depicted in Fig. 30.1. Take the x2 axis to be the tensile or
compression direction and imagine prescribing ˙̄F22. The basic requirements for tensile
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loading is that a line of material particles initially along the x2 axis remains along the
tensile axis, so that

F̄ · e2 = F̄22e2, (30.11)

and thus

F̄12 = F̄13 = 0. (30.12)

This is also true for the rates, i.e., ˙̄F12 = ˙̄F13 = 0.
Compressive loading is assumed to be applied by rigid plattens that require the surfaces

perpendicular to the loading axis to remain perpendicular to that axis. Referring to Fig. 30.1,
this means that any line of material particles in the x1 − x3 plane must remain in that plane.
We also constrain the body not to spin about the loading axis. Therefore, we demand

F̄ · e1 = F̄11e1, F̄ · e2 = F̄33e3, (30.13)

so that

F̄21 = F̄31 = F̄13 = F̄23 = 0. (30.14)

For tensile loading the remaining boundary conditions are

T̄1 = P̄11 = 0, T̄2 = P̄12 = 0, on x1 = const.,

T̄1 = P̄31 = 0, T̄2 = P̄32 = 0, on x3 = const.,

T̄3 = P̄33 = 0, on x3 = const., for axisymmetric loading,

or F̄33 = 1, for plane strain loading,

F̄21 = 0.

(30.15)

For compressive loading,

T̄1 = P̄11 = 0, on x1 = const.,

T̄1 = P̄21 = 0, on x2 = const.,

T̄3 = P̄23 = 0, on x2 = const.,

T̄3 = P̄33 = 0, on x3 = const., for axisymmetric loading,

or F̄33 = 1, for plane strain loading.

(30.16)

These boundary conditions are chosen to meet the kinematic and traction constraints
of homogeneous tensile and compressive loading and to fix overall rigid body rotations.
The particular combinations of nominal stress and deformation gradient components are
consistent with the virtual work expression P̄ · · dF in that one component of each pair is
prescribed. The boundary conditions are also such that for an orthotropic specimen the
shearing deformations and rotations vanish, that is for orthotropic material response F̄
is diagonal. The boundary conditions do not demand such orthotropic response so that,
when it emerges, it is a consequence of the material behavior, and in particular of the
material’s lack of such symmetry!
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30.4 Model Calculational Procedure

We recall here the development of the single crystal constitutive relations laid out in equa-
tions (28.171)–(28.177). These were concerned with expressing the constitutive relation
for a single crystal with respect to laboratory coordinates. When this is done, the nominal
stress rate within, say the Kth grain, is from (28.172) given by

Ṗ
(K) = K(K) · · Ḟ

(K) − Ḃ
(K)
. (30.17)

The “laboratory axes” are taken to be aligned with the {ei } basis, and the transformation
between the local crystal axes of the Kth grain and the laboratory axes is given by

 
(K)
i j e j = ai . (30.18)

Thus, in creating a “polycrystal” it is necessary to create a collection of Φ(K)’s. Following
the development from above, the aggregate’s nominal stress rate is

˙̄P = K̄ · · ˙̄F − ˙̄B, (30.19)

where, for an aggregate of N grains,

˙̄P = 1
N

N∑
K=1

Ṗ
(K)
,

K̄ = 1
N

N∑
K=1

K(K), ˙̄B = 1
N

N∑
K=1

Ḃ
(K)
.

(30.20)

The homogeneous boundary value problems outlined in (30.11)–(30.16) are then posed
by first constructing the aggregate relation (30.19), at a particular time, and invoking
the conditions on either components of nominal stress rate, or a conjugate component of
deformation rate; integration follows in discrete time steps. Several examples are presented
below.

The kinetic and hardening laws used in the examples follow from those presented earlier.
Specifically, the shearing rate, according to (28.84), is given by

γ̇α = γ̇0
τ(α)

gα

∣∣∣∣τ(α)

gα

∣∣∣∣
1/m−1

. (30.21)

The hardening rule is

ġ(α) =
∑
β

hαβ |γ̇ (β)|, (30.22)

where

hαβ = qh + (1 − q)hδαβ. (30.23)

The parameter q thus serves to describe the level of latent hardening and two values are
used, viz., q = 1 and q = 1.4. The hardening function was selected to be

h(γ ) = h0 sech2
(

h0γ

τs − τ0

)
. (30.24)

Values used included τs/τ0 = 1.8 and h0/τ0 = 8.9. These values were in fact taken from
experimental data from single crystal tests performed on Al-2.8 wt% Cu crystals. This
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Figure 30.2. Unit cube used to describe crystallographic directions. The
standard triangle, with corners at [100], [110], [111] is used to represent
the independent directions of a cubic crystal. An inverse pole figure is a
plot of a particular laboratory axis within this standard triangle.

numerology leads to a nearly complete saturation of strain hardening after strains on the
order of γ ≈ 0.1. For our cubic crystal, the elastic constants were C11 = 842 τ0, C12 = 607 τ0,
C44 = 377 τ0, which are also typical for these crystals. The utilized strain rate sensitivity
exponent for these crystals was, as measured, m = 0.005.

30.4.1 Texture Determinations

Initially isotropic fcc aggregates were subjected to axisymmetric tension and compression
and to plane strain tension and compression. The results for texture will be presented
in the simplest form, viz., in terms of inverse pole figures for the e2 laboratory axis. This
construction is explained in Fig. 30.2. Figure 30.3 shows four results for the cases mentioned
above of axisymmetric and plane strain tension and compression. The development of
strong crystallographic textures is evident and it should be noted that this occurs after
only modest amounts of strain. It needs to be mentioned, however, that this is so if the
material’s strain rate sensitivity is not too high. In axisymmetric tension, the specimen’s axis
tends to become aligned with high symmetry directions, including [111] and [100], which
promote multiple slip. In axisymmetric compression, the situation is more complex, and

111

100 110

111

100 110

111

100 110

100 110

111

(a) (b)

(c) (d)

Figure 30.3. Four inverse pole figures: (a) for ax-
isymmetric tension following a strain of 0.89 and
for the case of q = 1.4; (b) for axisymmetric com-
pression following a strain of 0.89 and for the case
of q = 1.0; (c) for plane strain tension following
a strain of 1.34 and for the case of q = 1.4; (d)
for axisymmetric compression following a strain
of 1.53 and for the case of q = 1.0 (from Asaro
and Needleman, 1985).
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Figure 30.4. (a) Initial yield surface determined from an initially isotropic polycrystal model. Note the
apparent consistency between the calculated initial yield surface and a von Mises ellipse. (b) Subsequent
yield surface determined following an axisymmetric tensile strain of 0.20. The plastic strain offset values
used to produce the data points are 0.0005, 0.001, and 0.002 (from Asaro and Needleman, 1985).

the compression axis lies in a “band” of orientations as seen. In plane strain tension and
compression, we again see a band of orientations develop, but the trends toward anisotropy
following only modest strains are nonetheless clear. Asaro and Needleman (1985) carried
out extensive analysis of the effects of strain (stress) state, as well as of material properties,
on texture development and the reader is encouraged to explore this topic in more detail
with reference to their original work.

30.4.2 Yield Surface Determination

To provide further insight into the implications of texture development and the path de-
pendence of strain hardening on constitutive response, polycrystal models of this type can
be used to construct “yield surfaces” by a procedure that closely matches their experimen-
tal determination. At various stages in each loading history, the polycrystals are unloaded
to a state of zero average stress. They are then reloaded along various prescribed stress
paths until specified “offset plastic strains” are accumulated; the stress states at these point
are marked out to form a yield surface. This was done in the simulations of Asaro and
Needleman (1985), as it is experimentally. Initial yield surfaces for the initially isotropic
polycrystal models are determined first as shown in Fig. 30.4. The definitions of effective
stress and strain used here were

σ̄ 2 = 3
2
σ ′

i jσ
′
i j , ε̄ =

∫ t

0

(
2
3

D′
i j D′

i j

)1/2

dt. (30.25)

As an example of the procedure, consider the calculation of a section of a yield surface
corresponding to normal tension or compression along the x2 direction combined with
shearing in the x1-x2 plane. Define N as the nominal stress based on the configuration
at unloading after the imposed prestrain. This is the stress measure of interest, because
during the reloading process it is desirable to measure stress and strain from the unloaded
state. We also note, since strains remain small during the “probing” for the yield surface,
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there is little difference between Cauchy stress and nominal stress values. Then, for this
reloading process, the boundary conditions imposed are

Ṅ11 = 0, Ṅ23 = 0, Ṅ31 = 0, Ṅ32 = 0, Ṅ33 = 0,

1
2

(Ṅ21 + Ṅ12) = cṄ22,

ḟ12 − ḟ21 = 0, ḟ31 = 0,

(30.26)

where ḟ22 and the stress ratio c are prescribed, and

f = F · F−1
i ,

N = Fi · P/det Fi .
(30.27)

In the above Fi is the deformation gradient from the initial state to the state where unload-
ing is complete. We note that the imposed boundary conditions (30.26) give, to a very close
approximation, σ22 and σ12 as the only nonvanishing stresses. As a final note on procedure,
we mention the slope of the effective stress vs. effective strain during the first stages of
reloading is calculated so that “elastic strains” can be estimated. These are then subtracted
from the total strains to give the plastic strain tensor.

Figure 30.4 illustrates that an initially isotropic polycrystalline aggregate does, indeed,
produce a yield surface that is consistent with a von Mises ellipse. The ellipse drawn is
constructed by using the average Taylor factor for an fcc polycrystal of M = 3.06, so that the
initial yield strength is given as 3.06 τ0. The subsequent yield surfaces take on a pronounced
distorted shape indicating several effects. The surfaces display anisotropy, caused by the
development of texture, and a kind of Bauschinger effect in that the magnitude of the
subsequent flow strength in compression is clearly less than that for continued tensile
deformation. The shape of the surface also displays a “corner,” the significance of which lies
more in the subsequent flow response than yielding per se. Cornerlike structure typically
develops at the current stress point on the yield surface.

We close this section with an explanation of this effect. In the next section we delve more
deeply into this effect on flow in the context of simple rate-independent, phenomenolog-
ical plasticity models. An initially isotropic polycrystal is subject to a preplastic strain in
plane strain tension of amount ε̄ = 0.23 (although the precise amount of this prestrain is
unimportant for the phenomena to be described). At this stage, the material is subject to a
strain path consisting of a fixed ratio of shear to ongoing tension. In particular, a fixed ratio
of Ḟ12/Ḟ22 is imposed. Figure 30.5 shows the result as a function of this ratio. Note that this
type of straining represents a deviation from proportional straining which was, as noted,
plane strain tension. If the material were rate-independent, and a J2 flow theory used to
describe plastic response, the instantaneous response would have been purely elastic, i.e.,
quite stiff. A rate-dependent material can only respond instantaneously in an elastic man-
ner, but plastic response will follow after what amounts to a quite modest, or small, amount
of straining. This is seen in the figure, again as a function of the nonproportional strain
ratio. The response to nonproportional strain paths as seen here is quite characteristic of
so-called corner theories of plasticity. We complete this chapter with a discussion of this
phenomenology in the context of deformation theories of plasticity.
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Figure 30.5. Shear stress vs. shear strain response follow-
ing a plane strain tensile prestrain of 0.23. Note that the
shear stiffness is reduced if the loading is nearly propor-
tional (from Asaro and Needleman, 1985).

30.5 Deformation Theories and Path-Dependent Response

As previously discussed in Section 26.14, deformation theories, or total strain theories, can
be developed by considering that the strain, or stress, can be calculated from potential
functions. Consider, therefore, the dual potentials ϕ and ψ , defined via

ei j = ∂ϕ/∂σi j , σi j = ∂ψ/∂ei j , ϕ + ψ = σi j ei j . (30.28)

Assume that ϕ and ψ are symmetric functions in the sense that, when stress and strain
are calculated as indicated, σi j = σ j i and ei j = e ji . Also, to model so-called power law
materials, we assume that

ϕ is homogeneous of degree n + 1,

ψ is homogeneous of degree m + 1.
(30.29)

As a consequence of such homogeneity, we have

σi j∂ϕ/∂σi j = σi j ei j = (n + 1)ϕ = ei j∂ψ/∂ei j = (m + 1)ψ. (30.30)

It also follows that

ϕ = mψ, ψ = nϕ, mn = 1, (m + 1) = (n + 1)/n, etc. (30.31)

As a specific model for power law materials, i.e., those for which stress is a power of
strain, take

ϕ(σi j ) = κ [τ (σi j )/κ]n+1
/(n + 1), ψ = κ [γ (ei j )]m+1

/(m + 1). (30.32)

Here, κ is a material constant with the dimension of stress, and the functions τ (σi j ) and
γ (ei j ) are to be homogeneous of degree 1, to preserve the stated homogeneity of (30.29).
Thus, for instance, τ =const. serves to parameterize surfaces of constant potential ϕ, and
similarly for γ and ψ . Considering (30.30), we then have

τ = κγ 1/n = κγm, (30.33)

and

(n + 1)ϕ = (m + 1)ψ = τγ = σi j ei j , (30.34)
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so that

ei j = γ ∂τ/∂σi j , σi j = τ∂γ /∂ei j . (30.35)

Note that τ and γ are work conjugate because

τdγ = σi j dei j . (30.36)

30.5.1 Specific Model Forms

For a general form, we may write

τ = (Mi jk�σi jσk�)
1/2
, γ = (Li jk�ei j ek�)

1/2
,

Mi jk� = Mjik� = Mi j�k = Mk�i j .
(30.37)

Then, using (30.35), we obtain

ei j/γ = Mi jk�σk�/τ, σi j/τ = Li jk�ek�/γ, (30.38)

and thus Mi jk� and Li jk� are the inverses of each other. If the material were isotropic,
(30.38) take on the form

τ =
√

3
2

{
[(1 − 2ν)/3(1 + ν)](σkk)2 + σ ′

i jσ
′
i j

}1/2
,

γ =
√

2
3

{
[(1 + ν)/3(1 − 2ν)](ekk)2 + e′

i j e
′
i j

}1/2
,

(30.39)

Here, ν is a kind of Poisson’s ratio wr t a uniaxial type loading. Thus, using (30.35) and
(30.39), we obtain

1
3

e′
i j/γ = 1

2
σ ′

i j/τ,
1
3

ekk/γ = 1
2

[(1 − 2ν)/(1 + ν)]σkk/τ. (30.40)

Suppose we take ν = 1/2, so that the material is incompressible, or do this for the purpose
of using the formalism to describe only the plastic part of the deformation. Then, ekk = 0
and

τ =
(

3
2
σ ′

i jσ
′
i j

)1/2

, γ =
(

2
3

e′
i j e

′
i j

)1/2

,
1
3

e′
i j/γ = 1

2
σ ′

i j/τ. (30.41)

These can be expressed as

σ ′
i j = 2

3
(τ/γ )e′

i j ,

σ ′
i j = 2

3
hp

s e′
i j ,

(30.42)

where hp
s is a secant modulus for a universal curve of effective stress, τ , vs. effective

strain, γ .
Before using these results to discuss the “corner effects” introduced above, we take an

alternative and illustrative approach to such a constitutive theory. We do this via a rate
form of the constitutive theory.
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Figure 30.6. Effective stress vs. effective strain relation. Note the defi-
nition of a tangent modulus and a secant modulus.

30.5.2 Alternative Approach to a Deformation Theory

Define two effective stress measures, viz.,

effective shear stress: τ̄ 2 = 1
2
σ ′

i jσ
′
i j ,

effective tensile stress: σ̄ 2 = 3
2
σ ′

i jσ
′
i j .

(30.43)

They are clearly related by

σ̄ =
√

3 τ̄ . (30.44)

Correspondingly, define conjugate effective (plastic) strains as

γ̄ p = (2ep
i j e

p
i j )

1/2, ē p =
(

2
3

ep
i j e

p
i j

)1/2

. (30.45)

Note again the assumption of a universal hardening relation in terms of τ̄ vs. γ̄ p (or σ̄ vs.
ēp); two moduli may be defined, as in Fig. 30.6, viz.,

ht = dτ̄ /dγ̄ p = 1
3

dσ̄ /dēp = tangent modulus,

hs = τ̄ /γ̄ p = 1
3
σ̄ /ē p = secant modulus.

(30.46)

30.5.3 Nonproportional Loading

Constitutive equation for deformation theories of the type just presented can be cast in
the form

ep
i j = λσ ′

i j . (30.47)

To determine λ, square both sides of (30.47) to obtain

ep
i j e

p
i j = λ2σ ′

i jσ
′
i j , (30.48)

which means that the effective plastic shear strain is

(γ̄ p)2 = 4λ2τ̄ 2 ⇒ λ = 1/2hs . (30.49)

Now, differentiate (30.47) with respect to time to obtain

ė p
i j = λ̇σ ′

i j + λσ̇ ′
i j . (30.50)
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Since λ = γ̄ p/2τ̄ , we find

λ̇ = ˙̄τ
2τ̄

(
1
ht

− 1
hs

)
. (30.51)

Thus, the relation for the plastic strain rate becomes

ė p
i j = 1

2hs
σ̇ ′

i j + 1
4

(
1
ht

− 1
hs

)
σ ′

i jσ
′
k�

τ̄ 2
σ̇ ′

k�. (30.52)

Note that
˙̄τ

2τ̄
= 1

4
σ ′

k� σ̇
′
k�

τ̄ 2
. (30.53)

Imagine a program of loading whereby a specimen is subject to purely axial loading so
that only σ22 ≡ σ 
= 0; in particular, σ12 ≡ τ = 0. After some stage of deformation, impose
a stress path, wherein both σ and τ are applied, say in a fixed ratio, dσ/dτ =const. Then
for the strain rates, ė p

22 = ė p and ė p
12 = γ̇ p, we have

ė p = 1
3hs

σ̇ +
(

1
ht

− 1
hs

)
σ

(dσ/dτ ) + 3τ
3(σ 2 + 3τ 2)

τ̇ ,

γ̇ p = 1
hs
τ̇ +

(
1
ht

− 1
hs

)
τ

(dσ/dτ ) + 3τ
2(σ 2 + 3τ 2)

τ̇ .

(30.54)

Since at the moment when this multiaxial loading is imposed, τ = 0, the instantaneous
response is

ė p = 1
3hs

σ̇ +
(

1
ht

− 1
hs

)
dσ/dτ

3
τ̇ ,

γ̇ p = 1
hs
τ̇ .

(30.55)

What is important to note here is that the instantaneous shear response is finite; in fact from
(30.54) we may note that for a given level of stress, the plastic shear strain rate increases
with dσ/dτ ; in other words the smaller the departure from nonproportional stressing,
the less stiff is the apparent shear response. This may be compared with the strain rate-
dependent simulations shown in Fig. 30.5. The behavior is very different from what would
be expected from a material described by say J2 flow theory, as we show next.

We recall that within a simple version of a small strain flow theory, the rate of plastic
strain can be written as

ė p
i j = 1

4ht

σ ′
i j

τ̄ 2
σ ′

k�σ̇
′
k� , (30.56)

which applies for the rate of plastic straining so long as there is active loading, i.e.,

σ ′
i j σ̇

′
i j > 0 . (30.57)

Imagine the same program of loading as above, then

ė p = σ (σ σ̇ + 3τ τ̇ )
3ht (σ 2 + 3τ 2)

,

1
2
γ̇ = ė p

12 = τ (σ σ̇ + 3τ τ̇ )
2ht (σ 2 + 3τ 2)

.

(30.58)
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When the program is such that dσ/dτ =const., we have

ė p = σ [σ (dσ/dτ ) + 3τ ]
3ht (σ 2 + 3τ 2)

τ̇ ,

γ̇ p = τ [σ (dσ/dτ ) + 3τ ]
ht (σ 2 + 3τ 2)

τ̇ ,

(30.59)

and, if instantaneously τ = 0, we obtain

ė p = 1
3ht

(dσ/dτ )τ̇ ,

γ̇ p = 0.

(30.60)

Thus, we observe the effect alluded to earlier concerning the response of materials to
nonproportional stress or strain paths. An important aspect of the corner structure is its
implication regarding this kind of strain path dependence to material response. Experi-
mental evidence suggests behavior very much consistent with what was revealed above
vis-à-vis the simulations performed using the rate-dependent aggregate model. The path
dependence of the stress-strain response just revealed has significance in such processes as
localized deformation, plastic buckling, as well as other deformation modes that involve
sudden departures from proportional straining. It is easy enough to see that, as such re-
sponse is less stiff, modes that incur nonproportional strain increments are facilitated. As
shown by Asaro (1985) and Pan and Rice (1985), this path dependent response is directly
influenced by rate sensitivity. Rate sensitivity has the expected effect of increasing stiff-
ness in response to such modes, thereby providing another type of stabilizing influence on
plastic flow.
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31 Laminate Plasticity

Crystalline materials deform by a process of crystalline slip, whereby material is trans-
ported via shear across distinct crystal planes and only in certain distinct crystallographic
directions in those planes. This process imparts a strong directionality to the plastic flow
process and specifies a clear kinematic definition to the plastic spin. In what follows the
theory is developed around a model for a laminated material; this is done to demonstrate
the generality of the approach to a broader range of materials where slip is kinematically
mediated by fixed directions.

31.1 Laminate Model

We consider the fiber reinforced plastic (FRP) material to be composed of an essentially
orthotropic laminate, which contains a sufficient number of plies so that homogenization
is a reasonable way to describe the material behavior. The principal directions of the fibers
are described by a set of mutually orthogonal unit base vectors, ai , as depicted in Fig. 31.1.
The resulting orthotropic elastic response of the laminated composite will thus be fixed on
and described by these vectors. The material can also deform via slipping in the plane of
the laminate, i.e., via interlaminar shear, and this slipping is confined to the interlaminar
plane. Slipping is possible in all directions in the plane, but not necessarily with equal
ease. We thus introduce two slip systems, aligned with the slip directions s1 and s2. The
normal to the laminate plane is m, so that s1 · m = 0 and s2 · m = 0. It may well be natural,
but not necessary, to take s1 and s2 to be orthogonal, i.e., s1 · s2 = 0, but note that due
to elastic distortions they may not remain so during deformation. These vectors will be
called s∗

1, s∗
2, and m∗ in the deformed state. Since m∗ is to be the normal to the slip plane,

i.e., the plane of the laminate, it will always be the case that s∗
1 · m∗ = 0 and s∗

2 · m∗ = 0,
as naturally described by our expressions for the kinematics of laminate deformation. In
fact, it is possible to take the slip system vectors to be coincident with the laminate base
vectors, ai , and insure that they are convected, so that the above stated orthogonality is
preserved; there is no need to do this, however. Even though both slip systems have the
same slip plane normal, i.e., m, it will be convenient for symmetry of expression to refer to
m1 and m2 in the expressions below. This makes it easier to establish correlations with the
body of theory for crystal plasticity. Figure 31.1 illustrates the total deformation from the
reference configuration, B0, to occur in two stages, producing a viscoplastic and an elastic

601
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Figure 31.1. Kinematics of elastic and plastic
deformation.

deformation, respectively. The viscoplastic deformation occurs by the flow of the material
through the framework, i.e., the lattice, of the laminate via the interlaminar shears. The
spatial velocity gradient of this plastic flow is thus written as

Ḟp · Fp−1 =
2∑
1

γ̇αsαmα, (31.1)

where Fp is the plastic deformation gradient and γ̇α is the rate of shearing on the αth slip
system. The value of Fp is obtained by the path dependent integration of (31.1). This process
produces an intermediate configuration,Bp. Next the current, i.e., deformed, configuration
Bc is reached fromBp by elastically distorting and rigidly rotating the laminate (i.e., lattice)
along with material, i.e., fabric and matrix, embedded on it. This second step of deformation
is described by the elastic deformation gradient F∗. Hence, the decomposition

F = F∗ · Fp (31.2)

is obtained, where F is the total elastic-plastic deformation. This decomposition was intro-
duced in this context for crystal plasticity by Asaro and Rice (1977), and for phenomeno-
logical plasticity by Lee (1969); see Chapters 26 and 28.

The driving force for slip on theαth system is taken to be primarily caused by the resolved
shear stress, τα , on that system. This is written as

τα = m∗
α · τ · s∗

α, s∗
α = F∗ · sα, m∗

α = mα · F∗−1, (31.3)

where J = det F is the Jacobian, τ = Jσ is the Kirchhoff stress, and σ is the Cauchy (true)
stress. Here, in the current (deformed) state, s∗

α and m∗
α are respectively along the αth slip

direction and the slip plane normal. Note that s1 and s2 are made to convect with the lattice
framework, whereas m is the reciprocal base vector that remains normal to the plane that
contains both s1 and s2. This definition of τα is used because it makes τα conjugate to γ̇α ,
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i.e.,
∑2
α=1 ταγ̇α is precisely the plastic dissipation rate per unit reference volume. On the

other hand, it is entirely possible that the shear resistance of interlaminar zones is sensi-
tive to the normal stress that acts on the plane. Then, the shear rate would depend on the
stress component τmm = m∗ · τ · m∗. In this case a more general load parameter might be
prescribed for the αth slip system, viz., τ̂α = ‖τα‖ + βτmm, where τ̂ ≥ 0. The parameter β
represents are frictional resistance because of the compaction of fabric by normal com-
pressive stresses. As shown by Asaro and Rice (1977), and then again by Dao and Asaro
(1996), the appearance of such terms in the loading parameter represents a deviation from
the law of normality which, in turn, has implications for localized deformation.

The constitutive description of the plasticity on each slip system is cast in terms of the
resolved shear stress on that system and the current slip rate on that system, as

γ̇α = γ̇0 sgn(τα)
∣∣∣∣ ταgα

∣∣∣∣
1/m

. (31.4)

The current value of the resolved shear stress is τα , and gα is the current value of the
slip system hardness. When frictional effects are important, τα should be replaced by τ̂α .
In (31.4), m is the strain rate sensitivity exponent, γ̇0 is a reference shear strain rate. As
m → 0, the rate independent behavior is achieved, and in that limit gα corresponds to the
slip system strength, τα , at least in absolute value. This limit is unlikely for the polymer resin
systems of interest here. Also, for creeplike behavior, we expect 0.15 ≤ m ≤ 1, whereas
for viscoplastic response m ≤ 0.1.

In general, we anticipate the possibility that there may be hardening of the interlaminar
layers following slip, and this is described by a path dependent evolution equation of the
form

ġα =
2∑
β=1

hαβ(γa)|γ̇β |, γa =
∫ t

0

∑
α

|γ̇α|dt, (31.5)

where hαβ is a hardening matrix of (nonnegative) hardening moduli, and γa is the ac-
cumulated sum of the slips. The initial conditions for this evolution are specified as
gα(γ̇α = 0) = g0, and the form of hαβ is

hαβ(γa) = g′(γa)qαβ. (31.6)

The prime denotes differentiation with respect to γa , and qαβ is a matrix that describes the
cross hardening between the two slipping directions. A possible and quite general form
for g(γa) is

g(γa) = g0 + h∞γa + (g∞ − g0) tanh
(

h0 − h∞
g∞ − g0

)
. (31.7)

If the laminate is subjected to a monotonically increasing shear strain γ > 0 along one
direction, then γ = γa and the relation g = g(γa) can be interpreted as being the relation
of hardness vs. shear strain for that slip system. Also, in (31.7), g0 = g(γa = 0), h0 = g′(γa =
0), and h∞ = g′(γa → ∞). If h∞ ≡ 0, then g∞ = g(γa → ∞). At present there is little data
to guide the calibration of hardening laws such as (31.7), but its flexibility should provide
the ability to do so.

The description of the laminate’s constitutive response is completed with a specification
of its elasticity, which is expressed in terms of the Green strain of the fabric framework
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E∗ = (1/2)(F∗T · F∗ − I), and the laminate framework-based second Piola–Kirchhoff stress
S∗ = F∗−1 · τ · F∗−T . For anisotropic elastic solids the elastic response may be written as

S∗
i j = ∂ 

∂E∗
i j
, (31.8)

where

S∗ = S∗
i j ai a j , E∗ = E∗

i j ai a j . (31.9)

The strain energy of the fabric framework per unit reference volume is  =  (E∗
i j ). Al-

ternatively, in rate form, we have

Ṡ
∗ = Λ∗ : Ė

∗
, Λ∗ = �∗

i jklai a j akal , �∗
i jkl = ∂2 

∂E∗
i j∂E∗

kl
. (31.10)

On the other hand, (31.10) can, and typically will, be constructed from a laminate theory
based on discrete analysis of the layering of thin plies.

31.2 Additional Kinematical Perspective

The decomposition of (31.2) results in the total velocity gradient taking the form

Ḟ · F−1 = Ḟ∗ · F∗−1 + F∗ ·
2∑
α=1

γ̇αsαmα · Ḟ∗−1. (31.11)

By forming symmetric and antisymmetric parts of this velocity gradient, we obtain the
decompositions of the rate of deformation and the spin rates, viz.,

D = D∗ + Dp, W = W∗ + Wp, (31.12)

where

Dp =
2∑
α=1

Pαγ̇α , Wp =
2∑
α=1

Qαγ̇α . (31.13)

In (31.13), the symmetric and antisymmetric tensors Pα and Qα are defined as

Pα = 1
2

(s∗
αm∗

α + m∗
αs∗
α) , Qα = 1

2
(s∗
αm∗

α − m∗
αs∗
α) . (31.14)

The elastic parts of D and W, viz., D∗ and W∗, are formed by taking the symmetric and
antisymmetric parts of L∗ in (31.11), i.e.,

D∗ = (
Ḟ∗ · F∗−1)

sym , W∗ = (
Ḟ∗ · F∗−1)

asym . (31.15)

Note that the interpretation of how s and m convect with the laminate framework, as
introduced in (31.3), is a natural outcome of the kinematical scheme shown in Fig. 31.1.

31.3 Final Constitutive Forms

The description of the laminate constitutive response is completed with a specification
of its elasticity, which is expressed in terms of the Green strain of the framework E∗, as
given in (31.10). Having the description of this response, the entire constitutive theory



P1: JzG
052177777Xc31.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:54

31.3. Final Constitutive Forms 605

can be expressed in terms of the Green strain E = 1/2(FT · F − I), and the second Piola–
Kirchhoff stress, S = F−1 · τ · F−T . Straightforward tensor manipulations of the above
relations yield the governing constitutive rate form

Ṡ = Λ : Ė −
2∑
α=1

γ̇αXα, (31.16)

where

�i jrn = F p−1
ik F p−1

jl �∗
klpq F p−1

r p F p−1
nq , (31.17)

and

Λ = �i jklai a j akal , Fp−1 = F p−1
i j ai a j . (31.18)

In (31.16), the fourth-order tensor Xα is defined by

Xα = Fp−1 · (Λ∗ : Aα + 2Bα) · Fp−1, (31.19)

with

Aα = sym
(
F∗T · F∗ · sαmα

)
, Bα = sym (sαmα · S∗) . (31.20)

It is useful to express the constitutive relations in terms of the nominal stress P, and its
conjugate F itself. The transformation is straightforward since P = F−1 · τ = S · FT and,
consequently, Ṗ = Ṡ · FT + S · Ḟ

T
. This then yields

Ṗ = M : Ḟ −
2∑
α=1

γ̇αYα, (31.21)

with

Mi jkl = F p−1
ia F∗

jb�
∗
abcd F p−1

kc F∗
id + Sikδ jl ,

F∗ = F∗
i j ai a j , S = Si j ai a j , (31.22)

I = δi j ai a j , M = Mi jklai a j akal ,

and

Yα = Xα · FT. (31.23)

31.3.1 Rigid-Plastic Laminate in Single Slip

A particularly illuminating, yet simple application of the theory presented above is the ex-
ample of a rigid-plastic laminate undergoing a process of single slip, as depicted in Fig. 31.2.
The case being considered is that of uniaxial tension. For this case, the decomposition of
the deformation gradient becomes straightforward, viz.,

F = F∗ · Fp = R∗ · Fp, (31.24)
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Figure 31.2. Rigid-plastic laminate in tension.

where R∗ is the orthogonal tensor representing the laminate (lattice) rotation. As Fig. 31.2
implies, this is

R∗ =
⎧⎨
⎩

cosα − sinα 0
sinα cosα 0

0 0 1

⎫⎬
⎭ . (31.25)

Let s and m lie in the x1 − x2 plane and the tensile axis be parallel to the x2 axis. Further,
let θ be the angle between the initial slip direction, s, and the x1 axis. Also, let e1 and e2 be
unit vectors along the x1 and x2 axes, respectively. Since α is the angle by which the lattice
rotates during the actual deformation, the slip direction takes on components

s∗ = R∗ · s =
⎧⎨
⎩

cos(θ + α)
sin(θ + α)

0

⎫⎬
⎭ . (31.26)

On the other hand, the slip plane normal, also shown in Fig. 31.2, becomes

m∗ = m · F∗−1 = R∗ · m =
⎧⎨
⎩

− sin(θ + α)
cos(θ + α)

0

⎫⎬
⎭ . (31.27)

The resolved shear stress in this single slip system is, via simple geometry,

τ = σ sin(θ + α) cos(θ + α), (31.28)

where σ is the value of the tensile stress.

The plastic part of the deformation gradient is

Fp = I + γ sm, (31.29)

and the total deformation gradient becomes

F = R∗ · Fp =
⎧⎨
⎩

cosα − sinα 0
sinα cosα 0

0 0 1

⎫⎬
⎭

+ γ
⎧⎨
⎩

− cos(θ + α) sin θ cos(θ + α) cos θ 0
− sin(θ + α) sin θ sin(θ + α) cos θ 0

0 0 1

⎫⎬
⎭ .

(31.30)

But,

F · e2 = F22e2 = λe2, (31.31)
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θ < π/4

θ > π/4

σ

α, γ, λ

σ

α, γ, λ

(a)

(b)

Figure 31.3. (a) Geometrical softening vs. (b) geometrical hardening.

where λ is the stretch along the tensile axis. Thus, from (31.30) and (31.31), it is found that

− sinα + γ cos(θ + α) cos θ = 0, cosα + γ sin(θ + α) cos θ = λ. (31.32)

Let the laminated material be ideally plastic with a constant hardness g0, and further let
it be rate independent (this will not affect the points to be made using this example). Then,

σ = g0

sin(θ + α) cos(θ + α)
,

γ = sinα
cos(θ + α) cos θ

,

λ = cosα + sinα sin(θ + α)
cos(θ + α)

.

(31.33)

Also, from (31.32), we have

γ cos(θ + α) cos θ
γ sin(θ + α) cos θ

= sinα
λ− cosα

, (31.34)

which, in turn, leads to

cot(θ + α) = sinα
λ− cosα

. (31.35)

It is instructive to use these results to explore the relationship of the magnitude of the
tensile stress to any parameter such as λ, α, or γ that marks out ongoing deformation; two
generic cases are sketched in Fig. 31.3. The phenomenon illustrated is called geometrical
softening, as it relates to the decrease in the magnitude of σ with ongoing deformation due
to lattice rotations that position the slip system in more favorable orientations for slip.

31.4 Suggested Reading

Dao, M., and Asaro, R. J. (1996), Localized Deformation Modes and non-Schmid Effects
in Crystalline Solids. Part I: Critical Conditions for Localization, Mech. Mater., Vol. 23,
pp. 71–102.
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PART 7: BIOMECHANICS

32 Mechanics of a Growing Mass

32.1 Introduction

A general constitutive theory of the stress-modulated growth of biomaterials is presented
in this chapter with a particular accent given to pseudoelastic living tissues. The governing
equations of the mechanics of solids with a growing mass are derived within the framework
of finite deformation continuum thermodynamics. The analysis of stress-modulated growth
of living soft tissues, bones, and other biomaterials has been an important research topic in
biomechanics during past several decades. Early work includes a study of the relationship
between the mechanical loads and uniform growth by Hsu (1968) and a study of the mass
deposition and resorption processes in a living bone by Cowin and Hegedus (1976a,1976b).
The latter work provided a set of governing equations for the so-called adaptive elasticity
theory, in which an elastic material adopts its structure to applied loading. In contrast
to hard tissues which undergo only small deformations, soft tissues such as blood vessels,
tendons, or ligaments can experience large deformations. Fundamental contributions were
made by Fung and his co-workers (e.g., Fung 1993,1995) in the analytical description of
the volumetrically distributed mass growth and by Skalak et al. (1982) for the mass growth
by deposition or resorption on a surface. Hard tissues, such as bones and teeth, grow
by deposition on a surface (apposition). Changes in porosity, mineral content and mass
density are because of internal remodeling. Soft tissues grow by volumetric, also referred
to as interstitial, growth. In general a tissue consists of cells and extracellular matrix.
The growth and remodeling of a tissue take place during normal developmental growth,
healing processes and pathological conditions. The growth and remodeling of tissues are
affected, usually enhanced, by the use of tissues. Tissues remodel their structure to adjust
to loading conditions they experience. For example, compressive stress stimulates the
formation of new bone and is used in fracture healing. Weightless condition in space, or
immobilization, conversely, may cause skeletal muscle atrophy. Hypertension causes the
arterial wall to thicken, with little change in the outer diameter of the artery. Adaptive
growth and remodeling of the heart because of high blood pressure is known as cardiac
hypertrophy. This may be characterized by an increased ventricular wall thickness with
little change in cavity size (concentric hypertrophy), or by an enlargement of the cavity
accompanied by the wall thickness increase which keeps the ratio of radius to thickness
approximately the same (eccentric hypertrophy). The latter growth may not be necessarily

609
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pathological, because it also takes place during normal hearth growth and exercise, when
the ventricular cavity enlarges to accommodate the greater blood volume. The review
articles by Taber (1995) and Humphrey (1995, 2003) offer further discussion and analysis
of the biomechanical aspects of growth (mass change), remodeling (property change), and
morphogenesis (shape change), with the reference to original work.

32.2 Continuity Equation

Let rg be the time rate of mass growth per unit current volume. Then

d
dt

(dm) = rg dV , (32.1)

where d/dt stands for the material time derivative. For rg > 0 the mass growth occurs, and
for rg < 0 the mass resorption takes place. If ρ = dm/dV is the mass density, we obtain
from (32.1)

dρ
dt

dV + ρ d
dt

(dV) = rg dV . (32.2)

Because the volume rate is proportional to the divergence of velocity field,

d
dt

(dV) = (∇ · v) dV , (32.3)

the substitution into (32.2) gives the continuity equation for the continuum with a growing
mass

dρ
dt

+ ρ ∇ · v = rg . (32.4)

The integral form of the continuity equation follows from the identity

d
dt

∫
V

dm =
∫

V

d
dt

(dm) , (32.5)

where V is the current volume of the considered material sample. This gives

d
dt

∫
V
ρ dV =

∫
V

rg dV . (32.6)

Initially, before the deformation and mass growth, ρ = ρ0 (initial mass density).
For isochoric (volume preserving) deformation and growth

∇ · v = 0 ,
dρ
dt

= rg , (32.7)

whereas for incompressible materials

dρ
dt

= 0 , ∇ · v = 1
ρ

rg . (32.8)

32.2.1 Material Form of Continuity Equation

If F is the deformation gradient and J = det F, then

d
dt

(ρ dV) = rg dV ⇒ d
dt

(ρ J dV0) = rg J dV0 , (32.9)



P1: IKB
052177777Xc32.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:55

32.2. Continuity Equation 611

where dV0 is the initial volume element, and dV = J dV0. We assume that material points
are everywhere dense during the mass growth, so that in any small neighborhood around
the particle there are always points that existed before the growth. Thus,

d
dt

(ρ J ) = rg J . (32.10)

Furthermore, introduce the time rate of mass growth per unit initial volume rg
0 , such that

d
dt

(dm) = rg dV = rg
0 dV0 . (32.11)

It follows that the rate of mass growth per unit initial and current volume are related by

rg
0 = rg J . (32.12)

Consequently, we can rewrite (32.10) as

d
dt

(ρ J ) = rg
0 . (32.13)

Upon the time integration this gives

ρ J = ρ0 +
∫ t

0
rg

0 dτ . (32.14)

The physical interpretation of the integral on the right-hand side is available from∫ t

0
rg

0 dτ = (dm)t − (dm)0

dV0
. (32.15)

In (32.14) we have

ρ = ρ [x(X, t)] , J = J [x(X, t)] , rg
0 = rg

0 [x(X, τ )] , (32.16)

where x is the current position of the material point initially at X, and 0 ≤ τ ≤ t . Equation
(32.14) represents a material form of the continuity equation for the continuum with a
growing mass. It will be convenient in the sequel to designate the quantity ρ J by ρg

0 , i.e.,

ρ
g
0 = (dm)t

dV0
= ρ J ,

dρg
0

dt
= rg

0 . (32.17)

For a continuum without the mass growth (dm = const.), ρg
0 = ρ0.

If the volume remains preserved throughout the course of deformation and growth
(densification), J = 1 and

ρ
g
0 = ρ , rg = rg

0 ,

ρ = ρ0 +
∫ t

0
rg

0 dτ .
(32.18)

For an incompressible material that remains incompressible during the mass growth (ρ =
ρ0), equation (32.14) gives

J = 1 + 1
ρ0

∫ t

0
rg

0 dτ . (32.19)
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32.2.2 Quantities per Unit Initial and Current Mass

Consider a quantity A per unit current mass and the corresponding quantity A0 per unit
initial mass, defined such that A(dm)t = A0 (dm)0. It follows that

ρ AdV = ρ0 A0 dV0 , (32.20)

i.e.,

ρ0 A0 = ρg
0 A. (32.21)

Thus,

A0 =
(

1 + 1
ρ0

∫ t

0
rg

0 dτ
)

A. (32.22)

By differentiating (32.21), we also have

ρ0
dA0

dt
= J

(
ρ

dA
dt

+ rg A
)
, (32.23)

ρ
g
0

dA
dt

= ρ0

(
dA0

dt
− rg

0

ρ
g
0

A0

)
. (32.24)

It is noted that

dA0

dt

=
(

dA
dt

)
0
, (32.25)

where the latter quantity is defined by

ρ
dA
dt

dV = ρ0

(
dA
dt

)
0

dV0, (32.26)

which implies

ρ0

(
dA
dt

)
0

= ρg
0

dA
dt
. (32.27)

Evidently, by comparing (32.24) and (32.27), there is a connection(
dA
dt

)
0

= dA0

dt
− rg

0

ρ
g
0

A0 . (32.28)

32.3 Reynolds Transport Theorem

The integration of (32.20) gives

d
dt

∫
V
ρ AdV =

∫
V0

ρ0
dA0

dt
dV0 . (32.29)

The substitution of (32.23) into (32.29) yields

d
dt

∫
V
ρ AdV =

∫
V

(
ρ

dA
dt

+ rg A
)

dV . (32.30)
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This, of course, also follows directly from

d
dt

∫
V
ρ AdV =

∫
V

d
dt

(ρ AdV) =
∫

V
ρ

dA
dt

dV +
∫

V
A

d
dt

(ρ dV) , (32.31)

because d(ρdV)/dt = rgdV.
It is instructive to provide an alternative derivation. Consider the quantity A per unit

current volume. Since

d
dt

∫
V
A dV =

∫
V

d
dt

(A dV) , (32.32)

upon the differentiation under the integral sign on the right-hand side, we deduce an
important formula of continuum mechanics

d
dt

∫
V
A dV =

∫
V

(
dA
dt

+ A∇ · v
)

dV . (32.33)

This result also follows from

d
dt

∫
V
A dV = d

dt

∫
V0

A0 dV0 =
∫

V0

dA0

dt
dV0 , (32.34)

where A0 is the quantity per unit initial volume (A0 = A J ). Upon differentiation,

dA0

dt
= J

(
dA
dt

+ A∇ · v
)
, (32.35)

and substitution into (32.34) yields (32.33). The formula (32.30) follows from (32.33) by
writing A = ρ A, and by using the continuity equation (32.4). See also a related analysis
by Kelly (1964) and Green and Naghdi (1965).

Returning to (32.29), we can write

d
dt

∫
V
ρ AdV =

∫
V

d
dt

(ρ AdV) =
∫

V

d
dt

(ρ A) dV +
∫

V
ρ A

d
dt

(dV) . (32.36)

But,

d
dt

(dV) = ∂vi

∂xi
dV ,

d
dt

(ρ A) = ∂

∂t
(ρ A) + ∂

∂xi
(ρ A) vi . (32.37)

The substitution into (32.36) then gives

d
dt

∫
V
ρ AdV =

∫
V

∂(ρ A)
∂t

dV +
∫

V

∂

∂xi
(ρ Avi ) dV . (32.38)

Finally, upon applying the Gauss divergence theorem to the second integral on the rhs,
there follows

d
dt

∫
V
ρ AdV =

∫
V

∂(ρ A)
∂t

dV +
∫

S
ρ Avi ni dS , (32.39)

which is the Reynolds transport formula of the continuum mechanics. Combining this with
(32.30), we also have∫

V

(
ρ

dA
dt

+ rg A
)

dV =
∫

V

∂(ρ A)
∂t

dV +
∫

S
ρ Avi ni dS . (32.40)

If there is no mass growth, rg = 0.
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32.4 Momentum Principles

The first Euler’s law of motion for the continuum with a growing mass can be expressed as

d
dt

∫
V
ρ v dV =

∫
S

t dS +
∫

V
ρ b dV +

∫
V

rg v dV . (32.41)

In addition to applied surface t and body b forces, the time rate of change of the momentum
is affected by the momentum rate associated with a growing mass. This is given by the last
integral on the right-hand side of (32.41). Since by the Reynolds transport theorem

d
dt

∫
V
ρ v dV =

∫
V

(
ρ

dv
dt

+ rg v
)

dV , (32.42)

the substitution into (32.41) yields the usual differential equations of motion

∇ · σ + ρ b = ρ dv
dt
. (32.43)

The Cauchy stress σ is related to the traction vector t by t = n · σ, where n is the unit
outward normal to the surface S bounding the volume V.

An alternative derivation proceeds by applying the momentum principle to an infinites-
imal parallelepiped of volume dV, whose sides are parallel to the coordinate directions ei

(i = 1, 2, 3), i.e.,

d
dt

(v ρ dV) = b ρ dV + ∂ti

∂xi
dV + v rg dV . (32.44)

The traction vector over the side with a normal ei is denoted by ti , so that ∂ti/∂xi multiplied
by dV is the net force from the surface tractions on all sides of the element. Incorporating

d
dt

(v ρ dV) = dv
dt
ρ dV + v rg dV (32.45)

into (32.44), we obtain

ρ
dv
dt

= ρ b + ∂ti

∂xi
. (32.46)

Having regard to ti = ei · σ, and

∂ti

∂xi
= ∇ · σ , (32.47)

the substitution into (32.46) yields the equations of motion (32.43).
The material form (relative to the initial configuration) of the first Euler’s law of motion

is

d
dt

∫
V0

ρ
g
0 v dV0 =

∫
S0

t0 ds0 +
∫

V0

ρ0 b0 dV0 +
∫

V0

rg
0 v dV0 , (32.48)

where

ρ0 b0 = ρg
0 b . (32.49)

Since

d
dt

∫
V0

ρ
g
0 v dV0 =

∫
V0

(
ρ

g
0

dv
dt

+ rg
0 v
)

dV0 , (32.50)
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the substitution into (32.48) yields the material form of the differential equations of motion,

∇0 · P + ρ0 b0 = ρg
0

dv
dt
. (32.51)

The nominal stress P is related to the nominal traction t0 by t0 = n0 · P, where n0 is the
unit normal to the surface S0 bounding the initial volume V0. The well-known connec-
tions t dS = t0 dS0 and P = F−1 · τ are recalled, where τ = Jσ is the Kirchhoff stress. The
accompanying traction boundary condition is n0 · P = pn, over the part of the bounding
surface where the traction pn is prescribed.

The integral form of the second Euler’s law of motion for the continuum with a growing
mass is

d
dt

∫
V

(x × ρ v) dV =
∫

S
(x × t) dS +

∫
V

(x × ρ b) dV +
∫

V
rg (x × v) dV . (32.52)

Since by the Reynolds transport theorem

d
dt

∫
V

(x × ρ v) dV =
∫

V

[
ρ

d
dt

(x × v) + rg (x × v)
]

dV , (32.53)

the substitution into (32.52) gives∫
V
ρ

d
dt

(x × v) dV =
∫

S
(x × t) dS +

∫
V
ρ (x × b) dV . (32.54)

This is the same expression as in the mass-conserving continuum, which therefore implies
the symmetry of the Cauchy stress tensor (σ = σT).

32.4.1 Rate-Type Equations of Motion

By differentiating (32.51) we obtain the rate-type equations of motion

∇0 · dP
dt

+ ρ0
db0

dt
= ρg

0
d2v
dt2

+ rg
0

dv
dt
. (32.55)

The rate of the body force is

db0

dt
= 1
ρ0

(
ρ

g
0

db
dt

+ rg
0 b
)

=
(

db
dt

)
0
+ rg

0

ρ
g
0

b0 , (32.56)

in accordance with the general recipe (32.28). The accompanying rate-type boundary con-
dition is

n0 · dP
dt

= dpn

dt
, (32.57)

for the part of the bounding surface where the rate of traction is prescribed.

32.5 Energy Equation

The rate at which the external surface and body forces are doing work on the current mass
is given by the standard expression

P =
∫

S
t · v dS +

∫
V
ρ b · v dV =

∫
V

[
ρ

d
dt

(
1
2

v · v
)

+ σ : D
]

dV , (32.58)
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where D is the rate of deformation tensor, the symmetric part of the velocity gradient
L = v∇. If q is the rate of heat flow by conduction across the surface element n dS, and w
is the rate of heat input per unit current mass because of distributed internal or external
heat sources, the total heat input rate is

Q = −
∫

S
q · n dS +

∫
V
ρ w dV =

∫
V

(−∇ · q + ρ w) dV . (32.59)

The first law of thermodynamics (conservation of energy) for the continuum with a growing
mass can be expressed as

d
dt

∫
V
ρ

(
1
2

v · v + u
)

dV = P + Q +
∫

V
rg
(

1
2

v · v + u
)

dV +
∫

V
ρRg rg dV . (32.60)

The third term on the right-hand side is the rate of kinetic and internal (u) energy associated
with the current mass growth. The last term represents an average rate of (chemical) energy
associated with the mass growth. We introduced the affinity Rg, conjugate to the flux rg,
such that Rg rg represents the rate of energy per unit current mass (see, for example, Fung,
1990). Since by the Reynolds transport theorem

d
dt

∫
V
ρ

(
1
2

v · v + u
)

dV =
∫

V
ρ

d
dt

(
1
2

v · v + u
)

dV

+
∫

V
rg
(

1
2

v · v + u
)

dV ,

(32.61)

the substitution of (32.58), (32.59), and (32.61) into (32.60) yields the local form of the
energy equation

du
dt

= 1
ρ
σ : D − 1

ρ
∇ · q + w + Rg rg . (32.62)

This can also be deduced directly by applying the energy balance to an infinitesimal
parallelepiped with the sides along the coordinate directions ei . The net rate of work of
the traction vectors over all sides of the element is

∂

∂xi
(ti · v) = ∇ · (σ · v) , (32.63)

multiplied by the volume dV, and from

d
dt

[(
1
2

v · v + u
)
ρ dV

]
=
[
∂

∂xi
(ti · v) + ρ b · v − ∇ · q + ρ w

+ rg
(

1
2

v · v + u
)

+ ρRg rg
]

dV

(32.64)

we deduce by differentiation the energy equation (32.62).

32.5.1 Material Form of Energy Equation

If the initial configuration is used to cast the expressions, we have

P =
∫

V0

[
ρ

g
0

d
dt

(
1
2

v · v
)

+ P · · dF
dt

]
dV0 , (32.65)

Q =
∫

V0

(−∇0 · q0 + ρ0w0) dV0 , (32.66)
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where ∇0 is the gradient operator with respect to initial coordinates, and q0 = J F−1 · q is
the nominal heat flux vector. The energy equation for the whole continuum is then

d
dt

∫
V0

[
ρ

g
0

(
1
2

v · v
)

+ ρ0 u0

]
dV0 =

∫
V0

rg
0

(
1
2

v · v + ρ0

ρ
g
0

u0

)
dV0

+
∫

V0

ρ0 Rg
0 rg

0 dV0 + P + Q .
(32.67)

The internal energy and the internal heat rate per unit initial mass are denoted by u0 and
w0, such that

ρ0 u0 = ρg
0 u , ρ0w0 = ρg

0 w . (32.68)

Performing the differentiation on the left-hand side of (32.67), and substituting (32.65)
and (32.66), yields

du0

dt
− rg

0

ρ
g
0

u0 = 1
ρ0

P · · dF
dt

− 1
ρ0

∇0 · q0 + w0 + Rg
0 rg

0 , (32.69)

which is a dual equation to energy equation (32.62). If there is no mass growth, rg
0 = 0, and

(32.69) reduces to the classical expression for the material form of the energy equation
(e.g., Truesdell and Toupin, 1960).

The affinities Rg and Rg
0 are related by

M d
dt

(dm) = ρRg (rg dV) = ρ0 Rg
0 (rg

0 dV0) , (32.70)

where M is the affinity conjugate to the mass flux, so that

ρRg = ρ0 Rg
0 . (32.71)

Also, there is a connection between the rates of internal energy

ρ
g
0

du
dt

= ρ0

(
du0

dt
− rg

0

ρ
g
0

u0

)
= ρ0

(
du
dt

)
0
. (32.72)

This follows by differentiation from the first of (32.68), or from the general results (32.24)
and (32.28).

32.6 Entropy Equation

Let the rate of dissipation due to the rate of mass growth be

T g d
dt

(dm) = ρ �g rg dV , T g = ρ �g . (32.73)

Suppose that ξν(ν = 1, 2, . . . ,n) are the internal variables that describe in some average
sense the microstructural changes that occurred at the considered material particle during
the deformation process. These, for example, can be used to describe the local structural
remodeling caused by deformation and growth. Conceptually similar variables are used
in the thermodynamic analysis of inelastic deformation processes of metals and other
materials (see Chapter 6). The rate of dissipation due to structural changes, per unit current
mass, can be expressed as

f ν
dξν

dt
(sum on ν) , (32.74)
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where f ν are the thermodynamic forces (affinities) conjugate to the fluxes dξν/dt , similarly
as �g is conjugate to rg. The total rate of dissipation, which is the product of the absolute
temperature T and the entropy production rate γ (per unit current mass) is then

T γ = �g rg + f ν
dξν

dt
. (32.75)

The second law of thermodynamics requires that γ > 0.
The integral form of the entropy equation for the continuum with a growing mass is

d
dt

∫
V
ρ s dV = −

∫
S

1
T

q · n dS +
∫

V

w

T
ρ dV

+
∫

V
rg s dV +

∫
V
ρ γ dV ,

(32.76)

where s stands for the entropy per unit current mass. Upon applying the Reynolds transport
theorem to the left-hand side of (32.76), there follows∫

V
ρ

ds
dt

dV = −
∫

S

1
T

q · n dS +
∫

V

w

T
ρ dV +

∫
V
ρ γ dV . (32.77)

This leads to a local form of the entropy equation

ds
dt

= − 1
ρ

∇ ·
(

1
T

q
)

+ 1
T

(
w + �g rg + f ν

dξν

dt

)
. (32.78)

If the temperature gradients are negligible, this reduces to

T
ds
dt

= − 1
ρ

∇ · q + w + �g rg + f ν
dξν

dt
. (32.79)

32.6.1 Material Form of Entropy Equation

The rate of dissipation per unit initial mass is

T γ0 = �g
0 rg

0 + f ν0
dξν0
dt
. (32.80)

The relationships with the quantities per unit current mass are

ρ0 �
g
0 = ρ �g , ρ0 f ν0 = ρ f ν ,

dξν0
dt

= J
dξν

dt
. (32.81)

If s0 is the entropy per unit initial mass, the integral form of the entropy equation becomes

d
dt

∫
V0

ρ0 s0 dV0 = −
∫

s0

1
T

q0 · n0 ds0 +
∫

V0

w0

T
ρ0 dV0

+
∫

V0

rg
0
ρ0

ρ
g
0

s0 dV0 +
∫

V0

ρ0 γ0 dV0 .

(32.82)

The corresponding local equation is

ds0

dt
− rg

0

ρ
g
0

s0 = − 1
ρ0

∇0 ·
(

1
T

q0

)
+ 1

T

(
w0 + �g

0 rg
0 + f ν0

dξν0
dt

)
. (32.83)
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If the temperature gradients are negligible, this reduces to

T
(

ds0

dt
− rg

0

ρ
g
0

s0

)
= − 1

ρ0
∇0 · q0 + w0 + �g

0 rg
0 + f ν0

dξν0
dt
. (32.84)

It is observed, from (32.28), that

ds0

dt
− rg

0

ρ
g
0

s0 =
(

ds
dt

)
0

= ρ
g
0

ρ0

ds
dt
. (32.85)

32.6.2 Combined Energy and Entropy Equations

When (32.79) is combined with (32.62), there follows

du
dt

= 1
ρ
σ : D + T

ds
dt

+ (Rg − �g) rg − f ν
dξν

dt
. (32.86)

Dually, when (32.85) is combined with (32.69), we obtain an expression for the rate of
internal energy per unit initial mass. This is

du0

dt
− rg

0

ρ
g
0

u0 = 1
ρ0

P · · dF
dt

+ T
(

ds0

dt
− rg

0

ρ
g
0

s0

)
+ (

Rg
0 − �g

0

)
rg

0 − f ν0
dξν0
dt
.

It is noted that

% = 1
ρ
σ : D = 1

ρ
g
0

τ : D , τ = J σ . (32.87)

Here, % is the stress power per unit current mass, whereas

%0 = 1
ρ0

P · · dF
dt

(32.88)

is the stress power per unit initial mass. These quantities are, of course, different and related
by ρ0%0 = ρg

0 %. It is also recalled that the stress S conjugate to the material strain E is
defined by

P · · dF
dt

= τ : D = S :
dE
dt
. (32.89)

32.7 General Constitutive Framework

Suppose that the internal energy per unit current mass is given by

u = u
(
E, s, ρg

0 , ξ
ν
)
. (32.90)

Its time rate is

du
dt

= ∂u
∂E

:
dE
dt

+ ∂u
∂s

ds
dt

+ ∂u

∂ρ
g
0

rg
0 + ∂u

∂ξν

dξν

dt
. (32.91)
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When this is compared to (32.86), there follows

S = ρg
0
∂u
∂E
, (32.92)

T = ∂u
∂s
, (32.93)

Rg − �g = J
∂u

∂ρ
g
0

, (32.94)

f ν = − ∂u
∂ξν

. (32.95)

On the other hand, by introducing the Helmholtz free energy

φ
(
E, T, ρg

0 , ξ
ν
) = u

(
E, s, ρg

0 , ξ
ν
)− T s , (32.96)

we have by, differentiation and incorporation of (32.86),

dφ
dt

= 1

ρ
g
0

S :
dE
dt

− s
dT
dt

+ (Rg − �g) rg − f ν
dξν

dt
. (32.97)

Thus, φ is a thermodynamic potential such that

S = ρg
0
∂φ

∂E
, (32.98)

s = − ∂φ
∂T
, (32.99)

Rg − �g = J
∂φ

∂ρ
g
0

, (32.100)

f ν = − ∂φ
∂ξν

. (32.101)

The Maxwell-type relationships hold

∂S
∂T

= −ρg
0
∂s
∂E
,

∂S
∂s

= ρg
0
∂T
∂E
, (32.102)

and

∂S
∂ξν

= −ρg
0
∂ f ν

∂E
,

∂

∂E
[ ρ (Rg − �g) ] = ∂S

∂ρ
g
0

− S
ρ

g
0

. (32.103)

32.7.1 Thermodynamic Potentials per Unit Initial Mass

In an alternative formulation we can introduce the internal energy per unit initial mass as

u0 = u0
(
F, s0, ρ

g
0 , ξ

ν
0

)
. (32.104)
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The function u0 is an objective function of F, e.g., dependent on the right Cauchy–Green
deformation tensor FT · F. Its time rate is

du0

dt
= ∂u0

∂F
· · dF

dt
+ ∂u0

∂s0

ds0

dt
+ ∂u0

∂ρ
g
0

rg
0 + ∂u0

∂ξν0

dξν0
dt
. (32.105)

The comparison with (32.6.2) establishes the constitutive structures

P = ρ0
∂u0

∂F
, (32.106)

T = ∂u0

∂s0
, (32.107)

Rg
0 − �g

0 = ∂u0

∂ρ
g
0

− 1

ρ
g
0

(u0 − T s0) , (32.108)

f ν0 = −∂u0

∂ξν0
. (32.109)

If the Helmholtz free energy per unit initial mass is selected as a thermodynamic poten-
tial, i.e.,

φ0
(
F, T, ρg

0 , ξ
ν
0

) = u0
(
F, s0, ρ

g
0 , ξ

ν
0

)− T s0 , (32.110)

we obtain, by differentiation and incorporation of (32.6.2),

dφ0

dt
− rg

0

ρ
g
0

φ0 = 1
ρ0

P · · dF
dt

− s0
dT
dt

+ (
Rg

0 − �g
0

)
rg

0 − f ν0
dξν0
dt
. (32.111)

Since

dφ0

dt
= ∂φ0

∂F
· · dF

dt
+ ∂φ0

∂T
dT
dt

+ ∂φ0

∂ρ
g
0

rg
0 + ∂φ0

∂ξν0

dξν0
dt
, (32.112)

there follows

P = ρ0
∂φ0

∂F
, (32.113)

s0 = −∂φ0

∂T
, (32.114)

Rg
0 − �g

0 = ∂φ0

∂ρ
g
0

− 1

ρ
g
0

φ0 , (32.115)

f ν = −∂φ0

∂ξν0
. (32.116)

32.7.2 Equivalence of the Constitutive Structures

The equivalence of the constitutive structures, such as (32.92) and (32.106), or (32.93) and
(32.107), is easily verified. The equivalence of (32.94) and (32.108) is less transparent and
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merits an explicit demonstration. To that goal, write the internal energy per unit initial
mass as

u0 = ρ
g
0

ρ0
u
(
E, s, ρg

0 , ξ
ν
) = ρ

g
0

ρ0
u
(

E,
ρ0

ρ
g
0

s0, ρ
g
0 , ξ

ν

)
. (32.117)

By taking the gradient with respect to ρg
0 , it follows that

∂u0

∂ρ
g
0

= 1
ρ0

u − 1

ρ
g
0

s0
∂u
∂s

+ ρ
g
0

ρ0

∂u

∂ρ
g
0

. (32.118)

In view of (32.68), (32.93) and (32.94), this can be rewritten as

∂u0

∂ρ
g
0

= 1

ρ
g
0

(u0 − T s0) + ρ
g
0

ρ0

1
J

(Rg − �g) . (32.119)

Recalling that

ρ0 (Rg
0 − �g

0) = ρ (Rg − �g) , (32.120)

equation (32.119) becomes

∂u0

∂ρ
g
0

= 1

ρ
g
0

(u0 − T s0) + Rg
0 − �g

0 , (32.121)

which is equivalent to (32.108). Similar derivation proceeds to establish the equivalence
of (32.100) and (32.115).

32.8 Multiplicative Decomposition of Deformation Gradient

Let B0 be the initial configuration of the material sample, which is assumed to be stress
free. If the original material sample supported a residual distribution of internal stress, we
can imagine that the sample is dissected into small pieces to relieve the residual stress. In
this case B0 is an incompatible configuration. For the constitutive analysis, however, this
does not pose a problem, because it is sufficient to analyze any one of the stress free pieces.
Let F be a local deformation gradient that relates an infinitesimal material element dX
from B0 to dx in the deformed configuration B at time t , i.e.,

dx = F · dX . (32.122)

The deformation gradient F is produced by the mass growth and deformation because
of externally applied and growth induced stresses. Introduce an intermediate configura-
tion Bg by instantaneous elastic distressing of the current configuration B to zero stress
(Fig. 32.1). Define a local elastic deformation gradient Fe that maps an infinitesimal ele-
ment dxg from Bg to dx in B, such that

dx = Fe · dxg . (32.123)

Similarly, define a local growth deformation gradient Fg that maps an infinitesimal element
dX from B0 to dxg in Bg, such that

dxg = Fg · dX . (32.124)
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g
0

F

F =
 F

F

F

g

e

e

g

dX

dxg

dx

dm0

dm

dm

Figure 32.1. The intermediate configuration Bg is
obtained from the current configurationB by instan-
taneous elastic destressing to zero stress. The mass
of an infinitesimal volume element in the initial con-
figuration B0 is dm0. The mass of the corresponding
elements in Bg and B is dm.

Substituting (32.124) into (32.123) and comparing with (32.122) establishes the multiplica-
tive decomposition of the deformation gradient into its elastic and growth parts

F = Fe · Fg . (32.125)

This decomposition is formally analogous to the decomposition of elastoplastic defor-
mation gradient into its elastic and plastic parts, and was introduced in biomechanics by
Rodrigez et al. (1994).

32.8.1 Strain and Strain-Rate Measures

A Lagrangian type strain measures associated with the deformation gradients Fe and Fg

are

Ee = 1
2

(
Fe T · Fe − I

)
, Eg = 1

2

(
Fg T · Fg − I

)
. (32.126)

The total strain can be expressed in terms of these measures as

E = 1
2

(
FT · F − I

) = Eg + Fg T · Ee · Fg . (32.127)

Because Ee and Eg are defined with respect to different reference configurations, clearly
E 
= Ee + Eg. On the other hand, the velocity gradient becomes

L = Ḟ · F−1 = Ḟe · Fe −1 + Fe · (Ḟg · Fg −1) · Fe −1 . (32.128)

The symmetric and antisymmetric parts of the second term on the far right-hand side will
be conveniently denoted by

dg = [
Fe · (Ḟg · Fg −1) · Fe −1 ]

s , ωg = [
Fe · (Ḟg · Fg −1) · Fe −1 ]

a .

The rates of elastic and growth strains can now be expressed in terms of the rate of total
strain Ė and the velocity gradient of intermediate configuration Ḟg · Fg −1 as

Ėe = Fg −T · Ė · Fg −1 − Fe T · dg · Fe , (32.129)

Ėg = Fg T · (Ḟg · Fg −1)
s · Fg . (32.130)
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Being defined relative to different reference configurations, these naturally do not sum up
to give the rate of total strain ( Ė 
= Ėe + Ėg).

32.9 Density Expressions

If the mass of an infinitesimal volume element in the initial configuration is dm0 = ρ0 dV0,
the mass of the corresponding element in the configurations Bg and B is

dm = ρg dVg = ρ dV . (32.131)

Since

dm = dm0 +
∫ t

0
rg

0 dτ dV0 , (32.132)

and

dVg = J g dV0 , J g = det Fg , (32.133)

we have

ρg J g = ρ0 +
∫ t

0
rg

0 dτ . (32.134)

In addition, from (32.131) there follows

ρg J g = ρ J , ρg = ρ J e , (32.135)

because dV = J e dVg and J = J e J g, where J e = det Fe.
If ρg = ρ0 throughout the mass growth, equation (32.134) reduces to

J g = 1 + 1
ρ0

∫ t

0
rg

0 dτ . (32.136)

For elastically incompressible material, J e = 1 and ρ = ρg.
From (32.134) and (32.135), we further have

d
dt

(ρ J ) = d
dt

(ρg J g) = rg
0 . (32.137)

This yields the continuity equations for the densities ρ and ρg, i.e.,

dρ
dt

+ ρ tr
(
Ḟ · F−1) = rg , (32.138)

dρg

dt
+ ρg tr

(
Ḟg · Fg −1) = rg Je . (32.139)

In view of the additive decomposition

tr
(
Ḟ · F−1) = tr

(
Ḟe · Fe −1)+ tr

(
Ḟg · Fg −1) , (32.140)

which results from (32.128) and the cyclic property of the trace of a matrix product, from
(32.138) and (32.139) it is readily found that

J e dρ
dt

+ ρg tr
(
Ḟe · Fe −1) = dρg

dt
. (32.141)
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If the growth takes place in a density preserving manner (ρg = ρ0 = const.), we have
ρ J = ρ0 J g, ρ0 = ρ J e, and

dρ
dt

+ ρ tr
(
Ḟe · Fe −1) = 0 , (32.142)

ρ tr
(
Ḟg · Fg −1) = rg . (32.143)

The last expression also follows directly from (32.1) by using dm = ρ0 dVg, and

d
dt

(dVg) = tr
(
Ḟg · Fg −1)dVg . (32.144)

If material is, in addition, elastically incompressible, then tr
(
Ḟe · Fe −1

) = 0 and dρ/dt = 0
(i.e., ρ = ρ0 = const.).

In the case when the mass growth occurs by densification only, i.e., when dVg = dV0

(volume preserving mass growth), we have J g = 1 and

tr
(
Ḟg · Fg −1) = 0 ,

dρg

dt
= rgJ . (32.145)

If, in addition, the material is elastically incompressible, then dV = dVg = dV0, J = 1,
ρ = ρg, and

tr
(
Ḟ · F−1) = 0 ,

dρ
dt

= rg . (32.146)

This, for example, could occur in an incompressible tissue which increases its mass by an
increasing concentration of collagen molecules. In some cases, on the other hand, it may be
unlikely that the material can increase its mass by densification only, while being elastically
incompressible. More often, the mass growth by densification occurs in porous materials,
which are commonly characterized by elastic compressibility.

32.10 Elastic Stress Response

Consider an isothermal deformation and growth process of an isotropic tissue, which
remains isotropic during the growth and deformation (for anisotropic tissues, see Lubarda
and Hoger, 2002). The elastic strain energy per unit current mass is then given by an
isotropic function of the elastic strain Ee, viz.,

φ
(
Ee, ρ

g
0

) = φ [Fg −T · (E − Eg) · Fg −1, ρ
g
0

]
. (32.147)

Introduce the stress tensor Se such that Se : dEe is the increment of elastic work per unit
unstressed volume in the configuration Bg. Since ρg φ is the elastic strain energy per unit
unstressed volume, we can write

Se : dEe = ∂(ρgφ)
∂Ee

: dEe , Se = ∂(ρgφ)
∂Ee

. (32.148)

On the other hand, the strain energy per unit initial volume in the configuration B0 is ρg
0φ,

and

S : dE = ∂(ρg
0φ)
∂E

: dE , S = ∂(ρg
0φ)
∂E

, (32.149)
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in accord with (32.98). In view of (32.147), the partial differentiation gives

S = ∂(ρg
0φ)

∂Ee
:
∂Ee

∂E
= Fg −1 · ∂(ρg

0φ)
∂Ee

· Fg −T . (32.150)

Since

S = F−1 · τ · F−T , τ = Jσ , (32.151)

combining (32.150) and (32.151) and using the multiplicative decomposition F = Fe · Fg,
there follows

Se = Fe −1 · τ e · Fe −T , τ e = J e σ . (32.152)

Thus, we have

τ e = Fe · ∂(ρgφ)
∂Ee

· Fe T , (32.153)

and

τ = F · ∂(ρg
0φ)
∂E

· FT = Fe · ∂(ρg
0φ)

∂Ee
· Fe T . (32.154)

In terms of the right Cauchy–Green deformation tenors C = FT · F and Ce = Fe T · Fe, this
can be rewritten as

τ = 2F · ∂(ρg
0φ)
∂C

· FT = 2Fe · ∂(ρg
0φ)

∂Ce
· Fe T . (32.155)

32.11 Partition of the Rate of Deformation

The elastic part of the rate of deformation tensor will be defined by a kinetic relation

De = LLLe −1 :
�
τ , (32.156)

where
�
τ = τ̇ − W · τ + τ · W (32.157)

is the Jaumann derivative of the Kirchhoff stress relative to material spin W, and LLLe is
the corresponding fourth-order elastic moduli tensor. The remaining part of the rate of
deformation will be referred to as the growth part of the rate of deformation tensor, such
that

D = De + Dg . (32.158)

To derive an expression for Dg, we differentiate the second of (32.154) and obtain

τ̇ = (
Ḟe · Fe −1) · τ + τ · (Ḟe · Fe −1)T + Fe · (Λe : Ėe) · Fe T + ∂τ

∂ρ
g
0

rg
0 , (32.159)

where

Λe = ∂2(ρg
0φ)

∂Ee ∂Ee
= 4

∂2(ρg
0φ)

∂Ce ∂Ce
, (32.160)
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and

∂τ

∂ρ
g
0

= Fe · ∂
2(ρg

0φ)

∂Ee ∂ρ
g
0

· Fe T = 2 Fe · ∂
2(ρg

0φ)

∂Ce ∂ρ
g
0

· Fe T . (32.161)

Since

Ėe = Fe T · (Ḟe · Fe −1)
s · Fe , (32.162)

the substitution into (32.159) gives

τ̇ − (
Ḟe · Fe −1)

a · τ + τ · (Ḟe · Fe −1)
a = LLLe :

(
Ḟe · Fe −1)

s + ∂τ

∂ρ
g
0

rg
0 .

The rectangular components of the elastic moduli tensor LLLe are

Le
i jkl = Fe

im Fe
jn�

e
mnpq Fe

kp Fe
lq + 1

2
(τik δ jl + τ jk δil + τil δ jk + τ jl δik) . (32.163)

When the antisymmetric part of (32.128) is inserted into (32.163), there follows

�
τ = LLLe :

(
Ḟe · Fe −1)

s − ωg · τ + τ · ωg + ∂τ

∂ρ
g
0

rg
0 . (32.164)

By taking the symmetric part of (32.128) we have(
Ḟe · Fe −1)

s = D − dg , (32.165)

so that (32.164) can be rewritten as

LLLe −1 :
�
τ = D − dg −LLLe −1 :

(
ωg · τ − τ · ωg − ∂τ

∂ρ
g
0

rg
0

)
. (32.166)

According to (32.156), the left-hand side is the elastic part of the rate of deformation
tensor, so that the growth part is given by

Dg = dg +LLLe −1 :
(
ωg · τ − τ · ωg − ∂τ

∂ρ
g
0

rg
0

)
. (32.167)

32.12 Elastic Moduli Tensor

For isotropic materials the elastic strain energy is an isotropic function of elastic deforma-
tion tensor, i.e., the function of its principal invariants

φ = φ (Ce, ρ
g
0

) = φ (IC, I IC, I I IC, ρ
g
0

)
. (32.168)

The principal invariants are

IC = tr Ce , I IC = 1
2

[
tr
(
Ce 2)− (tr Ce)2

]
, I I IC = det Ce . (32.169)

The Kirchhoff stress is

τ = 2
(
c2 I + c0 Be + c1 Be 2) , (32.170)

where Be = Fe · Fe T is the left Cauchy–Green deformation tensor, and

c0 = ∂(ρg
0φ)
∂ IC

− IC
∂(ρg

0φ)
∂ I IC

c1 = ∂(ρg
0φ)

∂ I IC
, c2 = I I IC

∂(ρg
0φ)

∂ I I IC
. (32.171)
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If the mass growth occurs isotropically, the growth part of the deformation gradient is

Fg = ϑg I , (32.172)

where ϑg is the isotropic stretch ratio because of volumetric mass growth. It readily follows
that the velocity gradient in the intermediate configuration Bg is

Ḟg · Fg −1 = ϑ̇g

ϑg
I , (32.173)

whereas in the configuration B,

L = Ḟe · Fe −1 + ϑ̇g

ϑg
I . (32.174)

Since ωg = 0, the growth part of the rate of deformation tensor is

Dg = ϑ̇g

ϑg
I −LLLe −1 :

(
∂τ

∂ρ
g
0

rg
0

)
, (32.175)

which follows from (32.167). The elastic part of the deformation gradient is

Fe = 1
ϑg

F . (32.176)

The rectangular components of the elastic moduli tensor Λe appearing in (32.160) and
(32.163), are

�e
i jkl = 4

[
a1 δi jδkl + a2 δ(ikδ jl) + a3 δ(i j Ce

kl) + a4 Ce
i j C

e
kl + a5 δ(i j C

e −1
kl)

+ a6 Ce
(i j C

e −1
kl) + a7 Ce −1

i j Ce −1
kl + a8 Ce −1

(ik Ce −1
jl)

]
.

(32.177)

The coefficients ai (i = 1, 2, . . . , 8) are defined in the subsection below. The symmetrization
with respect to i and j , k and l, and i j and kl is used in (32.177), such that

δ(i j Ce
kl) = 1

2

(
δi j Ce

kl + Ce
i jδkl

)
, (32.178)

and similarly for other terms.
In the case of elastically incompressible material, there is a geometric constraint I I IC =

1, so that the Cauchy stress becomes

σ = −p I + 2
J

(
c0 Be + c1 Be 2) , (32.179)

where p is an arbitrary pressure, indeterminate by the constitutive analysis. (In the un-
stressed configuration we take p to be equal to p0 such that the overall stress is there equal
to zero). The rectangular components of the elastic moduli tensor Λe are given by (32.177)
with the coefficients a5 = a6 = a7 = a8 = 0, i.e.,

�e
i jkl = 4

[
a1 δi jδkl + a2 δ(ikδ jl) + a3 δ(i j Ce

kl) + a4 Ce
i j C

e
kl

]
. (32.180)
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32.12.1 Elastic Moduli Coefficients

The coefficients appearing in the expressions for the elastic moduli components �e
i jkl of

(32.177) are defined in terms of the gradients of elastic strain energy with respect to the
invariants of the elastic deformation tensor as follows:

a1 = ∂2(ρg
0φ)

∂ I2
C

− 2IC
∂2(ρg

0φ)
∂ IC∂ I IC

+ I2
C
∂2(ρg

0φ)

∂ I I2
C

− ∂(ρg
0φ)

∂ I IC
, (32.181)

a2 = ∂(ρg
0φ)

∂ I IC
, (32.182)

a3 = 2
[
∂2(ρg

0φ)
∂ IC∂ I IC

− IC
∂2(ρg

0φ)

∂ I I2
C

]
, (32.183)

a4 = ∂2(ρg
0φ)

∂ I I2
C

, (32.184)

a5 = 2
[

I I IC
∂2(ρg

0φ)
∂ I I IC∂ IC

− I I IC IC
∂2(ρg

0φ)
∂ I IC∂ I I IC

]
, (32.185)

a6 = 2 I I IC
∂2(ρg

0φ)
∂ I IC∂ I I IC

, (32.186)

a7 = I I I2
C
∂2(ρg

0φ)

∂ I I I2
C

+ I I IC
∂(ρg

0φ)
∂ I I IC

, (32.187)

a8 = −I I IC
∂(ρg

0φ)
∂ I I IC

. (32.188)

32.13 Elastic Strain Energy Representation

Various forms of the strain energy function were proposed in the literature for differ-
ent biological materials. The articles by Holzapfel et al. (2000) and Sacks (2000) and the
book by Taber (2004) contain a number of pertinent references. Following Fung’s (1973,
1995) proposal for a vascular soft tissue modeled as an incompressible elastic material, we
consider the following structure of the elastic strain energy per unit initial volume

ρ
g
0 φ = 1

2
α0

[
exp(Q) − Q − 1

]
+ 1

2
q − 1

2
p (I I IC − 1) , (32.189)

where Q and q are the polynomials in the invariants of Ce, which include terms up to the
fourth order in elastic stretch ratios, i.e.,

Q = α1 (IC − 3) + α2 (I IC − 3) + α3 (IC − 3)2 ,

q = β1 (IC − 3) + β2 (I IC − 3) + β3 (IC − 3)2 .
(32.190)
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The incompressibility constraint in (32.189) is I I IC − 1 = 0, and the pressure p plays the
role of the Lagrangian multiplier. The α’s and β’s are the material parameters. In order
that the intermediate configuration is unstressed, we require that β1 − 2β2 = J p0. If the
material constants are such that β1 = 2β2, then p0 = 0.

32.14 Evolution Equation for Stretch Ratio

The constitutive formulation is completed by specifying an appropriate evolution equation
for the stretch ratio ϑg. In a particular, but for the tissue mechanics important special case
when the growth takes place in a density preserving manner (ρg = ρ0), from (32.143) and
(32.173) we have

tr
(
Ḟg · Fg −1) = 3

ϑ̇g

ϑg
= rg

ρ
. (32.191)

Thus, recalling that rg/ρ = rg
0/ρ

g
0 , the rate of mass growth rg

0 = dρg
0/dt can be expressed

in terms of the rate of stretch ϑ̇g as

rg
0 = 3 ρg

0
ϑ̇g

ϑg
. (32.192)

Upon integration of (32.192) using the initial conditions ϑg
0 = 1 and ρg

0 = ρ0, we obtain

ρ
g
0 = ρ0 (ϑg)3 . (32.193)

A plausible evolution equation for the stretch ratio ϑg is

ϑ̇g = f
ϑ

(ϑg, tr Se) . (32.194)

The tensor Se is the symmetric Piola–Kirchhoff stress with respect to intermediate config-
uration Bg where the stretch ratio ϑg is defined. For isotropic mass growth, only spherical
part of this tensor is assumed to affect the change of the stretch ratio. In view of (32.152),
this can be expressed in terms of the Cauchy stress σ and the elastic deformation as

tr Se = J e Be −1 : σ . (32.195)

The simplest evolution of the stretch ratio incorporates a linear dependence on stress, such
that

ϑ̇g = k
ϑ

(ϑg) tr Se . (32.196)

This implies that the growth-equilibrium stress is equal to zero (i.e., ϑ̇g = 0 when tr Se = 0).
The coefficient k

ϑ
may be constant or dependent onϑg. For example, k

ϑ
may take one value

during the development of the tissue and another value during the normal maturity. Yet
another value may be characteristic for abnormal conditions, such as occur in thickening
of blood vessels under hypertension. To prevent an unlimited growth at nonzero stress,
the following expression for the function kϑ in (32.196) may be adopted

k
ϑ

(ϑg) = k+

(
ϑ

g
+ − ϑg

ϑ
g
+ − 1

)m+

, tr Se > 0 , (32.197)

where ϑg
+ > 1 is the limiting value of the stretch ratio that can be reached by mass growth

and k+ and m+ are the appropriate constants (material parameters). If the mass growth
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is homogeneous throughout the body, ϑg
+ is constant, but for nonuniform mass growth

caused by nonuniform biochemical properties ϑg
+ may be different at different points (for

example, inner and outer layers of aorta may have different growth potentials, in addition
to stress-modulated growth effects). We assume that the stress-modulated growth occurs
under tension, whereas resorption takes place under compression. In the latter case

k
ϑ

(ϑg) = k−

(
ϑg − ϑg

−
1 − ϑg

−

)m−

, tr Se < 0 , (32.198)

where ϑg
− < 1 is the limiting value of the stretch ratio that can be reached by mass resorp-

tion. For generality, we assume that the resorption parameters k− and m− are different
than those in growth. Other evolution equations were suggested in the literature motivated
by the possibilities of growth and resorption. The most well-known is the evolution equa-
tion for the mass growth in terms of a nonlinear function of stress, which includes three
growth-equilibrium states of stress (Fung, 1990). The material parameters that appear in
these expressions are specified in accordance with the experimental data obtained for the
particular tissue. Appealing tests include those with a transmural radial cut through the
blood vessel, which relieves the residual stresses due to differential growth of its inner and
outer layers. The opening angle then provides a convenient measure of the circumferential
residual strain. Detailed analysis can be found in the original work and reviews by Liu and
Fung (1988,1989), Fung (1993), Humphrey (1995), Taber and Eggers (1996), and other
researchers in the field of biomechanics.
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33 Constitutive Relations for Membranes

In this chapter we consider the behavior of essentially 2D membranes. The membranes
may be linear or nonlinear and are generally considered to undergo arbitrarily large defor-
mations. More specifically, the membranes considered here are modeled after biological
membranes such as those that comprise cell walls or the layers that exist within biominer-
alized structures, e.g., shells or teeth. The discussion is preliminary and meant to provide
a brief introduction to the basic concepts involved in the constitutive modeling of such
structures.

33.1 Biological Membranes

Figure 33.1a illustrates an idealized view of the red blood cell that shows its hybrid structure
consisting of an outer bilipid membrane and an attached cytoskeleton; Fig. 33.1b shows a
micrograph of a section of the cytoskeleton that is illustrated schematically in Fig. 33.1a.
The cell membrane is a hybrid, i.e., composite structure consisting of an outer bilipid layer
that is supported (i.e., reinforced) by a network attached to it on the cytoplasmic side,
which is on the inside of the cell. The cytoskeleton is built up from mostly tetramers, and
higher order polypeptides, of the protein spectrin attached at actin nodes. We note that
the spectrin network has close to a sixfold nodal coordination. It has been known that
the nonlinear elastic properties of the membrane depend sensitively on the details of the
topology that includes, inter alia, nodal coordination, spectrin segment length, and the
statistical distribution of such topological parameters. We will not attempt here a detailed
description of the nodal connections within the cytoskeleton, except to note that the nodes
are comprised of proteins such as actin; the attachment to the bilipid membrane involves,
inter alia, the membrane protein ankyrin.

The bilipid membrane is held together by essentially hydrophobic forces. As such it
contributes to a lesser degree to the shear stiffness of the membrane than to the stiffness
resisting changes in membrane area. The shear stiffness is contributed to by the cytoskele-
ton, which also contributes to the resistance to area change. In what follows we will be
concerned with the behavior of the cytoskeleton, although the constitutive framework
that is developed is general enough to provide a reasonable starting point for modeling
the entire composite membrane.

633
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(a) (b)

Figure 33.1. (a) Schematic illustration of the cell wall of a red blood cell. Note the hybrid
structure consisting of an outer bilipid membrane and an attached inner cytoskeleton described in
the text. (b) A micrograph of a section of the cytoskeleton consisting of a network of biopolymer
filaments of the protein spectrin connected via actrin nodes, or via hexamer or octamer junctions.
Reproduced with permission from Evans and Skalak (1980).

We consider the membrane to be a 2D continuum and view all deformation to be uniform
through the thickness. Moreover, we assume the membranes to be isotropic in the plane,
an assumption that will become less valid as the strains in the membrane increase. Thus,
there are two fundamental ways in which the membrane can deform: (1) via area changes
that are governed by a bulk or area modulus and (2) via shear governed by a shear modulus.
Both moduli are defined below with respect to their associated modes of deformation.

33.2 Membrane Kinematics

We imagine the surface of the membrane as being a collage of vanishing small tiles such as
the tile located at the point p in Fig. 33.2. During an increment of deformation a reference
element of material lying in the surface, dX, is transformed to dx in the deformed state.
The lengths of these elements are

dS = (dX · dX)1/2, ds = (dx · dx)1/2. (33.1)

Furthermore, we describe the positions of points x, that were at X in the reference state,
via the mapping

x = x(X), (33.2)

p

p
e

e

1

2

dX

dx

ξ

ξ

ξ
1

3

2

Figure 33.2. Geometry of a membrane viewed as built
from a collage of small tiles. Note also that the defor-
mation maps material elements lying in the membrane
from the reference to the deformed state.
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as has been done before for general 3D deformations. Thus,

dx = ∂x
∂X

· dX = F · dX, (33.3)

where the 2D deformation gradient is, accordingly, defined as

F = ∂x
∂X
. (33.4)

Unsurprisingly, when we consider such constructions as the change in the square of the
length of such material fibers, we find

ds2 − dS2 = ∂xk

∂Xi

∂xk

∂Xj
dXi dXj − δi j dXi dXj , (i, j, k = 1, 2). (33.5)

Thus, we arrive at the definition of a 2D Green strain tensor, viz.,

E = 1
2

(FT · F − I
)
. (33.6)

This means, inter alia, that

ds2 − dS2 = 2dX · E · dX. (33.7)

Consider the principal values of E , the associated principal directions, and the correspond-
ing principal stretches, λ1 and λ2. If E1 and E2 are the two principal components of Green
strain, then

E1 = 1
2

(λ2
1 − 1), E2 = 1

2
(λ2

2 − 1). (33.8)

In terms of principal values and axes, the quantity λ1λ2 represents the local area per unit
reference area. Later we use the quantity α, defined as

α = λ1λ2 − 1, (33.9)

which represents the fractional change in reference area, as a primary measure of area
strain of the membrane.

Invariants follow directly as an extension of our already established 3D results. For
example, the 2D trace of E ,

tr E = E11 + E22 = E1 + E2 = 1
2

(λ2
1 + λ2

2 − 2), (33.10)

is an invariant. Another invariant is

(E1 − E2)2 = 1
4

(λ4
1 − 2λ2

1λ
2
2 + λ4

2), (33.11)

which can be expressed as

(E1 − E2)2 = tr2 E − 4E1E2. (33.12)

This, in turn, establishes E1E2 as still another invariant because (E1 − E2) and tr E are both
invariants. But,

−E1E2 = 1
4

(λ2
1 + λ2

2 − λ2
1λ

2
2 − 1), (33.13)

which leads to a useful set of deformation parameters introduced below.
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0

λ

L

0L

L
~

λL
~

/

L

L

Figure 33.3. Total deformation decomposed into a
change in area, plus a change in shape with fixed fi-
nal area. The length L = (1 + α)1/2 L0.

Consider the pair of functions of the stretches

α = λ1λ2 − 1,

β = 1
2λ1λ2

(λ2
1 + λ2

2) − 1.
(33.14)

We have already noted the physical meaning ofα. If λ1 = λ2, the deformation is one of pure
2D dilatation (i.e., a pure area change at constant shape) and thus β = 0. Now consider
two fibers along the principal directions and call them dX1 and dX2; in the deformed state
they become dx1 and dx2, respectively. The change in eccentricity of the parallelepiped
they form is

dx1

dx2
− dX1

dX2
= dX1

dX2

(
λ1

λ2
− 1

)
. (33.15)

For a reference and initially square element, the change is simply λ1/λ2 − 1.
Next, take the symmetric part of this, with respect to λ1 and λ2, to define a parameter

that is independent of basing the eccentricity measure on the x1 or x2 coordinates, i.e.,
define

β = 1
2

(
λ1

λ2
− 1

)
+ 1

2

(
λ2

λ1
− 1

)

= 1
2λ1λ2

(λ2
1 + λ2

2) − 1.

(33.16)

To provide even more interpretation to this measure, consider the stretch ratio

λ̃ = λ1√
λ1λ2

, λ̃−1 = λ2√
λ1λ2

. (33.17)

In terms of λ̃, we have

β = 1
2

(λ̃2 + λ̃−2) − 1. (33.18)

For a shape preserving deformation λ̃ = 1 and, of course, β = 0.
The above amounts to decomposing the deformation into the sequential processes of a

pure change in area, followed by a shape change at constant (final) area. Thus, aside from a
possible rigid body rotation, the process is as depicted in Fig. 33.3. By their nature, α and β
(orα and λ̃) are linearly independent. It is easily verified that the Jacobian ofα and λ̃ is equal
to

√
λ1/λ2 which cannot be equal to zero, thus demonstrating the independence. Having
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established α and β as independent and geometrically relevant deformation measures, we
use them in the construction of a hyperelastic constitutive framework.

33.3 Constitutive Laws for Membranes

As in previous chapters, we define the total free energy as , but here we use the measures
of deformation α and β. Thus,

 =  (α, β). (33.19)

During an incremental process, the change of  is, formally,

d =
(
∂ 

∂α

)
β

dα +
(
∂ 

∂β

)
α

dβ. (33.20)

Let σ1 and σ2 be the principal values of Cauchy stress in the membrane’s surface. Then
λ1λ2σ1 and λ1λ2σ2 are the principal values of surface Kirchhoff stress. The increment of
work done per unit reference area is, accordingly,

d = λ1λ2σ1d ln λ1 + λ1λ2σ2d ln λ2

= λ2σ1dλ1 + λ1σ2dλ2.
(33.21)

Since λ1 and λ2 are independent variables, we have the connections

∂α

∂λ1
= λ2,

∂α

∂λ2
= λ1,

∂β

∂λ1
= 1

2λ2
1λ2

(λ2
1 − λ2

2),
∂β

∂λ2
= 1

2λ1λ
2
2

(λ2
1 − λ2

2).
(33.22)

By equating (33.21) and (33.20), and using (33.22), we find

σ1 =
(
∂ 

∂α

)
β

+ λ2
1 − λ2

2

2λ2
1λ

2
2

(
∂ 

∂β

)
α

,

σ2 =
(
∂ 

∂α

)
β

+ λ2
2 − λ2

1

2λ2
1λ

2
2

(
∂ 

∂β

)
α

.

(33.23)

The 2D pressure is

p̄ = 1
2

(σ1 + σ2) =
(
∂ 

∂α

)
β

, (33.24)

whereas the maximum shear stress is

τ̄ = 1
2

|σ1 − σ2| = |λ2
1 − λ2

2|
2λ2

1λ
2
2

(
∂ 

∂β

)
α

. (33.25)

Evans and Skalak (1980) have shown that in terms of λ̃, the maximum shear stress
becomes

τ̄ = |λ̃2 − λ̃−2|
2(1 + α)

(
∂ 

∂β

)
α

, (33.26)
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so that the change in  can be expressed as

d = p̄dα + 2τ̄ (1 + α)d ln λ̃. (33.27)

Suppose that  has the phenomenological form

 = p̄0α + κα2/2 + · · · . (33.28)

Then,

∂ 

∂α
≈ p̄0 + κα + · · · , (33.29)

where p̄0 is a reference pressure (tension) of the surface. Relative to this state of reference
pressure, we may calculate p̄ as

p̄ = κα, κ =
(
∂2 

∂α2

)
β,α=0

. (33.30)

As for the shear modulus, we note that the maximum Lagrangian shear strain is

Es = 1
4

|λ2
1 − λ2

2|. (33.31)

Thus,

τ̄ = 2
λ2

1λ
2
2

(
∂ 

∂β

)
α

Es. (33.32)

If we set

µ =
(
∂ 

∂β

)
α

, (33.33)

we obtain

τ̄ = 2µ
λ2

1λ
2
2

Es. (33.34)

In terms of the maximum Eulerian shear strain, which is

es = 1
4

|λ−2
1 − λ−2

2 |, (33.35)

equation (33.34) becomes

τ̄ = 2µes, (33.36)

consistent with typical linear theories. Note, however, that µ defined via (33.33) above,
need not be independent of es.

33.4 Limited Area Compressibility

In the limit when membranes display relatively strong resistance to area expansion vis-à-vis
shear extension, the free energy may be approximated by

φ ≈ 1
2
κα2 + µβ, ∂2 

∂2α
= κ, ∂ 

∂β
= µ. (33.37)
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(a)

(b)

s

s

s+δ

s+δ

Figure 33.4. (a) A simple triangular network composed of
isosceles triangles. In such a simple network each node is co-
ordinated with six triangular elements. (b) An element which
has undergone a pure area change without a change in shape.

Within this level of approximation, we obtain

σ1 = κα + µ λ
2
1 − λ2

2

2λ2
1λ

2
2

,

σ2 = κα + µ λ
2
2 − λ2

1

2λ2
1λ

2
2

.

(33.38)

There is no reason, however, to view these as linear.

33.5 Simple Triangular Networks

As an example, consider the case of simple triangular network such as shown in Fig. 33.4.
The network elements are assumed to have sides of equal length, s0, and to have undergone
a stretch to length s0 + δ. The elements edges are assumed to be simple linear springs, with
spring constant k. This means, when stretched to a length s, from the rest length of s0, the
energy stored is

φ = 1
2

k(s − s0)2. (33.39)

Per node, however, this becomes

φn = 3φ = 3
2

kδ2, (33.40)

since there are three edges per node for this geometry. If we now note that the reference
area of an element is Ae = √

3/4s2
0 , then we may calculate the energy per unit reference

area as

δ = φn/An = √
3k(δ/s0)2, (33.41)

where An = 2Ae is the area per node.
An alternative expression for this follows from (33.28). When the geometry is worked

out, we obtain

δ ≈ 2κ(δ/s0)2. (33.42)

Comparing this with (33.41), it is found that

κ =
√

3
2

k. (33.43)

A similar analysis considering pure shear leads to the estimate for the shear modulus

µ =
√

3
4

k. (33.44)



P1: FBQ

052177777Xc33.tex CB988/Asaro.cls 0 521 85979 4 November 13, 2005 3:55

640 33. Constitutive Relations for Membranes
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PART 8: SOLVED PROBLEMS

34 Solved Problems for Chapters 1–33

CHAPTER 1

Problem 1.1. Prove that

a · (b × c)r = (a · r)b × c + (b · r)c × a + (c · r)a × b.

Solution: Begin by considering the product a × [(b × c) × r]. This yields

a × [(b × c) × r]=a × [(b · r)c − (c · r)b]=−(b · r)c × a − (c · r)a × b.

By setting b × c = v, we obtain

a × [(b × c) × r] = a × (v × r) = (a · r)b × c − a · (b × c)r.

Thus,

−(b · r)c × a − (c · r)a × b = (a · r)b × c − a · (b × c)r,

and so

a · (b × c)r = (a · r)b × c + (b · r)c × a + (c · r)a × b.

Problem 1.2. Prove that

εpqsεmnr =
∣∣∣∣∣∣
δmp δmq δms

δnp δnq δns

δr p δrq δrs

∣∣∣∣∣∣ .

Solution: Let the determinant of A be

det A =
∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ .
An interchange of rows or columns causes a change in sign, i.e.,∣∣∣∣∣∣

A21 A22 A23

A11 A12 A13

A31 A32 A33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
A12 A11 A13

A22 A21 A23

A32 A31 A33

∣∣∣∣∣∣ = − det A.

641
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For an arbitrary number of row interchanges, we have∣∣∣∣∣∣
Am1 Am2 Am3

An1 An2 An3

Ar1 Ar2 Ar3

∣∣∣∣∣∣ = εmnr det A,

and for an arbitrary number of column interchanges,∣∣∣∣∣∣
A1p A1q A1s

A2p A2q A2s

A3p A3q A3s

∣∣∣∣∣∣ = εpqs det A.

Thus, for an arbitrary number of row and column interchanges,∣∣∣∣∣∣
Amp Amq Ams

Anp Anq Ans

Ar p Arq Ars

∣∣∣∣∣∣ = εpqsεmnr det A.

The proof is completed by setting Ai j = δi j , in which case det A = 1.

Problem 1.3. Prove that

εpqsεsnr = δpnδqr − δprδqn,

εpqsεsqr = −2δpr .

Solution: Expand the determinant in Problem 1.2, i.e.,

εpqsεmnr =δmp(δnqδrs − δnsδrq) + δmq(δnsδr p − δnpδrs) + δms(δnpδrq − δnqδr p).

Setting m = s,

εpqsεsnr =δsp(δnqδrs − δnsδrq) + δsq(δnsδr p − δnpδrs) + δss(δnpδrq − δnqδr p)

= δr pδnq − δpnδrq + δqnδr p − δnpδqr + 3δnpδrq − 3δnqδr p

= δnpδrq − δnqδr p.

Then setting q = n, we obtain

εpqsεsqr = δqpδrq − δqqδr p = δpr − 3δpr = −2δpr .

Problem 1.4. Prove that

det A = εi jk Ai1 Aj2 Ak3 = 1
6
εi jkεαβγ AiαAjβAkγ .

Solution: We first note that

A · ek = (Ai j ei e j ) · ek = Ai j eiδ jk = Aikei .

Thus, since

(A · e1) · [(A · e2) × (A · e3)] =
∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ = det A ,
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we have

det A= Ai1ei · (Aj2e j × Ak3ek)= Ai1 Aj2 Ak3ei · (e j × ek)=εi jk Ai1 Aj2 Ak3 ,

because

εi jk = ei · (e j × ek) .

Since a noncyclic interchange of two columns changes the sign of the determinant, we
can write

εαβγ det A =
∣∣∣∣∣∣
A1α A1β A1γ

A2α A2β A2γ

A3α A3β A3γ

∣∣∣∣∣∣ .
Recalling that

a · (b × c) =
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = εi jkai bj ck ,

the previous determinant can be written as∣∣∣∣∣∣
A1α A1β A1γ

A2α A2β A2γ

A3α A3β A3γ

∣∣∣∣∣∣ = εi jk AiαAjβAkγ .

Thus,

εαβγ det A = εi jk AiαAjβAkγ .

Multiplying above with εαβγ and recalling that εαβγ εαβγ = 6, we finally obtain

det A = 1
6
εi jkεαβγ AiαAjβAkγ .

Problem 1.5. Prove the invariance of

χ2 = ([A · f,A · g,h] + [f,A · g,A · h] + [A · f, g,A · h]) /[f, g,h].

Solution: Represent the base vectors {f, g, h} in terms of the unit orthogonal basis {ei },
i.e.,

f = fpep, g = gqeq, h = hr er .

Then, the first term in χ2 becomes

[A · f,A · g,h] = [A · ( fpep),A · (gqeq), hr er ]

= [ fp(A · ep), gq(A · eq), hr er ]

= fpgqhr [A · ep,A · eq, er ].

Performing similar manipulations on the second two terms of χ2, we find

χ2 = fpgqhr

[f, g,h]
([A · ep,A · eq, er ] + [ep,A · eq,A · er ] + [A · ep, eq,A · er ]) .
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Recalling that ei × e j = εi jses , the above becomes, with p = 1,q = 2, r = 3,

χ2 = fpgqhrεpqr

[f, g,h]
([A · e1,A · e2, e3] + [e1,A · e2,A · e3] + [A · e1, e2,A · e3]) .

Note that

[f, g,h] = f · (g × h) = f · (gqeq × hr er )

= f · [gqhr (eq × er )] = f · (gqhrεqri ei )

= f · (εiqr gqhr ei ) = fpep · (εiqr gqhr ei )

= εiqr fpgqhr (ep · ei ) = εpqr ( fpgqhr ).

Thus,

χ2 = ([A · f,A · g,h] + [f,A · g,A · h] + [A · f, g,A · h]) /[f, g,h]

is indeed invariant to the basis {f, g,h}.

Problem 1.6. If B is a skew symmetric tensor for which bi = 1
2εi jkBjk, prove that

Bpq = εpqi bi .

Solution: Multiply the starting equation by εpqi and use the ε − δ identity to show that

εpqi bi = 1
2
εpqiεi jkBjk = 1

2
(δpjδqk − δpkδqj )Bjk

= 1
2

(Bpq − Bqp) = 1
2

(Bpq + Bpq) = Bpq.

Problem 1.7. Prove that

[(A · a) × (A · b)] · (A · c) = (det A)(a × b) · c .

Solution: Expressed in rectangular coordinates, the left-hand side is

εi jk AiαaαAjβaβAkγ aγ .

Since, from Problem 1.4,

εαβγ (det A) = εi jk AiαAjβAkγ ,

we obtain

εi jk AiαaαAjβaβAkγ aγ = (det A)εαβγ aαaβaγ = (det A)(a × b) · c .

Problem 1.8. If f = f (A) is a scalar function of the second-order tensor A, then

d f = ∂ f
∂A

· · dA = ∂ f
∂Ai j

dAi j .

Prove that
∂ f
∂A

= ∂ f
∂Aji

ei e j .
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Solution: Since dA = dAi j ei e j , we have

∂ f
∂A

· · dA = ∂ f
∂Akl

elek · · dAi j ei e j = ∂ f
∂Akl

dAi jδkiδl j = ∂ f
∂Ai j

dAi j .

Problem 1.9. The principal invariants of the second-order tensor A are

IA = tr A , I IA = 1
2

[
(tr A)2 − tr(A2)

]
, I I IA = det A .

Show that

det A = 1
6

[
2tr(A3) − 3(trA)tr(A2) + (tr A)3] .

Also, if A−1 exists, show that

A−1 = 1
I I IA

(
A2 − IAA + I IAI

)
.

Solution: The Cayley–Hamilton theorem states

A3 − IAA2 + I IAA − I I IAI = 0 ,

so that, upon taking the trace,

3(det A) = tr
(
A3)− IAtr

(
A2)+ I IAtr A .

This can be easily rewritten in terms of the traces of A, A2 and A3.
An expression for the inverse A−1 can be obtained by multiplying the above Cayley–

Hamilton matrix equation with A−1. It follows that

(det A)A−1 = A2 − IAA + I IAI .

Problem 1.10. Derive the expressions for the gradients of the three invariants IA, I IA, and
I I IA with respect to A.

Solution: For the first invariant we have
∂ IA

∂A
= ∂ IA

∂Aji
ei e j = ∂Akk

∂Aji
ei e j = δkjδki ei e j = ekek .

Thus,

∂ IA

∂A
= I .

Next, we have

∂(tr A2)
∂A

= ∂(Amn Anm)
∂Aji

ei e j =
(
∂Amn

∂Aji
Anm + Amn

∂Anm

∂Aji

)
ei e j

= (δ jmδni Anm + Amnδnjδmi )ei e j = 2Ai j ei e j = 2A .

Furthermore,

∂(tr A)2

∂A
= 2(tr A)

∂(tr A)
∂A

= 2IAI .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

646 Problems 1.10–1.12

Thus,

∂ I IA

∂A
= IAI − A .

Finally, to derive an expression for the gradient of det A, we take the partial derivative
∂/∂Aαβ of

3(det A) = Ai j Ajk Aki − IAAi j Aji − I IAAii .

After a somewhat lengthy but straightforward derivation, is follows that

∂(det A)
∂Aαβ

= Aβγ Aγα − IAAβα + I IAδβα .

Thus,

∂ I I IA

∂A
= A2 − IAA + I IAI = (det A)A−1 .

Problem 1.11. Consider the tensors

Ki jkl = 1
3
δi jδkl , Ji jkl = Ii jkl − Ki jkl ,

where δi j is the second-order unit tensor (Kronecker delta), and Ii jkl = (δikδ jl + δilδ jk)/2
is the fourth-order unit tensor. Show that in the trace operation with any second-order
tensor A, the tensor J extracts its deviatoric part, while the tensor K extracts its spherical
part.

Solution: We first observe that

K : K = K , J : J = J , K : J = J : K = 0 .

For example,

Ki jmnKmnkl = 1
9
δi jδmnδmnδkl = 1

3
δi jδkl = Ki jkl ,

Ji jmn Jmnkl = (Ii jmn − Ki jmn)(Imnkl − Kmnkl)

= Ii jkl − Ki jkl − Ki jkl + Ki jkl = Ji jkl ,

and similarly for other identities. Clearly, then,

Ki jkl Akl = 1
3
δi jδkl Akl = 1

3
Akkδi j ,

which are the spherical components of Ai j . Finally,

Ji jkl Akl = (Ii jkl − Ki jkl)Akl = Ai j − 1
3

Akkδi j = A′
i j ,

which are the deviatoric components of Ai j .

Problem 1.12. Consider the rotation Q of an orthogonal basis defined by the unit vectors
{ei }. The new triad of orthogonal unit vectors is

e∗
i = Q · ei = Qαi eα .
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Show that Q has the same components in both bases, i.e.,

Q = Qi j ei e j = Q∗
i j e

∗
i e∗

j , Q∗
i j = Qi j .

Solution: It readily follows that

Q = Qαβeαeβ = Q∗
i j Qαi Qβ j eαeβ ,

i.e.,

Qαβ = Q∗
i j Qαi Qβ j .

Multiplying this by QT
mαQT

nβ , and recalling that for an orthogonal tensor QT
mαQαn = δmn,

we obtain

Q∗
mn = Qmn .

This is also obvious from the relationship between any two induced tensors, say, A and
A∗. These are related by

A = Ai j ei e j = A∗
i j e

∗
i e∗

j , A∗ = A∗
i j ei e j .

Thus,

A∗ = QT · A · Q , A∗
i j = QT

ik Akl Ql j .

If Akl = Qkl , this gives Q∗
i j = Qi j .

Yet another prove follows directly from the relationships between the two sets of unit
vectors. Indeed,

e∗
j = Q · e j = Qα j eα ⇒ Qi j = ei · e∗

j ,

and, dually,

ei = QT · e∗
i = Q∗

iαe∗
α ⇒ Q∗

i j = ei · e∗
j .

Thus, again, Q∗
i j = Qi j .

Problem 1.13. Prove that the following tensors are isotropic tensors:

(a) I = δi j ei e j ;
(b) ε = εi jkei e j ek;
(c) A = δi jδklei e j ekel , B = δikδ jlei e j ekel , C = δilδ jkei e j ekel .

Solution: (a) If the tensor is an isotropic tensor, it has the same rectangular components in
any two coordinate systems that differ by rigid body rotation. Thus , we need to prove that

I = δi j ei e j = I∗
i j e

∗
i e∗

j , I∗
i j = δi j ,

where the triad of orthogonal vectors {ei } is obtained from {ei } an arbitrary rigid body
rotation Q. Since

e∗
i = Q · ei = Qαi eα ,

we have

δαβeαeβ = I∗
i j Qαi Qβ j eαeβ ,
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i.e.,

δαβ = I∗
i j Qαi Qβ j .

Multiplying this by QT
mαQT

nβ , and recalling that for an orthogonal tensor QT
mαQαn = δmn,

we obtain

I∗
mn = δmn .

(b) We need to prove that

ε = εi jkei e j ek = ε∗
i jke∗

i e∗
j e

∗
k , ε∗

i jk = εi jk .

By using e∗
i = Q · ei = Qαi eα , we have

εαβγ eαeβeγ = ε∗
i jkQαi Qβ j Qγkeαeβeγ ,

i.e.,

εαβγ = ε∗
i jkQαi Qβ j Qγk .

Multiplying this by QT
mαQT

nβQT
pγ , we obtain

εαβγ QαmQβn Qγ p = ε∗
mnp .

But, from Problem 1.4, the left-hand side is

εαβγ QαmQβn Qγ p = (det Q)εmnp ,

and because det Q = 1, we obtain

ε∗
mnp = εmnp .

(c) The proof of isotropic nature of tensors A, B, and C is similar. We thus prove the
isotropy of only one of them, say B. We need to show that

B = δikδ jlei e j ekel = B∗
i jkle

∗
i e∗

j e
∗
ke∗

l , B∗
i jkl = δikδ jl .

As before, by using e∗
i = Q · ei = Qαi eα , we have

δαγ δβδeαeβeγ eδ = B∗
i jkl Qαi Qβ j QγkQδleαeβeγ eδ ,

i.e.,

δαγ δβδ = B∗
i jkl Qαi Qβ j QγkQδl .

Multiplying this by QT
mαQT

nβQT
pγ Qqδ , we obtain

B∗
mnpq = δmpδnq .

Problem 1.14. The following matrix often arises in two dimensional problems of solid
mechanics

[Ai j ] =
⎡
⎣A11 0 0

0 A22 A23

0 A32 A33

⎤
⎦ .

Find its inverse.
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Figure 1-1. Prejecting the vector a onto the plane with unit normal n.

Solution: Denoting by

� = A22 A33 − A23 A32 ,

which is assumed to be different from zero, it readily follows that

[A−1
i j ] = 1

�

⎡
⎣�/A11 0 0

0 A33 −A23

0 −A32 A22

⎤
⎦ .

Problem 1.15. Derive an expression for the second-order tensor that projects the vector
a onto the plane with unit normal n.

Solution: The vector a can be decomposed into the component parallel to n and the
component orthogonal to n (Fig. 1-1), as

a = (n · a)n + [a − (n · a)n] .

Thus,

a = (n n) · a + (I − n n) · a ,

where I is the unit second-order tensor. The required projection tensor is clearly

I − n n .

CHAPTER 2

Problem 2.1. Prove that

div u(x) = ∇ · u(x) = ∂up/∂xp.

Solution: By definition,

∇ · u(x) = tr [grad u(x)],

where

grad u(x) = ∂up/∂xqepeq.
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Thus,

tr [grad u(x)] = [∂up/∂xqepeq · e1, e2, e3] + [e1, ∂up/∂xqepeq · e2, e3]

+ [e1, e2, ∂up/∂xqepeq · e3]

= ∂up/∂x1[ep, e2, e3] + ∂up/∂x2[e1, ep, e3] + ∂up/∂x3[e1, e2, ep]

= ∂u1/∂x1 + ∂u2/∂x2 + ∂u3/∂x3 = ∂up/∂xp,

i.e.,

∇ · u(x) = ∂up/∂xp.

Problem 2.2. Prove that ∫
S

n × (a × x) dS = 2aV,

where V is the volume of the region bounded by the closed surface S, and n is the outward
pointing normal to S; x is the position vector within V.

Solution: Consider the qth component of the integral, viz.,∫
S
εqpi npεi jka j xk dS.

The divergence theorem leads to ∫
V

(εqpiεi jka j xk),p dV,

and, because a is a constant vector, we have∫
V
εqpiεi jka j xk,p dV =

∫
V

(δqjδpk − δqkδpj )a j xk,p dV

=
∫

V
(aqxp,p − apxq,p) dV

=
∫

V
(aqδpp − apδqp) dV

=
∫

V
(3aq − aq) dV = 2aqV.

Problem 2.3. Prove that

A × ∇ = − (∇ × AT)T
.

Solution: The expanded form of the left-hand side is

A × ∇ = Ai j ei e j × ∂

∂xk
ek = ∂Ai j

∂xk
ei ε jklel = ε jkl

∂Ai j

∂xk
ei el .

The expanded form of the cross product ∇ × AT is

∂

∂xk
ek × Ai j e j ei = ∂Ai j

∂xk
εkjlelei = −ε jkl

∂Ai j

∂xk
elei .
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Consequently,

− (∇ × AT)T = ε jkl
∂Ai j

∂xk
ei el ,

which completes the proof.

Problem 2.4. Prove that

(a) ∇ · (A · a) = (∇ · A) · a + A : (∇ a) ,
(b) ∇ · (A · B) = (∇ · A) · B + (AT · ∇) · B .

Solution: (a) The expanded form of the left-hand side is

∂

∂xi
ei · Ajke j ek · alel = ∂

∂xi
(Ajkal) δi jδkl = ∂

∂xi
(Aikak) .

Thus, by partial differentiation

∂

∂xi
(Aikak) = ∂Aik

∂xi
ak + Aik

∂ak

∂xi
= (∇ · A) · a + A : (∇ a) .

(b) In an expanded form, the left-hand side is

∇ · (A · B) = ∂

∂xi
ei · (Akl Bl j eke j ) = ∂

∂xi
(Ail Bl j ) e j

=
(
∂

∂xi
Ail

)
Bl j e j +

(
AT

li
∂

∂xi

)
Bl j e j

= (∇ · A) · B + (AT · ∇) · B .

Problem 2.5. If n is the outward unit vector normal to the closed surface S bounding the
volume V, prove that ∫

S
ndS = 0 .

Solution: By the Gauss divergence theorem, applied to a scalar field f , we have∫
S

ni f dS =
∫

V

∂ f
∂xi

dV .

By taking f = 1, we obtain ∫
S

ni dS = 0 .

Problem 2.6. Derive the expression for the gradient operator ∇ in the cylindrical coordi-
nates (r, θ, z).

Solution: The position vector x of an arbitrary point, expressed in Cartesian and cylindrical
coordinates (Fig. 2-1), is

x = x1e1 + x2e2 + x3e3 = rer + zez ,
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θ

eθ e r

r

x

x2

1

Figure 2-1. The unit vectors of a polar coordinate system.

where

x1 = r cos θ , x2 = r sin θ , x3 = z ,

er = cos θe1 + sin θe2 , eθ = − sin θe1 + cos θe2 , ez = e3 .

The gradient operator in Cartesian coordinates is

∇ = ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3 .

Since

∂

∂xi
= ∂

∂r
∂r
∂xi

+ ∂

∂θ

∂θ

∂xi
(i = 1, 2),

∂

∂x3
= ∂

∂z
,

and

∂r
∂x1

= cos θ ,
∂r
∂x2

= sin θ ,
∂θ

∂x1
= − sin θ

r
,

∂θ

∂x2
= cos θ

r
,

we obtain

∇ = ∂

∂r
er + 1

r
∂

∂θ
eθ + ∂

∂z
ez .

CHAPTER 3

We are here interested in the Fourier series expansion of functions of a single variable,
f (x), in terms of the orthogonal functions sin and cos, viz.,

f (x) = a0

2
+

∞∑
k=1

[ak cos(kx) + bk sin(kx)],

where f (x) is presumed to be periodically extended from the interval −π ≤ x ≤ π . The
coefficients are then computed from

an = 1
π

∫ π

−π
f (x) cos(nx) dx, (n = 0, 1, 2, . . .),

bn = 1
π

∫ π

−π
f (x) sin(nx) dx, (n = 1, 2, . . .).
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x

-3π 3π-π π

f(x)

Figure 3-1. A periodic even extension of the function
f (x) = x2.

Problem 3.1. Expand f (x) = x2 (−π ≤ x ≤ π) in a Fourier series. The function is even
and its extension, as shown in the Fig. 3-1, is periodic.

Solution: The Fourier coefficients are

a0 = 2
π

∫ π

0
x2 dx = 2π2

3
,

and

an = 2
π

∫ π

0
x2 cos(nx) dx = (−1)n 4

n2
,

whereas

bn = 0,

because of the symmetry of x2. Thus,

x2 = π2

3
+ 4

[
cos x − cos(2x)

22
+ cos(3x)

32
− · · ·

]
.

Problem 3.2. Expand f (x) = |x| (−π ≤ x ≤ π) in a Fourier series (see Fig. 3-2).

Solution: Here again, the function is seen to be even with an extension as shown in the
figure. The expanded function will converge to the function |x| within −π ≤ x ≤ π and to
its periodic extension outside that interval. The calculation of the coefficients gives

a0 = 2
π

∫ π

0
x dx = π,

and

an = 2
π

∫ π

0
x cos(nx) dx = 2

πn2
[cos(nπ) − 1] = 2

πn2
[(−1)n − 1].

Therefore,

|x| = π

2
− 4
π

[
cos x + cos(3x)

32
+ cos(5x)

52
+ · · ·

]
.

x

-3π 3π-π π

f(x)

Figure 3-2. A periodic even extension of the function
f (x) = |x|.
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x
π-π 3π-3π

f(x)

Figure 3-3. The periodic odd function f (x) = x.

Problem 3.3. Expand f (x) = x (−π ≤ x ≤ π) in a Fourier series (see Fig. 3-3).

Solution: This function is clearly odd and is discontinuous at the points x = (2k + 1)π (k =
0,±1,±2, . . .). Since f (x) is odd, we obtain

an = 0,

bn = 2
π

∫ π

0
x sin(nx) dx = −2

n
cos(nπ) = 2

n
(−1)n+1.

Therefore,

x = 2
[

sin x − sin(2x)
2

+ sin(3x)
3

− . . .
]
.

Problem 3.4. Find the Fourier series for the function

f (x) = | sin(ωx)| , |x| ≤ π

2ω
.

Solution: Since f (x) is an even function (Fig. 3-4), we have

f (x) = a0

2
+

∞∑
n=1

an cos
nπx

L
, L = π

2ω
,

an = 2
L

∫ L

0
f (x) cos

nπx
L

dx , n = 0, 1, 2, . . . .

Thus,

an = 4ω
π

∫ π/2ω

0
sin(ωx) cos(2ωnx) dx .

In view of the trigonometric identity

2 sinα cosβ = sin(α + β) + sin(α − β) ,

the above can be rewritten as

an = 2ω
π

∫ π/2ω

0
[ sinω(1 + 2n)x + sinω(1 − 2n)x ] dx .

x

f(x)

-π/2ω π/2ω

Figure 3-4. The function f (x) = | sin(ωx)|.
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Upon integration, this is

an = 2ω
π

[
−cosω(1 + 2n)x

ω(1 + 2n)
− cosω(1 − 2n)x

ω(1 − 2n)

]π/2ω
0

,

i.e.,

an = − 4
π(4n2 − 1)

.

Thus,

f (x) = 2
π

− 4
π

∞∑
n=1

cos(2ωnx)
4n2 − 1

.

CHAPTER 4

Problem 4.1. If A is an invertible tensor, it can be decomposed as

A = Q · U = V · Q.

If U has eigenvectors pi and associated eigenvalues λi , and V has eigenvectors qi with
associated eigenvalues µi , prove that

λi = µi and qi = Q · pi .

Solution: First note that

A = Q · U = V · Q,

Q−1 · Q · U = Q−1 · V · Q,

and, thus,

U = Q−1 · V · Q.

For U to have eigenvalues λi and eigenvectors pi ,

(U − λi I) · pi = 0 and det(U − λi I) = 0.

For V to have eigenvalues µi and eigenvectors qi ,

(V − µi I) · qi = 0 and det(V − µi I) = 0.

Then,

det(U − λI) = det(Q−1 · V · Q − λI)

= det[Q−1 · (V − λI) · Q]

= det(Q−1) det(V − λI) det(Q)

= det(V − λI),

because det Q = det Q−1 = 1. This demonstrates that λi = µi .
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Next note that

U · pi = λi pi = Q−1 · V · (Q · pi ),

Q · λi pi = V · (Q · pi ),

λi (Q · pi ) = V · (Q · pi ).

Since λi = µi , the above becomes

µi (Q · pi ) = V · (Q · pi ),

and thus

qi = Q · pi .

Problem 4.2. For a simple shearing deformation

x1 = X1 + k1 X2 , x2 = X2 , x3 = X3, (k = const.),

find the tensors F, C, B, E, U, V and R, where F = V · R = R · U, C = FT · F, B = F · FT ,
and 2E = C − I.

Solution: We clearly have

F =
⎡
⎣1 k 0

0 1 0
0 0 1

⎤
⎦ , B = F · FT =

⎡
⎣1 + k2 k 0

k 1 0
0 0 1

⎤
⎦ ,

C = FT · F =
⎡
⎣1 k 0

k 1 + k2 0
0 0 1

⎤
⎦ , E = 1

2
(C − I) =

⎡
⎣ 0 k/2 0

k/2 k2/2 0
0 0 0

⎤
⎦ .

Since C = RT · B · R, and restricting for convenience to nontrivial two-by-two submatrices,
we can write [

1 k
k 1 + k2

]
=
[

c −s
s c

]T

·
[

1 + k2 k
k 1

]
·
[

c −s
s c

]
,

where

R =
⎡
⎣c −s 0

s c 0
0 0 1

⎤
⎦ , c = cosϕ , s = sinϕ,

is the rotation matrix. From the previous matrix equation it follows that kc + 2s = 0, i.e.,
tanϕ = −k/2, so that

c = 1
(1 + k2/4)1/2

, s = − k/2
(1 + k2/4)1/2

.



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 4.2–4.4 657

Consequently, the rotation matrix of the polar decomposition is

R =

⎡
⎢⎢⎢⎢⎢⎣

1

(1 + k2/4)1/2

k/2

(1 + k2/4)1/2
0

− k/2

(1 + k2/4)1/2

1

(1 + k2/4)1/2
0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

Having this determined, the right and left deformation tensors follow by simple matrix
multiplication as U = RT · F and V = F · RT .

Problem 4.3. The Rivlin–Ericksen tensors An are defined by

dn

dtn
(ds)2 = dx · An · dx , (n = 1, 2, 3, . . .) .

The square of an infinitesimal material length is (ds)2 = dx · dx. It can be shown that

An+1 = Ȧn + An · L + LT · An ,

where the superposed dot designates a time differentiation, and L is the velocity gradient.
Since A1 = 2D (D being the rate of deformation tensor, symmetric part of L), the above
formula gives for n = 1

A2 = Ḋ + D · L + LT · D .

Show that the tensor A2 is objective, i.e., under the rigid body rotation Q(t), superposed
to the current configuration (F∗ = Q · F), it transforms as A∗

2 = Q · A2 · QT .

Solution: We have

d2

dt2
(ds)2 = dx · A2 · dx .

Under rigid body rotation of the current configuration, dx∗ = Q · dx = dx · QT and ds∗ =
ds. Consequently,

d2

dt2
(ds∗)2 = dx∗ · A∗

2 · dx∗ = dx · QT · A∗
2 · Q · dx .

Therefore,

A∗
2 = Q · A2 · QT .

Alternatively, the above result can be deduced directly from

A2 = 2(Ḋ + D · L + LT · D) , A∗
2 = 2(Ḋ∗ + D∗ · L∗ + L∗T · D∗) ,

by using the transformation rules

L∗ = Q̇ · Q−1 + Q · L · QT , D∗ = Q · D · QT .

Problem 4.4. Examine the nature of the deformation given by

x1 = X1, x2 = X2 + αX3, x3 = X3 + αX2, α = const.
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twist

C

b2a

x3

x1

x2

Figure 4-1. A “ruler” subject to pure torsion.

Solution: Consider the base vectors in both the reference and current configurations to be
coincident. We want to consider the implications of this deformation as regards the defor-
mation of line elements and surface elements. For example, the displacements associated
with this deformation are

u1 = x1 − X1 = 0, u2 = x2 − X2 = αX3, u3 = x3 − X3 = αX2.

Inverting these, we obtain

X1 = x1, X2 = (x2 − αx3)/(1 − α2), X3 = (x3 − αx2)/(1 − α2),

and

u1 = 0, u2 = α(x3 − αx2)/(1 − α2), u3 = α(x2 − αx3)/(1 − α2).

From the above, for example, we can determine that the linear material fiber given by X1 =
0, X2 + X3 = 1/(1 + α) occupies the position x1 = 0, x2 = x3 after the deformation. Also
the circular region x1 = 0, X2

2 + X2
3 = 1/(1 − α2) is deformed into the elliptical region

(1 + α2)x2
2 − 4αx2x3 + (1 + α2)x2

3 = (1 − α2). Other deformation features can be found
similarly by direct substitution.

Problem 4.5. Consider the slender object (possibly a “ruler”) subject to pure torsion
about its long axis as sketched in Fig. 4-1. The mapping function for this deformation is
given as

x1 = X1 cos(αX3) − X2 sin(αX3),

x2 = X1 sin(αX3) + X2 cos(αX3),

X3 = X3.

Calculate the stretch along the fiber marked C (i.e., the outer most edge), which lies along
the unit vector e3‖ x3.
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x

x1

2

e

1/e
n

n
I

II

e

e

1

2ψϕ
Figure 4-2. A two-dimensional deformation with combined ex-
tension and shear.

Solution: A straightforward calculation of the right Cauchy–Green deformation tensor
yields

C =
⎡
⎣ 1 0 −αX2

0 1 αX1

−αX2 αX1 α2(X2
1 + X2

2) + 1

⎤
⎦ .

Then, from

λ2(e3) = e3 · C · e3,

we obtain

λ(C) =
√
α2b2 + 1,

where the edge C is positioned at x1 = b, x2 = 0.

Problem 4.6. Consider the two-dimensional deformation described in Fig. 4-2, for which
the deformation gradient is

F =
[

1/e γ
0 e

]
, det F = 1.

The polar decomposition theorem states that F = V · R, where V is the symmetric left
stretch tensor and R is an orthogonal tensor. The two eigenvalues of V are related by λI I =
1/λI , because the deformation is volume preserving. The principal directions associated
with these eigenvalues are nI and nI I = dnI/dψ , where ψ is the angle depicted in the
figure. With

µ ≡ 1
2

(e + 1/e),

show that

λI = 1/λI I =
√
µ2 + γ 2/4 +

√
µ2 + γ 2/4 − 1 ,

and

ψ = tan−1(2χ/eγ ),

where

χ = µ2 − µ/e − γ 2/4 +
√

(µ2 + γ 2/4)(µ2 + γ 2/4 − 1).
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Also show that

sin(2ψ) = χeγ
χ2 + (1/2eγ )2

,

cos(2ψ) = (1/2eγ )2 − χ2

χ2 + (1/2eγ )2
,

and

R =
[

cosα sinα
− sinα cosα

]
,

where

α = tan−1
(
γ

2µ

)
.

Solution: Since V is symmetric, let it have the form

V =
[

u v
v q

]
,

and let R have the form as listed above. Then, the product V · R leads to the following
four equations, viz.,

u cosα − v sinα = 1/e,

u sinα + v cosα = γ,
v cosα − q sinα = 0,

v sinα + q cosα = e.

Combining the second and third of these, and then again the first and fourth, yields

(u + q) sinα = γ,

(u + q) cosα = 2µ.

Thus,

tanα = γ

2µ
,

and

sinα = γ√
4µ2 + γ 2

, cosα = 2µ√
4µ2 + γ 2

.

Substitution of these relations into the original four relations yields

vγ√
4µ2 + γ 2

+ q(2µ)√
4µ2 + γ 2

= e,

or

vγ + 2µq = e
√

4µ2 + γ 2.

The third of the original four relations gives

q tanα = v,
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and, therefore,

v = γ

2µ
q.

Thus,

γ

2µ
q + 2µq = e

√
4µ2 + γ 2,

which leads to

q = µe√
µ2 + γ 2/4

,

v = eγ /2√
µ2 + γ 2/4

,

u = µ/e + γ 2/2√
µ2 + γ 2/4

.

The eigenvalues are found by solving for the roots of∣∣∣∣u − λ v

v q − λ
∣∣∣∣ = 0,

which yields the desired solutions

λI = 1/λI I =
√
µ2 + γ 2/4 +

√
µ2 + γ 2/4 − 1.

The eigenvector nI is found from[
u v

v q

]
·
[

nI
1

nI
2

]
= λI

[
nI

1
nI

2

]
.

In general, it is found that

nI
2

nI
1

= tanψ,

with ψ as given above. The remaining relations follow from elementary geometric manip-
ulations.

Problem 4.7. Construct a simple scheme for calculating the components of Green strain,
and stretch, within a triangular region by knowing, perhaps via measurement, the elonga-
tions of its sides.

Solution: Consider the schematic drawing shown in Fig. 4-3. Figure 4-3a shows a single
side of the triangular region shown in Fig. 4-3b. In Fig. 4-3a, the initial length of the side
p is dS and after the deformation it is ds. The two lengths are connected via the Green
strain by

ds2 − dS2 = 2dX · E · dX = 2Ei j dXi dXj

= 2E11 dX 2
1 + 4E12 dX1dX2 + 2E22 dX 2

2 .
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dX

dX

dx

dx

1,p

1,p

2,p

2,p

p
o

p

dS

ds

p

q
r

p

q

r

o
o

o

(a) (b)

Figure 4-3. (a) Initial and deformed infinitesimal
length (single side). (b) An infinitesimal triangular
region before and after the deformation.

Now, construct similar formulae for sides q and r, shown in Fig. 4-3b, and combine the
three such formulae in the expression

A · x = b,

where

A =

⎡
⎢⎢⎢⎢⎢⎣

2dX 2
1,p 4dX1,pdX2,p 2dX 2

2,p

2dX 2
1,q 4dX1,qdX2,q 2dX 2

2,q

2dX 2
1,r 4dX1,r dX2,r 2dX 2

2,r

⎤
⎥⎥⎥⎥⎥⎦ ,

b =
⎡
⎣ds2

p − dS2
pds2

q − dS2
q

ds2
r − dS2

r

⎤
⎦ ,

x = {E11, E12, E22}.

The above are readily solved for the three components of Green strain, and from these
the principal values are obtained. Calling them E1 and E2, the principal stretches are

λ1 =
√

2E1 + 1 , λ2 =
√

2E2 + 1 .

Problem 4.8. Consider the deformation mapping

x1 = X1 + X2(et − 1), x2 = X1(e−t − 1) + X2, x3 = X3,

which has the inverse

X1 = −x1 + x2(et − 1)
1 − et − e−t

, X2 = x1(e−t − 1) − x2

1 − et − e−t
, X3 = x3.

Compute the deformation gradient, and the velocity gradient for this mapping.
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Solution: We first note that

F = ∂x/∂X =
⎡
⎣ 1 et − 1 0

e−t − 1 1 0
0 0 1

⎤
⎦ ,

and

Ḟ = ∂ ẋ/∂X =
⎡
⎣ 0 et 0

−e−t 0 0
0 0 0

⎤
⎦ .

The inverse can be computed as

F−1 = ∂X/∂x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

et + e−t − 1

− (et − 1)

et + e−t − 1
0

− (e−t − 1)

et + e−t − 1
0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since L = Ḟ · F−1, the components of the velocity gradient are

L11 = −et (e−t − 1)
et + e−t − 1

, L12 = et

et + e−t − 1
,

L21 = −e−t

et + e−t − 1
, L22 = e−t (et − 1)

et + e−t − 1
,

Li j = 0, otherwise.

Problem 4.9. Consider the following deformation field

x1 = X1 + kX 2
2 t2,

x2 = X2 + kX2t,

x3 = X3.

At t = 0 the corners of a unit square are at A(0, 0, 0), B(0, 1, 0), C(1, 1, 0), and D(1, 0, 0).
Sketch the deformed shape of this square at t = 2. Calculate the spatial velocity and the
acceleration fields.

Solution: The deformed shape is as shown in the Fig. 4-4.The velocity field is obtained as

v1 = ∂x1

∂t
= 2kX 2

2 t = 2k
x2t

(1 + kt)2
,

v2 = ∂x2

∂t
= kX2 = k

x2

(1 + kt)
,

v3 = 0.
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A D

B

B'

C

C'

4k

2k

X

X

1

2

Figure 4-4. Deformed shape.

The acceleration field is

a1 = ∂2x1

∂t2
= 2kX2

2 = 2k
x2

2

(1 + kt)2
, a2 = a3 = 0 .

Problem 4.10. Prove that

d(ln J )/dt = div v,

where v is the material velocity.

Solution: First recall that

J = εPQRx1,Px2,Qx3,R,

where the notation ∂xi/∂Xp ≡ xi,P has been used. For the time rate of J , we have

J̇ = εPQR(ẋ1,Px2,Qx3,R + x1,Pẋ2,Qx3,R + x1,Px2,Qẋ3,R).

Since ẋi,H = vi,s xs,H, the above becomes

J̇ = εPQR(v1,s xs,Px2,Qx3,R + x1,Pv2,s xs,Qx3,R + x1,Px2,Qv3,s xs,R).

Note that there are nine terms in the above, but only three are nonvanishing. They yield

J̇ = v1,1 J + v2,2 J + v3,3 J ,

and thus

J̇ = J∇ · v, i.e., d(ln J )/dt = div v.

Problem 4.11. Prove that the time rate of the surface element, dSp, is

dSp

dt
= ∂vq

∂xq
dSp − ∂vq

∂xp
dSq.

Solution: Without loss of generality the surface element may be taken to have edge gen-
erators initially along the X2 and X3 axes in the reference state. Then, for the edge that
was along the Xs axis, dx(s) = F · dX(s), and

dSi = εi jk
∂xj

∂X2
dX2

∂xk

∂X3
dX3.
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Since,

∂xi

∂Xi
dSi = εi jk

∂xi

∂X1

∂xj

∂X2

∂xk

∂X3
dX2dX3 = JdX2dX3,

we find

∂X1

∂xp

∂xi

∂X1
dSi = δipdSi = dSp = ∂X1

∂xp
JdX2dX3.

Thus,

dSp

dt
=
(
∂X1

∂xp
J
∂vq

∂xq
− J

∂X1

∂xq

∂vq

∂xp

)
dX2dX3

= ∂vq

∂xq
dSp − ∂vq

∂xp
dSq.

Problem 4.12. For the motion

x1 = X1, x2 = X2 + X1(e−2t − 1), x3 = X3 + X1(e−3t − 1),

compute the rate of deformation tensor and compare it to the rate of the small strain
tensor, ei j = (∂ui/∂xj + ∂u j/∂xi )/2.

Solution: First note that the displacement components for this motion are

u1 = 0, u2 = x1(e−2t − 1), u3 = x1(e−3t − 1),

with the velocity components

v1 = 0, v2 = −2x1e−2t , v3 = −3x1e−3t .

Now, decompose the velocity gradient into its symmetric and antisymmetric parts, as

(Li j ) =
(
∂vi

∂xj

)
=
⎛
⎝ 0 0 0

−2e−2t 0 0
−3e−3t 0 0

⎞
⎠ =

⎛
⎝ 0 −e−2t −3/2e−3t

−e−2t 0 0
−3/2e−3t 0 0

⎞
⎠

+
⎛
⎝ 0 e−2t 3/2e−3t

−e−2t 0 0
−3/2e−3t 0 0

⎞
⎠ = (Di j ) + (Wi j ).

Likewise,

(
∂ui

∂xj

)
=
⎛
⎝ 0 0 0

e−2t 0 0
e−3t 0 0

⎞
⎠ = 1

2

⎛
⎝ 0 e−2t e−3t

e−2t 0 0
e−3t 0 0

⎞
⎠+ 1

2

⎛
⎝ 0 −e−2t −e−3t

e−2t 0 0
e−3t 0 0

⎞
⎠ .

Consequently,

d
dt

(
∂ui

∂xj

)
=
⎛
⎝ 0 −e−2t −3/2e−3t

−e−2t 0 0
−3/2e−3t 0 0

⎞
⎠+

⎛
⎝ 0 e−2t 3/2e−3t

−e−2t 0 0
−3/2e−3t 0 0

⎞
⎠ .
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Therefore, in this case

d
dt

(ei j ) = (Di j ).

Problem 4.13. The deformation gradient at a point in a body is

F = 0.2e1e1 − 0.1e1e2 + 0.3e2e1 + 0.4e2e2 + 0.1e3e3 ,

where ei (i = 1, 2, 3) are the Cartesian unit base vectors.

(a) Determine the Cauchy–Green deformation tensors B and C.
(b) Determine the eigenvalues λ(i) and eigenvectors n(i) and N(i) of B and C, respectively.
(c) Verify that

F =
3∑

i=1

√
λ(i) n(i)N(i) .

(d) Calculate R, U, and V by using the relationships

R =
3∑

i=1

n(i)N(i) , U =
3∑

i=1

√
λ(i) N(i)N(i) , V =

3∑
i=1

√
λ(i) n(i)n(i) .

Solution: (a) The deformation gradient matrix is

F =
⎡
⎣0.2 −0.1 0

0.3 0.4 0
0 0 0.1

⎤
⎦ ,

whereas the right and left Cauchy–Green deformation tensors are

C = FT · F =
⎡
⎣0.13 0.1 0

0.1 0.17 0
0 0 0.01

⎤
⎦, B = F · FT =

⎡
⎣0.05 0.02 0

0.02 0.25 0
0 0 0.01

⎤
⎦.

(b) Upon solving the eigenvalue problem

C · N(i) = λ(i)N(i) ,

there follows

λ(1) = 0.252 , N(1) =
⎡
⎣0.634

0.773
0

⎤
⎦ ; λ(2) = 0.048 , N(2) =

⎡
⎣−0.773

0.634
0

⎤
⎦ .

Similarly, by solving the eigenvalue problem

B · n(i) = λ(i)n(i) ,

there follows

λ(1) = 0.252 , n(1) =
⎡
⎣0.0985

0.9953
0

⎤
⎦ ; λ(2) = 0.048 , n(2) =

⎡
⎣−0.9953

0.0985
0

⎤
⎦ .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 4.13–4.14 667

The third eigenvalue and the corresponding eigenvector are in each case

λ(3) = 0.01 , N(3) = n(3) =
⎡
⎣0

0
1

⎤
⎦ .

(c) It can be readily verified that

F =
3∑

i=1

√
λ(i) n(i)N(i) =

⎡
⎣0.2 −0.1 0

0.3 0.4 0
0 0 0.1

⎤
⎦ .

(d) The rotation matrix is

R =
3∑

i=1

n(i)N(i) =
⎡
⎣0.832 −0.554 0

0.554 0.832 0
0 0 1

⎤
⎦ ,

whereas the stretch tensors are

U =
3∑

i=1

√
λ(i) N(i)N(i) =

⎡
⎣0.333 0.139 0

0.139 0.388 0
0 0 0.1

⎤
⎦ ,

V =
3∑

i=1

√
λ(i) n(i)n(i) =

⎡
⎣0.222 0.028 0

0.028 0.5 0
0 0 0.1

⎤
⎦ .

Problem 4.14. Let ∇0 be the gradient operator with respect to material coordinates Xi .
Prove that

∇0 · [(det F)F−1] = 0 ,

where F is the deformation gradient.

Solution: By the Nanson’s relation we have

ni dS = (det F)F−T
ik n0

kdS0 .

Upon integration, and recalling the result from Problem 2.5, we obtain

0 =
∫

S
ni dS =

∫
S0

(det F)F−T
ik n0

kdS0 .

Thus, by applying the Gauss divergence theorem∫
S0

(det F)F−T
ik n0

kdS0 =
∫

V0

∂

∂Xk

[
(det F)F−1

ki

]
dV0 = 0 .

This holds for the whole volume V0, or any part of it, so that we must have locally, at any
point of the deformed body,

∂

∂Xk

[
(det F)F−1

ki

]
= 0 .
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Problem 4.15. Consider cylindrical coordinates (r, θ, z), and the corresponding displace-
ment vector u = {ur ,uθ ,uz}. The ∇ operator in the cylindrical coordinates (see Prob-
lem 2.6) is

∇ = ∂

∂r
er + 1

r
∂

∂θ
eθ + ∂

∂z
ez .

(a) Derive the cylindrical components of the strain tensor e = 1
2 (∇ u + u ∇).

(b) Write the cylindrical components of the acceleration vector a in spatial cylindrical
coordinates.

(c) Derive the cylindrical components of the velocity gradient tensor L = v ∇, and its
symmetric and antisymmetric parts D and W (rate of deformation and spin tensors).

Solution: (a) The outer (tensor) product of the vectors ∇ and u is

∇ u =
(

er
∂

∂r
+ eθ

1
r
∂

∂θ
+ ez

∂

∂z

)
(ur er + uθeθ + uzez) .

Recalling that

∂er

∂θ
= eθ ,

∂eθ
∂θ

= −er ,

we have, for example,

eθ
1
r
∂

∂θ
(uθeθ ) = eθ

1
r
∂

∂θ
(uθeθ ) = eθ

1
r

(
∂uθ
∂θ

eθ + uθ
∂eθ
∂θ

)

= 1
r
∂uθ
∂θ

eθ eθ − 1
r

uθeθ er .

Continuing like this with other tensor products, we obtain

∇ u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ur

∂r

∂uθ
∂r

∂uz

∂r

1

r

∂ur

∂θ
− uθ

r

1

r

∂uθ
∂θ

+ ur

r

1

r

∂uz

∂θ

∂ur

∂z

∂uθ
∂z

∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix u ∇ is the transpose of this, i.e.,

u ∇ = (∇ u)T .

The strain tensor can then be easily calculated as

e = 1
2

(u ∇ + ∇ u) .
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This gives the following strain-displacement relations in cylindrical coordinates

err = ∂ur

∂r
,

eθθ = 1
r
∂uθ
∂θ

+ ur

r
,

ezz = ∂uz

∂z
,

erθ = 1
2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
,

erz = 1
2

(
∂ur

∂z
+ ∂uz

∂r

)
,

eθz = 1
2

(
∂uθ
∂z

+ 1
r
∂uz

∂θ

)
.

(b) Consider the velocity vector in spatial coordinates v = v(r, θ, z). Applying the ∇ op-
erator with respect to spatial coordinates, we obtain the velocity gradient components

[L] = [v ∇] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vr

∂r

1

r

∂vr

∂θ
− vθ

r

∂vr

∂z

∂vθ

∂r

1

r

∂vθ

∂θ
+ vr

r

∂vθ

∂z

∂vz

∂r

1

r

∂vz

∂θ

∂vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since

D = L + LT , W = L − LT ,

we obtain for the rate of deformation and spin tensors

[D] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
∂vr

∂r

1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

∂vr

∂z
+ ∂vz

∂r

1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r
2

(
1

r

∂vθ

∂θ
+ vr

r

)
∂vθ

∂z
+ 1

r

∂vz

∂θ

∂vr

∂z
+ ∂vz

∂r

∂vθ

∂z
+ 1

r

∂vz

∂θ
2
∂vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[W] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

r

∂vr

∂θ
− ∂vθ

∂r
− vθ

r

∂vr

∂z
− ∂vz

∂r

−1

r

∂vr

∂θ
+ ∂vθ

∂r
+ vθ

r
0

∂vθ

∂z
− 1

r

∂vz

∂θ

−∂vr

∂z
+ ∂vz

∂r
−∂vθ
∂z

+ 1

r

∂vz

∂θ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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(c) The time rate of the velocity vector

v = vr er + vθeθ + vzez

is

a = v̇ = v̇r er + v̇θeθ + v̇zez + vr ėr + vθ ėθ + vzėz .

Since the time rates of the unit vectors parallel to cylindrical coordinates are

ėr = vθ

r
eθ ėθ = −vθ

r
er , ėz = 0 ,

we obtain

a = v̇ =
(
v̇r − v2

θ

r

)
er +

(
v̇θ + vrvθ

r

)
eθ + v̇zez .

This defines the physical components of the acceleration vector in cylindrical coordinates,

ar = v̇r − v2
θ

r
, aθ = v̇θ + vrvθ

r
, az = v̇z .

The physical components of a vector in the case of orthogonal curvilinear coordinates are
the components in a local rectangular Cartesian system with axes parallel to the coordinate
curves.

Alternatively, the acceleration in spatial coordinates is

a = ∂v
∂t

+ v · (∇ v) .

Using the expression for ∇ v and performing its dot product with v, we obtain

ar = ∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vz

∂vr

∂z
− 1

r
v2
θ ,

aθ = ∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vz

∂vθ

∂z
+ 1

r
vrvθ ,

az = ∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z
.

Problem 4.16. Derive the components of the deformation gradient in cylindrical coordi-
nates (Fig. 4-5).

Solution: The position of the material point in the initial undeformed configuration of the
body is specified by the position vector, relative to the reference cylindrical coordinate
basis, as

X = ReR + ZeZ .

Its position in the deformed configuration, relative to the cylindrical basis in that configu-
ration, is

x = rer + zez ,

with ez = eZ. The material line element in two configurations are, respectively,

dX = dReR + RdeR + dZeZ = dReR + Rd) e) + dZeZ ,

dx = dr er + r der + dzez = dr er + rdθ eθ + dzez .
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θ

eθ
e r

r

x

x2

1
Θ

R
e R

eΘ
Figure 4-5. The unit vectors of a polar coordinate system in unde-
formed and deformed configuration.

Let the motion (deformation) be described by

r = r(R,), Z) , θ = θ(R,), Z) , z = z(R,), Z) .

The physical components of the vector dx are then

dr = ∂r
∂R

dR + 1
R
∂r
∂)

Rd)+ ∂r
∂Z

dZ ,

rdθ = r
∂θ

∂R
dR + r

R
∂θ

∂)
Rd)+ r

∂θ

∂Z
dZ ,

dz = ∂z
∂R

dR + 1
R
∂z
∂)

Rd)+ ∂z
∂Z

dZ .

Consequently, by writing the deformation gradient (a two-point tensor) in terms of its
physical components (relative to bases in undeformed and deformed configurations) as

F = Fi J ei eJ , (i = r, θ, z ; J = R,), Z),

we have

dx = F · dX , dxi = Fi J dXJ .

When written in matrix form, this is

⎡
⎢⎢⎢⎢⎢⎣

dr

rdθ

dz

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂r

∂R

1

R

∂r

∂)

∂r

∂Z

r
∂θ

∂R

r

R

∂θ

∂)
r
∂θ

∂Z

∂z

∂R

1

R

∂z

∂)

∂z

∂Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎣

dR

Rd)

dZ

⎤
⎥⎥⎥⎥⎥⎦ .

Problem 4.17. Evaluate the time rate of the deformation gradient Ḟ in cylindrical coordi-
nates, and use the result to obtain an expression for the tensor

Ḟi K F−1
Kj ei e j .

Solution: Since

F = Fi J ei eJ , (i = r, θ, z ; J = R,), Z),

the time differentiation gives

Ḟ = Ḟi J ei eJ + Fi J ėi eJ .
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The velocity gradient is then

L = Ḟ · F−1 = Ḟi K ei eK · F−1
Mj eM e j + Fi K ėi eK · F−1

Mj eM e j =
= Ḟi K F−1

Kj ei e j + ėi ei .

Since the time rates of the unit vectors parallel to cylindrical coordinates are

ėr = θ̇ eθ = vθ

r
eθ , ėθ = −θ̇ er = −vθ

r
er , ėz = 0 ,

we have

ėi ei = θ̇(eθ er − er eθ ) = vθ

r
(eθ er − er eθ ) .

Thus,

Ḟi K F−1
Kj ei e j = L − Ω = D + Ŵ ,

where, expressed in the {er , eθ , ez} basis,

[Ω] = vθ

r

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ .

Consequently, by using the results for [L] from Problem 4.15,

[
Ḟi K F−1

Kj

]
= [L − Ω] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vr

∂r

1

r

∂vr

∂θ

∂vr

∂z

∂vθ

∂r
− vθ

r

1

r

∂vθ

∂θ
+ vr

r

∂vθ

∂z

∂vz

∂r

1

r

∂vz

∂θ

∂vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that [
Ḟi K F−1

Kj

]
sym

= [D] =

= 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
∂vr

∂r

1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

∂vr

∂z
+ ∂vz

∂r

1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r
2

(
1

r

∂vθ

∂θ
+ vr

r

)
∂vθ

∂z
+ 1

r

∂vz

∂θ

∂vr

∂z
+ ∂vz

∂r

∂vθ

∂z
+ 1

r

∂vz

∂θ
2
∂vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 4.17–5.1 673

and [
Ḟi K F−1

Kj

]
asym

= [Ŵ] = [W] − [Ω] =

= 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

r

∂vr

∂θ
− ∂vθ

∂r
+ vθ

r

∂vr

∂z
− ∂vz

∂r

−1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r
0

∂vθ

∂z
− 1

r

∂vz

∂θ

−∂vr

∂z
+ ∂vz

∂r
−∂vθ
∂z

+ 1

r

∂vz

∂θ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

CHAPTER 5

Problem 5.1. Consider the stress tensor whose components are

σ =
⎡
⎣σ σ σ

σ σ σ

σ σ σ

⎤
⎦ .

(a) Determine the principal values and associated principal directions of σ.
(b) Determine the maximum shear stress.
(c) Determine the spherical and deviatoric parts of σ.

Solution: (a) Begin with the equation

σ · n = λn.

The resulting determinant equation for the eigenvalues is

det(σ − λI) = 0,

or ∣∣∣∣∣∣
σ − λ σ σ

σ σ − λ σ

σ σ σ − λ

∣∣∣∣∣∣ = 0.

After evaluating the determinant,

(σ − λ)3 − 3σ 2(σ − λ) + 2σ 3 = 0,

or

λ2(3σ − λ) = 0.

Thus the eigenvalues are λ1 = 3σ, λ2 = λ3 = 0.
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Next, for the eigenvector n(1) associated with λ1 = 3σ , we return to the eigenvalue
equation and find

σn(1)
1 + σn(1)

2 + σn(1)
3 = 3σn(1)

1 ,

σn(1)
1 + σn(1)

2 + σn(1)
3 = 3σn(1)

2 ,

σn(1)
1 + σn(1)

2 + σn(1)
3 = 3σn(1)

3 .

Thus, n(1)
1 = n(1)

2 = n(1)
3 = 1/

√
3. Note that the equations for n(2) and n(3) do not produce

unique values for them. Instead, they may be any two unit vectors in the plane normal
to n(1).
(b) The maximum shear stress is

τmax = σmax − σmin

2
= 3σ − 0

2
= 3σ

2
.

(c) The spherical part of stress state is σ sph
i j = (trσ/3)δi j = σδi j . Thus, the deviatoric part

of stress tensor is

σ′ = σ − σsph =
⎡
⎣0 σ σ

σ 0 σ

σ σ 0

⎤
⎦ .

Problem 5.2. Derive the expressions for the stress gradients of the two invariants of de-
viatoric part of the Cauchy stress

J2 = 1
2

tr(σ′2) , J3 = 1
3

tr(σ′3) .

Solution: The deviatoric part of the Cauchy stress has the rectangular components

σ ′
i j = σi j − 1

3
σkkδi j .

Since

∂σ ′
mn

∂σpq
= ∂

∂σpq

(
σmn − 1

3
σrrδmn

)
= 1

2
(δmpδnq + δmqδnp) − 1

3
δmnδpq ,

there follows

∂ J2

∂σi j
= ∂

∂σi j

(
1
2
σ ′

klσ
′
kl

)
= · · · = σ ′

i j ,

∂ J3

∂σi j
= ∂

∂σi j

(
1
3
σ ′

klσ
′
lqσ

′
qk

)
= · · · = σ ′

ikσ
′
kj − 2

3
J2δi j .

Problem 5.3. If τ = (det F)σ is the Kirchhoff stress, prove that

∇0 · (F−1 · τ ) = (det F)∇ · σ ,
where ∇0 and ∇ are the gradient operators with respect to material and spatial coordinates,
respectively (∇ = F−T · ∇0).
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Solution: (a) We first recall the identity proven in Problem 2.4b, rewritten here by using
the gradient operator ∇0 as

∇0 · (A · B) = (∇0 · A) · B + (AT · ∇0) · B .

By choosing

A = (det F)F−1 , B = σ ,

it follows that

∇0 · [(det F)F−1 · σ] = {∇0 · [(det F)F−1]} · σ + [
(det F)F−T · ∇0] · σ .

The first term on the right-hand side is equal to zero by the result from Problem 4.14, and
since F−T · ∇0 = ∇, we have the proof.

Problem 5.4. The deformed equilibrium configuration of the body is defined by the de-
formation mapping

x1 = 2
3

X1 , x2 = X2 −
√

3
3

X3 , x3 =
√

3 X2 + 1
3

X3 .

The corresponding Cauchy stress within the body, relative to unit vectors e1, e2, and e3, is

σ = 90

⎡
⎣0 0 0

0 1
√

3
0

√
3 3

⎤
⎦ (MPa).

(a) Determine the tensors C, E, B, e, U, V, and R.
(b) Determine the principal directions of U and V.
(c) Determine the corresponding first and second Piola–Kirchhoff stress tensors.
(d) Determine the true, nominal, and pseudo traction vectors associated with the planes

m = {0, 1/2,√3/2} and n = {0,−√
3/2, 1/2} in the deformed state. Sketch the unde-

formed element twice – once under the first Piola–Kirchoff stress components, and
once under the second Piola–Kirchhoff stress components;

(e) Determine the components of the rotated tensor σ∗ = Q · σ · QT , where Q = RT .
Verify that these components are the same as the components of the tensor σ on the
axes e1, m, and n. Sketch the element under these stress components.

Solution: (a) The deformation gradient and its transpose are

F =

⎡
⎢⎣

2
3 0 0
0 1 −

√
3

3
0

√
3 1

3

⎤
⎥⎦ , FT =

⎡
⎢⎣

2
3 0 0
0 1

√
3

0 −
√

3
3

1
3

⎤
⎥⎦ .

The left Cauchy–Green deformation tensor and the Lagrangian strain are

C = FT · F =
⎡
⎣ 4

9 0 0
0 4 0
0 0 4

9

⎤
⎦ , E = 1

2
(C − I) =

⎡
⎣− 5

18 0 0
0 3

2 0
0 0 − 5

18

⎤
⎦ .
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Since C is a diagonal matrix, we can calculate the right stretch tensor and its inverse
immediately as

U = C1/2 =
⎡
⎣ 2

3 0 0
0 2 0
0 0 2

3

⎤
⎦ , U−1 =

⎡
⎣ 3

2 0 0
0 1

2 0
0 0 3

2

⎤
⎦ .

From the polar decomposition theorem F = R · U, it then follows that

R = F · U−1 =

⎡
⎢⎣

1 0 0
0 1

2 −
√

3
2

0
√

3
2

1
2

⎤
⎥⎦ , V = F · RT =

⎡
⎢⎣

2
3 0 0
0 1

√
3

3

0
√

3
3

5
3

⎤
⎥⎦ .

The left Cauchy–Green deformation tensor can be calculated directly from its definition.
Since it is not diagonal, its inverse can be calculated more conveniently from its relationship
with C (which happened to be diagonal). Thus,

B = F · FT = V2 =

⎡
⎢⎣

4
9 0 0
0 4

3
8
√

3
9

0 8
√

3
9

28
9

⎤
⎥⎦ ,

B−1 = R · C−1 · RT =

⎡
⎢⎣

9
4 0 0
0 7

4 −
√

3
2

0 −
√

3
2

3
4

⎤
⎥⎦ .

The Eulerian strain is

e = 1
2

(I − B−1) =

⎡
⎢⎣

− 5
8 0 0

0 − 3
8 −

√
3

4

0 −
√

3
4

1
2

⎤
⎥⎦ .

It can be easily verified that E = FT · e · F.
(b) Since U is diagonal in the reference frame {ei }, we have

U = 2
3

e1 e1 + 2e2 e2 + 2
3

e3 e3 .

Thus, its principal values and principal directions are

U1 = 2
3
, nU

1 = e1; U2 = 2, nU
2 = e2; U3 = 2

3
, nU

3 = e3.

Actually, since U1 = U3 = 2/3, any direction in the plane normal to nU
2 is the principal

direction of U, associated with the eigenvalue 2/3 (Fig. 5-1).
The eigenvalues of V are equal to those of U, while the corresponding eigendirections

are related by nV
i = R · nU

i . Thus, we obtain

V1 = 2
3
, nV

1 = e1; V2 = 2, nV
2 =

{
0,

1
2
,

√
3

2

}
;

V3 = 2
3
, nU

3 =
{

0,−
√

3
2
,

1
2

}
.

Actually, since V1 = V3 = 2/3, any direction in the plane normal to nV
2 is the principal

direction of V, associated with the eigenvalue 2/3.



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problem 5.4 677

1

2/3
2

2/3

360360

2/
3

2

2/
3

36
0

36
0

1

1

U

R

F

Figure 5-1. A unit cube in the unde-
formed configuration, imagined to be
first streched along principal directions
of U and then rotated by R to its final
configuration in the deformed state.

(c) The first (nonsymmetric) Piola–Kirchhoff stress tensor is

P = (det F)σ · F−T = 80

⎡
⎣0 0 0

0 1 0
0

√
3 0

⎤
⎦ (MPa).

The inverse of the deformation gradient matrix was conveniently determined from

F−1 = U−1 · RT =

⎡
⎢⎣

3
2 0 0
0 1

4

√
3

4

0 − 3
√

3
4

3
4

⎤
⎥⎦ ,

and det F = 8/9. The second (symmetric) Piola–Kirchhoff stress tensor is

S = F−1 · P = 80

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦ (MPa).

The undeformed material elements under these stress components are shown in Figs. 5-2b
and 5-2c. Note, if P̂ = PT was used as a definition for the nominal stress, there would be
shear stress P̂23 = √

3, whereas P̂32 = 0. The symmetric Piola–Kirchhoff stress is unaffected
by these two definitions of the nonsymmetric Piola–Kirchhoff stress, because

S = F−1 · P = P̂ · F−T .

(d) The true traction vectors on the planes with unit normal vectors m and n are

tm = σ · m = 360

⎡
⎢⎣ 0

1
2√
3

2

⎤
⎥⎦ , tn = σ · n = 360

⎡
⎣0

0
0

⎤
⎦ (MPa).



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

678 Problem 5.4

1

8080

80 3

80 3

(b)

2/
3

2

2/
3

36
0

36
0

1

1

1

8080

(c)

1

1

(a)

Figure 5-2. (a) Cauchy stress components on the deformed element with
its sides parallel to e1, m, and n axes. (b) Nonsymmetric Piola–Kirchhoff
stress components on the unit cube in the undeformed configuration. (c)
Symmetric Piola–Kirchhoff stress components.

The nominal traction t0
m is

t0
m = tm

dS
dS0

,

where
dS
dS0

= det F
(m · B · m)1/2

.

Since m · B · m = 4 and det F = 8/9, we obtain dS/dS0 = 4/9, and thus

t0
m = 160

⎡
⎢⎣ 0

1
2√
3

2

⎤
⎥⎦ (MPa).

The pseudotraction t̂m is defined such that

F · t̂m dS0 = tm dS .

This gives

t̂m = F−1 · t0
m = 80

⎡
⎣0

1
0

⎤
⎦ (MPa).

The unit normal to the undeformed area dS0, corresponding to deformed area dS with the
unit normal m, is

m0 = FT · m
(m · B · m)1/2

=
⎡
⎣0

1
0

⎤
⎦ .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 5.4–5.5 679

The unit normal to the undeformed area dS0, corresponding to deformed area dS with the
unit normal n, is

n0 = FT · n
(n · B · n)1/2

=
⎡
⎣0

0
1

⎤
⎦ ,

since n · B · n = 4/9 (with the corresponding areas ratio dS/dS0 = 4/3). Since tn = 0, the
corresponding nominal and pseudo tractions also vanish, t0

n = t̂n = 0.
(e) The rotated stress tensor σ∗ is

σ∗ = RT · σ · R = 360

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ (MPa).

The components of σ∗ on the axes {ei } are the same as the components of the stress tensor
σ on the axes e1, M and n. Indeed, because t1 = tn = 0 and tm = 360m, we obtain

σ = (e1 t1) + (m tm) + (n tn) = 360 (m m) = 360

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦

e1,m,n

(MPa).

The stress state is shown in Fig. 5-2a.

Problem 5.5. Consider the deformation process with the velocity gradient L.

(a) Derive the expression for the Oldroyd convected rate of the Cauchy stress, observed
in the coordinate frame {ei } that is embedded in the material (ėi = L · ei ), i.e., prove
that

�
σ = σ̇ − L · σ − σ · LT .

(b) Prove that
�
σ is an objective stress rate.

(c) Derive the relationships between the Jaumann, Oldroyd, and Cotter–Rivlin stress
rates.

Solution: (a) The stress tensor σ can be expressed in the basis {ei } as

σ = σi j ei e j .

If the basis {ei } is convected with the material, then

ėi = L · ei = Lki ek .

Thus,

σ̇ = σ̇i j ei e j + σi j ėi e j + σi j ei ė j ,

becomes

σ̇ = σ̇i j ei e j + Likσkj ei e j + σikLjkei e j ,

i.e.,

σ̇ = σ̇i j ei e j − L · σ − σ · LT .
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This leads to definition of corotational stress rate, observed in the frame that instanta-
neously convects with the material,

σ̇i j ei e j = σ̇ − L · σ − σ · LT.

The stress rate
�
σ = σ̇ − L · σ − σ · LT

is known as the Oldroyd convected rate of the Cauchy stress.
(b) We first recall that under a time dependent rigid-body rotation Q = Q(t), the defor-
mation gradient changes to F∗ = Q · F, while the Cauchy stress and the velocity gradient
change to

σ∗ = Q · σ · QT , L∗ = Q̇ · Q−1 + Q · L · QT .

By combining these, we find

L∗ · σ∗ + σ∗ · L∗ T = Q · (L · σ + σ · LT + QT · Q̇ · σ + σ · Q̇T · Q
) · QT .

On the other hand, by differentiating σ∗ = Q · σ · QT , we obtain

σ̇∗ = Q · (σ̇ + QT · Q̇ · σ + σ · Q̇T · Q
) · QT .

Consequently,
�
σ∗ = σ̇∗ − L∗ · σ∗ − σ∗ · L∗ T

= Q · (σ̇ − L · σ − σ · LT) · QT = Q · �
σ · QT,

which demonstrates that the Oldroyd convected rate
�
σ of the Cauchy stress is indeed

objective.
(c) The Jaumann corotational stress rate is defined by

�
σ = σ̇ − W · σ − σ · W .

Since L = D + W, we obtain
�
σ = σ̇ − (D + W) · σ − σ · (D − W) = �

σ − D · σ − σ · D .

Furthermore, since the two convected rates are
�
σ = σ̇ − L · σ − σ · LT ,

�
σ = σ̇ + LT · σ + σ · L ,

we obtain
�
σ = �

σ + 2(D · σ + σ · D) ,

�
σ = �

σ + D · σ + σ · D .

Problem 5.6. The Jaumann and the Cotter–Rivlin convected rate of the second-order
tensor A are defined by

�
A = Ȧ − W · A + A · W ,

�
A = Ȧ + LT · A + A · L ,
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where L is the velocity gradient and W is its antisymmetric part (L = D + W).

(a) Show that for the rate of deformation D,

�
D =

�
D + 2D2 ,

��
D =

��
D + 3(

�
D · D + D ·

�
D) + 4D3 .

(b) Show that for the Cauchy stress tensor σ,

�
σ = �

σ + σ · D + D · σ ,
��
σ = ��

σ + 2(
�
σ · D + D · �

σ) + (σ ·
�
D +

�
D · σ)

+ 2D · σ · D + D2 · σ + σ · D2 .

Solution: (a) Substitute L = D + W into

�
D = Ḋ + LT · D + D · L ,

and use
�
D = Ḋ − W · D + D · W .

It follows that
�
D =

�
D + 2D2 .

Similarly, by starting from

��
D =

�̇
D + LT ·

�
D +

�
D · L ,

and using

��
D =

�̇
D − W ·

�
D +

�
D · W ,

it follows that
��
D =

��
D + 3(

�
D · D + D ·

�
D) + 4D3 .

(b) Use

�
σ = σ̇ + LT · σ + σ · L ,

��
σ = �̇

σ + LT · �
σ + �

σ · L ,

and follow the procedure from part (a).

Problem 5.7. Prove that

σ′ :
�
σ = σ′ : σ̇ .
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Solution: Since
�
σ i j = σ̇i j − Wikσkj + σikWkj ,

we have

σ ′
i j

�
σ i j = σ ′

i j σ̇i j − σ ′
i j Wikσkj + σ ′

i jσikWkj .

But, in view of the symmetry of σ ′
i j ,

σ ′
i jσikWkj − σ ′

i j Wikσkj = σ ′
i jσikWkj − σ ′

j i Wikσkj

= σ ′
i jσikWkj − σ ′

i j Wjkσki

= 2σ ′
i jσikWkj = 0 ,

because σ ′
i jσik = σ ′

i jσ
′
ik is symmetric, whereas Wkj is antisymmetric in jk.

The proof also follows directly by observing that J = σ′ : σ′ is a scalar invariant of σ′,
so that

�
J = J̇ .

Problem 5.8. Consider cylindrical coordinates (r, θ, z). The ∇ operator in the cylindrical
coordinates (see Problem 2.6) is

∇ = ∂

∂r
er + 1

r
∂

∂θ
eθ + ∂

∂z
ez .

(a) Write ∇ · σ in an expanded form.
(b) Write three scalar equations of motion in cylindrical coordinates.

Solution: (a) Decomposing the stress tensor on the components along the unit vectors of
the cylindrical coordinate system, we have

σ = σrr er er + σθθeθ eθ + σzzez ez

+ σrθer eθ + σθr eθ er + σθzeθ ez

+ σzθez eθ + σzr ez er + σrzer ez .

Recalling from Problem 4.15 that

∂er

∂θ
= eθ ,

∂eθ
∂θ

= −er ,

and applying the divergence operator to σ, there follows

∇ · σ =
[

1
r
∂(rσrr )
∂r

+ 1
r
∂σrθ

∂θ
+ ∂σrz

∂z
− 1

r
σθθ

]
er

+
[

1
r
∂(rσθr )
∂r

+ 1
r
∂σθθ

∂θ
+ ∂σθz

∂z
+ 1

r
σθr

]
eθ

+
[

1
r
∂(rσzr )
∂r

+ 1
r
∂σzθ

∂θ
+ ∂σzz

∂z

]
ez .

(b) Equations of motion are

∇ · σ + b = ρa ,
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where b is the body force per unit volume. By using the derived expression for ∇ · σ, the
three scalar equations of motion in cylindrical coordinates are

∂σrr

∂r
+ 1

r
∂σrθ

∂θ
+ ∂σrz

∂z
+ 1

r
(σrr − σθθ ) + br = ρar ,

∂σθr

∂r
+ 1

r
∂σθθ

∂θ
+ ∂σθz

∂z
+ 2

r
σθr + bθ = ρaθ ,

∂σzr

∂r
+ 1

r
∂σzθ

∂θ
+ ∂σzz

∂z
+ 1

r
σzr + bz = ρaz .

The cylindrical components of the acceleration vector a are listed in Problem 4.15.

Problem 5.9. Consider the Cauchy stress tensor σ in cylindrical coordinates. If {er , eθ , ez}
is a local basis with respect to which the stress tensor is expressed, derive the expressions
for σ̇.

Solution: By differentiating the stress tensor

σ = σrr er er + σθθeθ eθ + σzzez ez

+ σrθer eθ + σθr eθ er + σθzeθ ez

+ σzθez eθ + σzr ez er + σrzer ez ,

having in mind that

ėr = vθ

r
eθ ėθ = −vθ

r
er , ėz = 0 ,

we obtain

σ̇ =
(
σ̇rr − 2σrθ

vθ

r

)
er er +

(
σ̇θθ + 2σrθ

vθ

r

)
eθ eθ + σ̇zzez ez

+
[
σ̇rθ + (σrr − σθθ ) vθr

]
(er eθ + eθ er )

+
(
σ̇rz − σθz

vθ

r

)
(er ez + ez er )

+
(
σ̇θz + σrz

vθ

r

)
(eθ ez + ez eθ ) .

The right-hand side can be conveniently rewritten in the matrix form, relative to the
instantaneous basis {er , eθ , ez}, as

σ̇ =
⎡
⎣ σ̇rr σ̇rθ σ̇rz

σ̇θr σ̇θθ σ̇θz

σ̇zr σ̇zθ σ̇zz

⎤
⎦

e basis

+ [Ω] · [σ] − [σ] · [Ω] ,

where

[σ] =
⎡
⎣ σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

⎤
⎦ , [Ω] =

⎡
⎣ 0 −vθ/r 0
vθ/r 0 0

0 0 0

⎤
⎦ .

Problem 5.10. Derive the expressions for the Jaumann rate of the cylindrical stress com-
ponents σzz and σzθ .
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Solution: The material spin is the antisymmetric part of the velocity gradient L = v∇, i.e.,

W = 1
2

(v∇ − ∇v) .

When expressed in the instantaneous basis {er , eθ , ez}, we have (see Problem 4.15)

[∇ v] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vr

∂r

∂vθ

∂r

∂vz

∂r

1

r

∂vr

∂θ
− vθ

r

1

r

∂vθ

∂θ
+ vr

r

1

r

∂vz

∂θ

∂vr

∂z

∂vθ

∂z

∂vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus,

[W] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

r

∂vr

∂θ
− ∂vθ

∂r
− vθ

r

∂vr

∂z
− ∂vz

∂r

−1

r

∂vr

∂θ
+ ∂vθ

∂r
+ vθ

r
0

∂vθ

∂z
− 1

r

∂vz

∂θ

−∂vr

∂z
+ ∂vz

∂r
−∂vθ
∂z

+ 1

r

∂vz

∂θ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Jaumann rate of σ is
�
σ = σ̇ − W · σ + σ · W .

By using the expression for σ̇ from Problem 5.9, there follows⎡
⎢⎣

�
σ rr

�
σ rθ

�
σ rz

�
σ θr

�
σ θθ

�
σ θz

�
σ zr

�
σ zθ

�
σ zz

⎤
⎥⎦ =

⎡
⎣ σ̇rr σ̇rθ σ̇rz

σ̇θr σ̇θθ σ̇θz

σ̇zr σ̇zθ σ̇zz

⎤
⎦− [Ŵ] · [σ] + [σ] · [Ŵ] .

The components of the spin matrix

[Ŵ] = [W] − [Ω]

are

[Ŵ] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

r

∂vr

∂θ
− ∂vθ

∂r
+ vθ

r

∂vr

∂z
− ∂vz

∂r

−1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r
0

∂vθ

∂z
− 1

r

∂vz

∂θ

−∂vr

∂z
+ ∂vz

∂r
−∂vθ
∂z

+ 1

r

∂vz

∂θ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To kinematically interpret the Jaumann stress rate components in cylindrical coordinates,
suppose that we want to calculate the rate of stress in a basis {êr , êθ , êz} that momentarily
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Ωdt

Wdt

e (t)r

e (t+dt)r

Figure 5-3. A schematic representation of the spin Ŵ. A material line el-
ement (parallel to a principal direction of D) is rotated by Ŵ = W − Ω
relative to the rotated er coordinate direction.

coincides with the basis {er , eθ , ez}, but rotates instantaneously with the material spin W
(Fig. 5-3). The time rate of the unit vectors of such basis are

˙̂er = W · er , ˙̂eθ = W · eθ , ˙̂ez = W · ez .

It readily follows that

σ̇ =
⎡
⎣ σ̇rr σ̇rθ σ̇rz

σ̇θr σ̇θθ σ̇θz

σ̇zr σ̇zθ σ̇zz

⎤
⎦

ê basis

+ [W] · [σ] − [σ] · [W] .

If this is equated to the corresponding expression for σ̇ from the Problem 5.9, there follows⎡
⎣ σ̇rr σ̇rθ σ̇rz

σ̇θr σ̇θθ σ̇θz

σ̇zr σ̇zθ σ̇zz

⎤
⎦

ê basis

=
⎡
⎣ σ̇rr σ̇rθ σ̇rz

σ̇θr σ̇θθ σ̇θz

σ̇zr σ̇zθ σ̇zz

⎤
⎦

e basis

− [Ŵ] · [σ] + [σ] · [Ŵ] .

These are the components of the Jaumann rate of stress in cylindrical coordinates. For
example,

�
σ zz = σ̇zz − Ŵzkσkz + σzkŴkz ,

with sum on k over r, θ, z. This gives

�
σ zz = σ̇zz + 2σrzŴrz − 2σzθ Ŵzθ ,

i.e.,

�
σ zz = σ̇zz + σrz

(
∂vr

∂z
− ∂vz

∂r

)
+ σzθ

(
∂vθ

∂z
− 1

r
∂vz

∂θ

)
.

Similarly,

�
σ zθ = σ̇zθ − Ŵzkσkθ + σzkŴkθ ,

which gives

�
σ zθ = σ̇zθ + σrθ Ŵrz − σzr Ŵθr − (σθθ − σzz)Ŵzθ ,

i.e.,

�
σ zθ = σ̇zθ + 1

2
σrθ

(
∂vr

∂z
− ∂vz

∂r

)
+ 1

2
σzr

(
1
r
∂vr

∂θ
− ∂vθ

∂r

)

+ 1
2

(σθθ − σzz)
(
∂vθ

∂z
− 1

r
∂vz

∂θ

)
.
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CHAPTER 6

Problem 6.1. The equation of state for n moles of an ideal gas is

pV = nRT ,

where R = 8.314 J/K is the universal gas constant, p is the pressure, V is the volume, and
T is the temperature. Assume that the specific heat at constant volume cv is constant.

(a) Derive the expression for the corresponding Helmholtz free energy φ = φ(V,T),
and the entropy s = s(V,T). Assume that φ(V0,T0) = −T0s0, so that internal energy
u vanishes in the reference state.

(b) Use the obtained results for φ(V,T) and s(V,T), and the relationship φ = u − TS,
to derive an expression for the internal energy u = u(T). Confirm the result by an
independent derivation starting from the energy equation.

(c) Show that

cp − cv = nR .

(d) Derive the expression for the enthalpy by using the connection h = u + pV. Confirm
the result by starting from the differential expression

dh = Vdp + Tds .

(e) Show that

dT
T

= dp
p

+ dV
V
.

(f) Derive the expressions for the coefficient of thermal expansion α and the compress-
ibility coefficient β of an ideal gas.

Solution: (a) We start from

p = nRT
V

= − ∂φ
∂V

,

where φ is the free energy within n moles. The integration gives

φ = −nRT ln
V
V0

+ φ̃(T) ,

where φ̃(T) is the integration function. The corresponding entropy of n moles is

s = − ∂φ
∂T

= nR ln
V
V0

− dφ̃
dT
.

The specific heat for n moles is

cv = T
∂s
∂T

= −T
d2φ̃

dT2
,

which is assumed to be a given constant cv . Upon integration, we find

d2φ̃

dT2
= −cv

T
⇒ dφ̃

dT
= −cv ln

T
T0

− s0 ,
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i.e.,

φ̃(T) = −cvT ln
T
T0

+ cv(T − T0) − s0T .

Consequently,

φ = −nRT ln
V
V0

+ cv

(
T − T0 − T ln

T
T0

)
− s0T ,

s = nR ln
V
V0

+ cv ln
T
T0

+ s0 .

(b) By substituting the above expressions for φ and s into u = φ + Ts, we readily find that

u = cv(T − T0) .

Remarkably, this is a function of temperature alone. An independent derivation of this
result begins with the energy equation

du = −pdV + Tds .

From the entropy expression from part (a), we have

ds = nR
dV
V

+ cv
dT
T
,

i.e.,

Tds = nRT
dV
V

+ cvdT = pV
dV
V

+ cvdT .

By substituting this into the energy equation, we obtain

du = cvdT ⇒ u = cv(T − T0) .

(c) Since V = nRT/p, the entropy expression can be written as

s = nR ln
V
V0

+ cv ln
T
T0

+ s0 = nR ln
nRT
pV0

+ cv ln
T
T0

+ s0 .

This gives (
∂s
∂T

)
p

= nR
T

+ cv
1
T
,

and, therefore,

cp = T
(
∂s
∂T

)
p

= nR + cv ⇒ cp − cv = nR .

(d) Since h = u + pV, by substituting u = Cv(T − T0) and pV = nRT we obtain

h = cv(T − T0) + nRT = cp(T − T0) + (cp − cv)T0 ,

i.e.,

h = cp(T − T0) + nRT0 .
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An independent derivation proceeds from

dh = Vdp + Tds ,

and

Tds = pdV + cvdT .

It follows that

dh = d(pV) + cvdT = d(nRT) + cvdT = (nR + cv)dT ,

i.e.,

dh = cpdT ⇒ h = cp(T − T0) + nRT0 .

(e) By taking a differential of pV = nRT, we have

pdV + Vdp = nRdT .

Therefore, upon the division with pV = nRT,

dp
p

+ dV
V

= dT
T
.

(f) From pV = nRT, we have V = nRT/p, and

α = 1
V

(
∂V
∂T

)
p

= 1
T
, β = − 1

V

(
∂V
∂p

)
T

= 1
p
.

Problem 6.2. A total of n moles of an ideal gas occupying the volume V0 at initial temper-
ature T0 is isentropically (reversibly and adiabatically) compressed to a final volume V.

(a) Derive an expression for the corresponding temperature T.
(b) Derive an expression for the corresponding pressure p.
(c) Show that along an isentropic path

pVγ = const., γ = cp

cv
.

Solution: (a) For an isentropic process the entropy remains constant, i.e.,

s = nR ln
V
V0

+ cv ln
T
T0

+ s0 = s0 .

Thus,

nR
cv

ln
V
V0

+ ln
T
T0

= 0 ,

which gives

T = T0

(
V0

V

)nR/cv

.

(b) Since

T = pV
nR

, T0 = p0V0

nR
,
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the substitution into the above result for T gives

p
p0

=
(

V0

V

)1+nR/cv

=
(

V0

V

)cp/cv

.

(c) From the result in part (c), we recognize that

pVcp/cv = p0Vcp/cv
0 ,

i.e.,

pVγ = const., γ = cp

cv
.

Problem 6.3. One mole of Ni initially at T0 = 298 K and p0 = 1 atm is taken through an
isobaric process to temperature T1 = 800 K. Calculate the corresponding change in:

(a) molar volume V1 − V0, by using a linear approximation V(p0,T) = V(p0,T0)[1 +
α(T − T0)], α = const;

(b) enthalpy h1 − h0;
(c) entropy s1 − s0;
(d) Gibbs energy g1 − g0.

The process is continued with one mole of Ni at T1 = 800 K by isothermal compression
from p1 = 1 atm to p2 = 1000 atm. Calculate the corresponding change in:

(e) molar volume V2 − V1, by using a linear approximation V(p,T1) = V(p1,T1)[1 −
β(p − p1)], β = const;

(f) Gibbs energy g2 − g1;
(g) entropy s2 − s1;
(h) enthalpy h2 − h1.

THERMODYNAMIC DATA FOR ONE MOLE OF NICKEL:

cp = a + bT, a = 16.99 J/K, b = 2.95 × 10−2 J/K2, T ∈ [298 − 1726] K,

�s0
f = 2.42 cal/K (not needed) at T = 1726 K,

α = 4 × 10−5 K−1, β = 1.5 × 10−6 atm−1,

s0
298 = s(1 atm, 298 K) = 7.14 cal/K,

V0
298 = V(1 atm, 298 K) = 6.57 cm3.

Solution: (a) From the given volume-temperature expression, we calculate

V1 = V(p0,T1) = V(p0,T0)[1 + α(T1 − T0)] = · · · = 6.7 cm3 ,

so that V1 − V0 = 0.13 cm3.
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(b) Along an isobaric path, p = const., and dh = cpdT. Thus,

h1 − h0 =
∫ T1

T0

cp(T)dT =
∫ T1

T0

(a + bT)dT .

This gives

h1 − h0 = a(T1 − T0) + 1
2

b(T2
1 − T2

0 ) = · · · = 16, 659 J .

(c) Along an isobaric path Tds = cpdT, so that

s1 − s0 =
∫ T1

T0

cp(T)
T

dT =
∫ T1

T0

( a
T

+ b
)

dT .

This gives

s1 − s0 = a ln
T1

T0
+ b(T1 − T0) = · · · = 31.59 J/K .

(d) Along an isobaric path dg = −sdT, so that

g1 − g0 = −
∫ T1

T0

s(T) dT = −
∫ T1

T0

[
a ln

T
T0

+ b(T − T0)
]

dT − s0(T1 − T0) .

This gives

g1 − g0 = −
[

a
(

T1 ln
T1

T0
− T1

)
+ aT0 + 1

2
b(T1 − T0)2

]
− s0(T1 − T0) ,

which is equal to g1 − g0 = −23, 605 J.
(e) The volume change is V2 − V1 = V(p2,T1) − V(p1,T1), where

V(p2,T1) = V(p1,T1)[1 − β(p2 − p1)] = · · · = 6.69 cm3 .

Thus, V2 − V1 = −0.01 cm3.
(f) During an isothermal path dg = Vdp, which gives

g2 − g1 =
∫ p2

p1

V(p) dp =
∫ P2

p1

V1[1 − β(p − p1)]dp ,

i.e.,

g2 − g1 = V1

[
(p2 − p1) − 1

2
β(p2 − p1)2

]
= · · · = 677.52 J .

(f) During an isothermal path, T1ds = l pdp = −αT1Vdp, which gives

ds = −αVdp = −αdg .

Thus,

s2 − s1 = −α(g2 − g1) = · · · = −0.0271 J/K .
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(h) Since

dh = (1 − αT1)Vdp = (1 − αT1)dg = dg + T1ds ,

we obtain

h2 − h1 = g2 − g1 + T1(s2 − s1) = · · · = 655.84 J .

Problem 6.4. Derive thermoelastic potentials for uniaxial stress state.

Solution: For the uniaxial state of stress

σi j = σ δi1δ j1 , σi jσi j = σ 2 , σkk = σ .
The corresponding thermodynamic potentials are obtained from the general expressions
listed in the text. The following are the results, expressed in terms of different sets of
independent variables.

u(σ, s) = 1
2ES

σ 2 − T0

2c0
p

(s − s0)2 + T0(s − s0) ,

u(σ,T) = 1
2ET

σ 2 + α0

3
Tσ + c0

p

2T0
(T2 − T2

0 ) ,

φ(σ, s) = 1
2ES

σ 2 + α0T0

3c0
p

sσ − T0

2c0
p

(s2 − s2
0 ) − T0s0 ,

φ(σ,T) = 1
2ET

σ 2 − c0
p

2T0
(T − T0)2 − s0T ,

g(σ, s) = − 1
2ES

σ 2 + α0T0

3c0
p

s0σ − T0

2c0
p

(s2 − s2
0 ) − T0s0 ,

g(σ,T) = − 1
2ET

σ 2 − α0

3
(T − T0)σ − c0

p

2T0
(T − T0)2 − s0T ,

h(σ, s) = − 1
2ES

σ 2 − α0T0

3c0
p

(s − s0)σ + T0

2c0
p

(s − s0)2 + T0(s − s0) ,

h(σ,T) = − 1
2ET

σ 2 + α0

3
T0σ + c0

p

2T0
(T2 − T2

0 ) .

The corresponding thermoelastic constitutive equations are

ei j = σ

2µ

(
δi1δ j1 − νT

1 + νT
δi j

)
+ α0

3
(T − T0)δi j ,
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or

ei j = σ

2µ

(
δi1δ j1 − νS

1 + νS
δi j

)
+ α0T0

3c0
p

(s − s0)δi j ,

and

s − s0 = α0

3
σ + c0

p

T0
(T − T0) .

Problem 6.5. Derive the thermoelastic potentials for the state of spherical stress.

Solution: For the spherical state of stress

σi j = σ δi j , σi jσi j = 3σ 2 , σkk = 3σ .

The thermodynamic potentials are found to be

u(σ, s) = 1
2κS

σ 2 − T0

2c0
p

(s − s0)2 + T0(s − s0) ,

u(σ,T) = 1
2κT

σ 2 + α0 Tσ + c0
p

2T0
(T2 − T2

0 ) ,

φ(σ, s) = 1
2κS

σ 2 + α0T0

c0
p

sσ − T0

2c0
p

(s2 − s2
0 ) − T0s0 ,

φ(σ,T) = 1
2κT

σ 2 − c0
p

2T0
(T − T0)2 − s0T

g(σ, s) = − 1
2κS

σ 2 + α0T0

c0
p

s0σ − T0

2c0
p

(s2 − s2
0 ) − T0s0 ,

g(σ,T) = − 1
2κT

σ 2 − α0(T − T0)σ − c0
p

2T0
(T − T0)2 − s0T ,

h(σ, s) = − 1
2κS

σ 2 − α0T0

c0
p

(s − s0)σ + T0

2c0
p

(s − s0)2 + T0(s − s0) ,

h(σ,T) = − 1
2κT

σ 2 + α0 T0σ + c0
p

2T0
(T2 − T2

0 ) .

The corresponding constitutive equations are

e = σ

3κT
+ α0

3
(T − T0) , or e = σ

3κS
+ α0T0

3c0
p

(s − s0) ,

and

s − s0 = α0 σ + c0
p

T0
(T − T0) .
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Problem 6.6. For a binary solution (components A and B dissolved in one another at a
given pressure), the molar enthalpy of solution is

Hm = XAHA
m + XBHB

m + ωXAXB ,

where HA
m and HB

m are the (arbitrary) molar enthalpies of pure Aand B in their reference
states, and XA and XB are the molar concentrations of Aand B. In the above equation,

Hmix
m = ωXAXB ,

is the enthalpy of mixing. The parameter ω characterizes the interaction of components
(atoms) Aand B. Ifω = 0, the solution is referred to as an ideal solution. Ifω = const. 
= 0,
the solution is referred to as a regular solution. If ω = ω(T), the solution is a nonregular
solution.

(a) Consider a regular solution. Using an expression for the molar entropy

Sm = XASA
m + XBSB

m − R(XA ln XA + XB ln XB) ,

derive the corresponding expression for the molar Gibbs energy Gm. Denote the
molar Gibbs energies of pure Aand B by GA

m and GB
m.

(b) Derive the corresponding chemical potentials µA and µB.
(c) Verify that Gm = XAµA + XBµB.

Solution: (a) The molar Gibbs energy is

Gm = Hm − TSm .

The substitution of the expressions for Hm and Sm gives

Gm = XAGA
m + XBGB

m + RT(XA ln XA + XB ln XB) + ωXAXB ,

where GA
m = HA

m − TSA
m and GB

m = HB
m − TSB

m are the molar Gibbs energies of pure com-
ponents Aand B.
(b) It was derived in the text, see (6.250) and (6.251), that the chemical potentials of a
binary system are

µA = Gm − XB
dGm

dXB
,

µB = Gm + (1 − XB)
dGm

dXB
.

For the regular solution with the molar Gibbs energy as derived in part (a), we have

dGm

dXB
= GB

m − GA
m + ω(1 − 2XB) + RT ln

XB

1 − XB
.

Thus, we obtain

µA = GA
m + RT ln XA + ωX2

B ,

µB = GB
m + RT ln XB + ωX2

A .
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(c) The relationship

Gm = XAµA + XBµB

follows by inspection, having in mind that

XAX2
B + XBX2

A = XAXB(XA + XB) = XAXB .

CHAPTER 7

Problem 7.1. Show that the general constitutive expression for isotropic Cauchy elastic
material is σ = h(V), where h is an isotropic function of its argument.

Solution: For an arbitrary anisotropic Cauchy elastic material, the stress response is given
by (7.14), i.e.,

σ = R · h(U) · RT .

Since the right and left stretch tensors are related by U = RT · V · R, the above becomes

σ = R · h(RT · V · R) · RT .

If the material is elastically isotropic, the tensor function h is an isotropic function of its
argument, so that

h(RT · V · R) = RT · h(V) · R .

By substituting this into the previous equation, we obtain the desired result

σ = h(V) .

Problem 7.2. If =  (B) is an isotropic function of B, show that B commutes with ∂ /∂B,
and that principal directions of σ are parallel to those of B.

Solution: Since  =  (B) is an isotropic function, it can be expressed as

 =  (IB, I IB, I I IB) ,

where

IB = tr B , I IB = 1
2

[
tr(B2) − (tr B)2] , I I IB = det B .

Recalling the results from Problem 1.10, we have

∂ IB

∂B
= I,

∂ I IB

∂B
= B − IBI,

∂ I I IB

∂B
= B2 − IBB − I IBI .

Thus,

∂ 

∂B
= ∂ 

∂ IB
I + ∂ 

∂ I IB
(B − IBI) + ∂ 

∂ I I IB
(B2 − IBB − I IBI) ,

i.e.,

∂ 

∂B
= b0I + b1B + b2B2 ,
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F

R

Q

U

U

R

F * σ

σ

σ

σ*

*
Figure 7-1. Schematics of the deformation process
which involves the application of R · U to unrotated
and rotated initial configuration. Because of elastic
anisotropy the required stresses to produce the defor-
mation in two cases are different.

where bi are scalar functions of the invariants of B. Since B2 has parallel principal directions
to those of B, the above equation shows that the gradient ∂ /∂B also has its principal
directions parallel to those of B. Consequently, ∂ /∂B commutes with B, so that

B · ∂ 
∂B

= ∂ 

∂B
· B .

Since, from (7.28),

σ = 1
(det B)1/2

(
B · ∂ 

∂B
+ ∂ 

∂B
· B
)
,

we conclude that the principal directions of the Cauchy stress σ are parallel to those of B
(and thus also to those of the stretch tensor V = B1/2).

Problem 7.3. Consider an anisotropic Cauchy-elastic material in its undeformed configu-
ration. If this is subjected to deformation gradient F = R · U, the stress response is

σ = R · f(U) · RT ,

where f is the second-order tensor function, whose representation depends on the type of
elastic anisotropy of the material.

(a) Find the stress response if the material is rotated by Q prior to application of R · U,
i.e., find the stress response σ∗ corresponding to the deformation gradient F∗ = R · U · Q
(Fig. 7-1).
(b) If material is isotropic, the rotation Q prior to U does not affect the stress response.
What condition does this impose on the function f?

Solution: (a) Since

F∗ = R · U · Q = R · Q · QT · U · Q ,

and F∗ = R∗ · U∗, we conclude that

U∗ = QT · U · Q , R∗ = R · Q .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

696 Problems 7.3–7.4

F

R

U

U

R

F *

σ

σ

σ

σ*

*

*

*

Figure 7-2. Schematics of the deformation process which il-
lustrates the stretch tensors U and U∗ = QT · U · Q. Relative
to the fixed coordinate frame, the principal directions of U∗
are obtained from those of U by the rotation Q. Their principal
values are the same.

This ensures that U∗ is symmetric. The schematics of deformation process involving U∗

and R∗ is shown in Fig. 7-2. Thus, the stress response corresponding to F∗ is

σ∗ = R∗ · f(U∗) · R∗ T = R · Q · f(QT · U · Q) · QT · RT .

(b) If the stress response is unaffected by rotation Q prior to the application of R · U
(isotropic materials), then the condition σ∗ = σ gives

R · Q · f(QT · U · Q) · QT · RT = R · f(U) · RT ,

i.e.,

Q · f(QT · U · Q) · QT = f(U) .

Consequently,

f(QT · U · Q) = QT · f(U) · Q .

A tensor function f that satisfies this condition for any orthogonal Q is said to be an
isotropic tensor function of its argument U. It can be shown that such a function can be
expressed as

f(U) = a0I + a1U + a2U2 ,

where ai are scalar functions of the principal invariants of U.

Problem 7.4. In the theory of Saint-Venant and Kirchhoff for large deformation of com-
pressible elastic material it is assumed that the strain energy is

 = 1
2

(λ+ 2µ)I2
E + 2µI IE ,

where IE and I IE are the invariants of the Green (Lagrangian) strain E. Derive the cor-
responding expressions for the second Piola–Kirchhoff and the Cauchy stress tensors.

In the derivation, recall that IE = (IB − 3)/2 and that by the Cayley–Hamilton theorem

B2 = IBB + I IBI + I I IBB−1 .
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Solution: We start with

S = ∂ 

∂E
= (λ+ 2µ)IE

∂ IE

∂E
+ 2µ

∂ I IE

∂E
.

Since
∂ IE

∂E
= I ,

∂ I IE

∂E
= E − IEI ,

we obtain

S = λIEI + 2µE .

To derive an expression for the Cauchy stress we substitute above into the expression

σ = 1
det F

F · S · FT .

By observing the connection 2F · E · FT = B2 − B, and by using the Cayley–Hamilton
theorem to eliminate B2, we obtain

σ = I I I−1/2
B

{
µI IBI +

[
1
2
λ(IB − 3) + µ(IB − 1)

]
B + µI I IBB−1

}
.

Problem 7.5. An initially rectangular parallelepiped (0 ≤ X1 ≤ a, 0 ≤ X2 ≤ b, 0 ≤ X3 ≤ c)
of a compressible finite elastic material is subject to the homogeneous deformation

x1 = X1 + k1 X2 , x2 = X2 + k2 X1 , x3 = X3 ,

where k1 and k2 are constants.

(a) Show that k1k2 < 1.
(b) If the constitutive law is σ = b0I + b1B + b2B2, find all stress components and show

that σ11 − σ22 = (k1 − k2)σ12.

Solution: (a) The deformation gradient is

F =
⎡
⎣ 1 k1 0

k2 1 0
0 0 1

⎤
⎦ , det F = 1 − k1k2 .

Because det F > 0, we conclude that k1k2 < 1.
(b) The left Cauchy–Green deformation tensor is

B = F · FT =
⎡
⎣ 1 + k2

1 k1 + k2 0
k1 + k2 1 + k2

2 0
0 0 1

⎤
⎦ ,

By substituting into σ = b0I + b1B + b2B2, it readily follows that

σ11 = b0 + b1(1 + k2
1) + b2[(1 + k2

1)2 + (k1 + k2)2] ,

σ22 = b0 + b1(1 + k2
2) + b2[(1 + k2

2)2 + (k1 + k2)2] ,

σ12 = b1(k1 + k2) + b2[(k1 + k2)(2 + k2
1 + k2

2)] ,

σ33 = b0 + b1 + b2 , σ13 = σ23 = 0 .

Thus, by inspection, σ11 − σ22 = (k1 − k2)σ12.
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Problem 7.6. Consider a rectangular block under tensile stress in X1 direction (simple
extension test), which causes the stretch in that direction of amount λ1. If the material of
the block is an incompressible Mooney–Rivlin rubber with

 = 1
2
µ

[(
1
2

+ β
)

(IB − 3) −
(

1
2

− β
)

(I IB + 3)
]
,

whereµ > 0 and −1/2 ≤ β ≤ 1/2 are material constants, find the stress required to produce
this deformation.

Solution: The deformation is described by

x1 = λ1 X1 , x2 = λ2 X2 , x3 = λ2 X3 ,

with the corresponding deformation gradient

F =
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ2

⎤
⎦ .

Note that because of elastic isotropy λ3 = λ2. Since material is also incompressible, we
have det F = λ1λ

2
2 = 1, so that λ2 = 1/

√
λ1. The left Cauchy–Green deformation tensor

and its inverse are thus

B =
⎡
⎣λ2

1 0 0
0 1/λ1 0
0 0 1/λ1

⎤
⎦ , B−1 =

⎡
⎣1/λ2

1 0 0
0 λ1 0
0 0 λ1

⎤
⎦ .

The finite elasticity constitutive law for an incompressible material is

σ = −p0I + 2
[(
∂ 

∂ IB

)
B +

(
∂ 

∂ I IB

)
B−1

]
,

where p0 is the hydrostatic pressure. In view of the given strain energy representation, this
gives

σ = −p0I + µ
[(

1
2

+ β
)

B −
(

1
2

− β
)

B−1
]
.

The normal stress components are

σ11 = −p0 + µ
[(

1
2

+ β
)
λ2

1 −
(

1
2

− β
)

1
λ2

1

]
,

σ22 = σ33 = −p0 + µ
[(

1
2

+ β
)

1
λ1

−
(

1
2

− β
)
λ1

]
= 0 .

The last expression specifies the pressure

p0 = µ
[(

1
2

+ β
)

1
λ1

−
(

1
2

− β
)
λ1

]
.
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Consequently, the required longitudinal stress is

σ11 = µλ
3
1 − 1
λ1

[
1
2

+ β +
(

1
2

− β
)

1
λ1

]
.

Problem 7.7. Determine the stress and strain state in a rectangular block made from a
Mooney–Rivlin material under simple shear of amount ϕ in the direction X1.

Solution: The deformation is described by

x1 = X1 + kX2 , x2 = X2 , x3 = X3 ,

where k = tanϕ. The corresponding deformation gradient is

F =
⎡
⎣1 k 0

0 1 0
0 0 1

⎤
⎦ .

The right Cauchy–Green deformation tensor and the Lagrangian strain are accordingly

C = FT · F =
⎡
⎣ 1 k 0

k 1 + k2 0
0 0 1

⎤
⎦ , E = 1

2
(C − I) = 1

2

⎡
⎣ 0 k 0

k k2 0
0 0 0

⎤
⎦ .

The left Cauchy–Green deformation tensor and its inverse are

B = F · FT =
⎡
⎣1 + k2 k 0

k 1 0
0 0 1

⎤
⎦ , B−1 =

⎡
⎣ 1 −k 0

−k 1 + k2 0
0 0 1

⎤
⎦ .

The finite elasticity constitutive law for an incompressible material is

σ = −p0I + 2
[(
∂ 

∂ IB

)
B +

(
∂ 

∂ I IB

)
B−1

]
,

where p0 is the pressure. Since for the Mooney–Rivlin material

 = 1
2
µ

[(
1
2

+ β
)

(IB − 3) −
(

1
2

− β
)

(I IB + 3)
]
,

we obtain

σ = −p0I + µ
[(

1
2

+ β
)

B −
(

1
2

− β
)

B−1
]
.

The nonvanishing stress components are thus

σ11 = −p0 + 2βµ+
(

1
2

+ β
)
µk2 , σ22 = −p0 + 2βµ−

(
1
2

− β
)
µk2 ,

σ33 = −p0 + 2βµ , σ12 = µk .

Note that σ11 − σ22 = kσ12, regardless of the material parameters µ and β. If the planes
x3 = const. are stress free, we have σ33 = 0, which specifies the pressure

p0 = 2βµ .
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The nonvanishing stress components in this case are consequently

σ11 =
(

1
2

+ β
)
µk2 , σ22 = −

(
1
2

− β
)
µk2 , σ12 = µk .

Because E12 = k, we have σ12 = µE12, so thatµ can be interpreted as the generalized shear
modulus. The presence of normal stress due to simple shear of a nonlinear elastic solid is
known as the Poynting effect.

Problem 7.8. An isotropic compressible elastic material is characterized by the Blatz–Ko
strain energy function

 = 1
2
µ
(

2I I I1/2
B − I IBI I I−1

B − 5
)
,

where µ is the material parameter, and

I IB = 1
2

[
tr(B2) − (tr B)2] , I I IB = det B .

Derive the corresponding constitutive equation for the Cauchy stress tensor in terms of µ
and B.

Solution: From (7.31) of Chapter 7 we have

(det F)σ=2
[(

I I IB
∂ 

∂ I I IB
+ I IB

∂ 

∂ I IB

)
I+

(
∂ 

∂ IB

)
B+

(
I I IB

∂ 

∂ I IB

)
B−1

]
.

The strain energy gradients with respect to its invariants for the Blatz–Ko energy function
are

∂ 

∂ IB
= 0 ,

∂ 

∂ I IB
= −1

2
µ I I I−1

B ,
∂ 

∂ I I IB
= 1

2
µ
(

I I I−1/2
B + I IB I I I−2

B

)
.

Thus

(det F)σ = µ
(

I I I1/2
B I − B−1

)
.

Since det F = I I I1/2
B , the above reduces to

σ = µ
(

I − I I I−1/2
B B−1

)
.

Problem 7.9. The incompressible Reiner–Rivlin fluid is defined by the constitutive
equation

σ = −pI + a1(I ID, I I ID)D + a2(I ID, I I ID)D2 ,

where p is an arbitrary pressure, and a1, a2 are given scalar functions of the indicated
invariants of D. Derive the expressions for the stress components if the fluid is undergoing
a simple shearing flow, with velocity

v1 = kx2 , v2 = v3 = 0 , (k = const.).
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Solution: The velocity gradient, the rate of deformation tensor and its square are, respec-
tively,

L =
⎡
⎣0 k 0

0 0 0
0 0 0

⎤
⎦ , D =

⎡
⎣ 0 k/2 0

k/2 0 0
0 0 0

⎤
⎦ , D2 =

⎡
⎣k2/4 0 0

0 k2/4 0
0 0 0

⎤
⎦ .

The corresponding stress is

σ =
⎡
⎣−p + a2k2/4 a1k/2 0

a1k/2 −p + a2k2/4 0
0 0 −p

⎤
⎦ .

Note that

ID = tr D = 0, I ID = 1
2

[
tr(D2) − (tr D)2] = k2

4
, I I ID = det D = 0 .

If a2 = 0, we obtain the stress response for an incompressible Newtonian fluid, σ =
−pI + a1D.

Problem 7.10. If  =  (Ei j ) is the strain energy function, the complementary energy
 ∗ =  ∗(Si j ) is defined such that

 (Ei j ) + ∗(Si j ) = Si j Ei j .

Thus, from

∂ 

∂Ei j
dEi j + ∂ ∗

∂Si j
dSi j = Si j dEi j + Ei j dSi j ,

we obtain

Si j = ∂ 

∂Ei j
, Ei j = ∂ ∗

∂Si j
.

If Ei j is a homogeneous function of stress of degree n, prove that

 = n
n + 1

Si j Ei j .

Solution: Since Ei j is a homogeneous function of stress of degree n, and since Ei j =
∂ ∗/∂Si j , we conclude that  ∗(Si j ) must be a homogeneous function of degree n + 1.
Consequently,

Si j
∂ ∗

∂Si j
= (n + 1) ∗ ,

i.e.,

 ∗ = 1
n + 1

Si j
∂ ∗

∂Si j
= 1

n + 1
Si j Ei j .

Since

 = Si j Ei j − ∗ ,
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we obtain

 = n
n + 1

Si j Ei j .

If n = 1, we recover the result of linear theory

 =  ∗ = 1
2

Si j Ei j .

Problem 7.11. Consider a pressurized spherical balloon of the initial (zero pressure) radius
R0 and initial thickness t0 � R0. The elastic strain energy function of the incompressible
material of the balloon is

 =
3∑

k=1

µk

αk

(
λ
αk
1 + λαk

2 + λαk
3 − 3

)
,

where µk and αk are material parameters. Derive the relationship between the internal
(inflation) pressure p and the circumferential stretch ratio λ, assuming a spherical mode
of the inflation process.

Solution: By spherical symmetry, the stretch ratios are λ1 = λ2 = λ = R/R0 and λ3 =
1/λ2 = t/t0, the latter being the stretch ratio in the direction perpendicular to the surface
of the balloon. The radius and the thickness of the balloon in the deformed configuration
are R and t , respectively. The circumferential stress components are thus

σi = −p0 + λi
∂ 

∂λi
, (i = 1, 2),

whereas in the direction perpendicular to the surface of the balloon,

0 = −p0 + λ3
∂ 

∂λ3
⇒ p0 =

3∑
k=1

µkλ
−2αk .

Consequently,

σ1 = σ2 = σ =
3∑

k=1

µk
(
λαk − λ−2αk

)
.

Imagining balloon to be cut into two halves, the equilibrium condition gives

2Rπ tσ = R2πp ⇒ p = 2
t
R
σ .

Since by the incompressibility constraint t/t0 = (R0/R)2 = λ−2, we have t/R = (t0/R0)λ−3

and, therefore,

p = 2
t0
R0

3∑
k=1

µk
(
λαk−3 − λ−2αk−3) .

Problem 7.12. Consider a tension–torsion–inflation test of an elastic hollow cylinder. The
initial length of the tube is L, and its initial inner and outer radii are R1 and R2. The tube
is deformed such that its planar cross sections remain planar, rotating around the tube’s
longitudinal axis. The angle of rotation of the end Z = L of the tube, relative to the end
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Z = 0, is φ. The deformed length of the tube is l, and its deformed radii become r1 and r2.
The stretch ratio in the longitudinal direction is l/L.

(a) Write down the deformation mapping in cylindrical coordinates, and determine the
corresponding components of the deformation gradient, the Cauchy–Green defor-
mation tensors, and the Lagrangian strain.

(b) Specialize the results in the case of an incompressible isotropic material.
(c) If the strain energy is of the Mooney–Rivlin type, determine the corresponding stress

components within the tube.

Solution: (a) The deformation mapping is described by

r = r(R) ,

θ = )+ Z
L
φ ,

z = l
L

Z ,

where r, θ, zare the cylindrical coordinates in the deformed, and R,), Zin the undeformed
state. Since, from Problem 4.16, the components of the deformation gradient in cylindrical
coordinates are

[Fi J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂r

∂R

1

R

∂r

∂)

∂r

∂Z

r
∂θ

∂R

r

R

∂θ

∂)
r
∂θ

∂Z

∂z

∂R

1

R

∂z

∂)

∂z

∂Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we obtain

[Fi J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dr

dR
0 0

0
r

R

rφ

L

0 0
l

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The right Cauchy–Green deformation tensor C = FT · F has the components

[CI J ] = [F T
Ik] · [FkJ ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dr

dR
0 0

0
r

R
0

0
rφ

L

l

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dr

dR
0 0

0
r

R

rφ

L

0 0
l

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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This gives

[CI J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( dr

dR

)2
0 0

0
r2

R2

r2φ

RL

0
r2φ

RL

r2φ2 + l2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, the physical components of the Lagrangian strain are

[EI J ] = 1
2

[CI J − δI J ] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( dr

dR

)2
− 1 0 0

0
r2

R2
− 1

r2φ

RL

0
r2φ

RL

r2φ2 + l2

L2
− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The left Cauchy–Green deformation tensor B = F · FT has the components

[Bi j ] = [Fi K] · [F T
Kj ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( dr

dR

)2
0 0

0
r2

R2
+ r2φ2

L2

rφl

L2

0
rφl

L2

l2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This has an inverse (see Problem 1.14)

[B−1
i j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(dR

dr

)2
0 0

0
R2

r2
− R2φ

rl

0 − R2φ

rl

L2

l2
+ R2φ2

l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(b) If material is incompressible, det F = 1. This gives

dr
dR

r
R

l
L

= 1 ⇒ r2(R) = r2(R1) + L
l

(R2 − R2
1) .

If material is isotropic, the stretch ratios in r and θ directions due to stretching in the z
direction must be the same, i.e.,

dr
dR

= r
R

⇒ r(R) = r(R1)
R1

R .
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If material is both incompressible and isotropic, then

r
R

=
√

L
l
.

In this case,

[Fi J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
L

l
0 0

0

√
L

l

Rφ√
Ll

0 0
l

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[EI J ] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

l
− 1 0 0

0
L

l
− 1

Rφ

l

0
Rφ

l

R2φ2

Ll
+ l2

L2
− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The components of the left Cauchy–Green deformation tensor and its inverse are

[Bi j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

l
0 0

0
L

l
+ R2φ2

Ll

√
l

L

Rφ

L

0

√
l

L

Rφ

L

l2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[B−1
i j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

L
0 0

0
l

L
− Rφ√

Ll

0 − Rφ√
Ll

L2

l2
+ R2φ2

l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(c) The Cauchy stress corresponding to the Mooney–Rivlin type elasticity is

σ = −p0(r)I + µ
[(

1
2

+ β
)

B −
(

1
2

− β
)

B−1
]
.
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In view of the physical components of B and B−1 from part (b), this gives for σrr and σθθ
stress components

σrr = −p0(r) + µ
(

1
2

+ β
)

L
l

− µ
(

1
2

− β
)

l
L
,

σθθ = −p0(r) + µ
(

1
2

+ β
)(

L
l

+ R2φ2

Ll

)
− µ

(
1
2

− β
)

l
L
.

Then,

dσrr

dr
= −dp0

dr
,

σrr − σθθ
r

= −µ
(

1
2

+ β
)

R
L
φ2

√
Ll
.

The only nontrivial equilibrium equation is

dσrr

dr
+ σrr − σθθ

r
= 0 .

Since

dp0

dr
= dp0

dR
dR
dr

= dp0

dR

√
l
L
,

the substitution in the above equation and integration gives

p0 = −µ
(

1
2

+ β
)

R2φ2

2Ll
− C = −µ

(
1
2

+ β
)

r2φ2

2L2
− C .

The integration constant C is arbitrary, but can be specified if one wants, for example, to
match the applied pressure on either inner or outer surface of the tube. The pressure on
other surface is then as given by the solution. The complete stress distribution within the
tube is

σrr = µ
[(

1
2

+ β
)(

L
l

+ r2φ2

2L2

)
−
(

1
2

− β
)

l
L

]
+ C ,

σθθ = µ
[(

1
2

+ β
)(

L
l

+ 3r2φ2

2L2

)
−
(

1
2

− β
)

l
L

]
+ C ,

σzz = µ
[(

1
2

+ β
)(

l2

L2
+ r2φ2

2L2

)
−
(

1
2

− β
)(

L2

l2
+ r2φ2

Ll

)]
+ C ,

σzθ = µ
[(

1
2

+ β
)

l
L

−
(

1
2

− β
)]

r
L

+ C .

Note the variation of σzz with radius r required to keep the cross sections planar. Also,
recall that the radial deformation is specified by r = √

L/ l R, so that inner and outer radii
become after deformation

r1 =
√

L
l

R1 , r2 =
√

L
l

R2 .
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Problem 7.13. Consider again a tension–torsion–inflation test of a cylindrical tube from
the previous problem. Derive the cylindrical components of the velocity gradient by using:

(a) the relationship, from Problem 4.17,

[L] =
[

Ḟi K F−1
Kj

]
+ [Ω] ,

(b) the velocity field and the relationship for [L] from Problem 4.15.

Solution: (a) The deformation gradient matrix and its inverse are

[Fi J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dr

dR
0 0

0
r

R

rφ

L

0 0
l

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, [F−1

i J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dR

dr
0 0

0
R

r
− Rφ

l

0 0
L

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Furthermore,

[Ḟi J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dṙ

dR
0 0

0
ṙ

R

ṙφ + r φ̇

L

0 0
l̇

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Consequently, upon the multiplication, we obtain

[Ḟi K][F−1
Kj ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dṙ

dr
0 0

0
ṙ

r

r φ̇

l

0 0
l̇

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since, from Problem 4.17,

[Ω] = θ̇
⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ , θ̇ = Z

L
φ̇ = z

l
φ̇ ,
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there follows

[L] =
[

Ḟi K F−1
Kj

]
+ [Ω] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dṙ

dr
−zφ̇

l
0

zφ̇

l

ṙ

r

r φ̇

l

0 0
l̇

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that for an incompressible material,

dṙ
dr

= −
(

ṙ
r

+ l̇
l

)
.

For an incompressible material that is also isotropic, r = √
L/ l R and

dṙ
dr

= ṙ
r

= −1
2

l̇
l
.

(b) The physical components of the velocity vector in the considered problem, expressed
in spatial coordinates, are

vr = ṙ ,

vθ = r θ̇ = r
z
l
φ̇ ,

vz = l̇
l

z .

If this is substituted into the expression for the velocity gradient from Problem 4.15, i.e.,

[L] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vr

∂r

1

r

∂vr

∂θ
− vθ

r

∂vr

∂z

∂vθ

∂r

1

r

∂vθ

∂θ
+ vr

r

∂vθ

∂z

∂vz

∂r

1

r

∂vz

∂θ

∂vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we recover the results from part (a).

Problem 7.14. Derive the components of the Jaumann rate of the Cauchy stress in cylin-
drical coordinates at a point of an isotropic cylindrical tube in a tension–torsion–inflation
test.

Solution: The nonvanishing physical components of the Cauchy stress tensor in the con-
sidered problem are ⎡

⎣σrr 0 0
0 σθθ σθz

0 σzθ σzz

⎤
⎦ .
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The Jaumann components are, by using the results from Problem 5.10,

[
�
σ] = [σ̇] − [Ŵ] · [σ] + [σ] · [Ŵ] .

By using the results from the previous problem,

[Ŵ] = [W] − [Ω] = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0
r φ̇

l

0 −r φ̇

l
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we obtain

[σ] · [Ŵ] − [Ŵ] · [σ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 −σzθ
1

2
(σθθ − σzz)

0
1

2
(σθθ − σzz) σzθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

r φ̇
l
,

which is, as expected, a symmetric traceless matrix. Thus, the nonvanishing Jaumann rates
of the Cauchy stress in cylindrical coordinates are

�
σ rr = σ̇rr ,

�
σ θθ = σ̇θθ − σzθ

r
l
φ̇ ,

�
σ zz = σ̇zz + σzθ

r
l
φ̇ ,

�
σ zθ = σ̇zθ + 1

2
(σθθ − σzz)

r
l
φ̇ .

This, of course, also follows directly from the general results of Problem 5.10 by substituting
there the velocity field vr = ṙ , vθ = rzφ̇/ l, vz = zl̇/ l.

In a tension–torsion test of a thin-wall tube, we may assume that σrr = σθθ = 0, and the
nonvanishing Jaumann rates of stress are

�
σ θθ = −σzθ

r
l
φ̇ ,

�
σ zz = σ̇zz + σzθ

r
l
φ̇ ,

�
σ zθ = σ̇zθ − 1

2
σzz

r
l
φ̇ .
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CHAPTER 8

Problem 8.1. The components of elastic moduli tensor of an isotropic material are

Ci jkl = λδi jδkl + 2µIi jkl .

This can be rewritten as

Ci jkl = 2µJi jkl + 3κKi jkl ,

where κ = λ+ 2µ/3, and

Ki jkl = 1
3
δi jδkl , Ji jkl = Ii jkl − Ki jkl .

The fourth-order unit tensor is Ii jkl = (δikδ jl + δilδ jk)/2. Show that the components of the
corresponding elastic compliance tensor are

Si jkl = 1
2µ

Ji jkl + 1
3κ

Ki jkl .

Solution: Evidently

Si jmnCmnkl = Ci jmnSmnkl = Ii jkl ,

because K : K = K, J : J = J, K : J = J : K = 0 (see Problem 1.11). Thus, the components
Si jkl , as given above, are the components of the inverse tensor of the elastic moduli tensor,
i.e., the components of the elastic compliance tensor.

Problem 8.2. The stress-strain relationships for a cubic crystal are

σ11 = c11e11 + c12(e22 + e33) ,

σ22 = c11e22 + c12(e33 + e11) ,

σ33 = c11e33 + c12(e11 + e22) ,

and

σ12 = 2c44e12 , σ23 = 2c44e23 , σ31 = 2c44e31 .

(a) Derive the inverse relationships expressing the strain components ei j in terms of stress
components σi j and the elastic constants ci j .

(b) Derive the relationships between c11, c12, c44 and E, ν, G (Young’s modulus, Poisson’s
ratio, shear modulus).

Solution: (a) First observe that

σkk = (c11 + 2c12)ekk , ekk = 1
c11 + 2c12

σkk .

Thus,

σ11 = (c11 − c12)e11 + c12ekk ,
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and

e11 = 1
c11 − c12

(
σ11 − c12

c11 + 2c12
σkk

)
.

Similar derivation proceeds to find the expressions for e22 and e33. For the shear strain we
have trivially e12 = σ12/2c44 and likewise for e23 and e31.

(b) Comparing

e11 = 1
E
σ11 − ν

E
(σ22 + σ33),

with

e11 = 1
c11 − c12

[(
1 − c12

c11 + 2c12

)
σ11 − c12

c11 + 2c12
(σ22 + σ33)

]
,

there follows

E = (c11 − c12)(c11 + 2c12)
c11 + c12

, ν = c12

c11 + c12
.

For the shear modulus we have G = c44.

Problem 8.3. For a thermally anisotropic elastic solid, the relationship between the in-
finitesimal thermal strain ei j and the temperature difference θ − θ0 is ei j = αi j (θ − θ0),
where αi j are the components of the second-order tensor of thermal coefficients.

(a) If (x1, x2) is a plane of thermal symmetry, derive the restrictions on αi j and write the
resulting matrix [αi j ].

(b) If (x2, x3) is also a plane of thermal symmetry, derive the additional restrictions on
αi j and write the resulting matrix [αi j ].

(c) If x3 is the axis of thermal transverse isotropy, derive the restrictions on αi j and write
the resulting matrix [αi j ].

(d) Write the matrix [αi j ] for thermally isotropic material.

Solution: (a) The symmetry transformation is

Q =
⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ .

The components are thus Qi j = δi j − 2δi3δ j3. Imposing the symmetry condition QT · α ·
Q = α, there follows α13 = α23 = 0, so that

α =
⎡
⎣α11 α12 0
α21 α22 0
0 0 α33

⎤
⎦ .
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V
S

Figure 8-1. An internal source of stress.

(b) In addition to symmetry transformation from part (a), we also have the symmetry
transformation Qi j = δi j − 2δi1δ j1. This leads to α21 = 0, and thus

α =
⎡
⎣α11 0 0

0 α22 0
0 0 α33

⎤
⎦ .

(c) In this case

Q =
⎡
⎣ cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1

⎤
⎦ .

Because transversely isotropic material is also orthotropic, begin with the matrix

α =
⎡
⎣α11 0 0

0 α22 0
0 0 α33

⎤
⎦ ,

and show that α11 = α22. Thus,

α =
⎡
⎣α11 0 0

0 α11 0
0 0 α33

⎤
⎦ .

(d) In the case of thermally isotropic material α11 = α22 = α33 = α, so that

α =
⎡
⎣α 0 0

0 α 0
0 0 α

⎤
⎦ .

Problem 8.4. For a purely internal source of stress, that has no associated body forces
or applied surface traction (Fig. 8-1), the volume average of each component of stress is
zero, i.e., ∫

V
σ dV = 0.

This, in turn, means that the net dilatation is zero. Prove the above.

Solution: Write σi j = ∂(σi�xj )/∂x�. This is true because the equilibrium equations for this
case are ∂σi�/∂x� = 0, and ∂x�/∂xj = δi�. Thus,∫

V
∂(σi�xj )/∂x� dV =

∫
S
σi�n�xj dS = 0,
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because the surface S is traction free. Noting that for a linear elastic body, the connection
between stress and strain is itself linear, σi j = Ci jklekl , we conclude that all components of
strain have vanishing average values, as well.

Problem 8.5. Given the stress distribution

σ =

⎡
⎢⎣

x2
1 x2 − 2

3 x3
2 σ12(x1, x2) 0

σ12(x1, x2) 1
3 x3

2 0

0 0 1
3 (x2

1 x2 − 1
3 x3

2 )

⎤
⎥⎦ ,

find σ12 so that the stress distribution is in equilibrium with zero body force, and that the
traction vector on the plane x1 = x2, with the unit normal n = {−1, 1, 0}/√2, is given by

Tn = 2
√

2
3

[
(−x3

1 + a3)e1 + (x3
1 − a3)e2

]
,

where a is a given constant.

Solution: With bi = 0, the equations of equilibrium are

∂σi j

∂xj
= 0 .

Thus,

∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3
= 2x1x2 + ∂σ12

∂x2
= 0,

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3
= ∂σ12

∂x1
+ x2

2 = 0,

and the third of the equilibrium equations vanishes identically. Now,

2x1x2 + ∂σ12

∂x2
= 0 → σ12 = −x1x2

2 + f (x1) ,

∂σ21

∂x1
+ x2

2 = 0 → σ21 = −x1x2
2 + g(x2) .

Consequently, f (x1) = g(x2) = C = const., and

σ =

⎡
⎢⎣

x2
1 x2 − 2

3 x3
2 −x1x2

2 + C 0

−x2
1 x2 + C 1

3 x3
2 0

0 0 1
3 (x2

1 x2 − 1
3 x3

2 )

⎤
⎥⎦ .

The unit normal of the plane x1 = x2 is n = ±{−1, 1, 0}/√2. Taking the plus sign, we obtain

Tn = σ · n = 1√
2

⎡
⎢⎣

− 4
3 x3

1 + C
4
3 x3

1 − C

0

⎤
⎥⎦ .

Therefore, by comparing with a given expression for Tn, we find C = 4a3/3, and

σ12 = −x1x2
2 + 4

3
a3 .
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Problem 8.6. Show that the isotropic Hooke’s law may be written as

σi j = 2µ
(

ei j + ν

1 − 2ν
ekkδi j

)
,

and hence derive the following form of the equilibrium equations for an elastic body in
terms of the displacements

µ

(
∇2ui + 1

1 − 2ν
∂2u j

∂xi∂xj

)
+ bi = 0.

Solution: By taking a trace of (8.13), i.e.,

ei j = 1
E

[(1 + ν)σi j − νσkkδi j ] ,

we obtain

ekk = 1 − 2ν
E

σkk .

Substituting this back in the original expression, there follows

σi j = 2µ
(

ei j + ν

1 − 2ν
ekkδi j

)
.

Since ei j = (ui, j + u j,i )/2, the above becomes

σi j = 2µ
[

1
2

(ui, j + u j,i ) + ν

1 − 2ν
uk,kδi j

]
.

When this is inserted in the equations of equilibrium,

σi j, j + bi = 0 ,

we obtain

µ

(
ui, j j + 1

1 − 2ν
u j,i j

)
+ bi = 0 ,

which is the desired expression.

Problem 8.7. Assume that the body force b per unit volume is derivable from a harmonic
potential function ϕ, so that

b = −∇ϕ , ∇2ϕ = 0 .

(a) Write the corresponding Beltrami–Michell compatibility equations.
(b) Show that the first invariant of stress tensor, σkk, is a harmonic function, i.e., ∇2σkk = 0.
(c) Show that each stress component σi j is a biharmonic function, i.e., ∇4σi j = 0.

Solution: The Beltrami–Michell equations of (8.84) are

σi j,kk + 1
1 + ν σkk,i j = − ν

1 − ν bk,kδi j − bi, j − bj,i .

Since b = −∇ϕ, we have

bi = −ϕ,i ⇒ bi, j = −ϕ,i j , bj,i = −ϕ, j i .
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l l

q

lq lq

y

x

h

h

Figure 9-1. A simply supported beam under uniform load-
ing of intensity q.

Thus, the Beltrami–Michell compatibility equations become

σi j,kk + 1
1 + ν σkk,i j = 2ϕ,i j .

(b) The contraction i = j of the above equation give

σi i,kk + 1
1 + ν σkk,i i = 2ϕ,i i .

Since

ϕ,i i = ∇2ϕ = 0 ,

we conclude that

σkk,i i = ∇2σkk = 0 ,

i.e., the first invariant of the stress tensor, σkk, is a harmonic function.
(c) By applying the Laplacian ∇2 = ∂2/∂xl∂xl derivative to the previously derived
Beltrami-Michell compatibility equations, there follows

σi j,kkll + 1
1 + ν σkk,i jll = 2ϕ,i jll .

But,

σkk,i jll = (σkk,ll),i j = 0 , ϕ,i jll = (ϕ,ll),i j = 0 ,

and we conclude that

σi j,kkll = 0 , ∇4σi j = 0 .

Thus each stress component σi j is a biharmonic function.

CHAPTER 9

Problem 9.1. For a simply supported beam of unit thickness, loaded with uniformly dis-
tributed load q over its top side, the airy stress function is

φ = − 3q
4h3

(
1
6

x2 y3 − 1
2

h2x2 y + 1
3

h3x2 − 1
30

y5
)

+ q
8h3

(
l2 − 2

5
h2
)

y3 .

Derive the stress components and verify the point-wise boundary conditions at y = ±h,
and the integral boundary conditions at x = ±l (see Fig. 9-1).
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L

y

x

h

h

Figure 9-2. A rectangular beam of height 2h and length L
with the utilized coordinate axes to express the stress func-
tion  .

Solution: The stresses are

σxx = ∂2φ

∂y2
= 3q

4h3

(
l2 − x2 + 2

3
y3 − 2

5
h2 y

)
,

σyy = ∂2φ

∂x2
= − 3q

4h3

(
1
3

y3 − h2 y + 2
3

h3
)
,

σxy = − ∂2φ

∂x∂y
= − 3q

4h3

(
h2 − y2) x.

It can be easily verified that

σxy(x,±h) = 0, σyy(x, h) = 0, σyy(x,−h) = −q ,

and ∫ h

−h
σxy(±l, y)dy = ∓ql ,

∫ h

−h
σxx(±l, y)dy = 0 ,

∫ h

−h
yσxx(±l, y)dy = 0 .

The first of these integral boundary conditions is the condition for the total shear force at
the ends of the beam, and the last two are the conditions of the vanishing axial force and
bending moment at the ends of the beam.

Problem 9.2. The Airy stress function for a rectangular beam of height 2h and length L is

 = τ0

4

(
xy − xy2

h
− xy3

h2
+ Ly2

h
+ Ly3

h2

)
.

The coordinate axes are as shown in Fig. 9-2. Calculate the corresponding traction com-
ponents on the four sides of the beam. In particular, show that the lower side of the beam
is traction free and that there is no normal stress on the side x = L.

Solution: The stress components are

σxx = ∂2 

∂y2
= τ0

4

(
−2

x
h

− 6
xy
h2

+ 2L
h

+ 6Ly
h2

)
,

σyy = ∂2 

∂x2
= 0,

σxy = − ∂2 

∂x∂y
= −τ0

4

(
1 − 2

y
h

− 3
y2

h2

)
.
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Consequently, the stress components over the four sides of the beam are

σxy(x, h) = τ0 , σxy(x,−h) = 0 ,

σxy(0, y) = σxy(L, y) = −τ0

4

(
1 − 2

y
h

− 3
y2

h2

)
,

σxx(0, y) = τ0

4

(
2

L
h

+ 6
Ly
h2

)
, σxx(L, y) = 0 .

CHAPTER 10

Problem 10.1. Derive the solution of a two-dimensional Lamé problem (pressurized hol-
low cylinder under conditions of plain-strain) by using a stress-based formulation.

Solution: The only displacement component is the radial displacement u = u(r). The cor-
responding strain components are

err = du
dr
, eθθ = u

r
,

with the Saint-Venant compatibility equation

deθθ
dr

= 1
r

(err − eθθ ) .

The nonvanishing stress components are the radial stress σrr , the hoop stress σθθ , and the
longitudinal stress σzz. Since for plain strain ezz = 0, the Hooke’s law gives σzz = ν(σrr +
σθθ ) . In the absence of body forces, the equilibrium equation is

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0 .

The Beltrami–Michell compatibility equation is obtained from the Saint-Venant compat-
ibility equation by incorporating the stress-strain relations

err = 1
E

[σrr − ν(σθθ + σzz)] , eθθ = 1
E

[σθθ − ν(σrr + σzz)] ,

and the equilibrium equation. This gives

d
dr

(σrr + σθθ ) = 0 ,

which implies that the spherical component of stress tensor is uniform throughout the
medium,

1
3

(σrr + σθθ + σzz) = 1 + ν
3

(σrr + σθθ ) = 2A(1 + ν)
3

= const.

Combining this with the equilibrium equation gives

dσrr

dr
+ 2

r
σrr = 2

r
A.
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The general solution of this equation is

σrr = A+ B
r2
.

The corresponding hoop stress is

σθθ = A− B
r2
.

The boundary conditions for the Lamé problem of a pressurized hollow cylinder are

σrr (R1) = −p1 , σrr (R2) = −p2 .

These are satisfied provided that

A= p1 R2
1 − p2 R2

2

R2
2 − R2

1

, B = − R2
1 R2

2

R2
2 − R2

1

(p1 − p2) .

Consequently, the stress components are

σrr = R2
2

R2
2 − R2

1

[
p1

R2
1

R2
2

− p2 − (p1 − p2)
R2

1

r2

]
,

σθθ = R2
2

R2
2 − R2

1

[
p1

R2
1

R2
2

− p2 + (p1 − p2)
R2

1

r2

]
.

The corresponding hoop strain is obtained by substituting last two equations into the
stress-relation. The result is

eθθ = 1
2µ

[
(1 − 2ν)A− B

r2

]
.

Thus, the radial displacement u = reθθ is

u = 1
2µ

R2
2r

R2
2 − R2

1

[
(1 − 2ν)

(
p1

R2
1

R2
2

− p2

)
+ (p1 − p2)

R2
1

r2

]
.

For the nonpressurized hole (p1 = 0) under remote pressure p2 at infinity, the previous
results give

σrr = −p2

(
1 − R2

1

r2

)
, σθθ = −p2

(
1 + R2

1

r2

)
,

u = − p2

2µ

[
(1 − 2ν)r + R2

1

r

]
.

For the pressurized cylindrical hole in an infinite medium with p2 = 0, we have

σrr = −p1
R2

1

r2
, σθθ = p1

R2
1

r2
,

u = p1

2µ
R2

1

r
.

Problem 10.2. Derive the solution of the previous problem (pressurized hollow cylinder
under conditions of plain-strain) by using a displacement-based formulation.
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Solution: In the displacement-based approach, the substitution of the strain-displacement
expressions

err = du
dr
, eθθ = u

r
,

into the stress-strain relations give

σrr = 2µerr + λ(err + eθθ ) = (λ+ 2µ)
du
dr

+ λu
r
,

σθθ = 2µeθθ + λ(err + eθθ ) = λdu
dr

+ (λ+ 2µ)
u
r
.

When this is introduced into the equilibrium equation

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0 ,

there follows

d2u
dr2

+ 1
r

du
dr

− u
r2

= 0 .

The solution of this equation is

u = Cr + D
r
.

Its substitution back into above expressions for the stress components gives

σrr = 2(λ+ µ)C − 2µ
D
r2
, σθθ = 2(λ+ µ)C + 2µ

D
r2
.

The boundary conditions

σrr (R1) = −p1 , σrr (R2) = −p2 .

specify the integration constants

C = 1
2(λ+ µ)

p1 R2
1 − p2 R2

2

R2
2 − R2

1

, D = 1
2µ

R2
1 R2

2

R2
2 − R2

1

(p1 − p2) .

Evidently, these are related to the integration constants of the stress-based solution by
A= 2(λ+ µ)C and B = −2µD. The Poisson’s ratio can be incorporated in the results by
recalling that λ+ µ = µ/(1 − 2ν).

Problem 10.3. Derive the stress distribution in a rotating circular disk whose thickness is
small relative to its radius R. The density of the disk is ρ, and the angular speed of the disk
is ω.

Solution: We can treat the inertial force due to rotation as the body force ρω2r . Because
of symmetry, the only nonvanishing stress components are σrr and σθθ , and the (dynamic)
equilibrium equation becomes

dσrr

dr
+ 1

r
(σrr − σθθ ) + ρω2r = 0 .
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If u = u(r) is the radial displacement, the strain-displacement expressions are

err = du
dr
, eθθ = u

r
.

The plane stress Hooke’s law then gives

σrr = E
1 − ν2

(
du
dr

+ ν u
r

)
,

σθθ = E
1 − ν2

(
u
r

+ ν du
dr

)
.

When this is substituted into the equilibrium equation, we obtain

d2u
dr2

+ 1
r

du
dr

− u
r2

= −1 − ν2

E
ρω2r .

The solution of this equation is

u = Cr + D
r

− 1 − ν2

8E
ρω2r3 .

Since u(0) = 0, we have D = 0. The resulting stresses are

σrr = E
1 − ν C − 3 + ν

8
ρω2r2 ,

σθθ = E
1 − ν C − 1 + 3ν

8
ρω2r2 .

If the outer surface r = R of the disk is stress free, σrr (R) = 0, which is satisfied when

C = (1 − ν)(3 + ν)
8E

ρω2r2 .

Thus, the stress distribution within the disk is

σrr = 3 + ν
8

ρω2(R2 − r2) ,

σθθ = 3 + ν
8

ρω2 R2 − 1 + 3ν
8

ρω2r2 .

The similar analysis can be performed for a disk with a circular hole of radius R0 at its
center. The boundary conditions are in this case σrr (R0) = 0 and σrr (R) = 0.

Problem 10.4. Revisit the problem of a wedge loaded by a point load at its apex (Fig. 10-1),
and solve it by using a different approach than used in the text. In particular, calculate the
stresses in the solid region occupied by the wedge.

Solution: We seek solutions of the biharmonic equation of the form

φ = r f (θ),
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y

x

Q
α

α

θ
r Figure 10-1. Semi-infinite wedge loaded with a point load at its

apex.

based on the following consideration. We know that the shear stress vanishes so that
σrθ = 0. To ensure static equilibrium against the applied force Q, it will be necessary for
the radial stress, σrr , to be of the form

σrr ∼ 1
r

g(θ),

because the length of any arc, i.e., at any value of θ , scales proportionately with radius r .
A quick perusal of the relations between the derivatives of φ and the components of
stress will reveal the logic. Then if the above form of φ is substituted into the biharmonic
equation, there results the ordinary differential equation

d4 f (θ)
dθ4

+ 2
d2 f (θ)

dθ2
+ f (θ) = 0.

The boundary conditions are∫ α

−α
(σrr cos θ − σrθ sin θ)r dθ + Q = 0,

∫ α

−α
(σrr sin θ + σrθ cos θ)r dθ = 0,

∫ α

−α
σrθr2 dθ = 0.

We note that the above three conditions hold for any value of r . In addition, there are also
the conditions

σθθ = σrθ = 0, at θ = ±α,
σrr = σθθ = σrθ = 0, at r → ∞.

The general solution for f (θ) is

f (θ) = Asin θ + Bcos θ + Cθ sin θ + Dθ cos θ.

The constants may be calculated by applying the boundary conditions listed above. When
this is done, the results for the stresses are

σrr = − 2Q
2α + sin(2α)

cos θ
r
,

σθθ = σrθ = 0,

as we have seen in the text using a somewhat different approach.
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θ

y

x σσ Figure 10-2. Small hole in a large plate
constrained in the y-direction.

Problem 10.5. A large rectangular plate with a small central hole is compressed in the
longitudinal direction, while its lateral expansion is prevented by rigid boundaries, as
shown in Fig. 10-2. Assuming the plane stress conditions, determine the hoop stress along
the circumference of the hole.

Solution: The remote stress σyy along the fixed boundaries is obtained from the condition
there

eyy = 1
E

(σxx − νσyy) = 0 .

Since σxx = −σ , we obtain σyy = −νσ along the fixed boundaries. The hoop stress along
the circumference of the hole due to longitudinal compression of magnitude σ in a plate
with unconstrained boundaries is, from the results in the text,

σθθ = −σ (1 − 2 cos 2θ).

Similarly, the hoop stress along the circumference of the hole due to lateral compression
of magnitude νσ alone is

σθθ = −νσ (1 + 2 cos 2θ).

Thus, by the superposition, the total hoop stress is

σθθ = −σ [1 + ν − 2(1 − ν) cos 2θ].

The hoop stress at θ = π/2 is equal to σθθ = −(3 − ν)σ , whereas at θ = 0 it is σθθ =
(1 − 3ν)σ . The former is always compressive, while the latter is tensile for ν < 1/3 and
compressive for ν > 1/3.

Problem 10.6. Derive the compatibility equation in polar coordinates for an axisymmetric
plane strain problem.

Solution: In the case of axial symmetry, the only nonvanishing displacement is the radial
displacement ur = ur (r), with the corresponding strains

err = dur

dr
, eθθ = ur

r
.
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θ

2R

F

θ

F

F

r r

ϕ

ρ

A A

(a) (b)

2R

Figure 10-3. (a) A concentrated force F at
the boundary of a half-space. Indicated is an
arbitrary point A on the circle of diameter
2R within a half space. (b) A circular disk
under two equal but opposite forces F along
its diameter 2R. The indicated directions r
and rho through the point Aare orthogonal.

Thus, by differentiating ur = reθθ , we obtain

eθθ + r
deθθ
dr

= err ,

which is a compatibility equation for the involved strain components.
More generally, for plane strain problems without axial symmetry, the polar components

of the strain tensor are

err = ∂ur

∂r
, eθθ = 1

r
∂uθ
∂θ

+ ur

r
, erθ = 1

2

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
.

The corresponding compatibility equation is

1
r2

∂2err

∂θ2
+ ∂2eθθ
∂r2

− 2
r
∂2erθ

∂r∂θ
− 1

r
∂err

∂r
+ 2

r
∂eθθ
∂r

− 2
r2

∂erθ

∂θ
= 0 ,

as can be verified by inspection.

Problem 10.7. The Airy stress function for the stress field in a half space due to a concen-
trated force F on its boundary (Flamant solution) is

 = − F
π

rθ sin θ ,

with the resulting stresses

σrr = −2F
π

cos θ
r

, σθθ = σrθ = 0 .

(a) Evaluate the stress state along the circle of an arbitrary diameter d = 2R (Fig. 10-3a).
(b) Using the result from part (a), deduce the Airy stress function for the stress field in a

circular disk due to two equal and opposite forces, shown in Fig 10-3b.
(c) Evaluate the normal stress along the horizontal and vertical diameter of the disk.

Solution: By simple geometry, at any point Aof the circle shown in Fig. 10-3a,

2R cos θ = r .

Thus, the radial stress is constant and equal to

σrr = − F
πR

,
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2R

F/2

(a) (b)

θ

R

F

F

r

ϕ ρ

xy

F/π

F/π

F/πR

F/2

Figure 10-4. (a) A circular disk under two equal but op-
posite forces F along its diameter 2R. The two set of coor-
dinates (r, θ) and (ρ, ϕ) used to express the corresponding
Airy stress function. (b) The stress state along the vertical
diameter of the disk.

at any point of this circle (except the point of the application of the force, due to stress
singularity there).
(b) The solution for the circular disk under a pair of equal but opposite forces along its
diameter (Michell’s problem) can be obtained by an appropriate superposition. For any
point A on the boundary of the disk, the directions r and ρ are orthogonal. The sum of
two Flamant’s solutions from part (a), one for each of two forces, gives

σrr = −2F
π

cos θ
r

, σρρ = −2F
π

cosϕ
ρ

.

But,

r
cos θ

= ρ

cosϕ
= 2R ,

so that

σrr = σρρ = − F
πR

at any point A of the considered circle of diameter 2R. Therefore, there is a state of
equal biaxial compression at A, so that A feels the same stress over any plane. To achieve
the traction free condition over the boundary of the disk, we then superpose a third
solution – an equal biaxial tension of amount F/πR within the plane of the disk (its Airy
stress function being Fr2/πd). The Airy stress function for the stress field in the disk is
consequently

 = F
π

(
r2

2R
− rθ sin θ − ρϕ sinϕ

)
.

Since, from Fig. 10-4a,

r sin θ = ρ sinϕ = x ,

the above simplifies to

 = F
π

[
r2

2R
− x(θ + ϕ)

]
.
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y

x

h/3 2h/3

2h
3

Figure 11-1. Cross section of a triangular shaft subject to torsion. The open circles
indicate the symmetrically located positions of maximum shear stress as determined
by the given solution.

(c) The rectangular stress components within the disk can be evaluated from

σxx = ∂2 

∂y2
, σyy = ∂2 

∂x2
, σxy = − ∂2 

∂x∂y
,

by using the derived expression for the Airy stress function , and the geometric relation-
ships

r2 = x2 + (R − y)2 , ρ2 = x2 + (R + y)2 ,

tan θ = x
R − y

, tanϕ = x
R + y

.

It readily follows that

σxx = 2F
π

{
1

2R
− x2(R − y)

[x2 + (R − y)2]2
− x2(R + y)

[x2 + (R + y)2]2

}
,

σyy = 2F
π

{
1

2R
− (R − y)3

[x2 + (R − y)2]2
− (R + y)3

[x2 + (R + y)2]2

}
,

σxy = 2F
π

{
x(R − y)2

[x2 + (R − y)2]2
− x(R + y)2

[x2 + (R + y)2]2

}
.

The normal stress along the horizontal diameter is obtained for y = 0, which gives

σyy(x, 0) = F
πR

[
1 − 4R4

(x2 + R2)2

]
,

The normal stress along the vertical diameter is obtained for x = 0, which gives

σxx(0, y) = F
πR

.

The net horizontal force due to this stress is 2F/π , which is balanced by two concentrated
horizontal forces due to stress concentration, as indicated in Fig. 10-4b.

CHAPTER 11

Problem 11.1. Consider the torsion of a rod with the cross section sketched in Fig. 11-1.
Determine the stress function and use it to determine the stresses in the cross section and
the maximum stresses in the cross section.
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xα

r

a

y

R

Figure 11-2. A circular cross section weekend by a circular groove of
radius a.

Solution: Consider the stress function made up the product of three functions that are
annihilated on each of the three sides of the triangular cross section, viz.,

ϕ = c(x −
√

3y − 2/3h) (x +
√

3y − 2/3h) (x + 1/3h).

When this is substituted into the governing equation, ∇2ϕ = −2Gθ = H, it is found that

c = − H
4h
.

Thus, for the stresses, we have

σxz = ∂ϕ/∂y = 15
√

3M
h5

y(3x + h),

σyz = −∂ϕ/∂x = 15
√

3M
2h5

(−3x2 + 2hx + 3y2),

where the moment M is given by

M = 2
∫
ϕ dA=

√
3Gθh4

45
.

From the above it is readily found that the maximum stresses occur at the three locations,
(h/6, h/3

√
3), (h/6,−h/3

√
3), and (−1/3h, 0), and are equal to

σmax = 15
√

3M
2h3

.

Problem 11.2. Determine the maximum shear stress in the rod of the grooved cross section
shown in Fig. 11-2, if the rod is subject to the angle of twist θ .

Solution: The Prandtl’s stress function is

ϕ = −Gθ
2

(
r2 − a2) (1 − 2

R
r

cosα
)
,

because this satisfies the Poisson’s differential equation ∇2ϕ = −2Gθ in the interior of
the cross section, and the boundary condition ϕ = 0 at the circles r = a and r = 2Rcosα.
Rewritten in terms of the Cartesian coordinates, the above becomes

ϕ = −Gθ
2

(
x2 + y2 − 2Rx + 2Ra2 x

x2 + y2
− 1

4
a2
)
.
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h

y

x

ϕ

x

t

y

ϕ
Figure 11-3. A narrow rectangular section under torsion, with an
anticipated shape of the stress function ϕ.

The stress concentration occurs at the bottom of the groove (x = a, y = 0). Thus, the
maximum shear stress isthe magnitude of σzy at this point. Since

σzy = −∂ϕ
∂x

== Gθ
[

x − R + Ra2 y2 − x2

(x2 + y2)2

]
,

we obtain

τmax = Gθ(2R − a).

The angle of twist θ is related by the applied torsional moment through

M = 2
∫

A
ϕ dA.

Problem 11.3. Derive the relationship between the applied torque T and the angle of twist
θ for: (a) a thin-walled open tube, (b) a thin-walled closed tube, and (c) a closed tube with
fins.

Solution: (a) For a thin rectangle the stress function is independent of x, except near the
ends x = ±h/2 (Fig. 11-3). Thus, by taking

ϕ = c
(

t2

4
− y2

)
,

we have

∇2ϕ = 0 ⇒ c = Gθ ⇒ ϕ = Gθ
(

t2

4
− y2

)
.

Since

T = 2
∫

A
ϕ dA= 2Gθh

∫ t/2

−t/2

(
t2

4
− y2

)
dy = Gθ

ht3

3
,

there follows

θ = T
GIt

, It = 1
3

ht3 .

The corresponding shear stress is τ = τzx = −2Ty/It (except near the ends x = ±h/2,
where both components of shear stress can be present, albeit of lesser magnitude than
τmax = Tt/It). The same expressions can be used for a curved thin-walled open section,
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h

h 2

t

h
1

t2

t1

(a) (b)

Figure 11-4. Thin-walled open sections with the in-
dicated geometric characteristics used to calculate
It.

such as shown in Fig. 11-4. If the thickness changes along the section, we can use

It = 1
3

∫
t(s)3ds , or It = 1

3

n∑
i=1

hi t3
i ,

depending whether the change is continuous or not.
(b) A thin-walled closed section is a doubly connected region. Thus, by taking ϕ = 0 on
the outer and ϕ = f = const. on the inner contour of the cross section, and in view of the
small thickness t of the section, the shear stress is parallel to the midline of the section and
equal to the slope of ϕ across the thickness. This is nearly constant across the thickness
and equal to

τ (s) = f
t(s)

.

Thus the shear flow τ (s)t(s) = f is constant around the section. The applied torque is
related to the shear flow by the equilibrium requirement (Fig. 11-5b)

T =
∮

C
hq ds = 2A0q ,

where A0 is the area within the midline C of the cross section. This gives

τ (s) = T
2A0t(s)

.

The relationship between the applied torque and the angle o twist can be conveniently
derived by equating the work done by the applied torque to the strain energy in the
tube, i.e.,

h

0
(a) (b)

qds

dA

ds

P

C
C

Figure 11-5. A thin-walled closed section
under torsion. The midline of the section
is C and q is the shear flow.
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0

1

2

Figure 11-6. The cross section of a thin-walled closed tube
with two attached fins.

1
2

T(Lθ) = L
∮

C

τ 2

2G
t ds .

Upon the substitution of the shear stress expression τ = T/2A0t , there follows

θ = T
GIt

, It = 4A2
0∮

C

ds

t(s)

.

(c) For the thin-walled closed tube with two attached fins (Fig. 11-6), the applied torque
is distributed between the tube and fins, whereas the angle of twist is same for the whole
section, i.e.,

T = T0 + T1 + T2 , θ = θ0 = θ1 = θ2 .

Consequently, by using the torque-twist relationships from parts (a) and (b), we obtain

T = Gθ It , It = 4A2
0∮

C

ds

t(s)

+ 1
3

(h1t3
1 + h2t3

2 ) .

If there are n fins, we have

It = 4A2
0∮

C

ds

t(s)

+
n∑

i=1

1
3

hi t3
i .

Problem 11.4. By using the results for the bending of the cantilever beam of circular cross
section, determine the location of the shear center of a semicircular cross section (Fig. 11-
7a). The torsional moment of inertia for the semi-circle of radius R is It = 0.298 R4.

Solution: For the bending of a cantilever with circular cross section, there is a symmetry
with respect to vertical diameter, so that there is no shear stress σzx along this diameter.
Thus, shear stress distribution from this problem also satisfies the boundary conditions for
a cantilever of a semicircular cross section. The shear stresses are given by (11.102), which
can be rewritten as
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V

(a) (b)

∆

O
x

y

 R
ϕ
rσzx

σzy

O
x

y

s

δ eo

2 Figure 11-7. (a) A semicircular cross section of radius
R. (b) The shear center S of the cross section.

σzx = − V
πR4

1 + 2ν
1 + ν r2 sinϕ cosϕ ,

σzy = V
2πR4

1
1 + ν

[
(3 + 2ν)(R2 − r2 sin2 ϕ) − (1 − 2ν) r2 cos2 ϕ

]
.

The moment of these stresses for the point O is

MO =
∫ R

0

∫ π/2

−π/2
rσzϕ r dϕ dr , σzϕ = σzy cosϕ − σzx sinϕ .

It readily follows that

MO = 4
15π

3 + 4ν
1 + ν VR .

Since half of the force V is carried by each half of the circular section, the listed shear
stresses are also present in a semicircular cross section under force V/2, provided that
this force passes through the point at the distance � from the point O (Fig. 11-7b), such
that

V
2
� = MO ⇒ � = 8

15π
3 + 4ν
1 + ν R .

However, there is a net twist in each half of the circular cross section during the bending
by the force V. This is

θ̄ = 2
πR2

∫
A/2

∂ωz

∂z
dA,

∂ωz

∂z
= − ν

E
4V
πR4

x .

Since ∫
A/2

x dA= 4R
3π

A
2
, A= πR2 ,

we obtain

θ̄ = − ν
E

16
3π2

V
R3
.

The minus sign indicates the clockwise rotation. If we don’t want this net twist during the
bending of a cantilever with a semicircular cross section, the force V/2 should act through
the shear center S (Fig. 11-7b), such that the torque T = (V/2)δ cancels θ̄ , i.e.,



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 11.4–11.5 731

Ox

y

2b

2h

V
Figure 11-8. A narrow rectangular cross section of width 2b and height 2h.

(V/2)δ
GIt

= ν

E
16

3π2

V
R3
.

Since It = 0.298R4 (see, for example, the book by Timoshenko and Goodier, who derive
this result), the above equation gives

δ = 0.298
16

3π2

ν

1 + ν R .

The shear center S is at the distance e0 = �− δ from the poit O. For example, if ν = 0.3,
we obtain � = 0.548 R, δ = 0.037 R, and e0 = 0.511 R.

Problem 11.5. Derive the shear stress and displacement fields for the cantilever beam of
a narrow rectangular cross section (Fig. 11-8).

Solution: As shown in the text, the stress function satisfies

∇2 = − ν

1 + ν
V
Ix

x + f ′(x) within the rectangle ,

and

d 
ds

=
[
− V

2Ix
y2 + f (x)

]
dx
ds

on the boundary.

By taking f = Vh2/2Ix, where Ix = 4bh3/3, we have d /ds = 0 along the sides y = ±h.
Since dx/ds = 0 along the sides x = ±b, we achieve the boundary condition  = 0 along
all four sides of the rectangle. The differential equation becomes

∇2 = − ν

1 + ν
V
Ix

x .

Since h � b, we may assume that approximately =  (x) (except near the ends y = ±h).
Thus,

d2 

dx2
= − ν

1 + ν
V
Ix

x ⇒  (x) = ν

1 + ν
V

6Ix
(b2x − x3) .
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The corresponding stresses are

σzx = ∂ 

∂y
= 0 ,

σzy = −∂ 
∂x

− V
2Ix

y2 + f (x) = V
2Ix

[
h2 − y2 + ν

1 + ν
(

x2 − b2

3

)]
.

If the small variation of σzy with x is ignored, we recover the shear stress expression from
the elementary beam theory,

σzy = V
2Ix

(h2 − y2) .

To determine the corresponding inplane displacements uy and uz, we use the strain-
displacement relations and the Hooke’s law. This gives

eyy = ∂uy

∂y
= −ν σzz

E
= νV(l − z)

EIx
y ,

ezz = ∂uz

∂z
= σzz

E
= − V(l − z)

EIx
y ,

ezy = 1
2

(
∂uz

∂y
+ ∂uy

∂z

)
= 1 + ν

E
σzy = 1 + ν

E
V

2Ix
(h2 − y2) .

Upon integration, there follows

uy = V
2EIx

[
lz2 − z3

3
+ 2(1 + ν)h2z + ν (l − z)y2

]
,

uz=− V
2EIx

[
(2lz − z2)y + (2 + ν)

y3

3

]
.

The integration constants were determined from the conditions uy = uz = 0 and uz,y = 0
for y = z = 0.

The deflection of the axis y = 0 is

uy(0, z) = V
2EIx

[
lz2 − z3

3
+ 2(1 + ν)h2z

]
.

The first part of this expression represents the deflection due to bending, and the second
term due to shearing deformation.

CHAPTER 12

Problem 12.1. Consider the loading over the portion |y| ≤ a on the surface of a half-plane,
given by

σxx = −p0
[
1 − (y/a)2]1/2

, on x = 0,

σxy = 0, on x = 0.
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x
p

a

-a
0

y

Figure 12-1. Semicircular pressure distribution on the surface of a half-plane.

Evaluate the stresses and discuss the displacement field (see Fig. 12-1).

Solution: The total load is

P = p0

∫ a

−a

[
1 − (y/a)2]1/2

dy = p0a.

Since the loading is symmetric, the stresses can be calculated from

σxx = − 2
π

∫ ∞

0
p(ξ)(1 + ξx)e−ξx cos(ξy) dξ,

σyy = − 2
π

∫ ∞

0
p(ξ)(1 − ξx)e−ξx cos(ξy) dξ,

σxy = −2x
π

∫ ∞

0
ξp(ξ)e−ξx sin(ξy) dξ,

with

p(ξ) =
∫ a

0

[
1 − (y/a)2]1/2

cos(ξy) dy = p0π

2ξ
J1(ξa).

Thus,

σxx + σyy = − 2
π

∫ ∞

0
2p(ξ)e−ξx cos(ξy) dξ,

and

σyy − σxx + 2iσxy = 4x
π

∫ ∞

0
p(ξ)ξe−ξy[cos(ξy) − i sin(ξy)] dξ.

The latter equation can be written as

σyy − σxx + 2iσxy = 4x
π

∫ ∞

0
p(ξ)ξe−ξx−iξy dξ.

If now we define z = x + iy, we obtain e−ξx−iξy = e−ξz and

σyy − σxx + 2iσxy = 2p0x
∫ ∞

0
J1(ξa)e−ξz dξ

= 2p0x
a

[
1 − z(z2 + a2)−1/2] .
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p
o x

y rr1

r2

1

2

θ θ

θ
Figure 12-2. Coordinate system based on loading along a strip on a half-plane.

At this stage it is useful and informative to examine the limit of the above relation as
z → ∞. For example, let y = 0, z = x and let x → ∞ to obtain

σyy − σxx + 2iσxy → 2P
π

1
x
.

This limit may be compared with that obtained earlier in connection with the problem of
uniform loading on a strip of half-plane between −a ≤ x ≤ a, for which the total load was
also P. The two limits are identical which is, of course, to be expected because at great
distances from the loading source both load appear as concentrated point forces located
at the origin.

Now consider the geometry shown in Fig. 12-2, and let z = reiθ , z + ia = r2eiθ2 , z − ia =
r1e−θ1 . Then,

σyy − σxx + 2iσxy = 2p0x
a

[
1 − r

(r1r2)1/2
eiθ−1/2i(θ1+θ2)

]
.

Thus, by taking the imaginary and real parts of the above expression, we find that

σxy = − p0x
a

r
(r1r2)1/2

sin
[
θ − 1

2

(
θ1 + θ2

)]

= − p0r2 cos θ
a(r1r2)1/2

sin
[
θ − 1

2

(
θ1 + θ2

)]
,

and

σyy − σxx = 2p0r cos θ
a

{
1 − r

(r1r2)1/2
cos

[
θ − 1

2

(
θ1 + θ2

)]}
.

Furthermore,

σyy + σxx = − 4
π

∫ ∞

0
p(ξ)e−ξx cos(ξy) dξ

= −2p0�
∫ ∞

0
J1(ξa)

e−ξz

ξ
dξ

= −2p0�
[

(z − ia)1/2(z + ia)1/2 − z
a

]

= −2p0

a

{
(r1r2)1/2 cos

[1
2

(
θ1 + θ2

)]− r cos θ
}
.

Combining these results, we obtain

σxx = p0

a(r1r2)1/2

{− (r1r2) cos
[1

2

(
θ1 + θ2

)]

+ r2 cos θ cos
[
θ − 1

2

(
θ1 + θ2

)]}
,
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σyy = p0

a(r1r2)1/2

{
2r(r1r2)1/2 cos θ

− (r1r2) cos
[1

2

(
θ1 + θ2

)]− r2 cos θ cos
[
θ − 1

2

(
θ1 + θ2

)]}
,

σxy = − p0r2 cos θ
a(r1r2)1/2

sin
[
θ − 1

2

(
θ1 + θ2

)]
.

Finally, we may explore the general shape of the displacement caused by this pressure
distribution. We recall that, in general, the x component of displacement is given by the
integral

u = 2(1 + ν)
πE

∫ ∞

0
p(ξ)e−ξx[2(1 − ν) + ξx]

cos(ξy)
ξ

dξ.

To explore the shape of the displacement at the surface, consider

∂u
∂y

∣∣∣∣
x=0

= −4(1 − ν2)
πE

∫ ∞

0
p(ξ) sin(ξy) dξ

= −2(1 − ν2)
πE

∫ ∞

0

J1(ξa)
ξ

sin(ξy) dξ

= −2(1 − ν2)
πE

sin[sin−1(y/a)] , at y ≤ a

= − a

(y +
√

y2 − a2)
, at y ≥ a.

At y ≈ 0, the form of the displacement gradient is

∂u
∂y

∼ y/a,

which suggests that the trough of the displacement is circular.
In the context of contact mechanics, this problem is revisited as Problem 15.2.

Problem 12.2. Consider the application of a normal stress on the surface of a half-plane
of the form

σyy ∼ −Acos(αx).

Determine the stress state that is caused by this loading and the general shape of the
resulting surface indentation.

Solution: Consider the stress function

φ(x, y) = pα
α2

(1 + αy)e−αy cos(αx).
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The corresponding stresses are

σyy = ∂2φ

∂x2
= −pα(1 + αy)e−αy cos(αx),

σxx = ∂2φ

∂y2
= −pα(1 − αy)e−αy cos(αx),

σxy = − ∂2φ

∂x∂y
= −pααye−αy sin(αx).

On y = 0 we have σyy = −pα cos(αx) and σxy = 0.
To examine the displacement field, under conditions of plane strain, consider

eyy = ∂uy

∂y
= 1

E

[
(1 − ν2)

∂2φ

∂x2
− ν(1 + ν)

∂2φ

∂y2

]
,

which, upon integration, yields

uy = 1
E

[
(1 − ν2)

∫
∂2φ

∂x2
dy − ν(1 + ν)

∂φ

∂y

]
+ const.

But, we note that

∂φ

∂y
= −pαye−αy cos(αx) = 0, on y = 0,

and so

uy = 2pα(1 − ν2)
αE

cos(αx) + const.

Thus, it appears that to create a surface displacement of the form y = a(α) cos(αx) requires
an applied surface traction to be

σyy = αEa(α)
2(1 − ν2)

cos(αx).

CHAPTER 13

Problem 13.1. Derive an expression for the change of volume caused by elastic deforma-
tion, without solving the particular boundary value problem, provided that the traction
field is known over the bounding surface of the body, and the body force field inside the
body.

Solution: Let σi j be the stress field within the body of volume V, and let ûi be any dis-
placement field (not necessarily related to σi j and not necessarily infinitesimal). Define
the tensor

êi j = 1
2

(ûi, j + û j,i ) .

Then, ∫
V
σi j êi j dV =

∫
V
σi j ûi, j dV =

∫
V

[
(σi j ûi ), j + bi ûi

]
dV ,
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because by the equilibrium equations σi j, j + bi = 0. Applying the Gauss divergence theo-
rem to the first integral on the right-hand side, we have∫

V
(σi j ûi ), j dV =

∫
S
σi j ûi n j dS ,

where nj are the components of the unit vector normal to the bounding surface S. There-
fore, recalling that Ti = σi j n j , one has∫

V
σi j êi j dV =

∫
S

Ti ûi dS +
∫

V
bi ûi dV .

By choosing ûi = xi (and, thus, êi j = δi j ), the previous equation becomes∫
V
σkkdV =

∫
S

Ti xi dS +
∫

V
bi xi dV .

This yields an expression for the average normal stress within the body, regardless of the
material properties and entirely in terms of the specified surface tractions and body forces.
If the volume change is because of infinitesimal elastic deformation only, then σkk = 3κekk

by Hooke’s law, and the resulting volume change is

�V =
∫

V
ekkdV = 1

3κ

(∫
S

Ti xi dS +
∫

V
bi xi dV

)
.

In particular, if the stress distribution within the body is self-equilibrated (σi j 
= 0, but Ti =
0 and bi = 0), as occurs around an inclusion or dislocation within an externally unloaded
body, the corresponding volume change is equal to zero (�V = 0).

Problem 13.2. Derive the solution of a pressurized sphere by the displacement method.

Solution: In a three-dimensional problems with spherical symmetry, the only displacement
component is the radial displacement u = u(r). The corresponding strain components are

err = du
dr
, eθθ = eφφ = u

r
.

The nonvanishing stress components are the radial stress σrr and the hoop stresses σθθ =
σφφ . In the absence of body forces, the equilibrium equation is

dσrr

dr
+ 2

r
(σrr − σθθ ) = 0 .

In the displacement-based approach, the compatibility equation is not needed. The sub-
stitution of the strain-displacement expressions into the stress-strain relations gives

σrr = 2µerr + λ(err + 2eθθ ) = (λ+ 2µ)
du
dr

+ 2λ
u
r
,

σθθ = 2µeθθ + λ(err + 2eθθ ) = λdu
dr

+ 2(λ+ µ)
u
r
,

where λ andµ are the Lamé elastic constants. When this is introduced into the equilibrium
equation, there follows

d2u
dr2

+ 2
r

du
dr

− 2
u
r2

= 0 .
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The solution of this differential equation is

u = Cr + D
r2
.

Its substitution back into the stress-strain relations gives

σrr = 3κC − 4µ
D
r3
, σθθ = 3κC + 2µ

D
r3
,

where 3κ = 2µ+ 3λ. The boundary conditions,

σrr (R1) = −p1 , σrr (R2) = −p2 ,

specify the integration constants as

C = 1
3κ

p1 R3
1 − p2 R3

2

R3
2 − R3

1

, D = 1
4µ

R3
1 R3

2

R3
2 − R3

1

(p1 − p2) .

Evidently, these are related to the integration constants of the stress-based solution dis-
cussed in the text by A= 3κC and B = −4µD.

Problem 13.3. Consider a hollow sphere whose inner surface r = R1 is held at constant
temperature T1 and the outer surface r = R2 at constant temperature T2 < T1 (steady heat
flow from inside out). Determine the stress distribution in the sphere.

Solution: The only displacement component is the radial displacement u = u(r). The cor-
responding strain components are

err = du
dr
, eθθ = eφφ = u

r
.

The nonvanishing stress components are the radial stress σrr and the hoop stresses σθθ =
σφφ . The equilibrium equation is

dσrr

dr
+ 2

r
(σrr − σθθ ) = 0 .

The thermoelastic stress-strain relations are

err = 1
E

(σrr − 2νσθθ ) + α(T − T0),

eθθ = 1
E

[σθθ − ν(σrr + σθθ )] + α(T − T0),

where T0 is the reference temperature, and α is the coefficient of linear thermal expansion.
A straightforward inversion of the above expressions gives

σrr = E
(1 + ν)(1 − 2ν)

[(1 − ν)err + 2νeθθ − (1 + ν)α(T − T0)],

σθθ = E
(1 + ν)(1 − 2ν)

[eθθ + νerr − (1 + ν)α(T − T0)].
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The substitution into the equilibrium equation then yields

d2u
dr2

+ 2
r

du
dr

− 2
u
r2

= 1 + ν
1 − ν α

dT
dr
.

The solution of this differential equation is

u = Cr + D
r2

+ 1 + ν
1 − ν

α

r2

∫ r

R1

r2T(r)dr .

Its substitution back into the stress-strain relations gives

σrr = E
1 − 2ν

C − 2E
1 + ν

D
r3

− 2αE
1 − ν

1
r3

∫ r

R1

r2T(r)dr ,

σθθ = E
1 − 2ν

C + E
1 + ν

D
r3

+ αE
1 − ν

1
r3

∫ r

R1

r2T(r)dr − αET(r)
1 − ν .

The boundary conditions give

σrr (R1) = 0 :
E

1 − 2ν
C − 2E

1 + ν
D

R3
1

= 0 ,

σrr (R2) = 0 :
E

1 − 2ν
C − 2E

1 + ν
D

R3
2

= 2αE
1 − ν

1
R3

2

∫ R2

R1

r2T(r)dr ,

which specify the integration constants as

C = 2α(1 − 2ν)
1 − ν

1
R3

2 − R3
1

∫ R2

R1

r2T(r)dr ,

D = α(1 + ν)
1 − ν

R3
1

R3
2 − R3

1

∫ R2

R1

r2T(r)dr .

For the steady-state heat flow, the temperature satisfies the Laplacian equation ∇2T = 0,
which is, in the spherical coordinates and with radial symmetry,

d2T
dr2

+ 2
r

dT
dr

= 0 .

Using the boundary conditions T(R1) = T1 and T(R2) = T2, the integration gives

T(r) = R1 R2

R2 − R1

T1 − T2

r
+ R2T2 − R1T1

R2 − R1
.

Thus, ∫ R2

R1

r2T(r)dr = 5
6

R1 R2(R1 + R2)(T1 − T2) + 1
3

(R3
1 T1 − R3

2 T2) .

This specifies the integration constants C and D above and thus the required stress distri-
bution within the sphere.

Problem 13.4. Determine the displacement field associated with a doublet (a pair of
nearby dilatation and compression centers at small distance h as in Fig. 13-1) in an infinite
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ρ

x1

x2

x3

r

h

Figure 13-1. A pair of nearby dilatation and compres-
sion centers at small distance h.

elastic solid. The displacement components due to dilatation center at the origin is

ui = −A
1 − 2ν

8πµ(1 − ν)
∂

∂xi

(
1
r

)
,

where A= Pd is the center’s strength (the product of a small distance d between a pair of
opposite forces and the magnitude of each force P). The shear modulus is µ and Poisson’s
ratio is ν.

Solution: Let the dilatation center be at the origin, and position the x1 axis along the axis
of the doublet, as shown in the figure. By superposition, the displacement field due to the
doublet is

ui = −A
1 − 2ν

8πµ(1 − ν)

[
∂

∂xi

(
1
r

)
− ∂

∂xi

(
1
ρ

)]
,

where

ρ2 = (x1 − h)2 + x2
2 + x2

3 ≈ r2 − 2hx1 .

It readily follows that

ρ ≈ r
(

1 − h
x1

r2

)
,

1
ρ

≈ 1
r

(
1 + h

x1

r2

)
.

Consequently,

∂

∂xi

(
1
ρ

)
≈ ∂

∂xi

(
1
r

)
+ h

∂

∂xi

(x1

r3

)
,

and the displacement components are

ui = Ah
1 − 2ν

8πµ(1 − ν)
∂

∂xi

(x1

r3

)
.

Problem 13.5. Determine the displacement field due to a couple of magnitude M at the
origin. The displacement components due to a concentrated force P at the origin, directed
in the negative x3 direction, is

ui = P
4πµ

[
−δi3

r
+ 1

4(1 − ν)
∂

∂xi

(x3

r

)]
.
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ρ

x2

x3

x1

r

h

P

P

Figure 13-2. A concentrated couple formed by two opposite
forces at small distance h.

Solution: Let the couple be formed by two opposite forces at small distance h, as shown
in Fig. 13-2, such that M = Ph. By superposition, the displacement field due to this couple
is then

ui = P
4πµ

[
−δi3

r
+ δi3

ρ
+ 1

4(1 − ν)
∂

∂xi

(
x3

r
− x3

ρ

)]
.

Since

ρ2 = x2
1 + (x2 − h)2 + x2

3 ≈ r2 − 2hx2 ,

we have

1
ρ

≈ 1
r

(
1 + h

x2

r2

)
.

Consequently,

∂

∂xi

(
x3

ρ

)
≈ ∂

∂xi

(x3

r

)
+ h

∂

∂xi

(x2x3

r3

)
,

and the displacement components are

ui = M
4πµ

[
x2

r
δi3 − 1

4(1 − ν)
∂

∂xi

(x2x3

r3

)]
.

Problem 13.6. Consider an axisymmetric 3D elasticity problem. Derive the biharmonic
equation for the corresponding Love’s function.

Solution: For axisymmetric problems, the field variables are independent of the polar
angle θ (Fig. 13-3). The circumferential component of displacement vanishes (uθ = 0),
whereas the radial and longitudinal components depend on the radius r and the longitu-
dinal coordinate z, i.e.,

ur = ur (r, z) , uz = uz(r, z) .

The corresponding infinitesimal strains are

err = ∂ur

∂r
, eθθ = ur

r
, ezz = ∂uz

∂z
,
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θ
O r

z

Figure 13-3. The cylindrical coordinates for axisymmetric 3D problems.

and

εrz = 1
2

(
∂ur

∂z
+ ∂uz

∂r

)
.

The equilibrium equations are

∂σrr

∂r
+ ∂σrz

∂z
+ 1

r
(σrr − σθθ ) = 0 ,

∂σrz

∂r
+ ∂σzz

∂z
+ 1

r
σrz = 0 .

The problems involving purely elastic deformations can be conveniently solved by ex-
pressing the displacement components in terms of Love’s function � = �(r, z) as

ur = − 1
2G

∂2�

∂r∂z
, uz = 1

2G

[
2(1 − ν)∇2�− ∂2�

∂z2

]
,

where

∇2 = ∂2

∂r2
+ 1

r
∂

∂r
+ ∂2

∂z2
.

The elastic constants of an isotropic material are the shear modulus G and the Poisson’s
ratio ν.

By using the above expressions and the generalized Hooke’s law, the stress components
can be expressed in terms of Love’s function as

σrr = ∂

∂z

(
ν∇2�− ∂2�

∂r2

)
,

σθθ = ∂

∂z

(
ν∇2�− 1

r
∂�

∂r

)
,

σzz = ∂

∂z

[
(2 − ν)∇2�− ∂2�

∂z2

]
,

σrz = ∂

∂r

[
(1 − ν)∇2�− ∂2�

∂z2

]
.

When these expressions are inserted into equilibrium equations, it follows that the first of
them is identically satisfied, while the second requires � to be a biharmonic function in
the (r, z) domain, i.e.,

∇4� = ∂4�

∂r4
+ 2

∂4�

∂r2∂z2
+ ∂4�

∂z4
= 0 .
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O
r

z

F

Figure 13-4. The vertical concentrated force on the
boundary of the half-space.

Problem 13.7. Derive the displacement components of the points on the plane z = 0 due
to the vertical concentrated force acting on the boundary of the half-space (Fig. 13-4).

Solution: The Love’s function for the Boussinesq problem of concentrated force on a
semi-infinite body is

� = F
2π

z
[
1 + 2ν

√
1 + r2/z2 + (1 − 2ν) ln

(
1 +

√
1 + r2/z2

)
− ln z

]
.

The corresponding displacement field is determined from

ur = − 1
2G

∂2�

∂r∂z
, uz = 1

2G

[
2(1 − ν)∇2�− ∂2�

∂z2

]
,

which gives

ur = F(1 − 2ν)
4πG

1
r

[
1

1 − 2ν
r2/z2

(1 + r2/z2)3/2
+ 1

(1 + r2/z2)1/2
− 1

]
,

uz = F
4πG

1
z

[
1

(1 + r2/z2)3/2
+ 2(1 − ν)

1
(1 + r2/z2)1/2

]
.

The displacements at the points of the plane z = 0 are, consequently,

u = − F(1 − 2ν)
4πG

1
r
, w = F(1 − ν)

2πG
1
r
.

CHAPTER 14

Problem 14.1. Derive an expression for the Young’s modulus En in an arbitrary direction
n in terms of elastic compliances of a linearly elastic fully anisotropic material. Derive
also the expressions for the Poisson’s ratio νmn and the shear modulus Gmn. Specialize the
results in the case of a transversely isotropic material.

Solution: The strain in the direction n can be expressed in terms of the strain tensor
components as en = ni ei j n j . If the strain state is produced by tension σn applied along the
direction n, the stress state is

σ = σklek el = σnn n ,
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which gives σkl = σnnknl . For a generally anisotropic linearly elastic material, the stress-
strain relation is ei j = Si jklσkl , where Si jkl = C−1

i jkl are the components of the elastic com-
pliance tensor (the inverse of the elastic moduli tensor). Thus, we have

en = ni ei j n j = σnni n j Si jklnknl .

Since the Young’s modulus in the direction n is defined by En = σn/en, we recognize from
the above equation that

1
En

= ni n j Si jklnknl .

Similarly, the Poisson’s ratio in the direction m due to longitudinal stress in the orthog-
onal direction n is

νmn = −em

en
= − mi mj Si jklnknl

nαnβSαβγ δnγnδ
.

The shear modulus between the orthogonal directions m and n is

1
Gmn

= 4mi nj Si jklmknl .

Problem 14.2. Specialize the results from previous problem in the case of a transversely
isotropic material, whose axis of transverse isotropy is in the coordinate direction e3.
Use m = {0,− sin θ, cos θ} and n = {0, cos θ, sin θ}, where θ is the angle from the plane of
isotropy.

Solution: The compliance matrix of a transversely isotropic material (around the axis e3)
is

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 2(s11 − s12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The Voigt notation is used for the compliance components, so that S1111 = s11, S2222 = s22,
S3333 = s33, S1122 = s12, S2233 = S3311 = s13, 4S2323 = 4S3131 = s44, and 4S1212 = 2(s11 − s12).
Consequently, we obtain

1
En

= s11 cos4 θ + s33 sin4 θ + (2s13 + s44) sin2 θ cos2 θ ,

νmn = − s13 + (s11 + s33 − s44 − 2s13) sin2 θ cos2 θ

s11 cos4 θ − s33 sin4 θ + (s44 + 2s13) sin2 θ cos2 θ
,

1
Gn

= (s22 + s33 − 2s13) sin2 2θ + s44 cos2 2θ .
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Problem 14.3. A homogeneous rectangular block of a fully anisotropic elastic material is
subject to shear stress σ12 = τ . Determine the length changes of the edges a,b, c of the
block, and the volume change of the block. Derive the expressions for the displacement
components.

Solution: The stress-strain relations for a fully anisotropic linearly elastic material⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e11

e22

e33

2e23

2e31

2e12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ31

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In the case of pure shear σ12 = τ this gives

e11 = s16τ , e22 = s26τ , e33 = s36τ ,

2e23 = s46τ , 2e31 = s56τ , 2e12 = s66τ .

The lengths of the edges of the block are thus changed by �a = as16τ , �b = bs26τ and
�c = cs36τ , with the resulting volume change �V = abc(s16 + s26 + s36)τ .

Since the strain-displacement relations are

e11 = ∂u1

∂x1
, e22 = ∂u2

∂x2
, e33 = ∂u3

∂x3
,

2e23 = ∂u2

∂x3
+ ∂u3

∂x2
, 2e31 = ∂u3

∂x1
+ ∂u1

∂x3
, 2e12 = ∂u1

∂x2
+ ∂u2

∂x1
,

their integration gives

u1 = s16τx1 + 1
2

s66τx2 + 1
2

s56τx3 − ω3x2 + ω2x3 + u0
1 ,

u2 = 1
2

s66τx1 + s26τx2 + 1
2

s46τx3 + ω3x1 − ω1x3 + u0
2 ,

u3 = 1
2

s56τx1 + 1
2

s46τx2 + s36τx3 − ω2x1 + ω1x2 + u0
3 .

The integration constants can be specified by imposing, for example, the following bound-
ary conditions at the origin

u1 = u2 = u3 = 0 ,
∂u2

∂x1
= ∂u3

∂x1
= 0 ,

∂u2

∂x3
− ∂u3

∂x2
= 0 .
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This gives u0
1 = u0

2 = u0
3 = 0, ω1 = 0, ω2 = s56τ/2, and ω3 = −s66τ/2. Thus, the resulting

displacements are

u1 = τ (s16x1 + s66x2 + s56x3) ,

u2 = τ
(

s26x2 + 1
2

s46x3

)
,

u3 = τ
(

1
2

s46x2 + s36τx3

)
.

Problem 14.4. A hollow sphere of inner radius R1 and outer radius R2 is made from a
spherically uniform material, which has the same elastic constants at every point relative to
a local spherical coordinate system at that point. If the material is at each point transversely
isotropic about its radial direction r , determine the stresses in the sphere due to internal
pressure p1 and external pressure p2.

Solution: Due to spherical symmetry, the only displacement component is the radial dis-
placement u = u(r). The corresponding strain components are

err = du
dr
, eθθ = eφφ = u

r
.

The nonvanishing stress components are the radial stress σrr and the hoop stresses σθθ =
σφφ . In the absence of body forces, the equilibrium equation is

dσrr

dr
+ 2

r
(σrr − σθθ ) = 0 .

For a transversely isotropic material about the radial direction, we have at each point

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σθθ

σφφ

σrr

σφr

σrθ

σθφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0

0 0 0 0 0
1

2
(c11 − c12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eθθ
eφφ
err

2eφr

2erθ

2eθφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus,

σrr = c33err + 2c13eθθ , σθθ = (c11 + c12)eθθ + c13err .

When this is introduced into the equilibrium equation, there follows

d2u
dr2

+ 2
r

du
dr

− 2k0
u
r2

= 0 , k0 = c11 + c12 − c13

c33
.

The solution of this differential equation is

u = Ar−(1−3k)/2 + Br−(1+3k)/2 , k = 1
3

√
1 + 8k0 .
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The corresponding stresses are

σrr = A
[

2c13 − 1
2

c33(1 − 3k)
]

r−3(1−k)/2

+ B
[

2c13 − 1
2

c33(1 + 3k)
]

r−3(1+k)/2 ,

σθθ = A
[

c11 + c12 − 1
2

c13(1 − 3k)
]

r−3(1−k)/2

+ B
[

c11 + c12 − 1
2

c13(1 + 3k)
]

r−3(1+k)/2 .

The boundary conditions for determination of the constants A and B are σrr (R1) = −p1

and σrr (R2) = −p2. This gives

A
[

2c13 − 1
2

c33(1 − 3k)
]

= p1 R3/2
1 R−3k/2

2 − p2 R3/2
2 R−3k/2

1

(R2/R1)3k/2 − (R1/R2)3k/2
,

B
[

c11 + c12 − 1
2

c13(1 + 3k)
]

= p2 R3/2
2 R3k/2

1 − p1 R3/2
1 R3k/2

2

(R2/R1)3k/2 − (R1/R2)3k/2
.

Problem 14.5. Derive the expressions for the elastic compliances of a transversely
isotropic elastic material in terms its elastic moduli.

Solution: Assuming that the axis of transverse isotropy is along the x3 direction, the normal
stresses are given in terms of normal strains by

σ11 = c11e11 + c12e22 + c13e33 ,

σ22 = c12e11 + c11e22 + c13e33 ,

σ33 = c13e11 + c13e22 + c33e33 .

Thus,

σ11 − σ22 = (c11 − c12)(e11 − e22) ,

σ11 + σ22 = (c11 + c12)(e11 + e22) + 2c13e33 ,

and

e33 = 1
c33

[σ33 − c13(e11 + e22)] .

By appropriate combination of these expressions, we obtain

e11 − e22 = 1
c11 − c12

(σ11 − σ22) ,

e11 + e22 = 1

c11 + c12 − 2c2
13

c33

(
σ11 + σ22 − 2

c13

c33
σ33

)
.
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These can be solved for the two strain components to give

e11 = s11σ11 + s12σ22 + s13σ33 ,

e22 = s12σ11 + s11σ22 + s13σ33 ,

where

s11 =
c11 − c2

13

c33

c11 − c12
s , s12 = −

c12 − c2
13

c33

c11 − c12
s ,

s13 = −c13

c33
s , s = −

(
c11 + c12 − 2

c2
13

c33

)−1

.

The substitution in the earlier expression for e33 also gives

e33 = s13σ11 + s13σ22 + s33σ33 ,

where

s33 = c11 + c12

c33
s .

Finally, since

σ12 = (c11 − c12)e12 , σ23 = 2c44e23 , σ31 = 2c44e31 ,

we have

s44 = s55 = 1
c44
, s66 = 2(s11 − s12) = 2

c11 − c12
.

Problem 14.6. The components of the elastic moduli tensor of a cubic crystal, with respect
to its cubic axes, are

Ci jkl = c12δi jδkl + 2c44 Ii jkl + (c11 − c12 − 2c44)Ai jkl ,

where

Ii jkl = 1
2

(δikδ jl + δilδ jk),

Ai jkl = ai a j akal + bi bj bkbl + ci c j ckcl .

The components of the unit vectors a, b, and c along the cubic axes are ai , bi , and ci ,
respectively. Evidently, all the components Ai jkl are equal to zero, except A1111 = A2222 =
A3333 = 1. Derive the expressions for the elastic compliance components Si jkl of a cubic
crystal in terms of its elastic moduli.

Solution: The elastic compliance tensor is the inverse of the elastic moduli tensor, so that

Si jmnCmnkl = Ii jkl .
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Assume that the components of elastic compliance tensor can be expressed as

Si jkl = s1δi jδkl + s2 Ii jkl + s3 Ai jkl .

Substituting this in the above condition for the inverse, there follows

[(c11 + 2c12)s1 + c12s2 + c12s3]δi jδkl + 2c44s2 Ii jkl

+ [(c11 − c12 − 2c44)s2 + (c11 − c12)s3]Ai jkl = Ii jkl .

In the derivation, note that Ai jmn Amnkl = Ai jkl and Ai jkk = δi j . Consequently, we must have

(c11 + 2c12)s1 + c12s2 + c12s3 = 0 ,

2c44s2 = 1 ,

(c11 − c12 − 2c44)s2 + (c11 − c12)s3 = 0 .

Upon solving for s1, s2, and s3, we obtain

s1 = − c12

(c11 − c12)(c11 + 2c12)
,

s2 = 1
2c44

,

s3 = 1
c11 − c12

− 1
2c44

.

Consequently, the components of the elastic compliance tensor of a cubic crystal, expressed
in terms of its elastic moduli, are

Si jkl = − c12

(c11 − c12)(c11 + 2c12)
δi jδkl + 1

2c44
Ii jkl +

(
1

c11 − c12
− 1

2c44

)
Ai jkl .

CHAPTER 15

Problem 15.1. Consider the loading on a circular region of radius a of the general form

p(r) = p0[1 − (r/a)2]n.

Calculate the displacements under the circle of loading (see Fig. 15-1) for n = 0 and n =
−1/2.

Solution: The general analysis for arbitrary n has been described by Johnson (1985). Here,
we consider the cases where n = 0, i.e., uniform loading, and n = −1/2, which produces
uniform indentation.

Case n = 0: Recall the point force solutions for the surface displacements, given in
(13.121) and (13.122). Now Fig. 15-1 shows a polar coordinate system in the surface plane,
z = 0, where q(x, y) is a typical point at which the displacement is to be computed. The
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s

s

s

r

1

2

a

q

φ

φsdsd

Figure 15-1. Polar coordinate system for a point q(x, y) interior to the circle
of loading. s is the polar distance from the typical field point, q.

radial symmetry makes it clear that such a point suffices for our analysis. A typical surface
element, s ds dφ, is at distance s from q and, thus, (13.122) becomes

ūz(r) = 1 − ν
2πG

∫
S

p(s, φ) ds dφ.

In the case of uniform loading, this is simply

ū(r) = 1 − ν
2πG

p0

∫
S

dφ ds.

For points interior to the circle of loading, the limits on the radial coordinate s are

s1,2 = −r cosφ ± [r2 cos2 φ + (a2 − r2)]1/2,

and thus

ūz(r) = 1 − ν
2πG

p0

∫ π

0
2[r2 cos2 φ + (a2 − r2)]1/2 dφ

= 2(1 − ν)
πG

p0a
∫ π/2

0
[1 − (r/a)2 sin2 φ]1/2 dφ

= 2(1 − ν)
πG

p0aE(r/a), r ≤ a,

where E(r/a) is the complete elliptic integral of the second kind with modulus r/a. At the
center, the maximum depth of indentation is, with E(0) = π/2,

ū(0) = δ = 1 − ν
G

p0a.

At the perimeter r = a, where E(1) = 1, we have

ū(a) = 2(1 − ν)
πG

p0a,

Case n = −1/2: In this case an integration procedure, similar to that just described,
yields

ūz(r) = π(1 − ν)p0a
2G

, r ≤ a.

The total load is

P =
∫ a

0
2πr p0[1 − (r/a)2]−1/2 dr = 2πa2 p0,
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xa
δ

R

P

y

x
a

2p

y

0

(a) (b)

Figure 15-2. (a) A circular cylinder of radius R pressed by the vertical force P into the
half-space. The depth of the indentation is δ and the width of the contact region is 2a. (b)
The corresponding pressure distribution p = p(x).

so that the load vs. indentation relation becomes

ūz = δ = P(1 − ν)
4Ga

.

The other components of displacement are, of course, readily calculated from the expres-
sions given for the point force solutions.

Problem 15.2. Derive the pressure distribution under a circular rigid indenter of radius R
pressed into an isotropic elastic half space by the vertical force P (per unit length in the z
direction), as shown in Fig. 15-2. Derive also the expressions for the width of the contact
region 2a and the depth of the indentation δ.

Solution: In the absence of tangential load, (15.23) gives

∂ūy

∂x
= −2(1 − ν2)

πE

∫ a

−a

p(s)ds
x − s

, |x| ≤ a ,

where p is the pressure distribution in the contact region of width 2a. Letting

x = a cosφ , s = a cosϑ ,

we have

∂

∂φ
= −a sinφ

∂

∂x
,

∂

∂x
= − 1

a sinφ
∂

∂φ
.

Thus,

∂ūy

∂φ
= a sinφ

2(1 − ν2)
πE

∫ π

0

p(ϑ) sinϑ
cosφ − cosϑ

dϑ , 0 ≤ φ ≤ π .

Having in mind the result ∫ π

0

cos nϑ
cosφ − cosϑ

dϑ = −π sin nφ
sinφ

,
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we search the solution by using the expansions for p(ϑ) and ∂ūy/∂φ of the following type

p(ϑ) =
∞∑

n=0

pn
cos nϑ
sinϑ

,

∂ūy

∂φ
=

∞∑
n=1

un sin nφ .

The substitution into the integral equation gives

∞∑
n=1

un sin nφ = −2(1 − ν2)
E

a
∞∑

n=0

pn sin nφ ,

i.e.,

pn = − Eun

2(1 − ν2)a
, n ≥ 1.

However, for a symmetric punch and loading, ūy is symmetric in x, so that u1 = 0 (oth-
erwise, u1 cosφ ∼ u1x would give an antisymmetric contribution to ūy). This implies that
p1 = 0 as well. The coefficient p0 is obtained from the equilibrium condition

P =
∫ a

−a
p(s)ds =

∫ π

0
p(ϑ)a sinϑ dϑ = a

∞∑
n=0

∫ π

0
cos nϑ dϑ = πap0 ,

which gives

p0 = P
πa
.

For a sufficiently shallow indentation, the circular indentation profile is reproduced by
using n = 2 term, i.e.,

∂ūy

∂φ
= u2 sin 2φ , ūy = u2

2
(1 − cos 2φ) ,

so that ūy(φ = 0, π) = 0. If the indentation depth at x = 0 (φ = π/2) is δ, we have

u2 = δ ≈ a2

2R
.

A simple geometry reveals from Fig. 15-2 that a is a geometric mean between δ and 2R − δ,
so that for δ � R,

a2 = δ(2R − δ) ≈ 2Rδ .

which was used in the previous expression. Alternatively, to derive u2 ≈ a2/2R one can
proceed from the curvature expression ∂2ūy/∂x2 ≈ −1/R. Consequently,

p2 = − Eu2

2(1 − ν2)a
= − Ea

4(1 − ν2)R
,

and

p(ϑ) = 1
sinϑ

[
P
πa

− Ea
4(1 − ν2)R

cos 2ϑ
]
.
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y

x

M(y)

M(y)

a b Figure 16-1. A rectangular simply supported plate under
distributed edge moments.

If p(ϑ) is not to be singular at ϑ = 0 and ϑ = π (i.e., x = ±a),

P
πa

− Ea
4(1 − ν2)R

= 0 ⇒ a = 2
[

(1 − ν2)PR
πE

]1/2

.

The substitution into the expression for p(ϑ) gives

p(ϑ) = Ea
2(1 − ν2)R

sinϑ ,

or, in terms of x,

p(x) = 2P
πa

(
1 − x2

a2

)1/2

.

The width and the depth of the indentation, expressed in terms of P, R, and the elastic
properties E, ν are

2a = 4
[

(1 − ν2)PR
πE

]1/2

, δ = 2
(1 − ν2)P
πE

.

CHAPTER 16

Problem 16.1. A rectangular plate is loaded along its edges by uniform bending moments
Mx and My. Determine the deflected shape of the plate (see Fig. 16-1).

Solution: The bending and twisting moments in the plate are related to the deflection w
of the plate by

Mx = D
(
∂2w

∂x2
+ ν ∂

2w

∂y2

)
,

My = D
(
∂2w

∂y2
+ ν ∂

2w

∂x2

)
,

Mxy = D(1 − ν)
∂2w

∂x∂y
= 0 .

Consequently,

∂2w

∂x2
= Mx − νMy

D(1 − ν2)
,
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∂2w

∂y2
= My − νMx

D(1 − ν2)
,

∂2w

∂x∂y
= 0 .

The integration yields

w = Mx − νMy

2D(1 − ν2)
x2 + My − νMx

2D(1 − ν2)
y2 + C1x + C2 y + C3 .

By placing the coordinate origin in the center of the midsurface of the deformed plate, we
obtain C1 = C2 = C3 = 0, and

w = 1
2D(1 − ν2)

[
(Mx − νMy)x2 + (My − νMx) y2] .

Problem 16.2. Determine the deflected shape of the simply supported rectangular plate
loaded by a distributed moment M(y) along its edges x = ±a/2.

Solution: Expand the edge moment M(y) in a Fourier series

M(y) =
∞∑

n=1

Mn sin
nπy

b
, Mn = 2

b

∫ b

0
M(y) sin

nπy
b

dy .

Since no load is applied over the lateral surface of the plate, the governing equation for
deflection is a homogeneous biharmonic equation ∇4w = 0. In view of the symmetry with
respect to x = 0, we take

w =
∞∑

n=1

(
Bn cosh

nπx
b

+ Cnx sinh
nπx

b

)
sin

nπy
b
.

The boundary conditions of vanishing deflection and bending moment along y = 0 and
y = b are automatically satisfied with this representation of w. The remaining boundary
conditions, along x = ±a/2, are

w = 0, D
∂2w

∂x2
= M(y).

These are satisfied provided that

Bn = −Cn
a
2

tanh
nπa
2b

, Cn = bMn

2nπDcosh(nπa/2b)
.

Thus, the deflected shape of the plate is

w = − b
2πD

∞∑
n=1

sin
nπy

b

n cosh
nπa

2b

Mn

(a
2

tanh
nπa
2b

cosh
nπx

b
− x sinh

nπx
b

)
.
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a

(a)

b

Mb MbMa Ma

a

(b)

b

Va Va

Figure 16-2. Simply supported annular
plate of inner radius a and outer radius b
under (a) edge moments Ma and Mb and
(b) shear force Va .

For example, if the edge moment is constant, i.e., M(y) = M0, we have

Mn = 4M0

nπ
, n = 1, 3, 5, . . . ,

and

w = −2M0b
π2 D

∞∑
n=1,3

sin
nπy

b

n2 cosh
nπa

2b

(a
2

tanh
nπa
2b

cosh
nπx

b
− x sinh

nπx
b

)
.

Problem 16.3. Derive the deflected shape of the annular circular plate shown in Fig. 16-2
due to (a) edge moments, and (b) shear force around the inner edge.

Solution: (a) Since there is no shear force Qr in the annular plate under axisymmetric
edge moments, we have

Qr = D
d
dr

(
dw
dr2

+ 1
r

dw
dr

)
= D

d
dr

[
1
r

d
dr

(
r

dw
dr

)]
= 0 .

Upon three successive integrations, there follows

w = 1
4

Ar2 + B ln
r
b

+ C .

The integration constants A, B,C are specified from the boundary conditions w = 0 at
r = b, and

Mr = D
(

d2w

dr2
+ ν 1

r
dw
dr

)
=
{

Ma, r = a,

Mb, r = b.

This gives

w = 1
2(1 + ν)D

(b2 Mb − a2 Ma)
r2 − b2

b2 − a2
− 1

(1 − ν)D
a2b2

b2 − a2
(Mb − Ma) ln

r
b
.

Recall that w in Chapter 16 is measured positive when upwards, so that downward deflec-
tions are negative.
(b) By vertical equilibrium, we must have

2πr Qr (r) + 2πaVa = 0 ,
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which gives Qr (r) = −aVa/r . Thus,

Qr = D
d
dr

[
1
r

d
dr

(
r

dw
dr

)]
= −aVa

Dr
.

After three successive integrations, there follows

w = −aVa

4D
r2
(

ln
r
b

− 1
)

+ 1
4

Ar2 + B ln
r
b

+ C .

The integration constants A, B,C are specified from the boundary conditions w = 0 at
r = b, and Mr = 0 at both r = a and r = b. This leads to the following expression for the
deflected shape of the plate

w = − ab2Va

4D

{(
1 − r2

b2

)[
3 + ν

2(1 + ν)
− a2

b2 − a2
ln

a
b

]

+
(

r2

b2
+ 1 + ν

1 − ν
2a2

b2 − a2
ln

a
b

)
ln

r
b

}
.

CHAPTER 17

Problem 17.1. Derive the stress and displacement fields for screw dislocation in an infinite
isotropic medium.

Solution: This is an antiplane strain problem of linear elasticity, for which the displacement
components are

ux = uy = 0 , uz = uz(x, y) .

The corresponding nonvanishing strain components are

ezx = 1
2
∂uz

∂x
, ezy = 1

2
∂uz

∂y
,

with the resulting stresses

σzx = 2µezx = µ ∂uz

∂x
, σzy = 2µezy = µ ∂uz

∂y
.

Substituting these into the equilibrium equation

∂σzx

∂x
+ ∂σzy

∂y
= 0 ,

gives the Laplacian equation for the out-of-plane displacement

∂2uz

∂x2
+ ∂2uz

∂y2
= 0 .

The displacement uz is thus a harmonic function, which satisfies a discontinuity condition∮
C

duz = b ,

where b is the magnitude of the Burgers vector, and C is any closed contour around the
core of the dislocation. Evidently, this is satisfied if we take

uz = b
2π
θ = b

2π
tan−1 y

x
.
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r
θ

y

x
0

Figure 17-1. Semi-infinite crack in an infinite medium.

The resulting stresses are

σzx = µ ∂uz

∂x
= −µb

2π
y

x2 + y2
, σzy = µ ∂uz

∂y
= µb

2π
x

x2 + y2
.

The polar coordinates counterparts are

σzr = 0 , σzθ = µb
2π

1
r
.

Note the order of the stress singularity due to r−1 term at the center of the dislocation core.

Problem 17.2. Derive the asymptotic (near crack-tip) stress field for a semi-infinite crack
in an infinite isotropic medium under mode III (antiplane shear) loading (Fig. 17-1).

Solution: As in the previous problem, the only nonvanishing displacement component is
out-of-plane displacement uz = uz(x, y), which satisfies the Laplacian equation

∂2uz

∂x2
+ ∂2uz

∂y2
= 0 .

When this is rewritten in polar coordinates (see figure), we have

∂2uz

∂r2
+ 1

r
∂uz

∂r
+ 1

r2

∂2uz

∂θ2
= 0 .

For antiplane shear loading, uz should be an odd function of θ , i.e., uz(r, θ) = −uz(r,−θ).
This is satisfied by taking

uz = Arn sin(nθ) ,

where n is a real number and A is an arbitrary constant. The boundary conditions on the
traction free faces of the crack are σθz(r, θ = ±π) = 0. This gives

σθz = µ 1
r
∂uz

∂θ

∣∣
θ=±π = µAnrn−1 cos(nπ) = 0 ,

which is satisfied for n = 1/2, 3/2, 5/2, . . .. Taking n = 1/2 (which gives the dominating
stress contribution near the crack tip, and uz that monotonically increases from θ = 0 to
θ = π), we have

uz = Ar1/2 sin
θ

2
.

The corresponding stresses are

σθz = µ 1
r
∂uz

∂θ
= µA

2
√

r
cos

θ

2
,

σrz = µ ∂uz

∂r
= µA

2
√

r
sin
θ

2
.



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

758 Problems 17.2–17.3

θ

σ
σηη

σξξσξη
σξη

σ

α

r

21

(a) (b)

θ
r

21

Figure 17-2. (a) An angled crack under remote tension. (b) An equivalent loading
configuration.

Note the order of the stress singularity due to r−1/2 term at the crack tip.

Problem 17.3. Determine the near crack tip stress field for an angled crack in an infinite
plate under remote tension.

Solution: The loading shown in Fig. 17-2(a) is equivalent to the loading shown in
Fig. 17-2(b). By the transformation of stress formulas, we have

σξξ = σ sin2 α , σηη = σ cos2 α , σξη = σ sinα cosα .

This gives rise to a combined (mixed) mode I and II loading, with the corresponding stress
intensity factors

KI = σηη
√
πl = σ cos2 α

√
πl ,

KI I = σξη
√
πl = σ sinα cosα

√
πl .

The near crack tip stress field for the mode I portion of the loading (expressed in polar
coordinates) is

σrr = KI√
2πr

(
5
4

cos
θ

2
− 1

4
cos

3θ
2

)
,

σθθ = KI√
2πr

(
3
4

cos
θ

2
+ 1

4
cos

3θ
2

)
,

σrθ = KI√
2πr

(
1
4

sin
θ

2
+ 1

4
sin

3θ
2

)
.



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 17.3–17.4 759

Similarly, for the mode II portion of the loading, we have

σrr = KI I√
2πr

(
−5

4
sin
θ

2
+ 3

4
sin

3θ
2

)
,

σθθ = KI I√
2πr

(
−3

4
sin
θ

2
− 3

4
sin

3θ
2

)
,

σrθ = KI I√
2πr

(
1
4

cos
θ

2
+ 3

4
cos

3θ
2

)
.

The total stress field near the crack tip is the sum of the above two fields.

Problem 17.4. The Peierls–Nabarro dislocation model accounts for the discreteness of the
crystalline lattice. For an edge dislocation, the displacement discontinuity along the slip
plane y = 0 is

�ux = bx

π
tan−1 2x

w
, w = d

1 − ν ,

where bx is the Burgers vector, d is the interplanar spacing across the slip plane, and w is
the so-called width of the dislocation. It can be shown that the Airy stress function for this
dislocation model is

� = − µbx

4π(1 − ν)
y ln

[
x2 +

(
y ± w

2

)]
.

The plus sign in (y ± w/2) holds for y > 0, and the minus sign for y < 0. Derive the
corresponding stress field and verify that there is no stress divergence at the center of the
dislocation core.

Solution: The stress components are derived from

σxx = ∂2�

∂y2
, σyy = ∂2�

∂x2
, σxy = − ∂2�

∂x∂y
.

This gives

σxx = − µbx

2π(1 − ν)

{
y ± w

x2 + (y ± w/2)2
+ 2x2 y

[x2 + (y ± w/2)2]2

}
,

σyy = − µbx

2π(1 − ν)

{
y

x2 + (y ± w/2)2
− 2x2 y

[x2 + (y ± w/2)2]2

}
,

σxy = + µbx

2π(1 − ν)

{
x

x2 + (y ± w/2)2
− 2xy(y ± w/2)

[x2 + (y ± w/2)2]2

}
,

σzz = ν(σxx + σyy) = − νµbx

π(1 − ν)
y ± w/2

x2 + (y ± w/2)2
.

Clearly, the stresses remain bounded at the center of the dislocation core (x = y = 0),
although the strains become large in the core region (so that the applicability of Hooke’s
law may actually be exceeded there).
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Ωy

x
0 ξ

η

ρ

Figure 18-1. A disclination of an angle � in an infinite
medium.

Problem 17.5. The displacement field for the Peierls–Nabarro screw dislocation is

uz = − bz

2π
tan−1 x

y ± d/2
,

where bz is the Burgers vector, and d is the interplanar spacing. The plus sign in (y ± d/2)
holds for y > 0, and the minus sign for y < 0. Derive the corresponding stress field.

Solution: Since

σzx = µ ∂uz

∂x
, σzy = µ ∂uz

∂y
,

it readily follows that

σzx = −µbz

2π
y ± d/2

x2 + (y ± d/2)2
,

σzy = µbz

2π
x

x2 + (y ± d/2)2
.

The polar counterparts are

σzθ = µbz

2π
1
r

(
1 − d

2r
sin θ

)
,

σzr = −µbz

2π
1
r

d
2r

cos θ .

For r � d/2, the above reduces to stress components of the corresponding Volterra dislo-
cation

σzθ = µbz

2π
1
r
, σzr = 0 .

CHAPTER 18

Problem 18.1. The Airy stress function for a wedge dislocation (also called disclination) is

 � = 1
4

k�ρ2 ln ρ2 , ρ2 = (x − ξ)2 + (y − η)2 ,
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y

x
R

r

θ θ θ 12

r 2
r1

CO A

B
Figure 18-2. The radii r , r1, r2 and the angles θ , θ1, θ2 appearing
in the expressions for the stress components at point B due to
edge dislocation at point A. The radius of the void is R, and the
lengths OA= a and OC = R2/a.

where� is the disclination angle (see Fig. 18-1), and k = µ/2π(1 − ν). Show that the Airy
stress functions for the edge dislocations with the Burgers vectors bx and by can be deduced
from  � as

 bx = bx

�

∂ �

∂η
,  by = −by

�

∂ �

∂ξ
.

Solution: It readily follows that

∂ �

∂η
= −k�

2
(y − η)(1 + ln ρ2) .

Sine linear terms in x, y are immaterial to the Airy stress function (stresses being defined
by its second derivatives), we obtain

 bx = −kbx(y − η) ln ρ ,

which is the Airy stress function for the dislocation bx at the point (ξ, η). A similar deriva-
tion proceeds for  by .

Problem 18.2. Derive the stress field due to an edge dislocation with the Burgers vector
bx near the circular void of radius R. The Airy stress function for the problem was derived
by Dundurs and Mura (1964) as

 = − Gbx

2π(1 − ν)
[r1 ln r1 sin θ1 − r2 ln r2 sin θ2 + r ln r sin θ

+ ζ 2 − 1
2ζ 3

R sin 2θ2 − (ζ 2 − 1)2

ζ 4

R2

2r2
sin θ2 + R2

2r
sin θ

]
.

Solution: Consider the stress state at point B due to edge dislocation at point A, at the
distance OA= a from the center of circular void shown in Fig. 18-2. A nondimensional
parameter ζ = a/R defines the position of dislocation relative to the void. The stresses are
derived from the stress function as

σxx = ∂2 

∂y2
, σyy = ∂2 

∂x2
, σxy = − ∂2 

∂x∂y
.
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This gives

σxx = − Gbx y
2π(1 − ν)

[
1
r2

1

(
1 + 2

x2
1

r2
1

)
− 1

r2
2

(
1 + 2

x2
2

r2
2

)
+ 1

r2

(
1 + 2

x2

r2

)

+ 2
ζ 2 − 1
ζ 3

Rx2

r4
2

(
1 − 4

x2
2

r2
2

)
− (ζ 2 − 1)2

ζ 4

R2

r4
2

(
1 − 4

x2
2

r2
2

)

+ R2

r4

(
1 − 4

x2

r2

)]
,

σyy = − Gbx y
2π(1 − ν)

[
1
r2

1

(
1 − 2

x2
1

r2
1

)
− 1

r2
2

(
1 − 2

x2
2

r2
2

)
+ 1

r2

(
1 − 2

x2

r2

)

− 2
ζ 2 − 1
ζ 3

Rx2

r4
2

(
3 − 4

x2
2

r2
2

)
+ (ζ 2 − 1)2

ζ 4

R2

r4
2

(
1 − 4

x2
2

r2
2

)

− R2

r4

(
1 − 4

x2

r2

)]
,

σxy = − Gbx

2π(1 − ν)

[
x1

r2
1

(
1 − 2

x2
1

r2
1

)
− x2

r2
2

(
1 − 2

x2
2

r2
2

)
+ x

r2

(
1 − 2

x2

r2

)

+ ζ 2 − 1
ζ 3

R

r2
2

(
1 − 8

x2
2

r2
2

+ 8
x4

2

r4
2

)
+ (ζ 2 − 1)2

ζ 4

R2x2

r4
2

(
3 − 4

x2
2

r2
2

)

− R2x
r4

(
3 − 4

x2

r2

)]
.

It these expressions x = r cos θ , x1 = r1 cos θ1 = x − a, and x2 = r2 cos θ2 = x − R2/a. The
surface of the void exerts the force on the dislocation that is equal to

Fx = bxσxy(a, 0) = − Gb2
x

2π(1 − ν)
R2

a3

2a2 − R2

a2 − R2
.

The minus sign indicates the attractive nature of the force toward the stress free surface
of the void. The singular self-stress of the dislocation at x = a is excluded from σxy(a, 0)
in evaluating the force on the dislocation due to void in the above expression.

CHAPTER 19

Problem 19.1. Consider a Griffith crack of length 2c in an elastically anisotropic material
under uniform remote loading σ 0

i j . Show that near the crack tip the traction components
along the crack plane are

σ2i = σ 0
2i

(2r/c)1/2
,

where r is the distance from the crack tip.
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σ
x1

x2

8

Figure 19-1. A nonsymmetric profile of the deformed crack
faces under uniform pressure σ in an anisotropic materials.

Solution: By superimposing a uniform state of stress to (19.149), to achieve the traction-
free crack faces, we obtain

t2(x1, 0) = |x1|
(x2

1 − c2)1/2
t2

0 .

By writing x1 = c + r , and letting r � c, there follows

t2(r, 0) = t2
0

(2r/c)1/2
,

i.e.,

σ2i (r, 0) = σ 0
2i

(2r/c)1/2
,

independently of the type of elastic anisotropy or the values of the elastic moduli. This
was previously demonstrated in the main text by (19.47).

Problem 19.2. Consider a Griffith crack of length 2c in an elastically anisotropic material.
The crack is loaded by uniform pressure σ over its faces. Show that the opening of the crack
faces is not symmetrical with respect to the x2 axis. Also, calculate the maximum vertical
displacement along the crack faces and the horizontal displacements of the two crack tips.

Solution: For this loading we have

t0
2 =

⎡
⎣0
σ

0

⎤
⎦ .

Since S · L−1 is always antisymmetric, its diagonal elements vanish and from (19.150) we
obtain along the crack faces (|x1| < c, x2 = ±0) the following displacement components

u1(x1, x2 = ±0) =
[
±(c2 − x2

1 )1/2L−1
12 + x1(SL−1)12

]
σ ,

u2(x1, x2 = ±0) = ±(c2 − x2
1 )1/2L−1

22 σ .

Thus, unless L−1
12 = 0, the horizontal displacement component along the crack faces is not

symmetric with respect to x2 axis, although the crack tips move horizontally in a symmetric
manner by

u1(x1 = ±c, x2 = 0) = ±c(SL−1)12σ .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

764 Problems 19.2–20.1

at

x1

x3

x2

a
a1

2

(b) (c)

x3

x2

x1

x1

x3

x2

a

(a)

Figure 20-1. (a) A spherical, (b) an elliptical cylinder, and (b) a penny-shape
inclusion.

The maximum vertical displacement of the points along the crack faces is

u2(x1 = 0, x2 = ±0) = ±cL−1
22 σ .

CHAPTER 20

Problem 20.1. By appropriately specializing the general results for an ellipsoidal inclusion,
listed in Section 20.4, write down the components of the Eshelby tensor Si jkl for: (a) a spher-
ical inclusion, (b) an elliptical cylinder, and (c) a penny-shape inclusion.

Solution: (a) For a spherical inclusion a1 = a2 = a3 = a (Fig. 20-1a), we obtain

I1 = I2 = I3 = 4π
3
,

and

I11 = I22 = I33 = I12 = I23 = I31 = 4π
5a2

.

This leads to

S1111 = S2222 = S3333 = 7 − 5ν
15(1 − ν)

,

S1122 = S2233 = S3311 = S1133 = S2211 = S3322 = 5ν − 1
15(1 − ν)

,

S1212 = S2323 = S3131 = 4 − 5ν
15(1 − ν)

.
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The tensor components Si jkl can be compactly expressed as

Si jkl = 4 − 5ν
15(1 − ν)

(δikδ jl + δilδ jk) + 5ν − 1
15(1 − ν)

δi jδkl .

(b) For an elliptical cylinder with a3 → ∞ (Fig. 20-1b), we obtain

I1 = 4πa2

a1 + a2
, I2 = 4πa1

a1 + a2
, I3 = 0 ,

I12 = 4π
(a1 + a2)2

, I11 = 4π
3a2

1

− 1
3

I12 , I22 = 4π
3a2

2

− 1
3

I12 ,

I13 = I23 = I33 = 0 ,

a2
3 I13 = I1 , a2

3 I23 = I2 , a2
3 I33 = 0 .

The Eshelby stress components are accordingly

S1111 = 1
2(1 − ν)

[
a2(2a1 + a2)

(a1 + a2)2
+ (1 − 2ν)

a2

a1 + a2

]
,

S2222 = 1
2(1 − ν)

[
a1(2a2 + a1)

(a1 + a2)2
+ (1 − 2ν)

a1

a1 + a2

]
,

S1122 = 1
2(1 − ν)

[
a2

2

(a1 + a2)2
− (1 − 2ν)

a2

a1 + a2

]
,

S2211 = 1
2(1 − ν)

[
a2

1

(a1 + a2)2
− (1 − 2ν)

a1

a1 + a2

]
,

S1133 = ν

1 − ν
a2

a1 + a2
,

S2233 = ν

1 − ν
a1

a1 + a2
,

S1212 = 1
4(1 − ν)

[
a2

1 + a2
2

(a1 + a2)2
+ 1 − 2ν

]
,

S2323 = a1

2(a1 + a2)
,

S3131 = a2

2(a1 + a2)
,

S3333 = S3311 = S3322 = 0 .
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(c) For a penny-shape inclusion, with a1 = a2 = a � a3 = t (Fig. 20-1c), we have

I1 = I2 = π2t
a
, I3 = 4π − 2π2t

a
,

I11 = I22 = I12 = I21 = 3π2t
4a3

, I33 = 4π
3a2

,

I13 = I23 = I31 = I32 = 4π
a2

− 3π2t
a3

.

The Eshelby stress components are consequently

S1111 = S2222 = π(13 − 8ν)
32(1 − ν)

t
a
,

S3333 = 1 − π(1 − 2ν)
4(1 − ν)

t
a
,

S1122 = S2211 = π(8ν − 1)
32(1 − ν)

t
a
,

S1133 = S2233 = π(2ν − 1)
8(1 − ν)

t
a
,

S3311 = S3322 = ν

1 − ν − π(4ν + 1)
8(1 − ν)

t
a
,

S1212 = π(7 − 8ν)
32(1 − ν)

t
a
,

S1313 = S2323 = 1
2

+ π(ν − 2)
8(1 − ν)

t
a
.

The remaining nonzero components satisfy the connections

Skk11 = Skk22 = ν

1 − ν + π(1 − 2ν)
4(1 − ν)

t
a
,

Skk33 = 1 − π(1 − 2ν)
2(1 − ν)

t
a
,

with sum on k.

Problem 20.2. By appropriately specializing the stress expressions for an ellipsoidal inclu-
sion, listed in Section 20.4, write down the stress components for: (a) a spherical inclusion,
(b) an elliptical cylinder, and (c) a penny-shape inclusion.

Solution: (a) From the general formulas given in Section 20.4, we obtain

σ11 = − 2µ
15(1 − ν)

[
8eT

11 + (5ν + 1)(eT
22 + eT

33

]
,
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σ12 = − 2µ
15(1 − ν)

(7 − 5ν)eT
12 .

The other stress components are obtained by cyclic permutations of (1, 2, 3).
(b) In the case of an inclusion of the elliptical cylinder shape, the stresses are

σ11 = − µ

1 − ν
a1

(a1 + a2)2

[
(2a1 + a2)eT

11 + a2eT
22 + 2ν(a1 + a2)eT

33

]
,

σ22 = − µ

1 − ν
a2

(a1 + a2)2

[
(2a2 + a1)eT

22 + a1eT
11 + 2ν(a1 + a2)eT

33

]
,

σ33 = − 2µ
1 − ν

1
a1 + a2

[
νa1eT

11 + νa2eT
22 + (a1 + a2)eT

33

]
,

σ12 = − 2µ
1 − ν

a1a2

(a1 + a2)2
eT

12 ,

σ23 = −2µ
a2

a1 + a2
eT

23 ,

σ31 = −2µ
a1

a1 + a2
eT

31 .

(c) In the case of a penny-shape inclusion, the stresses are found to be

σ11 = − 2µ
1 − ν

[
eT

11 + νeT
22 − 13π t

32a
eT

11 − (16ν − 1)π t
32a

eT
22 + (2ν + 1)π t

8a
eT

33

]
,

σ22 = − 2µ
1 − ν

[
eT

22 + νeT
11 − 13π t

32a
eT

22 − (16ν − 1)π t
32a

eT
11 + (2ν + 1)π t

8a
eT

33

]
,

σ33 = −µ(2ν + 1)
4(1 − ν)

π t
a

(
eT

11 + eT
22 + 2

2ν + 1
eT

33

)
,

σ12 = −2µ
[

1 − 7 − 8ν
16(1 − ν)

π t
a

]
eT

12 ,

σ23 = −µ(2 − ν)
2(1 − ν)

π t
a

eT
23 ,

σ31 = −µ(2 − ν)
2(1 − ν)

π t
a

eT
31 .

Problem 20.3. Using equations of linear isotropic elasticity, derive the stress field in an
infinite solvent matrix due to substitution of the solute atom of radius R2 = R1 +�, where
R1 is the radius of the solvent atom.
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Solution: Because of spherical symmetry the displacement field is radial, i.e., the only
displacement component is ur = ur (r). The corresponding nonvanishing strains are

err = dur

dr
, eθθ = eφφ = ur

r
,

with the stresses

σrr = 2µ
1 − 2ν

[(1 − ν)err + 2νeθθ ] , σθθ = σφφ = 2µ
1 − 2ν

(νerr + eθθ ) .

Substituting these into the equilibrium equation

dσrr

dr
+ 2

r
(σrr − σθθ ) = 0

gives a differential equation for ur ,

d2ur

dr2
+ 2

r
dur

dr
− 2

ur

r2
= 0 .

Its solution is

ur = C1

r2
+ C2r .

For the external problem (solvent matrix), C2 = 0 because ur → 0 as r → ∞. If p is
the pressure required for the substitution of the solvent atom, the condition σrr (R1) = −p
specifies

C1 = pR3
1

2µ
.

For the internal problem (solute matrix), C1 = 0 because ur = 0 at r = 0. Thus the radial
stress is uniform in the solute and equal to p, which gives

C2 = − 1 − 2ν
2(1 + ν)

p
µ
.

We assumed the same elastic constants in both solute and solvent.
To determine he unknown pressure p, we next use the misfit condition

uext
r (R1) − uint

r (R2) = � .

Neglecting the small quantities of higher order, this gives

p = 2µ
1 + ν
2 − ν

�

R1
.

Consequently, the stress field in the solvent matrix is found to be

σrr = −2µ
1 + ν
2 − ν

R2
1�

r3
, σθθ = σφφ = −σrr .

Problem 20.4. Derive the stress and displacement fields for sliding circular inclusion under
biaxial transformation strain.
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Solution: The Papkovich–Neuber potentials for the displacement in the sliding inclusion
associated with the transformation strain eT

xx and eT
yy are

 0 = A1r2 cos 2θ ,  1 = A2r3 cos 3θ + A3r cos θ ,

 2 = A2r3 sin 3θ + A3r sin θ ,

where r and θ denote the polar coordinates. The displacement components are derived
from

ux = ∂

∂x
( 0 + x 1 + y 2) − 4(1 − ν) 1 | +eT

xxx ,

uy = ∂

∂y
( 0 + x 1 + y 2) − 4(1 − ν) 2 | +eT

yy y .

The terms eT
xxx and eT

yy y, appearing to the right of the vertical (|) line, correspond to
stress-free eigenstrain, and should not be taken into account when calculating the stresses.

The Papkovich–Neuber potentials for displacements in the matrix are

 0 = B1r−2 cos 2θ ,  1 = B2r−1 cos θ ,  2 = B3r−1 sin θ .

The corresponding displacement components are obtained from the above expressions
for ux and uy by excluding eT

xxx and eT
yy y terms on their right-hand side. The boundary

conditions for the sliding inclusion are the vanishing of the shear traction at the interface
between the inclusion and the matrix, and the continuity of normal traction and normal
displacement at the interface. Thus, at r = a,

σ I
rθ = 0 , σM

rθ = 0 , σ I
rr = σM

rr , uI
r = uM

r .

The superscript I designates the inclusion, and M the matrix. Upon calculation, we obtain

A1 = −3k
8

(eT
xx − eT

yy) , A2 = k
8

(eT
xx − eT

yy)a−2 , A3 = k
2

(eT
xx + eT

yy) ,

and

B1 = k
8

(eT
xx − eT

yy)a4 , B2,3 = −k
8

[8k(eT
xx + eT

yy) ± 3(eT
xx − eT

yy)]a2 ,

where k = 1/4(1 − ν). The following displacement and stress components result in polar
coordinates. The displacements in the inclusion are

ur = k
4

[
4(eT

xx + eT
yy)r + (eT

xx − eT
yy)

(
5 − 8ν + 2ν

r2

a2

)
r cos 2θ

]
,

uθ = −k
4

(eT
xx − eT

yy)
[

5 − 8ν + (3 − 2ν)
r2

a2

]
r sin 2θ ,

and the stresses

σrr = −kµ
2

[
4(eT

xx + eT
yy) + 3(eT

xx − eT
yy) cos 2θ

]
,

σθ = −kµ
2

[
4(eT

xx + eT
yy) − 3(eT

xx − eT
yy)

(
1 − 2

r2

a2

)
cos 2θ

]
,

σrθ = 3kµ
2

(eT
xx − eT

yy)
(

1 − r2

a2

)
sin 2θ .
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The displacement components in the matrix are similarly

ur = k
4

a
r

{
4(eT

xx + eT
yy)a + (eT

xx − eT
yy)

[
6(1 − ν) − a2

r2

]
a cos 2θ

}
,

uθ = −k
4

(eT
xx − eT

yy)
a
r

[
3(1 − 2ν) + a2

r2

]
a sin 2θ ,

with the corresponding stresses

σrr = −kµ
2

a2

r2

[
4(eT

xx + eT
yy) + 3(eT

xx − eT
yy)

(
2 − a2

r2

)
cos 2θ

]
,

σθθ = kµ
2

a2

r2

[
4(eT

xx + eT
yy) − 3(eT

xx − eT
yy)

a2

r2
cos 2θ

]
,

σrθ = −3kµ
2

(eT
xx − eT

yy)
a2

r2

(
1 − a2

r2

)
sin 2θ .

The stress state at all points of the inclusion at the interface r = a is purely dilatational in
the sense σrr = σθ . A discontinuity in the tangential displacement at the boundary of the
inclusion is

�uθ = uM
θ (a, θ) − uI

θ (a, θ) = 1
4

(eT
xx − eT

yy)a sin 2θ .

A discontinuity in the hoop stress across the interface of the sliding inclusion is constant
and equal to �σθ = 4kµ(eT

xx + eT
yy).

CHAPTER 21

Problem 21.1. The asymptotic stress and displacement fields near the crack tip of a semi-
infinite crack in an infinite medium under mode III (antiplane shear) loading are

σrz = KI I I√
2πr

sin
θ

2
, σθz = KI I I√

2πr
cos

θ

2
,

uz = 2KI I I

µ

√
r

2π
sin
θ

2
.

Evaluate the J integral around the crack tip.

Solution: The J integral (for the x direction) around the circle with the center at the
coordinate origin (see Fig. 21-1) in the case of antiplane shear is

J =
∫ (

Wdy − σrz
∂uz

∂x
ds
)
,

where dy = r cos θdθ and ds = rdθ . Since the strain energy of linearly elastic material (per
unit volume) is

W = 1
2µ

(
σ 2

rz + σ 2
θz

) = K2
I I I

4πµr
,
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r
θ

y

xO

C

Figure 21-1. A circular integration path around the
crack tip used to evaluate the J integral.

and since

∂uz

∂x
= ∂uz

∂r
∂r
∂x

+ ∂uz

∂θ

∂θ

∂x
= − KI I I

µ
√

2πr
sin
θ

2
,

the substitution in the above expression for the J integral, and integration from θ = −π
to θ = π , gives

J = K2
I I I

2µ
.

The above analysis can be extended to combined mode I and II loading. It follows that

J = 1 − ν2

E

(
K2

I + K2
I I

)
, plane strain,

J = 1
E

(
K2

I + K2
I I

)
, plane stress.

In the derivation, the following stress and displacement fields apply for the respective
modes.

Mode I :

⎛
⎝σxx

σyy

σxy

⎞
⎠ = KI√

2πr
cos(θ/2)

⎛
⎜⎜⎜⎜⎜⎝

1 − sin(θ/2) sin(3θ/2)

sin(θ/2) cos(3θ/2)

1 + sin(θ/2) sin(3θ/2)

⎞
⎟⎟⎟⎟⎟⎠ ,

(
ux

uy

)
= KI

2µ

√
r

2π

⎛
⎜⎝cos(θ/2)

[
υ − 1 + 2 sin2(θ/2)

]

sin(θ/2)
[
υ + 1 − 2 cos2(θ/2)

]
⎞
⎟⎠ .

where υ = 3 − 4ν for plane strain and υ = (3 − ν)/(1 + ν) for plane stress.
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y

x
a

H
h
g f

ed
c b

ww
Figure 21-2. An infinitely long strip of thick-
ness H with a semi-infinite crack. The lower
side of the strip is fixed and the upper is given
a uniform out-of-plane displacement w.

Mode II :

⎛
⎝σxx

σyy

σxy

⎞
⎠ = KI I√

2πr

⎛
⎜⎜⎜⎜⎜⎝

− sin(θ/2) [2 + cos(θ/2) cos(3θ/2)]

cos(θ/2) [1 − sin(θ/2) sin(3θ/2)]

sin(θ/2) cos(θ/2) cos(3θ/2)

⎞
⎟⎟⎟⎟⎟⎠ ,

(
ux

uy

)
= KI I

2µ

√
r

2π

⎛
⎜⎝

sin(θ/2)
[
υ + 1 + 2 cos2(θ/2)

]
− cos(θ/2)

[
υ − 1 − 2 sin2(θ/2)

]
⎞
⎟⎠ .

The J integral is calculated from

J =
∫ π

π

(
W cos θ − Tk

∂uk

∂x

)
rdθ ,

where Tk (k = 1, 2) are the traction components along the circular integration path.

Problem 21.2. Determine the value of the J integral around the crack tip for a cracked strip
shown in Fig. 21-2. The upper side of the strip is given a uniform out-of-plane displacement
w, while the lower side is fixed.

Solution: As in the similar problem in the text, the J integral for the closed path abc...ha
vanishes, i.e.,

Jabc...ha = Jab + Jbc + Jcd + Jde + Jef + J fg + Jgh + Jha = 0 .

The stresses along cd and gh (infinitely remote from the crack tip) vanish, thus W = 0
there, whereas σyz = µw/H along infinitely remote e f . Imposing the obvious boundary
conditions along horizontal parts of the integration contours, we obtain

Jabc...ha = Jab + Jef = Jab +
∫ f

e
Wdy = 0 .

Since W = σ 2
yz/2µ = µw2/2H2 along the segment e f , the above gives

Jab = µw2

2H
.



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 21.3–21.4 773

σ

x

l

u0

σ

u

8

Figure 21-3. A crack of length l in an infinite medium under remote
tension (Griffith crack). The deformed crack faces are elliptical in
shape.

Problem 21.3. Consider a crack of length l in an infinite medium under remote uniform
tension σ (see Fig. 21-3). The crack faces deform into an elliptical shape defined by the
displacement function

u(x) = u0

(
1 − 4

x2

l2

)
, u0 = σ

E∗
l ,

where E∗ = E for plane stress and E∗ = E/(1 − ν2) for plane strain. Derive an expression
for the energy release rate G associated with the extension of the crack length.

Solution: The potential energy P of the cracked medium differs from the potential energy
of the uncracked medium under remote tension σ by an amount that is equal to the work
done by σ applied to the crack faces to close the crack (and restore the uniform stress state
throughout the medium). Therefore, we can write

P = P0 − 2
∫ l/2

−l/2
σu(x)dx = P0 − 2

∫ l/2

−l/2
σu0

(
1 − 4

x2

l2

)
dx = P0 − σ 2l2π

4E∗
.

The energy release rate is defined as the negative gradient of the potential energy with
respect to the crack length. Thus,

G = −∂P
∂l

= σ 2lπ
2E∗

.

Problem 21.4. Evaluate the M integral around an edge dislocation with the Burgers vec-
tor bx.

Solution: The M integral of two-dimensional elasticity is defined by

M =
∫

C

(
Wni xi − Tk

∂uk

∂xi
xi

)
dC.

In a homogeneous linearly elastic material within a simply connected region this integral
vanishes along any closed path C that does not embrace a singularity or defect.
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r
θ

y

xO

C

Figure 21-4. A circular path C around an edge dislocation used to evaluate
the M integral.

Along a circular path around the dislocation (with the coordinate origin at the center of
dislocation, Fig. 21-4), we have

xi ni = r ,
∂uk

∂xi
xi = r

∂uk

∂r
,

so that

Tk
∂uk

∂xi
xi = r

(
σrr
∂ur

∂r
+ σrθ

∂uθ
∂r

)
.

The elastic strain energy density for plane strain is

W = 1
4µ

[
(1 − ν)(σ 2

rr + σ 2
θθ ) − 2νσrrσθθ + 2σ 2

rθ

]
.

For an edge dislocation with the Burgers vector bx, we have

σrr = σθθ = − µbx

2π(1 − ν)
sin θ

r
, σrθ = µbx

2π(1 − ν)
cos θ

r
,

with the displacements

ur = − bx

4π(1 − ν)

[
(1 − 2ν) ln

r
bx

sin θ − 2(1 − ν)θ cos θ − 1
2

sin θ
]
,

uθ = − bx

4π(1 − ν)

[
(1 − 2ν) ln

r
bx

cos θ + 2(1 − ν)θ sin θ + 1
2

cos θ
]
.

It readily follows that

Wxi ni − Tk
∂uk

∂xi
xi = µb2

x

4π2(1 − ν)
cos2 θ

r
,

and, upon integration from θ = 0 to θ = 2π ,

M = µb2
x

4π(1 − ν)
.

Problem 21.5. Evaluate the M integral around the crack tip of a semi-infinite crack under
asymptotic stress field given in Problem 21.1. The coordinate origin is the the crack tip.
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r
θ

y

xO

C

Figure 21-5. A circular path C around the crack tip of
a semi-infinite crack used to evaluate the M integral.

Solution: Along a circular path around the crack tip (Fig. 21-5), we have

∂uk

∂xi
xi = r

∂uk

∂r
= 1

2
uk .

The last identity follows because uk are homogeneous functions of r of degree 1/2. Since
xi ni = r , we obtain

M =
∫

C

(
Wni xi − Tk

∂uk

∂xi
xi

)
dC =

∫ 2π

0

(
Wr − 1

2
Tkuk

)
rdθ .

Now, from the asymptotic fields around the crack tip, listed in Problem 21.1, we recall
that Tk ∼ r−1/2, uk ∼ r1/2 and W ∼ r−1. Consequently, without any further calculation, by
taking the limit as r → 0, we obtain M = 0. Because along the traction free crack faces
xi ni = 0 and Tk = 0, we conclude that M = 0 around the crack tip regardless or r .

Problem 21.6. If the value of M integral, defined with the coordinate origin placed at the
point O, is M0, show that the value of the M integral, defined with the coordinate origin
at the point A(see Fig. 21-6), is

MA = M0 − xA
i Ji .

Solution: The M integral with the coordinate origin at A(xA
1 , xA

2 ) is

MA =
∫

C

(
Wniξi − Tk

∂uk

∂ξi
ξi

)
dC.

Since

ξi = xi − xA
i ,

1ξA

C

x

O

ξ 2

2

x2
A

x 1 x 1
A

Figure 21-6. A path C used to evaluate the M integral with respect to co-
ordinates with the origin at O and A.
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Figure 21-7. A path used to evaluate the M integral
and derive an expression for the dislocation force due
to a nearby semi-infinite crack at distance ρ.

the substitution in the above integral gives

MA =
∫

C

(
Wni xi − Tk

∂uk

∂xi
xi

)
dC − xA

i

∫
C

(
Wni − Tk

∂uk

∂xi

)
dC.

Thus,

MA = M0 − xA
i Ji ,

where

Ji =
∫

C

(
Wni − Tk

∂uk

∂xi

)
dC , (i = 1, 2).

Problem 21.7. Derive an expression for the force on an edge dislocation due to traction
free crack faces of a nearby semi-infinite crack. The dislocation is at the distance ρ from
the crack tip, as shown in Fig. 21-7.

Solution: The M integral along the closed contour around the crack tip and the dislocation,
shown in the figure, vanishes. By placing the origin at the center of the dislocation, the
only nonvanishing contributions to the M integral are along the small circles around the
dislocation and the crack tip (because of the traction free crack faces, and because along
large circle the stresses due to crack tip dominate over those due to nearby dislocation.
Also, along remote circle the distance ρ is not observed, and from Problem 21.5 we know
that M = 0 around the crack tip with the origin at the crack tip). Therefore, recalling the
results from Problems 21.4 and 21.6,

MO = µb2
x

4π(1 − ν)
− ρ Jx = 0 ,

i.e.,

Jx = µb2
x

4π(1 − ν)
1
ρ
.
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bρ e

F
Figure 21-8. An edge dislocation with the Burgers vector be at distance ρ along
an inclined slip plane from the crack tip of a semi-infinite crack.

This is the energy release rate of the crack associated with its extension toward the dis-
location (configurational force on the crack tip due to dislocation). The opposite force of
the same magnitude is the force on the dislocation due to the traction free crack faces.

If the slip plane of the dislocation is at an angle to the crack faces (see Fig. 21-8), a similar
analysis reveals that the attractive force from the crack tip on the edge dislocation with
the Burgers vector be, is

F = µb2
e

4π(1 − ν)
1
ρ
.

If the dislocation is of a screw character, the dislocation force is

F = µb2
s

4π
1
ρ
.

Problem 21.8. Consider a double cantilever beam shown in Fig. 21-9.

(a) Calculate the load to propagate the crack of length l, if the surface energy of the crack
faces is γ . Estimate the elastic stiffness of the system by using the simple beam theory.

(b) Derive the force-displacement relationship if the crack propagates in a neutrally stable
mode (transition between stable and unstable mode).

(c) Independently of part (b), examine the stability of crack growth under constant force
and constant displacement conditions.

Solution: (a) The potential energy of the system is the sum of the elastic strain energy and
the load potential, i.e.,

% = 1
2

Fu − Fu .

If, at some state of loading, the crack extends its length from l to l + dl, while the force
changes from F to F + dF and displacement from u to u + du, the potential energy of the
system changes by

l

F

Fl

(b)(a)

u/2
u/2

Figure 21-9. A double-cantilever specimen: (a) before and (b) after load application.
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d% = 1
2

Fdu + 1
2

dFu − Fdu .

There is no load potential of dF on the previously applied displacement u. The crack
extends its length by dl if the energy release rate of the system is sufficient to supply the
surface energy increase 2γ dl (times the unit thickness), that is if −d% = 2γ dl. This gives
the propagation condition G = 2γ , where

G = −∂%
∂l

= 1
2

(
F

du
dl

− u
dF
dl

)

is the energy release rate.
If the elastic compliance of the system is s = s(l), we have

s = u
F

⇒ ds
dl

= 1
F2

(
F

du
dl

− u
dF
dl

)
.

Therefore, the energy release rate is

G = 1
2

F2 ds
dl
.

If k = k(l) is the elastic stiffness of the system, such that F = ku and ks = 1, we have

ds
dl

= − 1
k2

dk
dl
.

Consequently, the energy release rate can be expressed as either of

G = 1
2

F2 ds
dl

= −1
2

u2 dk
dl
.

For the double cantilever beam we can adopt from elementary beam-bending theory the
simple relationship u/2 = Fl3/(3EI), where EI is the cantilever bending stiffness. Thus,

s(l) = 2l3

3EI
, k(l) = 3EI

2l3
,

and

ds
dl

= 2l2

EI
,

dk
dl

= −9EI
2l4

,

The crack propagation condition then becomes

1
2

F2 2l2

EI
= 1

2
u2 9EI

2l4
= 2γ .

This gives the critical force for the crack propagation, and the corresponding displacement,

F2 = 2γ EI
l2

, u2 = 8γ l4

9EI
.

(b) By forming the product F4u2 from the above two expressions, we have

F4u2 = 32
9
γ 3 EI ⇒ F2 = 4γ

3

√
2γ EI

1
u
.
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u

F

(a)

u

F

(b)

u

F

(c)

Figure 21-10. (a) The force-displacement relation during: (a) metastable crack
propagation, (b) unstable crack propagation under constant force, and (c) stable
crack propagation under constant displacement.

This defines the force displacement relationship F = F(u) during the neutrally stable crack
growth (Fig. 21-10a). During this growth(

∂2%

∂l2

)
G=2γ

= 0 .

This can be easily verified from the expressions

∂2%

∂l2
= 1

2

(
u

d2 F
dl2

− F
d2u
dl2

)
,

and

F2 = 2γ EI
l2

⇒ d2 F
dl2

= 2
√

2γ EI l−3 ,

u2 = 8γ l4

9EI
⇒ d2u

dl2
= 4

√
2γ

3
√

EI
l .

(c) The crack will propagate in a stable mode if(
∂2%

∂l2

)
G=2γ

> 0 ,

and in an unstable mode if the reverse inequality applies.
If the crack propagation is taking place in a test under constant force (Fig. 21-10b), then

% = −1
2

Fu = −1
2

F2s(l) , s(l) = 2l3

3EI
,

G = −
(
∂%

∂l

)
F

= 1
2

F2 ds
dl

= 2γ ⇒ F2 = 2γ EI
l2

,

(
∂2%

∂l2

)
G=2γ

= −1
2

F2 d2s
dl2

= −4γ
l
< 0 .

Thus, under the constant force, the crack propagates in an unstable mode.
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u

F

1

0

F,u

l0

(a) (b)

2γ t(l - l0)

Figure 21-11. (a) The cracked specimen un-
der applied force F . The initial crack length
is l0. (b) The force vs. displacement, loading–
unloading path of the cracked specimen.

If the crack propagation is taking place in a test under constant displacement (Fig. 21-
10c), then

% = 1
2

Fu = 1
2

k(l)u2 , k(l) = 3EI
2l3

,

G = −
(
∂%

∂l

)
u

= −1
2

u2 dk
dl

= 2γ ⇒ u2 = −8γ l4

9EI
,

(
∂2%

∂l2

)
G=2γ

= 1
2

u2 d2k
dl2

= 8γ
l
> 0 .

Thus, under the constant displacement, the crack propagates in a stable mode. This is also
obvious from the result in part (b), because for any force-displacement curve, correspond-
ing to crack growth, below the curve in Fig. 21-10a the crack will propagate in a stable
mode, and for any force-displacement curve above the curve in Fig. 21-10a the crack will
propagate in an unstable mode.

Problem 21.9. In a fracture test of cracked specimen with initial crack length l0

(Fig. 21-11a), the crack began to propagate when the force F was F0 and the correspond-
ing displacement of its point of application u0. As the crack propagated to length l1, the
force had fallen to F1, with the corresponding displacement u1. The specimen was then
unloaded, and the elastic unloading went back to the origin (Fig. 21-11b). Assuming that
the force-displacement curve from (F0,u0) to (F1, u1) is a straight line, evaluate the surface
area γ of the crack faces.

Solution: The work done by the force from the initial state (0, 0) to state (F1,u1) is

1
2

F0u0 +
∫ 1

0
F(u)du = 1

2
F0u0 + 1

2
(F0 + F1)(u1 − u0) ,

the integral being evaluated as the area of the trapezoid under the force-displacement line
0 → 1. The difference of this work and the unloading work

1
2

F1u1
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is equal to the increase of the surface energy of the crack faces, associated with crack
extension from length l0 to l1. This is

2γ t(l1 − l0) ,

where t is the thickness of the specimen. Thus,

1
2

F0u0 + 1
2

(F0 + F1)(u1 − u0) − 1
2

F1u1 = 2γ t(l1 − l0) .

After solving for γ , we obtain

γ = F0u1 − F1u0

4t(l1 − l0)
.

CHAPTER 22

Problem 22.1. Evaluate the effect of the couple stresses on the stress concentration at the
surface of the circular hole in an infinite medium under remote shear loading.

Solution: Consider a stress-free circular void of radius R in an infinite medium under
remote shear stresses σ∞

13 and σ∞
23 . The displacement field is w = w0 + w∗, where

w0 =
(
σ∞

13

µ
r + A

R2

r

)
cos θ +

(
σ∞

23

µ
r + B

R2

r

)
sin θ ,

w∗ = RK1

(r
l

)
(C cos θ + Dsin θ) .

The constants A, B, C, and D are determined from the boundary conditions of vanishing
reduced stress tractions along the surface of the hole r = R, which are

t̄r3 = tr3 − 1
2R

∂mrr

∂θ
= 0 , mrθ = 0 .

The boundary conditions giving rise to uniform shear stresses σ∞
13 and σ∞

23 at r → ∞ are
identically satisfied by the selected form of the displacement function. The first boundary
condition gives

[
µR2 + 2(α + β)

]
A+ (α + β)

[
K1

(
R
l

)
− R

l
K′
(

R
l

)]
C = R2σ∞

13 ,

[
µR2 + 2(α + β)

]
B + (α + β)

[
K1

(
R
l

)
− R

l
K′
(

R
l

)]
D = R2σ∞

23 ,

and the second

2(α + β)A+ R2

l2

[
(α + β)K

′′
1

(
R
l

)
− βK1

(
R
l

)]
C = 0 ,

2(α + β)B + R2

l2

[
(α + β)K

′′
1

(
R
l

)
− βK1

(
R
l

)]
D = 0 .
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It readily follows that

A= a
b
σ∞

13

µ
, B = a

b
σ∞

23

µ
, C = −2

b
σ∞

13

µ
, D = −2

b
σ∞

23

µ
,

with the parameters

a = a0 + 2K1 , b = a0 + 4K1 , a0 = R
l

K0 + α

α + β
R2

l2
K1 .

The values of the modified Bessel functions at r = R are denoted by K0 and K1. The
resulting displacement field is

w =
[

r + a
b

R2

r
− 2R

b
K1

(r
l

)]σ∞
r3

µ
,

where

σ∞
r3 = σ∞

13 cos θ + σ∞
23 sin θ .

In the limit as R/ l → ∞, the ratio a/b → 1 and we recover the classical elasticity result

w =
(

r + R2

r

)
σ∞

r3

µ
.

To evaluate the effect of the couple stresses on the stress concentration at the points
on the surface of the hole, consider the shear stress components tθ3 and t3θ at r = R. It is
found that

tθ3 = 2c
b
σ∞
θ3 , t3θ =

(
1 + d

b

)
σ∞
θ3 ,

with c = a0 + 3K1, d = a0 − 2K1 and

σ∞
θ3 = −σ∞

13 sin θ + σ∞
23 cos θ .

The stress magnification factor for the shear stress tθ3 = 2ζσ∞
θ3 due to couple stress effects is

ζ = c
b

=

α

α + β + l

R

(
3

l

R
+ K0

K1

)

α

α + β + l

R

(
4

l

R
+ K0

K1

) .

For example, for a small hole with the radius R = 3l and with β = 0, this gives ζ = 0.936
(indicating a decrease of the maximum stress due to couple stress effects).

CHAPTER 23

Problem 23.1. Determine the stress field for a screw dislocation array parallel to a bima-
terial interface, and at distance h from it. The dislocation spacing in the array is p as shown
in Fig. 23-1.
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Figure 23-1. A screw dislocation array with the Burgers vector at a
distance h from a bimaterial interface. The dislocation spacing is p.

Solution: By the summation of the stresses due to individual dislocations, located within
the material (1), it is readily found that the shear stresses in two materials are

σ (1)
zx = −µ1bz

2p
sinψ

(
1
C

− c
1
A

)
,

σ (1)
zy = µ1bz

2p

(
sinhϑ

C
− c

sinhϕ
A

)
,

and

σ (2)
zx = −µ2bz

2p
(1 + c)

sinψ
C

,

σ (2)
zy = µ2bz

2p
(1 + c)

sinhϑ
C

.

The introduced parameters are

A= coshϕ − cosψ , C = coshϑ − cosψ ,

and

ξ = x
p
, η = y

p
, h0 = h

p
, ϑ = 2π(ξ − h0) , ϕ = 2π(ξ + h0) , ψ = 2πη .

Problem 23.2. Determine the stress field for an edge dislocation array parallel to a bima-
terial interface, and at distance h from it. The dislocations Burgers vector is bx, and the
dislocation spacing in the array is p as shown in Fig. 23-2.

x

y

h

(1)(2)

p

Figure 23-2. An edge dislocation array with the Burgers vector
{bx,by} at a distance h from a bimaterial interface. The dislocation
spacing is p.
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Solution: By the summation of the stresses due to individual dislocations, it is readily
found that the stresses in two materials are

σ (1)
xx = −πk1bx sinψ

A2 p
(X1 + qX2 + aβX3) ,

σ (1)
yy = πk1bx sinψ

A2 p
(Y1 + qY2 + aβY3) ,

σ (1)
xy = πk1bx

A2 p
(Z1 + qZ2 + aβZ3) ,

and

σ (2)
xx = −πk1abx sinψ

C2 p
(ϑ sinhϑ + C + βϕ sinhϑ) ,

σ (2)
yy = πk1abx sinψ

C2 p
[ϑ sinhϑ − C + β(4πξ sinhϑ − ϑ sinhϑ − 2C)] ,

σ (2)
xy = πk1abx

C2 p
[Dϑ − β(C sinhϑ − Dϕ)] .

The parameters k1, β, a and q are introduced in the text. The utilized abbreviations are

X1 = A2

C2
(ϑ sinhϑ + C) ,

Y1 = A2

C2
(ϑ sinhϑ − C) ,

Z1 = A2

C2
Dϑ ,

and

X2 = ϕ sinhϕ + A+ 8π2h0ξ

A
(B + sinh2 ϕ),

Y2 = (ϑ − 4πh0) sinhϕ − A+ 8π2h0ξ

A
(B + sinh2 ϕ),

Z2 = Bϑ + 8π2h0ξ

A
sinhϕ (B − sin2 ψ) .

In addition, X3 = Y3 = Aand Z3 = Asinhϕ. The variables Aand C are as in Problem 23.1,
and

B = coshϕ cosψ − 1 , D = coshϑ cosψ − 1 .

Problem 23.3. Determine the stress field for an edge dislocation array parallel to a bima-
terial interface, and at distance h from it. The dislocations Burgers vector is by, and the
dislocation spacing in the array is p (Fig. 23-2).
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Solution: By the summation of the stresses due to individual dislocations, it is readily
found that the stresses in two materials are

σ (1)
xx = πk1by

A2 p
(X1 + qX2 + aβX3) ,

σ (1)
yy = πk1by

A2 p
(Y1 + qY2 + aβY3) ,

σ (1)
xy = πk1by sinψ

A2 p
(Z1 + qZ2 + aβZ3) ,

and

σ (2)
xx = πk1aby

C2 p
[Dϑ + β(C sinhϑ + Dϕ)] ,

σ (2)
yy = πk1aby

C2 p
[2C sinhϑ − Dϑ + β(C sinhϑ − Dϕ)] ,

σ (2)
xy = πk1aby sinψ

C2 p
(ϑ sinhϑ − C + βϕ sinhϑ) .

The introduced abbreviations are in this case

X1 = A2

C2
Dϑ ,

Y1 = A2

C2
(2C sinhϑ − Dϑ) ,

Z1 = A2

C2
(ϑ sinhϑ − C) ,

and

X2 = Bϑ − 8π2h0ξ

A
sinhϕ (B − sin2 ψ) ,

Y2 = 2Asinhϕ − (ϕ + 4πh0)B + 8π2h0ξ

A
sinhϕ (B − sin2 ψ),

Z2 = ϕ sinhϕ − A− 8π2h0ξ

A
(B + sinh2 ϕ) .

In addition, X3 = −Y3 = −Asinhϕ and Z3 = −A. The variables A, B,C, and D are as in
Problem 23.2.

CHAPTER 24

Problem 24.1. A thin circular film of thickness hf is bonded to a circular substrate of thick-
ness hs � hf (see Fig. 24-1). If the elastic mismatch strain between the film and substrate is
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F

z,w

rh

h

F

F

F

f

s

Figure 24-1. A thin film and its thick sub-
strate. The force due to elastic mismatch
strain is F .

em, derive the expression for the curvature of the substrate produced by the bonded film.
The elastic constants of the film and substrate are (Ef, νf) and (Es, νs), respectively.

Solution: The inplane radial force (per unit length) in the film needed to produce the
elastic mismatch strain em is

F = σfhf = Ef

1 − νf
emhf .

Upon bonding of the film, the substrate can be considered to be strained by opposite F , as
indicated in the figure. This is statically equivalent to radial force F within the midplane
of the substrate and the bending moment M = Fhs/2. The deflected shape of the circular
plate due to this distributed edge moment (see Chapter 15) is

ws = M
2(1 + νs)Ds

r2 , Ds = Esh3
s

12(1 − ν2
s )
,

where r is the radial distance from the center of plate and Ds is the bending stiffness of the
plate (substrate). Thus, the curvature of the substrate is

κs = ∂2w

∂r2
= M

(1 + νs)Ds
= 12(1 − νs)M

Esh3
s

,

i.e.,

κs = 6F(1 − νs)
Esh2

s
(generalized Stoney′s formula).

Using the expression for F , this gives

κs = Ef

Es

1 − νs

1 − νf

6hfem

h2
s
.

Note that the neutral plane of the substrate is defined by

σrr = −12M
h3

s
z − F

hs
= 0 , M = F

hs

2
,

which gives z = −hs/6, regardless of the sign or magnitude of F .

Problem 24.2. Consider two orthogonal, but otherwise identical, dislocation arrays at the
interface between the layer and its substrate. The Burgers vector of dislocations in the first
array is {bx,by,bz}, with the screw component bz. The Burgers vector of dislocations in
the second array is {b̂x, b̂y, b̂z}, with the screw component b̂y, relative to the same (x, y, z)
coordinate system. In the presence of uniform initial misfit strain em, derive an expression
for the total elastic strain energy per unit area of the free surface.
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Solution: The total elastic strain energy per unit area of the free surface is

E = Ed + Ed̂ + Em + Ed,m + Ed̂,m + Ed,d̂ .

The energy per unit length associated with the first dislocation array is derived in the text as

Ed = k
2

{
(b2

x + b2
y)
[

ln
sinhϕ0

ρ0
− ϕ2

0

2 sinh2 ϕ0
+ 1

4(1 − ν)

]

+(b2
x − b2

y)
(

1
2

− ϕ0 cothϕ0

)
+ (1 − ν)b2

z ln
sinhϕ0

sinh ρ0

}
.

The energy Ed̂ of the second dislocation array is given by the above equation in which b2
x

is replaced by b̂
2
x, b2

y by b̂
2
z, and b2

z by b̂
2
y. The misfit energy Em is given by

Em = 1
2

(
σm

yyem
yy + σm

zzem
zz + 2σm

zyem
zy

)
hp ,

where h is the film thickness and p the dislocation spacing. The interaction energy between
the first dislocation array and the misfit strain Ed,m is given by either one of the expressions

Ed,m = −(σm
yyby + σm

zybz)h = (σ 0
y em

yy + σ 0
z em

zz + 2σ 0
zyem

zy)hp .

The second of these is the work of the average dislocation stresses in the layer on the misfit
strains. The nonvanishing average dislocation stresses in the layer segment of dimensions
h × p are

σ 0
y = −4πkby/p , σ 0

z = νσ 0
y , σ 0

zy = −µbz/p .

The interaction energy between the second dislocation array and the misfit strain is

Ed̂,m = −(σm
zzb̂z + σm

zyb̂y)h ,

which is the work of uniform misfit stresses on dislocation jump displacements, associated
with the second array. In view of the Betti reciprocal work theorem, the interaction energy
between two dislocation arrays is

Ed,d̂ = −2(σ 0
zzb̂z + σ 0

zyb̂y)h = 4πk
h
p

[
2νbyb̂z + (1 − ν)bzb̂y

]
.

Problem 24.3. Consider a thin film and a substrate which share the same cubic lattice and
orientation, with the interface parallel to their (001) crystallographic planes. The fractional
mismatch of a lattice parameter is em. Let the first dislocation array consist of dislocations
on (111) planes, with dislocation Burgers vector along [01̄1] crystallographic direction, so
that relative to the (xyz) coordinate system bx = −b/

√
2, by = −b/2, and bz = b/2, where

the magnitude of b is equal to al/
√

2. Let the second dislocation array consist of dislocations
on (11̄1) planes, with dislocation Burgers vector along [011] crystallographic direction, so
that relative to the same (xyz) coordinate system b̂x = −b̂/

√
2, b̂y = b̂/2, and b̂z = −b̂/2,

and the magnitude of b̂ is equal to the magnitude of b. Derive the necessary condition for
the formation of arrays by using the Matthews criterion.

Solution: The critical condition for the formation of array is E/p = Em/p. By using the
expression for E from the previous problem, we then have

Ed + Ed̂ + Ed,m + Ed̂,m + Ed,d̂ = 0 .
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Since the fractional mismatch of a lattice parameter is em, the corresponding misfit strain
and stress components are

em
yy = em

zz = em , em
zy = 0 ,

and

σm
yy = σm

zz = σm = 4πk(1 + ν)em , σm
zy = 0 .

Thus, from the expressions given in Problem 24.2, we obtain

Ed,m + Ed̂,m = 1
2

hσm(b + b̂) = 2πk(1 + ν)emh(b + b̂) ,

and

Ed,d̂ = πk(1 + ν)
h
p

bb̂ .

To have the energy relaxation, b̂ should be of the same sign as b, otherwise the disloca-
tion/misfit interaction energy would vanish. Also, for the relaxation to occur, emb must be
negative. The dislocation energy is

Ed + Ed̂ = 2Ed = kb2

4

[
(4 − ν) ln

sinhϕ0

ρ0
− 3ϕ2

0

2 sinh2 ϕ0
− ϕ0 cothϕ0

+ 5 − 2ν
4(1 − ν)

]
.

Substituting these in the criterion for the formation of the arrays gives

(4 − ν) ln
sinhϕ0

ρ0
− 3ϕ2

0

2 sinh2 ϕ0
− ϕ0 cothϕ0 + 4π(1 + ν)

(
4em h

b
+ h

p

)

+ 5 − 2ν
4(1 − ν)

= 0 .

This condition differs from the condition corresponding to a single dislocation array,

(4 − ν) ln
sinhϕ0

ρ0
− 3ϕ2

0

2 sinh2 ϕ0
− ϕ0 cothϕ0 + 16π(1 + ν)em h

b

+ 5 − 2ν
4(1 − ν)

= 0 ,

by the presence of an extra term 4π(1 + ν)h/p. If p → ∞, i.e., ϕ0 → 0, both conditions
reduce to

(4 − ν) ln
2h
ρ

+ 16π(1 + ν)em h
b

− 5 − 8ν
4(1 − ν)

= 0 ,

which is the criterion for the deposition of an isolated misfit dislocation. When the
layer thickness becomes large, the dislocation spacing tends to a constant value p =
−(b/8em)(5 + ν)/(1 + ν). This is slightly higher than the spacing p0 = b/2em at which the
array would completely relax biaxial initial mismatch strain em.

Problem 24.4. Derive the necessary condition for the formation of intersecting dislocation
arrays from the previous problem by using the Frank and van der Merwe criterion.
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Solution: If the Frank and van der Merwe criterion is used, an analogous procedure to
that described in the text leads to the condition

p
dEd

dp
= Ed + Ed,m + Ed,d̂ ,

which gives

(4 − ν) ln
sinhϕ0

ρ0
− ϕ2

0

2 sinh2 ϕ0
(7 − 6ϕ0 cothϕ0) + (2 − ν)(ϕ0 cothϕ0 − 1)

+ 8π(1 + ν)
(

2em h
b

+ h
p

)
− 3(1 − 2ν)

4(1 − ν)
= 0 .

If p → ∞ , this gives the same critical thickness as that following from the analysis of a
single dislocation array. If h becomes very large, the limiting spacing p = −(b/4em)(5 +
ν)/(1 + ν) is obtained, which is two times as large as the limiting spacing predicted by the
Matthews criterion. According to the model, therefore, in the considered case no complete
strain relaxation by misfit dislocations is possible during the film growth.

CHAPTER 25

Problem 25.1. Consider a layer/substrate system Si75Ge0.25/Si, which share the same cubic
lattice and orientation. The interface is parallel to their (001) crystallographic planes, as in
Problem 24.3. Derive the critical value of the parameter λ∗ for the nominally flat surface
of the film to be stable with respect to a shallow doubly periodic perturbation

ux = a cos
2πy
λy

cos
2πz
λz
.

Assume that the surface energy is γ = 1.2 J/m2, and that the elastic properties of the layer
are E = 123 GPa and ν = 0.278. The lattice parameters of the Si and Ge are aSi = 0.54305
nm and aGe = 0.56576 nm.

Solution: If the lattice parameters of the layer and substrate are al and as , the fractional
mismatch of the lattice parameter is

em = as − al

al
.

The associated misfit strain components are

em
yy = em

zz = em ,

and the biaxial stress state is

σm
yy = σm

zz = Ē(1 + ν)em , Ē = E
1 − ν2

.

The lattice parameter of the layer is approximately, by Vegard’s rule,

al = 0.25aGe + 0.75aSi ,

and of the substrate as = aSi. Since aSi = 0.54305 nm and aGe = 0.56576 nm, we obtain
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RF

T

F

T
t

Figure 26-1. A thin-wall tube subject to tension–torsion test. The midra-
dius of the tube is R, and its thickness t .

al = 0.54873 nm. The misfit strain is thus em = (as − al)/al = −0.01. The corresponding
biaxial stress is

σ0 = Ē(1 + ν)em = E
1 − ν em = −1.7 GPa .

Thus, the critical value of the wavelength parameter is

λcr
∗ =

(
1
λ2

y
+ 1
λ2

z

)−1/2

cr

= πγ Ē

σ 2
0

= πγ E

σ 2
0 (1 − ν2)

= 174 nm.

CHAPTER 26

Problem 26.1. A thin-wall tube shown in Fig. 26-1 is subject to tension–torsion test, in
which the applied torque is related to the applied tensile force F by T = F R/2, where R
the midradius of the tube.

(a) At what value of F will the tube yield according to von Mises criterion, if the yield
stress in simple tension test is Y = 200 MPa, and R = 10 cm?

(b) Find the ratios of plastic components of the rate of deformation tensor Dp
zz/Dp

zθ and
Dp

rr/Dp
zθ at the onset of yield.

The longitudinal direction of the tube is z, and (r, θ) are the polar coordinates in the plane
orthogonal to z. The initial thickness of the tube is t = R/10.

Solution: (a) The longitudinal stress is

σzz = F
A

= F
2Rπ t

= 5F
R2π

,

while the circumferential shear stress is

σzθ = T
I0

R = F R/2
2R3π t

R = 5F
2R2π

= σzz

2
.

The von Mises yield criterion is f = 0, where

f = 1
2

[
(σzz − σrr )2+(σrr − σθθ )2+(σθθ − σzz)2]+3

(
σ 2

zr + σ 2
rθ + σ 2

θz

)−Y2.

This gives

σ 2
zz + 3 σ 2

zθ = Y2 .

Since σzθ = σzz/2 in the considered case, we obtain

σzz = 2√
7

Y .
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Thus, the force F = FY at the onset of plastic yield is

5FY

R2π
= 2√

7
Y ⇒ FY = 2

5
√

7
R2πY = 9.5 kN .

(b) The nonvanishing components of the plastic rate of deformation are

Dp
zz = λ̇ ∂ f

∂σzz
= 2λ̇ σzz ,

Dp
rr = λ̇ ∂ f

∂σrr
= −λ̇ σzz ,

Dp
θθ = λ̇ ∂ f

∂σθθ
= −λ̇ σzz ,

Dp
zθ = λ̇ ∂ f

∂σzθ
= 6λ̇ σzθ .

Since σzθ = σzz/2 and σzz = 2Y/
√

7 at the onset of yield, we obtain

Dp
zz = λ̇ 4Y√

7
,

Dp
rr = Dp

θθ = −λ̇ 2Y√
7
,

Dp
zθ = λ̇ 6Y√

7
.

Thus, the required ratios are

Dp
zz

Dp
zθ

= 2
3
,

Dp
rr

Dp
zθ

= −1
3
.

Note the plastic incompressibility

Dp
zz + Dp

rr + Dp
θθ = 0 ,

in accord with the pressure-independence of the von Mises yield criterion (∂ f/∂σkk = 0),
and the normality rule Dp

i j ∼ ∂ f/∂σi j .

Problem 26.2. A thin-walled tube of initial length l0, thickness t0 and midradius R0 is
subject to axial force F and torque T. Assuming an isotropic rigid-plastic material obeying
the von Mises (J2) yield condition and isotropic hardening, determine the stress state in
the tube during the plastic loading path specified by a given relationship l = l(φ), where
l is the current length of the tube, and φ is the angle of rotation of one end of the tube
relative to the other end.

Solution: The velocity field at an arbitrary stage of plastic loading (see Problem 7.13) is

vr = −1
2

r
l̇
l
, vθ = r

z
l
φ̇ , vz = l̇

l
z .
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The corresponding components of the rate of deformation tensor are

Drr = Dθθ = −1
2

l̇
l
, Dzz = l̇

l
, Dzθ = 1

2
r
l
φ̇ .

The current thickness of the tube is t and its current midradius is r . The nonvanishing stress
components are σzz and σzθ , with their deviatoric components

σ ′
rr = σ ′

θθ = −1
3
σzz , σ ′

zz = 2
3
σzz , σ ′

zθ = σzθ .

The von Mises yield condition is

J2 = k2 , J2 = 1
2
σ′ : σ′ = 1

3

(
σ 2

zz + 3σ 2
zθ

)
.

The current size of the yield surface k (the yield stress in pure shear test), is a function of
the generalized or equivalent (plastic) strain, i.e.,

k = k(ϑ) , ϑ =
∫ t

0
(2 D : D)1/2 dt .

The constitutive equation of the J2 isotropic hardening plasticity is

D = 1
4h

J̇2

J2
σ′ ,

J̇2

J2
= 2σ′ : σ̇

σ′ : σ′ = 2σ′ :
�
σ

σ′ : σ′ .

Rigid-plastic model is used, so that De = 0 and D = Dp. Since J2 = k2, the above can be
rewritten as

D = 1
2h

k̇
k
σ′ .

The hardening modulus is h = dk/dϑ . Thus, we have

Drr = Dθθ = −1
2

l̇
l

= 1
2h

k̇
k

(
−1

3
σzz

)
.

Dzz = l̇
l

= 1
2h

k̇
k

(
2
3
σzz

)
,

Dzθ = 1
2

r
l
φ̇ = 1

2h
k̇
k
σzθ .

Evidently,

Dzz

Dzθ
= 2

r
dl
dφ

= 2
3
σzz

σzθ
⇒ σzθ

σzz
= r

3
1

dl/dφ
,

and

k = J 1/2
2 = σzz√

3

[
1 + 3

(
σzθ

σzz

)2
]1/2

= σzz√
3

[
1 + r2

3
1

(dl/dφ)2

]1/2

.

But,

vr = ṙ = −1
2

r
l̇
l
,
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gives

2
ṙ
r

= − l̇
l

⇒
(

r
r0

)2 l
l0

= 1 ,

so that

k = σzz√
3

[
1 + r2

0

3
l0

l
1

(dl/dφ)2

]1/2

.

If this is substituted into the expression for Dzz, we obtain

l̇
l

= k̇√
3h

[
1 + r2

0

3
l0

l
1

(dl/dφ)2

]−1/2

.

Since dl = (dl/dφ)dφ, the above can be rewritten as

dk
h(k)

=
[

r2
0 l0

l(φ)
+ 3

(
dl
dφ

)2
]1/2

dφ
l(φ)

.

For a given loading path l = l(φ), the numerical integration

∫ k

k0

dk
h(k)

=
∫ φ

0

[
r2

0 l0

l(φ)
+ 3

(
dl
dφ

)2
]1/2

dφ
l(φ)

gives

k = k(φ) .

The normal stress, corresponding to the angle of rotation φ and the path l = l(φ), is then

σzz =
√

3k
[

1 + r2
0

3
l0

l
1

(dl/dφ)2

]−1/2

,

whereas the shear stress is

σzθ = r0

3

(
l0

l

)1/2
σzz

dl/dφ
.

Problem 26.3. Prove that in the previous problem

σ′ : σ̇ = σ′ :
�
σ .

Solution: This was proven in a general context in Problem 5.7. We here verify the result
explicitly by using the expressions for the Jaumann rates of stress, derived in Problem 5.10,
i.e.,

�
σ zz = σ̇zz + σzθ

r
l
φ̇ ,

�
σ zθ = σ̇zθ − 1

2
σzz

r
l
φ̇ ,

�
σ θθ = −σzθ

r
l
φ̇ ,

the remaining Jaumann rates being equal to zero. Consequently,

σ′ : σ̇ = −1
3
σzz

�
σ θθ + 2

3
σzz

�
σ zz + 2 σzθ

�
σ zθ

= 2
3
σzz σ̇zz + 2 σzθ σ̇zθ = σ′ : σ̇ = J̇2 .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

794 Problem 26.4

rφϕ θ

b

a Figure 26-2. Simple shear of a hollow cylinder.

Problem 26.4. Consider a hollow circular cylinder bounded by two rigid casings as shown
in Fig. 26-2. If the inner casing is fixed, whereas the outer casing is rotated by a small angle
φ, determine the deformation and stress field within the cylinder in the case of (a) elastic
and (b) elastoplastic response. In the latter case assume that material is linearly hardening.

Solution: Using the cylindrical coordinates, the displacement components are

uθ = rϕ(r) , ur = uz = 0 ,

where ϕ(a) = 0 and ϕ(b) = φ. The nonvanishing strain component is

erθ = 1
2

(
duθ
dr

− uθ
r

)
= r

2
dϕ
dr
.

Since normal strains are zero, the normal stresses also vanish (assuming small deforma-
tions). Thus, the only nonvanishing stress is σrθ , satisfying the equilibrium equation

dσrθ

dr
+ 2

r
σrθ = 0 .

This has a general solution

σrθ = C1

r2
,

where the integration constant C1 depends on the material properties.

(a) If deformation is purely elastic,

σrθ = C1

r2
= 2µerθ = µr

dϕ
dr
.

Upon integration, using the boundary conditionsϕ(a) = 0 andϕ(b) = φ, there follows

ϕ(r) = φ

1 − a2/b2

(
1 − a2

r2

)
.

The corresponding stress is

σrθ = 2µφ
1 − a2/b2

a2

r2
.

(b) If the yield stress in pure shear is σ 0
rθ , the plastic deformation begins at r = a when

the angle φ is equal to

φ0 =
(

1 − a2

b2

)
σ 0

rθ

2µ
.
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For φ > φ0, plasticity spreads outward and at an arbitrary stage of deformation before
reaching r = b the elastic-plastic interface is at r = c. Assuming linear hardening,

σrθ = σ 0
rθ + 2hep

rθ ,

where plastic part of the shear strain is

ep
rθ = erθ − 1

2µ
σrθ = r

2
dϕ
dr

− 1
2µ
σrθ .

Thus, (
1 + h

µ

)
σrθ = σ 0

rθ + hr
dϕ
dr
.

Recalling that σrθ = C1/r2, we obtain a differential equation

h
dϕ
dr

=
(

1 + h
µ

)
C1

r3
− σ 0

rθ
1
r
,

whose solution, satisfying ϕ(a) = 0, is

hϕ(r) = C1

2a2

(
1 + h

µ

)(
1 − a2

r2

)
− σ 0

rθ ln
r
a
, a ≤ r ≤ c .

On the other hand, in the elastic region we have

ϕ(r) = − C1

2µ
1
r2

+ C2 , c ≤ r ≤ b .

Imposing the boundary condition at r = b and the continuity condition at the elastic-plastic
interface r = c,

ϕ(b) = φ , ϕ(c − 0) = ϕ(c + 0) ,

it readily follows that

C1

2a2
=

hφ + σ 0
rθ ln

c

a

1 − a2

c2
+ h

µ

(
1 − a2

b2

) ,

hC2 =
(

1 − a2

c2
+ h
µ

)
C1

2a2
− σrθ ln

c
a
.

The relationship between the angle φ and the radius of the elastic-plastic interface r = c
can be obtained from the condition

σrθ (c) = C1

c2
= σ 0

rθ .

This gives

2h

σ 0
rθ

φ = c2

a2
− 1 − 2 ln

c
a

+ h
µ

(
c2

a2
− c2

b2

)
.
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Plasticity spreads throughout the cylinder (c = b) when φ = φ∗, where

2h

σ 0
rθ

φ∗ =
(

1 + h
µ

)(
b2

a2
− 1

)
− 2 ln

b
a
.

At this instant

2h

σ 0
rθ

ϕ(r) =
(

1 + h
µ

)(
b2

a2
− b2

r2

)
− 2 ln

r
a
, a ≤ r ≤ b .

The corresponding shear stress is

σrθ = σ 0
rθ

b2

r2
, a ≤ r ≤ b .

Problem 26.5. Solve the previous problem by using the rigid-plastic J2 flow theory of
plasticity with a linear hardening.

Solution: The deformation mapping in cylindrical coordinates is

r = R ,

θ = )+ ϕ(r, t) ,

z = Z .

The coordinates in the undefomed configuration are (R,), Z) and in the deformed
configuration (r, θ, z); t is a monotonically increasing time like parameter, e.g., the pre-
scribed outer angle of rotation φ during a continuous loading. The corresponding velocity
field is

vr = ṙ = 0 , vθ = r θ̇ = r
∂ϕ

∂t
, vz = ż = 0 ,

with the components of the rate of deformation tensor

Drr = Dθθ = Dzz = 0 , Drθ = 1
2

r
∂2ϕ

∂r∂t
, Drz = Dθz = 0 .

The constitutive equation of the rigid-plastic J2 flow theory is

D = 1
4h

J̇2

J2
σ′ , J2 = 1

2
σ′ : σ′ .

Assuming that the stress tensor is

σ =
⎡
⎣σrr σrθ 0
σθr σθθ 0
0 0 σzz

⎤
⎦ ,
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the deviatoric stress components are

σ ′
rr = 1

3
(2σrr − σθθ − σzz) ,

σ ′
θθ = 1

3
(2σθθ − σzz − σrr ) ,

σ ′
zz = 1

3
(2σzz − σrr − σθθ ) ,

σ ′
rθ = σrθ .

Thus,

Drr = 1
4h

J̇2

J2

1
3

(2σrr − σθθ − σzz) = 0 ,

Dθθ = 1
4h

J̇2

J2

1
3

(2σθθ − σzz − σrr ) = 0 ,

Dzz = 1
4h

J̇2

J2

1
3

(2σzz − σrr − σθθ ) = 0 .

These are satisfied if

σrr = σθθ = σzz = −p ,

where p is an arbitrary pressure. In view of one of the equilibrium equations, i.e.,

∂σrr

∂r
+ σrr − σθθ

r
= 0 ,

there follows ∂p/∂r = 0, so that p = p(t) only. The deviatoric normal stresses are zero,

σ ′
rr = σ ′

θθ = σ ′
zz = 0 ,

and

J2 = 1
2
σ′ : σ′ = σ 2

rθ , J̇2 = 2σrθ
∂σrθ

∂t
.

Since

Drθ = 1
4h

J̇2

J2
σrθ = 1

2
r
∂2ϕ

∂r∂t
,

there follows

∂σrθ

∂t
= h r

∂2ϕ

∂r∂t
.

The integration gives

σrθ = h r
∂ϕ

∂r
+ f (r) .
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On the other hand, using the assumption of linear hardening, we can write

J 1/2
2 = k = σ 0

rθ + hϑ ,

where

ϑ =
∫ t

0
(2 D : D)1/2 dt =

∫ t

0
2Drθdt = r

∂ϕ

∂r
.

This gives

σrθ = σ 0
rθ + h r

∂ϕ

∂r
.

The comparison with the earlier expression reveals that f (r) = σ 0
rθ . Note also that at the

interface r = c between plastic and rigid regions, ∂ϕ/∂r = 0, so that σrθ (c, t) = σ 0
rθ .

But, from the remaining equilibrium equation

dσrθ

dr
+ 2

r
σrθ = 0 ,

we obtain

σrθ = C(t)
r2

.

Combining this expression with the previous expression gives

C(t)
r2

= h r
∂ϕ

∂r
+ σ 0

rθ ,

or, upon integration using the boundary condition ϕ(a, t) = 0,

hϕ(r, t) = C(t)
2a2

(
1 − a2

r2

)
− σ 0

rθ ln
r
a
.

Since at r = c ≤ b, we have

ϕ(c, t) = φ(t) ,

it readily follows that

C(t)
2a2

= 1
1 − a2/c2

[
hφ(t) + σ 0

rθ ln
c
a

]
.

Consequently,

ϕ(r, t) =
[
φ(t) + σ 0

rθ

h
ln

c
a

]
1 − a2/r2

1 − a2/c2
− σ 0

rθ

h
ln

r
a
.

The angle φ∗ at which plasticity first reaches the radius r = b is obtained from the
condition σrθ (b) = σ 0

rθ , i.e.,

2a2

b2 − a2

[
hφ∗ + σ 0

rθ ln
b
a

]
= σ 0

rθ .

This gives

φ∗ =
(

b2 − a2

2a2
− ln

b
a

)
σ 0

rθ

h
.
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x1

1

1 kt

x2

0

Figure 26-3. Simple shear of a rectangular block.

Problem 26.6. Consider a simple shear deformation of of rectangular block (see Fig. 26-3),
for which the velocity field is

v1 = kx2 , v2 = v3 = 0 (k = const.).

Assuming the rigid-plastic material, which hardens in a kinematic hardening mode with
the von Mises type yield condition,

(σ ′
i j − αi j )(σ ′

i j − αi j ) = 2
3
σ 2

0 , (σ0 = const.),

�
αi j = cDi j , (c = const.),

determine the stress components at an arbitrary stage of deformation.

Solution: The only nonvanishing component of the velocity gradient is L12 = k, with the
corresponding nonvanishing components of the rate of deformation and spin tensors

D12 = D21 = k
2
, W12 = −W21 = k

2
.

Thus, since

�
αi j = α̇i j − Wikαkj + αikWkj = cDi j ,

we obtain

α̇11 = −α̇22 = kα12 ,

α̇12 = α̇21 = k
( c

2
− α11

)
.

Consequently, by combining these two equations,

α̈12 + k2α12 = 0 ,

which has the general solution

α̇12 = a1 cos kt + a2 sin kt .

Since the components of the back stress are initially (t = 0) equal to zero, we have α12(0) =
0 and α̇12(0) = kc/2, which specifies the integration constants a1 = 0 and a2 = c/2. Thus,

α12 = c
2

sin kt .
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From the differential equation for α11 it then readily follows that

α11 = c
2

(1 − cos kt) , α22 = −α11 .

Now, from the normality rule for the rigid-plastic material giving Di j ∼ (σ ′
i j − αi j ), we

have

D11

σ ′
11 − α11

= D22

σ ′
22 − α22

= D12

σ12 − α12
.

Since D11 = D22 = 0, we conclude that σ ′
11 = α11 and σ ′

22 = α22 = −α11. Thus, from the
yield condition

(σ ′
11 − α11)2 + (σ ′

22 − α22)2 + 2(σ12 − α12)2 = 2
3
σ 2

0 ,

we obtain σ12 − α12 = σ0/
√

3. The nonvanishing stress components at an arbitrary stage of
deformation are therefore

σ ′
11 = −σ ′

22 = c
2

(1 − cos kt) , σ12 = σ0√
3

+ c
2

sin kt .

An arbitrary hydrostatic pressure can be superposed to this without affecting the consid-
ered simple shear deformation. The obtained spurious oscillation of the stress response
corresponding to monotonically increasing shear deformation (γ = kt) is an indication of
the limitation of the utilized simple evolution equation for the back stress. More involved
representation of this evolution is required to eliminate such oscillations.

Problem 26.7. Determine the critical stress for a cylindrical cavitation instability in an
incompressible elastic-plastic linearly hardening material.

Solution: Consider a cylindrical void of initial radius R0 in an isotropic infinite medium
under remote biaxial tension σ . Assume the plane strain conditions. The stress state at an
arbitrary point consists of the radial stress σrr , the hoop stress σθθ , and the longitudinal
stress σzz. Because of cylindrical symmetry, the stress components depend only on the
radial distance r . In the absence of body forces the equilibrium equation is

dσrr

dr
− 1

r
(σθθ − σrr ) = 0 .

If the material response is within the infinitesimal elastic range, the compatibility equation
reduces to

d
dr

(σrr + σθθ ) = 0 , i.e., σrr + σθθ = 2σ .

Combining above equations, it follows that

σrr = σ
(

1 − R2
0

r2

)
, σθθ = σ

(
1 + R2

0

r2

)
.

The longitudinal stress is σzz = 2νσ , and the radial displacement is

u = σ

2G

[
(1 − 2ν)r + R2

0

r

]
.
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According to the von Mises yield criterion, the plastic deformation commences when

3
4

(σθθ − σrr )2 +
(
σzz − σrr + σθθ

2

)2

= Y2 .

Thus, the threshold value of applied stress σ for the onset of plastic deformation at the
surface of the void is

σyy = Y

[3 + (1 − 2ν)2]1/2
.

With an increase of stress beyond this value, the plastic zone expands outward and at
an arbitrary instant of deformation the elastic-plastic boundary has reached the radius ρ.
The deformation gradient tensor, associated with a cylindrical expansion of the void and
expressed in cylindrical coordinates, becomes

F =

⎡
⎢⎢⎢⎢⎣

dr

dr0
0 0

0
r

r0
0

0 0 1

⎤
⎥⎥⎥⎥⎦ .

The corresponding volume change of an infinitesimal material element is

dV
dV0

= det F = r
r0

dr
dr0

.

If plastic deformation is assumed to be isochoric, the volume change is entirely due to
elastic deformation, so that

dV − dV0

dV
= 1

E
[(1 − ν)(σrr + σθθ ) − 2νσzz] .

The closed form analysis can be pursued further for an elastically incompressible ma-
terial (ν = 1/2). The longitudinal stress σzz is then an arithmetic mean of the other two
stress components throughout the medium, and

r2 − r2
0 = R2 − R2

0 = ρ2 − ρ2
0 .

In the elastic zone r ≥ ρ, the stress components are

σrr = σ − Y√
3

ρ2

r2
, σθθ = σ + Y√

3

ρ2

r2
, σzz = σ .

They satisfy the yield condition at the elastic-plastic interface r = ρ, and the conditionσrr +
σθθ = 2σ everywhere in the elastic region. Because the strain is elastic and infinitesimal at
the elastic-plastic interface, we can write

ρ2 − ρ2
0

ρ2
≈ 2eθθ (ρ) =

√
3Y
E
,

and

R2 = R2
0 +

√
3Y
E

ρ2 .
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At the advanced stages of plastic deformation, when R becomes much greater than R0,
the ratio ρ/R approaches a constant value

ρ

R
=
(

E√
3Y

)1/2

.

The last two equations hold regardless of the type of material hardening in the plastic zone.
The deformation gradient tensor for the void expansion in an incompressible material is

F =

⎡
⎢⎢⎢⎢⎣

r0

r
0 0

0
r

r0
0

0 0 1

⎤
⎥⎥⎥⎥⎦ .

By using the multiplicative decomposition of the deformation gradient into its elastic and
plastic parts (F = Fe · Fp), we have

F =

⎡
⎢⎢⎢⎢⎣

rp

r
0 0

0
r

rp
0

0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

r0

rp
0 0

0
rp

r0
0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

The corresponding logarithmic strain

E =

⎡
⎢⎢⎢⎢⎣

− ln
r

r0
0 0

0 ln
r

r0
0

0 0 0

⎤
⎥⎥⎥⎥⎦

can then be additively decomposed as E = Ee + Ep, i.e.,

E =

⎡
⎢⎢⎢⎢⎢⎣

− ln
r

rp
0 0

0 ln
r

rp
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

− ln
rp

r0
0 0

0 ln
rp

r0
0

0 0 0

⎤
⎥⎥⎥⎥⎦ .

If the material is linearly hardening with respect to the generalized plastic strain

Ēp =
(

2
3

Ep : Ep
)1/2

= 2√
3

ln
rp

r0
,

the equivalent yield stress
√

3(σθθ − σrr )/2 at an arbitrary stage of deformation is
√

3
2

(σθθ − σrr ) = Y + 2k√
3

ln
rp

r0
= Y + 2k√

3

(
ln

r
r0

− ln
r
rp

)
.

By using Hooke’s type law for the elastic component of strain,

ln
r
rp

= 3
4E

(σθθ − σrr ) ,
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p Figure 26-4. A thin circular disk under internal pressure p. The current midradius of the
ring is R and its thickness t .

the substitution in the previous equation yields

σθθ − σrr = Ŷ + k̂ ln
r
r0
.

The abbreviations are here used

Ŷ = 2Y/
√

3
1 + k/E

, k̂ = 4k/3
1 + k/E

.

When this is introduced into the equilibrium equation, the integration gives

σrr = Ŷ ln
r
R

+ k̂
4

∞∑
n=1

1
n2

[(
R2 − R2

0

R2

)n

−
(

R2 − R2
0

r2

)n
]
.

Evaluating this at r = ρ, and equating the result with σrr (ρ) = σ − Y/
√

3, provides an
expression for the applied stress σ in terms of the plastic zone radius ρ. This is

σ = Y√
3

+ Ŷ ln
ρ

R
+ k̂

4

∞∑
n=1

1
n2

[(
R2 − R2

0

R2

)n

−
(√

3Y
E

)n]
.

If the plastic zone around the void has spread to a large extent, we have

σcr = Y/
√

3
1 + k/E

(
1 + ln

E√
3Y

+ π2

18

√
3k

Y

)
.

This is the critical stress for a cylindrical cavitation instability in an incompressible elastic
linearly hardening material. If k � E, the result reduces to that for a pressurized cylindrical
void in an infinitely extended material (Hill, 1950).

Problem 26.8. Determine the pressure at the onset of necking of a thin circular ring
assuming a rigid-plastic J2 flow theory. The initial midradius of the ring is R0 and its square
cross section has initial size t0.

Solution: The hoop stress in the ring at an arbitrary stage of deformation before necking is
σ = pR/t , where Rand t are the current dimensions of the ring (Fig. 26-4). Thus, p = σ t/R.
At the onset of necking, p reaches its maximum, so that

dp = 0 ⇒ dσ
σ

+ dt
t

− dR
R

= 0 .

Since the deviatoric stress components are

σ ′
θθ = 2

3
σ σ ′

rr = σ ′
zz = −1

3
σ
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we have

Drr = Dzz = ṫ
t

= 1
4h

J̇2

J2

(
−1

3
σ

)
,

Dθθ = Ṙ
R

= 1
4h

J̇2

J2

(
2
3
σ

)
,

where

J2 = 1
3
σ 2 ,

J̇2

J2
= 2σ̇
σ
.

Evidently,

dt
t

= −1
2

dR
R
,

which is a consequence of plastic incompressibility (Rt2 = R0t2
0 ). Thus, at the onset of

necking

dσ
σ

= 3
2

dR
R
.

Since from the flow rule

dR
R

= 1
4h

dJ2

J2

(
2
3
σ

)
= dσ

3h
,

we obtain that the hoop stress at the necking is

σ = 2h .

For the linearly hardening material

J 1/2
2 = k = k0 + hϑ ⇒ σ = σ0 +

√
3hϑ ,

where σ0 is the hoop stress at the beginning of plastic deformation, and

ϑ =
∫ t

0
(2 D : D)1/2 dt =

√
3 ln

R
R0
.

Thus, the necking condition becomes

σ = σ0 + 3h ln
R
R0

= 2h ,

which gives the radius of the ring at the onset of necking

R = R0 exp
(

2
3

− σ0

3h

)
.

The corresponding pressure is

pmax = 2ht0
R0

exp
(
σ0

2h
− 1

)
.

An alternative derivation proceeds by writing the function p = p(R) directly from p =
σ t/R, and

σ = σ0 + 3h ln
R
R0
, Rt2 = R0t2

0 .
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This gives

p(R) =
√

R0 t0

(
σ0 + 3h ln

R
R0

)
R−3/2 .

The necking condition is simply dp/dR = 0, i.e.,

2h −
(
σ0 + 3h ln

R
R0

)
= 0 ,

in accord with the previously derived result.

Problem 26.9. Consider a thin cylindrical shell under internal pressure p and axial force
N, such that

σθθ = Rp
t
, σzz = Rp

2t
+ N

2Rπ t
, σrr ≈ 0 ,

where R is the current radius of the shell, and t is its thickness. Suppose that N = cpR2π ,
where c =const. Assuming a rigid-plastic J2 material model and isotropic hardening with
constant hardening rate h, determine c such that R = R0 =const. throughout the loading
process. Determine in that case the relationship between the pressure p and the thickness
t of the deformed shell, and discuss the onset of instability.

Solution: For the considered rigid-plastic material model, the components of the rate of
deformation tensor are

Di j = 1
2h

σ ′
kl σ̇

′
kl

σ ′
mnσ

′
mn
σ ′

i j .

The stress components are

σθθ = 2σ , σzz = (1 + c)σ , σrr ≈ 0 ,

where σ = Rp/2t . The corresponding deviatoric components

σ ′
θ =

(
1 − c

3

)
σ , σ ′

z = 2c
3
σ , σ ′

r = −
(

1 + c
3

)
σ .

It readily follows that

σ ′
mnσ

′
mn = 2

(
1 + c2

3

)
σ 2 , σ ′

kl σ̇
′
kl = 2

(
1 + c2

3

)
σ σ̇ ,

so that

Di j = 1
2h
σ̇

σ
σ ′

i j .

Thus,

Dr = ṫ
t

= 1
2h
σ̇

σ
σ ′

r = − 1
2h

(
1 + c

3

)
σ̇ ,

Dθ = Ṙ
R

= 1
2h
σ̇

σ
σ ′
θ = 1

2h

(
1 − c

3

)
σ̇ ,

Dz = l̇
l

= 1
2h
σ̇

σ
σ ′

z = c
3h
σ̇ .
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Clearly, there is no change in radius of the shell (Ṙ = 0) if c = 3. In this case, then,

ṫ
t

= − 1
h
σ̇ ⇒ ln

t0
t

= 1
h

(
pR0

2t
− p0 R0

2t0

)
.

The plastic yielding begins when(
1
2
σ ′

mnσ
′
mn

)1/2

= σ 0
yy√
3

⇒ p0 = σ 0
yy√
3

t0
R0
,

where σ 0
yy is the initial yield stress in simple tension. Consequently, the pressure-thickness

relationship is

p = t
R0

(
σ 0

yy√
3

+ 2h ln
t0
t

)
.

This is a monotonically increasing function of the ratio t0/t up to the instability condition

dp
d(t0/t)

= 0 ⇒ t0
t

= exp

(
1 − σ 0

yy

2
√

3h

)
.

The corresponding (maximum) pressure is

pmax = 2h
t0
R0

exp

(
σ 0

yy

2
√

3h
− 1

)
.

The hardening rate has to be such that pmax > p0, which is satisfied for any h > 0. For h = 0
(ideal plasticity), we must require σ̇ = 0, which gives p = p0t/t0. This implies instability
from the onset of deformation (t < t0 ⇒ p < p0).

Problem 26.10. Consider an elastoplastic deformation process which is characterized by
elastic isotropy and plastic incompressibility. Let the elastic strain energy per unit initial
volume be

 =  (Ee) , Ee = 1
2

(
FeT · Fe − I

)
,

where Fe is the elastic part of the elastoplastic deformation gradient from the multiplicative
decomposition F = Fe · Fp. The corresponding symmetric Piola–Kirchhoff stress tensor,
corresponding to elastic deformation Fe, is

Se = (det Fe) Fe−1 · σ · Fe−T = ∂ 

∂Ee
,

where σ is the Cauchy stress. Prove that the symmetric Piola–Kirchhoff stress tensor,
corresponding to elastoplastic deformation F, is

S = ∂ 

∂E
.

Solution: The elastoplastic Lagrangian strain is

E = 1
2

(
FT · F − I

) = FpT · Ee · Fp + Ep ,
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where the Lagrangian strain corresponding to plastic deformation gradient Fp is defined
by

Ep = 1
2

(
FpT · Fp − I

)
.

Thus,

Ee = Fp−T · (E − Ep) · Fp−1 .

The elastic strain energy per unit unstressed volume can now be expressed as

 =  (Ee) =  [Fp−T · (E − Ep) · Fp−1] .
Thus, by partial differentiation

∂ 

∂Ei j
= ∂ 

∂Ee
kl

∂Ee
kl

∂Ei j
.

Since

∂Ee
kl

∂Ei j
= Fp−T

ki Fp−1
jl ,

we obtain

∂ 

∂E
= Fp−1 · ∂ 

∂Ee
· Fp−T .

By substituting into this the expression

∂ 

∂Ee
= (det Fe) Fe−1 · σ · Fe−T ,

and by using Fp−1 · Fe−1 = F−1 and the plastic incompressibility constraint giving det Fe =
det F, we finally obtain

∂ 

∂E
= (det F)F−1 · σ · F−T = S .

Note also that

Se = Fp · S · FpT .

Problem 26.11. Prove equation (26.189), i.e., when the current state is taken as the refer-
ence state, show that the Jaumann rate of the Kirchhoff stress is

�
τ = �

σ + σ trD .

Solution: Apply the Jaumann rate to τ = (det F)σ to obtain

�
τ = d

dt
(det F) + (det F)

�
σ .

Since

d
dt

(det F) = (det F) trD ,
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we have
�
τ = (det F)(

�
σ + σ trD) .

When the current state is taken to be the reference state, we have F = I and det F = 1, so
that

�
τ = �

σ + σ trD = σ̇ + σ trD − W · σ + σ · W .

Problem 26.12. The elastoplastic partitions of the rate of deformation tensor and the
Jaumann rate of the Kirchhoff stress are defined such that

D = De + Dp , De = Λe −1 :
�
τ ,

and
�
τ = �

τ e + �
τ p ,

�
τ e = Λe : D ,

where Λe is the instantaneous elastic moduli tensor. Derive the relationship between the

plastic parts
�
τ p and Dp.

Solution: By applying a trace product with Λe to

D = Λe −1 :
�
τ + Dp ,

we obtain
�
τ = Λe : D − Λe : Dp .

Thus
�
τ p = −Λe : Dp .

Clearly, there is an identity

�
τ p : De = −�

τ : Dp = −Dp : Λe : De .

Problem 26.13. If the material obeys the Ilyushin’s postulate of nonnegative net work in
an isothermal cycle of strain, then

�
τ p : D < 0 .

Show that
�
τ e : Dp > 0 ,

�
τ p : Dp < 0 ,

�
τ e : D > 0 ,

�
τ : De > 0 ,

and
�
τ : Dp > −Dp : Λe : Dp .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

Problems 26.13–26.14 809

Solution: Since from Problem 26.13,
�
τ p = −Λe : Dp, we have

�
τ p : D = −Dp : Λe : D = −Dp :

�
τ e < 0 .

This proves the first inequality. The second inequality follows immediately, because

�
τ p : Dp = −Dp : Λe : Dp < 0 ,

the elastic moduli tensor being positive definite. Similarly, the third and fourth inequality
follow from

�
τ e : D = D : Λe : D > 0 ,

and
�
τ : De = De : Λe : De > 0 .

The last inequality is deduced from

�
τ e : Dp =

(�
τ − �

τ p
)

: Dp > 0 .

This gives

�
τ : Dp + Dp : Λe : Dp > 0 ,

i.e.,

�
τ : Dp > −Dp : Λe : Dp .

If elastoplastic material is in the hardening range, then
�
τ : Dp > 0.

Problem 26.14. Consider a pressurized hollow sphere. At an instant when the applied
pressure over its internal surface is p, and its inner and outer radii are a and b, determine
the stress field within the sphere, assuming that it is made from elastically rigid, power-law
plastic material, governed by the constitutive expression

Di j = γ̇0

(
J 1/2

2

K0

)m
σ ′

i j

J 1/2
2

, m ≥ 1 , J 1/2
2 < K0 .

Note that for m = 1 the model corresponds to linearly viscous material, while rigid ideally
plastic material is obtained in the limit m → ∞.

Solution: The nonvanishing velocity component is the radial velocity vr = vr (r). The rate
of deformation components are

Drr = dvr

dr
, Dθθ = Dφφ = vr

r
.

The incompressibility constraint is

Drr + Dθθ + Dφφ = 0 ⇒ dvr

dr
+ 2

vr

r
= 0 ,
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which can be integrated to give

vr = A
r2
.

Thus,

Drr = −2A
r3
, Dθθ = Dφφ = A

r3
.

The nonvanishing stress components are σrr and σθθ = σφφ , with the corresponding devi-
atoric parts

σ ′
rr = −2

3
(σθθ − σrr ), σ ′

θθ = σ ′
φφ = 1

3
(σθθ − σrr ) .

In the considered problem the radial stress is compressive and the hoop stress tensile, so
that

J 1/2
2 = 1√

3
(σθθ − σrr ) .

Thus, from the constitutive expression we can write

1√
3

(σθθ − σrr ) = K0

(√
3
γ̇0

A
r3

)1/m

.

On the other hand, the equilibrium equation is

dσrr

dr
+ 2

r
(σθθ − σrr ) = 0 ⇒ σθθ − σrr = r

2
dσrr

dr
.

Combining this with the previous expression gives

1√
3

r
2

dσrr

dr
= K0

(√
3
γ̇0

A
r3

)1/m

,

and, upon integration,

σrr = − 2m√
3

K0

(√
3A
γ̇0

)1/m

r−3/m + B .

The boundary conditions at the considered instant of deformation process are

σrr (r = a) = −p , σrr (r = b) = 0 .

They give

B = 2m√
3

K0

(√
3A
γ̇0

)1/m

b−3/m + B ,

2m√
3

K0

(√
3A
γ̇0

)1/m

= − p
b−3/m − a−3/m

.
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The stresses are consequently

σrr = −p
b−3/m − r−3/m

b−3/m − a−3/m
, σθθ = σφφ = −p

b−3/m − (1 − 3
2m)r−3/m

b−3/m − a−3/m
.

The radial velocity is

vr = γ̇0√
3

[√
3

2m
p

K0(b−3/m − a−3/m)

]m
1
r2
.

CHAPTER 27

Problem 27.1. Consider a uniaxial tension of a single crystal rod of fcc nickel, oriented
with the [100] direction parallel to the rod axis. Calculate the Schmid factor for the slip
system {111},<110> involved in the plastic flow of nickel.

Solution: The angle between the loading axis [100] and the slip plane normal [111] is
determined from

cosφ = {0, 0, 1} ·
{

1√
3
,

1√
3
,

1√
3

}
= 1√

3
, φ = 54.7◦ .

The angle between the loading axis [100] and the slip direction [1̄01] is determined from

cosψ = {0, 0, 1} ·
{
− 1√

2
, 0,

1√
2

}
= 1√

2
, ψ = 45◦ .

Thus, the Schmid factor is

S.F. = cosφ cosψ = 1√
3

1√
2

= 1√
6

= 0.408 .

Problem 27.2. It was found that a cylindrical rod of the cross sectional area A= 5 cm2,
made from zinc, yields at the axial load 2.1 kN, if the slip system (0001), [112̄0] is oriented
such that φ = 83.5◦ andψ = 18◦. Calculate at what load will the rod yield if the slip system
is oriented relative to the axial load such that φ = 13◦ and ψ = 78◦.

Solution: The first information specifies the critical resolved shear stress of the slip system

τcr = 2.1
5 × 10−4

cos 83.5◦ cos 18◦ = 452.2 kPa .

The crystal will therefore yield in the second case if the load is

F = Aτcr

cos 13◦ cos 78◦ = 5 × 10−4 × 452.2
cos 13◦ cos 78◦ = 1.12 kN .

Problem 27.3. Derive the necking condition in a uniaxial tension test. Assuming material
incompressibility, and the stress-strain relationship σ = Kεn, determine the strain at the
onset of necking, and the corresponding maximum force.
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n
F
b

s
bτ

tn

glide plane

Figure 27-1. A curved segment of dislocation with the Burgers vector b
within the glide plane whose unit normal is n. The traction vector at a
point of the dislocation is tn.

Solution: The applied force is F = σA, where σ is the true stress and Athe current cross-
sectional area. Thus,

dF = dσA+ σdA.

Necking occurs at the maximum load, where dF = 0 and

dσ
σ

= −dA
A
.

This is the necking condition. If the plastic strain is large and dominates the elastic strain
component, one can assume the overall incompressibility, i.e., AL = const., where L is the
current length of the specimen. Consequently,

dAL+ AdL = 0 ⇒ −dA
A

= dL
L

= dε .

Combining this with the previously derived necking condition, we obtain

dσ
dε

= σ .

If σ = Kεn, this gives the necking strain ε = n. The corresponding maximum force is

Fmax = KA0

(n
e

)n
.

Problem 27.4. A glide force on an infinitesimal dislocation segment, which is normal to
the dislocation line, is defined as F = bτb, where b is the magnitude of the Burgers vector
b of the curved dislocation, and τb the resolved shear stress over the glide plane and in the
direction of b. Derive the expression for this force in terms of the stress tensor σi j .

Solution: By the Cauchy relation, the components of the traction vector and the stress
tensor at an arbitrary point of the dislocation line (Fig. 27-1) are related by

tn
i = σi j n j .

Thus, the Peach–Koehler glide force is

F = bτb = bi tn
i = biσi j n j .
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τ

...
1 n432

τ

F0

F1 F2 F3 F4 Fn Figure 27-2. A dislocation pileup against a grain boundary.
There are n dislocations in the pileup, which is under remote
shear stress τ .

If s is the unit vector along the dislocation line, the vectorial expression for the glide force
is

F = bτb(n × s) = (b · σ) × s .

Problem 27.5. Consider a dislocation pileup at a strong obstacle, such as grain boundary
(Fig. 27-2). The mutual repulsion of the dislocations tends to spread out the dislocation
arrangement, while the applied shear stress drives the dislocations closer together against
the obstacle. If there are n dislocations in the pileup, calculate the force F0 exerted on the
obstacle.

Solution: Let the Burgers vector of the edge dislocations be b, and the applied shear stress
τ . The dislocation forces on the dislocations from the pileup are

F1 = τb + F1,2 + F1,3 + F1,4 + . . .+ F1,n ,

F2 = τb − F2,1 + F2,3 + F2,4 + . . .+ F2,n ,

F3 = τb − F3,1 − F3,2 + F3,4 + . . .+ F3,n ,

. . . . . . . . . . . . . . . . . . etc. . . . . . . . . . . . . . . . . . . ,

Fn = τb − Fn,1 − Fn,2 − Fn,3 − . . .− Fn,n−1 ,

where Fi, j is the interaction force on the i-th dislocation due to the j-th dislocation. Clearly,
Fi, j = Fj,i . In the equilibrium pileup configuration, each dislocation is in the equilibrium,
so that

F1 − F0 = 0 , F2 = F3 = . . . = Fn = 0 .

Thus, by summing up the expressions for the dislocation forces, we obtain

n∑
i=1

Fi = F1 = nτb ,

because the interaction forces cancel each other,
n∑

i=1

n∑
j=1

Fi, j = 0 .
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l

0

(a) (b)

Ψ

ϕ

Ψ

B0

A0

0

B

l

A0

B0 B

h

σ

σ

h

Figure 28-1. Simple shearing along the slip di-
rection, which is at an angle ψ0 in the unde-
formed configuration, and ψ in the deformed
configuration (relative to longitudinal direc-
tions of the rod l0 and l). The resulting shear
strain is γ = B0 B/h.

Therefore, the force exerted on the obstacle is

F0 = F1 = nτb .

CHAPTER 28

Problem 28.1. Consider a plastic extension of the rod produced by a single slip of amount
γ as depicted in Fig. 28-1. Assume that the slip plane normal, the slip direction and the
loading axis of the rod are all in one plane. Derive the relationship between the longitudinal
stretch ratio l/ l0 and the slip induced shear strain γ .

Solution: The shear strain in an element of the rod of initial length l0 because of slip of
amount B0 B over the slip plane and in the slip direction is

γ = tanϕ = B0 B
h
.

From the geometry of the triangle A0 B0 B we have

h = l0 sinψ0 = l sinψ ,

B0 B = l cosψ − l0 cosψ0 .

Since

l cosψ = l
(

1 − sin2 ψ
)1/2

= l0

[(
l
l0

)2

− sin2 ψ0

]1/2

,
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n n σ

σ

mmm
s s

s
0

0

0

0

Ψ
φ

(a) (b) (c)

Figure 28-2. Single crystal under uniaxial
tension oriented for single slip along the
slip direction s0 in the slip plane with the
normal m0; parts (a) and (b). The lattice
rotates during deformation so that the slip
direction s in the deformed configuration
makes an angle ψ with the longitudinal di-
rection n; part (c). The angle between the
slip plane normal m and the longitudinal
direction is φ. The vectors m0, s0, and n, in
general, do not belong to one plane.

we can write

B0 B = l0

⎧⎨
⎩
[(

l
l0

)2

− sin2 ψ0

]1/2

− cosψ0

⎫⎬
⎭ .

Therefore, the shear strain γ is related to the stretch ratio l/ l0 by

γ = 1
sinψ0

⎧⎨
⎩
[(

l
l0

)2

− sin2 ψ0

]1/2

− cosψ0

⎫⎬
⎭ .

If the slip plane normal does not belong to the plane formed by the loading axis and the
slip direction, the above expression generalizes to

γ = 1
cosφ0

⎧⎨
⎩
[(

l
l0

)2

− sin2 ψ0

]1/2

− cosψ0

⎫⎬
⎭ ,

as originally derived by Schmid and Boas.

Problem 28.2. Derive an expression for the instantaneous modulus H = dσ/de of a rigid-
plastic crystal oriented for single slip under uniaxial tension. Show that the lattice rotation
can cause an apparent softening of the crystal, even when the slip direction is still hardening.

Solution: Consider a specimen under uniaxial tension oriented for single slip along the
direction s0, on the slip plane with the normal m0 (see Fig. 28-2). The corresponding rate
of deformation and the spin tensors can be expressed from the equations derived in text as

D = 1
a

(P P) :
�
σ,

W = W∗ + 1
a

(Q P) :
�
σ,
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where

a = h − P : (Q · σ − σ · Q),

and

P = 1
2

(s m + m s), Q = 1
2

(s m − m s).

Suppose that the specimen is under uniaxial tension in the direction n, which is fixed by
the grips of the loading machine. The Cauchy stress tensor is then

σ = σ n n,

the material spin is W = 0, and

�
σ = σ̇ n n.

It follows that

P :
�
σ = σ̇ (m · n)(s · n) = σ̇ cosφ cosψ,

where φ is the angle between the current slip plane normal m and the loading direction
n, while ψ is the angle between the current slip direction s and the loading direction n, as
shown in Fig. 28-2. It is easily found that

P : (Q · σ − σ · Q) = 1
2
σ
[
(m · n)2 − (s · n)2] = 1

2
σ (cos2 φ − cos2 ψ).

Therefore, upon substitution into the expression for the rate of deformation,

D = σ̇ cosφ cosψ

h − 1
2 (cos2 φ − cos2 ψ)

P.

Denoting by e the longitudinal strain in the direction of the specimen axis n, we can write

ė = n · D · n,

and therefore

ė = σ̇ cos2 φ cos2 ψ

h − 1
2 (cos2 φ − cos2 ψ)

,

i.e.,

σ̇ = Hė , H = h
cos2 φ cos2 ψ

− σ (cos2 φ − cos2 ψ)
2 cos2 φ cos2 ψ

.

Depending on the current orientation of the active slip system, the instantaneous modulus
H can be positive, zero, or negative. If the lattice has rotated such that

cos2 φ − cos2 ψ >
2h
σ
,

the current modulus is negative, although the slip direction may still be hardening (h > 0).
The resulting apparent softening is purely geometrical effect, due to rotation of the lattice
caused by crystallographic slip, and is referred to as geometric softening. In the derivation
it was assumed that the lattice rotation does not activate the slip on another slip system.
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Problem 28.3. Derive the expression (28.78), i.e., show that

�
τ ∗ = F∗ · (Λ∗ : Ė∗) · F∗T + D∗ · τ ∗ + τ ∗ · D∗ .

Solution: We start from the relationship between the symmetric Piola–Kirchhoff stress
relative to the lattice and the corresponding Kirchhoff stress τ ∗ = (det F∗)σ,

S∗ = F∗ −1 · τ ∗ · F∗ −T .

Applying the time like derivative, we obtain

Ṡ∗ = (
F∗ −1). · τ ∗ · F∗ −T + F∗ −1 · τ̇ ∗ · F∗ −T + F∗ −1 · τ ∗ · (F∗ −T). .

Since (
F∗ −1). = −F∗ −1 · Ḟ · F∗ −1 = −F∗ −1 · L∗ ,

the previous expression can be rewritten as

Ṡ∗ = F∗ −1 · (τ̇ ∗ − L∗ · τ ∗ − τ ∗ · L∗ T) · F∗ −T .

The bracketed term is the convected rate of the Kirchhoff stress relative to the lattice,
�
τ ∗ = τ̇ ∗ − L∗ · τ ∗ − τ ∗ · L∗ T = �

τ ∗ − D∗ · τ ∗ − τ ∗ · D∗ ,

where
�
τ ∗ = τ̇ ∗ − W∗ · τ ∗ + τ ∗ · W∗

is the Jaumann rate corotational with the lattice. Thus, we obtain
�
τ ∗ = F∗ · Ṡ∗ · F∗T + D∗ · τ + τ · D∗ .

Finally, since

Ṡ∗ = Λ∗ : Ė∗ ,

we arrive at the desired result. If plastic deformation is assumed to be volume preserving,
then det F∗ = det F and τ ∗ = τ .

CHAPTER 29

Problem 29.1. Consider a plane strain bifurcation of an incompressible nonlinear elastic
material from the state of biaxial stretch (λ1 = λ, λ2 = λ−1). Show that

�
σ 11 − �

σ 22 = 2µ∗(D11 − D22) ,
�
σ 12 = 2µD12 ,

where

2µ = λ4 + 1
λ4 − 1

(σ1 − σ2) , 4µ∗ = λ d
dλ

(σ1 − σ2) .

Solution: Let the bifurcation strain rate

D =
[

D11 D12

D12 D22

]
.
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be superposed to the biaxially stretched state with the deformation gradient and corre-
sponding Cauchy stress

F =
[
λ1 0
0 λ2

]
=
[
λ 0
0 λ−1

]
, σ =

[
σ1 0
0 σ2

]
.

The rate of Lagrangian strain is

Ė = FT · D · F =
[
λ2 D11 D12

D12 λ−2 D22

]
.

For an incompressible material, the rate of the symmetric Piola–Kirchhoff stress is related
to the convected rate of the Cauchy stress by

Ṡ = F−1
(�
σ − D · σ − σ · D

)
· F−T ,

i.e., [
Ṡ11 Ṡ12

Ṡ12 Ṡ22

]
=
[
λ−2(

�
σ 11 − 2σ1 D11)

�
σ 12 − (σ1 + σ2)D12

�
σ 12 − (σ1 + σ2)D12 λ2(

�
σ 22 − 2σ2 D22)

]
.

The rates of stress and strain are related by Ṡi j = �i jkl Ėkl , which gives

Ṡ11 = �1111 Ė11 +�1122 Ė22 ,

Ṡ22 = �2211 Ė11 +�2222 Ė22 ,

Ṡ12 = 2�1212 Ė12 .

The (symmetric) instantaneous elastic moduli are from (7.100) given by

�1111 = 1
λ1

∂S1

∂λ1
, �1122 = 1

λ2

∂S1

∂λ2
+ S1 − S2

λ2
1 − λ2

2

,

�2222 = 1
λ2

∂S2

∂λ2
, �2211 = 1

λ1

∂S2

∂λ1
+ S1 − S2

λ2
1 − λ2

2

,

�1212 = S1 − S2

λ2
1 − λ2

2

, �1112 = �2212 = 0 .

Upon combining of the above results, we obtain

�
σ 11 =

(
2σ1 + λ3

1
∂S1

∂λ1
− λ1

∂S1

∂λ2
− S1 − S2

λ2
1 − λ2

2

)
D11,

�
σ 22 =

(
2σ2 + λ3

2
∂S2

∂λ2
− λ2

∂S2

∂λ1
− S1 − S2

λ2
1 − λ2

2

)
D22,

�
σ 12 =

(
σ1 + σ2 + 2

S1 − S2

λ2
1 − λ2

2

)
D12.

To derive the desired results, we recall that

σ1 = λ2
1S1 , σ2 = λ2

2S2 , (λ1 = λ , λ2 = λ−1),
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so that

dσ1

dλ
= ∂(λ2

1S1)
∂λ1

∂λ1

∂λ
+ ∂(λ2

1S1)
∂λ2

∂λ2

∂λ
.

This gives

λ
dσ1

dλ
= 2σ1 + λ3

1
∂S1

∂λ1
− λ1

∂S1

∂λ2
,

and similarly

λ
dσ2

dλ
= −2σ2 − λ3

2
∂S2

∂λ2
+ λ2

∂S2

∂λ1
.

Recalling that D11 + D22 = 0 by the incompressibility constraint, we finally obtain

�
σ 11 − �

σ 22 =
[

1
2
λ

d
dλ

(σ1 − σ2)
]

(D11 − D22) ,

and

�
σ 12 =

[
λ4 + 1
λ4 − 1

(σ1 − σ2)
]

D12 .

Problem 29.2. Derive the expressions for the moduli µ and µ∗ of the previous problem if
the strain energy function is of the Mooney–Rivlin type

 = 1
2
µ0

[(
1
2

+ β
)

(IB − 3) −
(

1
2

− β
)

(I IB + 3)
]
.

Solution: Since, in the three-dimensional setting,

F =
⎡
⎣λ 0 0

0 λ−1 0
0 0 1

⎤
⎦ , B =

⎡
⎣λ2 0 0

0 λ−2 0
0 0 1

⎤
⎦ ,

we obtain

IB = tr B=λ2 + λ−2 + 1, I IB = 1
2

[
tr(B2) − (tr B)2]=−(λ2 + λ−2 + 1),

so that

 = 1
2
µ0(λ2 + λ−2 − 2) .

Thus,

σ1 = −p0 + λ1
∂ 

∂λ1
= −p0 + µ0λ

2
1 , σ2 = −p0 + λ2

∂ 

∂λ2
= −p0 + µ0λ

2
2 .

Consequently,

σ1 − σ2 = µ0(λ2 − λ−2) , λ
∂

∂λ
(σ1 − σ2) = 2µ0(λ2 + λ−2) ,

and, therefore,

µ = µ∗ = 1
2
µ0(λ2 + λ−2) .
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CHAPTER 30

A polycrystalline aggregate is considered to be macroscopically homogeneous by assuming
that local microscopic heterogeneities (because of different orientation and state of hard-
ening of individual crystal grains) are distributed in such a way that the material elements
beyond some minimum scale have essentially the same overall macroscopic properties.
This minimum scale defines the size of the representative macroelement or representative
cell. The representative macroelement can be viewed as a material point in the continuum
mechanics of macroscopic aggregate behavior. To be statistically representative of the lo-
cal properties of its microconstituents, the representative macroelement must include a
sufficiently large number of microelements. For example, for relatively fine-grained met-
als, a representative macroelement of volume 1 mm3 contains a minimum of 1000 crystal
grains. The concept of the representative macroelement is used in various branches of the
mechanics of heterogeneous materials and is also referred to as the representative volume
element.

Experimental determination of the mechanical behavior of an aggregate is commonly
based on the measured loads and displacements over its external surface. Consequently,
the macrovariables introduced in the constitutive analysis should be expressible in terms
of this surface data alone.

Problem 30.1. Let

F(X, t) = ∂x
∂X

, det F > 0,

be the deformation gradient at the microlevel of description, associated with a (continuous
and piecewise continuously differentiable) microdeformation within a crystalline grain,
x = x(X, t). The reference position of the particle is X, and its current position at time t is
x. Express the volume averages of the deformation gradient, rate of deformation gradient,
velocity gradient, and Cauchy and Kirchhoff stress, all in terms of the surface data.

Solution: The volume average of the deformation gradient over the reference volume V0

of the macroelement is

〈F〉 = 1
V0

∫
V0

F dV0 = 1
V0

∫
S0

x n0 dS0,

by the Gauss divergence theorem. The unit outward normal to the bounding surface S0 of
the macroelement volume is n0.

The volume average of the rate of deformation gradient,

Ḟ(X, t) = ∂v
∂X

, v = ẋ(X, t),

where v is the velocity field, is

〈Ḟ〉 = 1
V0

∫
V0

Ḟ dV0 = 1
V0

∫
S0

v n0 dS0.
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Table 34.1. Designation of slip systems in fcc crystals

Plane (111) (1̄1̄1) (1̄11) (11̄1)
Slip Rate a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3
Slip Direction [01̄1] [101̄] [1̄10] [011] [1̄01̄] [11̄0] [01̄1] [1̄01̄] [110] [011] [101̄] [1̄1̄0]

If the current configuration is taken as the reference configuration (x = X, F = I, Ḟ = L =
∂v/∂x), the above equation gives the volume average of the velocity gradient

{L} = 1
V

∫
V

L dV = 1
V

∫
S

v n dS.

The current volume of the deformed macroelement is V, and S is its bounding surface
with the unit outward normal n. Enclosure within { } brackets is used to indicate that the
average is taken over the deformed volume of the macroelement.

Let P = P(X, t) be a nonsymmetric nominal stress field within the macroelement. The
nominal traction pn is related to the true traction tn by pn dS0 = tn dS. The volume average
of the nominal stress is

〈P〉 = 1
V0

∫
V0

P dV0 = 1
V0

∫
S0

X pn dS0.

If current configuration is chosen as the reference, (P = σ, pn = tn), and we have

{σ} = 1
V

∫
V
σ dV = 1

V

∫
S

x tn dS.

Note that ∫
V0

τ dV0 =
∫

V
σ dV =

∫
S

x tn dS =
∫

S0

x pn dS0,

so that

〈τ 〉 = 1
V0

∫
V0

τ dV0 = 1
V0

∫
S0

x pn dS0.

Problem 30.2. The slip in an fcc crystal occurs on the octahedral planes in the directions
of the octahedron edges (see Fig. 30-1). There are three possible slip directions in each of
the four distinct slip planes, making a total of 12 slip systems (if counting both senses of
a slip direction as one) or 24 (if counting opposite directions separately). The positive
senses of the slip directions are chosen as indicated in Table 34.1. The letters a, b, c, and d
refer to four slip planes. With attached indices 1, 2, and 3, they designate the slip rates in
the respective positive slip directions. If elastic (lattice) strains are disregarded, calculate
the components of the rate of deformation tensor, expressed on the cubic axes, due to
simultaneous slip rates in 12 slip directions.

Solution: The components of the rate of deformation can be calculated from

D =
12∑
α=1

Pα γ̇ α =
12∑
α=1

1
2

(sα mα + mα sα) γ̇ α,
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1

2

3

[011]

[110]
[110]

[1
01

]

[0
11

]

[101] Figure 30-1. Twelve different slip directions in fcc
crystals (counting opposite directions as different) are
the edges of the octahedron shown relative to prin-
cipal cubic axes. Each slip direction is shared by two
intersecting slip planes so that there is a total of 24
independent slip systems (12 if counting opposite slip
directions as one).

where mα is the unit slip plane normal and sα is the slip direction. For example, the contri-
bution from the slip rate γ̇ = a1 is obtained by using

m = 1√
3

(1, 1, 1), s = 1√
2

(0,−1, 1),

which gives

1
2

(sα mα + mα sα) a1 = a1

2
√

6

⎛
⎝ 0 −1 1

−1 −2 0
1 0 2

⎞
⎠ .

An analogous calculation proceeds for other slip rates, which yields the following expres-
sions for the overall rate of deformation components

√
6 D11 = a2 − a3 + b2 − b3 + c2 − c3 + d2 − d3,

√
6 D22 = a3 − a1 + b3 − b1 + c3 − c1 + d3 − d1,

√
6 D33 = a1 − a2 + b1 − b2 + c1 − c2 + d1 − d2,

2
√

6 D23 = −a2 + a3 + b2 − b3 − c2 + c3 + d2 − d3,

2
√

6 D31 = −a3 + a1 + b3 − b1 + c3 − c1 − d3 + d1,

2
√

6 D12 = −a1 + a2 − b1 + b2 + c1 − c2 + d1 − d2.

Problem 30.3. Determine the number of independent sets of five slips in an fcc crystal.

Solution: An arbitrary rate of deformation tensor has five independent components
(tr D = 0 for a rigid-plastic crystal), and therefore can only be produced by multiple slip
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over a group of slip systems containing an independent set of five. Of the C12
5 = 792 sets of

five slips, only 384 are independent. The 408 dependent sets are identified as follows. First,
only two of three slip systems in the same slip plane are independent. The unit slip rates
along a1, a2, and a3 directions together produce the zero resultant rate of deformation. The
same applies to three slip directions in b, c, and d slip planes. We can write this symbolically
as

a1 + a2 + a3 = 0, b1 + b2 + b3 = 0, c1 + c2 + c3 = 0, d1 + d2 + d3 = 0.

Thus, if the set of five slip systems contains a1, a2, and a3, there are C9
2 = 36 possible

combinations with the remaining nine slip systems. These 36 sets of five slips cannot produce
an arbitrary D, with five independent components, and are thus eliminated from 792 sets
of five slips. Additional 3 × 36 = 108 sets, associated with dependent sets of three slips
in b, c, and d planes, can also be eliminated. This makes a total of 144 dependent sets
corresponding to the above constraints.

Of the remaining 648 sets of five slips, 324 involve two slips in each of two slip planes
with one in a third (6 × 32 × 6 = 324), whereas 324 involve two slips in one slip plane and
one in each of the other three slip planes (4 × 34 = 324). In the latter group, there are
3 × 8 = 24 sets involving the combinations

a1 − b1 + c1 − d1 = 0, a2 − b2 + c2 − d2 = 0, a3 − b3 + c3 − d3 = 0.

These expressions can also be interpreted as meaning that such combinations of unit slips
produce zero resultant rate of deformation. The 24 sets of five slips, involving four slip rates
according to above, can thus be eliminated (these sets necessarily consists of two slips in
one plane and one slip in each of the remaining three slip planes). Additional 12 sets are
eliminated, which correspond to conditions obtained from the above equations by adding
or subtracting

∑
ai , . . . ,

∑
di , one at a time, to each of the equation. A representative of

these is a1 − b1 + c1 + d2 + d3 = 0.
There are 4 × 33 = 132 dependent sets associated with

a1 + b2 + d3 = 0, a2 + b1 + c3 = 0, a3 + c2 + d1 = 0, b3 + c1 + d2 = 0.

Each group of 33 sets consists of 21 sets involving two slips in one plane and one slip in
each of other three planes and 12 sets involving two slips in two planes and one slip in one
plane. Additional 84 sets can be eliminated by subtracting

∑
ai ,

∑
bi , and

∑
di , one at

a time, from the first of the above set of equation, and similarly for the other three. This
makes 12 groups of 7 sets. A representative group is associated with a1 + b2 − d1 − d2 = 0.
Four of the 7 sets consist of two slips in two planes and one slip in one plane, whereas 3 sets
consist of two slips in one plane and one slip in each of the other three planes. Finally, 12
more sets (making total of 228 dependent sets associated with the above set of equations
and their equivalents) can be eliminated by subtracting appropriate one of

∑
ai , . . . ,

∑
di

from each of the 12 previous group equations. An example is −a1 + b1 + b3 + d1 + d2 = 0.
They all involve two slips in each of two planes and one slip in another plane.

In summary, there is a total of 408 dependent sets of five slips: 144 sets with three slips
in the same plane, 108 sets with two slips in each of two planes and one in a third, and
156 sets with two slips in one plane and one slip in each of the other three planes. The
total number of independent sets of five slips is 792 − 408 = 384. Taylor (1938a) originally
considered only 216 sets as geometrically admissible (involving double slip in each of two
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planes) and did not observe 168 admissible sets with double slip in only one plane. These
were originally identified by Bishop and Hill (1951b).

Problem 30.4. According to the Voigt assumption, when a polycrystalline aggregate is
subjected to the overall uniform strain, the individual crystals will all be in the same state
of applied strain. Based on this assumption, calculate the effective elastic constants of an
isotropic aggregate of cubic crystals.

Solution: For a cubic crystal the elastic moduli can be expressed as

Cc
i jkl = c12δi jδkl + 2c44 Ii jkl + (c11 − c12 − 2c44)Ai jkl ,

where

Ii jkl = 1
2

(δikδ jl + δilδ jk) ,

and

Ai jkl = ai a j akal + bi bj bkbl + ci c j ckcl .

The vectors a, b, and c are the orthogonal unit vectors along the principal cubic axes, and
the usual notation for the elastic constants c11, c12, and c44 is employed. Two independent
linear invariants of Cc

i jkl are

Cc
i i j j = 3(c11 + 2c12) , Cc

i j i j = 3(c11 + 2c44).

Denote by κ andµ the overall (effective) bulk and shear moduli of an isotropic aggregate
of cubic crystals. The corresponding elastic moduli are

Ci jkl = 2µIi jkl +
(
κ − 2

3
µ

)
δi jδkl .

According to the Voigt assumption, when a polycrystalline aggregate is subjected to the
overall uniform strain, the individual crystals will all be in the same state of applied strain
(which gives rise to stress discontinuities across the grain boundaries). Thus, by requiring
that the overall stress is the average of the local stresses, there follows

Ci jkl = {Cc
i jkl}.

Instead of performing the integration

Ci jkl = 1
8π2

∫
�

Cc
i jkl d�,

the effective polycrystalline constants can be obtained directly by observing that the linear
invariants of Ci jkl and Cc

i jkl must be equal. Thus, equating the earlier expressions for Cc
i i j j

and Cc
i j i j to

Cii j j = 9κ, Ci ji j = 3κ + 10µ,

we obtain the Voigt estimates

κ = 1
3

(c11 + 2c12), µV = 1
5

(c11 − c12 + 3c44).
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Problem 30.5. According to the Reuss assumption, when a polycrystalline aggregate is
subjected to the overall uniform stress, the individual crystals will all be in the same state
of stress. Based on this assumption, calculate the effective elastic constants of an isotropic
aggregate of cubic crystals.

Solution: By requiring that the overall strain in the aggregate is the average of the local
crystalline strains, there follows

Si jkl = {Sc
i jkl}.

The components of elastic compliance tensor of cubic crystals (see Problem 14.6) are

Sc
i jkl = − c12

(c11 − c12)(c11 + 2c12)
δi jδkl + 1

2c44
Ii jkl

+
(

1
c11 − c12

− 1
2c44

)
Ai jkl .

Two independent linear invariants of Sc
i jkl are

Sc
i i j j = 3

c11 + 2c12
, Sc

i j i j = 3(c11 + c12)
(c11 − c12)(c11 + 2c12)

+ 3
2c44

.

The components of the elastic compliance tensor of an isotropic aggregate of cubic
crystals are

Si jkl = 1
2µ

Ii jkl + 1
3

(
1

3κ
− 1

2µ

)
δi jδkl ,

with the corresponding invariants

Sii j j = 1
κ
, Si ji j = 5

2µ
+ 1

3κ
.

Consequently, the Reuss estimates are

κ = 1
3

(c11 + 2c12), µR = 5

4

c11 − c12
+ 3

c44

.

It can be shown that µV is the upper bound and that µR is the lower bound on the true
value of the effective shear modulus, i.e.,

µR ≤ µ ≤ µV.

It can also be shown that the effective Lamé constant is bounded such that λV ≤ λ ≤ λR.

CHAPTER 31

Problem 31.1. Derive the rate-type constitutive equation given by (31.16) of the main
text.

Solution: The deformation gradient is decomposed as

F = F∗ · Fp,
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with

Ḟp · Fp−1 =
2∑
α=1

γ̇α sα mα.

The two Lagrangian strain measures, relative to the initial reference configuration, are

E = 1
2

(
FT · F − I

)
, Ep = 1

2

(
FpT · Fp − I

)
,

whereas

E∗ = 1
2

(
F∗T · F∗ − I

)
.

These strain measures are related by

E = FpT · E∗ · Fp + Ep.

By differentiating, we obtain the relationship

Ė = FpT · Ė∗ · Fp + FpT · [C∗ · (Ḟp · Fp−1)]
sym · Fp,

where C∗ = F∗T · F∗. The above can be rewritten as

Ė∗ = Fp−T · Ė · Fp−1 − [
C∗ · (Ḟp · Fp−1)]

sym

The two symmetric Piola–Kirchhoff stress tensors are derived from the strain energy
 (E∗) by the gradient operations

S∗ = ∂ 

∂E∗ , S = ∂ 

∂E
,

with the connection

S∗ = Fp · S · FpT.

The relationship between the rates of the stress tensors S∗ and S is obtained by simple
differentiation, which gives

Ṡ∗ = Fp · Ṡ · FpT + 2
[(

Ḟp · Fp−1) · S∗]
sym .

Finally, by taking the time derivative of S∗ = ∂ /∂E∗, there follows

Ṡ∗ = Λ∗ : Ė∗ , Λ∗ = ∂2 

∂E∗ ∂E∗ .

When the previously derived expressions for Ṡ∗ and Ė∗ are substituted in this relationship,
we obtain

Ṡ = Λ : Ė −
2∑
α=1

γ̇αXα,

where

�i jkl = Fp
im

−1 Fp
jn

−1�∗
mnpq Fp

pk
−1 Fp

ql
−1 ,

and

Xα = Fp−1 · (Λ∗ : Aα + 2Bα) · Fp−1.
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The second-order symmetric tensors Aα and Bα are defined by

Aα = [C∗ · (sαmα)]sym , Bα = [(sαmα) · S∗]sym .

CHAPTER 32

Problem 32.1. Consider the total body force acting on the body of variable mass, whose
current volume is V and mass density ρ, i.e.,

Fb =
∫

V
b ρ dV ,

where b is the body force per unit current mass. Derive an expression for the time rate of
change of this force.

Solution: Applying the time derivative to Fb, we have

dFb

dt
= d

dt

∫
V

b ρ dV =
∫

V

d
dt

(ρ b dV) =
∫

V
ρ

db
dt

dV +
∫

V
b

d
dt

(ρ dV) .

Since

d(ρdV)
dt

= rgdV ,

there follows

dFb

dt
=
∫

V

(
ρ

db
dt

+ rg b
)

dV .

In view of the continuity equation

dρ
dt

+ ρ ∇ · v = rg ,

we can also express the rate of the total body force acting on the body of variable mass as

dFb

dt
=
∫

V

[
ρ

db
dt

+
(

dρ
dt

+ ρ ∇ · v
)

b
]

dV .

If there is no mass growth,

rg = 0 ,
dρ
dt

+ ρ ∇ · v = 0 ,

the previous expression reduces to classical expression of the mechanics of constant mass

dFb

dt
=
∫

V
ρ

db
dt

dV .

Problem 32.2. Consider a circumferential growth of a cylindrical blood vessel (Fig. 32-1).
If the opening angle� (� < 0 for growth;� > 0 for resorption) is assumed to be constant
along the thickness of the vessel, and if the plain strain conditions prevail, write down the
components of the deformation gradients F, Fg, and Fe.

Solution: The deformation mapping from the initial to current state is

r = r(R) , θ = ), z = Z ,
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Ω

b
a0

0

b
a0

0

b
a

F

F

F

e

g

Figure 32-1. Circumferential growth of a cylindrical
blood vessel. The opening angle is �.

where (R,), Z) are the cylindrical coordinates in the initial configuration and (r, θ, z) are
those in the current configuration. The corresponding deformation gradient at an arbitrary
point of the vessel is

F =
⎡
⎣dr/dR 0 0

0 r/R 0
0 0 1

⎤
⎦ .

A discontinuous mapping giving rise to an opening angle � is

ρ = R , ϑ =
(

1 − �

2π

)
), ζ = Z ,

where (ρ, ϑ, ζ ) are the cylindrical coordinates in the intermediate (stress free) configura-
tion. Thus,

Fg =
⎡
⎣1 0 0

0 ω 0
0 0 1

⎤
⎦ , ω = 1 − �

2π
.

The elastic part of the deformation gradient Fe now follows from the multiplicative de-
composition F = Fe · Fg as

Fe = F · Fg −1 =
⎡
⎣dr/dR 0 0

0 r/(ωR) 0
0 0 1

⎤
⎦ .

Problem 32.3. Referring to previous problem, derive the expressions for the stress com-
ponents in terms of the elastic principal stretches λe

r , λe
θ , λ

e
z. Assume that the blood vessel

is an incompressible elastic material with the strain energy function

W = 1
2
α[exp(Q) − 1] − p(λe

rλ
e
θλ

e
z − 1) ,

where α is a material parameter and p plays a role of the Lagrangian multiplier corre-
sponding to the incompressibility constraint λe

rλ
e
θλ

e
z = 1. The function Q depends on the

strain components according to
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Q = β[(Ee
r )2 + (Ee

θ )
2 + (Ee

z)2] ,

where β is another material parameter. The pressures on the inner and outer surface of
the vessel, p0 and p1, are assumed to be known.

Solution: The elastic stretches in the previous problem are

λe
r = dr

dR
, λe

θ = 1
ω

r
R
, λe

z = 1 .

In view of the incompressibility constraint λe
rλ

e
θλ

e
z = 1, we have

dr
dR

r
R

= ω , i.e., r2 = ωR2 + C1 .

The integration constant is to be determined from the boundary condition at the inner (or
outer) surface of the blood vessel.

The Cauchy stress components can be expressed in terms of the principal stretches as

σrr = λe
r
∂W
∂λe

r
− p , σθθ = λe

θ

∂W
∂λe
θ

− p , σzz = λe
z
∂W
∂λe

z
− p .

Since

ee
rr = 1

2
[(λe

r )2 − 1] , ee
θθ = 1

2
[(λe

θ )
2 − 1] , Ee

z = 1
2

[(λe
z)2 − 1] ,

we have

Q = 1
2
β
{
[(λe

r )2 − 1]2 + [(λe
θ )

2 − 1]2 + [(λe
z)2 − 1]2} ,

and
∂Q
∂λe

r
= 2βλe

r [(λe
r )2 − 1] ,

∂Q
∂λe
θ

= 2βλe
θ [(λ

e
θ )

2 − 1] ,
∂Q
∂λe

z
= 0 .

Consequently,

∂W
∂λe

r
= αβλe

r [(λe
r )2 − 1] exp(Q) − p

λe
r
,

∂W
∂λe
θ

= αβλe
θ [(λ

e
θ )

2 − 1] exp(Q) − p
λe
θ

.

Therefore, the stress components become

σrr = αβ(λe
θ )

2[(λe
θ )

2 − 1] exp(Q) − p ,

σθθ = αβ(λe
θ )

2[(λe
θ )

2 − 1] exp(Q) − p ,

σzz = −p .

The explicit determination of the function p = p(r) requires a numerical solution of the
differential equation of equilibrium

dσrr

dr
+ σrr − σθθ

r
= 0 .



P1: IKB
0521859794c34.tex CB988/Asaro.cls 0 521 85979 4 November 18, 2005 4:20

830 Problems 32.3–33.1

dS

F

e
n

0

dS

0

n

0
i

ei Figure 33-1. The membrane element of area dS0 is mapped by
the deformation gradient F into an element with area dS. The
corresponding unit normal vectors are n0 and n. The inplane
membrane vectors e0

i are transformed into ei = F · e0
i (i = 1, 2).

The integration constant is specified by imposing the remaining boundary condition on
the inner or outer surface of the blood vessel.

Problem 32.4. Show that in the case of isotropic uniform growth of a spherical blood
vessel, there are no stresses due to growth alone.

Solution: The deformation mapping due to growth alone is

ρ = λg R , ϕ =  , ϑ = ),
where (R, ,)) are the spherical coordinates in the initial configuration, and (ρ, ϕ, ϑ) in
the intermediate configuration. The growth stretch ratio is λg. The corresponding defor-
mation gradient at an arbitrary point of the vessel is

F =
⎡
⎣dρ/dR 0 0

0 ρ/R 0
0 0 ρ/R

⎤
⎦ =

⎡
⎣λg 0 0

0 λg 0
0 0 λg

⎤
⎦ .

This is clearly a pure dilatation. If there is no pressure applied to inner or outer surface of
the vessel, we have

r = ρ = λg R , φ = ϕ =  , θ = ϑ = ),
where (r, φ, θ) are the spherical coordinates in the current configuration. Thus, F = Fg and
Fe = I. Since Fe = I, there are no stresses in the blood vessel during its isotropic uniform
growth alone.

CHAPTER 33

Problem 33.1. Derive the relationship for the fractional change in reference area of the
membrane α = λ1λ2 − 1, where λ1 and λ2 are the principal stretches in the tangent plane
of the membrane.

Solution: Let n0 = e0
1 × e0

2 be the unit normal vector to the membrane element in the
undeformed configuration, where e0

1 and e0
2 are the orthogonal unit vectors in the tangent

plane of the membrane in the directions of its principal membrane stretches (Fig. 33-1).
Then, the right Cauchy–Green stretch tensor is

U = λ1 e0
1 e0

1 + λ2 e0
2 e0

2 + λ3 n0 n0 .

The Nanson’s relation (4.74) provides an expression for the area change of the surface
element according to

ndS = (det F)F−T · n0dS0 ,
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where n is the unit normal to the deformed surface element of area dS. The deformation
gradient that maps dS0 into dS is F. Consequently,

dS2 = (det F)2 (n0 · C−1 · n0) (dS0)2 .

The inverse of the right Cauchy–Green deformation tensor is

C−1 = U−2 = λ−2
1 e0

1 e0
1 + λ−2

2 e0
2 e0

2 + λ−2
3 n0 n0 ,

and det F = det U = λ1λ2λ3. Since

n0 · C−1 · n0 = λ−2
3 ,

we obtain

dS2 = λ2
1λ

2
2(dS0)2 ,

which gives the fractional area change

α = dS − dS0

dS0
= λ1λ2 − 1 .
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absolute temperature, 115
acoustic tensor, 266
adaptive elasticity, 609
adiabatic loading, 119
affinity, 127, 129, 618
Airy stress function, 179, 410, 415,

419
angle of twist, 214
angular change

between fibers, 76
of principal directions, 76

anisotropic
elastic solid, 264, 345, 604
elasticity, 332
hardening, 475

antiplane
shear, 390
strain, 386

aorta, 630
apposition, 609
arc length, 59
area change, 64

for a membrane, 636
Asaro–Tiller field, 459
associative flow rule, 480
asymptotic stress fields, 459
axial vector, 17, 87
axisymmetric problems, 211

back stress, 475
balance of angular momentum,

95
Barnett–Lothe tensors, 333
Bauschinger effect, 475, 595
Beltrami–Michell equations, 172
bending of beams, 225
Bessel functions, 385
Betti’s reciprocal theorem, 177,

318
couple-stress elasticity, 393

Bianchi conditions, 171

bifurcation, 498
biharmonic equation, 179, 184

polynomial solutions, 185
with body forces, 188

bimaterial interface, 407, 410, 419
binary alloy, 145
biomaterials, 609
Blatz–Ko strain energy, 700
blood vessel, 630
body force potential, 178
Boussinesq–Papkovitch solutions, 248
Burgers vector, 294, 407, 410, 419

Cauchy elasticity, 149
Cauchy stress, 92

nonsymmetric, 398
principal values of, 96
symmetry of, 95

Cauchy tetrahedron, 92
Cauchy–Green deformation tensor,

58
cavitation instability, 500, 501
Cayley–Hamilton theorem, 22
Cesàro integrals, 172
characteristic equation, 13, 23
chemical potential, 139, 370, 449
Christoffel stiffness tensor, 266
circular plate, 288
Clapeyron’s formula, 111
Clausius–Duhem inequality, 115
coarse slip bands, 558
coefficient

of compressibility, 122
of thermal expansion, 122

compatibility equations, 169, 377
Beltrami–Michell, 172
Saint-Venant, 171

compliance tensor, 118
configurational

entropy, 144
force, 400
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conservation
integrals, 403
laws, 404
of mass, 34

consistency condition, 472, 481
constitutive equations

linear elasticity, 161
nonlinear elasticity, 149
plasticity

deformation theory, 485
isotropic hardening, 475
kinematic hardening, 477
nonassociative, 480
pressure-dependent, 480
rate-dependent, 482

constrained
equilibrium, 127
field, 338

contact problems, 271
continuity equation, 34, 610
convected

lattice vectors, 540
stress rate, 105, 680

convolution integrals, 48
coordinate transformation, 3
core energy, 424, 426
corner theory of plasticity, 487
corotational stress rate, 106
correspondence theorem, 378, 389
Cotter–Rivlin convected rate, 680
Coulomb’s law, 27
couple-stress, 375, 376, 398
coupled heat equation, 120
crack extension force, 323
crack opening displacement, 325
creep, 483
critical

conditions for localization, 574
film thickness, 432
hardening rate, 567
nucleus size, 374
resolved shear stress, 505

crystal plasticity, 538, 601
laminate model, 601
single slip, 605

curl, 55, 56
curvature tensor, 376, 399
cylindrical

coordinates, 668
void, 500

Debye’s temperature, 124
deformation gradient, 56

cylindrical coordinates, 670
multiplicative decomposition, 490, 622

deformation rate, 69, 73, 74
deformation theory of plasticity, 484, 486,

596
degenerate solutions, 204
densification, 611

determinant, 6
deviatoric

plane, 469
work, 464

dilatancy factor, 481
dilatant materials, 480
Dirac delta function, 51, 233, 264
Dirichlet conditions, 42
disclination, 760
dislocation, 293, 299

core, 424
density, 511
distribution, 296
driving force, 439, 441
edge, 419, 509
energy, 424, 426
forces on, 365
forest, 515
injection, 444
interactions, 514
line, 299
misfit, 432, 433
multiplication, 517
near free surface, 426
partial, 513
perturbed array, 443
recession, 439
spacing, 432
threading, 432, 437

dislocation array
energy, 430
formation, 432, 438
stress field, 428

dislocation force
array, 431
edge dislocation, 415, 418, 421,

423
screw dislocation, 408, 410
straight, 427

displacement discontinuity, 421, 424,
430

displacements
determination of, 196
half space, 238
in beam, 187
nonsingle valued, 293

distributed contact loading, 274
div, 56
divergence theorem, 26, 33, 34
double Fourier series, 37
double slip, 576
Drucker–Prager yield criterion, 468
Duhamel–Neumann expression, 132
Dulong–Petit limit, 124
dyadic notation, 13

eccentricity, 636
edge dislocation, 299, 410

couple-stress elasticity, 381
near free surface, 417, 422
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Index 855

eigenvalues, 12, 63
symmetric tensors, 14

eigenvectors, 12, 63
orthogonality of, 63
stretch of, 63

elastic
compliance tensor, 118
constants, 169
deformation gradient, 490
moduli tensor, 158, 627
pseudomoduli, 155
stiffness tensor, 118
unloading, 489

elastic-plastic interface, 497
elasticity

3D, 264
Cauchy, 149
crystal elasticity, 547
Green, 148
isotropic, 150
nonlinear, 148

energy
Gibbs, 117, 128
Helmholtz free, 116, 128
internal, 113
kinetic, 113
of a dislocation line, 366
total, 113

energy equation, 114
with mass growth, 616

energy factor
matrix, 511
tensor, 315

energy momentum tensor,
358

finite deformations, 361
micropolar elasticity, 404

energy release rate, 315, 323
enthalpy, 117, 128

of mixing, 145
entropic elasticity, 116
entropy, 114

of mixing, 144
epitaxial

growth, 432
layer, 432

equilibrium equations, 95
Eshelby

inclusion problem, 335
tensor, 341

Euler’s laws of motion, 614
Eulerian

strain, 676
rate of, 76

triad, 80
evolution equation, 129, 479

for mass growth, 631
for stretch ratio, 630

evolution of back stress, 476,
477

extended
dislocation, 513
Taylor model, 587

fiber
rotation of, 19
stretch, 60
stretching rate, 73

film thickness, 432
first law of thermodynamics, 113
first Piola–Kirchhoff stress, 99
Flamant solution, 723
flat punch, 278
flexural rigidity, 284
flow potential, 482
flow rule

associative, 480
nonassociative, 480

flux, 31, 127, 129, 618
force

generalized, 357
on a dislocation, 365
on a precipitate interface, 373
on an interface, 359

forest dislocations, 515
Fourier

double series, 37
integral theorem, 46
kernel, 41
law of conduction, 119
loading, 191, 193
series, 36
transform, 39, 48, 265

frame indifference, 102
Frank and van der Merwe criterion, 434
Frank–Read source, 530
free energy, 356

Galerkin vector, 256
Gauss

divergence theorem, 26
law, 28

generalized
force, 357
plastic strain, 474

geometrical
hardening, 607
softening, 508, 580, 607, 816

Gibbs
conditions of equilibrium, 129
energy, 117, 128, 141, 356

Gibbs–Duhem equation, 142
grad, 56
Green

elasticity, 148
function, 264
isotropic elasticity, 150
lattice strain, 603
strain, 59
stretch tensor, 86
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Griffith
crack, 332, 773
criterion, 320

Gurson yield criterion, 470

half-plane loading, 232
half-space solutions, 229
Hall–Petch relation, 517
hard tissue, 609
hardening, 473

isotropic, 474
kinematic, 475

heat
capacity, 124
conduction, 113

Fourier law, 119
equation, 120
flow, 113

Helmholtz equation, 378
Helmholtz free energy, 116, 128

with mass growth, 620
Hertz problem, 259
hollow dislocation, 384
Hooke’s law, 150, 161
hyperelasticity, 149
hypertension, 630
hypertrophy, 609

ideal
plasticity, 473
solution, 144

ideally plastic material, 497
identity tensor, 6, 10
image force on a defect, 371
inclusion

elastic energy of, 343
field at the interface, 352
field in the matrix, 352
inhomogeneous, 344
isotropic spherical, 353
problem statement, 335

incompressibility constraint, 153
incompressible elasticity, 153
infinite strip, 242
inflation of balloon, 702
inhomogeneous inclusion, 344
instantaneous elastic moduli, 155
integral

derivative, 83
transform, 39

interaction energy, 362, 432, 442, 444
between dislocations, 318

interface dislocation
edge, 415, 420
screw, 409

interface force, 359
intermediate configuration, 489
internal energy, 113

with mass growth, 619
internal variables, 127

invariant functional, 401
invariants, 6, 12, 14
inverse

Fourier transform, 48
of a tensor, 6
pole figures, 593

irreversible thermodynamics, 127
isochoric plastic deformation, 474
isotropic

Green elasticity, 150
hardening, 474
inclusion, 350
material, 150

J integral, 358, 404
J2 deformation theory of plasticity, 486
Jaumann stress rate, 106, 107, 541

cylindrical coordinates, 685
on crystal spin, 541

Johnson–Cook model, 483
Joule’s effect, 137

kernel, 41
kinematic hardening, 475

linear, 477
nonlinear, 477
Prager, 477
Ziegler, 477

kinetic energy, 113
Kirchhoff stress, 101
Kolosov constant, 180, 411
Kronecker delta, 2

L integral, 404
Lagrangian

multiplier, 153
strain, 59
triad, 79

Lamé
constants, 168
problem, 251

laminate plasticity, 601
Laplace’s equation, 172, 378
latent

hardening, 519, 547
heat, 118

lattice
base vectors, 540
parameter, 433

lattice rotation, 506
geometrical softening, 580, 582
shear bands, 580, 582

left stretch tensor, 21
line integrals

material derivative, 85
linear dependence, 13
linearly hardening material, 499
loading index

kinematic hardening, 476
pressure-dependent plasticity, 479
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Index 857

localized plastic deformation,
557

Love’s potential, 257

M integral, 404, 773
macroscopic shear bands, 558
mass

conservation, 34
flow, 31
growth, 609, 611, 630
resorption, 631

material derivative, 71
line integrals, 85
surface area, 84
surface integrals, 84
volume integrals, 84

material length, 383
Matthews–Blakeslee criterion,

433
maximum shear stress, 97
Maxwell relations, 128
mechanical power input, 108
Mellin transforms, 40
Michell’s solution, 724
micropolar

continuum, 375
elasticity, 398

Mindlin’s stress functions, 380
misfit dislocation, 432, 433
mismatch strain, 433, 434
mixed dislocations, 304
Mohr’s envelope, 467
Mohr–Coulomb yield criterion,

467
molar Gibbs energy, 142
Mooney–Rivlin material, 153, 698
morphogenesis, 610
multiple slip, 576
multiplicative decomposition, 490

in biomechanics, 622
multiply connected

cross section, 222
regions, 172

Murnaghan’s constants, 150

nanocrystalline grains, 530
Nanson’s relation, 65
necking, 487
neo-Hookean material, 153
Newtonian fluid, 701
Noether’s theorem, 400
nominal

stress, 98, 99, 101
traction, 678

non-Schmid
effect, 571
stress, 563

nonassociative flow rule, 480
nonlinear elasticity, 148
norm of a function, 37

objective rate, 90, 105
octahedral

plane, 464, 468
shear stress, 464

Oldroyd rate, 154, 679, 680
Onsager reciprocity relations,

129
open thermodynamic system, 139
opening angle, 631
ordered crystals

localized deformation, 560
orthogonal tensors, 17

geometrical interpretation, 18
specific forms of, 88

orthonormal basis, 2, 11

Papkovich–Neuber potentials,
769

partial dislocations, 513, 531
Peach–Koehler force, 129, 365, 512,

812
Peierls–Nabarro dislocation, 759
permutation tensor, 3
phenomenological plasticity, 461
plane

strain, 178
stress, 179

plane stress modulus, 567
plastic

potential, 480
deformation gradient, 490
potential surface, 480
rate potential, 488
secant modulus, 486
strain, 484
tangent modulus, 474, 486
void growth, 495

plasticity, 461
associative, 480
corner theory, 487
deformation theory, 484, 486
ideal, 473
nonassociative, 480
strain hardening, 461

plates
equilibrium, 282
flexural rigidity, 284

point force, 237, 257, 261
Poisson’s equation, 172
polar decomposition, 20, 63
polynomial solutions, 184
porosity, 470
positive definite tensors, 14
potential energy, 175, 355

bent plate, 284
couple-stress elasticity, 396

Poynting effect, 700
Prager’s hardening, 477
Prandtl stress function, 217
precipitation, 373
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pressure-dependent plasticity, 478
pressure-sensitive plastic flow, 572
pressurized

cylinder, 209
sphere, 250

principal
directions, 76
stresses, 96
stretch, 21, 62, 78, 152

principle of virtual work, 109
proportional loading, 484, 486
pseudotraction, 678
pseudomoduli, 155

quadratic forms, 22

rate
of deformation, 69, 627
of working, 101
potential, 488
sensitivity, 602
tangent modulus, 548

rate-dependent
plasticity, 482
slip, 547, 592

recall term, 478
reciprocal symmetry, 480
regular solution, 145
Reiner–Rivlin fluid, 700
remodeling, 610
residual strain, 631
resolved shear stress, 482
Reuss estimates, 825
reversible thermodynamics, 116
Reynolds transport theorem, 613
right stretch tensor, 21
rigid

inclusion, 252
indenters, 271

rigid body motion, 88
Rivlin–Ericksen tensors, 657
rocks, 480
rotation tensor, 376
rubber model, 153

Saint-Venant
compatibility equations, 170, 171
principle, 187

Saint-Venant−Kirchhoff assumption, 150,
696

scalar field, 55
gradient, 70

scalar product, 1
Schmid

rule, 505, 560
stress, 561

screw dislocation, 299, 302, 407
couple-stress elasticity, 391
near free surface, 409

secant modulus, 484
second law of thermodynamics, 114
second Piola–Kirchhoff stress, 102
semi-inverse method, 225
shear

center, 227
modulus, 161
strain, 60

shear stress
maximum, 97
resolved, 482

simple beam
Fourier loading, 191

simple shear, 58, 85
single valued displacements, 208
singular integral equation, 296
slip

steps, 502
system, 482
traces, 502

slip-plane hardening, 547
small strain, 61
soft tissue, 609, 629
softening, 473

geometric, 816
vertex, 487

soil mechanics, 468
specific heat, 118
sphere

subject to temperature gradient,
254

spherical
coordinates, 248
indentation, 255
void, 495

spin rate, 74
plastic part, 604

spin tensor, 79
stability

array, 441
bounds, 439, 445
dislocation array, 439

stacking faults, 513
emission from grain boundaries, 531

state variables, 116
static equilibrium, 92, 96
stationary discontinuity, 563
stiffness tensor, 118
Stokes theorem, 26
Stoney’s formula, 786
strain

definitions, 56
Eulerian, 56
integration of, 187
Lagrangian, 56
logarithmic, 56
natural, 56
nominal, 56
potentials, 256
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rate, 76
relaxation, 437
shear, 60
small, 61

strain energy, 148
for soft tissues, 629
isotropic elasticity, 151

strain hardening, 461
crystal plasticity, 544
localization, 574
origins of, 505
single crystal, 603

strength-differential effect, 480
stress

Cauchy, 92
first Piola–Kirchoff, 99
function, 330
invariants, 462
Kirchhoff, 101
nominal, 98, 101
power, 109
rate, 106
second Piola–Kirchhoff, 102
work conjugate, 99

stretch, 56
principal, 62
tensor, 59

Stroh formalism, 329
structural rearrangements,

127
substrate, 432
surface

energy, 449
instability, 455

surface integrals, 30
material derivative, 84

symmetric tensor, 14

tangent modulus, 484
plastic, 486
secant, 486

Taylor
lattice, 510
model, 587

temperature, 115, 483
tensile crack, 296
tensors

antisymmetric, 14
axial vector, 17
characteristic equation, 13
conductivities, 119
determinant, 6
field, 27
invariants, 6, 14
inverse, 6
orthogonal, 17
positive definite, 14
product, 10
spectral forms, 14

symmetric, 14
trace, 6
transpose, 5

texture determination, 593
thermal strains, 178
thermodynamic

force, 127
potential, 127, 128
system, 113

thermoelastic effect, 136
thermoelasticity, 127, 131, 178
thin

films, 432
plates, 280

thin-walled section, 727
third law of thermodynamics, 126
threading dislocation, 432, 437
time-independent behavior, 483
tissue, 609
torsion, 214

displacements, 214
elliptical cross section, 221
energy of, 216
function, 214
multiply connected cross sections,

222
rectangular cross section, 217
rigidity, 216

total energy, 355
total strain theories, 596
trace, 6, 10
traction vector, 92
transformation strain, 335, 336

polynomial, 345
transmural cut, 631
transport formulae, 83
Tresca yield criterion, 465
triple product, 1, 2, 7, 13

uniform contact pressure, 276
uniqueness of solution, 174
unit cells, 505

vector field, 27
curl of, 55
differentiable, 55
divergence, 55
gradient, 70

vector product, 1
Vegard’s rule, 433
velocity, 71
velocity gradient, 71

antisymmetric part, 74
crystal plasticity, 539
elastoplastic deformation, 490
symmetric part, 74

velocity strain, 73
vertex softening, 487
virtual work, 107
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void growth, 479, 495
Voigt

estimates, 824
notation, 164

Volterra’s integral, 301
volume

change, 63
integrals, 84
rate of change, 84

volumetric
strain, 161
strain rate, 479

von Mises yield criterion, 463

wedge problem, 271
width of dislocation, 759
work conjugate stress, 99

yield
cone, 469
surface, 475
vertex, 487

yield criterion
Drucker–Prager, 468,

479
Gurson, 470, 479
Mohr–Coulomb, 467
pressure-dependent, 468,

478
Tresca, 465
von Mises, 463

yield surface, 474
Young’s modulus, 161

Ziegler’s hardening, 477
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